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This article reports on an exploratory study of the way that eight mathematics and
secondary education mathematics majors read and reflected on four student-gener-
ated arguments purported to be proofs of a single theorem. The results suggest that
such undergraduates tend to focus on surface features of arguments and that their
ability to determine whether arguments are proofsisvery limited—perhaps more so
than either they or their instructors recognize. The article begins by discussing argu-
ments (purported proofs) regarded as texts and validations of those arguments, that
is, reflections of individuals checking whether such arguments really are proofs of
theorems. It rel ates the mathematics research community’ sviews of proofsand their
validationsto ideas from reading comprehension and literary theory. Then, adetailed
analysisof thefour student-generated argumentsisgiven and the eight students’ vali-
dations of them are analyzed.
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Proofs, that is, arguments' that prove theorems, have been viewed from awide
variety of perspectives. Previous studies have considered the structure of proofs
(Leron, 1983), their explanatory power (Hanna, 1989), errors and misconceptions
in college students’ proofs (Selden & Selden, 1987), thelogic involved (Dubinsky
& Yiparaki, 2000; Selden & Selden, 1995), university students’ “proof schemes”
(Harel & Sowder, 1998), and generic proofs (Rowland, 2002). In addition, one
might describe the genre of proofsor discusstheir rhetoric. Considerably more could
also be donein examining the process of proof construction.

1weareusing argument theway it iscommonly used in the English-speaking mathematical commu-
nity (Bagchi & Wells, 1998), where proof is often reserved for acorrect argument consisting of arather
special kind of deductive reasoning that warrants the truth of atheorem (démonstration, in French). In
that context, and in this article, argument refers to the same kind of deductive reasoning, except that it
might not be correct. Weare not referring to the more general kinds of arguments used outside of math-
ematicsor to argumentation, for example, to discourse intended to persuade that might include alluding
to experiences of theintended audience (see Perelman & Olbrechts-Tyteca, 1969 or Toulmin, 1958).
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Herewefocus on proofs astextsthat establish the truth of theorems and on read-
ingsof, and reflections on, proofsto determinetheir correctness. Wecdll such read-
ings and the mental processes associated with them validations of proofs (Selden
& Selden, 1995). A validation is often much longer and more complex than the
written proof and may be difficult to observe because not all of it is conscious.
Moreover, even its conscious part may be conducted silently using inner speech
and vision. Validation can include asking and answering questions, assenting to
claims, constructing subproofs, remembering or finding and interpreting other theo-
rems and definitions, complying with instructions (e.g., to consider or name some-
thing), and conscious (but probably nonverbal) feelings of rightness or wrongness.
Proof validation can also include the production of a new text—a validator-
constructed modification of the written argument— that might include additional
calculations, expansions of definitions, or constructions of subproofs. Toward the
end of avalidation, in an effort to capture the essence of the argument in asingle
train of thought, contractions of the argument might be undertaken. An annotated
transcript of a sample (hypothetical) validation of a calculus proof can be found
in Appendix | of Selden and Selden (1995, pp. 143-147).

In the sections that follow, we discuss a theoretical perspective on arguments,
proofs, and validations and compare it with various 20th-century theories of texts
and reading. We then give adetailed textual analysis of a single theorem and four
brief student-generated arguments purporting to prove it. This analysis provides
grounding for the previous theoretical discussion, as well as background for the
subsequent description and analysis of eight undergraduate students' validations
of the samefour arguments. In the concluding sections, we offer someimplications
for teaching and pose some questions for future research.

VALIDATION AND OTHER KINDS OF READING

Our view of the nature of validationisreminiscent of late 20th-century ideas about
reading found in works on reading comprehension and literary theory and criticism
(asdescribed in Bogdan & Straw, 1990 and Pearson, 2000). In these, the onusfor
the construction of meaning ison the reader rather than on the author or the written
text. Each reader is seen as constructing his or her own story from personal back-
ground together with the written text. Different readers, or the same reader at
different times, are seen as benefiting differently from a single written text.
Validators of proofs, too, may benefit in differing ways according to their back-
grounds. For example, some may develop an understanding of atheorem that goes
well beyond just knowing it is true, and Hanna (1989) has pointed out that some
proofs may be better for this than others. Also validation can sometimesinvolve
emotionally intense reflection resulting in knowledge construction, for example,
by forging new links between one’ sideas.

At the beginning of the 20th century, theorists in reading comprehension and
literary criticism regarded writing as mainly a matter of communication—the
author was considered the ultimate arbiter of the meaning of awritten text. To under-
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stand atext, one studied the life and times of the author. By midcentury, the locus
of meaning had shifted to thetext itself,>and by the end of the century, the construc-
tion of meaning was viewed as residing with the reader. Theideathat the meaning
isin the text has been articulated by Olson (1977); it has been referred to as the
“doctrine of autonomoustexts’ and was critiqued by Nystrand, Doyle, and Himley
(1986), who included an exampl e that may shed somelight on the unique character
of proofs. They pointed out that legal contracts are documents explicitly meant to
be autonomous and independent of context, but nevertheless such documents
cause disputesthat courts are asked to settle by calling in expertsto clarify the orig-
inal terminology and context. This example supports the idea that independence
of context isinherently unachievable. In contrast, such situations do not occur with
proofs; one does not call in experts to find out what an author meant by, say,
“compact” to establish the truth of atheorem.

Like midcentury structural critics, mathematicians’ seem to treat a proof as
being independent from its author. If something, perhaps the author’ s reputation,
should suggest that a proof is probably correct, mathematicians may attempt to
suspend their credulity similar to the way an audience in a classical theater was
supposed to suspend its disbelief arising from unrealistic costumes and surround-
ings. That is, a mathematician may believe a theorem asserted by a well-known
author to betrue, but may read the argumentsin its proof asif the statement of the
theorem were in question. This predilection for separating authors from proofs
appearsto bereflected in theway proofsarewritten, for example, in the avoidance
of autobiographical comment in published mathematical research. Indeed agenera
tendency to impersonalize mathematical texts, especially research papers, has
been noted in analyses of their “natural language” aspects (Burton & Morgan, 2000).

By the early 1990s, reading and writing were beginning to be seen as different
aspects of one unified process. Similarly, validation and proof construction might
be seen as differing aspects of a single process. As such, they are probably best
learned in adiaectical way. On the one hand, one constructs a proof with an eye
toward ultimately validating it and may often validate parts of it during the
construction process. In fact, the final portion of a proof construction is likely to
be a validation of that proof. On the other hand, proofs are written for idealized
readers, yet there is considerable variation in what actual mathematicians know.
Thus, the validation of a proof is likely to require the construction of subproofs.
That is, each process, validation and proof construction, entails the other.

Validation and proof construction also differ in important respects. Proof
construction is much more like mathematical problem solving, in the sense of

2 The idea that meaning can reside in the text was not new to the 20th century. It appears to go back
at least to thetime of Plato and became amajor tenet for Martin L uther, who asserted that the meaning
of Scripture was to be found in adeeper reading of the text (Olson, 1977, p. 263).

3 |nthe context of thisarticle, when mentioning mathematicians or the mathematics community, we
are referring especially to those engaged in research in pure mathematics, that is, in finding and
proving theorems.
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Schoenfeld (1985), than isvalidation. Generally constructing a proof requiresthat
more diverse ideas come to mind at the “right time” than validating it does. Also,
like most reading, validation normally emphasizes proceeding linearly from the
beginning to the end of awritten proof—perhaps repeated several times. Thislinear
order isunlikely to occur in proof construction. Given atheorem to prove, one must
often attend not only to the beginning but also to the end of a proof before devel-
oping the middle. In addition, many proofs have a hierarchical structure based on
subproofs and subconstructionsthat emerges during the process of proof construc-
tion. Even assuming an idealized prover (one making no mistakes or false starts,
which is an inherently unrealistic assumption), such an emergent hierarchical
structure may |ead to generating subargumentsin an order very different from that
of thefinal written text. Indeed, for the working mathematician, atheorem and its
proof sometimesemergein adialectical way over along period of time, with adjust-
ments in one alternating with adjustments in the other.

One distinction between current ideas of reading and that of validation is that
written proofs are still seen as carrying considerable meaning. The proofs them-
selves (as opposed to their readers or authors) are regarded by mathematicians as
the ultimate establishers of the truth of theorems.* One examines neither the life
and times of aproof’ sauthor nor the sophistication of itsreadersin judging thetruth
of atheorem. Perhaps this is partly because any expanded or altered argument
constructed by avalidator isoften seen asclosely aligned with the original written
proof, so that the original proof isdeemed correct (in some general sense) provided
the expanded, validator-generated text is seen by the validator as correct.

Another distinction between validation and reading in general appearsto bethe
unusual degree of agreement about the correctness of arguments and the truth of
theorems arising from the validation process. It isour experience that if two math-
ematicians disagree on the correctness of a proof, they will often attempt ajoint
validation of it (or afragment of it). Typically, they will either expand the proof
and agree on the expanded version or, failing that, they will find and agree on a
mistake that cannot be fixed. Occasionally, they may find and correct small errors
that they agree areinsignificant and do not affect the overall correctness of the argu-
ment. Thisability to reach agreement appearsto depend to some extent on the way
that mathematical definitions have come to be treated as more or less unchal-
lengeable in the 20th century.

Today, definitionsin mathematics are typically treated as analytic, asreducible
to undefined terms except for foundational considerations, such asthe meaning of
set, element, or integer. Such considerations are not major issues for most mathe-
maticians perhaps partly because “normal” foundations yield a mathematics that
can beinterpreted as paralleling an intuitive view of theworld developed socially

4 Thisview is supported by the ability of computers to check the correctness of many (more
formally stated) proofs. For example, alarge number of proofs have been machine verified after
conversion to the Mizar language and are published online in the Journal of Formalized
Mathematics (see mizar.org/JFM/).
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from an early age. With both “normal” foundations and an intuitive view one can
consider several objectstogether, count them, add, measure things, and so on. In
contrast with analytic definitions, synthetic definitions’ arethe everyday definitions
that are commonly found in dictionaries—they are often ill-specified descriptions
of thingsthat already exist. It may be unclear when such everyday definitions (e.g.,
of democracy) are“complete” or whether attention to all aspects of them is essen-
tial for their proper use. Analytic definitions, however, bring concepts into exis-
tence—the concept (e.g., of group as used in mathematics) is whatever the defin-
ition says it is, nothing more and nothing less. One cannot safely ignore any
aspects of such definitions. Thereis a sense in which synthetic definitions can be
“wrong,” that is, they can be inaccurate descriptions, but analytic definitions
cannot, since nothing is being described.”

For example, our synthetic definition of validation could be wrong; we might
have inaccurately described what we claimed is a recurring phenomenon. In
contrast, few mathematicians would say the analytic definition of “group” was
wrong—uninteresting, tasteless, lacking applications, or inaccurately remembered
perhaps, but not wrong. Today’ s use of analytic definitions rendersvalidations (and
proofsand theorems) very reliable, whereasthe earlier use of synthetic definitions
sometimes left them problematic. This situation can be seen in Proofs and
Refutations (Lakatos, 1976) where validations appear inherently unreliable, that
is, unreliable even if there are no errors. There, theorems have proofs and refuta-
tions (counterexampl es) apparently dueto treating definitions as synthetic and hence
challengeable. Given some literary license, Proofs and Refutations provides a
fairly accurate description of the way that some mathematics developed historically.
Itillustrates how definitionsand results can coevolve, but the compression of time
involved in itsfictional narration, together with its synthetic treatment of defini-
tions, may suggest that validations, proofs, and theorems are far less reliable than
they really are today.

Roles Played by Validation

Although we arefocusing here on the validation abilities and practices of under-
graduates who are in at least their 2nd year of mathematics study, validation

5 However, nothing in principle restricts mathematicians to particular foundations. For example, in
intuitionist/constructivist mathematics, one forgoes mathematical induction and the logical law of the
excluded middle, resulting in a more limited mathematics without proofs by induction or contradic-
tion.

6 Qur distinction between analytic and synthetic follows that made by Sierpinska, Defence,
Khatcherian, and Saldanha (1997) in discussing linear algebra. Similar distinctions have been made
by Edwards (1997) using lexical and logical and by Freudenthal (1973) using constructive and descrip-
tive. In considering defining as a mathematical activity in geometry, Rasmussen and Zandieh (2000)
and de Villiers (1998) adopted Freudenthal’ s terminology.

7 Analytic definitions can, however, beinspired by regularitiesin the physical world, in which case
amathematical structure may be metaphorically represented in aphysical situation. VVectorsare useful
in navigation because the motion of asailboat (in part) “works like” vector addition.
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appearsto havearoleto play throughout mathematics students’ education, in math-
ematicians’ practice, and in examinations of the nature of mathematics.

Validation in mathematics education. Holders of bachelor’ s degrees in mathe-
matics are normally expected not only to know considerable mathematics content
but &l so to be ableto construct moderately complex proofsand to solve moderately
nonroutine problems. Indeed, one major way that an individual’s mathematical
knowledge of atheorem is sometimes taken to be warranted is by the ability to
“produce” aproof, not in aroteway but in theway amathematician would produce
it and with understanding (Rodd, 2000). However, constructing or producing
proofsisinextricably linked to the ability to validate themreliably, and a proof that
could not bereliably validated would not provide much of awarrant. Solving moder-
ately nonroutine problems also appears to call for ahilities akin to validation,
because one must ascertain whether a proposed solution is correct. In our ongoing
investigation of mathematicians' views, we arefinding that many mathematicians
believe that checking the correctness of solutions ultimately depends on the same
kind of deductive reasoning that is used in proofs and their validations.

Preservice secondary mathematics education majors and mathematics teachers
also need to be ableto validate proofsreliably because school mathematicscurricula
are likely to place increasing emphasis on proofs and problem solving (NCTM,
2000). In this regard, Cuoco has observed informally but on the basis of consid-
erable experiencethat “ The best high school teachers arethose who have aresearch-
like experiencein mathematics’ (2001, p. 171). Andin an articlein the Mathematics
Teacher, Thompson (1996) suggeststeaching indirect proof to high school students
using number-theoretic statementsthat are similar to, although perhaps somewhat
less complex than, the theorem used with undergraduatesin our exploratory study.

Validation in the practice of mathematicians. In addition to being important for
mathematics majors and mathematicsteachers, validation appearsto play afunda
mental rolein the production of new mathematics. A mathematician’ sbelief inthe
reliability and unproblematic nature of validation provides the assurance needed
touseatheoremin later work without repeatedly checking its correctness. That is,
when atheorem is proved “it stays proved.” Thisreliability seemsto have been a
major contributor to the rapid growth that has characterized 20th-century mathe-
matics. Furthermore, many mathematicians seem to rely mainly on validation,
sometimes carried out individually and sometimesin seminars, to learn new math-
ematics from the published research of others.

Validation within social constructivist (and other) perspectives. Our comments
about the truth of theorems might suggest that we are taking a Platonist perspec-
tive, with itstimel ess abstract objects and absol ute truth independent from human
considerations. However, in this article, we are not favoring any single perspec-
tive on mathematics. Validationisalargely mental processwith social originsand
socia consequences that bears examining relative to any of several views on the
nature of mathematics. Furthermore, for many mathematicians, the truth of a
theorem appears to be functionally just the existence of an argument that they
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personally (or their presumed surrogates) have validated and deemed to be a proof
of that theorem. In particular, afurther investigation of validation might be helpful
in viewing mathematics from a social constructivist perspective—where mathe-
matics is seen as an entirely socid, fallible® phenomenon with the idea of truth
replaced by socia agreement and where abstract Platonic objects have no role
(Ernest, 1998). An accurate description of how new mathematicsis creatediscrucia
from this perspective because, in a sense, how it is done is mathematics. We
suspect that, if analyzed together, proofs and validations thereof might in the
future play a larger role within a social constructivist perspective. In such an
analysis, foundations and the kind of logic used could be treated as hidden, that is,
tacitly assumed, premises of theorems. By examining the extent of agreement and
the way it arises from the validation process, one might find away to see mathe-
matics aslocally® infallible and thereby reconcile this philosophical view with the
more-or-less Platonic working views of most research mathematicians. Indeed,
those working views may have emerged mainly from experience with thereliability
of validation, rather than from any prior philosophical commitment.

Regardless of one's perspective on the nature of mathematics or its knowing,
investigations of validation as a form of reading (and of the arguments being
read), with emphasis on what validators do, could inform mathematics education.
Our exploratory study isastart inthisdirection. We begin with an analysis of some
specific arguments.

A TEXTUAL ANALY SIS OF A THEOREM AND FOUR “PROOFS’

In this section, we analyze atheorem and four undergraduate student-generated
arguments purported to proveit. Thisanalysiswill provide concrete grounding for
the above theoretical discussion of argument, proof, and validation, aswell asfor
the subsequent description of our exploratory study of other undergraduate students
validations of these same four arguments. It may al so expose aspects of thesetexts
that might otherwise be missed. For example, we point out that certain portions of
the first argument are extraneous and as such have no effect on its correctness as
aproof. Nevertheless, errorsin these extraneous portions were noted and thought
to be important by some of our student validators.

The theorem and the four arguments are treated here primarily astexts, that is,
asindependent of specific authors and validators. We will, however, comment in
general on how aspects of these texts may have cometo be written or might affect
readers, occasionally illustrating this point with comments from our student valida-
tors. The theorem is true and one of the argumentsis a proof of it, whereas three

8 Here, following Ernest (1998), we mean by fallible something more than just the (generally
accepted) human tendency to make mistakes.

9 By locally we mean the mathematics varies according to the foundations and logic used. For
example, a mathematical constructivist would not accept the law of the excluded middle and, conse-
guently, obtain different theorems than a mathematician who did accept the law of the excluded
middle. We are not referring to geographic or socia variations.
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arenot; that is, as proofsthey areincorrect. These characterizations—true, correct,
proof—arewidely regarded by mathematicians asglobal features of textsaonethat
can be determined without knowing who the authors or readers are. Mathematicians
say that an argument proves atheorem, not that it provesit for Smith and possibly
not for Jones, who are readers of the argument. Thisview is held despite the fact
that the texts are the products of human activities, that their physical representa-
tions could not exist without authors, and that validators are required for anyone
to know the theorem istrue. Perhaps such assignments of proof, truth, and correct-
ness (or their opposites) to texts is due to mathematicians' remarkably uniform
agreement on whether these properties are associated with particular texts—at |east
at the level of the mathematics discussed here and modulo modest concerns about
style or completeness.

Texts (and, more generally, language and communication) have been analyzed
from several perspectives: syntactic structure (e.g., Chomsky, 1957), semantic struc-
ture (e.g., Fillmore, 1968; Kintsch, 1974), and language in use (Halliday, 1977,
Vachek, 1966). Relevant ideas emphasizing language in use that are especially
applicableto mathematical texts have been summarized and illustrated by Morgan
(1996). Theseideasinclude such features asthe waysreasoning isexpressed (e.g.,
because, so0), the symmetry or asymmetry of the relationship between authors and
readers, and what texts might suggest about the nature of mathematics. Most of these
features, for example the use of “we” in mathematical texts (Pimm, 1984), have
no bearing on whether an argument proves atheorem; and in our experience, under-
graduate students realize this and concentrate on the underlying mathematical
concepts and inferences.

Thus, we provide a different kind of textual analysis, one that isakind of line-
by-line gloss, or elaboration, of the theorem and the four student-generated argu-
ments emphasizing mathematical and logical points that a validator might, or
might not, notice. For example, in considering the statement of the theorem, we
discuss both its logical structure and other, more informal, ways that it could be
written. For the four student-generated arguments, we discuss such matters asthe
use of aternativeterms(e.g., assume for suppose, dividesinstead of multiple), the
role of individual sentencesin furthering the argument, proper and improper uses
of symbols, implicit assumptions (e.g., that a division of the argument into cases
is exhaustive), the correctness of inferences, computational errors, extraneous
statements, and structural aspects of the argument. Global properties, such as
whether an argument proves the theorem, as opposed to some other theorem, are
also discussed.

In the following analyses, the names of the four arguments (e.g., “ Proof (a)” :
Errors Galore) and the numbering of their parts are for the convenience of the
reader; the names and numbering were not shown to the eight student validators
in our study. The theorem to be proved was this:

THEOREM: For any positive integer n, if n? isa multiple of 3, then nisa multiple
of 3.
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Both the student authors of the four arguments and the student validatorsin our
empirical study were given this statement of the theorem. It isaformal statement
in that the variable n, the set to which it refers (the positive integers), and the
universal quantification, any, areexplicitly stated, and the conditional isexpressed
inits most common form, if . . ., then. However, other, lessformal statements of
thistheorem convey the samelogical information; their equivalence can be estab-
lished using logic and little or no additional mathematical content. Often, theorems
that undergraduate students at this level consider are stated in aless formal way.
For example, one informal statement of this theorem is A positive integer is a
multiple of 3 whenever itssquareis.

Undergraduate students similar to the onesin our empirical study appear to have
considerabledifficulty interpreting informal statements of theoremsand converting
them to formal ones (Selden & Selden, 1995). In our experience, formal statements
appear to bethe onesmost easily interpreted in validations; they correspond to what
we have called proof frameworks. These consist of the beginning and end of a
proof—the part that can bewritten without knowing the meaningsof all of the math-
ematical terms and from which the theorem can be reconstructed. It is an under-
standing (usually tacit) of the rel ationship between statements of theoremsand their
proof frameworksthat allowsvalidatorsto decideif an argument provesthetheorem
at hand as opposed to some other theorem. A proof framework® for thistheoremis
this: PROOF. Let n be a positive integer and suppose n?isamultipleof 3. ... Then
nisamultiple of 3. Often the introduction of avariable, for example, “Let nbea
positiveinteger,” isomitted but understood. This omission usually occurswhenthe
variable appearsin the statement of the theorem, asit does here. Our earlier work
(Selden & Selden, 1995) suggests that, among the various possible waysto state a
theorem, student validators should find the more formal statement used here the
easiest to correctly connect with arguments purporting to proveit.

In what follows, we state each student-generated argument verbatim and then
give our line-by-line analysis of it.

“Proof (a)" : Errors Galore

PROOF. Assume that n? is an odd positive integer that is divisible by 3. That is
n2=(3n+1)2=9n%+ 6n+1=23n(n+ 2) + 1. Therefore, n2isdivisibleby 3. Assume
that n? is even and amultiple of 3. That is, n? = (3n)2 = 9n? = 3n(3n). Therefore,
nZisamultiple of 3. If we factor n? = 9n?, we get 3n(3n); which meansthat nisa
multiple of 3. m

Analysis of “ Proof (a)”

[1] Assume that n? is an odd positive integer that is divisible by 3. This part of
the argument is not wrong. In this context one can take assume to mean suppose,

10 proof frameworks are often more complex than this. For examples from calculus and semigroup
theory, see Selden and Selden (1995, pp. 129-130).
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and an author of a proof can suppose any reasonable non-selfcontradictory state-
ment which might aid the progress of the argument. But, as some of our student
validators noted, this division into odd and even cases is a peculiar way to struc-
ture aproof of this particular theorem. It is peculiar because odd and even appear
to be unrelated to multiples of 3.

That the phrase “n? is divisible by 3” is an equivalent way of saying “n? isa
multiple of 3" is something avalidator would need to assent to (by noting that the
definitions of divisibility and multiple are mathematically equivalent). One student
validator, whom we refer to in this article as SW, briefly noted (and assented to)
the fact that “divisible by 3” was used here; subsequently, in the even case,
“multiple of 3" was used.

[2] Thatisn? = (3n+ 1)2=9n? + 6n + 1 = 3n(n + 2) + 1. There are four errors
here. First, the assumption of oddnesswas about n2, not n, towhich it isapparently
being applied (i.e,, n = 3n + 1). Second, n is being used in two places with two
different meaningswithin one equation; in effect, the author is mistakenly asserting
that n=3n + 1. Inthe genre of mathematical proofs, it isnot permissibleto let the
same symbol represent two different numbers except acrossindependent subproofs.
Doing so would be very likely to cause validators confusion. Indeed, student ST
remarked that “all those n’ strying to equal each other” misled her. Third, an odd
integer n can be represented asn =2m+ 1, not as3m + 1, where mis a different
integer from n. Fourth, the last equation isincorrect; 3n timesnyields 3n2, not 9n2.

Wewould like to comment further on the author’ s apparent idea that 3n + 1 can
represent a general odd number. We doubt that this idea indicates a more-or-less
fixed misconception inthe author’ sknowledge base, but rather suspect itisanincor-
rect, partial recollection of theideathat 2n + 1 isodd for integer values of n. There
appears to be a more subtle lack in the author’s knowledge, and we will offer a
conjecture of its nature and how it occurs. Students of mathematics probably recog-
nize (mostly tacitly) many kinds of problems and tasks, and each kind may be asso-
ciated with many other ideas, forming amental structure like aconceptimage (Tall
& Vinner, 1981) for that problem or task—what we have called a problem-situa-
tion image. When akind of problem or task is recognized, an associated problem-
Situation image may be activated (brought to mind) or partly activated (Baddeley,
1995). In particular, accomplished students might associate thetask of representing
ageneral odd number with afeeling of caution about getting the representation right.
Asthey executethetask, thisfeeling of caution may engender checking. Inthe case
at hand, that might mean substituting some numbers for n: substituting 1 for n (in
3n+ 1) yidds4 andindicatesthat 3n + 1 need not be odd. We suspect that the author’s
problem-situation image(s) for this task did not include an appropriate feeling of
caution. A mechanism for bringing something to mind similar to the one sketched
here, concerning how to start solving arecognized kind of problem, has been more
fully described in Selden, Selden, Hauk, & Mason (2000).

[3] Therefore, n?isdivisible by 3. It was assumed in [1] that n? isdivisible by 3.
Thus, this statement cannot be wrong despitetheintervening errorsin[2]; however,
it cannot be of use either. Furthermore, this statement completes one of two inde-
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pendent subproofs, onefor n? odd and one for n? even, and should have ended with
nasamultiple of 3, not n2.

The errorsin [2] might be called extraneous errors. Because they do not affect
the correctness of [3], they cannot affect whether or not the argument is a proof.
Such errors are nevertheless undesirable because they can make arguments
confusing and more difficult to validate. In our empirical study, most student
validators spent considerable time trying to decipher [2], making comments like
“3n + 1 doesn’'t make sense [for odd],” but did not seem to noticeitsirrelevance.

[4] Assumethat n?iseven and a multiple of 3. This assumption isan appropriate
beginning of the second independent subproof (case). However, as already noted
under [1], thisdivision into cases, although not wrong, is unlikely to be useful.

[5] That isn? = (3n)2 = 9n2 = 3n(3n). In the first equation n? = (3n)2, it appears
that the assumption that n? isamultiple of 3isincorrectly applied to n instead of
n2. Also, intheimplicit equation n = 3n, once again the right-hand n does not have
the same meaning astheleft-hand n. Toindicatethat nisamultipleof 3, onerepre-
sentsn as 3m, where misanother positiveinteger. The second and third equations
are correct.

[6] Therefore, n?isamultipleof 3. Thisconclusionisnot incorrect; it doesfollow
from [5] (if onereplaces al but the first “n” with“m’'s” ). But it also just repeats
the assumption in [4], which is not likely to be useful.

[7] If wefactor n? = 9n2, we get 3n(3n). Here the author appears to be attempting
to restate information from [5], which could not introduce any new errors. Since
theword “factor” refersto expressions, not equations, wetakeit that [7] isashort-
ened form of “Now n? = 9n?, and if we factor 9n?, we get 3n(3n).”

[8] which meansthat nisamultiple of 3. m Thisinferencefrom[7] isnot correct
even if wechange 3n(3n) to 3m(3m). To concludethat nisamultiple of 3, onewould
expect to see 3asafactor of n, not asafactor of n2. Thesymbol “m” isoneof those
customarily used to indicate the end of a proof.

In summary, this argument is not a proof. It consists of two independent sub-
arguments each of which should end with “nisamultiple of 3" or its equivalent,
“nisdivisibleby 3.” However, the odd case did not end thisway, and the even case
made this claim but did not properly justify it. It isleft implicit that the two cases
are exhaustive, that is, that every integer is either even or odd, but it is customary
to leave such awell-known fact implicit.

We would like to mention two kinds of global errors that this argument does
not contain. First, although the argument has a high density of errors, they are
not what one might call mathematically syntactical errors (Selden & Selden,
1987). The mathematical terms and symbolsfit together in ameaningful way (i.e.,
one can judge whether each individual statement iscorrect or incorrect). Second,
the two subarguments really are independent. Occasionally, one finds argu-
ments in which an inference in one subargument improperly depends on infor-
mation from inside another supposedly independent subargument, and that error
did not occur here.
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Last, we have taken this argument at face value; that is, we have assumed that
the author meant to write aproof and had some more-or-less clear (although incor-
rect) conception of how the argument would proceed. However, because the
student author submitted this“ proof” as part of atake-hometest, it ispossiblethat
he or she was merely seeking some (partial) credit and was thus working in what
Vinner (1997) has called a pseudoconceptual mode,™ mimicking some previously
encountered argument about multiples of 2. One possible similar argument might
have been the following proof of the statement: For any integer n, n2isamultiple
of 2if and only if nisamultiple of 2.

PROOF. If nisodd, then n? = (2k + 1)2 = 4k? + 4k+1 = 2(2k? + 2k) + 1, which
is odd. Therefore, if n2isamultiple of 2, then nisamultiple of 2. Now, if nis
amultiple of 2, that is, if nis even, then n? = (2k)2 = 4k?2 = 2(2k?), which isa
multiple of 2. m

“Proof (b)” : The Real Thing

PROOF. Suppose to the contrary that nisnot amultiple of 3. We will let 3k bea
positive integer that is amultiple of 3, so that 3k + 1 and 3k + 2 are integers that
arenot multiples of 3. Now n? = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k? + 2k) + 1. Since
3(3k2 + 2K) isamultiple of 3, 3(3k2 + 2k) + Lisnot. Now wewill do the other possi-
bility, 3k + 2. So,n? = (3k + 2) 2= 9k? + 12k + 4 = 3(3k? + 4k + 1) + Lisnot a
multiple of 3. Because n? is not amultiple of 3, we have a contradiction. m

Analysis of “ Proof (b)”

[1] Suppose to the contrary that n is not a multiple of 3. The phrase “to the
contrary” may indicate that this argument is meant to be a proof by contradiction.
It might also indicate that the argument will prove the contrapositive of thetheorem,
that is, that the negation of the conclusion implies the negation of the hypothesis,
whichislogically equivalent to the theorem. The student author may not be clear
about thedistinction. If the proof isreally by contradiction, itisimplicit that n repre-
sents apositive integer and n? is assumed to be amultiple of 3. The argument can
end with any contradiction, but that contradiction could be to the hypothesis, that
is, n2isnot amultiple of 3. If the contrapositive of the theorem is being proved, it
isimplicit only that n representsa positiveinteger, and the argument must end with
n2isnot amultiple of 3. For both methods of proof it is appropriate to suppose the
negation of the conclusion, that is, nisnot amultiple of 3, asis done here.

[2] We will et 3k be a positive integer that isa multiple of 3, so that 3k + 1 and
3k + 2 areintegersthat are not multiples of 3. Thisrepresentation and divisioninto
cases correctly follows from the fact that any positive integer can be represented
asexactly oneof 3k, 3k + 1, or 3k + 2 for some positiveinteger k. It isimplicit that

11 |ndeed, one student validator, ST, seems to have concluded that the author of “Proof (a)” was
working pseudoconceptually or at least had no clear conception of aproof. After finding several errors
and noticing that certain parts did not make sense, she stated, “Basically, it's a bunch of nothing.”
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the positiveinteger being represented isn and that, according to [1], n cannot equal
3k; thus, n must equal 3k + 1 or 3k + 2. A validator would need to check that this
statement is correct. To comprehend [2], it would not be essentia to see the
implicit representation of n asone of thethree expressions, but it would bein order
to comprehend [3].

[3] Now n? = (3k + 1)2 = 9k? + 6k + 1 = 3(3k? + 2K) + 1. This statement begins
thefirst of two independent, “parallel” subarguments. Assuming that n =3k + 1,
all of the equations are correct.

[4] Since 3(3k2 + 2k) is a multiple of 3, 3(3k2 + 2K) + 1 is not. It follows from
considerations similar to those under [2] that only every third positiveinteger isa
multiple of 3. So if an integer is a multiple of 3, then one more than it is not. A
validator would need to assent to this. It isthen implicit in [4] that 3(3k2 + 2k) + 1
is the nZ mentioned in [3]. A validator would not have to notice this to compre-
hend [4], but would need to seeit to comprehend [5].

By avalidator assenting to something, in this case that 3(3k? + 2k) + 1 isnot a
multiple of 3, we mean that the validator is conscious of agreeing with it. This
conscious agreement may befleeting and not focused on, but it isdistinct from mere
passive reading in inner speech. It may be the only conscious phenomenon asso-
ciated with afairly complex inference. In this case, the validator must have some
knowledge of the relationship between multiples and multiples plus oneto seethat
3(3k2 + 2K) + 1 fitsthat relationship and infer that 3(3k? + 2k) + 1 isnot amultiple
of 3. While the assenting is conscious, the inference leading to it may occur very
quickly and outside of consciousness. It would be avalidation error for avalidator
to passively read, rather than assent to or reject, a portion of a proof, even if the
proof were correct and the validator agreed that it was correct. Such a validator
would not have tested that portion of the proof and could not really know that the
proof was correct.

[5] Now wewill do the other possibility, 3k + 2. Thisassertion indicates that the
first subargument is finished and that the second subargument is beginning with
the correct, but implicit, assumption that n = 3k + 2.

[6] So, n? = (3k + 2)2 = 9k? + 12k + 4 = 3(3k? + 4k + 1) + 1 is not a multiple of
3. All of the equations are correct. The final assertion depends on the sameinfor-
mation used to justify [4] and should be assented to by avalidator. This statement
concludes the second subargument.

[7] Because n? isnot a multiple of 3, we have a contradiction. m This statement
is correct, assuming that it is a proof by contradiction. The implicit reasoning is
that, according to [2], one of the two subarguments (cases) must apply to n2.
Because both subarguments yield that n? is not a multiple of 3, thereis a contra-
diction to theimplicit assumption that n? isamultiple of 3. I this argument were
treated as a proof of the contrapositive, it would be peculiar to mention “the
contrary” in[1]. However, under that interpretation, thisfinal step could be omitted
entirely or replaced by “Thus, in either case, n?isnot amultiple of 3.” We regard
thisargument as aproof of thetheorem, although it might be written more clearly.
If the role of n? and the division into two independent subarguments (cases) were
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made explicit rather than implicitin [2], [3], [4], [5], and [6], this proof would be
less confusing for avalidator, especially an inexperienced one.

“Proof ()" : The Gap

PROOF. Let n be an integer such that n? = 3x where x is an integer. Then 3| n2.
Since n? = 3x, nn = 3x. Thus, 3|n. Therefore if n? is amultiple of 3, then nisa
multipleof 3. m

Analysis of “ Proof (c)”

[1] Let n be an integer such that n? = 3x where x is an integer. Except for the
omission of theword “positive,” thisrepresentation isan appropriate way to begin
aproof of thistheorem. However, it is very abbreviated, and for mathematics at
thislevel, the argument would be more clearly linked to the theorem by supposing
that n? isamultiple of 3 before claiming n? = 3x, where x is an integer.

[2] Then 3| n. Thisinferenceis correct, but not likely to be useful. It isread “3
dividesn?’ and isjust another way of saying n? = 3x, where x is an integer, which
was the supposition in [1].

[3] Sincen? = 3x, nn = 3x. Theinferenceisnot wrong, but it isstill just theinfor-
mation of [1] written in adlightly different form.

[4] Thus, 3|n. Read “3 dividesn,” this statement means that nisamultiple of 3.
Nothingin [1], [2], or [3] indicates why [4] should be true. Indeed, to fill the gap
would amount to proving the theorem.

[5] Thereforeif n?isamultipleof 3, then nisamultiple of 3. m Thisconclusion
is just a restatement of the theorem. The argument really ends with [4]. If the
reasoning from [1] to [4] were correct (which it is not), [5] would be true. In the
genre of mathematical proofs at and beyond the collegiate level, atheorem is not
normally restated at the end of an argument purporting to prove it. However, this
sort of summary sentence can be found in sample proofsin transition course text-
books, especially when an argument for the contrapositive has been given
(Velleman, 1994).

“Proof (d)” : The Converse

PROOF. Let n be a positive integer such that n? isamultiple of 3. Thenn=3m
wherem O Z*. So n?= (3m)2 = 9m? = 3(3n). This breaks down into 3mtimes 3m
which showsthat misamultiple of 3. m

Analysis of “ Proof (d)”

[1] Let n bea positiveinteger such that n? isa multiple of 3. Thisrepresentation
and supposition isan appropriate way to begin proving the theorem. Beginning this
way, the theorem would be proved if the argument led to nisamultiple of 3.

[2] Thenn=3mwherem O Z*. Here Z* represents the set of positive integers.
Statement [2] isincorrect. The meaning of multiple and [1] yields n? = 3m, where
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m O Z*, but [2] does not follow directly from [1] (except by an application of the
theorem being proved).

[3] Son?=(3m)2 = 9m? = 3(3mA). All three equations are correct, given [2].

[4] This breaks down into 3mtimes 3m This statement follows from [3].

[5] which showsthat misa multiple of 3.m Thisinference does not follow from
[4] or anything else in the argument. The author probably “meant” that n?, rather
than m, isamultiple of 3. When changed, [3] yields that n2, not n, isamultiple of
3, which meansthe converse has been proved (by [2], [3], [4], and the altered [5]).

All four of the undergraduate student-generated arguments above correctly
usealogical and rhetorical devicethat isparticularly common in the genre of math-
ematical proofs. That is, to prove a theorem claiming some property about all
(each) of the elements in some set, for example, about all positive integers, it is
sufficient to argue about a particular, but arbitrary, element of the set. In the
language of secondary school algebra, one might say that the argument is made
about an unknown constant rather than a variable. Typically, the element is
named very early in the argument to avoid the possibility of inadvertently compro-
mising its arbitrariness. At the conclusion of the argument, it is implicit that
whichever element of the set might be of interest, the argument could have been
about that element. Although thisrhetorical deviceissimple, itisvery powerful
and simplifies the logic required of validators, thereby perhaps avoiding some
errors. In the historical development of calculus, this device together with care-
fully formulated, analytic definitions (like the epsilon-delta definition of limit)
allowed theorems about motion (for centuries a difficult concept) and, in partic-
ular, about rate of change, to have proofs in which nothing changes and motion
is not mentioned.

The textual analysis above differs from a description of actual vaidations. It
provides background information about the theorem and the four “ proofs” useful
for understanding validations of them. However, it does not include descriptions
of actual validators' mental processes, abilities, missteps, and so on, in their
attempts to determine which of the arguments are really proofs. We now describe
how some undergraduate mathemati cs and mathematics education majorsjudged
whether these same four arguments were proofs.

THE EXPLORATORY STUDY OF VALIDATION

Eight undergraduates (four secondary education mathematics majors and four
mathematics majors) at acomprehensive state university in the United Stateswere
interviewed individually outside of classin the 4th and 5th weeks of a 15-week
“bridge” or “transition to proofs’ course. Although this course is normally
studied in the 2nd or 3rd year at university, three of the eight students were in
their 4th year. The eight formed the entire cohort of this|earning-to-prove-theo-
rems course required of all mathematics and secondary mathematics education
majors at the institution. The goal of such courses, offered by many U.S. math-
ematics departments, is to help students make the transition from an earlier
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traditional cal culus sequenceto later, more proof-based courses, such as abstract
algebra and real analysis. They typically cover various aspects of logic; alittle
about sets, relations, and functions; proof by mathematical induction; and perhaps
afew additional topics, such as elementary number theory or introductory graph
theory, about which students are asked to prove theorems. The emphasisis on
having students|earn to make their own proofs as opposed to the amount of math-
ematics covered. Kurtz's Foundations of Abstract Mathematics (1992), atypical
textbook, was used in the course. In addition, students were to spend much of
their classtime, in pairs, proving theorems at the chalkboard. All eight students
had taken single-variable cal culus; some had also taken multivariable calculus,
differentia equations, matrix algebra, or discrete structures. One student (referred
to as BH) was concurrently enrolled in a dual-listed graduate/undergraduate
number theory course.

The Sructure of the Interviews

Each student wasinterviewed individually for about 1 hour in a semistructured
manner using an interview script consisting of four phases.

Phase 1. During this phase, which could be termed the warm-up phase, each
student was given a brief fact sheet (see Appendix 1) and this written statement:
For any positiveinteger n, if n?isdivisibleby 3, thennisdivisibleby 3. They were
asked to explain in their own words what the statement said, to give some exam-
ples of it, and to decide whether it was true and how they would know. Finally,
they were asked to give a proof of the statement if they could. Two successfully
did so. After some time had elapsed, those who could not complete a proof were
advised that they need not continue, because proving the theorem was not the point
of the interview; rather, they were to judge the correctness of other students
“proofs’ of the statement. Students were told that since some of the “ proofs’ they
would see might seem a bit unusual, having attempted a proof would help them
appreciate the variety of approaches taken.

Phase 2. Each student was shown the four “proofs,” one after the other, and asked
to think out loud as they read each one and decided whether it was, or was not, a
proof. If it was not a proof, they were to point out which part(s) were problematic.
If they could, they wereto say where, or in what ways, the purported proof had gone
wrong. They were a so informed that these “proofs’ had been submitted as part of
atake-hometest in a previous year by transition-course students like themselves.
Thefour “proofs’ were presented to the students as they appear in Appendix 2.

They were told to take as long as they liked and seemed not to be hurried. For
example, one student (JB) spent 15 minutesreading and rereading thefirst “ proof”
before deciding (incorrectly) that it was indeed a proof, except for a minor nota-
tional error. Severa of the students did not want to commit themselves and were
allowed during this phase to say that they were unsure whether a given argument
was, or was not, a proof.
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Phase 3. Having seen and thought about all four “proofs’ one after the other, the
studentswere then given an opportunity to reread them all together and rethink their
earlier decisions with an opportunity to change their minds, and some did. At the
end of this phase, they were not allowed to say that they were unsure, but were asked
to make adecision and declare whether each argument was, or was not, a proof.

Phase 4. Finally, the students were asked eight general questions about proofs
and how they read, understand, and validate proofs.

The data collected consisted of the audiotaped interviews, the interviewer's
notes, and the students’ work on the“ proof” sheets provided during theinterview.
(See Appendix 2 for details.)

The Conduct of the Interviews

The interviews were treated as “teaching interviews.” Not only was the inter-
viewer the instructor for the transition course that the students were taking, it al'so
seemed appropriate and opportune to the interviewer-instructor to answer their
implicit and explicit questions. Theinterviewer would respond generally about the
structure or style of written proofs but never indicate whether the four specific argu-
ments that the students were examining were actually proofs of the theorem. This
procedure kept thetone of theinterviews asrel axed and conversational aspossible.

In addition, as the interviews proceeded, the students sometimes seemed to
need encouragement to keep reading and thinking about the four “proofs.” Thus,
to obtain as much information as possible, the interviewer intermittently made
comments and answered or asked questions to keep students on task. All the
students seemed to take the interviews seriously and seemed genuinely engaged
with the task at hand.

Informing students of mathematical practicesand norms. Keeping the students
on task occasionally had the effect of suggesting to them practices and norms of
the wider mathematics community. In thefollowing excerpt, student MM hasjust
begun to consider “Proof (@)” for thefirst time. She examinesit silently for 1 min-
ute, then asks whether another 3 should be in the expression 3n(n + 2) + 1. With
encouragement from the interviewer, she makes her suggested correction, writing
9n2+ 6n + 1 = 3n(3n + 2) + 1. She then continues reading silently for an addi-
tional 30 seconds. Then, the following interchange occurs.

MM. | don't likethisone’ causeit’s confusing [laughs].

l. OK, you don't likeit. In addition to being confusing and not liking it-whichisavery
good reason not to like it and which iswhy I'm going to insist you all [meaning the
students in the transition class] write nonconfusing proofs [both laugh]. OK?

MM. There' san error.

I: Ahh, there’s an error there. . . . Let’s pretend the student meant to write that [indi-
cating MM’ s correction 9n2+ 6n+1=3n(3n+2) + 1]....

MM: OK.

I: ... and seeif that makes a proof.
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The norm™ being suggested hereisthat stylistic clarity (i.e., writing proofsin a
nonconfusing way) isvalued, but that lack of clarity initself doesnot make an argu-
ment incorrect. Inaddition, it isimplied through the overt act of correcting an alge-
braic error that small errorsin written proofs (e.g., those similar to misprints) can
be fixed during the validation process.
In the following example, student ST isin the midst of considering “ Proof (a).”
ST:  They aso have n? = (3n)2. They use the same variable for everything so it kind of
throws (?) everything together.
[ST and the interviewer agree to fix this by writing n? = (3m)2]

ST: | think that'swhat, . . . that'swhat, . . . threw me off at the beginning because | was
looking at all those n’strying to equal each other.

I: That'sredlly hard, isn'tit? There' saprinciplein therethat you don’t, uh, usethe same
letter to mean two different things in one proof. Y ou can finish a proof—and then
the idea is finished—and then use the letter to mean something new, but that's
because there’ sabreak in the ideas.

In this excerpt, ST comments on the confusion caused by using n in several
different ways. Theinterviewer corroboratesthisand givesan additional bit of infor-
mation regarding when it is permissibleto usethe sameletter, such asn, again. This,
and other similar comments made during theinterviews, had the effect of introducing
these students to some stylistic features of written proofs at the same time as the
students saw (for themselves) arationale for those bits of mathematical practice.

Further reflection encouraged by the interviewer’ sremarks. All students were
kept on task by the interviewer’s deliberate attempts to probe their thinking. We
illustrate this procedure with comments from KC, a particularly expressive and
responsive student. Shetold theinterviewer that she ordinarily likesto read proofs
aloud to herself, that is, she had no problem converting inner speech to regular
speech during the interview. Below is a condensed version of her first attempt at
validating “Proof (d).” It proceeded along a tortuous sequence of meandering
stages, numbered 1-8 below, apparently assisted by the interviewer’'s probing
guestions. (For the entire transcript, see Appendix 3.)

1. KC readsthe entire proof aloud slowly once and remarksthat “ Proof (d)” looks
alot like“Proof (a)” and says, “I think that’'s a proof.”

2. On being questioned by the interviewer who is genuinely surprised by this
analogy, she explains something about 3(3m?) and tries to rewrite that portion of
the proof, concentrating on the form she wants to see, “three times some integer.”

3. After some time, the interviewer asks whether that is good enough for a proof

12 This kind of norm (of the wider mathematical community) is reminiscent of sociomathematical
norms, the negotiation of which has been investigated in classroom settings, for example, at the under-
graduatelevel by Y ackel, Rasmussen, and King (2000). It would beinteresting to investigate how such
normsare maintained and, in particular, adopted by novicesin thewider mathematical community. The
kinds of discussions associated with theseinterviews may not occur often enough in university courses
to explain the maintenance of such norms.
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now, and KC commentsthat her wording may not beright. She and theinterviewer
discuss this at some length and agree there are lots of equivalent ways to word
things.

4. The interviewer then asks whether she has finished, and KC responds with an
explanation, “. . . Let’s see, they showed that mwas amultiple of 3 but they didn’t
show nwasamultiple of 3.”

5. Shetriesto substitute back in and then suddenly blurtsout, “ OK, wait, wait . . . ,”
followed by 30 seconds of intense silent concentration. Shethen thumps her pencil
twice emphatically on the desk and asserts, “| don't think that’s a proof.”

6. The interviewer asks why she changed her mind, and KC says, “ They showed
that mwas amultiple of 3, but they didn’t show n was amultiple of 3.”

7. The interviewer then asks, “Where did that m come from anyhow?’ to which
KC responds, “. . . they let n = 3mright up here. . .” [looking back to the begin-
ning of the argument], and notes that they did not start in the right place, that is,
n2=3m.

8. Shereiterates, “| don’t think that’s a proof.”

Inresponding to theinterviewer at stages(2), (3), (4), (6), and (7), KC isencour-
aged to reflect further on“Proof (d)” and noticesfeatures of the argument that went
undetected earlier. However, it is not easy to conjecture what happened to KC
during the 30 seconds of intense silent concentration at stage (5). Her insight
cannot reasonably be attributed to anything specific that the interviewer did; she
appears to have had something like agenuine “ Ahal” experience (Barnes, 2000).

It would be very interesting to know what K C was conscious of during thisexpe-
rience. We suspect such an experience might be described immediately after its
occurrence, but is often not well remembered later. The interviewer did question
KC immediately about why she changed her mind, but not about the contents of
her conscious experience. To have done so might have considerably altered the
overall validation process.

Overall Results

On analyzing the data, it became clear that most students made a judgment
regarding the correctness of each “ proof” at four different times, namely, at the begin-
ning and at the end of each of two readings (in Phases 2 and 3). These times were
labeled Time 1 through Time 4. All students, except JB, maintained or increased
the number of their correct judgmentsfrom Time 1to Time4. (See Figure 1, which
displays the changing number of correct judgments by each student acrosstime.)
For example, KC gradually improved from one correct judgment at Time 1 to four
correct judgments at Time 4. Thisimprovement appears to be the result of further
reflection.

Eight students were interviewed regarding the four “ proofs,” making atotal of
32 person-proof judgments. Table 1 givesthe percentage of correct judgments made
at the varioustimes.
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Figure 1. The number of each student’s correct judgments acrosstime (Time 1 to Time 4)

Tablel
Percentage and Number of Judgments Over Time

Timel Time 2 Time3 Time4

Correct 46% (15) 56%(18) 72%(23)  81% (26)
Incorrect 250 (8)  28%(9) 229 (7)  18%(6)
Unsure 28%(9)  16% (5) 6% (2) 0% (0)

Note. The total number of judgments was 32.

What happened over time that might have caused students to change their
minds? During the second phase of theinterview, between Time 1 and Time 2, the
interviewer asked and answered questions, encouraging the student validators to
reflect further. By the beginning of the third phase of the interview, they had seen
and pondered all four “proofs’ and were more experienced. At Time 4, the inter-
viewer would no longer accept “unsure,” and the students made their final judg-
ment for each “proof.”

At Time 1, less than half (46%) of the students' judgments were correct. This
remarkable fact suggests that given this task on atest, where no one would have
been encouraging them to reflect further, the students would probably have done
about as well by chance.”® They initially made the most correct judgments on
“Proof (b),” with five correctly stating that it was a proof and three being unsure.
They dso initially made the fewest correct judgments on “Proof (d),” with only
two making the correct judgment and four incorrectly stating it was a proof. This
difficulty with “Proof (d)” supports our observation below that the students were
primarily checking local detailsinstead of looking for global/structura difficulties.
After the first sentence, “Proof (d)” can be regarded as an argument for the
converse, modulo one notational error. The students al so seemed to be relying on
their feelings of understanding in away that sometimes misled them. Student MM

13 Although the students' ability to determine whether these arguments were proofs appeared to be
very limited, we are not claiming thisisunchangeable. Indeed, we saw some evidence of improved judg-
ments even during the course of the interviews and conjecture that the students’ initial lack of ability
was largely due to alack of appropriate experiences.
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commented about “Proof (d)” that she “liked it” and could “see it better than the
rest.” Table 2 shows how the aggregated students’ judgmentson thefour purported
proofs changed over time. The entries represent numbers of students.

Table2
Changes in the Pattern of Judgments

“Proof (a)" “Proof (b)" “Proof (c)” *“Proof (d)”

Correct 4355 5678 4466 2557
Incorrect 3433 0100 1112 4331
Unsure 1100 3110 3310 2000

Note. Entries give the number of students responding “ correct,” “incorrect,” or “unsure” at each of the
four times. For example, under “Proof (a)” for Correct, there were 4, 3, 5, and 5 correct judgments at
Time 1, Time 2, Time 3, and Time 4, respectively.

A clear trend can be seen for “Proof (b)” and “ Proof (d)”; when comparing Time
1with Time4, all students’ judgmentsimproved or stayed the same. However, the
datafor “ Proof (a)” and“Proof (c)” are more complex. For example, on “Proof (a)”
theimprovement from four correct judgmentsat Time 1 tofiveat Time 4 resulted
from two students changing to correct judgments and one student changing to an
incorrect judgment.

In general, the students considerably improved their judgments over time (even
though this was neither the purpose nor the expectation of the interviewer).
Furthermore, thisimprovement seemslargely to have been dueto interactionswith
the interviewer that somehow enhanced the way that these students used the
experiences and knowledge that they brought to the task. This phenomenon
appears similar to occurrences in the zone of proximal development that were
described by Vygotsky (1978) in studying the sociocognitive development of chil-
dren. It would be interesting to know more about such student-interviewer inter-
actionswhen the interviewer’ s purpose was to enhance a student’ s mathematical
practices. For example, small portions of theseinterviews might be seen asdialec-
tical situationsthat allowed theinterviewer to suggest certain aspects of the prac-
tices and norms of the wider mathematical community. In other portions of the
interviews, asmall comment or question apparently induced a student to refocus
his or her attention on another part of the task (i.e., on another part of the argu-
ment being validated).

What the Students Said as They Carried Out Their Validations

Most of the errors detected were of a local/detailed nature rather than a
global/structural nature. For example, in validating “Proof (a),” five students (JB,
KC, SD, BH, ST) commented on notational errors like n? = 9n2. Four (KC, SD,
MM, ST) noted that odd/even was not correctly expressed in the symbolism, for
example, 3n + 1 for odd. And two (BH, ST) observed that divisibility by 3 could
not be concluded in the odd case from the expression 3n(n + 2) + 1.
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Three students (KC, RC, MM) queried the interviewer regarding the use of odd
and even cases in “Proof (a),” but they were willing to continue their validation
efforts after mutually agreeing that, although this particular breakdown into cases
might be peculiar, nothing was wrong with it logically. For example, student RC
read “Proof (a)” silently for 1 minute and then the following interchange occurred.
RC: Ididn't....Itlookslikeaproof. The only thing I'm questioning is how can they say

it's odd or even. Can you do that? [It] would seem that. . . . It seems like it would
take care of both cases. . . . The positiveintegers. . . .

I: Wewerejust beginning totalk about thatinclass. . . . If youfeel you want to do some-
thing by casesin aproof, aslong as the cases cover everything, it's OK.

RC. OK.

I: Sometimeslikethis, they [meaning the odd and even cases| are nonoverlapping. But
they can even be overlapping. It doesn't hurt to prove something twice aslong asthe
union of the cases covers everything.

RC: It'skind of tricky. | would never have thought of that. Whatever’sgiven me, | try to
proveit.

[RC continues to consider the proof for sometime.]

I: OK s, uh, if it's OK to do odd and even, do you agree with what they’ ve done? Is
that a proof?

RC: Itlookslike one. [He then examines“Proof (b).”]

Student BH, who had successfully proved the theorem earlier in the interview
after afalse start, thought that the conclusion in “Proof (a)” was being assumed in
the even case. That is, she apparently ignored [4] and wrongly interpreted [5] to
includetheimplicit supposition that n = 3m. On reading further, she concluded that
the converse had been proved. Shestated “ . . . [they’re] doing it the way | wanted
to,” suggesting that her initial failed attempt to prove the result influenced her to
incorrectly see her own misstep in the argument. Only BH and ST had succeeded
in proving the theorem earlier in the interview; they were also the only students
who correctly stated that the converse had been shown in “Proof (d).” These sorts
of structural comments were rare. Thus, as one might expect, the experience of
proving atheorem can have positive effects on subsequent validations of other argu-
ments for the same theorem. And, perhaps counterintuitively, such earlier experi-
ences can sometimes have negative effects on validations, as described above when
BH seemsto have been more influenced by an early false start on a proof than by
her later success.

What the Students Said They Did When Reading Proofs

Most students seemed content to attempt a careful line-by-line check to see
whether each mathematical assertion followed from previous assertions. When
gueried (in Phase 4) about what they do when reading a proof, the students said
they did many things: They made sure all stepswerelogical and looked to seethat
everything was supported. They checked the computations and whether anything
was |eft out. They said, “[1] take it step by step; [1] liketo read it real slow” and
“1 go through more than once. . . . See if from step to step, it follows.” Several
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students said that they would try to go through a proof with an example, but few
gave evidence of doing so during their validations.

KC, whose validation of “Proof (d)” was paraphrased above, said, “[It’s] not like
reading anewspaper; more understanding isinvolved. | go through morethan once.
Something will come out at methat didn’t thefirst time.” When queried about how
shetellsthat aproof isnot correct, KC explained, “because they didn’t show it and
they didn’t say it [meaning the conclusion].” She added, “Plus | expect to see the
stepsthat say, that lead you up tonis. . . or whatever.” Shefurther explained, “ And
alsoif you find something that goes, . . . that, that, . . . that is definitely wrong in
the stepsabove. Likethe one up here[pointing to one of thefour “proofs’]. Sothat's
not. .. [aproof].” Given KC'slimited experience with validating proofs, other than
those in textbooks, thisfinal remark about finding something definitely wrong in
just one step seems quite reasonable. However, inthe odd case of “ Proof (a),” there
are four mistakes that are extraneous to obtaining n? is divisible by 3 from itself.
(Seethetextua analysisabove.) In general, the students’ self-descriptions sounded
thorough and competent.

Making Sense as a Criterion for Determining Correctness of Proofs

In general, for these students, afeeling of understanding or not—that is, of making
sense or not—seemed to be an important criterion when making ajudgment about
the correctness of these four “proofs.” For them, it seemed a question of whether
thewritten text, together with their efforts at comprehension, engendered a personal
feeling of understanding. For example, after initially reading through “ Proof (a)”
slowly, JB concentrated on the last statement, n? = 9n?, reiterating several times
that it did not make sense. Then he said, “I’'m saying | don’t think thisis a proof
because it [n? = 9n?] doesn’t make sense.” After the interviewer suggested that
perhaps the author had meant to write n? = 92, JB concurred and continued his
validation attempt for sometime, finally deciding incorrectly it was aproof “after
variablerenaming.” Although thejudgment wasincorrect, itisclear that JB’smain
focus was on making sense, perhaps residing in the form of some conscious, but
unarticul ated, feeling of understanding.

When KC first cameto the gap in “Proof (c),” she reread the argument severa
times and tried to expand on it (on paper). When she could not, she explained her
thinking to the interviewer, asfollows.

KC: Maybel just don’t understand the concept of . .. | ..., | understand 3 divides n2.

| understand all that stuff, but | don’t. ..l don't. .. | understand getting from here
... [from] there [n? = 3X] to there [nn = 3x], but from here [nn=3x] to here [3|n] .. ...

I: Uh, huh. So when you tried to fill it out you couldn’t basically?
[KC agrees and says she could probably give an example, but that is not a proof.]
KC: | gtill don'tthink that, . . . that is. . . [aproof]. | don’'t know. | don’t think that is. . .
[aproof].
I: So that’ s not a proof ?
KC: But | may decidelater . . . [reserving the right to rethink the argument].
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At this point, a sense of not understanding makes KC cautious about whether
theargument isaproof. Another student, MM, in summing up her final judgments,
wrote under “Proof (¢)” that it was not a proof and “I don’'t understand the
reasoning.” Then, under “Proof (d),” she wrote an asterisk followed by “Proof—
thisoneisthe easiest for meto understand.” However, thisargument is not a proof
of the theorem, but rather a proof of its converse. In her case, afeeling of under-
standing did not mean the argument was correctly linked (viaa proof framework)
to the theorem.

The students also indicated (in Phase 4) that they usually read proofsfor under-
standing. Student BH, who was taking number theory concurrently, said “It’ s got
to betrue but got to make sense. Last night | waslost 20 minutesin number theory.
| found somebody’ s thesis in the library. Just one step [was missing]. ... " This
comment suggests that the feeling of making sense, or of understanding, is a
matter of considerable importance to BH—important enough to search through
thesesin thelibrary. Student KC, commenting on her previous cal cul us textbook,
said, “ Some of the proofsin the calc book were ‘ off thewall.’ | had to sit and write
them up; [1 had to] go home and see where the things were coming from.”

For these students, understanding was required of them when reading proofs.
When given a proof by an instructor or in a textbook, they quite reasonably
assumed that it was correct. Indeed, they probably had very little previous prac-
ticein deciding whether “proofs’ are correct, that is, in validation. Thus, they appear
to have depended on their wider personal experiences of understanding, which did
not always serve them well in validation. This unreliability may occur because a
feeling of understanding itself and one’ stendency to rely on it are influenced and
sharpened by experiencesin validation—experiencesthese studentslargely lacked.
Also, although the students spoke of understanding quite freely, they apparently
did not always mean more or less the same thing by it. Their responses to ques-
tionsin Phase 4, together with their validation attempts, suggest that they had arange
of meanings for understanding from verifying short computationsin a text using
their own procedural knowledge to a feeling of understanding associated with a
gestalt view of an entire argument. Perhapsthisvariation is dueto ageneral diffi-
culty in negotiating meaning for concepts such as understanding, which do not refer
to underlying physical objects (e.g., cars or basketballs).

CONCLUSIONS AND IMPLICATIONS FOR TEACHING

What students say about how they read proofs seems to be a poor indicator of
whether they can actually validate proofswith reasonablereliability. They tend to
“talk agood line.” They say that they check proofs step by step, follow arguments
logically, generate examples, and make sure the ideas in a proof make sense.
However, their first reading judgments (see Table 1, Time 1) yield no better than
chance results, suggesting that they cannot reliably implement their intentions.

On the other hand, even without explicit instruction, the reflection and recon-
sideration engendered by the interview process eventually yielded 81% correct



28 Validations of Proofs Considered as Texts

judgments (see Table 1, Time 4). This improvement suggests that instruction in
validation could be effective. Theinterviews also suggest that students should be
encouraged to attend moreto possible global/structural errors, for example, proving
the converse of the statement. In particular, students need to devote attention to what
wehave called proof frameworks (Selden & Selden, 1995), atopic that we suspect
isrelatively easy to master because it does not depend on a deep understanding of
the mathematical conceptsinvolved in the statement of atheorem.

Validation of proofsis part of the implicit curriculum, but it is alargely invis-
ible mental process. Few university teacherstry toteachit explicitly, although some
may admonish students to “read with pencil and paper in hand” or the like. This
adviceisat best descriptive, but certainly not usefully prescriptive, so studentstend
tointerpret such vague directionsidiosyncratically, spotting mainly local notational
and computational difficulties. They appear to be substituting their feeling of
overall understanding, plus afocus on surface features, for validation. We suspect
such afeeling of overall understanding is useful and reliable for mathematicians
who will haveincluded init their notion of correctness, but is often unreliable and
misleading for students.

“Bridge” courses in the United States tend to give students some idea of the
logical structure of theorems, covering such topicsasdirect and indirect proofsand
indicating that the converseisnot logically equivalent to atheorem. These courses
also cover some logic, set theory, functions, and assorted other topics. Often, the
material on logic precedes student work with proofs, and perhaps for that reason,
tends to be presented in an abstract, decontextualized way that may not be very
effective. Textbooks for such courses have from none to just afew to a moderate
number of exercises that involve the critiquing of “proofs.” The directions vary;
studentsmay be asked to (a) find thefallacy ina“proof”; (b) tell whether a“ proof”
iscorrect; (c) gradea*proof,” A for correct, Cfor partialy correct, or F; or (d) eval-
uate both a“proof” and a*“ counterexample.” Most of these* proofs’ have been care-
fully constructed by textbook authors so there is just one error to detect. For
example, in Smith, Eggen, and St. Andre (1990; p. 39) wefind thefollowing “ proof
tograde”:

Suppose mis an integer.

Claim. If m?is odd, then mis odd.

“Proof.” Assume misodd. Then m= 2k + 1 for some integer k. Therefore, m?
= (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2K) + 1, which is odd. Therefore, if m?is odd,
thenmisodd. m

The“proof” above does not present astudent with anywhere near the complexity
or kinds of difficulties seen in our student-generated arguments.* Consideration of
such contrived “proofs’ is no doubt valuable practice for those beginning to learn
validation. However, we suggest that additional practice in vaidating such actual

14 The Smith, Eggen, and St. Andre textbook (1990), and subsequent editions thereof, does contain
more complex “proofsto grade,” however, many transition course textbooks do not.
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student “proofs’ asthosein this study, together with small-group discussion, could
be beneficial, especialy for preservice secondary teachers who one day may need
tojudgethecorrectness of their own students’ proofsor novel solutionsto problems.

FUTURE RESEARCH QUESTIONS

One might consider the studentsin our empirical study asnovicesat validation
and ask what experts—advanced undergraduates, graduate students, and mathe-
maticians—would do. The students in our study could not reliably validate rela-
tively short purported proofs of asimpletheorem, but mathematicians can. At some
point, therefore, mathematics studentslearn to do so. When does this happen, and
through what kinds of experiencesis the process of validation learned?

Proofs of the theorem used in this study do not seem to have a very complex
structure. What would happen if one considered a theorem whose proof was
inherently more complex or wherethe potential for more subtle errorswas greater?
Students often have views of proof (Harel & Sowder, 1998) that differ markedly
from mathematicians’ views. How would such views be influenced by attempts
to increase students’ ability to validate proofs?

How doesthe ability to validate proofsrel ate to the ability to construct them?
How doesit relate to aknowledge of logic, especially when taught in the rather
formal, symbolic, decontextualized way that isfound in many transition courses?
What are students’ perceived and actual criteria for correctness, for example,
that they agree the calcul ations are legitimate, that they can follow the argument
line by line, that they can see why the argument begins where it does, and so
on? The students in this study were sometimes misled by a feeling of overall
understanding, whereas mathematicians can use such feelings beneficially.
What accounts for the difference? How does one learn to have afeeling at the
“right time” and not otherwise? What parts of validations consist of reading plus
assent, without additional conscious experiences, such asinner speech or vision
or feeling? What kind of teaching might promote a correct use of assent during
validation?

Here, after introducing the idea of validation, we discussed its nature in away
that depended on information wetake to be common knowledge among most math-
ematicians. However, without additional investigations, thereisno way to be sure
that we are right about what is common knowledge or that the common knowl-
edgeitself is correct. Taking much of this discussion as partly conjectural yields
a number of additional research questions. For example, suppose one recorded
what was being attended to during the construction of a proof and extracted, in
order, those parts that appeared in its final form. Would this order, as we have
suggested, differ greatly from the order of the final proof? In teaching, one of us
has sometimes encouraged studentsto write aproof framework, that is, the begin-
ning and ending few lines of aproof, before attempting the middle. Some students
resist thisadvice, and it would beinteresting to investigate whether such students
have more difficulty constructing proofs than others.
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We have a so alluded to mathematicians' ability to agree on the correctness of
proofs and the truth of theorems and that they can often decide this individually
and believe “you do not vote on the truth of theorems.” It would be interesting to
investigate the degree to which these are the perceptions of mathematiciansaswell
as the degree to which those perceptions are accurate. Information about such
perceptions and abilities might enhance the role played by validation in socia
constructivist views of mathematics.

Last, what isagood way to teach validation? Isit aconcept like proof or defin-
ition, which is perhaps best learned through experiences, such as finding and
discussing errorsin actual student “proofs’?
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APPENDIX 1

Facts About the Positive Integers

FACT 1. Thepositiveintegers, Z*, can be divided up into three kinds of integers—
those of the form 3n for some integer n, those of the form 3n + 1 for someinteger
n, and those of the form 3n + 2 for some integer n.

For example,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...
3n 3n+1 3n+2 3n 3n+1 3n+2
wheren=1 wheren=2

FACT 2. Integersof theform 3n (that is, 3, 6, 9, 12, . . .) are called multiples of 3.

FACT 3. No integer can be of two of these kinds simultaneously. So misnot a
multiple of 3 meansthe sameasmisof theform3n+ 1or 3n+ 2.

APPENDIX 2

Interview Data Collection Phases

PHASE 1. Warm-Up Exercises

For any positiveinteger n, if n2 isa multiple of 3, then nisa multiple of 3.
1. Explain, in your own words, what the above statement says.
2. Give some examples of the above statement.
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3. Does the above statement seem to be true? How do you tell?
4. Do you think you could give aproof of the above statement?

PHASE 2: Sequential consideration of ‘ Proofs' (a), (b), (c), (d).

PHASE 3: ‘Recap’ on the ‘Proofs’
Below are several purported proofs of the following statement:

For any positive integer n, if n? isamultiple of 3, then nisa multiple of 3.
For each one, decide whether or not it is a proof. Try to “think out loud” so you
can let mein on your decision process. If it is not a proof, point out which part(s)
are problematic. If you can, say where, or in what ways, the purported proof has
gone wrong.

(a). PROOF: Assumethat n?isan odd positiveinteger that isdivisibleby 3. That is
n2=(3n+1)2=9n2+6n+1=3n(n+2) + 1. Therefore, n2isdivisibleby 3. Assume
that n? is even and a multiple of 3. That is n? = (3n)2 = 9n2 = 3n(3n). Therefore,
n?isamultiple of 3. If we factor n? = 9n2, we get 3n(3n); which meansthat nisa
multipleof 3. m

(b). PROOF: Suppose to the contrary that nisnot amultiple of 3. Wewill let 3k be
apositiveinteger that isamultiple of 3, so that 3k + 1 and 3k + 2 are integers that
are not multiples of 3. Now n? = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k? + 2k) + 1. Since
3(3k2+ 2k) isamultipleof 3, 3(3k2 + 2K) + 1isnot. Now wewill do the other possi-
bility, 3k + 2. So, n? = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k? + 4k + 1) + 1isnot amultiple
of 3. Because n?isnot amultiple of 3, we have a contradiction. m

(c). PROOF: Let n bean integer such that n? = 3x where x is any integer. Then 3|n2.
Sincen? = 3x, nn = 3x. Thus 3|n. Thereforeif n2isamultipleof 3, thennisamultiple
of 3.m

(d). PROOF: Let n be apositiveinteger such that n2isamultiple of 3. Thenn=3m
wheremd Z*. So n? = (3m)2 = 9n? = 3(3m?). Thisbreaks down into 3mtimes 3m
which showsthat misamultiple of 3. m

PHASE 4. Final Questions

1. When you read a proof is there anything different you do, say, than in reading
anewspaper?

2. Specifically, what do you do when you read a proof?

3. Do you check every step?

4. Do you read it more than once? How many times?

5. Do you make small subproofs or expand steps?

6. How do you tell when a proof is correct or incorrect?

7. How do you know a proof proves this theorem instead of some other theorem?
8. Why do we have proofs?
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APPENDIX 3

Transcript of KC Validating “ Proof (d)”

[Note: Segmentation into stagesis our own. Emphasesin boldfaceindicate portions
of the transcript discussed earlier in the condensed version.]
Initial validation attempt in Phase 2

Stage 1

KC:

KC:

KC:

KC:

OK, thisisthelast one. We have four of these.

OK. [Reads theorem aloud slowly once. There's a pause at the end of the first
sentence, after which she says “OK” and goes on reading.] Y ah. That, that looks a
lot like the one that we just did.

Ahh, which meansit’sgood or it's not good?

Yah. No, not just did. | mean this one over here [pointing to the paper with (3)].
Oh, itlookslike. .. .[Spreadsout thefour paperswith the‘ proofs onthem.] We had
(@), (b), (), (d).

Likethat one. Like that one. [Pointing to (a).]

Itlookslike. ... It looksalot like the, ah, (a) one.

Yah. Yah, | think that'sa proof.

Stage 2

KC:

KC:

KC:

KC:

KC:

KC:

KC:

KC:

OK. OK. You think thisone's a proof. Ookay.

'Cause, see, ’cause thisiswhat | wastalking about by 3 times 3m2.

Ah, OK.

Then you could let this 3m? be some integer k.

OK. So you want to see this displayed like that?

Yah.

OK.

Then you could say thet like...

Well, | don’t want to have it upside down [turns paper around)].
Youcouldalso...say ... thisbreaks down. Well, thisone. . . . What | would do, is
say, uhm, uhm 3. . . then, 3m? equalsto k, someinteger k such that 3k, or something
like, equalsto 3k, uhm. . ..

[Interrupting] Why don’t you write that down? Y our talking here.

OK.

Y ou need your pencil then.

Like here, | probably would say [writes and talks more slowly]. Let 3m? equal to k,
for some positiveinteger k. . . [pause] . . . integer k. OK. Uhm. [long pause] Then 3
times 3m? would equal to 3k . . . [pause] which . . . [pause] makes, uhm, or | don’t
know the wording may have to bewrong, uhm, which makes, uhm . . . [pause] which
is..., | don't know how to say it, but that's. . . .

That’ swhat you wanted to say.

Seethat’ swhat | want to say, and then, like, insert it in here. Then you could say that
this, by proving that it's three times some integer, some. . . . Then you could say
that it'snow. . . .

It's now amultiple of 3. [Finishes sentence for KC.]
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KC: Yah,it'snow amultipleof 3, OK. [Says and writes] Now n? isamultiple of 3.
I: Uh, huh.

KC: I don'tknow if I’d word it in that way, but that’swhat 1" m thinking.

I: That n?isamultiple of 3?

KC: Idon'tknow if I'dworditin that way.

KC: ’'Causethen you have it in the form three times something else. . . . Because this
breaking down to 3mtimes 3m, uh that, that kind of . . . because you havethisalready.

l: Uh, hmm.
KC: Do you understand what, what I’ m saying?

Stage 3

I: Yah. Yah. | understand you want to get it displayed like that. Uhm, and that’sgood
enough for a proof now?

KC: Now, my wording right here probably iswrong , | mean it could be. . . .

I: There' slots of different ways you can word things. . . . [Continues for sometime.]

KC: I'mean.| mean. | could....A lotof thiscould belike... Even this could be reworded.
Youdon't haveto say “let” or just say, you know, k, uhm, for someinteger k equals,
or something, or just let this be something else. So you could haveitintheform. . . .
Or even that’ sfine. But, this 3m times 3m stuff, that’s gotta go.

Stage 4
I: Then, how do you know you’re finished with? | mean. . ..

KC: [Interrupts] Because, becauseyou haveit now, now you haveit. . .. [Long pause] Let’'s
see. They showed that m was a multiple of 3, but they didn’t show that n wasa
multiple of 3. [Long pause] ' Cause you have to show that nisamultiple of 3.

Stage 5
I: Uh, huh.

KC: Uhmmm. [Long pause] Hmmm. [Long pause] So you’ d haveto go back and you'd
haveto substitute back in here. [Writes (3m)(3m) = (3m)n = 3(mn).]

I Uh, huh.

KC: Anyway that.. .. [Long pause] Well,itwould. ... OK, wait. OK, wait, wait. . . . Then
you'd have. . .. Let'ssee. .. [long silence, lasting 30 seconds]. Well, [taps pencil
quickly twice, and again quickly twice] . . . [pause] | don’t think that’sa proof [said
definitely].

Stage 6

I: Oh! [surprised] Oh, OK. [KC laughs.] Now why did you change your mind?

KC: WEéll, becausethey didn’t, they didn’t say . . . that nwas. . . they didn’t say nwasa

multiple of 3. They didn’t figure that out. They showed that m was a multiple of
3, but they didn’t show that nwas. .. and. . ..

Stage 7

I: [Interrupting] Wher €' d that m come from anyhow?

KC: Wéll, themcamefrom... they let n = 3m right up her e [pointing to top of proof].
I: Yah.

KC: Justto,justtoto....

I: That'sjust like your using k, asfar as| can tell.
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KC: See you're, and. . . they’re supposed to have let n? be amultiple of 3, so it should
have been “let n2 = 3m.”

Stage 8
l. Uh, hmm.

KC: So....S0,atleast | showedyouhow | was, . .. | would haveworded. . . . [Both laugh.]
| don’t think that’sa proof.

I: OK thisone’snot a proof. OK, that’s one’ s not a proof. OK, we can come back and
change our minds.

Subsequent “recap” validation attempt in Phase 3

KC: [Reads"“proof” aoud, followed by apause of 18 seconds.] No.
I: Not a proof?

KC: No, because they till, | mean, they didn’t define . . . they didn’t prove what the n
was, which iswhat they were supposed to prove.

I: So they didn’t prove what they were supposed to prove. Which was what?
KC: That, that nisamultiple of 3.
I: Uh, hmm. ... OK.



