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Abstract

The work is an attempt to transfer a structure fieutlidean plane (pure geometrical) under the
physical observation limit (resolving power) to é&ypical space (observable space). The
transformation from the mathematical space to miaysspace passes through the observation
condition. The mathematical modelling is adoptédtke Pproject is based on two stapes: (1) Looking for
a simple mathematical model satisfies the definitdd Euclidian plane; (2)That model is examined
against three observation resolution conditionsalked, unresolved and partially resolved). The
simplest mechanical model satisfies the definitmn Euclidian plane is a planetary gear. The
interesting examination of the mechanical modehé&t is under partial resolution. That examination
shows analogous equation for Euler’s formula. Theved complex formula contains the resolved
(observable) quantities of the mechanical systerd saatisfies the linear wave equation. The
interpretation of this complex formula is: it iumnction related to the position vector of a pamthe
small wheel of the partially resolved planetaryrggstem. The function is in terms of the obsermwabl
quantities only. The work shows the possibilitytiginsformation from real to complex space. The
work is purely classical but the result of the éntesolution shows a function similar to the Quugm
mechanics wave function.
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1 Introduction

The Euler’s formulgor Euler identity) is a pure mathematical exprassand composed of
real and imaginary parts. Owing to the periodiwture, this formula has many wave applications in
classical physics like wave analysis in electronegignfield and optics. In this type of analysise th
physical quantity is represented by complex amgéturhe problem of this complex formulation is its
imaginary component, which has no real meanindiysigs. In the classical applications only the real
part is considered. Thus, complex amplitude ismote than a technical wave representation tool, and
do not reflect the real nature of the waves.

Not like classical physics, the complex formulatisngenuine in quantum mechanics. The

complex wave function¥ ) is the solution of Schrédinger wave equationthis case the physical
meaning is necessary. Physics could not get exjidarfar this complex wave function only through a

real quantity (probability densi¥¥"). This interpretation is the Copenhagen Integtien of
quantum mechanics. In spite of this statisticalrapgh complex wave function has no physical (real)
meaning. Euler’s formula is a real analogous toctiraplex wave function.

Classical physics approaches have nothing to db this wave function, and there is on
classical model can be represented by Euler’s flazmu

It is possible to observe a segment of a line, aibpe a time interval, but the observation
depends on the detection or observation tool aadsike of the object or the limit of the interval.
Imaging devices are limited by their resolution pow

The resolution power may be defined as the shaitetstince between two points on the object
that can still be distinguished by the observesegsarate entities. The resolving power of an optica
system depends on the wavelength of the light, the refractive index of the medilatween the
lens and the specimem{, the aperture of the observing system, and tbhengérical arrangement. As
an example, the linear resolving power of a miaopeds (Khare, 2009).
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A
2nsing
whered, is the minimum linear distance between two distisigable points anddis half of the

aperture angle of the objective. In the well resdl case, a distance\X) is quite clear, and the
intensity peaks of the imaging device are well sajga. For examplaxyy)d, . It is similar for the

time interval when the minimum time intervel, () is smaller than the measured intervAt } or

d, =122 )

At)))t, . The minimum time intervalt( ) is related to the light frequencyf ().

To recognise a dynamical event, both the space esgigamd time interval must be measured.
Many researchers have reported the time and spaoé/ing power (Miyake et al, 1998; Alvisi et al,
1999 and Yaroshenko, 2000). High resolution powereeded to measure the space segment and time
interval. In this project, the focus is on the tifike interval or subluminal motion® =v/c(1). The

particle velocity {) is

At
@
And, for high resolution power for both space antkt it is

Axy)d, and Aty)t, @3)

However, because

Ax ,d,
v=—(—2=cC 4)
At«g

the condition of high time resolution is justifim any space resolution power.

Experimentally, there are two distinct cases, eithsolved with a different level of clarity or
the unresolved case. Thus, there will be eithegganent of a line or a point. The same is trudher
time interval.

The subluminal motion\((c) of a point can be recognised accurately on therosaopic

scale Ax))yd, and At)))t, ), where both measurements of space and time aveade. In the case of
subluminal motion on the micro scal@&x(((d,), the space segment is unresolved and cannot be

recognised. However, because the motion is subkiminis still possible for the time interval/t)

to be resolved or measured using the same ligbbsérvation. In this case, the motion cannot be
observed, but the time can be measured througbsartiated phenomenon with motion similar to that
of the radiation of a charged particle. This radratcan lead to a speculation of an unresolvedespac
segment or motion. This case may be defined damharesolved. The partial resolution refers e t

possibility of observation of part of a system wbtdimensions z,Ay) when Az)))d, and the

other part cannot be resolvefly(((d, . This system is partially resolved relative tocertain

wavelength of light and imaging device, where tlhsesved radiation is due to unresolved motion.
Some of the space segments and the time intemalesolved, whereas the others are unresolved.
The problem of partial resolution is an interestsubject in image processing, astronomy,
modern visual technology, and simulations (Bodeal €2009; Hsing Shih et al, 2010 and Umetani et
al, 1989). In a system (of more than one dimensitere may be three possible cases: the resolved,
unresolved, and partially resolved system cases.
With aid of mathematical modelling technique foclassical model the present work tries to
transform to Euler's formula. The work is basedvenm stapes:
1-Looking for a simple mechanical model satisftes definition of Euclidian plane.
2 -The model will be examined against the classiadervation resolution conditions; the
resolved, unresolved, and partially resolved systaises. The unresolved dimension will be

regarded as of zero length in relative to the olzgem tool.
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2 Motion in two dimensional Euclidean space

The Euclidean plane is a two dimensional spdg&)(in the Euclidean geometry and may be
represented by the inner dot product (Prasolov Enhdinirov, 2001). The two vectore and {
(Euclidean vectors) are in the plane, the angle/éet them isy , and the trigonometric dot product
is

FIT = ||F||||Z ||cosa (5)
Whereﬂ || represents the norm. This combination represesist@m of three vectors. The algebraic
form based on the dot product is the cosine law:

[alf =IF” + ] - 2Fll|c]cosar ©

A simple system in the Euclidean plane should Setiree following three conditions:
1-The three vectors are linearly dependent, wiighown in eq. (6).
2-The three vectors are variables. The circularianas a simple model to demonstrate the variable
vectors. A simple model, which satisfies this cdtindi is shown in fig(1). Point P is rotate in the

Cartesian coordinate system definedXyyy, and anchored to the origifC(). The radius of rotation
aroundX_, Y. is a, .
The location of the point P relative to the origivint O may be defined as

{ =T, +a Y
where ¢ and r. represent the position vectors of poiRtandC relative to thex,y coordinates.
The anglea is the angle opposit@,. The origin point O (0,0) is considered as a fixeterence

point. Using the cosine law to formulafe in terms ofg,l.and a gives
_ _ S12 o lls
Gl = Il +[¢]” -2 ][] cos e ®)
When the anglez changes, the vectdgchanges as well.

In this case, the model fits two mutually extemadingent circles or a mechanical gear system
of two wheels in the plane (fig(1)). In this modeile first wheel (of radiug, ) rolls around the second

wheel of radiusa, . Then, the distancg, is
o =i =[] +la ®

The centre of the second circle or wheel is fix@the origin point O. The rolling of the small
wheel can change the form of the triangle P, Op @eé plane. This model satisfies the three eia
vectors.

v

b

~ o B 4

0(0.0) !

Figure 1. The rotation of point P with three vector geometry
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3 - To examine the motion of point P aroumd, Y., the observation of point P is considered relative
to the position vectorf]) of the centre of rotationX(, y. ). In other words,

{=1(r,a) (10)
Therefore, eq(8) can be rearranged as a quadratation:

HZHZ_HZHBJ’C:O )

B=-2r.cogr andC =r°-a,’ (12)

The roots of the quadratic equation (eq. (8)) are

a’ |2
HZHLZ ={,, =r,cosa +r.s-sina+ oz (13)

C

This form for ¢ satisfies the function (10). For a simpler forat,the ratio
a _

r.C

such that
1

{1, =1, COSQ % rc{— sina +0 2}5 (14)
These roots are real. The maximum value of theeasig

— cin~1
a,, =sin" [ (15)

The relative angular displacemeat can be represented in terms of the rotationalesng|
and ¢ . According to fig(1), the angular displacemenPadround the rotation centre @)is

=(@+pB)+¢ (16)
Then, the relative angular displacement)(is
a=0-pB-¢ 17)
where0< < 71. Then, eq.(14) becomes
1
ZLZ=rccos(9—,[>’—¢)4_rrc{—sinz(e—ﬁ—qp)+D2}5 (18)

The position of point P is controlled by the ve@pir..eq. (18) satisfies the three conditions
of the dynamical system. To examine the rotatiomation, the gear ratio is

& _ &
a W (19)
where the angular velocity of the point P is
_do 20
dt
and a, is the angular velocity of the rolling motion anolthe origin point.
a=u-wt-¢ (21)
- 98

Where, (22)

a)_
At
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For the rolling motion on the arg the angle is

p=— (23)
a2

Then, eg. (18) becomes

_ 2
1] = €1z = 1. coset - a,t —ai) + rc{— sin® (at — wjt —ai) +0 2} (24)
2 2

The motion of point P has an epicycloids curveettyry [10], as shown in Figure 4. eq(24) is
the kinematical equation for the motion of poininRhe Euclidean plane and relative to the position
vector of the rotation of the point.

3 Observation

For a physical system, consider a trapped chargetitle (of massm, and chargeq) in a
static magnetic fieldBB ). In this case, the electromagnetic radiation I@yon radiation) is related to
the charge angular acceleratioa, § [11]. The instantaneous power radiated)(of the charge is
(Larmor equation)

(25)

wherec is the light velocity andw is the particle angular frequency. This cyclotradiation is
emitted by moving charged particles trapped in gmeéc field. The cyclotron radiation frequency is

B
a):q— (26)
m,
which is the angular velocity of the trapped pédetiLarmor frequency). In this case, the angular
frequency of the trapped charge can be predictaahlgbserver regardless of the recognition of angle
motion. For non relativistic velocities, the radid field is sinusoidal, and with the aid of a Reur

transformation, a single frequency is detected.
For the model described above, the rotation ofctrerged particle P arounx, y. is responsible for

cyclotron radiation. Then, the cyclotron radiatisaquency isa , which is equal to the angular
frequency of the radiating particle.

3.1 Experimental observation

The experiment is as follows:

1-The dynamical system is of fixed dimensions an@presented by eqs(14 or 24).

2-In examining the system, the observation tool W changed according to the three resolution
conditions to show how the system might appeantolmserver for the three possible resolutions.
3-Any resolved space segment or time interval iasueable. The resolved and unresolved parameters
of the system are substituted in the modelling egundeqs(14 or 24)).

However, observation of the system will be conddicteroughout three proposed experiments
according to the role of the resolution and asfed:

| - Resolved observation condition ((((a,{a, andt, (((At). In this case, all the dimensions of the
system are larger than the minimum linear distisigable segment, ), and thus
d,=0 27)
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a, =a,, 28)
a, =a,,l 29)
a=a, (30)
and, a=a, (1)

The subscriptm refers to the measured value. All the parametersmaeasured with high

acceptable accuracy. The position vector in terhtBeomeasured values is
1

— tn2 215
{1, =T co8a, + rcm{— sin“a,, +0, }2 (32)
which is a macroscopic level of observation, areldhserver can recognise both vectafand &, .

In this case, the theoretical model fits the obsérsystem. Fig(2) shows the variation of the
magnitude of the position vector with the angle

7 -
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=
2
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&
> 2
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0 T T T T T 1
0 20 40 60 80 100 120

&, Angle [degree]

Figure 2: The variation of the position vector magnitudéhithe angleg . The ratioa, / a, = 1/5.

Il - Unresolved cased;)))a,))a, andt,(((At). In this case, the system cannot be resolved and

appears as an emitting particle localised at thgirompoint only. The emission may be
attributed to the unresolved angular motion or apgculative radiation mechanism. This
picture does not fit the theoretical model abovee Third possibility is considered in the next
section.

4 Partially resolved system

The partially resolved case is the third possipilfa, (((d,((a,and t,({{(At); the line
segmenta, is well recognised as in the first case, wheregsas insufficient resolution, as in the

second casea, may be considered as an undistinguishable segrhémeé déine. In other words, it may

appear as a point. Thus, for the observer, the umedsquantities are (see Table (I) for partial
resolution quantities)

ay, =0 33)
Then,
r.cm = a2m (34)
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a,=0 (35)
Because the cyclotron radiation frequency can basomed and is equal to the charge particle
angular frequency can be estimated, or

a =, (36)
Thus, the parameters of eq(14) are either obsersd) , & ) or unobservabled;,a ). Then,
the theoretical model above is reduced to

1
— in2 20 _
(ZLZ)D:O - a2m COSO’m * aZm{_SIn am +[ m }2 - a2m @37

This result shows the position vector of an engttoarticle rotating around the origin point.
The result is acceptable because it is a real fjyaarnid is related to a real physical macroscopic
description of the system. fig.(3) shows the camsteof the position vector (circular motion) due to
the partial resolution case. The difference betw&p(8) and fig(2) is quite clear.

Table|: The partial resolved system.

Resolved quantitiesd , (((a, Unresolved quantities
andt, (((At a,(((d, andt,(((At

r. a,

(73 (cyclotron radiatioraetection) ]

¢ w;

a2 kz a

However, the radiation is not related to the rotataround the original point. Thus, the
description of eq.(37) is not adequate.
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Figure 3: The position vector in the case of a partiallyohesd structure, wher@,,, = Bunit . Theratio

a, /a, =1/5.

In the proposed model, the observed radiation is tlu unresolved angular motion
aroundX., Y. . Thus, there are two points that should be clatifie

1- The description of eq(37) cannot offer any formattmay lead to an explanation of the
observed cyclotron radiation frequenay ).
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2- There is no relationship between the radiationudesgy and the angular motion around the
origin point.
3- As in the case of the unresolved system, the liadiatay be attributed to unresolved motion.
However, this scenario does not fit the above thszal model well.

The condition of partial resolution & (((d,{{(a, ) neglects some useful information in
eq(24), whereas the radiation measurement prowes information that is not used.

The present task is an attempt to use all thenmdition provided and substitute it into eq(24)
without violating the results of eq(37).
It was assumed above that the observer knows tlieinod radiation (eq(37)) already. Below is an
attempt to use all of the measurements of the reslblved dimensions. The new approach is as
follows:

1- Becausea,({((d,((a, the parameters of eq(24) are either observalalgezi, ¢ ) or unobservable
(a,,a,az). Then, eq(37) can be rewritten according to 4p¢3

s : s 2
({12) 00 = @y COS@,t — Wpt —a—) + aZm{— sin?(wpt = Wyt ———) +0 mz} =a,, (8

2m 2m

Because the ratid!,, =0,

1
S : S |2
(ZQLZ)D:O =3, COS@mt - C‘)/jmt - ) E aZm{_ sin? (C‘)mt - a)/jmt - )} =, (38D
a2m a2m

2- Eq(38-b) is of a complex form and can be forrtredan Euler’s formula form:

. S
(Zl,Z )D =0 = &, expt I(wmt - wﬁmt - a_) =3y, (39)
2m

Accordingly, the phase equals zero and containsithesolved quantity.

3- Eq(39) can be rearranged as

s
expti| w,t-———
a'2 —

m

{,,) =a . =a (40)
( 1,2)5_0 2 eXpi |C()ﬂmt 2m

. s
expt.(wmt_j
a2m
exptiw,t

A new definition 7,77,,) for the complex functions is

. S
expt |[a)mt —j
&m) _ 1
expt i Wyt Ny

or

=1 (42)

(42)

The unity arises from the macroscopic observati&ug4l) is a separated form of resolved
and unresolved quantities. The denominataow,f = B ) is related to the rotation around (Y, ),

which belongs to the unresolved structure, whetteasiominator relates to the resolved quantities.
4- This approach cannot deal with the unresolvddtianal structure. Thus, the denominator of
eq(42) has no meaning and will not be considereHdignwork.

In eq(42),n is the new function that is related to both rata&l motions and contains the resolved
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quantities only. It is

15 (r,6,t) = expti(w,t - ai) (43)

2m

The subscripts 1 and 2 refer to the positive amghiinee phases. Because this form has wave
features, it possible to state that

S —
—=k,,, 5 (44)
a‘2

m

wherek,, is the wave number. Then,

N1, (r,6,t) = expti(w,t — Ky, (3) (45)

The phase is a variable quantity, and the funcfiph is continuous. This complex wave
cannot reflect any physical meaning. Within thespré approach, this complex form (eq(43)) is
related to the gear model, but the complex formrmaghysical meaning.

Next, possible information is extracted. In physssch a case can be found in quantum mechanics,

where the physical meaning arises from the stegiséixplanation. The function depends on space and
time. The separation of the temporal-spatial depeod is

N1,(r,8,t) = expF ik, Bexptiw,t (46)

M,(r,0,t)=n(r,0)exptiw,t (47)
/7(r,6) is stationary function, and it depends only ongpatial coordinate.

N.,(r,8) = exprik,, (3 (48)
To normalise the constant, the general form o filnnction is

1, (I‘ J ‘9) = Aexpr iRZm (5 (49)
A is an arbitrary constant. The functions to be wared are

n,(r.8) = Aexpik,,, 3 =1(r,6) (50)
and

1,(r,6) = Aexp-ik,, B=1"(r,6) (51)

According to the partial resolution results, thetipée is restricted tor = a,,,. However,
statistically speaking, there should be a rarfihg,s< 27a,,,, such that

A In(r,@)q*(r,@)ds:1 (52)
Then,
A= ; (53)
278,
The normalised function becomes
n(r,6) = ! expr ik, (& (54)
278y,

and the function becomes

n(r,6)= exprik, [ at 0<s<27m,, (55)

1
Jore,,
and /7(r,9) =0 elsewhere (56)
Using the normalised function, the expectation @aifithe particle position is
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[n(r.6)sn" (r,6)s = (27m) = 27m,, (57)
The variance of is (0.°)
0. = [(s=27,,) "l ds = () - (27m,,.)? ©9

The standard deviation (uncertainty of position) is

As=0, = \/<sz> -(2m,,)’ (59)
Then, the uncertainty is
As=0 (60)
For the temporal function,
Tt (t) = exptiw,t (61)

the normalised function is

M 1,(t) = 1/& exptia,t (62)
' 2ir

and the expected time of finding the particle is

IOOT (thr, ()t = <j}—”> =T, )

m

This new result (eq(57)) represents the expectedipo of the particle for the observer, and it
is different than that of eq(37). Thus, the expadiene for the particle to be at that position is
represented in eq(63).

The new function (17 JC) describes the system better than the real fumefi¢{ [1 R) in the case

of partial resolution. The new picture is of a pbliistic nature.

This new function does not represent a real phiygigantity, and it is not like the macroscopic
case. However, within this new consideration, tbsitipn of the point is of a probabilistic natuasd
a, may represent the expected position or the madigtre position of the emitting particle.

This complexity may be justified as a result of gagtially resolved system.

5 Conclusions

The aid of mathematical modelling technique foryatam in Euclidean, demonstrates the
possibility of the transformation from real spacecbmplex space. The technique demonstrates the
feature for the structure before and after tramsédion. In the three transformation cases the tesul
are easy to comprehend. Thus, the technique iffiarelt educational approach for this complicated
problem.

The main conclusions for the examination of the ma@ical model under partial resolution are:

1-The complex features are due to two groups cfarst
A. The nature of the system
e The system is of two space dimensions.

* The three vectors &, { ,and I, ) are linearly dependent.

« The observation of point P is considered relativthe position vector of the rotation centre.
* The three vectors are variables.
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* The three variable vector model fits two mutuabgeenally tangent circles or a mechanical
gear system of two wheels in the plane.

« The vectors are not equa,(/a, ({(1).
* The dynamical system is classical (subluminal vgfa) V).
B. The observation conditions
+ Time measurement is more accurédte ¢, ) due to the case of subluminal velo@jyv .

+ Partial resolution of the systera,(((d, ((a,).

e There is a phenomenon related to the unresolvedtste (the electromagnetic radiation in
the above treatment).

2- The new picture depends on the resolved paramgfi¢he system only.

3- Within the frame of partial resolution, there is atber alternative for a more accurate description
of the system.

4- The continuous function obtained does not relie@gmy continuous medium beyond it.

5- The adopted statistical technique does not reliedaimy stochastic nature or a huge number of
microscopic entities as in thermodynamics.

6- The patrticle linear velocity relative to the cenfrés

V= aZmaZm (64)
whereas the complex function shows a phase velotity

_ G _
Vph - k_ = Wh&n (65)
2

This velocity has no real existence where no path® system moves with this velocity. Because
a‘m>a“2m,
WV i (66)

Using wave terminology, the particle velocity ca@pends to the wave group velocity, and the
system appears to have normal dispersion.
7- The complex function satisfies a linear wave equmati

The work throws light on the concept of the wawection.
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