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Abstract

It has been recently argued that the well-known square of opposition is a
gathering that can be reduced to a one-dimensional figure, an ordered line
segment of positive and negative integers [3]. However, one-dimensionality
leads to some difficulties once the structure of opposed terms extends to
more complex sets. An alternative algebraic semantics is proposed to solve
the problem of dimensionality in a systematic way, namely: partition (or
bitstring) semantics. Finally, an alternative geometry yields a new and
unique pattern of oppositions that proceeds with colored diagrams and
an increasing set of bitstrings.

Keywords: Bitstring, implication, opposite-forming operators, opposition, struc-
tural semantics.

Introduction: Oppositions

A sample of preliminary questions should be asked about oppositions, before
tackling our central issue of the square.

First, what are logical ‘oppositions’ for?

Whilst appearing as an old-fashioned concept from the Aristotelian tradition
of term logic, opposition still remains a basic concept of logic and philosophy:
it seems difficult to deprive from it for semantic, ontological and metaphysical
issues; it has even been reintroduced as a core concept of paraconsistency, due
to the central role of the Principle of Contradiction and the question of its
validity. Notably, Slater made an insightful (albeit not conclusive) objection
to Graham Priest’s dialetheism by claiming that there cannot be ‘true contra-
dictions’ semantically speaking [12]. In addition, Priest acknowledged himself
that any pair of true sentences, albeit being called ‘contradictories’ in his di-
alethist theory, should be called ’subcontraries’ properly speaking [9]. Thus
the Aristotelian square of opposition played an important role in the area of
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metalogic, as witnessed by both Priest’s own theory of negation! and Slater’s
reply. It can also be used to deal with many-valued semantics and cases of
philosophical logics like epistemic logic, thereby contributing to the debate
about how two arbitrary agents may disagree with each other [11].
Second, how do they matter with respect to the relation of consequence?
Opposition is a metalogical concept just like consequence. Now the former is
not to be viewed as a mere complementary of the latter, and one aim of the
present paper is to show how any logical relations can be formed in terms of op-
position whilst including entailment (or valid implication) as a particular case.
However, we insist that truth-values appear as a channel concept connecting
both metalogical relations of opposition and consequence: the latter aims at
preserving truth-values from premises to consequence, whilst the former aims
at separating them in some way to be explained further on.
Third, can there be a semantics for oppositions?
A central concern for logical oppositions is their failure of truth-functionality:
apart from contradictoriness, it is not possible to determine the value of one
formula that stands into opposition with a first one. This is because more than
one term may be related to any other formula by contrariety, subcontrariety,
of subalternation. In the face of such a non-deterministic situation, the present
paper wants to endorse an alternative semantics where opposite-forming oper-
ators proceed as interpretation functions ranging over a finite domain.
Opposition is normally depicted as a relation of incompatibility between
truth-values: for any formula ¢, this cannot be true at the same time as its
opposite 1. This means that the well-known Aristotelian square includes some
relations that are not of the same sort as opposition, i.e. subcontrariety and
subalternation. From this observation, a new way of depicting logical rela-
tions has been proposed in several works by Demey & Smessaert. In [4], the
two authors assume two main kinds of logical relation among the four Aris-
totelian ones, namely: oppositional relations, of the logical form — (¢ A1) and
—(—p A =) ; implicational relations, of the logical form ¢ — ¢ and ¥ — .
Note that the above expressions assume a deflationary translation of ¢ and
—p as meaning ¢’s being true and ¢’s being false, respectively. Then for any
logical system S, the formulas ¢, 1 stand into the following sorts of logical
relations. First, oppositional relations:

Contrariety Es (e A1), s —(—p A1)
Contradiction Es (e AY), Es —(mp A1)
Subcontrariety s =(e A1), Es = (—p A1)

Non-contradiction Kes —(p A), s —(—p A =)

1See [9], especially Chapter 4.



END OF THE SQUARE? 3

It clearly appears that the Aristotelian relations of subalternation do not occur
any more among the above oppositional relations. This is because, according
to Demey & Smessaert, the latter proceeds as a hybrid relation combining
both properties of opposition and implication. At the same time, subcontrari-
ety still appears in the class of oppositional relations by virtue of its common
logical form with the other formulas. Thus, subcontrariety is a pair of (valid
or invalid) negated conjunctions; at the same time, subalternation and super-
alternation will occur in the next class of (valid or invalid) entailment relations
under the heading of ‘left-implication’ and ‘right implication’:

Bi-implication Fse =Y, Fsv —p
Left implication Ese—= Y, s — o
Right implication s —1v, Est — ¢
Non-implication so =1, sty — @

Given that the latter sorts of formula have in common the crucial use of the
logical constant of conditional, oppositional and implicational relations are
distinguished from each other by the occurrence of one characteristic logical
constant in them, rather than by a metalogical criterion of (in)compatibility.

In the following, however, logical relations are defined without the logical
constants —, A, V, and —. This is a way to recall that such relations stand at
the metalogical level of discourse and are used to define these logical relations
instead of being defined by themselves. We are going to see how a sample of
binary logical connectives may be characterized by the Aristotelian relations of
the square, whether these be expressions of incompatibility or not. Above all,
the present paper wants to insist that, unlike the above distinction between
two independent kinds of logical relations, there is only one basic kind of logical
relation: opposition, in the sense that even the compatible and implicational
relations may be rephrased in terms of, and thus reduced to, the two basic
oppositional relations of contrariety and contradiction. These will be used as
irreducible and sufficient notions for constructing all the other ones depicted
in terms of oppositional and implicational relations.

For this purpose, we will need a special semantic framework in order to analyze
the basic properties of opposition. This will be introduced in Section 3.

What is logical opposition, beyond the restricted area of formulas 7 For
any arbitrary items z, y, a logical opposition is a relation Op(z,y) that reads
‘z and y are opposed to each other’ and is such that Op(x,y) = Op(z, op(x)),
where op(x) reads as ‘opposite to x’. More especially, a peculiar feature of the
next opposite-forming operators is that most of them are not proper functions
since the antecedent op(x) may have less than or more than one image y.2

2 Actually, opposition-forming operators mostly proceed as a unary function like ‘is the
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Generally speaking, any logical relation will be explained throughout the paper
as a basic relation of opposition,

Op(p,1) = Op(p, op(p))

where op is an opposite-forming function that yields the formula v whenever
applied to ¢. Now Demey & Smessaert [4] rightly noted that the Aristotelian
square includes two kinds of compatible relations, namely: subcontrariety, and
subalternation. If so, why should the Aristotelian square be called a ‘square of
oppositions’ given the normal sense of incompatibility associated to the concept
of opposition? Our answer comes from the possibility of reducing any kind of
logical relations in terms of two basic cases of unanimous opposition. For
example, subalternation can be explained as a composed or iterated function
of other oppositional functions. The unifying key to do so is dealing with logical
relations as mappings on truth-values. Now these mappings may be total or
partial. When total, mapping applies to both values of truth and falsity; when
partial, it applies to only one of these truth-values. Therefore, an investigation
into the logical relations of oppositions requires a preliminary investigation into
the relation Op and the operator op: What are the properties of Op? What
are the properties of op?

The paper will be organized as follows, around the common notion of square
and its various issues. In the first section, the main properties of an Aristotelian
‘square’ and its geometrical extensions will be recalled and exemplified through
several families of sentential or conceptual logical relations. In the second sec-
tion, we will consider a recent proposal to reduce every logical relation through-
out a common pattern of segment. In the third section, we will introduce a
special semantics provided to account for the meaning of oppositional relations
through opposite-forming operators: a bitstring semantics, where the basicality
of opposition stems from a common analysis of logical space in terms of parti-
tion. By doing so, we will complete the preceding proposal by generalizing the
Aristotelian square within one common gathering,.

1 Oppositions with a square

A square of oppositions is a logical structure including a number of logical
relations between its elements. Such a structure has been scrutinized in various
works from the middle of the 20th century, and it is still the central issue of
some contemporary research programs.

Our coming point is about whether such a structure is a relevant object, in
the sense of being a convenient trade-off between explanatory power and theo-

father of’: y may be the father of none, one, or more than one antecedent x.
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retical simplicity. For some ones [1,2,4,6], the Aristotelian square is too a simple
structure to be really explanatory; its extension has been famously illustrated
as a logical hexagon [2], but it also turns out that this extended structure does
not include further kinds of logical opposition than those of the square: con-
trariety, contradiction, subcontrariety, and subalternation. Moretti [6] showed
that the hexagon is nothing but a first extension of the square towards an
indefinite series of increasingly complex or many-dimensional structures. For
some other one [3], the logical square is too a complex structure to be really
simple; according to the latter, all the four logical relations of the square can
be related to each other into a simpler gathering which will be illustrated in
the following section. We want to defend a middle position between a simple
structure and a richer account of logical relations. For this purpose, we in-
troduce later a square that does not increase the number of its vertices whilst
augmenting its logical relations increasingly. But before that, let us consider
the first option of a weakest structure of logical relations.

The history of logical oppositions goes on a par with the enrichment of
its gatherings. The pioneer application was Aristotle’s square of categori-
cal statements. In this primary square, the four vertices correspond to four
kinds of quantified propositions: affirmative universals, expressed by the typ-
ical sentence ‘Every S is P’ and symbolized by the Roman letter A; negative
universals, expressed as ‘No S is P’ and symbolized as E; affirmative particu-
lars, expressed as ‘Some S is P’ and symbolized as I; and negative particulars,
expressed by ‘Some S is not P’ and symbolized as O. Then further additions oc-
curred throughout the history of logic and philosophy, due to a richer structure
of the related formulas. A medieval case in point was Buridan, who introduced
in his Summulae de dialectica an octagon of quantified modal oppositions such
that ‘Every S is necessarily P’ or 'Necessarily, every S is P’. It clearly appears
that the addition of one more modal component into the quantified formulas
thereby multiplies the number of related formulas. Both the structure and the
content of the formulas considered in their logical relations may vary and go
beyond the historical case of quantified statements. But a common precondi-
tion for all of these is to share a common logical structure, that is, a common
set of components: any two formulas can be defined structurally if and only if
their logical relations essentially depend upon their common structure, so that
the logical relation cannot be established otherwise. Returning to the above
case of Aristotle’s square, A and E are logically related to each other by their
structure —and not by axioms, in that their logical forms essentially rely upon
a quality and a quantity. The general structure of the logical square of opposi-
tions can be depicted in the following figures (see Figures 1, 2), where the kinds
of logical opposition are depicted by functional expressions ct (for contrariety),
cd (for contradictoriness), sct (for subcontrariety), sb (for subalternation), and
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sp (for superalternation).

x ct(x) sp(y) cd(y)

sb(x) < > cd(x) y < > sci(y)

Figure 1: The logical square from two centered perspectives: x and y.

Here is a set of four illustrations of the Aristotelian ‘oppositions’, recalling
that these include some compatible relations that Demey & Smessaert do not
consider as cases of proper ‘opposition’.

A first example is the set of categorical statements. Letting x for A = Vz(Fz —
Gz), then ct(x) = E = Va(Fz — —Gzx), cd(x) = O = —-Vz(Fz — Gzx), and
sb(z) =1 = —-Ve(Fr — -Gx). Letting y for I, then sct(y) = O = -Vz(Fz —
Gz), cd(y) = E =Vz(Fz — —-Gzx), and sp(y) = A = Va(Fz — Gx).

A second example is the set of modal sentences [1].> Letting x for Op, then
ct(x) = O-p, cd(z) = -Op, and sb(x) = =O-p. Letting y for =0-p, then
sct(y) = —Up, cd(y) = U-p, and sp(y) = Up.

A third example is the set of binary sentences [7]. Letting = for p A ¢, then
ct(z) = -p A —q, cd(z) = =(p A q), and sb(x) = =(—p A =q). Letting y for
=(=p A —q), then sct(y) = =(p A q), cd(y) = —=p A =g, and sp(y) =p Aq.

A fourth example is the set of propositions in term logic [5]. Letting = for ‘S is
P’, then ct(x) = ‘S is not-P’, cd(x) = ‘S is not P’, and sb(x) = ‘S is not not-P’.
Letting y for ‘S is not not-P’, then sct(y) = ‘S is not P’, ed(y) = ‘S is not-P’,

3Modalities are taken here in the abstract or neutral sense of strong operators of neces-
sity O and weak operators of possibility ¢, such that both are structurally related to each
other by the equivalence Up <> =O—p. This means that the above logical relations between
modal sentences hold for every usual class of modal (alethic, temporal, epistemic, deontic,
...) structures in modal logic: K, T, D, S4, S5, and the like.
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and sp(y) = ‘Sis P

A first extension of the square has been introduced by some philosophers
including Blanché [2].# This extension augments the initial square with two

additional vertices. In the context of categorical statements, these are U =
AVE and Y=1IAO.

sct(y
o) — 4 n cd(y)
[

Figure 2: The logical hexagon from two centered perspectives: x and y.

It strikingly appears here above that the variously interpreted relations cru-
cially relies on an additional parameter, viz. negation. A structural semantics
will be endorsed in the third section, in order to show that the meaning of
formulas does depend on their structure without the latter being of a syntactic
order.

2 Oppositions without a square

Costa-Leite [3:2] recently claimed that the square of oppositions is an old dogma
that must be relativized:

4 Another kind of hexagonal extension came from the Polish logician Czezowski, in which
the new vertices referred to the additional category of singulars (‘This S is P’, ‘This S is not
P’) into the set of categorical statements.
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Consider a question: is there a way to represent oppositions without two-dimensional
objects such as squares or objects of higher dimensions? The answer is yes.

According to the author, any of the Aristotelian relations can be represented
in a mere line segment and thereby simplify the geometry of oppositions. For
this purpose, an alternative model is proposed by translating logical relations
into arithmetical operations.

Let Z be a set of integers, Z, a set of positive integers, Z_ a set of negative
integers, Z* a set of non-nil integers, and Z’' = {—r, —q, ¢, r}. Let C be a set of
a categorical statements {A,E.I,O} and ¢ a function on C such that i : C — Z'.
The set of Aristotelian oppositions between categoricals can be redefined as the
following set of operations between integers: j € Z% iff j € {A,E} (universal
sentences), and j € Z* iff j € {I, O} (particular sentences). Then for every
a,B eC:

a and /3 are contraries iff i(a), i(b) € Z7 ;
a and 8 are contradictories iff i(a) + i(8) = 0;
a and (8 are subcontraries iff i(«), i(8) € Z* ;

B is the subaltern of « iff i(«) # i(B) and i(8) € Z*.

+2 =ct(+1); =1 =sct(=2); =1 = cd(+1); +2 = cd(—=2); =2 = sb(+1); +1 = sp(—2)

Figure 3: A segment line for the logical square.

Albeit correct for the square, Costa-Leite notes that the above definitions hap-
pen to fail with the hexagon of oppositions that augment the Aristotle’s histori-
cal square of categorical statements with two further formulas: U, whose arith-
metical value Costa-Leite defines as i(U) = i(A) + i(E); and Y, to be defined
by the same author as i(Y) = i(I) +i(O). Let Z" = {—s,—r,—q,q,7,s} € Z
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and C = {A,U,E,0,Y,I}, such that U =AVE and Y =IAO. Now a sam-

ple of arbitrary integers can yield counter-examples to Costa-Leite’s pattern.

Proof: Let i(A) = +1, i(U) = +3, «(E) = +2, i{(0) = -1, i(Y) = r — 3,
i(I) = —2.

Y =ct(A). Now i(Y) +i(A) = =3 + 1 = =2, therefore i(Y) +i(A) € Z7..

U = sct(I). Now i(U) + i(I) = +3 — 2 = +1, therefore i(U) +i(I) & Z* .

U = sb(A). Now i(Y) + i(A) = +3, therefore i(Y)+i(A) & Z%..

Costa-Leite was aware of this counter-result and noticed it from the beginning
of his paper, actually. The troubles caused by the logical hexagon thus led the
author to bring new arithmetic operations to preserve the line segment pattern:

For every ¢, ¢,v € C:
a, B, v are contraries iff i(a) +i(8) +i(y) = 0 and i(y) € Z*;
a and [ are contradictories iff i(a) + () = 0;
a, B, v are subcontraries iff i(a) +i(B) +i(y) =0 and i(y) € Z%;
B is the subaltern of «v iff i(a) # i(B) and i(5) € Z*

or i(a) # i(B) and either (a) i(3) > i(a) and i(8),
i(a) € 27

or (b) i(8) > i(a) and i(B),i(a) €

7x.

+2 =ct(+1); -1 =sct(-2) ; -1 = cd(+1); +2 = cd(-2); -2 = sb(+1); +1 = sp(-2)

Figure 4: A segment line for the logical hexagon.



10 F. SCHANG

And yet, Costa-Leite [3:9] rightly acknowledges that these definitions might
fail again with higher structures of oppositions:

There are, notwithstanding, some problems which remain open: the question to deter-
mine whether the same procedure can also be applied to solids and higher dimensions,
as well as to more than four oppositions, are very complicated and still have to inves-
tigated in detail.

In other words, the above new definitions seem to be ad hoc if they hold for Z”
only. What of Z'* for any corresponding set C'*”’, given that there is a max-
imal number of 2" elements for these? We are in need of a semantics able to
determine the meaning of expressions of arbitrary complexity. Actually, Costa-
Leite’s theory can be confirmed and simplified within an alternative semantics
encompassing any number of related formulas. More especially, we want to
show in the following that his aforementioned strengthened clauses for contra-
riety and subcontrariety work only when all the contraries and subcontraries
are taken into account in the calculus. This is the case with, e.g., the triad
A, E, Y in a Blanché-like hexagon; more generally, it turns out that every set
C'"’ requires an adaptation of these clauses by augmenting the number of con-
trary and subcontrary formulas. The same kind of generalization holds with
his clause for subalternation: that any two formulas are not contradictories
and have opposed sign does entail such a relation between them only within
structurally limited sets of formulas but cannot be warranted further on.

In order to corroborate Costa-Leite’s theory by means of a generalized pattern,
let us introduce now our alternative formal semantics based on two basic and
unanimous kinds of opposition.

3 Oppositions with another square

The following structural semantics helps to show why any extension of the
initial logical square increases the instances of opposition without never in-
creasing the number of oppositions themselves. As seen previously in Section
1, Blanché’s hexagon of oppositions augments the initial square with two ver-
tices by adding two cases of contrariety, two cases of subcontrariety, two cases
of contradiction, and four cases of subalternation/superalternation. But no
further kind of opposition occurs for all. Actually, the ‘basic square can be
reduced to the simpler gathering of a line, by reducing the structure of formu-
las. All of this overtly follows from a special kind of semantic structure based
on one essential parameter: a bitstring, which is an ordered set of bits.

With respect to the initial square of oppositions, the coming new square
borrows from graph theory by dealing with operations between vertices [10].
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In other words, any line between two vertices x,y is not considered from the
perspective of a relation Op(z, y) but, rather, from the perspective of a function
like op(z) = y. The following figure compares an arbitrary graph with our
alternative functional way of interpreting the Aristotelian square.

y=flx)
z=g(y) = g(fx)) ° X
x = h(z) = h(g(f(x)))

y = sb(x))
z = sct(y) = sct(sb(x)) . %
x = cd(z) = cd(sct(sb(x)))

cd sh

7

.§ [ ]
z sct Y

Figure 5: The logical square as an oriented graph.

3.1 Bistring semantics

The following semantics is a special application of a broader semantic frame-
work: Question-Answer Semantics, where the meaning of any meaningful item
(individual, concept, or sentence) results from an ordered set of exhaustive
predicates to characterize it.> More generally, these predicates may be ac-

SHow the ‘logical space’ of a set of items is exhausted requires a general technique of
partition [9,10,11]. This process will be considered in a later work about a proper ‘partition
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cepted or not as a mapping from the item z onto {1,0}. Let us consider
again the preceding four illustrations of logical relations. The required num-
ber of questions to characterize a kind of formula determines its structural
complexity, insofar as n predicates result in 2" possible ordered answers and
corresponding items. In the case of Aristotle’s categorical statements, n = 3
predicates may characterize any item x belonging to this set of formulas: 5 (z)
is about whether P is true of every S, 82(x) about whether P is neither true of
every S nor true of no S, and f3(x) about whether P is true of no S. Concern-
ing (mono)modal sentences including only one operator, there are also n = 3
questions: f1(x) is about whether x is necessarily true; f2(x) is about whether
x is contingently true; and f3(x) is about whether z is impossibly true. In the
case of binary sentences, n = 4 predicates are required: [i(x) is about both
p and q are true; [2(x) is about whether p is true whereas ¢ is not; fs(x) is
about whether p is not true whereas ¢ is; and S4(x) is about whether neither p
nor q are true. And n = 3 questions are required to characterize propositions
of term logic: [1(x) is about whether S is P absolutely; f2(z) is about whether
S is neither P absolutely nor not-P absolutely; and f3(x) is about whether S
is not-P absolutely.

Let us consider the model of such a structural semantics. Every kind of
formula ¢ is a partition of a logical space X, such that ¢ can be rephrased as
a Disjunctive Normal Form S(¢) = S1(¢) V...V Bn(p) — where each disjunct
Bi(p) is a bit mapping onto {1,0}. The whole disjunction () is called a
bitstring. Let us take as an example the case of binary sentences ¢ = f2(p, q),
where f? is an arbitrary binary connective characterized by a common disjunc-
tive normal form including four possible disjuncts: B1(¢) = pNgq, B2(p) = pN7g,
Bs(p) = pNq, Bs(v) = pNgq. Each of these n = 4 denotes one way of combining
any two atomic sentences p and ¢, and the result is a logical constant that
satisfies none, some, or all of the resulting 2* = 16 items.® Thus:

6)()i) = 0000 B(pAg) =1000  B(~(p =) =0100  B(=(p+
q)) = 0010

B(=(pVq)) =0001  B(p)=1100 B(=(p + q)) = 0110 B(—p) =
0011

B(p — q) = 1001 B(—q) = 0101 B(q) = 1010 BlpV
q) = 1110

B(-(pAq)) =0111  B(p < q)) = 1011 S(p < ¢)) = 1101 B(T) =
1111

Note that, in the above characterization, 1. and T denote nothing and every-

semantics’.
SNote that each such bit 3; corresponds to the four rows of a two-valued truth-table.
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thing into a given set of expressions: the former includes no part of the logical
space whilst the latter includes everything. These borderline cases will be let
aside of our consideration about logical relations, especially in order to avoid
complications with the definitions of the following opposite-forming operators.

An algebraic definition of the opposite-forming operators consists in defin-
ing these logical relations between items as transformations upon bitstrings.
Here is such a calculus of logical relations Op(z,y) based on the transformation
of bits by opposite-forming operators op(z) = y.

Calculus of logical relations.
Blz) =1= B(ct(z)) =0
cd(f(x)) =1« p(x) =0, ie. cd(f(x)) =1= p(x) =0 and ed(f(x)) =0 =

Blz) =1

Blx) = 0= B(sct(x)) =1
Blx) =1= B(sb(x)) =1
Blsp(z)) =1 = B(z) =1

To argue for Demey & Smessaert [4], the above definitions show that not ev-
ery such opposition-forming operator is defined in the same way; for example,
contrariety and subcontrariety turn one bit into another one whereas subal-
ternation and superalternation do not do so. This is a reason not to consider
these unary operators as applying the same pattern, whereas the two authors
take this to motivate a distinction between oppositional and implicational re-
lations. To argue against them, our following point is that all of the logical
relations can be defined with the same pattern by only two basic cases, namely:
contradiction, and contrariety.

3.2 Logical connectives

Echoing with Costa-Leite’s clauses, his introduction of sums between arith-
metical functions of the logical hexagon amounts hereby to the set-theoretical
operation of uniton U and is on a par with the truth-functional connective
of disjunction. The dual operation of conjunction can also be defined set-
theoretically with the equally dual operation of intersection N. Both can be
defined as follows: for any ¢-th element in a bistring of length n,

Bl V) = Bi(p) U Bi(v);
Blo A) = Bi(p) N Bi(Y).

Recalling that the categorical statement U is a disjunction of the affirmative
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universal A and the negative universal E, this entails that

A(U) = 5(A) U B(E) = 100 U001 = 101.

The dual categorical formula Y can be characterized correspondingly, such as
B(Y) = p(I)NnB(0)=110N011 = 010.

At the same time, our bitstring semantics helps to make a clear difference
between the generally confused notions of conditional (or material implication)
and consequence. A set-theoretical definition of conditional should yield a
counterpart of its classical definition of conditional,

© =Y =g 2 V.

Now assuming that classical negation is nothing but the extensional operator
of contradictoriness, i.e.,

i =qp cd(p),

this entails that every material implication is not a logical relation but a single
formula like, e.g., U. Let us consider the formula A — E, for example. Ac-
cording to the above definition, the value of the resulting formula is

B(A — E) = B(cd(A) VE) = 011U 001 = 011.

We are thus led in a semantically weird situation where E and A — E have
the same value, i.e., mean the same thing. The point is that such a translation
of material conditional is completely irrelevant in our bitstring semantics. At
the same time, it could be used as a way to identify a consequence relation
between any two formulas. Just as consequence (or formal implication) can
be defined as a material implication that is valid, i.e., true for any assignment
of truth-values to its components, we can also say that any formula v is a
consequence of any other formula ¢ if, and only if, always ¢ implies ¥. That
is,

¢ Es ¥ holds if, and only if, B(p — ) =T

Let us take A. The aforementioned explanation does entail both I and U in
the sense that it fulfills our algebraic clause, namely,

BA 1) =B(cd(A)VI)=011U110=T
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B(A - U)=p(cd(A)vU)=011U101 =T

This also reminds one that formulas may have more than one consequence, thus
preventing from characterizing subalternation by a truth-functional operator.

3.3 Iterated oppositions

Nevertheless, another parallel way to characterize subalternation is to define it
by means of iterated functions. Here is the central point of the present paper:
logical relations that are not taken to be oppositions by Demey & Smessaert
[4] can be reduced after all to an iteration of basic oppositions. To begin with
such a process, any subaltern of an arbitrary formula x is to be defined as the
contradictory of a contrary of x:

(1) sb(B(x)) = cd(ct(B(x)))

For example, let 5(z) = 1000. According to a series of proofs given previously
[9], how many contraries there are for any given formula x depends upon the
k number of 0-bits in x. Thus, Card(ct(z)) = 2" — 1. However, a further
constraint on the calculus of oppositions is that it exclude the extreme cases
of tautology and antilogy, S(xz) = 0000 = L and S(z) = 1111 = T: these
two formulas mean nothing in particular, so that they should removed from
the set of the relevant logical relations. Accordingly, Card(ct(z)) = 2™ — 2 by
excluding the case of antilogy. As there is a number of £k = 3 0-bits in the
above example, it follows that Card(ct(x)) = 23 — 2 = 6 contraries of z:

ct((1000)) = {0100, 0010, 0001,0110,0011,0101}
ed(ct((1000)) = {1011,1101, 1110, 1100, 1010}

The above law of cardinality explains why more than one kind of opposite oc-
curs in such a gathering as the logical hexagon, whenever the structural com-
plexity of bitstrings admits of several cases of contraries, subcontraries, and
the like. It also helps so show that some formulas have no contrary according
to their number of 0-bits: if, e,g, f(x) = 1110, then Card(1110) = 2! —2 = 0.
Finally, the characteristic bitstring of a set of items helps to determine when
a logical structure is complete, or when it is a mere fragment of a larger struc-
ture. In the case of the Aristotelian square, the 3-bits structure of its items
entails that this square is a mere fragment of a complete structure including
23 = 8 items —including the two borderline cases of tautology and antilogy,
so that a complete structure of bitstrings with 3 bits (that is, of length 3)
is a hexagon including 8 — 2 = 6 vertices. With respect to this criterion of



16 F. SCHANG

structural completeness, we are now in position to make sense of Costa-Leite’s
strenghtened clauses for contrariety and subcontrariety (see Section 2). These
can be generalized as follows.

For any set of formulas of length n in a given logical space X3,
basic contraries of o are the n formulas including only one 1-bit, such that
their complete union exhausts the logical space: ct1(p)U...Ucty(p) =T;
basic subcontraries of ¢ are the n contradictories of basic contraries, such
that their complete intersection exhausts the logical space: cti(¢) N ... N

ctn(p) = L.

This helps to show that Costa-Leite’s clauses should be adapted to the struc-
tural complexity or length of the related formulas, having in mind that the
above definitions are set-theoretical counterparts of Costa-Leite’s arithmetical

account in terms of zero sum.”

Conversely to (1), any superlatern of x is to be defined as the contrary of
the contradictory of x:

(2) sp(B(x)) = ct(cd(B(x)))

Let f(x) = 1110. Then
cd(4(1110)) = 0001
ct(0001) = {1000, 0100, 0010, 1100,0110, 1010}

A subcontrary of any x is the contradictory of the superaltern of x or, by sub-
stituting the latter relation for its iterative definition, the contradictory of the
contrary of the contradictory of x:

(3) sct(B(x)) = cd(sp(B6(x))) = cd(ct(cd(B(x))))

Thus let f(x) = 1110. Then

cd(1110) = 0001

ct(0001) = {1000, 0100, 0010, 1100,0110, 1010}
cd(ct(0001)) = {0111,1011,1101,0011,1001,0101}

This functional calculus structurally explains why some expressions as ‘the
contrary of the subcontrary of z’ denote nothing, given that no instance of

"Referring to categorical statements again, this means that the three formulas A ,E, U are
all the contraries that there can be in a set of formulas of length n = 3 only; this is not so
whenever n > 3, however.
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subcontrariety can be an instance of contrariety as well (and conversely). Let
B(x) = 100 as an example. Then S(y) = 001 is a contrary of z, and y cannot
have any subcontrary by virtue of the above definitions: B(sct(001)) = 0.8
Accordingly, any computation including one empty result in its process always
leads to a final empty result.

Our central thesis is thus that all the implicational relations can be de-
fined iteratively, in the light of this calculus of logical relations. Thus right
implication is subalternation and left implication is superalternation, whilst
bi-implication is a combination of both, sb(5(x)) N sp(B(z)), non-implication
being none of the previous relations. Consequently, the distinction made by
Demey & Smessaert [4] between two main kinds of logical relations: opposi-
tional and implicational, can be reduced to a unique set of logical relations
based upon two basic genuine opposite-forming operators (contrary-forming
and contradictory-forming) and iterations of these.

3.4 Universal quadrilateral of oppositions

In addition, our proposed semantic algebra can be completed by a common
geometry of logical relations. This alternative geometry wants to combine the
two virtues of a model: explanatory power, by applying to any set of structured
items; and simplicity, by applying the same geometric pattern to any set of
logical relations. It relies upon the following increasing pattern:

8Note that any such lack of corresponding bitstring, symbolized as ), differs from antilogy
T in that the latter is a proper bitstring among all the other ones. Set-theoretically speaking,
this means that T is a proper element of any set of bitstrings whereas ) is not.
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Figure 6: A pattern of the non-standard quadrilateral of oppositions.

The main difference with the standard geometry of oppositions is that the above
pattern does not include vertices any more, insofar as any item of a set is an
included box of a quadrilateral instead of a graph with points. The simplicity
of such a geometry comes from its common process: either the characteristic
items include an even number of bits, and the quadrilateral is a square; or
it includes an odd number of bits, and the quadrilateral is a rectangle. Its
explanatory virtue comes from its visual ability to show how any items are
related to each other: by sustaining the central symmetry of contradictoriness
—as shown in the figure here below, the way bitstrings are organized in the
quadrilateral helps to determine any kind of logical relation by the spatial
positions of items. In the following figure, black boxes symbolize a starting
item x whose logical relations with the other ones are represented with the
standard colors of Aristotelian oppositions (in addition with the orange color
of mere compatibility between = and op(z) = y.
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Figure 7: A colored square of oppositions.

We take our universal gathering to have a number of explanatory virtues,
thereby generalizing both Costa-Leite’s unidimensional segment and any other
gathering of logical relations. Firstly, any such quadrilateral is a complete
structure whilst some famous figures as the Aristotelian square or Blanché’s
hexagon are incomplete fragments. Secondly, the central symmetry of contra-
dictories is maintained in our structure whilst including the borderline cases
of tautology T and antilogy | as proper formulas —at the top left and bottom
right border sides of the given quadrilateral. Thirdly, it replaces Costa-Leite’s
complicated clauses by a unique set of definitions for any set of structured
formulas. Fourthly, the previous distinction between material implication and
logical consequence (see Section 3.2) completes the equivalence between clas-
sical negation and contradictoriness into a general, ’Slaterian’ reflection about
how logical connectives can be translated into combined oppositions. And
fifthly, the above figure shows that each of the embedded quadrilaterals be-
longs to a higher structure that also satisfies the clause of central symmetry
for contradictories; such a jump into abstraction could lead to interesting met-
alogical results, but this is to be done in another paper.
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Conclusion: Beyond the old square

To recapitulate the present paper, the old Aristotelian square of oppositions can
be replaced by some other clearer logical structures. A first reason is that this
square is a set of logical relations mixing compatible and incompatible cases,
and this conceptual unclarity has been emphasized by Demey & Smessaert
[4] in order to motivate a general reconstruction of the geometry of logic. A
second reason is that the Aristotelian square is a hidden graph that does not
help to explain the interrelations between its vertices. Our above aim was to
establish a systematic algebra and geometry of logical relations through two
basic relations of opposition, viz. contradiction and contrariety.

Does this mean that opposition is a more basic property of logic than that of
consequence, albeit conspicuous in the mainstream theory of logic? This may
be the case, but provided that any item of a given formal language may be
characterized by a bitstring. Moreover, a limitation of our bitstring semantics
is that it applies only between items whose bitstrings are of the same length
n or, equivalently, resort to the same characteristic predicates. Ideally, every
domain of items relies upon a common bitstring of maximal length, such that
2™ exhausts the universe of discourse. But the discovery of such a bitstring
appears to be the same ideal inquiry as the Leibnizian calculus ratiocinator,
according to which any thought could be considered to a calculus of elementary
relations. For want of such a theoretical possibility, our bitstring semantics
wants to show that the main features of logical relations could be at least
reduced to a binary calculus. The explanatory virtue of it in addition to our
colored graphs aimed at fulfilling the expected relevance of a theory.

More is to be said about the underlying process of partition that charac-
terizes any items inside a logical space of bitstrings. More especially, a central
issue is the applicability of bitstrings to kinds of expression that behave in a
non-truthfunctional or intentional way. This work needs to be done in a close
future, in order to pursue our general theory of logical relations.
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