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Abstract
We demonstrate how real progress can be made in the debate surrounding

the enhanced indispensability argument. Drawing on a counterfactual theory
of explanation, well-motivated independently of the debate, we provide a
novel analysis of ‘explanatory generality’ and how mathematics is involved
in its procurement. On our analysis, mathematics’ sole explanatory contribu-
tion to the procurement of explanatory generality is to make counterfactual
information about physical dependencies easier to grasp and reason with for
creatures like us. This gives precise content to key intuitions traded in the
debate, regarding mathematics’ procurement of explanatory generality, and
adjudicates unambiguously in favour of the nominalist, at least as far as ex-
planatory generality is concerned.

1 Introduction

The debate surrounding the enhanced indispensability argument for mathemat-

ical platonism (EIA) has reached an impasse, descending into intuition-trading

regarding purported examples of mathematical explanations of physical phenom-

ena. Progress demands an independently motivated understanding of these ex-

planations that favours either nominalism or platonism. Indeed, ‘[i]f there is a

point of agreement in this debate, it is that we could do with a better understand-

ing of mathematical explanation’ (Colyvan 2013: 1044). In this paper, we make
∗School of Philosophy, Religion, and History of Science, University of Leeds.

1



significant progress towards such an understanding. Drawing on a counterfactual

theory of explanation, well-motivated independently of the debate, we provide a

novel analysis of ‘explanatory generality’, highlighted by advocates of EIA as a

key virtue of certain mathematical explanations, and how mathematics is involved

in its procurement. On our analysis, mathematics’ sole explanatory contribution

to the procurement of explanatory generality is to make counterfactual informa-

tion about physical dependencies cognitively salient: easier to grasp and reason

with for creatures like us. This gives precise content to the conflicting intuitions

about explanatory generality traded in the debate, and adjudicates unambiguously

in favour of the nominalist. Since it is independently motivated, this verdict is not

question-begging, demonstrating our methodological conclusion: working with an

independently well-motivated theory of explanation can push past conflicting intu-

itions in the EIA debate.

To be clear, we do not aim to vindicate nominalism once and for all. Our aims

are more modest than that. First, we aim to provide non-question-begging reasons

for thinking that the explanatory generality of certain mathematical explanations

is compatible with nominalism. Second, in achieving this, we aim demonstrate

the methodological conclusion mentioned above. This only addresses one virtue

claimed for certain mathematical explanations, though one that has thus far been

central to the platonist’s case (see below). Although we regard the counterfactual

theory in question capable of capturing a very broad range of explanations, it is not

our aim here to argue for this account’s universal superiority, nor do we commit

to explanatory monism. Nevertheless, this is real progress. In light of it, if it is

claimed that a purported mathematical explanation or a virtue thereof escapes our

analysis, this claim had better not be supported by intuition alone. Our opponent

2



must provide reasons, similarly independent of the EIA debate, to suppose our

analysis fails to capture something of genuine explanatory worth.

Before presenting our analysis, we provide some background on the EIA de-

bate (below), a presentation of our chosen counterfactual theory of explanation

(§2), and a toy example of the kind of mathematical explanation our analysis is

supposed to capture (§3).

The impasse regarding EIA stands as follows. According to EIA, scientific

realists should be mathematical platonists, in light of examples of scientific explan-

ations which seem to turn on mathematical facts. Even if alternative, nominalistic

explanations can be offered, arguably such alternatives are worse explanations.

Thus, a realist who infers to the best explanation cannot but accept commitment to

whatever the mathematical facts involve. So runs the most prominent naturalistic

argument for platonism (e.g. Baker 2005; Colyvan 2002, 2013; Lyon 2012). In re-

sponse, nominalists can either deny that the mathematically presented explanations

are better, or deny that mathematics’ contribution to them is ontologically commit-

ting. There is a near-consensus that the first horn is untenable. The second horn

has been popular, but here the impasse looms. While platonists take mathematics’

explanatory indispensability to evidence the existence of explanatory mathematical

features of reality, nominalists take mathematics to merely increase our expressive

capacity, allowing us to represent the physical features of reality that are doing the

real explanatory work.

On the one hand, the distinction between ‘really explanatory’ and ‘merely

expressive’ can only be drawn fairly on some principled, non-question-begging

grounds, and nominalists’ appeal to this distinction has hitherto not convinced pla-
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tonists.1 On the other hand, the indispensability of mathematics for providing an

explanation is not enough in and of itself to convince the nominalist that its ex-

planatoriness springs from correctly representing mathematical features of reality.

Thus, the debate has reached a serious impasse (e.g. Baker 2017: 2; Knowles

and Liggins 2015: 3403-7), and the result is predictable: intuition trading, subtle

dialectical manoeuvring, and charges of question-begging.

The claim that explanatory generality is what makes certain mathematical ex-

planations better than any nominalistic alternative is popular among platonists. In-

deed, it has been widely expressed for more than ten years. For example, Mark

Colyvan (2002) defends EIA against Joseph Melia (2000) by noting that mathem-

atics is indispensable for a ‘unified approach’ to presenting and solving disparate

equations, and hence ‘genuinely explanatory’, since ‘unification is linked to ex-

planatory power’ (p. 72). Alan Baker and Colyvan (2011) defend EIA by noting

that any nominalised explanation of cicada periods is ‘both less general and less

robust’ (p. 331). Colyvan (2013) defends EIA against Stephen Yablo (2013) by

arguing that Yablo’s approach doesn’t do justice to the unifying power of mathem-

atics (p. 1042). Matteo Plebani (2016) objects to David Liggins’ (2016) response

to EIA because Liggins’ approach runs our scientific explanations ‘at the wrong

level of generality’ (p. 553). Most recently and explicitly, Alan Baker (2017) has

articulated the idea that explanatory generality supports platonism. All in all, the

notion of ‘explanatory generality’—together with cognate notions of ‘unification’
1For example, Saatsi (2016) draws an interesting distinction between ‘thin’ and ‘thick’ explan-

atory roles, arguing that a nominalist can make sense of mathematics’ explanatory indispensability
by maintaining that mathematics only plays a ‘thin’ role of ‘allowing us to grasp, or (re)present,
whatever plays a thick explanatory role’ (p. 12) Notwithstanding the conceptual room for Saatsi’s
distinction, platonists can rightly query why the explanatory superiority of mathematical explana-
tions is best analysed in these terms.
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and ‘robustness’—has thus far been central to the platonist case.

The prominence of explanatory generality reveals two lacunas in the debate.

First, neither side has provided a satisfactory account of explanatory generality,

detailing the extent to which it is explanatory, and how exactly mathematics facil-

itates it.2 Second, nominalists have hitherto not explicitly responded to the appeal

to explanatory generality. The challenge is to explain how mathematics can make

explanations better by making them more general, if not by representing more gen-

eral, mathematical features of reality?

We address both lacunas by appeal to a popular, well-motivated counterfac-

tual theory of explanation. The gist of the theory is that explanations capture

systematic patterns of counterfactual dependence—causal or non-causal—that tell

us how the explanandum depends on the explanans. Explanations thus provide

‘what-if-things-had-been-different’ information, indicating how the explanandum

would have been different, had the explanans been different in particular ways (e.g.

Woodward 2003). We will show that, from the perspective of this theory, the only

kind of generality that counts as an explanatory virtue, in a sense that matters to

EIA, is a kind of counterfactual generality (‘scope generality’). Although there is

another prominent kind of generality (‘topic generality’), we will argue that this is

not in its own right explanatory at all; it can only improve an explanation indirectly,

by increasing scope generality. Furthermore, and most importantly, we will argue

that increasing scope generality can improve an explanation only up to a point that

can be reached by nominalistic means (§4). Nevertheless, distinctively mathem-

atical explanations truly can be better than any nominalistic alternatives, but we
2Aidan Lyon (2012) has framed the ‘robustness’ of mathematical explanations in terms of the

‘program explanation’ model of Jackson and Pettit (1990); but see Saatsi (2012, 2016) for criticism.
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will show (§5) that this is entirely due to mathematics’ presentational contribution.

While sufficient generality can be achieved without mathematics, this cannot be

done without sacrificing our ability to use the explanation, and cognitively grasp

the pattern of counterfactual dependence it represents. In this sense, mathematics

allows us to achieve explanatory generality without sacrificing cognitive salience.

2 A Counterfactual Theory of Explanation

In this section, we motivate the appeal to our chosen theory of explanation, outline

it, and survey its implications for analysing comparative explanatory virtues. For

convenience, we will refer to it as the counterfactual theory, though we recognise

that there are other counterfactual theories of explanation.

In appealing to the counterfactual theory, we operate in a naturalistic (Quinean)

spirit, appropriate for the EIA debate. Adopting an account that not only captures

well prominent examples of mathematical explanation, but is also well-motivated

by recent advances in the philosophy of explanation, we approach the debate in the

light of all available evidence, including that which independently supports this

account of explanation. Support for the counterfactual account involves its ability

to make sense of various kinds of explanations, and judgements of comparative de-

grees of explanatory power, as we will discuss. It also enjoys naturalistic support

from, e.g., cognitive psychology, which we will not discuss here (see e.g. Buchs-

baum et al. 2012). Again, this is not to say that the counterfactual theory we use

in this paper is the only game in town (cf. §1). This is just to say that the coun-

terfactual theory enjoys a lot of support independently of the EIA debate. To the

extent that the theory furthermore nicely captures what is good about mathemat-
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ical explanations central to the EIA debate, its support is transferred to whichever

intuitions expressed in the EIA debate it agrees with.

The counterfactual account does not prejudge the EIA-debate. It is a broadly

ontic account, taking explanatory power to at least partly derive from represent-

ing worldly things that bear an objective, explanatory relation to the explanandum,

so it does not jettison the issue of explanations’ realist commitments (cf. Saatsi

2016). Further, it does not entail that successful explanations wear their realist

commitments on their sleeves (Bokulich 2016, Woodward 2003, Potochnik 2018).

Finally, the account does not render mathematical explanations causal. Although

initially developed as an account of causal explanation, the counterfactual account

has been extended to various non-causal explanations, including certain mathem-

atical explanations (Reutlinger 2016a; 2016b, forthcoming; Saatsi 2018; Baron et

al. 2017; Jansson and Saatsi 2016; French and Saatsi 2018). There is nothing in

the counterfactual account itself that rules out mathematical objects or properties

bearing objective, explanatory relations to physical explananda.

We can now review the counterfactual account. In short, explaining involves

describing systematic patterns of counterfactual dependence. Explanatory counter-

factuals are appropriately directed and change-relating, capturing objective, mind-

independent modal connections that show how the value of the explanandum vari-

able depends on the value of the relevant explanans variable(s). These variables

stand for suitably conceptualised and individuated worldly features. Explanatory

counterfactuals provide ‘what-if-things-had-been-different’ information, indicat-

ing how the explanandum would have been different, had the explanans been dif-

ferent in particular ways. Explanation-supporting relations—nomological, causal,

or mathematical—between the variables can provide this kind of modal informa-
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tion.

An account of explanation built on this idea allows us to capture shared intu-

itions regarding the comparative virtues of different explanations in terms of the

counterfactual information they provide. If explaining is a matter of providing in-

formation that answers what-if questions, it is natural to regard as more powerful

those explanations that provide more such answers (with respect to a given ex-

planandum). This simple idea has rich and non-trivial consequences regarding the

various ways in which explanations can be better or worse. Detailed analyses of

explanatory power in this spirit have been provided (see Hitchcock and Woodward

2003, and Ylikoski and Kuorikoski 2010). The latter authors identify five different

aspects of explanatory power: non-sensitivity, precision, factual accuracy, degree

of integration, and cognitive salience. Three are particularly relevant to our argu-

ment:

NON-SENSITIVITY: The range of values that the explanans variables can take

without breaking the explanatory relationship. For instance, an explanation of tides

in terms of Newton’s gravitational law has a considerable degree of non-sensitivity

with respect to the specific masses and locations of the sun and the moon: the ex-

planation correctly answers a considerable range of change-relating what-if ques-

tions for non-actual values of these variables.

DEGREE OF INTEGRATION: The connectedness of an explanation to other the-

oretical frameworks. From the counterfactual perspective, such integration is an

explanatory virtue when it enlarges the range of what-if questions answerable with

respect to particular explananda, or makes such questions easier to answer. One
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way theoretical integration can achieve this is by equipping explainers with new

inferential resources (Ylikoski and Kuorikoski 2010). For example, the integra-

tion of the gravitational-dynamic theory of tides to the more general mathematical

theory of Fourier analysis (by William Thomson) allowed many new what-if ques-

tions to be asked and answered about local tidal phenomena, increasing explanatory

understanding (Cartwright 2000).

COGNITIVE SALIENCE: ‘[T]he ease with which the reasoning behind the ex-

planation can be followed, how easily the implications of the explanation can be

seen and how easy it is to evaluate the scope of the explanation and identify pos-

sible defeaters or caveats’ (Ylikoski and Kuorikoski 2010: 215). Actual explainers

are humans with limited cognitive capacities, and these limitations partly determ-

ine which explanations have more or less explanatory power by virtue of differing

in their capacity to enable explainers (with particular training, background know-

ledge, etc.) to draw counterfactual inferences for different values of the explanans

variables.

As we shall see, these resources furnished by the counterfactual account are

highly apt for analysing mathematics’ contribution to certain mathematical explan-

ations. We will first illustrate this with a toy example, providing an initial analysis

of ‘explanatory generality’ (§3). This analysis will be deepened in the subsequent

sections. First, by showing that only one kind of generality (‘scope generality’)

counts as an explanatory virtue, and that it does so only up to a point (§4); and then

by showing that the relevant mathematical explanations’ cognitive salience is what

makes them superior. Thus, although we can provide a nominalistic alternative that
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achieves the kind of generality that matters for explanations, they are nevertheless

less explanatory (§5).

3 A Toy Example

What kinds of mathematical explanations are appropriate for ascertaining math-

ematics’ contribution to explanatory generality? In this paper, we will focus on

explanations that (i) have nominalistic alternatives provided in the literature, and

yet (ii) have something ‘distinctively’ mathematical about them (cf. Lange 2013).

These conditions are met by many familiar examples from the EIA literature, such

as the number-theoretic explanation of cicada periods, and the graph-theoretic ex-

planation of the non-traversibility of Königsberg’s bridges (Baker 2005, Pincock

2015). In what follows, we call explanations that meet conditions (i) and (ii) dis-

tinctively mathematical. For the purposes of this paper, our analysis should be

understood as targeting distinctively mathematical explanations exclusively.

There two important reasons for limiting our focus in this way. First, focus-

ing on distinctively mathematical explanations allows for an instructive contrast

between mathematics-laden and mathematics-free formulations that will be invalu-

able for communicating our analysis. This is particularly important, since the chal-

lenge from explanatory generality turns on mathematics’ increasing explanatori-

ness in contrast to nominalistic alternatives. Second, in focusing on distinctively

mathematical explanations, we set aside explanations for which we have no nom-

inalistic alternative. This is appropriate since the claim that mathematics is doing

any explanatory work in such explanations is a moot point. Given our aims, this

is dialectically advantageous. Since we take their nominalistic alternatives to be
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comparatively less explanatory, we concede that mathematics is explanatorily in-

dispensable to distinctively mathematical explanations. We thus tackle the chal-

lenge from explanatory generality head-on, by arguing that the explanatory virtue

that mathematics contributes to these explanations, cognitive salience, is not onto-

logically significant.

We recognise that limiting our scope in this way falls short of providing a full

rebuttal of EIA. Nevertheless, providing non-question-begging grounds for think-

ing that mathematics’ contribution to the explanatory generality of distinctively

mathematical explanations is compatible with nominalism marks real progress in

the debate, and thus demonstrates the efficacy of our methodology. Appealing to

the indispensability of mathematics to e.g. phase-space explanations by itself does

nothing to diminish this. Once its efficacy has been demonstrated, our methodo-

logy can be applied to make further progress in relation to more difficult examples.

Although we are optimistic about extending our analysis to accommodate a broader

range of explanations, including phase-space explanations (see Saatsi 2017 for a

promising start), there is unfortunately not space to attempt this here.

The following toy example illustrates the key features of distinctively mathem-

atical explanations:

A philosopher tries to divide twenty-three distinct ideas evenly among

three sections, but keeps failing. Why? Because:

(A) There is no integer n such that 23/3 = n.

This is a distinctively mathematical explanation: the explanandum is not due to

contingent laws of nature (causal or otherwise), but holds with a stronger degree of

(mathematical or logical) necessity (Lange 2013).
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Applying the counterfactual account, we should take (A) to explain why the

philosopher keeps failing because it tells us what the philosopher’s failure counter-

factually depends on: whether the number of ideas is divisible by three. We can

now distinguish two striking kinds of generality exhibited by distinctively mathem-

atical explanations (cf. Jansson and Saatsi (forthcoming) and Baker 2017). First,

the explanation clearly has nothing to do with the nature of the things divided, apart

from the stipulation that they are distinct. In this way, the explanation is extremely

topic general. Within the counterfactual account, this is naturally understood in

terms of DEGREE OF INTEGRATION. Because the explanation is integrated into

the topic-neutral framework of arithmetic, it is easy to generate further explan-

ations with radically different subject matters: (A) equally explains why mother

couldn’t share twenty-three strawberries between her three children, and why our

parents never managed to spend all their pocket money (twenty-three pence) on

three-pence gobstoppers. Despite the variety of subject matters, when described at

the appropriate level of generality, it is clear that these scenarios are structurally

similar: they concern attempts to divide twenty-three distinct individuals into three

equinumerous collections. It is also clear that the attempts fail for the same reason.

To achieve the desired level of topic generality, we must formulate the explanatory

generalisation so that it just concerns individuals, instead of strawberries, gobstop-

pers, or any other kind of objects in particular. Arithmetic achieves this admirably.

Second, the mathematical explanation is naturally equipped to provide answers

to questions concerning other actual or hypothetical situations in which the philo-

sopher has a different number of distinct ideas to convey. In this sense, the explan-

ation is extremely scope general. Within the counterfactual account, this corres-

ponds directly to NON-SENSITIVITY (viz. the range of explanans variable values
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over which the explanatory relationship truthfully holds).

Consider an explanation that only captures the dependence of the value of

the explanandum variable (successful-division-into-three / unsuccessful-division-

into-three) on the value of the explanans variable (number of individuals) between

twenty-two and twenty-four individuals. Such an explanation gets right that it is

impossible to divide twenty-three things evenly into three, and that the philosopher

would succeed if there were twenty-four things to begin with. But these tidbits not-

withstanding, it fails to capture the broader explanatory regularity at stake. If one

philosopher tries to divide twenty-three ideas into three, and another tries to divide

three-hundred-and-four, they both fail for the same reason: neither set is evenly di-

visible by three. We do not have one explanation for one case, and another for the

other; we have one explanation, supported by one explanatory regularity, and two

different initial conditions. This conception of scope generality naturally rides on

the back of the idea—at the heart of the counterfactual account—that explanations

work by presenting an explanatory relationship that connects the explanandum to

the explanans, showing how the former depends on the latter by virtue of providing

true what-if information (regarding the state of the explanandum) for at least some

non-actual values of the explanans variable. The larger the range of non-actual ex-

planans variable values that are truthfully captured by the explanatory relationship,

the less sensitive the application of the explanation is to the actual values of these

variables—that is, the more scope-general it is.

As noted, platonists have variously appealed to explanatory generality in sup-

port of EIA. For such an appeal to be decisive, we need to know the extent to

which the kind of generality at stake is explanatory, and how exactly mathemat-

ics contributes to it. Such questions are best answered from the perspective of
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a well-motivated theory of explanation, which neither platonists nor nominalists

have offered. With our theory in hand, we will now answer these questions in a

principled manner.

4 The Explanatory Limits of Generality

On the counterfactual account, explaining is a matter of delineating a pattern of

counterfactual dependence by providing information that correctly answers relev-

ant what-if questions. Explaining—providing explanatory information—is a hu-

man activity, the goal of which is the provision of explanatory understanding,

which is naturally construed as an agent’s ability to correctly answer what-if ques-

tions (e.g. Ylikoski and Kuorikoski, 2010). This introduces epistemic and prag-

matic aspects to the analysis of ‘best explanation’, since explaining in the best

possible way involves weighing up considerations which sometimes pull in differ-

ent directions. With this in mind, we will now consider both scope generality and

topic generality in detail, to see the extent to which these different kinds of gener-

ality can be said to make explanations better qua explanations. We will first argue

that although increasing scope generality can improve an explanation, it does so

only up to a point. We will then argue that topic generality in its own right is not

explanatory at all; it can only improve an explanation by increasing scope general-

ity.

Scope generality. Referring to our toy example, (A) allows for a maximally

scope-general explanation: there is no limit to the number of individuals it can take

as the value for the explanans variable. Similarly, the number-theoretic explanation
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of cicada periods places no limit on possible alternative durations of these periods,

and the graph-theoretic explanation of non-traversibility of Königsberg’s bridges

places no limit on possible alternative bridge-configurations. While we can form

noiminalistic counterparts by just listing what these explanations say about some

finite range of explanans values (cf. §5), one might think that the maximisation

of scope generality is in and of itself a reason to prefer the mathematical version.

There are good naturalistic grounds to resist this thought, however.

On the counterfactual account, explaining is a matter of providing informa-

tion that correctly answers what-if questions pertinent to the explanandum at stake.

Which questions are pertinent? We will now argue that we do not judge one ex-

planation to be better than another on the basis of its answering what-if questions

without limit. As we illustrate below, some explanations underwrite counterfactual

scenarios that completely transcend our science-based grasp of the possibilities in

question. We should not take seriously such ‘extreme’ counterfactuals. No sci-

entist would or should consider these what-if questions pertinent to the explanan-

dum in question, in judging one explanation to be better than another. Doing so

would demonstrate an alarming, almost fetishistic confidence in the explanatory,

mathematised theory to reliably tell us about counterfactual situations far-removed

from the theoretical context in which the theory was developed. Moreover, evalu-

ating such counterfactuals involves super-empirical issues of modal semantics that

should not be decided so easily by a scientific theory developed for completely dif-

ferent purposes. In short, such extreme counterfactuals are irrelevant to the explan-

atory practice of science, and thus make no naturalistically recognisable contribu-

tion to our explanatory understanding. Rather, explanatory content is exhausted by

counterfactuals that scientists would and should take seriously, given the empirical
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evidence at stake and the theoretical context in question.

For illustration, consider the much-discussed case of North-American period-

ical cicadas, which lie dormant for 13 or 17 years (depending on the subspecies).

Why the prime numbers? Because an organism which lies dormant for a prime

number of years minimises the frequency of overlaps between their emergence and

the emergence of nearby periodical predators (assuming these nearby predators

have life-cycles of between 2 and 12 years).3 Here, the operative mathematical

generalisation can be presented as follows:

(B) If p is any natural number, then p is coprime with every q < p

(and hence maximises its LCM with every q < p) iff p is prime.

In the counterfactual framework, this explanation turns on grasping how the fitness-

maximising cicada life-cycles—construed as a variable that can take different values—

depends on other biologically relevant variables, such as predator species’ life-

cycles. Roughly speaking, the explanatory counterfactuals capture the dependence

of long-run evolutionary outcomes, regarding specific life-cycle periods, on the ex-

istence of predator species with life-cycles of nearby periods, as well as ‘ecological

constraints’ that appropriately limit the range of viable possibilities.

(B) maximises the scope generality of the explanation: there is no upper limit

to the number it can take as the value for the explanans variable p, representing

the cicadas’ life-cycle period in years. However, most natural numbers—most of

the possible p values—correspond to extreme counterfactuals that we cannot eval-

uate in anything but an abstract mathematical sense, at least not without modal

presuppositions that are not part of the naturalistic context in which (B) is judged
3This follows Baker (2005); see Wakil and Justus (2017) for worries, which are irrelevant for our

argument and analysis.
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to provide the best explanation. For example, consider all p values according to

which the cicadas have life-cycle periods greater than the age of the universe. We

maintain that we cannot take the answers that (B) entails regarding such extreme

counterfactuals to correctly answer what-if questions concerning cicadas, since

we cannot evaluate such counterfactuals without taking a stand on issues regarding

modality and modal semantics that go well beyond the naturalistic commitments

of evolutionary biology. The limitless scope generality offered by (B) does not

seem to underwrite or account for the explanatory superiority of this distinctively

mathematical explanation.

In the same spirit, consider our toy example again. We can use (A) to answer

questions such as: ‘What if things were different, such that the philosopher attemp-

ted to divide 3× 1082 + 1 ideas between three sections?’, where 3× 1082 is of the

order of the number of atoms in the observable universe. The answer is obvious,

as far as arithmetic is concerned. But it is not at all clear why one should expect

this answer to be part of explaining why the philosopher cannot divide her ideas

equally between three sections. Although mathematically clear-cut, reflecting on

the counterfactual in question reveals it to be fantastically far-removed from the

explanandum and its theoretical context. It is clearly psychologically and practic-

ally absurd that a philosopher could have that many ideas to express in a paper.

Furthermore, for all we know, it may be nomologically impossible for any organ-

ism, in any possible universe, to come to have that many distinct ideas (assuming

any kind of physicalism about the mind). Metaphysical and cosmological specula-

tion aside, we maintain that there is nothing at stake with such extreme explanans

variable values for the humdrum explanandum in question. One can employ (A)

to its full explanatory effect regarding the explanandum at stake, without taking a
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stand on the murky modal issues concerning such extreme counterfactuals. And

in judging (A) to provide the best explanation, we do not, and should not, take

a stand on subtle issues in modal semantics upon which evaluating such extreme

counterfactuals turns.

In general, we should say that an increase in scope generality is explanator-

ily valuable only to the extent that it increases the provision of correct answers to

what-if questions that are pertinent and reasonable from the point of view of em-

pirically well-supported scientific theories. It is a challenge to pin down exactly

what counts as a reasonable what-if question, but we do not need to meet it here.

It suffices for us to have argued that there is some point after which the implicated

counterfactuals are not reasonable in the relevant sense. We can conclude from this

that, in as far as a distinctively mathematical explanation scopes beyond any nom-

inalistic alternative, the difference trades only in extreme counterfactuals, so we

have good naturalistic grounds to deny that this explanation’s maximal generality

in and of itself renders the explanation better. Given that we can offer an alternative

nominalist account of distinctively mathematical explanations’ superiority within

the counterfactual framework (§5), this will suffice to rebut the challenge from

explanatory generality, as far as scope generality is concerned.

Topic generality. From the counterfactual point of view, topic generality, whether

or not achieved with mathematics, only contributes to a particular explanation if

it enables the answering of more of the relevant what-if questions concerning that

explanation’s explanandum.

To illustrate, suppose we have hitherto been unable to explain why mother

cannot divide twenty-three strawberries between her three children. By learning
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the explanatory core of our toy-example, (A), an explanation for why mother fails

presents itself, putting us in a position to answer a range of relevant what-if ques-

tions regarding mother’s predicament. We have integrated two disparate structur-

ally similar phenomena to the arithmetical background theory. This is a good thing.

But the new what-if questions we can now answer (with respect to mother) do not

yield any further explanatory understanding of why the philosopher cannot divide

twenty-three ideas equally between three sections. We can of course answer further

what-if questions regarding the philosopher by first answering the corresponding

questions about mother, and then translating. But these questions would be an-

swerable via (A) directly, so all the topic generality has done here is open up a

new, indirect means of achieving the same understanding of our original explanan-

dum. It has not increased our understanding. From a more global perspective, our

stock of answerable what-if questions has increased; but this is only because we

have formulated a new explanation with its own associated what-if questions. In

cases such as these, topic generality is clearly very useful, but it does not itself

increase the explanatoriness of any of the particular explanations.4

Turning again to the cicada case, consider an example from Baker (2017). Why

is it that in fixed-gear bicycles with 14-tooth rear cogs and front cogs with either 47,

48, or 49 teeth, those with 47 in front minimise the wear on their rear tire? The best

explanation involves the same mathematics as the cicadas case: of (14, 47), (14,

48), and (14, 49), only the first is a coprime pair, and coprime integers maximise

their LCM with all lower integers. This means that bikes with 47-tooth front cogs
4From the perspective of the counterfactual account this is again far from being an idiosyncratic

feature of mathematical explanations. See, e.g. Ylikoski and Kuorikoski (2010: pp. 214-5), who offer
a general discussion of the virtues of formal unification in science without an increase in explanatory
information.
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will maximise the number of full pedal-turns required to make the rear cog (and

therefore the rear tire) return to its original position, and so are less likely to stop

on the same patch of tire. Since this explanation is structurally similar to the cicada

case, we can give a topic general explanation that covers both. Baker achieves this

by expanding the explanatory core of the cicada explanation (adding some further

premises which needn’t concern us here). However, there is clearly something odd

in thinking that, for example, biologists in possession of the number-theoretic ex-

planation of cicada periods could understand cicadas better by reflecting on fixed-

gear bicycles. Assuming it is a good one, the biologists’ explanation is as powerful

as it gets, as far as cicadas are concerned, and no amount of structurally similar

applications of number theory enhances it. Thus, from the viewpoint of the coun-

terfactual account, topic generality itself is not an explanatory virtue. It contributes

to explanatory power only if it brings with it an explanatory increase in scope gen-

erality.

At this point one might object: so much worse for the counterfactual account, if

it is unable to capture the significance of unification as an explanatory virtue. Gran-

ted, rendering an explanation more topic-general doesn’t help us to understand the

original explanandum better; it does, however, result in a new explanation of a

broader class of phenomena that includes both the original and the new explanan-

dum. So, for example, by expanding the core of the cicada example, Baker (2017)

has perhaps formulated a new explanation of both cicada life-cycles and the fea-

tures of certain fixed-gear bicycle cogs. We now have a choice as to whether to

adopt this more general explanation of this more general phenomenon, or keep

the relevant explanations separate. We should, the objection goes, prefer a more

unified theory of the world, ceteris paribus; so, we ought to adopt the more topic
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general explanation.

This line of reasoning is problematic for two reasons. First, we suspect that,

lurking behind this objection is a Quinean way of thinking that is inappropriate in

this context: that ontological questions should be settled at the level of our simplest,

most unified theory of the world. This way of thinking presupposes the dialectic of

the traditional indispensability argument, on which EIA is supposed to improve by

avoiding resting the case for platonism on the widely-contested principle of con-

firmational holism. While unifying two explanations may make for an overall more

virtuous (e.g. simpler, more elegant) theory, we fail to see how it can increase our

understanding of the respective explananda, for all the reasons presented above.5

Nevertheless, we are open to an objection based on an appeal to unification, but

more work would need to be done to mount one, as we argue below.

This brings us to our second reason. The above objection fails to appreciate

what we achieve by appealing to a theory of explanation that enjoys considerable

support independently of the EIA debate. We have shown in this section that,

from the perspective of the counterfactual theory, distinctively mathematical ex-

planations exhibit a high degree of scope generality, and in virtue of this are very

good explanations. In the following section, we use this same theory to explain

why the inclusion of mathematics in these explanations makes them better than

they would be without it. This arguably does everything an analysis of a kind of

mathematical explanation should do: it accounts for what makes them good ex-

planations, and accounts for the role of mathematics in generating this explanatory

goodness. Given this, the fact that our analysis does not recognise unification as an
5Although, see §6 for the related notion that appealing to more general facts can add ‘explanatory

depth’.
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explanatory virtue of distinctively mathematical explanations provides good, non-

question-begging reason for thinking that unification is not an explanatory virtue

of distinctively mathematical explanations. To respond to this by pointing out that

our analysis does not capture unification, and is for that reason inadequate, is to

cling to one’s intuitions in spite of the evidence we have provided against them.

A more appropriate means of objecting in this vein would be to provide an al-

ternative analysis of distinctively mathematical explanations that enjoys at least as

much independent support as our own, and show that, according to it, unification

is of genuine explanatory value. The prospects for this appear dim. While there

is good evidence that scientists prefer explanations that are more scope general,

there is no corresponding evidence that evolutionary biologists would prefer, or

have any reason to prefer, an explanation that is topic general enough to apply to

both the cicadas and the fixed-gear bicycles. We suspect that evolutionary biolo-

gists would have little interest in the more general explanation, qua evolutionary

biologists. If anything, there is reason to think that biologists would prefer a less

general explanation that is more grounded in the specific phenomenon they are

studying. After all, the more general explanation may fudge important distinctions

between the respective domains. In general, making explanations more abstract

in order to increase the DEGREE OF INTEGRATION between disparate areas of in-

quiry sometimes results in a loss of important domain-specific detail, resulting in

a loss of other explanatory virtues, such as factual accuracy, or cognitive salience.

The desirability of this trade-off depends on contextual, pragmatic factors that de-

termine how the value of different what-if questions is weighed (cf. Ylikoski and

Kuorikoski 2010: 213-214).

We have, of course, only provided good reason for thinking that unification is
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not an explanatory virtue of distinctively mathematical explanations. It is open to

our opponents to appeal to other kinds of mathematical explanation and argue that

their topic generality is explanatorily valuable in and of itself, and thus that the our

analysis will not adequately capture them.

5 The Explanatory Contribution of Mathematics

We have now traced the explanatory limits of two kinds of generality to which

mathematics contributes. We have seen that, from the perspective of the counter-

factual theory of explanation, topic generality improves explanations only to the

extent that it results in an explanatory increase in scope generality, and that explan-

ations can be improved through scope generality only up to a point. Given this,

the fact that mathematics maximises either kind of generality does not ipso facto

amount to an explanatory contribution. What, then, accounts for the judgement

that distinctively mathematical explanations truly are better than any nominalistic

alternative? We will now argue that mathematics makes a genuine explanatory

contribution to distinctively mathematical explanations, by maximising these ex-

planations’ cognitive salience.

Note first that, for distinctively mathematical explanations, mathematics is not

indispensable for generating a desirable level of scope generality. After all, we can

in principle state without mathematics the explanatory dependence between the

values of explanandum and explanans variables up to the desired point, however

scope-general this point is deemed to be. With reference to our toy example, sup-

pose we do this for all possible numbers of ideas up to one exceeding the number

of atoms in the observable universe. This is illustrated by the following, which can
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be written, mathematics-free, with first-order logic plus identity:

(A′) If there is exactly one idea, then the philosopher will not be able

to divide it evenly among three sections and(2) if there are ex-

actly two ideas, then the philosopher will not be able to divide

them evenly among three sections... and(3× 1084) if there are ex-

actly 3 × 1084 ideas, then the philosopher will be able to divide

them evenly among three sections.

Even though the explanation based on (A′) scopes way beyond any reasonable

scenario involving a philosopher writing a paper, and achieves the desired level

of scope generality, we agree with the platonists that the explanation turning on

(A) is really more explanatory. But not because it (A) further increases or maxim-

ises scope generality. Rather, the (A)-explanation is better because it achieves the

desired level of scope generality without compromising cognitive salience.

To see this, note how long and cumbersome the nominalistic explanation would

be. Presenting and using such an explanation to answer what-if questions concern-

ing particular counterfactual situations would be unduly difficult. By contrast, (A)

throws the same explanatory information into sharp relief, and affords a simple

means of answering the desired range of what-if questions: just plug in the ap-

propriate numeral and calculate. The explanation turning on (A) also avoids the

feeling that, though there is no explanatorily relevant information to be gained by

using (A) to answer what-if questions concerning numbers of ideas greater than

the number of atoms in the observable universe, there is something arbitrary about

stopping the explanation there (or anywhere else). Indeed, we may have no idea at

what precise point the answers to the relevant what-if questions cease to be explan-
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atorily relevant. But note that none of these virtues that make the (A)-explanation

more explanatory are due to (A) containing explanatorily relevant information that

cannot be in principle presented without mathematics. Rather, they are due to

its presenting the relevant information in a better way. Hence, the indispensable

contribution that mathematics makes in relation to scope generality is a matter of

improving—indeed maximising—cognitive salience.6

The same line of reasoning applies to the cicada example. Consider the follow-

ing two generalisations, each increasing in their scope:

(B′) Of time periods 12 to 18 years long, 13- and 17-year periods minimise inter-

section with all periods shorter than 12 years.

(B′′) Of time periods 12 to 18 years long, 13- and 17-year periods uniquely min-

imise intersection with all periods shorter than 12 years, and, of time periods

16 to 22 years long, 17- and 19-year periods uniquely minimise their inter-

section with all periods shorter than 16 years.

Explanatory generalisations (B′) and (B′′) are nominalistic. We think (along with

the platonists) that the explanation turning on the earlier mathematical generalisa-

tion (B) is truly more explanatory than any of those turning on such finite nominal-

istic generalisations. Why? Note first that mathematics is not necessary for increas-

ing scope generality here: the explanation turning on (B′′) is more scope-general

than the explanation turning on (B′), and we can further increase scope general-

ity with explanatory generalisations of the same (nominalistic) kind ad infinitum.
6From the perspective of the counterfactual account this is unsurprising, and far from being an

idiosyncratic feature of mathematical explanations. See, e.g. Ylikoski and Kuorikoski (2010: 214-
215), who argue quite generally that an explanation can improve in terms of its cognitive salience
without an increase in explanatory information.
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Thus, at whatever point the answers to relevant what-if questions cease to be ex-

planatorily relevant, we can generate the corresponding level of scope generality

without mathematics. Clearly, (B) maximises scope generality: there is no limit to

the range of possible explanans variables it can take, and so no limit to the range of

what-if questions it can answer. But this is not why the explanation turning on (B)

is better. We can increase the scope of the generalisation non-mathematically well

beyond its capacity to answer what-if questions which are relevant and reasonable

from the point of view of empirically well-supported scientific theories. For ex-

ample, a mathematics-free explanation of cicadas’ life-cycles that accommodates

every duration length up to the age of the universe overshoots in this way.

The (B)-explanation is not more explanatory because it maximises scope gener-

ality. It is more explanatory because it achieves the desired level of scope generality

without compromising cognitive salience. A nominalistic explanation that achieves

the desired level of scope generality would be extremely long and unwieldy, so ex-

tracting from it answers to what-if questions would be difficult, time-consuming,

and cognitively opaque to us. In contrast, the number-theoretic rule makes gener-

ating answers to what-if questions very easy and cognitively transparent. It also

avoids our having to answer the extremely difficult and somewhat tangential ques-

tion of at what precise point the relevant what-if question cease to be explanatorily

relevant. None of these benefits are due to (B) presenting explanatory informa-

tion that cannot be presented nominalistically. They are due to its presenting the

relevant information in a better way.

We conclude that mathematics’ role in the procurement of explanatory for dis-

tinctively mathematical explanations is a matter of improving cognitive salience.

This analysis is not specific to a number-theoretic explanation, and it applies, mu-
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tatis mutandis, to other well-known examples of distinctively mathematical ex-

planations, such as Euler’s graph-theoretic explanation of the non-traversibility of

Königsberg’s bridges. (See Jansson and Saatsi (forthcoming) for a starting point

for this latter example.)

6 Objection and Reply

Before we wrap-up, we need to consider one more potential objection. Perhaps

we have unduly focused on explanatory generality in terms of an explanation’s

scope of application (what we might call ‘explanatory breadth’), and ignored a

no less important form of understanding offered by mathematics: that of picking

out a more general feature of reality whose instantiation is responsible for the de-

pendencies at stake (what we might call ‘explanatory depth’). Take the cicada ex-

ample. Any nominalistic generalisation stating which durations minimise intersec-

tions up to some finite limit presents a series of facts about time, revealing a pattern

of dependence between certain time periods and the obtaining of an intersection-

minimisation relation between them. It does not explicitly tell us why these facts

obtain, or why the pattern emerges.

In contrast, the objection goes, (B) arguably tells us why this pattern holds, by

showing that each of these particular matters of fact (that p1 maximises its LCM

with each q < p1, that p2 maximises its LCM with each q < p2, etc.) obtain in

virtue of a single, more general fact: that all and only prime numbers are coprime

with all lower integers. If this is a genuine explanation, it is a mathematical ex-

planation of a mathematical fact—an intra-mathematical explanation; but, it could

be argued, it furnishes a deeper understanding of the associated facts about time.
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Again, we have a pattern of particular matters of fact—that each of a certain set

of time periods minimises intersection with each time period shorter than itself—

and the idea is that (c′) reveals that each of these particular facts obtains in virtue

of a single, more general fact, and thus provides a deeper explanation than any

nominalistic alternative. This kind of platonist story can be found in the literature.7

Our response is as follows. One should not be mislead by the way in which the

nominalistic generalisations are presented. While they are in a sense a conjunction

of facts, these facts are not disunified. The aim of explaining on the counterfactual

account is to characterise an actually obtaining relation of dependence between the

explanans and the explanandum, by revealing how changes in the former would

change the latter. What is revealed in doing this is not just a bunch of disjoint

facts that cry out for unification in terms of something else; it is how the actual

dependence relation holding between the explanans and the explanandum mani-

fests itself across various relevant counterfactual scenarios. So, while the platonist

may want to say that the pattern of dependence holds in this way because of that

mathematical fact, the nominalist will just say that the pattern of dependence holds

in this way because that is how the dependence relation represented by the explan-

ation manifests itself. Thus, from the perspective of the counterfactual account,

the charge that any nominalistic generalisation would make for a comparatively

shallow explanation is misplaced.
7Baker (2017: 199) appears to have this in mind when he says that the number-theoretic ex-

planation is deeper than mathematics-free alternatives, because it tells us why there are unique
intersection-minimising periods within some ranges of periods and not others. Pincock (2015) argues
that certain mathematical explanations explain by identifying physical facts as particular instances of
more general, abstract facts. Others highlight cases where the mathematics used to explain what look
like very different physical phenomena can be unified under a more general mathematical method,
and argue that this suggests there is a deeper, mathematical reason lying behind the relevant physical
phenomena (e.g. Colyvan 2002 and Baron, Colyvan, and Ripley 2017).
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This is unlikely to convince someone strongly under the sway of the intuition

that the mathematically-presented explanations are somehow ‘deeper’. However,

as things stand, that is all it is: an intuition. As we have stated, our aim is to demon-

strate how to push past the trading of intuitions, and this is where our appeal to a

theory of scientific explanation that is motivated independently of the debate really

pays off. Our analysis explains why distinctively mathematical explanations are to

be preferred over their nominalistic alternatives independently of their generating

depth in the above sense, and it does so by folding it into a general and independ-

ently well-supported theory of scientific explanation. On our story, the place of

distinctively mathematical explanations in a broader story about the preferences

and standards operative in scientific practice is clear, and this sets a very high bar.

Anyone wishing to argue for platonism by appeal to mathematics’ procurement

of depth (or any other ‘virtue’ our analysis leaves out) will have to develop an

analysis that rivals our own in its naturalistic credentials.8 Thus, whether our op-

ponents find the above response convincing or not, they are forced to do further

work in the methodological spirit of this paper to mount a counter-reply. Resting

on their intuition about the relative depth will not suffice. This marks precisely the

kind of progress we have aimed to achieve in this paper.
8For example, Baron, Colyvan, and Ripley 2017 develop a counterfactual analysis of mathemat-

ical explanation with an eye to unifying intra- and extra-mathematical explanations, so their account
may offer a means of spelling out the above kind of depth counterfactually. They hold back from
endorsing the analysis; but if they were to endorse it, and use it in support of EIA, they would have
to show that their account genuinely captures something of scientific explanatory value that ours
misses.

29



7 Conclusion

There is a critical, but seldom-recognised assumption shared by both sides in

the deadlocked debate about EIA: that the source of an explanation’s explanat-

ory power is purely a matter of its correctly representing explanatory features of

reality. On the basis of this assumption, platonists can challenge nominalists by ref-

erence to mathematical explanations that are judged to be more explanatory than

nominalistic alternatives: the difference in their explanatoriness must be due to the

mathematics representing explanatory features of reality that their nominalistic al-

ternatives do not, and nominalists are thereby challenged to say what those features

are, if not mathematical. This critical assumption lies behind the challenge from

explanatory generality, based on the popular idea that mathematics makes certain

explanations better than nominalistic alternatives by making them more general.

Our analysis reveals that nominalists can reject this critical assumption: ex-

planations can become more explanatory without accurately representing further

explanatory features of reality. According to the counterfactual account, explan-

atory power is a measure of how much modal explanatory information it provides

to an explainer. This is a function both of the amount of such information the ex-

planation provides about the relevant worldly features, and of the way in which

this information is presented. We take it as obvious that only increases in in-

formation about the explanatorily relevant worldly features—objective explanatory

dependences—as opposed to changes in how such information is presented, stand

a chance of securing further ontological commitments. Our analysis of some of the

key exemplars of distinctively mathematical explanation, displaying striking scope

and topic generality, shows that mathematics does not yield an increase in this kind
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of ontologically committing explanatory information. Its role is rather that of im-

proving cognitive salience. From the perspective of the counterfactual account, we

thus get a clear verdict in favour of nominalism: mathematics’ indispensable role

in distinctively mathematical explanations provides no reason to believe in math-

ematical objects.

There is some scope to resist our analysis of mathematics’ contribution, e.g. by

arguing that there is a further, scientifically kosher dimension of explanatory power

that our analysis doesn’t capture. Any such claim needs to be accompanied by

evidence that avoids the kind of intuition-trading and foot-stomping that we have

avoided by working within a well-founded theory of scientific explanation. As far

as we can see, the only way to do this would be to motivate an alternative account

of mathematics’ contribution to distinctively mathematical explanations within an

equally well-supported theory of explanation.
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