STRAWSON ON CATEGORIES

A type theory constructed with reference to a particular language, L, will associate with each (monadic) predicate, P, of L a class, $C(P)$, of individuals of which it is categorically significant to predicate P, or as we shall say, which P spans. The extension of P is a subset of $C(P)$, which is a subset of L's universe of discourse. Such a set, $C(P)$, constitutes a category discriminated by L. The relation is spanned by the same predicates as partition L's universe of discourse into equivalence classes. These are the types discriminated by L.

From the above, it seems possible to cast light on various notions philosophers have employed in making type-related points. For example, one can illuminate what Ryle intends by 'category to which a concept belongs' when he says "The logical type or category to which a concept belongs is the set of ways in which it is logically legitimate to operate with it." The relation spans the same individuals as partition L's predicates into equivalence classes; it is reasonable to equate Rylean categories with these equivalence classes. Furthermore, the concepts of type and category illuminate at least two different things that have been meant by 'sort of thing'.

It is reasonable to think that all type notions are explicable in terms of "spans." Is 'spans' explicable in terms of other notions not peculiar to type theory? The best attempt at this reduction has been made by Strawson. If my argument is correct, then nobody has as yet broken out of the circle of type terms.

I

Strawson's reduction takes place in three steps: first, he characterizes an adequately identifying designation in non-type terms; then, he characterizes a type predicate in terms of this concept;
and finally, he defines the spanning relation in terms of the latter two concepts.

To appreciate his account (which I think is ingenious) one needs to see the following motivating factor. Both of these sentences
(1) Three is an even number.
(2) That table is an even number.
are, in Strawson's words, "a priori rejectable"; but only (2) is an instance of failure to span. The difference is that three belongs to a type (numbers, plausibly), some members of which are even numbers; the same is not true of the table. Now for any given type discriminated by English, we will find a variety of predicates whose common extension is that type. But only some of these can be called type predicates. Thus suppose numbers constitute a type, and that "is a number," "is a member of Professor Jones' favorite set," and "is a member of the set Mary is thinking about" are coextensive. Only "is a number" would be a type predicate.

We should be able to define 'spans' in terms of "type predicate." Is there a way of defining 'type predicate' in terms not peculiar to type theory? Note that, for certain natural designations \(d \) of numbers,
(3) \(d \) is a number,
(4) \(d \) is a member of Professor Jones' favorite set,
(5) \(d \) is a member of the set Mary is thinking about,
will differ in this respect: (3), according to Strawson, is a priori acceptable; neither (4) nor (5) is a priori acceptable. Now this difference does not hold for any designation \(d' \) whatever (e.g., not where \(d = \) "the last item referred to on page three of Professor Smith's article.")

But suppose we can define in nontype terms a favored class of designating expressions to exclude such contortions. This is Strawson's strategy. He calls the elements of his favored class "adequately identifying designations." In terms of this concept he defines 'type predicate':

Definition 1: \(P \) is a type predicate of \(L \) iff \(P \) satisfies these two conditions: (i) for some individual \(x \) and for all designations, \(d \), in \(L \): if \(d \) adequately identifies \(x \), then 'Pd' symbolizes an a priori rejectable sentence of \(L \) or an a priori acceptable sentence of \(L \).

Next is Strawson's account of the spanning relation:

Definition 2: A predicate, \(P \), fails to span an individual, \(x \), in a language, \(L \), iff there is a type predicate \(Q \) of \(L \) of which the following...
ARLES SAYWARD

RMS of the latter two
enious) one needs to
ese sentences

ut only (2) is an in-
t three belongs to a
f which are even
r for any given type
of predicates whose
these can be called
a type, and that "is
orite set," and "is a
xtensive. Only "is a

type predicate." Is
not peculiar to type
ns d of numbers,

et,
out,
on, is a priori accep-
Now this difference
,g., not where $d =$
or Smith's article,)
a favored class of
tortions. This is
avored class "ade-
ate":
es these two condi-
tions, d, in L: if d
a priori rejectable
of L.4
ation:
indidual, x, in a
f which the follow-
ing two conditions hold: (i) $(\forall x)(P x \supset Q x)$" symbolizes an a priori ac-
ceptable sentence of L; (ii) for all designations d in L, if d adequately
ifies x, "$Q(d)$" symbolizes an a priori rejectable sentence of L.5

The term 'designates' functions like 'true' in the following respect: It
does not really make sense to say of the sentence (as opposed to a
particular occurrence of the sentence) "The door is open" that it is
true (or false) in English. Rather, it is true (or false) in English at
time t with respect to person p. Some philosophers want to say that
the truth predicate relates even more items than this. Perhaps we can
say the sentence is true (or false) in English at index i where an index
is understood to be an n-tuple ($n \geq 2$) at least two items of which are
a person and time.6

It is similarly incorrect to say "The number Jones is thinking of"
designates a particular number in English. Designation, like truth, is
a ternary relation, relating expression, language, and index. As ade-
quate identification is a subset of the designation relation, it also has
to be understood as relating the same three items. In definitions one
and two, "d adequately identifies x" is to be understood as short for
"d adequately identifies x in L at some index i." The criticism I shall give of definitions one and two carries through
even if it is the case both that Strawson's account delineates only
those designations he wants to delineate and that it does so in nontype
terms. Therefore, I shall not go into the details of Strawson's account
of adequately identifying designations.

II

The idea basic to Strawson's reduction is that it is possible to set
out the type distinctions of a particular language by properly
delineating a certain set of that language's designating expressions. I
think this basic idea is unsound.

Consider a language English', which is English minus its
designating expressions. Note that each predicate P of English'
vacuously satisfies the two conditions laid down in definition 1. Thus,
that every predicate of English' is a type predicate may be con-
cluded from definition 1 if that definition is intended to apply to such
a case. Strawson might reply that since English' has no designating
expressions, the question whether P satisfies either of the two condi-

The Journal of Critical Analysis
tions does not arise. On this view definition 1 does not apply to English' or to any language that lacks designating expressions. It is a partial definition. To make explicit what is going on we should preface the definition by "If \(L \) has designating expressions"

An analogous point holds with regard to definition 2. Each predicate of English' vacuously satisfies the two conditions of definition 2. Therefore, either definition 2 does not apply to English' or it may be concluded from the definition that no predicate of English' spans anything in English'.

If the definitions do apply to English', they are incorrect definitions. The best evidence that \(P \) spans \(x \) in \(L \) is that \(P \) is true of \(x \) in \(L \). Since some of the predicates of English' are true of some individuals in English', they span some individuals in English'. Also if a predicate is not a type predicate of English', it should not be a type predicate in English'. For the property the predicate expresses in English will be the same as that which it expresses in English'. The absence of designating expressions will not affect this.

The best course for Strawson is to regard neither definition as applying to any language that lacks designating expressions. I conclude that they are partial definitions. Now partial definitions of 'spans in \(L' \)' and 'type predicate of \(L' \)', even if correct, do not fully explain how these notions are to be understood in nontype terms. So I further conclude they do not suffice for Strawson's breaking out of the circle of type terms.

It might be countered that type distinctions can be made only in natural languages: 'spans', 'type predicate', 'type', 'category' and related terms just have no meaning when applied to a language like English', which is merely the product of one's imagination. Type concepts, the objection runs, have application only to languages human beings actually speak. And all such languages have designating expressions.

Unless there is some good argument backing this counter move, it should not be taken very seriously. Given any natural language, \(L \), one can construct an artificial fragment, \(L' \), which is \(L \) less \(L \)'s designating expressions. It is possible to construct \(L' \) in such a way that every predicate \(P \) in \(L' \) expresses the same property in \(L' \) as it does in \(L \). This seems a good reason for saying that (1) \(P \)'s extension in \(L' \) is the same as its extension in \(L \), (2) the set of individuals \(P \) spans

Vol. VII, No. 3, Summer/Fall 1978