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Abstract:	 Greaves	 and	 Wallace	 argue	 that	 conditionalization	 maximizes	
expected	 accuracy.	 	 In	 this	 paper	 I	 show	 that	 their	 result	 only	 applies	 to	 a	
restricted	 range	 of	 cases.	 	 I	 then	 show	 that	 the	 update	 procedure	 that	
maximizes	expected	accuracy	in	general	is	one	in	which,	upon	learning	P,	we	
conditionalize,	 not	 on	 P,	 but	 on	 the	 proposition	 that	 we	 learned	 P.	 	 After	
proving	this	result,	I	provide	further	generalizations	and	show	that	much	of	
the	 accuracy-first	 epistemology	 program	 is	 committed	 to	 KK-like	 iteration	
principles	and	to	the	existence	of	a	class	of	propositions	that	rational	agents	
will	be	certain	of	if	and	only	if	they	are	true.		

	
1.	Introduction	
	 Rational	agents	revise	their	beliefs	 in	 light	of	new	information	they	receive.		
But	how	should	agents	revise	their	beliefs	in	response	to	new	information?	To	state	
this	question	more	precisely,	it	will	be	helpful	to	think	of	information	processing	as	
occurring	in	two	(not	necessarily	temporal)	stages:1	First,	there	is	a	non-inferential	
stage	 at	 which	 an	 agent,	 through	 some	 non-inferential	 means,	 gains	 some	
information.		We’ll	call	this	exogenous	information	gaining.		Metaphorically,	we	can	
think	of	this	stage	as	involving	the	world	‘flinging’	some	information	at	the	agent.			

In	 the	 second	 stage,	 the	 agent	 revises	 her	 beliefs	 in	 response	 to	 the	
exogenous	 information	 gaining	 (the	 flinging)	 that	 took	 place.	 	 	 These	 are	 the	
revisions	 that	 we	 are	 interested	 in	 evaluating.	 Sometimes,	 as	 a	 result	 of	 such	
revisions,	the	agent	may	come	to	possess	additional	information,	in	which	case	we’ll	
say	 that	 this	 information	 came	 to	 be	 possessed	 endogenously.	 For	 example,	 I	may	
gain	 the	 information	 that	 Gabe	 is	 at	 the	 party	 exogenously,	 and,	 as	 a	 result	 of	
revising	my	beliefs	 in	 response	 to	 this	 information,	 also	 come	 to	 	 (endogenously)	
possess	the	information	that	his	partner	Henry	is	at	the	party.		

																																								 																					
1	The	two-stage	model	is	discussed	(or	implicit)	in	much	of	the	literature	on	Bayesian	updating.		See,	
for	 example,	Howson	 and	Urbach	 (1989,	 p.285),	 Jeffrey	 (1992,	 p.38),	 Bronfman	 (2014,	 p.872)	 and	
Miller	(forthcoming).		



	

More	 precisely,	 then,	 the	 question	we’re	 interested	 in	 is	 this:	 how	does	 an	
ideally	 rational	 agent	 revise	 her	 opinions	 in	 light	 of	 the	 information	 she	 receives	
exogenously?		

According	 to	Bayesian	epistemology,	 rational	agents2	revise	 their	credences	
by	 conditionalization.	 Informally,	 conditionalizing	 on	 E	 involves	 setting	 your	 new	
credence	 in	 every	 propositions,	 P,	 to	 what	 your	 old	 credence	 in	 P	 was	 on	 the	
supposition	that	E.	Formally,	you	conditionalize	on	E	if	

	
pnew(⋅)	=	pold(	⋅	|	E)	

where	
p(A|B)	=	p(A&B)	/	p(B).	

	
Since	conditionalizing	 is	an	operation	performed	on	a	proposition,	thinking	

of	 conditionalizing	 as	 a	 way	 of	 responding	 to	 new	 information	 requires	
characterizing	 each	 possible	 body	 of	 information	 an	 agent	 might	 receive	 as	 a	
proposition.	Since	one	of	 the	aims	of	 this	paper	 is	 to	evaluate	an	argument	 for	the	
claim	 that	 conditionalizing	 is	 the	 rational	 response	 to	 gaining	 information,	 I	 will	
assume	for	now	(as	is	standard)	that	any	body	of	information	that	an	agent	receives	
exogenously	 can	 be	 uniquely	 characterized	 as	 a	 proposition	 (one	 that	 is	 often	 a	
conjunction	of	many	other	propositions).3		Later	we’ll	see	what	happens	if	we	relax	
this	assumption.		

The	proposition	 that	 uniquely	 characterizes	 the	 entire	 body	of	 information	
the	 agent	 exogenously	 receives	 is	 sometimes	 referred	 to	 in	 the	 literature	 as	 ‘the	
strongest	proposition	one	 learns’.	 	To	emphasize	the	exogenous	aspect,	however,	 I	
will	 sometimes	 call	 this	 proposition	 ‘the	 strongest	 proposition	 one	 exogenously	
learns’.	 	 For	 short,	 I	 will	 sometimes	 just	 call	 it	 ‘the	 proposition	 one	 exogenously	
learns’	or	‘the	proposition	one	learns’.	

Note	that	what	I	am	taking	as	primitive	is	the	notion	of	exogenously	gaining	
information.	I	am	using	the	term	‘the	strongest	proposition	one	exogenously	learns’	
																																								 																					
2	Unless	stated	otherwise,	when	I	talk	about	rational	agents,	I	mean	ideally	rational	agents.		I	discuss	
non-ideal	agents	in	§4.	
3	Why	uniquely?	 	 Because	 if	 there	were	more	 than	 one	proposition	 that	 characterized	 the	 body	 of	
information	the	agent	receives,	then	the	claim	that	one	should	conditionalize	on	the	proposition	that	
characterizes	 one’s	 new	 information	 wouldn’t	 make	 sense.	 	 If	 one	 claimed	 that	 one	 should	
conditionalize	 on	 a	proposition	 characterizing	 this	 information,	 then	 conditionalization	 would	 no	
longer	 output	 a	 unique	 credence	 function	 given	 an	 agent’s	 priors	 and	 the	 new	 information	 she	
received.		Conditionalization,	then,	would	no	longer	count	as	an	update	procedure	in	the	sense	that	is	
necessary	for	the	arguments	under	discussion.		



	

as	 a	 technical	 term,	 which	 presupposes	 that	 any	 body	 of	 information	 can	 be	
uniquely	 characterized	 as	 the	 sort	 of	 thing	 (a	 proposition)	 that	 one	 can	
conditionalize	on.		

Conditionalization	 is	 the	 process	 of	 revising	 one’s	 credences	 by	
conditionalizing	 on	 the	 strongest	 proposition	 one	 exogenously	 learns.	 Why	 think	
that	 conditionalization	 is	 a	 rational	way	of	 revising	one’s	 credences?	 	 There	 are	 a	
variety	of	arguments	that	have	been	offered,4	but	the	focus	of	this	paper	will	be	an	
argument	 by	 Hilary	 Greaves	 and	 David	 Wallace	 (2006)	 for	 the	 claim	 that	
conditionalization	maximizes	expected	accuracy.		

The	Greaves	and	Wallace	argument	is	part	of	a	larger	philosophical	program	
that	has	been	of	increasing	interest:	accuracy-first	epistemology.		The	basic	tenet	of	
accuracy-first	epistemology	is	that	accuracy	is	the	fundamental	epistemic	value,	and	
the	central	project	that	accuracy-firsters	pursue	involves	the	derivation	of	rational	
requirements	 from	 accuracy	 based	 considerations.5		 A	 cluster	 of	 accuracy	 based	
arguments	 for	 rational	 requirements,	 including	 arguments	 for	 the	 requirement	 to	
conditionalize,	rely	on	the	following	claim:	

	
RATACC:	 The	 rational	 update	 procedures	 are	 those	 that	maximize	 expected	
accuracy	according	to	a	strictly	proper	scoring	rule.	

	
(The	terms	used	in	this	principle	will	be	defined	precisely	in	what	follows).	

I	 will	 argue	 that	 Greaves	 and	Wallace’s	 result	 applies	 only	 to	 a	 restricted	
range	of	cases.	 	Thus,	even	if	RATACC	is	true,	Greaves	and	Wallace’s	argument	does	
not	 show	 that,	 in	 general,	 conditionalizing	 on	 the	 proposition	 one	 learns	 is	 the	
update	procedure	that	is	rational.		

	So	 the	 question	 then	 arises:	 which	 update	 procedure	maximizes	 expected	
accuracy	 in	 general?	 	 I	 show	 that,	 in	 fact,	 what	 maximizes	 expected	 accuracy	 in	
general	 is	 not	 conditionalization,	 but	 a	 rule	 that	 I	 will	 call	 ‘conditionalization*’.	
Conditionalization*	has	us	conditionalize	on	the	proposition	that	we	learn	P,	when	P	
is	the	proposition	we	learn.6	I	will	show	that	conditionalization*	happens	to	coincide	

																																								 																					
4	See,	for	example,	Teller	(1976),	Williams	(1980)	and	van	Fraassen	(1989,	p.331-7)	and	(1999).	
5	For	an	overview,	see	Pettigrew	(2016).		
6	I	borrow	the	term	‘conditionalization*’	from	Hutchison	(1999).	Hutchison	describes	a	class	of	cases	
that	have	been	thought	to	pose	problems	for	conditionalization.	One	proposal	he	describes	(though	
does	not	commit	to)	for	how	to	deal	with	these	cases	is	to	deny	that	conditionalization	is	the	rational	
update	procedure.		Rather,	he	proposes,	perhaps	what’s	rational,	upon	learning	P,	is	conditionalizing	
on	the	proposition	that	we	learn	P.		Defenders	of	conditionalization	have	offered	alternative	ways	of	



	

with	conditionalization	in	the	special	cases	that	Greaves	and	Wallace	consider,	but	it	
yields	different	results	in	all	other	cases.	So	my	central	thesis	is	the	following:	

	
Central	 Thesis:	 If	 RATACC	 is	 true,	 then	 the	 rational	 update	 procedure	 is	
conditionalization*,	and	not	conditionalization.			

	
I	will	not,	in	this	paper,	evaluate	the	merits	of	RATACC	or	the	accuracy-first	program.		
This	is	why	my	central	thesis	is	a	conditional	claim.	

After	arguing	for	this	thesis,	I	discuss	some	of	the	interesting	implications	of	
my	 results	 for	 iteration	 principles	 in	 epistemology.	 	 In	 particular,	 I	 show	 that	 if	
RATACC	is	true,	it	follows	that,	 if	we	learn	P,	we’re	rationally	required	to	be	certain	
that	we	learned	P.		I	then	show	that,	regardless	of	how	we	think	about	exogenously	
gaining	information,	it	follows	from	RATACC	that	there	is	a	class	of	propositions	that	
rational	 agents	 will	 be	 certain	 of	 if	 and	 only	 if	 they	 are	 true.	 Since	 many	 of	 the	
results	of	 the	accuracy-first	program	rely	on	RATACC,	 those	who	deny	these	claims	
cannot	accept	much	of	what	accuracy-first	epistemology	has	to	offer.	
	
2.	Setup	
	 What	 does	 it	 mean	 to	 say	 that	 an	 update	 procedure	 maximizes	 expected	
accuracy?		In	this	section	I	lay	out	the	formal	framework	that	I	will	use	to	prove	the	
main	result.	
	
2.1	Accuracy	and	expected	accuracy		

Accuracy	is	measured	by	a	scoring	rule,	A,	which	takes	a	state	of	the	world,	s,	
from	a	partition	of	states,  S,	and	a	credence	function	c	defined	over	S,	from	the	set	of	
such	credence	functions,	CS,	and maps	the	credence	function/state	pair	to	a	number	
between	0	and	1	that	represents	how	accurate	the	credence	function	is	in	that	state.		

A:	CS		X		S à	[0,1]	
Intuitively,	we	can	think	of	the	accuracy	of	some	credence	function	as	its	‘closeness	
to	 the	 truth’.	 	 c	 is	 maximally	 accurate	 if	 it	 assigns	 1	 to	 all	 truths	 and	 0	 to	 all	
falsehoods.	 	 It	 is	 minimally	 accurate	 if	 it	 assigns	 1	 to	 all	 falsehoods	 and	 0	 to	 all	
truths.			

																																								 																																								 																																								 																																								 																					
treating	the	cases	that	Hutchison	describes,	though	Hutchison	raises	worries	for	these	proposals.	My	
paper	 provides	 an	 independent	 argument	 for	 Hutchison’s	 proposal	 that	 doesn’t	 appeal	 to	 the	
controversial	cases	discussed	in	his	paper.			



	

If	an	agent	does	not	know	which	state	obtains	she	will	not	able	to	calculate	
the	accuracy	of	a	credence	function	c.	However,	 if	she	is	probabilistically	coherent,	
she	 will	 be	 able	 to	 calculate	 the	 expected	 accuracy	 of	 c.	 (Throughout,	 I	 will	 be	
assuming	 that	 rational	 agents	 are	 probabilistically	 coherent).	 The	 expected	
accuracy	of	credence	function	c	∈	CS	relative	to	a	probability	function	p	∈	CS	is:	

	
EAp(c)	=	∑	p(s)	A(c,	s)		

																																																																																		s∈S	
	
That	is,	the	expected	accuracy	of	a	credence	function	c	relative	to	p	is	the	average	of	
the	accuracy	scores	c	would	get	 in	the	different	states	that	might	obtain,	weighted	
by	the	probability	that	p	assigns	to	those	states	obtaining.	

A	strictly	proper	scoring	rule	is	a	scoring	rule	with	the	feature	that	every	
probability	function	maximizes	expected	accuracy	relative	to	itself.		In	other	words,	
if	A	is	strictly	proper,	then	the	quantity:	

	
EAp(c)	=∑	p(s)	A(c,	s)		

																																																																																		s∈S	
	
is	 maximized	 when	 c	 =	 p.	 I	 will	 not	 argue	 here	 for	 the	 claim	 that	 our	 accuracy	
measures	 should	 be	 strictly	 proper.	 	 I	will	 simply	 assume	 this	 to	 be	 true	 in	what	
follows	 since	 the	 accuracy	 based	 argument	 for	 the	 claim	 that	 we	 should	
conditionalize	 (in	 addition	 to	 other	 arguments	 in	 accuracy-first	 epistemology7)	
requires	 strict	 propriety.	8	See	Greaves	 and	Wallace	 (2006),	 Gibbard	 (2008),	 Joyce	
(2009),	Moss	(2011),	Horowitz	(2013)	and	Pettigrew	(2016)	for	a	discussion	of	the	
motivation	for	using	strictly	proper	scoring	rules.	

																																								 																					
7	For	example,	the	argument	for	probabilism.		See	Pettigrew	(2016).	
8	Although	the	accuracy	based	argument	 for	 the	claim	that	conditionalization	is	 the	rational	update	
procedure	requires	strict	propriety,	it’s	worth	noting	that	Greaves	and	Wallace	state	their	main	result	
slightly	more	generally:	rather	than	assuming	RATACC	and	that	the	scoring	rule	is	strictly	proper,	they	
remain	neutral	on	propriety	and	assume	that	the	rational	update	procedures	will	be	those	in	which	
one	 adopts	 a	 credence	 function	 that	 is	 recommended	 by	 a	 credence	 function	 yielded	 by	 an	 update	
procedure	 that	maximizes	expected	accuracy.	As	a	 result,	 their	main	argument	does	not	 show	that	
conditionalization	is	always	rational,	but	rather,	that	what	they	call	quasi-conditionalization	is	always	
rational.	 	 In	 their	Corollary	2,	 they	point	out	 that	 that	 if	we	assume	 that	 the	scoring	rule	 is	 strictly	
proper,	conditionalization	always	maximizes	expected	accuracy,	and	so	is	always	rational.	 	It	is	also	
true	 that	 if	we	 assume	 that	 the	 scoring	 rule	 is	 strictly	 proper,	 their	 constraint	 on	 rational	 update	
procedures	 is	 equivalent	 to	 RATACC.	 In	 this	 paper,	 I’m	 interested	 in	 arguments	 for	 the	 claim	 that	
conditionalizing	 (rather	 than	 quasi-conditionalizing)	 is	 always	 rationally	 required	 and,	 for	 these	
purposes,	RATACC	and	strict	propriety	must	be	assumed.		



	

	
2.2	Learning	experiences	and	update	procedures	

We’re	 trying	 to	 figure	 out	 how	 to	 revise	 our	 credences	 in	 light	 of	 the	
exogenous	 information	we	 gain.	What	 exactly	 is	 involved	 in	 gaining	 information?		
Greaves	and	Wallace	don’t	say	much	about	this,	and	I	too	will	remain	as	neutral	as	
possible.		All	that	is	being	assumed	(by	Greaves	and	Wallace	and	myself)	is	that	the	
body	 of	 information	 one	 exogenously	 receives	 can	 be	 uniquely	 characterized	 as	 a	
proposition.		

Suppose	you	know	that	you’re	going	to	undergo	some	experience,	E.		E	might	
be	waking	up	 tomorrow,	or	arriving	at	 the	office.	 	Assuming	you	are	probabilistic,	
for	 any	 proposition	 P,	 the	 set	 {P,	 ~P}	 is	 a	 partition	 of	 your	 possibility	 space.	 (A	
partition	of	a	probabilistic	agent’s	possibility	space	is	a	set	of	propositions	that	the	
agent	 regards	 as	mutually	 exclusive	 and	 jointly	 exhaustive.)	 So	 the	 following	 is	 a	
partition	of	your	possibility	space:	{I	gain	some	new	information	upon	undergoing	
E,	 I	 don’t	 gain	 any	 new	 information	 upon	 undergoing	 E}.	 	We	 can	 represent	 this	
partition	as	follows:	

	
I	gain	some	new	information	upon	

undergoing	E.	
I	don’t	gain	new	information	upon	

undergoing	E.	

	
Now	 consider	 all	 of	 the	 possibilities	 in	 which	 you	 gain	 new	 information	 upon	
undergoing	E.		Call	these	bodies	of	information:	i1,	i2…	You	can	further	subdivide	the	
region	in	which	you	gain	new	information	as	follows:			
	
I	 gain	
i1	

I	 gain	
i2	

I	gain	
i3	

I	gain		
i4	

...	 I	don’t	gain	new	information	upon	
undergoing	E.	

	
Since	 we	 are	 assuming	 for	 now	 that	 we	 can	 uniquely	 characterize	 each	 possible	
body	 of	 information	 that	 you	 gain	 as	 a	 proposition,	 and	 we	 are	 describing	 the	
possibility	in	which	you	gain	a	body	of	information	as	a	case	in	which	you	learn	that	
proposition,	we	can	redescribe	the	partition	above	as	follows:	
	



	

I	 learn	
X1	

I	 learn	
X2	

I	 learn	
X3	

I	learn		
X4	

… I	don’t	gain	new	information	upon	
undergoing	E.	

	
(Recall	 that	 ‘I	 learn	Xi’	 is	 short	 for:	Xi	 is	 the	 strongest	 proposition	 I	 exogenously	
learn.)	

We’ll	 let	 L(P)	name	 the	proposition	 that	P	 is	 the	 strongest	proposition	you	
exogenously	 learn	 upon	 undergoing	 E.	 	 For	 ease	 of	 notation,	 we’ll	 describe	 the	
possibility	 in	which	you	gain	no	new	information	as	a	case	 in	which	you	 learn	the	
tautology	(T).		So	yet	another	redescription	of	the	partition	above	is:	
	
L(X1)	 L(X2)	 L(X3)	 L(X4)	 	…	 L(T)	

	
We’ll	call	an	event	 in	which	an	agent	exogenously	 learns	a	proposition	a	 learning	
experience	(and	note	that,	given	our	terminology,	it	is	consistent	with	this	that	the	
agent	‘learns’	the	tautology	and	so	gains	no	new	information).	Now	suppose	that	an	
agent	 is	 considering	 some	 learning	 experience	 that	 she	 will	 undergo.	 	 She	 can	
represent	her	future	learning	experience	by	the	set	of	propositions	that	she	assigns	
non-zero	 credence	 to	 exogenously	 learning.	 So	 we’ll	 say	 that	 an	 agent	 whose	
possibility	space	is	as	depicted	above	represents	her	future	learning	experience	by	
the	set:	

X:	{X1, X2, X3…, T}	
I	 will	 sometimes	 use	 the	 name	 of	 the	 set	 that	 represents	 an	 agent’s	 learning	
experience	as	a	name	for	the	learning	experience	itself.			

It	will	be	useful	 for	what	 follows	to	note	that,	 in	general,	 if	X	represents	an	
agent’s	future	learning	experience,	and	L(X)	is	the	set	of	propositions	L(Xi)	for	each	
Xi	∈X,	then	L(X)	is	a	partition	of	the	agent’s	possibility	space.			

Here’s	why:	First,	 imagine	a	case	 in	which	 the	agent	 is	certain	 that	she	will	
gain	some	new	information	upon	undergoing	the	learning	experience.	Then	she	will	
be	certain	that	there	will	be	exactly	one	proposition	in	X	that	uniquely	characterizes	



	

the	new	information	that	she	will	exogenously	receive.	Thus,	she	will	be	certain	that	
exactly	one	member	of	L(X)	is	true.		So	if	the	agent	is	certain	that	she	will	gain	some	
new	 information,	L(X)	 is	a	partition	of	her	possibility	space.	 If,	on	 the	other	hand,	
the	agent	leaves	open	the	possibility	of	gaining	no	new	information,	then	T	will	be	a	
member	of	X. Since	our	agent	is	certain	that	she	will	gain	no	new	information	(learn	
T)	or	gain	some	new	information	(learn	exactly	one	of	the	Xi	that	is	not	T),	but	not	
both,	she	too	is	certain	that	exactly	one	proposition	in	L(X)	is	true.	 	Thus,	whether	
the	agent	leaves	open	the	possibility	of	gaining	no	new	information	or	not,	L(X)	is	a	
partition	of	the	agent’s	possibility	space.	

An	 update	 procedure,	 U,	 in	 response	 to	 a	 learning	 experience,	 X,	 is	 a	
function	 that	 assigns	 a	 probability	 distribution	 to	 each	 member	 of	 X,	 with	 the	
intended	interpretation	that	an	agent	conforming	to	U	adopts	U(Xi)	as	her	credence	
function	 if	 and	 only	 if	 the	 proposition	 she	 learns	 upon	 undergoing	 the	 learning	
experience	 is	 Xi.	 	 In	 other	 words,	 on	 the	 intended	 interpretation,	 an	 agent	
conforming	 to	U	 adopts	U(Xi)	 if	 and	only	 if	 L(Xi)	 is	 true.	 	 The	 fact	 that	 an	update	
procedure	is	a	mapping	from	the	propositions	the	agent	might	learn	to	probability	
functions	guarantees	that	update	procedures	satisfy	what	Greaves	and	Wallace	call	
‘availability’:	In	any	two	worlds	in	which	the	agent	learns	the	same	information,	the	
update	 procedure	 recommends	 the	 same	 credence	 function.	 Conceiving	 of	 update	
procedures	in	this	way	is	motivated	by	the	thought	that	what	an	agent	is	rationally	
required	to	do	in	response	to	learning	a	proposition	must	be	determined	completely	
by	which	proposition	she	learns.		Later	in	the	paper	we’ll	consider	generalizations	of	
the	notion	that	don’t	take	this	assumption	for	granted.	

It	will	 sometimes	be	 convenient	 to	 think	of	U	 as	 assigning	 to	each	possible	
state	a	credence	function.	 	So	we	can	let	U(s)	be	U(Xi),	where	Xi	 is	the	proposition	
that	the	agent	learns	in	state	s.		

	
U(s)	=	U(Xi)	where	s∈L(Xi)	

	
As	we’ll	 see	 in	 a	moment,	what	Greaves	 and	Wallace	 call	 ‘an	 experiment’	 is	 just	 a	
special	kind	of	learning	experience,	and	what	Greaves	and	Wallace	call	‘an	available	
act’	 is	 just	an	update	procedure	 in	 response	 to	an	experiment.	 	 So	my	notions	are	
generalizations	of	the	notions	that	Greaves	and	Wallace	use.		
	
2.3	Experiments	and	available	acts	



	

	 Greaves	and	Wallace’s	discussion	assumes	that	the	agent	contemplating	her	
future	learning	experience	satisfies	the	following	two	conditions:		
	

PARTITIONALITY:	The	propositions	that	the	agent	assigns	non-zero	credence	to	
exogenously	learning	form	a	partition	of	the	agent’s	possibility	space.	
	
FACTIVITY:	The	agent	is	certain	that	if	she	learns	P,	P	is	true.	9	

	
In	 cases	 in	 which	 PARTITIONALITY	 and	 FACTIVITY	 hold,	 we	 will	 say	 that	 the	 agent’s	
future	learning	experience	is	representable	as	an	experiment.	

Greaves	 and	 Wallace’s	 definition	 of	 an	 available	 epistemic	 act	 A	 is:	 ‘an	
assignment	of	a	probability	distribution	to	each	piece	of	possible	information	Ej∈E 
[where E is	a	partition] with	the	intended	interpretation	that	if	A(Ej)	=	pj	then	pj	is	
the	probability	function	that	an	agent	performing	act	a	would	adopt	as	his	credence	
distribution	 if	 he	 received	 the	 new	 information	 that	 the	 actual	 state	 was	 some	
member	of	Ej’	 	 (p.	611-612).	 	Thus,	an	available	act	 is	 just	an	update	procedure	in	
response	to	an	experiment.	

Now,	 if	 every	 rational	 agent	 satisfied	 PARTITIONALITY	 and	 FACTIVITY,	 then	
perhaps	 it	wouldn’t	matter	 that	Greaves	 and	Wallace’s	 result	 only	 applies	 to	 such	
agents	 (for	 their	account	could	still	be	a	general	account	of	how	to	revise	rational	
credence	functions).		So	it’s	worth	thinking	about	whether	a	rational	agent	may	fail	
to	satisfy	these	conditions.		

To	 begin,	 note	 that,	prima	 facie,	 it	 would	 be	 quite	 surprising	 if	 all	 rational	
agents	 satisfied	PARTITIONALITY.	To	 return	 to	our	 flinging	analogy,	 imagine	 that	 the	
world	has	a	‘bucket’	of	propositions	{X1,X2	…}	that	you	think	it	might	fling	at	you.	If	
you	know	that	the	world	will	fling	exactly	one	proposition	in	the	bucket	at	you,	then	
the	set:	{the	world	flings	X1,	the	world	flings	X2,	the	world	flings X3…}	is,	indeed,	a	
partition	of	your	possibility	space.	 	But	so	far	we’ve	been	given	no	reason	to	think	
that	 the	propositions	 in	the	bucket	itself	form	a	partition	of	 your	possibility	 space.		
After	all,	what	if	the	bucket	contains	both	P	and	P&Q?		Since	P&Q	entails	P,	any	set	
that	contains	P&Q	and	P	is	not	a	partition.		This	means	that	if	an	agent	leaves	open	
the	possibility	 that	P	 is	 the	strongest	proposition	she	exogenously	 learns,	and	also	
leaves	open	 the	possibility	 that	P&Q	 is	 the	 strongest	proposition	 she	 exogenously	

																																								 																					
9	Greaves	and	Wallace	are	explicit	about	PARTITIONALITY,	but	not	FACTIVITY.		However,	as	we’ll	see,	
FACTIVITY	must	be	assumed	for	their	arguments	to	work.	



	

learns,	 then	 the	 agent	 doesn’t	 satisfy	 PARTITIONALITY.	 	 But	 it’s	 hard	 to	 see	 why	 it	
would	 be	 irrational	 for	 an	 agent	 to	 leave	 open	 the	 possibility	 that	 the	 strongest	
proposition	 she	 learns	 is	 P,	 and	 also	 leave	 open	 the	 possibility	 that	 the	 strongest	
proposition	she	learns	is	P&Q.	

To	 illustrate	 the	 strength	 of	 the	 claim	 that	 all	 rational	 agents	 satisfy	
PARTITIONALITY	and	FACTIVITY,	it	will	be	helpful	to	prove	the	following	lemma	(I	call	it	
a	‘lemma’	because	it	will	play	an	important	role	in	a	proof	that	comes	later):	
	

Lemma	1		
An	agent	satisfies	PARTITIONALITY	and	FACTIVITY	if	and	only	if,	for	each	Xi such	
that	she	assigns	non-zero	credence	to	Xi	being	the	strongest	proposition	she	
exogenously	learns,	the	agent	assigns	credence	1	to:	
	

L(Xi)	↔	Xi	
	
Proof		
Suppose	that	PARTITIONALITY	and	FACTIVITY	are	satisfied.	FACTIVITY	entails	that	
the	agent	assigns	credence	1	to	the	left-to-right	direction	of	the	biconditional:	
L(Xi)	à	Xi	 for	any	Xi.	For	FACTIVITY	says	that,	 for	all	Xi,	 the	agent	 is	certain	
that	 if	 she	 learns	 Xi,	 Xi	 is	 true.	 What	 about	 the	 right-to-left	 direction?	 If	
PARTITIONALITY	holds,	then	the	agent	is	certain	that	exactly	one	proposition	in	
X	 is	 true.	 Since,	 by	 assumption,	 the	 agent	 is	 certain	 that	 she	will	 learn	one	
proposition	in	X,	and	that	(due	to	FACTIVITY)	it	will	be	a	true	proposition,	she	
will	have	to	learn	the	one	true	proposition	in	X.		So	if	X	forms	a	partition,	she	
is	certain	 that	 the	Xi	 that	 is	 true	 is	 the	proposition	 that	she	will	 learn.	This	
gives	 us:	 Xi	 à	 L(Xi).	 	 Thus,	 any	 agent	 that	 satisfies	 PARTITIONALITY	 and	
FACTIVITY	will,	for	each	Xi	∈	X,	assign	credence	1	to	L(Xi)	↔	Xi. 

	
Conversely,	suppose	that	for	every	proposition	Xi	that	an	agent	assigns	non-
zero	credence	to	 learning,	she	assigns	credence	1	 to:	L(Xi)	↔	Xi.	And	recall	
that	 the	 L(Xi)	 form	 a	 partition	 of	 the	 agent’s	 possibility	 space.10		 It	 follows	

																																								 																					
10	See	 §2.2	 for	 the	 detailed	 argument	 for	 this,	 but	 here’s	 the	 gist:	 L(Xi)	 is	 the	 proposition	 that	 the	
strongest	proposition	an	agent	exogenously	learns	is	Xi.	 	So	an	agent	can’t	leave	open	the	following	
possibility:	 For	 distinct	 X1	 and	 X2,	 the	 strongest	 proposition	 I	 exogenously	 learn	 is	 X1	 and	 the	
strongest	proposition	I	exogenously	learn	is	X2.	 	This	is	because,	assuming	X1	and	X2	are	distinct,	if	
the	agent	exogenously	learns	X2,	then	it’s	false	that	the	strongest	proposition	she	exogenously	learns	
is	X1.	 	Since	the	agent	can’t	 leave	open	the	possibility	that	there	are	two	propositions	that	are	each	



	

that	an	agent	who	regards	the	Xi	as	equivalent	to	the	L(Xi)	will	be	such	that	
the	Xi	also	form	a		partition	of	the	agent’s	possibility	space.	So	any	agent	who	
is	certain	that,	for	each	Xi,	L(Xi)	↔	Xi,	satisfies	PARTITIONALITY.	And	under	the	
assumption	that	the	agent	is	certain	that,	for	each	Xi,	L(Xi)	à	Xi	(which	is	the	
just	 the	 left-to-right	direction	of	 the	biconditional),	 it	 follows	that	 the	agent	
satisfies	FACTIVITY	as	well:	she	is	certain	that	if	she	learns	some	proposition,	
Xi,	 that	proposition	 is	 true.	Thus,	any	agent	 that	 is	certain	 that,	 for	each	Xi,	
L(Xi)	↔	Xi	satisfies	PARTITIONALITY	and	FACTIVITY.	

	
So	 the	 question	 of	whether	 a	 rational	 agent	 could	 fail	 to	 satisfy	 PARTITIONALITY	 or	
FACTIVITY	 amounts	 to	 the	 following	 question:	Might	 there	 be	 some	 proposition,	 P,	
such	 that	 a	 rational	 agent	 assigns	 non-zero	 credence	 to	 exogenously	 learning	 P,	
while	leaving	open	the	possibility	that	P	is	true,	though	she	won’t	learn	it,	OR	leaving	
open	the	possibility	that	she	will	learn	P,	but	P	isn’t	true?	

Let’s	 begin	 by	 considering	 the	 first	 type	 of	 case:	 a	 case	 in	 which	 an	 agent	
leaves	open	the	possibility	that	P,	but	she	doesn’t	learn	that	P.		
	
P	but	not	L(P)	

Seemingly,	 there	 are	many	 cases	 in	which,	 for	 some	P	 that	 I	might	 learn,	 I	
leave	open	the	possibility	that	P	is	true	though	I	don’t	learn	it.		Suppose,	for	example,	
that	 I	 am	 about	 to	 turn	 on	 my	 radio	 and	 am	 considering	 the	 possible	 bodies	 of	
information	I	might	receive.		I	think	that	one	possibility	is	that	I	learn:	

	
R:	It	is	raining	in	Singapore.		
	

and	nothing	else.		I	also	think,	however,	that	it	might	be	raining	in	Singapore	even	if	
I	don’t	learn	that	it	is	when	I	turn	on	the	radio.	This	seems	perfectly	rational,	but	if	
so,	 then	 it	 is	 rational	 to	 leave	 open	 the	 possibility	 that	 R	 (a	 proposition	 I	 might	
learn)	is	true	but	I	don’t	learn	that	it	is.	

In	response,	one	might	claim	that	it	is,	in	fact,	irrational	for	me	to	leave	open	
the	possibility	that	I	exogenously	learn	R	and	nothing	else.	For	perhaps	one	thinks	
																																								 																																								 																																								 																																								 																					
the	strongest	proposition	she	exogenously	learns,	the	agent	must	think	that	at	most	one	member	of	
the	 set	 L(Xi)	 is	 true.	 	 She	will	 also	 think	 that	 at	 least	 one	member	 of	 the	 set	 is	 true	 since	we	 are	
assuming	that	she	is	certain	that	she	will	undergo	a	learning	experience	represented	by	X:	that	is,	she	
is	certain	that	she	will	learn	one	member	of	X.	(Recall	that	this	is	consistent	with	her	leaving	open	the	
possibility	 of	 gaining	 no	 new	 information	 and	 merely	 ‘learning’	 the	 tautology.)	 Thus,	 she	 will	 be	
certain	that	at	least	one	member	of	L(X)	is	true	and	that	at	most	one	member	of	L(X)	is	true.	



	

that	 I	 should	be	certain	 that	any	case	 in	which	 I	 come	 to	exogenously	possess	 the	
information	that	R	as	a	result	of	turning	on	the	radio	is	a	case	in	which	the	strongest	
proposition	that	I	exogenously	learn	is	something	like:		

	
R(R):	It	is	being	reported	on	the	radio	that	it	is	raining	in	Singapore.			

	
So,	one	might	claim,	if	I	am	certain	that	I	will	turn	on	the	radio,	I	should	be	certain	
that	if	R(R)	is	true,	I	will	learn	that	it	is.		

But	 should	 I?	What	 if	 I	 leave	open	 the	possibility	 that	 upon	 turning	on	 the	
radio	all	I	will	hear	is	static?		In	that	case	I	might	leave	open	the	possibility	that	it	is	
being	reported	on	the	radio	that	it	is	raining	in	Singapore,	even	if	I	don’t	learn	that	it	
is	 being	 reported	 on	 the	 radio	 that	 it	 is	 raining	 in	 Singapore.	 	 	 Surely	 it	 is	 not	
irrational	to	leave	such	a	possibility	open.	

In	response	to	this,	one	might	claim	that	it	is	also	irrational	for	me	to	think	of	
R(R)	as	a	proposition	in	the	bucket	of	propositions	that	the	world	might	fling	at	me	
(that	is,	as	a	potential	strongest	proposition	I	exogenously	learn).	Rather,	one	might	
claim,	 the	 proposition	 in	 the	 vicinity	 that	 I	 should	 assign	 non-zero	 credence	 to	
exogenously	learning	is:	

	
E(R(R)):	 I	have	an	experience	as	of	 it	being	 reported	on	 the	 radio	 that	 it	 is	
raining	in	Singapore.			

	
And	perhaps,	one	thinks,	I	am	rationally	required	to	be	certain	that	if	E(R(R))	is	true,	
I	will	learn	that	it	is.	

Note,	 however,	 that	 for	 this	 this	 strategy	 to	 generalize	 the	 following	 two	
claims	must	be	true:	

	
(a) If	 P	 is	 a	 proposition	 about	 one’s	 experience	 (that	 one	 could,	 in	

principle,	 learn	 about),	 then	 a	 rational	 agent	 should	 regard	 it	 as	
impossible	for	P	to	be	true	without	her	learning	that	P.	
	

(b) Every	agent	should	assign	credence	zero	to	P	being	the	strongest	
proposition	 she	 exogenously	 learns,	 unless	 P	 is	 a	 proposition	
about	her	own	experience.	

	



	

Why	 is	 (b)	necessary?	Because	 it’s	plausible	 that	 for	 any	proposition	P	 that	 is	not	
about	an	agent’s	experiences,	an	agent	can	rationally	leave	open	the	possibility	that	
P	is	true	though	the	agent	doesn’t	learn	that	it	is.		So	if	agents	are	to	be	certain	that	
all	propositions	 they	might	 learn	will	be	 true	only	if	they	learn	them,	 they	must	be	
certain	 that	 the	 only	 kinds	 of	 propositions	 they	 will	 exogenously	 learn	 are	
propositions	about	 their	experience.	Why	 is	 (a)	necessary?	 	Because	claiming	 that	
the	only	propositions	I	learn	are	about	my	experience	will	be	of	no	help	if	I	can	leave	
open	the	possibility	that	some	proposition	about	my	experience	 is	 true	but	I	don’t	
learn	that	it	is.	

But	 (a)	 and	 (b)	 are	 far	 from	 obvious.	 	 Let’s	 begin	 with	 (a).	 	 Consider,	 for	
example,	the	following	proposition:		

	
Detailed-E(R(R)):	I	have	an	experience	as	of	a	reporter	with	a	British	accent	
saying	 that	 it	 is	 raining	 in	 Singapore	 with	 a	 slight	 emphasis	 on	 the	 word		
‘raining’	and	a	pause	between	‘raining’	and	‘Singapore’.	

	
This	 seems	 like	 a	 proposition	 I	 could	 learn.	 	 But	 it	 also	 seems	 possible	 that	 my	
experience	could	have	the	described	features	and	yet	I	don’t	exogenously	learn	that	
it	does.		I	may	not	notice	the	accent,	or	the	pauses,	or	the	emphases,	despite	the	fact	
that	these	features	are	present	in	my	experience.	 	So	why	couldn’t	a	rational	agent	
leave	 open	 the	 possibility	 that	 a	 proposition	 like	 this	 is	 true,	 though	 she	 doesn’t	
learn	that	it	is?			

(b)	 is	 also	 a	 very	 substantive	 assumption.	 Why	 should	 every	 agent	 be	
antecedently	 certain	 that	 propositions	 about	 her	 experience	 are	 the	only	kinds	 of	
propositions	 she	 will	 exogenously	 learn?	 Presumably	 small	 children	 exogenously	
learn	 things:	 the	 world	 flings	 bodies	 of	 information	 at	 them.	 	 But	 small	 children	
might	 not	 even	 have	 the	 conceptual	 apparatus	 that	makes	 it	 possible	 for	 them	 to	
exogenously	learn	propositions	about	their	own	experience.	 	So	one	might	want	to	
claim	that	children,	at	least,	can	exogenously	learn	propositions	that	are	not	of	this	
sort.		But	if	the	world	can	fling	propositions	like	R,	or	R(R),	into	a	child’s	belief	box,	
what	 should	 make	 me	 antecedently	 certain	 that	 the	 world	 won’t	 fling	 such	 a	
proposition	 at	 me?	 	 In	 other	 words,	 if	 propositions	 that	 aren’t	 about	 one’s	
experience	 can,	 in	 principle,	 be	 exogenously	 learned,	 why	 should	 every	 agent	 be	
certain	that	she	won’t	undergo	this	sort	of	learning?			

In	 sum,	 while	 there	 is	 nothing	 incoherent	 about	 the	 view	 that,	 for	 any	
proposition	P	 one	might	 learn,	 one	 is	 rationally	 required	 to	 be	 certain	 that	 if	 P	 is	



	

true,	one	will	 learn	 it,	such	a	view	requires	some	rather	hefty	commitments	about	
the	 kinds	 of	 propositions	 that	 can	 be	 exogenously	 learned.	 	 The	 resulting	
commitments	 are	 stronger	 than	 even	 the	 kinds	 of	 luminosity	 commitments	 that	
(some)	 internalists	 are	 happy	 to	 sign	 up	 for	 and	 that	 Timothy	Williamson	 (2000)	
and	others	have	argued	against.		For	it’s	not	just	that	one	can’t	be	wrong	about	one’s	
own	experiences.	 	And	 it’s	 not	 just	 that,	 for	 some	 class	 of	 experiences,	 having	 the	
experience	always	puts	one	in	a	position	to	know	that	one	is	having	it.		It’s	not	even	
that,	whenever	 some	proposition	 is	 true	 of	 one’s	 experience,	 one	 in	 fact	comes	 to	
know	that	proposition.	 	 It	 is	 that	every	 rational	agent	must	antecedently	be	certain	
that	any	proposition	P	that	could	be	true	of	her	experience	(and	which	it	is	possible	
to	learn	about)	is	a	proposition	that	she	will	 learn	exogenously	whenever	P	is	true	
and	that	there	are	no	other	propositions	that	she	could	exogenously	learn.		

	
L(P)	but	not	P	

If	you	think	that	the	word	‘learn’	is	factive,	and	that	any	rational	agent	should	
be	 certain	 of	 this,	 you	might	 think	 that	 a	 rational	 agent	 can	 never	 leave	 open	 the	
possibility	of	learning	a	proposition	that	is	false.	But	let’s	set	aside	the	semantics	of	
‘learn’.	 	 For	various	 reasons,	 some	philosophers	have	 thought	 that	an	agent	might	
have	a	false	proposition	as	part	of	her	evidence.11	So	if	we	redescribed	the	project	as	
an	 investigation	 into	 how	 an	 agent	 should	 revise	 her	 credences	 in	 light	 of	 the	
evidence	she	receives	(instead	of	‘in	light	of	what	she	exogenously	learns’),	we	might	
want	an	account	that	allows	a	rational	agent	to	leave	open	the	possibility	of	gaining	
a	false	proposition	as	part	of	her	evidence.		In	this	case,	we	would	want	an	account	
that	would	apply	to	agents	that	fail	to	satisfy	FACTIVITY.		

	
Given	the	considerations	above,	I	think	that	it	should	remain	a	live	possibility	

that	a	rational	agent	may	fail	to	satisfy	one	of	PARTITIONALITY	or	FACTIVITY.	 	So	if	we	
want	a	fully	general	account	of	credal	revision,	we	should	consider	how	such	agents	
should	revise	their	credences	in	light	of	what	they	learn.		This	forces	us	to	consider	
learning	experiences	that	aren’t	representable	as	experiments.			

	
2.4	The	expected	accuracy	of	update	procedures		

																																								 																					
11	See,	 for	 example,	 Rizzierie	 (2011),	 Arnold	 (2013),	 Comesaña and	 McGrath	 (2014)	 and	 Drake	
(forthcoming).	



	

So	far,	we	have	defined	the	expected	accuracy	of	a	credence	function.		But	we	
don’t	 yet	 have	 a	 definition	 of	 ‘the	 expected	 accuracy	 of	 an	 update	 procedure	 in	
response	 to	 a	 future	 learning	experience’.	Greaves	 and	Wallace	do	provide	 such	 a	
definition.	However,	Greaves	and	Wallace’s	definition	can	only	be	used	to	describe	
the	 expected	 accuracy	 of	 an	 update	 procedure	 for	 an	 agent	 that	 satisfies	
PARTITIONALITY	 and	FACTIVITY.	 Since,	 in	 this	paper,	 I	 am	 interested	 in	which	update	
procedures	maximize	 expected	 accuracy	 in	 general,	 I	will	 have	 to	 generalize	 their	
notion.	
	 So	what	do	we	mean	by	the	expected	accuracy	of	an	update	procedure	U	 in	
response	to	a	future	learning	experience	X?		On	an	intuitive	level,	what	we’re	trying	
to	 capture	 is	 how	 accurate	 we	 expect	 to	 be	 upon	 learning	 a	 member	 of	X if	 we	
conform	to	U.		And	recall	that,	on	the	intended	interpretation,	an	agent	conforms	to	
U	 if	 she	 adopts	U(Xi)	 whenever	 the	 proposition	 she	 learns	 upon	 undergoing	 the	
learning	experience	is	Xi.			
	 Suppose	 that	 an	 agent	 knows	 that	 she	 will	 undergo	 a	 learning	 experience	
represented	by	X.	Let	A(U(s),s)	represent	the	accuracy	score	of	an	agent	conforming	
to	U	in	s.	It	is	natural	to	think	of	the	expected	accuracy	that	an	agent	assigns	to	U	as	
the	weighted	average	of	 the	accuracy	scores	 that	an	agent	conforming	 to	U	would	
adopt	in	each	state	in	which	she	learns	a	member	of	X.	 	This	gives	us	the	following	
understanding	 of	 the	 expected	 accuracy	 of	 an	 update	 procedure:	 The	 expected	
accuracy	of	an	update	procedure	U	in	response	to	a	future	learning	experience	X,	
relative	to	an	agent’s	probability	function	p	is:12	
	

EAp(U)	=							∑		p(s)	A(U(s),	s)	
																																							s∈L(X)	
																													
																														=					∑							∑			p(s)*	A(U(X	i)),	s)																															
																																		L(Xi)∈L(X)				s∈	L(Xi)	

	

																																								 																					
12	My	definition	of	expected	accuracy	is	inspired	by	the	definition	provided	by	Greaves	and	Wallace	
(though	 there	 is	 one	 important	 difference,	 the	 reason	 for	 which	 will	 become	 clear	 shortly).	 	 A	
limitation	 of	 defining	 expected	 accuracy	 using	 summations	 is	 that	 if	 the	 number	 of	 things	 being	
summed	 over	 is	 infinite,	 the	 sum	 may	 not	 be	 defined.	 Kenny	 Easwaran	 (2013)	 provides	 an	
alternative	way	of	understanding	 the	notion	of	 expected	accuracy	 that	 coincides	with	Greaves	and	
Wallace’s	definition	when	finite	quantities	are	involved,	but	also	applies	to	cases	when	the	quantities	
are	 infinite.	 The	 results	 that	 follow	 can	 be	 carried	 out	 in	 Easwaran’s	 framework	 (see	 note	 15).		
However,	 since	 the	 crucial	 points	 in	 this	paper	 are	most	 easily	brought	 out	using	 the	Greaves	 and	
Wallace	inspired	definition,	I	will	continue	using	summations	in	the	main	text.		



	

I	will	now	prove	a	second	lemma:	
	

Lemma	2	
If	an	agent’s	future	learning	experience	is	representable	as	an	experiment,	E,	
and	U	is	an	update	procedure	in	response	to	E, then:	

	
EAp(U)		=									∑							∑			p(s)*	A(U(Ei)),	s)				=			∑			∑			p(s)*	A(U(Ei)),	s)																																																										

																										 												L(Ei)∈L(E)				s∈	L(Ei)																																																												Ei∈E								s∈	Ei	

	
Proof		
Note	that	the	first	(leftmost)	double	sum	is	just	the	definition	of	the	expected	
accuracy	of	an	update	procedure.		The	second	double	sum	is	just	like	the	first	
except	that,	rather	than	summing	over	the	L(Ei),	we’re	summing	over	the	Ei.			

	
We	 know	 from	 Lemma	 1	 that	 if	 an	 agent’s	 future	 learning	 experience	 is	
representable	 as	 an	 experiment	 –	 that	 is,	 the	 agent	 satisfies	 PARTITIONALITY	
and	FACTIVITY	–	then	the	agent	is	certain	that	for	all	propositions	Ei	∈E	:	

 
Ei	↔	L(Ei)	

	
Given	 this,	 there	 is	 no	 harm	 in	 replacing	 the	 ‘L(Ei)’	 that	 features	 in	 the	
definition	of	the	expected	accuracy	of	an	update	procedure	with	‘Ei’.	
	

Since	 Greaves	 and	 Wallace	 assume	 PARTITIONALITY	 and	 FACTIVITY,	 they	 can	 simply	
define	 the	 expected	 accuracy	 of	 an	 update	 procedure	 (which	 they	 call	 ‘an	 act’)	 in	
response	 to	 an	experiment	 as	 the	average	accuracy	 scores	 that	would	 result	 from	
adopting	 U(Ei)	 whenever	 Ei	 is	 true.	 	 And	 this,	 indeed,	 is	 what	 they	 do.	 	 Their	
definition	of	the	expected	accuracy	of	an	act	corresponds	to	the	double	sum	on	the	
right-hand	side	of	the	lemma.	But	it’s	important	to	realize	that	they	wouldn’t	define	
expected	accuracy	 this	way	 if	 they	weren’t	 assuming	PARTITIONALITY	and	FACTIVITY.		
This	 is	because,	without	 these	assumptions,	 the	double	 sum	on	 the	 right	does	not	
represent	 a	 weighted	 average	 of	 the	 scores	 that	 would	 result	 from	 an	 agent	
performing	 the	act.	 For	Greaves	and	Wallace,	 in	defining	an	act,	 say	 that	an	agent	
performs	act	U	in	response	to	X	if	she	adopts	U(Xi)	as	her	credence	function	if	and	
only	 if	 she	 learns	Xi	 (p.612).	 	 But	 if	 an	 agent	 leaves	 open	 the	possibility	 that	Xi	 is	
true,	 though	she	doesn’t	 learn	it	(PARTITIONALITY	fails),	or	that	she	 learns	 it,	 though	



	

it’s	not	 true	 (FACTIVITY	 fails),	 then	an	agent	performing	U	would	not	 adopt	U(Xi)	 if	
and	only	if	Xi	is	true.		Thus,	it	is	only	if	PARTITIONALITY	and	FACTIVITY	are	assumed	that	
the	double	sum	on	the	right	represents	the	expected	accuracy	of	the	credences	that	
result	from	an	agent	performing	U.	
	
2.5	Summing	up	
	 The	purpose	of	this	section	was	to	develop	a	precise	definition	of	the	notion	
of	 the	 expected	 accuracy	 of	 an	 update	 procedure	 in	 response	 to	 a	 learning	
experience.	 	 Although	 Greaves	 and	Wallace	 provide	 a	 definition	 for	 the	 expected	
accuracy	of	an	act	in	response	to	an	experiment,	this	definition	won’t	apply	to	cases	
in	which	PARTITIONALITY	or	FACTIVITY	fail.		
	 I	 defined	 the	 expected	 accuracy	 of	 an	 update	 procedure	 as	 the	 weighted	
average	of	 the	accuracy	scores	 that	would	result	 form	an	agent	 conforming	 to	 the	
update	procedure	(adopting	U(Xi)	whenever	she	learns	Xi).	I	then	showed	that	if	the	
agent	can	represent	her	future	learning	experience	as	an	experiment,	this	quantity	
will	equal	 the	weighted	average	of	 the	accuracy	scores	 that	would	result	 from	her	
adopting	U(Xi)	whenever	Xi	 is	true.	 	This	gives	us	Greaves	and	Wallace’s	definition	
of	 the	 expected	 accuracy	 of	 an	 act.	 	 Thus,	 my	 framework,	 in	 terms	 of	 update	
procedures	 and	 learning	 experiences,	 is	 a	 generalization	 of	 the	 framework	
developed	by	Greaves	and	Wallace.	

In	 the	 next	 section	 I	will	 use	 the	 generalized	 framework	 to	 derive	Greaves	
and	 Wallace’s	 result:	 the	 claim	 that,	 for	 an	 agent	 who	 can	 represent	 her	 future	
learning	experience	as	an	experiment,	conditionalizing	on	the	proposition	she	learns	
maximizes	 expected	 accuracy.	 I	 then	 prove	 a	 more	 general	 result:	 for	 any	 agent	
contemplating	 a	 future	 learning	 experience,	 the	update	 procedure	 that	maximizes	
expected	accuracy	is	one	in	which,	upon	learning	Xi,	the	agent	conditionalizes	on	the	
proposition	 that	 she	 learned	 Xi.	 In	 cases	 in	 which	 the	 learning	 experience	 is	
representable	as	an	experiment	(and	only	in	such	cases),	this	amounts	to	the	same	
thing	as	conditionalizing	on	Xi.	
	
3.	The	Greaves	and	Wallace	Result	and	its	Generalization	

Greaves	 and	 Wallace	 argue	 that	 (given	 a	 strictly	 proper	 scoring	 rule)	
conditionalizing	 on	 the	 proposition	 one	 learns	 is	 the	 update	 procedure	 that	
maximizes	expected	accuracy	in	response	to	an	experiment.		

We	 can	 think	 of	 the	 argument	 for	 this	 claim	 as	 involving	 two	 steps.	 First,	
there	is	a	purely	formal	result	that	demonstrates	that	plugging	in	certain	values	in	



	

certain	quantities	maximizes	 those	quantities.	 	 Second,	 there	 is	 an	argument	 from	
this	formal	result	to	the	claim	that,	given	our	understanding	of	update	procedures,	
expected	 accuracy	 of	 update	 procedures,	 learning,	 and	 experiments,	 the	 update	
procedure	 (or	 available	 act)	 that	maximizes	 expected	 accuracy	 in	 response	 to	 an	
experiment	 is	 the	 one	 that	 has	 the	 agent	 conditionalize	 on	 the	 proposition	 she	
learns.	 	 It	will	be	important	to	keep	these	two	steps	separate.	 I	will	call	the	purely	
formal	result	that	can	be	extracted	from	Greaves	and	Wallace’s	paper	‘G&W’.	

	
G&W:	For	any	partition	of	states	P:	{P1...Pn},	consider	the	set	of	functions,	F,	
that	assign	members	of	P	to	probability	functions.		The	member	of	F,	F,	that	
maximizes	this	quantity:	
	

∑			∑			p(s)*	A(F(Pi),	s)	
																																																																													Pi∈P			s∈Pi	

is:	
F(Pi)	=	Cond(Pi)	=	p(⋅	|	Pi)	

	 	
when	A	is	strictly	proper.	

	 	
G&W	can	be	used	to	derive	Greaves	and	Wallace’s	claim	about	experiments:	
	

CONDMAX:	Suppose	you	know	that	you	are	going	 to	perform	an	experiment, 
E.		The	update	procedure	that	maximizes	expected	accuracy	in	response	to	E,	
relative	 to	 probability	 function	 p,	 is	 the	 update-procedure	 that	 assigns,	 to	
each	Ei,	p(⋅	|	Ei).	

	
The	argument	from	G&W	to	CONDMAX,	using	our	generalized	framework,	is	simple.			

	
Proof	of	CONDMAX:			
(1)	The	expected	accuracy	of	an	update	procedure	U	in	response	to	an	
experiment	E,	relative	to	a	probability	function	p	is:		

														
(*)																										∑			∑			p(s)*	A(U(Ei),	s)																															

																																									Ei∈E		s∈	Ei	

(from	Lemma	2).	
	



	

		 (2)	The	value	of	U	that	maximizes	(*)	is	U=Cond(Ei).			
	

(This	follows	from	G&W	and	the	fact	that	E	is	a	partition)	
	

(3)	The	update	procedure	U	that	maximizes	expected	accuracy	in	response	to	
an	 experiment	 E	 is	 U=Cond(Ei).	 	 That	 is,	 the	 update	 procedure	 that	
maximizes	expected	accuracy	is	the	one	that	has	the	agent	conditionalize	on	
the	member	of	E	that	she	learns.	
(This	follows	from	(1)	and	(2)).	

	
But	 what	 about	 cases	 in	 which	 our	 future	 learning	 experiences	 aren’t	

representable	 as	 experiments?	 	 Which	 update	 procedure	 maximizes	 expected	
accuracy	in	those	cases?		Here	is	the	answer:	
	

GENERALIZED	CONDMAX:	 Suppose	 you	 know	 that	 you	 are	 going	 to	 undergo	 a	
learning	 experience, X.	 The	 update	 procedure	 that	 maximizes	 expected	
accuracy	 in	 response	 to	X,	 relative	 to	 probability	 function	p,	 is	 the	 update	
procedure	that	assigns,	 to	each	Xi,	p(⋅|L(Xi))	where	L(Xi)	 is	 the	proposition	
that	 Xi	 is	 the	 strongest	 proposition	 the	 agent	 exogenously	 learns	 upon	
undergoing	the	learning	experience.	
	
Proof	of	GENERALIZED	CONDMAX:			
Recall	that	the	expected	accuracy	of	an	update	procedure,	U,	in	response	to	a	
learning	experience	X	is	defined	as:			

	
									(#)																										∑							∑			p(s)*	A(U(Xi)),	s)																															
																																														L(Xi)∈L(X)				s∈	L(Xi)	

	
We	are	aiming	to	show	that	(#)	is	maximized	when	U(Xi)	=	Cond(L(Xi)).		So	
suppose	for	reductio	that	this	is	false:	that	is,	that	there	exists	a	function,	U*,	
such	that:		

	
												∑							∑			p(s)*	A(U*(Xi)),	s)						>						∑							∑			p(s)*	A(Cond(L(Xi)),	s)																															
													L(Xi)∈L(X)				s∈	L(Xi)																																																																			L(Xi)∈L(X)				s∈	L(Xi)	

	



	

Now,	define	μ(L(Xi))	as	U*(Xi).13		It	follows	that:	
	
											∑						∑			p(s)*	A(μ(L(Xi)),	s)						>						∑							∑			p(s)*	A(Cond(L(Xi)),	s)																															
													L(Xi)∈L(X)				s∈	L(Xi)																																																																			L(Xi)∈L(X)				s∈	L(Xi)	

	
But	this	is	impossible,	because	it	follows	from	G&W	that	the	quantity:	
	
(##)																												∑							∑			p(s)*	A(F(L(Xi)),		s)																															

																																													L(Xi)∈L(X)								s∈	L(Xi)	

	
is	maximized	when	F(L(Xi))=	Cond(L(Xi)).	 	Thus,	there	cannot	exist	a	μ	that	
satisfies	the	inequality	above.		Contradiction.	

	
Here	 is	 the	 lesson	 to	 be	 learned	 from	CONDMAX	 and	 its	 generalization:	 the	update	
procedure	that	maximizes	expected	accuracy	in	response	to	any	learning	experience	
is	one	 in	which	an	agent	who	 learns	Xi	 conditionalizes	on	the	proposition	that	she	
learns	 Xi	 upon	 undergoing	 the	 learning	 experience. 14 	The	 reason	 that	
conditionalizing	on	the	proposition	that	one	learns	maximizes	expected	accuracy	in	
response	to	an	experiment	 is	 that,	 in	 these	 special	 cases,	 the	 agent	 knows	 that	 she	
will	learn	Xi	if	and	only	if	Xi	is	true.		In	these	cases,	conditionalizing	on	Xi	amounts	
to	the	very	same	thing	as	conditionalizing	on	L(Xi).15			

																																								 																					
13	How	do	we	know	that	there	is	such	a	μ?		Since	there	is	a	bijection	between	the	Xi	and	the	L(Xi),	
there	 exists	 an	 inverse	 of	 L(Xi),	which	we’ll	 call	 ‘L-(Xi)’,	 such	 that	 L-(L(Xi))	 =	Xi.	 	We	 can	 then	 let	
μ(L(Xi))	be	U*	composed	with	L-.		Thus:	μ(L(Xi))	=	U*(L-(L(Xi))	=	U*(Xi).		
14	Note	that	this	is	true	for	any	proposition	that	is	the	strongest	proposition	one	exogenously	learns,	
including	 propositions	 that	 are,	 themselves,	 about	 gaining	 information.	 So	 if,	 say,	 in	 a	Monty	 Hall	
case,	one	thinks	that	the	strongest	proposition	learned	is	something	along	the	lines	of:	 ‘I	gained	the	
information	 that	 there	 is	 a	 goat	 behind	 door	 2’,	 the	 update	 procedure	 that	 maximizes	 expected	
accuracy	will	have	you	conditionalize	on:	‘I	learned	that	I	gained	the	information	that	there	is	a	goat	
behind	door	2’.			
15	The	 result	 can	 be	 generalized	 further	 to	 cases	 in	 which	 the	 possible	 number	 of	 propositions	
learned	is	infinite.	 	However,	to	perform	this	generalization,	we	need	a	notion	of	expected	accuracy	
that	 doesn’t	 rely	 on	 summation.	 	 Easwaran	 (2013)	 provides	 such	 a	 notion	 and	 argues,	 using	 this	
notion,	 that	 conditionalization	maximizes	 expected	 accuracy.	 	 Like	 Greaves	 and	Wallace,	 however,	
Easwaran	 relies	 on	 both	 PARTITIONALITY	 and	 FACTIVITY.	 So	 some	modifications	 need	 to	 be	made	 to	
derive	 GENERALIZED	 CONDMAX	 using	 Easwaran’s	 framework.	 	 Since	 Easwaran’s	 notion	 of	 expected	
accuracy	 is	 quite	 complex,	 I	 cannot,	 in	 this	 note,	 explain	 in	 general	 terms	 how	 the	 proof	must	 be	
modified.	 But	 for	 those	 readers	 familiar	 with	 Easwaran’s	 argument,	 here	 are	 the	 relevant	 details:		
First,	 Easwaran’s	 claim	 that	 ‘V	 and	V’	 are	 identical	 on	~E’	 (p.136)	 relies	 on	FACTIVITY.	 For	 suppose	
FACTIVITY	is	violated.		Then	it’s	possible	that,	for	some	s,	the	agent	learns	E	in	s	but	~E	is	true	in	s.		In	
such	a	state	V(s)	=	 I(A,	x,	 s)	and	V’(s)	=	 I(A,	x’,	 s).	 	 Since	 it	has	not	been	assumed	 that	x	and	x’	are	
identical,	 it	 cannot	 be	 assumed	 that	V	and	V’	are	 identical	 on	~E.	What	 can	be	 assumed,	 however,	



	

	
4.	Iteration	Principles		
	 The	 update	 procedure	 that	maximizes	 expected	 accuracy	 in	 general	 is	 not	
conditionalization.		It	is	conditionalization*:	conditionalizing	on	the	proposition	that	
one	learned	P,	when	P	is	the	proposition	learned.		
	 Recall	that	we	are	interested	in	the	expected	accuracy	of	update	procedures	
like	 conditionalization	 or	 conditionalization*	 because	 of	 the	 possibility	 that	
expected	accuracy	considerations	can	be	used	to	support	claims	about	which	update	
procedures	are	rational.	And	recall	that	underlying	the	arguments	under	discussion	
for	the	rationality	of	various	update	procedures	is	the	following	assumption:	
	

RATACC:	 The	 rational	 update	 procedures	 are	 those	 that	maximize	 expected	
accuracy	according	to	a	strictly	proper	scoring	rule.	

	
Together,	RATACC	and	GENERALIZED	CONDMAX	entail:	
	

COND*:	The	rational	update	procedure	is	conditionalization*.		In	other	words,	
upon	 learning	 P,	 an	 ideally	 rational	 agent	 will	 conditionalize	 on	 the	
proposition	that	she	learned	P.16			

	
Since	 conditionalizing	 on	 any	 proposition	 involves	 assigning	 credence	 1	 to	 that	
proposition,	 and	 conditionalization*	 has	 us	 conditionalize	 on	 the	 proposition	 that	
we	learned	P,	when	P	is	learned,	it	follows	from	COND*	that:		
	

LL:	If	one	learns	P,	one	is	rationally	required	to	be	certain	that	one	learned	P.	
	 	
I	suspect	that	people	who	deny	KK	–	the	principle	that	whenever	one	knows	P	one	is	
in	a	position	to	know	that	one	knows	P17	–	or	related	iteration	principles,	will	 find	
																																								 																																								 																																								 																																								 																					
without	relying	on	FACTIVITY,	is	that	V	and	V’	are	identical	on	~L(E).		Second,	Easwaran’s	claim	that	‘on	
E,	 V(s)	 =	 I(A,	 x,	 s)	 and	 V’(s)	 =	 I(A,	 x’,	 s)’	 (p.136)	 relies	 on	 PARTITIONALITY.	 	 For	 suppose	 that	
PARTITIONALITY	is	violated.		Then	it’s	possible	that	there	is	some	state	s	in	which	E	is	true	but	the	agent	
doesn’t	learn	E	–	rather,	she	learns	some	other	proposition	E*.		In	such	a	case,	V(s)	=	I(A,	f(E*),	s)	and	
V’(s)	=	I(A,	f’(E*),	s).		Since	it	is	not	assumed	that	f(E*)	is	x,	or	that	f’(E*)	is	x’,	we	cannot	assume	that,	
on	 E,	 V(s)	 =	 I(A,	 x,	 s)	 and	 V’(s)	 =	 I(A,	 x’,	 s).	 What	 can	 be	 assumed,	 however,	 without	 relying	 on	
PARTITIONALITY,	is	that,	on	L(E),	V(s)	=	I(A,	x,	s)	and	V’(s)	=	I(A,	x’,	s).			Plugging	in	these	substitutions	
throughout	 the	 remainder	 of	 the	 proof	 yields	 the	 result	 that,	 in	 general,	 conditionalizing	 on	 L(E)	
(rather	 than	 E),	 where	 E	 is	 the	 proposition	 learned,	 	 is	 the	 update	 procedures	 that	 maximizes	
expected	accuracy.			
16	Recall	that	the	proposition	one	‘learns’	refers	to	the	strongest	proposition	one	exogenously	learns.	



	

LL	unattractive.18		But	if	LL	is	rejected,	COND*	must	also	be	rejected.		In	this	section,	I	
explore	a	number	of	ways	of	resisting	the	conclusion	that	conditionalization*	is	the	
rational	 update	 procedure,	 and	 the	 resulting	 commitment	 to	 LL.	 The	 most	
straightforward	 way	 to	 do	 this	 is	 to	 simply	 reject	 RATACC	 –	 the	 claim	 that	 the	
rational	update	procedures	are	those	that	maximize	expected	accuracy.	Ultimately,	I	
think	 that	 this	 is	 the	 most	 promising	 route	 for	 those	 who	 wish	 to	 reject	 COND*	
and/or	LL.	But	first	I’d	like	to	describe	two	alternatives.		The	first	involves	claiming	
that	all	 rational	agents	do,	 in	 fact,	 satisfy	PARTITIONALITY	 and	FACTIVITY.	The	second	
involves	a	modification	of	RATACC.	
	
4.1	Endorsing	the	Requirements	of	PARTITIONALITY	and	FACTIVITY	
	 The	argument	against	 the	claim	that	conditionalization	maximizes	expected	
accuracy	 in	 general	 relied	 on	 the	 thought	 that	 rational	 agents	 may	 fail	 to	 satisfy	
PARTITIONALITY	 or	 FACTIVITY.	 	 I	 offered	 considerations	 that	 tell	 against	 the	
requirement	that	rational	agents	satisfy	both	of	these	conditions.		But	perhaps,	upon	
realizing	that	endorsing	conditionalization*	as	the	rational	update	procedure	brings	
with	it	a	commitment	to	LL,	one	may	want	to	revisit	this	issue.	
	 However,	 even	 if	 a	 case	 can	 be	 made	 that	 all	 rational	 agents	 satisfy	
PARTITIONALITY	 and	 FACTIVITY,	 this	won’t	 help	 the	 LL-denier.	 	 For	 CONDMAX	 tells	 us	
that	 if	 all	 rational	 agents	 satisfy	 PARTITIONALITY	 and	 FACTIVITY,	 ordinary	
conditionalization	will	be	the	update	procedure	that	maximizes	expected	accuracy.	
However,	by	Lemma	1,	all	rational	agents	who	satisfy	PARTITIONALITY	and	FACTIVITY	
will	regard	L(P)	and	P	as	equivalent.		So,	if	rational	agents	conditionalize	on	P,	upon	
learning	P,	they	will	assign	credence	1	to	P.		But,	since	these	agents	assign	credence	
1	to	P	↔	L(P),	conditionalizing	on	P	will	result	in	the	agent	assigning	credence	1	to	
L(P)	 as	well.	 	 Thus,	 if	 PARTITIONALITY	 and	FACTIVITY	are	 satisfied,	 conditionalization	
yields	the	result	that	an	agent	that	learns	P	will	be	certain	that	she	learned	P.19		

																																								 																																								 																																								 																																								 																					
17	See,	for	example,	Williamson	(2000).	
18	Note,	however,	 that	at	 least	 some	objections	 to	KK	don’t	extend	 to	LL.	 	KK	has	 the	consequence	
that	if	an	agent	knows	P,	she	knows	that	she	knows	P,	she	knows	that	she	knows	that	she	knows	P,	
and	so	on.	 	However,	recall	 that	by	 ‘learn’	we	mean	exogenously	 learn.	Thus,	LL	 just	says	that	 if	an	
agent	exogenously	 learns	P	she	must	become	certain	that	she	exogenously	learned	P.	 	 It	doesn’t	say	
that	if	she	exogenously	learns	P,	she	exogenously	learns	that	she	exogenously	learns	P.	The	certainty	
in	learning	P	need	not,	 itself,	be	the	result	of	exogenous	learning.	Thus,	unlike	KK,	LL	‘iterates’	only	
once.	
19	Bronfman	(2014)	gives	a	related	argument	 for	the	claim	that	agents	that	satisfy	these	conditions	
will	conform	to	KK.	



	

	 This	 brings	 out	 an	 important	 point:	 conditionalization	 and	
conditionalization*	only	yield	different	results	when	an	agent	doesn’t	satisfy	at	least	
one	of	PARTITIONALITY	or	FACTIVITY.	 	 I	suggested	that,	 in	many	ordinary	cases,	 these	
requirements	 are	 not	 both	 satisfied.	 In	 such	 cases,	 conditionalization*,	 and	 not	
conditionalization,	maximizes	expected	accuracy.			But	even	if	one	disagrees	with	me	
about	 whether	 rational	 agents	 always	 satisfy	 PARTITIONALITY	 and	 FACTIVITY,	 one	
shouldn’t	reject	the	claim	that	conditionalization*	maximizes	expected	accuracy.	For	
conditionalization	 and	 conditionalization*	 amount	 to	 the	 very	 same	 thing	 when	
PARTITIONALITY	 and	FACTIVITY	 are	 satisfied.	Thus,	 COND*	and	LL	 follow	 from	RATACC	
even	if	agents	are	rationally	required	to	satisfy	PARTITIONALITY	and	FACTIVITY.		
	
4.2	Modifying	RATACC	

Aaron	Bronfman	(2014,	p.	887-8)	considers	and	rejects	a	rule	that	is	similar	
to	conditionalization*.		His	reason	for	rejecting	the	rule	is	based	on	the	thought	that	
when	we’re	considering	which	update	procedures	maximize	expected	accuracy,	we	
should	only	consider	those	procedures	that	 the	agent	 in	question	can	competently	
execute.	 	 On	 this	 view,	 the	 rational	 update	 procedure	 isn’t	 the	 update	 procedure	
from	 the	 pool	 of	 possible	 update	 procedures	 that	 maximizes	 expected	 accuracy.		
Rather,	 the	 rational	 update	 procedure	 is	 the	 procedure	 from	 the	 pool	 of	 update	
procedures	 that	 the	 agent	 can	 competently	 execute	 that	 maximizes	 expected	
accuracy.			

As	 an	 example,	 suppose	 that	 Al	 fails	 to	 satisfy	 one	 of	 PARTITIONALITY	 or	
FACTIVITY.	 I	 have	 shown	 that	 the	 update	 procedure	 that	 maximizes	 expected	
accuracy	for	Al	from	the	pool	of	possible	update	procedures	is	conditionalization*.	But	
now	suppose	that	Al	sometimes	exogenously	 learns	P,	but	 is	unable	to	realize	that	
he	learned	P.	Arguably,	Al	can’t	competently	execute	conditionalization*.20	If	this	is	
right,	 then	 according	 to	 modified	 RATACC,	 which	 has	 us	 consider	 only	 update	
procedures	that	Al	can	competently	execute,	Al	is	not	required	to	conditionalize*.		

I	 think	 that	 this	 is	 an	 interesting	 suggestion,	 but	 it	 is	 worth	 noting	 a	 few	
things:	 First,	 when	 we	 calculate	 the	 expected	 accuracy	 of	 update	 procedures,	 we	
always	 do	 so	 from	 the	 perspective	 of	 the	 agent	 prior	 to	 undergoing	 the	 learning	
experience.	 	 Bronfman’s	 suggestion	 is	 that	we	 remove	 from	 the	pool	 of	 candidate	
update	procedures	 those	that	 the	agent	cannot	execute.	 	But	what	 if	 the	agent	has	
																																								 																					
20	How	 plausible	 this	 claim	 is	 depends	 on	 the	 modal	 scope	 of	 ‘can’.	 	 I	 will	 simply	 assume	 that	
someone	who	is	sympathetic	to	this	line	of	thought	will	have	a	way	of	making	sense	of	the	modal	that	
yields	the	desired	result.		



	

false	(but	rational)	beliefs	about	which	update	procedures	she	can	execute?	 	Then	
the	 update	 procedure	 that	 maximizes	 expected	 accuracy	 from	 the	 pool	 of	
procedures	 that	 she	 thinks	 she	 can	execute	may	differ	 from	 the	update	procedure	
that	maximizes	expected	accuracy	from	the	pool	of	procedures	that	she	can	execute.	
But	 it	 seems	 against	 the	 spirit	 of	 Bronfman’s	 proposal	 to	 demand	 that	 the	 agent	
update	 in	 accord	 with	 the	 update	 procedure	 that	 maximizes	 expected	 accuracy	
relative	 to	 her	 actual	 abilities	 when	 she	 has	 no	 way	 of	 knowing	 which	 update	
procedure	this	is.			

One	 might	 modify	 Bronfman’s	 proposal	 so	 that	 what’s	 relevant	 is	 not	 the	
agent’s	actual	abilities,	but	the	agent’s	opinions	concerning	her	abilities.	 	But	if	the	
only	update	procedures	in	the	pool	that	she	should	be	choosing	from	are	those	that	
she	is	certain	that	she	will	be	able	to	execute,	the	pool	may	well	be	empty.		Perhaps,	
then,	the	pool	shouldn’t	only	contain	procedures	that	she	is	certain	she	will	be	able	
to	 execute.	 Maybe	 it	 should	 contain	 those	 procedures	 that	 she	 believes	 she	 can	
execute,	or	those	that	she	is	sufficiently	confident	that	she	can	execute.21		But	there	
are	additional	complications.	 	For	suppose	 I	now	rationally	believe	that	 I	won’t	be	
able	 to	 refrain	 from	 being	 certain	 that	 my	 child	 is	 the	 best	 player	 on	 the	 team,	
whatever	evidence	I	receive.	But	I	am	wrong	about	this.		In	fact,	I	will	perfectly	well	
be	 able	 to	 evaluate	 the	 evidence	 concerning	 the	 relative	 abilities	 of	my	 child.	 The	
view	 under	 consideration	 entails	 that	 even	 if,	 when	 the	 time	 comes,	 all	 of	 my	
evidence	 suggests	 that	my	 child	 is	mediocre,	 and	 I	 am	capable	of	 recognizing	 this	
fact,	in	virtue	of	the	fact	that,	at	an	earlier	time,	I	believed	that	I	couldn’t	help	but	be	
certain	 that	 she	 is	best,	 I	 am	rationally	required	 to	be	 certain	 that	 she	 is	 the	best!		
This	seems	highly	implausible.	

I	 don’t	mean	 to	 claim	 that	 these	 complexities	 are	 insurmountable,	 but	 it	 is	
worth	noting	that	nothing	that	looks	like	ordinary	conditionalization	will	emerge	as	
a	 result	 of	 Bronfman’s	 modification.	 	 If	 we	 modify	 RATACC	 in	 the	 way	 Bronfman	
suggests	and	 thereby	avoid	a	commitment	 to	COND*	and	LL,	what	we	are	 left	with	
isn’t	good	old-fashioned	conditionalization.	 	Rather,	 the	rational	update	procedure	
will	be	something	very	messy	and	agent-relative	that	can’t	be	neatly	characterized	
in	a	formal	framework.		If	we	want	to	account	for	the	limitations	of	non-ideal	agents	

																																								 																					
21	If	we	included	only	those	procedures	that	the	agent	knows	she	can	execute,	then,	since	‘knows’	is	
factive,	we	will	run	into	the	earlier	problem.		If	the	agent	rationally	believes	that	she	can	execute	all	
of	the	procedures	in	set	S,	but	she	only	knows	that	she	can	execute	the	procedures	in	S’,	then	the	view	
would	imply	that	it’s	rational	for	her	to	accord	with	the	update	procedure	that	maximizes	expected	
accuracy	relative	to	S’.	



	

this	 is	 to	 be	 expected,	 but	we	 are	 now	 quite	 far	 from	 the	 project	 as	 Greaves	 and	
Wallace,	and	others	involved	in	accuracy-first	epistemology,	originally	conceived	of	
it.	 In	 describing	 the	 idealized	 agents	 under	 discussion	 Greaves	 and	 Wallace	 say:	
‘Real	epistemic	agents	are	not	(at	least	not	quite)	like	this.		Bayesian	epistemology	is	
a	 normative	 theory	 rather	 than	 a	 purely	 descriptive	 one’	 (p.	 608).	 Greaves	 and	
Wallace	 are	 interested	 in	 a	 notion	 of	 ideal	rationality	 that	 doesn’t	 take	 an	 agent’s	
cognitive	limitations	into	account.		One	might	have	qualms	about	such	idealizations,	
but	these	qualms	will	extend	to	Bayesian	epistemology	more	generally	and	are	not	
ones	that	I	will	address	here.	

Still,	 one	might	 claim,	 even	 the	 idealized	 notion	 of	 rationality	 that	 Greaves	
and	Wallace	 are	working	with	 takes	 into	 account	 some	 of	 the	 agent’s	 limitations.		
After	all,	 if	any	update	procedure	were	allowed	in	the	pool,	then	surely	the	update	
procedure	 that	maximizes	 expected	 accuracy	 would	 be	 one	 that	 requires	 that,	 in	
every	state,	 the	agent	assign	credence	1	 to	all	 the	 truths	and	credence	0	 to	all	 the	
falsehoods! 
	 Now,	as	a	matter	of	fact,	given	the	way	we	have	defined	‘update	procedure’,	
the	rule	‘assign	credence	1	to	all	truths	and	0	to	all	falsehoods’	(let’s	call	it	‘the	truth	
rule’)	simply	isn’t	an	update	procedure.	For	recall	that	an	update	procedure	is	just	a	
function	 from	 the	 propositions	 one	might	 learn	 to	 credence	 functions.	 	 Since	 the	
truth	values	of	some	propositions	may	vary	amongst	the	worlds	in	which	the	agent	
learns	the	same	information,	but	the	recommended	credence	function	cannot	vary	
amongst	 these	worlds,	 a	 function	 from	 the	 propositions	 the	 agent	might	 learn	 to	
credence	functions	will	not,	in	general,	be	one	that,	when	conformed	to,	results	in	an	
agent	assigning	credence	1	to	all	truths	in	every	state.	
	 Nonetheless,	 one	might	 think	 that	 the	 reason	we	 defined	 the	 notion	 of	 an	
update	procedure	in	a	way	that	rules	out	the	truth	rule	is	that	we	are	only	interested	
in	procedures	 that	are,	 in	 some	sense,	available	to	 the	agent	upon	undergoing	 the	
learning	experience.	We	don’t	want	to	require	that	the	agent	be	certain	that	 it	will	
rain	tomorrow,	in	virtue	of	the	fact	that	it	will	rain	tomorrow,	if	all	she	learns	is,	say,	
that	 a	 coin	 landed	 Heads.	 	 Similarly,	 you	might	 think,	 we	must	 find	 some	 way	 of	
ruling	out	update	procedures	that	require	an	agent	to	be	certain	that	she	learned	P,	
in	 virtue	 of	 that	 fact	 that	 she	 did	 learn	 P,	 even	 though	 the	 only	 information	 she	
exogenously	received	was	that	P.		Perhaps	so.		But	the	issue	here	will	be:	available	in	
what	sense?			
	 It	 will	 be	 helpful	 to	 make	 use	 of	 Ned	 Hall’s	 (2004)	 distinction	 between	
analyst	experts	and	database	experts.	 	We	defer	 to	database	experts	because	 they	



	

possess	 a	 great	 deal	 of	 information.	We	 defer	 to	 analyst	 experts	 because	 of	 their	
superior	 information	processing	abilities.	Thus,	we	can	distinguish	agents	who	are	
idealized	along	the	database	dimension	(they	are	certain	of	all	and	only	the	truths),	
and	agents	who	are	 idealized	along	 the	analyst	dimension.	 	 It	 is	 the	 latter	kind	of	
idealization	that	Greaves	and	Wallace	are	interested	in.		They	want	to	know	how	an	
idealized	analyst	will	revise	her	beliefs	 in	 light	of	new	information.	 	Since	they	are	
interested	 in	 idealized	 information	 processing,	 and	 not	 idealized	 information	
possession,	 it	 is	 clear	 why	 they	 require	 that	 update	 procedures	 issue	 the	 same	
recommendations	in	any	two	states	in	which	the	agent	gains	the	same	information.	
It	 will,	 however,	 be	 difficult	 to	 come	 up	 with	 a	 principled	 way	 of	 ruling	 out	
conditionalization*	 as	 the	 ideal	 update	 procedure	 if	 the	 ideal	 in	 question	 is	 ideal	
information	processing.	This	 is	because,	 like	conditionalization,	conditionalization*	
is	 simply	 an	 operation	 performed	 on	 the	 proposition	 exogenously	 learned.	 	 The	
operation	 is	 the	 following:	 If	P	 is	 the	proposition	 learned,	 take	P,	attach	an	L	 to	 it,	
and	conditionalize	on	the	resulting	proposition:	L(P).	

If	we	were	happy	with	ordinary	conditionalization,	then	we	were	happy	with	
requiring	 that	 (ideal!)	 agents	be	 certain	 that	Q,	upon	 learning	P,	 if	P	 entails	Q.	 	 In	
endorsing	 this	 commitment	 we	 needn’t	 suppose	 that	 any	 event	 in	 which	 one	
exogenously	learns	P	constitutively	involves	a	learning	of	Q.		Rather,	the	Q-learning	
may	 be	 a	 kind	 of	 endogenous	 learning	 that	 idealized	 agents	 will	 undergo	 upon	
exogenously	 learning	P.	 The	 requirement	 that	 agents	 be	 certain	 that	 they	 learned	
what	they	learned	is,	 in	the	relevant	sense,	no	different	from	the	requirement	that	
agents	 be	 certain	 in	 the	 propositions	 that	 their	 evidence	 entails.	 	 Here	 too,	 we	
needn’t	 suppose	 that	 any	 event	 in	 which	 one	 learns	 P	 constitutively	 involves	 a	
learning	 that	one	 learned	P.	 	The	 claim	 is	 rather	 that	 ideal	 agents	will	 come	 to	be	
certain	that	they	learned	P	upon	appropriate	processing	of	the	information	that	P.	

In	 sum,	 Bronfman’s	 modification	 of	 RATACC	 may	 well	 be	 worth	 serious	
consideration,	 but	 it	 does	 not	 engage	 with	 the	 project	 as	 Greaves	 and	 Wallace	
conceived	 of	 it:	 figuring	 out	 the	 ideally	 rational	 way	 to	 revise	 beliefs,	 where	 the	
idealization	 in	 question	 is	 along	 the	 information	 processing	 dimension.	
Conditionalization*,	 just	 like	conditionalization,	 is	an	operation	on	 the	proposition	
an	agent	learns.	If	we	are	interested	in	ideal	information	processing,	there	shouldn’t	
be	any	restrictions	on	what	operations	can	be	performed	on	this	proposition.			
	
4.3	Giving	up	RATACC	



	

Rather	 than	 trying	 to	 modify	 RATACC,	 one	 may	 simply	 reject	 the	 idea	 that	
anything	 in	 the	 vicinity	 of	 RATACC	 is	 true.	 On	 this	 view,	 there	 simply	 is	 no	
straightforward	 connection	 between	 the	 rational	 way	 of	 revising	 one’s	 credences	
and	considerations	of	expected	accuracy.		

There	is	plenty	of	literature	devoted	to	evaluating	the	merits	of	accuracy-first	
epistemology22	and	entering	 into	 this	debate	will	 take	us	beyond	 the	scope	of	 this	
paper.		But	it	is	important	to	realize	that	RATACC	plays	an	important	role	in	much	of	
the	accuracy-first	project.23	So	I	will	simply	note	that	this	is	one	way	that	someone	
who	 wants	 to	 reject	 COND*	 and	 LL	 might	 go.	 	 If	 this	 turns	 out	 to	 be	 the	 only	
acceptable	 way	 to	 reject	 these	 claims,	 then	 we	 will	 have	 learned	 the	 following	
interesting	 fact:	Many	 accuracy-first	 epistemologists	 (those	who	 endorse	 RATACC)	
are	committed	to	some	substantive	iteration	principles,	and,	conversely,	those	who	
reject	such	principles	are	committed	to	rejecting	large	portions	of	the	accuracy-first	
project.	

	
5.	Further	Generalizations	and	Further	Consequences	

I	have	shown	that	conditionalizing	on	the	propositions	we	learn	does	not,	in	
general,	maximize	 expected	 accuracy.	 	 Rather,	 conditionalizing	 on	 the	proposition	
that	we	learned	P,	when	P	is	the	proposition	learned,	 is	the	update	procedure	that	
maximizes	 expected	 accuracy.	 In	 this	 section	 I	 provide	 further	 generalizations	 of	
this	 result	 and	 show	 that,	 no	 matter	 which	 features	 of	 an	 agent’s	 situation	 the	
RATACC-er	thinks	the	rationality	of	an	agent’s	credence	function	depends	on,	she	is	
committed	to:		

	
LUMINOUS	INFALLIBILITY:	There	is	a	class	of	propositions	concerning	an	agent’s	
situation,	such	that,	for	any	subject	S,	if	S	is	rational,	these	propositions	will	
be	true	of	S	if	and	only	if	she	is	certain	of	them.	
	
To	 begin,	 I	 will	 give	 an	 argument	 for	 the	 following	 generalization	 of	

GENERALIZED	CONDMAX:	
	
																																								 																					
22 	See,	 for	 example,	 Caie	 (2013),	 Greaves	 (2013),	 Pettigrew	 (2016),	 Konek	 and	 Levinstein	
(forthcoming),	and	Carr	(ms.).		
23	Though	see	Schoenfield	(forthcoming),	section	4,	for	an	alternative	conception	of	how	rationality	
and	 accuracy	 considerations	 interrelate,	 which	 takes	 accuracy	 as	 fundamental,	 but	 gives	 up	 on	
RATACC.		
	



	

SUPER	GENERALIZED	CONDMAX:	Let	U	be	a	function	from	a	set	of	propositions	X	
to	 credence	 functions	 with	 the	 intended	 interpretation	 that	 an	 agent	
conforming	to	U	adopts	U(Xi)	whenever	the	agent	bears	relation	R	to	Xi.	Let	
R(Xi)	be	the	proposition	‘The	agent	bears	relation	R	to	Xi’.		If	the	R(Xi)	form	a	
partition,	then	the	function,	U,	such	that	conforming	to	U	maximizes	expected	
accuracy,	is	the	one	that	has	the	agent	conditionalize	on	the	proposition	‘the	
agent	bears	relation	R	to	Xi’	whenever	the	agent	bears	relation	R	to	Xi.	
	

Why	 is	 this	principle	 true?	 	Here’s	 the	 intuitive	 idea:	 Suppose	you	 could	 choose	 a	
credence	 function	 that	 you	 knew	 an	 agent	 would	 adopt	 whenever	 she	 bears	 the	
relation	R	 to	some	proposition	P.	 	Even	without	knowing	anything	else	about	 this	
relation,	if	you	wanted	her	to	be	as	accurate	as	possible,	the	following	seems	like	a	
sensible	first	step:	have	her	assign	credence	1	to	the	proposition:	she	bears	relation	
R	 to	 P	whenever	 she	 bears	 relation	 R	 to	 P.	 	 For	 this	 will	 guarantee	 that	 if	 she	
conforms	 to	 the	 procedure,	 she	 will	 assign	 credence	 1	 to	 a	 truth!	 	 What	
conditionalizing	 on	 ‘she	 bears	 relation	 R	 to	 P’	 adds	 to	 this	 is	 just	 that	 she’ll	
renormalize	the	rest	of	her	credences	in	response	to	her	newfound	certainty.	

More	 formally,	 note	 that	 SUPER	 GENERALIZED	 CONDMAX	 differs	 from	
GENERALIZED	CONDMAX	only	 in	 that	we	are	 talking	about	bearing	 the	R	relation	 to	a	
proposition,	rather	than	the	learning	relation,	and	we	are	understanding	what	it	 is	
for	an	agent	to	conform	to	U	as	the	agent	adopting	U(Xi)	whenever	she	bears	R	to	Xi	
instead	of	whenever	she	learns	Xi	.		But	the	proof	of	GENERALIZED	CONDMAX	didn’t	rely	
on	any	special	 feature	of	L.	So	if,	 instead	of	asking	how	an	agent	should	revise	her	
credences	as	a	function	of	which	proposition	she	learns,	we	ask	how	an	agent	should	
revise	her	credences	as	a	 function	of	which	proposition	she	bears	R	to,	 it	will	 turn	
out	that	the	update	procedure	that	maximizes	expected	accuracy	is	the	one	that	has	
the	agent	conditionalize	on	R(Xi)	whenever	she	bears	R	to	Xi	.	

SUPER	 GENERALIZED	 CONDMAX	 explains	 why	 the	 results	 in	 this	 paper	 are	
completely	neutral	with	respect	to	one’s	understanding	of	‘learning’.		A	theorist	can	
take	any	notion	of	learning	that	she’s	interested	in	(coming	to	assign	credence	1	to	
P,	coming	to	know	P,	coming	to	believe	P),	and	partition	an	agent’s	possibility	space	
in	 accord	 with	 the	 different	 ‘learnings’	 she	 might	 undergo	 (perhaps	 including	 a	
trivial	instance	of	learning	to	capture	a	case	in	which	no	new	information	is	gained).		
Then,	SUPER	GENERALIZED	CONDMAX	will	say	that	the	update	procedure	that	maximizes	
expected	 accuracy	 in	 response	 to	 whatever	 kind	 of	 learning	 takes	 place	 is	
conditionalizing	on	the	proposition	that	the	relevant	kind	of	learning	has	taken	place.		



	

	 We	can	now	generalize	the	result	even	further.	For	it	also	follows	from	G&W	
that:		
	

SUPER-DUPER	 (SD)	 GENERALIZED	 CONDMAX:	 Consider	 any	 partition	 of	
propositions	Pi	over	a	set	of	states	Ω.	Let	U	be	a	function	from	Pi	to	credence	
functions	 with	 the	 intended	 interpretation	 that	 an	 agent	 adopts	 U(Pi)	
whenever	Pi	obtains.	The	U	that	maximizes	expected	accuracy	is	the	one	that	
assigns	to	each	Pi	the	credence	function	that	results	from	conditionalizing	on	
Pi.		

	
Proof	
Let	Pi	be	a	set	of	propositions	that	partition	Ω.		It	follows	directly	from	G&W	
that	the	function	U	that	maximizes	this	quantity:	
	

																					∑							∑			p(s)*	A(U(Pi),	s))																															
																																																	Pi	∈Ω								s∈	Pi	

is:	U=Cond(Pi).	
	
Note	that	the	quantity	above	represents	the	expected	accuracy	of	an	agent’s	
credences	if	that	agent	adopts	U(Pi),	whenever	Pi	obtains.	It	follows	that	if	we	
understand	 conforming	 to	U	as	 adopting	U(Pi)	 whenever	 Pi	 obtains,	 the	U	
which	is	such	that	conforming	to	 it	maximizes	expected	accuracy	is	the	one	
that	has	the	agent	adopt	Cond(Pi)	whenever	Pi	obtains.	
	

This	 result	 allows	 us	 even	 greater	 flexibility	 in	 terms	 of	 how	 we	 think	 about	
exogenously	 gaining	 information	 because	 we	 are	 no	 longer	 required	 to	 think	 of	
information	gaining	as	an	agent	coming	to	bear	a	relation	to	a	proposition.	Suppose,	
for	 example,	 that	 one	 thought	 that	 the	 world	 doesn’t	 fling	 single	 propositions	 at	
agents,	 but	 sets	 of	propositions.	 	We	 then	might	 ask:	how	should	one	 revise	one’s	
credences	 in	 response	 to	 learning	 a	 set	 of	 propositions?	 SD-GENERALIZED	CONDMAX	
entails	that	the	update	procedure	that	maximizes	expected	accuracy	in	response	to	
learning	 sets	 of	 propositions	 is	 the	 one	 that	 has	 the	 agent	 conditionalize	 on	 the	
proposition	 ‘S	 is	 the	set	of	propositions	 that	was	 learned’	whenever	S	 is	 the	set	of	
propositions	 learned.	Or	 suppose	 that,	 like	Richard	 Jeffrey	 (1992),	one	 thinks	 that	
exogenous	 learning	 involves	 the	 world	 shifting	 around	 some	 of	 an	 agent’s	
credences.	We	then	might	ask:	how	should	one	revise	one’s	credences	in	response	to	



	

certain	 credal	changes	 taking	 place?	 	 If	we’re	 looking	 for	 the	 update	 procedure	 in	
response	to	credal	changes	that	maximizes	expected	accuracy,	 the	answer	will	not	
be	to	Jeffrey-conditionalize.		The	answer	will	be	to	regular-old-conditionalize	on	the	
proposition	‘such	and	such	credal	changes	have	occurred’	whenever	such	and	such	
credal	changes	have	occurred.			
	 There	 is	 a	 sense,	 then,	 in	which	 a	 defender	 of	 RATACC	 can’t	 help	 but	 adopt	
some	version	of	the	truth	rule.	 	 	For	whatever	one’s	theory	of	rationality	is,	one	can	
partition	the	space	of	possible	situations	an	agent	might	find	herself	in	in	such	a	way	
that	 the	 same	doxastic	 state	 is	 rational	 in	 each	 cell	 of	 the	partition.	 	 	 Perhaps,	 for	
example,	a	theorist	partitions	the	space	based	on	what	the	agent’s	phenomenology	
is:	 {She	has	phenomenology	P1,	 she	has	phenomenology	P2…}	or	what	 she	 learns	
{She	 learns	X1,	 she	 learns	X2…}	 or	 what	 her	 evidence	 is:	 {She	 possesses	 E1,	 She	
possess	E2…}.	 	Call	 this	partition,	whatever	 it	 is,	P.	 	There	is,	 then,	a	 function	from	
the	 Pi	∈	 P	 to	 credence	 functions	 that	 (for	 this	 theorist)	 represents	 the	 credence	
function	that	is	rational	for	an	agent	to	adopt	in	any	given	cell	of	the	partition.		We’ll	
call	 the	 propositions	 in	 P	 the	 propositions	 whose	 truth	 determines	 what	 credence	
function	it	is	rational	for	an	agent	to	adopt.			

Now,	suppose	that	our	theorist	is	a	RATACC-er.	It	follows	from	SD-GENERALIZED	
CONDMAX	 that	 conditionalizing	 on	 Pi	 whenever	 Pi	 obtains	 is	 the	 way	 to	 assign	
credence	functions	to	the	members	of	P	that	maximizes	expected	accuracy.	 	So	the	
RATACC-er	will	think	that	if	Pi	is	true,	a	rational	agent	will	conditionalize	on	Pi	and	so	
become	certain	that	it	is	true.	The	RATACC-er	must	also	think	that	if	a	rational	agent	
is	 certain	 that	Pi,	 then	Pi	 is	 true.	 	This	 is	because	 the	Pi	 form	a	partition,	 and	 so	a	
rational	agent	will	be	certain	of	at	most	one	Pi.		(If	she	were	certain	of	more	than	one	
Pi,	then	she	would	be	certain	of	two	incompatible	propositions).	We	also	know	that	
she	will	be	certain	of	at	least	one	Pi,	since	at	least	one	Pi	will	be	true,	and	we	already	
established	 that	 if	 Pi	 is	 true	 she	 will	 be	 certain	 that	 it	 is	 (since	 she	 will	 have	
conditionalized	on	it).	 	 It	 follows	that	she	will	be	certain	of	exactly	one	Pi:	 the	true	
one.	 	Thus,	 for	any	Pi,	 the	agent	will	be	 certain	 that	Pi,	 if	 and	only	 if	Pi	 is	 true.	 	 In	
other	words:	
	

If	 RATACC	 is	 true,	 then	 the	 propositions	 whose	 truth	 determines	 what	
credence	function	it	is	rational	for	an	agent	to	adopt	are	propositions	that	a	
rational	 agent	 is	 luminously	 infallible	about	–	 that	 is,	 they	are	propositions	
that	she	will	be	certain	of	if	and	only	if	they	are	true.	
		



	

We	are	now	in	a	better	position	to	recognize	the	awkwardness	that	arises	in	
the	 Greaves	 and	Wallace	 framework	 –	 an	 awkwardness	 that,	 I	 believe,	 reflects	 a	
tension	 in	 our	 thinking	 about	 these	 issues	more	 generally.	 	 In	 defining	 an	 update	
procedure,	 Greaves	 and	 Wallace	 committed	 themselves	 to	 the	 view	 that	 which	
credence	function	it	is	rational	for	an	agent	to	adopt	depends	on	which	proposition	
the	 agent	 learns.	 	 In	 other	 words,	 for	 Greaves	 and	 Wallace,	 the	 Pi	 –	 those	
propositions	whose	 truth	 determines	which	 credence	 function	 it	 is	 rational	 for	 an	
agent	 to	 adopt	 –	 are	 the	 L(Xi):	 the	 propositions	 describing	which	 proposition	 an	
agent	learns.		While	this	seems	like	a	perfectly	plausible	choice	for	one’s	Pi,	it	would	
not	be	plausible	to	suppose	that	the	credence	function	that	it	is	rational	for	an	agent	
to	adopt	depends	on	whether,	 for	 example,	 it’s	 raining	 in	Singapore,	 regardless	of	
what	 evidence	 the	 agent	has	 to	 that	 effect.	 	 Thus,	 propositions	 about	 the	weather	
conditions	 in	 Singapore	 are	not	 a	 plausible	 choice	 of	 Pi.	 	 But	 here’s	 the	 problem:		
Intuitively,	 we	 think	 that	 propositions	 about	 the	 weather	 in	 Singapore	 are	
propositions	we	might	learn,	and	we	all	grew	up	liking	the	idea	that	conditionalizing	
on	what	we	 learn	 is	 rational.	 But	what	 follows	 from	 SD-GENERALIZED	CONDMAX	and	
RATACC	 is	 that	whichever	propositions	are	 such	 that	 their	 truth	 determines	which	
credence	 function	 is	 rational	 are	 the	 propositions	 that	 a	 rational	 agent	 will	
conditionalize	 on.	 So	 a	 RATACC-er	 can’t	 think	 that	 which	 of	 the	 L(Xi)	 is	 true,	
determines	which	credence	function	is	rational,	and	think	that	the	propositions	that	
the	agent	will	conditionalize	on	are	propositions	about	the	weather,	unless	she	also	
thinks	that	the	propositions	about	the	weather	are	equivalent	to	the	propositions	in	
L(X).	 	This	is	why,	to	get	the	Greaves	and	Wallace	result	–	that	conditionalizing	on	
the	content	of	what	one	learns	maximizes	expected	accuracy	–	we	must	impose	such	
severe	restrictions	on	the	possible	contents	of	learning.	For	whatever	these	contents	
are,	they	must	be	equivalent	from	our	perspective	to	the	proposition	that	we	learn	
them.			
	
6.	Conclusion	

I	 have	 argued	 that	 conditionalization	 is	 not	 the	 update	 procedure	 that,	 in	
general,	 maximizes	 expected	 accuracy.	 The	 update	 procedure	 that	 maximizes	
expected	 accuracy	 is	 conditionalization*:	 conditionalizing	 on	 the	 proposition	 that	
one	 learned	 P	 when	 P	 is	 the	 strongest	 proposition	 one	 exogenously	 learned.		
Conditionalizing	 on	 P,	 it	 turns	 out,	 only	maximizes	 expected	 accuracy	 in	 cases	 in	
which	the	agent	is	antecedently	certain	that,	for	all	P	she	might	learn,	if	P	is	true	she	
will	learn	it,	and	if	she	learns	P,	it	is	true.			



	

If	the	rational	update	procedures	are	those	that	maximize	expected	accuracy	
(that	 is,	 if	 RATACC	 is	 true),	 the	 fact	 that	 conditionalization*	 maximizes	 expected	
accuracy	 entails	 that	 conditionalization*	 is	 rational,	 and	 if	 conditionalization*	 is	
rational,	then	one	is	rationally	required	to	be	certain	that	one	learned	P	whenever	it	
is	true	that	one	learned	P.		

These	 results	 are	 instances	of	 a	 yet	deeper	phenomenon.	Anyone	who	accepts	
RATACC	is	committed	to	the	existence	of	a	class	of	propositions	that	rational	agents	
will	be	 luminously	 infallible	about:	a	class	of	propositions	that	rational	agents	will	
be	certain	of	if	and	only	if	they	are	true.	

The	 results	 in	 this	 paper	 can	 thus	 be	 summarized	 as	 follows:	 It	 follows	 from	
RATACC	that:	

	
(1) If	 which	 credence	 function	 it	 is	 rational	 to	 adopt	 is	 determined	 by	 which	

proposition	 one	 learns,	 then	 conditionalizing	 on	 the	 proposition	 that	 one	
learned	Xi,	when	Xi	is	the	proposition	learned,	is	the	rational	way	of	revising	
one’s	 credences.	 	 The	 class	 of	 propositions	 L(Xi)	 will	 be	 the	 class	 of	
propositions	that	a	rational	agent	is	luminously	infallible	about.			

(2) If	 a	 rational	 agent	 regards	 any	 proposition	 Xi	 that	 she	 might	 learn	 as	
equivalent	 to	 L(Xi),	 the	 claim	 that	 she	 learned	 it,	 then	 the	 rational	 update	
procedure	 (conditionalizing	 on	 L(Xi))	 will	 amount	 to	 the	 same	 thing	 as	
conditionalizing	on	Xi.		In	this	case,	the	class	of	propositions	one	might	learn	
(the	Xi)	 are	 also	 propositions	 that	 a	 rational	 agent	 is	 luminously	 infallible	
about.			

(3) If	 which	 credence	 function	 it	 is	 rational	 to	 adopt	 is	 determined	 by	 some	
other	 feature	of	an	agent’s	situation,	such	that,	 for	some	partition	P,	which	
credence	 function	 it	 is	 rational	 for	 an	 agent	 to	 adopt	 depends	 on	 which	
member	 of	 P	 is	 true,	 then	 a	 rational	 agent	 will	 conditionalize	 on	 Pi	 (a	
member	 of	 P)	 whenever	 Pi	 is	 true.	 	 The	 propositions	 Pi	∈	 P	 will	 be	 the	
propositions	that	a	rational	agent	is	luminously	infallible	about.	

	
Committed	Rat-Accers	might	take	these	results	as	favoring	a	kind	of	foundationalist	
epistemology	on	which	 there	 is	some	privileged	class	of	propositions	 that	rational	
agents	will	 be	 certain	 of	 if	 and	 only	 if	 they	 are	 true.	 Adamant	 deniers	 of	 such	 an	
epistemology	might	take	these	arguments	as	a	reason	to	abandon	the	idea	that	the	
rational	 update	 procedures	 are	 those	 that	 maximize	 expected	 accuracy.	 But	
however	we	proceed,	it	is	important	to	be	aware	of	the	extent	to	which	the	thought	



	

that	rationality	involves	maximizing	expected	accuracy	and	such	claims	as	LUMINOUS	
INFALLIBILITY	are	intertwined.		They	will,	I	believe,	stand	or	fall	together.24				
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