Neutrosophic Set and Neutrosophic Topological Spaces

Article in IOSR Journal of Mathematics · September 2012
DOI: 10.9790/5728-0343135

CITATIONS
280

READS
2,987

2 authors:

A. A. Salama
Port Said University
215 PUBLICATIONS 2,944 CITATIONS

salwa Alblowi
King Abdulaziz University
1 PUBLICATION 279 CITATIONS

Some of the authors of this publication are also working on these related projects:

COVID-X & Neutrosophic Systems View project

المشروع القومي العربي لخدمة الباحثين في مجالات العلوم وتطبيقات النيتروسوفيك View project
Neutrosophic Set and Neutrosophic Topological Spaces

A.A. Salama, S.A. Alblowi

1 Egypt, Port Said University, Faculty of Sciences Department of Mathematics and Computer Science
2 Department of Mathematics, King Abdulaziz University, Saudi Arabia

Abstract: Neutrosophy has been introduced by Smarandache [7, 8] as a new branch of philosophy. The purpose of this paper is to construct a new set theory called the neutrosophic set. After given the fundamental definitions of neutrosophic set operations, we obtain several properties, and discussed the relationship between neutrosophic sets and others. Finally, we extend the concept of fuzzy topological space [4], and intuitionistic fuzzy topological space [5, 6] to the case of neutrosophic sets. Possible application to superstrings and space–time are touched upon.

Keywords: Fuzzy topology; fuzzy set; neutrosophic set; neutrosophic topology

I. Introduction

The fuzzy set was introduced by Zadeh [9] in 1965, where each element had a degree of membership. The intuitionistic fuzzy set (Ifs for short) on a universe X was introduced by K. Atanassov [1, 2, 3] in 1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of non-membership of each element. After the introduction of the neutrosophic set concept [7, 8], in recent years neutrosophic algebraic structures have been investigated. Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their classical and fuzzy counterparts, such as a neutrosophic set theory.

II. Terminologies

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [7, 8], and Atanassov in [1, 2, 3]. Smarandache introduced the neutrosophic components T, I, F which represent the membership, indeterminacy, and non-membership values respectively, where \([0^-, 1^+] \) is nonstandard unit interval.

2.1 Definition. [3, 4]

Let T, I, F be real standard or nonstandard subsets of \([0^-, 1^+] \). with

\[
\begin{align*}
\text{Sup}_T &= t_{\text{sup}}, \text{inf}_T = t_{\text{inf}} \\
\text{Sup}_I &= i_{\text{sup}}, \text{inf}_I = i_{\text{inf}} \\
\text{Sup}_F &= f_{\text{sup}}, \text{inf}_F = f_{\text{inf}} \\
n_{\text{sup}} &= t_{\text{sup}} + i_{\text{sup}} + f_{\text{sup}} \\
n_{\text{inf}} &= t_{\text{inf}} + i_{\text{inf}} + f_{\text{inf}}
\end{align*}
\]

T, I, F are called neutrosophic components.

III. Neutrosophic Sets and Its Operations

We shall now consider some possible definitions for basic concepts of the neutrosophic set and its operations.

3.1 Definition

Let \(X \) be a non-empty fixed set. A neutrosophic set (NS for short) \(A \) is an object having the form

\[
A = \{ (x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X \}
\]

Where \(\mu_A(x), \sigma_A(x), \gamma_A(x) \) which represent the degree of membership function (namely \(\mu_A(x) \)), the degree of indeterminacy (namely \(\sigma_A(x) \)), and the degree of non-membership (namely \(\gamma_A(x) \)) respectively of each element \(x \in X \) to the set \(A \).

3.1 Remark

A neutrosophic \(A = \{ (x, \mu_A(x), \sigma_A(x), \gamma_A(x)) : x \in X \} \) can be identified to an ordered triple \(< \mu_A, \sigma_A, \gamma_A > \) in \([0, 1] \) on \(X \).
3.2 Remark
For the sake of simplicity, we shall use the symbol $A \triangleq x, \mu_A(x), \sigma_A(x), \gamma_A(x)$ for the
$\text{NSS } A = \{x, \mu_A(x), \sigma_A(x), \gamma_A(x) : x \in X \}$

3.1 Example
Every IFS A a non-empty set X is obviously on NSS having the form
$A = \{x, \mu_A(x), 1 - (\mu_A(x) + \gamma_A(x)), \gamma_A(x) : x \in X \}$

Since our main purpose is to construct the tools for developing neutrosophic set and neutrosophic topology, we
must introduce the $\text{NSS } 0_A$ and 1_A in X as follows:

0_A may be defined as:
(0) $0_A = \{x, 0,0,0 : x \in X \}$
(0) $0_A = \{x, 0,0,1 : x \in X \}$
(0) $0_A = \{x, 0,1,0 : x \in X \}$
(0) $0_A = \{x, 0,1,1 : x \in X \}$

1_A may be defined as:
(1) $1_A = \{x, 1,0,0 : x \in X \}$
(1) $1_A = \{x, 1,0,1 : x \in X \}$
(1) $1_A = \{x, 1,1,0 : x \in X \}$
(1) $1_A = \{x, 1,1,1 : x \in X \}$

3.2 Definition
Let $A = \{\mu_A, \sigma_A, \gamma_A\}$ a NSS on X, then the complement of the set A ($C(A)$, for short) maybe defined as
three kinds of complements
(C_1) $C(A) = \{x, 1 - \mu_A(x), 1 - \gamma_A(x) : x \in X \}$
(C_2) $C(A) = \{x, \sigma_A(x), \mu_A(x) : x \in X \}$
(C_3) $C(A) = \{x, \gamma_A(x), 1 - \sigma_A(x) : x \in X \}$

One can define several relations and operations between NSS follows:

3.3 Definition
Let x be a non-empty set, and $\text{NSS } A$ and B in the form
$A = \{x, \mu_A(x), \sigma_A(x), \gamma_A(x) \}$,
$B = \{x, \mu_B(x), \sigma_B(x), \gamma_B(x) \}$, then we may consider two possible definitions for subsets ($A \subseteq B$)

$(A \subseteq B)$ may be defined as

(1) $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \gamma_A(x) \geq \gamma_B(x) \text{ and } \sigma_A(x) \leq \sigma_B(x) \forall x \in X$

(2) $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \gamma_A(x) \geq \gamma_B(x) \text{ and } \sigma_A(x) \geq \sigma_B(x)$

3.1 Proposition
For any neutrosophic set A the following are holds

(1) $0_A \subseteq A$.$ \quad 0_A \subseteq 1_A$

(2) $A \subseteq 1_A \quad 1_A \subseteq 0_A$

3.4. Definition
Let X be a non-empty set, and $A = \{x, \mu_A(x), \gamma_A(x), \sigma_A(x) \}$, $B = \{x, \mu_B(x), \sigma_B(x), \gamma_B(x) \}$ are NSS. Then

(1) $A \cap B$ maybe defined as:

(I_1) $A \cap B = \{x, \mu_A(x), \mu_B(x), \sigma_A(x), \sigma_B(x), \gamma_A(x), \gamma_B(x) \}$

(I_2) $A \cap B = \{x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) \}$

(I_3) $A \cap B = \{x, \mu_A(x), \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) \}$

www.iosrjournals.org 32 | Page
Neutrosophic Set And Neutrosophic Topological Spaces

(2) $A \cup B$ may be defined as:
\[
(U_i) \quad A \cup B = \{ x, \mu_i(x) \lor \mu_b(x), \sigma_a(x) \lor \sigma_b(x) \},
\]
\[
\gamma_a(x) \land \gamma_b(x) >
\]
\[
(U_j) \quad A \cup B = \{ x, \mu_i(x) \lor \mu_b(x), \sigma_a(x) \land \sigma_b(x) \},
\]
\[
\gamma_a(x) \land \gamma_b(x) >
\]

(3) $\exists \gamma_i : \mu_i(x) \land \sigma_i(x), 1- \mu_i(x) >$

(4) $\exists \gamma_i : \mu_i(x) \lor \sigma_i(x), \gamma_i(x) >$

We can easily generalize the operations of intersection and union in definition 3.4 to arbitrary family of NSS as follow:

3.5 Definition
Let $\{A_j : j \in J\}$ be an arbitrary family of NSS in X, then

(1) \bigcap_{A_j} maybe defined as:
\[
(i) \quad \bigcap_{A_j} = \{ x, \land \mu_i(x) \lor \mu_b(x), \lor \sigma_a(x) \lor \sigma_b(x) \}
\]
\[
(ii) \quad \bigcap_{A_j} = \{ x, \land \mu_i(x) \lor \sigma_a(x), \lor \gamma_a(x) \}
\]

(2) \bigcup_{A_j} maybe defined as:
\[
(i) \quad \bigcup_{A_j} = \{ x, \lor \land \mu_i(x), \land \sigma_a(x), \land \gamma_a(x) \}
\]
\[
(ii) \quad \bigcup_{A_j} = \{ x, \lor \land \mu_i(x), \lor \sigma_a(x), \land \gamma_a(x) \}
\]

3.6 Definition
Let A and B are neutrosophic sets then

$\bigcap A \bigcup B$ maybe be defined as
\[
A \bigcap B = \{ x, \land \mu_i(x) \lor \gamma_a(x), \land \sigma_a(x), \land \gamma_a(x) \}
\]

3.2 Proposition
For all A,B two neutrosophic sets then the following are true

(1) $C(A \bigcap B) = C(A) \bigcup C (B)$

(2) $C(A \bigcup B) = C(A) \bigcap C (B)$

IV. Neutrosophic Topological Spaces

Here we extend the concepts of fuzzy topological space [4], and intuitionistic fuzzy topological space [5, 7] to the case of neutrosophic sets.

4.1 Definition
A neutrosophic topology (NT for short) and a non empty set X is a family τ of neutrosophic subsets in X satisfying the following axioms

$\{\tau_i\} \quad O_b, \{1\} \in \tau ,$

$\{\tau_j\} \quad G_1 \cap G_2 \in \tau \quad \text{for any} \quad G_1, G_2 \in \tau ,$

$\{\tau_k\} \quad \bigcup G_i \in \tau \quad \forall \{G_i : i \in J\} \subseteq \tau$

In this case the pair (X, τ) is called a neutrosophic topological space (NTS for short) and any neutrosophic set in τ is known as neutrosophic open set (NOS for short) in X. The elements of τ are called open neutrosophic sets, A neutrosophic set F is closed if and only if its complement $C(F)$ is neutrosophic open.

4.1 Example
Any fuzzy topological space (X, τ_n) in the sense of Chang is obviously a NTS in the form $\tau = \{ A: \mu_i \in \tau_n \}$ wherever we identify a fuzzy set in X whose membership function is μ_i with its counterpart.

4.1 Remark Neutrosophic topological spaces are very natural generalizations of fuzzy topological spaces allowing more general functions to be members of fuzzy topology.

4.3 Example
Let $X = \{x\}$ and
\[
A = \{ x, 0.5, 0.5, 0.4 : x \in X \}
\]
\[
B = \{ x, 0.4, 0.6, 0.8 : x \in X \}
\]
\[
D = \{ x, 0.5, 0.6, 0.4 : x \in X \}
\]
Neutrosophic Set And Neutrosophic Topological Spaces

Let \(X \) be a fuzzy topological space in changes sense such that \(\tau_0 \) is not indiscrete suppose now that
\[
\tau_0 = \{0_N,1_N\} \cup \{x, V_j, \sigma(x), 0 >: j \in J\}.
\]
a) \(\tau_0 = \{0_N, 1_N\} \cup \{x, V_j, \sigma(x), 0 >: j \in J\} \);
b) \(\tau_0 = \{0_N, 1_N\} \cup \{x, V_j, 0, \sigma(x), 1 - V_j >: j \in J\} \).

4.4 Example

4.1 Proposition

Let \((X, \tau)\) be a \(NTS \) on \(X \), then we can also construct several \(NTSS \) on \(X \) in the following way:

a) \(\tau_{a,1} = \{G : G \in \tau\} \);
b) \(\tau_{a,2} = \{<> : G \in \tau\} \).

Proof

a) \((NT,\) and \((NT,\) are easy.

\[\tau_{a,1} = \{G : G \in \tau\} \]

\((NT,\)

Let \(\tau_{a,1} \subseteq \tau_{a,2} \) is coarser than \(\tau_{a,1} \).

b) This similar to (a)

4.2 Definition

Let \((X, \tau_1), (X, \tau_2)\) be two neutrosophic topological spaces on \(X \). Then \(\tau_1 \) is said be contained in \(\tau_2 \) (in symbols \(\tau_1 \subseteq \tau_2 \)) if \(G \in \tau_2 \) for each \(G \in \tau_1 \). In this case, we also say that \(\tau_1 \) is coarser than \(\tau_2 \).

4.2 Proposition

Let \(\{\tau_j : j \in J\} \) be a family of \(NTSS \) on \(X \). Then \(\bigwedge \tau_j \) is A neutrosophic topology on \(X \). Furthermore, \(\bigwedge \tau_j \) is the coarsest \(NT \) on \(X \) containing all. \(\tau_j \).

Proof. Obvious

4.3 Definition

The complement of \(A \) (\(C(A) \) for short) of \(NOS \). \(A \) is called a neutrosophic closed set (\(NCS \) for short) in \(X \).

Now, we define neutrosophic closure and interior operations in neutrosophic topological spaces:

4.4 Definition

Let \((X, \tau)\) be \(NTS \) and \(A = \{x, \mu_A(x), \gamma_A(x), \lambda_A(x)\} \) be a \(NS \) in \(X \).

Then the neutrosophic closer and neutrosophic interior of \(A \) are defined by

\[NC(C(A)) = \bigwedge \{K : K \text{ is an NCS in } X \text{ and } A \subseteq K\} \]

\[NInt(A) = \bigwedge \{G : G \text{ is an NOS in } X \text{ and } G \subseteq A\} \]

It can be also shown that \(NC(A) \) is \(NCS \) and \(NInt(A) \) is \(NOS \) in \(X \).

a) \(A \) is in \(X \) if and only if \(NC(C(A)) \).

b) \(A \) is \(NCS \) in \(X \) if and only if \(NInt(A) \).

4.2 Proposition

For any neutrosophic set \(A \) in \((X, \tau)\) we have

(a) \(NC(C(A)) = C(NInt(A)) \).

(b) \(NInt(C(A)) = C(NC(A)) \).

Proof

a) Let \(A = \{x, \mu_A(x), \gamma_A(x), \lambda_A(x) >: x \in X\} \) and suppose that the family of neutrosophic subsets contained in \(A \) are indexed by the family if \(NSS \) contained in \(A \) are indexed by the
family $A = \{x, \mu_{G_i}, \sigma_{G_i}, \nu_{G_i} : i \in J \}$. Then we see that $\text{NInt}(A) = \{ <x, \vee \mu_{G_i}, \vee \sigma_{G_i}, \vee \nu_{G_i}> \}$

and hence $C(\text{NInt}(A)) = \{ <x, \wedge \mu_{G_i}, \wedge \sigma_{G_i}, \wedge \nu_{G_i}> \}$, since $C(A)$ and $\mu_{G_i} \leq \mu_A$ and $\nu_{G_i} \geq \nu_A$ for each $i \in J$. We obtaining $C(A)$, i.e. $\text{NCI}(C(A)) = \{ <x, \vee \mu_{G_i}, \vee \sigma_{G_i}, \vee \nu_{G_i}> \}$. Hence

$\text{NCI}(C(A)) = C(\text{NInt}(A))$, follows immediately.

b) This is analogous to (a).

4.3 Proposition

Let (x, τ) be a NTS and A, B be two neutrosophic sets in X. Then the following properties hold:

(a) $\text{NInt}(A) \subseteq A$.

(b) $A \subseteq \text{NCI}(A)$.

(c) $A \subseteq B \Rightarrow \text{NInt}(A) \subseteq \text{NInt}(B)$.

(d) $A \subseteq B \Rightarrow \text{NCI}(A) \subseteq \text{NCI}(B)$.

(e) $\text{NInt}(\text{NInt}(A)) = \text{NInt}(A) \wedge \text{NInt}(B)$.

(f) $\text{NCI}(A \cup B) = \text{NCI}(A) \vee \text{NCI}(B)$.

(g) $\text{NInt}(1_N) = 1_N$.

(h) $\text{NCI}(O_N) = O_N$.

Proof (a), (b) and (e) are obvious (c) follows from (a) and Definitions.

References

[7] Florentin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002), smarand@unm.edu

www.iosrjournals.org