On Syntax and Semantics of Propositional Logic

Latif Salum, Independent Researcher, Türkiye

latif.salum@gmail.com

February 25, 2025

Abstract

We introduce syntactic aspect of disjunction based on the prime truth assignments of a 3CNF formula. In this manner, we describe the *semantics* of the formula *syntactically*. We use this novel approach to determine a sufficient condition for unsatisfiability.

A Sufficient Condition for Unsatisfiability

As is well known, a Boolean formula can be converted to an equisatisfiable 3CNF formula via the Tseytin transformation. Let $\phi = \bigwedge C_k$ be a 3CNF formula, C_k being a disjunction of two or three literals ℓ_i , where $\ell_i \in \{x_i, \overline{x}_i\}$. **Definition** (Conventional/semantic aspect of disjunction). Let $D = \ell_1 \lor \ell_2 \lor \cdots \lor \ell_n$. D is true if at least one of the literals is true.

Definition (Syntactic aspect of disjunction: prime truth assignments). Let $C_{k'} = (\ell_1 \vee \ell_2)$ and $C_k = (\ell_1 \vee \ell_2 \vee \ell_3)$. $\delta_{k'} = (\psi_{k'}^1 \vee \psi_{k'}^2 \vee \psi_{k'}^3)$ such that $\psi_{k'}^1 = (\ell_1 \wedge \overline{\ell}_2), \psi_{k'}^2 = (\overline{\ell}_1 \wedge \ell_2), \psi_{k'}^3 = (\ell_1 \wedge \ell_2)$.

 $\delta_k = (\psi_k^1 \vee \cdots \vee \psi_k^7) \text{ such that } \psi_k^1 = (\ell_1 \wedge \overline{\ell}_2 \wedge \overline{\ell}_3), \\ \psi_k^2 = (\overline{\ell}_1 \wedge \ell_2 \wedge \overline{\ell}_3), \\ \dots, \\ \psi_k^6 = (\overline{\ell}_1 \wedge \ell_2 \wedge \ell_3), \\ \psi_k^7 = (\ell_1 \wedge \ell_2 \wedge \ell_3).$

Remark. The prime truth assignments $\psi_k^1, \psi_k^2, \ldots, \psi_k^s$ of the clause C_k are denoted by δ_k the DNF formula. Then, C_k is *satisfiable* iff δ_k is *reducible* to one of its prime truth assignments ψ_k^s , which leads to the following definition.

Definition (Syntactic definition of the satisfiability of C_k). C_k is satisfiable iff $\delta_k \vdash \psi_k^s$ for some $s \in \{1, 2, ..., 7\}$. **Definition** (Syntactic description of the semantics of ϕ). $\Psi = \bigwedge \delta_k$, where $\delta_k = (\psi_k^1 \lor \cdots \lor \psi_k^{s_k})$ for $s_k \in \{3, 7\}$. *Remark*. Ψ the syntax describes the semantics of ϕ the formula via δ_k the prime truth assignments of every C_k .

Theorem (Unsatisfiability). ϕ is unsatisfiable if $\Psi \vdash \psi$ such that ψ is inconsistent, viz., $\psi \vdash x_i \land \overline{x}_i$ for some *i*. *Proof.* The proof is obvious. It is also obvious that $\phi \equiv \Psi$. Note that $\psi = \ell_i \land \ell_j \land \cdots \land \ell_u$, where $\ell_i \in \{x_i, \overline{x}_i\}$. \Box

A polynomial time decision procedure to decide the unsatisfiability of ϕ is described briefly as follows. Consider $\psi_k^s \wedge \Psi$ to evaluate the incompatibility of a prime truth assignment ψ_k^s . If $\psi_k^s \wedge \Psi \vdash \psi$ such that ψ is inconsistent, then ψ_k^s is incompatible and removed from Ψ . Note that $\psi_k^s \wedge \delta_k \vdash \psi_k^s$. Thus, the incompatibility of every prime truth assignment is evaluated so that each ψ_k^s incompatible is removed from Ψ . Also, if any ψ_k^s has been removed, then the incompatibility of every ψ_k^s is re-evaluated over the current Ψ . When the incompatibility evaluations terminate, it is the case that $\Psi \vdash \psi \wedge \Psi'$ such that $\psi = \psi_{k_1}^{s_1} \wedge \psi_{k_2}^{s_2} \wedge \cdots \wedge \psi_{k_m}^{s_m}$, where $k_1 \neq k_2 \neq \cdots \neq k_m$. If ψ is inconsistent, then ϕ is unsatisfiable. The following examples illustrate this decision procedure.

Let $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_2 \lor \overline{x}_3)$. Then, $\Psi = \delta_1 \land \delta_2 \land \delta_3$, in which $\delta_1 = (x_1 \land x_2) \lor (x_1 \land \overline{x}_2) \lor (\overline{x}_1 \land x_2)$, $\delta_2 = (x_2 \land x_3) \lor (x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$ and $\delta_3 = (x_2 \land \overline{x}_3) \lor (x_2 \land x_3) \lor (\overline{x}_2 \land \overline{x}_3)$. We evaluate the incompatibility of $(x_1 \land \overline{x}_2)$ the prime truth assignment. Consider $(x_1 \land \overline{x}_2) \land \Psi$. As a result, $\delta_1 = (x_1 \land \overline{x}_2)$, $\delta_2 = (\overline{x}_2 \land x_3)$ and $\delta_3 = (\overline{x}_2 \land \overline{x}_3)$. Because $\delta_2 \land \delta_3$ is inconsistent, $(x_1 \land \overline{x}_2)$ is incompatible and removed from Ψ . Also, $(\overline{x}_2 \land \ell_3)$ is incompatible for each $\ell_3 \in \{x_3, \overline{x}_3\}$. Thus, $\Psi \vdash \Psi'$ and $\Psi' = \delta_1 \land \delta_2 \land \delta_3$, in which $\delta_1 = (x_1 \land x_2) \lor (\overline{x}_1 \land x_2)$ and $\delta_2 = \delta_3 = (x_2 \land x_3) \lor (x_2 \land \overline{x}_3)$.

Let $\phi = (x_1 \vee \overline{x}_2) \wedge (x_2 \vee \overline{x}_3) \wedge (x_3 \vee \overline{x}_1) \wedge (x_1 \vee x_2 \vee x_3) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3)$. Then, $\Psi = \delta_1 \wedge \delta_2 \wedge \delta_3 \wedge \delta_4 \wedge \delta_5$, where $\delta_1 = (x_1 \wedge x_2) \vee (\overline{x}_1 \wedge \overline{x}_2) \vee (x_1 \wedge \overline{x}_2)$.

 $\delta_2 = (x_2 \wedge x_3) \vee (\overline{x}_2 \wedge \overline{x}_3) \vee (x_2 \wedge \overline{x}_3).$

```
\delta_3 = (x_3 \wedge x_1) \lor (\overline{x}_3 \wedge \overline{x}_1) \lor (x_3 \wedge \overline{x}_1).
```

 $\delta_4 = (x_1 \wedge \overline{x}_2 \wedge \overline{x}_3) \vee (x_1 \wedge x_2 \wedge \overline{x}_3) \vee (\overline{x}_1 \wedge x_2 \wedge \overline{x}_3) \vee (\overline{x}_1 \wedge x_2 \wedge x_3) \vee (\overline{x}_1 \wedge \overline{x}_2 \wedge x_3) \vee (x_1 \wedge \overline{x}_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3).$ $\delta_5 = (x_1 \wedge \overline{x}_2 \wedge \overline{x}_3) \vee (x_1 \wedge x_2 \wedge \overline{x}_3) \vee (\overline{x}_1 \wedge x_2 \wedge \overline{x}_3) \vee (\overline{x}_1 \wedge \overline{x}_2 \wedge x_3) \vee (x_1 \wedge \overline{x}_2 \wedge x_3) \vee (\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3).$ Consider $(x_1 \wedge \overline{x}_2 \wedge \overline{x}_3) \wedge \Psi$. Then, $(x_1 \wedge \overline{x}_2 \wedge \overline{x}_3) \wedge \delta_3 = (x_1 \wedge \overline{x}_2 \wedge \overline{x}_3) \wedge (x_3 \wedge \overline{x}_1)$, which is inconsistent. Hence,

 $(x_1 \wedge \overline{x}_2 \wedge \overline{x}_3) \text{ is removed.}$ Consider $(x_1 \wedge x_2 \wedge \overline{x}_3) \wedge \Psi$. Then, $(x_1 \wedge x_2 \wedge \overline{x}_3) \wedge \delta_3 = (x_1 \wedge x_2 \wedge \overline{x}_3) \wedge (x_3 \wedge \overline{x}_1)$ and $(x_1 \wedge x_2 \wedge \overline{x}_3)$ is removed. Consider $(\overline{x}_1 \wedge x_2 \wedge \overline{x}_3) \wedge \Psi$. Then, $(\overline{x}_1 \wedge x_2 \wedge \overline{x}_3) \wedge \delta_1 = (\overline{x}_1 \wedge x_2 \wedge \overline{x}_3) \wedge (x_1 \wedge \overline{x}_2)$ and $(\overline{x}_1 \wedge x_2 \wedge \overline{x}_3)$ is removed. Consider $(\overline{x}_1 \wedge x_2 \wedge x_3) \wedge \Psi$. Then, $(\overline{x}_1 \wedge x_2 \wedge x_3) \wedge \delta_1 = (\overline{x}_1 \wedge x_2 \wedge x_3) \wedge (x_1 \wedge \overline{x}_2)$ and $(\overline{x}_1 \wedge x_2 \wedge x_3)$ is removed. Consider $(\overline{x}_1 \wedge \overline{x}_2 \wedge x_3) \wedge \Psi$. Then, $(\overline{x}_1 \wedge \overline{x}_2 \wedge x_3) \wedge \delta_2 = (\overline{x}_1 \wedge \overline{x}_2 \wedge x_3) \wedge (x_2 \wedge \overline{x}_3)$ and $(\overline{x}_1 \wedge \overline{x}_2 \wedge x_3)$ is removed. Consider $(x_1 \wedge \overline{x}_2 \wedge x_3) \wedge \Psi$. Then, $(x_1 \wedge \overline{x}_2 \wedge x_3) \wedge \delta_2 = (x_1 \wedge \overline{x}_2 \wedge x_3) \wedge (x_2 \wedge \overline{x}_3)$ and $(x_1 \wedge \overline{x}_2 \wedge x_3)$ is removed. Consider $(x_1 \wedge \overline{x}_2 \wedge x_3) \wedge \Psi$. Then, $(x_1 \wedge \overline{x}_2 \wedge x_3) \wedge \delta_2 = (x_1 \wedge \overline{x}_2 \wedge x_3) \wedge (x_2 \wedge \overline{x}_3)$ and $(x_1 \wedge \overline{x}_2 \wedge x_3)$ is removed.

Consequently, $\delta_4 = (x_1 \wedge x_2 \wedge x_3)$ and $\delta_5 = (\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3)$. As a result, $\Psi \vdash \psi$ such that $\psi = \delta_4 \wedge \delta_5 = \psi_4^7 \wedge \psi_5^7$, where $\psi_4^7 = (x_1 \wedge x_2 \wedge x_3)$ and $\psi_5^7 = (\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3)$. Because ψ is inconsistent, ϕ is unsatisfiable.

See also http://dx.doi.org/10.13140/RG.2.2.32590.78408.