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Abstract 
 

 
Coherentism maintains that coherent beliefs are more likely to be true than 
incoherent beliefs, and that coherent evidence provides more confirmation 
of a hypothesis when the evidence is made coherent by the explanation 
provided by that hypothesis. Although probabilistic models of credence 
ought to be well-suited to justifying such claims, negative results from 
Bayesian epistemology have suggested otherwise. In this essay we argue 
that the connection between coherence and confirmation should be 
understood as a relation mediated by the causal relationships among the 
evidence and a hypothesis, and we offer a framework for doing so by 
fitting together probabilistic models of coherence, confirmation, and 
causation. We show that the causal structure among the evidence and 
hypothesis is sometimes enough to determine whether the coherence of the 
evidence boosts confirmation of the hypothesis, makes no difference to it, 
or even reduces it.  We also show that, ceteris paribus, it is not the 
coherence of the evidence that boosts confirmation, but rather the ratio of 
the coherence of the evidence to the coherence of the evidence conditional 
on a hypothesis.  
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1. Introduction 

 

A man is dead and the police are asking questions. Two witnesses believed not to have 
conferred with one another have implicated Mrs. White in the murder of her employer, 
Dr. Black.  Each of their statements alone is damaging to White, yet both witnesses have 
given the police the same detailed account of the crime, and it is partly the ‘coherence’ of 
their testimonies which lends an additional measure of support to the hypothesis that 
White killed Black.  
 
The focus of the investigation changes after the police discover that they were wrong 
about the witnesses not having talked to one another.  The second witness, it turns out, 
was nowhere near the scene of the crime.  She instead simply repeated to the police what 
the first witness had told her to say.  So, in light of these revelations, the second witness’s 
statement provides no reason for thinking that White killed Black, and the coherence of 
their testimonies, such as it is, lends no additional support whatsoever.  
 
Sometimes coherence appears to amplify the support that individual pieces of evidence 
confer on a hypothesis, other times it does not, yet explaining what accounts for this 
difference is a notoriously difficult problem.   Consider the example of Black's murder. 
The case against White collapses not because of a change in the coherence of the witness 
testimonies per se, but rather because of a change in our understanding of what produced 
the coherence.  In the first act, White killing Black is a good explanation for the 
otherwise improbable event of both witnesses reporting that she killed him.  In the second 
act, however, the agreement between the witnesses is not explained by White having 
killed Black but rather by their collusion.   
 
The epistemic moral of the story, it would seem, is that whether or not coherence 
provides justification depends on what produces the coherence.  Yet, critics of the 
coherence theory of justification from Alfred Ewing (1934) on have cautioned against 
pinning hopes for the coherence theory on intuitive examples of coherence, like our two-
act murder mystery, in the absence of a detailed theory of coherence.   
 
In this paper we attempt to follow Ewing’s counsel by introducing a formal framework to 
explicate ‘what produces the coherence’ means and to explain various examples of 
coherentist justification, including why independent witness testimony is epistemically 
better than hearsay, all things considered.  To be more specific, we use the theory of 
causal Bayesian networks to represent different causal explanations for evidence to 
cohere, and we show how those causal relationships are a mediating factor in 
probabilistic accounts of coherence and confirmation.  We are not overly concerned with 
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how coherence and confirmation should be modelled. Our interest is the relationship 
between probabilistic association (coherence) and incremental confirmation, and how this 
relationship is influenced by probabilistic constraints induced by casual structure.  Thus, 
the paper is foremost an examination of how probabilistic models of coherence, 
confirmation, and causal systems fit together.1 
 
We approach this project in three stages. After presenting basic probabilistic models of 
coherence and confirmation, we first examine the relationship between coherence and 
confirmation in purely probabilistic terms—that is, without causal structure—through 
focused correlation (Myrvold 1996, Wheeler 2009).  Focused correlation is a ratio of two 
quantities, the degree of probabilistic association of a set of evidence and the degree of 
probabilistic association of that evidence conditional on a specific hypothesis.  We offer 
two results which give conditions under which focused correlation tracks confirmation.  
Next we look at the role that causal structure plays in regulating the relationship between 
coherence and confirmation. We consider three basic causal scenarios, each involving 
three individual pieces of evidence that are individually relevant to a hypothesis but more 
or less coherent when considered in pairs.  In one case the coherence between the 
evidence sets is the same, as it is in the Black murder example above, but the causal 
relationship between hypothesis and evidence is different. In another case the coherence 
of the evidence sets differ but the causal structure is the same. In a third case, evidence 
sets exhibit distinct levels of coherence and distinct causal structures.  Finally, we discuss 
how these two components, probability and causal structure, combine to explain when 
coherence contributes to incremental confirmation and when it does not, ceteris paribus. 
 
The organization of the paper is as follows.  In section 2 we identify coherence with 
probabilistic association and introduce two well-known measures of probabilistic 
association. In section 3 we introduce a variety of well-known measures of incremental 
confirmation. In section 4 we present the assumptions and models we will use to give 
structure to the idea of ‘ceteris paribus’ when we compare evidence sets that differ in 
their degree of coherence but are otherwise equal.  In section 5 we describe the idea of 
focused correlation and extend results connecting coherence to confirmation through 
focused correlation (Wheeler 2009).  In section 6 we present the case for making causal 
beliefs explicit, and trace several consequences for the relationship between coherence 
and confirmation that arise solely from the causal structure governing the evidence and 
hypothesis.   In section 7 we discuss our results, and contrast our approach to coherence 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Models of coherence or confirmation, or the relation between them are discussed by Bovens and 
Hartmann 2003a, 2003b, 2006, Douven and Meijs 2007, Fitelson 2003, Glass 2006, Meijs 2004, 
Olsson 2002, Shogenji  1999, Wheeler 2009.  Causal Bayes Nets, the probabilistic model of 
causal systems now standard in computer science and statistics, are discussed in Pearl 2000, and 
in Spirtes, Glymour, and Scheines 2000. 
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with the approach taken in Bayesian epistemology. We give proofs of the main theorems 
in an appendix.   
 
2.  Simple Probabilistic Models of Coherence 
 
There are many things one might mean by claiming that a set of propositions is coherent. 
Perhaps the most common idea is simply that the propositions are associated.  According 
to this notion, the coherence of a set of propositions rises along with the likelihood of any 
specific subset being true given that the complement of that subset is true.  For example, 
the heights of biological siblings are associated. This was C. I. Lewis’s approach (Lewis 
1946, BonJour 1985), and one of its advantages is that it can track logical relations 
among propositions.  For example, let ⎡S#⎤ abbreviate the schema ⎡The die landed # side 
up⎤, and consider two sets of propositions, T1 and T2, where each describes a set of 
possible outcomes from rolling a fair die once.  
 

T1: {S1, S2, S5 or S6}. 
T2: {S1 or S3, S1 or S3 or S5, S1 or S2 or S3} 

 
Clearly the set T2 is more coherent than T1, in Lewis’s sense.  However, given that the 
die is fair, the coherence of either set reflects only the logical relations among its 
propositions:  the propositions in T1 are disjoint, whereas those in T2 overlap. 
 
Alternatively, we might consider two individuals, A and B, and two sets of logically 
unrelated propositions that describe them. 
 

T3: {A is a cowboy, A drinks Bordeaux, A sings karaoke} 
T4: {B is a salaryman, B drinks sake, B sings karaoke} 
 

Set T4 is more coherent than T3, again in Lewis’s sense of coherence, but none of the 
coherence (or absence thereof) in either set derives from logical relations among the 
propositions.  Instead, coherence within either set is due to contingent cultural facts about 
cowboys and salarymen.  While Lewis’s definition succumbs to counterexamples 
(Bovens and Olsson 2000, p. 688-9), most probabilistic measures of coherence derive 
from Lewis’s general approach.   
 
Although we will stick to a probabilistic model of coherence as association, we explicitly 
exclude logical sources of coherence for two reasons.  First, we want to use causal 
models over sets of propositions (evidence) that might be more or less coherent, and 
defining causal relations over logically related events or variables is a philosophical 
minefield.  Second, in our view the technicalities that come with trying to handle 
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logically related propositions are a side issue that has done more to obscure than clarify 
philosophical questions about coherence.   
 
Notation 
 
We assume throughout that binary variables represent propositions.  For example, 
suppose that E1 is a binary evidence variable representing a witness report, where 
(E1=true) codes for ‘the witness reported that fact 1 is the case’, written E1 for short, and 
(E1=false) codes for ‘the witness reports that fact 1 is not the case’, abbreviated by ¬E1.  
A straightforward account of coherence based on probabilistic association2 is the 
deviation from independence measure advanced by Tomoji Shogenji (1999):3 
 

S(E1,E2,...,En ) =
P(E1!E2!...!En )
P(E1)P(E2 )...P(En )

 

 
Still another measure of association for two variables, X and Y, is Pearson’s correlation 
coefficient, which for binary variables is defined as: 
 

 
 
where the variance of a binary variable X is 

€ 

σX
2 = P(X)(1−P(X)). 

 
 
3. Confirmation 
 
The debate about how to model confirmation is contentious and might forever remain so. 
We have no desire to enter this debate here. Our concern is only to examine how popular 
probabilistic conceptions of incremental confirmation relate to popular, probabilistic 
notions of coherence.  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Other proposals along these lines have been made by Huemer 1997, Cross 1999, Olsson 2002, 
Fitelson 2003, Glass 2006, and Wheeler 2009. 
3 Although this definition of association is attributed to Shogenji in Bayesian epistemology, it 
predates him in the general statistics literature by several decades. 

€ 

ρX ,Y =
P(X ∩Y ) − P(X)P(Y )

σ XσY
=

P(X)[P(Y | X) − P(Y )]
P(X)(1− P(X)) P(Y )(1− P(Y ))

,
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Several measures of confirmation have been offered.  A few of the more popular options 
use probability to express how much confirmation an evidence set E provides to a 
hypothesis H (Elles and Fitelson 2002):4  
 

• 

€ 

r1(H,E) =df log
P(H |E)
P(H)  

• 

€ 

l(H,E) =df log
P(E | H)
P(E |¬H)  

• 

€ 

ko(H,E) =df
P(E | H) - P(E |¬H)
P(E | H) +P(E |¬H)  

 
Cohen (1977) and John Earman (1992) define the idea of incremental confirmation of a 
hypothesis  H by E2 after we already know E1: 
 

• 

€ 

inc1(H,E1,E2) =df P(H | E1,E2)− P(H | E1) , 
 
and there is a similar form based on the difference measure r1 defined above: 
 

• 

€ 

r2 (H,E1,E2) =df log
P(H | E1,E2)
P(H | E1)

. 

 
An extension of incremental confirmation that normalizes for how much room above 
P(H|E1) there is for E2 to ‘boost’ the posterior of H is: 
 

• 

€ 

inc2 (H,E1,E2) =df
P(H | E1,E2)
1− P(H | E1)

. 

 
Although inc1 and inc2 are viewed as stand-alone measures, they also may be combined to 
comprise measure Z (Crupi et al. 2007) for propositions H and E in unconditional form, 
where inc2(H,E) =df P(H|E) – P(H) / 1 – P(H) is used if P(H|E) ≥ P(H), inc1(H,E) =df 
P(H|E) – P(H) otherwise. 
 
Confirmation and Coherence 
 
Using a measure of coherence (Coh) and a measure of confirmation (Conf) we can ask, 
all else equal, whether there is a relationship between the coherence of an evidence set 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 The measures r1, l, and ko, are typically discussed in terms of evidence proposition E 
representing an evidence set E of arbitrary size by a single conjunction of the propositions in E. 
We will restrict our discussion in this paper mainly to evidence sets of size 2, i.e., |E| = 2. 
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and the confirmation that set provides to a hypothesis.  More formally, for two evidence 
sets E and E’, a measure of coherence, Coh, and a measure of confirmation, Conf, is it 
the case, or, if so, under what conditions is it the case, that more ‘coherence’ translates 
into more ‘confirmation’?  
 

(CB) Coh(E) > Coh(E’)  ⇒  Conf(H,E) > Conf(H,E’).5 
 
As many authors have noted, for measures of coherence involving only association, the 
answer is clearly no. It is not the association of the evidence that matters so much as the 
reason for the association.  Return to the Black murder and consider the difference 
between first-hand, independent testimony and hearsay. Whatever the coherence of two 
separate witness reports and the coherence of two reports where one of the reports is 
hearsay, these two evidence sets provide different confirmation to the hypothesis that 
White killed Black.  It is not the presence or absence of coherence (association) between 
the witness reports alone that matters, but the coherence in conjunction with the reason 
for the coherence.   
 
Attempts to secure a connection between probabilistic models of coherence, understood 
as simple association, and probabilistic models of confirmation either smuggle in a 
reason for the coherence—for example, the partially reliable witness model of Hartmann 
and Bovens (2003a, 2003b)—or rely upon a definition of coherence that is partially built 
from the confirmation relation, as in (Bovens and Hartmann 2003b).  We discuss the 
partially reliable witness model further in sections 6 and 7.   
 
Measures of coherence that explicitly include the hypothesis fare better.  Accounts of 
coherence that include the causal explanation of the coherence should fare best of all.    
 
4. Ceteris Paribus 
 
Ideally, we would like to compare the confirmation provided by two sets of evidence that 
differ in their degree of coherence when all else about the sets and their relationship to 
the hypothesis is equal.  In this section we attempt to formalize this idea. 
 
In what follows we will assume that the domain D = <H,E> is the hypothesis H=true and 
an evidence set E = {E1=true,..,En=true), where H and E1,..,En are propositional (binary) 
variables, none of which are logically related.  A propositional variable conveniently 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 For our results to apply to inc1, we stipulate that inc1(H,E) stands for inc1(H, E1,E2) and 
inc1(H,E’) stands for inc1(H, E1,E3). A similar remark applies for interpreting inc2 and r2, too. 
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expresses either the content of a proposition, or a witness report of a proposition.  
Extending what follows to real-valued variables is certainly possible. 
 
By insisting that no logical relations obtain, we mean that there are positive probability 
distributions over D in which every pair of variables X and Y are probabilistically 
independent.  This is not possible, for example, in a setting in which (E1 = Mrs. White 
killed Dr. Black), and (E2 = Mrs. White killed Dr. Black or Colonel Mustard killed Dr. 
Black), for in no positive distribution is E1 independent of E2.  We assume this condition 
in order to activate the theory of causal Bayesian networks, which requires variables that 
are unrelated logically.6  
 
We assume that P(D), a probability distribution over a domain of propositions D = 
<H,E>,7 is positive.  We say that two distinct pieces of evidence Ei and Ej are equally 
confirmatory for a hypothesis H iff  

• P(H | Ei) = P(H | Ej), and 
• P(H | ¬Ei) = P(H | ¬Ej) 

 
Consider two conditions: 
 

(A1) Positive Relevance: all propositions in an evidence set E are positively 
relevant to H, i.e., ∀Ei ∈ E, P(H | Ei)  >  P(H) > P(H | ¬Ei). 
 
(A2) Equal Relevance: all propositions in an evidence set E are equally 
confirmatory, i.e., ∀Ei Ej ∈ E, P(H | Ei)  =  P(H | Ej), P(H | ¬Ei)  =  P(H | ¬Ej). 

  
We say that an evidence set whose elements satisfy (A1) with respect to H is a positive  
evidence set for H, and a positive evidence set whose elements satisfy (A2) with respect 
to H an equally positive evidence set (epe) for H.  
 
To determine whether positive coherence of an evidence set entails positive incremental 
confirmation of some hypothesis from that evidence set, we consider only positive 
evidence sets.  To compare the confirmatory power for H of two sets of evidence E and 
E’, where E and E’ are identical in all respects except for their coherence, we first look at 
epe sets and then relax this condition to allow evidence of variable strength.  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Witness reports whose contents are logically related are not themselves logically related in this 
way, for it is perfectly possible to have a measure involving propositional variables V1: (Witness 
1 report = Mrs. White did it), and V2: (Witness 2 report = Mrs. White did it or Colonel Mustard 
did it), in which V1 and V2 are independent.   
7 Probability can be interpreted as credal or objective, we don’t care.   



9 
 

5.  Focused Correlation 
 
Wheeler (2009) attempted to address the apparent disconnect between Shogenji 
coherence and confirmation by invoking the idea of the coherence conditional on the 
hypothesis. 
 

 
 

 
 
Using the ratio of the Shogenji coherence and the conditional Shogenji coherence, a 
relation first introduced by Wayne Myrvold (1996), Wheeler examined how focused 
correlation tracks confirmation.   
 
The focused correlation of a set of evidence E = {E1,..,En) with respect to a hypothesis H 
is the ratio of the coherence/association of the evidence conditional on H to the 
coherence/association of the evidence simpliciter, which can be expressed generally as: 
 

 
 
For cases in which (A1) is satisfied, if the focused correlation of E with respect to H is 
greater than 1, then there is more association in the evidence set E given H than there is 
in the evidence alone. So, when (A1) holds and ForH(E) > 1 we say that focused 
correlation is inflationary, and when (A1) holds and ForH(E) < 1 we say that it is 
deflationary. If ForH(E) = 1 we say that it is stable. 
 
Wheeler (2009) connected inflationary focused correlation and positive incremental 
confirmation.  Before examining the role of causal structure, we strengthen these 
connections for the case of evidence sets with two variables.     
 
Consider hypothesis H and evidence sets E = {E1, E2} and E’ = {E1, E3} satisfying 
assumption (A1).  For each of the confirmation measures above, the confirmation of H on 
an evidence set E is positive (greater than 0) if ForH(E) is inflationary. 
 

€ 

S(E1,E2) =
P(E1∩E2)
P(E1)P(E2)

,

€ 

S(E1,E2 |H ) =
P(E1∩E2 |H)

P(E1 |H)P(E2 |H)
.

€ 

ForH(E1,...,En ) =df
S(E1,...,En | H)
S(E1,...,En )

=
P(H | E1,...,En )P(H)

n -1

P(H | E1)...P(H | En )
.
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Proposition 1:  If E is a positive evidence set for H, and ForH(E) > 1, then all of 
the following hold: 

• r1(H,E) > 0 
• r2(H,E) > 0 
• l(H,E) > 0 
• ko(H,E) > 0 
• inc1(H,E) > 0 
• inc2(H,E) > 0. 

 
Proposition 1 says that for any evidence set E in which all the evidence individually 
confirms H, that is, whenever H and E satisfy (A1), if E has a focused correlation for H 
above 1, then E provides positive confirmation of H by any of these six popular 
confirmation measures of incremental confirmation.  If a set of evidence has more 
conditional Shogenji coherence on H than it does unconditionally, then the evidence 
provides positive confirmation to H.   
 
When we further assume that each piece of evidence is equally confirmatory to H 
individually, that is, when we strengthen the assumptions on evidence to satisfy both 
(A1) and (A2), then focused correlation tracks confirmation:   
 

Proposition 2:  If E={E1, E2} and E’= {E1, E3}, and E ∪ E’ is an equally 
positive evidence set for H, then all of the following inequalities are 
equivalent: 

• ForH(E) >  ForH(E’)  
• r1(H, E) > r1(H, E’) 
• r2(H, E) > r2(H, E’) 
• l(H, E) > l(H, E’) 
• ko(H,E) > ko(H, E’) 
• inc1(H, E) > inc1(H, E’) 
• inc2(H, E)> inc2(H, E’). 

 
So, in at least two important respects, focused correlation tracks confirmation and 
incremental confirmation, whereas simple coherence (association) does not.  Looking at 
the formula for focused correlation, it is immediate that two equally positive evidence 
sets can have equal association while having unequal focused correlation and thus 
unequal confirmation.   
 
The equal relevance condition is theoretically important for this result because it isolates 
the role that coherence may or may not play in boosting the confirmation of a hypothesis. 
But this condition is too restrictive in practice, since positive evidence sets may have 



11 
 

unequal strengths. One therefore might worry that Proposition 2 tells us more about the 
strength of the epe condition than it does about the virtues of focused correlation to track 
confirmation strength. This worry is overstated, however, since (Schlosshauer and 
Wheeler 2011) have shown how to generalize Proposition 2 for positive evidence sets 
without (A2) when the ratio of P(H | E2) to P(H | E3) is bounded by a variable relevance 
condition: 
 

(A2*) Variable Relevance: 

€ 

ForH(E1,E3)
ForH(E1,E2)

<
P(H | E2)
P(H | E3)

≤1. 

 
Clearly, Proposition 2 holds as the special case when 

€ 

P(H | E2)
P(H | E3)

=1.  Call a positive 

evidence set satisfying (A2*) a variable, positive evidence set. Then, 
 
	
  

Proposition 2* (Schlosshauer and Wheeler 2011): Suppose E={E1, E2}, E’= {E1, 
E3}, and E ∪ E’ is a variable, positive evidence set for H, and confi ranges over 
the six incremental confirmation measures above. Then, ForH(E) >  ForH(E’) if 
and only if confi(H,E) > confi(H,E’). 

 
Proposition 2* tells us how the equal relevance assumption can be relaxed while 
preserving the bidirectional tracking between focused correlation and confirmation. The 
key idea behind replacing (A2) with (A2*) is that, if the individual strengths of relevant 
evidence remain within the general limits specified by (A2*), this suffices to guarantee 
bidirectional tracking. If instead one is interested in a specific incremental confirmation 
measure, or is interested in only unidirectional tracking, even less stringent limits may 
apply (Schlosshauer and Wheeler 2011).  
 
Although focused correlation captures something about the relationship between 
coherence and confirmation, it does not represent the whole story, pace (Myrvold 2003).8  
Consider again the two witnesses who have not conferred yet provide similar testimony 
implicating Mrs. White in the murder of Dr. Black. A natural way to make sure that 
witnesses do not coordinate their testimony about a hypothesis is to ensure that both 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Myrvold (2003) is not concerned with coherence per se, but instead proposes a normalized form 
of focused correlation as an account of unified evidence for a hypothesis. While it is true that 
focused correlation controls all the parameters that determine the behavior of the most common 
incremental confirmation measures (and then some), there are logical / causal structures which 
regulate the relationships between evidence and hypothesis that escape the scope of focused 
correlation. Distributions satisfying the properties (A1) and (A3), described below and the 
motivation for proposition 3, are an example.  



12 
 

evidence variables are conditionally independent of the hypothesis variable, a property 
that is sometimes called evidential independence.  
 

(A3) Evidential Independence: any propositions E1,…,En ∈ E are evidentially 
independent with respect to H iff both 

(+) P(E1,…,En | H) = P(E1 | H) × … × P(En | H), and  
(–) P(E1,…,En |¬H) = P(E1 |¬H) × … × P(En |¬H).9 

 
If we assume (A3) and positive relevance (A1) with regard to E = {E1, E2} and H, then 
the focused correlation of E1 and E2 with respect to H is strictly less than 1, thus the 
focused correlation is deflationary.  However, the incremental confirmation of the 
hypothesis may still be positive.10  Notice that this case is not a counterexample to 
Proposition 1 since the antecedent is not satisfied.  However, it does show that 
Proposition 1 does not apply in the seemingly ideal case of independent witness 
testimonies.  We return to this point in section 7. 
 
Why does focused correlation capture something about the relationship between 
coherence and confirmation? And why does it work in some circumstances but not in 
others? The answer to both of these questions, we believe, depends on the causal 
structure governing the system.   
 
6. Causal Structure 
 
The notion that causal relationships between hypothesis and evidence should play an 
important role in a theory of coherence is not a new one. Olsson (2002) remarks that:  
 

We may safely conclude that coherence is not truth conducive if the 
reports are entirely dependent on each other ….  On the other hand, it is 
implausible to require full independence for coherence to have the 
desirable effect; intuitively, a tiny influence of one report on the other 
does not cancel out the effect of coherence entirely (2002, p. 259).   

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 The positive (+) condition together with the negative condition (–) entails that (A3) defines 
evidentially independent variables with respect to a hypothesis variable; alternatively, we may 
stick to propositions and talk about each condition as one of two weaker variants of (A3), namely 
(A3+) and (A3–).  
10 To see that focused correlation is deflationary, notice that the numerator is 1, due to 
independence (A3), but the denominator is greater than 1, due to positive relevance (A1). Thanks 
to David Danks for this point. To see the incremental confirmation is positive in this case, see 
Proposition 3 in section 6. 
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What Olsson means by ‘the reports are entirely dependent on each other’ is that they 
directly cause each other.  Similarly, Bovens and Hartmann (2003a, 2003b) describe a 
witness testimony model incorporating (A3) and an analogue to our (A1), arguing that  
‘coherence will play a confidence boosting role when the information sources are 
independent and partially reliable’ (2003b, p. 604). They too have at least a partially 
specified causal situation in mind: 

 
The coherence of the story is of no consequence when the sources have 
had a chance to confer or when the sources are reporting what they 
inferred from the facts that other sources are reporting on…. (2003b, p. 
604) 

 
Moreover, even BonJour has remarked on the role that causal facts might play in 
coherentist justification:  
 

The fact that a belief was caused in this way rather than some other can 
play a crucial role in a special kind of coherentist justification. The idea is 
that the justification of these perceptual or observational beliefs, rather 
than merely appealing to the coherence of their propositional contents 
with the contents of other beliefs (so that the way that the belief was 
produced would be justificationally irrelevant), appeals instead to a 
general belief that beliefs caused in this special way (and perhaps 
satisfying further conditions as well) are generally true (2002, p. 206-7). 

 
Our thesis is that causal facts are relevant to coherentism.  Our proposal is to represent 
causal relationships directly within a theory of coherence using causal Bayes nets.  
 
Causal Bayes Nets 
 
The role of causal structure can be made more explicit and formal by using Causal Bayes 
Nets, which provide all the apparatus needed to represent causal systems,11 and to 
characterize the constraints such structures impose on the probability distributions they 
might produce.  Let a causal graph G = {V,E} be a set of random variables V and a set of 
directed edges E such that Ei  Ej ∈ E if and only if Ei is a direct cause of Ej relative to 
V.  The set of direct causes of a variable are its parents.  A set of variables V is causally 
sufficient just in case for every pair of variables Vi ,Vj ∈ V, the direct common causes of 
Vi ,Vj  are also in V. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 See Spirtes, Glymour, and Scheines 2000, and Pearl 2000. 
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An acyclic causal graph G over a causally sufficient set of variables V and a probability 
distribution P(V) satisfy the Causal Markov Axiom (Spirtes, Glymour and Scheines 
2000) just in case P(V) factors according to the causal graph: 
 

 
 
This factorization12 imposes independence constraints on the probability distributions—
the set of P(V)’s—that  can be generated by the causal graph.  Those independence 
constraints are characterized by the graph-theoretic relation of d-separation (Pearl 1988), 
and they can be viewed as the non-parametric consequences of qualitative causal 
structure.   
 
An additional axiom typically applied to causal Bayes nets is the Faithfulness assumption 
(Spirtes, et al. 2000).  A graph G and a probability distribution P(V) over the variables13 
in G satisfy the Faithfulness Axiom just in case the only independence relations in P(V) 
are those entailed by the Causal Markov axiom.14 
 
If causal structure alone plays a mediating role between coherence and confirmation, then 
that connection should be through the independence constraints in distributions that are 
Markov and Faithful to the causal graph, which accurately describes the qualitative 
causal relationships between the propositions comprising the evidence and the hypothesis.   
 
The Common Cause Model 
 
One easy application of causal Bayes nets to the coherence debate is to causally interpret 
the model of partially reliable, independent witness reports discussed by Bovens and 
Hartmann (2003), Olsson (2002), and others.  Figure 1, in which each Ri is a binary fact 
variable, Repi a binary witness report variable, and H a (hidden) binary hypothesis 
variable gives the most plausible interpretation of the partially reliable witness report 
model of Bovens and Hartmann. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 If X has no parents, then P(X | parents(X)) = P(X).  
13 Again, the Faithfulness Axiom applies to causally sufficient sets of variables. 
14 Pearl’s d-separation relation characterizes the independence relations entailed by the Causal 
Markov axiom for any acyclic graph (Pearl 1988). 

€ 

P(V) = P(X | parents(X)).
X∈V
∏
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Figure 1: Common Cause Model for Bovens and Hartmann 

 
A simplification of the Bovens-Hartmann model is the single-factor common cause 
model in Figure 2.  
	
  
	
  
	
  
	
  
	
  
	
  

 

	
  
	
  
	
  
 

Figure 2: Single-Factor Common Cause Model 
 

 
Interpreted as a causal Bayes net, this model entails (A3); that is, within a single-factor 
common cause model, any pair of evidence variables are independent conditional on H: 
 

∀i,j,  Ei _||_ Ej | H.15 
 
How then does the causal structure in such a model mediate the relationship between 
coherence and confirmation?      
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 Ei _||_ Ej | H is to be read: Ei is independent of Ej conditional on H, where Ei, Ej , and H are 
random variables, or sets of random variables.  If Ei, Ej, and H are naturally interpreted as events, 
then they can just as easily be represented as a random variable with binary outcome, e.g., Ei=0 , 
for the event did not occur, and Ei,=1, for the event occurred. 
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The answer is that the coherence between pieces of evidence in this model is entirely due 
to the relationship between the hypothesis and each piece of evidence individually.  More 
precisely, the correlation between any pair of evidence variables Ei and Ej in a single 
factor common cause model is just the product of the correlations between Ei and H and 
Ej and H.16  In Figure 2, for example, let a parameterize the correlation between the 
hypothesis H and the evidence E1, b the correlation between H and E2, and c the 
correlation between H and En. Then,  
 

ρE1,E2 = ab, 
ρE1,En = ac, 
ρE2,En = bc. 

 
This leads to the conjecture that, in a single-factor common cause model that satisfies 
positive relevance (A1) and in which the prior probabilities of E2 and E3 are the same, if 
ρE1,E2 > ρE1,E3, then after knowing E1, the incremental confirmation provided by E2 to H 
exceeds that provided by E3.  More formally, we have the following proposition about the 
relationship between correlation and confirmation in this class of models: 
 

Proposition 3. If {E1, E2, E3} satisfies positive relevance (A1) and independence 
(A3) with respect to H, and P(E2) = P(E3), then ρE1,E2 > ρE1,E3  ⇔ inci(H, E1, E2) > 
inci(H, E1, E3). 

 
In single-factor common cause models, coherence among the evidence arises from the 
individual relationships between the hypothesis and the evidence.  So, for example, it is 
impossible within this class of models for two sets of equally positive and independent 
evidence to have different levels of correlation or different levels of Shogenji coherence: 
	
  

Proposition 4. If E = {E1, E2} and E’ = {E1, E3} satisfy positive relevance (A1), 
equal relevance (A2), and independence (A3) with respect to H, and P(E2) = P(E3), 
then ρE1,E2 = ρE1,E3  and S(E1, E2) = S(E1, E3). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16 In a singly connected CBN with only binary variables, the correlation of any two variables is 
the product of the correlations between every pair of variables connected by an edge on the trek 
between them (Danks and Glymour 2001).  Thus, if X,Y,Z occur in a singly connected CBN, with 
Y on the trek between X and Z, then: ρXZ = ρXY * ρYZ.  The idea is simple, but the jargon requires 
some explanation. A network is singly connected just in case there is at most one undirected path 
between every pair of variables.  A trek from X to Y is either a directed path from X to Y, a 
directed path from Y to X, or the concatenation of two directed paths from a third variable Z to 
both X and Y. For example, the only trek between Rep1 and Rep2 in Figure 1 is:  Rep1  R1  H 
 R2  Rep2.  In Figure 2, the only trek between E1 and E2 is: E1  H  E2.   As all single-
factor common cause models are singly connected and because all connections are treks, the 
correlation between any two pieces of evidence Ei and Ej (i≠j) is the product of the correlation 
between Ei and the hypothesis H and the correlation between H and Ej.   
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Independence (A3) is necessary for Proposition 4, and single-factor common cause 
models entail (A3).  Interestingly, any model in which the hypothesis d-separates the 
evidence also entails (A3).  So, for example, Figure 3 also satisfies (A3). 
 
 
 
 
 
 

 
Figure 3: Alternative to Common Cause Model 

 
Moreover, if H and all Ei	
  are binary propositional variables, then any probability 
distribution that can be parameterized by the single-factor common cause structure in 
Figure 2 can also be parameterized by Figure 3, and vice versa.   
 
One motivation for the common cause model arises from the view that coherence should 
confirm a hypothesis exactly when the explanation provided by that hypothesis, when 
true, is the source of the coherence.  Since causes explain and common causes produce 
coherence, common cause models would seem to fit the bill.  Jonathan Cohen (1977, p. 
98) discusses an explanation-based conception of coherence in which the co-occurrence 
of a set of propositions is explained by a particular hypothesis.  Cohen’s explanation-
based coherence contrasts the probability of the co-occurrence of the evidence when the 
hypothesis is true against the probability of that co-occurrence when the hypothesis is 
false.  As this is basically a variation of the measure l from section 3, we might formalize 
Cohen’s idea as so: 
 

€ 

C1(E1,E2,...,En ,H) =
P(E1,E2,...,En | H)
P(E1,E2,...,En |¬H)

. 

 
A similar measure assesses the ratio of how much increase in the probability of co-
occurrence of the evidence is gained from supposing the hypothesis false to supposing it 
true, over how much could have been gained: 
 

€ 

C2 (E1,E2,...,En ,H) =
P(E1,E2,...,En | H) − P(E1,E2,...,En |¬H)

1− P(E1,E2,...,En |¬H)
. 

 
How does Cohen’s explanation-based conception of coherence relate to confirmation in 
common cause models?  In the simplest case, in which two evidence sets that share a 
common member are compared, E = {E1, E2} and E’ = {E1, E3}, this amounts to asking, 

H	
  E1	
  

E2	
   …..	
   En	
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if the explanation based association of E is larger than E’, whether that difference in 
association entails that E2 provides more incremental confirmation than E3. In other 
words, the question is, for i = 1,2, does Ci(E,H) > Ci(E’,H) entail inc1(H, E1, E2) > inc1(H, 
E1, E3)?  Interestingly, the answer is no, unless E ∪ E’ satisfies (A1) and (A2), and 
(A3),17 in which case the claim is trivially true because the antecedent cannot be 
satisfied.18   
 
Coherence and Causation 
 
So far we have only considered causal models that entail (A3).  But since not every 
causal model satisfies (A3), it is natural to consider how causal structure can constrain or 
mediate the relationship between coherence and confirmation in general. To begin to 
address this question, consider a causal model (Figure 4) that simultaneously represents 
three important limit cases: 
 

1. Independence (A3): all of the coherence among the evidence is because of the 
hypothesis (e.g., E = {E1,E2}). 

2. None of the coherence among the evidence is because of the hypothesis  
(e.g., E’ = {E1,E3}). 

3. The evidence has no coherence, but each piece of evidence is individually 
relevant to the hypothesis (e.g., E’’ = {E1,E4}). 

 
	
  

	
  
	
  

	
  

	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 4: Causal Model of the Murder of Dr. Black 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 They satisfy (A3) in virtue of the causal structure.  
18 To compare this result with Olsson’s (2005, pp. 126-33), he assumes (A1) and (A2) but not 
(A3). 
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The hypothesis of interest, H, is whether Mrs. White murdered Dr. Black.  There are 
several pieces of evidence relevant to this hypothesis.  E1 is whether or not Black receives 
a large inheritance prior to his death, and E4 is whether or not White is recently bankrupt. 
We code E1 =1 as ‘windfall’ and E4 =1 as ‘bankrupt’ so that both are positively relevant 
to H.  Both of these facts are evidence for, but also causes of, the hypothesis of interest. 
We will assume that whether or not White is recently bankrupt has no causal connection 
to Black inheriting a fortune, so E1 and E4 are causally and probabilistically independent.  
Proposition E3 is the published newspaper report that Dr. Black struck it rich. As any 
reader of newspapers knows, gossip columns are only partially reliable.19  Still, we 
assume that such a report is an effect of whether or not Dr. Black is in fact wealthy, and 
probabilistically independent of everything else given the state of his finances. Finally, 
we have three testimonies on H by three partially reliable witnesses: Miss Scarlett (E2), 
Colonel Mustard (E5), and Professor Plum (E6). 
 
The independence relations entailed by the Causal Markov axiom applied to this model 
are numerous: 
 

1. {E1, E3, E4} _||_ {E2, E5, E6} | H. 20 
2. E2 _||_ E5 | H , E2 _||_ E6 | H , E5 _||_ E6 | H. 
3. {E1, E3} _||_ E4 . 
4. E1 _||_ E4 | E3. 
5. {E2, E5, E6} _||_ E3 | any non-empty subset of {E1, H}. 
6.  H _||_ E3 | any subset of {E1, E2 , E4, E5, E6} that contains E1. 

 
We assume that any joint distribution P over these variables is Faithful to the causal 
graph in Figure 4. That is, no other independence relations over these variables hold in 
P.21  
 
Consider first the two evidence sets, E = {E1, E2} and E’ = {E1, E3}.  The coherence in E 
is for the same reason that different effects of a common cause are coherent: any 
coherence between E1 and E2 is the result of the connection between E1 and H and 
between H and E2.  The evidence set E’ marks the other extreme – none of the coherence 
between E1 and E3 is the result of the correlation between E1 and H and between H and E3.   
If E and E’ have identical coherence, do they afford different degrees of confirmation to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

19 In the sense of Bovens and Hartmann (2003a); that is, P(E3 | ¬E1) ≤ P(E3 | E1) < 1. 
20 The independence relations entailed by the graph are over variables.  As the variables are binary, 
representing the truth of the propositions they express - this independence actually denotes:  E1 _||_ E2 | H  
&   E1 _||_ E2 | ¬H.  A similarly remark applies for each independence relation in the list that follows.  
21 Faithfulness is explained in chapter 3 of (Spirtes, Glymour, and Scheines 2000). 
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H?  Since both sets share E1, this reduces to the question of whether the incremental 
confirmation for H afforded by E2 always exceeds that of E3, or vice versa, or neither.  
 
By the causal structure of this model, H and E3 are independent conditional on E1, P(H | 
E1) = P(H | E1, E3), thus E3 provides zero incremental confirmation after E1.  Thus, the 
question of whether E and E’ afford different degrees of confirmation to H reduces to 
asking whether E2 provides positive incremental confirmation to H conditional on E1, i.e., 
P(H | E1, E2) > P(H | E1).  The answer is yes, and it makes no difference how strong the 
relationship between H and E2 is, so long as it is positive.  
 

Proposition 5:  If E = {E1, E2} and E’ = {E1, E3} are positive evidence sets 
for H, then in any probability distribution P(H, E1, E2, E3} that is Markov and 
Faithful to the causal graph in Figure 4, inc1(H,E1,E2) > inc1(H,E1,E3). 
 

So coherence plays no role whatsoever in this case. It is the causal structure of the 
situation that determines the result.  
 
No Coherence 
 
Now consider evidence sets E = {E1, E2} and E’’ = {E1, E4}.  From the causal graph in 
Figure 4, we know that E1 and E4 are probabilistically independent, so E’’ has zero 
association, which means zero correlation and a Shogenji coherence equal to 1.  Is it 
nevertheless possible for E’’ to provide more confirmation to H than E, even though E 
has positive coherence?   The answer, in a surprisingly wide range of cases, is yes.   
 

Proposition 6: In cases for which E and E’’ are equally positive evidence (epe) 
sets for H, then then in any probability distribution P(H, E1, E2, E4} that is Markov 
and Faithful to the causal graph in Figure 4,  inc1(H,E1,E4) > inc1(H,E1, E1)  if 
and only if α/β > S(E1, E2), where	
  
 

€ 

α =
P(H | E1,E4 )
P(H | E1)

and β =
P(H | E4 )
P(H)

=
P(H,E4 )
P(H)P(E4 )

. 

 
The incremental confirmation from an evidence set with no coherence (E’’) exceeds the 
confirmation from an evidence set with positive coherence (E) just in case the ratio of the 
incremental confirmation provided by E4 after knowing E1 to the confirmation provided 
by E4 alone is greater than coherence of E.  
 
Clearly these propositions are just the tip of the iceberg. Most are restricted to simple 
evidence sets that overlap, others require fairly strong assumptions, and others involve 
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only particular measures of coherence and confirmation. What we hope is clear, however, 
is that a program in which one directly models the causal reason for coherence will aid in 
the project of explicating the relationship between coherence and confirmation.   
 
 
7.  Discussion 
 
The results in Propositions 1 and 2, when considered in the context of causal Bayes nets, 
can appear confusing and counterintuitive.  Proposition 1 gives a sufficient condition for 
positive confirmation of a hypothesis H from an evidence set E.  If the coherence of E, 
conditional on H, is greater than the coherence of E simpliciter, that is, if ForH(E) > 1, 
then E confirms H.22 Consider a few simple versions of the structures we have considered 
earlier, which are displayed in Figure 5, again assuming positive relevance for each piece 
of evidence Ei.  
 
 
 
 
 
 
 

Figure 5: Three Different Hypothesis – Evidence Relationships 
 
In graph A, ForH(E)	
  <	
  1.  This is because E1 and E2	
  are independent, so S(E) = 1, but E1 

and E2 are negatively associated conditional on H, so S(E| H) < 1.   In graphs B and C, 
ForH(E) is also less than 1.  This is because E1 and E2 are independent conditional on H, 
so S(E | H) = 1, but E1 and E2 are positively associated, so S(E) > 1.  In elaborations of 
each of these structures that involve adding a causal connection between E1 and E2, it is 
possible to parameterize the model such that ForH(E) > 1, but in the simple structures 
pictured in Figure 5, Proposition 1 cannot be activated because the antecedent is false.    
 
Beginning with a piece of evidence E1 that is a cause of H, as in graphs A and B, and 
choosing between getting a new piece of evidence E2 that is a cause of H (graph A) or an 
effect of H (graph B), where both E1 and E2 are individually equally correlated with H, 
which structure ought one to prefer if the goal is to maximize the confirmation of H?  If 
E2 is selected to be a cause of H (graph A), then one would be opting for evidence that 
has no coherence.  If E2 is selected to be an effect of H (graph B), then one would be 
opting for evidence that has all of its coherence through H.  As Proposition 6 shows, 
neither choice dominates; the outcome depends on a subtle inequality.    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
22 Always assuming positive relevance, (A1), of each member of E. 
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Proposition 2 demonstrates that focused correlation tracks confirmation when comparing 
a pair of equal positive evidence sets for H or, within bounds, a pair of variable positive 
evidence sets for H.23  Readers familiar with the impossibility theorems of Erik Olsson 
(2005) and Luc Bovens and Stephan Hartmann (2003a) may wonder how this can be true.  
Olsson’s result, for example, shows that ‘there are no informative coherence measures 
that are truth conducive ceteris paribus in a basic Lewis scenario’ (Olsson 2005, p. 213).  
The ceteris paribus conditions for Olsson’s result, partial reliability and independence, 
are shared with Bovens and Hartmann’s witness model, and those conditions correspond 
to our (A1) and (A3), respectively.  There are subtle and important differences between 
these witness models and our own framework, but we view (A1) and (A3) to be the 
signature of Bayesian witness models, and our Propositions 3 and 4 show how evidential 
coherence is completely determined by the strength of individual evidence within 
Bayesian witness models.  Specifically, Proposition 4 is our simplified and generalized 
version of Olsson’s impossibility result.  This result shows that there can be no difference 
in coherence between equally positive relevant evidence sets for H (A2) which satisfy 
evidential independence and P(Ei) = P(Ej), for all individual pieces of evidence. 
Proposition 3 shows that any difference in coherence between two positive evidence sets 
will be directly due to a difference in evidential strength.   
 
This brings us back to the beginning of this essay and how to explain why colluding 
witnesses offer less compelling testimony than independent witnesses for the claim that 
White killed Black. Proposition 5 tells us that collusion is always worse than positive 
evidence offered by independent witness reports.  Neither evidential coherence nor our 
own impossibility result about Bayesian witness models holds any sway.  
 
Our approach to the riddle of coherence is different from Bayesian epistemology in at 
least four respects. First, we reject a central tenant of Bayesian epistemology, which is 
that the relationship between coherence and likelihood of truth is fully determined by 
probability alone (Bovens and Hartmann 2003a, pp. 12 & 27).  In our view, it is 
necessary to take into consideration the causal structure that might regulate the 
relationships between evidence and a hypothesis.  Second, we think that it is a mistake to 
focus on the specific formulation of ‘truth conduciveness’ and ‘coherence’ before 
understanding the general principles for how association, incremental confirmation, and 
causal structure fit together.  Our strategy has been to start with what we believe are the 
most common incremental confirmation measures and very basic approaches to 
measuring probabilistic association and to explore general principles for how the two 
constrain one another given various causal structures.  Third, on the Bayesian view, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
23 For evidence sets of size 2 with a common variable.  



23 
 

models of witness testimony are believed to characterize an ideal class of models within 
which to explore the general relationship between measures of coherence and likelihood 
of truth.  In our view, this has it exactly backwards.  What is surprising about Bayesian 
witness models is, while designed to capture a pre-theoretic truth about ideal witness 
testimony which appears to be charitable to coherence theory, they specify conditions 
that are inimical to understanding how probability and likelihood of truth fit together.  
Last, although there are some exceptions (Douven and Meijs 2007), most Bayesian 
coherence measures attempt to combine together logical and probabilistic notions of 
coherence.  However, we think that these two notions are better kept separate.    
 
8. Conclusion 
 
Explicating notions of coherence and confirmation have occupied philosophers of science 
for hundreds of years.  Further, most every philosopher since William Whewell who has 
discussed both notions has connected them.  Recently, many have tried to model these 
ideas and the connection between them using only the probability calculus.  Attempts to 
connect coherence simpliciter to confirmation are bound to fail, as probabilistic models 
of coherence make no reference to either the reason for coherence or the reason any piece 
of evidence in a set of evidence should relate to the hypothesis.  In our view, any such 
efforts ought to include, explicitly in the formalism, both the reason the evidence is 
coherent and how the evidence is causally related to the hypothesis.  We have tried to 
argue that focused correlation and causal structure move in this direction. 
 
Since evidence can be causally connected to other evidence and to the hypothesis in 
virtually any way possible, it turns out to be very useful to explicitly and formally model 
the causal structure governing the evidence and the hypothesis.  Even when one connects 
causal structure to probability only qualitatively through independence and conditional 
independence, quite a lot about the relationship between coherence and confirmation can 
be adduced.  In cases in which all the evidence are effects of the hypothesis and 
otherwise causally independent, coherence and confirmation are tightly connected.24  In 
cases in which the coherence between the evidence has nothing causally to do with the 
hypothesis, coherence and confirmation are utterly disconnected.  In cases in which 
pieces of evidence are not caused by the hypothesis nor cause each other, the story is 
more complicated, but extremely rich nonetheless.   
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
24 Philosophers, statisticians, and computer scientists have learned a lot about how to tell, from 
data, whether or not a set of measured variables are indeed effects of an unmeasured common 
cause and otherwise causally independent, and so this case is epistemically particularly exciting.  
See Silva, Scheines, Glymour, and Spirtes (2006), Junker and Ellis (1997), and Glymour (1998).   
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We have not offered a proof that focused correlation and/or causal structure are the only 
keys to the castle, nor do we think one is forthcoming.  Nor have we offered anything 
approaching a complete theory of coherence and confirmation through focused 
correlation and causal structure.  For one thing, we have concentrated on evidence sets of 
size 2, and difficulties loom for attempts to make comparisons of larger evidence sets 
(Bovens and Hartmann 2006). Focused correlation is defined for arbitrary-sized 
information sets, but confirmation, covariance, and correlation are here conceived of as 
binary relationships, or ternary in conditional form.  Thus, studying the relationship 
between the focused correlation of evidence sets greater than size two and incremental 
confirmation, covariance or Pearson’s correlation, will require a decision as to how to 
partition the evidence set.  Specifically, there are many incremental confirmation 
questions that are compatible with one focused correlation problem involving an 
evidence set of size greater than two. To expect otherwise is a category mistake, and 
negative results should be no surprise.25 
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Appendix 
 
 
Proposition 1. 
 
Theorems 1-6 establish that positive focused correlation of a positive evidence set E for 
H entails positive confirmation of H given E. We omit countermodels falsifying the 
converse relation. 
 
Theorem 1. Let {E1, E2} be a positive evidence set for H. Then,  

ForH (E1,E2) > 1  ⇒ inc1(H, E1,E2) > 0. 
 
Proof: We wish to show that, for any positive evidence set {E1,E2} for H,  
ForH (E1,E2) > 1 only if P(H | E1,E2) - P(H | E1) > 0. Suppose ForH (E1,E2) > 1.  Both 
P(H | E1) > P(H) and P(H | E2) > P(H) by (A1). We now show that  
P(H | E1, E2) > P(H | E1). 
 

€ 

ForH (E1,E2) =
P(H | E1,E2)

P(H)
×
P(H)P(E1)
P(H,E1)

×
P(H)P(E2)
P(H,E2)

> 1

=
P(E1,E2,H)
P(H,E2)

×
P(E1)
P(H,E1)

×
P(H)P(E2)
P(H,E2)

> 1

=
P(E1,E2,H)
P(H,E2)

×
P(E1)
P(H,E1)

×ε > 1, where ε < 1 by (A1);  So,

= P(H | E1,E2) ×ε > P(H | E1).

 

 
Thus, whenever {E1,E2} is positive evidence for H and ForH (E1,E2) >1, then  
inc1(H, E1,E2) > 0. ♦ 

	
  
Theorem 2. Let {E1,E2} be a positive evidence set for H. Then,  

ForH (E1,E2) >1  ⇒ inc2(H, E1,E2) > 0. 
 
Proof: From Theorem 1, whenever {E1,E2} is positive evidence for H and  
ForH (E1,E2) >1, it follows immediately that inc2(H, E1,E2) > 0 unless , but 
P(H | E1) cannot equal 1, by (A1). Thus, whenever {E1,E2} is positive evidence for H 
and ForH (E1,E2) >1, then inc2(H, E1,E2) > 0. ♦ 

 
Theorem 3. Let {E1,E2} be a positive evidence set for H. Then,  

ForH (E1,E2) >1  ⇒ r1(H, E1,E2) > 0. 
 
Proof: By (A1), P(H)/P(H | E1) < 1 and P(H)/P(H | E2) < 1. So, given ForH (E1,E2) >1, 
P(H | E1, E2) > P(H). It follows immediately that log[P(H | E1, E2) / P(H)] > 0. ♦ 

€ 

P(H | E1) =1
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Theorem 4. Let {E1,E2} be a positive evidence set for H. Then,  

ForH (E1,E2) >1  ⇒ r2(H, E1,E2) > 0. 
 
Proof: By theorem 1, if ForH (E1,E2) >1 then P(H | E1, E2) × ε > P(H | E1), and ε < 1. 

Then P(H | E1, E2) > P(H | E1). Therefore, log[P(H | E1, E2) / P(H | E1)] > 0.♦ 
 
Theorem 5. Let {E1,E2} be a positive evidence set for H. Then,  

ForH (E1,E2) >1  ⇒ ko(H, E1,E2) > 0. 
 

Proof: By (A1), P(H)/P(H | E1) < 1 and P(H)/P(H | E2) < 1. So given ForH (E1,E2) >1, 
then P(H | E1, E2) / P(H) > 1. Hence, 
 
(i)   P(H | E1, E2) > P(H | E2) > P(H) , therefore 
(ii)  P(¬H | E1, E2) < P(¬H | E2) < P(¬H). 

	
  
Now we wish to show that 

€ 

P(E1,E2 | H) − P(E1,E2 |¬H)
P(E1,E2 |¬H) + P(E1,E2 |¬H)

> 0.   

Observe: 
 
(iii) 

€ 

P(H,E1,E2)
P(H)P(E1,E2 | H)+P(E1,E2 |¬H)

−
P(¬H,E1,E2)

P(¬H)P(E1,E2 | H)+P(E1,E2 |¬H)
> 0, therefore 

 
(iv) 

€ 

P(H,E1,E2)
P(H)α

−
P(¬H,E1,E2)
P(¬H)α

> 0. 

 
Hence, P(E1, E2| H) × 1/α > P(E1, E2|¬H) × 1/α.  Therefore, ko(H, E1, E2) iff P(E1, E2| 
H) > P(E1, E2|¬H) iff 
 
(v) 

€ 

P(H | E1,E2)P(E1,E2)
P(H)

>
P(¬H | E1,E2)P(E1,E2)

P(¬H)
, 

 
which is ensured by (i) and (ii). So, ForH (E1,E2) >1 entails ko(H, E1,E2) > 0 whenever 
{E1,E2} is positive evidence for H. ♦	
  

 
Theorem 6. Let {E1,E2} be a positive evidence set for H. Then,  

ForH (E1,E2) >1  ⇒ l(H, E1,E2) > 0. 
 

Proof: By (A1), P(H)/P(H | E1) < 1 and P(H)/P(H | E2) < 1. and by hypothesis we 
suppose that focused correlation is greater than 1. Therefore, from Theorem 4, since 
these conditions entail P(E1, E2| H)  > P(E1, E2|¬H), it follows immediately that 
log[P(E1, E2| H) / P(E1, E2|¬H)] > 0.  ♦ 
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Proposition 2. 
 
Lemma 1. Let {E1,E2} and {E1,E3} be epe-evidence sets for H. Then,  
 

(a) If (P(H | E1, E2)P(H) / P(H | E1) P(H | E2)) = ((P(H | E1, E3)P(H)) / P(H | E1) P(H | 
E3)), then P(H | E1, E2) = P(H | E1, E3) 

(b) If (P(H | E1, E2)P(H) / P(H | E1) P(H | E2)) = ((P(H | E1, E3)P(H)) / P(H | E1) P(H | 
E3)), then P(H | E1, E2) = P(H | E1, E3) 

(c)  
Now we prove proposition 2 by the following seven theorems. To shorten the proofs, we 
use the notation  ‘X >= Y’ to abbreviate two cases, (i) when X > Y and (ii) when X = Y.   
 
Theorem 7. ForH (E1,E2) ≥ ForH (E1,E3)  ⇒ inc1(H, E1,E2) ≥  inc1(H, E1,E3). 

(i) If {E1,E2} and {E1,E3} be epe-evidence sets for H and ForH (E1,E2) = ForH (E1,E3), 
then inc1(H, E1,E2) =  inc1(H, E1,E3). 

(ii) If {E1,E2} and {E1,E3} be epe-evidence sets for H and ForH (E1,E2) > ForH (E1,E3), 
then inc1(H, E1,E2) >  inc1(H, E1,E3). 

 
Proof: By Lemma 1a for equality case and 1b for inequality, P(H | E1,E2) >= P(H | 
E1,E3). Then P(H | E1,E2) - P(H | E1) >= P(H | E1,E3) - P(H | E1). So, ForH (E1,E2) ≥ 
ForH (E1,E3)  ⇒ inc1(H, E1,E2) ≥  inc1(H, E1,E3).♦ 

 
 
Theorem 8. inc1(H, E1,E2) ≥  inc1(H, E1,E3) ⇒ inc2(H, E1,E2) ≥  inc2(H, E1,E3) 

(i) If {E1,E2} and {E1,E3} be epe-evidence sets for H and inc1(H, E1,E2) =  inc1(H, 
E1,E3), then inc2(H, E1,E2) =  inc2(H, E1,E3). 

(ii) If {E1,E2} and {E1,E3} be epe-evidence sets for H and inc1(H, E1,E2) >  inc1(H, 
E1,E3), then inc2(H, E1,E2) >  inc2(H, E1,E3). 

 
Proof: if P(H | E1,E2) – P(H | E1) >= P(H | E1,E3) – P(H | E1), then by Lemma 1  

P(H | E1,E2) >= P(H | E1,E3). Thus, (P(H | E1,E2) – P(H | E1) / 1- P(E1)) >=  (P(H | 
E1,E3) – P(H | E1) / 1- P(E1). So, inc1(H, E1,E2) ≥  inc1(H, E1,E3) ⇒ inc2(H, E1,E2) ≥  
inc2(H, E1,E3).♦ 
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Theorem 9. inc2(H, E1,E2) ≥  inc2(H, E1,E3) ⇒ r1(H, E1,E2) ≥ r1 (H, E1,E3) 
(i) If {E1,E2} and {E1,E3} be epe-evidence sets for H and inc2(H, E1,E2) = inc2(H, 

E1,E3), then r1(H, E1,E2) = r1(H, E1,E3). 
(ii) If {E1,E2} and {E1,E3} be epe-evidence sets for H and inc2(H, E1,E2) > 

inc2(H,E1,E3), then r1(H, E1,E2) > r1(H, E1,E3). 
 
Proof: If P(H | E1,E2) – P(H | E1) / 1- P(E1)) >= (P(H | E1,E3) – P(H | E1) / 1- P(E1) 
then P(H | E1,E2) >/= P(H | E1,E3). Thus it follows immediately that log[(P(H | E1,E2) 
/P(H)] >= log[(P(H | E1,E3) /P(H)]. So, inc2(H, E1,E2) ≥  inc2(H, E1,E3) ⇒ r1(H, E1,E2) 
≥ r1 (H, E1,E3).♦ 

 
Theorem 10. r1(H, E1,E2) ≥  r1(H, E1,E3) ⇒ r2(H, E1,E2) ≥  r2(H, E1,E3).  

(i) If {E1,E2} and {E1,E3} be epe-evidence sets for H and r1(H, E1,E2) = r1(H, E1,E3), 
then r2(H, E1,E2) = r2(H, E1,E3). 

(ii) If {E1,E2} and {E1,E3} be epe-evidence sets for H and r1(H, E1,E2) > r1(H,E1,E3), 
then r2(H, E1,E2) > r2(H, E1,E3). 

 
Proof: (i)  if log[(P(H | E1,E2) /P(H)] >/= log[(P(H | E1,E3) /P(H)], then P(H | E1,E2) 
>= P(H | E1,E3), and immediately log[(P(H | E1,E2) /P(H | E1)] >= log[(P(H | E1,E3) 
/P(H | E1)]. So, r1(H, E1,E2) ≥  r1(H, E1,E3) ⇒ r2(H, E1,E2) ≥  r2(H, E1,E3). ♦ 

 
Theorem 11. r2(H, E1,E2) ≥ r2(H, E1,E3) ⇒ l(H, E1,E2) ≥  l(H, E1,E3) 

(i) If {E1,E2} and {E1,E3} be epe-evidence sets for H and r2(H, E1,E2) = r2(H, E1,E3), 
then l(H, E1,E2) =  l(H, E1,E3). 

(ii) If {E1,E2} and {E1,E3} be epe-evidence sets for H and r2(H, E1,E2) > r2(H, E1,E3), 
then l(H, E1,E2) >  l(H, E1,E3). 

 
Proof: By hypothesis, r2(H, E1,E2) >= r2(H, E1,E3). So P(H | E1,E2) >= P(H | E1,E3). 
Observe that log[P(E1,E2 | H) / P(E1,E2 | ¬H)] >= log[P(E1,E3 | H) / P(E1,E3 | ¬H)] 
reduces to: 
 

€ 

log P(H | E1,E2)P(E1,E2)P(H)
P(¬H | E1,E2)P(E1,E2)P(¬H)

>= log P(H | E1,E3)P(E1,E3)P(H)
P(¬H | E1,E3)P(E1,E3)P(¬H)

. 

 
But this inequality holds if, P(H | E1, E2) >= P(H | E1, E3), which holds by Lemma 1.  
So, r2(H, E1,E2) ≥ r2(H, E1,E3) ⇒ l(H, E1,E2) ≥  l(H, E1,E3).♦ 

 
 
Theorem 12. l(H, E1,E2) ≥  l(H, E1,E3) ⇒ ko(H, E1,E2) ≥  ko(H, E1,E3) 
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(i) If {E1,E2} and {E1,E3} be epe-evidence sets for H and l(H, E1,E2) =  l(H, E1,E3), 
then ko(H, E1,E2) =  ko(H, E1,E3). 

(ii) If {E1,E2} and {E1,E3} be epe-evidence sets for H and l(H, E1,E2) >  l(H, E1,E3), 
then ko(H, E1,E2) >  ko(H, E1,E3). 

 
Proof: Let:  
 a = P(E1, E2 | H) 

b = P(E1, E2 | ¬H) 
c = P(E1, E3 | H) 
d = P(E1, E3 | ¬H) 
 

Suppose a/b >= c/d, by hypothesis. Hence, ac >= bd. To show that a-b/a+b = c-d/c+d, 
observe that this equality reduces to 
 

€ 

−bc + ad
(a +b)(c + d)

>= 0, 

 
which holds since –bc + ad >= 0, by hypothesis.   
 
So, l(H, E1,E2) ≥  l(H, E1,E3) ⇒ ko(H, E1,E2) ≥  ko(H, E1,E3).♦ 
 

 
 
Theorem 13. ko(H, E1,E2) ≥  ko(H, E1,E3) ⇒ ForH (E1,E2) ≥ ForH (E1,E3) 

(i) If {E1,E2} and {E1,E3} be epe-evidence sets for H and ko(H, E1,E2) =  ko(H, E1,E3), 
then ForH (E1,E2) = ForH (E1,E3). 

(ii) If {E1,E2} and {E1,E3} be epe-evidence sets for H and ko(H, E1,E2) >  ko(H, E1,E3), 
then ForH (E1,E2) > ForH (E1,E3). 

 
Proof: Let: 

a = P(H| E1, E2) 
1 − a = P(¬H |E1, E2) 
b = P(H| E1, E3) 
1 − b = P(¬H |E1, E3). 

 
We have ko(H, E1,E2) >=  ko(H, E1,E3), by hypothesis.  
 

1) 

€ 

log P(E1,E2 | H)
P(E1,E2 |¬H)

>= log P(E1,E3 | H)
P(E1,E3 |¬H)

, which is equivalent to 
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2) 

€ 

log P(H | E1,E2)P(E1,E2)P(H)
P(¬H | E1,E2)P(E1,E2)P(¬H)

>= log P(H | E1,E3)P(E1,E3)P(H)
P(¬H | E1,E3)P(E1,E3)P(¬H)

. 

 
 
Then, the (in)equality of equation 2) holds if P(H | E1, E2) >= P(H | E1, E3), which 
follows by Lemma 1.   
 
So, ko(H, E1,E2) ≥  ko(H, E1,E3) ⇒ ForH (E1,E2) ≥ ForH (E1,E3). ♦ 

 
 
 
Proposition 3. If {E1, E2, E3} satisfy positive relevance (A1) and independence (A3) with 
respect to H, and P(E2) = P(E3), then ρE1,E2 > ρE1,E3  ⇔ inci(H, E1, E2) > inci(H, E1, E3). 
 
Proof of Proposition 3. 
1) For binary variables X, Y, H, any distribution P(X, Y, H) in which X _||_ Y | H holds 
can be parameterized by a causal Bayes network (CBN) with the graph X  H  Y. 
 
2) Among binary variables X, Y, Cov(X,Y) = P(Y, X) – P(X)P(Y).  So, we have that 
Cov(Ei,H) = P(H | Ei) – P(H)P(Ei), for i = 1, 2, 3.   
 
3) By (A1), P(H | E1) > P(E1).  So P(H | E1) > P(H)P(E1), and thus Cov(E1, H) > 0.   
Similarly, Cov(E2, H) > 0 and Cov(E3, H) > 0. 
 
4) In a singly connected CBN over binary variables, the correlation between any two 
variables X, Y, Cor(X,Y), is the product of the correlations on the trek from X to Y.  
(Danks and Glymour, 2001) 
 
5) Since Cov(E1, H), Cov(E2, H) and Cov(E3, H) are positive, Cor(E1, H), Cor(E2, H) and 
Cor(E3, H) are positive. So, both Cor(E1, E2) and Cov(E1, E2) are positive and Cor(E1, E3) 
and Cov(E1, E3) are positive. 
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 (⇒) Suppose ρE1,E2 > ρE1,E3.  By 4), Cor(E1, H) Cor(E2, H) > Cor(E1, H) Cor(E3, H). 
By 5) we know that these correlations are positive, so Cor(E2, H) > Cor(E3, H). By 
hypothesis P(E2) = P(E3), so Cov(E2, H) > Cov(E3, H). Thus, P(H | E2) > P(H | E3). 
 
(⇐) Suppose inci(H, E1, E2) > inci(H, E1, E3).  Then, by (A2) and (A3), P(H | E1, E2) - 
P(H | E1) > P(H | E1 E3) - P(H | E1) iff P(H|E2) > P(H|E3). Since P(E2) = P(E3), Cov(E2, 
H) > Cov(E3, H). Since by 5) correlations are positive, Cor(E2, H) > Cor(E3, H), and 
by 4), Cor(E1, H) Cor(E2, H) > Cor(E1, H) Cor(E3, H). So, ρE1,E2 > ρE1,E3.♦ 

 
 
Proposition 4. If E = {E1, E2} and E’ = {E1, E3} satisfy positive relevance (A1), equal 
relevance (A2), and independence (A3) with respect to H, and P(E2) = P(E3), then ρE1,E2 = 
ρE1,E3  and S(E1, E2) = S(E1, E3). 
 
Proof of Proposition 4. 

 
Suppose P(D) is a positive probability distribution over (H, E1, E2, E3) such that E = {E1, 
E2} and E’ = {E1, E3} satisfy positive relevance (A1), equal relevance (A2), and 
independence (A3) with respect to H, and P(E2) = P(E3). 
 

Lemma 2: Then, the covariance of E2 and H is identical to the covariance of E3, and 
H, since 

 

€ 

P(E2)[P(H | E2)− P(H )]= P(E3)[P(H | E3)− P(H)], 
 

and (A1) guarantees that the covariance is positive. ♦ 
 
Then:  
 
1) By (A1), Cor(H,Ei) is positive for i = 1, 2, 3. 
 
2) From P(E2) = P(E3) and Lemma 1, Cor(H,E2) = Cor(H,E3). 
 
3) So, by the Danks-Glymour product rule (2001), ρE1,E2 = ρE1,E3. 
 
4) Also, since both P(E2) = P(E3) and ρE1,E2 = ρE1,E3, then Cov(E1,E2) = Cov(E1,E3). 
 
5) So, S(E1, E2) = S(E1, E3). 
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Proposition 5.  If E = {E1, E2} and E’ = {E1, E3} are positive evidence sets for H, 
then in any probability distribution P(H, E1, E2, E3} that is Markov and Faithful to the 
causal graph in Figure 3, inc1(H,E1,E2) > inc1(H,E1,E3). 
 
Proof of Proposition 5: 

1) 

€ 

P(E1,E2 | H)
P(E1,E2 |¬H)

=
P(E1 | H)
P(E1 |¬H)

×
P(E2 | H)
P(E2 |¬H)

,   by E1 _||_ E2 | H 

 

2)

	
  	
  

€ 

P(E1,E2 | H)
P(E1,E2 |¬H)
P(E1 | H)
P(E1 |¬H)

=
P(E2 | H)
P(E2 |¬H)

,  from dividing both sides by 

€ 

P(E1 | H)
P(E1 |¬H)

.  

 
3) 

€ 

P(E2 | H)
P(E2 |¬H)

>1,  by positive relevance and Bayes theorem. 

 

4)  

€ 

P(E1,E2 | H)
P(E1,E2 |¬H)
P(E1 | H)
P(E1 |¬H)

> 1, by 2 and 3. 

 

5) 

€ 

P(E1,E2 | H)
P(E1,E2 |¬H)
P(E1 | H)
P(E1 |¬H)

=

P(H | E1,E2)P(E1,E2)
P(H)

P(¬H | E1,E2)P(E1,E2)
P(¬H)

P(H | E1)P(E1)
P(H)

P(¬H | E1)P(E1)
P(¬H)

,  by Bayes theorem 

 

6)  

€ 

P(E1,E2 | H)
P(E1,E2 |¬H)
P(E1 | H)
P(E1 |¬H)

=

P(H | E1,E2)
P(¬H | E1,E2)
P(H | E1)
P(¬H | E1)

,  cancellations from 5. 

 

7) 

€ 

P(H | E1,E2)
P(¬H | E1,E2)
P(H | E1)
P(¬H | E1)

> 1, by 6 and 4 

 
8) So, P(H | E1,E2) – P(H | E1) > 0, and inc1(H, E1,E2) > 0.   
 
9) Since E3 _||_ H | E1 P(H | E1,E3) – P(H | E1) = 0, and thus inc1(H, E1,E3) = 0.  
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10) So, inc1(H, E1,E2) > inc1(H, E1,E3).  ♦ 
 
 
Proposition 6. If E = {E1, E2} and E’’ = {E1, E4} are equally positive evidence sets for H, 
then in any probability distribution P(H, E1, E2, E4,) that is Markov and Faithful to the 
causal graph in Figure 3,  
 

inc1(H,E1,E4) > inc1(H,E1,E2)  if and only if S(E1,E2) > a/b, 
 
where  

a = P(H | E4) / P(H) 
b = P(H | E1 E4) / P(H | E1). 

 
Proof of Proposition 6. 
 
1) Because E and E’’ are epe,  
 inc1(H,E1,E4) > inc1(H,E1,E2)  if and only if ForH (E’’) > ForH(E) 
 

2) ForH (E1,E4) =   

€ 

P(E1,E4 | H)
P(E1 | H)P(E4 | H)

P(E1,E4 )
P(E1)P(E4 )

=
P(E1,E4 | H)

P(E1 | H)P(E4 | H)
, since E1 _||_ E4  

 

3) ForH (E1,E2) = 

€ 

P(E1,E2 | H)
P(E1 | H)P(E2 | H)

P(E1,E2)
P(E1)P(E2)

=
P(E1,E2)
P(E1)P(E2)

, since E1 _||_ E2 | H 

 

4) ForH (E1,E4) = 

€ 

P(H | E1,E4 )
P(H)

P(E1 | H)P(E4 | H)
,  Bayes theorem to numerator in 2. 

 
 
5) ForH (E1,E4) =  

€ 

P(H | E1,E4 )P(E1,E4 )P(H)
P(H | E1)P(H | E4 )P(E1)P(E4 )

,  Bayes theorem to denominator in 4 

 
6) ForH (E1,E4) =

€ 

P(H | E1,E4 )P(H)
P(H | E1)P(H | E4 )

×1,  since E1 _||_ E4 entails P(E1,E4) = P(E1)P(E4).   

 
 
7) If ForH (E1,E4) > ForH (E1,E2) iff 

€ 

P(H | E1,E4 )P(H)
P(H | E1)P(H | E4 )

>
P(E1)P(E2)
P(E1,E2)

. 
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8) iff  

€ 

P(H | E1,E4 )P(H)
P(H | E1)P(H | E4 )

×
P(E1)P(E2)
P(E1,E2)

>1. 

 
9) iff 

€ 

P(H | E1,E4 )
P(H | E1)

× S(E1,E2) >
P(H | E4 )
P(H)

. 

 
 

10) 

€ 

S(E1,E2) >

P(H | E4 )
P(H)

P(H | E1,E4 )
P(H | E1)

. 

 
 
 
 
 


