
 1 

 

On the origin of fine structure constant and its derived 
expression in the BSM- Supergravitation Unified Theory 

Stoyan Sarg Sargoytchev 

World Institute for Scientific Exploration 

 

Abstract: The fine structure constant appears in several fields of physics and its value is 

experimentally obtained with a high accuracy.  Its physical origin however is unsolved long-standing 

problem. Richard Feynman expressed the idea that it could be similar to the natural irrational 

numbers,  , and e. Amongst the proposed theoretical expressions with values closer to the 

experimental one is the formula of I. Gorelik which is based on rotating dipole with two empirically 

suggested coefficients, while the physical origin is unknown. BSM-Supergravitation Unified Theory 

suggests a physical mechanism defining the fine structure constant. The mathematical expression is 

based on a spatial precession mode of vibrations in a tetrahedron of spheres with specific properties.  

The value from the derived expression differs from the CODATA 98 value by 0.000008% only. The 

conclusion is that the fine structure constant is a natural irrational number. While the irrational 

number  , is defined in a 2D space, the fine structure constant is related to a vibration property of a 

specific formation in a 3D space. 
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1. Introduction 

The fine structure constant is one of the most fundamental physical constants. It appears in many 

physical phenomena in different fields, such as the particle physics, the Quantum Mechanics, the  

spectroscopy and so on.  The experimental value of this constant is measured with very high 

accuracy. Finding a theoretical derivation of the fine structure constant, however, have been one of 

the most difficult problems in mathematical physics and it is still unresolved (see J. G. Gilson)
1
. In 

one of his book Feynman writes: There is a most profound and beautiful question associated with 

the observed coupling constant, e the amplitude for a real electron to emit or absorb a real photon. 

It is a simple number that has been experimentally determined to be close to -0.08542455. (My 

physicist friends won't recognize this number, because they like to remember it as the inverse of its 

square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been 

a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists 

put this number up on their wall and worry about it.) Immediately you would like to know where this 

number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? 

Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us 

with no understanding by man.  

If investigating the cosmological variation of the fine structure constant, one may come to the 

idea that the deviation of 
c  from the recommended value might be a result of such effect. Extensive 

studies about the cosmological variation of the fine structure constant have been published by  (J. 

Webb et al., 2001)
3
, (J. Webb et al. 2003)

4
, (C. Gardner, 2003)

5
. For a red shift range of 

0.2 3.7z  , the measured variation of alpha is 5( 0.57 0.10) 10       . Based on the 

observed negative deviation, C. Gardner
5
 concludes that “  is smaller in the past”.  It is interesting 
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to note that the calculated value of alpha, using the Gorelik’s (I. Gorelik
2
)formula appears deviated 

in the same direction as the cosmological one and its fractional error is two orders smaller than the 

cosmological variation. In fact a few empirical formulae have been suggested, but without 

understanding what kind of physical mechanism is behind them. One of the formulae suggested by I. 

Gorelik
2
 given by Eq. (1), provides pretty close value to the experimentally determined one 

recommended by CODATA 98.  

 32
1 1 2cos( ) tan( ) 7.297352532 10

n
n n n  



                                (1) 

Where: 
1 137n  and 

2 29n   are two selected empirical parameters. 
37.297352533 10            (CODATA 98)                                        (2) 

The  choice of the parameter 
1 137n   in formula (1) is obvious, but the choice of 

2 29n  is a 

selection. 

  In fact I. Gorelik suggests a system of two simple equations (written in this way to show the 

separation of 1   into a whole and a fractional number): 

             1n k                                                                                     (3) 

             2( ) 2k n k                                                                              (4)                               

where: n – is the whole number of the inverse fine structure constant, k – is the fractional part  

Gorelik mentions that his formula is obtained by a rotation of an mathematical object like a 

spheroid with a constant step but does not provide a detailed description and discussion.  

 

2. Physical model defining the fine structure constant based on the alternative 
spacetime concept of the Basic Structures of Matter – Supergravitation 
Unified Theory (BSM-SG)  

The theory is based on an original alternative space-time concept that leads to a new vision of the 

micro-cosmos and Universe [7,8,9,10]. The successful relationship between the forces in Nature is 

unveiled by adopting the following framework: (1) Empty space without any physical properties and 

restrictions; (2) Two fundamental particles of superdense proto-matter with parameters associated 

with the  Planck’s scale; (3) A Fundamental law of Supergravitation (SG) with forces inverse  

proportional to the cube of distance in a pure empty space. An enormous abundance of these two 

particles, with vibrational energy beyond some critical level, can congregate into self-organized 

hierarchical levels of geometrical formations, governed by the fundamental SG law.   

 In BSM-Supergravitation unified theory the fundamental particles are two indestructible 

superdens balls of proto-matter (intrinsic matter). We may call them briefly primary balls. The ratio 

of their diameters is 2:3, while they have intrinsic matter density and stiffness that varies with the 

radius. This density variation permits the existence of vibrational mode and defines the intrinsic 

vibrational frequency of each fundamental particle. That frequency should be very high due the very 

small size and high density of the fundamental particles. We may expect that it is at the range of 

Plank’s scale, where the vibration is associated with the Plank’s frequency defined by the known 

physical constants  
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 One important assumption that allows complex formations from both fundamental particles 

is that their size and intrinsic frequencies are different while vibration energies are equal. They 

interacts  by Supergravitation forces which are inverse proportional to the cube of the distance in a 
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pure empty space. (The Newtonian gravitation forces are inverse proportional of square of distance 

but in an Aether space, which is not empty). The different parameters between the two fundamental 

particles make their properties such that those of same proto-matter are stronger attracted than those 

of the different protomatter. The lowest level 3D formation of the fundamental particles of the same 

proto-matter is a tetrahedron, as shown in Fig. 1. (see Chapter 12 of BSM-SG). 

 The suggested physical concept of the fine structure constant in BSM-SG theory is similar to 

the mathematical model of rotating dipole suggested by I. Gorelik, while there is a well-defined 3D 

formation whose vibrational properties are described by a vector called the Spatial Precession 

Momentum (SPM).  
 Under SG law, the proto-matter is organized in hierarchical levels of 3D formations based on 3D 

geometry. Fig. 1, shows consecutive types of 3D formations at the lowest level of hierarchical order. They are 

denoted as Tetrahedron (TH), Quasipentagon (QP) and Quasiball (QB). 

 
Fig. 1. Structures of lowest level. a. Primary tetrahedron (TH), b – Quasipentagon, c. – Quasiball (QB) 

 

The Quasipentagone is formed of 5 tetrahedrons, and the Quasiball of 12 Quasipentagones. The gaps 

between the tetrahedrons is combined into one gap of 7.355 deg. This permits the Quasiball to be 

left-hand or right-hand twisted and this will be preserved in the next level of formation that are 

described in Chapter 12 of BSM-SG.  

 In order to preserve the balance 

between intrinsic energy the formations of 

other type of fundamentally particles will be 

with an opposing handedness. The association 

of the fine structure constant with the 

vibrational properties of the Primary 

tetrahedron is presented in section 12.A.5.3 of 

BSM-SG theory. 

 Now let us consider the vibrational 

mode of the primary tetrahedron. It is known 

that the tetrahedron has two sets of axes: 4 

axes denoted as abcd passing through apexes 

at angle of 109.45 deg between them and 3 

orthogonal axes denoted as xyz. Both set of 

axes have a common origin O, but their 

mutual symmetry is different. The stiffness 

along abcd axes is larger than in xyz axes due 

to different numbers of aligned spheres. The 

SPM vector describes the partial 

deformations and restoration forces under SG 

law. Fig. 2 shows the restoration forces and the position of the tip of SPM vector under SG law. The 

different mutual symmetry of both sets of axes will cause a spatial precession of the SPM vector 

describing the vibrational mode. The magnitude of the SPM vector depends on the number of 

aligned spheres, so it is greater along the abcd axes and smaller along the xyz axes. The origin of the 
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SPM vector is fixed, while its tip performs a motion with a small helical step. In this process an 

energy momentum is involved. Figure 4 illustrates the dynamical behavior of the suggested SPM 

vector. 

 
Fig. 4. Spatially precessing dipole momentum expressed by SPM vector. R – major semiaxis, s – 

minor semiaxis 

 

Let suppose that the origin of the SPM vector is always fixed at the origin O of a coordinate 

system XYZ, while having a freedom to rotate. Due to asymmetry of restoring forces show in Fig. 3  

after one cycle of rotation the tip of SPM vector will not pass through the same point but through a 

point closer to the previous one, so the distance between them is much smaller than the trace of the 

vector’s tip. We may call this a quasicycle. After many quasicycles, however, the tip of the SPM 

vector will pass exactly through the same initial point. This cycle we may call a full cycle. Then the 

full cycle will contain many quasicycles, but their number may not be an integer.  

It is apparent that the dipole momentum of SPM vector could be expressed by an ellipse 

lying in the equivalent plane. We may call it a “dipole ellipse”. The rotational axis OO` will be 

perpendicular to the major semiaxis r of the dipole ellipse, but not perpendicular to the minor 

semiaxis. In other words the plane of the dipole ellipse will be rotating with a small pitch angle 

( 2 )  defined by the helical motion of the SPM vector. Then for one quasicycle, the dipole 

ellipse will sweep a volume of an oblate spheroid with a magor semiaxis  r and a minor 

semiaxis defined by the product: coss  . 

In every quasicycle, the dipole ellipse will sweep the same volume, while the initial angle 

arbitrary selectedwill change with one and a same step. This angle is shown for reference only. 

It could be defined for any one of the orthogonal axes. The rate of change will define the number 

of completed quasicycles within one full cycle. The latter, however, may not contain an exact 

number of  quasicycles but a whole number plus a fraction, so we have:  

Full cycle = n + k 

Where: n – is the number of completed quasicycles contained in one full cycle, k – is a  

fraction of a quasicycle 

Our goal is to express the fraction parameter (k) as a function of the whole number (n) using 

the defined model. We will derive expression using the relation between the volume of the 

circumscribed sphere and the volume of the oblate spheroid. 

The volume of the circumscribed sphere is: 3(4 3)SPV r  If the full cycle contains a large 

number of quasicycles, then: cos  << 1. We may associate this with the fractional part of 1  , 

(keeping in mind the Gorelik system of equations (3) and (4)), so we may write: cos k  . Due to 
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the pitch from the helical step the quasicycle will sweep a volume that we may associate with an 

oblate spheroid. Then, the volume of the oblate spheroid is:    
2 3(4 3) cos (4 3)os osV r s V r sk                                              (6) 

The tip of the SPM vector is associated with the point of interception of the dipole ellipse 

with the major semiaxis. This means that for a full cycle of the SPM vector the volume of the oblate 

spheroid, swept by the rotating dipole ellipse.  The oblate spheroid will sweep the total volume of 

the spheroid for ( )n k . Then the expression for the volume equality is  
2 3(4 3) ( ) (4 3)r sk n k r                                                           (7) 

Using a normalized parameter 
rs s r  then 

rs s k and simplifying the expression (7) we 

arrive to: 

( ) 1rs k n k                                                                                 (8) 

We may look for a possible reasonable value of the product ( )rs k , while trying to relate the 

parameter sr with  Knowing that (n+k) is equal to 1  , ) according to Eq. (3), we should have 

rs k   , so  rs
k


                                                                              (9) 

To determine k we will use the reciprocal value 1/  of fine structure constant given by 

CODATA 98.  

1 137.03599977   

The guess is that the full cycles of the oblate spheroid is 137n  , while the fractional cycle is 

0.03599977k   

Then from Eq. (9) we obtain  0.20270553rs  . This value is very close to 

22 0.20264237  . The difference between them is only 0.03%, so we may accept: 
22rs                                                                                                (10) 

The idea to relate the parameter 
rs  to  is reasonable if examining the more accurate formula 

(1), where   participates.  

Substituting (10) in (8) we obtain a quadratic equation of k 
2

2 0
2

k nk


                                                                                    (11) 

Only one of its roots leads to a correct expression for alpha. 
2 2 1 20.5[( 2 ) ]k n n                                                                         (12)     

Using the solution (12) and combining with the expression ( ) 1n k    we get the explicit 

theoretical expression for the fine structure constant (denoted as 
th ). 

2 2 1 22 [( 2 ) ]th n n                                           (13) 

For n = 137 the theoretical value of th is: 
37.29735194 10th    

The parameter n = 137 is also obvious from the plot of Eq. (13) shown in Fig. 3. For any 

other number of n the deviation of 
th  from the CODATA value is significant.  

The deviation of 
th from the CODATA 98 value is only 0.000008%. 
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Fig. 3. Plot of Eq. (11) (blue line) and CODATA 98 value (red dashed line) vs number of full cycles 

 

Conclusions:  
(1) The theoretical derived formulae (11) of the fine structure constant provides very close 

value to the experimentally determined one. The small difference results from the 

approximation of the spatial shape of oscillation with a swiping ellipsoid.   

(2) The theoretical formula of 
th provides a value little bit smaller than the CODATA 98 

value but does not need a selection of other number than the obvious one n = 137.   

 The suggested method of using a spatially presesing dipole momentum (represented by a 

SPM vector), provides a simplified mathematical formulation of the fine structure constant. The 

obtained accuracy and involvement of the number  leads to the conclusion that the fine structure 

constant is also a natural irrational number. While   is defined in a 2D space, the fine structure 

constant is defined in a 3D space. 

 Further mathematical developments based on the proposed physical mechanism could lead to 

unveiling of additional parameters of the fundamental particles (stiffness, radial density. and their 

number in the primary tetrahedron. This is a complex mathematical task that could be eventually 

solved by a mathematician acquainted with the BSM-SG unified theory. 
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