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Abstract

A analysis of some concepts of logic is proposed, around the
work of Edelcio de Souza. Two of his related issues will be empha-
sized, namely: opposition, and quasi-truth. After a review of oppo-
sition between logical systems [2], its extension to many-valuedness
is considered following a special semantics including partial oper-
ators [13]. Following this semantic framework, the concepts of
antilogic and counterlogic are translated into opposition-forming
operators [15] and specified as special cases of contradictoriness
and contrariety. Then quasi-truth [5] is introduced and equally
translated as a product of two partial operators. Finally, the re-
flections proposed around opposition and quasi-truth lead to a
third new logical concept: quasi-opposition, borrowing the central
feature of partiality and opening the way to a potential field of
new investigations into philosophical logic.

1 Oppositions

The proper contribution of Edelcio de Souza with respect to logical op-
positions has been through its application to logical systems [2], beyond
mere formulas or philosophical concepts in a given logical system [3].
The concept of opposition comes from Aristotle’s work and consists in
logical relations between bivalent formulas, in such a way that each
of these formulas is to be interpreted as either true or false. For this
reason, oppositions should be explained in a semantic way. However,
Edelcio and the co-authors claim that every logical opposition that does
not relate propositions should not be explained in semantic terms ([2],
243):

“Because the vertices of the square (...) are not propositions we reconstruct
the classical oppositions accordingly. We define them in terms of relations be-
tween logics —instead of logical values”.
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Anyway, the authors introduce the two central notions in a classical way.
Letting I' -1, ¢ the relation of consequence from any set of premisses I
to an arbitrary formula ¢ in a language L:

e L is called an antilogic of L if and only if it is not the case that ¢
is a logical consequence of I' in L: I' I/; .

e L is called an counterlogic of L if and only if it is the case that -
is a logical consequence of I' in L: I' -7 —p.

Beyond the bivalent stance, the aim of the present paper is to re-

define oppositions between logics in semantic terms and to explore the
possibility of non-standard oppositions.
On the one hand, such oppositions may be formulated in the Tarskian
sense of semantic consequence as a relation of truth-preservation in a
model, i.e., interpretations of formulas such that these are true (symbol:
t) or false (symbol: f) in a model. Thus, I =1, ¢ means that any model
wofyp €I'in L is also a model of ¢ in L: T' =, ¢, ie. v(w,¢) =t =
v(w,¢) = t. Then any model w of L can be called an antimodel of L,
and any model w of L can be called a countermodel of L, such that:

e there exists a model w of ¢ € I in L that is not a model of ¢ in
LT g, e, (i, w) = £ v(w, ) = .

e every model w of 9 € I' in L is also a model of ¢ in L: ' =57 —o,
Le, v(w, ) =t = v(w,—~p) =t.

On the other hand, the bivalent interpretation of formulas in the models
entails that there is no logical difference between untruth and falsity. In
other words, every antimodel of ¢ is a model at which ¢ is not true,
that is, ¢ is false: v(w, ) # t = v(w,p) = f; and every countermodel
of ¢ is a model at which —y is true, that is, ¢ is false: v(w,—p) =t
means the same as v(w, ) = f. The difference between both antilogic
and counterlogic may be easily explained in terms of how many models
there are for these: an antilogic has ¢ false at some (but not all) model
of it at which ¢ is true, whereas a counterlogic has ¢ false at every
model of it at which 1 is true.

And yet, what of such higher-order oppositions in a many-valued
system where bivalence does not obtain anymore? Answering to this
question will be the central task of the present section, especially because
bivalence is assumed in [2]. Our aim is to extend the notion of logical
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oppositions into non-bivalent or many-valued systems, accordingly. For
this purpose, let us consider a general domain of valuation V,, including
n logical values. Bivalence includes the class of logical systems where
the m = 2 logical values are truth and falsehood. We assume that many-
valuedness relates to any logical system whose domain of interpretation
V., includes more than 2 values, such that m > 2.

More generally, one way to characterize many-valuedness is by taking
logical values to be ordered n-tuples of elements whilst keeping in mind
that the basic values of logic are t and f. A characterization of such
finitely m-valued systems consists in a 2"-valued domain of values in-
cluding n ordered elements and 2" = n resulting logical values. Bor-
rowing from various works from to Jaskéwski [9] to Kapsner [10] through
Shramko & Wansing [17], the following wants to focus on a specific case
of structured logical values analogous to Belnap’s 4-valued system First
Degree Entailment [1]. Thus, let Vj a 4-valued domain of structured
logical values X = (z1,z2). It includes n = 2 elements ¢ and f such
that, for any ¢, va(p) = (x1,22) and z;(¢) — {1,0}.

Given that logical values are structured objects in Vy, their characteristic
valuation function proceeds as an ordered 2-uple A(y) = (ai(p),a2(p))
wherein a;j(p) = x; informs about whether ¢ is true, and az(p) = z9
about whether ¢ is false. Correspondingly, we will rephrase the four
logical values of Vj by translating first their basic elements ¢ and f in
terms of structured values and, then, the combination of the latter.!

v t means that aj(¢) =1, i.e., @ is true.

() =
Egp% #t (or v(p) = t) means that a;(¢) =0, i.e., ¢ is not true.
()

<

) = f means that as(p) =1, i.e., @ is false.
@) # f (or v(p) = f) means that as(p) = 0, i.e., ¢ is not false.

ST

The logical values of Vy can be considered as ordered structured pairs
such that B = (t,f), T = (t,f), F = (t,f), and N = (£,f).

v(p) = B means that a;(¢) = as(p) =1, i.e., A(p) = 11.
v(p) =T means that a;(¢) = 1 and as(¢) =0, i.e., A(p) = 10.
v(p) = F means that a;(¢) =0 and az(p) =1, i.e., A(p) =01.

'For a discussion about the meaning of such structured values and a doxastic
interpretation of these, see e.g. [14].

2For sake of simplicity, the ordered pairs (x,y) will be rephrased as zy throughout
the rest of the paper.
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v(p) = N means that a;(¢) = as(p) =0, i.e., A(p) = 00.

The semantic relation of consequence between a set of formulas I'" and
a formula ¢ can also be rephrased in terms of structured logical values,
such that I' -, ¢ means that, for every formula ¢ € I';a; (¢, L) = 1 =
aj(p,L) = 1. The same does for the central notions of antilogic and
counterlogic.

Antilogic: I' -7 ¢ if and only if it is not the case that I' -, ¢.
a;(I',L) = a;(p, L) = 1 if and only if a;(v), L) = 1 and a;(¢, L) = 0.

Counterlogic: I' -5 ¢ if and only if T'p F —¢.
a([,L) = a;(¢, L) = 1 if and only if a; (¢, L) = ag(p, L) = 1.

Semantic consequence in a logical system can also be rephrased as a
mapping function Fy on values such that, for a primary logical system
L where truth is preserved from premisses I' to consequence ¢

Fy(L) =t t.

The corresponding antilogics and counterlogics can be redefined as fol-
lows, accordingly:

fy(i) =t t_;
Fv(L)=tr f.

Returning to the aforementioned paper [2], the authors gave a defini-
tion of the usual concepts of opposition whilst expressing these as set-
theoretical relations of intersection N between logical systems. Once
again, we translate each of these into our semantic terms as follows: for
every ¢, the intersection Fr, N Fr, is (not) empty if, and only if, ¢’s
being true L; (does not) entail ¢’s not being true in Lo; and the inter-
section t/r, N t/r,, is (not) empty if, and only, ¢’s not being true L;
(does not) entail ¢’s being true in L.

3The second clause characterizing oppositions could be reformulated as a relation
of union U between any logical systems L1, L2, by virtue of the set-theoretical relation
between intersection and union. Thus, /1, Nt/L,= & means the same as b, U Fp,#
a.
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Ly and Ly are contradictories if and only if -1, N Fr,= @ and ¥,
N J’ZLQZ .
ai(p,L1) =1=ai(p,L2) =0and ai(¢, L1) =0 = ai(p, L2) = 1.

Ly and Ly are contraries if and only if -7, NFp,= @ and ¥, NFr,# 9.
ai(p, [1) =1 = ai(p, L2) = 0 and ai(p, L1) = 0 % ai(p, L2) = 1.

Ly and Lg are subcontraries if and only if -7, NFr,# @ and ¥, NFr,=
.

al(cp,Ll) =1 7é> a1(<p, Lz) =1 and a1(<p, Ll) =0= al(go, Lz) =1.

The fourth and ultimate case of subalternation differs from the preceding
ones by being defined without the set-theoretical relation of intersection,
in informal terms of ‘sublogic’.

L1 is subaltern to Lo if and only if Lo is a sublogic of L.

The latter is assumed to be known by the readers, in that it means a
relation of consequence from the first system to the second one. That
is:

ai(p,L1) =1=ai(p,L2) =1and a;(p, L2) = 0= ai(p,L1) =0

An alternative definition of subalternation has been proposed in [15],
where oppositions are turned from relations into iterative functions.
Thus, v is said to be ‘subalternate’ to ¢ if, and only if, ¢ is the contra-
dictory of the contrary of y; and conversely, ¢ is ‘superalternate’ to ¢
if, and only if, ¢ is the contrary of the contradictory of .

It would be interesting to see how such a functional interpretation of
opposition may be implemented into the context of logical system [2].
Assuming that antilogicality and counterlogicality are special cases of
contradictoriness and contrariety, respectively, then there is a discrep-
ancy between the logical equations established in [15] and what the
author said in their own symbols [2]. Thus,

(1) The antilogic of the antilogic of a given logical system L is L; itself
in [2]
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which is confirmed in [15] by stating the contradictory of the contradic-
tory of a given term ¢ is ¢ itself

cd(cd(p)) = .

At the same time, (2) the counterlogic of the counterlogic of a given
logical system L; does equate with L itself in [2]

I=1

whereas the contrary of the contrary of a given term ¢ may differ from
@ in [15]

ct(ct(p)) # ¢

And (3) the counterlogic of the antilogic of a given logical system L;
does equate with the antilogic of its counterlogic in [2]

L=1

whereas we have already seen that the contradictory of a contrary differs
from the contrary of a contradictory in [14]. Indeed, the former iteration
amounts to a case of subalternation

cd(ct(p)) = sb()

whereas the latter yields the converse case of superalternation

ct(cd(p)) = sp(p).

How to account for such a discrepancy, and what does it entail about
the logical accuracy of [2] and [15]. In order to disentangle the situation,
we have not only to prove that antilogicality relates to contradictori-
ness and counterlogicality to contradictoriness. But also, the calculus of
opposition-forming operators set up in [15] leads to an important differ-
ence with respect to [2]. Indeed, such operators are not ‘functions’ in
the strict mathematical sense of a bijection: one input value may have
more than one contrary, subcontrary and subaltern (or superaltern), so
that the above singular expression ‘the contrary of’ is misleading. Actu-
ally, it is possible to compute the output value of such opposite-forming
operators only by means by a special semantics, namely: a ‘bitstring
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semantics’ in which terms do not receive a customary ’'truth-value’ but,
instead, a Boolean bitstring characterizing their truth-conditions in a
finite set of logical spaces. It turns out that this Boolean but not truth-
functional semantics departs from the approach of [2]. On the one hand,
it matches with [2] in that every logical system has one and only one
antilogic as a counterpart of contradictoriness ([2], 245):

“It is clear for each L there is exactly one L” which can be explained set-
theoretically once again:

FrNkFi=@;
FrUbFp=p(F) x F.

On the other hand, it is shown in [15] that what the authors call ‘coun-
terlogic’ is just a particular, truth-functional case of contrariness:

“It is clear that for each L, and for each negation operation, there is exactly
one L.”

The authors rightly assume that one and the same operator of negation
occurs in L; and Ls, so that there can be only one system Ly where ¢
is false whenever ¢ is true in Li. A way to account for this unique case
of contrariness occurs in algebraic terms of abstract operators [8,12,15].
In the second reference [12], for example, Piaget’s INRC Group depicts
the operation of reciprocity as mapping from an order set of conjunctive
normal forms of literals abdc upon its reverse cdba. This helps why there
cannot be but one of ’contrariness’ once constructed in this bijective way.
In [15], the same operation is applied to make sense of ‘contrary’ beliefs
operators as ordered set of truth-conditions whilst noticing that there is
one more than such one way to characterize contrariety.

And yet, one may imagine however more than one way of satisfying
the clauses of antilogicality and counterlogicality once bivalence is not
assumed. This requires to go beyond the Boolean approach, assumed
both in [2] and [15]. For there may be more than one way of being
true and false in Vj, for example, so that there may be more than one
antilogic and counterlogic to an initial logical system L;. Now going be-
yond bivalence is to go beyond the realm of ‘classical’ oppositions, which
seems to lead to a terra incognita in the literature of logic. For what
had been said thus far about ‘non-classical oppositions’? Be this as it
may, ‘classical’ oppositions may be characterized by two clauses such as
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completeness and consistency. Classicality is claimed and sustained in
[2,247] as follows:*

“It is not straightforward to present oppositional structures for any logic. We
will proceed by introducing some restrictions. First, we restrict ourselves to
logics which accept elimination of double negation in an obvious sense. Addi-
tionally, let L be a logic with negation. We say that L is well-behaved if and
only if for every pair (I', ), it is not the case that (I' -y, ¢ and T' 7, —¢)”.

Double negation relates to completeness: Fr ¢ if and only if F ==,
whist well-behavior has to do with consistency. Both properties and
their opposite may be formulated as follows:

Consistency

'Fp=TF-p
Inconsistency
'FpATFKF-p

Completeness
rkFe=TIkF-¢
Incompleteness
'FeATE-p

These metalogical properties characterize what is considered as the proper
features of logical oppositions ([2], 427):

“We call a square complete if it is a square with all four oppositions: contra-
diction, contrariety, sub-contrariety and subalternation. A square is standard
if it fits any family of concepts satisfying traditional oppositions. A square
is perfect if it is complete and standard. Moreover, any square which is not
complete or/and standard is called degenerate square.”

Why sticking to such features, however? Let us consider in the following
what non-standard squares should amount to, assuming that they might
relate many-valued systems which are not well-behaved and do not ac-
cept elimination of double negation. In V}, for example, logical systems
may be incomplete or inconsistent whenever A(p) = 00 or A(p) = 11,

4Note that classicality need not be a synonym of bivalence, given that there may
be classical theorems that do not correspond to a bivalent domain (and conversely).
See e.g. [15] about this point.
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respectively. Let us see what does follow from this non-bivalent situa-
tion: does it result in new kinds of oppositions? In order to answer this
question, let us consider by now another issue which has been addressed
by de Edelcio de Souza.

2  Quasi-truth

Indeed, one of de Souza’s main contributions to the reflection in philo-
sophical logic relates to the concept of quasi-truth [4], inherited from da
Costa’s seminal work. Roughly speaking, quasi-truth is to be viewed as
a set of partial structures such that the predicates are seen as triples
of pairwise disjoint sets {R™, R~, R“}: the set of tuples which satisfies,
does not satisfy and may satisfy or not a predicate in a given model.
Our attention will be focused on the third subset R", since it stands for
the ‘partial’ features of structures and leads to the notion of quasi-truth.
R" may be taken to be the set of undeterminate logical values, {11,00},
such that logical value of ¢ is neither determinately true nor deter-
minately false. Although quasi-truth is usually interpreted into a 3-
valued domain V31 = {11,10,01} or V53— = {10,01,00} —depending upon
whether the additional third value is designated or not, it makes sense
to consider as two proper cases of quasi-truth the situations in which
there is evidence both for and against a given formula or neither for
nor against, respectively. The concrete upshot is the same as the one
when there is evidence neither for nor against the formula, in the sense
that it leads to the same practical stance of indecision. Likewise, the
coming 4-valued framework accommodates with the 3-valued definition
of quasi-truth by treating gappy and glutty values (00 and 11) as two
pragmatic variants of the same partial structure: underdetermined and
overdetermined logical values amount to the same result of remaining
undecided about ¢, insofar as the logical value of formulas relate to what
agents should do in the light of such informational data.

We propose to reconstruct both logical values and relations of oppo-
sition between logical systems into a common framework ARyjo,) [13]. Tt
includes a number of logical systems distinguished by two sets of unary
operators of affirmation [O;] and negation [N;]. The language of ARy(o,]
can be described by means of the usual Backus-Naur form:

p = [Oilp | [Oil(ped) | [Oi]pe[Oi] | =[O | [Oi]ap
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The lower case variable i of [O;] means that there is a plurality of af-
firmative and negative operators in ARyp,]. Roughly speaking, both
categories of operators constitute a variety of ways to restrict the logical
values of formulas in V. Affirmative operators are not redundant by ex-
cluding logical values whilst always affirming their input value, whereas
negative operators always exclude the input value. Their general defini-
tions are the following, for any pairs of values {z;,z;} in Vj,:

Affirmative operators
[AZ]QO X T]

Negative operators
[Ni](p e

An essential feature of [A;] and [IV;] is that these are partial: they turn
some, but not necessarily all input values into output values of the entire
domain V,.?

Given any domain of valuation V,,, there is a set of i = 2" — 1
affirmative operators. In the present case of Vj, there are 2 — 1 = 15
affirmative and negative operators which obey double negation in a met-
alogical sense of the word: Z = .

it t

[AdJp:t = f [Ni]e )
[AQMOZI!—)E [Nﬂ@:.f'_}f
[A3}Lp:tf+—>f [Ng}(p:t:—)t

[Adp: [t [Najp: f=f
[Aslp:t— fRf—1 [Nslp:t—tQ f— f
[Aelp:trs fREr f [NoJp:t = TQT >t
[A7]p:ts fR frst [N7]p:t =T frs f
[Aglo: frs fRtrt [Nslp: f fREt
[Aolp: frf@fr f [NoJp:f>fRf—=f
[Am]gﬁ:f’—)f@f’—)t [Nm}(p:th@fo
[Anlp:t fRf sttt f [NuJp:t =t f fRtmt
[AR]p:t— fRf—T® frt [NipJp:t =t f— fofrf
[Aislp:t fRTIm fR frat [Nislp:t = IR =t fr f
[Aid]p: ftRT— fR frt [NuJp: f—= fRE=t fr f
[Aislp it fRf = IRT— fRf >t [Nislp:t = IR f = fRE—tf s f

5 Another way to characterize these operators is to take these as a combination of
redundant and non-redundant mappings: they turn some (but not all) of their input
values into some other output values.
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This language includes two main negations, the Boolean one —; and
the Morganian one —9, in addition with a set of binary connectives
e = {A,V,—}. Products ® are idempotent, commutative, transitive
and associative operators that merely add different mappings of the
same kind to each other. For example, [A7] proceeds in such a way
that every formula is unfalse whenever true and true whenever unfalse,
whereas [Ag] means that every formula is false whenever untrue and un-
true whenever false. The single values occurring in boldface in the below
matrix correspond to the outputs altered by the affirmative operators,
the other ones remaining unchanged.

o | [Ar]e | [Asle
11 10 01

10| 10 10
01| 01 01
00| 10 01

Both [A7] and [Ag] are bivalence-forming, or normalization operators:
they reintroduce bivalence by restricting the output values in different
ways, such that the resulting logical values are either 10 or 01. That is,
every true formula is thereby not false and conversely. The aforemen-
tioned case of Boolean negation correspond to a single negative operator,
that is:

10 =[Nislp: t = tRt—=tR f+— f@ fr f.

At the same time, the structuration of such unary operators is such that
it helps to see to what extent Morganian negation is not a ‘pure’ nega-
tion. Rather, it is case of ‘mixed’ operator conflating both affirmative
and operators into mappings of the form x; — T; = x; — ;. The corre-
sponding process is a fusion of the partial operators of affirmation and
negation, thus resulting in ‘affirmed negations’ [AN] or, equivalently.
‘negated affirmations’ [N AJ:

—9p = [NAislg = [ANislp it — f@E— fQf >t @ f 1.9

SFusion of partial operators differs both from their product ® and the following
operation of composition or iteration, o. It could be also shown that two other kinds
of redundancy-making operators are equivalent with each other in ARy(p,], namely:
[NN]p = [AA]p. The proof of such equivalences can be established as follows:
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It turns out that antilogics and counterlogics are may be constructed by
means of the unary operators of Boolean negation —; and Morganian
negation —g, following the definitions given in [13] and leading to the
following truth-tables:

Y| 1P| 2@
11| 00 11
10| 10 01
01| 01 10
00| 11 00

According to this, Boolean negation — turns logics L into antilogics L
whenever they turn true (or false) formulas into untrue (or unfalse) ones;
and Morganian negation = turn logics L into counterlogics L whenever
they turn true (or false) formulas into false (or true) ones. Antilogics
correspond to situations in which a set of formulas belonging to L do not
belong to another language L, and this may be obtained by more than
negative operator —not only [N15] = —1, but also every negative operator
including the clauses of [N1] and [No]: ¢t — t ® t — t. In the same vein,
counterlogics correspond to situations in which the negations of a set of
formulas belonging to L do belong to another language L, and this may
be obtained by more than mixed operator —not only [ANi5] = —9, but
also every negative operator including the clauses of [AN7] and [ANy]:
t—= f®f—t.

Furthermore, it can be shown by now how the equations established
in [2] may be validated or not according to the kind of partial operator
selected in ARyjp,). The expressions ‘antilogic of antilogic’ and 'coun-
terlogic of antilogic’ correspond to cases of iteration or composition o,
which are to be clearly distinguished from those of product ® and mixed
operators. Whilst the difference between product and composition can
be easily shown by induction upon truth-tables,” it also helps to see

Proof.
INAlp :z; = [A]Ti = 2 = T; = 25 — 5.
[AN]¢ : z; — [N]Z; = 2 = T; = 7 — 5.
Therefore [AN]p = [N A]p.
[AA]p : i [A]lT] = 3 = T7 = 34— 4.
[NN]@ LT [N]TZZ Ti > T = T — Ti.
Therefore [AA]p = [NN]ep.
"Let [A3] and [A4] be two such partial operations. Then the following truth-tables
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that the following equations hold only when the corresponding opera-
tors proceed by iteration of specific operators —Boolean negation as an
antilogic-forming operator and Morganian negation as a counterlogic-
forming operator, once again.

L

L, that is, [N15][N15]p = ¢

L

L, that is, [AN15][AN5)0 =

L= IN/, that is, [AN15HN15]QO = [N15HAN15]QD.

R

Again, it must be recalled that all of these equations fail whenever an-
tilogicality and counterlogicality are rephrased into ARyjp,) by partial
operators which satisfy lesser semantic constraints whilst behaving as
proper contradictory- and contrary-forming operators. This means that
antilogic does not go on par with contradictoriness and counterlogic does
not go on a par with contrariness —they are so only in a bivalent frame,
where the unique negative operator is both Boolean and Morganian.

Coming back to the central section of the present issue, quasi-truth,
it has been shown in [13] that the affirmative operators [A7]p and [Ag]
are plausible candidates for being four-valued counterparts of the modal-
ities of necessity and possibility in S5. Letting 7 be a translation func-
tion from S5 to ARyp,] and including a redundant-forming operator
[AA15] = [NN15] such that

[AA15]¢ = [NNyslp : t—tRt— f®fr—>f®fr—> f
It follows from this that

7(, 85) = [AA15]¢ = [N Ni5]e;

show both that their product differs from their composition and that, unlike product,
composition is not a symmetrical operation.

@ | [Aslp | [Adp | [As]e @ [Ade | [As]p o [Ad]p | [Ad]w o [As]p

11 11 11 11 11 11
10 10 10 10 10 10
01 01 01 01 01 01

00 01 10 11 10 01




258

T(DSO7 85) = [AS]SO;
(0, 55) = [A7]e.

We are going to use the two many-valued translations of necessity and
possibility in the following, in order to propose a many-valued counter-
part of quasi-truth in ARy(p,]. On the other hand, it has been claimed
in [5] that there is a connection between the concepts of quasi-truth and
contingency, V. According to the author ([6],176),

non-mathematical justifications are not able to lead to necessary but, rather,
only to contingent truths. If there does not exist any demonstration about the
truth of a proposition, then there is no certainty. Therefore, the proposition is
not entitled to be acknowledged as true necessarily.

In other words, quasi-true formulas are those for which there is no con-
clusive evidence and that remain possibly false without being so deter-
minately ([6], 180):

Logics of justification — on its two approaches — can be used in order to define
and think about the concept of quasi-truth. This was proposed by Newton
da Costa in (1986) because, as a matter of fact, whenever we stand outside
mathematics and logic we cannot talk exactly in terms of necessary truth, but
only in terms of contingent truth, that is, quasi-truth.

Our main idea is to render da Costa & Bueno & Souza’s insightful idea
of quasi-truth as partial structures in semantic terms of quasi-truth as
a partial operator, whereas some affirmative operators [A;] proceed as
normalization-forming operators by restoring normal structures through
partial ones. Assuming that quasi-truth proceeds as a contingency op-
erator, and given our preceding translations of S5-modal necessity and
possibility into ARy(p,], let us characterize quasi-truth Q7" as a con-
junction of possibility and unnecessity.

Quasi-truth (as contingency)
Vo & OpA-Dp
T(QT(p)) = [A7]p A —1[As]p.®

80nly Boolean negation —; has a wide scope in AR,0,], but note that the above
translation of negated possibility would result in the same truth-table had the cor-
responding operator of negation been the Morganian one -2 —due to the bivalent
behavior of QT'. Moreover, the logical constants of AR4[o,] have not been defined
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¢ | [A7]e | [Asle | ~1[As]e | QTp
11| 10 01 10 10
10| 10 10 01 01
01| ol 01 10 01
00| 10 01 10 10

The above matrix accounts for quasi-truth as being false with every
formula whose logical value is determinately true or determinately false
—i.e., A(QTp)) = 01 whenever A(yp) € {10,01}.

Such an operator may also be seen as a proper translation by satisfying
the main negative features of quasi-truth, namely:

(i) FEQTe—
(i)) QT,QT—p
(i11) QT = QT .

Our final consideration will consist in combining the previous two
issues of the paper, opposition and quasi-truth, in order to pave the
way to a third new topic: quasi-oppositions. This will answer to the
question about whether there could be further non-standard relations of
opposition in a non-bivalent frame like Vj.

3 Quasi-oppositions

Following [15], we assume that consequence and opposition can be treated
either as relations R(x,y) or as operators f(z) = y (without any specifi-
cation about the nature of the objects x and y). Consequence Cn(T, p)

thus far, given that these are useless for the present purpose. However, contingency
requires some words on conjunction since the latter makes part of its definition. So
let maz(x,y) and min(z,y) be the functions selecting the greater and lesser value
among = and y, respectively, given that 1 > 0. Then:
Ap AY) = (min(ai(p), a1(y)), maz(az(p), a2 (1))).

See [12,13,15] for more information about these 4-valued logical constants.

9The translations of the formulas (i)-(iv) into ARy(o,) and their corresponding
counter-models are the following, given the rules established in [14] and our previous
definition of QT
7(1)  FQTyp — [AAis]p (counter-model: A(p) = 00.)
7(i1) QTw,QT—2p = 1 (counter-model: A(p) = 11.)
7(iti) QTp = 1QT—-2¢ (counter=model: A(p) = 11.)
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has been studied since Tarski though several features like monotonicity,
closure or structurality; and it has also be viewed as a possible operator
mapping from given sets to close sets. Opposition Op(p,1)) is tradi-
tionally considered as a relation between truth-values, and it has also
been turned into an operator op(yp) = 1 in the above reference. Given
that logical oppositions are set of truth- and falsity-conditions between
‘opposed’ terms, truth-values constitute an essential feature in order to
make sense of them. In the present context of a 4-valued domain, our
main concern will be something like this: what sort of opposition is
there between one formula which is neither-true-nor-false and another
one which is both-true-and-false, for example?

One simple way to make an end to this discussion until its very opening
is by applying the rationale urged by Roman Suszko, thereby reject-
ing the logical relevance of many-valuedness and reducing it to only
two possible values: designated, or not designated. Thus, formulas are
said ‘designated’” whenever they include the value of truth; they are
‘not designated’, otherwise. There are at least two ways not to follow
this path, otherwise. Firstly, philosophical arguments —including those
about quasi-truth, gave some reason to develop a set of many-valued in-
ferences beyond Suszko’s strictly bivalent policy. Following this stance
introduced by Malinowski [11] and extended by Frankowski [7], there
may be more than one way to characterize semantic consequence (or ‘en-
tailment’) beyond the Tarskian classical pattern of truth-preservation.
Here is a remainder of the four ways of dealing with consequence in a
many-valued framework:

(Cny) & @ iff Vo[(Vp € T :v(yp) € D) = v(p) € DT
(Cny) U=y iff Vo[(VY €T o(y) € D7) = v(p) € D
(Cng) I'f=q ¢ iff Vo[(V € T : v(¢p) € D7) = v(p) € D]
(Cnyp) L'y, it Vo[V €T :v(y) € D7) = v(p) € D]

In addition to the Tarskian pattern (C'n;), the other three extensions
depict semantic consequence as either a relation of non-falsity presenta-
tion (Cny), or a derivation of truth from non-refuted premises (Cny),
or a derivation or mere plausibility from truth (Cnp).

Following the developments around 4-valued inference by Blasio &
Marcos & Wansing [4], three central issues will be approached in this
last section: (a) What does truth and falsity mean into such a 4-valued
frame? (b) How to systematize the kind of semantic consequence en-
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dorsed by Malinowski’s line? (c) How to express the logical difference
between the relations of consequence and opposition into one and the
same framework?

With respect to (a), our 4-valued framework is such that the two main
sets of logical values DT and D~ will receive a special interpretation. For
although these are generally taken to be exclusive from each other, the
domain of values Vj motivates another treatment. For let DT = {11,10}
be the subset of designated values that are cases of truth, and D~ =
{11,01} the subset of antidesignated values that are cases of falsehood.
Then the glutty value 11 is both designated and antidesignated whereas
the gappy value 00 is none, which entails that

DTND #o
DY UD™ # p(F)

This means that D~ is not the mere complementary of DT, due to the
overlapping relation of truth and falsity in Vj.

With respect to (b), one can make abstraction from the intuitive mean-
ing of truth-values and conceive an exhaustive set of relations between
designated and anti-designated sets. The reason why there are four
kinds of entailment can be explained in a combinatorial way, given that
it relies upon two clauses: belonging to the set of true formulas, and not
belonging to the set of false formulas. This results in a set of 22 = 4 pos-
sibles clauses for entailment, and we are going now to see how to extend
this set to further semantic clauses. Starting from an initial set of two
sets of formulas, i.e. designated and anti-designated, one can conceive
of further relations between formulas and whose clauses of satisfaction
do not consist in tracking truth whilst avoiding falsehood. Such is pre-
cisely the case with opposition, insofar as the latter essentially consists
in tracking falsehood for a given formula whenever its ‘opposed’ term is
true.

By thus introducing the additional two clauses of belonging to the set of
false formulas and not belonging to the set of true formulas, it results in a
set of 2% = 16 kinds of relations. Letting O be a general meta-operator
mapping between sets or their complementaries, two main interpreta-
tions of O will be naturally of interest in the following: consequence
Cn, and opposition Op. Here is an exhaustive list of possible relations
between subsets of values D! = {D+ D~} € Vj:

e from DT onto DT
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i) v(p) € DT = v(y) € DT
¢) ¢ DY = v(y) ¢ D*

¥) & DT

¢) € DT

) € DT = o
(
e from Dt onto D™
(v) v(p) € DT = v(y) € D™
(vi)  v(p) € DT = v(y) ¢ D™
(vii)  v(g) € D* = () ¢ D-
(viii) wv(p) & DY = v(yp) € D™

e from D~ onto DT
(iz)  v(p) e D™ =v() e DT
(0)  v(g) ¢ D~ = o() ¢ D*
(vi)  vlg) €D~ = () € D*
(wii) vlg) & D~ = vlw) € D*

e from D~ onto D™

(xiii) wv(p) € D™ =wv(y) € D™
(wiv) v(p) & D~ = v(¥) ¢ D"
(v)  v(p) € D= = u(y) ¢ D-
(vvi)  v(p) & D~ = v(w) € D

With respect to (c), let us recall that the framework assumed in [2] was
bivalent. This gave rise to a standard view of the square of opposition,
in which whatever is not true is false and conversely. That is, in terms
of structured values:

ai(p) =1=ax(¢) =0 and a;(¢) = 0= as(p) = 1.

Such a normal or complete square may be depicted as follows, thereby
fulfilling the clauses of consistency and completeness.
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ai(p) =0 az(p) =0
lsb Zd isb
ay(p) =1—""——a(p) =1

The situation is sensibly different into a ‘non-standard square’, that is,
a non-bivalent set of relations where the aforementioned clauses are not
followed:

au(p) = 1 4 as(p) = 0 or ay(ip) = 0 7 an(p) = 1

So what should such a non-standard square look like? Given that
the extension of logical values and their subsequent logical relations must
complicate the resulting picture, one may begin answering to the above
question by making a list of the possible relations of consequence and
opposition. It appears that each of the four aforementioned relations of
many-valued consequence corresponds to one case of the exhaustive list
of the 16 O-relations (i)-(xvi) . Thus,

Many-valued consequence

(Cny) pe DM =¢peDT (i)

(Cny) ¢ gD =g D™ (xvi)
(Cny) peEDT =g D™ (vii)
(Cnp) g D™ =1¢peDF (zii)

Bueno & Souza [5] depicted quasi-truth in terms of partial structures
whose final conclusion is open, which means that the formula into consid-
eration may be true without being definitely so through the justification
process [4]. For this reason, the above three non-Tarskian characteriza-
tions of consequence Cny, Cng, Cn, may be taken to be various sorts of
quasi-consequence. Likewise, the introduction of untrue and unfalse sets
with DT and D~ also seems to be in position make sense of the coming
quasi-oppositions.

Roughly speaking, each case of ‘quasi’-X is a situation in which the as-
sessed object (proposition, concept, logical system, or whatever) is not
X whilst being possibly so. Let us take the case of contrariness. Accord-
ing to the standard definition, any two objects are contrary to each other
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if, and only if, they cannot be true together in such a way that the sec-
ond is false whenever the first is true. In a case of of quasi-contrariness,
however, the second term is merely not true (or untrue) whenever the
first is true. Assuming that being almost or being still in position to be
(true or false) affords an intuitive meaning of the ‘quasi’-phrase, here
is the list of quasi-oppositions Opy, Op,, Op, that correspond to the re-
maining cases of non-consequence relations (or operators) O.

Many-valued opposition

Contrariness

(Cty) peDT =¢YeD™ (v)
(Cty)  p¢ D =vpgD* ()
(Cty) peDT =1 g DF (iid)
(Ctp) & D =¢peD” (zvi)
Contradictoriness

(Cdy) peDT=¢YeD andpe D™ =1 e D" (v) ® (ix)
(Cdf)  ¢¢D = ¢ gD andp g Dt = ¢ D (z) ® (vi)
(Cdy) peDt =y g DMandp & D" =y € DT (119)®(iv)
(Cd,) oD =¢YeD andpe D =y ¢& D™ (zvi) ® (zv)
Subcontrariness

(Scty) peD” =¢yeDt (ix)
(Sety)  p@ Dt =g D (vi)
(Sctq) o& DT =1e DT (iv)
(Sctp) peD =y &D™ (zv)
Subalternation

(Sby) pe DT =¢pe D" (i)
(Sby) ¢ gD =g D™ (xvi)
(Sbq) peDT =1 ¢ D (vi)
(Sbp) pg D™=y eDF (zid)

It clearly appears that subalternation and consequence are one and the
same logical relation (or operator), at least when these resort to the same
non-standard kind Cn, and Sb,. This amounts to say that every such
O-mapping is a single case of opposition, reminding that subalternation
can be parsed as the iteration of two simple opposite-forming operators
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[14].

Two future investigations might be pursued with respect to this new
concept of quasi-opposition, provided that the latter turn out to be a
relevant issue. One first work would have to do with the philosophical
applications to it into informal contexts use, just as g-entailment and p-
entailment had been interpreted by their authors in terms of plausibility
and degrees of truth [7,11]. Another work would be about a calculus
of quasi-operators, thus extending the work devoted to consequence-
forming operators [15].

Thanks already to Edelcio for opening the way towards these potential
tools of logic.
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