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Chapter 1

Motivating Category
Theory

1.1 The Idea Behind Category Theory

Category theory encourages a shift from focusing on the intrinsic properties
of mathematical objects to emphasizing their roles and interactions. This ap-
proach can be summarized by the phrase: ”Ask not what a thing is; ask what it
does” [1]. This shift in perspective helps unify various areas of mathematics by
providing a common framework to describe different mathematical constructs
through their relationships.

1.2 Traditional vs. Categorical Perspectives

Traditional mathematics often describes objects by their intrinsic properties:

• Groups: Defined by a set with an operation following group axioms.

• Sets: Collections of distinct elements.

• Topological Spaces: Sets endowed with a topology specifying open sets.

In contrast, category theory interprets these objects through their mor-
phisms:

• Groups: Understood through group homomorphisms.

• Sets: Understood through functions.

• Topological Spaces: Understood through continuous maps.

Category theory provides a more flexible and general approach by focusing
on the relationships between objects rather than their internal structure.
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Chapter 2

The Definition of a
Category

A category C consists of:

• A collection of objects Ob(C).

• A collection of morphisms (arrows) Ar(C).

• Two functions: domain and codomain, assigning to each morphism f :
A→ B its source A and target B.

• A composition function ◦ that assigns to each pair of composable mor-
phisms f : A→ B and g : B → C an arrow g ◦ f : A→ C.

A B C
f g

These components must satisfy the following axioms:

1. Associativity: For all composable arrows f, g, h, the equation (h◦g)◦f =
h ◦ (g ◦ f) holds.

2. Identity: For each object A, there exists an identity morphism idA :
A → A such that for any morphisms f : A → B and g : B → A, we have
idB ◦ f = f and g ◦ idA = g.

2.1 Examples of Categories

• Set: Objects are sets, and morphisms are functions between sets.

• Grp: Objects are groups, and morphisms are group homomorphisms.

• Top: Objects are topological spaces, and morphisms are continuous maps.

3
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• Vect: Objects are vector spaces, and morphisms are linear transforma-
tions.



Chapter 3

Slice Categories [3]

3.1 Sets/I and Sets→ taken from Jacobs

“Consider a family of sets as a function φ : X → I. We often describe a family
of sets as a function φ : X → I and say that X is a family over I and that φ
displays the family (Xi). In order to emphasize that we think of such a map φ

as a family, we often write it vertically as
(
X
↓
I

)
. A constant family is one of the

form
(
I×X
↓
I

)
, where π is the Cartesian product projection; often it is written

simply as I ×X. Notice that all fibers of this constant family are (isomorphic
to) X.

Such families
(
X
↓
I

)
of sets give rise to two categories: the slice category

Sets/I and the arrow category Sets →. The objects of Sets/I are the I-
indexed families, for a fixed set I; the objects of Sets → are all the I-indexed
families, for all possible I.

3.1.1 Sets/I

Objects: families
(
X
↓
I

)
.

Morphisms:
(
X
↓
I

)
f−→

(
Y
↓
I

)
are functions f : X → Y making the following

diagram commute.

X Y

I

f

φ ψ

3.1.2 Sets→
Objects: families

(
X
↓
I

)
, for arbitrary sets I.

5
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Morphisms:
(
X
↓
I

)
(u,f)−−−→

(
Y
↓
J

)
are pairs of functions u : I → J and f : X →

Y for which the following diagram commutes.

X Y

I J

f

φ ψ

u

Hence, objects in the arrow category Sets → involve an extra function u between
the index sets. Notice that one can now view f as a collection of functions
fi : Xi → Yu(i), since for x ∈ φ−1(i), f(x) lands in ψ−1(u(i)). Composition and
identities in Sets → are component-wise inherited from Sets.

We further remark that there is a codomain functor cod : Sets →→ Sets;

it maps
(
X
↓
I

)
7→ I and ( (u,f) ) 7→ u.

Also, for each I, there is a (non-full) inclusion functor Sets/I → Sets →.”



Chapter 4

Monics, Epics, and
Isomorphisms

An arrow f : A→ B in a category C is:

• Monic (monomorphism) if for all arrows g, h : C → A, f ◦g = f ◦h implies
g = h.

• Epic (epimorphism) if for all arrows g, h : B → C, g ◦ f = h ◦ f implies
g = h.

• Isomorphic (isomorphism) if there exists an arrow g : B → A such that
g ◦ f = idA and f ◦ g = idB .

4.1 Examples in Set

• Monic: Injective functions.

• Epic: Surjective functions.

• Isomorphisms: Bijective functions.

4.2 Examples in Grp

• Monic: Injective group homomorphisms.

• Epic: Surjective group homomorphisms.

• Isomorphisms: Bijective group homomorphisms (isomorphisms of groups).

7
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Chapter 5

Diagrams, Cones, Cocones,
Limits, Colimits

In category theory, diagrams provide a structured way to visualize and under-
stand the relationships between objects and morphisms. Cones and cocones are
structures that relate diagrams to limits and colimits, respectively.

5.1 Diagrams

A diagram in a category C is a functor D : J → C where J is an indexing
category. Objects of J are mapped to objects of C, and morphisms of J are
mapped to morphisms in C.

5.1.1 Examples of Diagrams

Diagrams can range from simple single-object diagrams to complex networks
of objects and morphisms, such as sequences, commutative squares, or more
intricate structures. They serve as a framework for discussing the relationships
between objects and morphisms.

A B

C D

f

g h

k

5.2 Cones

A cone over a diagram D : J → C consists of an object L and a family of
morphisms λX : L→ D(X) for each object X in J such that for every morphism
f : X → Y in J , the following diagram commutes:

9



10 CHAPTER 5. DIAGRAMS, CONES, COCONES, LIMITS, COLIMITS

L

D(X) D(Y )

λX λY

D(f)

5.3 Limits

Let F : J → C be a diagram of shape J in a category C. A cone to F is an
object N of C together with a family ψX : N → F (X) of morphisms indexed
by the objects X of J , such that for every morphism f : X → Y in J , we have
F (f) ◦ ψX = ψY .

A limit of the diagram F : J → C is a cone (L, ϕ) to F such that for
every cone (N,ψ) to F , there exists a unique morphism u : N → L such that
ϕX ◦ u = ψX for all X in J .

N

F (X) L F (Y )

ψX ψY
u

F (f)

ϕX ϕY

One says that the cone (N,ψ) factors through the cone (L, ϕ) with the unique
factorization u. The morphism u is sometimes called the mediating morphism.

5.3.1 Examples of Limits

• Products: The product of two objects A and B in a category C is a limit
of the diagram consisting of A and B with no morphisms between them.

• Equalizers: An equalizer of two parallel morphisms f, g : A → B is a
limit of the diagram formed by A and B with two parallel arrows.

5.4 Cocones

A cocone under a diagram D : J → C consists of an object L and a family of
morphisms λX : D(X) → L for each object X in J such that for every morphism
f : X → Y in J , the following diagram commutes:

D(X) D(Y )

L

D(f)

λX λY
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5.5 Colimits

A colimit of a diagram D : J → C is a cocone (L, λ) under D that is universal
among all such cocones. This means that for any other cocone (L′, λ′) under D,
there exists a unique morphism u : L → L′ such that λ′X ◦ u = λX for all X in
J .

D(X) D(Y )

L

L′

D(f)

λ′
X

λX

λYλ′
Y

u

5.5.1 Examples of Colimits

• Coproducts: The coproduct of two objects A and B in a category C is a
colimit of the diagram consisting of A and B with no morphisms between
them.

• Coequalizers: A coequalizer of two parallel morphisms f, g : A → B is
a colimit of the diagram formed by A and B with two parallel arrows.

5.6 Equalizers and Coequalizers

5.6.1 Equalizers

An equalizer of two parallel arrows f, g : A → B is an object E together with
a morphism e : E → A such that f ◦ e = g ◦ e and for any object Z with a
morphism z : Z → A such that f ◦ z = g ◦ z, there exists a unique morphism
u : Z → E such that e ◦ u = z. This is depicted as follows:

E A B

Z

e
f

g

u
z

5.6.2 Coequalizers

“A coequalizer of two parallel arrows f, g : A→ B in a category C is an object Q
together with a morphism q : B → Q, universal with the property q ◦ f = q ◦ g,
as in the following diagram:” [2]
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A B Q

Z

f

g

q

z
u

“That is, given any Z and z : B → Z, if z ◦ f = z ◦ g, then there exists a
unique u : Q→ Z such that u ◦ q = z.” [2]

5.7 Products and coproducts

5.7.1 Products

A product of two objects A and B in a category C is an object P together
with two morphisms π1 : P → A and π2 : P → B such that for any object X
with morphisms f : X → A and g : X → B, there exists a unique morphism
u : X → P such that π1 ◦ u = f and π2 ◦ u = g. This can be depicted as:

X

A P B

f g
u

π1 π2

5.7.2 Coproducts

A coproduct of two objects A and B in a category C is an object C together
with two morphisms ι1 : A → C and ι2 : B → C such that for any object X
with morphisms f : A → X and g : B → X, there exists a unique morphism
u : C → X such that u ◦ ι1 = f and u ◦ ι2 = g. This can be depicted as:

A C B

X

ι1

f
u

ι2

g

5.8 Pushouts and Pullbacks

5.8.1 Pullbacks

A pullback (also known as a fiber product) of two morphisms f : X → Z
and g : Y → Z in a category C is an object P together with two morphisms
p1 : P → X and p2 : P → Y such that the following diagram commutes:

P Y

X Z

p2

p1 g

f
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Moreover, P must be universal with respect to this property, meaning that
for any other object Q with morphisms q1 : Q → X and q2 : Q → Y making
the diagram commute, there exists a unique morphism u : Q → P such that
p1 ◦ u = q1 and p2 ◦ u = q2. This situation is illustrated in the following
commutative diagram:

Q

P Y

X Z

q2

q1

u

p1

p2

g

f

Explicitly, a pullback of the morphisms f and g consists of an object P and
two morphisms p1 : P → X and p2 : P → Y for which the diagram

P Y

X Z

p2

p1 g

f

commutes. Moreover, the pullback (P, p1, p2) must be universal with respect
to this diagram. That is, for any other such triple (Q, q1, q2) where q1 : Q→ X
and q2 : Q → Y are morphisms with f ◦ q1 = g ◦ q2, there must exist a unique
u : Q→ P such that

p1 ◦ u = q1, p2 ◦ u = q2.

This situation is illustrated in the following commutative diagram:

Q

P Y

X Z

q2

q1

u

p1

p2

g

f

5.8.2 Pushouts

A pushout (also known as a cofiber product) of two morphisms f : Z → X
and g : Z → Y in a category C is an object P together with two morphisms
ι1 : X → P and ι2 : Y → P such that the following diagram commutes:
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Z Y

X P

g

f ι2

ι1

Moreover, P must be universal with respect to this property, meaning that
for any other object Q with morphisms q1 : X → Q and q2 : Y → Q making
the diagram commute, there exists a unique morphism u : P → Q such that
u ◦ ι1 = q1 and u ◦ ι2 = q2.

Z Y

X P

Q

g

f ι2

q2

ι1

q1
u



Chapter 6

Initial and Terminal
Objects [1]

Consider the empty diagram in the category C. The cones and cocones over this
diagram are simply the objects of C. Therefore:

• If the empty diagram has a limit, it is an object 1 such that, for every
object A in C, there is a unique morphism 1A : A→ 1.

• If the empty diagram has a colimit, it is an object 0 such that, for every
object A in C, there is a unique morphism 0A : 0 → A.

6.1 Definitions

• Initial Object: A limit of the empty diagram (if it exists) is called a
terminal object of C.

• Terminal Object: A colimit of the empty diagram (if it exists) is called
an initial object of C.

By Propositions 5.1.3 and 5.2.3, a terminal or initial object is unique up to
isomorphism. By Axiom 2, every topos has initial and terminal objects.

6.1.1 Examples

• In Set, the empty set ∅ is the only initial object, and any singleton set
{a} is a terminal object.

• In Grp, the trivial group {eG} is both initial and terminal. Such objects
are called zero objects.

• In a category based on a poset, any minimum element is an initial object
(if it exists), and any maximum element is a terminal object (if it exists).

15



16 CHAPTER 6. INITIAL AND TERMINAL OBJECTS [1]

• If C is a category, then IdX :X → X is a terminal object of C/X. If C has
an initial object 0, then 0X :0 → X is an initial object of C/X.

6.2 Properties

• If 1 is a terminal object and f : 1 → A, then the arrow is monic.

• If 1 is a terminal object, then 1×A ∼= A ∼= A× 1.



Chapter 7

Members of Objects [1]

In traditional set theory, the fundamental notion is the membership relation.
In category theory, the analogous concept involves arrows rather than elements.
In a category C with a terminal object 1, the members of an object A are the
morphisms from 1 to A.

7.1 Membership

In the context of category theory, the action of picking out a member of a set
A can be understood as a function from a singleton set into A. This is because
any singleton is a terminal object and any terminal object is a singleton in Set.

Member of: If C is a category with a terminal object 1 and A is an object
of C, then a member of A is an arrow x : 1 → A.

This definition implies that there cannot be ’membership chains’ as members
are arrows, not objects, and arrows cannot have members.

• 1 has exactly one element.

• If 0 has an element, then 0 ∼= 1.

7.2 Injective and Surjective

We can also define injective and surjective arrows in this context.
Injective and Surjective: Given f :A → B, we say that

• The arrow is injective if, for all x, y : 1 → A, if fx = fy then x = y.

• The arrow is surjective if, for all y : 1 → B, there is x : 1 → A such that
fx = y.

In Set, the injective arrows are the monics, and the surjective arrows are
the epics. However, this is not necessarily true in all categories with terminal
objects.

17
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Chapter 8

Exponential Objects [1]

Axiom 2 ensures that all toposes have analogues of the addition and multi-
plication operations on sets—they are coproducts and products, respectively.
However, it does not guarantee analogues of power sets P (A) or function spaces
BA = {f : A→ B}. To address this, we introduce an axiom guaranteeing these
objects.

Consider a (set-theoretical) function f : A × C → B. For every element
c ∈ C, the function fc : a 7→ f(a, c) is a function from A to B. The function

f̂ : c 7→ fc maps C into BA. There is also a function ev : A × BA → B that
evaluates a function from A to B at a value in A.

Therefore:
ev(a, fc) = fc(a) = f(a, c)
Exponential: Suppose C is a category with products. For any objects A

and B, an exponential of A and B consists of

• An object BA of category C

• An arrow ev : A×BA → B of category C

such that for any arrow f : A× C → B, there is an arrow f̂ : C → BA making
the following diagram commute:

A×BA B

A× C

ev

IdA×f̂
f

Exponentials of A and B are unique up to isomorphism, and anything iso-
morphic to an exponential of A and B is itself an exponential of A and B.

We can check the validity of the exponential BA by considering whether it
satisfies certain basic conditions stated in terms of the membership relation. In
set theory, an exponential object should have the following property:

f is a member of BA iff f : A→ B

19



20 CHAPTER 8. EXPONENTIAL OBJECTS [1]

Although this is not exactly the result we get in category theory, we do
obtain a close analogue: there is a one-to-one correspondence between arrows
f : A→ B and arrows g : 1 → BA.

Name of an arrow: If A→ B is an arrow, the name of f (written ⌜f⌝) is
the arrow 1 → BA such that the following diagram commutes:

A×BA B

A× 1

ev

IdA×⌜f⌝
f

There is a bijection f 7→ ⌜f⌝ between the set of arrows f : A → B and the
set of arrows ⌜f⌝ : 1 → BA.

With the definition of an exponential in hand, we can introduce the third
axiom of a topos.

A topos has exponentials for every pair of objects.
Cartesian Closed Category: A category with limits for all finite diagrams

and exponentials for all pairs of objects is called a Cartesian closed category.
[1].



Chapter 9

Subobjects and Their
Classifiers [1]

9.1 Subobjects

In category theory, the analogue of a subset of a set A is called a subobject of
A. A subobject is not another object but an arrow, specifically a monic arrow
from an object S into A.

Part or Subobject: Suppose A is an object. Then a subobject of A is a
monic arrow S → A.

Inclusion: Suppose S → A and T → A are subobjects of A. We say that
S is included in T (written S ⊆ T ) if there is a morphism S → T such that the
following diagram commutes:

S T

A

9.2 Subobject Classifiers

Next, we introduce an object Ω in a topos whose members act as truth values
and associate with each subobject S → A a characteristic function A→ Ω.

9.2.1 Motivation

Consider sets where Ω = {true, false}. The characteristic function of a subset
S ⊆ A can be seen as the function χS mapping A to {true, false} such that the
inverse image of {true} under χS is S.

21



22 CHAPTER 9. SUBOBJECTS AND THEIR CLASSIFIERS [1]

9.2.2 Inverse Images of Subobjects

In Set, a pullback for the diagram

B S

A

f

i

is the set
{(b, s) | f(b) = i(s)}

If S → A and i is the inclusion map i : s 7→ s for all s ∈ S, then a pullback
is

{(b, s) ∈ B × S | f(b) = i(s) = s} ∼= {b ∈ B | f(b) ∈ S} = f−1(S)

Inverse Image: If S → A and B → A, then the pullback of the diagram

B S

A

f

i

is called an inverse image of S → A under f (written f−1(S)).

9.2.3 Definition

We define the characteristic function χi of a subobject S → A to be the unique
function such that S is an inverse image of 1 → Ω under χi.

Subobject Classifier: Suppose C is a category with a terminal object 1.
A subobject classifier in C consists of:

• An object Ω of category C.

• An arrow 1 → Ω

such that for any object A and subobject S → A, there is a unique arrow
χS : A→ Ω such that:

S 1

A Ω

1

χi

is a pullback square.
Subobject classifiers are unique up to isomorphism, and anything isomorphic

to a subobject classifier is itself a subobject classifier.
The final axiom of toposes can now be stated:
A topos has a subobject classifier.
False: The arrow 1 → Ω is the characteristic function of the subobject

0 → 1.
[1].
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The Definition of a Topos

10.1 The Definition

Having outlined the necessary axioms, we define a topos:
Topos: A topos is a category with:

• Limits and colimits for all finite diagrams.

• Exponentials for every pair of objects.

• A subobject classifier.

10.2 Examples

• Set is a topos.

• Grp is not a topos.

• FinSet is a topos.

10.3 Fundamental Theorem of Toposes

“If E is a topos and X is an object in E, then E/X is a topos.”” [1].
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Chapter 11

Algebra of Subobjects

In category theory, understanding subobjects and their algebra is crucial for
grasping the structure and properties of categories. Here, we explain subobject
lattices and their relationship to Boolean and Heyting algebras.

11.0.1 Subobject Lattices

A subobject of an object A in a category C is defined as an equivalence class of
monomorphisms m : S ↪→ A. Two monomorphisms m : S ↪→ A and m′ : S′ ↪→
A are considered equivalent if there exists an isomorphism f : S → S′ such that
m = m′ ◦ f .

The collection of all subobjects of A, denoted as Sub(A), forms a partially
ordered set (poset) under inclusion. Specifically, for subobjects [m : S ↪→ A]
and [m′ : S′ ↪→ A], we have [m] ≤ [m′] if there exists a morphism f : S → S′

making the following diagram commute:

S S′

A

m

f

m′

This poset of subobjects, Sub(A), possesses additional structure, making it
a lattice.

11.0.2 Lattice Structure of Subobjects

A lattice is a poset in which any two elements have a greatest lower bound
(glb) or meet, and a least upper bound (lub) or join. For subobjects S and T
of A:

• The meet S ∧ T is given by the intersection of S and T in A.

• The join S ∨ T is represented by the subobject generated by the union of
S and T .
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Formally, these operations can be defined through pullbacks and pushouts
in the category C.

11.0.3 Heyting Algebra of Subobjects

In a Heyting category, the poset Sub(A) is not just a lattice but a Heyting
algebra. This means it supports an additional operation called implication
→, which is characterized by the property that for subobjects S and T of A,
there is a largest subobject U such that S ∧ U ≤ T .

Heyting algebras generalize Boolean algebras and are essential in the internal
logic of a topos, particularly in intuitionistic logic.

11.0.4 Power Objects in Topos Theory

A topos can be seen as a categorical generalization of set theory, incorporating
both logical and geometrical aspects. In a topos, every subobject poset Sub(A)
is a Heyting algebra, and there exists a power object P(A), which internalizes
the notion of the power set in set theory.

The power object P(A) of an object A is equipped with a monomorphism
∈A: A × P(A) → Ω, where Ω is the subobject classifier of the topos. This
morphism satisfies a universal property analogous to the characteristic function
of a subset in set theory.

11.0.5 Boolean Topos

In a Boolean topos, the internal Heyting algebra Sub(A) for any object A is
a Boolean algebra. This implies that every subobject has a complement, and
the internal logic of the topos aligns with classical Boolean logic.

11.0.6 Internal Logic and Lawvere-Tierney Topology

The internal logic of a topos can be intuitionistic or classical, depending on
whether it forms a Heyting algebra or a Boolean algebra. The Lawvere-
Tierney topology provides a framework to study these logical structures
within a topos, defining modalities that extend the logical operations within
the category.
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Chapter 12

Kinds of Topos

12.1 Non-degenerate Toposes

A topos is non-degenerate if it has more than one object and more than one
morphism.

12.2 Well-pointed Toposes

A topos is well-pointed if the only arrow 1 → 1 is the identity arrow.

12.3 Bivalent Toposes

A topos is bivalent if it has exactly two objects and two morphisms.

12.4 Boolean Toposes

A topos is Boolean if its subobject classifier is a Boolean algebra.

12.5 Natural Number Objects

A topos has a natural number object if there is an objectN and arrows 0 : 1 → N
and s : N → N such that for any object A and arrows f : 1 → A and g : A→ A,
there is a unique arrow h : N → A such that h ◦ 0 = f and h ◦ s = g ◦ h.

[1].
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Chapter 13

Functors

13.1 The Definition of a Functor

A functor F : C → D consists of:

• A function F : Ob(C) → Ob(D)

• A function F : Ar(C) → Ar(D)

such that the following properties hold:

• F (idA) = idF (A) for all objects A in C.

• F (g ◦ f) = F (g) ◦ F (f) for all arrows f, g in C.

13.2 Examples of Functors

• The identity functor Id : C → C.

• The constant functor C : C → D that sends every object to a fixed object
D and every arrow to idD.

• The hom-functor Hom(A,−) : C → Set that sends every object B to
the set of arrows A → B and every arrow f : B → C to the function
Hom(A, f) : Hom(A,B) → Hom(A,C) given by composition with f .

13.3 Properties of Functors

Functors preserve the structure of categories in various ways:

• They preserve isomorphisms: If f : A → B is an isomorphism in C, then
F (f) is an isomorphism in D.
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• They preserve commutative diagrams: If a diagram commutes in C, its
image under F commutes in D.

• They preserve limits and colimits: If C has a limit (or colimit) of a diagram
D, then D has a limit (or colimit) of F (D).



Chapter 14

Natural Transformations

14.1 The Definition of a Natural Transforma-
tion

A natural transformation η : F ⇒ G between two functors F,G : C → D consists
of:

• For each object A in C, an arrow ηA : F (A) → G(A) in D

such that for every arrow f : A→ B in C, the following diagram commutes:

F (A) F (B)

G(A) G(B)

F (f)

ηA ηB

G(f)

This commutative diagram ensures that natural transformations respect the
structure of the categories involved, providing a way to compare functors in a
coherent manner.

14.2 Examples of Natural Transformations

• The identity natural transformation Id : F ⇒ F assigns the identity mor-
phism to each object, ensuring that ηA = idF (A) for all A in C.

• The composition of two natural transformations η : F ⇒ G and µ : G⇒ H
is a natural transformation µ ◦ η : F ⇒ H defined by (µ ◦ η)A = µA ◦ ηA
for each object A in C.

• For the hom-functor Hom(A,−) : C → Set, a natural transformation
between Hom(A,−) and another functor Hom(B,−) would be given by
a function η : Hom(A,X) → Hom(B,X) for each X in C that respects
composition and identity.
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14.3 Properties of Natural Transformations

Natural transformations have several key properties:

• Naturality: The naturality condition, expressed by the commutative
diagram above, ensures that the transformation is consistent with the
action of the functors on morphisms.

• Vertical and Horizontal Composition: Natural transformations can
be composed both vertically (as in the composition of η and µ) and hori-
zontally, which involves transforming functors applied in sequence.

[1].



Chapter 15

Adjoint Functors

15.1 Definition

Two functors F : C → D and G : D → C are adjoint if there is a natural
isomorphism

HomD(F (A), B) ∼= HomC(A,G(B))

for all objects A in C and B in D.

15.1.1 Definition via Counit-Unit Adjunction [4]

“A counit-unit adjunction between two categories C and D consists of two func-
tors F : D → C and G : C → D and two natural transformations ε : FG → 1C
and η : 1D → GF , respectively called the counit and the unit of the adjunction,
such that the compositions

F
Fη−−→ FGF

εF−−→ F and G
ηG−−→ GFG

Gε−−→ G

are the identity transformations 1F and 1G on F and G respectively. In this
situation, we say that F is left adjoint to G and G is right adjoint to F , and
may indicate this relationship by writing (ε, η) : F ⊣ G, or simply F ⊣ G.

In equation form, the above conditions on (ε, η) are the counit-unit equa-
tions:

1F = εF ◦ Fη and 1G = Gε ◦ ηG

which mean that for each X in C and each Y in D,

1FY = εFY ◦ F (ηY ) and 1GX = G(εX) ◦ ηGX

Note that 1C denotes the identity functor on the category C, 1F denotes the
identity natural transformation from the functor F to itself, and 1FY denotes
the identity morphism of the object FY .”
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15.1.2 Definition via Universal Morphisms [4]

“By definition, a functor F : D → C is a left adjoint functor if for each object
X in C there exists a universal morphism from F to X. Spelled out, this
means that for each object X in C there exists an object G(X) in D and a
morphism εX : F (G(X)) → X such that for every object Y in D and every
morphism f : F (Y ) → X there exists a unique morphism g : Y → G(X) with
εX ◦ F (g) = f .

The latter equation is expressed by the following commutative diagram:

F (Y ) F (G(X))

X

F (g)

f εX

In this situation, one can show thatG can be turned into a functorG : C → D
in a unique way such that εX ◦F (G(f)) = f ◦εX′ for all morphisms f : X ′ → X
in C; F is then called a left adjoint to G.

Similarly, we may define right-adjoint functors. A functor G : C → D is a
right adjoint functor if for each object Y in D there exists a universal morphism
from Y to G. Spelled out, this means that for each object Y in D there exists an
object F (Y ) in C and a morphism ηY : Y → G(F (Y )) such that for every object
X in C and every morphism g : Y → G(X) there exists a unique morphism
f : F (Y ) → X with G(f) ◦ ηY = g

The latter equation is expressed by the following commutative diagram:”

Y G(F (Y ))

G(X)

ηY

g
G(f)

15.2 Examples Concerning Set

• The forgetful functor U : Grp → Set has a left adjoint F : Set → Grp
that sends each set S to the free group on S. This means there is a
natural isomorphism HomGrp(F (S), G) ∼= HomSet(S,U(G)) for any set S
and group G.

• The forgetful functor U : Top → Set has a left adjoint F : Set → Top
that sends each set S to the discrete topology on S. Here, HomTop(F (S), T ) ∼=
HomSet(S,U(T )) for any set S and topological space T .

15.3 Examples Concerning Forgetful Functors

Forgetful functors between various categories often have adjoints. For example:
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• The forgetful functor U : Mon → Set has a left adjoint F : Set → Mon
that sends each set S to the free monoid on S.

• The forgetful functor U : Vect → Set has a left adjoint F : Set → Vect
that sends each set S to the free vector space on S.

[1].
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