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The paper considers momentum operators on intrinsically curved manifolds.

Given that the

momentum operators are Killing vector fields whose integral curves are geodesics, it is shown that the
corresponding manifold is either flat, or otherwise of compact type with positive constant sectional
curvature and dimension equal to 1, 3 or 7. Explicit representations of momentum operators and the
associated Casimir element will be discussed for the 3-sphere S2. It will be verified that the structural
constants of the underlying Lie algebra are proportional to 27/ R, where R is the curvature radius
of 53, and F is the reduced Planck’s constant. This results in a countable energy and momentum
spectrum of freely moving particles in S3. It is shown that the maximum resolution of the possible
momenta is given by the de Broglie wave length, A\g = wR, which is identical to the diameter of the
manifold. The corresponding covariant position operators are defined in terms of geodesic normal
coordinates and the associated commutator relations of position and momentum are established.

I. INTRODUCTION

Every generalization of the ordinary momentum oper-
ator in quantum mechanics to intrinsically curved mani-
folds strongly depends on the assumptions which are sup-
posed to be established. Those assumptions are mostly
based on the rules of quantum mechanics in Cartesian
coordinates of the flat Euclidean space.

Let M be an n-dimensional smooth Riemannian man-
ifold with metric g (occasionally denoted by (-,-)). At
every point p € M, smooth manifolds admit a tangent
space, T, M, which is an n-dimensional real vector space.
For every smooth function f on M, consider the action
of the differential form, df. Since df is a map on the tan-
gential space T, M at point p € M, the gradient of f is
defined such that

df (v) = (v, gradf) (1)

for every smooth vector field v € T, M. From this defini-
tion one can obtain the formal expression of the gradient
vector field by

gradf = (gradf)’c Ok (2)

with contravariant components (gradf)? = g**9y, f, where
g% are components of the inverse metric ¢!, {0k} is
the natural basis of T, M, and the Latin letters denote
the space indices, i,k = 1,2,--- ,n. With this notation
the traditional momentum operator of Euclidean space
in Cartesian coordinates is given by the covariant com-
ponents pi f = —ih (gradf)g, which is commonly written
as

Dr = —th Ok (3)

in physics textbooks; here, / is the reduced Planck’s con-
stant. Following De Witt [I][2], for intrinsically curved
manifolds one can obtain more general momentum oper-
ators which also satisfy the canonical commutation rela-

tions
(27, px] = iho], (4)
[ﬁj aﬁk] = [ij 7§;k] =0. (5)

This yields an enhanced quantization rule
Pr = —ih <3k + I‘;k(:v)) (6)

where the curvature of the manifold is reflected by the
contracted Christoffel symbols F;k(x) Compared to the
Cartesian quantization rule in Euclidean space , the
ordinary partial derivative is replaced by the definition
@. An advantage of this quantization rule is its appli-
cability to a wide range of curved spaces and the validity
of the canonical commutator relations. However, in or-
der to set up a quantum Hamiltonian one has to keep in
mind that there is no unique prescription to quantize the
classical curved space Hamilton function. This is because
of operator orderings of the kinetic energy term result in
different, inequivalent quantum corrections, such that the
correct Hamiltonian can only be confirmed empirically.

On the other hand, a particular property which is in
a sense self-evident for the Cartesian case is that the
partial derivatives J; of the momentum representation
in can be understood as orthonormal Killing vectors
whose isometries are ”translations” in Euclidean space.
Strictly speaking, the integral curves of this Killing vec-
tors (called Killing trajectories) are geodesics, especially
for a particle moving in a force-free surrounding. If this
idea is generalized, for instance, to a freely moving par-
ticle on the 3-sphere of radius R, then it is already know
that the (geodesic) Killing trajectories are the greater
circles. Hence, the structural coefficients of the underly-
ing Lie algebra are proportional to the fraction /R and
therefore different from zero and one is compelled to re-
lax the form of the canonical commutator relations
and .

One of the first attempts in this direction have been
proposed by Segal [3] and were later developed by



Sniatycki [], Doebner, Tolar and Nattermann [5][6].
Without to go in any detail (a review can be found in [7])
a generalized momentum operator is obtained by projec-
tion on a given smooth vector field X on M according
to

P, = —ih (vx + ;divX> , 1)

where divX is the covariant divergence of the vector field
X. A straightforward computation (that is here omitted)
yields the general commutation relation,

[P, B =

X7'7Y

—ih By v, (8)

where [X,Y] denotes the commutator of the two vector
fields X and Y in the usual sense of the theory of man-
ifolds [3]. In the case of a linear manifold this vanishes
for two infinitesimal translations, and specializes to
the commutativity of the conventional linear momenta.

Apparently, operator @ of De-Witt can be recov-
ered for vector fields X of the special form X, = 0,
with I‘;k = O log Vg9 = T'x. However, that means
divXy = I'y # 0 such that the vector fields X} cannot be
Killing vectors if the underlying manifold is intrinsically
curved.

The paper is organized as follows. In Sec. II, the ques-
tion of hermiticity of momentum operators is dis-
cussed. This draws attention to the special importance
of Killing frame fields. A classification of manifolds with
such a structure and the corresponding Lie algebra is dis-
cussed in Sec.III. Possible examples S',S3 and S7 are
considered in Sec.IV. In Sec. V., a covariant position op-
erator on S® is defined in terms of geodesic normal coor-
dinates and the associated commutator relations of posi-
tion and momentum are established. Finally, a summary
and outlook is given in Sec. VI.

II. HERMITEAN MOMENTUM OPERATORS

Let us consider the Hilbert space of square integrable
complex functions L?(U, i) on a compact subset, U C M
with smooth boundary QU endowed by the inner product,

(f.9) = /U ity f.g€ LU, (9)

where p is the standard volume measure on U C M.
The statement that momentum operators are Hermitean
with respect to an inner product is typically based on
the assumption that the boundary terms vanish after
partial integration. Indeed, one cannot define a momen-
tum operator on a bounded domain without specifying
boundary conditions. In mathematical terms, choosing
the boundary conditions amounts to choosing an appro-
priate domain for the operator. If one uses no boundary

conditions, too many functions are eigenvectors and so
the spectrum of P, is the whole complex plane. On the
other hand, if Dirichlet boundary conditions are imposed,
the situation is too restrictive and one cannot find an or-
thonormal basis. Thus, if the functions f € L?(U, i) are
smooth on U but constant functions at QU, in this case
finding a domain such that P, is self-adjoint is a compro-
mise to obtain an orthonormal basis of countable spec-
trum. In what follows, the focus will be on the Hilbert
spaces Hy C L2(M, p), with

Hy ={f € C'(U): flov = const.} (10)

At this point one has to check whether momentum
operator still remains Hermitean because the ele-
ments in Hy are not supposed to vanish at the boundary.

Proposition 1. Let X be a smooth and diver-
genceless vector field on U C M. Then P, is Hermitean
on Hy.

Proof. Let f,h € Hyp.
product fX can be written as

The divergence of the

div(fX) = £ div(X) + Vi f. (11)

On the other hand, one has the decomposition

WV = (WX, gradf)
div(fh*X) —

Fdiv(h*X). (12)

This equation can be integrated with respect to the vol-
ume form dp on U as follows:

(h, Vi f) /dufdlvh* )

| dpafhrXov).  (13)
oUu
Here, Stokes’ theorem is applied, where dpg is the volume
measure with respect to the boundary OU and v is the
non-negative outward normal on OU. Now, since f and
h are assumed to be constant at the boundary of U, they
can be taken out of the integration in and one can
apply Stokes’ theorem once more such that the remaining
boundary integral on the right-hand side in becomes

du@ XV

/ dp divX. (14)
ou

With the assumption divX = 0, it follows

(h, Vs f) :f/Udufdiv(h*X). (15)

Finally, eq. (11) is applied and one gets
(h, Vxf) +

(Vih, f) = /duh “f div(X). (16)



The term on the right-hand side can be absorbed into
each term on the left-hand side with a prefactor 1/2.
By multiplication of the equation with —:h, and after
applying definition @, we finally obtain

(h, Pcf) = (Pxh, f) (17)
for all f,h € Hy. O

At this point, to emphasise is that the boundary term
in is not necessarily zero under more general con-
ditions. However, the divergence criterion of the vector
field X is sufficient to ensure hermiticity under the given
conditions. The possible manifolds which are available
under these circumstances will be discussed in the next
Section.

III. GEODESIC MOMENTUM OPERATORS

The classification of manifolds which are compatible
to the conditions of Proposition 1 can be described by
the following definition of Killing frames:

Definition 1. (Killing frame) [§]

A Riemannian manifold M is said to have the Killing
property if, in some neighborhood of each point of M,
there exists an orthonormal frame, X1, ..., X,, such that
each X;, i = 1,...,n, is a Killing vector field (local
infinitesimal isometry). Such a frame will be called a
Killing frame.

Since any linear combination, with constant coeffi-
cients, of Killing vector fields is again a Killing vector
field, a manifold has the Killing property if and only if
it is always possible to find frames consisting of Killing
vector fields, such that (X;, X;) = const, for each choice
of i and j. The normality condition of the definition
implies that the integral curves of the isometries are
geodesics, since a necessary and sufficient condition for
this is that the Killing vector fields have constant length
(@, p.349; [10], p. 50).

For instance, let z,y and 7, denote Cartesian and
polar coordinates on the Euclidean plane R? endowed
with Euclidean metric. Then the Killing vector fields
corresponding to translations and rotations are X1 = 0y,
Xy = 0y and X3 = 0,. Their squared vector norms are
X2 =1,X? =1 and X2 = r2%. The Killing vector fields
X1 and X5 have a constant length on the whole plane.
Their trajectories are straight lines, which are geodesics.
The Killing trajectories corresponding to rotations Xs
are concentric circles around the origin. The length of
X3 is constant along the circles, but non-constant on the
whole plane. The corresponding Killing trajectories are
circles, which are not geodesics [I1].

In the context given so far one comes to the following;:

Definition 2. (Momentum operator)

Let M be an n-dimensional Riemannian manifold with
Killing frame Xji,...,X, on M. The set of operators
defined by

PXk = —ihX} (18)

k =1,...,n, are called (geodesic) momentum operators
in the direction X on M.

This definition is compatible with since every
Killing vector field X; is a priori divergenceless, i.e.,
divX; = 0, ¢ = 1,...,n. Moreover, the Lie bracket of
two Killing fields is still a Killing field. The momentum
operators thus form a Lie subalgebra of vector fields
on M. If M is a complete manifold, this is the Lie algebra
of the translation group. In this case the commutation
relations of the Killing vector fields are given by

[ X, X;] = cf; X», (19)

where the structural coefficients cfj express the multipli-
cation of pairs of vectors as a linear combination. The
corresponding commutator relations of the momenta are
obtained by multiplication with the physical units (—ih)?
on both sides of and subsequently applying the def-

inition , ie.
[Py, Py] = —ihcy; Py (20)

which is compatible with the general expression . The
associated Casimir element of this Lie algebra is given
by [8]:

Proposition 2. Let M be an n-dimensional man-
ifold and Xj, ..., X, be a Killing frame on M. There is
a decomposition of the Laplace-Beltrami operator, such
that

> P =-mA. (21)
j=1

Proof. The vector fields, X, can be expressed as a linear
combination of the coordinate vector fields, 0, = 9/0x%,
with the Greek letters denoting indices of the local chart,
such that

X, = €0, (22)

where each &' is a function. For every smooth f on M,
one can write

Y XIf = 0a(9°P0sf) — 07 (0aE)E] 05 f  (23)

which has been obtained by the product rule of differenti-
ation. On the other hand, the Laplace-Beltrami operator



in the natural frame is

Af = 0a(g”%0sf) + \jgwm P0sf  (24)

Now, it follows that expression is equal to for
every f, if it can be shown that

(V)™ 00N =0 (25)
V9 B

Using the basic property, Vg = 0, of the Levi-Civita
connection together with (5”5?5? = ¢®#, one obtains the
following condition

59V, €)= 0. (26)
This identity can be confirmed as follows:

0 = Valglk
= 69V, (&¢))
5ii (diin &+ vxigf)

= 69V, ¢ (27)

and thus,

Y XPf=Af. (28)
J

With definition , in physical units, one obtains
statement . (Il

According to this decomposition of the covariant
Laplacian there is no ambiguity concerning operator or-
derings of the kinetic energy term. It is also important to
know that the decomposition is independent of the
particular choice of the orthonormal basis [12]. More-
over, the commutator of A with the elements X; of the

Lie algebra is given by
[Xj7 A] =0. (29)

From the mathematical point of view, the Casimir
element has a meaning only for the theory of represen-
tations, but not as an element of the Lie algebra, since
the product in is not defined for the algebra itself.
However, from linear algebra we know that the eigen-
vectors of a linear operator always form a basis for the
vector space in question. In addition, for any Lie group,
one or more of the generators can be simultaneously
diagonalized using similarity transformations. The set
of generators that can be diagonalized simultaneously
are called Cartan generators. Thus, a suggestive and
particularly easy basis for the vector space of each
representation is given by the eigenvectors of the Cartan
generators (see below).

The scope of the concept given so far asks for a mathe-
matical classification of manifolds with Killing property.
It has been shown that a Riemannian manifold having
the Killing property must be locally symmetric [8]. Thus,
each point of a connected Riemannian manifold having
the Killing property has an open neighbourhood which
is isometric to an open neighbourhood in a simply con-
nected Riemannian symmetric space M. Then M also
has the Killing property and, moreover, has global Killing
frames. In fact, a local Killing frame exists on M because
of the given local isometry, and can be extended uniquely
to give a global Killing frame. The extension of each
Killing vector field to a global Killing vector field is pos-
sible since the symmetry implies completeness. This ex-
tension remains orthonormal since the Riemannian struc-
ture on M is subordinate to a real analytic Riemannian
structure (cf. [13] p. 240, [14] p. 187). A simply connected
Riemannian symmetric space is said to be irreducible if it
is not the product of two or more Riemannian symmetric
spaces. It can then be shown that any simply connected
Riemannian symmetric space is a Riemannian product of
irreducible ones.

Therefore, the calculations furthermore are restricted
to the irreducible, simply connected Riemannian sym-
metric spaces. Any simply connected Riemannian sym-
metric space M is of one of the following three types: (7)
Euclidean type: M has vanishing curvature, and is there-
fore isometric to a Euclidean space. (i) Compact type:
M has nonnegative (but not identically zero) sectional
curvature. (7i¢) Non-compact type: M has non-positive
(but not identically zero) sectional curvature. Actually,
strictly negatively curved manifolds imply that there are
no nontrivial (real valued) orthonormal Killing fields.

Manifolds of constant positive curvature are known [g]
to have the Killing property only if the dimension of M
is equal to 1, 3 or 7. For the spheres S', S3 and 57,
in fact, there is a global Killing frame. The construction
depends essentially on the existence of a multiplication in
R? (complex numbers), R* (quaternions), and R® (Cayley
numbers).

IV. APPLICATIONS

From the discussion of the previous Section and the
particular role of Killing frames it is straightforward
to consider the designated cases of constant curvature
manifolds S*, S® and S” in more detail. Let us begin
with the ”trivial” case S!.

Circle. For the circle one can take X; to be the unit
tangent vector field, say pointing in the anti-clockwise
direction. More precisely consider the situation of a
compact subset M C S' embedded in R2. The general
solution of the Killing equation £x,g = 0 on S!, with
metric ds? = p2dp? is given by X; = £¥ 0, for £ € R.



Let £ = 1/p, where p is the constant (hyper-) radius
of the circle, then we have X7 = 1 and the Killing
trajectory is a geodesic. The associated momentum
operator is

P,=—ih——.
' ih o (30)
This operator is symmetric on any compact set M C S,
with f = const. on the boundary. In [15], it is reported
that, in quantum mechanics on a circle with standard
commutation relation for ¢ and p,, the uncertainty re-
lation cannot be stronger than o,0, > 0, where o, and
o, are the standard deviations of position and momen-
tum. Indeed, this inequality is not informative at all,
since a product of two nonnegative values cannot be neg-
ative. Alternatively, one is referred to the approach in
[16], which is not affected by difficulties arising in defin-
ing a proper measure of position uncertainty on manifolds
mentioned in [I7]. By applying the substitution r = p ¢,
which corresponds to the arc-length on S!, the uncer-

tainty principle of [16] is given by

opAr > h (31)

where Ar is the measure (length) of a compact domain
on S'.

Before turning over to the case of S3, let us briefly
mention that indeed each single component Lq, Lo, L3 of
the ordinary textbook angular momentum operator L is
a Killing vector on S? and moreover, L? = L% + L3 + L%
actually corresponds to the Laplace-Beltrami operator
on S2. Although this seems quite promising, these vector
fields are not normalizable. Actually, all vector fields on
the 2-sphere are inappropriate for this purpose because
of the hairy ball theorem of differential topology, which
states that there is generally no nonvanishing continuous
tangent vector field on even-dimensional n-spheres. This
makes it hard to think about what kind of vector fields
should be appropriate for an adequate description of
momentum operators on S2. The discussion in literature
about what momentum operators on S2 might be
considered to be appropriate extends up to the present
day.

3-sphere. The 3-sphere of radius R >0 can be
understood as the three-dimensional hypersurface in the
four-dimensional Euclidean space. This can naturally be
described by standard spherical coordinates of R*, given
by [18]:

= Rcosy

= Rsin xcosf

= Rsin xsinfcosp

= Rsinysinfsinp.

In order to cover all points of the 3-sphere with both
positive and negative values of the coordinates z?, it is

necessary that 0 < x,0 < m, 0 < ¢ < 27. In these

coordinates the metric of S takes the form
ds* = R?(dx® +sin®x (d6” +sin®0 dp?)).  (32)

The corresponding Killing equation is solved for the unit
sphere (R = 1) and the following orthonormal Killing
frame is selected:

X1 = sinfcospdy (33)
+ (cot x cosfcosp — sing) Jy
— (cot x cscBsin ¢ + cot 0 cos ) D,
Xy = sinfsingdy (34)
+ (cot x cosfsin ¢ + cos ) Oy
+ (cot x csc B cos p — cot sin ) J,

X3 = cosf0, —cot xsinf dy + 0, (35)

Case R # 1 can be obtained by division of the right side
by R. The orthonormality relation g(X;, X;) = d;; is eas-
ily verified. The corresponding representation in Carte-
sian coordinates, p = (2,22 2%, 2%), of the Euclidean

embedding space R* is also determined and given by

Xi(p) = (—z*, —23, 22, zb) (36)
Xo(p) = (2%, -2t —2', 2?) (37)
X3(p) = (—2?%, ', -2t 2°) (38)

which satisfy X;(p) - X;(p) = d;; with respect to the Eu-
clidean scalar product. One can also check that the Lie
algebra generated by {X1, X2, X3} is given by the com-
mutation relations,
2
[Xi, X;] = & €ijk Xk (39)
where €, is the Levi-Civita symbol in three dimensions.
In physical units this can be rewritten as
2ih
[Pxiﬂpxj] :f eijk?PX,C (40)
The corresponding Hamilton operator, H, of a free par-
ticle is given by

h2
H=—) P2 =——"A 41
2mzz: Xi 2m ( )

which is equal to the Casimir element of Proposition 2 in
three dimensions. Thus, it follows that
[H,P,]=0 (42)

fori =1,2,3.
An alternative decompositions of of the Laplacian in
, by using six (non-orthonormal) Killing vector fields



instead of three, has been proposed in Santander etal.
[19]. One essential point of the approach in [19] is that
the structural coefficients of the associated commutator
relations are not constants, such that the Hamiltonian
cannot be considered as a Casimir element of the operator
algebra. This makes the analysis of the eigenvalues and
the corresponding eigenspaces quite complicated. Actu-
ally, there seems to be no reason why one should regard
a decomposition of the free Hamiltonian in terms of ad-
ditional angular momenta whose integral curves are not
geodesics.

Another interesting approach is the momentum-space
quantization of a particle moving on the SU(2) group
manifold by Guerrero etal. [20]. Their algorithm also
exhibits a proper and unambiguous realization of the
basic operators and of the Hamiltonian, which also
turns out to be the Laplace-Beltrami operator on S3.
Although, the right-invariant generators (62) in [20] are
different from the Killing frame fields X; introduced
above, they are compatible with the algebra given in
(39). However, the question whether the generators in
[20] also form a Killing frame has not been explicitly
discussed.

The eigenvalues of H can be obtained by the hyper-
spherical harmonics on S$3, which have been discussed as
part of investigations of a variety of gravitational physics
problems in spaces with the topology of the 3-sphere
[21][22]. According to [22], these hyperspherical harmon-
ics on S% are denoted by Y™™, The integers n,l and m
with n > 1 > 0 and [ > m > —I indicate the order of
the harmonic. These harmonics are eigenfunctions of the
covariant Laplacian according to

n(n+ 2)

nlm __
N

ynim, (43)

The corresponding energy eigenvalues E,, of H are given
by

h% n(n +2)
E, = o 2 (44)
forn=0,1,...

Now let us consider the corresponding eigenvalue spec-
trum of the momentum operators. Although P, and H
are commuting Hermitian operators it is not neéessarily
given that each eigenbasis of H is also an eigenbasis of
P,,. Indeed, most of the functions Y™™ given in
are not eigenfunctions of the momentum operator P _.
A simultaneous eigenbasis can be obtained by applying
the standard textbook formalism, but based on the spe-
cific algebra given by . Rather then working with the
operators P and P, _, it is convenient to work with the
non-Hermitian linear combinations,

P, = P, +iP,, (45)

6

where by definition (P )' = P,. Using and 7 it
is straight forward to show that

h
[P P] = 45 P (46)
[P, Pf] = £2k % Pt (47)

for k =0,1,2,.... Certainly, one also has
[H,PF] =o0. (48)

In order to obtain a simultaneous eigenbasis of H and P,
for every fixed n € N, let us consider the set of orthogonal
states {wfk}zzo given by applying the "ladder” operators
P, according to

¢:k — Pik Y’n’n(:F’rL) (49)

where k = 0,1, ...,n. From this definition it follows that
P z/Jfo = 0. By applying the general commutator rule
, it can be seen that all of these states are eigenstates
of the momentum operator such that

S (50)
n. 2h
Pnk = (k_g)ﬁ (51)

for k = 0,1,...,n. The physical interpretation becomes
straightforward by recalling that the diameter of the 3-
sphere is, by definition, the maximal possible geodesic
distance (7R) between two points on S3. If one applies
the original definition of Planck’s constant i = h/2m, the
maximal resolution Ap,r = pnk+1 — Pnk of the possible
momenta in is given by
h

Apnk - R (52)
Actually this unit of momentum is corresponding to the
de-Broglie wavelength,

)\R:ﬂ'R (53)

which is identical to the diameter of the manifold. It is
hard to think of higher resolutions than this.

On the other hand, the energy eigenvalues can be ver-
ified by applying the commutator , such that we ob-
tain the eigenvalue equations

Hy!™ = E* (54)

where E,, is given in (44]). For numerical purposes it is
helpful to know the explicit form of the initial functions
IO, which are given by

1/):0 = (,, sin"y sin"f eTi"¥, (55)

and the normalization constant is

. V27T (n+1) n! (2n — 1) (56)

- T (2n)!




The representation of the operators P, and P can
be obtained by inverting relation in order to express
them in terms of the ladder operators. This completes
the brief analysis of momentum operators on S3.

7-sphere. Physical applications involving higher
dimensional spheres can be found almost exclusively in
the context of N = 1 supergravity in 11 dimensions,
which is beyond the scope of this study. Therefore, let
us notify (for information only) some aspects regarding
the approach given so far. The sphere S”, considered
as Riemannian manifold embedded in R® in the usual
way, is also designated to have the Killing property.
Explicitly, writing points p in R® as column vectors and
identifying the tangent spaces to S7 with hyperplanes,
the vector fields X;(p), for ¢ = 1,...,7, are expressed
in the TableI below [§]. Since p - X;(p) = 0 and
Xi(p) - X;(p) = 6;j, this gives a global orthonormal
frame on S7, which is also a Killing frame. If R* is
embedded in R® as a subset 2° = 2% = 27 = 2% = 0,
the restrictions of X7, Xo, X3 yield a Killing frame on
S3 corresponding to the previous Section (up to sign
conventions).

p | Xi(p) | X2(p)| X5(p) | Xa(p)| Xs5(p) | X6(p)| X7(p)
.Tl 372 CL’S $4 [E5 J76 .1’7 $8
$2 —1'1 —ZU4 51,'3 —x6 (L'5 —ZUS 1'7
$3 1174 7131 7!1)2 7.’1}7 {I’s 135 711?6
1’4 —31’3 .’1}2 —.’Bl .1'8 337 —.T6 —$5
1,5 1'6 7 —IS _ml —1'2 _1‘3 CL‘4
.276 71,5 7x8 7287 2 7x1 .134 ZC3
1’7 3,’8 —xs .136 3}'3 —33'4 —.Tl —.132
1'8 —177 1‘6 CC5 —IE4 —1'3 .1’2 —.CCl

TABLE I: Orthonormal Killing vector representation at point
p on S7 embedded in RS,

According to this representation the Killing vector
fields X; of the frame bundle and their associated mo-
mentum operators P, on S7 can be easily expressed
in terms of hyperspherical coordinates. Moreover, the
calculation of eigenvectors and eigenvalues of the corre-
sponding Laplace-Beltrami operator on S7 is straightfor-
ward and can be obtained by projecting harmonic fields
in Euclidean R® onto the unit sphere.

V.COVARIANT POSITION OPERATOR ON S3

Finally, let us bring up some remarks concerning the
notion of position operators. Segal [3] defines the position
operator @) as follows: if f is a general function on M,
then @), is defined as the operation of multiplication by f.
For real f, g, the operators @, and @), are Hermitian, such
that there is no difficulty in verifying the commutation

relations

[Qf7PX] = ihQXf (57)
[Qf?Qg] =0 (58)

In order to define a covariant position operator on S3
it is obvious to consider the notion of geodesic distance.
Since no point of S3 is particularly distinguished, with-
out loss of generality the origin in hyperspherical coordi-
nates is chosen by the ”North Pole” p = (R,0,0,0) € R%.
Geodesic normal coordinates, ¢ = (¢*, ¢, ¢®), around this
origin are such that every element of S® can be reached
by the exponential map

exp, : 1,8 — §° o
s sy X
exp,(X) = pcos (ﬁ) +Rsm(R)||X83|| (00

with X = ¢'X; € T,,5° and the geodesic distance func-
tion,

s:q—> 59 =||qll (61)
where || - || is the Euclidean norm in 7,S83. Let
X, =q"Xy, (62)

be the corresponding tangent vector field in the unit di-
rection § = ¢q/s,. Then, applying the smooth transition
map from the hyperspherical chart to geodesic coordi-
nates

= Ryxsinfcosp

Ry sinfsin ¢
= Rycosf

it follows by straight forward computation that X, can
be expressed by

0

.= (63)

Accordingly, a geodesic position operator on S? is defined
by Qs and the commutator can be expressed by

[Qu. P, ] = ih. (64)

A covariant uncertainty relation of position and mo-
mentum that is compatible with this approach and was
applied to S® can be found in [23][24]. A further gen-
eralization to the case of S7 is also possible, but left to
further considerations.

VI. SUMMARY AND OUTLOOK

The description of momentum operators by Killing
vector fields is a long-established concept in momentum-
space quantization on differentiable manifolds. On the



other hand, from classical general relativity, the funda-
mental importance of geodesic trajectories as a key con-
cept of the theory is also known.

If one wishes to unify these two concepts together
in the approach of momentum-space quantization, this
leads to the notion of Killing frames on manifolds. These
special frames are implicitly part of the classical Car-
tan formalism. However, the orthonormal frame fields in
the Cartan approach are usually not provided as Killing
vector fields. A fundamental principle in the Cartanian
approach is to chose the moving frames most suitable to
the particular problem. Some consequences for the pos-
sible manifolds arising from the additional Killing frame
property have been discussed.

The present study is mainly focused on irreducible,
simply connected Riemannian manifolds. However, many
product manifolds can be constructed out of these irre-
ducible components which also possess the Killing frame
property. A straightforward example would be the tem-
porally infinite but spatially finite case R x S3. A further
generalization is the case of 11-dimensional supergravity
with R x S3 x S7. Such possibilities and the extended
analysis of the associated spin connections are the sub-
ject of further investigations.
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