
225

FABIEN SCHANG

Negation and Dichotomy. Do They Refer 
to the Same ‘Thing’? On the Identity 
of Logical Negation from a Semantic 
Perspective*

Properties of classical negation '~' 

Reductio ad Absurdum    

RA1 If φ ⇒ ψ and φ ⇒ ~ ψ, then ~ φ  RA3  If φ ⇒ ~ φ, then ~ φ  
RA2 If ~ φ ⇒ ψ and ~ φ ⇒ ~ ψ, then φ  RA4  If ~φ ⇒ φ, then φ 
    
Contraposition     

C1 If φ ⇒ ψ, then ~ ψ ⇒ ~ φ  C3  If ~ φ ⇒ ψ, then ~ ψ 
C2 If ~ φ ⇒ ~ ψ, then ψ ⇒ φ  C4  If φ ⇒ ~ ψ, then ψ ⇒ ~ φ  
      
Double negation 

DN1  φ ⇒ ~~ φ   DN2  ~~ φ ⇒ φ  
        
The two ‘laws’      

LC  (~ (φ ∧ ~ φ))∈{T}   LEM  (φ ∨ ~ φ)∈{T} 
       
De Morgan laws

Conjunction

DM ∧ 1 ~ (φ ∧ ψ) ⇔  ~ φ ∨ ~ ψ  DM ∧ 3  ~ (φ ∧ ~ ψ) ⇔  ~ φ ∨ ψ
DM ∧ 2 ~ (~ φ ∧ ψ) ⇔ φ ∨ ~ ψ  DM ∧ 4  ~ (~φ ∧ ~ ψ) ⇔  φ ∨ ψ
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Disjunction

DM ∨ 1 ~ (φ ∨ ψ) ⇔  ~ φ ∧ ~ ψ  DM ∨ 3 ~ (φ ∨ ~ ψ) ⇔  ~ φ ∧ ψ
DM ∨ 2 ~ (~φ ∨ ψ) ⇔  φ ∧ ~ ψ  DM ∨ 4 ~ (~ φ ∧ ~ ψ) ⇔  φ ∨ ψ

Conditional 

DM → 1 φ → ψ ⇔  ~ φ ∨ ψ  DM → 3 φ → ~ ψ ⇔  ~ φ ∨ ~ ψ
DM → 2 ~ φ → ψ ⇔  φ ∨ ψ  DM → 4 ~ φ → ~ ψ ⇔  φ ∨ ~ ψ

1. Negation from an algebraic viewpoint

According to a Fregean or referential view of semantics, each formula from 
an interpreted language names and is associated with a reference, viz. a 
truth-value. Thus, such a sentence like ‘Socrates is a philosopher’ is taken 
to be a name for one logical object among two possible ones, namely: truth 
or falsity, depending upon whether Socrates is a philosopher or not. 

Each formula φ is interpreted algebraically by a mapping (valuation) from 
a set of formulas Lϕ to a set of references or truth-values Vϕ, to be symbolized 
as follows: Lϕ → Vϕ (see Figure 1). Each non-atomic, complex formula ⊕n 
with n components is interpreted by a mapping from a set of input values in 
Vϕ to the set of output values in Vϕ, to be symbolized as follows: Vϕ → Vϕ. For 
example, if the constructor-sign ⊕ stands for the unary operator of classical 
negation '~' then '~φ' is a complex formula, to be interpreted by a mapping 
from the reference of an atomic formula φ to the reference of its negated 
form ~φ. In classical logic, such a mapping will proceed from truth to falsity 
or from falsity to truth exclusively, depending upon the input value of φ. Let 
us use '~' as a symbol for classical negation, i.e. the operator to be attached 
only to sentences in a bivalent frame; any assignment of truth or falsity to 
ordinary sentences turns them into propositions.

If we accept such a referential defi nition of semantic interpretation, each 
formula appears as a sort of defi nite description the reference of which 
may vary: it may name just one reference or truth-value (the mapping is a 
total function, that is a one-to-one or bijective relation between two sets), 
several truth-values (the mapping is a one-to-many or surjective relation 
between two sets), or no truth-value at all (the map is a partial function). 
The number of truth-values in V can be discussed and will result in different 
logical systems.

How many truth-values are to be contained in a semantic set: two, three, 
or infi nitely many values? Some philosophers like Quine claimed that any 
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semantic set must count only two elements, i.e. the subsets of true and false 
formulas.1 Other logicians hold some similar but more complex position, 
namely Roman Suszko and his plea for two-valuedness;2 we will return 
to Suszko’s position later, since it will be used as a central argument for 
restoring some commonsensical logical laws as opposed to some scientifi c 
(many-valued) ones.

As a pioneer of many-valued logics in their application to philosophical 
problems, Jan Łukasiewicz once suggested two different kinds of many-
valued sets, namely: a set of three truth-values or an infi nity of them, 
depending upon the meaning to be assigned to the third value of ‘possibility’ 
besides truth and falsity.3 The preceding quotation by Suszko has shown 
that he was clearly opposed to Łukasiewicz’s many-valued sets, hence his 
distinction between algebraic and logical values.

Each of these semantic sets are to be found in modern logical systems: a 
case for bivalence (with n = 2 truth-values) is Classical Logic (hereafter: CL); 
a case for trivalence (with n = 3 truth-values) is exemplifi ed by several three-
valued systems with a specifi c meaning of the third truth-value as ‘neither ... 
nor’. There is Łukasiewicz’s Ł3 for contingent events with ‘true’, ‘false’, and 
‘indeterminate’ as truth-values; Kleene’s K3 for mathematical statements with 
‘true’, ‘false’, and ‘undecided’ as truth-values; Bochvar’s B3 for paradoxical 
statements with ‘true’, ‘false’ and ‘senseless’ as truth-values. 

In spite of Łukasiewicz’s preceding plea for either three or infi nitely many 
truth-values, let us notice that he himself recognized afterwards (in 1953) the 
inappropriateness of his three-valued system and suggested instead a four-
valued system of modal logic in order to avoid some unpleasant result in Ł3, 
namely: the Law of Non-Contradiction didn’t hold in it, whereas Łukasiewicz 
wanted to invalidate the Law of Excluded Middle only. Four-valued logics 
appear as a specifi c case of semantic sets in which each truth-value is a 
combined element from the powerset P(V). In a set V = {{0},{1}} with n 
= 2 elements, that is, {0} as the subset of only false formulas and {1} as 
the subset of only true formulas, the powerset P(V) = {{∅},{0},{1},{1,0}} 
includes 2n = 2² = 4 subsets with two additional cases, namely: {∅} as the 
set of neither-true-nor-false formulas, and {1,0} as the set of both-true-and-
false formulas. Three samples of four-valued logics (inter alia) are: 

- Directional Logic (hereafter: DL), by Leonard Slawomir 
Rogowski (in 1961). In this logical system, the classical sets 
{1} and {0} are reinterpreted by ‘t’ as strictly true and by ‘f’ 
as strictly false, respectively. In addition to these two classical 
values, Rogowski adds the ‘subtrue’ set {u} as coming to be 
false and the ‘subfalse’ set {i} as coming to be true.
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- Relevance Logic, by Nuel Belnap (1977) (see Figure 2). This 
system is concerned with information or data bases in computer 
science: φ∈{N} is the set in which no information occurs about 
φ; φ∈{F} is the set with an information saying that φ fails; 
φ∈{T} is the set with an information saying that φ holds; and 
φ∈{B} is the set with an information saying that φ both holds 
and fails. 

- Overclassical Logic, by Newton C. A. da Costa and Jean-Yves 
Béziau (1997) (see Figure 2). Such a system presents non-
classical diagrams with a relative complement: the pair <+,-> 
means that a formula φ is ‘absolutely true’, i.e. is located in 
the class of true formulas but not in the class of false formulas; 
<+,+> means that φ is ‘relatively true’, i.e. is located both in 
the class of true formulas and the class of false formulas; <-,-> 
means that φ is ‘relatively false’, i.e. is located neither in the 
class of true formulas nor in the class of false formulas; and 
<-,+> means that φ is ‘absolutely false’, i.e. is located in the 
class of false formulas but not in the class of true formulas. 

Finally, a case for indefi nitely many truth-values is some species of fuzzy 
logics [0,1], where an infi nity of truth-values occurs between the extreme 
cases of falsity {0} and truth {1}; infi nitary-valued logics are closely related 
to probabilitary logics or even to Jerzy Łoś’s logic of assertion (in 1948), 
where each truth-value corresponds to a specifi c standpoint within a group 
of speakers.

How to defi ne the logical constant of negation, given that the output value 
of a formula may change according to the cardinality of a semantic set? If, 
for instance, a given formula φ is neither true nor false in a logical system, 
it is pretty sure that the output value of the resulting ~φ will be neither false 
nor true and, thus, won’t meet the algebraic defi nition of classical negation 
(from 1 to 0, or from 0 to 1). Now that does not mean that the main features 
of classical negation should be deeply revised in non-classical systems: such 
is the main thesis to be defended in this paper. 

As a minimal and necessary precondition for being a logical constant 
of negation in any system, it will be argued that negation operates as a 
dichotomy: As in Plato’s Sophist, each dichotomy splits each set (say, xi for 
any i) into two subsets xi and not-xi of being and not-being (see Figure 3).

According to Buridan’s distinction, logical negation discriminates a set 
of elements {{x1},...,{xi}} from the remaining ones {{xi},...,{xn}} either 
positively (negatio infi nitans), or negatively (negatio negans). Thus, to say 
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Figure 2

Belnap’s Relevance Logic

 da Costa and Béziau’s Overclassical Logic

<+;->

<+
;+

>

<-;+>

<-;->

<+;-> absolutely true (only true)  {1}

<+;+> relatively true (true, false)  {1,0}

<-;+> absolutely false (only false) {0}

<-;-> relatively false (not true, not false) {∅}

B both true and false {1,0}

T only true   {1}

F only false  {0}

N neither true nor false {∅}
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that ‘the table is not-red’ positively entails that the table is either blue, or 
black, or green ... i.e. possesses another defi nite colour. It follows that to be 
‘not-true’ amounts to be another value, and not just ‘not to be true’.

Does it entail that the Law of Excluded Middle still holds as an excluded 
third with n = 2 truth-values in V, as an excluded fourth with n = 3, ..., as an 
excluded (xi+1)th with n = xi? If so, to defi ne negation as a dichotomy seems 
to result in a regressio ad infi nitum when applied to excluded middle, as 
argued by Church (1928) with respect to Burali-Forti’s Paradox.4 But it is 
not so: logical negation can be properly defi ned as a dichotomy whatever 
V may be. 

Against Church’s former objection to non-classical semantic sets with n 
> 2, Barzin and Errera (1929) insist that negation essentially proceeds as a 
negatio negans, i.e. as an indefi nite process of exclusion out of a class.5 The 
same observation will be applied in the following, thus yielding a general 
defi nition of negation as a dichotomy and restoring the above properties 
of the so-called ‘classical’ negation even within non-classical systems. 
Isn’t this absurd, given that the classical rules of inference for negation 

V = {{x1}}

V = {{x1},{x2}} 

(n = 1)

(n = 2)

V = {{x1},{x2},{x3}} (n = 3)

V = {{x1},{x2},{x3},{x4}} (n = 4)

V = {{x1},{x2},{x3},...,{xn}} (n → ∞)

x1

x1 x2 (= not-x1)

x2 x3 (= not-x2)

x3 x4 (= not-x3)

......
...
xn (not-xn–1)

xn  xn+1 (= not-xn)

Figure 3

Dichotomy
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(contraposition, reductio ad absurdum, and the like) normally hold as a 
whole in classical logic only?

A more careful attention upon ‘classical laws’ is in order in the following, 
so as to have a more comprehensive view of the notion of dichotomy. Two 
crucial pairs of notions are concerned here, namely: truth and falsity, on 
the one hand; affi rmation and negation, on the other hand. How are they 
combined, and do many-valued logics really entail a revision of ‘classical’ 
negation? The point is that the classical properties of negation fail in non-
classical systems when defi ned extensively, that is, in terms of truth-values. 
But the present paper wants to show that the process of dichotomy can be 
introduced within these non-classical systems in order to maintain such 
‘commonsensical’ properties as excluded middle and non-contradiction while 
defi ning logical negation as a general constant (i.e. for any V). Negation 
can be distinguished from conjunction, disjunction, conditional and other 
logical constants as a peculiar process of dichotomy. For this purpose, let 
us look back on the past and Aristotle’s Term Logic in order to support our 
‘intensional’ defi nition of the concept of negation (beyond its extensional 
view in terms of output values).

In Aristotle’s Logic of Terms, a more fi ne-grained distinction between 
basic propositions was made as opposed to modern sentential logic. Such 
a distinction was called ‘the Four’ by Aristotle: given a basic predication 
‘S is P’ for every atomic proposition, such an affi rmative form can be 
enriched if we introduce negation in it (see Figure 4). We thus obtain: 
the denial ‘S is not P’, the contraffi rmation ‘S is not-P’ and, fi nally, the 
contradenial ‘S is not not-P’. An example of an affi rmation is ‘Socrates is a 
philosopher’, to be added with ‘Socrates is not a philosopher’, ‘Socrates is 
a non-philosopher’, and ‘Socrates is not a non-philosopher’. Please note that 
a clear-cut distinction is to be made between denial and contraffi rmation: as 
noted by Englebretsen (1981), if Socrates doesn’t exist the above denial is 
true whereas the contraffi rmation is not. Such a difference disappeared in 
modern logic, given that negation as a term predicate doesn’t make sense 
therein and only serves as a sentential operator. But this very distinction will 
turn out to be crucial for the following argument. 

Let Lϕ be a language of φ-order, φ any formula from Lϕ and Vϕ a set 
{{x1},...,{xn-1},{xn}} with n truth-values. Again, any valuation is an 
assignment of truth-values upon sentences, i.e. a mapping from an arbitrary 
φ of Lϕ into a set in Vϕ: φ → {xi}. Let {1} be the set of true propositions 
and {0} the set of false propositions. Then we can render φ’s being true as 
φ∈{1}, and φ's being false as φ∈{0}. Now two different levels of negation 
occur in our ordinary speech-acts: a fi rst, linguistic negation '~' is attached 
to the entire sentence. If φ is read ''φ is true'', then ~φ means ''φ is not-true". 
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Figure 4

‘The Four’ in Term Oppositions

Affi rmation  S is P   (“Socrates is a philosopher’’)

Denial   S is not P   (“Socrates is a not-philosopher’’)

Contraffi rmation  S is not-P    (“Socrates is not a philosopher’’)

Contradenial  S is not not-P       (“Socrates is not a not-philosopher’’)

S is P contrariety  S is not-P

contradiction

S is not not-P subcontrariety  S is not P

Oppositions as pairs of valuations

Contrariety  
A and B cannot be both true, A and B can be both false 

Contradiction  
If A is true, then B is false; if A is false, then B is true 

Subcontrariety  
A and B cannot be both false; A and B can be both true 

A B

A B

A B

A second, metalinguistic negation '∉' is attached to the truth-values of 
sentences. If φ∈{1} is read ''It is the case that φ is true'' (or, equivalently, 
''φ is true''), then φ∉{1} means ''It is not the case that φ is true" (or "φ is 
not true"). It follows from the latter that if φ doesn’t belong to the set {xi} 
of truth-values, then it belongs to any other set in Vϕ than {xi}. As a case of 
metalinguistic negation, let V be a set of three truth-values {{x1},{x2},{x3}}; 
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thus according to Barzin and Errera’s view of negation as exclusion out 
of a class, if n = 3 then φ∈{x1} means that φ∉{x2} or φ∉{x3}, φ∈{x2} 
means that φ∉{x1} or φ∉{x3}, and φ∈{x3} means that φ∉{x1} or φ∉{x2}. 
Generally speaking, if Vϕ = {{x1},{x2},...,{xa},...,{xn-1},{xn}}, then φ∈{xn} 
if and only if (hereafter: iff) φ∈UVϕ–xn , just as φ is not true iff φ∉{1} and φ 
is not false iff φ∉{0}.

In the light of these two different levels of negation, the difference between 
Classical Logic (hereafter: CL) and Non-Classical Logics (hereafter: NCL) 
can be rephrased set-theoretically.

Negation in CL concerns logics in which Vϕ = {{1},{0}}, i.e. a set of n = 2 
sets of truth-values, so that φ∈{1} whenever φ∈{0} and φ∈{0} whenever 
φ∈{1}. In a nutshell, CL is the class of bivalent semantic sets with n = 2 
elements ({1} and {0}, say). Since Vϕ = {{1},{0}} in CL, it follows that ~φ 
is true iff φ is not-true, i.e. φ is false (~φ∈{1} iff φ∉{1}, i.e. φ∈{0}), and 
~φ is false iff φ is not-false, i.e. φ is true (~φ∈{0} iff φ∉{0}, i.e. φ∈{1}). 
According to such a bivalent relation between truth ({1}, say) and falsity 
({0}, say), we thus obtain the following 'laws' in CL:

- Law of Bivalence (hereafter: LB): every sentence is either true 
or false

 In other terms, there are only n = 2 truth-values: for any φ, 
(φ∈{1} U φ∈{0}), so that φ∈{1} iff φ∉{0} and φ∈{0} iff 
φ∉{1}.

- Law of Excluded Middle (hereafter: LEM): either an affi rmation 
or its denial is true

 Either (S is P) is true or (S is not P) is true;
 Either (S is not-P) is true or (S is not not-P) is true, so that 

φ∈{1} or ~φ∈{1} for any φ.
- Law of (Non-)Contradiction (hereafter: LC): an affi rmation 

and its denial cannot be both true
 (S is P) and (S is not P) are not true;
 (S is not-P) and (S is not not-P) are not true, so that φ∉{1} or 

~φ∉{1} for any φ.
Negation in NCL concerns logics in which Vϕ is a set of n > 2 sets of 

truth-values. LB notably fails in NCL: for some φ’s, φ∈{1/2} means that 
φ∉{1} and φ∉{0}. Note that the 'intermediary' set {1/2} needn't be a unit-
class: whatever is neither true nor false fi lls the bill. 

The linguistic negation '~' is truth-functional, that is: the output value of 
~φ is uniquely determined by the input value of φ. In CL, Vϕ = {{1},{0}}, 
so that ~φ is true iff φ is false (~φ∈{1} iff φ∈{0}); in NCL, if Vϕ = 
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{{1},{1/2},{0}} then ~φ is true iff φ is not-true (~φ∈{1} iff φ∉{1}), and 
~φ is indeterminate iff φ is indeterminate (~φ∈{1/2} iff φ∈{1/2}). As in 
CL, the negation of {1} and {0} still yields {0} and {1} with so-called 
normal negations in NCL;6 and although the negation of {1/2} yields the 
same output value {1/2}, such a redundant operation doesn’t constitute a 
counterexample against the general defi nition of negation as dichotomy 
or ‘otherness’-operator, however; this will be argued later by means of a 
metalinguistic characterization of negation.

The metalinguistic negation is not strictly truth-functional in NCL. 
That is: the value of φ is not uniquely determined by the value of φ in a 
bijective mapping. Thus, φ is not true iff φ is either false or indeterminate 
(φ∉{1} iff φ∈{0} or φ∈{1/2}); φ is not indeterminate iff ϕ is either true 
or false (φ∉{1/2} iff φ∈{1} or φ∈{0}); and φ is false iff φ is either true or 
indeterminate (φ∉{0} iff φ∈{1} or φ∈{1/2}). 

Another point to clarify is about the meaning of '1/2' as an intermediary 
value between 0 and 1. If φ is neither true nor false, then it could be claimed 
that φ doesn’t have any value so that {1/2} stands for the empty set {∅}; 
if φ is both true and false, then φ has two values and {1/2} stands for the 
non-empty set {1,0}. Now any logic with {1/2} as a proper set is a 3-valued 
logic, insofar as {∅} and {1,0} count as two distinct subsets in Vϕ in addition 
to {1} and {0}. The case of overdeterminacy (being both true and false) is 
not {{1},{0}} but {1,0}, and the case of indeterminacy (being neither true 
nor false) can also be seen as a three-valued system with the empty set as 
a proper set in its own part (see Figure 5). In the light of such defi nitions, 
let us turn to special cases of NCL and the purported reasons to revise the 
properties of classical negation.

By gappy logics, we mean the class of paracomplete logics in which some 
sentences are neither true nor false: φ is neither true nor false whenever φ 
is not true and φ is not false (φ∈{1/2} whenever φ∉{1} and φ∉{0}, i.e. 
φ∈{∅}). LEM fails in gappy logics: if φ∈{1/2}, then φ∉{1} and φ∉{0}, 
i.e. ~φ∉{1}, so that (φ ∨ ~φ)∉{1} with φ∈{1/2}. 

By glutty logics, we mean the class of paraconsistent logics in which 
some sentences are both true and false: φ is both true and false whenever φ 
is true and φ is false (φ∈{1/2} whenever φ∈{1} and φ∈{0}, i.e. φ∈{1,0}. 
LC fails in glutty logics: if φ∈{1/2}, then φ∉{0} and φ∉{1}, i.e. ~φ∉{0}, 
so that ~(φ ∧ ~φ)∉{1} with φ∈{1/2}.

Defi ning negation as a process of dichotomy generally works only if it 
is considered from a metalinguistic point of view. When negation is about 
sentences, we note this by ~φ∈{xi}; when negation is about truth-values, 
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Figure 5
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we note this by φ∉{xi}. In order to extensionalize this metaproperty, we 
propose to make use of internalization as follows.

Lϕ+1 is said to be an internalization of Lϕ when some metalinguistic 
symbols with respect to Lϕ are introduced into the object-language of Lϕ+1. 
For instance, '∉' and '{xi}' are two metalinguistic symbols, whereas 'φ' 
and '~' are two linguistic symbols. The truth-values in Lϕ are semantic (i.e. 
metalinguistic) predicates in Lϕ+1, whereas valuations (upon Lϕ in Vϕ) are 
unary operators in Lϕ+1.

Turning back to 'the Four' (see Figure 6), we can interpret more extensively 
the general form 'S is P' as the semantic judgment 'φ is true' (φ∈{1}), the 
contraffi rmation 'S is not-P' as 'φ is not-true' (φ∉{1}, i.e. ϕ∈{0}), the 
denial 'S is not P' as 'φ is not true' (φ∉{1}, i.e. φ∈{0} or φ∈{1/2}), and 
the contradenial 'S is not not-P' as 'φ is not not-true' (φ∉{0}, i.e. φ∈{1} 
or φ∈{1/2}). Therefore, the contrary relation between φ∈{1} and φ∈{0} 
means that these cannot be both true and both false. 

Now if {1} means ‘to be true’, the aforementioned contrariety amounts 
to say that being true and being false cannot be true together. We thus iterate 
the notion of truth, but without entailing any antinomy with these judgments. 
For if I say: the judgment 'φ∈{0}' is true, that does not entail φ∈{1} because 
a typed distinction is made between the value of the sentence φ and the 
value of a judgment about it. In order to clarifi y such a distinction between 
sentences and judgments, let us call for a semantic distinction between plain 
values and designated values.

Figure 6

 Semantic Oppositions

Affi rmation  ϕ∈{1}   (“It is true that Socrates is a philosopher’’)

Denial   ϕ∉{1}   (“It is not true that Socrates is wise’’)

Contraffi rmation   ϕ∈{0}  (“It is false that Socrates is a philosopher’’)

Contradenial  ϕ∉{0}       (“It is not false that Socrates is a philosopher’’)

ϕ∈{1} contrariety ϕ∈{0}

contradiction

ϕ∉{0} subcontrariety ϕ∉{1}
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By a ‘designated value’ {T} is meant a specifi c subset of truth-values in 
V; such a subset may count only one or several elements. For example, if 
‘Bydgoszcz is in Poland’ is true in Lϕ, i.e. φ∈{1}, then ''that Bydgoszcz is in 
Poland is true'' is true in Lϕ+1, i.e. (T{1}∈{T}). In Bochvar (1938), a similar 
use of judgment-operators was made with the so-called external operator 
of assertion Aφ: 'it is true that φ', to be read as 'φ∈{1}'. By this distinction 
between internal (sentential) and external (judgmental) operators, Bochvar 
made a typed distinction between affi rmations and negations on the one hand, 
assertions and denials on the other hand. The same rationale will be used 
in the following in order to internalize the normally metalinguistic notions 
of truth-values. As a matter of fact, the set {1} of true sentences is taken 
to be the only case of designated value; but some non-classical logicians 
supplement the subset of designated values with {1/2} (see Figure 7). When 
a truth-value does not belong to the subset of designated values, it is said to 
be a non-designated value {⊥}.7 By extension, designated values are used to 
defi ne the logical truth of any formula semantically, namely: for any formulas 
ϕ and ψ, ψ is a logical consequence of ϕ iff if ψ∈{T} whenever ϕ∈{T}. The 
several properties of logical negation can be thus understood as preserving 
the designated value from the premises to the conclusion: ϕ ⇒ ψ.

 
Here is the core point of the paper: by means of internalization and 
designated values, and in accordance with Suszko’s thesis, any Vϕ with 
n > 2: {{x1},{x2},...{xn}} sets of truth-values can be reduced to a Vϕ+1 with 
n' = 2: {{xi},{xj,...,xn}} subsets of truth-values.

In rephrasing affi rmation and denial as '∈' and '∉', the properties of 
negation can be 'classicized' by both internalizing truth-values while 
following Suszko's thesis. This will be done in two successive steps, namely: 
in section 2, an increasing step from bivalent logics (with n = 2) to many-
valued logics (with n > 2); and in section 3, a decreasing step from many-
valued logics to their bivalued (but not bivalent!) counterparts (with n' = 2). 
Just recall that the step from bivalence to bivaluation does not amount to a 
back to CL at all: it is a transition from so-called ‘algebraic’ values in NCL 
to ‘logical’ values. Such a reduction has been supported by Suszko and will 
be exemplifi ed by internalizing several non-classical logics.8

2. From bivalence to many-valuation

From Vϕ = {{0},{1}} we can derive the following subsets of truth-values: true 
and false, i.e. {1}∩{0} = {1,0}; true and not false, i.e. {1}∩~{0} = {1}; not true 
and false, i.e. ~{1}∩{0} = {0}; not true and not false, i.e; ~{1}∩~{0} = {∅}.
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Figure 7
Designated and non-designated values in NCL

In Ł3 (Łukasiewicz’s 3-valued logic)

{T}
•1

•1/2

•0 {⊥}

•1

•1,0

•0

{T}

{⊥}

In PLP (Priest’s 3-valued logic of paradox)

Given CL as the set of logics in which either φ∈{1} or φ∈{0} (tertium 
non datur) for every φ, and NCL as the set of logics in which φ∉{1} and 
φ∉{0}, i.e. φ∈{1,0} or φ∈{∅} for some φ's (with {{1,0},{∅}}⊆{1/2}), 
two sorts of many-valued logics can be discriminated according to the 
meaning of {1/2}, namely: gappy logics (including K3, DL), and glutty 
logics (including PLP).

Some general rules of valuation can be afforded for both sorts of NCL 
(whether paracomplete or paraconsistent), provided that the same ordering 
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relation obtains between their truth-values. As it is the case for both K3 and 
PLP, let us state the following rules of valuation. 

Given an ordering relation {1}>{1/2}>{0}, for any two 1-0 truth-values 
{x1},{x2} we have the following rules for logical constants:

~{x1}∈|{1-x1}|
{x1} ∨ {x2}∈max{x1,x2}
{x1} ∧ {x2}∈min{x1,x2}
{x1} → {x2}∈max{1-x1,x2}
⊕φ∈min(⊕{x1,y1},⊕{x2,y2}),9 for any pairs of 1-0 truth-values 

{x1,x2},{y1,y2} and any 1-ary or 2-ary operator ⊕.

2.1. Gappy Logics

An example of gappy logic with {1/2} = {∅} is Heyting’s Intuitionistic 
Logic (hereafter: HIL). In accordance with Brouwer’s objections to the 
dual opposition of truth and falsity and the realist approach of mathematical 
reasoning, the philosophy of intuitionism roughly consists in reading proofs 
as mental constructions and refuses to assign any value to a sentence so 
long as no proof has been constructed for it. Consequently, such classical 
properties of negation as LEM and Double Negation (hereafter: LDN) 
are cancelled by intuitionists because of their wrongly dual treatment of 
affi rmations and negations. 

Following Heyting’s original notation, we’ll make use of '¬' as a symbol 
for intuitionistic or strong negation.10 Given the truth-conditions for 
intuitionistic negation, LB and LEM both fail in HIL with φ∈{1/2}. But 
the core question rather concerns the identity of LEM from a logical system 
to another one: how can LEM be said to have the same meaning in both 
classical and intuitionistic logics, assuming that logical negation is not the 
same for classicists and intuitionists? Pending an answer for this question, 
let us note that the two following properties of classical negation still hold 
when interpreted intuitionistically:

(H1)  ¬φ ⇒ (φ → ψ)
(H2)  ((φ → ψ) → (φ → ¬ψ)) ⇒ ¬φ   

However, the following invalid formulas (*) making use of negation are 
not logical truths in HIL:

(H1*)  (¬φ ∨ ψ) ⇒ (φ → ψ) 
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(H2*)  (φ → ψ) ⇒ ¬(φ ∧ ¬ψ) 
(H3*)  (φ ∨ ψ) ⇒ (¬φ → ψ) 
(H4*)  (φ ∨ ψ) ⇒ ¬(¬φ ∧ ¬ψ) 
(H5*)  (φ ∧ ψ) ⇒ ¬(¬φ ∨ ¬ψ)

In order to give a semantic interpretation of these formulas, a language L 
and a 3-valued matrix V for HIL have been supplied by Kleene (1952)’s 
K3-system, namely:

LK3 = 〈∼,∧,∨,→〉 and VK3 = 〈{1},{1/2},{0}〉, 

in which classical negation '~' can be used as a primitive operator defi ning 
intuitionistic negation, that is: ¬φ means 'φ∈{0}', i.e. '~ϕ∈{1}'. The truth-
conditions for the logical constants in LK3 are truth-functionally defi ned in 
matrices (see Figure 8).

Another case of gappy logic is Rogowski’s Directional Logic (hereafter: 
DL), the aim of which was to formalize Hegel’s dialectical logic of change. 
Several kinds of modal operators11 are introduced into a 4-valued matrix 
in DL, namely: 

LDL 
= 〈N→,∧,∨,→〉, and VDL 

= 〈{1,1},{1,0},{0,1},{0,0}〉

As for most of non-classical systems, the designated value corresponds to 
the single value {{1,1}}⊆{T}, whereas non-designated values are the three 
remaining ones {{1,0},{0,1},{0,0}}⊆{⊥}.

In accordance with the motivation of DL, i.e. to express changes between 
‘being’ and ‘not-being’, an interpretation for the four values in DL yields 
φ∈{1,1} as 'it is true that φ', φ∈{1,0} as 'it comes to be false that φ', φ∈{0,0} 
as 'it is false that φ', and φ∈{0,1} as 'it comes to be true that φ'.

Given the ordering relation {1,1}>{0,1}>{1,0}>{0,0}, the general rules of 
valuation for formulas in DL can be defi ned within matrices (see Figure 9) 
in basic terms of classical negation '~'. 

For any pairs of 1-0 values {x1,y1},{x2,y2}, we have the following 
valuations for connectives:

N{x1,y1}∈{~x1,~y1};

N+{x1,y1}∈{~x1,~y1} iff x1 = y1; N
+{x1,y1}∈{1,1}, otherwise;

N→{x1,y1}∈{x1,~y1} iff x1 = y1; N
→{x1,y1}∈{~x1,y1}, otherwise;

N←{x1,y1}∈{~x1,y1} iff x1 = y1; N
←{x1,y1}∈{x1,~y1}, otherwise;
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T{x1,y1} = N+N{x1,y1};

H→{x1,y1}∈{x1,y1} iff x1 = y1; H
→{x1,y1}∈{~x1,y1}, otherwise;

H←{x1,y1}∈{x1,y1} iff x1 = y1; H
←{x1,y1}∈{x1,~y1}, otherwise.

Together with the following valuations for the set of classical connectives 
{∨,∧,→}, namely:

{x1,x2} ∨ {y1,y2}∈max({x1,x2},{y1,y2});

Figure 8 

 Logical matrices for K3

φ ~φ
{1} {0}

{1/2} {1/2}
{0} {1}

φ ∧ ψ {1} {1/2} {0}

{1} {1} {1/2} {0}
{1/2} {1/2} {1/2} {0}
{0} {0} {0} {0}

φ ∨ ψ {1} {1/2} {0}
{1} {1} {1} {1}

{1/2} {1} {1/2} {1/2}
{0} {1} {1/2} {0}

φ → ψ {1} {1/2} {0}
{1} {1} {1/2} {0}

{1/2} {1/2} {1/2} {1/2}
{0} {1} {1} {1}
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{x1,x2} ∧ {y1,y2}∈min({x1,x2},{y1,y2});

{x1,x2} → {y1,y2}∈max(N{x1,x2},{y1,y2}).

LEM, LC, and the Law of Identity (φ → φ)12 fail in DL with φ∈{1,0} and 
φ∈{0,1}. Furthermore, the same does with all classical properties of negation 
that fail with the non-static truth-values {1,0} and {0,1}.

Thus, such 'obvious' laws as LEM or LC are rejected within many-valued 
systems; just as the former are invalidated in some gappy logics, most of the 
properties of logical negation are also discarded in glutty logics. 

Figure 9       
Logical matrices for DL

φ Nφ N+φ N→φ N←φ Tφ H←φ H→φ
{1,1} {0,0} {0,0} {1,0} {0,1} {1,1} {1,1} {1,1}
{0,1} {1,0} {1,1} {1,1} {0,0} {0,0} {0,0} {1,1}
{1,0} {0,1} {1,1} {0,0} {1,1} {0,0} {1,1} {0,0}
{0,0} {1,1} {1,1} {0,1} {1,0} {0,0} {0,0} {0,0}

φ ∨ ψ {1,1} {0,1} {1,0} {0,0}
{1,1} {1,1} {1,1} {1,1} {1,1}
{0,1} {1,1} {0,1} {0,1} {0,1}
{1,0} {1,1} {0,1} {1,0} {1,0}
{0,0} {1,1} {0,1} {1,0} {0,0}

 
φ ∧ ψ {1,1} {0,1} {1,0} {0,0}
{1,1} {1,1} {0,1} {1,0} {0,0}
{0,1} {0,1} {0,1} {1,0} {0,0}
{1,0} {1,0} {1,0} {1,0} {0,0}
{0,0} {0,0} {0,0} {0,0} {0,0}

φ → ψ {1,1} {0,1} {1,0} {0,0}
{1,1} {1,1} {0,1} {1,0} {0,0}
{0,1} {1,1} {0,1} {1,0} {1,0}
{1,0} {1,1} {0,1} {0,1} {0,1}
{0,0} {1,1} {1,1} {1,1} {1,1}
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2.2. Glutty logics

In many-valued logics, the main case for gluttiness is the family of 
paraconsistent logics, i.e. systems interpreted by logical matrices with 
φ∈{1/2}: 'φ is both true and false'.

A sample of glutty logic is Priest’s Logic of Paradox (hereafter: 
PLP).

Since paraconsistent negation is not attached only to a classical value {1} 
or {0}, let us symbolize it as '–'.

Just as in gappy logics and any many-valued logics, LB and LC both 
fail in PLP. The main difference between PLP and the preceding gappy 
systems concerns the sets of designated and not-designated values: {T} and 
{⊥} differ in extension given that {T} = {{1/2},{1}} in PLP.13

Now just as intuitionistic negation didn't have the same meaning as 
classical negation, how can we say that paraconsistent negation, and 
the properties of logical negation, do have the same meaning in CL and 
NCL? 

Pending an answer to this matter of meaning for logical constants, a semantic 
interpretation for PLP was given within logical matrices by Priest (1979)’s 
3-valued logic PLP. It relies on a language to be interpreted in a 3-valued 
matrix (see Figure 10):

LPLP = 〈–,∧,∨,→〉 and VPLP
 
= 〈{1},{1/2},{0}〉

As just observed, LC does not ‘classically’ hold (φ∉{1} for some φ's) but 
still holds in PLP with φ∈{1/2}: (1/2 ∧ ~1/2) = (1/2 ∧ 1/2) = 1/2, therefore 
LC∉{1} with φ∈{1/2}; now {1/2}∈{T} in PLP, then LC ‘weakly’ holds 
with {1/2}.

Valuations in PLP turn on the three following truth-values: {1} as ‘only 
true’, i.e. {1,1}; {1/2} as ‘both true and false’, i.e. {1,0} or {0,1}; and {0} 
as ‘only false’, i.e. {0,0}, within an ordering relation {1}>{1/2}>{0}.

The following formulas with logical negation still hold in PLP:

(P  1)  (φ → ψ) ⇒ (–ψ → –φ)

(P  2)  (–φ ∧ –ψ) ⇒ –(φ ∨ ψ)

(P  3)  (–φ → –ψ) ⇒ (ψ → φ)

(P  4)  –(φ ∨ ψ) ⇒ –φ

(P  5)  φ ⇒ – –φ
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(P  6)  – –φ ⇒ φ

(P  7)  –φ ⇒ –(φ ∧ ψ)

(P  8)  –(φ → ψ) ⇒ φ

(P  9)  (φ ∧ –ψ) ⇒ –(φ → ψ)

(P10)  –φ ⇒ (φ → ψ)

(P11)  (φ → –φ) ⇒ –φ

Some of the logical truths in CL fail in PLP, namely: 

(P1*)  (φ ∧ –φ) ⇒ ψ   

(P2*)  (φ ∧ (–φ ∨ ψ)) ⇒ ψ   

Figure 10      

Logical matrices for PLP

φ ~φ
{1} {0}

{1/2} {1/2}
{0} {1}

φ ∧ ψ {1} {1/2} {0}
{1} {1} {1/2} {0}

{1/2} {1/2} {1/2} {0}
{0} {0} {0} {0}

φ ∨ ψ {1} {1/2} {0}
{1} {1} {1} {1}

{1/2} {1} {1/2} {1/2}
{0} {1} {1/2} {0}

φ → ψ {1} {1/2} {0}
{1} {1} {1/2} {0}

{1/2} {1/2} {1/2} {1/2}
{0} {1} {1} {1}
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(P3*)  ((φ → ψ) ∧ –ψ) ⇒ –φ 

(P4*)  (φ → (ψ ∧ –ψ)) ⇒ –φ

The invalidity of (P1*) symbolizes non-triviality in PLP and means that, 
from a pair of inconsistent formulas, we cannot derive anything; (P2*) is a 
rejection of disjunctive syllogism, normally used in order to deduce triviality 
in an inconsistent system; fi nally, (P3*) and (P4*) are two variants of the 
principle of reductio ad absurdum (hereafter: RA) and mean that any formula 
entailing an inconsistency is not to be always rejected as such.

In the light of these three non-classical systems and their many-valued 
semantics, it is established as a commonplace that most of the classical 
properties of logical negation (especially LEM or LC) do not hold 
universally and fail whenever the semantic frame V includes more than the 
two classical truth-values {0} and {1}.

Does it mean that our alleged commensensical reading of negation is 
incompatible with the preceding commonplace, or that it should be restricted 
to some current interpretations of negation? In order to concile the current 
(classical, bivalent) view of negation and its special (non-classical, many-
valued) uses, it will be claimed in the following that:

- logical negation is defi ned with respect to its arguments, i.e. 
the truth-values it maps onto; by this way, non-classical logics 
don’t appear as a deviation but as an extension of negation in 
CL (from n = 2 to n > 2);

- the commensensical reading of logical negation can be pre-
served even in NCL, by internalizing the truth-values as sup-
plementary unary operators; most of the classical properties 
of logical negation may be thus restored, depending upon the 
translation of LEM, LC, and the like in the internalized sys-
tems; 

- beyond CL and NCL, logical negation can be viewed as a ge-
neral operator of dichotomy, while clearly making a distinction 
between bivalence and bivaluation (i.e. bipartition) in V.

3. From many-valuation to bivaluation

According to Suszko’s thesis, every many-valued logical matrix can be 
reduced to a two-valued one, whenever a distinction is made between 
algebraic values ({x1},...,{xn}) in Lϕ and logical values ({T} and {⊥}) in 
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Lϕ+1. Two internalized systems may exemplify this thesis, namely: K3+ as an 
internalization of K3 for the semantics of HIL, and PLP+ as an internalization 
of PLP.

3.1. Gappy logics

An internalization of K3 thus yields the Logic of Truth K3+:

L3+ = 〈∼,∧,∨,→,T〉 and V3+ = 〈{1},{1/2},{0}〉,

in which classical negation '~' is used as a basic term for defi ning its single 
intuitionistic counterpart.

Following logical truth in K3, the only designated value in K3+ is 
{{1}}⊆{T}, so that the not-designated values are {{1/2},{0}}⊆{⊥}.

K3+ is a semicomplete logic, extending K3 with T as a primitive unary 
operator together with two other interdefi nable operators F,I. Tφ helps to 
internalize φ∈{1} and stands for 'It's established as true that φ'; a counterpart 
for Tφ in Modal Logic (hereafter: ML) is the notion of necessity, �φ. 
Fφ internalizes φ∈{0} and stands for 'It's established as false that φ'; a 
counterpart for Fφ in ML is the notion of impossibility, �~φ. Iφ internalizes 
φ∈{1/2} and stands for 'Nothing is established about φ'; a counterpart for Iφ 
in ML is the notion of contingency or two-sided possibility,�φ =df (~�φ 
∧ ~�~φ). We thus get the following τ-translations of the valuations in VK3 
into formulas in LK3+:

τ(φ∈{1}) = Tφ; τ(φ∈{1/2}) = Iφ; and τ(φ∈{0}) = Fφ

The language for K3+ helps to translate the formulas from HIL and, above 
all, to compare classical and intuitionistic views of negation. For instance, 
a τ-translation of the left-sided formulas from HIL yields the right-sided 
formulas from LK3+:

τ(φ) = Tφ, i.e. φ∈{1}; and τ(¬φ) = T~φ, i.e. φ∈{0}

According to the logical matrices in K3+ (see Figure 11), both values {1} 
and {0} in HIL uniquely correspond to Tφ and T~φ in K3+. Let us note 
however that, while Fφ (= T¬φ) corresponds to a well-formed formula 
(hereafter: wff) in HIL, no wff corresponds to the resulting Iφ (= ~Tφ) in 
K3+. It is so because of the strictly strong meanings of truth and falsity as 
established values in HIL; in other terms, there is no room for contingent 
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(unestablished) truth in Heyting’s view of intuitionistic logic. Now if such 
a strong reading of truth and falsity is translated in K3+, it seems that the 
intuitionistic version of LEM, namely: (Tφ ∨ Fφ), actually corresponds to 
the metalinguistic LB and thus expresses a relation between contrary values, 
rather than contradictory ones. 

A comparison between the classical and intuitionistic readings of LEM 
can be made within Blanché’s hexagon of oppositions (see Figure 12), thus 
yielding a contrast between the syntactic (i.e. according to their logical forms) 
and semantic formulations (i.e. according to their truth-values) of LEM: 
either the latter contains a pair affi rmation-denial and thus corresponds to the 
classical version only; or it is about a pair truth-falsity and thus corresponds 
to both classical and intuitionistic versions.

By analogy with a famous paper by Slater (1995): “Paraconsistent Logics?’’, 
who doubted about their foundations because paraconsistent negation is not 
a contradictory — but subcontrary-forming operator, the same question can 

Figure 11

Logical matrices for K3+

φ Tφ

{1} {T}
{1/2} {⊥}
{0} {⊥}

 ϕ ¬φ  Fφ
 {1} {0}  {⊥}

 {1/2} {1/2}  {⊥}
 {0} {1}  {T}

- Iφ
{1} {⊥}

{1/2} {T}
{0} {⊥}

Wffs in HIL Wffs in K3+



249

NEGATION AND DICHOTOMY

be asked about intuitionistic negation given that it is not a contradictory- 
but contrary-forming operator (see Figure 12). It is a thing that not every 
logical negation must be a contradictory-forming operator, as witnessed in 
the history of logic by several forms of contrary negations within ancient 
and medieval logics;14 but it is another thing to say that not-contradictory-
forming operators of negation occur in LEM as such. Is excluded middle 
strictly related to classical negation, or does it ultimately express a semantic 
relation between truth-values, i.e. irrespective of its logical form and 
displayed opposition?

According to Wiredu (1975), the intuitionistic objection against LEM does 
miss the point: a disjunctive relation is stated therein between an affi rmation 
(‘is true’) and its contraffi rmation (‘is false’), whereas LEM is stated as an 

Figure 12

Blanché’s Hexagon of Oppositions

 Meta-operators in K3+

Tϕ contrariety  Fϕ

contradiction

∼Fϕ subcontrariety  ~Tϕ

A contrariety E

contradiction

I subcontrariety O

U

Y

~Iϕ

Classical LEM

Intuitionistic LEM

~Iϕ
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opposition between and affi rmation (‘is true’) and its denial (‘is not true’). 
In a nutshell, the identity of LEM seems to vacillate between its syntactic 
and semantic defi nition.

Anyway, some iteration laws can be put in K3+ in order to simplify its modal 
formulas: 

Tφ ⇔ TTφ; T�φ ⇔ �φ (for any �∈{T,F,I}); FTφ ⇔ ~Tφ; Fφ ⇔ TFφ.

The class of theorems in K3+ are S5-valid when intuitionistic negation is 
translated as ~T, so that this class is larger than in Gödel (1933)’s translation 
of intuitionistic negation as a S4-modal system. The reason is that Gödel’s 
translation squares with Heyting’s version of '¬' as 'T~' (= 'F'), and not '~T' 
(the latter does not make sense in HIL, again).

It can be established both (see the Appendix) that:
- K3+ is a translation of HIL whenever '¬' is translated by the 

strong negation 'T~', in accordance with Heyting's modal in-
terpretation of intuitionistic negation;

- the properties of classical negation can be preserved in K3+ 
whenever '¬' is translated by the weak, classical negation 
'~T';

- as for what the 'genuine' translation of LEM in K3+
 
is, namely: 

(Tφ ∨ T~φ) or (Tφ ∨ ~Tφ), the question remains open.

Another case of internalization concerns DL, with a Logic of Being-the-
Case DL+.

DL is self-internalizing, i.e. LDL already contains an operator of assertion 
T that may be used in order to internalize truth-values and preserve the 
‘classical’ properties of negation. Examples of internalized assertions in 
DL+ are ‘It is the case that it is true that φ', i.e. T{1,1}∈{T}; 'it is the case 
that it begins to be true that φ', i.e. T{0,1}∈{⊥}; 'it is the case that it begins 
to be false that φ', i.e. T{1,0}∈{⊥}; and, fi nally,'it is the case that it is false 
that φ', i.e. T{0,0}∈{⊥}.

A proof of the validity for LEM and LC in DL+ is given in the Appendix 
below. 

3.2. Glutty logics

An internalization of PLP yields the Logic of Veridication PLP+, as 
suggested by Strössner and Strobach (2007):
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LPLP+
 = 〈~,∧,∨,→,V〉 and VPLP+

 = 〈{1},{1/2},{0}〉

in which classical negation is used as a basic constant defi ning its possible 
paraconsistent counterparts.

Following logical truth in PLP, there are two designated values in 
PLP+, namely: {{1},{1/2}}⊆{T}, whereas the single not-designated value 
is {{0}}⊆{⊥}.

PLP+ is a semiconsistent logic extending PLP, with V as a primitive 
unary operator together with one other interdefi nable operator W. Wφ helps 
to internalize φ∈{1} and stands for 'It's only true that φ'; a counterpart of 
Wφ in ML is �φ. W~φ internalizes φ∈{0} and stands for 'It's only false 
that φ'; a counterpart for W~φ in ML is �~φ; Vφ internalizes either φ∈{1} 
or φ∈{1,0} and stands for 'It's at least true that φ'; a counterpart for Vφ in 
ML is �φ. We thus have the following translations of the valuations in VPLP 
into the formulas in LPLP:

τ(φ∈{1}) ⊇ {Wφ,Vϕ}; τ(φ∈{1/2}) = Vφ; and τ(φ∈{0}) ⊇ {W~φ,V~ϕ}

Note also that Wφ and Vφ are duals, i.e. Vφ ⇔ ~W~φ.
The language for PPL+ helps to translate the formulas from PPL and, 

above all, to compare classical and paraconsistent views of negation. As 
the meaning of paraconsistent negation is not as strong as its intuitionistic 
counterpart but still differs from the classical one, we thus have the following 
possible translations from left-sided formulas in PPL to right-sided formulas 
in PLP+:

τ(φ)= Vφ or Wφ; and τ(–φ)= V~φ or W~φ.

According to the logical matrices in PLP+ (see Figure 13), both classical 
values {1} and {0} in PPL correspond to Wφ or Vφ and W~φ or V~φ in 
PLP+; Wφ (i.e. ~V~φ), W~φ (i.e. ~Vφ) and Vφ (i.e. ~W~φ) correspond 
to wffs in PPL, whereas the non-classical value {{1},{0}} uniquely 
corresponds to Vφ. Contrary to the translations from HIL-formulas to K3+-
formulas, in which the resulting τ(φ) and τ(¬φ) are defi nite, the translations 
from PLP-formulas to PLP+-formulas can thus vary according to the adopted 
translations (syntactic interpretations) of φ and ~φ in PLP+.

A comparison between classical and both possible paraconsistent readings 
of LC can be made within Blanché’s hexagon of oppositions (see Figure 14), 
thus yielding a contrast between the syntactic (i.e. their logical forms) and 
semantic formulations (i.e. their truth-values) of LC.
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Some iteration laws can be put in PLP+, thus:

Wφ ⇔ Wwφ; W�φ ⇔ Wφ (for any �∈{W,V,W~}); and W~�φ ⇔ W~φ.

Theorems in PLP+ are S4-valid when paraconsistent negation '–' is read 
as 'W~' (like Gödel’s S4, given that F and W~ share the same valuations); 
whereas they are S5-valid when '–' is read as '~W', i.e. as 'V~'.

It can be shown (see the Appendix) that:
- every logical truth of PLP+ is a theorem of PLP whenever '–' 

is read as thre weak negation 'V~';
- every classical property of negation can be restored in PLP+ 

whenever '–' is read as the strong negation 'W~'.

4. Conclusion: Negation as Dichotomy

In conclusion, the properties of negation in CL may be maintained depending 
upon the meaning of truth and falsity in NCL; and assuming that two 

Figure 13

 Logical matrices for PLP+

 ϕ Wφ                Vφ

 {1} {T}  {T}
 {1/2} {⊥}  {T}
 {0} {⊥}  {⊥}

 ϕ –φ = V~φ
 {1}  {⊥}

 {1/2}  {T}

 {0}  {T}

 ϕ –φ = W~φ
 {1}  {⊥}

 {1/2}  {⊥}
 {0}  {T}

Wffs in PPL Wffs in PLP+
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formulas are equivalent iff they have the same meaning, a translation of 
intuitionistic and paraconsistent negations '¬' and '–' by '~T' and '~W' (i.e. 
'V~'), respectively, would maintain LEM, LC, LDN, and the like within 
non-classical (many-valued) systems.

As depicted by a fi rst transition from bivalent to many-valued logics 
and, then, by a second transition from many-valued to bipartitioned logics, 
the classical properties of negation in CL can be maintained in applying 
Suszko’s thesis and replacing bivalence with bipartition.

Indeed, every property from RA to DM→ may thus be saved when logical 
consequence and logical truth are defi ned in Vϕ+1 = {T,⊥} rather than in Vϕ 
= {x1,...xn}; here are the main advantages and shortcomings of defi ning 
negation as a dichotomy:

Figure 14

Blanché’s Hexagon of Oppositions

 Meta-Operators in PLP+

Wϕ contrariety  W~ϕ

contradiction

Vϕ subcontrariety  V~ϕ

A contrariety E

contradiction

I subcontrariety O

U

Y

Wϕ or W~ϕ

Classical LC

Paraconsistent LC (1)

Paraconsistent LC (2)
Vϕ and  V~ϕ
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4.1 Dichotomy and n-chotomies

A defi nition of dichotomy is the following: ‘being twofold; a classifi cation 
into two opposed parts or subclasses’, in which it relates to bipartition of 
classes and don’t need to be synonymous with bivalence (it is so only when 
each subset is a unit-class, i.e. only in CL).

The conclusive claim of this paper is that, beyond the variety of logical 
negations from a semantic perspective, negation can be viewed as a 
metalinguistic process of dichotomy, i.e. as a bipartition of any two subsets 
of truth-values. It follows from this defi nition that:

Figure 15

{1}

{1}

{0}

{1} {0}

{1/2}

n = 3
n = 2

n → ∞

{0}

Truth-polygons 

{1}

{0}

{0,1}{1,0}

n = 4
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- CL is a peculiar case in which the number of algebraic values 
(metalinguistic predicates: {0}, {1}, ..., {xn}) is the same as 
the number of logical values (designated values);

- ‘classical negation’ is a minimal negation, in the sense that 
no lower Vn than n = 2 can be used in logic (if n < 2, then no 
consequence relation can be stated between formulas);

- every negation consists in dividing a set of n elements into 2 
subsets of truth-values, and not always a set of n = 2 elements 
into 2 subsets (this latter case holds in CL only);

- any n-chotomy is an increasing set of algebraic values tending 
to infi nitely many, whereas negation as a dichotomy differs 
from these “referential’’ assignments and only concerns logical 
(impredicable) values {T,⊥}.

4.2 Negations as specifi c functions

Such an intensional defi nition of negation as dichotomy makes the mapping 
non-truthfunctional, that is: each particular (i.e. cyclic, strong, weak, external, 
internal, and so on) negation (see Figure 15 and Figure 16) helps to fi x one 
and only one value for ~{xi} by means of {xi} in Vϕ, but the same does not 
hold in Vϕ+1 since different formulas can have the same truth-value.

Several specifi c functions are related to negation, namely:
- complementary negation (classical negation as a contradictory-

forming operator)

φ∈{xi} in Vϕ+1, iff ~φ∈UVx-{xi} in Vϕ

- polar negation (intuitionistic negation as a contrary-forming 
operator)

φ∈{x1} in Vϕ = {x1,...,xn} iff ~φ∈{xn} 

- symetric negation
 For any scale of values in 

Vϕ ={0,...,xi=1/n,...,1}, |{xi} + {~xi}| = 1 in Vϕ

- cyclic negation (directional negation as a “backward-or-for-
ward’’-forming operator)

If φ∈{xi} in Vϕ, then ~φ∈{xi-1} or ~φ∈{xi+1} in Vϕ

DN1 and DN2 can be replaced by cyclic laws of n-fold negation: ~nφ ⇔ φ 
(for any Vϕ)
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Values in DL
{1,1} Truth {1,0} Sub-falsity  {0,1} Sub-truth {0,0} Falsity 
        
Negations in DL
N+φ: strong negation 
refl ective (�), 1-fold clockwise (�), 1-fold counterclockwise (�)   
      
Nφ: weak negation   
refl ective (�,� / �,�)

N→φ: initiation 
n-fold clockwise cyclic (	,
,�,�,	,...)     
     
N←

 

φ: fi nalization 
counter-clockwise cyclic (
,	,�,�,
,...)

n = 4

Figure 16

{1,1}

{0,0}

{1,0}{0,1}

N←

N+

N+

N

N

N
N+

N←

N←

N←

N→

N→

N→

N→

 An example of 4-valued polygon: Directional Logic, with its 
 cyclic (blue) and refl ective (red) negations
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In sum, the commensensical view of logical negation is closely related to the 
metalinguistic negation '∉' (as applied to sets of truth-values) and not to the 
linguistic negation '~' (as applied to sets of formulas). Our usual confusion 
between both negations is due to our usual employment of notions like 
'affi rmation' and 'negation' from a bivalent point of view.

A distinction between both views of negations helps to restore the 
'classical' properties of negation even in NCL, whenever a proper translation 
of many-valuations is given in internalized modal systems while following 
Suszko’s thesis about logical values.

Appendix: Internalizing many-valued logics 

(I) From K3 to K3+
Theorem 1. Every set of theorems TK3 is TK3+.

Proof: by induction upon the list of axioms in HIL (see below). 

Nagation in concentric spheres

Figure 17

x1 ~x1=x2
~x2=x3

... ~xi-1=xi

n = 1 n = 2 n = 3 n = i
n = ...
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Figure 18

φ∈{1}

~φ∈{0}

CL: complete, consistent

φ∈{1}

φ∉{1}∩φ∉{0}

~φ∈{0}

NCL: paracomplete, consistent

φ∉{1}∩φ∉{0}

φ∈
{1

}∩
φ∈

{0
}

φ∈{1}
~φ∈{0}

NC: paracomplete, paraconsistent
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Theorem 2. K3+ is equivalent with K3.

Proof: Every logic L1 is equivalent with another logic L2 iff (1) LL1 = LL2 
and (2) TL1 = TL2. 

(1) Let L1 be LHIL and L2 be LK3+. LHIL = LK3+ iff wffs in K3 are iden-
tical with wffs in K3+ or wffs in K3 are translated into wffs of 
K3+. LK3+ are translations of LK3, hence LK3 = LK3+

(2) TK3 = TK3+, by Theorem 1.

Proof of TK3 = TK3+.
Every translation of TK3 is TK3+, as can be checked in the following:

(K1) Tφ ⇒ (Tφ ∧ Tφ)     

(K2) (Tφ ∧ Tψ) ⇒ (Tψ ∧ Tφ) 

(K3) (Tφ → Tψ) ⇒ ((Tφ ∧ Tχ) → (Tψ ∧ Tχ))

(K4) ((Tφ → Tψ) ∧ (Tψ → Tχ)) ⇒ (Tφ → Tχ)

(K5) Tψ ⇒ (Tφ → Tψ)

(K6) Tφ ⇒ ((Tφ → Tψ) → Tψ)

(K7) Tφ ⇒ (Tφ ∨ Tψ)

(K8) (Tφ ∨ Tψ) ⇒ (Tψ ∨ Tφ)

(K9) ((Tφ → Tχ) ∧ (Tψ → Tχ)) ⇒ ((Tφ ∨ Tψ) → Tχ)

(K10) Fφ ⇒ (Tφ → Tψ)

(K11) ((Tφ → Tψ) ⇒ (Tφ → Fψ)) → Fφ

The following HIL-logical truths (a)-(e) are also K3+-logical truths:

(a) (¬φ ∨ ψ) ⇒ (φ → ψ)  (Fφ ∨ Tψ) ⇒ (Tφ → Tψ)

(b) (φ → ψ) ⇒ ¬(φ ∧ ¬ψ)    (Tφ → Tψ) ⇒ F(Tφ ∧ Fψ)

(c) (φ ∨ ψ) ⇒ (¬φ → ψ)   (Tφ ∨ Tψ) ⇒ (Fφ → Tψ)

(d) (φ ∨ ψ) ⇒ ¬(¬φ ∧ ¬ψ)  (Tφ ∨ Tψ) ⇒ F(Fφ ∧ Fψ)

(e) (φ ∧ ψ) ⇒ ¬(¬φ ∨ ¬ψ)  (Tφ ∨ Tψ) ⇒ F(Fφ ∨ Fψ) 
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Theorem 3: Any converse of the preceding formulas is not valid in K3+.

K3+ is equivalent with K3, by Theorem 2. Hence if (a)*-(b)* are not logical 
truths in HIL, the same does in K3+. 
Proof: by induction upon the converses of (a)-(e).

(a)* (φ → ψ) ⇒ (¬φ ∨ ψ)  (Tφ → Tψ) ⇒ (Fφ ∨ Tψ)

(b)* ¬(φ ∧ ¬ψ) ⇒ (φ → ψ)    F(Tφ ∧ Fψ) ⇒ (Tφ → Tψ)

(c)* (¬φ → ψ) ⇒ (φ ∨ ψ)  (Fφ → Tψ) ⇒ (Tφ ∨ Tψ) 

(d)* ¬(¬φ ∧ ¬ψ) ⇒ (φ ∨ ψ)   F(Fφ ∧ Fψ) ⇒ (Tφ ∨ Tψ)

(e)* ¬(¬φ ∨ ¬ψ) ⇒ (φ ∧ ψ)   F(Fφ ∨ Fψ) ⇒ (Tφ ∧ Tψ)

(a)*-(e)* are of the form (A ⇒ B), so that any of these is not a logical 
truth iff A∈{T} and B∉{T}, i.e. B∈{⊥} for some assignment(s) 
of their components φ and ψ. Thus we have: 

(a)* (Tφ → Tψ)∈{T} and (Fφ ∨ Tψ)∈{⊥} with φ∈{1/2} and 
ψ∈{1/2} or ψ∈{0}

(b)* (F(Tφ ∧ Fψ))∈{T} and (Tφ → Tψ)∈{⊥} with φ∈{1} and 
ψ∈{1/2}

(c)* (Fφ → Tψ)∈{T} and (Tφ ∨ Tψ)∈{⊥} with φ∈{1/2} and 
ψ∈{1/2} or ψ∈{0}

(d)* F(Fφ ∧ Fψ)∈{T} and (Tφ ∨ Tψ)∈{⊥} with φ∈{0} and 
ψ∈{1/2} or φ∈{1/2} and ψ∈{0} 

(e)* (F(Fφ ∨ Fψ)∈{T} and (Tφ ∧ Tψ)∈{⊥} with φ∈{1} and 
ψ∈{1/2} or φ∈{1/2} and ψ∈{1} 

Theorem 4: Any converse (a)*-(e)* is valid in K3+ when F is translated as 
~T.

Proof: for any member of (a)*-(e)*, either A∈{T} and then B∈{T}; or B∈{⊥} 
and then A∈{⊥}. Therefore A ⇒ B for any value of A,B in VK3+.

(II) From DL to DL+

Theorem 5: LEM and LC are theorems in DL+. 

Proof: τ(LEM) = T(�φ) ∨ NT(�φ) in DL+ and τ(LC) = N(T(�φ) ∧ 
NT(�φ)) in DL+. Any formula φ in DL is a theorem iff φ∈{1,1}; now 
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(LEM)∈{1,1} and (LC)∈{1,1} for any interpretation of φ in DL. Therefore, 
LEM∈{T} in DL+ and LC∈{T} in DL+. 

Theorem 6: any property of negation is classicized in DL+. 

Proof: by induction on the properties of classical negation, with the 
translation �φ =df T�φ for any modal formula �φ in DL. 

(III) From PLP to PLP+

Theorem 7. Every TPLP is TPLP+
.

Proof: by induction upon the list of axioms in HIL (see below).

Theorem 8. PLP+ is equivalent with PLP.

Proof: Every logic L1 is equivalent with another logic L2 iff (1) LL1 = LL2 
and (2) TL1 =TL2.

(1) Let L1 be LPLP and L2 be LPLP+
. LPLP+

 = LPLP+
 iff wffs in PLP are 

identical with wffs in PLP+ or wffs in PLP are translated into 
wffs of PLP+. LPLP+

 are translations of LPLP, hence LPLP =LPLP+

(2) TPLP = TPLP+
, by Theorem 1.

Proof of TPLP = TPLP+
.

Every translation of TPLP is TPLP+
.

We assume that, for some plausible translations τ1 in PLP+ of a formula 
(A ⇒ B) in PLP, τ(A ⇒ B)∈{T}. It can then be verifi ed that any of (P1)-
(P11) are logical truths in PLP+, especially the following ones:

(P1) (φ → ψ) ⇒ (–ψ → –φ) 

(P2) (–φ ∧ –ψ) ⇒ –(φ ∨ ψ)

(P3) (–φ → –ψ) ⇒ (ψ → φ)

(P4) –(φ ∨ ψ) ⇒ –φ

(P5) φ ⇒ ––φ

(P6) – –φ ⇒ φ

(P7) –φ ⇒ –(φ ∧ ψ)

(P8) –(φ → ψ) ⇒ φ
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(P9) (φ ∧ –ψ) ⇒ –(φ → ψ)

(P10) –φ ⇒ (φ → ψ)

(P11) (φ → –φ) ⇒ –φ

Theorem 9: (f)*-(i)* are not logical truths in PLP+ for some τ1-
translation.

PLP+ is equivalent with PLP by Theorem 2. Hence if (f)*-(i)* are not logical 
truths in PLP, the same does in K3+ under some τ1-translation.
Proof: by induction upon the translated formulas of PLP.

(f)* (φ ∧ –φ) ⇒ ψ   (Vφ ∧ V~φ) ⇒ Vψ

(g)* (φ ∧ (–φ ∨ ψ)) ⇒ φ   (Vφ ∧ (V~φ ∨ Vψ)) ⇒ Vφ

(h)* ((φ → ψ) ∧ –ψ) ⇒ –φ   ((Vφ → Vψ) ∧ V~ψ) ⇒ V~φ

(i)* (φ → (ψ ∧ –ψ)) ⇒ –φ   (Vφ → (Vψ ∧ V~ψ)) ⇒ V~φ

(f)*-(i)* are of the form (A ⇒ B), so that any of these is not a logical 
truth iff A∈{T} and B∉{T}, i.e. B∈{⊥} for some assignment(s) 
of their components φ and ψ. Thus we have:

(f)* (Vφ → Vψ)∈{T} and (Vψ)∈{⊥} with φ∈{1/2} and ψ∈{1/2} or 
ψ∈{0}

(g)* (Vφ ∧ (V~φ ∨ Vψ))∈{T} and (Vψ)∈{⊥} with φ∈{1/2} and 
ψ∈{0}

(h)* ((Vφ → Vψ) ∧ V~ψ)∈{T} and V~φ∈{⊥} with φ∈{0} and 
ψ∈{1/2}

(i)* (Vφ → (Vψ ∧ V~ψ))∈{T} and V~φ∈{⊥} with φ∈{0} and 
ψ∈{1/2}

Theorem 10: Any converse (f)*-(i)* is valid in PLP+ when V~ is substituted 
by W~.

Proof: for any member of (f)*-(i)*, either A∈{T} and then B∈{T}; or B∈{⊥} 
and then A∈{⊥}.
Therefore A ⇒ B for any value of A,B in VPLP+

.
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Notes

 * I am especially grateful to Konrad Turzynski for his very helpful comments on Rogowski’s 
Directional Logic, as well as his detailed observations during private correspondences; see also 
his: “The temporal functors in the directional logic of Rogowski — some results.’’ Bulletin 
of the Section of Logic. Vol. 19 (1990), pp. 80-82.

  1 “The original motivation [of many-valued investigations] was an abstractly mathematical 
one: the pursuit of analogy and generalization. From such a perspective, many-valued logic 
is logic by analogy only; indeed, it is an uninterpreted theory, or abstract algebra.’’ (Quine 
1973, p. 124)

  2 Łukasiewicz is the chief perpetrator of a magnifi cent conceptual deceit lasting out in 
mathematical logic to the present day.’’ (Suszko 1977, p. 377)

  3 “Among all these many-valued systems, just two are entitled to claim to some philosophical 
involvement: the three-valued, and the infi nitely-valued one. For if any other values than 
0 and 1 are read as ‘the possible,’ we can reasonably distinguish only two cases: either we 
assume that the possible does not include degrees, so that we get the three-valued system; or 
we assume the contrary, so that it is natural to recognize, as in the calculus of probability, that 
there is infi nitely many degrees of the possible, what leads to the system with infi nitely many 
values.” (Łukasiewicz 1930, p. 72)

  4 If excluded middle is rephrased as the view that no third value stands besides 1 and 0 in a 
bivalent system with n = 2, no fourth value stands besides 1, 0 and 1/2  in a trivalent system 
with n = 3 etc., Church claims that such a recurrent sequence cannot avoid a paradox with 
transfi nite ordinal numbers of truth-values: n = ω, n = ω+1, ... . As a conclusion, Church says, 
“this paradox, in fact, compels us to regard as illegitimate the consideration of this sequence 
as a whole.’’ (Church 1928, p. 78)   

  5 “... after characterizing a number of groups by some positive properties, we’ll reject the whole 
residue into a last group which won’t have any special properties, except that its components 
won’t have any of the properties that would have let them introduced into one of the fi rst 
divisions. The same does for logical classifi cation. Classical logic acknowledges a true, which 
it characterizes by a positive property, e.g. correspondence with an external reality; then the 
non-true or false, that is, all that doesn’t have such a feature. In other places, especially in 
mathematics, it characterizes the false by a positive property, i.e. contradiction; so that the true 
is the non-false according to it. Now if we defi ne the true and the false each by some positive 
quality, there might be a residue into our classifi cation. Such a residue will be the tiers, which 
could be defi ned as being the neither-true-nor-false.’’ (Barzin and Errera 1929, pp. 9-10)

  6 A unary operator of negation is said to be “normal” iff if ~{1/2} = {1/2}. Post’s cyclic negation 
is not a normal negation, given that the negation of 1/2 yields 1 in it. 

  7 The pairs of elements {1}-{0} and subsets {T}-{⊥} are one and the same in CL: obviously, 
the bivalent frame of classical logics entails that whatever is true is designated, and whatever 
is false is not-designated. Therefore, the distinction between designated and not-designated 
values is relevant only in NCL (with n > 2). 

  8 Tsuji sketches Suszko’s thesis of reduction for logical matrices as follows: “In short, according 
to [Suszko], many-valued logics are in essence two-valued logics with many-valued referential 
(semantic) correlates; these semantic correlates are not to be confused with truth and falsity, 
which are after all the only possible logical values in such cases’’ (Tsuji 1998, p. 302) 

  9 Suszko meant by “true” and “false” that what is symbolized here by {T} (the designated value) 
and {⊥} (the non-designated).
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Let us give three examples of valuation with pairs of truth-values, assuming throughout that 
{1,1} = {1}, {1,0} =  {0,1} = {1/2}, and {0,0} = {0}:

a) Let ⊕ be ‘~’, and φ with {x1,y1} = {1/2}.

Then ~φ∈min{~x1,~y1}, i.e. ~φ∈min({0,1},{1,0}), hence ~φ∈{1/2}.

b) Let ⊕ be ‘∧’, φ with {x1,y1} = {1/2} and ψ with {x2,y2} = {1}, i.e. {1,1}

Then (φ ∧ ψ)∈min({1∧1,0∧1},{0∧1,1∧1}), i.e. (φ ∧ ψ)∈min({1,0},{0,1}), hence (φ ∧ 
ψ)∈{1/2}.

c) Let ⊕ be ‘→’, φ with {x1,y1} = {1/2}, and ψ with {x2,y2} = {1/2}

Then (φ→ψ)∈ min({1→1,0→0},{1→0,0→1},{0→1,1→0},{0→1,0→1}); hence

(φ→ψ)∈ min({1,1},{0,1}},{1,0},{1,1}), i.e. (φ ∧ ψ)∈{1/2}.

Note that the above truth-conditions don’t obtain in Łukasiewicz’s three-valued system, where 
{1/2 →1/2} = {1} and  not {1/2}.

10 See von Wright (1959)’s strong negation, the truth-conditions of which are more stringent 
that the classical or ‘weak’ negation. In a nutshell, this strong negation amounts to the modal 
notion of impossibility: “By saying that ~p means ‘the proposition p is not true’, it is meant 
‘it is impossible for p to be true’.’’ (Heyting 1932, p. 122) Hence the intuitionistic defi nition 
of negation as absurdity: ¬φ =df (φ → ⊥).

11 These are “modal” in the sense that they proceed as unary operators upon sentences, but 
they could be said not to be “modal” insofar as that they proceed truth-functionally within a 
functionally complete matrix. The informal readings of modal operators in DL are the following: 
negations include, besides the primitive negation N→ as initiation, N← as fi nalization, N as 
weak negation (it is not the case that), and N+ as strong negation; the other modal operators 
are H→ as protention, H← as retention, and T as assertion. 

12 The failure of self-identity doesn’t matter for our present purposes concerning negation, but 
it is a special feature of DL: according with Hegel’s dialectic, objects don’t have any static 
properties and, hence, no identity as such.

13 A consequence of this extended definition of logical truth is the distinction between 
contradiction, inconsistency, and triviality in PLP: (φ ∧ –φ) and –(φ ∧ –φ) are logically true in 
PLP, but that the former contains inconsistent theorems φ and –φ does not entail that anything 
is true in PLP (according to the classical law ex contradictio sequitur quodlibet: (φ ∧ –φ) ⇒ 
ψ, for any ψ). Triviality thus fails with ψ∈{0}.

14 A case for non-classical negations is given by Dutilh-Novaes (2003), for instance. The writer 
rightly insists that the problem with paraconsistent logics is not so much about non-classical 
negation in general than about contradiction: there are some non-classical negations in logic, 

but how to accept a negation N with (φ ∧ Nφ)∈{1}?
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