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Part I. The Philosophical Aspect (J. J. Sanguineti) 

 

1. The asymmetry of time 

The present article on the 'arrow of time' is divided into two heterogeneous sections (the 

reader may choose which one to read first). In this philosophical section I intend to present 

and comment upon the scientific section written by Castagnino, a physicist who has worked 

especially in quantum mechanics and quantum cosmological models. I will try to provide a 

philosophical comprehension on the topic, which implies its introduction in the area of 

philosophy of nature and philosophy of science. A collaboration of this sort is indispensable 

for certain speculative problems on the nature of the physical world. Science has not the aim 

of philosophy, but it gives some indications that cannot be overlooked by the philosopher of 

nature. I hope that the reader in the following pages will understand in a practical way the 

need of a mutual relationship between physics and philosophy. 

The problem of the direction of time in the physical world is just one aspect of the 

general problem of time. It is usually agreed that time, imagined as a line, has a direction (like 

an arrow, according to the famous Eddington expression), in the sense that it goes from the 

past to the future and not the other way round. The feeling that this is the right and necessary 
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direction of time is related to the impossibility of making trips to the past, or of stopping the 

flow of time, and it is incompatible with the idea that time is a subjective illusion1. 

But what does 'going from the past to the future' mean? Since time is in some way 

reducible to movement and to any kind of alteration, though it is not exactly equal to them, 

that expression means at least that some physical evolutions are naturally irreversible. They 

follow some path and cannot travel in the opposite direction. A ball can go from A to B and 

then turn back from B to A, but we have never seen in nature the inversion of processes like 

the burning of a sheet transformed in ashes, the breaking of a glass, and so on.  

Notice that these examples regard a passage from order to disorder (in coincidence with 

the second principle of thermodynamics), or from unstable physical states which 

spontaneously (without any additional cause) tend to an equilibrium state. Our article deals 

exclusively with this aspect of the arrow. The direction of time could also mean a passage 

from disorder to order, as it happens in evolutionary processes (but every acquisition of order 

spends energy and so it obeys the second principle as well). Furthermore, if the upcoming 

order is actually new, not produced by a previous law, then we have a kind of creation, which 

in human affairs transforms time in history (the historical future is not written in the past). 

The future, then, can bring on order or disorder, lawfully or not. Some future events are 

repeated, at least in certain features. This implies that we go back to aspects already seen in 

the past. A total repetition of everything would amount to a real return into the past. 

We are concerned with what strangely appears as a law of time: events universally do 

follow a certain direction towards equilibrium (with less order), i. e. to a more elementary and 

more stable order. Generally, the physical laws have nothing to do with the direction of time. 

                                         
1 On the problem of the arrow of time, see H. Reichenbach, The Direction of Time, 
University of California Press, Berkeley and Los Angeles 1956; H. B. Hollinger, M. J. 
Zenzen, The Nature of Irreversibility, Reidel, Dordrecht 1985; P. Kroes, Time: Its Structure 
and Role in Physical Theories, Reidel, Dordrecht 1985; P. Horwich, Asymmetries in Time, 
MIT Press, Cambridge (Mass.) 1987; P. Coveney, R. Highfield, La freccia del tempo, 
Rizzoli, Milano 1991; H. D. Zeh, The Direction of Time, Springer, Berlin 1992; S. Savitt 
(ed.), Time's Arrow Today, Cambridge University Press, Cambridge 1995; J. J. Halliwell et 
al. (ed.), Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge 1996. 
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They describe a behavior remaining identical if we change the direction of time, that is, if we 

imagine the same process as an inverted film. Time in physics appears to be, like space, 

without special directions or perfectly symmetric. The great exception to this symmetry was, 

since the nineteenth century, the second principle of thermodynamics, which apparently 

showed a natural preference for some special direction, creating a difference in it which 

deserves the name of future and past. But thermodynamics deals with energetic processes and 

then the problem becomes universal, since energy is involved in any natural process. What it 

is at stake here is the nature of the physical universe. Is it dominated by time or by an eternal 

law? 

We will restrict the discussion to physics, without entering the domain of biology or 

anthropology. The asymmetry of time may be observed and discussed in different fields of 

modern physics. Since it seemingly reveals a fundamental trait of the world, it is very 

relevant to philosophy of nature. Any difference raises the question of its cause. In a 

rationalist approach, it is more natural to be satisfied with symmetry. A non eternal law is not 

a perfect law. If the law changes, we are entitled to ask why, looking for a higher law2. The 

course of events assuming a special direction looks more like a fact than a law, that is, 

something 'happens to be' and so it is expected to be explained by a superior law. In the late 

nineteenth century Boltzmann tried to reduce the aforementioned second principle to 

microphysics (statistical mechanics). He concluded that the principle was only probable,  

since nothing in theory prevented the particles to converge in an ordered movement, 

producing macrophysical events (mostly improbable) such as the spontaneous reordering of a 

destroyed building. The debate was never satisfactorily concluded3. 

If within microphysics there would be no temporal direction, but notwithstanding the 

arrow does appear at the phenomenological level, the explanation could be that we observers 

see an apparent direction in the surface simply because we cannot measure every particle with 
                                         
2 It is possible that "principles that we now regard as universal laws will eventually turn out 
to represent historical accidents" (S. Weinberg, Dreams of a final Theory, Pantheon Books, 
N. York 1992, p. 38). 
3 See E. Bellone, I nomi del tempo, Boringhieri, Torino 1989. 
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an absolute and deep precision. Indeed, the statistical character of physics stems from the fact 

that we cannot deal with every particle but must content ourselves with a global approach 

regarding collections. 

Hence the idea that the arrow of time in physics is due merely to the process of an 

imperfect measurement, which is the thesis of the 'gnoseological school' mentioned by 

Castagnino, opposed to the 'ontological school', according to which the direction of time is 

real (school means here 'theoretical position'). Boltzmann, among others, represents the 

gnoseological approach and Prigogine, in our times, is the most famous supporter of the 

ontological character of the anisotropy of time4. If the distinction of past and future should 

depend only on our observational and anthropomorphic approach, then the temporal 

directions would be analogous to the spatial directions of up and down, which are such only 

from our bodily perspective5. 

2. Castagnino's paper on time 

I turn now to the scientific treatment, in order to give a more qualitative version of it 

which, I hope, may facilitate the reader's insight into the philosophical core of the problem. 

This second section is technical, being written in a mathematical language that makes the 

exposition precise and scientific. But it is obviously related to problems of philosophy of 

science and philosophy of nature. For the philosopher, it is likewise a very perspicuous 

example of the way in which science accomplishes its task (it shows the measurement 

approach of physics and the recourse to mathematical devices such as spaces). 

                                         
4 "We are becoming more and more conscious of the fact that on all levels, from elementary 
particles to cosmology, randomness and irreversibility play an ever-increasing role. Science is 
rediscovering time" (I. Prigogine and I. Stengers, Order out from Chaos, Collins, Glasgow 
1988, xxviii). "The view that irreversibility is an illusion has been very influential and many 
scientists have tried to tie this illusion to mathematical procedures, such as coarse graining" 
(I. Prigogine, From Being to Becoming, Freeman, N. York 1980, p. 12). See below the role of 
coarse graining in the scientific section. 
5 For Einstein, the divisions of time were local perspectives. "Per noi che crediamo nella 
fisica, la divisione tra passato, presente e futuro ha solo il valore di un'ostinata illusione" (A. 
Einstein, Letter to Besso's son and daughter, March 21, 1955, in Albert Einstein. Opere scelte, 
a cura di E. Bellone, Boringhieri, Torino 1988, p. 707). In this sense, the gnoseological school 
may imply an ontology as well: the universe is all in act (Parmenides). 
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 Since the controversy on the direction of time is related to observations recorded by 

physical instruments, the first part of Castagnino's paper regards measurement (n. 2 and 3). 

He presents a general theory of measurement which, in modern physics, cannot be but 

statistical. This theoretical framework has actually arisen in statistical classical mechanics but 

is now generalised in quantum mechanics. In this sense it can deal with any physical event of 

the universe, with a certain approximation and in probabilistic terms. 

Modern physics is concerned with the description of dynamic evolutions of systems. 

The universe is the last system, supposed isolated since by definition there is nothing outside 

it. A set of elements belonging to a system (e. g., points, mass-points, etc.), on having certain 

geometrical properties, are represented in spaces. This term does not refer to the ordinary 

space of our common perception, but it is a mathematical construction thought of to describe, 

through a selection of features, sets of things and their evolution  (represented as lines, 

surfaces and so on within the selected space). It is obvious that we are dealing with entia 

rationis with a foundation in re. The space here is like a window open to the world, with all 

the limitations of a window (a partial view). 

The physical description lies on some observables or data as seen by the  instruments of 

measurement. The evolution of the observables produces different states of the system. They 

are ruled by the equations (laws), which state the invariant evolving of the systems according 

to some parameters. On assigning specific numerical values to the variables of the equation 

(e. g. the initial conditions), we obtain its solution.  

The measure of different observables in a state of the system allows, then, to measure 

that state, and even to measure, within limits, the physical state of the universe (in quantum 

gravity cosmologies), which is the great system wherein every other one is a subsystem. 

Physics measures groups of observables, obtaining a mathematical function which is a 

probability p of the state, expressed in terms of densities d of probabilities p(x) when the 

magnitudes involved assume continuous values taken e. g. for some subintervals [0, 1] of 

some length x. 

Different qualities of measures are considered, ranging from less to more and more 
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precision. All these different qualities (Hilbert, coarse-graining, Schwarz, and Hardy) are 

associated to different kinds of spaces: Hilbert space H, coarse-graining space C, etc. The 

name coarse-graining comes from the precision with which the space is divided in 'grains', 

like a photograph. This is the typical method employed by statistical mechanics (e. g. for the 

description of a gas). Each space is useful for some purposes within particular sections in 

physics, and they are related to each other by logical inclusion. Beside the space built up from 

sets of observables (space of the observables, symbolised as O), there is the corresponding 

space of states S, which is a function of the former. Notice that the space of the observables 

(i. e. the world as seen by some branch of positive science) is the material or sensible basis of 

the scientific network. The space of the states serves to describe the physical evolution in this 

world. 

The following step copes with the time arrow in the mixing systems (n. 4). They belong 

to chaotic systems, whose dynamic behavior is irregular due to their degree of complexity 

(they correspond to the real world better than the simple non mixing systems considered in 

old classical mechanics). A drop of blue ink diffusing in a glass of water (a case studied by 

Gibbs) is a mixing system. Its volume remains the same but it is homogeneously distributed 

throughout the water, ending up in an equilibrium state. The opposite process does not occur 

in nature. It may be considered as possible in theory, but it is 'non physical', or 'not physically 

allowed'. For comparison Castagnino uses the famous theoretical example of the baker's 

transformation, in which a quantity of low quality flour (analogous to the ink drop) is 

distributed again and again in a bread dough, with the technique of cutting and joining again 

the dough many times so as to reduce the low quality flour to ever thinner and thinner 

filaments. Remaining the same, this flour, at the end, occupies homogeneously the whole 

dough. 

The evolution in mixing systems from non-equilibrium to equilibrium is the motion 

towards the future (by definition, i.e. this is a way to define the future). Its spontaneous 

inversion, from equilibrium to non-equilibrium, is never seen in nature: an ink drop does not 

come out spontaneously or naturally from a diffused state in the past (notice that these words 
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here, spontaneous and natural, are crucial for the philosopher of nature). From the situation 

of the ink drop concentrated in a point in the water (time=0), if the drop behaves like the flour 

in the baker's transformation, we can go in theory to the future or to the past, to find out the 

diffused state of the ink. The film with the ink diffusing going from t=0 to the future) or, 

inversely, with the diffusion forming an ink drop (going back from t=0 to the past) is 

physically the same (and both processes can be seen one after the other in the theoretical, not 

real, baker's transformation). But only the direction towards the future is really seen in nature. 

This is precisely the problem of the arrow of time. In the following scheme it is easy to 

visualise what we are saying (some additions help to understand what will be said later on): 

 

-∞ ∞

non-spontaneous
process

spontaneous
process

PAST
(equilibrium)
Ink diffused

FUTURE
(equilibrium)
Ink diffused

t = 0  
UNSTABLE STATE
Ink drop diffusion  

 

Castagnino shows two mathematical ways of coping with the process. The 

'gnoseological school' (see n. 4.1) uses the coarse-graining technique (spaces with different 

degrees of coarse graining: the notion of 'graining the space' is, obviously, relative to the 

observer). The school makes use of the corresponding C space, the kind of space used in 

coarse-graining procedures. The evolution of mixing processes can be explained with this 

device. It could be said, then, that we see the evolution towards equilibrium at the infinite 

future or in the period t →∞  (the ink diffusing) because precision is lacking. This amounts 

to say that, in the case of an infinite precision, there would be no arrow of time. Entropy 

would be merely a lack of information. I presume that this position is tied to determinism. If 
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everything is determined, it makes no sense appealing to a difference between past and future. 

There would be a mere mechanism and its reversal is perfectly conceivable.  

The space C of the coarse graining method is time symmetric and it is unable to 

describe the breaking of time symmetry. It cannot deal with a world with time symmetry 

broken, or with the non physical period t → −∞  (time reversal: going to the past). It simply  

ignores this period. 

The 'ontological school' (n. 4.2) should use a more accurate observer space (Schwarz 

space), whose mathematical properties allow to see the evolution towards the future and 

towards the past in a Dirac's comb (this device includes a representation of both temporal 

directions: the 'horizontal comb' is the equilibrium in the far future, while the 'vertical comb' 

is the equilibrium in the far past). The task is now to choose one of them, namely S- (observer 

space turned up to the future), with its corresponding state space S−
x , since this choice fits 

with the real evolution perceived in nature. This passage is argued in n. 5. Since the necessary 

condition of not changing the space of the observables is not satisfied in the past direction 

(where 'non physical events' happen), but only towards the future, the recourse to a specific 

Hardy space of the observables is required; in symbols: O- will be H +
2 (changing the signs + 

and - would mean to change the course of time). 

This is not the complete solution of the problem of the time arrow, of course, being 

rather a mathematical procedure of dealing with time that more clearly reveals what it is 

supposed to be an ontological property of nature. The strategy is remarkable for a philosopher 

of science. It shows how the scientist can choose mathematical instruments which allow 

scientific constructions to (partially) manifest what nature is. Undoubtedly, the measure of 

time is likewise related to man, the author of measure. Physical time, as seen by science, 

corresponds to real nature, but it is an elaboration of human mind as well. Indeed, the arrow 

of time is perceived from the spaces of the observer, and that is why Castagnino's main thesis 

in this paper is that the arrow of time is both ontological and gnoseological, since the image 

of the universe depends on reality but also on the observer. Our knowledge, as Aquinas 
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would say, corresponds to the modus essendi but also the modus cognoscendi6. There's a nice 

convergence here between philosophy and science. 

The last section (n. 6) is much closer to philosophy. The assumption of a universal 

arrow of time, founded on a never contradicted physical experience, involves the transference 

to a cosmological model. The simplest one could be the universal global system proposed by 

one of the most important contemporary philosophers of time close to the scientific area, 

Hans Reichenbach7. The global system, adapted here for the purpose of the paper, assumes 

that every branch subsystem begins in a non-equilibrium state, evolving towards equilibrium 

(increasing entropy). This branch subsystem, though relatively isolated, has acquired its 

improbable initial energetic state from a previous branch subsystem, and so on. Castagnino 

relates the process of the ink diffused in the water to the origin of the elements and particles, 

ultimately going back to the origin of the universe. The cosmological global model is 

adequate even for the quantum level (microphysics), if we take into account the scattering 

processes. These processes involve the creation of unstable quantum states (unstableness is 

the key of irreversible processes and, in general, of the very idea of a cosmic evolution). The 

unstable states last either for a brief or a long time or, in other words, they cause a delay, 

therefore they produce time. At the end, they decay into a stable state, where almost nothing 

occurs. 

The arrival to an unstable state is a creative process which ordinarily requires a 

preceding source of energy. On the contrary, the consequent decay is natural. The scattering 

processes are here analogous to the formation of the ink drop and its diffusion. They have a 

clear energetic cause (e.g. accelerators of particles). A question arises regarding the cause of 

the first unstable state with which the universe starts its life. If we do not go back further on, 

it is because there is no past before t=0. Contemporary quantum cosmology postulates this 

kind of origin, so the arrow of time presents itself as a cosmological direction towards the 
                                         
6 Aquinas, S. Th., I, q. 84, a. 1. Plato's mistake was to assume that forms were in re just as 
they were in cognoscente. Therefore, there would be no difference between ontology and 
epistemology. 
7 H. Reichenbach, The Direction of Time, cit. 
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future8. But even within classical standards and without the recourse to an initial 'creation of 

time', it is known that the history of the universe goes back at least to early unstable states. 

It could seem then that we are constrained to use the mathematical device of the O-  

space of the observer and not its specular image O+ with the inverted time making the whole 

difference. But now there is a surprise. Since in a cosmological model all the different local 

arrows of time would have changed at once, going in the opposite sense (including the 

psychological arrow of the observer, which is a part of the universe), there is no physical 

difference (in the scientific meaning of physical) between the opposite directions of time, just 

as there are no physical differences between the pure geometrical directions of right and left. 

So Castagnino's conclusion is that 'we must choose' because we are constrained by the facts 

and not by the laws. This choice, however, is irrelevant in physics as a science. The choice is 

supported by what we have ever seen in the real world, not from the nomological physical 

description. 

3. A philosophical choice 

The difference between the gnoseological and the ontological school is philosophical, 

since there is no empirical constraint from the scientific point of view to overcome the time-

symmetry of the nomological account of physical processes. The philosophical option in 

favour of the gnoseological school is more akin with the positivist attitude. Positivism leads 

to speak about nature only in scientific terms. Paradoxically, this approach creates several 

philosophical problems. In fact, if the difference between past and future is not physical, the 

temptation arises of assigning it to the situation of the observer (just as the right and left 

                                         
8 This statement is limited to quantum cosmological models dealing with a 'creation of time' 
at the very beginning of our 'classical' universe. ("There exists an arrow of time only because 
the universe originated in a less-than-maximum entropy state...The expansion of the universe 
has caused it to depart from equilibrium": P. Davies, Stirring up Trouble, in J. J. Halliwell et 
al. (ed.), Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge 1996, 
p. 127). We let aside a quantum gravitational scenario without (classical) time, wherein our 
universe would emerge with its time. See J. Halliwell, Quantum Cosmology and Time 
Asymmetry, in ibid., pp. 369-389, and our article La creazione nella cosmologia 
contemporanea, «Acta Philosophica», 4, 1995, pp. 285-313, for the theological and 
philosophical problem. 
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directions do change with the movement of the observer). Giving a special privilege to the 

observer ends up in dualism in its rationalistic version. 

The ontological school's option in favour of the reality of the direction of time is 

ontological because it acknowledges the existence of a field of reality outside the framework 

of mathematical physics. Castagnino argues that there are physical processes that 'we have 

never seen'. This appeal to the facts (in the sense of dismissing theories concerned with facts 

we have never seen) is not empiricist or positivist, but ontological. I hope the reader will 

understand this subtlety. Positivism restricts its view to the facts as considered by scientific 

laws, and in this sense it has no problem to imagine fictitious facts, never seen, but anyway 

allowed by the laws. An Aristotelian ontology, on the contrary, is built upon reality as such, 

not upon imaginary or possible reality.  

A merit of Castagnino's argument is the stress on the philosophical character of the 

whole choice. Even the positivistic choice in favour of the purely gnoseological interpretation 

of the arrow of time is pretty much philosophical, and it creates the very difficult 

philosophical problem of dualism between reality and observer within the physical 

description. 

The argument that 'we have never seen those facts' involves the coincidence between 

the psychological and the physical arrow9 (to see an inverted film is to put the physical arrow 

in contrast with the psychological arrow). Anthropologically, we should conclude that our 

time is rooted in nature. The fictitious inversion of natural time would imply the 

independence of our psychological arrow from nature. Descartes would be right against 

Aristotle. Of course, we can 'think' of the reversal of a process (since human thought is 

independent from space-time), but that thought exists within the real psycho-physical time 

through which we participate, as physical observers, in the ontological display of our world. 

The points I have commented upon show to which extent some choices of mathematical 

instruments in physics may be conditioned by philosophical motivations. A mathematical 

                                         
9 Recall Reichenbach's question: "Why is the flow of psychological time identical with the 
direction of increasing entropy?" (The Direction of Time, cit. p. 269). 
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reading of reality, it is frequently said, is blind to the natural traits of reality. However, the 

many different mathematical devices used in the natural sciences may help our mind to get an 

insight into the ontological structure of reality. Philosophy is not science, but a philosophical 

view is not impossible on the basis of physics. 

 

 

Part II. The Physical Aspects (M. Castagnino) 

 

1. Introduction 

For those among scientists that believe that Truth must be found in Science as a whole, 

and not in any isolated chapter in science, the present situation is highly discouraging. 

Scientists are so specialized that they ignore completely what is happening in the neighboring 

fields of their own speciality. Precisely, philosophers of science cannot understand physics, 

because it is written in mathematical language, and physicists can not understand philosophy, 

because it is not written in mathematical language. The author of this second part is not free 

from this problem because, with the exception of a few concepts, he ignores philosophy. 

Nevertheless, this paper is a modest attempt to solve this problem, trying to find a physical-

philosophical answer to one of the most important questions of modern physics: the problem 

of the arrow of time [1]* . Even if this paper is addressed to philosophers, some high school 

formulae are used, since they are unavoidable. Also, some explanations in the footnotes are 

devoted to physicists and mathematicians and they can be neglected by philosophical readers. 

The image of the universe depends on the universe itself and on the observer that looks 

at the universe and sees its image. This seems an undeniable statement. The image of the 

universe is essential, since we can only understand the universe through the images obtained 

by the observers. Then in the image of the universe there are two components: 

i.- The universe itself, namely its ontological nature. 

ii.- The observer that looks at the universe, namely the knowledge or information that 
                                         
* For  numbers [1], [2], [3], etc. see the References at the end of the paper. 
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the observer obtains when he studies the universe. 

This idea is so convincing that we can extend it from the whole universe to any part or 

feature of it: 'the image of any feature of the universe depends on the feature itself and on the 

observer that studies this feature'. We will postulate that this is true for almost any feature of 

the universe. 

One of the reasons of this paper is precisely to show that this idea is not accepted by 

many physicists, and we will demonstrate this fact using the arrow of time, one of the features 

of the universe, as an example. 

The problem of the existence of the arrow of time or, what is the same thing, the 

problem of time asymmetry of the universe, can be formulated asking the following question 

[2]: 

How can it be that the universe is time-asymmetric if all the relevant physical laws are 

time-symmetric? 

In fact, the main laws of physics, the Newton laws of mechanics, the Maxwell 

equations of electromagnetism, the Einstein  equations of relativity, the Schrödinger equation 

of quantum mechanics are time-symmetric10. Nevertheless the universe has several time 

asymmetries, namely the various arrows of time: thermodynamic (entropy grows towards the 

future), electromagnetic (we use retarded solutions), psychological (we feel that the past is 

different than the future), etc., that must be explained. If these asymmetries are not contained 

in the physical laws themselves, they must belong to the object under study: the universe. 

Then we can say that these asymmetries are not 'legal'; they are 'factual' or 'objective', since 

they are asymmetries of the object, not of the laws that rule the object. But the asymmetries 

of the object can have a gnoseological or an ontological origin. Therefore, to solve the 

problem, the physicists are divided into two schools: 

1.- The gnoseological school (Boltzmann [4], Zwanzig [5], Zurek [6]). This school 

                                         
10 We will neglect the time-asymmetric laws of weak interactions, since it is very difficult to 
imagine a mechanism that explains the time asymmetry of the universe based on these laws 
[3]. 
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explains the arrow of time saying that it is created by the act of observation, i. e. by the 

observer11. Precisely, for this school there is a microscopic universe that is time symmetric 

and where there are no arrows of time, and there is a macroscopic universe, the one that 

macroscopic observers see, where there is one or many arrows of time, created by our 

inability to measure the microscopic universe with infinite accuracy. There is no ontological 

reason for time asymmetry, according to this school, since the real universe, the microscopic 

one, is essentially time symmetric12. 

2.- The ontological school. This school states that time asymmetry is an ontological 

characteristic of the universe13. In its extreme version this school refuses any gnoseological 

explanation, since it forbids any reference to the measurement procedures to explain the 

arrow of time (Prigogine and co-workers [9]). 

We will try to demonstrate that both schools are wrong (even if they are partially right), 

because their reasoning is incomplete and the common sense statement of the beginning of 

this section, 'the image of any feature of the universe depends on the feature itself and on the 

observer that studies the feature', is the clue to solve the problem. Thus we will try to prove 

that the arrow of time depends on the universe and it can be seen only if the observer uses an 

adequate measurement apparatus. 

2. Observables and states 

Let O be the set (or space, namely a set endowed with certain mathematical properties) 

of all the observables (namely all the observation apparatuses, e. g. the apparatus that 

measures the distance to a certain star) that we will use and S the set (or space) of all possible 

states of the universe (e. g. the state of the universe today)14. If O ∈ Ο  is any observable and 
                                         
11 This definition of the gnoseological school is necessarily schematic, since traces of the 
ontological argumentation can be found in its authors. 
12 The line of thought that explains time asymmetry introducing stochastic noises can be 
considered a variation of this school [7]. 
13 It depends on the solution of the physical laws that describes the present universe and, 
since we know the mathematical equations obtained from the physical laws, it depends on the 
initial conditions of the present universe [8]. 
14 Really our 'universe' can be any closed isolated system within the real universe, and 
nothing will change below, since essentially the universe is just a closed isolated system. 
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ρ ∈ S is any state, a measurement is made with the observable O in the state ρ with a result m 

(e. g. the distance to the star today). It is clear that if we measure all the observables of O in a 

state ρ (precisely all the distance to all the stars today, the mass of all the stars today, the 

temperature of all the stars today, etc.), we do know all the data about ρ and, in this sense, we 

know the state of the universe ρ (i. e. the state of the universe today). It must also be clear that 

these definitions are completely theoretical, since we are referring to measurements done with 

infinite precision, and these measurements are impossible. Real measurements are always 

affected by some errors. To introduce these errors systematically we can consider that the 

universe is only known in a statistical way. So to continue we must add two important 

components: 

1. Statistics. We know that really modern physics has proved that we cannot speak 

about the occurrence of facts but only about the probability of the occurrence of these facts. 

Nowadays physics is essentially a statistical science [10]. So the result of the measurement is 

not just m but a set of possible results m1, m2, where we can only tell the probability of each 

result p1, p2,... So the best we can have is the mean value or weighed average of the 

measurement, precisely 
< O >ρ =

m1p1 + m 2p2+.. .
p1 + p2+...

 

and since the sum of the probabilities is the probability 1 (the certitude), namely p1+p2... = 1, 

we obtain: 
< O >ρ = m1p1 + m 2p2+.. .= mipi

i
∑                                                           (1) 

where the last symbol is a sum, that we must use to avoid the repetition of similar terms like 

m1, p1, m2, p2, etc., which we generically call mipi , being i a generic index. So the symbol 

Σι means 'add all the similar terms mipi '. 

2. Continuous nature of the measurements. Generally the possible measurements are 

not a finite or discrete set like m1, m2,...but a continuous one m(x) where instead of the index 

i we have the continuous variable x (a discrete set of points is an infinite set of isolated 
                                                                                                                               
Nevertheless we will continue to talk about the 'universe' (also because to obtain a complete 
isolation of a subsystem of the universe is merely a theoretical fact). 
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points. In a continuous set the points are not isolated, but they belong to a continuous curve, 

surface, volume, etc.). In fact, let us consider an usual measurement apparatus (a barometer, a 

thermometer...). x would be the coordinate of the position of the hand of the barometer 

(eventually an angle), or the position of the mercury scale in the thermometer which in fact is 

continuous, and m the number written at each position (m HPascal, m degree centigrade...). 

Then m(x) is the function that relates the position of the hand with the measured quantity. To 

simplify let us suppose that the possible positions of the hand are the points of an interval, let 

us say the interval [0,1]. So, in this continuous case, mi is transformed in m(x),[0 ≤ x ≤  1]. 

Then, what happens with the probability pi? 

Each time we deal with continuous objects we are forced to define densities. Let us 

imagine a discrete set of points P1, P2,...with masses M1, M2,... that we consider they are 

concentrated in each point. The total mass of the set of points is M = ∑i Mi . Let us now 

consider a continuous object. It is impossible to know the mass of each point P since the 

volume of the point is zero. So we take a small volume ∆V around the point P, we measure 
the mass contained in it, ∆Μ, and we define the density δ = ΔM

ΔV
. Then Δ = δΔV  and the 

total mass of the body is M = ΣδΔV , where the sum is extended to all the small volume in 

which we have divided the body. 

In the same way we will define the probability density p(x). For every small subinterval 
of [0,1], of length ∆x, there is a probability ∆p and a density of probability: p(x) = Δp

Δx
, in 

such a way that the probability ∆p in the subinterval of length ∆x is ∆p = p(x)∆x. If the 

measurement at x is m(x), the generalization of the average (1) reads: 

< O >ρ = ∑m(x)p(x)Δx                                                                        (2) 

where the sum is extended to all the subintervals in which we have divided [0,1]15. The 

                                         
15 To make the sum as refined as possible we take ∆x → 0, i. e. we make ∆x as small as 
possible. Then, in the limit of infinitesimal interval the mathematician would say that the 
summatory of the last equation must be substituted by an integral, namely the mathematical 
generalization of sum to the case where the number of addends is infinite. Then we obtain: 
< O >ρ = lim Δx→0

∑m(x)p(x)Δx = m (x)p(x)dx
0

1

∫  
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function m(x) (the set of possible measurements) is a characteristic of the observable O, while 

the function p(x) (the probability density of each measurement) is the probabilistic definition 

of the state r. If we know the probability of each possible measurement of any possible state 

of the universe, we know the probabilistic state of the universe. This is the statistical 

translation of the previous definition, when we use infinitely exact measurements: 'It is clear 

that if we measure all the observables of O of an state r (...) we do know all the data about r 

and, in this sense, we know the state of the universe r'. 

Let us finish this section saying that, even if we were referring to the classical level, all 

what we have said can be rephrased in the quantum level. This will be also the case for all the 

reasoning below. 

3. The properties of function m(x) and the quality of the observables 

Now we reach the central point of the paper: the mathematical properties of the 

characteristic function of the observables m(x). We will see that the properties of the 

observables, used by the two schools, are different and therefore these properties are the basis 

to define and study both schools. 

The mathematical properties of the function m(x) will define the quality of the 

observable O. Heuristically, if the function m(x) is defined in a fuzzy way, we will say that 

the quality of the observable is bad. On the other hand, if it is defined in a precise way, we 

will say that the quality of the observable is good. Consider again the barometers hand and 

the number of HPascal written in the scale. If the positions of the hand are correlated in a 

fuzzy way with the numbers of the scale, clearly the barometer is of bad quality. If they are 

correlated in a precise way, the quality of the barometer is good. As we have said, for 

simplicity, we will consider that the index x takes only values between zero and one, [i. e. 0 

≤ x ≤ 1]. We will give several examples of decreasing fussiness of the curve m(x) and 

therefore several examples of growing quality: 

1.- Hilbert quality. The function m(x) is a square integrable. To give an intuitive idea 

of this kind of functions we can consider that they are continuous functions (like the curves 

we can draw in a paper with a pencil) where, in a discrete number of points, the values of the 
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function are different than those corresponding to the continuous one. I. e. discrete number of 

points are subtracted from the continuous function and they are elsewhere (fig. 1)16. The 

function can also have a stair shape with jumps or steps (like figure 1’ and also as the curves 

of the next quality), but for simplicity, let us keep in mind the image of fig. 1. As we will see, 

Hilbert quality is a very bad one since the curves of figs. 1 and 1’ are quite fuzzy. We will 

call the space of these functions the Hilbert space H. 

2.- Coarse-graining quality (we will explain the origin of the name 'coarse-graining' in 

the next section). Let us divide the interval [0,1] in subintervals [0,x1].[x1, x2],... [xn, 1] ant 

let m(x) take continuous values in each subinterval. The function m(x) looks like a stair, with 

curve steps, going up and down (fig. 2), with jumps in the points xi, when we pass from one 

step to another one. This curve is not so fuzzy as the previous one. Therefore the quality is 

improved, as we will see below in a less intuitive way. We will call the space of these 

functions the 'coarse-graining' space C. The gnoseological school uses this quality, because it 

is sufficient to prove a large set of important results, the growing of entropy, the natural 

tendency to equilibrium, etc. We will discuss this point further in the next section. 

3.- Schwarz quality. The function m(x) is continuous, differentiable to any order, and 

square integrable, namely it is a completely smooth curve endowed with a lot of nice 

properties (fig. 3). The quality is improved. The corresponding function space is the Schwarz 

space S. 

4.- Hardy quality. The function m(x) has all the properties of a Schwarz function plus 

other mathematical properties known as analyticity in the upper or lower complex half-plane 

(namely more involved mathematical properties that we will not explain in detail [11]). This 

is the finest quality we will consider. The corresponding function space will be called the 

Hardy space from above, H +
2  (which has analytic properties in the upper complex half-plane) 

or from below, H −
2 , (corresponding to the lower complex half-plane), respectively17. 

                                         
16 In a more precise language a mathematician would say that all the curves, obtained by the 
continuous one by the subtraction of a discrete number of points, are equivalent and that the 
space in consideration is the space of the corresponding equivalent classes. 
17 The essential property is that m(x)  can be expanded as a power series as: 
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Even if we cannot here explain this quality in all details, we are forced to introduce it, 

since the ontological school is based on this quality. 

The only thing the reader should keep in mind is that there is a hierarchy of qualities 

and that the higher quality corresponds to a higher number of mathematical properties of the 

curve m(x) that makes it less fuzzy and better defined. 

To see how this definition of quality of measurement corresponds to the intuitive 

notion, let us use as an example the simplest probabilistic distribution. Let us suppose that we 
are sure that in the interval [0,1] we will measure a fix number e. g.: 1

2
. This state of 

knowledge corresponds to what is called the d or Dirac's state ρD, defined as the state with a 

probability function pD(x), which is zero everywhere, in the interval [0,1], but different from 

zero at x = 1
2

 (fig. 4), since we know that all the probability is concentrated in 1
2

. 18 We use 

this state for two reasons: 

i. It is the simplest of all. 

ii. We will see in the next section that we must add infinite Dirac's states to obtain a 

'Dirac's comb', an extremely useful state. 

Let us now compute the average (2) for an arbitrary curve m(x) in Dirac's state pD(x). 

Let us divide the interval [0,1] in small subintervals of equal length ∆x. As p(x) is zero in all 
intervals but the one that contains 1

2
, the sum (2) will be reduced to just the addend 

m(x)pD(x)∆x that contains the coordinate x = 1
2

. Namely: 

< 0 >ρD = m (
1
2
)pD (

1
2
)Δx  

Now we can refine the result making ∆x smaller and smaller, a process that we symbolize as 

                                                                                                                               
m (x ) =m 0 +m1x +m 2x

2 +. ..  
and, if the real variable x is promoted to a complex one z, m(z) is an analytic function in the 
upper complex half-plane, in the case of H +

2  , or analytic in the lower half-plane, in the case 
of H −

2  . These properties are used by physicists to deduce the 'dispersion relation' [12] and 
also the 'fluctuation-dissipation theorem' [7]. In these cases physicists are working with the 
same basis as the ontological school. 
18 pD(x) = δ (x −

1
2
) 
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∆x→0 (and we can take pD(
1
2
)Δx =1  in such a way that, when ∆x→0, pD(

1
2
) grows up to 

infinite, representing the infinite concentration of the probability at x = 1
2

). Then, as the small 

subinterval always contains 1
2

, the final result of the average (2) will be < 0 >ρD = m
1
2

. 19 

Let us see how this state of the universe is measured by the different quantities of 
functions. I. e. how the different qualities measure m( 1

2
): 

1.- Hilbert quality. If the point x = 1
2

 is not one of the subtracted points from the 

continuous curve, we know the value m( 1
2

). But in the other case this value is unknown (fig. 

5). That is why the Hilbert quality is so low. 
2. Coarse-graining quality. If the point x = 1

2
 is not one of the point xi, we know the 

value m( 1
2

). In the other case, if x = 1
2

 = xi and corresponds to the value of the jump between 

two steps, we do not know the value of m ( 1
2

), but we do know that this value is contained 

between the value m1 and m2 of the two steps (fig. 5’). So the quality is improved. 

3.- Schwarz quality. Now m(x) is a nice curve with no jumps or discontinuities, so we 
know m( 1

2
) for sure (fig. 5’’). The quality is further improved. 

4.- Hardy quality. As we have not explained the mathematical notion of analyticity, 

we cannot explain why we reach the maximum quality, but as we have shown that when the 

properties of the function are more numerous the quality improves, we can conclude that the 

quality has also improved in this case. 
So we see that as quality grows the value of m( 1

2
) becomes better known. 

We will close this section with some results about the inclusion of the spaces that we 

have defined. It can be mathematically proved that, as the quality improves, the 

corresponding space becomes smaller, i. e. : 

H ±
2 ⊂ S ⊂ C ⊂H                                                                                 (3) 

                                         
19 A mathematician would say: 
< 0 >ρ= m(x)δ(x − 1

20

1

∫ )dx = m( 1
2
)  



 21 

This fact corresponds with common sense: more accurate measurement apparatuses are less 

numerous. Moreover, if we request a new mathematical property to a set of functions, the 

subset of functions endowed with the property is contained in the original set. 

According to the quality of our observable space O, we can measure our state space S 

better or worse. So, for each quality of the observers space we can measure a different space 

of states. Thus the space of states we can consider depends on the space of observables we 

use. Then we will say that the space of states is a functional space (or a dual space) of the 

space of observables [14] and we will write this dependence as: 

S = Ox                                                                                             (4) 

Let us observe that there is an intimate relation between the spaces O and S, in such a way 

that in can be proved that if one is time-symmetric the other is also time-symmetric, anf if one 

is time-asymmetric the other is also time-asymmetric. 

Clearly as the quality of the space of observables improves, the corresponding space 

gets smaller but, on the other hand, the quantity of states increases and therefore the number 

of spaces of states increases as well: 
O1 ⊂  O2 ⇔ O2

x ⊂O1
x  or S2 ⊂ S1  

From this equation and eq. (3) we obtain20: 

H x ⊂ Cx ⊂ Sx ⊂H ±
2x                                                                            (5) 

 

4. Mixing systems 

The arrow of time does not appear in simple systems. They must have some degree of 

                                         
20 The Hilbert space has a characteristic property, known as Riesz theorem: it is equal 
(precisely isomorphic) to its dual: 
H = H x  
So in the worst quality case the space of observables is equal to the space of states. In all the 
other cases the space of observables is contained in the space of states, since from the last 
equation and eqs. (3), (5) we have: 
H ±
2 ⊂ S ⊂ C ⊂H = Hx ⊂ Cx ⊂ Sx ⊂ H±

2x  
In this equation we see, very clearly, how the refinement of the measurement quality 
increases the state space. Any triplet H ±

x ⊂ H⊂ H±
2x , S ⊂H ⊂ Sx , C ⊂H ⊂ Cx , is known as a 

Gel’fand triplet [13] or a rigged Hilbert space [11]. 
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complexity in order that this arrow may appear. In this section we will study the case of 

classical system, namely non quantum system, where this complexity is called 'chaos'. There 

are different chaos degrees, and we will be interested in the mixing chaos. In fact, this 

property serves to guarantee the approach of the system to an equilibrium state, which is one 

of the ways to define the arrow of time. Every physical (mixing) system has a natural 

tendency to go to an equilibrium final state. Chaos, most likely with mixing properties, is 

very frequent in mechanical systems. As we will see a (Gibbs) drop of ink spreading in a 

glass of water, a sugar lump solving in the coffee or an open bottle of perfume diffusing the 

perfume in the room are all mixing systems. All these motions reach a final homogeneous 

state of equilibrium. In this final state the percentage of ink, sugar or perfume is 

homogeneous in the corresponding container (glass, cup or room). This is the definition of 

mixing evolution: it is an evolution that homogenizes any initial inhomogeneity, in such a 

way that if this inhomogeneity is the ink drop, this ink will reach a final equilibrium state 

where it is homogeneously mixed with the water. There is a natural tendency to homogeneous 

equilibrium through this mixing process, as the examples above show. 

A very important and popular mathematical analogue of mixing transformation is the so 

called 'baker's transformation' that operates in the square space X=1 x 1 (or [0,1] x [0,1]) and 

it is defined by the following procedure: 

i.- Take a square dough of dimensions 1 x 1 (fig. 6). 

ii.- Squeeze the 1 x 1 square to a 2 x 1/2 rectangle, as the baker does with the dough. 

iii.- Cut the rectangle vertically into 2 rectangles and 

iv.- Pile them up to form another 1 x 1 rectangle. 

Then repeat this procedure again and again21. The transformation is shown in fig. 6’ 

(as we will see), where in the first square is the configuration corresponding to the time=0. 

Much more complicated mixing evolutions than the baker's transformation can be 
                                         
21 A mathematician would say that in doing so the points of the square will move as: 

(x ,y )→ B(x,y ) = {
(2x−1, 1

2
+
1
2
y) ,if :..1

2
≤x ≤1

(2x, 1
2
y ) ,i f :............0≤ x≤ 1

2  

at each step. 
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invented. In fact, the baker's transformation is the simplest of all: it is the simplest model of 

the famous Gibbs ink drop. Gibbs tried to explain the essence of irreversibility with the ink 

drop model. If a drop of blue ink is introduced in a glass of water, even if the volume of the 

ink drop remains constant, we will have, after a while, an homogeneous mixture of bluish 

water. As we have said, this is the typical final equilibrium state of every mixing evolution. 

What happens is that the motion of the water is mixing and therefore the ink drop is deformed 

(even if its volume is constant) in such a way that it is transformed in a set of very thin 

filaments that are present in every part of the water, giving the sensation that the water has 

become bluish. The growing of this filaments-like structure gives an arrow of time and for 

Gibbs it is the essence of the direction of the arrow of time. 

Now this phenomenon is nicely modelled by the baker's transformation. In fact, let us 

consider a small rectangle a x b within the square 1 x 1 (fig. 6’), let us say a small stain of 

low quality flour within the dough (that corresponds to the ink drop). The height of the stain 

will successively become: 1/2b, 1/4b,... 1/tb while the base of the stain will become: 2a, 

4a,...ta,... in such a way that the area is conserved. Eventually a time will arrive such that ta > 

1 and then the stain will be cut in two, and then in four, eight, etc., and at the end it will 

become a set of horizontal filaments of increasing length and decreasing height (last square of 

fig. 6’), namely a 'cubist' picture of the ink drop. So the baker's transformation is just a model 

of the ink drop phenomenon. 

If now that we are acquainted with the baker's transformation model, we consider again 

the much more complicated evolution of the ink drop, we see that the filaments also exist in 

this motion, even if they are produced with a much more complex geometry (not a cubist 

one), but with the same essential property: the 'height' of the filaments decreases, and they 

become thinner, and the 'length' of the filament grows and they become longer. It is clear that 

the motion of usual water is mixing, according to our definition, as the baker's transformation 

is. In fact, if the volume of the ink drop is the 1% of the volume of the water, and if the 

motion is mixing, in the far future every subset will have a 1% of ink and, therefore, the 

distribution of ink will become homogeneous. As this is the case with the real ink drop, we 
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can conclude that the real motion is mixing. 

Going back to fig. 6’, if the shaded a x b would correspond to the stain of lower quality 

flour (the analogue of the ink drop), and in this case this flour will fill the 1% of the square 

[0,1] x [0,1], it is evident that in the far future any subset of the square, like A, will have a 1% 

of the low quality flour (even if at t=0 there was not a trace of bad quality flour in A, fig. 6’). 

Therefore the baker's transformation is also mixing and, as we have said, it is just a model of 

the ink drop in the glass of water. 

But now, for a change, let us consider the evolution towards the past. Let us ask 

ourselves where the lower quality flour comes from. Going to the past we have the inverse 

evolution for a x b, and b will become 2b, 4b,...tb,... while a will become 1/2a, 1/4a,...1/ta,..., 

in such a way that towards the past the height grows and the length decreases. In the far past 

we will have a set of vertical bands (first square of fig. 6’’). Everything we have said about 

the evolution towards the future can be repeated with the simple substitution of the horizontal 

direction by the vertical direction and vice versa. Clearly there is not an essential ontological 

difference between horizontal and vertical directions. So we will have the behavior just 

described also towards the past. Also the subset A will have the 1% of lower quality flour 

towards the past  (fig. 6’’). Then the theoretical baker's transformation does not break the 

past-future symmetry, since we see that the past evolution (before t=0) is similar to the future 

evolution (after t=0). But the real ink drop does it, since nobody has ever seen an 

homogeneous mixture of ink and water where the ink concentrates spontaneously in such a 

way to produce an ink drop (which corresponds to the past evolution of the baker's 

transformation before t=0). For the ink drop this part of the evolution is physically 

impossible. So the baker's transformation is a good mathematical model of the ink drop 

towards the future of t=0, but not towards the past. Let us keep this idea in our minds. 

Now, in order to make contact with the measurement process studied in the last two 

sections, let us consider the fate when t → ∞ of any subset, namely any low quality flour stain 

in baker's transformation. The horizontal strata will become a set of infinite horizontal 

straight lines towards the future (fig. 6’’’) (known as a horizontal Dirac's comb, since the 
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density of the bad quality flour is concentrated in these lines and zero elsewhere, like in the 

Dirac's d distribution). Towards the past the set of vertical bands will become a set of infinite 

vertical lines (known as a vertical Dirac's comb for the same reason) in the limit t → ∞ (fig. 

6’’’’). These sets of infinite lines are a superposition of infinite Dirac's distributions d and 

they are not the usual low quality flour stains (or ink drops) but idealized generalizations of 

these stains or drops in the limit of infinite time. Clearly, nobody has ever seen these infinite 

lines. What we really see is that the glass of water becomes uniformly bluish or the flour of 

uniform quality. From this point on the two schools follow different paths that we will now 

explain. 

4.1. The gnoseological school 

This school postulates that, as we cannot see with infinite precision, we have a coarse-

grained image of the universe, coarse-grained as a photography where the grains of the paper 

have different colors and, even if they have finite size, they create the illusion of a continuous 

image because, being the grains so small, we cannot see each one of them individually. 

Therefore, according to this school, any perception of the measurement must be done 

considering a set of grains g, of small size ε, such that we cannot measure a smaller length. 

Then we must average the probability p(x) over each grain and content ourselves to use this 

averaged probability QUI p(x). If we want to give a mathematical definition of this idea, we 

must use functions from the space C. Precisely those which have the following property: 

'they are zero everywhere but their value is one in just one subinterval of [0,1] of size 

ε < 1, that we will call the grain g'. 

Such curve will be called the characteristic curve (fig. 7) of the grain g and symbolized 

by χ(g) (see the mathematical demonstration in the footnote22). So coarse-graining school is 

                                         
22 If we make the average (2) of a probability p(x) using one of these curves we obtain: 
< 0 >ρ= p(x )m (x )Δx = p(x )Δx =< p(x ) >g

g
∑

g
∑  

where the g under the first sum means that we add only in the grain g (i. e. the subinterval of 
size ε); in the second sum m(x) disappears because it is equal to 1 in the grain g, and the 
symbol in the r. h. s. is the average of p(x) in the grain g. Now if we divide the interval [0,1] 
in grains gi of size ε, we  can define a coarse-graining probability as 
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based on functions of quality C. Precisely a set of curves like those of fig 7 (fig. 7’). 

Let us now go back to the baker's transformation and let us consider a characteristic 

surface, namely a surface obtained by the multiplication of two characteristic curves in both 

axis x and y. So in the square [0,1] x [0,1] the function defined by this characteristic surface is 

the one of a grain, namely equal to one in the small square ε x ε, and zero elsewhere (fig. 7’’). 

Now we can generalize the average (2) to the two dimensional case: we can consider a 

probability p(x,y) and define the coarse-graining probability QUI p(x,y), namely a function 

where we have substituted the average of the probability p(x,y)  in each grain. In the case of 

the baker's transformation this procedure will give the average of ink or bad flour in each 

grain. Going back to the beginning of this section, it is evident that the small squares ε x ε are 

equivalent to the 'grains' of a photography, so ε is the minimal precision that we can use, 

measure or see. 

Then using the curves C we have created observers that measure the average probability 

density QUI p(x, y), and a observers space of coarse grain quality Cy for the y axis. Then the 

observer space can be called C = Cx ⊗ Cy. For simplicity we have made the length ε equal in 

both axis, since physically ε is the smallest precision we can measure or see. Then, when time 

grows, and it goes up to t → +∞, and the horizontal strata become smaller than ε, it is quite 

obvious that the average probability density QUI p(x, y) becomes a constant and, if the mean 

value refers to the color of the water or to the mean quality of the flour, we will obtain a 

constant (precisely 1% for the above examples), which means that we will see homogeneous 

bluish water or bread dough. Thus the gnoseological school really explains the physical 

phenomenon. It is our incapacity to measure with an infinite precision the fact that produces 

the final homogeneous equilibrium state and therefore the arrow of time. On the other hand, 

following this line the gnoseological school explains much more involved and complex 

phenomena, like the growing of entropy, as we have said. This entropy grows up to a 

maximum value when equilibrium is obtained as it should be. In fact, in many respects the 

                                                                                                                               
QUI p(x) = χ(gi) < p(x) > gi,. 
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gnoseological school is completely satisfactory [15]. 

The problem is that if we go towards the past, up to t → −∞, the same thing happens. 

When the vertical bands become smaller than ε, we have an homogeneous equilibrium state 

(with also a maximum of entropy). Then considering the whole process from -∞ to +∞, we go 

from equilibrium to a state out of equilibrium at t=0 and towards equilibrium again at +∞. 

Nobody saw this process as a whole, which is equivalent to the concentration of the ink, in a 

glass where ink and water are homogeneously mixed, to form an ink drop at time t=0 and 

then to be diffused in the water again. But everybody has seen the second part of it. So 

coarse-graining applied to a time-symmetric evolution that makes no difference between past 

and future does not break the time-symmetry and it cannot be the whole story. It only 

explains the global arrow of time from t=0 to t → ∞, namely a partial arrow of time. It does 

not explain the global arrow of time, from t → −∞ to t → ∞, since both sides of the evolution 

are symmetric with respect to t=0. In other words, as the space C is time symmetric it cannot 

break a time symmetric evolution. 

4. 2. The ontological school 

Usually the quality of measurement used in almost all physical theories is Hilbert 

quality. Then the observers space in the case of the baker's transformation would be 

H = Hx ⊗ Hy . With this quality we cannot see the Dirac's distributions, as we have explained, 

and therefore we cannot see the Dirac's combs. But the ontological school would like to see, 

e. g. the horizontal Dirac's comb, namely those that really appear when t → ∞ (and do not 

appear when t → −∞). Then it must use another observers space: S− = Hx ⊗Sy    because the 

Schwarz quality in the vertical direction allows us to see this horizontal comb measured by Sy 

(the vertical comb of the far past cannot be seen, since it is measured by Hx, a quality that 

does not see the combs). The corresponding space will be S−
x , that actually contains the 

horizontal combs. Then if really the space of physical states has this property, it has an 

ontological characteristic, that fixes the equilibrium towards the future, where there is the 

horizontal comb, but not towards the past since the vertical comb is not contained in the 

space S−
x . 
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Of course we can choose as observers space S+ = Sy ⊗ Hy  and as states space S+
x  and 

we will have the reverse properties: we will have equilibrium towards the past and see the 

vertical Dirac's comb that appears when t → −∞, since the time inversion of the horizontal 

comb gives the vertical comb. This is not the ontological property of the real universe, but the 

above one, if we postulate that the physical states belong to space S−
x  and not to space S+

x  (we 

will say more in section 6). The time-symmetry of the baker's transformation is broken by the 

ontological school using time asymmetric observers contained in the space H −  or, which is 

the same thing, time-asymmetric states contained in the space S−
x . 

This structure is developed with success in paper [16]. As we now have equilibrium 

towards the future, as it is actually the case, and we can consider this equilibrium in all 

details, since it is contained in space S−
x , we could conclude that the ontological school is 

superior to the gnoseological one. Somehow it is so, but our analysis shows that it is not 

purely ontological, since the observers, namely the observation apparatuses, have also an 

important role in this school, which therefore is not free from a gnoseological component23. 

5. The Hardy quality 

The baker's transformation is just a didactic example. Therefore the spaces S-  and S+ 

are also didactic examples. Can we find a physical reliable principle to fix the observers space 

in a unique way? To do so we must find a condition that the observers space must fulfil if we 

consider their time evolution. So we must consider how the observables evolve with time24. 

                                         
23 In baker's transformation the time inversion T is equivalent to change the vertical and the 
horizontal directions. So the following equations are valid for the observers space: 
S− ≠ S+ ,T :S− → S+  
These equations define a duality [17]. Thus even if the evolution of the baker's transformation 
is time-symmetric, it is complex enough to allow the appearance of this dual structure, which 
turns out to be an essential feature to define time asymmetry in the ontological theories. We 
have also a duality in the state spaces: 
S−
x ≠ S+

x ,T :S−
x → S+

x  
24 There is a time-evolution operator, which we will call eiLt, that transforms the operator 
O(0), at time t = 0, into the operator O(t) at time t. Then the law of the observables evolution 
towards the future is: O(t) = eiLt O(0), where the O are the observables (considered as 
matrices), t>0 and L is the so called Liouville operator, while towards the past the last 
equation reads: 
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Then a logical property to ask to the observers space is that it must be the same when we go 

towards the future. In fact, the criterion to choose the physical observables cannot change 

when we go towards the future. Think of a film of an elephant breaking a glass-shop. The 

camera is the measurement apparatus25. We will see that the elephant breaks the glasses, the 

shelves, and the furniture, going from one state that we can consider physical to another state 

that we also consider physical, i. e. performing a physical evolution. This will also happen 

with the ink drop diffused in the water, but in a less spectacular way. As the criterion we use 

to say that we are seeing the picture in the right direction is the same for all times, therefore 

we have a first condition: 

1.- The space of the observables must be such that any observable should always be 

contained in this space when it evolves towards the future26. 

In this sense the space O- is stable towards the future. But this is not a necessary 

condition towards the past. In fact, if we see the film in the reverse  direction, we see non-

physical events happening: glasses being reconstructed by the elephant motion (or the ink 

drop contracting in the glass of water), etc. So, if we go towards the past, the criterion to 

choose physical observables have changed and we have another condition: 

2.- Condition 1 is not necessary towards the past27. 

In this sense the space O- is unstable towards the past and this is the asymmetry that 

generates the features we are looking for. 

Then essentially from a Beurling theorem [18], [19], [20], [21], we know that 

conditions 1 and 2 are satisfied if and only if: 

O- = qH+
2                                                                                         (6) 

                                                                                                                               
O(-t)=eiLt(-t)O(0). 
25 The measurement apparatuses measure not only position but also velocities. Then the 
analogy of the film is eloquent but not complete. In fact, we must rather think that each 
photography of the film also contains information about the velocities (or what we are really 
considering, as the state at each time is a pair of two successive photographs). 
26 Namely eiLtO- ⊂ O-, if t > 0, i. e. an admissible observable remains admissible all along 
the time evolution towards the future. 
27 Namely eiLtO- ⊄ O-, if t < 0, i. e. the property 1 is not valid towards the past. 
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where q = eiϕ is a phase (a complex number of modulus one) and H +
2  is the Hardy class 

function (from above) space28. We can disregard the phase q since it can be proved that it is 

irrelevant [22]. So we conclude that our space of physical observables is: 

O− = H+
2                                                                                           (7) 

Thus we reach the conclusion that the quality motivated in these physical reasons is Hardy 

quality. 

Therefore, even if the usual physical apparatuses belong to the quality C, there must be 

some other physical entities (time asymmetric observables) that perceive the difference 

between H −
2  and H +

2 , e. g. ourselves, since we feel that the past is not the future. Moreover, 

the time-symmetric apparatuses of quality C do not feel this difference since they do not 

satisfy the property 2. Essentially these measurement apparatuses do not perceive the 

distinction between past and future but only the direction non-equilibrium → equilibrium, 

even if, as in the first part of the baker's transformation evolution (from -∞ to 0), the 

equilibrium is in the past and the non-equilibrium is in the future. 

Of course if in all this reasoning we change the roles of past and future we will obtain: 

O+ = H −
2  

so we have the couple O− , O+ ,29 as in the preceding section we had the didactic couple S− , 

S+ . It is clear that, if we deal with a close system (e.g.: the universe), the choice of one of the 

members of these couples in order to settle the ontological property that defines the arrow of 

time is conventional. So someone may say that the arbitrary choice of one the members of the 

couples is made 'by hand'. It is not so. To prove it we will discuss this problem further on the 

next section. 

                                         
28 Really O- = H +

2  = [H +
2  (R,N)]. For the sake of physicists and mathematicians we add that 

the variable n ∈ R is the eigenvalue of the Liouville operator, and N is an auxiliary space that 
contains all the necessary variables to describe the considered model. 
29 We have here another duality since: 
O− ≠ O+ ,T :O− → O+ and 
O−
x ≠ O+

x ,T :O−
x → O+

x  
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6. The Reichenbach Global System 

The arrow of time cannot be a local concept. We have both practical and theoretical 

reasons that support this statement. i.- From the practical point of view, we have studied very 

far sections of the universe and we have always used the same physics with the same arrow of 

time. If the arrow of time would be different in a very far quasar, we would perceive this 

difference since, e. g., the elementary particles would decay in a different time direction. ii.- 

From the theoretical point of view we can make the following reasoning: we could conceive 

two isolated laboratories with different arrows of time, but this fact has never been observed 

[23]. So, it is conceivable that, given two researchers working in two isolated laboratories, 

one of them chooses the observables of O− , while the other chooses the observables of O+ . 

Namely they choose different arrows of time. These two researchers will be very confused 

when the isolation ceases and they get in contact, since then they will realize that they have 

different arrows of time. So, to study this problem we must adopt a global view or, what is 

the same thing, a cosmological model and the simplest of all is the Global System of 

Reichenbach [24], [25], [23]. In this model every irreversible process (produced in local 

subsystems or 'branch systems') begins in an unstable state originated, not in a very unlikely 

fluctuation, but in an unstable state created by the energy coming from other irreversible 

processes. E. g., the famous Gibbs ink drop in the glass of water was originated in an ink 

factory, where unstable coal was burned in an oven to extract energy. Coal was originated in 

geological ages using the energy of the light coming from the sun, where unstable H was 

burned, and the energy necessary to create H comes from the unstable initial state of the 

universe, the origin and source of energy of the whole global system. We can represent this 

global system at the classical level by fig. 8. To introduce our formalism we must go to the 

statistical level. The easiest thing to do is to go to the quantum level (which is essentially 

statistical) and to use quantum language. So let us consider a usual scattering process (fig. 9), 

namely the collision of atoms, nuclei or elementary particles, where some particles coming 

from an accelerator a1, a2,... (fig. 9) hit a target at time t=0, and are transformed and scattered 

by the collision in outgoing particles b1, b2,... Let us cut this process at time t=0 [11] into a 
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creation of unstable states process (fig. 10), similar to the theoretical contraction of the ink 

drop, where the solutions a1, a2,... are incoming ones, and a decaying of unstable states 

process (fig. 11), similar to the real diffusion of the ink drop, where the solutions b1, b2,... are 

outgoing ones. This last process corresponds to states in the space O −
x = S −  that naturally 

decay into an equilibrium state at t → ∞ with a growing entropy. On the contrary the created 

states correspond to space O+
x = S+ (contraction of the ink drop). Actually this space is not 

realized in the real physical world as such (there is no spontaneous contraction of the ink 

drop), because before t=0 the system is not just the scattering one, but a more complete one, 

that includes the acceleration apparatus and the source of energy (like the one of the dotted 

box 'B' of fig. 12). This is the reason why we have used just the O- observers, as explained in 

the previous sections. We cannot use the diagram of fig. 10 because, during the creation 

process, the system does not exist as such (actually it is a much more complex system, e. g. 

the ink factory with its oven burning coal). The system really begins to exist at time t=0 

(namely the isolated glass of water with the ink drop) and therefore it is only described by the 

diagram of fig. 11. So really only the second part of the baker's transformation (from 0 to ∞) 

does exist. That is why you never see the ink concentrating spontaneously in the glass of 

water. But in the second part of the evolution the past → future direction coincides with the 

non-equilibrium → equilibrium direction, the arrow of time of the apparatuses of quality C 

coinciding with the one of the apparatuses of quality H −
2 , so you can use either one kind or 

the other. Then you can employ with confidence the usual apparatuses of quality C, which are 

the real ones since they have a finite accuracy. Also, as the results obtained with the two 

kinds of quality C and H −
2  coincide, there is no physical reason to choose between the 

gnoseological and the ontological school. There is not a cross-experiment that would prove 

that one school is right and the other is wrong. Therefore: the difference between the two 

schools is just philosophical. This is the reason why this paper is addressed to philosophers. 

Actually the evolution of the universe can be symbolized as a sequence of states in local 

O −
x = S −  spaces, as shown in fig. 12, interchanging energy among themselves, and all of them 

co-ordinated because their energy comes from the unique unstable initial state, namely the cut 
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box in the far left of fig. 12. The whole process can be described using just a global space 

O−
Gx = S−

G  (as in the simple cosmological process of ref. [26]). Fig. 12 can be considered the 

quantum or statistical image of classical Reichenbach global system of fig. 8. As fig. 12 

corresponds to O−
Gx , its specular image corresponds to the time inverted space O+

Gx = S+
G  (fig. 

13). But the physics choosing O−
Gx  is identical to the physics choosing O+

Gx , because, as there 

is nothing exterior to the universe, nobody can tell the difference. In fact, all the arrows of 

time are contained in the object O−
Gx , so when we change this space by the time-inverted 

object O+
Gx , all the arrows of time change. Then choosing either O−

Gx  or O+
Gx , we would 

obtain the same time-asymmetric physics with a growing entropy when we go from the initial 

unstable state in what we will call 'the past', to the equilibrium final state in what we will call 

'the future'. A realistic model of the universe is thus obtained. Time-asymmetry is not 

obtained as an asymmetry of the laws of nature but as an asymmetry of the object under 

study: precisely the apparatuses measuring the universe which are contained in space O−
Gx . 

Then it is a factual and not a legal asymmetry, as announced. This argument also proves that 

we have not put the arrow of time 'by hand' choosing O−
Gx , this choice being physically 

irrelevant, since the same physics is obtained if we choose O+
Gx . But the choice must be made, 

and then an ontological property appears and defines the arrow of time. 

7. Conclusion 

We have concluded that the difference between the two schools is philosophical. So we 

can ask: Has the arrow of time a gnoseological or an ontological origin? We would say that it 

is ontological, since the object under study, the space of measurement apparatuses, has the 

ontological property of being of quality H −
2  and  it is, therefore, asymmetric (this time 

asymmetry in the measurement apparatuses will obviously produce the same time asymmetry 

in the space of states measured by these apparatuses, as explained under eq. (4)). But the 

arrow is gnoseological too, since we are referring to measurement apparatuses, namely 

devices to get information. From this point on the research must be continued by the 

philosophers. 
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FIGURES 

 
Fig. 1. A square integrable function with no jumps. Fig 1’. A square integrable function. 

Fig. 2. A "coarse-graining" curve. Fig. 3. A Schwarz curve. Fig. 4. A Dirac's distribution. Fig. 

5. m( 1
2

) measured by a H curve. Fig. 5’. m( 1
2

) measured by a C curve. Fig. 5’’. m( 1
2

) 

measured by a S curve. Fig. 6. Baker's transformation. Fig. 6’. The fate of the flour stain 
towards the future. Fig. 6’’. The fate of the flour stain towards the past. Fig. 6’’’. The fate of 
the flour at t  → ∞. Fig. 6’’’’. The fate of the flour at t  → −∞. Fig. 7. A characteristic curve 
in the interval [0,1]. Fig. 7’. The coarse-grained curve. Fig. 7’’. A characteristic surface in 
[0,1] x [0,1]. Fig. 8. Classical Reichenbach diagram. Fig. 9. Scattering process. Fig. 10. 
Creation process. Fig. 11. Decay process. Fig. 12. Bohm-Reichenbach diagram. Fig. 13. The 
inversion of fig. 12. 
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* * * 

 
Abstract: L'articolo affronta il problema della freccia del tempo dalla prospettiva scientifica 
e filosofica. La parte scientifica (Castagnino) imposta la questione secondo gli strumenti di 
misurazione impiegati nelle teorie fisiche, specialmente applicati ai sistemi dinamici caotici 
dove si manifesta l'asimmetria temporale. Dall'analisi delle due "scuole" (gnoseologica e 
ontologica), si conclude in favore della realtà sia ontologica che gnoseologica della 
differenza tra passato e futuro fisico, facendo ricorso al sistema globale di Reichenbach. 
Nella sezione filosofica (Sanguineti) si presenta in modo qualitativo il contenuto della sezione 
scientifica e si sottolinea il ruolo di certe scelte filosofiche nel campo scientifico, tenendo 
conto della differenza tra l'impostazione realista e positivista. 

 


