J. Math. Anal. Appl. 429 (2015) 204-232

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Gaps between zeros of GL(2) L-functions @CmssMark

Owen Barrett®, Brian McDonald ", Steven J. Miller ¢, Patrick Ryan ¢,
Caroline L. Turnage-Butterbaugh ©*, Karl Winsor '

? Department of Mathematics, Yale University, New Haven, CT 06511, USA

Department of Mathematics, University of Rochester, Rochester, NY 14627, USA
Department of Mathematics € Statistics, Williams College, Williamstown, MA 01267, USA
Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Department of Mathematics, North Dakota State University, Fargo, ND 58108, USA
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

" 0 A o T

ARTICLE INFO ABSTRACT
Article history: Let L(s, f) be an L-function associated to a primitive (holomorphic or Maass) cusp
Received 17 November 2014 form f on GL(2) over Q. Combining mean-value estimates of Montgomery and

Available online 7 April 2015

Vaughan with a method of Ramachandra, we prove a formula for the mixed second
Submitted by B.C. Berndt

moments of derivatives of L(1/2 + it, f) and, via a method of Hall, use it to show
that there are infinitely many gaps between consecutive zeros of L(s, f) along the

Keywords: - . X . g

L-functions critical line that are at least /3 = 1.732. .. times the average spacing. Using general
Gaps between zeros pair correlation results due to Murty and Perelli in conjunction with a technique of
Selberg Class Montgomery, we also prove the existence of small gaps between zeros of any primitive

L-function of the Selberg class. In particular, when f is a primitive holomorphic
cusp form on GL(2) over Q, we prove that there are infinitely many gaps between
consecutive zeros of L(s, f) along the critical line that are at most 0.823 times the
average spacing.

© 2015 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . o e e 205
2. Proof of Theorem 1.1 . . . . . 208
3. Proof of Theorem 1.5 . . . . e 210
4. Properties of L-functions . . . . . . . .00 211

4.1.  The Selberg class S . . . . ottt 212

4.2.  Properties of GL(2) L-functions . . . . ... ... ... . e 213
5. Proof of Theorem 1.3 . . . . . . e 214
6. Lemmata . . . ... e e 219
7. Proof of Theorem 1.6 . . . . . . e e 223

7.1.  Main term calculations . . . . ... . e 225

* Corresponding author.

E-mail addresses: Owen.Barrett@gmail.com (O. Barrett), bmcdonll@u.rochester.edu (B. McDonald), sjm1@williams.edu,
Steven.Miller. MC.96@aya.yale.edu (S.J. Miller), ryan880@gmail.com (P. Ryan), cturnagebutterbaugh@gmail.com
(C.L. Turnage-Butterbaugh), krlwnsr@umich.edu (K. Winsor).

http://dx.doi.org/10.1016/j.jmaa.2015.04.007
0022-247X/© 2015 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jmaa.2015.04.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:Owen.Barrett@gmail.com
mailto:bmcdon11@u.rochester.edu
mailto:sjm1@williams.edu
mailto:Steven.Miller.MC.96@aya.yale.edu
mailto:ryan880@gmail.com
mailto:cturnagebutterbaugh@gmail.com
mailto:krlwnsr@umich.edu
http://dx.doi.org/10.1016/j.jmaa.2015.04.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.04.007&domain=pdf

O. Barrett et al. / J. Math. Anal. Appl. 429 (2015) 204-232 205

7.2.  Error term estimates. . . . . . .. 227
Acknowledgments . . . . .. e 228
Appendix A.  Additional lemmata and calculations . . ... ... . ... e 228

A.1.  An effective Perron formula . . . . .. .. 228

A.2. Controlling f(;) Br(1—s+B+w)T(W)dw « oot 229

4
References . . . . . . 231

1. Introduction

Let f be a primitive form on GL(2) over Q with level ¢, which we consider to be fixed. Then f corresponds
either to a primitive holomorphic cusp form or to a primitive Maass cusp form. For R(s) > 1, let

L(s,[) =Y af;(f) (1.1)

denote the L-function of degree 2 associated to f as defined by Godement and Jacquet [19]. Here, for
any choice of f, we are normalizing so that af(1) = 1 and the critical line is R(s) = 1/2. We study the
vertical distribution of the nontrivial zeros of L(s, f), which we denote by py = 8y + iy, where 57,7 € R
and 0 < B¢ < 1. The analogous problems for normalized gaps between consecutive zeros of the Riemann
zeta-function and for the Dedekind zeta-function of a quadratic number field have been studied extensively.
For example, see [4-9,14-16,18,21,24,25,44,46,47,50,56,59].

It is known (see Theorem 5.8 of [29]) that

N(T,f):== Y 1= glog \/QET + O (log q(iT, f)) (1.2)
0<yy<T

for T > 1 with an implied absolute constant. Here q(s, f) denotes the analytic conductor of L(s, f). Consider
the sequence 0 < v7(1) < v7(2) < -+ < v7(n) < - - of consecutive ordinates of the nontrivial zeros of L(s, f).
By (1.2), it follows that the average size of y¢(n + 1) — v¢(n) is

(1.3)

tog (lahs(m)

Let

5 1)—% 1) —
Ay = limsup sl +1) =55 (n) and Ay :=limsup v(n+1) =)

n—oo 1 /log (m%e(n)) n—oo g/log (\/H'Yf(no 7

where 7¢(n) corresponds to the nth nontrivial zero of L(s, f) on the critical line R(s) = 1/2. Note that under

(1.4)

the assumption of the Generalized Riemann Hypothesis for L(s, f), we have Ay = A;. Unconditionally, it is
certainly true that Ay > Ay > 1, however we expect that Ay = Ay = co. Towards a lower bound on Ay, we
prove the following unconditional result for Aj.

Theorem 1.1. Let L(s, f) be a primitive L-function on GL(2) over Q. Then Ay > /3 =1.732....

Corollary 1.2. Let L(s, f) be a primitive L-function on GL(2) over Q. Then, assuming the Generalized
Riemann Hypothesis for L(s, f), we have Ay = A\ > /3 =1.732....
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We also consider the question of small gaps between nontrivial zeros of L(s, f), however our arguments
may be applied to any primitive L-function, L(s), in the Selberg class,! which we denote by S. It is
conjectured that all ‘standard’ automorphic L-functions as described by Langlands are members of the
Selberg class, but this is far from established. It is known, however, that the primitive automorphic cuspidal
GL(2) L-functions we consider are members of S, and moreover membership in S has been established for
primitive holomorphic cusp forms. This has not yet been established, however, in the real-analytic case of
Maass cusp forms.

Fix any L € S. As above, consider the sequence 0 < y1(1) < v(2) < --- < yr(n) < --- of consecutive
ordinates of the nontrivial zeros of L(s), and define

N(T,L):= Y 1 (1.5)
0<yL<T

and

pr = liminf yo(n+1) —y(n)
n—oo m/logyr(n)

(1.6)

By definition, we have uy < 1, but we expect that uy = 0. It is conjectured that all the nontrivial zeros
of L(1/2 +it) € S are simple, except for a possible multiple zero at the central point s = 1/2. In the case
that f is a primitive holomorphic cusp form, Milinovich and Ng [42] have shown, under the Generalized
Riemann Hypothesis for L(s, f), that the number of simple zeros of L(s, f) satisfying 0 < v < T is greater
than a positive constant times T'(logT) ¢ for any € > 0 and T sufficiently large.

Every L € § satisfies

log L(s) -

b

> 17
n=1

where br(n) = 0 unless n = p’ for some ¢ > 1, and br(n) < n? for some § < 1/2. In addition to the
Generalized Riemann Hypothesis, we make the following assumption in the proof of small gaps between
nontrivial zeros of L € S.

Hypothesis A. Let v (n) := br(n)logn. We have

> vp(n)up(n) = (14 o(1))zlogx (1.8)

n<e

as r — oQ.

Hypothesis A, proposed by Murty and Perelli in [49], is a mild assumption concerning the correlation
of the coefficients of L-functions at primes and prime powers. Hypothesis A is motivated in [49] by the
Selberg Orthogonality Conjectures, which are known to hold for L-functions attached to irreducible cuspidal
automorphic representations on GL(m) over Q if m < 4. (If m < 4, see [1,36-38].)

In the case that my = 1, it has recently been shown in [11] that pz < 0.606894. We generalize these
arguments for any L € S to prove the following upper bounds on pp.

Theorem 1.3. Let L € S be primitive of degree myp. Assume the Generalized Riemann Hypothesis and
Hypothesis A. Then there is a computable nontrivial upper bound on uy depending on my. In particular,
we record the following upper bounds for uy:

1 We define the Selberg class in Section 4.
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mp  upper bound for pp

1 0.60689/
2 0.822897
3 0.90560/ (1.9)
J 0.94291
5 0.962190

where the nontrivial upper bounds for puy, approach 1 as my, increases.

Corollary 1.4. Let f be a primitive holomorphic cusp form on GL(2) over Q with level g and L(s, f) the as-
sociated L-function. Then L(s, f) € S, so assuming the Generalized Riemann Hypothesis and Hypothesis A,
we have

tim inf 22 1) =75 (0) < 0.822897. (1.10)
n— o0
7/ log («/|q|fyf(n)>

The majority of this article is focused on deriving the lower bound given in Theorem 1.1, which is

accomplished using a method of Hall [24] and some ideas of Bredberg [4]. We closely follow the arguments
in [59], where the problem is considered for large gaps between consecutive zeros of a Dedekind zeta-function
of a quadratic number field. Note that the L-function considered in [59] is of degree 2, however it is not
primitive because it factors as the product of the Riemann zeta-function and a Dirichlet L-function. Due to
the primitivity of the L-functions in the present work, we must consider a Rankin—Selberg type convolution,
which we define by

L(s,fx )= Mffbinw (1.11)

for R(s) > 1. It can be shown that this function extends meromorphically to C and has a simple pole at
s = 1. For any choice of f, we let ¢y denote the residue of the simple pole of L(s, f x f)ats=1.

Following [59], we require asymptotic estimates of the mixed second moments of L(1/2 + it, f) and
L'(1/2 +it, f) with a uniform error. We obtain these by way of the following theorem.

Theorem 1.5. Let L(s, f) be a primitive L-function on GL(2) over Q. Let s = 1/2+it, T large, and let u,
v denote non-negative integers. We have

2T B (71)#+V2;1,+1/+1 ot
/L(“) (3 +it, f) LW (3 —it, f) dt = T T s T (log T)" ™ + O (W' T(log T)M)  (1.12)
T

as T — oo, where ¢y denotes the residue of the simple pole of L(s, f, xf) at s = 1, and the error term is
uniform in p and v.

If f is a cusp form of even weight (at least 12) with respect to the full modular group, the cases p = v
are known. The case p = v = 0 in this setting was proved by Good [22], and for any nonnegative integer m,
the general case p = v = m was recently given by Yashiro [60]. In addition to the cases p = v = 0 and
u = v =1, we require the mixed case ¢ = 1, ¥ = 0 in the proof of Theorem 1.1. In this article, we first prove
a shifted moment result and then obtain the more general formula given in Theorem 1.5 via differentiation
(with respect to the shifts) and Cauchy’s integral formula. We deduce the required shifted moment result,
given below and proved in Section 7, using a method of Ramachandra [51].
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Theorem 1.6. Let L(s, f) be a primitive L-function on GL(2) over Q. Let s = 1/2+it, T large, and o, 3 € C
such that ||, |8| < 1/logT. Then, we have

2T
/L(s+a,f)L(1—s+5,]_‘) dt
T

2T

_ ¢\ 2(eth) _
_/{L(1+a+6,fxf)+(—) L(l—a—ﬁ,fxf)} dt 4+ O(T) (1.13)

2
T
as T — oo.

The main term of Theorem 1.6 verifies a conjecture arising from the recipe of Conrey, Farmer, Keating,
Rubinstein, and Snaith (see [12]), which also predicts the additional lower order terms. Using other methods,
the expected lower order terms in Theorem 1.6 can be deduced in the case that f is a holomorphic primitive
cusp form of even weight for the full modular group. Farmer [17] has proved the asymptotic behavior of
the mollified integral second shifted moment of such L(s, f) when the mollifier is a Dirichlet polynomial of
length less than 7/6~¢, where £ > 0 is small. Recently, Bernard [2] has proved the asymptotic behavior of
the smooth mollified shifted second moment of such L(s, f) where the mollifier is a Dirichlet polynomial of
length less than 7°/27, with the additional requirement that the shifts are o (1/log(T)). (See [2, Remark 2].)

To deduce the upper bound on puj, appearing in Theorem 1.3, we study the pair correlation of nontrivial
zeros of L(s) € S given by Murty and Perelli [49]. We employ an argument of [21] with a new idea of
Carneiro, Chandee, Littmann, and Milinovich [11] to prove the list of upper bounds given in Theorem 1.3.

The article is organized as follows. For primitive GL(2) L-functions, we prove Theorem 1.1 on large
gaps between zeros of L(1/2 + it, f) in Section 2. We prove Theorem 1.5 on the mixed second moments
of derivatives of L(1/2 + it, f) in Section 3 and the proof of Theorem 1.6 regarding shifted moments in
Section 7. For primitive L-functions in the Selberg class, we prove Theorem 1.3 on small gaps between zeros
of L(s) in Section 5.

2. Proof of Theorem 1.1

We now show that Theorem 1.1 follows from Theorem 1.5. We closely follow the proof of [59, Theorem 1],
which in turn is a variation of a method of Hall [24] using some ideas due to Bredberg [4].
Define the function

g(t) =8 TL (L +it, f), (2.1)

where p is a real constant that will be chosen later to optimize our result. Fix a primitive form, f, on GL(2),
so that f corresponds either to a primitive holomorphic cusp form or to a primitive Maass cusp form. Let
7¢ denote an ordinate of a zero of L(s, f) on the (normalized) critical line $(s) = 1/2. Note that g(¢) has
the same zeros as L (1/2 + it, f), that is, g(¢) = 0 if and only if ¢ = ;. Let {7;(1),77(2),...,7¢(IN)} denote
the set of distinct zeros of g(t) in the interval [T, 2T7]. Let

kp :=max{Yr(n+1) —7¢(n) : T+ 1< 75(n) < 2T — 1}, (2.2)
and note that Ay > limsupy_, k7. Without loss of generality, we may assume that

?f(l) —T<«1 and QT—ﬁf(N) <1, (23)
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as otherwise there exist zeros 7¢(0) < 7¢(1) and 7¢(N 4+ 1) = J(N) such that 7;(0) — ¥¢(1) and 7¢(N +
1) —=7¢#(N) are > 1, and the theorem holds for this reason.

The following lemma, due to Bredberg [4, Corollary 1], is a variation of Wirtinger’s inequality [27,
Theorem 258].

Lemma 2.1 (Wirtinger’s inequality). Let y : [a,b] — C be a continuously differentiable function, and suppose

that y(a) = y(b) = 0. Then
b b 5 b
J@par< (F22) [P (2.4

Let € > 0 be small. By the definition of k7 and Lemma 2.1, for each pair of consecutive zeros of g(t) in
the interval [T, 2T we have

¥ (n+1) ) Fy(n+1)
2 KT 2
sPa< D [ lgoPa (25)
¥r(n) F¢(n)
Upon summing both sides of the equation in (2.5) for n =1,2,..., N — 1, we have
Y£(N) ) ¥ (N)
K
[ laopa<t [ ig@pa. (26)
s (1) Fr (1)

Subconvexity bounds for primitive GL(2) L-functions along the critical line yield |g(t)| < [t|*/?~9, where
0 > 0 is a fixed constant. Good [23] established subconvexity in the ¢-aspect for holomorphic forms of
full level, achieving ¢ < 1/6. Meurman [39] achieved the same for Maass forms of full level. Jutila and
Motohashi [32] obtained a hybrid bound in the ¢- and eigenvalue aspects for full-level holomorphic and
Maass forms. Blomer and Harcos [3] obtained § < 25/292 for holomorphic and Maass forms of arbitrary
level and nebentypus in the t-aspect. Michel and Venkatesh [40] proved general subconvexity for GL(2).
By (2.3), we have

2T 9 2T
/\g(t)|2dt< ’:T—fg/|g’(t)|2dt+0(T1*25). (2.7)
T T

Observing that |g(t)]2 = |L (1/2 + it)|* and
g OF =L (3 +it. )" + pog? T L ( +it, £)|* + 20108 T- R (L' (3 +it, ) L(F+it. 1)), (28)

Theorem 1.5 implies that

2T
/ L (L +it, f)|* dt = 2¢;,T1og T + O(T),
T

2T
/L’ (3 +it, f) L (L +it, f) dt = —2¢;T (log T)* + O (T'log T), (2.9)
T
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and

27
/’L' (3 —|—it,f)|2 dt = gchT(logT)3 +0 (T (logT)Z) , (2.10)

where ¢y denotes the residue of the simple pole of L(s, f x f) at s = 1. Combining these estimates and
noting that

1
1+O( (log T)~ ) 1+O( cf (log )~ ) 21y
we find that

The polynomial 3p? —6p +4 is minimized by p = 1. Therefore, inserting this choice of p in (2.12), we obtain

1‘({;;( +0( . (og )" >) (2.13)

3. Proof of Theorem 1.5
In this section we prove Theorem 1.5. As in the previous section, we closely follow an argument of [59

Theorem 3|, and we include the details here for completeness.
First, note that for ¢ € [T, 2T, we have

2 W !
(§> _7 <1+o (k)gT)) (3.1)

as T — oo. Also, we have

- :i:Cf
Ll+taxpb, fxf)= +5+O() (3.2)
and
~9(a o~ (—1)r2"(a+ B)"(log T)"
T—2a+8) :; . . (3.3)
Thus, by Theorem 1.6, we have
2T
/L (3+a+it,[)L(3+B8—it, f) dt = F(a+B;T)+ O(T), (3.4)
T

and

n2n+1< ﬁ)n(log T)n+1
(n+1)! ’

Fla+p;T) = chZ

n=0
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Let

R(a,8;T):= [ L (3 +it+a,f)L (L —it+B5,F) dt — F(a+3T). (3.6)

Ot~

Then R(c, 8;T) is an analytic function of two complex variables «, 8 for R(«),R(8) < 1/2; moreover, if
|a], 8] < 1/1og T, then Theorem 1.6 implies that

R(a, B;T) = O(T) (3.7)
as T' — oo. Differentiating, we find
i 1) (L4 W) (1, RS AR ,
/L (5t a ) LY (5 =it B, F) db = =5 T+ R (o B T), (3.8)
T

where p and v are fixed nonnegative integers and

_ 0" R(a, 5 T)

R0 B:T) 1= = o (3.9)

Let = {w € C:|w—a]=1/logT}. By contour integration and Cauchy’s integral formula, (3.7) implies
that

a—MR(a,B;T) _ / B, 55T) dw = O (! T(logT)"). (3.10)

dat S 2mi ) (w— )t

A second application of Cauchy’s integral formula yields

8;L+u .
Ry(a, B;T) = Dol 95" R(a, 3;T) = O (uv!'T(log T)**7) . (3.11)
Setting o = 8 = 0, we obtain
i aandd T
/L(“) (L +it, f) LW (3 —it, f) dt = o+ 5iT) + O (W T (log T)* ). (3.12)
Oarop¥ a=p=0
T

Differentiating F'(a + 8;T) with respect to « and 3, we find

pn+v . _1\utrvoputr+1 p+rv+1
[8 Fla+p;T) (—1)Htv2 (logT) (3.13)

=csT
OardpY ]a_ﬂ_o °f pt+rv+1

Inserting (3.13) in (3.12), the theorem now follows by summing over the dyadic intervals [T'/2, T, [T/4,T/2],
[T/8,T/4],....

4. Properties of L-functions
In this section we collect some basic facts about the L-functions under consideration. The L-functions

treated by Theorem 1.1 have an automorphic characterization; they are associated to primitive cusp forms
on GL(2) over Q. We summarize some of their properties below. On the other hand, we prove Theorem 1.3
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for the large set of L-functions in the analytic axiomatic classification of L-functions due to Selberg [55],
which we denote S; see Conrey and Ghosh [13], Murty [48], and Kaczorowski and Perelli [33] for the basic
properties of S.

Though it is certain that the primitive automorphic cuspidal GL(2) L-functions we consider are members
of the Selberg class, and the membership of primitive holomorphic cusp forms has been established, it has not
yet been established in the real-analytic case of Maass cusp forms. Most notably, the Ramanujan hypothesis
for Maass forms is not yet a theorem. Fortunately, we do not need to assume the Ramanujan hypothesis
(or the Generalized Riemann Hypothesis) for Theorem 1.1. Likewise, there are some specific assumptions
we do need for Theorem 1.1 that we do not need for Theorem 1.3.

Therefore, the two sets of assumptions we need for our two main theorems have nontrivial intersection but
one set is not a proper subset of the other. The approach we take to presenting these two sets of hypotheses
is as follows. First, we will present the axioms of the Selberg class S needed for Theorem 1.3. Then, we give
information specific to the automorphic GL(2) L-functions to which Theorem 1.1 applies.

4.1. The Selberg class S
For our purposes, the following axiomatic definition is sufficient, and we follow [49] in our presentation.

(7) (Dirichlet series) Every L € S is a Dirichlet series

- (4.1)

oo
L(S) — Z aL(Sn)
n=1
absolutely convergent for (s) > 1.
(i) (Analytic continuation) There exists an integer a > 0 such that (s — 1)?L(s) is an entire function of
finite order.
(iit) (Functional equation) Every L € S satisfies a functional equation of type

Loo(8)L(s) =: A(s) = eA(1 — s), (4.2)
where A(s) denotes A(5), and
Lo =@Q° H L(wjs + p5) (4.3)

with @ > 0,w; > 0,R(r;) > 0, and |e| = 1. The degree of L is given by
myp = 2 Z Wy . (44)
j=1

(iv) (Ramanujan hypothesis) For all positive integers n, we have ar(n) < n°"),
(v) (Euler product) Every L € S satisfies

log L(s) Z bLn(Sn), (4.5)

where bz, (n) = 0 unless n = p for some ¢ > 1, and bz, (n) < n? for some 6 < 1/2.
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4.2. Properties of GL(2) L-functions

In this section we collect some basic facts and hypotheses concerning L-functions attached to primitive
(holomorphic or Maass) cusp forms on GL(2). We begin by combining some general remarks from [12,
Section 1.1], [53, Section 2], and [52, Section 3.6]. For a more in-depth study of these L-functions, we refer
the reader to [29, Chapter 5].

Let f be a primitive (holomorphic or Maass) cusp form on GL(2) over Q with level g. For R(s) > 1, let

p

be the global L-function attached to f (as defined by Godement and Jacquet in [19] and Jacquet and Shalika
in [31]), where the Dirichlet coefficients as(n) have been normalized so that R(s) = 1/2 is the critical line of
L(s, f). The numbers ay, 5 are called the non-archimedean Satake or Langlands parameters. We assume
L(s, f) is primitive; that is, we assume L(s, f) cannot be written as the product of two degree 1 L-functions.
Then L(s, f) admits an analytic continuation to an entire function of order 1. Additionally, there is a root
number ¢; € C with |ef| = 1 and a function L (s, f) of the form

Loo(s, f) = P()QT(uwys + )T (w;s + pia), (4.7)

where Q > 0, w; > 0, R(p;) > 0, and P is a polynomial whose only zeros in o > 0 are the poles of L(s),
such that the completed L-function

A(Sa f) = Loo(svf)L(Saf) (48)
is entire, and
A(s, f) = esA(1 — s, f), (4.9)

where f(z) = f(2), A(s, f) = A(s, f) = A(3, f), ete. It will be convenient to write this functional equation
in asymmetric form

L(s, f) = e;®(s)L(1 — s, f), (4.10)

where ®4(s) = Loo(1 — 8, f)/Loo(s, f)-

In light of this, axioms (4), (), and (4i) of S for L(s, f) are satisfied.? We now isolate the four properties
on L(s, f) for f a primitive cusp form on GL(2) over Q that we will make use of in our proof of Theorem 1.1.
All of these properties are known for such f; that is, none are conjectural.

P1 L(s, f) is entire.
P2 L(s, f) satisfies a functional equation of the special form

A(s, f) == Loo(s, [)L(s, f) = esA(1 = 5, f), (4.11)

where

Loo(s, f) =Q°T (%s—kul)F(%s—F;m) , (4.12)

2 The condition that R(u;) > 0 in axiom (ii) is not proven in the case of Maass cusp forms, though it is conjectured to hold,
and is immaterial to the proof of Theorem 1.1. See [10, p. 13] and [54, §1.5].
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with {u;} stable under complex conjugation and the other notation the same as in (4.7). Note that in
the notation of (4.7), w; = 1/2, which is conjectured to hold for arithmetic L-functions. The numbers
w1, po are called the archimedean Langlands parameters.

P3 The convolution Dirichlet series given by

s, fx ) Z '“f R(s) > 1 (4.13)

is an L-function whose analytic continuation has a simple pole at s = 1. (This is conjectured to be
equivalent to L(s, f) being a primitive L-function.) We denote the residue of this simple pole by cy.
P4 For sufficiently large X, -,  x |as (n)]” < X.

Note that P1 is true by general arguments for L-functions associated to primitive cuspidal automorphic
representations on GL(2). In the case that f is holomorphic of weight k& and level g, the Dirichlet series
associated to L(s, f) is formed from the (normalized) coefficients A(n) in the Fourier expansion

o0

Z n)nF=D/2¢(nz), (4.14)

which satisfy the Deligne divisor bound |A¢(n)| < d(n). Hence, axiom (iv) is satisfied for f, though this is
immaterial to our arguments towards Theorem 1.1. For L(s, f) attached to such holomorphic f, P2 holds
for @Q =771 w1 = (k—1)/2 and ps = (k + 1)/2. In the case that f is instead a Maass cusp form, P2 is
known to hold for Q = 7~! and complex fj. We only require the known condition that the set {y;} is stable
under complex conjugation.

We note that P3 was established by the work of Rankin and Selberg for Hecke (holomorphic) cusp forms;
it is established in generality far exceeding our needs by Moeglin and Waldspurger [43]; see [29, §5.11-5.12]
for details.

For holomorphic f, P4 holds. Actually, it is known that

> lar)|* = ez + of); (4.15)

n<

see [42, Proposition 5.1]. For real-analytic f, P4 holds; see [26, §3.2] and [28, Theorem 3.2, (8.7), and (9.34)].
Last, we introduce the notion of the analytic conductor q(s, f) for an automorphic L-function attached
to a cusp form of level ¢ on GL(2). In this case, specializing Harcos [26], who follows [30],

9
q(s, f) :== @n)? |s + 201 |s + 2u2| . (4.16)
5. Proof of Theorem 1.3

Let L(s) be a primitive L-function in the Selberg class S. Recall from (1.5) and (1.6) the definitions

oo

0<yrL <T

and

e e+ 1) —yr(n)
pe = Hmint ===
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where 77, (n) denotes the nth nontrivial zero of L(s). In this section, assuming the Generalized Riemann
Hypothesis for L(s), we prove an upper bound for uy using ideas first introduced by Montgomery [45] to
study the pair correlation of zeros of ((s).

Assuming the Riemann Hypothesis and writing the nontrivial zeros of {(s) as 1/2 4+ ~, if 0 ¢ [«, 5] and
T — oo, the pair correlation conjecture is the statement that

B
—NlogT T i 2
#{0<%’Y/<T504< % <ﬂ} ~ (27TlogT>/<l (5122“) ) du, (5.1)

which is consistent with the pair correlation function of eigenvalues of random Hermitian matrices. Mont-

gomery originally formulated his pair correlation conjecture for (s), but strong evidence has accumulated
since he made his conjecture to suggest that the nontrivial zeros of any general primitive L-function share
the same statistics as eigenvalues of matrices chosen randomly from a matrix ensemble appropriate to the
L-function; this philosophy is articulated by Katz and Sarnak in [34] and [35]. In view of this, Montgomery’s
pair correlation conjecture has been generalized to all L-functions in the Selberg class S.

Montgomery proved that ((s) satisfies his pair correlation hypothesis for restricted support, and Murty
and Perelli [49] proved a general version for all primitive L-functions in the Selberg class for restricted support
inversely proportional to the degree of the function. We use the pair-correlation for zeros of primitive L € §
to establish an upper bound on small gaps of primitive L-functions in the Selberg class.

Following [45] and [49], we let v, v} denote ordinates of nontrivial zeros of L(s) and put

T - : ,
Fr(a) = Fr(a,T) = (ng“r logT> Z TmeeOL =)y (v — A, (5.2)

0<vL, v T

where w(u) = 4/(4+u?) and my, is the degree of L as defined in (4.4). The pair correlation conjecture then
states that as T' — oo, we have

—2|almp, : <
1+ o0(1), if o] > 1,
uniformly for « in any bounded interval. Define the functions
vr(n) :==br(n)logn (5.4)
and
ny 1/2
vr(n (;) , n<uw,
vp(n,x) := N 3/2 (5.5)
vr(n (—) , n>x
n

Murty and Perelli [49] have proved the following result for Ff(«).

Proposition 5.1. With L(s) € S as above and assuming the Generalized Riemann Hypothesis, let € > 0 and
x =T, Then, uniformly for 0 < a < (1 —¢)/my as T — oo, we have

1 = —
Z v(n, x)v(n, z) + mpT 2" log T(1 + o(1)) + o(1). (5.6)

n=1

F =—
r(@) mrpxlogT
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Under the assumptions of Proposition 5.1 and Hypothesis A, we may rewrite F,(«) via partial summation
(cf. [49, §4] for details) as

Fr(a) = a+mpT 2= 1log T(1 + o(1)) + o(1). (5.7)

For the application to small gaps, we generalize an argument of Goldston, Gonek, Ozliik, and Snyder
in [21], with a new modification of Carneiro, Chandee, Littmann, and Milinovich in [11].

We use the function Fp(a) to evaluate sums over differences of zeros. We first record a convolution
formula involving Fr(a) that will prove to be useful. Let r(u) € L', and define the Fourier transform by

o) = / r(u)e(au) du. (5.8)
If #(u) € L', we have almost everywhere that

r(u) = /f(a)e(—ua) da. (5.9)

Multiplying (5.2) by #(«) and integrating, we obtain

/

0<vL,7L

> <T7" ((’YL —L) %) w(yL =) = (mQ—fTT log T) /oof(a)FL(a) dov. (5.10)

We make use of the following bound for Fp,(«).
Lemma 5.2. Assume the Generalized Riemann Hypothesis, and let A > 1 be fized. Then, as T — oo, we
have

£
[ (- ar@aaz

l/mL

&2
2

DO |y

1 1
1+ — |+ —= 1 11
<+m%>+3m%+o() (5.11)

uniformly for 1 < £ < A.

Proof of Lemma 5.2. Following [11], we start with the Fourier pair

. 2 1
re(u) = (S”;;f“) and  fe(a) = 2 max (€~ [a],0). (5.12)

Let m, denote the multiplicity of the zero with generic ordinate 1/2 + 1. By trivially replacing the count
of zeros up to height T' (counted with multiplicity) with the diagonal of a weighted sum of r¢ evaluated at
differences in zeros and using the convolution formula (5.10), we obtain

-1
mLT
1+0(1)<( o logT> Z m,

0<yL<T

-1
mpT , mp, logT ,
(3T} T (60T

0<yL,VL <

/N
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13
:/f(a)F(a) da. (5.13)
—£

Leveraging (5.7), the evenness of the integrand allows us to write

¢ 1/mr £
/f(a)FL(a) da = 532 / (¢ —a)Fr(a)da + 532 / (€ — a)FL(a)da
—¢ 0 1/my,
1 1 2 1 2 i
= ¢ <1+m_%> _§W+E_21// (£ — a)Fr(a)da+o(1) (5.14)

uniformly for 1 < £ < A. Inserting (5.14) into (5.13) establishes the lemma. O
We now prove the following result.

Theorem 5.3. Let L(s) € S be primitive of degree my,. Assume the Generalized Riemann Hypothesis and
Hypothesis A. Then, with K., as in (5.23) as T — oo, we have

l/mL

1 T in 27|\
3 12 (5—e) ™ 10gT /\—1+2/\/ 1— ) + 22T 4
2 2m 2m
0<’7L*"//L<,,LL2+O>\M 0
/2 ,
3 . « « 1 1
— A7 / sin(2mAa) (7 —3 (1 + m_QL> + 33 + 0(1)) da).

Kmp,

(5.15)
The upper bounds on py, given in Theorem 1.3 now follow upon straightforward numerical computation
of the first positive value of A for which the right side of the inequality in (5.15) in the theorem becomes

positive.

Proof of Theorem 5.3. Consider the Fourier pair

h(u)z(Sinm>2< ! > and  h(a) = max <1—|a|+%;f|o‘|,o). (5.16)

™ 1— 22

Here h(u) is the Selberg minorant of the characteristic function of the interval [—1, 1] in the class of functions
with Fourier transforms with support in [—1,1]. Take r(u) = h(u/A). Then r(u) is a minorant of the
characteristic function on [—\, A], and #(a) = Ah(Xa). By (5.10), this allows us to write

my, logT
)ICIEEED SR EID DR (RS PCAE
<T

0<vLsT  0<yL -, <mifoeT 0<yL,71

1/A

_(m;TlogT) /f(a)FL(oz)doz. (5.17)

T
N
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We may take

T
Y m,~ N(T) ~ % log T, (5.18)

0<vL<T

for else the theorem is trivially true. Upon inserting (5.7) in its domain of validity and estimating the
integral arising from the m T 2™z log T' portion trivially, we find

1/m,L 1/)\
1 T A A
> 1= (5 5) m; logT | A—1+2) / h(Aa)adar + 2X / h(Aa)Fr(e) da
v
0<"/L—’Y/L<% 0 1/mp
(5.19)
Next, still following [11] and [20], we define the function
£
19= [ €~ (5.20)
1/mL
Note that I(£) enjoys the properties
&
I'e¢) = / Fr(a)da and I"(¢) = FL(¢). (5.21)
l/mL
Integrating by parts twice and observing that (1) = &/(1) = 0 allow us to write
/X /X 1/A
/ h(A) Fi (o) dov = / h(Aa)I" (o) da = A2 / B (Aa)I(a)da. (5.22)
1/my, 1/mp, 1/mp,

Provided a > 0, h"(Aa) = —27 sin(2rAa), which is non-negative for 1 < o < 1/X if 1/2 < 8 < 1. Moreover,
as Fp(«) is positive, Lemma 5.2 provides a nontrivial bound for

1 1 \/3—8mL—|—6m%—|—3mj§
> -1+ —5 = Koy - 5.23
$23 ( Tt ma3 e 529

Since my, is a positive integer, we always have k,,, > 1. Hence, inserting the estimate from Lemma 5.2
into (5.22), we find that

/X 1/A
A 2 1 1
F > 272 [ sin(2 % 14— )+ +ol1 24
/ h(Aa)Fr(a) da A / sin(2m\a) ( 5 3 ( + m%) + 3m3 + o )) da (5.24)
1/mpg Kmyp,

for 1/2 < 5 < 1. Inserting (5.24) into (5.19) establishes the theorem. O
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6. Lemmata
In this section we collect lemmata that will be used in the proof of Theorem 1.6.
Lemma 6.1 (Convezxity bound). For any 0 < o <1 and € > 0, there is a uniform bound
Lo +it, f) <o q(5 +it, f)(170)/2e, (6.1)
where q(s, f) denotes the analytic conductor of L(s, f), and the implied constant depends only on o and ¢.

Proof. See [26, Section 1.2]. The uniform bound is deduced by considering upper bounds on L(o + it, f)
in the half-plane o > 1 and ¢ < 0 and then interpolating between the two via the Phragmén-Lindel6f
convexity principle. 0O

We note that while the implied constant in (6.1) does not depend on the (fixed) form f, this independence
is not a necessity for the present work.

Lemma 6.2. Let o, § € C with ||, |8| < 1/logT. Then, as T — oo, we have

—a—p
a —om = T _

Z |n1f+a+/3 T = [(14+a+B,fxf)+cil(—a—p) <§> +0 (T 1/2) ’ (6.2)

nz1

and, for la|] < 1/logT, we have
2
Z |af(7;)| 2T T (6.3)
n

n>1

as T — oo.

Proof. The bound in (6.3) follows by partial summation. For the first sum, we begin by writing the main
term of the asymptotic expansion using the definition of the convolution sum in property P3. We have

- e—2n/T _ |as(n 2n -
Z +a+,8 T 2mi Z nltatp / (w) (T dw (6.4)

(2)

1 T\" < las(n)?
— 2—7” F(w) (5) Zl nl_,'_fwm dw (65)
(2) n=
— T g f)d 6.6
= omi (w) (5) (I+w+a+p,fxf)dw. (6.6)

(2)

As described in Property P3, we let ¢; denote the residue of L(s, f x f) at s = 1. Note that

reSue s [F(w) (€>w L +w+a+p,f x })] — ¢ T(—a— B) (g) - (6.7)

and

FeSu_o {I‘(w) (%)w L+ w+a+th fx })] —L(l4+a+B fx]) (6.8)
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Hence, moving the contour of integration to $(w) = —1/2 and noting that the contribution from the
horizontal sides of the contour is zero by the exponential decay of the gamma factor and the finite order of
L(s, f x f) in vertical strips not containing s = 1, we have that

00 2 —o—f
) las (" —2n/7 _ e/T(~a — B) (g) +L(14+a+8,fxf)

+0 /r(w)<§>wL(1+w+a+ﬁ,fxf)dw . (6.9)

2

We now estimate the error term. Letting w = u + v as above, we have

/ I'(w) <%>wL(w+l+a+ﬁ,f>< f)dw <<O<T‘1/2). (6.10)

-3)
This completes the proof. O

Lemma 6.3. Let a, § € C with ||, |B| < 1/logT. Then, as T — oo, we have

S lapm)Pn o = Lo f x )+ TP (e T
n<T o+ ﬁ

We also have, for |a| < 1/logT, that

T =0
2, _o+4a ) )
Z |a’f(n)| n < {T3/27 o= 1/27

n<T

as T — oo.

Proof. The second bound is immediate from routine summation by parts. We have

n<T n<T nu

T
> lagmPnme = 175 3 fagm)? - (o +a) [t [ 3 las(w) | du

T
< T _ (0 +a) /u"“ du < THote, (6.11)

1

where here we have made use of P4.
As for the first sum, in view of P3, an application of Perron’s formula (see A.1) yields

Kty
“lta 1 o AW
S lastnf 7 = 5 [ 2 e g x T
n<T K—1y
log(T) 7(2T)? log
R(a+B)
+0 (T S + TI—R(a+B) 1+T 5 , (6.12)

where k = R(a+ ) +1/log(T'). Moving the line of integration to —1/2, we pick up residues from the simple
poles at w = 0 and w = a + 5. We have
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tesumo L1~ a~ B+ w,f x ) = L1 —a~ 5, x ), (6.13)
and
_Tw
resu—ars L1 —a =B+ w fx [)— = T“*ﬁac—fﬁ. (6.14)

We now estimate the error from closing the contour of integration. This is done by applying Lemma 6.1 for
L(s, f x f) in the critical strip 0 < o < 1. From this we have, fixing ¢ > 0,

Lo +it, f x J) o 207742 (6.15)

for 0 < o < 1. Finally, we know that L(s +it, f x f) < 1 for R(s) > 1 since the L-function is given by an
absolutely convergent Dirichlet series. We proceed to estimate the error from the contour itself. We have

—1/2+iy

y
L' / L(]. —a—-B+w, fx E)Twﬂ < /,U1+2§R(oc+3)+26T71/21L
2mi w —5 + v
—1/2—iy -
< 71+2%(0¢+5)+25T71/2 log 7, (616)
and
rtiy J
— L(l—a—ﬁ—i—w,fxf)T“’—w
27 w
—1/24iny
+iy d ==t d
- w - w
< / L(l—a=B+w,fx T+ / L(l—a=f+u,fx T
—1/2+iy +iy
< V71+2%(a+5)+26 + HTH’}/71+2§R(O‘+[3)+26
< ,Y—1+2§R(o<+/3)+25 + %(a + 6) + 1 ,7—1+2§R(a+,6)+25T§R(a+ﬂ)+1/long (617)
log T’
Put v = T'/%. Then we find that the right-hand side of (6.16) is
<< T71/4+§R(a+ﬁ)/2+6/2 logT << T71/4+€/2 log T' (618)

and that the right-hand side of (6.17) is

< T~ V4+R(a+p)/2+¢/2 + (%(a +8) + 10g1T) T—1/443R(a+B)/2+1/log T+e/2 o p—1/4+e/2, (6.19)

Finally, we estimate the error term in (6.12). We have

log(T) 7(27T)? log v N (27)°M B
R(a+p) 1/44+R(a+p) 1-1/4
T p + FoR@) 14T N <T log T + 7 (1 +T logT)

< logT (T‘1/4+§R(a+/3) + T—1/4+o(1))

< T V/4°M 1og T, (6.20)

This completes the proof. O
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Lemma 6.4. Let a € C with |a] < 1/logT and X ~T. Then

> lag(n)|?nm ¥/ rae /X« X, (6.21)
n<X

Proof. We use Property P4 to write

X
S fagmf oo/ tee X (5 fayf? | X7t [ S as ) | w7/
n<X n<X 1 n<u
. b's
1 2| 3/, -u/X
+X/ Z|af(u)\ u e du
1 n<u
X X
1
< X4 4 /u_3/4e_“/x du+ — /ul/%—u/x du. (6.22)
1 1
Changing variables twice yields
X 1 X
/u73/467“/x du = x4 / w3 e du = X1/4/u75/4671/“ du < X4, (6.23)
1 1/X 1

and, similarly, flx ul/few/X du < X540

Lemma 6.5 (Stirling estimate). Let L(s, f) be of degree m, Ly,Lo € {L,L}, choose o, 3 € C, and take
notation as in (4.10). As t — oo,

—m(a+pB)
Op, (3 +atit)Pr,(3+ 8 —it) = Q) @) (1 +0 G)) (6.24)

and, for some fized complex number a, there exists a complex number A independent of t (though dependent
on a) such that, as t — oo,

) ) ¢ m(1/2—a-+it)
®p(a —it) = AQI e gmimt (5) (1+0(@t ) < tm(1/2=a), (6.25)
Proof. We have
Los(1—3s,f) Lo T L (30— 5) + 1)
O(s)=—F——"T2=0Q
L) == o) =m0
d
_os _ s _ s
— Q% djl;[lr (31 =)+ )T (1 —3~ ,uj) sin (7r (5 +Mj>) . (6.26)

Let a,b € C and Ly, Ly = L (the other case is established in the same way). Then

Oy (a+it)Dp(b—it)
Oy (b it)
(I)f(]' —a— Zt)
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_ e TG sty A )T 5ty ) (Bt ) _ i (Bt )
M TG T i) TG A3+ - m) on(am)
M 1 am b2 (= 7E)

= Q2(1-a-b) H (5) (1+o0@™). (6.27)
j=1

Recalling that j S(pj) = 0 (by assumption) completes the first part of the proof.
The bound ®p (a — it) < t™(1/279) follows in exactly the same way. We have

m . .
; 1 —t —t
®p(a—it) = Q- 2amitlp—m H r (5(1 —a+it)+ ;T]> r (1 - % - Mj) sin <7T (a 5 =4 M))
=1

m

N\ 1/2—a+it—23(p,)
; t ! 3
= Q17 Ha—it)p—m H (%) exp <—§ +a—it+ 2%(;@)) Apemt/? (1+0(™)

j=1

(1+0(t™)), (6.28)

n m(1l/2—a+it)
2

— AQl*Q(afit)efimt (_
as desired. 0O

Lemma 6.6. Let {a,} and {b,} be two sequences of complex numbers. For any real numbers T and H, we

have
T+H 2
/ > apn®| dt=H> la,*+0 [ > nlan)? (6.29)
T n>1 n=1 n>=1
and
T+H 2 2
[ e (St | at =3 a0 | [ Salan®] [ Salbl) |- @30
T n>=1 n>1 n>1 n>=1 n>1

Proof. This is a generalized form of Montgomery and Vaughan’s large sieve proved in [58, Lemma 1]. O

Lemma 6.7. Let {a,} and {b,} be sequences of complex numbers. Let Th and T be positive real numbers
and g(t) be a real-valued function that is continuously differentiable on the interval [Ty, Ts]. Then

Ts
o0 [ S o] | Spunt ) at =
T n>1 n>1
T T 3 3
| [omat) S b0 [la@i+ [l a] [Sala?| [Sabl| |- @30
T nz=1 T n>1 n>1

Proof. This is proved in [41, Lemma 4.1]. O
7. Proof of Theorem 1.6

In this section we prove Theorem 1.6. We first construct an approximate functional equation for L(s +
o, f)L(1 — s+ B3, f) using a method of Ramachandra [51, Theorem 2].
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Lemma 7.1. Let € C, s = 1/2+it, and T > 2. Then, for X =T/(27) and T <t < 2T, we have

i ar(n
Lis+a,f)= n/X+ef<I>f(s+Oz) Z nlf_(s_)a
n=1 n<X
—3/4+1i0c0
1 ag(n) w
_2_71”i EfCI)f(S‘i‘Oé‘f'w) Z m F(’U))X dw
—3/4—ico n>X
1/2+i
1 ~ ag(n) w
1/2—ico n<X

Proof. We first use the Mellin identity

1 24100
et = ~5 / D(w)t™ dw, (7.2)
2—i400
which holds for ¢t > 0, to write
50 1 2-+1i00
3 () —nyx _ L / L(s+a+w, ) (w) X" dw. (7.3)
— n°te 271
n= 2—ioo

Here the interchanging of the summation and integral is justified by the absolute convergence of the Dirichlet
series. On the other hand, by shifting the line of integration from f(w) = 2 to R(w) = —3/4, we find

oo —3/4+ic0
af(n) —-n/X _ 1 w
nz_:l e © X = L(s+a,f)+ 3 L(s+ a+w, f)T(w)T" dw, (7.4)
= —3/4—ico

where L (s + «, f) is the residue of the simple pole of the integrand of the right-hand side of (7.3) at w = 0.
By the functional equation for L(s, f) and the absolute convergence of the Dirichlet series of L(1—s, f), we
have

List+a+w,f)=¢®r(s+a+w)L(l—s—a—w,f)

- ag(n) ag(n)
n<X n>X
Replacing L(s + a + w, f) in (7.4) with the right-hand side of (7.5), we have
oo —3/4+ic0 ( )
1 ag(n
ZC;f(Jrn)e—n/X =L(staf)+5- / efOp(s+a+w) Y nl—i;ﬁr(w)dew
n=1 —3/4—ico n<X
—3/4+ioc0 ( )
1 agin w

_3/4—ico n>X
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Finally, we shift the line of integration of the integral involving the Dirichlet series over n < X from
R(w) = —3/4 to R(w) = 1/2. We once again pass over the pole at w = 0 and recover the residue

erPi(s+a) S ay(n) (7.7)

nl—s—a’
n<X

Upon rearranging terms, we deduce the claimed approximate functional equation for L(s + «, f). O

Applying Lemma 7.1 to L(1 — s + j3, f), where 8 € C, we find

(oo}

arF(n
e—n/XZ f( ) e—n/X
n=1

ag(n)
s+a

n nl—s+8

L(s+a,f)L(1—s+ B, f) == Z
n=1

ar(n) ag(n) =
—I—CI)f(S-i-Oz)@]?(l—S‘i‘ﬁ) Z nfS,ﬁ Z nlffsfoz +ZJZ
ngx ngX‘ =1

14
=81+ S+ Z Jis (7.8)

i=1

say, where the J; for 1 < ¢ < 14 denote the terms that arise as products of the integral components of
our mixed functional equation. In the next section, we show that S; and S contribute to the main term
in Theorem 1.6. The remaining J; terms are absorbed into the error term. In Section 7.2, we give full
details for the estimation of one of the .J;; the other estimations follow similarly or by an application of

Cauchy—Schwartz.
7.1. Main term calculations

Recalling s = 1/2 +it, let
Sp = Z ap(n)n =" /X Z af(n)n71+57[367”/x . (7.9)
n=1 n>1

Directly applying Lemma 6.6 yields

2T
/51 dt = TZ \af(n)|2 polmoBemn/X
T n

1 1

+ 0 (Z lay (n)|2 6_2"/Xn_m(°‘)> (Z lay (n)\2 e‘zn/xn_m(ﬁ)> ) (7.10)

n n

With X ~ T, Lemma 6.2 allows us to conclude that

27 CaeB
/51 dt=T (cfl“(—oz - 5) (%) +LA+a+p5,fx f)) +O(T). (7.11)
T
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Supposing |al, |3| < 1/log T,

2T
/51 dt < T'logT. (7.12)

We now turn to the second product contributing to the main term in our shifted moment result. Let

Sy = | e Ps(s + ) Z a;(n)n“‘o‘_1 €7P7(1—s+p) Z ap(n)yn= 50 | . (7.13)
n<X n<X

Recalling that |ef| = 1, we use Lemma 6.5 to break up the integral and write

/52 dt = / ( +a —Ht) D (1 + 8- zt) D apmn > apnn | dt

n<X n<X
o —2(a+8)
[ (L S gt [ S apmnte | ar
2m !
T n<X n<X
27 (et B)-1
+0 / (i> o Z az(n)nstot Z af(n)n=s+° d¢ (7.14)
g n<X n<X

We evaluate the main term using [41, Lemma 4.1]. We have

2T

" —2(a+p) et s
/<%> Z az(n)n®t® Z af(n)n™* de
T n<X n<X
2T ; 2(a+p) s 4 5
—14a+
() ) Sttty
T ns
1
T\ ~2(ath) T ;o\ 2Rt -1 - 2
+0 <;) +/2|a+6| (%) dt | | > lag(n)? n?®)
T n<X
2
< Y Jag(n)]? n?m® : (7.15)
n<X
Since ||, |8 < 1/logT, we have
T —2(a+p)
(—> <1 (7.16)
™
and
2T ¢\ ~2ath)—1
/2|a+6| (%) dt <« 1. (7.17)

T
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Lemma 6.3 contains the estimates that allow us to write (7.15) as

2T

—2(a+p)
t sta— —s
/<%> E a;(n)n+ ! E ap(n)yn= TP | dt
T

n<X n<X

27

+ —2(a+pB) B c
= /( ) dt (L(laﬂ,fxf)JrXaJrBOH_fﬁ)+O(T)<<TlogT. (7.18)
T

7.2. Error term estimates

In this section we estimate a representative error term. The remaining J; follow from a direct application
of Cauchy—Schwartz or from a similar argument. Observe that none of the J; error terms contribute to the
main term, and none dominate the term

= Za;(n)n*““e*”/x i./efq)]—c(lferﬁer) Zaf(n)n“’*”/g I'(w) X" dw

n>1 27”( ) n<X

1
4

(7.19)

This term does not occur in (7.1), but it is clear that any J; is of the same order or dominated by _#. The
real difficulty in estimating f;T F dt follows from

2T
T/(

which is immediate from the estimate in Section A.2. Refer to Section A.2 for full details.

p(1— s+ B+w)(w) X" dwdt < X472, (7.20)
)

1
1

Returning to fTQT J dt, we interchange the sum and the integral. Lemma 6.7 applies only to real-valued
functions g(t), so we apply an absolute value, apply Lemma 6.7, and then use Lemma 6.4 and the esti-
mate (7.20) to write

2T 2T
//dt = / Z ’G}(n)’ n*l/Zfaefn/X Z |af(n)|n71/4+5
T T n=1 n<X
1 w
%/effbf(lferﬂer)F(w)X dw | at

(1)

2T
< X' / ﬁ / ‘ef‘?f(l —s5+ B+ w)F(w)Xw‘ dwdt +0(h) =0 (X1/2T1/2 * b) o (121)
T ()

where, if we put

g(t) :== ‘e;(bf(l —-s+ 0+ w)F(w)X“” dw (7.22)
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then

2T )

b= [ lg2n) + / @1 dt | | D Jagm)| n=2R@em20/X ) {37 oy ()P0 ) (7.23)
T

n>=1 n<X

The estimates for the sums are contained in Lemmas 6.2 and 6.3. Utilizing the estimate in Lemma 6.5 to
differentiate the computations in Section A.2 under the integral, we obtain

2T
/ lg'(t)] dt < X572, (7.24)
T
Thus, letting X ~ T,
h=X32T"12 T (7.25)
and we have proved that
2T
// dt < T. (7.26)
T
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Appendix A. Additional lemmata and calculations

In this appendix we state an effective version of Perron’s Formula used in the proof of Lemma 6.3. We
also provide the details for bounding f( ) ®#(1— s+ B+ w)l'(w)dw, which is used in Section 7.2.

1
4

A.1. An effective Perron formula

Lemma A.1 (Effective Perron). Let F(s) := ", a,n™* be a Dirichlet series with finite abscissa of absolute
convergence o,. Suppose that there exists some real number o > 0 s.t.

o

(1) Z lan|n™7 < (60 —04)™" (0> 04),

n=1
and that B is a non-decreasing function satisfying
()  |an] < B(n) (n>1).

Then for X 22, v 22, 0 < 04, k:=0,— 0+ 1/log X, we have

K+
1 d log X)* B(2X 1
a_n:_. / F(S+w)Xw—w+O(XU“U(Og ) + ( ) <1+X0g7>> (Al)
= 2mi ) w o Xe ~y
= K—1y

Proof. [57, §I1.2.1, Corollary 2.1]. O
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A.2. Controlling f( )tbf(l—s%—ﬂ—&-w)r(w) dw

1
1

Recall that |3] < 1/1logT and s = 1/2 + ét. In this section we provide the details for the bound

/q>f(1 — s+ B+ w)(w)dw < 2. (A.2)
(1)
Since
Lo(1—s,f
we have the relation
1

To ease our application of Stirling’s formula by ensuring that we are always applying it as t — 400, we
begin by breaking up the integrals as

/ P7(1—s+ 8+ w)l'(w)dw

(3)
—/t¢>f(z+5+i(vt)>l“(i+iv> dv+7@f(g+5+i(vt))PG+w) dv.  (A.5)

We consider the first integral, which, changing variables, equals

/ (B esiwrn)r(h-n)a
:07@; (Brs-w)r(3-iw-n)a
. qu)}(gw_iw)p(i_i(v_w) oo [y (o) (-0 e no
/ (2es-w)r(-itv-n) a
« [ rr - o) a

< /zrl/Hﬁ exp ((-% bt — v)) log G it — v)) - G it — m)) dv

0
t
0
=, (A7)
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say. For the principal branch, we have
flJr'(t— )1 1+'(t— )| — lJr'(tf )
exp 1T v) ) log | o +i v 1Tl v
< (it)_1/4+i(t_v) exp _1 +i(t—wv) |log (1— i _vy 1
4 at  t 4

s (fei-n) (4 (£+) -

< (it)—1/4+i(t—v)
L M Aemm(tmv)/2, (A.8)

Since |8| <« 1/1og T, we find

t t

o <<t71/4/1]71/272,3677r(t7v)/2 dv < t71/4/1}71/2€7ﬂ'(t7v)/2 dv

0 0
2t—1/4\/§F mt
U 2
< t73/4 (A.9)
where F'is Dawson’s integral, which satisfies F' (\/7rt/2) < t71/2, Next, we have
/3 , 1
o ZJFB*W) r 1 —i(v—1)) dv
t
® v-1/2-28 gy
/ Sti(v—t))erv—1
[ee]
< / ~1/2-26(y) _ 4)=1/4g=7(0=0)/2 g,
t
/ ’U+t —-1/2-2p3 71/4 7T7J/2d,U
0
oo
< t_1/2/v_1/4e_’”’/2 do
0
< t7Y2, (A.10)

Finally, we have

o (Semviomn)r(bei)

T(1/4+i(v+t—1)) dv

:1/ o, (L —p—i(v—1)
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(i(v+t — 1))~ /4Hvtt=1) gy

< p1=2(1/4=B+0)

< (v 4t 1)—1/4v—1/2—266—7r(v+t—1)/2 do

Tt~ T3

< t71/4/1}71/2677r(u+t)/2 dv
1

_ t—1/4e—7r(1+t)/2 |:\/§e7'r/2 erfe (\/E)]
2

< tMAemm/2 (A.11)
where erfc(z) is the complementary error function.
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