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ABSTRACT. A universal schema for diagonalization was popularized by
N.S. Yanofsky (2003), based on a pioneering work of F.W. Lawvere (1969),
in which the existence of a (diagonolized-out and contradictory) object
implies the existence of a fixed-point for a certain function. It was shown
that many self-referential paradoxes and diagonally proved theorems can
fit in that schema. Here, we fit more theorems in the universal schema
of diagonalization, such as Euclid’s proof for the infinitude of the primes
and new proofs of G. Boolos (1997) for Cantor’s theorem on the non-
equinumerosity of a set with its powerset. Then, in Linear Temporal
Logic, we show the non-existence of a fixed-point in this logic whose
proof resembles the argument of Yablo’s paradox (1985, 1993). Thus,
Yablo’s paradox turns for the first time into a genuine mathematico-
logical theorem in the framework of Linear Temporal Logic. Again the
diagonal schema of the paper is used in this proof; and it is also shown that
G. Priest’s inclosure schema (1997) can fit in our universal diagonal/fixed-
point schema. We also show the existence of dominating (Ackermann-
like) functions (which dominate a given countable set of functions, such
as primitive recursive functions) in the schema.

Keywords: Diagonal argument, self-reference, fixed-points, Yablo’s para-
dox, (linear) temporal logic.
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1. Introduction

Cantor’s Diagonal Argument was introduced in his third proof of the well-
known theorem on the non-denumerability of the reals; the argument shows
that there can be no surjective function from a set A to its powerset Z(A):
for any function F': A — Z(A) theset Dp = {x € A | 2 € F(x)} is not in
the range of F' because for any a € A we have a € Dp +— a & F(a) which is
equivalent with @ € (D \ F(a))U (F(a)\ Dr), so Dr # F(a). This argument

Article electronically published on 31 October, 2017.
Received: 1 November 2015, Accepted: 9 April 2016.
*Corresponding author.

(©?2017 Iranian Mathematical Society

1073



Diagonal arguments and fixed points 1074

is also shown in Russell’s Paradox: the collection R = {z | = & x} of sets is not
a set, since for any set A, Ac¢ R+— A¢ A, so A# R.

Many other theorems in mathematics (logic and set theory, computability
theory, complexity theory, etc.) use diagonal arguments; Tarski’s theorem on
the undefinability of truth, and Godel’s theorem on the incompleteness of suf-
ficiently strong and (w-)consistent theories are two prominent examples. In
2003, Noson S. Yanofsky in [18] mentioned some earlier descriptions for “many
of the classical paradoxes and incompleteness theorems in a categorial fashion”,
by using “the language of category theory (and of cartesian closed categories in
particular)” one can demonstrate some paradoxical phenomena and show the
above mentioned theorems of Cantor, Tarski and Godel; the goal of [18] was
“to make these amazing results available to a larger audience”. In that paper, a
universal schema has been considered in the language of sets and functions (not
categories) and paradoxes such as the Liar, the strong liar, Russell, Grelling,
Richard, Time Travel, and Lob, and also the theorems of Cantor (A £ Z(A)),
Turing (undecidability of the Halting problem, and existence of a non-re set),
Baker-Gill-Solovay (the existence of an oracle O such that PO # NPO), Car-
nap (the diagonalization lemma), Godel (first incompleteness theorem), Rosser
(incompleteness of sufficiently strong and consistent theories), Tarski (undefin-
ability of truth in sufficiently strong languages), Parikh (existence of sentences
with very long proofs), Kleene (Recursion Theorem), Rice (undecidability of
non-trivial properties of recursive functions), and von Neumann (existence of
self-reproducing machines) are shown as instances (see also Gaifman’s paper [7]
for a unification of Gédel-Carnap’s diagonal lemma and Kleene’s recursion the-
orem). Indeed, [18] was based on [11] in which Lawvere used the framework
of cartesian closed categories to unify many diagonal arguments in set theory
and logic; Yanofsky [18] simplified Lawvere’s framework to a set-theoretical
diagrammatical template.

In this paper, we fit some other theorems and proofs into the above men-
tioned universal schema of Yanofsky; these include Euclid’s Theorem on the
infinitude of the primes, Boolos’ proof of the existence of some explicitly defin-
able counterexamples to the non—injectivity of functions F : #(A) — A for any
set A, Yablo’s paradox in a form of a mathematical theorem in the framework
of linear temporal logic as a non—existence of some certain fixed—points, and the
existence of dominating functions for a given countable set of functions such
as Ackermann’s function which dominates all the primitive recursive functions.
In the rest of the introduction we fix our notation and introduce the common
framework.

1.1. Cantor’s Theorem by Fixed—Points. Let B, C' and D be arbitrary
sets. Any function f : B x C — D corresponds to a function ]?: C - DB
where f(c) (b) = f(b,c) for any b € B and ¢ € C (the set D consists of all the
functions from B to D). Conversely, for any function F': C — D? there exists
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some f : B x C — D such that f = F} it is enough to take f(b,¢) = F(c)(b)
for any b € B and ¢ € C. In the other words — : DP*C = (DB)C. Let
f: BxC — D be afixed function. A function g : B — D is called representable
by f at a fixed ¢y € C, when for any = € B, g(z) = f(z,¢p) holds. In the other

words, g = f(cg). So, the function f : C — DP is onto if and only if every
function B — D is representable by f at some ¢y € C.

Theorem 1.1 (Cantor’s Diagonal Theorem). Assume the function o : D —»
D, for a set D, does not have any fixved point (i.e., a(d) # d for all d € D).
Then for any set B and any function f : B x B — D there exists a function
g : B — D that is not representable by f; i.e., for allb € B, g(—) # f(—,b).

Proof. The desired function g : © — a(f(x,x)) can be constructed as follows:

f

BxB D

AB o

D

g

where Ap is the diagonal function of B (Ap(x) = (z,z)). If g is representable
by f at b € B, then g(x) = f(z,b) for any € B, and in particular g(b) =
f(b,b). On the other hand by the definition of g we have g(z) = a(f(z,z)) and
in particular (for z = b) g(b) = a(f(b,b)). It follows that f(b,b) is a fixed—point
of «; a contradiction. Therefore, the function g is not representable by f (at
any b € B). O

For any set A we have Z2(A) = 24 where 2 = {0,1} and 24 is the set
of all functions from A to 2. So, Cantor’s diagonal theorem is equivalent to
the non-existence of a surjection A — 24. Putting it another way, Cantor’s
diagonal theorem says that for any function f : A x A — 2 there exists a
function g : A — 2 which is not representable by f (at any member of A). In
this new setting, Cantor’s (diagonal) proof goes as follows: let Ay : A - Ax A
be the diagonal function of A (A4(z) = (z,x)) and let a : 2 — 2 be a fixed
function. Define g : A — 2 by g(z) = a(f(Da(x))). If g is representable by
f and fixed a € A, then f(a,a) = g(a) = a(f(a,a)), which shows that « has
a fixed—point (namely, f(a,a)). So, for reaching a contradiction, we need to
take a function a : 2 — 2 which does not have any fixed—point; and the only
such function (without any fixed—point) is the negation function neg: 2 — 2,
neg(i) =1—1ifor i =0,1. For a function F: A — FP(A) let f: Ax A— 2be

n_ [ 1 if ae F(d)
f(“"‘)_{ 0 if ag F(a).

The function g constructed by the diagram
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AxA f

[V

AV neg

A

o

is the characteristic function of the set Dp = {z € A |z ¢ F(x)}. Saying that
“g is not representable by f (at any a € A)” is equivalent to saying that “the
set Dp is not in the range of F' (i.e., Dp # F(a) for any a € A)”.

In the rest of the paper we will fit many other theorems in the diagram
which was applied in the proof of Theorem 1.1 by varying the sets B, D and
the functions f, . In the most cases of the current paper, we assume D = 2
and a = neg as in the above diagram.

2. Euclid’s theorem on the infinitude of the primes

Our first application of Cantor’s Diagonal Theorem is a surprising one: the
ancient theorem of Euclid stating that there are infinitely many prime numbers.
We use (almost) the classical proof of Euclid which seems far from being a
diagonal argument. Indeed there are many different proofs of this theorem
in the literature, and ours is not a new one; we just fit the classical proof of
Euclid’s Theorem in a diagonal diagram as above.

Theorem 2.1 (Euclid). There are infinitely many prime numbers in N.

Proof. Define the function f: N x N — 2 as follows:

F(n,m) = 1 if all the prime factors of (n! + 1) are less than m,
771 0if some prime factor of (n! 4 1) is greater than or equal to m.

For example, f(4,9) = 1 because 4! + 1 = 25 and it has no other prime factor
but 5 and 5 < 9; it can be seen that f(4,m) =0 for all m <5 and f(4,m) =1
for all m > 5. Indeed, for any n € N we have f(n,n) = 0 because no prime
factor of n! + 1 can be less than n: for any d < n if d | (n! + 1) then from
d | n! it follows that d | 1 so d cannot be a prime. Now, consider the function
g : N — 2 constructed as

NxN

[3*]
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If all the prime numbers are less than p € N then the function g is representable
by f at p: for any n € N, f(n,p) = 1 and g(n) = neg(f(n,n)) = 1; whence
g(n) = f(n,p) for all n € N. A contradiction follows as before: if such a
number p exists, then f(p,p) becomes a fixed—point of neg. So, there exists no
p € N such that all the primes are non—greater than p; whence there must be
infinitely many primes. |

This surprising argument, we believe, deserves another closer look: define the
function F' : N — Z(N) by

F(n) = {z € N | n is greater than or equal to all the prime factors of (x!4+1)}.

Cantor’s Theorem says that F' cannot be surjective, or more explicitly, the
(anti-diagonal) set Dp = {n | n € F(n)} is not equal to any F(m). A number—
theoretic argument shows that D = N because for any n all the prime factors
of (n!+1) are greater than n (see the proof of the above Theorem 2.1). On the
other hand if p € N is the greatest prime, then F'(p) = N = Dp, a contradiction!

3. Some other proofs for Cantor’s theorem

In 1997, the late George Boolos published another proof [3] for Cantor’s
Theorem, by showing that there cannot be any injection from the powerset of
a set to the set. This proof has been (implicitly or explicitly) mentioned also
in [9,15] (but without referring to the earlier [3]). The first proof is essentially
Cantor’s Diagonal Argument; in fact the proof of the following theorem gives
some more information than mere non—injectivity of any function h : Z(A4) —
A, i.e., the existence of some C, D C A such that h(C) = h(D) and C # D. Let
us emphasize that an elementary reasoning shows that if there is an injective
function from a set A to a set B, then there is a surjective function from B
to A (the converse is also true, but needs the axiom of choice). Therefore,
“the nonexistence of an injective function from Z?(A) to A” is an immediate
consequence of “the nonexistence of a surjective function from A to Z(A)”.
Boolos noticed that, proving nonexistence of a surjection from A to Z(A)
proceeds by exhibiting a set (namely D of the introduction) which is missing
from the range of f; but the easy reduction from “there is no injective h from
P(A) to A” to “there is no surjective f from A to P(A)” does not definably
yield counterexamples to the injectivity of h.

Theorem 3.1. No function h : Z(A) — A can be injective.

Proof. Let h: Z(A) — A be a function. Define f: Z(A) x Z(A) — 2 by

1 if h(X) €Y,
f(X7Y) =
0 if h(X)eY,

and let g : Z2(A) — 2 be the following function
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PA)x Z(A) / 2
AT IHEE
Z(A) 2.

o
o

Let Dp ={a € A|Y CA (W(Y)=a& a YY)} Notethat for any X C A
we have h(X) ¢ X — h(X) € Dj,. We show that if h is injective then g is
representable by f at Dj. For, if h is injective then for any X C A we have
MX)eDp, — FYCAMRY)=h(X)&h(X)EY)

— Y Y=X&h(X)€Y)

— h(X) ¢ X.
Therefore, we get h(X) € X «— h(X) € D, for all X C A. So, for any X C A,
one gets

f(X,Dh>=O — h(X)EDh
— hX)¢X
+— (X, X)=1
+— g(X) =neg(f(X,X))=0.

Thus, we conclude that g(X) = f(X, D). The contradiction (that neg pos-
sesses a fixed—point) follows as before, implying that the function h cannot be
injective. O
Corollary 3.2. For any function h : P(A) — A there are some C,D C A
such that h(C) = h(D) € D\ C (and so C # D).

Proof. For any X C A we had h(X) ¢ X — h(X) € Dj, whence from the
implication h(Dy) & Dp, — h(Dp) € Dy, we can conclude that h(Dy) € Dy,.
Thus, there exists some Cp, such that h(Cp) = h(Dy) and h(Dy) & Cp. So, for

these subsets Cp, Dp, of A we have h(Cp) = h(Dy,) € Dy \ Cp. O
Boolos [3] found out that the set Dj in the above proof has an explicit
definition:

Dh={acA|FYCAMLY)=a&k agl)}
However, the set C; was not defined explicitly, and its mere existence was
shown. So, this proof of non-injectivity was not constructive (did not explicitly
construct two sets C and D such that h(C) = h(D) and C # D). For a
constructive proof, Boolos [3] proceeds as follows (cf. [9,15]).

Fix a function h : Z(A) — A. Call a subset B C A an h—woset (h well
ordered set) when there exists a well ordering < on B such that b = h({z €
B |z < b}) for any b € B. For example, {h(#)} is an h-woset, and indeed any
non—empty h—woset must contain h((}). Some other examples of h—wosets are

{1(0). A({r(®)})} and {2(0), h({rO)}), h({R@). R{RO})] )}, ete.
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We need the following two facts about the h—wosets:

(1) If B and C are two h—wosets with the well ordering relations <p and
< ¢ then exactly one (and only one) of the following holds:
(i) (B,=<p) is an initial segment of (C,<¢), or
(ii) (C,=<¢) is an initial segment of (B, <p), or
(iii) (B,=<B) = (C,=¢).
(2) For any h—woset B, if h(B) ¢ B then the set ®(B) = BU{h(B)} is an
h—woset, and B is an initial segment of ®(B).

The statement (1) corresponds to Zermelo’s theorem that any two well or-
dered sets are comparable to each other: either they are isomorphic or one
of them is isomorphic to an initial segment of the other one. It follows from
(1) that the union of all h—wosets is an h—woset, denoted by Wj; thus W,
is the greatest h—woset. For (2) let B be an h—woset with the well ordering
<p such that h(B) ¢ B. Then ®(B) is an h-woset with the well ordering
<¢B)==B U (B x {h(B)}).

The proof of Boolos [3] continues as follows (see also [9]): since ®(W},) =
W, then h(Wy) € Wy, Also for Vi, = {z € Wy |  <w,, h(Ws)} we have
hOWy) = h(Vy) and Wy, # V), because h(W),) & Vi,. Indeed, the result is
stronger than this (and Corollary 3.2) since the sets W, and V}, were explicitly
defined in such way that Vj g W, holds and h(Vy,) = h(Wp) € Wi \ Vi. As
another partial surprise we show that this proof is also diagonal and fits in our
universal framework.

Theorem 3.3 (Boolos). For any set A and function h : 2(A) — A there exist
explicitly definable subsets V,W C A such that V.G W and h(V) = h(W) €
WAV.

Proof. Let W}, be the class of all h—wosets; i.e., all subsets B C A on which
there exists a (unique) well ordering <p such that b = h({x € B | 2 <p b}) for
all b € B. Define ® : W), — W, by

[ XUMX)Y i h(X)gX
@(X)—{ X if h(X)eX

. _ =x U (X x{h(X)}) if h(X)¢gX
with =)= { <x if h(X) € X.
Define the function f: Wj;, x Wj — 2 by

FX,Y) = 1 if &(X) is isomorphic to Y or an initial segment of it
7771 0 ifY is isomorphic to an initial segment of ®(X).

Let W), be the greatest element of W, (as above). Then f(X, W) =1 for all
X € Wj,. We claim that

(%) there exists some Z € W, such that h(Z) € Z or equivalently &(Z) = Z.
Assume (for a moment) that the claim is false. Then for all X € Wj, X
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is (isomorphic to) an initial segment of ®(X); whence f(X,X) = 0. Let ¢ :
W}, — 2 be defined by the following diagram

Wh X ‘V;,

neg

>
=
™

It follows from assuming the falsity of the claim (%) that
9(X) = neg(f(X, X)) =1 = f(X, Wh).

Thus g is representable by f (at Wj,) and the usual contradiction (the existence
of a fixed—point for neg) follows. So, the claim (x) is true, which implies that
there exists some Z € Wy, such that h(Z) € Z or equivalently ®(Z) = Z. It
can be seen that then Wy, = Z, so ®(W),) = Wy, and h(W),) € Wy,. Whence,
for the (explicitly definable) set Vi, = {x € W), | © <y, h(Wr)} (C A) we will
have Vi, G Wy, and h(V,) = h(Wh) € Wi \ Vi Note that W), was also defined
explicitly. 0

Let us reiterate what was proved:

(Corollary 3.2) For any function h : #(A) — A a subset D), C A was explicitly
defined in such a way that there exists some C;, C A (without an explicit
definition) such that Cj, # Dy, and h(Cp) = h(Dy,) € Dy, \ C.

(Theorem 3.3) For any function h : #(A) — A two subset V, C A and
Wy € A were explicitly defined in such a way that Vs, & W, and h(V),) =
h(Wy) € Wi \ V.

4. Yablo’s paradox

There was a general belief that all the paradoxes stem from a kind of circu-
larity (or involve some self-reference, or use a diagonal argument). In contrary
to this belief, Stephen Yablo in 1985 designed a paradox that seemingly avoided
self-reference; see [16,17]. Let us have a brief review of Yablo’s Paradox. Con-
sider the sequence of sentences {V, }nen such that for each n € N:

Yy is true <= Vk > n (Y is untrue).
The paradox follows from the following deductions. For each n € N,
Y, is true Vk > n () is untrue)
(Vn+1 is untrue) and Vk > n + 1 (Y is untrue)
(Vn41 is untrue) and (Y41 is true),
Contradiction!

LEEy
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Thus Y, is not true. So,
Vk (Vx is untrue),
and in particular
VEk > 0 (Y is untrue),
and so )Yy must be true (and untrue at the same time); a contradiction!

4.1. Propositional Linear Temporal Logic. The propositional linear tem-
poral logic (LTL) is a logical formalism that can refer to time; in LTL one
can encode formulae about the future, e.g., a condition will eventually be true,
a condition will be true until another fact becomes true, etc. LTL was first
proposed for the formal verification of computer programs in 1977 by Amir
Pnueli [13]. For a modern introduction to LTL and its syntax and semantics
see e.g. [10]. Two modality operators in LTL that we will use are the “next”
modality O and the “always” modality O. The formula Oy holds (in the cur-
rent moment) when ¢ is true in the “next step”, and the formula Oy is true
(in the current moment) when ¢ is true “now and forever” (“always in the
future”). In the other words, O is the reflexive and transitive closure of O. It
can be seen that the formula O—p «— —Ogp is always true (is a law of LTL,
see T1 on page 27 of [10]), since ¢ is untrue in the next step if and only if it is
not the case that “gp is true in the next step”. Also the formula OO is true
when 9 is true from the next step onward, that is ¢ holds in the next step,
and the step after that, and the step after that, etc. The same holds for OO;
indeed the (equivalence) formula OOy «— OO is a law of LTL (T12 on page
28 of [10]). Whence, we have the equivalences OO—p < OOy ¢ OOy in
LTL.

The intended models (semantics) of LTL are systems (N, I) where I C NxAtoms
is an arbitrary relation which can be extended to all formulas as follows:

nlFe A1y if and only if nl- ¢ and n I 9,

nlk —p if and only if n lff ¢,

nlk Op if and only if (n+1)IF ¢,

n - Op if and only if m IF ¢ for every m > n.

A formula 7 is called valid (an LTL tautology) when for any model (N, IF) and
any n € N we have n I 7. We can readily check the validity of O—¢ +— —O¢p
as follows:

nlkFO—p<= (n+1)IF-p<= (n+1)If ¢ <= nlf Op < nlF 0.

Also the validity of OO +— OO can be readily checked:
n - OOy (n+1)IFOy

Vk > n+ 1(k - )

Yk >n|(k+1) II—¢]

Yk > n(kIF Oy)

n - O0y.

rrees
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Now we show the non—existence of a formula % that satisfies the equivalence
Y +— 00~ (+—00~% +— 0-0%);
in other words % is a fixed—point of the operator

xr — OO—x (E O0—x = D—\Ox).

Following [18] we can demonstrate this by the following diagram
LTLxLTL / 2
AL Ineg
LTL 2

g
where LTL is the set of sentences in the language of LTL and f is defined by

{1 if X #£007Y,
f(X’Y)_{o if X =o0o-Y.

Here, g is the characteristic function of all the Yablo-like sentences, the sen-
tences which claim that all they say in the future (from the next step onward)
is untrue.

Theorem 4.1. For any ¢, the formula (cp > OD—\cp) is not provable in LTL.

Proof. If LTL proves ¢ <> OO for some (propositional) formula 1), then for
a model (N, IF):
(i) If m Ik 4 for some m, then we should have m IF OO so (m + 1) IF
O, hence (m+1) Ik = for all ¢ > 1. In particular, we have (m+1) IF
—1p and (m + j) IF =) for all j > 2 which implies (m + 2) IF O— or
equivalently (m + 1) IF O0O-% so (m + 1) IF ¢, a contradiction!
(ii) So for all k we have k I =) or equivalently k IF ~OO— or k IF O—~O-p,
thus (k+ 1) IF =O0—; hence (k+n) IF 4 for some n > 1, contradicting
(i)!
So, LTLY ((p ~ ODﬁga) for all formulas ¢. O

The above proof is very similar to Yablo’s argument (in his paradox) pre-
sented at the beginning of this section, and it explains that Yablo’s paradox has
turned into a genuine mathematico—logical theorem (in LTL) for the first time
in Theorem 4.1', and in the following stronger theorem which can be proved
along almost the same line of reasoning.

INote that Yablo’s paradox has already been used to give new proofs of some old theorems
e.g. in [5] (Godel’s theorem) or in [12] (Rosser’s Theorem); but no new theorem had come
out of it.
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Theorem 4.2. For any v, the formula —\D(<p ~ Olj—mp) is provable in LTL.

Proof. By [10, Theorem 2.4.10], it suffices to prove that —\D(go OD—mp) is
valid in any model of LTL, or, equivalently, the formula O (cp ~ Olj—mp) is not
satisfiable in any node of any model of LTL. For a moment assume that there
is a model (N,IF) and a node n € N for which n IF D(<p R ODﬁgp). Then we
have Vi > n: il (¢ +> OO—¢p) which implies that

Vi>n:ilkp < ilFOO~p < i+ 1IFO-¢.

(i) If for some j > n we have j IF ¢, then j + 1 |- O—¢ and so j+ £ |f ¢
for all £ > 1. In particular, j + 1 I ¢ whence j + 2 If O—¢ which is in
contradiction with j + 1 IF O—p.

(ii) If for all 7 > n we have j If¥ o, then n I ¢ so n+ 1 I O—¢; hence there
must exist some i > n with 4 I ¢ which contradicts (i) above.

So, LTLF —O (cp ~ OD—@) for all formulas ¢. |

4.2. Priest’s Inclosure Schema. In 1997 Priest [14] showed the existence of
a formula Y (z) which satisfies the equivalence Y (n) <> Vk>n =T ("Y (k)7) for
every n € N, where T (z) is a (supposedly truth) predicate; here "¢ is the
(Godel) code of the formula . Here we construct a formula Y (x) which, for
every n € N, satisfies Y(n) < Vk>n ¥("Y(k)7) for some II; formula ¥, by
using the Recursion Theorem (of Kleene); for recursion—theoretic definitions
and theorems see e.g. [0]°. Let T denote Kleene’s T Predicate, and for a fixed
IT; formula ¥(z) let r be the recursive function defined by r(z,y) = pz(z>
z & =V ("=FuT(y, z,u)")); note that =¥ is a ¥y formula. By the SI" theorem
there exists a primitive recursive function s such that oy, (z) = r(x,y); here
©n, denotes the unary recursive function with (Godel) code n, so g, ©1, @2, -
lists all the unary recursive functions. By Kleene’s Recursion Theorem, there
exists some (Godel code) e such that ¢ = @4y Therefore,

Pe(T) = ey (x) = 7(2,€) = p2(2>x & =¥ (T=FuT(e, z,u)")).
So, for any x € N, JuT (e, z,u) & ¢c(z)] < Fz(2>z & ~V("-FuT(e, z,u)"))
holds, equivalently, we have
—~FuT(e,z,u) <= Vz>x ¥("T-FuT(e, z,u)™).
Therefore, if Y(v) = -32T(e, v, 2), then for any n € N, we have
V(n) < Yk >n U(CY(E)T).

Let us note that Yablo’s paradox occurs when ¥ is taken to be an untruth (or
non-satisfaction) predicate; in fact one might be tempted to take —Sat 1 (z, 0)
(see [3, Theorem 1.75]) as ¥(z); but by construction Saty (z,0) is II; and
so =Satr 1 (z,0) is X1, and our proof works for U € II; only (otherwise the

20f course the mere existence of such a formula Y (z) can be inferred directly from Godel’s
Diagonal Lemma.
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function r could not be recursive). Actually, the above construction shows
that the predicate Satr(z,0) (in [8]) cannot be ¥q, which is equivalent to
saying that the set of (arithmetical) true II; sentences cannot be recursively
enumerable, and this is a consequence of Gédel’s first incompleteness theorem®.

In [14] Priest also introduced his Inclosure Schema and showed that Yablo’s
paradox is amenable in it (see also [1]). In the following, we show that Priest’s
Inclosure Schema can fit in Yanofsky’s framework [18]. With some inessential
modification for better reading, Priest’s inclosure schema is defined to be a
triple (2,0, §) where

e () is a set of objects;
e O C Z(Q) is a property of subsets of Q such that 2 € ©;
e §:0 — Qis a function such that for each X € 0, 6(X) € X.

The fact any inclosure schema is contradictory can be derived from the fact
that by the second item above, §(2) must be defined and belong to €2, but at
the same time by the third item 6(Q) & Q. We show how this can be proved
by the non—existence of a fixed—point for the negation function.

Theorem 4.3. If an inclosure schema ezists, then negation has a fized—point.

Proof. Assume (2, 0,0) is a (hypothetical) inclosure schema. Put f : @ x© —
2 as follows

PN =0 it 500 g,

and let g : © — 2 be defined as

Ox0O /

Ae

neg

Re———

(O]

We show that ¢ is representable by f at . For every X € © we have f(X,Q) =
1. On the other hand by the property of ¢, for any X € © we have §(X) ¢ X,
and so f(X,X) =0, thus g(X) = neg(f(X, X)) = 1. Whence g(X) = f(X,Q)
holds for all X €0O. O

3This line of reasoning also shows the non—existence of a formula 0(z) (in arithmetical
languages) which can satisfy 6(z) > Vy > z—=0(y) in N or in a theory containing Peano’s
Arithmetic.
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5. Dominating functions

Ackermann’s function is a recursive (computable) function which is not prim-
itive recursive (see e.g. [6]). The class of primitive recursive functions is the
smallest class which contains the initial functions, i.e.,

e the constant zero function z(z) = 0,

e the successor function s(z) =z + 1 and

e the projection functions p?(z1,...,x,) = x; for any 1 <i < n €N,
and is closed under

e composition and
e primitive recursion,

i.e., for primitive recursive functions f, f1,..., f» the function comp(f; fi,..., fn)
defined by (1,...,2m) = f(fi(z1,-- -, Zm), -, fa(X1,. .., 2pm)) is also prim-
itive recursive, and also for primitive recursive functions g and h the (primi-
tively recursively defined) function prim.rec(g, h) defined by (z1,...,z,,0) —
g(z1,...,zn) and (z1,..., 2z, z+1) — h(prim.rec(g, h)(z1,y ..., Tn, ), T1,. ..,
Tn, x) is also primitive recursive. The class of recursive functions contains the
same initial functions and is closed under composition, primitive recursion, and
also

e minimization,

i.e., for recursive function f the function min(f) defined by (z1,...,z,) — y
where y is the least natural number that satisfies f(x1,...,2,,y) = 0 is also
recursive; note that then for all z < y we have f(x1,...,x,,2) # 0, and if there
is no such y then min(f) is undefined on z1,...,z,.

In fact, Ackermann’s function is not only a non—primitive recursive (and a
recursive) function, but it also dominates all the primitive recursive functions
(see e.g. [6]). A function g is said to dominate a function f (or f is dominated
by g) when for all but finitely many z’s the inequality g(z) > f(z) holds.
Here we show a way of dominating a given enumerable list of functions by
diagonalization. Before that let us note that the set of all primitive recursive
functions can be (recursively) enumerated: let #(f) denote the (Gédel) code of
(a defining program of) the function f and define the Gddel code of a primitive
recursive defining program inductively:

#(z) =1,

#(S) =2, )

#(pi) = 2"-3",

#(comp(f; fr,. ., fu) = 5#U) . THUID . gF,

#(prim.rec(g, h)) = 3#(9) . 5#(h),

where p; is the i—th prime number (thus, o = 2,01 = 3,02 =5,03 =7, ).
Let us note that while comp(z;s) = z as functions but their defining programs
have different codes: #(comp(z;s)) = 572 and #(z) = 1. Let v, be the
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primitive recursive function with code n, if n is a code of such a function; if
n is not a code for a primitive recursive function (such as n = 3 or n = 10)
then let v, be the constant zero function z. So, vy, v, Vg, --- lists all the
primitive recursive functions. We show the existence of a unary function that
dominates all the functions v;’s in the above list. The following theorem seems
to have been first formulated by Paul du Bois-Reymond ([1,2]) in his study of
the eventual dominance in the space N

Theorem 5.1. For a list of functions f1, f2, f3, -+ : N = N, there exists a
unary function N — N that dominates them all.

Proof. Define the function f: N xN — N as f(n,m) = max(<y) fi(m) and let
g be defined by the following diagram where s is the successor function:

b

Nx N N

A}q S

8

In fact, the function g : N — N is defined as g(x) = max(;<s) fi(z) + 1. Since
the successor function does not have any fixed—point, the function g is not equal
to any of f;’s. Moreover, g dominates all the f;’s, since for any m € N and any
x>m by the definition of g we have g(x) >max(;<z) fi(z) > fim(z). O

For dominating the primitive recursive functions (some of which are not
unary) we can consider their unarized version: let pg, p1, p2,--- be the list of
unary functions N — N defined as p;(z) = v;(x,...,x). Whence pg, p1,p2,- -
lists all the unary primitive recursive functions, and the construction of The-
orem 5.1 produces a unary function which dominates all the unary primitive
recursive functions. Let us note that the function g obtained in the proof of
Theorem 5.1 is computable (intuitively) and so recursive (by Church’s Thesis);
one can show directly that the above function g is recursive (without appeal-
ing to Church’s Thesis) by some detailed work through Recursion Theory (cf.

e.g. [0]).

6. Conclusions

There are many interesting questions and suggestions for further research
at the end of [18] which motivated the research presented in this paper; most
of the questions have not been answered, yet. The proposed schema, i.e., the
diagram of the proof of Theorem 1.1,
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BxB / D

AB o

B D

8

can be used as a criterion for testing whether an argument is diagonal or not.
What makes that argument (of the non—existence of a fixed—point for o : D —
D) diagonalis the diagonal function Apg : B — Bx B. In most of our arguments
we assumed D = 2 = {0,1} and a = neg by which the proof was constructed
by diagonalizing out of the function f : B x B — D. Only in Theorem 5.1
we considered D = N and o = s (the successor function) which was used for
generating a dominating function. We could have used the diagonalizing out
argument by setting D = 2 = {0, 1} and @ = neg for the function f:NxN— 2,
defined by

) =
Fmm) =11 i faim) £0

Then the constructed function § : N — 2 by §(n) = neg(f(n,n)) differs from
all the functions f;’s (because g(i) # f;(¢) for all 7). So, this way one could con-
struct a non—primitive recursive (but recursive) function, though this function
does not dominate all the primitive recursive functions.

For other exciting questions and examples of theorems or paradoxes, which
secem to be self-referential, we refer the reader to the last section of [18]. It
will be nice to see some of those proposals or other more phenomena fit in the
above universal diagonal schema.

z {0 if fn.(m)=0,
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