
Accurate Updating1

Ginger Schultheis
September 2022

1 Introduction

Accuracy-first epistemology aims to justify all epistemic norms by showing that
they can be derived from the rational pursuit of accuracy. Take, for example,
probabilism—the norm that credence functions should be probability functions.
Accuracy-firsters say non-probabilistic credences are irrational because they’re
accuracy-dominated: For every non-probabilistic credence function, there’s some
probabilistic credence function that’s more accurate no matter what.2 Or take
norms of updating, my topic in this paper. Accuracy-firsters aim to derive the
rational updating rule by way of accuracy; specifically, they claim that the ratio-
nal updating rule is the rule thatmaximizes expected accuracy.3

Externalism, put roughly, says that we do not always knowwhat our evidence
is. Though far from universally accepted, externalism is a persuasive and widely
held thesis, supported by a compelling vision about the kinds of creatures we
are—creatureswhose information-gatheringmechanisms are fallible, andwhose
beliefs about most subject matters are not perfectly sensitive to the facts.

Some have argued in recent years that externalists face a dilemma: Either
deny that Bayesian Conditionalization is the rational update rule, thereby reject-
ing traditional Bayesian epistemology, or else deny that the rational update rule
is the rule thatmaximizes expected accuracy, thereby rejecting the accuracy-first
program. Call this the Bayesian Dilemma.

Here is roughly how the argument goes. Schoenfield (2017) has shown that
following Metaconditionalization maximizes expected accuracy.4 But if exter-
nalism is true, then Metaconditionalization is not Bayesian Conditionalization.
Therefore, the externalistmust choose between the rule thatmaximizes expected

1Thanks to David Boylan, Kevin Dorst, Matt Mandelkern, Alex Meehan, Bernhard Salow,
and Pablo Zendejas Medina for helpful conversations. I am especially grateful to two people:
Milo Phillips-Brown for extremely helpful feedback on earlier drafts, and to Snow Zhang for
many conversations about this material, including conversations that ledme to starting work on
accuracy and updating in the first place.

2Joyce (2009).
3See Greaves &Wallace (2006) and Easwaran (2012). Not all arguments for updating norms

appeal to the norm that one should maximize expected accuracy. Briggs and Pettigrew (2020)
give an accuracy-dominance argument for Conditionalization. See also Nielsen (2021).

4The name of this rule is due to Das (2019).
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accuracy (Metaconditionalization) and Bayesian Conditionalization.5

I’mnot convinced by this argument.We’ll see that oncewemake the premises
fully explicit, the argument relies on assumptions that the externalist should re-
ject. Still, I think that the Bayesian Dilemma is a genuine dilemma. I give a new
argument—I call it the continuity argument—that does not make any assump-
tions that the externalist rejects. Roughly, what I show is that if you’re sufficiently
confident that you would followMetaconditionalization if you adoptedMetacon-
ditionalization, then you’ll expect adopting a rule I’ll call Accurate Metacondi-
tionalization to be more accurate than adopting Bayesian Conditionalization.

I’ll start in §2 by introducing an accuracy-based framework for evaluating up-
dating rules in terms of what I will call actual inaccuracy. In §3, I’ll introduce
externalism. In §4, I turn to the Bayesian Dilemma. I present an argument pur-
porting to show that the externalist must choose between Bayesian Condition-
alization and accuracy-first epistemology, and I explain why the argument does
not succeed. In §5, I present the continuity argument showing that the Bayesian
Dilemma is nevertheless a genuine dilemma. §6 concludes.

2 The Accuracy Framework: Actual Inaccuracy

Accuracy-first epistemology says that our beliefs and credal states aim at ac-
curacy, or closeness to the truth; that is, our beliefs and credal states aim to
avoid inaccuracy, or distance from the truth.We said that, according to accuracy-
firsters, the rational update rule is the rule that maximizes expected accuracy.
There are different ways of making that thesis precise. In this section, I’ll present
myownpreferredway.We’ll start by getting the basics of the accuracy-first frame-
work on the table.

2.1 Basics of the Accuracy Framework

For technical purposes, it is better to work with measures of inaccuracy rather
than measures of accuracy. An inaccuracy measure I is a function that takes a
world from a set of worldsΩ, and a probability functionC defined overP(Ω), and
returns a number between 0 and 1. This number represents how inaccurate C is
inw. C is minimally inaccurate if it assigns 1 to all truths and 0 to all falsehoods;
C is maximally inaccurate if it assigns 1 to all falsehoods and 0 to all truths.

5See Bronfman (2014), Schoenfield (2017), Das (2019), ZendejasMedina (forthcoming), and
Hewson (ms). Not all of these authors present their arguments as a problem for externalism. For
example, Das (2019) presents the argument as a problem for accuracy-first epistemology.
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The expected inaccuracyof a probability functionC—relative to another prob-
ability function P—is aweighted average ofC’s inaccuracy in all worlds, weighted
by how likely it is, according to P, that those worlds obtain. Formally:

EP[I(C )] =
∑
w∈Ω

P(w) · I(C,w) (1)

I will make three assumptions about inaccuracy measures.Though none of
these assumptions are not incontrovertible, they are standard in the accuracy-
first literature, and I will not say much to justify them.6 The first assumption
is:

Strict Propriety
For any two distinct probability functions P and C, EC[I(C )] < EC[I(P)]

Strict Propriety says that probabilistic credence functions expect themselves to
minimize inaccuracy. Strict Propriety is often motivated by appeal to the norm
of immodesty—roughly, that rational agents should be doing best, by their own
lights, in their pursuit of accuracy.

The second assumption is Additivity, which says, roughly, that the total inac-
curacy score of a credence function at a world is the sum of the inaccuracy scores
of each of its individual credences. More precisely:

Additivity
For anyH ∈ P(Ω), there is a local inaccuracymeasure iH that takes aworld
w ∈ Ω, and a credence C(H) in the proposition H, to a real number such
that:

I(C,w) =
∑

H∈P(Ω)

iHw(C(H))

The third assumption is a continuity assumption for local inaccuracy measures.
Specifically:

Continuity
iHw(x) is a continuous function of x.

Now that we know how to measure the inaccuracy of a credence function, we
turn to updating rules. I will assume that a learning experience can be charac-
terized by a unique proposition—the subject’s evidence. We define a learning

6See, among others, Joyce (2009) and Pettigrew (2016) for defenses of Additivity and Conti-
nuity. See Joyce (2009), Pettigrew (2016), andCampbell-Moore&Levinstein (2021) for defenses
of Strict Propriety.
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situation as a complete specification of all learning experiences that an agent
thinks she might undergo during a specific period of time—a specification of all
of the propositions that the agent thinks she might learn during that time. For-
mally, a learning situation is an evidence function E that maps each world w to
a proposition E(w), the subject’s evidence in w. I will write [E = E(w)] for the
proposition that the subject’s evidence is E(w).

[E = E(w)] = {w′ ∈ Ω : E(w′) = E(w)} (2)

We define an evidential updating rule as a function g that takes a prior prob-
ability functionC, and an evidence proposition E(w) and returns a credence func-
tion.7 In the next two sections of the paper, we will be talking about two updating
rules. The first is Bayesian Conditionalization.

Bayesian Conditionalization
gcond(C,E(w)) = C(·|E(w))

Bayesian Conditionalization says that you should respond to your evidence E(w)

by conditioning on your evidence; for any proposition H, your new credence in
H, upon receiving your new evidence, should be equal to your old credence inH
conditional on your new evidence. The second rule is Metaconditionalization.

Metaconditionalization
gmeta(C,E(w)) = C(· |E = E(w))

Metaconditionalization says that you should respond to your evidence E(w) by
conditioning on the proposition that your evidence is E(w).

2.2 Adopting Rules and Following Rules

I will distinguish adopting an updating rule from following an updating rule. If
you follow a rule, then your posterior credence function is the credence function
that the rule recommends. If you adopt an updating rule, then you intend or
plan to follow the rule. Of course, in general, we can intend or plan to do things
without succeeding in doing those doing things. Intending or planning to follow

7Not all Bayesians accept the assumption that a learning experience can be characterized by a
unique proposition. Jeffrey (1965) believed that, sometimes, we undergo a learning experience,
but we do not learn with certainty that a unique proposition is true; instead, the experience
tells us that a set of propositions A1,A2, . . . ,An should be assigned probabilities α1, α2, . . . , αn. I
believe that my arguments can be recast in Jeffrey’s framework, but I do not have the space to
explore this question in this paper.
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an updating rule is no exception. We can intend or plan to follow an updating
rule—in my terminology, we can adopt an updating rule—without following it.8

To see how this might happen, consider Williamson’s well known case of the
unmarked clock.9 Off in the distance you catch a brief glimpse of an unmarked
clock. You can tell that the hand is pointing to the upper-right quadrant of the
clock, but you can’t discern its exact location—your vision is good, but not per-
fect. What do you learn from this brief glimpse? What evidence do you gain?
That—according to Williamson—depends on what the clock really reads. If the
clock really reads that it is 4:05, the evidence you gain is that the time is between
(say) 4:04 and 4:06. If the clock really reads 4:06, the evidence you gain is that
the time is between (say) 4:05 and 4:07. Suppose that you adopt Bayesian Con-
ditionalization as your update rule, and that the clock in fact reads 4:05. Your
evidence is that the time is between 4:04 and 4:06, but youmistakenly think that
your evidence is that the time is between 4:05 and 4:07. As a result youmisapply
Bayesian Conditionalization; you condition on the wrong proposition.10 Despite
having adopted Bayesian Conditionalization as your update rule, you did not fol-
low the rule.

The accuracy-first epistemologist says that the rational updating rule is the
rule that minimizes expected inaccuracy. I said that there are different ways to
make this precise. According to one common way of making it precise, the the-
sis is a claim about following updating rules (although the distinction between
adopting and following is often not made explicit). At a first pass, we might un-
derstand this thesis as saying that we are rationally required to follow an updat-
ing rule that minimizes expected inaccuracy. But there is an immediate prob-
lemwith this first-pass thesis, which others have recognized. Consider the omni-
scient updating rule, which tells you to assign credence one to all and only true
propositions. The omniscient updating rule is less inaccurate than any other rule
at everyworld, and so every probabilistic credence function expects it to uniquely
minimize inaccuracy. But we do not want to say that we are rationally required
to follow the omniscient updating rule. To avoid this implication, theorists refine
the thesis by appeal to the notion of an available updating rule. The refined the-
sis says that we’re rationally required to follow an updating rule that is such that
(1) following that rule is an available option and (2) following that ruleminimizes

8My distinction between adopting a plan and following a plan is similar to Schoenfield
(2015)’s distinction between the best plan to follow and the best plan tomake. See Gallow (2021)
who appeals to a related distinction between flawless dispositions and (potentially) misfiring
dispositions. See also Isaacs & Russell (forthcoming).

9Williamson (2000).
10This analysis of the case of the unmarked clock is due to Gallow (2021).
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expected inaccuracy among the available options.11 Following the omniscient up-
dating rule is not an available option and so we are not required to follow it.

To evaluate this proposal, we need to investigate the notion of availability at
issue. A natural thought is that an act is available to you only if you are able to
perform the act, and that you are able to perform an act if and only, if you tried to
perform the act, youwould.12 But on this understanding, even followingBayesian
Conditionalization is not always an available option, according to the externalist.
Return to the example of the unmarked clock. The clock in fact reads 4:05. Your
evidence is therefore that the time is between 4:04 and 4:06. How do you update
your credences? There are two cases. In the first case, you correctly identify your
evidence, and as a result, you condition on your evidence. In this case, it is true
that if you tried to follow Bayesian Conditionalization, you would. In the second
case, you mistakenly take your evidence to be that the time is between 4:05 and
4:07, and as a result, you condition on the wrong proposition. In this case, it is
not true that if you tried to follow Bayesian Conditionalization, then you would,
and so it is not true that you are able to follow Bayesian Conditionalization.

Of course, one might object to this account of ability. Rather than wade any
further into this debate, I will simply observe that however we define availabil-
ity, if we state the accuracy-first thesis in terms of following, we’ll be taking for
granted that if you adopt an available updating rule, you will follow it; we’ll be
ignoring possibilities in which you do not succeed in following your updating
rule because you mistake your evidence. But the example of the unmarked clock
suggest that cases like this are commonplace. We should take them into account.
In light of this, I suggest that we understand the accuracy-first thesis as a thesis
about which updating rule we are rationally required to adopt. To that end, we
need to say how to evaluate the inaccuracy of adopting an updating rule.

2.3 Actual Inaccuracy

I propose to measure the inaccuracy of adopting an updating rule in terms of
what I will call actual inaccuracy.13 Roughly, the actual inaccuracy of adopting
an updating rule g in a worldw is the inaccuracy, inw, of the credence function
you would have if you adopted g in w. To give a more precise definition, I need

11This is roughly how Greaves & Wallace (2006), Schoenfield (2017), and Das (2019) under-
stand it.

12For defenses of the view that the scope of our options is limited to the scope of our abilities,
see Richard Jeffrey (1965), Jeffrey (1992), Lewis (1981), Hedden (2012), and Koon (2020). For
example, Jeffrey (1965) regards options as propositions and writes, ‘An act is then a proposition
which is within the agent’s power to make true if he pleases.’

13This term comes from Andrew Bacon’s notion of actual value. See Bacon (2022).
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to introduce credal selection functions.
A credal selection function is a function f that takes an evidential updating

rule g and a world w, and returns a credence function—the credence function
that the subject would have if she were to adopt the rule g in world w.14 Let S
be any subject. Let E be any learning situation. Let g be any updating rule. Then
we define VS,E(g,w): the actual inaccuracy, in w, of S’s adopting g in learning
situation E as follows.

Actual Inaccuracy
VS,E(g,w) = I[fS,E(g,w),w]

The actual inaccuracy, in w, of S’s adopting the updating rule g in learning sit-
uation E is the inaccuracy, in w, of the credence function S would have if she
adopted rule g in learning situation E in worldw.

Of course any number of factors might play a role in determining what cre-
dence function a given subject would have if she were to adopt a certain updating
rule. To keep things manageable, I am going to make some simplfiying assump-
tions about howwe are disposed to change our credal states if we adopt Bayesian
Conditionalization or Metaconditionalization.

Return to the example of the unmarked clock. Suppose you adopt Bayesian
Conditionalization. In fact, the clock reads 4:05 and so your evidence is that the
time is between 4:04 and 4:06. How do you update your credences? There are,
as before, two cases. In one case, you correctly identify your evidence: to use the
terminology that Iwill fromnowon adopt, you guess correctly that your evidence
is that the time is between 4:04 and 4:06. In this case, the conditional

(1) If you adopted Bayesian Conditionalization, you would follow Bayesian
Conditionalization.

is true of you. In the second case, you guess incorrectly that your evidence is
that the time is between 4:05 and 4:07. In this case, the conditional (1) is false—
if you adopted Bayesian Conditionalization you would condition on the wrong
proposition. Instead, the following conditional is true:

(2) If you adopted Bayesian Conditionalization, then the credence function
youwouldhave is the credence function that results fromapplyingBayesian

14Credal selection functions can be defined in terms of Stalnakerian selection functions. A
Stalnakerian selection function h—used in Stalnaker’s (1968) semantics for conditionals—is a
function that takes a propositionA and aworldw and returns another world h(A,w)—intuitively,
the world that would have obtained if A had been true inw. Then where Adopt-g is the proposi-
tion that the subject adopts updating rule g, we can define f(g,w) as the credence function you
have in h(Adopt-g,w).

7



Conditionalization to the proposition that the time is between 4:05 and
4:07.

I will assume that these are the only two cases. Either you guess correctly and
condition on the right proposition, or else you guess incorrectly and condition
on the wrong proposition.

To make this more precise, fix a set of worlds Ω and an evidence function E

defined on Ω. We will let GE be a guess function defined on Ω. This is a function
that takes each world w to a proposition GE(w): the subject’s guess about what
her evidence is in w.15 Then, where fC,GE is the credal selection function for any
subject with guess function GE and prior C:16

fC,GE(gcond,w) = gcond(C,GE(w)) (3)

fC,GE(gmeta,w) = gmeta(C,GE(w)) (4)

(3) says that the credence function you would have if you adopted Bayesian Con-
ditionalization in learning situation E is the result of conditioning your prior on
your guess about what your evidence is in E. Likewise, (4) says that the credence
function you would have if you adoptedMetaconditionalization in E is the result
of conditioning your prior on the proposition that your evidence is GE(w), your
guess about what your evidence is inw.17

Assuming (3), the actual inaccuracy of adopting Bayesian Conditionalization
in a worldw for a subject with prior C and guess function GE is equal to:

I[fC,GE(gcond,w),w] = I[gcond(C,GE(w)),w] (5)

Assuming (4), the actual inaccuracy of adoptingMetaconditionalization in aworld
w for a subject a subject with prior C and guess function GE is equal to:

I[fC,GE(gmeta,w),w] = I[gmeta(C,GE(w)),w] (6)

The expected actual inaccuracy of adopting Bayesian Conditionalization and
15Isaacs & Russell (forthcoming) also use the term ‘guess function’. Note, however, that they

use the term differently from how I am using it here. In particular, their guess functions are
used to model guesses about which world you are in. (In their framework, worlds are coarse—
they settle some questions, but not all.) There are many interesting connections between my
framework and the framework used in Isaacs & Russell, but I do not have the space to address
them here.

16Here I assume that GE(w) = E(w′) for somew′ ∈ Ω.
17Note that the actual inaccuracy of adopting g in w is not always the inaccuracy of your cre-

dence function inw. Suppose you do not adopt g inw. Then the actual inaccuracy of adopting g
inw is the inaccuracy, inw, of the credence function youwould have if you had adopted g inw.
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of adopting Metaconditionalization are defined in (7) and (8), respectively.

∑
w∈Ω

C(w) · I[fC,GE(gcond,w),w] =
∑
w∈Ω

C(w) · I[gcond(C,GE(w)),w] (7)

∑
w∈Ω

C(w) · I[fC,GE(gmeta,w),w] =
∑
w∈Ω

C(w) · I[gmeta(C,GE(w)),w] (8)

Return to the accuracy-first thesis that the rational updating rule is the rule
that does best in terms of accuracy. I have argued that this claim is best under-
stood as a claim about which updating rule we should adopt. We can now make
this claimmore precise using the notion of actual inaccuracy. I propose to formu-
late the accuracy-first thesis, which I call Accuracy-First Updating, as follows.

Accuracy-First Updating
You are rationally required to adopt an evidential updating rule that mini-
mizes expected actual inaccuracy.

Let’s turn now to epistemic externalism.

3 Externalism

To characterize externalism, we need to first characterize internalism. Internal-
ism says, roughly, that for certain special propositions, when those propositions
are true, we have a special kind of access to their truth. Let’s say that you have
access to a proposition if and only, whenever it is true, your evidence entails that
it is true. Then internalism says that, for certain special propositions, whenever
those propositions are true, your evidence entails that they are true. There are dif-
ferent brands of internalism, depending on what kinds of propositions are taken
to be special. According to some, the special propositions are propositions about
our own minds, such as the proposition that I am in pain. These internalists say
that, whenever I am in pain, my evidence entails that I am in pain—I can always
tell that I am in pain by carefully attending to this evidence, my own experiences.
In this paper, we will be mainly interested in one form of internalism—evidence
internalism. On this view, propositions about what our evidence is are special
propositions in the sense that whenever they’re true, our evidence entails that
they are true.

Evidence Internalism
If your evidence is the proposition E(w), then your evidence entails that
your evidence is E(w).
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Let evidence externalism be the denial of evidence internalism. More pre-
cisely:

Evidence Externalism
Sometimes, your evidence is some proposition E(w), but your evidence
does not entail that your evidence is E(w).

Why accept evidence externalism? One standard argument appeals to our fal-
libility. The externalist says that all of our information-gathering mechanisms
are fallible. Now, it is no surprise that our mechanisms specialized for detecting
the state of our external environment—such as whether it is raining, or whether
there is a computer on my desk—can lead us astray. What is controversial about
externalism is its insistence that what is true of these propositions about my ex-
ternal environment is true of nearly all propositions, including the proposition
that I am in pain or that I feel cold. The externalist says that, sometimes, I am
feeling cold, but my mechanisms specialized for detecting feelings of coldness
misfire, telling me that I am not feeling cold.

The externalist asks us to consider a case inwhich your information-gathering
mechanisms have misfired. As a matter of fact, I’m feeling cold, but my mecha-
nisms specialized for detecting feelings of coldness misfire, telling me that I’m
not feeling cold. Since it is false that I’m not feeling cold, it is not part of my ev-
idence that I’m not feeling cold. But I have no reason to believe that anything is
amiss—it is not part of my evidence that it is not part of my evidence that I’m not
feeling cold. Evidence externalism holds.18

4 The Bayesian Dilemma and the Externalist Reply

In the introduction I said that some have argued that externalists face a dilemma,
the Bayesian Dilemma: Either deny that we are rationally required to adopt
Bayesian Conditionalization as our update rule or else deny that the rational
update rule is the rule that maximizes expected accuracy, thereby rejecting the
accuracy-first program. In this section, I present a core piece of that argument,
Schoenfield’s result that you can expect following Metaconditionalization to be
more accurate than following any other updating rule. But as we’ll see, this re-
sult cannot do the work that others have thought it can. It doesn’t follow from
Schoenfield’s result that you expect adoptingMetaconditionalization to bemore
accurate than adopting Bayesian Conditionalization, and I have argued that that

18Versions of this argument can be found in McDowell (1982, 2011), Williamson (2000),
Weatherson (2011), Salow (2019).
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it is adopting, not following, that the accuracy-first updating thesis should con-
cern.

Let’s begin by stating Schoenfield’s result.

Theorem 1
Let E be any learning situation. Consider any updating rule g and any prior
C such that g(C,E(w)) ̸= gmeta(C,E(w)) for some w such that C(w) > 0.
Then: ∑

w∈Ω

C(w) · I[gmeta(C,E(w)] <
∑
w∈Ω

C(w) · I[g(C,E(w)]

Here is what Theorem 1 says. Consider any evidential updating rule g that
disagrees with Metaconditionalization in learning situation E. Consider any sub-
ject who leaves open worlds where g andMetaconditionalization disagree. Then,
Theorem 1 says, the subject will expect the recommendation of Metaconditional-
ization to be strictly less inaccurate than the recommendation of g in that learn-
ing situation.

But, as Schoenfield and others observe, if evidence externalism is true, Meta-
conditionalization is not Bayesian Conditionalization. Remember, Baysian Con-
ditionalization says that you should respond to your evidence E(w) by condi-
tioning on E(w). Metaconditionalization says that you should respond to E(w)

by conditioning on the proposition that your evidence is E(w), the proposition
[E = E(w)]. If evidence externalism is true, then E(w) is not always the same
proposition as [E = E(w)]. In particular, sometimes E(w) will not entail the
proposition [E = E(w)], and when this happens, Metaconditionalization and
Bayesian Conditionalization will disagree.

Let E be any learning situation in which [E = E(w)] ̸= E(w) for some worldw.
Consider any subject who leaves open some suchworlds. Then Theorem 1 entails
that the subject will expect the recommendation of Metaconditionalization to
be less inaccurate than the recommendation of Bayesian Conditionalization in
learning situation E. Formally:∑

w∈Ω

C(w) · I[gmeta(C,E(w)] <
∑
w∈Ω

C(w) · I[gcond(C,E(w)] (9)

But it doesn’t follow from Theorem 1 that the subject expects adopting—
intending or planning to follow—Metaconditionalization to be less inaccurate
than adopting Bayesian Conditionalization.

To see this, let GE be the subject’s guess function in learning situation E. Let
Guess Right be the proposition that the subject’s guess about her evidence in
learning situation E is right. Formally:

11



Guess Right = {w ∈ Ω : GE(w) = E(w)} (10)

Let Guess Wrong be the proposition that the subject’s guess about her evidence
in E is not right. Formally:

Guess Wrong = {w ∈ Ω : GE(w) ̸= E(w)} (11)

Say that a subject with prior C and guess function GE is infallible in learning situ-
ation E if, for anyw ∈ Ω, Guess Right is true inw. Remember we are assuming:

fC,GE(gcond,w) = gcond(C,GE(w)) (3)

fC,GE(gmeta,w) = gmeta(C,GE(w)) (4)

Then to say that a subject with prior C and guess function GE is infallible is to say
that for anyw ∈ Ω:

fC,GE(gcond,w) = gcond(C,E(w)) (12)

fC,GE(gmeta,w) = gmeta(C,E(w)) (13)

(12) says that, for any w ∈ Ω, if the subject adopted Bayesian Conditionaliza-
tion in learning situation E in w, she would follow Bayesian Conditionalization.
(13) says that, for any w ∈ Ω, if the subject adopted Metaconditionalization in
learning situation E inw, she would follow Metaconditionalization.

Now consider any infallible subject with prior C and guess function GE. As-
sume that gcond(C,E(w)) ̸= gmeta(C,E(w)) for some w ∈ Ω such that C(w) > 0.
Since the subject is infallible, (12) and (13) are true of her. In that case, (9) entails:

∑
w∈Ω

C(w) · I[fC,GE(gmeta,w),w] <
∑
w∈Ω

C(w) · I[fC,GE(gcond,w),w] (14)

Schoenfield’s result entails that for infallible agents, adopting Metaconditional-
ization has lower expected actual inaccuracy than adopting Bayesian Condition-
alization.

But it does not follow from Schoenfield’s result that for fallible agents, adopt-
ing Metaconditionalization has lower expected actual inaccuracy than adopting
BayesianConditionalization. And the externalist says thatwe are fallible. Accord-
ing to the externalist, my beliefs about what evidence I have are not perfectly
sensitive to the facts about what evidence I have. Return to the case of the un-
marked clock. In fact, my evidence is that the time is between 4:04 and 4:06.
But my mechanisms specialized for detecting what evidence I have misfire, and
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so I mistakenly think that my evidence is some other proposition—that the time
is between 4:05 and 4:07. Importantly, the externalist maintains that no amount
of careful attention to my evidence will insure me against error. For the external-
ist, even ideally rational, maximally attentive agents are not always certain of
the true answer to the question of what their evidence is. That is just to say that
even ideally rational, maximally attentive agents are not always such that, if they
adopted Metaconditionalization, they would follow Metaconditionalization.

In short, (13) is often false for agent like us—agents with fallible information-
gathering mechanisms. But without (13), we can’t derive (14) from (9). We can’t
conclude that, for fallible agents like us, adopting Metaconditionalization has
lower expected actual inaccuracy than adopting Bayesian Conditionalization.

Let me summarize. If evidence externalism is true, then Theorem 1 tells us
that, under certain conditions, we will expect following Metaconditionalization
to be less inaccurate than following any other evidential updating rule. It doesn’t
follow, however, that we expect adoptingMetaconditionalization to be less inac-
curate than adopting any other rule. In particular, it doesn’t follow thatwe expect
adopting Metaconditionalization to be less inaccurate than adopting Bayesian
Conditionalization. That would follow only if we knew that we’re infallible, but
we cannot, on pain of begging the question against the externalist, simply assume
that this is so. So we have not shown that if evidence externalism is true, then
fallible agents like us must choose between the rule that maximizes expected
accuracy and Bayesian Conditionalization.19

5 The Bayesian Dilemma Reconsidered

In this section, I show that we can establish the Bayesian Dilemma without the
assumption of infallibility. I give a new argument—I call it the continuity argu-

19Here I state the Bayesian Dilemma in terms of adopting an updating rule because I prefer
to state the accuracy-first thesis as a thesis about rule adoption, not a thesis about rule follow-
ing. As I mentioned in §2, many theorists (implicitly) take the accuracy-first thesis to be a thesis
about following. For these theorists, the Bayesian Dilemma is a choice between (a) the claim
that we’re required to followBayesian Conditionalization and (b) the claim that we’re required to
follow a rule that minimizes expected inaccuracy. The argument for this version of the Bayesian
Dilemma runs as follows. FollowingMetaconditionalization is an available option, and following
Metaconditionalization minimizes expected inaccuracy among the available options. Therefore,
if accuracy-first epistemology is true, we’re required to follow Metaconditionalization. But if ex-
ternalism is true, Metaconditionalization is not Bayesian Conditionalization. So the externalist
must choose between accuracy-first epistemology and Bayesian Conditionalization. I don’t think
the externalist should be persuaded by this version of the argument, either. In particular, they
should deny that following Metaconditionalization is always an available option. Earlier I said
that a standard constraint on option availability is that an act is available only if you are able to
perform the act. But, for the reasons I discuss in the main text, the externalist should deny that
we are always able to follow Metaconditionalization.
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ment—showing that if you are sufficiently confident that you will correctly iden-
tify your evidence, then will you will expect a rule that I call Accurate Metacon-
ditionalization to have less expected inaccuracy than adopting Bayesian Condi-
tionalization. In §5.1, I’ll begin by saying what Accurate Metaconditionalization
is, and then I’ll present the continuity argument. In §5.2 I will discuss the signif-
icance of my results.

5.1 The Continuity Argument

Metaconditionalization said that you should respond to your evidence E(w) by
conditioning on the proposition that your evidence is E(w). AccurateMetacondi-
tionalization says that you should respond to your evidence E(w) by conditioning
on the proposition that your evidence is E(w) and that you have guessed right.
(Remember Guess Right = {w ∈ Ω : GE(w) = E(w)}.) More precisely:

Accurate Metaconditionalization
Where C is any prior such that C(E = E(w)|Guess Right) > 0 for allw ∈ Ω:
gacc-meta(C,E(w)) = C(·|Guess Right ∧ E = E(w))

For simplicity I will assume:

fC,GE(gacc-meta,w) = gacc-meta(C,GE(w)) = C(·|Guess Right ∧ E = GE(w)) (15)

(15) says that the credence function you would have if you adopted Accurate
Metaconditionalization is the result of conditioning your prior on the proposi-
tion that your evidence is GE(w), your guess about what your evidence is in w,
and that you have guessed right.

I am going to show that for a wide class of fallible subjects, if the subject is
sufficiently confident that she will correctly identify her evidence, then adopt-
ing Accurate Metaconditionalization will have lower expected actual inaccuracy
than adopting Bayesian Conditionalization for her. Here is roughly how the ar-
gument will go. I will begin by showing that we can state the expected actual
inaccuracy of adopting an updating rule as a function of your credence x in the
proposition Guess Right. In particular, we can state the expected actual inaccu-
racy of adopting Accurate Metaconditionalization as a function of x, and we can
state the expected actual inaccuracy of adopting Bayesian Conditionalization as
a function of x. Importantly, both functions are continuous functions of x. We
will show that when x = 1, adopting Bayesian Conditionalization has greater ex-
pected actual inaccuracy than adopting Accurate Metaconditionalization. Since
both functions are continuous, it follows there is some δ > 0 such that if x > 1−δ,
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then adopting Bayesian Conditionalization has greater expected actual inaccu-
racy than adopting Accurate Metaconditionalization.

Let’s now turn to the details. To begin, I am going to introduce and define
a new kind of function, which I’ll call a probability extension function. We can
think of a probability extension function as a specification of the conditional cre-
dences of somehypothetical subject, conditional on eachmember of the partition
{Guess Right,Guess Wrong} that the subject leaves open.We then feed the prob-
ability extension function a possible credence x in Guess Right (a real number
between 0 and 1) and the function returns a (complete) probability function—
the probability function determined by the conditional credence specifications,
together with x.

To make this more precise, fix a set of worlds Ω. Let E be any evidence func-
tion, and let GE be any guess function. Let ∆ be the set of probability functions
over P(Ω). We define∆Right as follows.

∆Right = {PR : PR ∈ ∆ and PR(Guess Right) = 1} (16)

And we define∆Wrong in a similar way.

∆Wrong = {PW : PW ∈ ∆ and PW(Guess Wrong) = 1} (17)

For each pair ⟨PR,PW⟩ consisting of a PR ∈ ∆Right and a PW ∈ ∆Wrong, we define
a probability extension function λ⟨PR,PW⟩ as a function that takes a real number x
between 0 and 1 and returns a probability function λ⟨PR,PW⟩(x) over P(Ω) defined
as follows.

λ⟨PR,PW⟩(x)(·) = PR(·)x+ PW(·)(1− x) (18)

Each probability extension function is indexed to a pair ⟨PR,PW⟩. In what follows
I will leave off the subscripts for the sake of readability.

Wewill say that a probability functionC isR-regular if for allw ∈ Guess Right,
C(w) > 0. Similarly, we say that C is W-regular if, for all w ∈ Guess Wrong,
C(w) > 0.

We can use probability extension functions to specify the expected actual in-
accuracy of adopting an updating rule, for some subject, as a function of her cre-
dence in Guess Right. To see this, fix a learning situation E, a guess function GE,
and an evidential updating rule g. Each probability extension function λ deter-
mines a function that takes a credence x in Guess Right and returns the expec-
tation, relative to λ(x), of the actual inaccuracy of adopting rule g in learning
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situation E, given guess function GE. For example, consider:∑
w∈Ω

λ(x)(w) · I[fλ(x),GE(gmeta,w),w)] =
∑
w∈Ω

λ(x)(w) · I[gmeta(λ(x),GE(w)),w] (19)

This is a function that takes a credence x inGuess Right, and returns the expecta-
tion, relative to λ(x), of the actual inaccuracy of adoptingMetaconditionalization
in learning situation E, given guess function GE. Similarly, we have:∑
w∈Ω

λ(x)(w) ·I[fλ(x),GE(gcond,w),w)] =
∑
w∈Ω

λ(x)(w) ·I[gcond(λ(x),GE(w)),w] (20)

This is a function that takes a credence x in Guess Right, and returns the expec-
tation, relative to λ(x), of the actual inaccuracy of adopting Bayesian Condition-
alization in learning situation E, given guess function GE.

For any probability extension function λ, we define Cλ as follows.

Cλ = {C ∈ ∆ : C = λ(C(Guess Right)) (21)

We’re thinking of λ as a specification of the conditional credences of some hy-
pothetical subject, conditional on each member of {Guess Right,Guess Wrong}
that the subject leaves open. We can then think of Cλ as the set of all probabil-
ity functions that agree with λ with respect to those assignments of conditional
credences. Importantly, every probability function C ∈ ∆ belongs to Cλ for some
probability extension function λ.20

We will show that for any probability extension function λ satisfying cer-
tain constraints, and any probability function C in Cλ, if C(Guess Right) is suf-
ficiently high, then the expected actual inaccuracy, relative to C, of adopting Ac-
curate Metaconditionalization will be lower than the expected actual inaccuracy
of adopting Bayesian Conditionalization. More precisely:

Theorem 2
LetEbe any learning situation,GE any guess function, andλ any probability
extension function such that:

1. λ(1)(E(w)) > 0 for allw ∈ Ω.

2. λ(1)(E = E(w)) > 0 for allw ∈ Ω.

3. gmeta(λ(1),E(w)) ̸= gcond(λ(1),E(w)) for somew ∈ Guess Right
20If C(Guess Right) > 0 and C(Guess Wrong) > 0, then let λ = λ⟨PR,PW⟩ where PR(·) =

C(·|Guess Right) and PW(·) = C(·|Guess Wrong). If C(Guess Wrong) = 1, then let λ = λ⟨PR,PW⟩
where PR is any probability function in ∆right, and PW(·) = C(·). If C(Guess Right) = 1, let λ =
λ⟨PR,PW⟩ where PW is any probability function in∆wrong and PR(·) = C(·).
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Then there’s a δλ > 0 such that for all C ∈ Cλ, if C(Guess Right) > 1 − δλ,
then:

∑
w∈Ω

C(w) · I[fC,GE(gacc-meta,w),w] <
∑
w∈Ω

C(w) · I[fC,GE(gcond,w),w]

The proof of Theorem 1 will rely on a Lemma.

Lemma
Let E be any learning situation, GE any guess function, and λ any probabil-
ity extension function satisfying conditions (1) and (2) in our statement of
Theorem 2. Then:

(a)
∑
w∈Ω

λ(x)(w) · I[fλ(1),GE(gmeta,w),w)]; and

(b)
∑
w∈Ω

λ(x)(w) · I[fλ(x),GE(gcond,w),w)]

are both continuous functions of x.

I leave the proof of Lemma to an appendix.
To prove Theorem 2, consider any learning situation E, any guess function

GE, and any probability extension function λ satisfying (1), (2), and (3). It follows
from Theorem 1 that:∑
w∈Ω

λ(1)(w) · I[gmeta(λ(1),E(w)),w] <
∑
w∈Ω

λ(1)(w) · I[gcond(λ(1),E(w)),w] (22)

This says that any subject whose prior is λ(1) expects following Metacondition-
alization in learning situationE to have lower expected inaccuracy than following
BayesianConditionalization in learning situationE. Note thatλ(1)(Guess Right) =
1. This means that for allw ∈ Ω such that λ(1)(w) > 0:

gmeta(λ(1),E(w)) = fλ(1),GE(gmeta,w) (23)

gcond(λ(1),E(w)) = fλ(1),GE(gcond,w) (24)

Given (23) and (24), (22) entails:∑
w∈Ω

λ(1)(w) · I[fλ(1),GE(gmeta,w),w] <
∑
w∈Ω

λ(1)(w) · I[fλ(1),GE(gcond,w),w] (25)

This says that any subject whose prior is λ(1) and whose guess function is GE

expects adopting Metaconditionalization in learning situation E to have lower
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expected inaccuracy than adopting Bayesian Conditionalization in learning situ-
ation E.

(25) and Lemma 2 together entail:

There’s a δλ > 0 such that, if x > 1− δλ, then: (26)∑
w∈Ω

λ(x)(w) · I[fλ(1),GE(gmeta,w),w] <
∑
w∈Ω

λ(x)(w) · I[fλ(x),GE(gcond,w),w]

We know that for all C ∈ Cλ, C = λ(C(Guess Right)). Therefore it follows from
(26) that:

There’s a δλ > 0 s.t. for all C ∈ Cλ, if C(Guess Right) > 1− δλ, then: (27)∑
w∈Ω

C(w) · I[fλ(1),GE(gmeta,w),w] <
∑
w∈Ω

C(w) · I[fC,GE(gcond,w),w]

This says that for any subject whose prior probability functions is in Cλ, if the
subject is sufficiently confident in Guess Right, then she will expect adopting
Metaconditionalization with respect to λ(1) to have strictly lower actual inaccu-
racy than adopting Bayesian Conditionalization with respect to her own prior.
Remember we’re assuming:

fC,GE(gacc-meta,w) = gacc-meta(C,GE(w)) = C(·|Guess Right ∧ E = GE(w)) (15)

We are also assuming:

fC,GE(gmeta,w) = gmeta(C,GE(w)) = C(·|E = GE(w)) (4)

It follows that:

fC,GE(gacc-meta,w) = fC(·|Guess Right),GE(gmeta,w) (28)

We know that for all C ∈ Cλ, if C(Guess Right) > 0, then:

C(·|Guess Right) = λ(1) (29)

(28) and (29) together entail that for all C ∈ Cλ, if C(Guess Right) > 0, then:

fC,GE(gacc-meta,w) = fλ(1),GE(gmeta,w) (30)
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Given (30), (27) entails:

There’s a δλ > 0 s.t. for all C ∈ Cλ, if C(Guess Right) > 1− δλ, then: (31)∑
w∈Ω

C(w) · I[fC,GE(gacc-meta,w),w] <
∑
w∈Ω

C(w) · I[fC,GE(gcond,w),w]

This says that for any subjectwhose prior probability functions is in Cλ andwhose
guess function is GE, if the subject is sufficiently confident in Guess Right, then
she will expect adopting AccurateMetaconditionalization in learning situation E

to have strictly lower actual inaccuracy than adopting Bayesian Conditionaliza-
tion in learning situation E. This completes the proof of Theorem 2.

5.2 The Bayesian Dilemma in Light of Theorem 2

In §4 we said that an agent with prior C and guess function GE is infallible if for
allw ∈ Ω:

fC,GE(gcond,w) = gcond(C,E(w)) (12)

fC,GE(gmeta,w) = gmeta(C,E(w)) (13)

We said it follows fromSchoenfield’s result—Theorem1—that, for infallible agents,
adoptingMetaconditionalizationhas greater expected actual accuracy than adopt-
ing Bayesian Conditionalization. But we also said that it does not follow from
Theorem 1 that, for fallible agents, adopting Metaconditionalization has greater
expected actual accuracy than adopting Bayesian Conditionalization.

And, as we saw in §3-4, the externalist says thatwe are fallible. In particular,
our beliefs aboutwhat our evidence is are not perfectly sensitive to the facts about
what our evidence is. We are not always able to be certain of the true answer to
the question of what our evidence is—and this is so no matter how rational we
are, and no matter how attentive we are. That is just to say that we not always
able to follow Metaconditionalization—(13) is not always true of fallible agents
like us. Thus, Schoenfield’s result does not entail if evidence externalism is true,
then fallible agents like usmust choose between the rule thatmaximizes expected
accuracy and Bayesian Conditionalization.

Theorem2 does. It shows that for a wide class of fallible subjects and learning
situations, if the subject is sufficiently confident that she will correctly identify
her evidence in that learning situation, then adopting Accurate Metacondition-
alization will have greater expected actual accuracy for her than adopting Condi-
tionalization.
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This is not good news for the project of reconciling accuracy-first external-
ism with Bayesian epistemology. The externalist who wishes to justify Bayesian
Conditionalization on the basis of accuracy should hope to find a natural class
of fallible agents for whom Bayesian Conditionalization is the most accurate up-
dating procedure in expectation. We should be pessimistic about the prospects
for this project on the basis of the results of this paper. For Theorem 2 shows
that adopting Metaconditionalization will have greater expected actual accuracy
than adopting Conditionalization for some agents in any such class—so long as
it includes agents who are sufficiently confident that they will correctly identify
their evidence, and I can see no principled reason to exclude all such agents.21

6 Conclusion

It’s been said that accuracy-first epistemology poses a special threat to external-
ism. Schoenfield (2017) shows that the rule that maximizes expected accuracy
is Metaconditionalization. But if externalism is true, the argument goes, Meta-
conditionalization is not Bayesian Conditionalization. Thus, externalists face a
dilemma, which I have called the Bayesian Dilemma: Either deny that Bayesian
Conditionalization is required or else deny that the rational update rule is the
rule that maximizes expected accuracy.

I am not convinced by these arguments. Schoenfield shows that following
Metaconditionalization has greater expected accuracy than following Bayesian
Conditionalization. It doesn’t follow that adopting Metaconditionalization has
greater expected accuracy than adoptingBayesianConditionalization. Thatwould
follow only if we also said that if you adoptedMetaconditionalization, you would
follow Metaconditionalization. But the externalist has every reason to deny that
this is always so.

21It is worth emphasizing that you don’t have to be that confident that you will correctly iden-
tify your evidence. In Schultheis (ms), I present models of the unmarked clock in which anything
over 50% will do. It is also worth taking a moment to see how this result interacts with consider-
ations of availability that are often discussed in the context of Schoenfield’s result. We said that
many theorists (implictly) take the accuracy-first thesis to be a thesis about which rule to follow.
On this understanding, the thesis says, roughly, that we’re rationally required to follow an updat-
ing rule that is such that (1) following that rule is an available option and (2) following that rule
minimizes expected inaccuracy among the available options. In footnote 20 I said that the exter-
nalist should deny that Metaconditionalization is (always) an available option. My result does
not assume that following Accurate Metaconditionalization (or Metaconditionalization for that
matter) is an available option; I assume only that adopting Accurate Metaconditionalization is
an available option. I see no reason principled reasons for denying that this is so. The externalist
says that I cannot make it the case that I am always certain of the true answer to the question of
what my evidence is. They do not deny that I can try or plan to be certain of true answer to the
question of what my evidence.
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I have argued that the Bayesian Dilemma is nevertheless a genuine dilemma.
I presented a new argument that does not make any assumptions that the exter-
nalist must reject. This argument shows that, for a wide class of fallible subjects,
if the subject is sufficiently confident that she will correctly identify her evidence,
then adopting Accurate Metaconditionalization will have greater expected accu-
racy for her than adopting Bayesian Conditionalization.
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7 Appendix A

In this appendix, we prove Lemma.

Lemma
LetEbe any learning situation,GE any guess function, andλ any probability
extension function. Then:

1.
∑
w∈Ω

λ(x)(w) · I[gmeta(λ(1),GE(w)),w]

2.
∑
w∈Ω

λ(x)(w) · I[gcond(λ(x),GE(w)),w]

are both continuous at 1.

We will start by showing that (1) is continuous. Observe that (1) is a sum of terms
of the form:

λ(x)(w) · I[gmeta(λ(1),GE(w)),w] (32)

Notice that λ(x)(w) = PR(w) ·x+PW(w)(1−x) is a polynomial and so is continu-
ous everywhere.Moreover, I[gmeta(λ(1),GE(w)),w] is a constant. Therefore, (1) is
a linear combination of continuous functions and therefore is itself continuous.

Next we will show that is (2) is continuous at 1. To begin, observe that (2) is
a sum of terms of the form:

λ(x)(w) · I[gcond(λ(x),GE(w)),w] (33)

Thus, to show that (2) is continuous at 1, it suffices to show that (33) is continuous
function at 1 for all w ∈ Ω. We have seen that λ(x)(w) is a polynomial and so is
continuous everywhere. Thus, to show that (33) is continuous at 1 it suffices to
show that:

I[gcond(λ(x),GE(w)),w] (34)

is continuous at 1. By our assumption that I satisfies Additivity, we have that
I[gcond(λ(x),GE(w)),w] is equal to:

∑
H∈P(Ω)

iHw[gcond(λ(x),GE(w))] (35)

Fix an arbitraryH ∈ P(Ω). To show that (35) is continuous at 1 it suffices to show
that:

f(x) = iHw[gcond(λ(x),GE(w))] (36)
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is continuous at 1. Define h(x) as follows.

h(x) = gcond(λ(x),GE(w))(H) = λ(x)(H|GE(w)) (37)

Then f(x) = iHw ◦ h(x). By our assumption of Continuity for the local inaccuracy
measure iHw, we know that iHw is a continuous function of h(x). Thus, to show that
f(x) is continuous at 1, it suffices to show that h is continuous at 1. By the defini-
tion of λ(x)(H|GE), we have:

h(x) = λ(x)(H|GE(w))

=
λ(x)(H ∧ GE(w)

λ(x)(GE(w))

=
PR(H ∧ GE(w))x+ PW(H ∧ GE(w))(1− x)

PR(GE(w))x+ PW(GE(w))(1− x)

(38)

It follows fromour assumption thatλ(1)(E(w)) > 0 for allw ∈ Ω thatλ(1)(GE(w)) >

0 for all w ∈ Ω. Since the numerator and denominator are both continuous at
1 and the denominator is greater than zero when x = 1 it follows that h(x) is
continuous at 1. This completes the proof of Lemma.
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