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Abstract

Some hold that the lesson of  Russell’s paradox and its relatives is that math-
ematical reality does not form a “definite totality” but rather is “indefinitely
extensible”. There can always be more sets than there ever are. I argue that
certain contact puzzles are analogous to Russell’s paradox this way: they simi-
larly motivate a vision of physical reality as iteratively generated. In this picture,
the divisions of  the continuum into smaller parts are “potential” rather than
“actual”. Besides the intrinsic interest of  this metaphysical picture, it has impor-
tant consequences for the debate over absolute generality. It is often thought
that “indefinite extensibility” arguments at best make trouble for mathematical
platonists; but the contact arguments show that nominalists face the same kind
of  difficulty, if  they recognize even the metaphysical possibility of  the picture I
sketch.

… endure not yet
A breach, but an expansion.

John Donne,
“A Valediction: Forbidding Mourning”

1 Extensibility	and	Divisibility
Sets are supposed to be plenitudinous. It’s tempting to express this plenitude like this:

Sets. For any things, there is some set whose members are just those things.

But this is inconsistent. The sets are some things, so

There is some set whose members are just the sets.

This article descends from an earlier paper I presented at the 2009 Arché/CSMN graduate con-
ference; this version doesn’t share much with the original besides its title. Thanks to Andrew Bacon,
Einar Bohn, John Hawthorne, Hartry Field, Kit Fine, Shieva Kleinschmidt, Colin Marshall, Ted Sider,
Gabriel Uzquiano, and participants at the California Metaphysics Workshop on the Relation Between
Logic and Metaphysics, for comments along the way.
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1 Extensibility	and	Divisibility

Since no set is its own member,

There is some set which is distinct from every set.

Contradiction, QED. (Of  course, Russell’s version bypasses the assumption that no set
is a self-member, by considering the non-self-members rather than the sets.)

There are two main strategies for resolving the inconsistency.1 The first strategy—
which has become mathematical orthodoxy—is to somehow restrict Sets: for instance,
it might only hold when the quantifier “for any things” is restricted to things that are
not too numerous, or things that all live below some level in the iterative hierarchy of
sets. This restriction distinguishes set-forming pluralities from the rest: for example, the
natural numbers are set-forming; the sets are not. But while we may have grown used
to this standard solution, it’s unsettling. What can it be that prevents certain things
from forming a set? Indeed, we can make perfect sense of  a collection—a set+ or
proper class—of  all sets. But then it looks like the sets+ are what set theorists were really
interested in—they are more deserving of  the name “set” than the restricted species
that we were calling “sets”. We still can’t form a set+ of  all sets+—but nothing stops
us from forming a set++ of  all sets+—and on it goes. Wherever we put the boundary
between the set-forming and otherwise, it looks like an arbitrary restriction. We seem
to have given up on the ambitions of  set theory as a general theory of  collections.

The alternative strategy takes these ever-more-inclusive collections seriously: the
universe of  sets does not form a “definite totality”, but rather is indefinitely extensible
(Dummett 1993, 441). As with the orthodox strategy, Sets is amended so that the
domain of  “for any things” is less inclusive than that of  “there is a set”—or to put it
the other way around, the second quantifier is more inclusive than the first.

For any things, there is some+ set whose elements are just those things.

But (on pain of  arbitrariness) we can’t say the quantifier “some+” is absolutely general,
either: we can also say

For any+ things, there is some++ set whose elements are just those things.

And so on. However many things you quantify over, there is always a more inclusive
quantifier, “some+++++” and so on, that you might use instead. Thus the proponent
of  indefinite extensibility rejects absolute generality. Very roughly, we can never quantify
over absolutely everything there is—for there is always more yet.

1There are other options, such as revising classical logic, which I will ignore. Note I’m also setting
aside the view of  Yablo (2004) that plural comprehension is restricted such that there aren’t any such
things as the sets.
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1 Extensibility	and	Divisibility

There are serious difficulties here. David Lewis charges the view with incoher-
ence. “Maybe [the defender of  indefinite extensibility] replies that some mystical
censor stops us from quantifying over absolutely everything without restriction. Lo,
he violates his own stricture in the very act of  proclaiming it!”(1991, 68). How can
one explain the limits of  generality without violating those very limits? In order to
articulate the view, for present purposes I’ll follow a proposal developed by Kit Fine
(2006), Oystein Linnebo (2010), and James Studd (2013). It is tempting to describe
the formation of  sets in temporal or modal terms—the hierarchy is indefinitely extensi-
ble, rather than indefinitely extended. The proposal is that we should take this seriously
as describing the potential for further sets, involving a notion analogous to modality or
tense. It’s not clear what this sort of  “potential” comes to. (Surely it isn’t metaphysical
possibility, or literal ordering in time. Fine calls it “postulational possibility”, and sug-
gests that it may be primitive.2) But even if  we don’t perfectly understand this idea,
let’s take it seriously and try to use it.

I’ll follow Studd’s suggestion that we should describe the potential for ever-expanding
ontologies using formal analogues of tense operators.3 For instance, the revised principle
of  plenitude for sets says

Potential Sets. Always, for any things, there will be some set whose elements are just
those things.

Again, we don’t intend this to literally describe events in time. We are describing
some kind of  structure of  iterative generation. To get a rough picture (and to find
models for the purpose of  consistency proofs) we can translate these tense operators
into quantification over stages (or “ontologies”). But we won’t take stage-quantification
seriously as a reduction of  the operators: indeed, there will be too many stages to
really quantify over all at once. The key logical point is that these tense-like operators
are “prophylactic” (using Meghan Sullivan’s term, 2011, 11): they protect us from
ontological contamination. There will be sets not among the sets there are (in this
specialized sense of  “will”).

The plenitude of  sets provides one motivation for indefinite extensibility, and thus
one line of  attack on stable absolute generality—but not the only one. Other things

2“I doubt that one can provide an account of  [postulational modalities] in essentially different
terms—and in this respect, of  course, they may be no different from some of  the other modalities”
(Fine 2006, 33).

3In particular, I’ll say “always” for Studd’s box, “will” for Studd’s forward-looking diamond, “will
always” for Studd’s forward-looking box, and similarly for “was” and “was always”. The reason time
talk is nicer than possibility talk is that it is bidirectional, which helps us express useful things about the
structure of  the “stages” of  being. (For example, we can express the fact that stages are well-ordered
using the schema “If  it is not the case that 𝜑 and it will be the case that 𝜑, then it will be the case that (𝜑
and it was never the case that 𝜑).”) But as it happens I won’t do anything that really turns on choosing
tense over modality as our template.
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1 Extensibility	and	Divisibility

offer parallel challenges: cardinal numbers, ordinals, properties, propositions. Each
of  these entities recommend plenitude principles of  their own (such as: any well-ordered
things have an ordinal) which turn out in their own ways to raise inconsistencies.
These inconsistencies can similarly be resolved by invoking some sort of  (similarly
difficult to explicate) potential to extend the universe with yet more entities.

One feature that sets, numbers, properties, and propositions have in common
is that they are abstract: nominalists reject them all. Someone who thinks that strictly
speaking there really aren’t any sets or numbers or propositions—and thus rejects their
plenitude outright—will not see these indefinite extensibility arguments as any threat
to absolute generality. (The nominalist might see this rather as a pretty good modus
tollens, showing that the platonist’s conception is not even coherent.) Thus it’s supposed
that only the platonist absolutist is vulnerable to this line of  attack (see Hellman 2006).

I’ll argue that the challenge of  indefinite extensibility is not a special feature of
abstract reality. Certain conceptions of physical objects motivate the view that even the
universe of  concreta can be indefinitely extensible.4 In particular, there are puzzles
about the structure of  continuous physical objects which play a role analogous to the
paradoxes of  set theory. Natural plenitude principles turn out to be inconsistent when
understood straightforwardly. Again, mathematical orthodoxy rejects these principles
and replaces them with something less ambitious; but again, the original conception
can be rendered consistent using the indefinite extensibilist’s tools—and thus rejecting
any stable absolute generality.

The case of  physical objects is a bit more delicate than the case of  sets, because it’s
contingent whether there really are any continuous physical objects of  the sort I’ll de-
scribe. Regions of  space-time or fields are reasonable candidates—but perhaps these
are not really continuous, at least in the demanding sense I’ll put forward. But the
mere possibility of  such things is enough to raise trouble. The dialectic is structurally
parallel to Ted Sider’s challenge (1993) to Peter van Inwagen’s mereological theory
(1991). Van Inwagen claims that everything is either an atom or a living thing; Sider
points out that insofar as we should think this thesis true at all, we should think it a

4The general idea arises from non-standard analysis, and is suggested by Michael Potter:

For the proposal now under consideration is that we should conceive of  the continuum
as indefinitely divisible in much the same way as the hierarchy is indefinitely extensible,
and it seems inevitable that if  this idea is thought through it will eventually lead us to
abandon the idea that the continuum is a set of  points at all (2004, 146).

Daniel Nolan also alludes to this:

If  the mathematical realm can be said to be “indefinite” in size, should we say the same
about the non-mathematical realm? (2004, 319)

My technical approach starts from John Conway’s proper-class sized continuum of  “surreal numbers”
(Conway 2000 [1976]). More on this later.
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1 Extensibility	and	Divisibility

necessary truth; moreover, it is incompatible with (non-living) “atomless gunk”. Since
atomless gunk is a metaphysical possibility, van Inwagen’s thesis is at best contin-
gently true, and thus false. Similarly, the proponents of  stable absolute generality—
“absolutists”—don’t mean for us to believe that it just so happens that there are objects
exhausting absolutely all there is (or will be). If  this thesis is true at all, it is necessarily
true. The kind of  thing we’ll consider is incompatible with absolutism—so its mere
possibility is incompatible with the necessity of  absolutism.

Of  course, there are pressing worries about whether indefinite extensibility is even
coherent. I’m following a “modalist” strategy for making sense of  the view; but many
questions remain unanswered, and I think it’s inconclusive whether the strategy is
successful. Should it fail, and the idea of  indefinite extensibility itself  turn out to be
incoherent, then of  course the kinds of  things I’ll describe aren’t possible after all. I’m
open to the thought that it will turn out that way. But if  it does, the point is equally
devastating for the indefinite extensibility of  set theory. My main point is that insofar
as the plenitude of  the mathematical universe challenges absolute generality, so does
the possible plenitude of  the physical universe. The parity between these two cases
still stands even if  both sorts of  plenitude turn out to be incoherent.

Like in Sider’s argument against van Inwagen, the possibility we’ll envision in-
volves parts. A physical object might be indefinitely divisible: its parts do not form a
“definite totality”, but rather whatever parts it may have, there will be still more parts
not among them. Mere “atomless gunk” of  the sort Sider appealed to is not divisible
enough for our purposes. We can perfectly well describe an ordinary atomless object
by quantifying over a fixed domain of  continuum-many parts. To approach the limits
of  stable absolutely general quantification we must look for something more divisible
yet.

Daniel Nolan raises the possibility of  what he calls “hypergunk”: an object that has
arbitrarily large sets of  parts (2004). He defends the view that hypergunk is metaphys-
ically possible: it is logically consistent; its existence does not appear to be analytically
false or a Kripke-Putnam kind of a posteriori impossibility; it can be clearly described in
fairly natural terms; and “it may also be a reasonably natural way of  spelling out a nat-
ural conception of  unlimited divisibility” (2004, 307). He points out that some, such
as C.S. Peirce, have apparently taken the space of  the actual world to be something
like this—and if  this is a mistake, it seems to be empirical.5

Hypergunk does not meet our needs, either. The trouble is that the definition of
hypergunk is nominalistically unacceptable, since it is framed in terms of  the cardi-

5Hazen (2004) provides a proof  that hypergunk is consistent, relative to set theory plus a large cardi-
nal axiom. But Hazen also argues that hypergunk is not a genuine possibility, on the grounds that there is
necessarily a set of  all non-sets. Hazen’s argument provides another reason (apart from nominalist scru-
ples) to be interested in direct characterizations of  very large continua that aren’t parasitic on set theory:
perhaps the nature of sets guarantees they outrun Nolan’s hypergunk, understood set-theoretically.
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2 Things	Fall	Apart

nalities of  sets. Perhaps the definition can be reframed to avoid any appeal to sets, but
I don’t know how that would go; I won’t pursue it. But even though it is encumbered
with set-theoretic baggage, there is a close connection between Nolan’s hypergunk
and some of  the possibilities I’ll describe. In these possibilities, the parts of  continuous
objects keep going on and on in the same way as the ordinals—and so, in the presence
of  set theory, it follows that these objects are in fact hypergunk. But that isn’t the path
I’ll take: my puzzles arise without appeal to sets or ordinals.

(A technicality: I do use plural quantification in my formulations. Nowadays
many nominalists are happy to speak plurally, in accord with the teaching of  Boolos
(1984). But some nominalists still think that’s fishy: maybe it amounts to “set theory
in sheep’s clothing”, to use Quine’s famous phrase. I don’t think anything very impor-
tant turns on the choice for our purposes: rather than plurals, I think we can say what
we need to say using schematic generalizations, which even the austerest nominalists
deign to use. But doing things that way raises extra technical complications, which I
want to set aside.6)

Instead of  either gunk or hypergunk, we’ll look at certain contact puzzles about
the structure of  continuous physical objects. Nothing which satisfies plausible-seeming
contact principles can have all of  its parts “exist at once”: rather than being divided into
arbitrarily small parts, we can only make sense of  such things as indefinitely divisible.
If  it is really possible for there to be such indefinitely divisible things, then generality
absolutism is not necessarily true—and so it is actually false. And aside from worries
about absolute generality, these contact puzzles and the picture that emerges from
them are interesting in their own right. They motivate non-standard continua that
present striking alternative possibilities for the structure of  spatio-temporal extension.

2 Things	Fall	Apart
Here’s a simple idea. Some objects are scattered. A cloud of  particles consists of  many
small parts, none of  which are in contact with one another. A bikini consists of  two
separate parts. In contrast, there may be objects that are not scattered but rather
continuous. Since the word “continuous” nowadays has a technical meaning, let me
introduce some new terms.

Some things are scattered iff  no two of  them are in contact with one
another.

A thing is weakly cohesive iff  it is not a sum of  two scattered parts.
6For example, Studd’s first-order schematic formulations of  modalized set theory require extra com-

plications to ensure that we only consider rigid predicates as instances; plurals build in that rigidity auto-
matically.
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2 Things	Fall	Apart

A thing is strongly cohesive iff  it is not a sum of  two or more scattered
parts.

Strong cohesion is a plausible gloss on continuity—though as we’ll see, a problematic
one.7

(I’ll say more about the technical background for this notion of  contact later. A
point worth noting here: the mereologist’s “part” is used in a somewhat extended
sense, so things count as parts of  themselves. Similarly, our notion of  “contact” is
somewhat extended, so that things that share a common part count as being in es-
pecially intimate contact. I’ll also use “x touches y” as a synonym for “x and y are in
contact”.)8

You might have thought that a continuous object—such as a region of  space—
was not divisible into scattered parts. The standard mathematical treatment rejects
this thought. According to mathematical orthodoxy, the continuum is made entirely
of  unextended points. Furthermore, these points are dense in the sense that between
any two points there is a third—and thus, by applying this principle repeatedly, there
are infinitely many points between any two. So points are never in contact with one
another, and nothing composed of  two or more points is strongly cohesive: the con-
tinuum of  points is disintegrated.

The claim that extended things are composed of  unextended points is perplexing
in many ways—such as the ancient paradoxes of  measure and continuous change.
A rival historical tradition rejects this claim, and maintains that all genuine parts of
space (and spatially extended objects) are extended: points, lines, and surfaces are
mere abstractions or idealizations.9 Here’s one way of  stating the view that everything

7The etymology of  “continuous” is “held together”. Aristotle writes: “continuity belongs to things
that naturally in virtue of  their mutual contact form a unity” (2008, V.3, pp. 126–7). See Zimmerman
(1996b), p. 10: “But if  there is a gap—however small—between every pair of  discrete extended parts of  a
sphere, then the sphere is nothing but gaps through and through!”

8Taking contact as our basic notion is not the mathematically orthodox approach to topology, which
instead takes the notion of  an open set of  points as basic. We want to proceed in a way that is neutral as
to the existence of  points—or sets. For development of  this idea see Clarke (1981); Zimmerman (1996b);
Roeper (1997), 255ff.; Russell (2008), 253ff.

9For example, Kant writes:

The property of  magnitude by which no part of  them is the smallest (no part is simple) is
called their continuity. Space and time are quanta continua, because no part of  them can
be given except as enclosed between boundaries (points and instants), thus only in such a
way that this part is again a space or a time. Space therefore consists only of  spaces, time
of  times. Points and instants are only boundaries, i.e. mere places of  their limitation; …
and from mere places … neither space nor time can be composed (Kant 1999 [1781],
292).

For historical discussion see Zimmerman (1996a), as well as the references in the preceding footnote.
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2 Things	Fall	Apart

is extended. (For simplicity, we restrict our quantifiers in what follows to the parts of
continuous physical objects.)

Interiors. Everything has an interior part: a part of x which is not in contact with
anything that does not overlap x.

(Overlap means sharing a common part. Given standard assumptions, Interiors is
equivalent to principle that there are no mere boundaries; see Russell (2008), p. 254.)

But rejecting unextended parts cannot save continuity, in the sense of  strong cohe-
sion. Let Big be an arbitrary thing. We can find scattered parts that together compose
Big by going through all of  Big’s parts one by one. Say Small is a part of  Big. If  Small
doesn’t overlap anything we picked earlier, then Small has an interior part, Smaller,
which is not in contact with anything we picked earlier. In that case, add such an in-
terior part to our collection. Otherwise, just move on to the next part and keep going.
When we’re done, we’ll have picked out a scattered collection of  Big’s parts (all of  the
various Smallers) such that every part of  Big overlaps at least one of  them. From this
it follows that Big is the sum of  these scattered parts.10

To make this argument precise requires a technical assumption: Global Choice,
which generalizes the standard Axiom of  Choice from sets to arbitrary pluralities. The
nicest version of  the proof  I know uses the plural form of  an elegant equivalent state-
ment of  Choice, the Teichmüller-Tukey Lemma. Let “the X’s fit” stand in for an
arbitrary formula with one plural variable. We say “fitting has finite character” iff

For any X’s, the X’s fit iff  any finitely many Y’s among the X’s fit.

The following principle follows from Global Choice:11

10This argument uses a similar idea to the Cantor-Forrest-Arntzenius measure argument discussed
in Russell (2008). (See also Forrest 1996; Forrest 2007; Arntzenius 2008.) In fact, though I won’t take this
up here, I believe that the indefinite extensibility approach also offers a promising alternative response
to the measure argument.

11Here’s a sketch of  how Global Tukey’s Lemma can be derived from Global Choice. First, another
technical point: I don’t know how to even state Global Choice properly without appealing to something
like plural quantification over ordered pairs. (The appendix to Lewis 1991 gives a way of  reconstructing
pairs from purely mereological resources, if  there are enough things to go around; see also the discussion
of  options in Hawthorne and Uzquiano 2011, 60–61.) Let’s not fuss over that too much, and assume
any two things have a unique pair. Given this, we can also simulate quantification over “functions” from
pluralities to individuals, using plural quantification over suitable pairs of  individuals. Global Choice
says that there are pairs which encode a global choice function, taking each (non-empty) plurality to one
of  its members.

If  there is no maximal fitting plurality, then for any fitting X’s there is some further thing, not among
the X’s, that fits with the X’s. Using Global Choice, we can then code a “function” that takes each fitting
plurality to some such thing g(X). Then we can use g to recursively construct ever-longer well-ordered

8



2 Things	Fall	Apart

Global Tukey’s Lemma. If  fitting has finite character, then there is a maximal fit-
ting plurality: that is, some (zero or more) things fit together and do not fit with
anything else.

We now prove:

Theorem 1. Given classical mereology and Global Choice, Interiors implies that no
composite thing is strongly cohesive.

Proof. Let Big be any composite thing; we’ll show that it is a sum of  at least two scattered
parts. First, “the X’s are scattered proper parts of  Big” has finite character: indeed, for
some things to satisfy this property, it suffices that any two of  them are scattered proper
parts of  Big. Then by Global Tukey’s Lemma there is a maximal plurality of  scattered
proper parts of  Big: call them the Scattered Parts. The maximality condition says
that each proper part of  Big is in contact with one of  the Scattered Parts. It then
follows that Big is a sum of  the Scattered Parts. Suppose otherwise, so Big has some
part Small which doesn’t overlap any Scattered Part. Then by Interiors, Small has a
part Smaller, which is a part of  Big not in contact with any Scattered Part. This nearly
finishes the proof; we just need to rule out the edge case where Smaller is not a proper
part of  Big—that is, “Smaller” is Big itself. In that case no Scattered Part overlaps Big,
which can only hold if  there are zero Scattered Parts. Since Big is composite, it has
a proper part, which would then be in contact with no Scattered Part, contradicting
their maximality. (And of  course there are at least two Scattered Parts: otherwise
Big would be a sum of  fewer than two proper parts, which is impossible in classical
mereology.)

So, whether things have unextended point parts, or are entirely made of  extended
parts, they still break down into scattered parts.12

This contact puzzle is related to another. Let’s return to the orthodox continuum
of  points. Take any single point. It is not in contact with any other single point—but

sequences of  individuals, starting from an empty sequence and using the recurrence relation that each
thing in the sequence is given by applying g to all the things before it in the sequence. (These sequences
can also be represented by pluralities of  pairs.) We can carry out this construction using the idea of  the
proof  of  the Recursion Theorem (or Zorn’s Lemma, or the Well-Ordering Theorem)—by considering
all the various well-ordered sequences of  different lengths that obey the recurrence relation, and showing
that we can join them up into a maximal sequence of  that sort. I won’t go into the details here. Then the
things that appear in the maximal sequence must fit together—and applying g to them would provide
an even longer sequence obeying the recurrence relation. That’s a contradiction. So there must be a
maximal fitting plurality after all.

12These alternatives are not exhaustive—for instance, the “no zero” conception of  space defended
by Arntzenius (2008) countenances things with neither point parts nor interior parts. But I don’t expect
that to help with this problem.
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2 Things	Fall	Apart

it is in contact with the sum of all other points—there is nothing left between it and
them. Thus the orthodox continuum violates this principle:

Distributive Contact. If x touches the sum of  the Y’s, then x touches some Y.

But while we may have grown used to this odd topological consequence, it’s perplex-
ing. While there may be emergent unities which are greater than their parts, a mere
sum isn’t supposed to be like that. A mereological sum is often taken—in some elusive
sense—just to be its parts.13 The failure of  Distributive Contact is a knock against that
idea. In that case there are important topological facts which irreducibly concern the
whole. It is in contact with things they are separated from.

The finite version of  Distributive Contact is a standard axiom of  mereotopology
(Roeper 1997, 255, principle A5).

Finitely Distributive Contact. If x touches the sum of y1 and y2, then x touches y1
or x touches y2.

But what justification might there be for this principle that does not extend to infinite
sums? Here’s one: the orthodox continuum obeys the finite principle but not the infi-
nite principle, and the orthodox continuum is the best we have. A good argument—
but one which is weakened if  we discover coherent alternatives.

John Hawthorne (2000) argues against Distributive Contact. (He simply calls it
“The Contact Principle”.) His argument also assumes the mathematically orthodox
structure of  the continuum, but in a different, instructive way. (My version here is a
variant of  his.) Consider two cube blocks in contact with one another, side by side.
Since we are in the orthodox continuum of  points, let’s suppose that one of  them is
closed, including the boundary plane between them, and the other is open, excluding
it—so there is no overlap, and no intervening empty space between them. Accord-
ingly, call the blocks Open and Closed. Now consider certain parts of  Open. The
first part consists of  all of  Open except its half  closest to Closed. The second part is all
of  Open except the third of  it closest to Closed. Next, all of  Open except the closest
quarter. Then all but the closest fifth. And so on. Call these the Zeno Parts. Open
is the sum of  the Zeno Parts: every part of  Open sticks out some finite distance from
its boundary with Closed, and thus overlaps some Zeno Part—and indeed infinitely
many of  them. But again, each of  the Zeno Parts—say the nth—is still separated from
Closed by the remaining 1⁄nth of  Open. So Closed is in contact with the sum of  the
Zeno Parts, but not with any particular Zeno Part.

13“The fusion is nothing over and above the cats that compose it. It just is them. They just are it.
Take them together or take them separately, the cats are the same portion of  Reality either way.” (Lewis
1991, 81–82; for further discussion see e.g. Hawley 2014). Compare Peter Forrest’s (2007) discussion of
similar principles about size and overlap.
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2 Things	Fall	Apart

This difficulty doesn’t essentially turn on point parts, or on the difference between
open and closed regions. In fact, the same problem arises if  we reject those peculiari-
ties and instead maintain that everything has an interior part. Even then, Distributive
Contact implies that everything breaks into two separated pieces—an even worse con-
clusion than the failure of  strong cohesion that we considered earlier.

Theorem 2. Given classical mereology, Distributive Contact and Interiors imply
that nothing composite is weakly cohesive.

Proof. Let Small be a proper part of  Big. Then let Separate be the sum of  all the
parts of  Big that do not touch Small. (There must be at least one such part, since
classical mereology ensures that Big has a part disjoint from Small, and this in turn
has an interior part.) By Distributive Contact, Small does not touch Separate. Any
part of  Big which is disjoint from Small has (by Interiors) a part which does not touch
Small, which is thus a part of  Separate. So every part of  Big overlaps either Small or
Separate; that is, Big is a sum of  Small and Separate, which are not in contact. So Big
is not weakly cohesive.

(We can argue in the same way for a somewhat stronger result, weakening the
premise Interiors a bit. Call x regular iff: for any two parts of x which are not in
contact, there is some further part of x which is in contact with neither of  them. The
idea is that if  two parts of  a continuum are separated, then there ought to be some-
thing separating them, which is strictly between them.14 Distributive Contact implies,
using classical mereology, by the same argument just given, that nothing composite is
regular. Theorem 2 follows from this, because Interiors implies that anything weakly
cohesive is regular.)

(Note also the close connection between Theorems 1 and 2. In fact, Distributive
Contact implies that anything weakly cohesive is also strongly cohesive. If x is the
sum of more than two scattered parts, then it is also the sum of  any one of  those parts
together with the sum of  the rest of  them; Distributive Contact implies that these are
also not in contact with one another. So assuming Global Choice would also let us
derive Theorem 2 as a consequence of  Theorem 1. The proof  given here has the
advantage of  not relying on that technical assumption.)

14Descartes held something like this, applying it as an argument against the vacuum:

For, when there is nothing between two bodies, they must necessarily touch each other;
and it is manifestly contradictory for them to be apart, or for there to be a distance
between them, and yet for this distance to be nothing: because all distance is a mode
of  extension, and therefore cannot exist without an extended substance (Descartes 1982
[1644], pt. 2, principle 8; quoted in Maudlin 1993).
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2 Things	Fall	Apart

Is Distributive Contact just a mistake, then? I think that conclusion would be
hasty. Return to the case of  the Zeno Parts. In the orthodox continuum, it’s clear that
the sum of  these is the complete block Open. This is because a standard continuous
line obeys this version of

The Archimedean Principle. If I is any interval part of  an interval J, then there
is some natural number n such that I is at least 1⁄n times the length of J.

In other words, the standard continuum has no infinitesimal parts. This is what en-
sures that every part of  Open sticks out into at least one of  the Zeno Parts.

But this principle may be false, or at least contingent. Non-standard analysis gives
us models in which it fails, where there are distances smaller than every ordinary pos-
itive fraction. (The Compactness theorem guarantees the existence of  such models in
which the entire first-order theory of  the standard continuum still holds, as Robinson
1996 [1966] exploited.) Could a non-Archimedean continuum avoid the problem,
and vindicate Distributive Contact?

Not directly. If  Open has infinitesimal parts in addition to the Zeno Parts, we can
repeat the argument using those: consider the parts comprising all but an infinitesimal
part of  Open adjacent to Closed, for each infinitesimal. Then Open will again be
composed of  these parts, but Closed will touch none of  them. To avoid the result that
a block can be composed of  infinitesimal Zeno-ish parts, we’ll need to carve out of  the
block a remainder even smaller than any of  the infinitesimals.

Rather than despair, this suggests a way of  escape: there is simply no limit to
the smallness of  the divisions we can make. When we divide something into Zeno-ish
parts, there are always even tinier parts that still remain. The continuum is not merely
non-Archimedean, but indefinitely divisible.

To get a clearer view of  this, consider a continuous line stretched out from left to
right. It has intervals as parts. (I’ll speak about the left and right endpoints of  these
intervals, as a convenient way of  discussing their ordering relationships; but as before,
don’t think of  endpoints as genuine parts of  the line. We could instead do things with
more complicated ordering relations, like “I is leftwise-left-of J” rather than “the left
endpoint of I is left of  the left endpoint of J”.)

In the standard picture, the continuum is dense: each interval is divisible into
smaller interval parts. Within any interval I we can find a smaller interval J whose
endpoints lie strictly between the endpoints of I. And indeed, for any finitely many
nested intervals, there is a further interval which is smaller than each of  them. This pic-
ture partly vindicates Anaxagoras’s hypothesis: “Nor is there a least of  what is small,
but there is always a smaller…” (Burnet 1920, 126; quoted in Sider 1993). Thinking
of  intervals as the units of  smallness, for each one or finitely many of  them there is a
smaller.

12
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But this is only a partial vindication. For in the standard continuum there is, in
a sense, a least of  what is small. There are infinite sequences of  nested intervals which
converge on a single point—and thus there is still in this picture an ideal “least of
what is small” at the limit of  a descending chain of  parts. (Indeed, these chains of
nested intervals reveal an underlying atomism to the continuum we are describing:
such chains are a standard way of  reconstructing points from pointless topologies; see
e.g. Roeper 1997.)

What prevents there from being a further part at the bottom of  such an infinite
descending chain of  intervals? Nothing at all. Indeed, non-standard analysis gives us a
model of  the continuum which embeds the standard continuum, but which addition-
ally has infinitesimal intervals smaller than each nested chain of  standard intervals.
So the standard continuum does not divide things as finely as it could.

What if  instead of  merely a dense continuum, there was an indefinitely dense con-
tinuum, such that any descending chain of  nested intervals could be extended with
a yet smaller interval? This would be a more complete vindication of  Anaxagoras’s
picture of  “no least of  what is small”—ever more infinitesimal smallness without end.
(Ockham seems to have held a view along these lines, though it’s a bit obscure: “I say
that if  the world would have been from eternity, and God would have in every hour
made one division in one continuum, there would not be as yet a complete division.”
Quotlibeta Septem, book I, question 9, quoted in Birch 1936, 503.)

On the face of  it, this picture is inconsistent. Consider all the intervals which share
certain leftmost endpoint. Their right endpoints are linearly ordered, so these are a
nested chain of  intervals. But no interval can be smaller than all of  them: it would
have to share the same left edge as they do, and thus be one of  those intervals originally
surveyed—and it can’t be smaller than itself.15

But perhaps the problem comes in when we try to survey all intervals at once—
just as there are problems with surveying all sets at once. Perhaps the continuum isn’t
arbitrarily divided, but rather arbitrarily divisible. Whatever parts a continuous thing
may have, there will be smaller parts not yet among them. Can this perspective hold
things together, allowing there to be things which aren’t entirely composed of  scattered

15I’ll spell out this argument in a bit more detail. Say the Lefties are all the intervals that share a left
endpoint with a certain interval I. Suppose J is a proper part of  every Lefty. Then since J is part of I,
the left endpoint of J must not be further left than I’s left endpoint. If J’s left endpoint is further right
than I’s, then there is a Lefty left of J, and J cannot be a part of  it. So J is itself  a Lefty, and thus not a
proper part of  every Lefty.
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parts, and preventing contact with the whole in the absence of  contact with any part?

3 Putting	Things	Back	Together
Yes.

First let’s articulate some mereological principles more explicitly. Here’s one way
of  axiomatizing classical mereology.

Core Mereology. Part is reflexive, transitive, and antisymmetric.

Supplementation. If  everything that overlaps x overlaps y, then x is part of y.

(Or equivalently: if x is not part of y, then some part of y does not overlap x.) And
finally:

Sums. (i) x is a sum of  the X’s iff: every X is part of x, and x is part of  anything
that has every X as a part.

(ii) Any (one or more) things have a sum.

Note that I’m not taking “sum” to be defined in the usual way, but rather as another
primitive to be constrained by principles—because as we go we’ll be investigating
several rival understandings of  sums. Note also that the principle offered here in Sums
(i) is not the standard definition. Here I’m using the notion of  a least upper bound—the
smallest thing that has each X as a part. In contrast, let’s adopt this standard definition:

x is a fusion of  the X’s iff  for every y, y overlaps x iff y overlaps some X.

One consequence of  classical mereology (in particular, Supplementation) is that sums
are fusions. In other words, this principle holds:

Distributive Overlap. x overlaps the sum of  the X’s iff x overlaps some X.

Besides mereology, let’s note some standard principles about contact (following
Roeper 1997, 255).

Core Topology. Contact is reflexive, symmetric, and monotonic (the last meaning
that if x touches a part of y, then x touches y).

(Remember that we are counting overlap as a case of  contact, and of  course anything
shares a part with itself.) In addition to these standard assumptions, we’d like to make
some that are less standard.

14



3 Putting	Things	Back	Together

Distributive Contact. If x touches the sum of  the Y’s, then x touches some Y.

(As I mentioned earlier, normally only the finite version of  this is assumed.)

Interiors. Everything has an interior part.

Cohesion. Something is composite and weakly cohesive.

Recall that Distributive Contact (with mereology) implies that anything weakly cohe-
sive is also strongly cohesive. So I won’t always bother to distinguish the two notions.

In the previous section, we showed (by several routes) that these principles taken all
together are inconsistent. But the resources of  indefinite extensibility give us a way of
salvaging them. Several of  these principles—in particular, Sums, Supplementation,
and Interiors—posit the existence of  a certain thing. But perhaps the correct way
of  stating these principles is not to posit “actual” existence, but merely “potential”
existence. Remember, this is how indefinite extensibility tackles Sets: for any things,
there will be a set. So what if  there merely will be a sum, a remainder, or an interior
part? In fact, any of  these three revisions will work on its own, giving rise to three
different pictures of  indefinitely divisible continua. Let’s briefly examine each of  them.
(Further details and proofs are presented in an appendix.)

The first (and simplest) idea is to replace Interiors with

Potential Interiors. Anything will have an interior part.

This principle is consistent with classical mereology together with the other topologi-
cal principles stated above—including Distributive Contact and Cohesion. There is a
simple model. In one dimension, we can think of  the continuum as beginning as a sin-
gle undivided unity; at the next stage it is divided into two adjacent parts; at the next
stage, each part is divided again; and so on. There are only countably many stages in
this picture, and at each stage there are only finitely many parts. The continuum has
a potential infinity of  parts, but never an actual infinity—a broadly Aristotelian picture.
Let’s call this the Finitist Model.

In this picture, there are no such things as the Zeno Parts—not all at once. There
will eventually be each of  the Zeno Parts, but it will never be the case that there are
more than finitely many of  them. The block is divisible into arbitrarily many parts,
but never infinitely many. This version is relatively small and tame; the other two are
vaster.

Here’s a second idea. We can replace Supplementation with the principle

Potential Supplementation. If  it will always be the case that everything that over-
laps x overlaps y, then x is part of y.

15



3 Putting	Things	Back	Together

Equivalently: if x is not part of y, then y will have a part disjoint from x.
As an example, consider again a collection of  Zeno Parts of  a solid block. What

we can say is that these fail to compose the block, but rather compose a proper part
of  the block, the Zeno Sum. There isn’t yet anything that makes up the difference
between the Zeno Sum and the original block—but there will be. When there is,
we can consider a still larger collection of  Zeno-ish parts, but these again will fail to
compose the entire block. Thus we can maintain the principle that whatever touches
the whole touches some part.

This picture gives up a bit of  classical mereology. What we have instead is Heyt-
ing mereology: this stands formally to intuitionistic propositional logic in the same
way that classical mereology stands formally to classical propositional logic.16 In par-
ticular, it should be noted that in this sort of  mereology least upper bounds and fusions
can come apart—and least upper bounds are really a more plausible candidate for
the ordinary notion of  a sum (see Russell 2008, 265–266, discussing a view of  Peter
Forrest’s).

To find a model for these principles (and thus prove they are really consistent) we
can turn to a very rich kind of  non-standard analysis: the “surreal numbers” discov-
ered by John Conway (2000 [1976]; see also Knuth 1974; Ehrlich 2012). This is a
vast continuum—in fact, too vast even to form a set, in orthodox set theory. The
basic idea is a generalization of  Dedekind’s “cut” method for constructing the stan-
dard continuum of  real numbers from the rational numbers. Dedekind identified the
number 𝜋 with the set of  all rational numbers less than 𝜋. Similarly, we can consider
the set of  all the real numbers less than 𝜋 as fixing a number infinitesimally less than
𝜋—a number between 𝜋 and all the standard real numbers less than it. And we can
go on iterating this, building up larger and larger, denser and denser non-standard
continua.

For each ordinal 𝛼, we can construct a linearly ordered set of points at stage 𝛼,
which we’ll think of  as ordered from left to right. Each later stage extends each of  the
earlier ones by adding more points. We begin with the empty set. For each successor
ordinal 𝛼 + 1, we can construct the new (𝛼 + 1)-points as cuts: leftward-closed sets
of 𝛼-points. At each limit ordinal, we simply gather together all of  the previous stages
into a single ordered set. To reach all of  the surreal numbers, we accumulate together
all of  the points that occur at any stage of  this construction, for arbitrary ordinals.
But for our purpose—which is to come up with standard set-theoretic models for a
consistency proof—it’s better to just stop at some suitably large bound, rather than
really going on indefinitely.

16In particular, while classical mereology says that composition has the structure of  a complete
Boolean algebra, with the bottom element dropped out, Heyting mereology says that composition has
the structure of  a complete Heyting algebra, with the bottom element dropped out. See the appendix for
details.
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This construction gives us ever vaster ontologies of  points—but what we’re looking
for are growing ontologies of  extended objects. We can accomplish this by represent-
ing continuous objects with certain sets of 𝛼-points—in particular, unions of  closed
intervals. We represent parts by subsets, and we represent contact by sharing at least
a point. (Points do not themselves represent objects in this ontology; so contact is dis-
tinct from overlap, which requires sharing at least an interval.) It’s easy to check some
of  the main important properties of  this model, such as that contact is distributive.
(This follows from the fact that the intersection of  a set A with a union of  sets Bi is the
same as the union of  the intersections of A with each Bi.)

(The Finitist Model in fact can be constructed using these same tools, only con-
sidering the finite stages.)

The third picture is a variant that uses a different notion of  a sum—not as a fusion
or a least upper bound, but as a stable least upper bound. We can keep each of  the
original principles except Sums, which we replace with this:

Potential Sums. (i) x is a sum of  the X’s iff  each X is part of x, and it will always
be the case that x is part of  anything that has each X as a part.

(ii) Any things will have a sum.

Note that the definition of  a least upper bound is “extrinsic”—it requires there to be
no lesser upper bound. If  the ontology can expand, then in principle a smaller upper
bound could come into being. (Something similar goes for fusions: it could be that
some new thing comes into being that overlaps x without overlapping any X.) If  this
can happen, the notion of  a sum is more naturally understood as involving a stronger
constraint: not just being temporarily the smallest thing containing each X, but being
permanently thus. This requires sums to be stable. The trade-off  is that stable sums
aren’t guaranteed to immediately exist. Like sets, this view has it that mereological
sums of  concrete things are iteratively generated.

In this picture, the Zeno Parts do not compose the whole block, and neither do
they compose something less than the whole block—rather, they don’t compose any-
thing at all. They will compose something less than the whole block; and when they
do, there will also be further infinitesimal parts of  the block that make up the differ-
ence. At that stage, these infinitesimal parts fail to compose anything—but again,
they will compose something, and when they do there will be yet smaller infinitesimal
parts to make up the difference. And so on. Continuous objects are ever divisible into
longer and longer Zeno sequences, and never thereby exhaustively divided.

Of  course, a proof  of  consistency isn’t the same as a proof  of possibility. But
what we’ve accomplished here clears away a significant objection to the possibility
of  strongly cohesive objects and the Distributive Contact principle. As I see it, the
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main challenge still facing the intelligibility of  these kinds of  continua is to clarify
the—admittedly obscure—notion of  “potential”. This is still a difficult problem—
one shared with those who defend an indefinitely extensible mathematical realm.

4 Further	Morals
These are intriguing pictures of  the structure of  the physical world. If  they are pos-
sible, then they show that indefinite extensibility can be motivated independently of
platonism about abstract objects. I’ll point out a few further lessons. The possibility
of  indefinite multitudes of  conreta closes off  certain strategies for making sense of  the
rejection of  absolute generality.

First, indefinite divisibility puts pressure against accounts that enlist “limited”, in-
extensible predicates to play roles that extensible predicates cannot. For instance, Ge-
offrey Hellman takes a “sortalist” line, suggesting that even though there is something
defective about “everything” and “every ordinal”, nonetheless there is no obstacle to
our using “every donkey” and the like (Hellman 2006, 90ff.). This saves the appar-
ent datum that “There are no talking donkeys” is perfectly intelligible: it says “Every
donkey is non-talking”. He goes on to suggest that a “flat-out” denial of  existence,
like “There are no ghosts”, should be interpreted as a denial of  ghosthood within
some sufficiently broad, but still limited category: for instance, it might mean “Every
space-time-occupant is a non-ghost”.

The possibility of  indefinite divisibility, though, would show that there aren’t
nearly as many limited predicates to go around as one might think. “Space-time
occupant” won’t do, for instance. Neither will Hellman’s other suggestion, “cause”,
since there’s no reason to think the parts of  strongly cohesive physical objects couldn’t
enter into causal relations. The problem runs deeper if  we consider more exotic elab-
orations of  the general picture. For instance, a donkey might have been a continuous
extended object; and it might even have turned out that among such a donkey’s parts
were donkey-homunculi (asinunculi?)—and so on indefinitely. If  that could happen, then
“donkey” isn’t a limited predicate either—and there won’t be many limited predicates
left for implementing Hellman’s strategy.

A different thought that is put under pressure is that the inconstancy of  what there
is arises from something special about the nature of  abstract objects. Sets and numbers
and properties seem flimsier than tables and chairs. Perhaps they are “constructed”
or “stipulated” or “postulated”. Kit Fine’s position seems to be along these lines:
indefinite extensibility is explained in terms of  “postulational possibility”, which in
turn he explains in terms of  reinterpretation. “The possibility that there are more sets,
for example, depends upon a reinterpretation in what it is for there to be a set” (2006,
33). But even if  this is plausible for sets—I find the idea difficult to get the hang of—it
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is radical to say that physical objects could be thus postulated into being, by merely
reinterpreting our quantificational expressions. (We could stipulate that “There is a
talking donkey” expresses a truth—for instance, the truth that there is a philosopher—
but this would just be changing the subject. I don’t think it’s relevantly a way there
might be a talking donkey.) Indeed, Fine recognizes, “It is plausibly part of  the meaning
of  “donkey” that donkeys cannot be introduced into the domain through postulation”
(using this fact to explain how we can sensibly and categorically say, “There are no
talking donkeys”) (2006, 41–42). If  even donkeys can be divided indefinitely, then
Fine’s account will not extend to this case.

Or perhaps instead we should follow this radical idea where it leads. If  parts are (in
some elusive sense) merely potential, perhaps we really should think of  them as impor-
tantly like abstract objects. Perhaps physical objects are divided merely “in thought”,
rather than “in reality”—the part is in some sense merely an abstraction from the
whole—and thus physical objects are in some sense susceptible to being stipulated or
postulated into being.17 These strike me as wild and obscure ideas, though some may
like the sound of  them. I leave them to others to develop.

A Consistency	Proofs
In this appendix I’ll sketch consistency proofs for the three models described in Section
3, using familiar structures from modal and tense logic.

In what follows, let a mereotopology be a set (the domain) with two binary
relations: part and contact. I won’t build any general structural features of  these
relations into the label “mereotopology”, and will just state further constraints explic-
itly in what follows. A subspace of  a mereotopology M is a mereotopology whose
domain is a subset of  the domain of M, and has the part and contact relations which
restrict the corresponding relations in M to the smaller domain.

As usual, we say x overlaps y iff x and y have a common part. If M′ is a subspace
of M, we say M′ respects overlap iff  whenever x and y are in the domain of M′ and
overlap in M, then x and y overlap in M′ as well. (Note that the converse automatically
follows from the definition of  subspace: any things that overlap in the subspace M′

must also overlap in M.)
17Leibniz held a view like this of  space and time, but not of  matter.

But space, like time, is not something substantial, but ideal, and consists in possibilities,
or an order of  coexistents that is in some way possible. And thus there are no divisions in
it but such as are made by the mind, and the part is posterior to the whole. In real things,
on the contrary, units are prior to the multitude, and multitudes exist only through units.
(Die Philosophischen Schriften von G.W. Leibniz II. 278, as quoted in Russell 2013 [1900], 245)
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A stage model consists of  an ordered set of stages, and for each stage 𝛼 a
mereotopology M𝛼 : the ontology at stage 𝛼. We require stages to be well-ordered
and unbounded, and if 𝛼 < 𝛽, then we require the ontology M𝛼 to be an overlap-
respecting subspace of M𝛽 .

It’s straightforward to specify interpretations of  a language that involves (i) pred-
icates for part and contact (ii) singular and plural quantification, and (iii) “forward”
and “backward” looking tense operators. Given a stage-model, we interpret a for-
mula 𝜑 in a stage model with respect to a stage 𝛼, an assignment f of  an individual (in
the domain of  any stage) to each individual variable, and an assignment g of  a set of
individuals (in the domain of  any stage) to each plural variable. Since the clauses of
such interpretations are standard and familiar, I won’t spell them all out explicitly. A
few examples should suffice.

• “There are some X’s such that 𝜑”” is true at (𝛼, f, g) iff 𝜑 is true at (𝛼, f, g′) for
some assignment g′ that agrees with g except perhaps at X, and for which g′(X)
is a subset of  the domain of 𝛼.

• “x is an X” is true at (𝛼, f, g) iff f(x) is an element of g(X).

• “It will be the case that 𝜑” is true at (𝛼, f, g) iff 𝜑 is true at (𝛽, f, g) for some stage
𝛽 after 𝛼.

Say that a stage-model satisifes 𝜑 iff 𝜑 is true at every stage 𝛼, with respect to any
“proper” singular and plural assignments, in the sense that their values are in the
domain of 𝛼.

Note a few important principles that are satisfied by every stage model (in addition
to standard tense-logical principles: see Studd 2013 for details).

Expanding Domains. Everything will always be something.

Stable Pluralities. x is an X iff  it will always be the case that x is an X.

Stable Part. x is part of y iff  it will always be the case that x is part of y.

Stable Overlap. x overlaps y iff  it will always be the case that x overlaps y.

Stable Contact. x touches y iff  if  will always be the case that x touches y.

Next we’ll construct a simple version of  Conway’s surreal numbers: a nested se-
quence of  linearly ordered sets S𝛼 for each ordinal 𝛼. (I’ll call elements of S𝛼 “𝛼-
points”, and speak of  them as ordered from left to right.) For each successor ordinal,
each (𝛼 + 1)-point is either an 𝛼-point, or else an 𝛼-cut: a subset X ⊆ S𝛼 which is
leftward-closed, in the sense that if x ∈ X and y is left of x then y ∈ X. For any
(𝛼 + 1)-points x and y, we say x is left of y iff  one of  the following cases holds:
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i. x and y are both 𝛼-points and x is left of y in S𝛼;
ii. x is an 𝛼-point and y is an 𝛼-cut, and x ∈ y;

iii. x is is a cut and y is an 𝛼-point, and y ∉ x;
iv. x and y are both cuts, and x ⊂ y.

It’s straightforward to check that if S𝛼 is linearly ordered, then so is S𝛼+1. For each
limit ordinal, S𝜆 is the union ⋃𝛼<𝜆 S𝛼, with its inherited ordering.

Here is the most important feature of  these nested ordered sets that we’ll use in
what follows—a powerful density property.

Lemma 1. For any ordinal 𝛼 and any subsets L, R ⊆ S𝛼, if  each member of L is left
of  each member of R, then there is some x ∈ S𝛼+1 which is to the right of  each
element of L, and to the left of  each element in R. More briefly: if L < R in S𝛼 ,
then for some x in S𝛼+1, L < x < R.

Proof. Let x be the leftward closure of L: the set of  all 𝛼-points which are either in L or
to the left of  some point in L. This is clearly leftward-closed, and thus an (𝛼 +1)-point.
It’s straightforward to check from the definitions that L < x < R.

If x is left of y in S𝛼, then the closed interval [x, y] in S𝛼 is the set {z ∈ S𝛼 ∣ x ≤ z ≤
y}. We say x is in the interior of  an interval I iff x ∈ I and x is not one of  the endpoints.
Here’s a basic fact about closed intervals.

Lemma 2. Suppose I and J are closed intervals, a is a point in I, and a is in the
interior of J. Then the intersection I ∩ J is a closed interval.

Proof. Say I = [x1, x2] and J = [y1, y2]. We know that x1 < x2 and y1 < y2, and also
x1 ≤ a < y2 and y1 < a ≤ x2. So max(x1, y1) < min(x2, y2). These are the endpoints
of  the closed interval which is I ∩ J.

In what follows, let 𝜆 be a limit ordinal. For each 𝛼 < 𝜆, let the 𝛼-intervals be
the closed intervals in S𝜆 with endpoints in S𝛼. Let H𝜆(𝛼) be the set of  all (non-empty)
unions of 𝛼-intervals. (I’ll sometimes drop the subscript 𝜆.) This is a mereotopology,
where a set counts as part of  another iff  it is a subset, and two sets count as in contact
iff  they have a non-empty intersection. We’ll now check some important properties of
H𝜆(𝛼).

Classical mereology comprises the following principles:

Core Mereology. Part is reflexive, transitive, and antisymmetric.

Sums. (i) x is a sum of  the X’s iff: every X is part of x, and x is part of  anything
that has every X as a part. (That is, x is the least upper bound of  the X’s.)
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(ii) Any (one or more) things have a sum.

Supplementation. If  everything that overlaps x overlaps y, then x is part of y.

Heyting mereology includes Core Mereology and Sums, but replaces Supple-
mentation with this (which is also a consequence of  classical mereology):

Distributive Part. Any part of  the sum of  the X’s is a sum of  parts of X’s

(Less tersely: if x is part of  the sum of  the X’s, then there are Y’s, each of  which is
part of  some X, such that x is the sum of  the Y’s.)

Lemma 3. H𝜆(𝛼) satisfies the principles of  Heyting mereology.

Proof. Core Mereology and Sums are sufficiently obvious. Note in particular that the
sum of  elements of H(𝛼) is their union. This just leaves Distributive Part. Suppose
A ⊆ B = ⋃i Bi in H(𝛼). We need to show that there are Cj, each of  which is part of
some Bi, such that A = ⋃j Cj. It will suffice to show that for for each point a in A, there
is some 𝛼-interval that contains a and which is part of A and some Bi. There is some
𝛼-interval I such that a ∈ I ⊆ A. I contains at least one 𝛼-point besides a; let’s say
(without loss of  generality) that it’s to the left of a. Then let L be the set of  all 𝛼-points
left of a: by Lemma 1, there is some (𝛼 + 1)-point b between L and a—and thus b is
in the interior of I. Since I is part of A, which is part of B, b must also be in some Bi,
and thus b is in some 𝛼-interval J ⊆ Bi. J contains b, which is left of a, and (since J is
an 𝛼-interval) J also contains at least one 𝛼-point to the right of b, and thus not to the
left of a; so a is also in J. Then by Lemma 2, I ∩ J is a closed interval that contains a
and is a common part of A and Bi.

Though H𝜆(𝛼) doesn’t always satisfy Supplementation, we do have the following
closely related fact.

Lemma 4. If A is not part of B in H(𝛼), then there is some C in H(𝛼 + 1) which is
part of B and does not overlap A.

Proof. Suppose that that A and B are elements of H(𝛼), and A is not a subset of B, so
there is some b ∈ B − A. Then Lemma 1 (applied to the points in A which are to the
left of b, {b}, and the points in A which are to the right of b) guarantees that there is
some (𝛼 + 1)-interval I which contains b in its interior, and excludes A. Since b ∈ B,
there is also some closed 𝛼-interval J such that b ∈ J ⊆ B. By Lemma 2, I ∩ J is an
(𝛼 + 1)-interval that is part of A, and has no common part with A.

Lemma 5. H𝜆(𝛼) satisfies these topological principles:
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Core Topology. Contact is reflexive, symmetric, and monotonic.

Distributive Contact. Anything that touches the sum of  the X’s
also touches some X.

Proof. Trivial from the definitions and basic set theory.

Lemma 6. Any 𝛼-interval in H𝜆(𝛼) is cohesive. Thus H𝜆(𝛼) satisfies

Cohesion. Something is composite and cohesive.

Proof. Let I be an 𝛼-interval, and suppose I = A ∪ B for some A and B in H(𝛼). Then
(WLOG) suppose I’s left endpoint is in A. Let B− = B ∩ S𝛼 , and let A− be the set of
points in A ∩ S𝛼 which are to the left of  each point in B−. Then by Lemma 1 there is
an (𝛼 + 1)-point x between A− and B−; this point must also be in I. It can’t be that
x ∈ B (since every point in B lies in a closed interval whose left endpoint is in B−, and
thus x < B). So x must be in A, and thus some 𝛼-interval J is part of A and contains x.
Let y be J’s right endpoint; y cannot be in A−, since A− < x ≤ y. Since y is not in A−,
there is some point b ∈ B− such that b ≤ y. Since x < B, x < b ≤ y, and thus since x
and y are both in J, b is also in J, which is part of A. So b ∈ A ∩ B, and thus A and B
are in contact.

Lemma 7. If A is in H(𝛼), then there is some B in H(𝛼 + 2) which is an interior part
of A. (That is, B is a part of A, and any C in contact with B overlaps A.) Thus if
𝛼 is a limit ordinal, then H𝜆(𝛼) satisfies

Interiors. Every x has an interior part.

Proof. Let A be an element of H(𝛼), and let I be an 𝛼-interval which is part of A. By
two applications of  Lemma 1, there is a pair of  points in H(𝛼 + 2) which are between
the endpoints of I, and thus a closed interval J, such that every point in J is in the
interior of I. It follows that J is an interior part: if C ∩ J contains a point x, then x is in
some interval K which is part of C, and then by Lemma 2, I ∩ K is an interval which
is a common part of A and C.

In the case where 𝛼 is a limit ordinal, we can apply this reasoning to the stage
𝛽 < 𝛼 where the endpoints of I first appear; then there is an interior part J in stage
𝛽 + 2 < 𝛼, and thus J is in H(𝛼) as well.

Let the Principles be Core Mereology, Sums, Supplementation, Distributive
Part, Core Topology, Distributive Contact, Interiors, and Cohesion.

Theorem 3 (The Finitist Model). There is a stage model that satisfies all of  the
Principles except Interiors, and instead satisfies
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Potential Interiors. Everything will have an interior part.

Proof. Let stages be finite ordinals, and for each stage 𝛼 < 𝜔, let the ontology M𝛼 be
H𝜔(𝛼). Lemmas 3, 5, 6, and 7 show that this model satisfies the principles of  Heyting
mereology, Core Topology, Distributive Contact, Cohesion, and Potential Interiors.
This just leaves Supplementation. This follows from the fact that for 𝛼 < 𝜔, there are
only finitely many points in each stage S𝛼, which is clear from the construction.

If b ∈ B − A, then there are 𝛼-points x < b < y which are nearest to b. These have
the property that for any 𝛼-point z, if z < y then z ≤ b, and if x < z then b ≤ z. Then
the interval [x, y] has no common interval part with A. If  it did, A would contain some
𝛼-interval [l, r] which includes a point a such that x < a < y. Then since l ≤ a < y,
l ≤ b, and likewise since x < a ≤ r, b ≤ r. So b would be in [l, r], and thus in A,
contradicting our assumption. So [x, y] is a part of B which does not overlap A.

Theorem 4 (The Intuitionist Model). There is a stage model that satisfies all of
the Principles except Supplementation, and instead satisfies

Potential Supplementation. If  it will always be the case that ev-
erything that overlaps x overlaps y, then x is part of y

Proof. Let 𝜅 be a regular uncountable ordinal. Let stages be limit ordinals prior to 𝜅.
(These are well-ordered and have no last element, since if 𝜆 were the greatest limit
ordinal less than 𝜅, then the ordinals 𝜆 + n for finite n would be countable and cofinal
with 𝜅.) For each stage 𝜆, let M𝜆 = H𝜅(𝜆). We can then apply Lemmas 3, 4, 5, 6, and
7.

Theorem 5 (The Stable Sum Model). There is a stage model that satisfies all of
the Principles except Sums, and instead satisfies

Potential Sums.

(i) x is a sum of  the X’s iff  every X is part of x, and it will always
be the case that x is part of  anything that has each X as a part.
(That is, x is a stable least upper bound of  the X’s.)

(ii) Any (one or more) things will have a stable sum.

Proof. Let the stages be as in Theorem 4. For each stage 𝜆, let the ontology M𝜆 be the
union ⋃𝛼<𝜆 H𝜅(𝛼) (with the usual part and contact relations).

In this model, the only thing that counts as a sum of  some Ai in M𝛼 in the sense of
Potential Sums is again their union. The union may not itself  be an element of M𝛼
(since the component intervals of  the Ai’s may not all be in any H(𝛽) for 𝛽 < 𝛼). Still,
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it certainly is in the ontology of  the stage immediately after 𝛼 (since each component
interval of  any Ai must be in H(𝛼)). And clearly there is nothing in any later stage that
has each Ai as a part without also having their union as a part. Again, the rest of  the
Principles follow from straightforward application of  the lemmas.
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