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Theoremizing Yablo’s Paradox

Abstract

To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some
self–reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly
avoided self–reference. We turn Yablo’s paradox, the most challenging paradox in the recent years,
into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo’s paradox comes
in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical.
Formalizing these versions of Yablo’s paradox, we prove some theorems in LTL. This is the first time
that Yablo’s paradox(es) become new(ly discovered) theorems in mathematics and logic.
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1 Introduction

Paradoxes are interesting puzzles in philosophy and mathematics. They can be more interesting when
they turn into genuine theorems. For example, Russell’s paradox which collapsed Frege’s foundations of
mathematics, is now a classical theorem in set theory, implying that no set of all sets can exist. Or,
as another example, the Liar paradox has turned into Tarski’s theorem on the undefinability of truth in
sufficiently rich languages. This paradox also appears implicitly in the proof of Gödel’s first incompleteness
theorem. For this particular theorem, some other paradoxes such as Berry’s ([2, 3]) or Yablo’s ([12, 13])
have been used to give alternative proofs ([5, 9]). A more recent example is the surprise examination
paradox [4] that has turned into a beautiful proof for Gödel’s second incompleteness theorem ([8]).

In this paper we transform Yablo’s paradox into a theorem in the Linear Temporal Logic. This paradox,
which is the first one of its kind that supposedly avoids self–reference and circularity has been used for
proving an old theorem ([5, 9]) but not a new theorem had been made out of it. In this paper, for the very
first time, we use this paradox (actually its argument) for proving some genuine mathematical theorem in
Linear Temporal Logic. Roughly speaking, we show that certain operators do not have fixed–points in this
logic, where the proof is exactly Yablo’s paradox (reaching to a contradiction by assuming the existence of
certain fixed–point sentences). Let us note that very many other operations in the Linear Temporal Logic
do have fixed–points, which constitute some other genuine mathematical theorems.

2 Yablo’s Paradox

To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self–
reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided
self–reference ([13, 12]). Let us fix our reading of Yablo’s Paradox: Consider the sequence of sentences
{Yn}n∈N such that for each n ∈ N: Yn ⇐⇒ ∀k > n (Yk is not true).

The paradox follows from the following deductions. For each n ∈ N,

Yn =⇒ ∀k > n (Yk is not true)
=⇒ (Yn+1 is not true) and ∀k > n+ 1 (Yk is not true)
=⇒ (Yn+1 is not true) and (Yn+1 is true),

thus Yn is not true. So, ∀k (Yk is not true), and in particular ∀k > 0 (Yk is not true), and so Y0 must be
true (and not true at the same time); contradiction!

Some paradoxes turn into mathematical–logical tautologies and so become (interesting) theorems. For
example, Liar’s paradox when translated into first–order logic is a sentence L such that L ↔ ¬L. The
fact that this is contradictory is equivalent to the fact that the formula ¬

(
ϕ ↔ ¬ϕ

)
is a tautology in

propositional logic. As another less trivial paradox, take Russell’s paradox: there can be no set S such
that for every x we have x ∈ S ↔ x 6∈ x. Writing this in first–order logic (in the language {∈}) we have
a logical theorem: ¬∃y∀x(x ∈ y ↔ x 6∈ x). Indeed, this first–order logical tautology still holds when we
replace the membership relation ∈ with an arbitrary binary relation R: the sentence ¬∃y∀x(xRy ↔ ¬xRx)
is again a first–order logical tautology. On the other hand if xRy is interpreted as “y shaves x” then the
above tautology is nothing but Barber’s Paradox. As for Yablo’s paradox, J. Ketland has translated it
into first–order logic (called Uniform Homogeneous Yablo Scheme) in [7]:

(Y) : ∀x
(
ϕ(x)↔ ∀y[xRy → ¬ϕ(y)]

)
,

where R is a binary formula (which could be a binary relation symbol, i.e. an atomic formula) with the
auxiliary axioms stating that R is total and transitive:

(A1) : ∀x∃y(xRy) and (A2) : ∀x, y, z(xRyRz → xRz).
A Yablo-like argument can show that the formula ¬(Y ∧ A1 ∧ A2) is a first–order tautology.
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3 Linear Temporal Logic

Here, we show that there is another way to have a formal version of Yablo’s paradox (different from the
formalized version discussed above), and that is in Linear Temporal Logic. The (propositional) linear
temporal logic (LTL) is a logical formalism that can refer to time; in LTL one can encode formulae about
the future, e.g., a condition will eventually be true, a condition will be true until another fact becomes
true, etc. LTL was first proposed for the formal verification of computer programs in 1977 by Amir Pnueli
[10]. For a modern introduction to LTL and its syntax and semantics see e.g. [6]. Two modality operators
in LTL that we will use are the “next” modality denoted by # and the “always” modality denoted as 2.

3.1 Syntax and Semantics of LTL

We assume the reader is familiar with the general framework of LTL, but for the sake of accessibility, we
list the main notations, definitions and theorems which will be referred to later on. For details we refer
the reader to [6]. Let V be a set of propositional constants. The alphabet of a basic language LLTL(V)
(also shortly: LLTL) of propositional linear temporal logic LTL is given by

all propositional constants of V and the symbols {false,→,#,2, (, )}.
The inductive definition of formulas (of LLTL(V)) is as follows:

1—Every propositional constant of V and also the constant symbol false is a formula.
2—If ϕ and ψ are formulas then (ϕ→ ψ) is a formula.
3—If ϕ is a formula then #ϕ and 2ϕ are formulas.

Further operators can be introduced as abbreviations:
¬,∨,∧,↔, true as in classical logic, and ♦ϕ ≡ ¬2¬ϕ.

The temporal operators #,2, and ♦ are called next time, always (or henceforth), and sometime (or
eventuality) operators, respectively. Formulas #ϕ, 2ϕ, and ♦ϕ are typically read “next ϕ”, “always ϕ”,
and “sometime ϕ”.

Semantical interpretations in classical propositional logic are given by Boolean valuations. For LTL we
have to extend this concept according to our informal idea that formulas are evaluated over sequences of
states (time scales). Let V be a set of propositional constants. A temporal (or Kripke) structure for V
is an infinite sequence K = (η0, η1, η2, ...) of mappings ηi : V → {ff, tt} called states, and η0 is called the
initial state of K. Observe that states are just valuations in the classical logic sense. For K and i ∈ K, we
define Ki(F ) ∈ {ff, tt} (informally meaning the “truth value of F in the ith state of K”) for every formula
F inductively as follows:

01. Ki(v) = ηi(v) for v ∈ V.
02. Ki(false) = ff.
03. Ki(ϕ→ ψ) = tt ⇐⇒ Ki(ϕ) = ff or Ki(ψ) = tt.
04. Ki(#ϕ) = Ki+1(ϕ).
05. Ki(2ϕ) = tt ⇐⇒ Kj(ϕ) = tt for every j ≥ i.

Obviously, the formula false and the operator → behave classically in each state. The definitions for #
and 2 make these operators formalize the phrases in the next state and from this step onward. More
precisely, the formula 2ϕ informally means “ϕ holds in all forthcoming states including the present one”.
The definitions induce the following truth values for the formula abbreviations:

06. Ki(¬ϕ) = tt ⇐⇒ Ki(ϕ) = ff.
07. Ki(ϕ ∨ ψ) = tt ⇐⇒ Ki(ϕ) = tt or Ki(ψ) = tt.
08. Ki(ϕ ∧ ψ) = tt ⇐⇒ Ki(ϕ) = tt and Ki(ψ) = tt.
09. Ki(ϕ↔ ψ) = tt ⇐⇒ Ki(ϕ) = Ki(ψ).
10. Ki(true) = tt.
11. Ki(♦ϕ) = tt ⇐⇒ Kj(ϕ) = tt for some j ≥ i.
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Definition 3.1 ([6]) A formula ϕ of LLTL(V) is called valid in the temporal structure K for V (or K
satisfies ϕ), denoted by |=K ϕ, if Ki(ϕ) = tt for every i ∈ N. The formula ϕ is called a consequence of a
set F of formulas (F |= ϕ) if |=K ϕ holds for every K such that |=K ψ for all ψ ∈ F . The formula ϕ is
called (universally) valid (|= ϕ) if ∅ |= ϕ. A formula ϕ is called (locally) satisfiable if there is a temporal
structure K and i ∈ N such that K(ϕ) = tt.

a
N

The formula #ϕ holds (in the current moment) when ϕ is true in the “next step”, and the formula 2ϕ
is true (in the current moment) when ϕ is true “now and forever” (“always in the future”). In the other
words, 2 is the reflexive and transitive closure of #. So the formula #2ψ is true when ψ is true from the
next step onward, that is ψ holds in the next step, and the step after that, and the step after that, etc.
The same holds for 2#ψ; indeed the formula #2ψ ←→ 2#ψ is a law of LTL (T12 on page 28 of [6]). It
can also be seen that the formula #¬ϕ ←→ ¬#ϕ is always true (is a law of LTL, see T1 on page 27 of
[6]), since ϕ is untrue in the next step if and only if it is not the case that “ϕ is true in the next step”.
Whence, we have the equivalences #2¬ϕ←→ 2#¬ϕ←→ 2¬#ϕ in LTL. The following theorem will be
used in our arguments.

Theorem 3.2 ([6]) LTL |= ϕ if and only if ¬ϕ is not satisfiable.

3.2 Paradoxical and Non–Paradoxical Fixed–Points

A version of Yablo’s paradox is a sentence Y that satisfies the followng equivalences
Y ←→#2¬Y

(
←→2#¬Y ←→2¬#Y

)
In the other words Y is a fixed–point of the operator x 7→ #2¬x

(
≡ 2#¬x ≡ 2¬#x

)
. Yablo’s argument

in his paradox amounts to showing that this operator does not have any fixed–point in LTL. The semantic
proof (i.e. non–existence of any such fixed–point in any Kripke model of LTL) is exactly the same as
Yablo’s argument. Now, Yablo’s paradox becomes the following theorem.

Theorem 3.3 LTL |= ¬2(ϕ↔ #2¬ϕ).

Proof. To show this formula is valid will exactly follow the line of Yablo’s reasoning to obtain his paradox,
this time in LTL. By Theorem 3.2, to prove the formula ¬2(ϕ↔ #2¬ϕ) is valid in LTL, we need to show
the formula 2(ϕ ↔ #2¬ϕ) is not satisfiable. For a moment assume that there is a Kripke structure K
and n ∈ N for which Kn

(
2(ϕ ↔ #2¬ϕ)

)
= tt. Then ∀i ≥ n Ki(ϕ ↔ #2¬ϕ) = tt which implies that

∀i ≥ n Ki(ϕ) = Ki(#2¬ϕ) = Ki+1(2¬ϕ). We distinguish two cases:

(1) For some j ≥ n we have Kj(ϕ) = tt. Then Kj+1(2¬ϕ) = tt so Kj+l(ϕ) = ff for all l ≥ 1. In
particular Kj+1(ϕ) = ff whence Kj+2(2¬ϕ) = ff which is in contradiction with Kj+1(2¬ϕ) = tt.

(2) For all j ≥ n we have Kj(ϕ) = ff. So ff = Kn(ϕ) = Kn+1(2¬ϕ) hence there must exist some i > n
with Ki(ϕ) = tt which contradicts (1) above.
Thus, the formula 2(ϕ↔ #2¬ϕ) cannot be satisfiable in LTL. o

Also, a Gödel–like argument can show that the operators x 7→ ¬2x and x 7→ 2¬x cannot have any
fixed–points in LTL as well.

Proposition 3.4 The operators x 7→ ¬2x and x 7→ 2¬x do not have any fixed–points in LTL; i.e. for
any formula ϕ we have LTL |= ¬2(ϕ↔ ¬2ϕ) and LTL |= ¬2(ϕ↔ 2¬ϕ).

Proof. We show that satisfiability of 2(ϕ ↔ 2¬ϕ) in LTL leads to a contradiction. For a moment let
there exist some Kripke structure K and n ∈ N for which Kn(2(ϕ↔ 2¬ϕ)) = tt. Then for any i ≥ n we
have Ki(ϕ ↔ 2¬ϕ) = tt whence ∀i ≥ n Ki(ϕ) = Ki(2¬ϕ). This already implies that ∀i ≥ n Ki(ϕ) = ff

c© Ahmad Karimi & Saeed Salehi 2014
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(since |= 2¬ϕ → ¬ϕ). Then, in particular, ff = Kn(ϕ) = Kn(2¬ϕ) and so there must exist some m ≥ n
such that Km(¬ϕ) = ff contradiction! o

Some other operators like x 7→ 2x or x 7→ ¬#x do have fixed–points; true or false for the former and
the sequences 〈ff, tt, ff, tt, ff, tt, · · · 〉 or 〈tt, ff, tt, ff, tt, ff, · · · 〉 for the latter (see [1]).

4 Other Versions of Yablo’s Paradox

Yablo’s paradox comes in several varieties [14]; here we show that other versions of Yablo’s paradox become
interesting theorems in LTL as well.

(always): Yn ⇐⇒ ∀ i > n (Yi is not true ).

(sometimes): Yn ⇐⇒ ∃ i > n (Yi is not true ).

(almost always): Yn ⇐⇒ ∃ i > n ∀j ≥ i (Yi is not true ).

(infinitely often): Yn ⇐⇒ ∀ i > n ∃j ≥ i (Yi is not true ).

It can be seen that all the sequences {Yn}n∈N of sentences above are paradoxical. These sequences of
sentences can be formalized in LTL as follows:

(always): Y ←→#2¬Y
(
←→2#¬Y ←→2¬#Y

)
.

(sometimes): Y ←→#♦¬Y
(
←→♦#¬Y ←→♦¬#Y

)
.

(almost always): Y ←→#♦2¬Y
(
←→♦#2¬Y ←→♦2#¬Y ←→♦2¬#Y

)
.

(infinitely often): Y ←→#2♦¬Y
(
←→2#♦¬Y ←→2♦#¬Y ←→2♦¬#Y

)
.

The following (sometimes) counterpart of Theorem 3.3 directly follows.

Theorem 4.1 LTL |= ¬2(ϕ↔ #♦¬ϕ).

Proof. By Theorem 3.3 we have LTL |= ¬2(ψ ↔ #2¬ψ) for any arbitrary formula ψ. In particular for
ψ = ¬ϕ we have LTL |= ¬2(¬ϕ↔ #2¬¬ϕ↔ #¬♦¬ϕ↔ ¬#♦¬ϕ), whence for any ϕ we conclude that
LTL |= ¬2(ϕ↔ #♦¬ϕ). o

Let us focus now on the “almost always” version of Yablo’s paradox. Let Y0, Y1, Y2, ... be a sequence
of sentences that each sentence, roughly speaking, says “all sentences, except finitely many, after this
sentence are false”. Mathematically, this sequence is as below:

Y0 : ∃ i > 0 ∀j ≥ i (Yj is not true ).

Y1 : ∃ i > 1 ∀j ≥ i (Yj is not true ).

Y2 : ∃ i > 2 ∀j ≥ i (Yj is not true ).
...

...

The paradox arises when we try to assign truth values in a consistent way to all Yi’s. Assume for a
moment that there is a sentence (say) Yn which is true; so there exists i > n for which all Yj with j ≥ i
are untrue. In particular, Yi is untrue. Since all the sentences Yi+1, Yi+2, ... are untrue, so Yi has to be
true. Therefore, Yi is true and false the same time, which is a contradiction. Whence, all Yn’s are untrue,
so Y0 is true, a contradiction again. Now we turn this version of Yablo’s paradox to a theorem in LTL.
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Theorem 4.2 LTL |= ¬2(ϕ↔ #♦2¬ϕ).

Proof. We show that the formula 2(ϕ ↔ #♦2¬ϕ) is not satisfiable in LTL. For a moment, assume
that there is a Kripke structure K and a state n ∈ N for which Kn

(
2(ϕ ↔ #♦2¬ϕ)

)
= tt. So, we

have ∀i ≥ n Ki(ϕ ↔ #♦2¬ϕ) = tt which implies ∀i ≥ n Ki(ϕ) = Ki(#♦2¬ϕ) which is equivalent to
∀i ≥ n ∃j ≥ 0 Ki(ϕ) = Ki+j+1(2¬ϕ).

(1) If there is some l ≥ n such that Kl(ϕ) = tt, then Kl+m+1(2¬ϕ) = tt for some m; so Kl+m+1(ϕ) = ff
and also Kk(ϕ) = ff for all k ≥ l + m + 1. On the other hand there must exist some p ≥ 0 such that
Kl+m+1+p+1(2¬ϕ) = ff which implies that Kl+m+1+p+1+q(ϕ) = tt for some q ≥ 0. This is a contradiction
since l +m+ 1 + p+ 1 + q ≥ l +m+ 1.

(2) If Kl(ϕ) = ff holds for all l ≥ n, then in particular Kn(ϕ) = ff and so there exists some m ≥ 0
such that Kn+m+1(2¬ϕ) = ff; whence Kn+m+1+p(ϕ) = tt for some p ≥ 0, which contradicts (1) above. o

Again by the technique of the proof of Theorem 4.1 we can deduce the following from Theorem 4.2.

Theorem 4.3 LTL |= ¬2(ϕ↔ #2♦¬ϕ).

Proof. LTL |= ¬2(ψ ↔ #♦2¬ψ) holds for any formula ψ by Theorem 4.2. For ψ = ¬ϕ we obtain the
deduction LTL |= ¬2(¬ϕ↔ #♦2¬¬ϕ↔ #¬2♦¬ϕ↔ ¬#2♦¬ϕ) which completes the proof. o
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