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Abstract 
The work is an attempt to transfer a structure from Euclidean plane (pure geometrical) under the 
physical observation limit (resolving power) to a physical space (observable space). The 
transformation from the mathematical space to physical space passes through the observation 
condition. The mathematical modelling is adopted. The project is based on two stapes: (1) Looking for 
a simple mathematical model satisfies the definition of Euclidian plane; (2)That model is examined 
against three observation resolution conditions (resolved, unresolved and partially resolved). The 
simplest mechanical model satisfies the definition of Euclidian plane is a planetary gear. The 
interesting examination of the mechanical model is that is under partial resolution. That examination 
shows analogous equation for Euler’s formula. The derived complex formula contains the resolved 
(observable) quantities of the mechanical system and satisfies the linear wave equation. The 
interpretation of this complex formula is: it is a function related to the position vector of a point in the 
small wheel of the partially resolved planetary gear system. The function is in terms of the observable 
quantities only.  The work shows the possibility of transformation from real to complex space. The 
work is purely classical but the result of the partial resolution shows a function similar to the Quantum 
mechanics wave function.  
 
Keywords: Circular motion, Resolution power, Complex vector. 

 
1 Introduction  
 

The Euler’s formula (or Euler identity) is a pure mathematical expression, and composed of 
real and imaginary parts.   Owing to the periodical nature, this formula has many wave applications in 
classical physics like wave analysis in electromagnetic field and optics. In this type of analysis, the 
physical quantity is represented by complex amplitude. The problem of this complex formulation is its 
imaginary component, which has no real meaning in physics. In the classical applications only the real 
part is considered. Thus, complex amplitude is not more than a technical wave representation tool, and 
do not reflect the real nature of the waves.  

Not like classical physics, the complex formulation is genuine in quantum mechanics. The 

complex wave function ( ) is the solution of Schrödinger wave equation. In this case the physical 
meaning is necessary. Physics could not get explanation for this complex wave function only through a 

real quantity (probability density, ).  This interpretation is the Copenhagen Interpretation of 
quantum mechanics. In spite of this statistical approach complex wave function has no physical (real) 
meaning. Euler’s formula is a real analogous to the complex wave function.  

Classical physics approaches have nothing to do with this wave function, and there is on 
classical model can be represented by Euler’s formula.  

It is possible to observe a segment of a line, object or a time interval, but the observation 
depends on the detection or observation tool and the size of the object or the limit of the interval. 
Imaging devices are limited by their resolution power.  

The resolution power may be defined as the shortest distance between two points on the object 
that can still be distinguished by the observer as separate entities. The resolving power of an optical 
system depends on the wavelength (λ ) of the light, the refractive index of the medium between the 
lens and the specimen (n ), the aperture of the observing system, and the geometrical arrangement. As 
an example, the linear resolving power of a microscope is (Khare, 2009). 
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where λd  is the minimum linear distance between two distinguishable points and θ is half of the 

aperture angle of the objective.  In the well resolved case, a distance (x∆ ) is quite clear, and the 
intensity peaks of the imaging device are well separated. For example, λdx〉〉〉∆ . It is similar for the 

time interval when the minimum time interval (λt ) is smaller than the measured interval (t∆ ) or 

λtt〉〉〉∆ . The minimum time interval (λt ) is related to the light frequency (f ). 

To recognise a dynamical event, both the space segment and time interval must be measured. 
Many researchers have reported the time and space resolving power (Miyake et al, 1998; Alvisi et al, 
1999 and Yaroshenko, 2000). High resolution power is needed to measure the space segment and time 
interval. In this project, the focus is on the time-like interval or subluminal motion ( 1/ 〈= cvβ ). The 
particle velocity (v ) is  
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And, for high resolution power for both space and time, it is 
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and λtt〉〉∆      (3)  
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the condition of high time resolution is justified for any space resolution power. 
  

Experimentally, there are two distinct cases, either resolved with a different level of clarity or 
the unresolved case.  Thus, there will be either a segment of a line or a point. The same is true for the 
time interval.  

The subluminal motion ( cv〈 ) of a point can be recognised accurately on the macroscopic 

scale ( λdx〉〉〉∆  and λtt〉〉〉∆ ), where both measurements of space and time are accurate. In the case of 

subluminal motion on the micro scale ( λdx〈〈〈∆ ), the space segment is unresolved and cannot be 

recognised. However, because the motion is subluminal, it is still possible for the time interval ( t∆ ) 
to be resolved or measured using the same light of observation.  In this case, the motion cannot be 
observed, but the time can be measured through an associated phenomenon with motion similar to that 
of the radiation of a charged particle. This radiation can lead to a speculation of an unresolved space 
segment or motion.  This case may be defined as partially resolved. The partial resolution refers to the 
possibility of observation of part of a system of two dimensions ( yz ∆∆ , ) when λdz〉〉〉∆  and the 

other part cannot be resolved λdy〈〈〈∆  . This system is partially resolved relative to a certain 

wavelength of light and imaging device, where the observed radiation is due to unresolved motion. 
Some of the space segments and the time intervals are resolved, whereas the others are unresolved.  

The problem of partial resolution is an interesting subject in image processing, astronomy, 
modern visual technology, and simulations (Boden et al, 2009; Hsing Shih et al, 2010 and Umetani et 
al, 1989).  In a system (of more than one dimension), there may be three possible cases: the resolved, 
unresolved, and partially resolved system cases.   

With aid of mathematical modelling technique for a classical model the present work tries to 
transform to Euler's formula. The work is based on two stapes: 

1-Looking for a simple mechanical model satisfies the definition of Euclidian plane. 
2 -The model will be examined against the classical observation resolution conditions; the 
resolved, unresolved, and partially resolved system cases.  The unresolved dimension will be 
regarded as of zero length in relative to the observation tool.   
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2  Motion in two dimensional Euclidean space  

The Euclidean plane is a two dimensional space (2R ) in the Euclidean geometry and may be 

represented by the inner dot product (Prasolov & Tikhomirov, 2001). The two vectors r
v

 and ζ
v

 
(Euclidean vectors) are in the plane, the angle between them is α , and the trigonometric dot product 
is 

αζζ cos
vvvv

rr =⋅
     

(5) 

where  represents the norm.  This combination represents a system of three vectors. The algebraic 

form based on the dot product is the cosine law: 

αζζ cos2
222

vvvvv
rra −+=

    
(6) 

 

A simple system in the Euclidean plane should satisfy the following three conditions: 
1-The three vectors are linearly dependent, which is shown in eq. (6). 
2-The three vectors are variables. The circular motion is a simple model to demonstrate the variable 
vectors. A simple model, which satisfies this condition, is shown in fig(1). Point P is rotate in the 
Cartesian coordinate system defined by cc yx ,  and anchored to the origin (C ). The radius of rotation 

around cc yx , is 1a .  

The location of the point P relative to the origin point O may be defined as 

1
ar

c

vvv
+=ζ      (7) 

where  ζ
v

 and cr
v

 represent the position vectors of points P and C  relative to the yx,  coordinates. 

The angle α  is the angle opposite 1a
r

. The origin point O (0,0) is considered as a fixed reference 

point. Using the cosine law to formulate ζ
v

 in terms of 1a
r

, cr
v

and  α  gives  

αζζ cos2
222

1

vvvvv
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When the angle φ  changes, the vector cr
v

changes as well.  

In this case, the model fits two mutually externally tangent circles or a mechanical gear system 
of two wheels in the plane (fig(1)). In this model, the first wheel (of radius1a ) rolls around the second 

wheel of radius 2a . Then, the distance cr  is  

12 aarr cc

vvv +==
     

(9) 
 

The centre of the second circle or wheel is fixed to the origin point O. The rolling of the small 
wheel can change the form of the triangle P, C, O in the plane.   This model satisfies the three variable 
vectors. 

 
 Figure 1: The rotation of point P with three vector geometry 
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3 - To examine the motion of point P around cc yx , , the observation of point P is considered relative 

to the position vector (cr
v

) of  the centre of rotation  ( cc yx , ).  In other words, 

),( αζ crf=
                    (10) 

Therefore, eq(8) can be rearranged as a quadratic equation: 

0
2
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vv

          
(11) 
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The roots of the quadratic equation (eq. (8)) are 
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This form for ζ
v

 satisfies the function (10). For a simpler form, let the ratio 

such that   
ℜ=

cr

a1  

{ }2

1
22

2,1 sincos ℜ+−±= ααζ cc rr
    

(14) 

These roots are real. The maximum value of the angle α is 
 

ℜ= −1sinMα       (15)
 

 
The relative angular displacement α  can be represented in terms of the rotational angles θ  

and φ  . According to fig(1), the angular displacement of P around the rotation centre C (θ ) is 

φβαθ
vvvv

++= )(       (16) 
Then, the relative angular displacement (α ) is 

φβθα
vvvv −−=       (17) 

where πβ ≤≤0 . Then, eq.(14) becomes 

{ }2

1
22

2,1 )(sin)cos( ℜ+−−−±−−= φβθφβθζ cc rr
  

(18) 

The position of point P is controlled by the vector1a
r

, cr
v

.eq. (18) satisfies the three conditions 

of the dynamical system. To examine the rotational motion, the gear ratio is 
 

21

2

ω
ω=

a
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     (19)

 

where the angular velocity of the point P is 

dt

dθω =
     

(20) 

and 2ω  is the angular velocity of the rolling motion around the origin point. 

φωωα β −−= tt
      

(21) 

 

Where,  
dt

dβωβ =
     

(22) 
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For the rolling motion on the arc s , the angle is 

2a

s=φ
     

(23) 

Then, eq. (18) becomes 
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The motion of point P has an epicycloids curve trajectory [10], as shown in Figure 4. eq(24) is 
the kinematical equation for the motion of point P in the Euclidean plane and relative to the position 
vector of the rotation of the point.  
 
3 Observation  
 

For a physical system, consider a trapped charged particle (of mass 
o

m  and charge q ) in a 

static magnetic field (B ). In this case, the electromagnetic radiation (cyclotron radiation) is related to 
the charge angular acceleration (ra ) [11]. The instantaneous power radiated (P ) of the charge is 
(Larmor equation) 

2

3

2

3

2
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c
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P
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(25) 

                                            
 

where c  is the light velocity and ω
 
is the particle angular frequency. This cyclotron radiation is 

emitted by moving charged particles trapped in a magnetic field. The cyclotron radiation frequency is 
 

o
m

qB=ω
     

(26) 

which is the angular velocity of the trapped particle (Larmor frequency).  In this case, the angular 
frequency of the trapped charge can be predicted by an observer regardless of the recognition of angler 
motion.  For non relativistic velocities, the radiated field is sinusoidal, and with the aid of a Fourier 
transformation, a single frequency is detected.  
For the model described above, the rotation of the charged particle P around cc yx ,  is responsible for 

cyclotron radiation.  Then, the cyclotron radiation frequency is ω  , which is equal to the angular 
frequency of the radiating particle.                   
                       

3.1 Experimental observation 

 
The experiment is as follows: 
1-The dynamical system is of fixed dimensions and is represented by eqs(14 or 24). 
2-In examining the system, the observation tool will be changed according to the three resolution 
conditions to show how the system might appear to an observer for the three possible resolutions.   
3-Any resolved space segment or time interval is measurable. The resolved and unresolved parameters 
of the system are substituted in the modelling equation (eqs(14 or 24)).  
However, observation of the system will be conducted throughout three proposed experiments 
according to the role of the resolution and as follows:  
 
I - Resolved observation condition ( 21 aad 〈〈〈〈λ  and tt ∆〈〈〈λ ). In this case, all the dimensions of the 

system are larger than the minimum linear distinguishable segment (λd ), and thus  

0≈λd       (27) 
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maa 11 =      (28) 

 
122 maa =      (29) 

 

mαα =v
      (30) 

 
and, mωω =

     (31) 

The subscript m  refers to the measured value. All the parameters are measured with high 
acceptable accuracy. The position vector in terms of the measured values is 

{ }2

1
22

2,1 sincos mmcmmcm rr ℜ+−±= ααζ    (32) 

which is a macroscopic level of observation, and the observer can recognise both vectors 1a
r

and 2a
r

 . 
In this case, the theoretical model fits the observed system. Fig(2) shows the variation of the 
magnitude of the position vector with the angleφ .   
 

 
Figure 2: The variation of the position vector magnitude with the angle φ . The ratio 5/1/ 21 =aa  . 

 

II -  Unresolved case ( 12 aad 〉〉〉〉〉λ  and tt ∆〈〈〈λ ). In this case, the system cannot be resolved and 

appears as an emitting particle localised at the origin point only. The emission may be 
attributed to the unresolved angular motion or any speculative radiation mechanism. This 
picture does not fit the theoretical model above. The third possibility is considered in the next 
section. 

 

4  Partially resolved system 

The partially resolved case is the third possibility ( 21 ada 〈〈〈〈〈 λ and tt ∆〈〈〈λ ); the line 

segment 2a is well recognised as in the first case, whereas 1a has insufficient resolution, as in the 

second case. 1a may be considered as an undistinguishable segment of the line. In other words, it may 
appear as a point. Thus, for the observer, the measured quantities are (see Table (I) for partial 
resolution quantities) 

01 =ma      (33) 

Then, 

mcm ar 2=      (34) 
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0=mαv      (35) 

Because the cyclotron radiation frequency can be measured and is equal to the charge particle 
angular frequency,ω  can be estimated, or 
 

mωω =
     (36) 

Thus, the parameters of eq(14) are either observables ( 2a ,ω ) or unobservable ( α,1a ).  Then, 
the theoretical model above is reduced to 

{ } mmmmmm aaa 2
2

1
22

2202,1 sincos)( =ℜ+−±==ℜ ααζ
  

(37) 

 
This result shows the position vector of an emitting particle rotating around the origin point. 

The result is acceptable because it is a real quantity and is related to a real physical macroscopic 
description of the system. fig.(3) shows the constancy of the position vector (circular motion) due to 
the partial resolution case. The difference between fig.(3) and fig(2) is quite clear. 

  
Table I: The partial resolved system.  

Resolved quantities  2ad 〈〈〈λ  

and tt ∆〈〈〈λ  

Unresolved quantities 

λda 〈〈〈1  and tt ∆〈〈〈λ  

cr  1a  

ω  (cyclotron radiation detection) ℜ  

φ  βω  

2a  , 2k  
α

 

 
However, the radiation is not related to the rotation around the original point. Thus, the 

description of eq.(37) is not adequate.  
 

 
Figure 3: The position vector in the case of a partially resolved structure, where unita m 52 = . The ratio 

5/1/ 21 =aa . 

 
In the proposed model, the observed radiation is due to unresolved angular motion 

around cc yx , . Thus, there are two points that should be clarified: 

1- The description of eq(37) cannot offer any form  that may lead to an explanation of the 
observed cyclotron radiation frequency (ω ). 
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2- There is no relationship between the radiation frequency and the angular motion around the 
origin point.  

3- As in the case of the unresolved system, the radiation may be attributed to unresolved motion. 
However, this scenario does not fit the above theoretical model well. 
 

The condition of partial resolution ( 21 ada 〈〈〈〈〈 λ  ) neglects some useful information in 

eq(24), whereas the radiation measurement provides more information that is not used. 
  

The present task is an attempt to use all the information provided and substitute it into eq(24) 
without violating the results of eq(37).  
It was assumed above that the observer knows the model of radiation (eq(37)) already. Below is an 
attempt to use all of the measurements of the well resolved dimensions. The new approach is as 
follows: 
1- Because 21 ada 〈〈〈〈〈 λ , the parameters of eq(24) are either observables ( φω,,2a ) or unobservable 

( βωα ,,1a ).  Then, eq(37) can be rewritten according to eq(24) as 
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(38-b) 

2- Eq(38-b) is of a complex form and can be formulated in Euler’s formula form: 
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Accordingly, the phase equals zero and contains the unresolved quantity. 
 
3- Eq(39) can be rearranged as 
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A new definition ( βηη, ) for the complex functions is 

ββ η
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(42) 

 
The unity arises from the macroscopic observations. Eq(41) is a separated form of resolved 

and unresolved quantities.  The denominator ( βωβ =t  ) is related to the rotation around ( cc yx , ), 

which belongs to the unresolved structure, whereas the nominator relates to the resolved quantities.   
4- This approach cannot deal with the unresolved rotational structure. Thus, the denominator of  
eq(42) has no meaning and will not be considered in this work.  
In eq(42), η  is the new function that is related to both rotational motions and contains the resolved 
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quantities only. It is 

( ) )(exp,,
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2,1
m

m a

s
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(43) 

 
The subscripts 1 and 2 refer to the positive and negative phases. Because this form has wave 

features, it possible to state that 
 

sk
a

s
m

m

vv
⋅= 2

2       
(44) 

where mk2 is the wave number. Then, 

( ) )(exp,, 22,1 sktitr mm

vv
⋅−±= ωθη

   
(45) 

The phase is a variable quantity, and the function (η ) is continuous. This complex wave 
cannot reflect any physical meaning. Within the present approach, this complex form (eq(43)) is 
related to the gear model, but the complex form has no physical meaning.  
Next, possible information is extracted. In physics, such a case can be found in quantum mechanics, 
where the physical meaning arises from the statistical explanation. The function depends on space and 
time. The separation of the temporal-spatial dependence is  

( ) tiskitr mm ωθη ±⋅= expexp,, 22,1

vv
m

   
(46) 

( ) ( ) tirtr mωθηθη ±= exp,,,2,1     
(47) 

( )θη ,r  is stationary function, and it depends only on the spatial coordinate.  

( ) skir m

vv
m ⋅= 22,.1 exp,θη

    
(48) 

 To normalise the constant, the general form of this function is 
( ) skiAr m

vv
m ⋅= 22,1 exp,θη

    
(49) 

A  is an arbitrary constant. The functions to be considered are 

( ) ( )θηθη ,exp, 21 rskiAr m =⋅= vv

   (50) 

 and 

( ) ( )θηθη ,exp, *
22 rskiAr m =⋅−= vv

   (51) 

According to the partial resolution results, the particle is restricted to mr 2α= . However, 

statistically speaking, there should be a range, mas 220 π≤≤ , such that 

( ) ( ) 1,, *2 =∫
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The normalised function becomes 
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and the function becomes 

( ) ski
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m
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2
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2

1
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π
θη   at  mas 220 π≤≤   (55) 

and   ( ) 0, =θη r  elsewhere     (56) 
Using the normalised function, the expectation value of the particle position is 
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The standard deviation (uncertainty of position) is 

 2
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Then, the uncertainty is 
0≥∆s       (60) 

For the temporal function, 
( ) tit mT ωη ±= exp2,1      

(61) 

the normalised function is 

( ) tit m
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T ω
π
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22,1,

    
(62) 

and the expected time of finding the particle is 

( ) ( ) m
m

TT Tdtttt ==∫
∞

∞− ω
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This new result (eq(57)) represents the expected position of the particle for the observer, and it 

is different than that of eq(37). Thus, the expected time for the particle to be at that position is 
represented in eq(63).  
The new function η  ( C∈η ) describes the system better than the real function ζ ( R∈ζ ) in the case 
of partial resolution. The new picture is of a probabilistic nature.  
 

This new function does not represent a real physical quantity, and it is not like the macroscopic 
case. However, within this new consideration, the position of the point is of a probabilistic nature, and 

2a  may represent the expected position or the most probable position of the emitting particle. 
This complexity may be justified as a result of the partially resolved system.   
       
5 Conclusions  
 

The aid of mathematical modelling technique for a system in Euclidean, demonstrates the 
possibility of the transformation from real space to complex space. The technique demonstrates the 
feature for the structure before and after transformation. In the three transformation cases the results 
are easy to comprehend. Thus, the technique is an efficient educational approach for this complicated 
problem.  
The main conclusions for the examination of the mechanical model under partial resolution are:    
 
1-The complex features are due to two groups of reasons: 

A. The nature of the system 
• The system is of two space dimensions. 

• The three vectors ( 1a
v

, ζ
v

,and cr
v

 ) are linearly dependent.  

• The observation of point P is considered relative to the position vector of the rotation centre.  
• The three vectors are variables. 
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• The three variable vector model fits two mutually externally tangent circles or a mechanical 
gear system of two wheels in the plane. 

• The vectors are not equal ( 121 〈〈〈aa ). 

• The dynamical system is classical (subluminal velocity vc〉〉 ). 
B. The observation conditions 

• Time measurement is more accurate ( λtt ≥ ) due to the case of subluminal velocityvc〉〉 . 

• Partial resolution of the system ( 21 ada 〈〈〈〈〈 λ ). 

• There is a phenomenon related to the unresolved structure (the electromagnetic radiation in 
the above treatment).  

2- The new picture depends on the resolved parameters of the system only.  
3- Within the frame of partial resolution, there is no other alternative for a more accurate description 

of the system. 
4- The continuous function obtained does not relied on any continuous medium beyond it. 
5- The adopted statistical technique does not relied on any stochastic nature or a huge number of 

microscopic entities as in thermodynamics.  
6- The particle linear velocity relative to the centre O is 

mmav 22ω=
     (64) 

whereas the complex function shows a phase velocity of 

mm
m

ph a
k

v 2
2

ωω
==

     
(65) 

 
This velocity has no real existence where no part of the system moves with this velocity. Because  

mm 2ωω 〉 , 

phvv〈
      (66) 

  
Using wave terminology, the particle velocity corresponds to the wave group velocity, and the 
system appears to have normal dispersion. 

7- The complex function satisfies a linear wave equation. 
 

The work throws light on the concept of the wave function.  
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