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PHILOSOPHY OF SCIENCE: INTERFACES BETWEEN LOGIC AND KNOWLEDGE 

REPRESENTATION1 

 

ABSTRACT 

Against the background of a discussion of knowledge representation and its tools, I offer here an 

overview of my research in philosophy of science. I defend a relational model-theoretic realism as 

being the appropriate meta-stance most congruent with the model-theoretic view of science as a 

form of human engagement with the world. Making use of logics with preferential semantics within 

a model-theoretic paradigm I give an account of science as process and product. I demonstrate the 

power of the full–blown employment of this paradigm in the philosophy of science by discussing 

the main applications of model-theoretic realism to traditional problems in philosophy of science.  

 

I discuss my views of the nature of logic, and of the role it has in philosophy of science today. I also 

specifically offer a brief discussion on the future of cognitive philosophy in South Africa. My 

conclusion is a general look at the nature of philosophical inquiry and its significance for 

philosophers today. 

 

INTRODUCTION2 

Balancing on a branch in the tree at the end of our garden, clutching Aristotle’s Posterior Analysis 

in one hand, I was, at the age of about 15, contemplating the seductive Greek images of truth, 

precision, equilibrium, knowledge, and of course, wisdom. On my – almost daily – excursions to 

my beloved tree I used for years to intrigue myself with thoughts of finding harmony in the 

universe, seeing symmetrical patterns of human thought impressed in the world around me, and 

always finding everything – the universe, my world, the world – resting safely and reassuringly on 

steady strong pillars of wisdom and truth. 

 

It is quite likely that I was to most people an insufferable little brat who thought she knew 

everything, but that never bothered me much, I had this idea – due to the Greeks I was reading - that 

by doing gymnastics or ballet, studying mathematics, and listening to classical music, I would be 

able always to see the very structure of the world and know exactly what was happening – I would 

                                                
1 Inaugural lecture read at the University of Johannesburg, 24 May 2006. 
 
2 I am deeply grateful to colleagues in my field who have played, one way or the other, a significant role in my research 
over the past 10 years. I especially mention here Johannes Heidema at Mathematical Sciences, Unisa; Willem 
Labuschagne at the University of Otago in Dunedin, Gabor Kutrovatz and Laszlo Ropolyi at Eötvos University in 
Budapest, Gabor Zemplen at the Max Planck Institut für Wissenschaftsgeschichte in Berlin, Jan Wolenski at the 
University of Krakow, David Spurrett at the University of Kwa-Zulu Natal, Don Ross at the University of Alabama at 
Birmingham. 
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be pursuing the beauty of pure forms, discoursing in the language of the universe, and discovering 

harmony everywhere after all, how else could it turn out? 

 

Needless to say, obviously totally chaotic, and mostly without even a smudge of pure precision, 

elegant truth, or stable wisdom in sight! How could this be? The stage was set, the tools were at 

hand … what went wrong? Perhaps the short answer lies in the mundane fact that I, after all, turned 

out not to be a Greek goddess, but rather just Emma. The long answer lies in the intricacies of 

knowledge representation. I shall, rather than bore you with the short answer, for the rest of my time 

with you tonight, try to tease out some of the complexities contained in the long answer. And I shall 

do this by picking out from the myriad relations between logic and scientific knowledge the second-

order interface between logic and knowledge representation. 

 

LOGIC3 

Logic can be helpful in two obvious ways: It guides intuition about at least the respectability of 

arguments via informal logic, and it offers certainty regarding validity of arguments courtesy of 

formal logic.  

 

Informal logic can save us from believing arguments like: ‘Everyone has a right to education. 

Therefore the government should offer excellent tuition to everyone with no obligation (in terms of 

school fees, or anything else) on the part of learners’. Well, this sounds logical does it not? Why 

would one want to be ‘rescued’ from an argument like this? Because it is not logically valid. 

Unfortunately there are many situations in which the premise ‘Everyone has a right to education’ is 

true, while, at the same time, the conclusion is false, and thus, there are many cases in which this 

argument is invalid. Certainly my everyday world is an interpretation (or valuation, or possible 

world) in which this argument is invalid. So, informal logic may teach us to never rush into 

interpretations, but rather to tread carefully and lightly with the angels.  

 

Formal logic falls into studies of formalisation of natural language (such as Zulu, English, Greek, 

etc.) and human (or automated) theorem proving. The former uses mathematical symbols to express 

knowledge claims in terms of well-formed formulas, the latter uses rules of inference to make 

formal deductions from sets of axioms. Here I concentrate on the formalisation of natural language, 

and thus on knowledge representation.  

                                                
3 I am grateful to my friend and colleague, Willem Labuschagne, currently at the Department of Computer Science, 
Otago University in Dunedin, New Zealand, for the direction some of his earlier work at Unisa, and his own inaugural 
lecture (Labuschagne 1994) gave the final version of this lecture. Much of the content of the first sections of this lecture 
is owed to his writing, combined with the influence of Johannes Heidema from Mathematics at Unisa. 
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You could very well ask why – apart from adolescent dreams of pure truth – would anyone want to 

use mathematical symbols to express their thoughts? Weirdly enough, the answer actually is not too 

far removed from these dreams after all: Mathematical symbols offer a mechanism for  

v Avoiding fallacies, ambiguity, and the overall ‘meaning-loadedness’ of natural language 

v Establishing clear similarities between two different situations (or systems) by describing 

both in a standard form of notation 

v Keeping the distinction between meta- and object levels firmly in place (this is essential for 

any talks about truth to be meaningful, as we shall see later) 

v Applying a theorem-proving algorithm to explore the consequences of knowledge claims. 

 

KNOWLEDGE REPRESENTATION 

1.  Background 

Talk of knowledge representation refers to the act of describing some system of interest with a 

formal (or ‘artificial’ as opposed to ‘natural’) language.4 As part of my research for my DLitt et Phil 

degree, I investigated the application of basic principles of knowledge representation to traditional 

philosophical descriptions and explanations of the processes of science, because I suspected these 

principles of offering an interesting way to rescue science both from barren instrumentalists and 

deranged post-modernists.  

 

From a logician’s point of view, knowledge representation includes the following: A specific 

system in reality that is focused on, a conceptual model of this system, and an application of 

axiomatic method. I have claimed that the same three elements can also be identified in second-

order analyses of the processes of science (see Ruttkamp 2002). Let us now briefly consider each of 

these elements of knowledge representation in turn. 

 

1.1 The ‘intended’ system 

In terms of knowledge representation, focusing on a particular real system, referred to as the 

‘intended’ system, serves mainly a descriptive function. Here the choice of system is determined by 

the function and objectives of the program being developed. Examples of such systems could be a 

room to clean, a motorboat, the set of natural numbers, the gas molecules in a flask, a light-fan 

system, and many others. In science the choice of system is determined by the disciplinary matrix of 

the scientists in question, and other context specific factors, such as research intentions and goal, 

                                                
4 One field in which knowledge representation obviously is extremely important is that of Artificial Intelligence. This is so, 
because artificial agents, or robots (whatever form they may take), are given information in terms of programs (which are 
strings from some formal language). 
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field of application, and others.5 It is important to note that it is always a slice of reality that is 

investigated, described, or examined and never somehow reality in all its multiplicity.  

 

1.2 The conceptual model 

As part of the mechanism of knowledge representation a conceptual model is always formed of the 

intended system in question. This ‘model’ can be a representation in one’s mind (or brain – suffice 

it to say it can be ‘mental’) or it can be expressed in some linguistic form. It is ‘suitably’ idealized, 

generalized, or simply skewed in terms of being an abstraction of the intended model, a 

representation representing only features of the intended system relevant for intended research, and 

then mostly in general terms. A conceptual model never represents the intended system in its full 

glorious actual presentation.   

 

It includes a certain set of objects, and certain properties of these objects and relations between 

them, representing the way things are, or work, in the intended system. Say our intended system is a 

simple light-fan system. Let us agree to formulate the set of objects in the conceptual model of this 

system as consisting of 2 elements: the light, and the fan. Let us note properties such as the fact that 

either the fan or the light can be switched on or off at particular intervals. 

 

1.3 The axiomatic method 

The assumptions made about the intended system must now be made explicit. This is an idea that 

originates with Euclid’s writing down of the first comprehensive exposition of geometry. At this 

stage of knowledge representation, a language is formulated or ‘designed’ strictly guided by the 

relevant conceptual model.  

 

Say we design a language L containing a set of individual constants, called Ind. with its elements 

being a name for each object of relevance in the intended system, say in our case, Ind. = {l, a}, 

where ‘l’ stands for ‘light’, and ‘a’ denotes the ‘fan. L also includes a set of predicate symbols, 

describing properties of and relations between the objects described in Ind. Let Pred = {(IsOn, 1)}. 

(We could include predicate symbols with an arity of more than one, but I am keeping things 

simple. L could also include a set Fun., of functions symbols, and a set Var., of variables.)  

 

Part of specifying our language is to specify the logical connectives that will be used and defined in 

the syntax of the language, say at least 5, w, v, and 6. (The universal and existential quantifiers will 

also be defined in the case of a quantified language, but in the current case this is not applicable.) 

                                                
5 See Holston’s definition of ‘themata’ in Holston (1995). 
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The semantics of the connectives may be specified by truth tables or by logical axioms. Then other 

extra-logical axioms regarding the intended system may be formulated, specifying how the system 

works, for instance, IsOn(l) 6 IsOn(a).    

 

It is important to realize throughout this discussion that actions here are guided by the conceptual 

model of the intended system, and not by the actual real system. It is impossible to include anything 

into the axiomatic descriptions which was not built into the conceptual model. Notice the use of the 

term ‘build’ here, the conceptual model is something that is created in some mental space by the 

observer-programmer-scientist interested in the relevant real system at the time. 

 

There are also other factors we have to take account of that affect the accuracy of the axiomatic 

description: 

v The ‘grain size’6, i.e. the decision of what to take as the ‘building blocks’ of the system 

v Preference (and intention) 

v Ignorance 

 

These points emphasize the fact that the conceptual model of the intended system is never ‘perfectly 

accurate’. 

 

2.  Meaning and reference 

Now, after the axiomatic method has been applied, questions can be asked about the intended 

system, and it can be checked if relevant propositions follow logically from the axioms.7 

 

In terms of scientific method, all of this is rather Aristotelian of course. Aristotle’s method of 

induction-deduction implied that science is a progression from observations to general principles 

(inductive stage of scientific inquiry), and from general principles back to observations (deductive 

stage of scientific inquiry). In other words, scientists induce explanatory principles from the 

phenomena to be explained, and then deduce statements about the phenomena from premises which 

include these principles. Notice also the interesting fact that it was Aristotle who shifted the 

emphasis in philosophy from the Socratic examination of the nature of knowledge to the problem of 

representing knowledge (see Sowa 2000). 

 

                                                
6 Labuschagne’s term. 
7 This is how ‘extensions’ of sets of well-formed formula are formulated, given that extensions are the relevant axioms 
together with the logical consequences that may be deduced from them.  
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Now, during this (deductive) stage of events, the question thus becomes how to link the conceptual 

model ‘back’ to the real system it originated from, i.e. how to give ‘meaning’ in terms of some real 

system, to the content of the conceptual model. In terms of knowledge representation this is done by 

formulating an interpretation for the language in question. This has proven to be a task whose 

success (in terms of ‘fit’ between real system and conceptual model) cannot always be guaranteed. 

This is the case for two reasons: First, it is, after all, an idealization being linked to a particular, 

detailed system, and that implies at least some degrees of skewed mutual fitting (except if one is 

Aristotelian enough in one’s beliefs that the general exists only in the particular not to be bothered 

by this); and second, axioms are wffs in a formal language, and this language can be interpreted in 

many different ways (Tarski 1935, 1982).8  

 

What is an interpretation? An interpretation is a mathematical structure. More specifically, it is an 

ordered pair (D,f) where D is a domain of objects, (a domain of discourse, or universe of discourse) 

and f is a so-called denotation function telling us three things: 

v Which object in domain D is denoted by each individual constant 

v Which function in D is denoted by each function letter in Fun (not applicable in our current 

example) 

v Which property or relation is denoted by each predicate symbol.  

 

Typically, there are as many interpretations as there are pairs (D,f). Some of these interpretations 

will be models of the relevant set of axioms, and among these may be the conceptual model of the 

intended system. Notice here that a model in the Tarskian sense is also a mathematical structure, 

and specifically it is an interpretation of the relevant language that makes the chosen axioms of the 

language true. Note also that ‘true’ here means that denotations of individual constants and function 

symbols 'fall’ within the denotation of the predicate symbols, which are always subsets of the 

domain D. Truth is thus a relation between sentences and interpretations. 

 

In our example above, an interpretation for L could be I = (D, f) where D is the light-fan system 

depicted by our language, and is written D = {l, a}. Then we can choose the denotation function f as 

mapping each element of Ind onto itself in D9; i.e. f(l) = l, f(a) = a. Furthermore we choose the 

                                                
8 By the nineteen fifties Alfred Tarski’s model theory, and his views in particular on truth and logical consequence (see 
Tarski 1935, 1982), had matured into a definition of truth in terms of relations between sentences and interpretations. His 
studies of the properties between sets of sentences and classes of interpretations opened up new horizons for studies in 
formal logic in general, and knowledge representation in particular. This is important because in this context truth is 
presented in a relational way, rather than as an absolute property of sentences. 
9 Such an interpretation is called a ‘term-interpretation’.  
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denotation of the predicate symbol in Pred as follows: f(IsOn,1) = {a}. This interpretation is not a 

model of the sentence IsOn(l), since this sentence is false under this interpretation.   

 

There are some measures that can be taken (such as ensuring the completeness of the set of 

axioms)10 to try to limit the number of models of a set of axioms, but they are not always 

indicated.11 Keep in mind also though, that it might not always be desirable to have only one model 

of the set of axioms, but that rather a whole class of models might be useful. In such cases each 

model represents a state of the system (at a given time).  

 

3.  Truth 

The most familiar, common-sense definition of truth is that it is a property of sentences that 

correspond with reality. In other words, to determine truth, one looks at some unique interpretation, 

namely the real world, and checks whether the sentence adequately describes the state of affairs. 

 

The problem is that humans interpret and process ‘data’ from reality by using each their own 

internal mental models of the world. Thus the same object or event in reality may have more than 

one ‘meaning’ or interpretation if interpreted by different people or at different times. Perhaps, then, 

you might think, a designated refined version of reality should be used as the touchstone of truth; 

let’s say the scientific model of the world? The point is that this model is still being built, and 

moreover, it will always be subject to revision at various times. Worse, it might be that different 

possible worlds might be equally well supported by science at a given time.12  

 

Actually, science mostly attempts to build a class of models rather than a single one, because it has 

to allow for things that have not yet happened, or might never happen. Hypothetical states of the 

system must be considered for obvious reasons, often obviously to do with safety, but also with 

explanation, and predictability. Specifically, counterfactual statements play an important part in 

science. For example, consider the following statement: ‘If you did not eat the chicken, you would 

                                                
10 For the axioms to exclude all but the conceptual model, the set of axioms must be at least complete – i.e. their 
extension consisting of the axioms and their consequences must be such that if any sentence (closed wf) is picked from 
the language in which the axioms are formulated, then either that sentence belongs to the extension, or its negation 
does. If the axioms are not complete, i.e. if there is a closed wf such that neither the wf, nor its negation is deducible from 
the set of axioms, then the set of axioms will have at least two models, one in which the wf is true, and one in which its 
negation is true. (This follows from Gödel’s theorem that every consistent extension has a model.) 
11 Moreover, as far as more complex systems go, Gödel’s Incompleteness theorem actually confirms that it is impossible 
to arrive at a complete axiomatisation of some of these systems by simply writing down a list of axioms representing 
what we know. 
12 Typically (traditionally) the idea was that scientific statements that ‘fit’ all possible worlds are the worthwhile ones, while 
statements false in one or more possible worlds were regarded with mistrust. On the other hand, a more human and 
more accurate view of science as a body of revisable knowledge claims is compatible with the model-theoretic fact that 
the more knowledge an agent has, the fewer models she has, and that a claim with only one model carries much more 
information than a barren tautology. 
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have been well’. You did eat the chicken, so the antecedent of this sentence is false in reality, but it 

manages to place one in a different possible world (other than the ‘real’ one) in which you are well 

and not slithering around in pain. Counterfactual reasoning, as opposed to reasoning directly about 

the ‘real’ state of a system, helps increase understanding of some important aspects of the current 

state of affairs. 

 

This is why it is so helpful to have a mechanism by which it is possible to work with many possible 

worlds, which, in its turn, is why knowledge representation becomes interesting in second-order 

discussions of science: a typical formal language presents us with infinitely many interpretations, 

but formal logic presents us with many different tools to trace relations between languages and their 

interpretations. This is also why it is nonsensical to refer to a sentence as ‘true’ when it describes 

the state of affairs in ‘the real world’. Sentences are true relative to some interpretation (or mental 

model or possible world).  

 

IMPLICATIONS FOR THE UNDERSTANDING OF SCIENCE AS HIGHLIGHTED BY A 

KNOWLEDGE REPRESENTATION PARADIGM  

1.  The tentativity of scientific knowledge 

I view science as an historical process — or even a set of historical processes — which 

continuously, in many different complex contextual ways, revises itself. I believe that to stay in the 

game called philosophy of science we need to find ways in which we can magnify the infinitely 

many different pathways existing among theories, their models, and real systems during such 

processes. My view regarding the nature of scientific knowledge fits well with the characterisation 

of science and its method(s) offered by the Finnish logician and philosopher Illka Niiniluoto (1999: 

5). He (ibid.) concludes that science, if successful, ‘will ... have tentative results, in principle always 

open to further challenge by later investigations, which constitute what is usually referred to as the 

‘scientific knowledge’ of the day’. Scientific knowledge, in these terms, is revisable and may be 

represented in many different ways, but it is, I believe, also continuous, sometimes cumulative, and 

always rational. 

 

After positivism, philosophy of science was in crisis. The way out seemed to consist of two 

available options (Niiniluoto 1999: 14): A choice either for following a descriptive historical 

method, building on Kuhn and Lakatos’s work (and perhaps ending up in empty relativism), or a 

choice for continuing with the positivist quest for logical and quantitative perfection in philosophy 

of science (and ending up on equally infertile ground). I believe there is a middle way, a relational 

way, rather than a relativist way, that does not choose any of the available sides. As Niiniluoto 
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(1999) also stresses, a strict distinction between historical and formal methods in philosophy of 

science is unwise. On the one hand, we need logic (as I hope I have given you a glimpse of), and 

there are many other applications, for instance in verisimilitude studies, of non-classical logics that 

strengthen the view that logic today still has much to offer philosophy of science. We also, on the 

other hand, need philosophy to formulate definitions for terms such as truth and justification, 

progress and realism. Science is a rational cognitive but incomplete enterprise (ibid.). We ‘live in 

ongoing stories’, even in science (Lötter 1994: 157), but, at the same time, philosophy of science 

‘cannot leave science as it is’ (Niiniluoto 1999: 14). Normative questions about scientific enquiry 

and knowledge have to be asked and answered, the social role of the processes of science is in need 

of philosophical reflection, and even the ethics of science is in constant need of philosophical 

attention. 

 

2.  The structure of scientific theories 

I have formulated a model-theoretic depiction of science (Ruttkamp 2002) as a midway stance 

between the so-called ‘statement’ and ‘semantic’ views of theories, which are the two traditional 

schools of thought in studies of the structure of theories. Given its mathematical logic basis, my 

model-theoretic realism retains the positivist (statement) notion of a scientific theory as a 

(deductively closed) set of sentences expressed in some appropriate classical first-order language, 

but also acknowledges the post-positivist (non-statement, or ‘semantic’) emphasis on the 

interpretative and referential role of the conceptual (i.a. mathematical) models of these theories. 

There are many reasons for such a middle-of-the-way or mixed approach: (These reasons are 

explored in depth in Ruttkamp (2002)).  

 

Briefly, the ‘theory’ is needed to avoid empty relativism. The theory is the one specification which 

all its models and their substructures have in common, and I need to retain this relationship between 

theories and models, given that my account is relational rather than relativist. At the same time 

though, models or mathematical structures are needed, because the process of science manifests 

itself in a differentiated way. This reflects the fact that the actual growth and internal turmoil 

theories undergo before they may be applied, revised or, ultimately, succeeded, take place at the 

level of mathematical structures interpreting the theory.  

 

The above points are important and have indeed been acknowledged by some philosophers working 

in this field (see Ruttkamp (2002) for detailed discussions of some of the most important of these). I 

have though come to realize only recently that the most important need for models and more 

specifically for a truly model-and-theory analysis of science is presented by the fact that contextual 
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factors — so-called ‘themata’ (Holton 1995) — and the factors causing ‘preference’ of one 

application or model of a theory above another are also changeable and context-specific, and above 

all, not part of the syntax of the theory. These factors are better captured in a preferential 

framework, where models can be ranked according to preference determined by heuristic contextual 

factors. I thus offer a model-theoretic account of science, based not on syntactic inference rules, but 

on a preferential semantics. More about this later. 

 

3.  Abstraction and idealisation vs ‘concretisation’13 

The ‘idealised’ nature of science, the fact that the laws of science ‘lie’ as Nancy Cartwright (1983) 

famously pointed out, and the need for boundary conditions and ceteris paribus clauses, have been 

part of doing science and philosophy from ancient times, starting at least with the struggle between 

the Pythagoreans and supporters of the method of saving the appearances. The need to abstract 

relevant and general information from a particular real system at a certain time has already been 

discussed in terms of knowledge representation above. The complexity of the process of ‘linking’ 

linguistic expressions of knowledge ‘back’ to real systems was also touched on, and will be 

discussed in more detail below under ‘Realism’. The point is, in other words, that a model-theoretic 

depiction of science can meaningfully engage, even if only in a clarifying sense, with these difficult 

and many faceted features of science.  

 

4.  Realism 

Linking ‘back’ to real systems from interpretations (conceptual models), is in model-theoretic terms 

a process that includes also two other kinds of mathematical structure – namely empirical reducts 

and empirical models14 – as well as myriad links among these different kinds of structure. Recall 

that mathematical model theory and its definitions of interpretations of (sentences in) formal 

languages present the possibility of many different models of a given theory T (in language L). 

These models are interpretations of T‘s language such that a model of a theory sees to it that every 

predicate of the language of the theory has a definitive extension in the underlying domain of the 

model which satisfies T in the Tarskian sense. 

 

Please see Figure 1 for what follows.  

                                                
13 Cartwright (1989)’s term. 
14 Although adapted to fit my objectives here, the notion of an empirical substructure originates with van Fraassen (1980) 
and that of an empirical reduct with Kuipers (2000). See Ruttkamp (2002) for detail.  
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Figure 1: A model-theoretic account of                

science I

Language L

All interpretations 
of language L

One model of 
theory T in L

An empirical reduct
of L

An empirical model

One real system, S

 

 

Focusing on a particular real system at issue in the context of applying a theory implies a specific 

empirical set-up in terms of the situationally observable properties and measurable quantities of that 

particular real system. To engage with this set-up, a relevant conceptual model of the theory, chosen 

for particular reasons at a given time, is trimmed (‘reduced’) in a specific way. In the context of 

science and theory application, and considering relations of reference, it makes sense to concentrate 

only on the predicates in the mathematical model of the theory under consideration that may be 

termed ‘empirical’ predicates (in the particular context of application). This is how an empirical 

substructure, or ‘reduct’ is formed. A ‘reduct’ in model-theoretic terms is created by leaving out of 

the language and its interpretations some of the relations and functions originally contained in these 

entities. This kind of structure thus has the same domain as the model in question, but contains only 

the extensions of the empirical predicates of the model. Notice that these extensions may be infinite 

since they still are the full extensions of the predicates in question.  

 

Now, looking at theory application from the ‘other’ side, i.e. the side of real systems, from the 

experimental activities carried out in relation to the relevant real system, a conceptualisation of the 

results of these activities (such as performing certain observations and experimental tests), may be 

formulated. This (mathematical) conceptualisation of data may be represented as an ‘empirical 

model’. This is a model then which has been determined by data gained as a result of interaction 

with some aspects of the real system in question (and not by the models or empirical reducts already 

constructed). The empirical model contains finite extensions of the empirical predicates at issue in 
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the empirical reduct, since only a finite number of observations can be made at a certain time. In 

other words, an empirical model usually involves only finitely many elements from the domain of 

the model (or reduct) and from the extensions of the predicates.  

 

In terms of ‘reference’ then, should we find that there is a one-to-one isomorphic embedding 

function (a relation of structural identity) from the empirical model into a certain empirical reduct, 

this would imply that there exists some relation of reference from our original theory via at least 

one model and at least one of its reducts, to the relevant real system (represented as at least one 

empirical model). This is close to what Bas van Fraassen (1980) termed ‘empirical adequacy’. 

 

But does this imply reference in a realist sense? Yes, it does. Under the interpretation chosen, the 

terms in the language refer to the interpretation’s domain of discourse (representing an aspect of 

some real system in reality), and the interpretation (model) makes the sentences containing these 

terms true (i.e. the denotation function of the interpretation satisfies the language). Some of these 

terms are empirical in the current situation, and if completely unrelated experiment(s) is (are) done 

on the aspect of reality at issue and it is found that the results can be translated into the language, L, 

of the theory under consideration, and also moreover, an isomorphic relation existing between this 

empirical model and some empirical reduct of a model of the theory expressed in terms of L is 

found, a link – however ‘weak’ – between the terms in the language, and objects and relations in 

some real system, does exist.  

 

To summarise: A model interprets all terms in the appropriate relevant language and satisfies the 

theory at issue. In the empirical reduct are interpreted only the terms called ‘empirical’ in the 

particular relevant context of application or empirical situation. Think of this reduct (substructure) 

of the interpretation (model) as representing the set of all atomic sentences expressible in the 

particular empirical terminology true in the model. An empirical model — still a mathematical 

structure — can be represented as a finite subset of these sentences, and contains empirical data 

formulated in the relevant language of the theory.     

 

In my context it is simply incorrect to conclude from the ‘no miracles’ argument for realism that if 

we are realists, we should be realists about a world exactly like what science describes and be done 

with it. Rather, I agree that we should believe in a world rather like what science describes, but 

stress that it is no simple matter to say what aspects of science refer to the world, what refer to bits 

of our models, what are and are not equivalent, and so on. Also, most importantly, these ‘bits’ of 

science do not fit together without serious work being done. (See Ruttkamp 2002.) 
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5.  Truth 

There are many different models possible of one language – infinitely many to be exact.  The main 

implications of this are in terms of the notions of truth and reference. Model-theoretically truth is a 

relation between sentences in formal languages and their interpretations. In this sense, reflections on 

whether we are examining a ‘correct’ or ‘true’ representation of reality remain, at the least, naive. 

The slogan of a model-theoretic realism is ‘truth without universality’. ‘Truth’ is relative to specific 

models, and so questions of truth are settled by focussing on conditions of verification in the 

semantic sense of defining interpretations of the scientific language on specified domains of 

discourse. So, there are elements of conventionalism in a model-theoretic approach to theories, in 

the sense that ‘truth’ is something that we ‘create’ by our (heuristic or pragmatic) choices (of 

interpretation), and not something dictated to us by nature (or philosophy).  

 

At the same time though, the definition of ‘empirical truth’ in terms of empirical adequacy and an 

isomorphic relation between empirical models and empirical reducts cannot be ‘forced’ or 

manipulated.15 For one thing, the nature of the empirical model is fully ‘determined’ by the features 

of the relevant real system and experimental activities carried out in relation to it. Moreover, keep in 

mind that empirical reducts finally link empirical models to the theory, given that reducts are 

substructures of the models in which the sentences of the language of the theory are true. Here, keep 

in mind that the choice of conceptual model(s) is determined by research intentions and thematic 

preferences of the scientists applying the theory within some accepted Kuhnian disciplinary matrix, 

or ‘against’ some background meta-theory. Moreover, the choice of model(s) is also determined by 

the syntax of the theory — i.e. the models are interpretations of the language of the theory such that 

the theory is ‘true’ in, or ‘satisfied’ by, them. 

 

6.  Under-determination and over-determination 

There may be situations where there is a relation of reference between one empirical model and 

many theories – so-called under-determination of theories by data – or, vice versa, where there is a 

relation of reference between many empirical models and one theory – so-called over- 

determination of theories by data (Ruttkamp 2005). Both forms of determination are meaningful in 

a model-theoretic context. In terms of under-determination one empirical model is ‘linked’ to more 

than one theory. When Duhem and Quine first discussed this feature of science, it was supposed to 

introduce at least serious problems for, if not the end, of realism. But model-theoretic realists are 

sophisticated realists who don’t care about one-to-one correspondence, only about semantic 

                                                
15 This relates to discussions (Ruttkamp 2002) around Putnam’s so-called paradox (Putnam 1983). 
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reference – model-theoretic satisfaction and empirical adequacy are enough for us because we can 

trace many-to-many links.  

 

The case of over-determination is also not problematic for the above reasons. We do sometimes 

though, want to know how and why we choose applications of theories at specific times, and this is 

where preferential semantics comes in (see Ruttkamp 2002, 2005). In my research I have mainly 

used Yoav Shoham’s (1988) model-theoretic non-monotonic logic, which offers a fairly simple way 

of ranking models, to analyse and trace motivations behind preferences for certain empirical models 

at certain times (Ruttkamp 2002).16 

 

By making use of non-monotonic ‘ordering’ I have shown (Ruttkamp 2005) that ranking of 

empirical models, induces ranking of conceptual models, and also, ultimately, of theories. This 

enabled me to draw a picture of scientific progress that is continuous, albeit highly complex and 

with many different pathways among models, theories, and real systems. These pathways are like 

spider webs, they have an overall recognisable pattern, but the number of links, and the fineness of 

the thread differ from spider to spider. 

 

7.  The context of discovery 

Karl Popper famously, by rejecting the inductive method of science, shoved the context of 

discovery out of reach of philosophy of science, and into the outstretched hands of psychology. A 

model-theoretic representational preferential analysis of science’s processes snatches the whole 

intricate story of contextual motivation ‘behind’ the ‘birth’ of theories right back and re-establishes 

it firmly in the realm of philosophy where, as it happens, I believe, it belongs.  

 

8.  Empirical-theoretical distinctions 

The fact that in my depiction of science the empirical-theoretical distinction is placed at the 

conceptual level, means that it is not a unique rigid distinction. The positivists fruitlessly searched 

high and low for a single definition of correspondence rules or bridge principles to represent a 

(unique) method of translating theoretical terms into empirical (observational) ones. In my view, 

Rudolf Carnap’s (1966, 1975) notion of ‘reduction sentences’ comes closest to the supple 

contextual kind of translation offered in my scheme of things by the model-theoretic formulation of 

‘empirical reducts’ of conceptual models.   

 

                                                
16 Note that this kind of non-monotonic logic is a very small part of a very complex set of non-monotonic logics (see 
Delgrande, Schaub, Tompits, & Wang (2004) for a detailed discussion of the field). 
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9.  Reduction 

I recently with Johannes Heidema (Ruttkamp & Heidema 2005) proposed a ‘non-traditional’, or 

non-classical generalization of Ernst Nagel’s (1949, 1961) positivist definition of theory reduction 

in philosophy of science. I have since (Ruttkamp 2006) also investigated the possibility of adapting 

this definition of so-called ‘defeasible’ reduction to the mind-body problem.  

 

Our definition is formulated with the aid of non-monotonic logic, for the good reason that non-

monotonic reasoning by definition is about conclusions being drawn from sets of premises or 

‘evidence’ by methods that are not strictly speaking deductive – think of Sherlock Holmes’s 

methods of ‘deduction’ (see Makinson 2005: 1) – in the sense that they involve ‘presumption and 

conjecture and the ever-present possibility of going wrong. … conclusions may be withdrawn as 

more information comes to hand, and new ones may be advanced in their place. This does not 

necessarily mean that there was an error in the earlier reasoning. The previous inferences may still 

be recognized as the most reasonable ones to have been made with the information available’. 

Translated into mind-body language, this seems compatible with multiple realisability, and also 

perhaps with some forms of eliminative materialism. 

 

In a philosophy of science context, having an alternative definition for reduction is necessary, 

because theories sometimes are reduced in various ways to various degrees as part of normal 

scientific processes. Here reduction in the defeasible sense is a practical device for studying the 

processes of science, since it is about highlighting different aspects of the same theory at different 

times of application, rather than about naive dreams concerning a metaphysical unity of science. 

 

My claim in terms of philosophy of mind is much more tentative. It is not about establishing a 

metaphysics of mind, and not at all about determining one to one relations between terms in 

psychological theories and terms in neurological theories. Mostly what is important is that it seems 

as if relations between the mental and the physical – if any – are always naturally tentative, 

complex, and are at least one-to-many, if not perhaps many-to-many. In this context, it is interesting 

that defeasible reduction allows for different relations of reduction between the same two theories at 

different times, according to different rankings (in terms of some preference) of the models of the 

reducing theory. Also, the rules according to which rankings are done allow for tracing of 

motivations behind certain reductions at certain times. 

 

I have recently started to wonder whether relations of reference may not contain more elements of 

reduction than realized in traditional accounts of realism. I am currently working on a paper 
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considering this against the background of Patrick Suppes’s idea of a hierarchy of models and 

theories existing between the experimental and the final theoretical levels (Suppes 2002), while I 

am also in this context considering some of Carnap’s work on reduction sentences (Carnap 1966, 

1975). 

 

REFLECTION 

At universities, courses in logic are today mostly found either in mathematics, philosophy, or 

computer science departments. Formal languages, deductive systems, and semantics are 

mathematical objects, and as such, a logician is interested in their mathematical powers and 

properties (Shapiro 2000). Philosophically though, logic is mainly the study of correct reasoning as 

an epistemic activity, and so questions on the philosophical relevance of the mathematical aspects 

of logic arise (ibid.). Many different opinions have been offered on this question over the years.  

 

My view is that, in an Aristotelian sense, the importance of logic as a field of study in philosophy 

should not be underestimated. At the same time though, I do not want to exclude philosophy from 

benefiting from the mathematical aspects of logic. Logic is a tool for critical reflection and analysis, 

but also for clear, precise capturing or representation of knowledge claims. In my research one of 

my primary goals – as I tried to illustrate above - has always been to show that incorporating also 

mathematical logic into the practising of cognitive philosophy, and thus going far beyond the usual 

so-called ‘philosophical logic’, may result in an impressive refinement of both the critical and 

formal aspects of philosophy.  

 

Philosophy in this century offers valuable opportunities for interdisciplinary research and teaching, 

while cognitive philosophy, in particular, has the added potential to serve academic philosophers 

and philosophy students in meeting new challenges posed by the information age. Moreover, by 

including at least psychology, computer science, linguistics, neuroscience and perhaps mathematics, 

cognitive philosophy can be expanded to cognitive science studies.17. 

 
                                                
17 In general, the cognitive science student can communicate clearly, critically evaluate evidence and data, program and 
use computers, and apply conceptual, analytical, and interpersonal skills to a variety of situations, guided by their ability 
to weigh moral decisions clearly and with accountability. All of these represent skills that are extremely important both at 
undergraduate and postgraduate level, as well as in the active persuasion of a career. Students are generally given 
training in the nature of knowledge and intelligence (philosophy of mind, epistemology, philosophy of artificial 
intelligence, linguistics, sociology, anthropology, communication), in the neural mechanics underlying complex capacities 
(neuroscience, cognitive psychology, philosophy of mind, epistemology, artificial intelligence), in the computational 
techniques under development to model these capacities (computer science, logic, philosophy of artificial intelligence), 
as well as in dealing with the moral implications implied by the fields covered by cognitive science studies (certain 
modules in applied philosophy). In this way students gain the conceptual framework and technical skills necessary for 
careers in research, teaching, information science, business, and government.  
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Currently, in SA, the University if KwaZulu-Natal is the only institution I know of that offers a 

specific qualification in cognitive science. They offer a BA and a BA(Honours) degree in cognitive 

science, with students drawing modules mainly from philosophy, linguistics, psychology, and 

computer science. Cognitive philosophers can play a leading role in satisfying the urgent demand 

for the establishment of postgraduate qualifications in cognitive science studies. 

 

CONCLUSION 

Many of you may still see philosophy as a ‘woven web of guesses’ (as Popper referred to science) 

without any practical application. The fact of the matter is though, that philosophy as the most 

fundamental discipline of them all, still, after more than 2000 years after Socrates’s birth, offers us 

the best toolkit for investigating the origin, nature, products, and evolution of the processes of 

knowledge. Moreover, the fact that philosophy still plays, at least in terms of studies of mind and 

consciousness, its traditional role of clarifying the field before science steps in; combined with its 

many foundational roles in the sciences; its practical application today in terms of some of the more 

viable and respectable branches of ‘applied philosophy’; and, most importantly, its application in 

the field of cognitive science, show that no-one need despair yet about its future. 

 

Philosophy is about beginnings, not about endings. It is about uncertainty as much as it is about 

certainty, because it is about critique and revision in the light of new knowledge. Socrates turned 

uncertainty into a virtue, and so it should remain. I became interested in Philosophy as a teenager 

because the Greek idea of the beauty of form and precision attracted me. I now know that this 

notion of ‘beauty and precision of form’ is transient, but always worthwhile; rather than getting lost 

in the flux produced by philosophical criticism, it remains the goal of Socratic uncertainty and 

critique. 

 

In Hilary Putnam’s (2000) last lecture at Harvard before he retired in 2000, he said: ‘… philosophy 

is a good thing. It’s a great thing. It can lead to wonderful things, and it can lead to terrible things. 

But it means … that you take the responsibility of trying to think deeply and with integrity 

seriously’. Thank you. 
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