
Chapter 11
From Intuitionism to Many-Valued
Logics Through Kripke Models

Saeed Salehi

Abstract Intuitionistic Propositional Logic is proved to be an infinitely many val-
ued logic by Gödel (Kurt Gödel collected works (Volume I) Publications 1929–1936.
Oxford University Press, pp 222–225, 1932), and it is proved by Jaśkowski (Actes
du Congrés International de Philosophie Scientifique, VI. Philosophie desMathéma-
tiques, Actualités Scientifiques et Industrielles 393:58–61, 1936) to be a countably
many valued logic. In this paper, we provide alternative proofs for these theorems by
using models of Kripke (J Symbol Logic 24(1):1–14, 1959). Gödel’s proof gave rise
to an intermediate propositional logic (between intuitionistic and classical), that is
knownnowadays asGödel or theGödel-Dummett Logic, and is studied by fuzzy logi-
cians as well. We also provide some results on the inter-definability of propositional
connectives in this logic.

Keywords Intuitionistic propositional logic · Many-Valued logics · Kripke
models · Gödel-Dummett logic · Inter-definability of propositional connectives

11.1 Introduction and Preliminaries

Intuitionism grew out of some of the philosophical ideas of its founding father,
Luitzen Egbertus Jan Brouwer (see e.g. Brouwer 1913); what is known nowadays
as intuitionistic logic is a formalization given by his student Heyting (1930). Kripke
models (originating from Kripke 1959) provided an interesting mathematical inter-
pretation for this formalization. Let us review some preliminaries about thesemodels:
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Definition 1 (Kripke Frames)
A Kripke frame is a partially ordered set; i.e., an ordered pair 〈K ,�〉 where �⊆ K 2

is a reflexive, transitive and anti-symmetric binary relation on K . ✧

Definition 2 (Atoms, Formulas, Languages)
Let At be the set of all the propositional atoms; atoms are usually denoted by letters
p or q. Let � denote the verum (truth) constant.
The language of propositional logics studied here isL = {¬,∧,∨,→,�}.
For any A ⊆ At and B ⊆ L , the set of all the formulas constructed from A bymeans
of B is denoted by L(B, A).
Let Fm denote the set of all the formulas; i.e., L(L ,At). ✧

Definition 3 (Kripke Models)
AKripke model is a tripleK = 〈K ,�,�〉, where 〈K ,�〉 is a Kripke frame equipped
with a persistent binary (satisfaction) relation �⊆ K × At; persistency (of the rela-
tion � with respect to �) means that for all k, k ′ ∈ K and p ∈ At, if k ′ �k � p then
k ′ � p.

The satisfaction relation can be extended to all the (propositional) formulas, i.e.,
to � ⊆ K × Fm, as follows:

◦ k � �.
◦ k � (ϕ∧ψ) ⇐⇒ k � ϕ and k � ψ.
◦ k � (ϕ∨ψ) ⇐⇒ k � ϕ or k � ψ.
◦ k � (¬ϕ) ⇐⇒ ∀k ′ �k(k ′

� ϕ).
◦ k � (ϕ→ψ) ⇐⇒ ∀k ′ �k(k ′ � ϕ ⇒ k ′ � ψ). ✧

Remark 1 (On Persistency and its Converse)
It can be shown that the persistency conditions is inherited by the formulas; i.e.,
for any k, k ′ ∈ K in any Kripke model K = 〈K ,�,�〉 and for any formula ϕ, if
k ′ �k � ϕ then k ′ � ϕ.
Obviously, the converse may not hold (k ′ � ψ and k ′ �k do not necessarily imply
that k � ψ); however, a partial converse holds for negated formulas:

if k ′ �k and k ′ � ¬ϕ, then k � ϕ. ✧

By the soundness and completeness of the intuitionistic propositional logic (IPL)
with respect to finite Kripke models, the tautologies of IPL are the formulas (in Fm)
that are satisfied in all the elements of any finite Kripke model. A super-intuitionistic
and sub-classical logic is the so-called Gödel-Dummett logic (see Dummett 1959),
whose tautologies are the formulas that are satisfied in all the elements of all the
connected finite Kripke models. A kind of Kripke model theoretic characterization
for this logic is given in Safari and Salehi (2018).

Definition 4 (Connectivity)
A binary relation R ⊆ K × K is called connected, when for any k, k ′, k ′′ ∈ K , if
k ′ �k and k ′′ �k, then we have either k ′ �k ′′ or k ′′ �k ′ (cf. Švejdar and Bendová
2000). ✧



11 From Intuitionism to Many-Valued Logics Through Kripke Models 341

The logic IPL is perhaps the most famous non-classical logic. A natural question
(that according to Gödel 1932 was asked by his supervisor Hans Hahn) was whether
IPL is a finitelymany valued logic or not. Gödel (1932) showed that IPL is not finitely
many valued. Jaśkowski (1936) showed that IPL is indeed a countably (infinite)
many valued logic. In Sect. 11.2 we give alternative proofs for these theorems by
using models of Kripke (1959). Gödel’s proof gave birth to an intermediate logic,
that today is called the Gödel-Dummett logic (GDL). Finally, in Sect. 11.3 we study
the problem of inter-definability of propositional connectives in GDL and IPL.

11.2 ω-Many Values for Intuitionistic Propositional Logic

Let us begin with a formal definition of a many-valued logic. Throughout the paper,
we are dealing with propositional logics only.

Definition 5 (Many-Valued Logics)
A many-valued logic is 〈V , τ ,��,�,V,=>〉, where V is a set of values with a
designated element τ ∈ V (interpreted as the truth) and the functions �� : V →V ,
� : V 2→V , V : V 2→V , and => : V 2→V constitute a truth table on V .
A valuation function is any mapping ν : At → V , which can be extended to all the
formulas, denoted also by ν : Fm → V , as follows:

◦ ν(¬ϕ) = �� ν(ϕ).
◦ ν(ϕ∧ψ) = ν(ϕ) � ν(ψ).
◦ ν(ϕ∨ψ) = ν(ϕ) V ν(ψ).
◦ ν(ϕ→ψ) = ν(ϕ) => ν(ψ).

A formula θ is called tautology, when it is mapped to the designated value under any
valuation function; i.e., ν(θ) = τ for any valuation ν. ✧

Theorem 1 appears in Safari (2017) and Safari and Salehi (2019). In the following,
the disjunction operation (∨) is assumed to be commutative and associative.

Lemma 1 (A Tautology in n-Valued Logics)
For any n > 1, the formula

∨∨
i< j�n(pi →pj) is a tautology in any n-valued logic in

which the formula (p→p)∨q is a tautology.

Proof In an n-valued logic, the n + 1 atoms {p0, p1, . . . , pn} can take n values. So,
under a valuation function, there should exist some i < j � n such that pi and p j

take the same value, by the Pigeonhole Principle. Since (p→p)∨q is a tautology,
then the formula

∨∨
i< j�n(pi →pj) should be mapped to the designated value by all

the valuation functions. ❑

The lemma implies that the formula (A→ B) ∨ (A→C) ∨ (B→C) is a tau-
tology in the classical propositional logic; this formula is not a tautology in the
intuitionistic (or even Gödel-Dummett) propositional logic.
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Theorem 1 (Gödel 1932: IPL Is Not Finitely Many Valued)
Intuitionistic propositional logic is not finitely many valued.

Proof By Lemma 1 it suffices to show that for any n > 1,
∨∨

i< j�n(pi →pj) is not
a tautology in IPL. Consider the Kripke model K = 〈K ,�,�〉 with

K = {k, k0, k1, . . . , kn−1},
�= {(ki , k) | i <n} ∪ {(ki , ki ) | i <n} ∪ {(k, k)}, and
� = {(k0, p0), (k1, p1), . . . , (kn−1, pn−1)}.

• k0[[p0]] • k1[[p1]] · · · • kn−1[[pn−1]]

• k[[]]

� ��

For any i < n we have ki � pi , and also ki � p j for any j > i . So, ki � pi →p j for
any i < j � n; which implies that k �

∨∨
i< j�n(pi →pj). ❑

The rest of this section is devoted to proving Jaśkowski’s result (Theorem 2) that
IPL is a countably infinite many valued logic.

Definition 6 (Monotone Functions)
For a Kripke frame (K ,�), a function f : K → {0, 1} is called monotone, when for
any k, k ′ ∈ K , if k ′ �k, then f (k ′)� f (k). We indicate the monotonicity of f by
writing f : (K ,�) → {0, 1}. ✧

Example 1 (fψK )
For any Kripke model K = (K ,�,�) and any formula ψ, the function

f
ψ
K : K → {0, 1}, f

ψ
K(k) =

{
1 if k � ψ

0 if k � ψ

is monotone. ✧

Definition 7 (��,�,V and =>)
For a Kripke frame (K ,�) and monotone functions f, g : (K ,�) → {0, 1}, let

�� f : K → {0, 1} be defined by (�� f )(k) =
{
1 if ∀k ′ �k( f (k ′)=0)

0 if ∃k ′ �k( f (k ′)=1)
,

f � g : K → {0, 1} be defined by ( f � g)(k) = min{ f (k), g(k)},
f V g : K → {0, 1} be defined by ( f V g)(k) = max{ f (k), g(k)},
f =>g : K → {0, 1} be defined by

( f =>g)(k) =
{
1 if ∀k ′ �k( f (k ′)=1⇒g(k ′)=1)

0 if ∃k ′ �k( f (k ′)=1 & g(k ′)=0)
,

for all k ∈ K . ✧
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Definition 8 (Constant Functions)
Let 1K : K → {0, 1} be the constant 1 function, i.e., 1K (k) = 1 for all k ∈ K ; and
let 0K : K → {0, 1} be the constant 0 function: 0K (k) = 0 for all k ∈ K . ✧

It is easy to see that the functions 1K and 0K obey the rules of the classical
propositional logic with the operations ��,�,V and =>. For example, (��1K ) = 0K ,
(1K � 1K ) = 1K , (0K V 1K ) = 1K and (1K =>0K ) = 0K . We omit the proof of the
following straightforward observation.

Lemma 2 (Monotonicity of 1K , 0K ,�� f, f � g, f V g and f =>g)
For any Kripke frame (K ,�), the constant functions 1K and 0K are monotone, and
if f, g : (K ,�) → {0, 1} are monotone, then so are �� f, f � g, f V g and f =>g. ❑

Finally, we can provide the following countably many values for IPL:

Definition 9 (Countably Many Values for IPL)
Enumerate all the finite Kripke frames as (K0,�0), (K1,�1), (K2,�2), . . ., where
Kn ⊂ N for all n ∈ N. Let
V = {〈 f0, f1, f2, . . .〉 | ∀n[ fn : (Kn,�n)→{0, 1}] &

∃N ∈N[(∀n�N fn =1Kn ) or (∀n�N fn =0Kn )]}.
In the other words, the set of values V consists of all the sequences 〈 f0, f1, f2, . . .〉
such that for each n, fn is a monotone function on (Kn,�n), and the sequences are
ultimately constant (from a step onward, fn’s are either all 1Kn or all 0Kn ).
Let τ = 〈1K0 , 1K1 , 1K2 , . . .〉 be the designated element (for truth).
For f = 〈 f0, f1, f2, . . .〉 ∈ V and g = 〈g0, g1, g2, . . .〉 ∈ V , let (cf. Definition 7)

�� f = 〈�� f0,�� f1,�� f2, . . .〉,
f� g = 〈 f0 � g0, f1 � g1, f2 � g2, . . .〉,
fV g = 〈 f0 V g0, f1 V g1, f2 V g2, . . .〉, and
f=>g = 〈 f0=>g0, f1=>g1, f2=>g2, . . .〉. ✧

It can be immediately seen that V is a countable set, and Lemma 2 implies that
V is closed under the operations ��,�,V and =>. Before proving the main theorem,
we make a further definition and prove an auxiliary lemma.

Definition 10 (〈〈α〉〉n , �ν
n and ν�

m )
For a sequence α, let 〈〈α〉〉n denote its n-th element (if any), for any n ∈ N.
(1) Let a valuation ν : At → V be given. The satisfaction relation �ν

n is defined on
any finite Kripke frame (Kn,�n), with Kn ⊂ N (see Definition 9), by the following
for any atom p ∈ At and any k ∈ Kn: k �ν

n p ⇐⇒ 〈〈ν(p)〉〉n(k) = 1.
(2) Let a Kripke model K = (Km,�m,�) on the Kripke frame (Km,�m) be given
(see Definition 9). Define the valuation ν�

m by

ν�
m (p) = 〈1K0 , . . . , 1Km−1 , f

p
K, 1Km+1 , . . .〉

for anyp ∈ At,where fpK : Km → {0, 1} is the function thatwas defined inExample1:
fpK(k) = 1 if k � p, and fpK(k) = 0 if k � p, for any k ∈ Km . ✧
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It is clear that the relation �ν
n ⊆ Kn × At is persistent.

Lemma 3 (On �ν
n and ν�

m )
(1) Let a valuation ν : At → V be given, and the satisfaction relation�ν

n be defined
on (Kn,�n) as in Definition 10. Then for any formula ϕ ∈ Fm and any k ∈ Kn, we
have k �ν

n ϕ ⇐⇒ 〈〈ν(ϕ)〉〉n(k) = 1.
(2) Let a Kripke model K = (Km,�m,�) be given on the frame (Km,�m), and the
valuation ν�

m be defined as in Definition 10. Then for any formula ϕ ∈ Fm and any
k ∈ Km, we have k � ϕ ⇐⇒ 〈〈ν�

m (ϕ)〉〉m(k) = 0.

Proof Both assertions can be proved by induction on ϕ. They are clear for ϕ = �
and hold for atomicϕ ∈ At byDefinition 10. The inductive cases follow immediately
from Definitions 3, 5, 7, and 9. ❑

Theorem 2 (Jaśkowski 1936: IPL Is Countably Many Valued)
Intuitionistic propositional logic is countably infinite many valued.

Proof We show that a formula ϕ ∈ Fm is satisfied in all the elements of all the finite
Kripke models if and only if it is mapped to the designated element under all the
valuation functions:
(1) If ϕ is satisfied in any element of any finite Kripke model, then for any valuation
ν by Lemma 3(1) we have 〈〈ν(ϕ)〉〉n = 1Kn for any n ∈ N, so ν(ϕ) = τ .
(2) If ϕ is not satisfied in some element of some finite Kripke model, then for some
m ∈ N there is a Kripke modelK = (Km,�m,�) such that k � ϕ for some k ∈ Km .
So, by Lemma 3(2) we have 〈〈ν�

m (ϕ)〉〉m(k) = 0, thus ν�
m (ϕ) �= τ . ❑

11.3 Propositional Connectives Inside Gödel-Dummett
Logic

In classical propositional logic (which is a two-valued logic), all the connectives can
be defined by (the so-called complete set of connectives) {¬,∧}, {¬,∨} or {¬,→}
only. In this last section wewill see that no propositional connective is definable from
the others in IPL, and in GDL only the disjunction operation (∨) can be defined by
the conjunction (∧) and implication (→) operations. Most of these facts are already
known (they appear in e.g. Safari and Salehi 2019 and Švejdar and Bendová 2000).
Theorem 3 is from Švejdar and Bendová (2000) with a slightly different proof;
Theorem 4 is from Švejdar and Bendová (2000) with the same proof. All of our
proofs are Kripke model theoretic, as usual.

Theorem 3 (∧ Is Not Definable From the Others in GDL)
In Gödel-Dummett Logic, the conjunction connective (∧) is not definable from the
other propositional connectives.

Proof Consider the Kripke model K = 〈K ,�,�〉 where K = {a, b, c}, � is the
reflexive closure of {(a, b), (c, b)}, and � = {(a, p), (b, p), (b, q), (c, q)}, for atoms
p, q ∈ At.
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• b[[p,q]]

• a[[p]]

�

• c[[q]]

�

We show that for all formulas θ ∈ L(¬,∨,→,�, p, q) we have:
(∗) b � θ =⇒ a � θ or c � θ.

This will prove the desired conclusion, since b � p∧q but a, c � p∧q, and so p∧q
cannot belong to L(¬,∨,→,�, p, q). We prove (∗) by induction on θ. The cases
of θ = �, p, q are trivial, and the induction step of ¬ϕ follows from Remark 1, and
the case of ϕ ∨ ψ is rather easy. So, only the non-trivial case of θ = ϕ→ψ remains.
Suppose that (∗) holds for ϕ and ψ, and assume (for the sake of a contradiction)
that b � ϕ→ψ but a, c � ϕ→ψ. So, a � ϕ and a � ψ; and also c � ϕ and c � ψ.
Whence, by persistency, we should have also b � ϕ, thus b � ψ. So, by the induction
hypothesis (∗ for θ=ψ) we should have either a � ψ or c � ψ; a contradiction. ❑

Theorem 4 (→ Is Not Definable From the Others in GDL)
In Gödel-Dummett Logic, the implication connective (→) is not definable from the
other propositional connectives.

Proof For the Kripke modelK = 〈K ,�,�〉, where K = {a, b, c},� is the reflexive
closure of {(a, b), (c, b)}, and � = {(a, p), (b, p), (b, q)}, for p, q ∈ At,

• b[[p,q]]

• a[[p]]

�

• c[[]]

�

we show that for all the formulas θ ∈ L(¬,∨,∧,�, p, q), the following holds:
(∗) b, c � θ =⇒ a � θ.

This completes the proof since b, c � p→q but a � p→q (by a � p, a � q); thus
we have (p→q) /∈ L(¬,∨,∧,�, p, q). The proof of (∗) is by induction on θ; the
only non-trivial cases to consider are θ = ϕ∨ψ and θ = ϕ∧ψ. Suppose that (∗)

holds for ϕ and ψ; and that b, c � ϕ∨ψ. Then we have either c � ϕ or c � ψ;
by the persistency, the former implies b � ϕ and the latter b � ψ. So, in either
case by the induction hypothesis we have a � ϕ∨ψ. The case of θ = ϕ∧ψ is even
simpler. ❑

The following has been known for a long time; see e.g. Dummett (1959).

Theorem 5 (∨ Is Definable From ∧,→ in GDL)
InGödel-Dummett Logic, the disjunction connective (∨) is definable from some other
propositional connectives.
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Proof It is rather easy to see that IPL � (p∨q) −→ [(p→q)→q]∧[(q→p)→p].
Now,we show thatGDL � [(p→q)→q]∧[(q→p)→p] −→ (p∨q) holds. Take an
arbitrary connected Kripke model K = 〈K ,�,�〉, and suppose that for an arbitrary
a ∈ K we have a � [(p→q)→q]∧[(q→p)→p]. We show that a � p∨q. Assume
not; then a � p,q. Therefore, a � (p→q) and a � (q→p), by a � [(p→q)→q]
and a � [(q→p)→p], respectively. So, there are some b, c ∈ K with b, c�a such
that b � p, b � q, c � q, and c � p.

• b[[p]] • c[[q]]

• a[[]]

�
�

By the connectivity of �, we should have either b�c or c�b. Both cases lead to a
contradiction, by the persistency condition. So, the following equivalence

(p∨q) ≡ [(p→q)→q]∧[(q→p)→p]

holds in GDL. ❑

The fact of the matter is that (p∨q) ≡ [(p→q)→q]∧[(q→p)→p] is the only
non-trivial equivalence relation between the propositional connectives in GDL. The
first half of the following theorem was proved in Safari and Salehi (2019).

Theorem 6 (In GDL ∨ Is Not Definable Without Both ∧,→)
In Gödel-Dummett Logic, disjunction (∨) is not definable from the other proposi-
tional connectives, unless both the conjunction and the implication connectives are
present. In the otherwords,∨ is definableneither from {¬,→,�} nor from {¬,∧,�}.
Proof Take the Kripke modelK = 〈K ,�,�〉with K = {a, b, c, d},�= the reflex-
ive closure of {(a, b), (c, d)}, and � = {(b, p), (d, q)}, for p, q ∈ At.

• b[[p]] • d[[q]]

• a[[]]

�

• c[[]]

�

We show that for all θ ∈ L(¬,→,�, p, q) we have
(∗) b, d � θ =⇒ a � θ or c � θ.

Since b, d � p∨q but a, c � p∨q, then it follows that p∨q /∈ L(¬,→,�, p, q).
Now, (∗) can be proved by induction on θ; the only non-trivial case is θ = ϕ→ψ. If
(∗) holds for ϕ and ψ, then if b, d � ϕ→ψ but a � ϕ→ψ and c � ϕ→ψ, then we
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should have a � ϕ and a � ψ, and also c � ϕ and c � ψ. So, by persistency, b � ϕ
and d � ϕ; thus b � ψ and d � ψ. So, by the induction hypothesis (∗ for θ=ψ) we
should have either a � ψ or c � ψ; a contradiction.
Now, for proving p∨q /∈ L(¬,∧,�, p, q), we show that for all the formulas θ in
L(¬,∧,�, p, q) we have

(‡) b, d � θ =⇒ a, c � θ.
Trivially, (‡) holds for θ = �, p, q; so by Remark 1 it only suffices to show that (‡)
holds for θ = ϕ∧ψ, when it holds for ϕ and ψ. Now, if b, d � ϕ∧ψ then b, d � ϕ
and b, d � ψ; so the induction hypothesis (‡ for θ=ϕ,ψ) implies that a, c � ϕ and
a, c � ψ, therefore a, c � ϕ∧ψ. ❑

We end the paper with a Kripke model theoretic proof of a known fact.

Proposition 1 (No Connective Is Definable From the Others in IPL)
In IPL, no propositional connective is definable from the others.

Proof By Theorems 3 and 4, ∧ and → are not definable from the other connectives
even in GDL. The statement¬p /∈ L(∧,∨,→,�, p) can be easily verified by noting
that all the operations on the righthand side are positive. So, it only remains to
show that we have p∨q /∈ L(¬,∧,→,�, p, q) in IPL (cf. Theorem 5). Consider
the Kripke model K = 〈K ,�,�〉 with K = {a, b, c}, �= the reflexive closure of
{(a, b), (a, c)}, and � = {(b, p), (c, q)}, for p, q ∈ At.

• b[[p]] • c[[q]]

• a[[]]

�
�

We show that for all formulas θ ∈ L(¬,∧,→,�, p, q) we have:
(∗) b, c � θ =⇒ a � θ.

This will prove the theorem, since b, c � p∨q but a � p∨q, and so p∨q is not in
L(¬,∧,→,�, p, q) in IPL. Indeed, (∗) can be proved by induction on θ; for which
we consider the case of θ = ϕ→ ψ only. So, suppose that (∗) holds for ϕ and ψ and
that b, c � ϕ→ψ but a � ϕ→ψ. Then we should have a � ϕ and a � ψ; but by
persistency we should have that b, c � ϕ, and so b, c � ψ holds. Now, the induction
hypothesis (∗ for θ=ψ) implies that a � ψ, a contradiction. ❑
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