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Abstract
Interesting as they are by themselves in philosophy and mathematics, paradoxes can be made even more fascinating when
turned into proofs and theorems. For example, Russell’s paradox, which overthrew Frege’s logical edifice, is now a classical
theorem in set theory, to the effect that no set contains all sets. Paradoxes can be used in proofs of some other theorems—
thus Liar’s paradox has been used in the classical proof of Tarski’s theorem on the undefinability of truth in sufficiently
rich languages. This paradox (as well as Richard’s paradox) appears implicitly in Gödel’s proof of his celebrated first
incompleteness theorem. In this paper, we study Yablo’s paradox from the viewpoint of first- and second-order logics. We
prove that a formalization of Yablo’s paradox (which is second order in nature) is non-first-orderizable in the sense of George
Boolos (1984).

This was sometime a paradox, but now the time gives it proof.
—WILLIAM SHAKESPEARE (Hamlet, Act 3, Scene 1).

Keywords: Yablo’s paradox, non-first-orderizability.

1 Introduction

Priest [15, p. 160] tells us that ‘the programme of solving the paradoxes is doomed to failure’.
Presumably, mathematicians and philosophers know this, at least implicitly, and have learned to
live with paradoxes—at least as long as the paradoxes do not crumble the foundations of our logical
systems. Paradoxes have turned out to be more than puzzles or destructive contradictions; indeed they
have been used in proofs of some fundamental logico-mathematical theorems. Let us take the most
well-known, and perhaps the oldest, paradox: the Liar’s paradox. When translated into the language
of logic, this paradox seems to claim the existence of a sentence λ such that λ↔¬λ holds. However,
Liar’s paradox can be moulded into a propositional tautology: ¬(p ↔ ¬p). In fact, when trying to
convince oneself about the truth of ¬(p↔¬p), one can see that the supposed argument is not that
much different from the argument of Liar’s paradox. One can clearly see that the paradox becomes
a (semantic) proof for that tautology, hence the title of the article. It is worth noting that Gödel
mentions in [9, p. 149], after informally presenting his proof of the first incompleteness theorem
in Section 1, that: ‘The analogy of this argument with the Richard antinomy leaps to the eye. It is
closely related to the ‘Liar’ too;14...’where in the footnote 14 he writes that ‘14Any epistemological
antinomy could be used for a similar proof of the existence of undecidable propositions.’

Let us take a second example, Russell’s paradox. If there existed a set r such that ∀x(x∈ r↔x �∈x),
then we would have a contradiction. So, the sentence ¬∃y∀x(x∈y↔x �∈x) is a theorem in the theory
of sets, whose proof is nothing more than the argument of Russell’s paradox. Going deeper into the
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proof (or the paradox), one can see that no real set-theoretic properties of the membership relation
(∈) is used. Namely, for an arbitrary binary relation s, the sentence ¬∃y∀x[s(y, x) ↔ ¬s(x, x)]
is a first-order logical tautology (see [16, Exercise 12, p. 76]). Now, if we interpret the predicate
s(y, x) as ‘y shaves x’, then we get Barber’s paradox (due to Russell again). More generally, for any
formula ϕ(x, y) with the only free variables x and y, the sentence ¬∃y∀x[ϕ(x, y)↔¬ϕ(x, x)] is a first-
order logical tautology whose semantic proof is very similar to the argument of Russell’s or Barber’s
paradox. In a similar way, ¬∃X (2)∃y∀x[X (2)(x, y)↔¬X (2)(x, x)] is a second-order tautology.

In this paper, we are mainly interested in Yablo’s paradox [18–20].1 Several papers (not all of them
cited here) and one book [6] have been written on different aspects of this paradox. Yablo’s paradox
says that there can be no sequence {Yn}n∈N such that for all n ∈ N, Yn is true if and only if Yk is
untrue for all k >n. The reason is that none of those sentences can have a truth value (the sentences
Yn would be neither true nor false). Yablo himself humbly calls this paradox ‘the ω-Liar paradox’.
The paradoxicality of the sequence {Yn}n∈N of sentences with the above-mentioned property follows
from the easily observed fact that if Ym is true for some m, then Ym+1, as well as Yks for k > m+1,
should be untrue. So, by the falsity of Ym+1, there should exist some j>m+1 such that Yj is true, a
contradiction. Whence, all Yms should be untrue, and so Y0 must be true, another contradiction!

2 Yablo’s paradox in second-order logic

In order to formalize Yablo’s paradox in a first- or second-order language, we first abstract away
even the order relation that appears in the paradox and replace it with an arbitrary binary relation
symbol R. A non-arithmetical formulation of Yablo’s paradox in first-order setting can be found in
[10], and an arithmetical treatment of Yablo’s paradox in second-order setting can be found in [14].

Let us take Y1 to be the first-order scheme

¬∀x
(
ϕ(x) ←→ ∀y[xRy → ¬ϕ(y)]

)
,

where ϕ(x) is an arbitrary first-order formula with the only free variable x. Here, the sentences Yn
are represented by ϕ(n) and quantifiers of the form ∀k >n · · · are represented by ∀k(nRk →· · · ).

NOTATION 2.1 (Y: Yablo’s paradox in second-order logic).
By Y , we mean the following second-order sentence:

¬∃X (1)∀x
(
X (1)(x) ←→ ∀y[xRy → ¬X (1)(y)]

)
,

where R is a fixed binary relation symbol.

Some sufficient conditions for proving Y1 and Y are the seriality (having no maximal element) and
transitivity of the binary relation R:

(S):∀x∃y(xRy), and (T ):∀x, y, z (xRy ∧ yRz → xRz).

That is to say, S∧T → Y1 is a first-order tautology, and S∧T → Y is a second-order tautology;
see [10, 13]. None of these conditions are necessary for Y . For example, in the digraph 〈D; R0〉 with
D ={a, b, c} and R0 ={(a, a), (a, b), (b, b), (b, c)}, neither S nor T holds. However, Y holds since if

1A closely related paradox is Visser’s [17], which we do not study here.
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for some X ⊆ D we had x ∈ X ↔∀y(xR0y → y �∈ X ) for every x ∈ D, then by aR0a and bR0b we had
a, b �∈X and so there should existed some y∈X such that aRy, a contradiction. For R1 =R0 ∪ {(c, c)},
the digraph 〈D; R1〉 satisfies Y and S but not T ; and for R2 = (R0−{(a, b)}) ∪ {(b, a)}, the digraph
〈D; R2〉 satisfies Y and T but not S . This is a depiction of R0, R1, R2:

(Y ,¬S ,¬T )R0: ��a→��b→c (Y ,S ,¬T )R1: ��a→��b→��c (Y ,¬S ,T )R2: ��a←��b→c

As a matter of fact, some conditions weaker than S ∧T can prove Y1 and Y . For example, the
sentence

(A): ∀x∃y(xRy ∧ ∀z[yRz→xRz]),

does so (see Theorem 2.3 below). To see that A is really weaker than S∧T , consider the non-transitive
digraph 〈D; R1〉 above; it satisfies A since for every x ∈ D we have xR1x ∧ ∀z[xR1z → xR1z]. Even
some weaker conditions than A prove (Y1 and) Y .

DEFINITION 2.2 (Some Sufficient Conditions for Proving Y).
Let θ0(x) be the formula ∃y(xRy ∧ ∀z[yRz → xRz]). For every n ∈ N, if θn(x) is defined,
then let θn+1(x)=∃y(xRy ∧ ∀z[yRz→θn(z)]).

We now show that {∀x θn(x)}n∈N is a decreasing sequence of sentences each of which implies Y1
and Y (where by decreasing we mean that every sentence implies its successor but not vice versa).
Note that A=∀x θ0(x).

THEOREM 2.3 (
∧∧

n∈N ∀x θn+1(x) �|� ∀x θn(x) |� ∀x θn+1(x) |� Y).
For every n∈N, we have

(1) ∀x θn(x) |� Y; (2) ∀x θn(x) |� ∀x θn+1(x); (3) ∀x θn+1(x) �|� ∀x θn(x).

PROOF

(1) By induction on n. For n = 0, assume that ∀x θ0(x) holds in a directed graph 〈D; R〉 and that
for a subset X ⊆D we have ∀x(x∈X ↔∀y[xRy→ y �∈X ]). For every a∈D there exists, by ∀x θ0(x),
some b ∈ D such that aRb and ∀z[bRz → aRz]. Now, if a ∈ X , then b �∈ X , and so there should exist
some c ∈ D such that bRc and c �∈ X . Also, aRc should hold, which contradicts a ∈ X . Thus, X = ∅.
However, then for any a ∈ D there should exist some b ∈ D with aRb and b ∈ X , and so X �= ∅, a
contradiction. Thus, there exists no such X ⊆D, whence ∀x θ0(x) |� Y .

Now, suppose that ∀x θn(x) |� Y holds. Take a directed graph 〈D; R〉 and assume that ∀x θn+1(x)
holds in it. If for some X ⊆D we have ∀x(x∈X ↔∀y[xRy→y �∈X ]), then for every a∈D there exists
some b ∈ D such that aRb and we have θn(z) for every z in the set Db = {z ∈ D | bRz}. If Db �= ∅,
then the directed graph 〈Db, R∩D2

b〉 satisfies ∀x θn(x), and so, by the induction hypothesis, the set
X ∩Db cannot exist. So, we necessarily have Db =∅. If a ∈ X holds, then we should have b �∈ X and
so there should exists some c ∈ Db with c �∈ X , a contradiction. Thus, X =∅. Then, for every a ∈ D,
since a �∈ X , there should exist some b with aRb and b ∈ X , another contradiction. This shows that
∀x θn+1(x) |� Y .

(2) Suppose that ∀x θn(x), and fix an x. There is some y such that xRy; also for every z with yRz
we have θn(z) by the assumption ∀x θn(x). So, ∀x θn+1(x) holds.

(3) Consider 〈D; R〉, with R = {(ai, ai+1) | 0 � i < 2n} ∪ {(a2n, a2n)} over the set D =
{a0, a1, . . . , a2n}. In the directed graph 〈D; R〉, obviously, ∀x θn+1(x) holds, but ∀x θn(x) does not
hold, since we have a2n−2Ra2n−1Ra2n but ¬(a2n−2Ra2n). �

As a result, Y does not imply ∀x θn(x) for any n∈N.
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REMARK 2.4 (Another decreasing sequence of sentences implying Yablo).
All the sentences ∀x θn(x) above imply the seriality of the relation R but do not imply its transitivity.
Another condition2 that is weaker than transitivity but its conjunction with seriality implies Y was
constructed by Cook [5, 6]. Let us say that the relation R is n-transitive when for every {ai}i�n if
aiRai+1 holds for each i�n, then a0Ran. Now [5, Theorem 2.7] (and [6, Theorem 1.3.2]) says that

(1) For even n, seriality and n-transitivity together imply Y .
Next, we note that

(2) For every n, n-transitivity implies n2-transitivity.
Indeed, n-transitivity implies (n+k[n−1])-transitivity for every k (see [6, p. 47]).
Finally, we note that

(3) For every n, n-transitivity does not imply m-transitivity for any m<n.

Since the relation {(i, j) | (n� i< j)∨(i<n∧[j= i+1∨n� j])}⊆N
2 is n-transitive, but not m-transitive

when m<n.
Thus, for every even �>1, if τn says ‘R is �2n

-transitive’, then {S∧τn}n is a decreasing sequence
of sentences each of which implies Y . �

We saw that Theorem 2.3(1) turns Yablo’s paradox into a theorem (under some conditions on R).
As another instance of turning Yablo’s paradox into a proof we can mention [7, Theorem 1]. One
other instance3 is in [1] (Lemma 9.8) where Beklemishev and Pakhomov note in Remark 9.9 that

‘The construction of Y in the proof of Lemma 9.8 essentially is a variant of Yablo-Visser
paradox [17, 18]. An interesting feature of the proof is that it did not require the use of
any kind of fixed points. This contrasts with Visser’s construction [17], where he used the
Diagonal Lemma to show that the paradox is applicable to descending sequence of truth
predicates.’

In the next section, we show that no first-order sentence in the language of 〈R〉 is equivalent to
the second-order sentence Y . So, neither the sentence Y nor its negation ¬Y is first-orderizable
(see [3, 4]). Not only the second-order sentence Y is non-equivalent to any first-order sentence but
also it is not equivalent to any first-order theory (not even to theories with infinitely many axioms).
Actually, ¬Y is equivalent to the existence of a kernel in a directed graph 〈D; R〉; see e.g. [2, 6]. So,
by our result, the existence or non-existence of a kernel in a directed graph is not equivalent to any
first-order sentence in the language of directed graphs. Whence, Yablo’s paradox, formalized as Y1
or Y in the Notation of 2.1, does not turn by itself into a first- or second-order tautology, and some
conditions should be put on R to make it a theorem. As argued in [11, 12], however, Yablo’s paradox
can be nicely translated into some theorems in linear temporal logic or in modal logic (see [8]).

3 Non-first-orderizability of Yablo’s paradox

Consider the language 〈s〉, where s is a unary function symbol. A standard structure for this language
is 〈N; s〉, where s is interpreted as the successor function: s(n)=n+1 for all natural numbers n∈N.

2This was kindly suggested by an anonymous referee of this journal.
3Both of these instances were kindly pointed out by another anonymous referee of this journal, who also noted that ‘the

main result of [7]’ (which is its Theorem 1) ‘essentially is an instance of Yablo’s paradox (as a theorem of second-order logic)’
even though the authors of [7] had not noticed that.
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DEFINITION 3.1 (Theory of successor, and kernel of a directed graph).
Let S be the theory in the language 〈s〉 consisting of the following axiom:

∀x, y
(
s(x)=s(y) → x=y

)
.

To every structure 〈M ; s〉, a directed graph 〈M ; R〉 is associated, where R is defined by xRy ⇐⇒
y=s(x), for all x, y∈M.

For a directed graph 〈D; R〉, a subset K ⊆D is called a kernel when it has the following property:
∀x

(
x∈K ↔ ∀y[xRy→y �∈K]

)
.

For a formula ϕ over the language 〈R〉, let ϕs be the result of replacing each uRv in ϕ by s(u)=v
for variables u, v. The formula ϕs is thus over the language 〈s〉.

So, the second-order sentence Y asserts the non-existence of a kernel in a directed graph with
relation R, and the s-translation of Yablo’s paradox Ys is equivalent to the second-order sentence
¬∃X (1)∀x

[
X (1)(x) ←→ ¬X (1)

(
s(x)

)]
. Each structure 〈M ; s〉 that satisfies S may contain some

copies of

N ≈ {a0, a1, a2, . . .}

with an+1 = s(an) for all n ∈N, such that there is no a ∈ M with s(a) = a0. It may also have some
copies of

Z ≈ {. . . , a−2, a−1, a0, a1, a2, . . .},

in which am+1 =s(am) for all m∈Z. There could be also some finite cycles

Zm ≈ {a, s(a), s2(a), . . . , sm−1(a)} with sm(a)=a,

for some m > 0. Let us note that, by the axiom S , no two copies of N or Z or a finite cycle can
intersect. Indeed, no model 〈M ; s〉 of S can contain anything but these.

LEMMA 3.2 (Axiomatizability of ¬Ys+S ).
The associated directed graph 〈D; R〉 of a model 〈M ; s〉 of S satisfies ¬Y , if and only if 〈M ; s〉 has
no odd cycles, if and only if the structure 〈M ; s〉 satisfies the axioms ¬∃x(s2n+1(x) = x) for each
n∈N.

PROOF

The second equivalence is straightforward; so, we prove the first one only.
(�⇒): suppose that the directed graph 〈M ; R〉 associated to 〈M ; s〉 has a kernel K, and also (for

the sake of a contradiction) that 〈M ; s〉 has an odd cycle such as {a, s(a), s2(a), . . . , s2m+1(a) = a},
for some m > 0. Then, if a ∈ K, then s(a) �∈ K, then . . . s2m(a) ∈ K, and so a = s2m+1(a) �∈ K,
a contradiction. Also, if a �∈ K, then s(a) ∈ K, then . . . s2m(a) �∈ K, and so a = s2m+1(a) ∈ K, a
contradiction again. Therefore, if 〈M ; R〉 has a kernel, then 〈M ; s〉 can have no odd cycle.

(⇐�): suppose that 〈M ; s〉 has no odd cycles. Let K ⊆ M consist of the even-indexed members
of M , in the sense that if M contains copies of N or Z then K contains only the even numbers from
those copies, and if M contains a finite even cycle like {a, s(a), s2(a), · · · , s2m+2(a) = a} then K
contains only the elements {a, s2(a), s4(a), · · · , s2m(a)} from that cycle. Then the set K is a kernel
of 〈M ; R〉, since an element of M is in K, if and only if it is even-indexed, if and only if its successor
is odd-indexed, if and only if its successor is not in K. Thus, the digraph 〈M ; R〉 satisfies ¬Y .
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This would have not been possible had there been an odd cycle, i.e. an element α such that
s2m+1(α)=α for some m>0, since α would had been odd- and even-indexed at the same time. �

So, the second-order theory ¬Ys + S is first-order axiomatizable over 〈s〉. However, we show
below that it is not finitely axiomatizable. We will use two applications of the compactness theorem
of first-order logic (see e.g. [16, Theorem 4.2.1]):

(a) If a class K of structures is axiomatized by a theory T , then K is finitely axiomatizable if
and only if K is axiomatizable by a finite subset of T (see [16, Lemma 4.2.9]).

(b) A class K of structures is finitely axiomatizable if and only if K and K � (the complement
of K ) are both axiomatizable (see [16, Lemma 4.2.10]).

THEOREM 3.3 (Non-first-orderizability of Y and ¬Y).
The second-order sentence Y is not equivalent to any first-order sentence.

PROOF

If there is a first-order sentence in the language 〈R〉 equivalent to Y , then by Lemma 3.2, S ′ =
S ∪{¬∃x(s2n+1(x)=x) | n∈N} should be finitely axiomatizable. However, this is not true since for
any finite subset of this theory there exists a structure that satisfies that finite sub-theory but is not a
model of the whole theory S ′ (see (a) above): it suffices to take a sufficiently large odd cycle. �

Thus, there can exist no first-order sentence η such that the second-order sentence η ↔ Y is a
tautology. As a result, the proposed formalization Y of Yablo’s paradox in 2.1, being second order in
nature, is not equivalent to any first-order sentence.

We end the paper with a stronger result: there cannot exist any first-order theory that is equivalent
to Y . So, Yablo’s paradox is not even infinitely first-order (i.e. it is even non-equivalent to every
first-order theory consisting of infinitely many sentences).

THEOREM 3.4 (Non-equivalence of Y to first-order theories).
The second-order sentence Y is not equivalent to any first-order theory.

PROOF

By Lemma 3.2, the theory ¬Ys + S is first-order axiomatizable over 〈s〉; if Ys is first-order
axiomatizable, then by (b) above the theory ¬Ys+S should be finitely first-order axiomatizable.
However, this contradicts Theorem 3.3. So, Ys is not first-order axiomatizable; hence, Y is not
equivalent to any first-order theory. �

We conjecture that the second-order sentence ¬Y , too, is not equivalent to any first-order theory.
This does not concern the main topic of this article, since the sentence ¬Y does not express Yablo’s
paradox, while Y does that.
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