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Progress in the last few decades in what is widely known as “Chaos Theory” has plainly advanced understanding in the several sciences it has been applied to. But the manner in which such progress has been achieved raises important questions about scientific method and, indeed, about the very objectives and character of science. In this presentation, I hope to engage my audience in a discussion of several of these important new topics. My thoughts have been influenced strongly, in more directions than one, by Stephen Kellert’s 1993 book In the Wake of Chaos.

At the outset, let me enumerate the several questions I will address today:


[refer to handout, attached as last page of this manuscript]
[What follows are notes serving as the basis of an informal presentation. Please do not quote these, and please understand their rough character. These thoughts are meant for the encourage​ment of discussion only. Beyond the present presentation, I welcome all personal correspon​dence on these matters].
1. The central goal of science is often (see, for example, Prigogine (1980), p. 214) thought to be “prediction and control”. Chaos theory seems to threaten this conception of science. How important is prediction and control for science? How serious is the threat posed by chaos theory?
The “unpredictability” of chaotic events is due to the focus of chaos theorists on “unstable aperiodic behavior” [more below], which is in turn due to the “sensitive dependence” of all chaotic systems on initial conditions.

How pervasive are “chaotic systems”? Are they unusual in nature? Or are they more or less the rule? As we shall see, chaotic systems are “nonlinear dynamical systems”. Classical physics is almost exclusively dedicated to studying linear systems, or in the rare cases where it recognizes the importance of non-linear systems, classical physics attempts to reduce these to linear approximations. This is not always and not even usually possible. The importance of studying chaotic systems is that most real natural systems are non-linear, rather than linear (Kellert (1993), p. 138). Indeed, linear systems are very rare in nature (p. 117). This can be seen in the fact that most real physical systems involve more than two bodies and/or non-linear forces (p. 143). Such systems are necessarily non-linear in their dynamics.

Chaotic systems are unpredictable because they are extremely sensitive to small differ​ences in initial conditions [more in a moment]. Yet their analysis reveals larger scale patterns that are as predictable as anyone could hope in their qualitative dimensions. Further, once we are given a particular set of conditions, “chaotic” events themselves are as predictable as you please, at least in the sense that computer programs given these initial specifications will repeat the same evolution as often as the program is run. So what kind of “unpredictability” is involved here?

Answer: the “calculation” of future states of chaotic events is in some sense “in principle” possible, given perfectly accurate information about the initial conditions. But the sensitivity of chaotic systems to their initial conditions makes it necessary that these initial conditions be specified perfectly, if we are to be able to calculate later states of the system. This required perfect specification of initial conditions is in some sense “in principle” impossible, apparently in some different sense of “impossible” than was deployed in the opening sentence of this para​graph. The outcome: since it is not in principle possible that we should be able to identify the precise initial condition of any natural system, with no approximation, no rounding off, and so forth, then it is not “in principle” possible after all to predict the evolution of real physical chaotic systems. The “principle” at work here is that perfect accuracy of identification of initial conditions of real physical chaotic systems is in principle impossible, and given the sensitivity of the evolution of such systems to their initial conditions, so therefore is prediction of that evolution also impossible.

2. Chaos theory suggests that the calculative prediction of chaotic events is impossible. What is the sense of this “impossibility”? Is it theoretically impossible? Practically impossible? Or something else?
As may be apparent, the distinction between what is “in principle” impossible and what is not becomes somewhat blurred in chaos theoretical analyses. The sense in which calculative prediction of chaotic events is “impossible” seems neither to be what we would call a “theoreti​cal” impossibility -- for such prediction is in some sense “theoretically” possible -- nor is it a mere “practical” impossibility -- since perfect specification of initial conditions is in some sense in principle impossible.

Perhaps we need a new array of modalities to clarify this problem. Kellert (1993) proposes a more or less Kantian style “transcendental” variety of impossibility to add to the standard array of logical, physical, and practical modes of impossibility (pp. 41-42).

Anyway, “chaos theory” may be defined (a lá Kellert (1993)) as “the qualitative study of unstable aperiodic behavior in deterministic nonlinear dynamical systems”, where:

“dynamical system” = simplified model for the time-varying behavior of an actual system

“nonlinear dynamical system” = one that has nonlinear terms in the model’s equation (i.e., x2, sin(x), xy, and so forth)

“deterministic nonlinear dynamical system” = one that makes no reference to chance in the model

“aperiodic” = doesn’t repeat

“unstable” = sensitive to conditions; can’t resist small disturbances

“qualitative” = we look at pictures of the evolution of the system to get some general idea of its large scale and long-term behavior

There are three general mathematical strategies for understanding the emergence of chaotic behavior in deterministic nonlinear dynamical systems, and which one is used depends on an identification of exactly how the system approaches chaos from non-chaos. The “three routes of chaos” are as follows:

A. Period-doubling: chaos emerges as some parameter of the system is changed, yielding a doubling of the periodicity of the system. Increasing the value of the parameter yields a re-doubling at some later point in the evolution of the system. And so forth. Finally, at very high values of the parameter, the behavior becomes aperiodic and (thus) chaotic.

B. Quasiperidocity: increasing the parameter value yields, instead of period-dou​bling, a “strange attractor” which focuses turbulent (thus otherwise chaotic) behavior.

C. Intermittency: a periodic signal is interrupted by random bursts that arrive unpre​dictably but increasingly often as the parameter is increased.

Once one sees (qualitatively) which of these three approaches a system is taking, one thereby knows what mathematical techniques to use to understand what is happening and to make at least some global predictions of the subsequent behavior of the system.

3. Analysis of chaotic systems suggests that the ideas of a “deterministic system” and a “predictable system” may not be the same. How is this possible? What does this mean for “determinism”?
Stone (1989) suggests that there are at least four important senses of “determinism” that operate in scientific and philosophical discussions of chaos theory. He delineates them as follows:

A. Differential Dynamics -- system can be sufficiently described using differential equations

B. Unique Evolution -- evolution of system is fixed once state is specified at any one moment

C. Value Determinateness -- all properties of system have well-defined real values

D. Total Predictability -- system is in principle predictable (perhaps only by a “superior intelligence”)

“Determinism” can be used to mean any one of these levels or some combination of them (indeed, philosophers especially will note that this list doesn’t include what might be called “logical” determinism, of the kind analyzed by Aristotle in De Interpretatione, Chapter 9, and by Richard Taylor in his classical article on “Fatalism”. Such analyses seem to be primarily concerned with understanding not so much the physical world, but of what to make logically and linguistically of the present truth value of future-tensed statements) . Some argue (Stone (1989); Glymour (1971); Earman (1986)) that one still retains a decent form of determinism even if one sacrifices D, as chaos theory suggests we must as regards chaotic non-linear systems. Others contend (Prigogine (1980); Popper (1956)) that losing D is enough to refute determinism.

Some argue that quantum mechanical considerations undermine the idea that C pertains in the real world either (Kellert (1993); Earman (1986)). Some further argue (Kellert (1993)) that in combination, chaos theory and quantum mechanics also cast doubt on the validity of B in most of the real world. And, finally, some even argue that level A is in doubt. See, for example, Misra, Prigogine and Courbage (1979). They say:

...the concept of deterministic evolution along phase space trajectories cannot be defined operationally and hence constitutes a physically unrealizable idealization. Therefore, in dealing with dynamically unstable systems, classical mechanics seems to have reached the limit of the applicability of some of its own concepts. This limitation on the  applicability of the classical concept of phase space trajec​tories is -- it seems to us -- of a fundamental character. It forces upon us the necessity of a new approach to the theory of dynamical evolution of such systems which involves the use of distribution functions in an essential manner (pp. 4-5).

It is an important question, first, to consider how important the idea of predictability is to the general understanding of the aims of science. But the considerations alluded to above regarding the validity of every single one of the typical meanings of “determinism” raise questions not only about predictability, but about even the most pared-back view that our world is deterministic in any meaningful sense at all.

4. Classically, science has been held to be examining and explaining particular facts or events via more general theories that “support counterfactual conditionals”. This does not seem to be what chaos theory is up to. What are the objects of chaos theory? What are the questions it asks about these objects?
Things to be illuminated by chaos theory are not quite the same as what have traditionally been thought to be the objects of scientific inquiry. Most often, science is held to be trying to explain facts or events (or “phenomena”). Chaos theory studies behaviors, patterns, bifurcations. Chaos theory asks not so much “why” questions as “how” questions: like “How does extremely complicated behavior come to occur in nature?”; “How does it happen that some physical behavior is completely unpredictable?”; “How do orderly patterns persist amid apparent random​ness?”
Once the “route to chaos” is determined (see above), a researcher can often foresee the value of the control parameter at which the system will manifest unpredictable behavior. The illumination provided by this information about “which route” the system is taking is reminiscent of Aristotelian “formal causation” as a key element in understanding. Also: there exists a particular indicator -- the “Lyapunov exponent” -- which actually gives a quantitative measure of the decay of predictability in the course of the evolution of chaotic systems. So the idea that chaos theory “increases understanding” of these systems is not empty (see Kellert (1993), pp. 82-83).

Prigogine and Stengers (1984):

Chaos theory shows that we live in a world where small causes can have large effects, but this world is not arbitrary. On the contrary, the reasons for the amplifi​cation of a small event are a legitimate matter for rational inquiry (p. 206).

5. At one level, chaos theory suggests that the calculative prediction of chaotic events is impossible (see #2, above). But at another level, the scientific study of these “unpredictable systems” seems itself to have considerable predictive power. Is this a paradox of some kind? What sense can we make of this?
This is an extremely interesting question. Kellert 1993 (p. 83) suggests that this stems from the distinction between quantitative and qualitative predictions. There is also the difference between predictability of large-scale or long-term patterns as opposed to the unpredictability of the details. In this area there is a resemblance to the statistical sciences of physical, biological or social systems. In all of these cases there is need for conceptual clarification.

6. Classical analysis of scientific method suggests that science proceeds by reducing examined systems to their parts, by using deductive (or, when necessary, inductive) argument to yield explanation, and/or by treating systems as being fully comprehensible on the basis of instantaneous state descriptions. Chaos theory renounces all of these images of appropriate scientific method in its domain. What is the role of theory in the study of chaotic systems?
Chaos theory gives understanding by constructing models. Thus it appeals to what might be called A) “holism” (the behavior of the modeled system is not studied by reducing it to its parts), B) “experimentalism” (the results are not presented in the form of deductive proofs), and C) “diachrony” (the systems are not treated as if instantaneous descriptions are complete).

Thus chaos theory might seem to support a view of scientific theories advanced by Ronald Giere (1988): “When approaching a theory, look first for the models and then for the hypotheses employing the models. Don’t look for general principles, axioms, or the like” (p. 89). But let’s look at the three characterizations of chaos theory listed in the preceding paragraph.

A. Holism -- As Kellert (1993) observes,

...chaos theory argues against the universal applicability of the method of microreduction​ism, but not against the validity of the philosophical doctrine of reductionism. That doctrine states that all properties of a system are reducible to the properties of its parts, where the reductions may be spelled out in terms of logical equivalence, supervenience, or the like. Chaos theory gives no examples of ‘holistic’ properties which could serve as counterexamples to such a claim (p. 90).

In contrast, chaos theory simply says that it is not always appropriate to seek to under​stand a system by trying to figure out the equations that govern the interaction of its parts. That may get you nowhere in understanding what’s going on.

Remark from a lecture by James Yorke, quoted in Kellert: “Sometimes you can write down the equations of motion and sometimes you can’t. Our approach is to ignore the equations and carry out the analysis without knowing them.”
B. Experimentalism -- Contrary to Peter Railton’s notion of the “Ideal Explanatory Text” (Railton (1981)) and Philip Kitcher’s theory of explanation as unifying deductive schemes (Kitcher (1989)), chaos theory does not provide understanding by helping to fill in overarching inferential patterns. Appeals to the model -- to a computer simulation, in most current cases -- are used to portray the salient features of the system under study and to reveal likely patterns of subsequent behavior.

Chirikov (1979) has put it this way:

...it is not so much important to be rigorous as to be right. A way to be convinced (and to convince the others!) of the rightness of a solution without a rigorous theory is a tried method of science -- the experiment... In the present paper we widely use the results of various numerical ‘experiments’.

That is, with computer simulation. Computer simulation is necessary, not a mere convenience, because of the necessary imperfection of measuring the values of variables with the required perfection, if plugging values into equations were what we needed to do (see above).

C. Diachrony -- Chaotic systems frequently exhibit “hysteresis” effects and “bifurcation” behavior, wherein for a given value of a parameter there are more than one states of the system. Which state the system is in depends on the history of evolution of the system. Example: how fast the water flows at a given position of your faucet depends on whether you turned the faucet to that position by increasing from the off position or whether you got it there by decreasing from full on. Thus an instantaneous picture of the system (the faucet is at 2:00) is not enough to determine the behavior of the system.

7. The kind of understanding yielded by chaos theory doesn’t provide predictions of quantitative detail, doesn’t reveal hidden causal processes, and doesn’t yield law-like necessities. What kind of understanding is generated by chaos theory?
A. the “epistemic” conception of explanation -- some philosophers, notably Karl Hempel with his “deductive-nomological” model of scientific explanation, have suggested that the nature of such explanation involves attempting to make predictions about quantitative details. Chaos puts certain detailed quantitative predictions out of reach while enabling us to make quite useful predictions about qualitative features of the systems involved.

B. the “ontic” conception of explanation -- thinkers like Wesley Salmon (1984) and Baruch Brody have suggested that causation must play a vital role in any explanation. Chaos theory has little to say about hidden causal processes of the systems it investigates, but it does display “geometric mechanisms”: that is, features of the evolving systems that derive from their geometry. An example of such a “geometric mechanism” is the fact that chaos appears to occur because of or through the dense packing of unstable periodic orbits. The computer simulations used to model physical chaos are governed by evolving geometric relationships. It is thus because of geometry or topology that the systemic behavior of nonlinear systems have the characteristics that they have.

C. the “modal” conception of explanation -- philosophers like Nicholas Rescher (1970) have insisted on the central role that law-like necessity plays in scientific explanation. Chaos theory doesn’t seek to find such necessity, but instead reveals patterns in dynamic systems. In particular, chaos theory seeks order, not law. The distinction is drawn well by Evelyn Fox Keller (1985):

Order is a category comprising patterns of organization that can be spontaneous, self-generated, or externally imposed; it is a larger category than law precisely to the extent that law implies external constraint. Conversely, the kinds of order generated or generable by law comprise only a subset of a larger category of observable or apprehensible regularities, rhythms, and patterns (p. 132).

See also Friedrich Hayek on “spontaneous order”.

By way of conclusion, the words of Stephen Kellert (1993) are especially appropriate:

What kind of understanding does chaos theory provide? The object of this understanding is the way in which unpredictable behavior and patterns come to appear. The method of understanding their appearance is by the construction of models, not by breaking systems into their components and then constructing ahistorical deductive schemes, but rather by using experimental procedures that concentrate on holistic properties and historical development. And the character of the understanding these models provide is that of qualitative expectability, geometric mechanisms, and order (p. 114).
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Dynamical Systems and Scientific Method


Central Questions

1. The central goal of science is often (see, for example, Prigogine (1980), p. 214) thought to be “prediction and control”. Chaos theory seems to threaten this conception of science. How important is prediction and control for science? How serious is the threat posed by chaos theory?

2. Chaos theory suggests that the calculative prediction of chaotic events is impossible. What is the sense of this “impossibility”? Is it theoretically impossible? Practically impossible? Or something else?

3. Analysis of chaotic systems suggests that the ideas of a “deterministic system” and a “predict​able system” may not be the same. How is this possible? What does this mean for “determin​ism”?

4. Classically, science has been held to be examining and explaining particular facts or events via more general theories that “support counterfactual conditionals”. This does not seem to be what chaos theory is up to. What are the objects of chaos theory? What are the questions it asks about these objects?

5. At one level, chaos theory suggests that the calculative prediction of chaotic events is impossible (see #2, above). But at another level, the scientific study of these “unpredictable systems” seems itself to have considerable predictive power. Is this a paradox of some kind? What sense can we make of this?

6. Classical analysis of scientific method suggests that science proceeds by reducing examined systems to their parts, by using deductive (or, when necessary, inductive) argument to yield explanation, and/or by treating systems as being fully comprehensible on the basis of instanta​neous state descriptions. Chaos theory renounces all of these images of appropriate scientific method in its domain. What is the role of theory in the study of chaotic systems?

7. The kind of understanding yielded by chaos theory doesn’t provide predictions of quantitative detail, doesn’t reveal hidden causal processes, and doesn’t yield law-like necessities. What kind of understanding is generated by chaos theory?
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