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I was brought to Universal Algebra against my will, as it were by Hermann
Grassmann, and the main point of this paper is to describe a piece of (3rass
mann’s work and to ask those who know the subject better than T do whether
it may be said to anticipate Universal Algebra.

Before doing that, though, T would like to set. the scene by first briefly de
scribing a typical piece of Universal Algebra, and then giving a rapid sketch of
the prehistory of Universal Algebra by which T mean simply those develop
ments that predate the definitive formulation of the subject but which, with
hindsight, may be seen to have anticipated or influenced it.

1 Universal Algebra

I am not going to assume familiarity with Universal Algebra.  the few remarks
that T will make now should suffice to make what follows intelligible. To save
argument I will define the subject as comprising what 1s to be found in modern
books bearing the title Universal Algebra, such as the ones by Cohn [5] and
Gratzer [8].

Let me outline some terminology and a typical construction.

A universal algebra is a set. (7 together with a system of n ary operations for
(7; here n may vary and the number of operations may be infinite. (An n ary
operation is simply a function G — (5.)

These are the objects of study of the subject, Universal Algebra. They
include, for example, groups, rings, linear spaces and lattices (and, with slight
modification of the definition, even fields, projective planes, etc.).

In the case where there is just a single binary operation (denoted here by

Juxtaposition) we have a groupoid. Given a set of symbols S = {xy, 29, ..., 2, },
the set,
G = {-771 y T2y -y Ty (-771-771) ) (7‘17‘9) Yo (-Tnl‘n) ) (-771 (7‘17‘1)) , (-771 (TT1T9)) y -

(1 (0} (0 (1200)) o (g () (00 ) 1) () ) )

obtained by repeated juxtaposition of the symbols already written down, forms
a groupoid in a natural way (the binary operation being juxtaposition). This is
the free groupoid on S.

Now let. A be the set of all (formal, finite) linear combinations of elements

of G (with coefficients from a field R):
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A becomes a linear space if we define addition and multiplication by scalars in
the natural way, and indeed it becomes a (nonassociative) linear algebra over R
if we define

(P20 X5) (385 X)) — i B (X X)),

where we need an obvious convention to cope with the fact that the indices 1
and j may range over different finite sets of natural numbers. This is the free
linear algebra on S over R.

The free algebra A may be put to work in the following way. A linear algebra
B is said to satisfy the law (or universal relation)

Yo Xy =0,

where Yo ; X; € A, if a valid equation is obtained whenever all the free algebra
generators x; € S on the left are replaced by elements of B. The algebras
satisfying a fixed set of laws form what is called a variety of algebras. A typical
law of degree 3, for example, is

T (7‘97‘%) - (7‘17‘9) T3,

it. determines the variety of associative algebras. (Here, as is usual, we have
omitted the outermost brackets.)

2 A Sketch of the Prehistory of Universal Alge-
bra

There are some branches of mathematics to which one may arguably assign a
clearly defined starting point. In the case of Universal Algebra what suggests
itself as the beginning, at least in a narrow sense, is Garrett Birkhoff’s paper
[1] On the Structure of Abstract Algebras which appeared in the Proceedings of
the Cambridge Philosophical Society in 1935. Here the definition of a Universal
Algebra appears for the first time and the broad outlines of the subject may
already be discerned. Tn particular “abstract algebras are divided by a very
simple scheme into self contained ‘species’. Within each species a perfect duality
is found between families of formal laws and the families of algebras satisfying
them”. Here the term “family of algebras of a given species” is used in a
technical sense meaning a class closed under taking subalgebras, homomorphic
images and direct products or what is nowadays called a wvariety.

This said, one must point out that undoubtedly the most influential figure in
the movement towards abstraction and generality in algebra which culminated
in Universal Algebra was Emmy Noether, who died in 1935. Tn the twenties her
school had investigated the notion of a group with operators, which is already
very general, including, for example, groups, rings and linear spaces. As Birkhoff
himself said in 1946 [2] “they had developed many of the most important ideas
of Universal Algebra” for example, the three fundamental isomorphism the
orems, which are now recognized as theorems of Universal Algebra, were given
for groups with operators in van der Waerden’s Moderne Algebra [13] in 1931

and van der Waerden was of course a protegé of Noether. As Birkhoff in
the 1935 paper refers to van der Waerden and also, to Hasse’s Hohere Alge-
bra [9], there is no doubt that he was familiar with the work of the Noether



school. Birkhoff’s first papers were on lattices and it is not surprising that he
should have sought a notion more general than that of a group with operators
to express these structures as well.

While it is certainly the sequence Dedekind Noether Birkhoff which is the
main line of influence in the prehistory of Universal Algebra, T was to consider
another very different family of ideas. TIn 1898 Cambridge University Press
published a large and impressive looking tome [14] bearing the title Universal
Algebra, Volume I by AN. Whitehead (1861 1947). Tt was Whitehead’s first
book, and five years after it appeared he was elected to the Royal Society.
Birkhoff has said (in [3]) that it was from this book that he borrowed the name
“Universal Algebra”. Whitehead was Professor of Philosophy at Harvard from
1924 to 1937, a period which includes the years in which Birkhoff was a student.
there (and his father Professor of Mathematics).

To give some idea of what is in Whitehead’s book, let me guote from the
preface:

After the general principles of the whole subject have been discussed
in Book T of this volume, the remaining books of the volume are
devoted to the separate study of the Algebra of Symbolic T.ogic and
of Grassmann’s Calculus of Extension.

In fact, there are seven books in all, of which only one considers symbolic
logic; it turns out that even Book 1, called The Principles of Algebraic Symbol-
1sm, is based on Grassmann.

Volume IT of Whitehead’s book never appeared, perhaps becanse it was
around 1838 that he began his collaboration with a greater mind, Bertrand
Russell. Tt was intended that it would deal with the theory of associative linear
algebras which had begun with Benjamin Peirce’s famous Memoir [12] of 1870
(which only appeared in print in 1881).

Perhaps the main thing that one might expect of such a work is unification,
and that is what Whitehead aimed for and what one may fairly say, T think, he
failed to achieve.

Universal Algebra [he says] is the name applied to that calculus
which symbolizes general operations, defined later, which are called
Addition and Multiplication. There are certain general definitions
which hold for any process of addition and others which hold for
any process of multiplication. These are the general principles of
any branch of Universal Algebra.

Briefly these principles amount to commutativity and associativity of addi
tion and distributivity (left and right) of multiplication over addition. These
ideas are taken without improvement straight from the first chapter of Grass
mann’s Ausdehnungslehre [6] of 1844, Fven the idea of considering in one book
the algebras of Boole and of Grassmann is not original. Peano had done the
same thing in 1888 (in a book [11] of which Whitehead knew), and had written

in his preface as follows:

The geometric calculus is preceded by an introduction which treats
the operations of deductive logic; these present great analogies with
those of algebra and of the geometric calculus.



After distingujishing the algebras of Boole and of Grassmann as being re
spectively of the nonnumerical genus (meaning that a + a = a) and of the
numerical genus (meaning that a +a = 2a # a), Whitehead goes on to consider
the two topics in isolation from one another. One need say no more of this
first. Universal Algebra not. really the first even, since Sylvester had previ
ously used the titel for a paper on matrices  except to remark that Whitehead
(along with all Grassmann’s expositors that T know of) offers a presentation of
Grassmann’s ideas which is inferior to the original.

3 Grassmann and Boole

Let us step back now to the middle of the nineteenth century and the work
of Boole (1815 1864) and Grassmann (1809 1877). T do not want to spend
much time on the origins of Boole’s algebra of logic which first appeared in
1847. Tt is perhaps worth noting, though, some similarities in the lives and
personalities of these two highly original individuals. Both were fascinated by
languages, philosophy, and theology, and came to mathematics late (around
the age of twenty) and both had the good fortune never to take a university
course in mathematics. Both were interested in the teaching of elementary
mathematics, and, perhaps most significantly, both fell under the influence of
two great mathematical works, the Mécanique Analytique (1788) of Lagrange
and the Mécanique Céleste (1799 1825) of Laplace. As is well known, there was
a very considerable difference in the reception which their ideas received.

Boole became part of an English school of mathematicians who were inves
tigating in piecemeal fashion the so called “laws of symbolic algebra” and one
may say, I think, that had he not discovered his algebra of logic someone else
would soon have done so. Grassmann’s case is different, as is evidenced by
the fact that so many of his ideas were rediscovered many decades later on (and
by the blank reception they received initially).

Though both Boole and (Grassmann were motivated by what we would call
modelling problems, they both came early to the view that mathematics deals
with formal structures and that its truth does not reside in any interpretation
of its symbols; in this they were pioneers. Thus in 1847 in The Mathematical
Analysis of Logic [4] Boole writes that

the validity of the processes of analysis does not. depend upon
the interpretation of the symbols which are employed, but solely
upon the laws of their combination. Every system of interpretation
which does not affect. the truth of the relations supposed is equally
admissible.

And three years earlier in his introduction to the first Ausdehnungslehre we
find Grassmann expressing the opinion that

... geometry can in no way be viewed, like arithmetic or the theory of
combinations, as a branch of mathematics; instead, geometry relates
to something already given in nature, namely, space. T also had
realised that there must be a branch of mathematics which yields
in a purely abstract way laws similar to those of geometry, which
is limited to space. By means of the new analysis it 1s possible



to form such a purely abstract branch of mathematics; indeed this
new analysis, developed without assuming any principles established
outside 1ts own domain and proceeding purely by abstraction, was
itself this science.

A final link between them is the fact that both were in a sense anticipated by
Leibniz (1646 1716) who had sought both a “calculus ratiocinator” (or algebra
of logic) and a “characteristica geometrica” (or algebra of geometry), and indeed
had developed attempts at both, albeit somewhat more successfully with the
logical algebra than with the geometric. Tn Leibniz’s vision there was to be a
“characteristica universalis” which would embrace both these algebras; this has
indeed come to pass, and one may say perhaps that in a very wide sense it is
Leibniz who is the father (or, more accurately, the prophet) of Universal Algebra.
Most. of these ideas of Leibniz were nnpublished until around his bicentenary in
1846, and the guestion of their influence on Grassmann and Boole is a delicate
one which T will not. go into.

The fame of Hermann Grassmann today rests on his creation of exterior
algebra. What should be realized, though, is that he is in fact the main creator
of linear algebra in the modern sense, and that while it is true that geometric
considerations motivated his work, he wished to be seen as being an abstract
algebraist and that is what he was. In the Ausdehnungslehre of 1844 Grassmann
plainly wanted to develop his theory in axiomatic “modern algebra” style, but
this he was unable to do. To find a modern parallel to the constructive approach
which he adopted in the second Ausdehnungslehre one must go, T thin, to a text
in Universal Algebra.

4 Grassmann’s Products

I come now to the main part of this paper. Tt concerns Chapter 2 of (3rassmann’s
Ausdehnungslehre of 1862 (which, though it bears the date 1862 on the title
page, actually appeared in 1861).

As background we need to know that in the first chapter, which is called Ad-
dition and subtraction of ertensive quantities, and their multiplication and divi-
ston by numbers, Grassmann had developed in detail, essentially as it is done to
day, the theory of basis and dimension for finite dimensional linear spaces. The
arena in which this is done is a finite dimensional real linear space of extensive
quanitities; this is called a region and a basis for it ey, eq, ... e, , 1s called a system
of units. Although attention is focused on a well defined space in this way, one

must realize that not all extensive quantities are spanned by ey, es, ..., e,. One

would like to say, in modern fashion, that the extensive quantities form a linear
space of which the region spanned by eq,es, ..., e, 18 a subspace, but. Grassmann
does not. pin down an ambient space 1n this way.

Grassmann begins Chapter 2 by defining the product of quantities a — Yaje;

and b = Y3;e; from the region determined by ey, e5,...,e, to be
ab — yj”iﬁj [P,,‘P,j-‘ .

After remarking in passing thatf, being an extensive quantity, this product must,
itself be a linear combination of a system of units, and that particular kinds of
“product structure” will be singled out when one specifies what this system of



units is to be and how the products [e;e;] are generated by them, he indicates
that he will, for the present, “deal only with laws which follow from the general
definition of product (above), and which therefore hold for every kind of prod

uct”. He immediately proves, among other things, that for extensive quantities
a = Yose; b =73Fe;, ¢=73e; and a real number o one has

(n.—{—b)n—n.n—{—bn, n(n.—{—b)—r:n.—{—r:b,
a(ab) = (ra) b and b (na) = o (ba).

In the second part of Chapter 2, called Products of several quantities, higher
order products like (ab) ((cd) €) are considered. They are obtained by iteration
of multiplication (justaposition) of pairs of extensive quantities; it is clear that
there is no assumption of associativity. Since any three quantities a,b and
¢ necessarily belong to some region, the above laws must hold for arbitrary
quantities. Af this point one may reasonably say that Grassmann’s quantities
form a free (nonassociative) linear algebra; but again it must be emphasized
that this ambient space is not seen as a whole but rather 1s explored by means
of local investigations confined to finitely generated subalgebras.

The third part of Chapter 2 begins with a definition:

If a product structure 1s determined by the fact that some of the
products of units are dependent,, then T call each equation expressing
siich a dependence a determining equation for that type of product
structure. A set of p determining equations, none of which is derived
from the others, and such that there is no other equation expressing
dependence among the products, is called a system of determining
equations associated with that product structure.

I find 1t helpful here to think in terms of a multiplication table. In a linear
algebra generated by eq,eq, ..., e, the multiplicative structure i1s determined by
listing all products of pairs of the linear space generators

€1,€2,-.-,€n, (”4":1) ) (’?137) Yoo (Rnﬁn) , €1 (3131) , €1 (3137) y oo

In the free case these products are obtained simply by juxtaposition. The effect.
of a determining equation

Yo By =0

(where the F; are elements of this sequence of linear space generators) is to allow
us to eliminate one element, say Fy, from this list, and indeed also to eliminate
any other element. which has F; as a factor; for example, if eqe; —  ejeq 1s
a determining equation, then after deleting the element (e3 (ese1)) (ese5) from
our list (since it equals (e3 (e169)) (raes) we still have a list which spans
our algebra. Tt appears that (Grassmann has here delineated, albeit inelegantly,
the idea of presenting an algebra by means of generators (eq,es,...,e,) and
relations (Mo F; — 0) . (Nowadays we regard this algebra as the guotient, of the
free algebra by the ideal generated by the Mo, F; ) Any finitely generated linear
algebra may be obtained in this way.

We now come to a key definition:

A product structure whose determining equations remain valid when
the units occurring in them are replaced by arbitrary quantities
spanned by the units is called a linear product structure.



For example (confining attention as usual to products of elements of the
region spanned by ey, es, ..., e, what it means for the determining equation

Cefl — €1€9

to be linear is that

ha — ab

for every quantity a = Mae; and b = YG,e;. We are here close to the general
concept. of a law; indeed the commutative law xzoxy — 2129 will be satisfied by
arbitrary quantities if and only if this linear determining equation holds on very
region.

Let. me now quote from P.M. Cohn’s Universal Algebra [5]:

Any systematic study of linear K algebras would proceed by consid
ering the possible sets of laws.

This is precisely what Grassmann does. He immediately proves the following
theorem:

For products of two factors there are, apart from the product struc
ture with no determining equations, and the one in which all prod
ucts are zero, only two types of linear product, namely the one whose
system of determining equations has the form

P,,‘P,j + P,J'R,‘ = 0
and the one for which it has the form

P,,‘P,j = RJ’ €5,

where both 7 and j may take values from 1 to n, and ey, eq, ... €,
are units.
What this means is that if an equation
y:()/ijmimj =0
is satisfied when the x; are replaced by arbitrary elements a — Moje; of the
region spanned by ey, eq, ... e,, then it must be the case that for all such a —
MNaje; and b = YGe;, either ab = 0 or ba = ab or ba = ab. T would like

to consider the relationship of this result to the following theorem which was
apparently first stated explicitly (in [10]) in 1950:

Any law for linear algebras that is homogeneous and of degree 2 and

does not hold trivially 1s equivalent to either 2y — 0 or y» — xy or

I claim that this i1s an immediate consequence of Grassmann’s result. In
deed, suppose that we have an algebra in which such a law holds. (Grassmann’s
theorem then entails that for each region the multiplication of pairs of elements
is governed by one of the three formulae zy — 0, yr — zy or y= — xy. To prove
the stated theorem it will suffice to show that for any two regions the governing



formula must be the same. The only way that it could happen that none of the
three holds identically would be if yz — 2y held nontrivially on some region and
yr — xy on some other; and that cannot occur since a single law must hold
on the join of the fwo regions.

One may fairly say, T think, that had Grassmann been able to break the
spell which restricted his vision fo local aspects of the algebra of quantities, he
would have proved this theorem which is evidently fundamental in the study of
linear algebras.

It may be argued that the proper job of the historian is fo see ideas in the
context of their time, but, in their time, Grassmann’s ideas were not compre
hended. To do justice to this great mathematician (as a creator rather than as
an influence) one must, T believe, see his work in the light of twentieth century
developments in algebra. Tn a real sense, he is our contemporary.

I would like to thank Barry GGardner for many enlightening conversations
about Universal Algebra, and Mike Newman for drawing my attention to refer
ence [3].
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