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Abstract

I examine what the mathematical theory of random structures can teach
us about the probability of Plenitude, a thesis closely related to David Lewis’s
modal realism. Given some natural assumptions, Plenitude is reasonably
probable a priori, but in principle it can be (and plausibly it has been) em-
pirically disconfirmed—mnot by any general qualitative evidence, but rather by
our de re evidence.

There is one thing needful: Everything.
The rest is vanity of vanities.

G.K. Chesterton

1 Incredulous Stares and Incredible Hypotheses

David Lewis (1986) held that reality is wildly vast and varied. Famously, this view
prompted incredulous stares. Here’s how Lewis put it:

When modal realism tells you—as it does—that there are uncountable infini-
ties of donkeys and protons and puddles and stars, and of planets very like
Earth, and of cities very like Melbourne, and of people very like yourself, ...
small wonder if you are reluctant to believe it. And if entry into philosophers’
paradise requires that you do believe it, small wonder if you find the price too

high. (1986, 133, original ellipsis)

Lewis called his view modal realism because he also held a second thesis: a distinc-
tive brand of modal reductionism. Eliding some complications, he held that what is
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metaphysically possible just is what is true within one of these many worlds (1986,
sec. 1.2). But this essay is not especially concerned with this part of Lewis’s world-
view. My present focus is just on what things are like, rather than what things could
be like. Let’s call the non-modal aspect of Lewis’s view described in the quotation
Plenitude. Very roughly, Plenitude is the view that there are very many things of very
many kinds: talking donkeys and blue swans and nearly indiscernible counterparts
of Earth and Melbourne and ourselves and many other things besides. In Section 2
I'll return to the issue of how to make Plenitude more precise.

Lewis acknowledges that Plenitude “does disagree, to an extreme extent, with firm
common sense opinion about what there is” (1986, 133). Insofar as the deliverances
of firm common sense opinion are rational, this is for one of two broad kinds of
reason: a posteriori and a priori. (Insofar as the deliverances of firm common sense
opinion are not rational, it strikes me as no serious cost to depart from them.) Perhaps
Plenitude is implausible because it is empirically disconfirmed, either by ordinary
experience or scientific investigations. I will return to this idea in Section 6; but
note at the outset that it is not immediately obvious what these observations might
be that would disconfirm Plenitude. Sections 2 and 3 will explore the alternative:
that Plenitude is intrinsically implausible.

I will take it that there is such a distinction between hypotheses that are more or less
credible, prior to experience, and that we can model this using the tools of probabil-
ity theory. The starting idea is that there is some probability measure over propo-
sitions which represents their a priori probability—a “rational ur-prior.”! (Perhaps
there are many a priori rational probability measures, or perhaps what probabilities
are rational for one person or community differs from what is rational for another,
or perhaps it is a vague matter which of many different probability measures is ra-
tional. Let’s ignore those complications for now.)

Some striking mathematical results from the theory of random structures seem to bear
directly on the probability of Plenitude. A theorem from Paul Erdés and Alfréd
Rényi says that almost all structures satisfy Plenitude: read naively, this theorem
seems to say that the probability of Plenitude is maximally high!> What is more,
the same theorem shows that almost all structures are wsomorphic to one another; so
it also seems that the probability of everything interesting must be one or zero. (Quite
a coup for rationalism!) It is understandable that some mathematicians have called
this theorem “paradoxical” (Cameron 1997).

!"This is broadly in the spirit of Carnap (1950). See Meacham (2016) and references therein.

2Erdés (1959); Erdés and Rényi (1963). For a model-theoretic perspective see Hodges (1997, sec.
6.1); for a computational perspective see Libkin (2013 ch. 12).

% use the word “structure” in the sense from model theory (see Section 2)—these are also called
“models.” Two numerically distinct structures can be “structurally exactly alike”—that is, isomorphic.



Of course, we should be very cautious about drawing bold epistemological conclu-
sions from pure mathematics. My goal is to carefully examine these random struc-
ture results in order to make their assumptions clear and learn what they have to
teach us about the credibility of Plenitude. The “paradoxical” implications drawn
from a naive reading of the mathematics must be moderated: in fact, I do not think
that Plenitude has probability one. But even when appropriately qualified, the math
teaches us some interesting things. Natural-seeming “Humean” assumptions push
us toward the view that Plenitude is not so improbable a prior: (Section 3). But our
investigation also illuminates how empirical evidence might tell against Plenitude,
and thus justify incredulity a posterior: (Section 6). Along the way (Sections 4 and 5),
I'll also present some interesting generalizations and consequences of the standard
results.

While Plenitude may be at odds with common sense opinion, it has many voices
in its favor throughout the history of philosophical and scientific opinion. Lovejoy
(1936, 52) introduced the term “the principle of plenitude” for the intertwined ideas

that no genuine potentiality of being can remain unfulfilled, that the extent
and abundance of creation must be as great as the possibility of existence and
commensurate with the productive capacity of a ‘perfect’ and inexhaustible
Source, and that the world is better the more things it contains.

He traces this influential cluster of ideas from Platonist roots through neo-Platonism,
scholasticism, and rationalism. Plenitude is theologically loaded: it was deduced
as a consequence of the goodness of God, and it also played a role in theodicy.*
Contemporary physicists have joined historic theologians, in speculations about the
“multiverses” of Everettian quantum mechanics or inflationary cosmology.” While
I hope that the investigation I am taking up will indirectly illuminate these other
ideas, I won’t be exploring the connections to theology or physics here.

2 Plenitude and Patterns

Our first task is to formulate Plenitude a bit more precisely. Part of the Lewisian
worldview is that there are certain perfectly natural, or fundamental, properties and re-

Tor one example, Thomas Aquinas (following Plotinus and Augustine) writes that “the perfection
of the universe is attained essentially in proportion to the diversity of natures in it, whereby the divers
grades of goodness are filled ...” (Commentary on the Sentences, book I, dist. 44, as quoted in Lovejoy
1936, 77). Compare more recent “multiverse theodicies” (McHarry 1978; Kraay 2010 inter alia).

’See for example Wallace (2012) and Knobe, Olum, and Vilenkin (2006). The “mathematical
universe hypothesis” of Tegmark (2008) has an especially close family resemblance to the Plenitude
thesis I'll explore here.



lations. (We won’t fuss about what these might be.) I'll be investigating variations
of this thesis:

Pattern Plenitude. Every pattern of fundamental properties and relations is in-
stantiated.

We could arrive at Pattern Plenitude by Lewis’s route, putting together two ideas.
First, the combinatorialist idea that every pattern of fundamental properties and re-
lations could be instantiated (Armstrong 1989; Lewis 2009; see also Saucedo 2011;
for critical discussion see Wang 2013). Second, the modal realist idea that if a pat-
tern could be instantiated, then it us instantiated (within some world). But note that
while it can be deduced from modal premises, Pattern Plenitude is not itself a modal
principle.

To make the idea of a “pattern” more precise, I'll follow Russell and Hawthorne
(2018) in using relational structures. For technical simplicity we will restrict our
attention to some finite set L of fundamental relations. (I'll count properties as one-
place relations.) An L-structure § consists of a set of objects D—the S-domain—
and a function that takes each n-place relation /'in L to a set of n-tuples of elements
of D—the S-extension of F. Structures are abstract mathematical objects; but
some special structures correspond to genuine patterns of properties and relations
in the world. We say that an L-structure S is instantiated iff there is some set D’
such that S'is wsomorphic to the pattern of L-relations which is really displayed by the
individuals in D'.°

Here is our refined principle:
L-Pattern Plenitude. Every L-structure is instantiated.

This version of Plenitude is a bit different from the way Lewis put things. Lewis orig-
inally presented his own theory of Plenitude in terms of a recombination principle, which
Daniel Nolan concisely summarizes thus: “for any objects in any worlds, there exists
a world that contains any number of duplicates of all of those objects ... size and
shape permitting” (Lewis 1986, 89; Nolan 1996, 239). The relationship between
Pattern Plenitude and Lewis’s “cut and paste” style recombination principle is del-
icate (see Wilson 2010; Russell and Hawthorne 2018). But let’s not get sidetracked
by these details. Though there are differences in detail between Pattern Plenitude

That is, there is some one-to-one correspondence ffrom D’ to the domain of S such that, for each
n-place relation Fin L and any individuals d,, ...,d, in D', d,, ..., d, stand in Fiff (fd,, ...,/d,) is in the
S-extension of F.



(explicated in terms of structures) and Lewisian recombination (explicated in terms
of duplication), they have at least this much in common: they are views that say that
reality is vast and varied, that there are blue swans and talking donkeys and alterna-
tive Melbourne-counterparts and so on.” Thus defenders of Pattern Plenitude are
just as liable to be subjected to incredulous stares.

Lewis added a caveat to his recombination principle: “size and shape permitting”
(1986, 89). This was in part to avoid cardinality paradoxes that arise for the unre-
stricted version (Forrest and Armstrong 1984; Nolan 1996; Russell and Hawthorne
2018). Some related issues arise for Pattern Plenitude. A structure can have any
set as its domain. The domain could consist of people, or electrons, or numbers,
or pure sets. (Remember that for such a structure to be wstantiated does not require
that pure sets themselves stand in the natural relations in L; rather, it just requires
that certain n-tuples of pure sets are womorphic to the pattern of relations that some
other individuals bear.) But this means that unrestricted Pattern Plenitude requires
that there are very, very many bearers of fundamental properties and relations: in-
deed, more than any cardinal number, too many to form a set. This explosion may
not be disastrous,® but it might be more than we hoped for. It also raises technical
difficulties—particularly when we try to reason about this hypothesis using standard
tools from probability theory. So we’ll begin our investigations with a more modest
thesis, which (a bit like Lewis’s recombination principle) incorporates a restriction
on size.

Countable Pattern Plenitude. Every countable L-structure is instantiated.

That is to say, every pattern that involves at most as many objects as there are natural
numbers is instantiated.

Countable Pattern Plenitude does not require any explosion in the size of concrete
reality, but it is still a striking thesis. It too evidently has many of the consequences
that inspired incredulity in Lewis’s interlocutors; for I take it that blue swans, talking
donkeys, Melbourne-counterparts, and so on don’t essentially require uncountable
infinities of fundamental-property-bearers.” Countable Pattern Plenitude is enough

7At least, Pattern Plenitude says this given that there is some way of configuring finitely many
fundamental properties and relations which would amount to there being a blue swan, etc. This
seems plausible, but it might be wrong.

8Russell and Hawthorne (2018, 177 and appendix B) show that unrestricted L-Pattern Plenitude
is logically consistent (given a large cardinal axiom).

9But this also might be wrong. For example, maybe the only patterns that manifest blue swans
involve relations among all of the continuum-many point-parts of an extended region of space-time.
I am supposing that being a blue swan is compatible with having discrete micro-structure.



for there to be an awful lot of very strange things out there. It’s true that we have
elided one part of the claim that Lewis said inspired incredulity—that there are
uncountable mfinities of these strange creatures. But merely countable infinities of blue
swans and Melbourne-counterparts also seems at least a bit wild.!”

So now we have narrowed our investigation to this question: does Countable Pattern
Plenitude have low a priori probability?

3  Humean Probabilities

Our next task is to work out a version of Erdds and Rényi’s theorem that bears on
this question. When mathematicians talk about what is “almost sure,” they typically
take some especially natural and symmetric probability measures for granted in the
background. For philosophical purposes, though, we will want to be very cautious

about this point—the probability measure is where the action is.!!

Let’s start with a simple analogy. Suppose you know that an angel has visited the
squares on an infinite chess board one by one, and decided whether to color each
one red or black by flipping a coin. Then you should expect each finite pattern
of red and black squares to show up somewhere or other. Indeed, you should be
almost sure of this, in the technical sense: for any finite pattern, the probability that
it occurs somewhere or other on the infinite chessboard is one. Moreover not only
1s each finite pattern almost sure to occur, but it is almost sure that every finite pattern

of red and black squares occurs.'?

19T don’t know how things will go for stronger, unrestricted principles of Plenitude. We face technical
obstacles right from the get-go, since we will need a fancier sigma-algebra of propositions: the direct
analogue of the “structure algebra” introduced in Section 3, the Borel algebra on the set of atomic
propositions, does not contain any non-trivial qualitative propositions at all in the uncountable case,
so it is not really suitable.

"For this reason, my technical approach is a bit non-standard. The standard approach to random
structures uses the device of asymptotic probability: one considers, for each n, a probability measure
u, on the (finite) set of size n structures (up to isomorphism); then one examines properties of the
limit g = lim,_ u,. But I find it harder to draw epistemic lessons from this machinery, which
involves not one probability measure on an infinite domain of possibilities, but rather an infinite set
of probability measures on different finite domains of possibilities. It seems to be well-known folklore
that the relevant features of asymptotic probability (such as the zero-one law discussed below) carry
over to the coin flip measure on an algebra of countably infinite structures, but I've been doing a lot
of reconstruction to figure out how the details go.

2Countable additivity implies that if propositions 4, 4,, ... are each almost sure, then so is their
conjunction. (The conjunction is equivalent to the negation of the disjunction of countably many
mutually exclusive propositions “n is the smallest number such that 4, is false,” each of which has
probability zero.)



There are two key ideas doing work in this example. The first idea is that the
universe—1in the example, the chessboard—is infinite. The second idea is that, a
priori, the different finite parts of the universe are, as Hume puts it, “entirely loose
and separate” ([1748] 2007, 7.2.27). How things are configured in one finite part
of the universe does not settle what goes on in some other separate part. The main
mathematical fact is a powerful extension of this simple observation.

First, some technical preliminaries. Let D be a countably infinite set. We will sup-
pose that some a priori epistemic possibilities are represented by L-structures with
domain D. We can identify propositions—the bearers of probability—with sets of such
structures. We can pick out a suitable algebra of such propositions: the structure
algebra §'. A structure measure is any (countably additive) probability measure
defined on the structure algebra.'?

We will use structure measures to model certain aspects of the epistemic lives of
rational beings. But before we do that, let’s clear up some points about what we
are modeling. Propositions in the structure algebra represent epistemic possibili-
ties; but not every epistemic possibility has a home in the structure algebra. First, the
structure algebra does not represent possibilities where some D-things are absent.
But whatever possible individuals D represents, it may well be epistemically possi-
ble for some of them not only to fail to bear fundamental properties and relations,
but to fail to be anything at all. (For example, it might be epistemically possible
that there aren’t infinitely many individuals.) Second, all of the propositions in the
structure algebra are restricted to a certain subject matter. All of them represent ways
certain fundamental properties and relations might be distributed over certain pos-
sible individuals. But this is not to say we can have no rational uncertainty about
other subject matters—what other individuals are like besides those represented by
D, and also what things are like in other respects besides those represented by L.!*
A structure measure simply does not represent any probabilities for these other sub-
ject matters. In either respect, though, don’t take the absence of representation to
be a representation of absence. We are using a coarse-grained model to investigate
some kinds of rational uncertainty; we are not thereby implying that these are the
only kinds of rational uncertainty.'®

15In particular, & is the smallest o-algebra that includes all of the atomic propositions (as in Defini-
tion 1).

"Furthermore, the structure algebra only represents uncertainty about the fixed domain of indi-
viduals under a certain stock of modes of presentation. Under these special modes of presentation, identity
and distinctness facts about the individuals in question are perfectly certain. But that isn’t to say we
might not be in doubt about these issues under other modes of presentation, which are not captured
by structure measures.

To be more precise, you can think of a structure measure as derived from a richer, more realistic
probability measure in three steps. (1) Choose some possible individuals to be represented by D and



It is also worth pausing on a point about the metaphysics of this model. The objects
in the domain D are meant to represent certain epistemically possible individuals—
in particular, certain candidates for bearing fundamental properties, so you might
want to think of them as something like fundamental particles. Propositions in the
structure algebra are meant to represent the ways those possible individuals might
be. Any old abstract objects are adequate for mathematically representing such possi-
bilities. The natural numbers would be just fine—they don’t have to really be parti-
cles to do this job. But as is usual with mathematical models, it is often convenient
to speak loosely as if the domain of the mathematical structures really includes the
individuals themselves.

Now let’s get to work.

Hume writes, “All beings in the universe, consider’d in themselves, appear entirely
loose and independent of each other” ([1739] 2007, IILi.i). We might regiment
this idea by saying that distinct matters of fact are probabilistically independent a
priori.'®17 We might think of it like this: for each fundamental z-place relation F,
an angel visits each n-tuple of individuals and decides whether they instantiate F
by the flip of a fair coin. In this case, each “basic” fact has probability one-half,
independently of any other “basic” facts. This presents us with the following simple
model. (I carry on a grand tradition of multiplying ahistorical senses of the word
“Humean.”)

Definition 1. A proposition 4 is atomic iff there is some n-place relation Fin L
and there are some individuals 4y, ..., d, in D such that 4 is the set of all structures
Sin & such that (4, ..., d,) is in the S-extension of . A basic proposition is either
an atomic proposition or its negation.

some properties and relations to be represented by L (as well as appropriate modes of presentation). (2)
Conditionalize on the hypothesis that each of the D-individuals is there. (3) Marginalize on the subalgebra
of propositions that are entirely about the distribution of L-properties over D-individuals.

1Tt is interesting to note that the term “independent” was used with its modern technical meaning
at the time of Hume’s writing: de Moivre (1738, 5-6) writes,

If the obtaining of any Sum requires the happening of several Events that are independent on
each other, then the Value of the Expectation of that Sum is found by multiplying together
the several Probabilities of happening, and again multiplying the product by the Value of the
Sum expected. ...

Two Events are independent, when they have no connexion one with the other, and that the
happening of one neither forwards nor obstructs the happening of the other.

"Compare Popper ([1934] 1959, 379): “Every other assumption would amount to postulating
ad hoc a kind of after-effect; or in other words, to postulating that there is something like a causal
connection between [two basic propositions].”



Definition 2. A structure measure P is strongly Humean iff for any logically
independent basic propositions 4, By, ..., B

n>

1
P(A |Bl...Bn) = 5

As it turns out, this condition uniquely characterizes one particular structure
measure—the “coin flip measure”™—and it is an especially natural choice. But
while it is especially simple and natural, the strong Humean condition is much
stronger than we really need for the results that follow. The angel’s coin need not
be fair, and we don’t need to assume that learning about how certain relations
are configured tells you nothing about other cases—just not too much. The key
assumption is just that certain conditional probabilities are not too high or too low.
Here is a more relaxed version of the Humean condition.

Definition 3. Let € be a probability. A structure measure P is e-Humean iff, for
any logically independent basic propositions 4, By, ..., B

e<PA|B-B)<l-¢

A structure measure P is moderately Humean (or just Humean for short) iff P is
e-Humean for some € > 0.

I'll return to the question of whether this Humean condition is reasonable later; first,
let’s see what it can do.!® In these terms, here is what Erdés and Rényi’s theorem
tells us. (A proof sketch is given in Appendix A.)

Theorem 1. There is a countable structure S, the random [L-structure, such
that

(a) §'satisfies Countable Pattern Plenitude.

(b) Any moderately Humean structure measure assigns the set of structures that
are isomorphic to S probability one.

"®Note that the moderate Humean condition is stronger than yet another way you might explicate
Hume’s idea: namely, that there are no a priori necessary connections between “distinct existences”
this basically corresponds to being e-Humean for € = 0.



This has two immediate consequences.

Corollary 1. For any moderately Humean structure measure, Countable Pattern
Plenitude has probability one.

In almost all countable structures, every countable pattern of fundamental relations
shows up somewhere or other. Plenitude isn’t an exotic possibility in the space of
possible infinite structures: it is the norm.

The second consequence concerns qualitative (or general) propositions: roughly, those
that do not make reference to any particular individuals.

Definition 4. A proposition 4 in the structure algebra is qualitative iff 4 is invari-
ant under isomorphisms, in the sense that for any structure S in 4, every structure
isomorphic to §'is also in 4.

Corollary 2. If Pis a moderately Humean structure measure, then for every qual-
itative proposition 4, either P(4) = 0 or P(4) = 1.

Corollary 2 leaves the Humean without any uncertainty about general qualitative
matters. But note that it does not leave them completely certain on every matter.
There is still plenty of room for doubt regarding “haecceitistic” de r¢ propositions
about how particular things are configured. I will return to this important point in
Section 6.

I find these mathematical facts very striking. The way they work is by precisely
capturing and extending a thought which many people find intuitively natural: in
an infinite universe, whatever might happen probably will, somewhere (compare, for
example, White 2018). The theorem goes beyond this intuition. It teaches us that
to get, almost surely, all countable structures (including, say, structures manifesting
infinitely many talking donkeys) we just need countably many individuals whose
properties are sufficiently independent. It also teaches us that a certain qualitative
kind of plenitudinous structure is almost sure to be instantiated.

So far this is just math: certain measures have certain features. What does it tell
us about epistemology? Let’s warm up by imagining someone whose opinions are
guided by moderately Humean prior probabilities—call him Humberto. Hum-
berto is sure there is a countable infinity of things whose fundamental properties

10



and relations are “loose and separate.” Corollary 1 tells us that Humberto assigns
Countable Pattern Plenitude prior probability one. Far from finding this hypothesis
to be intrinsically implausible, he rather finds it maximally plausible. The hypothesis
that there are not infinitely many talking donkeys brings forth his incedulous stares.

How about Humberto’s posterior probabilities? If the prior probability of Plenitude
is one, then given any evidence that has non-zero prior probability, the posterior
probability of Plenitude is also one. In general, for any propositions /4 and E, if
P(H) = 1 and P(E) # 0, then the conditional probability P(H | E) = 1 as well. Stan-
dard Bayesian conditionalization can never make the almost-sure less than almost-
sure. Furthermore, moderately Humean probabilities give positive probability to
any finite conjunction of basic propositions—any particular local matter of fact, so
to speak. So no “local” evidence like #is can disconfirm Plenitude for a Humean
like Humberto. If Humberto only has local evidence, then his posterior probability
for Plenitude is also one.

Still, maybe Humberto has relevant evidence with prior probability zero. That takes
us off the map of standard Bayesian conditionalization and into the wilds of non-
standard probability theory. (But some strong arguments point us this direction
anyway: Hajek 2003.) In that case, Humberto’s prior probabilities would not deter-
mine his posterior probabilities: we would also have to explore Humberto’s prim-
itive conditional probabilities (or something similar). What sort of probability-zero
evidence might Humberto have? Someone with a sufficiently liberal view of what
counts as evidence might argue that Humberto’s evidence can include negative ex-
istentials like there are no talking donkeys. One such liberal view 1s that “knowledge, and
only knowledge, constitutes evidence” (Williamson 2000, 185). Note, though, that
Humberto’s path to any such general knowledge could not go by way of incremen-
tal confirmation, adding probability little by little until it becomes sure. Gaining
this kind of evidence would have to take him all the way from probability zero to
probability one in one great leap.

Should we be like Humberto? I see no persuasive reason to think so, despite the
pleasant symmetry of Humberto’s priors. There might well be only finitely many
bearers of fundamental properties and relations; and even if the universe is infinite,
we might well expect its parts to be linked up somehow (more on this in Section 6).
But learning mathematical facts about Humean structure measures hasn’t been a
waste of time. Even if it isn’t what the priors command, one could be moved by evi-
dence to share Humberto’s Humean outlook. Our priors plausibly include a Humean
part, so to speak, and the theorems teach us important things about this part.

Call H a Humean hypothesis iff conditionalizing the rational ur-priors on H yields a mod-
erately Humean structure measure. Corollary 1 tells us that the conditional prob-

11



ability of Countable Pattern Plenitude, given any Humean hypothesis, is one. It
follows by the probability calculus that the a priori probability of Countable Pattern
Plenitude is at least as high as that of any Humean hypothesis, and indeed it is at
least as high as the disjunction of all Humean hypotheses.

Furthermore, it seems that Humean hypotheses do not deserve especially low a
priori probability: while it seems far from certain that there be a countable infinity
of things whose fundamental properties and relations are loose and separate, it also
seems far from absurd. (But I don’t really know how to argue for this, if it doesn’t
strike you the same way.) If that’s right, then despite its extravagances, Countable
Pattern Plenitude is not intrinsically especially implausible. Accepting this does not
put us in the same boat with Humberto, though. As long as Humean hypotheses
have probability less than one, even very high prior probability does not stand in
the way of Plenitude being disconfirmed by a posteriori evidence in the standard
way. We will investigate how this can work in Section 6; first, though, let’s look
at a generalization (Section 4) and a further consequence (Section 5) of Humean
probabilities.

4 A Priori Constraints

I have been considering how things go with relations which are “entirely loose and

b

separate.” But there may be a priori constraints on the structure of certain fun-
damental relations. For example, perhaps certain structural facts about space and
time are a priori certain (for example Kant [1781] 1999, A24/B39). Maybe it’s a
priori certain that the relation before is transitive and irreflexive, or that one meter apart
is symmetric. Maybe it’s a priori certain that nothing has exactly one kilogram mass

and also has exactly two kilograms mass.'?

It turns out that there is a broad family of “nice” theories for which the main morals
of the theory of random structures still apply, and which give rise to their own ver-
sions of Plenitude. For a theory 7, let Countable 7-Plenitude be the proposition
that every countable model of 7 is instantiated: that is, every small enough pattern
of L-relations which is compatible with the “external” constraint 7 shows up some-
where or other. It turns out that if 7 is a reasonably nice general theory (in a sense
we can make precise) then 7 has a “random model”: this is a countable model that
embeds every countable model of 7. Reasonably nice theories include, for exam-
ple, that every electron has mass, that before is transitive and irreflexive, and that one
meter apart is symmetric.

“Wang (2013) raises analogous ideas as challenges to combinatorialism about metaphysical possi-
bility.

12



We can formulate the main “niceness” condition on 7 in two equivalent ways:
model-theoretically, or syntactically. Very roughly and intuitively, the model-
theoretic formulation says that any two ways 7 might obtain can both obtain
together. This is called the Amalgamation Property, and it has a very similar flavor to
Lewis’s “cut and paste” recombination principle. Similarly roughly and intuitively,
the syntactic formulation says that 7 can be expressed in a “fundamental language”
with predicates for each L-relation by universal generalizations which are “not too
disjunctive.” Precise statements are given in Appendix A.

We can also generalize the notion of Humean probabilities.

Definition 5. Let T be a theory. A structure measure is moderately Humean
within 7 iff A(T) = 1 and there is some € > 0 such that, for any basic propositions
A4, By, ..., B,, which are jointly consistent with 7,

PUA|B,+B) > ¢

We can prove that, if 7 is a nice theory, then any structure measure P which is mod-
erately Humean within 7 assigns probability one to the random model of 7, up
to isomorphism. Thus the P-probability of Countable 7-Plenitude is one, and ev-
ery qualitative proposition has P-probability zero or one. (See Theorem 3 in Ap-
pendix A.)

5 Incredible Isolation

There’s more to Lewis’s worldview than just Plenitude: Lewis also held that worlds
are solated from one another (1986, sec. 1.6). There is no hope of traveling from Los
Angeles to one of its better-planned counterparts in another world, free of the down-
town 101-110-10 freeway interchanges: for in fact, Los Angeles bears no spatio-
temporal relation at all to its otherwordly counterparts. More generally, according
to Lewis, parts of distinct possible worlds bear no “analogically spatio-temporal”
relations to one another. Lewis also proposes (though does not quite endorse) the
further claim that parts of distinct worlds are not linked by any perfectly natural
relations at all (1986, 76).

What can we say about the intrinsic plausibility of this doctrine, that distinct parts
of the pluriverse are relationally isolated? First, let’s restate this using our present
framework of relational structures. Let I be a binary relation in L. (Something
similar goes for more-than-two-place relations.)

13



Definition 6. A structure $'is F-connected iff every pair of objects is linked by
some chain of objects pairwise related by F: that is, for each ¢ and 4 in the domain
of §, there are 4y, ...,d, in the domain such that ¢ = d;, b = d,, and for each ¢, the
pair (d;,d;, 1) is in the S-extension of F.

Corollary 3. For any moderately Humean structure measure P, and for any binary
relation Fin L, the set of F-connected structures has P-probability one.?’

Thus, while we have an argument that Countable Pattern Plenitude is intrinsically
plausible, this argument does not suggest that isolation is plausible. The same kind of
probabilistic combinatorial reasoning that makes it likely that every pattern of fun-
damental relations is instantiated somewhere or other, in an infinite domain, would
also make it likely that every pair of individuals is &nked by a chain of fundamental

relations.?!

We could try to recover isolation “by hand”—by considering priors with extra con-
straints as in Section 4. Here is a simple way of setting things up. Let one of the
relations in L be a worldmate relation. Let the World Theory be the proposition that
being worldmates is an equivalence relation, and that fundamental relations hold only
among worldmates: for each relation F'in L, for any individuals x;...x, that instan-
tiate I, each pair of x; and x; are worldmates. The World Theory turns out to be a
“nice” hypothesis in the sense from Section 4. So the World Theory has a unique
(up to isomorphism) “random model”: call this the World Model. Priors which are
Humean within the World Theory—that is, priors which treat distinct existences as
loose and separate insofar as they are jointly compatible with the World Theory—
assign the World Model probability one, up to isomorphism. Moreover, this World
Model includes infinitely many isolated worlds (equivalence classes under the world-
mate relation).

That sounds promising, but in fact it hasn’t got us very far. The worlds of the World
Model are not like the varied worlds of a Lewisian pluriverse—rather, each of these
worlds is qualitatively indiscernible from the others. The World Model turns out to

2 Proof Sketch. Theorem 1 is proved by showing that the Extension Property (Definition 9 in Ap-
pendix A) has probability one. Let § be a structure with the Extension Property and let ¢ and &
be elements of S. Then .S has a substructure whose domain includes just @ and 4. Furthermore, this
substructure can be extended by adding a third element ¢, and putting both (g, ¢) and (¢, b) in the ex-
tension of F. By the Extension Property, the original {a, }-substructure can be extended to another
substructure of S which is isomorphic to this {a, b, ¢}-structure—which means that ¢ and 4 are linked
by an F-related chain of elements in § (indeed, a chain of length three).

2ISome have argued on a variety of completely different grounds that Lewisian modal realism does
not require isolated worlds, and perhaps does better without them (Yagisawa 1992; Noonan 2014;
Dorr, n.d.).
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consist of countably many disjoint isomorphic copies of the original random struc-
ture.?? So while this model does give us a kind of isolation, this is only because
in addition to the great interconnected plenitudinous structure in which we live and
move and have our being, there are also infinitely many other qualitatively identical
plenitudinous structures which are isolated from it.

That isn’t to say that Lewisian isolation couldn’t be probable a priori for some other
reason. The point is just that, unlike Plenitude, this conclusion does not follow from
any obvious “Humean” premise about priors.

6 Regularities and Induction

Lewis drew this moral from his recombination principle:

Combinatorialism tells us that the laws of nature are contingent. Let it be a
law that every I'is a G; combinatorialism generates a possibility in which an
Fis not a G, so that this law is violated. (2009, 209, see also 1986, 91).

But Plenitude implies that the laws of nature are not merely possibly false—they are

Jalse. The unrestricted universal generalization “every Fis a G has exceptions—
otherworldly exceptions, let us grant, but exceptions nonetheless. For a simple ex-
ample, if we pretend that raven and black are fundamental properties, then Pattern
Plenitude implies that not all ravens are black.?

More generally, Pattern Plenitude is incompatible with exceptionless general regu-
larities. Some historic defenders of plenitude embraced this moral. For example, a
central tenet of Margaret Cavendish’s system is that “the parts of Nature are infi-
nite, and have infinite actions”; this is an important basis for her general attack on
universal scientific theories ([1666] 2001, 26, also p. 68; see also Peterman 2017,
sec. 4.1).

We can put this general moral a bit more precisely. Consider a “fundamental lan-
guage” with predicates for each fundamental relation in Z, and names for each in-
dividual in D. We can straightforwardly talk about the probability of any sentence
¢ in this language, with respect to a structure measure, by associating ¢ with the set
of structures .S in which ¢ is true.

2That is, the random structure for the smaller signature that omits the worldmate relation.

2 According to Lewis (1986, sec. 1.9), “laws™ are regularities that only hold around here, in the
spatiotemporally contiguous part of reality he dubs “the actual world”; the official deliverances of
natural science use only restricted quantifiers. For critical discussion see deRosset (2011); Williamson

(2013, xii).
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Definition 7. A simple generalization is a sentence of the form
Yy Vx, p(xq, ..., x,)

where ¢(xq,...,x,) is a quantifier-free formula with predicates in L and with-
out names. An instance of a simple generalization of this form is a sentence

¢(d,, ..., d,) for any individuals 4y, ..., d,.

No non-tautologous simple generalization is true in a plenitudinous structure. (This
is because any non-tautologous quantifier-free L-formula ¢(xq, ..., x,) is falsified by
some finite L-structure—in particular, it is falsified by some substructure of the ran-
dom L-structure.)

Corollary 4. Any moderately Humean structure measure assigns every simple
generalization probability zero.

Consider Humberto again, who is guided by moderately Humean priors. Hum-
berto regards every substantive empirical unrestricted generalization as a priori al-
most surely false. If Humberto goes around observing things, including lots of black
ravens and no non-black ravens, you might expect that this would raise his confi-
dence that all ravens are black. Not so. Humberto takes it to be almost surely
false that all ravens are black. He also assigns the conjunction of any finitely many
instances of a simple generalization positive prior probability. So his conditional
probability for any substantive generalization, given any finitely many “local” ob-
servations, 1s still zero. For people like this, completely general empirical science
doesn’t even get off the ground. Humberto’s “Humean” outlook has taken him
from the idea that distinct existences are “loose and separate” to radical inductive
skepticism (compare Popper [1934] 1959, 379-80; for critical discussion see How-
son 1973).

In contrast to Humberto’s predicament, it seems reasonable to hope that general-
wzations are confirmed by their instances. It would be nice to be able to gain evidence
for the thesis that all ravens are black by observing that this is black-if-a-raven, and
that is black-if-a-raven, and so on. Let’s consider how this goes in the more realistic
scenario where some, but not all, of logical space has a Humean flavor. Suppose
that in addition to a Humean hypothesis H, we also have an induction-friendly hypothesis
1, conditional on which some simple generalization can be confirmed by instances.
Suppose we go around observing these instances. Then eventually the probability
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of the next instance, given those so far, will be figher conditional on the induction-
friendly hypothesis / than it is conditional on the Humean hypothesis /1. So these
instances will provide relative confirmation for / rather than /4. As we observe more
and more instances, this relative confirmation will continue to accumulate: in fact,
the probability of H tends to zero, and the probability of Plenitude dwindles with it.
This holds whatever the prior probabilities of H and / may be, as long as they are
not zero.

Proposition 1. Let Py be moderately Humean, and let P; be a structure measure
which 18 induction-friendly in the sense that

lim P(G | E, - E)=1
n—>oo

for some simple generalization G and instances £y, F,, .... Tor some probability
p <1 let
P=p-Py+1-p)- P

Then
lim PG| E;~E)=1 and lm PQ|E;-—-E)=0
n—oo n—oo

where Q is the Countable Pattern Plenitude proposition.?*

Even if we start out strongly inclined toward a Humean perspective—and thus to-
ward Plenitude—as long as our priors also include an “inductive part,” then by
observing instances of a simple generalization, eventually Plenitude can be discon-
firmed to an arbitrarily strong degree.

This might seem paradoxical. Plenitude implies that there are non-black ravens; but
it also implies that there are lots of black ravens, and that there are arbitrarily huge
regions (substructures) of the universe that are entirely free of non-black ravens.
If Plenitude logically implies that such regions exist, how could observing one be
evidence against Plenitude?

* Progf. Let E* abbreviate E,---E,. By the odds form of Bayes’ Theorem,

o _ b P

PGIE)=yq, - Py(G|EY+ (1 —¢q,) - P(G|E") where =
| q, H q ! 1—g, 1-p PE)

Since Py (E") approaches 0, and P,(£") is bounded below by P,(G) > 0, the odds IZ’; must limit to
zero as well. So P(G | E") approaches P,(G | E"), which by assumption approaches one. The second

part follows since G and Q are incompatible.
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We must distinguish between general gualitative evidence and evidence de re. The
evidence that does the work in Proposition 1 is not simply that there are lots of things
which are black-if-ravens. Each of the general qualitative propositions “At least n
things are black-if-ravens” is entailed by Plenitude, and thus none of these propo-
sitions are evidence against Plenitude. Indeed, no qualitative proposition in the
structure algebra which is consistent with Plenitude is evidence against Plenitude.
This includes any simple existential generalization of the form 3xq -+ Ix, @ where ¢ is a
quantifier-free formula without names. Such existential propositions will typically
be evidence for Plenitude. (The likelihood of a simple existential given a Humean hy-
pothesis is one, while its likelihood will be less than one for any “induction-friendly”
hypothesis that allows the opposite generalization Vx; --- Vx, =¢ to be inductively
confirmed.)

But qualitative propositions like these are not the only kind of evidence we have.
The evidence that does the work in Proposition 1 consists of stronger de re propo-
sitions about particular things—#hus is black-if-a-raven, that is black-if-a-raven, and
so on. (It’s worth keeping in mind the basic point that even if £ is evidence for Q, a
proposition that enfails £ can be evidence against (),) Furthermore, while Plenitude
implies that there are many black ravens (and many non-black things), it does not
imply that s is such a thing. And while Plenitude implies that many large regions
are free of non-black ravens, it does not imply that #us is such a region. So the evi-
dence that this is such a region can disconfirm Plenitude. Even if you’re sure there
are lots of black ravens out there, it can still come as a surprise to discover them /ere.
(See White 2000 for illuminating and closely related discussion.)

This might sound rather controversial. Many philosophers have engaged in a
project of reducing attitudes de re—such as believing that this is a raven—to “self-
locating” attitudes de se—such as self-ascribing the qualitative property of being
appropriately related to something or other which is a raven (see for example, Lewis
1979; Chalmers 2011; Ninan 2013; for critical discussion see Cappelen and Dever
2013; Magidor 2015). This approach will extend to credences and evidence. One
might report this in a slogan by saying that “all evidence is qualitative”—but one
should not be misled by this to think that all evidence consists in qualitative propositions
in the sense I have used the term. A qualitative proposition is purely about the
general pattern of certain fundamental properties and relations (here modeled by a
set of structures which is invariant under isomorphisms). A proposition like this is
de dicto and “boring”—true once and for all, not the sort of thing that distinguishes
some perspectives from others. But even if de re beliefs are really self-locating beliefs,
they are surely not beliefs in such boring contents. Believing #us is a raven may well
be reducible to having some qualitative property, but it is not reducible to believing
some general qualitative proposition of this kind. Two individuals may believe the
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very same general qualitative facts about the global structure of the world, while
having different views about where they find themselves in that pattern, and in
particular different views about whether they themselves are pointing at a raven.
One of them believes #his is a raven, while the other believes no such thing. Likewise,
even if de re evidence is reducible to de se evidence, that wouldn’t make it qualitative
evidence in the sense of the term used here.

Furthermore, even if attitudes de 7e can be reduced to attitudes de se, this is not to say
there is anything wrong with the framework I have used here. We can still model
de re contents using sets of structures, and assign such contents probabilities. It’s
just that this model does not give the whole story. There is more to say about Aow
the domain D represents possible individuals: ultimately, its elements shouldn’t just
stand for “bare” individuals, but rather for certain ways of being appropriately related
to an individual.?® Filling in these details of our theory of de 7 attitudes need not
make any direct difference to what I have said about the import of de re evidence for
Plenitude.

Need not—but still, the “self-locating turn” might make a difference indirectly, by
motivating amendments to the standard account about what evidence supports.
The last twenty years have seen a great deal of work on the question of how to up-
date on self-locating information (for overview see Titelbaum 2016). Some philoso-
phers think that what your self-locating evidence supports is not correctly captured
by prior conditional probabilities in the standard Bayesian way I have taken for
granted; according to the reductionist view we are discussing, this will extend to de
re evidence such as instances of simple generalizations.

For example, Meacham (2008; see also Halpern 2004) proposes that we should
update by “compartmentalized conditionalization.” For any attitude-content 4, let
the qualitative content of A be the strongest qualitative proposition that is entailed by
A. Let a cell be a maximal consistent qualitative proposition. The proposal is to
update on evidence £ by first conditionalizing on the qualitative content of £, and
then conditionalizing on £ within each cell. Here is an upshot of this proposal:

(Qual) For any qualitative hypothesis H, if £ confirms H, then the qualitative con-
tent of £ confirms H.

PWe will want to say something like this anyway: we have been ignoring this complication, but
because of the possibility of Frege puzzles, the elements of D should probably really be thought of
as representing certain special modes of presentation for possible individuals, and not “bare” individuals
themselves (see Footnote 14). We can think of the de se reductionist as giving a distinctive account of
these modes of presentation.
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Roughly speaking, this says that merely self-locating information cannot make a dif-
ference to qualitative hypotheses. So “compartmentalized conditionalization” con-
flicts with the moral I have drawn—namely, that while there is no gualitative propo-
sition that disconfirms Plenitude, we can still have non-qualitative evidence that does
disconfirm Plenitude.

On this point I take sides with some self-locating update schemes against others:
(Qual) is false. One argument against it appeals to a principle of “considering the

opposite”:2°

(Opp) If not-E disconfirms H, then £ confirms H.

There is no “heads I win, tails we’re even” evidence.”” Here is a simple example
to show how (Qual) conflicts with (Opp). Suppose you are sure there are exactly
two people in the world, and your prior credence is evenly split between three hy-
potheses: everyone is nice, only I am nice, and only the other person is nice. It is clear that
the evidence I am not nice disconfirms the qualitative generalization that everyone is
nice. So by (Opp), I am nice should confirm the generalization that everyone is nice.
But the qualitative content of I am nice is just someone is nice, which does not confirm
the generalization. (It is entailed by all three hypotheses.)

Of course, there are still many different theories of self-locating evidence among
those that reject (Qual), and the differences between them might still matter for the
story I have told about Plenitude. Exploring this issue thoroughly would turn this
article into a book. But I think that as long as we reject (Qual), the most important
bit of the story is secure: de re evidence (whether conceived of as self-locating or not)
can in principle disconfirm the qualitative hypothesis of Plenitude even if general
qualitative evidence does not.

Still, do we in fact have the sort of evidence that disconfirms Plenitude? We have
observed lots of instances of substantive regularities involving what may well be
fundamental properties and relations. Have we observed enough of them to render
Plenitude improbable, and justify incredulity? It’s enough if we have very strong
evidence for the truth of any logically contingent universal regularity—say, that ev-
ery electron has mass, unrestrictedly speaking, or that there are no talking donkeys,

®Tor other arguments, see Bradley (2011, sec. 9) and Titelbaum (2016). Titelbaum (2013) calls a
thesis very similar to (Qual) the Relevance-Limiting Thests.

2This is not to commiit to the claim that whenever it is possible to have not-E as evidence, it is also
possible to have £ as evidence. For example, the principle says that if 7 am not dead disconfirms the gun
was loaded, then I am dead confirms the gun was loaded; but this is not to say that it is possible for me to
ever have [ am dead as part of my evidence.
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unrestrictedly speaking. Of course we can’t conclude that this is how our evidence
stands just from technical results like Proposition 1. But at least we can see in prin-
ciple how it might turn out this way. Putting things a bit roughly, the key precon-
dition for disconfirming Plenitude—and justitying incredulous stares a posteriori—is
the non-zero a priori probability of empirical inductive success.

But perhaps our inductive ambitions should be tempered. Here is a natural pic-
ture: some parts of reality might be too far away or isolated from us for us to ob-
serve. Then we should ask what conclusions we can draw for Plenitude if our evi-
dence consists entirely of observable instances—intuitively, from around here. As far
as Humean hypotheses go, this doesn’t actually make much difference, as long as
the observable domain is large. Given a Humean hypothesis H, even restricted simple
generalizations are exceedingly unlikely to be true. First, suppose infinitely many
instances are observable. Then the probability that they are all true given H is still
zero (by the same argument). Given H, not only does unrestricted Plenitude have
probability one, but in fact any infinite subdomain also has probability one of sat-
isfying Plenitude. Second, if there is a large finite number of observable instances,
the Humean probability that they are all true will still be very small, decreasing ex-
ponentially with the number of instances. So observing large finite regularities will
still typically be strong evidence against .

But while Plenitude is almost sure given a Humean hypothesis, the reverse may not
be true. The best bet for Plenitude is if we reserve some prior credence for non-
Humean Plenitude. Let’s consider one more simple set-up. Suppose rational prior
credence is split between three hypotheses: (1) a Humean hypothesis, Humean
Plenitude. (2) An induction-friendly hypothesis, Global Regularity, conditional
on which unrestricted simple generalizations have a non-zero chance of being true.
(3) Locally Regular Plenitude, a non-Humean hypothesis according to which Plen-
itude is true—and thus all unrestricted simple generalizations are false—but also,
conditional on which simple generalizations that are restricted to observable instances
have a non-zero chance of being true. Locally Regular Plenitude says that real-
ity is vast and various “out there,” but may still be regular “around here.” In this
set-up, observing many instances of a simple generalization is st{/ evidence against
Plenitude—even though it is not evidence against Locally Regular Plenitude. Such
observations confirm both Global Regularity and Locally Regular Plenitude, while
disconfirming Humean Plenitude. As the number of observed instances increases,
the probability of the Humean hypothesis will still approach zero—but it won’t take
Plenitude all the way there with it. Rather, in the limit the probability of Plenitude
will diminish until it converges to that of Locally Regular Plenitude; this hypothe-
sis was initially less probable than Plenitude, because it is more specific. So even
in this case, where we have reserved some prior probability for the possibility that
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observable instances are not typical of the rest of reality, observing instances of reg-
ularities can still provide evidence against Plenitude (though this evidence is not as
overwhelmingly strong as in the simpler set-up). We would only avoid this conclu-
sion if one of Global Regularity or Humean Plenitude had rational prior probability
zero.

Note also that the kind of empirical disconfirmation for Pattern Plenitude I have
discussed does not straightforwardly extend to other kinds of “multiverse” theories.
Observing many instances of a regularity does not disconfirm theories that say re-
ality is vast and various, but still appropriately regular (and thus not utterly Plen-
itudinous). According to some multiverse theories from physics, there is a lot of
stuft (Melbourne-counterparts and talking donkeys and so on) but it is all mundane
physical stuff obeying logically contingent physical laws. Furthermore, if these laws
comprise a nice theory T in the sense from Section 4, then the more restricted 7-
Plenitude would survive the kind of empirical disconfirmation just described, and
T-Humean hypotheses may even gain empirical support along with the theory 7.

Here’s one last point worth noticing. At the outset, I took for granted a certain set L
of “perfectly natural” or “fundamental” properties and relations. These have been
treated with special privilege all along: we used them to specify the structure al-
gebra, a “fundamental language,” and the class of simple generalizations. Some
philosophers have suggested that “metaphysical structure”—like Lewis’s natural
properties—might play a role in guiding rational inductive inference (Sider 2011,
sec. 3.3). But any connection there might be between “metaphysical structure” and
rational degrees of belief is not well-understood. This essay was occasioned by a
question in the epistemology of metaphysics—how probable is Plenitude?—but I
think that the philosophical exploration of structure measures is also a useful step in a
project that we might call the “metaphysics of epistemology.”

A Appendix

This appendix gives a precise statement and proof sketch for the result in Section 4:
for any “nice” theory 7, there is a “random 7-model” that has probability one up
to isomorphism, with respect to any 7-Humean structure measure.

Definition 8. (Hodges 1997, 160) A first-order L-theory 7 is nice iff it has the
following two properties:

(a) The Hereditary Property. Every substructure of a model of 7 is a model
of T,
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(b) The Amalgamation Property. For any three 7-models, 4, B and C, with
embeddings f : 4 = Bandg : 4 — C, there are a T-model D and embed-
dingsf* : B> Dandg" : € - Dsuchthat /T of=g"0g

The first condition cuts structures down, and the second condition pastes structures
together, possibly with overlap.

We can also characterize nice theories syntactically. An V; formula has the form
Vix;---Vx, ¢ where ¢ is quantifier-free. (In Section 6 I called these simple generaliza-
tions.) An V; theory is a set of V| formulas. Similarly, an 3; formula has the form
dx;-+-3x, @ where ¢ is quantifier-free.

Theorem 2.
(a) 7 hasthe Hereditary Property ift 7 is logically equivalent to an V; theory. (By
the f.os-Tarski Theorem, see Hodges 1997, Theorem 5.4.4 on p. 143).

(b) T has the Amalgamation Property iff, for any V¥, formulas a; and a, such that
T ay V a,, there are 3, formulas f; and f, such that

TEpVP
TH ﬁl — o
T+ ﬁz - 0y

(Bryars 1973; see Bacsich and Hughes 1974, Corollary 2.5 on pp. 438-9)

Part (a) says that 7 has to consist entirely of simple universal generalizations. Part
(b) says, roughly, that if 7 implies a disjunction of two different universal generaliza-
tions, then we can figure out that one disjunct is true just by observing some finite
bit of the universe (a witness to one of the two existential generalizations f; or f,).
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Theorem 3. If 7 is a nice theory, then 7 has a countable model § such that

(a) S embeds every countable model of 7;

(b) Any 7-Humean structure measure (Definition 5) assigns the set of structures
isomorphic to § probability one.

Theorem 1 in Section 3 is a special case of Theorem 3 (since the empty theory is
nice).

Definition 9. We say $ has the Extension Property for 7 iff for any finite 7-
models 4 and B such that 4 is a substructure of B, any embedding of 4 in . can be
extended to an embedding of Bin S.

ALB

.
N,

S

The Extension Property for a nice theory 7 implies that $ embeds every countable
T-model. (If S is a 7-model, each of'its finite substructures is a 7-model; it then fol-
lows that S embeds S" by Hodges 1997, Lemma 6.1.3, pp. 161-162.) Furthermore,
any two countable structures with the Extension Property are isomorphic (Hodges
1997, Lemma 6.1.4, p. 162). So the following lemma suffices for Theorem 3.

Lemma 1. If 7is a nice theory and Pis a 7-Humean structure measure, then the
Extension Property for T has P-probability one.

Proof Sketch. The basic idea is that each finite extension of a finite structure has in-
finitely many opportunities to turn up, and the Humean condition guarantees that
its probability of turning up never gets too small.

If A 1s a finite structure with domain 1,2, ...,n, and qy, ..., q, are distinct elements
of D, let A(a) be the set of L-structures S with domain D such that the function (z —
a,) 1s an embedding. Intuitively, this is a proposition that says that the individuals
ap, ..., a, instantiate the pattern 4. Here is another way of saying that a structure .S
has the Extension Property for 7: for any finite 7-models 4 and B such that 4 is a
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substructure of B, for any individuals ay, ..., q,, such that § satisfies 4(a), there are
distinct individuals &y, ..., b, such that S also satisfies B(a, b).

Fix 4, B, and @, and enumerate an infinite sequence of tuples ', 52, ..., such that
all of the individuals in these tuples are distinct from one another. Let B; abbreviate
B(@,5"). Then (since there are only countably many such combinations of finite
structures and tuples) it suffices to show that for each such 4, B, and g,

P(A(@) ~B; =B, ) =0

In other words, the probability is zero that the extended structure B does not show
up anywhere. If there is some 7 such that P(A(a) =B; --- =B,) = 0, then we’re done.
Assuming otherwise, it suffices to show that there is some 6 > 0 such that for each
n)

P(B,,, | A@@) =By ---=B,) > 6
We can get this from the 7-Humean condition, as follows.

Each of the propositions 4(a), By, ...B,, which say that certain individuals instantiate
a certain finite pattern, can be written as a finite conjunction of basic propositions.
The Boolean combination A(a) =B -+- =B, can then be rewritten in disjunctive nor-
mal form, as a finite disjunction D V --- VD, of mutually exclusive finite conjunctions
of basic propositions. Ior each disjunct D; that is consistent with 7, the Amalgama-
tion Property guarantees that B, is also consistent with D; and 7. (If 7 has a
model that satisfies D;, the Amalgamation Property tells us that 7 also has an ex-
tended model that embeds B. This extended structure is still a model of A(z) and
D,, and we can choose the extra elements of this structure to be those given by the
tuple 51, so it is also a model of B,,1.)

Write B, | as a finite conjunction of basic propositions £; -+ Ey. The “complexity”
N does not depend on z: it is determined by the number of elements of the structure
B and the number of relations of each adicity in L. Each disjunct D; with positive
probability is consistent with 7 (since we have assumed A(7) = 1). In this case, E; is
consistent with D;E; --- F_; and 7, so the 7-Humean property tells us
PE | DE - E_j)>e¢
Multiplying the conditional probabilities together,
P(B.y1 | D) = P(Ey - Ey | D)>¢"

Since this holds for each disjunct D; with positive probability,

P(B,; | A@) —~B, - =B) = PB,; | Dy V- VvD)>e"

This is what we needed to show. O
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