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This article reports on an exploratory study of the way that eight mathematics and
secondary education mathematics majors read and reflected on four student-gener-
ated arguments purported to be proofs of a single theorem. The results suggest that
such undergraduates tend to focus on surface features of arguments and that their
ability to determine whether arguments are proofs is very limited—perhaps more so
than either they or their instructors recognize. The article begins by discussing argu-
ments (purported proofs) regarded as texts and validations of those arguments, that
is, reflections of individuals checking whether such arguments really are proofs of
theorems. It relates the mathematics research community’s views of proofs and their
validations to ideas from reading comprehension and literary theory. Then, a detailed
analysis of the four student-generated arguments is given and the eight students’ vali-
dations of them are analyzed. 
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Proofs, that is, arguments1 that prove theorems, have been viewed from a wide
variety of perspectives. Previous studies have considered the structure of proofs
(Leron, 1983), their explanatory power (Hanna, 1989), errors and misconceptions
in college students’ proofs (Selden & Selden, 1987), the logic involved (Dubinsky
& Yiparaki, 2000; Selden & Selden, 1995), university students’ “proof schemes”
(Harel & Sowder, 1998), and generic proofs (Rowland, 2002). In addition, one
might describe the genre of proofs or discuss their rhetoric. Considerably more could
also be done in examining the process of proof construction. 
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1 We are using argument the way it is commonly used in the English-speaking mathematical commu-
nity (Bagchi & Wells, 1998), where proof is often reserved for a correct argument consisting of a rather
special kind of deductive reasoning that warrants the truth of a theorem (démonstration, in French). In
that context, and in this article, argument refers to the same kind of deductive reasoning, except that it
might not be correct. We are not referring to the more general kinds of arguments used outside of math-
ematics or to argumentation, for example, to discourse intended to persuade that might include alluding
to experiences of the intended audience (see Perelman & Olbrechts-Tyteca, 1969 or Toulmin, 1958).
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Here we focus on proofs as texts that establish the truth of theorems and on read-
ings of, and reflections on, proofs to determine their correctness. We call such read-
ings and the mental processes associated with them validations of proofs (Selden
& Selden, 1995). A validation is often much longer and more complex than the
written proof and may be difficult to observe because not all of it is conscious.
Moreover, even its conscious part may be conducted silently using inner speech
and vision. Validation can include asking and answering questions, assenting to
claims, constructing subproofs, remembering or finding and interpreting other theo-
rems and definitions, complying with instructions (e.g., to consider or name some-
thing), and conscious (but probably nonverbal) feelings of rightness or wrongness.
Proof validation can also include the production of a new text—a validator-
constructed modification of the written argument— that might include additional
calculations, expansions of definitions, or constructions of subproofs. Toward the
end of a validation, in an effort to capture the essence of the argument in a single
train of thought, contractions of the argument might be undertaken. An annotated
transcript of a sample (hypothetical) validation of a calculus proof can be found
in Appendix I of Selden and Selden (1995, pp. 143–147). 

In the sections that follow, we discuss a theoretical perspective on arguments,
proofs, and validations and compare it with various 20th-century theories of texts
and reading. We then give a detailed textual analysis of a single theorem and four
brief student-generated arguments purporting to prove it. This analysis provides
grounding for the previous theoretical discussion, as well as background for the
subsequent description and analysis of eight undergraduate students’ validations
of the same four arguments. In the concluding sections, we offer some implications
for teaching and pose some questions for future research. 

VALIDATION AND OTHER KINDS OF READING

Our view of the nature of validation is reminiscent of late 20th-century ideas about
reading found in works on reading comprehension and literary theory and criticism
(as described in Bogdan & Straw, 1990 and Pearson, 2000). In these, the onus for
the construction of meaning is on the reader rather than on the author or the written
text. Each reader is seen as constructing his or her own story from personal back-
ground together with the written text. Different readers, or the same reader at
different times, are seen as benefiting differently from a single written text.
Validators of proofs, too, may benefit in differing ways according to their back-
grounds. For example, some may develop an understanding of a theorem that goes
well beyond just knowing it is true, and Hanna (1989) has pointed out that some
proofs may be better for this than others. Also validation can sometimes involve
emotionally intense reflection resulting in knowledge construction, for example,
by forging new links between one’s ideas. 

At the beginning of the 20th century, theorists in reading comprehension and
literary criticism regarded writing as mainly a matter of communication—the
author was considered the ultimate arbiter of the meaning of a written text. To under-



6 Validations of Proofs Considered as Texts

stand a text, one studied the life and times of the author. By midcentury, the locus
of meaning had shifted to the text itself,2 and by the end of the century, the construc-
tion of meaning was viewed as residing with the reader. The idea that the meaning
is in the text has been articulated by Olson (1977); it has been referred to as the
“doctrine of autonomous texts” and was critiqued by Nystrand, Doyle, and Himley
(1986), who included an example that may shed some light on the unique character
of proofs. They pointed out that legal contracts are documents explicitly meant to
be autonomous and independent of context, but nevertheless such documents
cause disputes that courts are asked to settle by calling in experts to clarify the orig-
inal terminology and context. This example supports the idea that independence
of context is inherently unachievable. In contrast, such situations do not occur with
proofs; one does not call in experts to find out what an author meant by, say,
“compact” to establish the truth of a theorem.

Like midcentury structural critics, mathematicians3 seem to treat a proof as
being independent from its author. If something, perhaps the author’s reputation,
should suggest that a proof is probably correct, mathematicians may attempt to
suspend their credulity similar to the way an audience in a classical theater was
supposed to suspend its disbelief arising from unrealistic costumes and surround-
ings. That is, a mathematician may believe a theorem asserted by a well-known
author to be true, but may read the arguments in its proof as if the statement of the
theorem were in question. This predilection for separating authors from proofs
appears to be reflected in the way proofs are written, for example, in the avoidance
of autobiographical comment in published mathematical research. Indeed a general
tendency to impersonalize mathematical texts, especially research papers, has
been noted in analyses of their “natural language” aspects (Burton & Morgan, 2000). 

By the early 1990s, reading and writing were beginning to be seen as different
aspects of one unified process. Similarly, validation and proof construction might
be seen as differing aspects of a single process. As such, they are probably best
learned in a dialectical way. On the one hand, one constructs a proof with an eye
toward ultimately validating it and may often validate parts of it during the
construction process. In fact, the final portion of a proof construction is likely to
be a validation of that proof. On the other hand, proofs are written for idealized
readers, yet there is considerable variation in what actual mathematicians know.
Thus, the validation of a proof is likely to require the construction of subproofs.
That is, each process, validation and proof construction, entails the other.

Validation and proof construction also differ in important respects. Proof
construction is much more like mathematical problem solving, in the sense of

2 The idea that meaning can reside in the text was not new to the 20th century. It appears to go back
at least to the time of Plato and became a major tenet for Martin Luther, who asserted that the meaning
of Scripture was to be found in a deeper reading of the text (Olson, 1977, p. 263).

3 In the context of this article, when mentioning mathematicians or the mathematics community, we
are referring especially to those engaged in research in pure mathematics, that is, in finding and
proving theorems. 
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Schoenfeld (1985), than is validation. Generally constructing a proof requires that
more diverse ideas come to mind at the “right time” than validating it does. Also,
like most reading, validation normally emphasizes proceeding linearly from the
beginning to the end of a written proof—perhaps repeated several times. This linear
order is unlikely to occur in proof construction. Given a theorem to prove, one must
often attend not only to the beginning but also to the end of a proof before devel-
oping the middle. In addition, many proofs have a hierarchical structure based on
subproofs and subconstructions that emerges during the process of proof construc-
tion. Even assuming an idealized prover (one making no mistakes or false starts,
which is an inherently unrealistic assumption), such an emergent hierarchical
structure may lead to generating subarguments in an order very different from that
of the final written text. Indeed, for the working mathematician, a theorem and its
proof sometimes emerge in a dialectical way over a long period of time, with adjust-
ments in one alternating with adjustments in the other.

One distinction between current ideas of reading and that of validation is that
written proofs are still seen as carrying considerable meaning. The proofs them-
selves (as opposed to their readers or authors) are regarded by mathematicians as
the ultimate establishers of the truth of theorems.4 One examines neither the life
and times of a proof’s author nor the sophistication of its readers in judging the truth
of a theorem. Perhaps this is partly because any expanded or altered argument
constructed by a validator is often seen as closely aligned with the original written
proof, so that the original proof is deemed correct (in some general sense) provided
the expanded, validator-generated text is seen by the validator as correct. 

Another distinction between validation and reading in general appears to be the
unusual degree of agreement about the correctness of arguments and the truth of
theorems arising from the validation process. It is our experience that if two math-
ematicians disagree on the correctness of a proof, they will often attempt a joint
validation of it (or a fragment of it). Typically, they will either expand the proof
and agree on the expanded version or, failing that, they will find and agree on a
mistake that cannot be fixed. Occasionally, they may find and correct small errors
that they agree are insignificant and do not affect the overall correctness of the argu-
ment. This ability to reach agreement appears to depend to some extent on the way
that mathematical definitions have come to be treated as more or less unchal-
lengeable in the 20th century.

Today, definitions in mathematics are typically treated as analytic, as reducible
to undefined terms except for foundational considerations, such as the meaning of
set, element, or integer. Such considerations are not major issues for most mathe-
maticians perhaps partly because “normal” foundations yield a mathematics that
can be interpreted as paralleling an intuitive view of the world developed socially

4 This view is supported by the ability of computers to check the correctness of many (more
formally stated) proofs. For example, a large number of proofs have been machine verified after
conversion to the Mizar language and are published online in the Journal of Formalized
Mathematics (see mizar.org/JFM/). 
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from an early age. With both “normal” foundations and an intuitive view one can
consider several objects together, count them, add, measure things, and so on.5 In
contrast with analytic definitions, synthetic definitions6 are the everyday definitions
that are commonly found in dictionaries—they are often ill-specified descriptions
of things that already exist. It may be unclear when such everyday definitions (e.g.,
of democracy) are “complete” or whether attention to all aspects of them is essen-
tial for their proper use. Analytic definitions, however, bring concepts into exis-
tence—the concept (e.g., of group as used in mathematics) is whatever the defin-
ition says it is, nothing more and nothing less. One cannot safely ignore any
aspects of such definitions. There is a sense in which synthetic definitions can be
“wrong,” that is, they can be inaccurate descriptions, but analytic definitions
cannot, since nothing is being described.7

For example, our synthetic definition of validation could be wrong; we might
have inaccurately described what we claimed is a recurring phenomenon. In
contrast, few mathematicians would say the analytic definition of “group” was
wrong—uninteresting, tasteless, lacking applications, or inaccurately remembered
perhaps, but not wrong. Today’s use of analytic definitions renders validations (and
proofs and theorems) very reliable, whereas the earlier use of synthetic definitions
sometimes left them problematic. This situation can be seen in Proofs and
Refutations (Lakatos, 1976) where validations appear inherently unreliable, that
is, unreliable even if there are no errors. There, theorems have proofs and refuta-
tions (counterexamples) apparently due to treating definitions as synthetic and hence
challengeable. Given some literary license, Proofs and Refutations provides a
fairly accurate description of the way that some mathematics developed historically.
It illustrates how definitions and results can coevolve, but the compression of time
involved in its fictional narration, together with its synthetic treatment of defini-
tions, may suggest that validations, proofs, and theorems are far less reliable than
they really are today. 

Roles Played by Validation

Although we are focusing here on the validation abilities and practices of under-
graduates who are in at least their 2nd year of mathematics study, validation

5 However, nothing in principle restricts mathematicians to particular foundations. For example, in
intuitionist/constructivist mathematics, one forgoes mathematical induction and the logical law of the
excluded middle, resulting in a more limited mathematics without proofs by induction or contradic-
tion.

6 Our distinction between analytic and synthetic follows that made by Sierpinska, Defence,
Khatcherian, and Saldanha (1997) in discussing linear algebra. Similar distinctions have been made
by Edwards (1997) using lexical and logical and by Freudenthal (1973) using constructive and descrip-
tive. In considering defining as a mathematical activity in geometry, Rasmussen and Zandieh (2000)
and de Villiers (1998) adopted Freudenthal’s terminology.

7 Analytic definitions can, however, be inspired by regularities in the physical world, in which case
a mathematical structure may be metaphorically represented in a physical situation. Vectors are useful
in navigation because the motion of a sailboat (in part) “works like” vector addition. 
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appears to have a role to play throughout mathematics students’ education, in math-
ematicians’ practice, and in examinations of the nature of mathematics. 

Validation in mathematics education. Holders of bachelor’s degrees in mathe-
matics are normally expected not only to know considerable mathematics content
but also to be able to construct moderately complex proofs and to solve moderately
nonroutine problems. Indeed, one major way that an individual’s mathematical
knowledge of a theorem is sometimes taken to be warranted is by the ability to
“produce” a proof, not in a rote way but in the way a mathematician would produce
it and with understanding (Rodd, 2000). However, constructing or producing
proofs is inextricably linked to the ability to validate them reliably, and a proof that
could not be reliably validated would not provide much of a warrant. Solving moder-
ately nonroutine problems also appears to call for abilities akin to validation,
because one must ascertain whether a proposed solution is correct. In our ongoing
investigation of mathematicians’ views, we are finding that many mathematicians
believe that checking the correctness of solutions ultimately depends on the same
kind of deductive reasoning that is used in proofs and their validations. 

Preservice secondary mathematics education majors and mathematics teachers
also need to be able to validate proofs reliably because school mathematics curricula
are likely to place increasing emphasis on proofs and problem solving (NCTM,
2000). In this regard, Cuoco has observed informally but on the basis of consid-
erable experience that “The best high school teachers are those who have a research-
like experience in mathematics” (2001, p. 171). And in an article in the Mathematics
Teacher, Thompson (1996) suggests teaching indirect proof to high school students
using number-theoretic statements that are similar to, although perhaps somewhat
less complex than, the theorem used with undergraduates in our exploratory study.

Validation in the practice of mathematicians. In addition to being important for
mathematics majors and mathematics teachers, validation appears to play a funda-
mental role in the production of new mathematics. A mathematician’s belief in the
reliability and unproblematic nature of validation provides the assurance needed
to use a theorem in later work without repeatedly checking its correctness. That is,
when a theorem is proved “it stays proved.” This reliability seems to have been a
major contributor to the rapid growth that has characterized 20th-century mathe-
matics. Furthermore, many mathematicians seem to rely mainly on validation,
sometimes carried out individually and sometimes in seminars, to learn new math-
ematics from the published research of others.

Validation within social constructivist (and other) perspectives. Our comments
about the truth of theorems might suggest that we are taking a Platonist perspec-
tive, with its timeless abstract objects and absolute truth independent from human
considerations. However, in this article, we are not favoring any single perspec-
tive on mathematics. Validation is a largely mental process with social origins and
social consequences that bears examining relative to any of several views on the
nature of mathematics. Furthermore, for many mathematicians, the truth of a
theorem appears to be functionally just the existence of an argument that they
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personally (or their presumed surrogates) have validated and deemed to be a proof
of that theorem. In particular, a further investigation of validation might be helpful
in viewing mathematics from a social constructivist perspective—where mathe-
matics is seen as an entirely social, fallible8 phenomenon with the idea of truth
replaced by social agreement and where abstract Platonic objects have no role
(Ernest, 1998). An accurate description of how new mathematics is created is crucial
from this perspective because, in a sense, how it is done is mathematics. We
suspect that, if analyzed together, proofs and validations thereof might in the
future play a larger role within a social constructivist perspective. In such an
analysis, foundations and the kind of logic used could be treated as hidden, that is,
tacitly assumed, premises of theorems. By examining the extent of agreement and
the way it arises from the validation process, one might find a way to see mathe-
matics as locally9 infallible and thereby reconcile this philosophical view with the
more-or-less Platonic working views of most research mathematicians. Indeed,
those working views may have emerged mainly from experience with the reliability
of validation, rather than from any prior philosophical commitment. 

Regardless of one’s perspective on the nature of mathematics or its knowing,
investigations of validation as a form of reading (and of the arguments being
read), with emphasis on what validators do, could inform mathematics education.
Our exploratory study is a start in this direction. We begin with an analysis of some
specific arguments.

A TEXTUAL ANALYSIS OF A THEOREM AND FOUR “PROOFS”

In this section, we analyze a theorem and four undergraduate student-generated
arguments purported to prove it. This analysis will provide concrete grounding for
the above theoretical discussion of argument, proof, and validation, as well as for
the subsequent description of our exploratory study of other undergraduate students’
validations of these same four arguments. It may also expose aspects of these texts
that might otherwise be missed. For example, we point out that certain portions of
the first argument are extraneous and as such have no effect on its correctness as
a proof. Nevertheless, errors in these extraneous portions were noted and thought
to be important by some of our student validators. 

The theorem and the four arguments are treated here primarily as texts, that is,
as independent of specific authors and validators. We will, however, comment in
general on how aspects of these texts may have come to be written or might affect
readers, occasionally illustrating this point with comments from our student valida-
tors. The theorem is true and one of the arguments is a proof of it, whereas three

8 Here, following Ernest (1998), we mean by fallible something more than just the (generally
accepted) human tendency to make mistakes.

9 By locally we mean the mathematics varies according to the foundations and logic used. For
example, a mathematical constructivist would not accept the law of the excluded middle and, conse-
quently, obtain different theorems than a mathematician who did accept the law of the excluded
middle. We are not referring to geographic or social variations.
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are not; that is, as proofs they are incorrect. These characterizations—true, correct,
proof—are widely regarded by mathematicians as global features of texts alone that
can be determined without knowing who the authors or readers are. Mathematicians
say that an argument proves a theorem, not that it proves it for Smith and possibly
not for Jones, who are readers of the argument. This view is held despite the fact
that the texts are the products of human activities, that their physical representa-
tions could not exist without authors, and that validators are required for anyone
to know the theorem is true. Perhaps such assignments of proof, truth, and correct-
ness (or their opposites) to texts is due to mathematicians’ remarkably uniform
agreement on whether these properties are associated with particular texts—at least
at the level of the mathematics discussed here and modulo modest concerns about
style or completeness. 

Texts (and, more generally, language and communication) have been analyzed
from several perspectives: syntactic structure (e.g., Chomsky, 1957), semantic struc-
ture (e.g., Fillmore, 1968; Kintsch, 1974), and language in use (Halliday, 1977;
Vachek, 1966). Relevant ideas emphasizing language in use that are especially
applicable to mathematical texts have been summarized and illustrated by Morgan
(1996). These ideas include such features as the ways reasoning is expressed (e.g.,
because, so), the symmetry or asymmetry of the relationship between authors and
readers, and what texts might suggest about the nature of mathematics. Most of these
features, for example the use of “we” in mathematical texts (Pimm, 1984), have
no bearing on whether an argument proves a theorem; and in our experience, under-
graduate students realize this and concentrate on the underlying mathematical
concepts and inferences. 

Thus, we provide a different kind of textual analysis, one that is a kind of line-
by-line gloss, or elaboration, of the theorem and the four student-generated argu-
ments emphasizing mathematical and logical points that a validator might, or
might not, notice. For example, in considering the statement of the theorem, we
discuss both its logical structure and other, more informal, ways that it could be
written. For the four student-generated arguments, we discuss such matters as the
use of alternative terms (e.g., assume for suppose, divides instead of multiple), the
role of individual sentences in furthering the argument, proper and improper uses
of symbols, implicit assumptions (e.g., that a division of the argument into cases
is exhaustive), the correctness of inferences, computational errors, extraneous
statements, and structural aspects of the argument. Global properties, such as
whether an argument proves the theorem, as opposed to some other theorem, are
also discussed. 

In the following analyses, the names of the four arguments (e.g., “Proof (a)”:
Errors Galore) and the numbering of their parts are for the convenience of the
reader; the names and numbering were not shown to the eight student validators
in our study. The theorem to be proved was this:

THEOREM: For any positive integer n, if n2 is a multiple of 3, then n is a multiple
of 3.
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Both the student authors of the four arguments and the student validators in our
empirical study were given this statement of the theorem. It is a formal statement
in that the variable n, the set to which it refers (the positive integers), and the
universal quantification, any, are explicitly stated, and the conditional is expressed
in its most common form, if . . . , then. However, other, less formal statements of
this theorem convey the same logical information; their equivalence can be estab-
lished using logic and little or no additional mathematical content. Often, theorems
that undergraduate students at this level consider are stated in a less formal way.
For example, one informal statement of this theorem is A positive integer is a
multiple of 3 whenever its square is. 

Undergraduate students similar to the ones in our empirical study appear to have
considerable difficulty interpreting informal statements of theorems and converting
them to formal ones (Selden & Selden, 1995). In our experience, formal statements
appear to be the ones most easily interpreted in validations; they correspond to what
we have called proof frameworks. These consist of the beginning and end of a
proof—the part that can be written without knowing the meanings of all of the math-
ematical terms and from which the theorem can be reconstructed. It is an under-
standing (usually tacit) of the relationship between statements of theorems and their
proof frameworks that allows validators to decide if an argument proves the theorem
at hand as opposed to some other theorem. A proof framework10 for this theorem is
this: PROOF. Let n be a positive integer and suppose n2 is a multiple of 3. . . . Then
n is a multiple of 3. Often the introduction of a variable, for example, “Let n be a
positive integer,” is omitted but understood. This omission usually occurs when the
variable appears in the statement of the theorem, as it does here. Our earlier work
(Selden & Selden, 1995) suggests that, among the various possible ways to state a
theorem, student validators should find the more formal statement used here the
easiest to correctly connect with arguments purporting to prove it. 

In what follows, we state each student-generated argument verbatim and then
give our line-by-line analysis of it.

“Proof (a)”: Errors Galore 

PROOF. Assume that n2 is an odd positive integer that is divisible by 3. That is
n2 = (3n +1)2 = 9n2+ 6n +1 = 3n(n + 2) + 1. Therefore, n2 is divisible by 3. Assume
that n2 is even and a multiple of 3. That is, n2 = (3n)2 = 9n2 = 3n(3n). Therefore,
n2 is a multiple of 3. If we factor n2 = 9n2, we get 3n(3n); which means that n is a
multiple of 3. ■

Analysis of “Proof (a)”

[1] Assume that n2 is an odd positive integer that is divisible by 3. This part of
the argument is not wrong. In this context one can take assume to mean suppose,

10 Proof frameworks are often more complex than this. For examples from calculus and semigroup
theory, see Selden and Selden (1995, pp. 129–130). 
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and an author of a proof can suppose any reasonable non-selfcontradictory state-
ment which might aid the progress of the argument. But, as some of our student
validators noted, this division into odd and even cases is a peculiar way to struc-
ture a proof of this particular theorem. It is peculiar because odd and even appear
to be unrelated to multiples of 3. 

That the phrase “n2 is divisible by 3” is an equivalent way of saying “n2 is a
multiple of 3” is something a validator would need to assent to (by noting that the
definitions of divisibility and multiple are mathematically equivalent). One student
validator, whom we refer to in this article as SW, briefly noted (and assented to)
the fact that “divisible by 3” was used here; subsequently, in the even case,
“multiple of 3” was used. 

[2] That is n2 = (3n + 1)2 = 9n2 + 6n + 1 = 3n(n + 2) + 1. There are four errors
here. First, the assumption of oddness was about n2, not n, to which it is apparently
being applied (i.e., n = 3n + 1). Second, n is being used in two places with two
different meanings within one equation; in effect, the author is mistakenly asserting
that n = 3n + 1. In the genre of mathematical proofs, it is not permissible to let the
same symbol represent two different numbers except across independent subproofs.
Doing so would be very likely to cause validators confusion. Indeed, student ST
remarked that “all those n’s trying to equal each other” misled her. Third, an odd
integer n can be represented as n = 2m + 1, not as 3m + 1, where m is a different
integer from n. Fourth, the last equation is incorrect; 3n times n yields 3n2, not 9n2. 

We would like to comment further on the author’s apparent idea that 3n + 1 can
represent a general odd number. We doubt that this idea indicates a more-or-less
fixed misconception in the author’s knowledge base, but rather suspect it is an incor-
rect, partial recollection of the idea that 2n + 1 is odd for integer values of n. There
appears to be a more subtle lack in the author’s knowledge, and we will offer a
conjecture of its nature and how it occurs. Students of mathematics probably recog-
nize (mostly tacitly) many kinds of problems and tasks, and each kind may be asso-
ciated with many other ideas, forming a mental structure like a concept image (Tall
& Vinner, 1981) for that problem or task—what we have called a problem-situa-
tion image. When a kind of problem or task is recognized, an associated problem-
situation image may be activated (brought to mind) or partly activated (Baddeley,
1995). In particular, accomplished students might associate the task of representing
a general odd number with a feeling of caution about getting the representation right.
As they execute the task, this feeling of caution may engender checking. In the case
at hand, that might mean substituting some numbers for n: substituting 1 for n (in
3n + 1) yields 4 and indicates that 3n + 1 need not be odd. We suspect that the author’s
problem-situation image(s) for this task did not include an appropriate feeling of
caution. A mechanism for bringing something to mind similar to the one sketched
here, concerning how to start solving a recognized kind of problem, has been more
fully described in Selden, Selden, Hauk, & Mason (2000).

[3] Therefore, n2 is divisible by 3. It was assumed in [1] that n2 is divisible by 3.
Thus, this statement cannot be wrong despite the intervening errors in [2]; however,
it cannot be of use either. Furthermore, this statement completes one of two inde-
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pendent subproofs, one for n2 odd and one for n2 even, and should have ended with
n as a multiple of 3, not n2. 

The errors in [2] might be called extraneous errors. Because they do not affect
the correctness of [3], they cannot affect whether or not the argument is a proof.
Such errors are nevertheless undesirable because they can make arguments
confusing and more difficult to validate. In our empirical study, most student
validators spent considerable time trying to decipher [2], making comments like
“3n + 1 doesn’t make sense [for odd],” but did not seem to notice its irrelevance. 

[4] Assume that n2 is even and a multiple of 3. This assumption is an appropriate
beginning of the second independent subproof (case). However, as already noted
under [1], this division into cases, although not wrong, is unlikely to be useful. 

[5] That is n2 = (3n)2 = 9n2 = 3n(3n). In the first equation n2 = (3n)2, it appears
that the assumption that n2 is a multiple of 3 is incorrectly applied to n instead of
n2. Also, in the implicit equation n = 3n, once again the right-hand n does not have
the same meaning as the left-hand n. To indicate that n is a multiple of 3, one repre-
sents n as 3m, where m is another positive integer. The second and third equations
are correct. 

[6] Therefore, n2 is a multiple of 3. This conclusion is not incorrect; it does follow
from [5] (if one replaces all but the first “n” with “m’s” ). But it also just repeats
the assumption in [4], which is not likely to be useful. 

[7] If we factor n2 = 9n2, we get 3n(3n). Here the author appears to be attempting
to restate information from [5], which could not introduce any new errors. Since
the word “factor” refers to expressions, not equations, we take it that [7] is a short-
ened form of “Now n2 = 9n2, and if we factor 9n2, we get 3n(3n).” 

[8] which means that n is a multiple of 3. ■ This inference from [7] is not correct
even if we change 3n(3n) to 3m(3m). To conclude that n is a multiple of 3, one would
expect to see 3 as a factor of n, not as a factor of n2. The symbol “■ ” is one of those
customarily used to indicate the end of a proof.

In summary, this argument is not a proof. It consists of two independent sub-
arguments each of which should end with “n is a multiple of 3” or its equivalent,
“n is divisible by 3.” However, the odd case did not end this way, and the even case
made this claim but did not properly justify it. It is left implicit that the two cases
are exhaustive, that is, that every integer is either even or odd, but it is customary
to leave such a well-known fact implicit. 

We would like to mention two kinds of global errors that this argument does
not contain. First, although the argument has a high density of errors, they are
not what one might call mathematically syntactical errors (Selden & Selden,
1987). The mathematical terms and symbols fit together in a meaningful way (i.e.,
one can judge whether each individual statement is correct or incorrect). Second,
the two subarguments really are independent. Occasionally, one finds argu-
ments in which an inference in one subargument improperly depends on infor-
mation from inside another supposedly independent subargument, and that error
did not occur here. 
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Last, we have taken this argument at face value; that is, we have assumed that
the author meant to write a proof and had some more-or-less clear (although incor-
rect) conception of how the argument would proceed. However, because the
student author submitted this “proof” as part of a take-home test, it is possible that
he or she was merely seeking some (partial) credit and was thus working in what
Vinner (1997) has called a pseudoconceptual mode,11 mimicking some previously
encountered argument about multiples of 2. One possible similar argument might
have been the following proof of the statement: For any integer n, n2 is a multiple
of 2 if and only if n is a multiple of 2. 

PROOF. If n is odd, then n2 = (2k + 1)2 = 4k2 + 4k+1 = 2(2k2 + 2k) + 1, which
is odd. Therefore, if n2 is a multiple of 2, then n is a multiple of 2. Now, if n is
a multiple of 2, that is, if n is even, then n2 = (2k)2 = 4k2 = 2(2k2), which is a
multiple of 2. ■

“Proof (b)”: The Real Thing

PROOF. Suppose to the contrary that n is not a multiple of 3. We will let 3k be a
positive integer that is a multiple of 3, so that 3k + 1 and 3k + 2 are integers that
are not multiples of 3. Now n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1. Since
3(3k2 + 2k) is a multiple of 3, 3(3k2 + 2k) + 1 is not. Now we will do the other possi-
bility, 3k + 2. So, n2 = (3k + 2) 2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 is not a
multiple of 3. Because n2 is not a multiple of 3, we have a contradiction. ■

Analysis of “Proof (b)”

[1] Suppose to the contrary that n is not a multiple of 3. The phrase “to the
contrary” may indicate that this argument is meant to be a proof by contradiction.
It might also indicate that the argument will prove the contrapositive of the theorem,
that is, that the negation of the conclusion implies the negation of the hypothesis,
which is logically equivalent to the theorem. The student author may not be clear
about the distinction. If the proof is really by contradiction, it is implicit that n repre-
sents a positive integer and n2 is assumed to be a multiple of 3. The argument can
end with any contradiction, but that contradiction could be to the hypothesis, that
is, n2 is not a multiple of 3. If the contrapositive of the theorem is being proved, it
is implicit only that n represents a positive integer, and the argument must end with
n2 is not a multiple of 3. For both methods of proof it is appropriate to suppose the
negation of the conclusion, that is, n is not a multiple of 3, as is done here. 

[2] We will let 3k be a positive integer that is a multiple of 3, so that 3k + 1 and
3k + 2 are integers that are not multiples of 3. This representation and division into
cases correctly follows from the fact that any positive integer can be represented
as exactly one of 3k, 3k + 1, or 3k + 2 for some positive integer k. It is implicit that

11 Indeed, one student validator, ST, seems to have concluded that the author of “Proof (a)” was
working pseudoconceptually or at least had no clear conception of a proof. After finding several errors
and noticing that certain parts did not make sense, she stated, “Basically, it’s a bunch of nothing.”
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the positive integer being represented is n and that, according to [1], n cannot equal
3k; thus, n must equal 3k + 1 or 3k + 2. A validator would need to check that this
statement is correct. To comprehend [2], it would not be essential to see the
implicit representation of n as one of the three expressions, but it would be in order
to comprehend [3].

[3] Now n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1. This statement begins
the first of two independent, “parallel” subarguments. Assuming that n = 3k + 1,
all of the equations are correct. 

[4] Since 3(3k2 + 2k) is a multiple of 3, 3(3k2 + 2k) + 1 is not. It follows from
considerations similar to those under [2] that only every third positive integer is a
multiple of 3. So if an integer is a multiple of 3, then one more than it is not. A
validator would need to assent to this. It is then implicit in [4] that 3(3k2 + 2k) + 1
is the n2 mentioned in [3]. A validator would not have to notice this to compre-
hend [4], but would need to see it to comprehend [5].

By a validator assenting to something, in this case that 3(3k2 + 2k) + 1 is not a
multiple of 3, we mean that the validator is conscious of agreeing with it. This
conscious agreement may be fleeting and not focused on, but it is distinct from mere
passive reading in inner speech. It may be the only conscious phenomenon asso-
ciated with a fairly complex inference. In this case, the validator must have some
knowledge of the relationship between multiples and multiples plus one to see that
3(3k2 + 2k) + 1 fits that relationship and infer that 3(3k2 + 2k) + 1 is not a multiple
of 3. While the assenting is conscious, the inference leading to it may occur very
quickly and outside of consciousness. It would be a validation error for a validator
to passively read, rather than assent to or reject, a portion of a proof, even if the
proof were correct and the validator agreed that it was correct. Such a validator
would not have tested that portion of the proof and could not really know that the
proof was correct.

[5] Now we will do the other possibility, 3k + 2. This assertion indicates that the
first subargument is finished and that the second subargument is beginning with
the correct, but implicit, assumption that n = 3k + 2.

[6] So, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 is not a multiple of
3. All of the equations are correct. The final assertion depends on the same infor-
mation used to justify [4] and should be assented to by a validator. This statement
concludes the second subargument.

[7] Because n2 is not a multiple of 3, we have a contradiction. ■ This statement
is correct, assuming that it is a proof by contradiction. The implicit reasoning is
that, according to [2], one of the two subarguments (cases) must apply to n2.
Because both subarguments yield that n2 is not a multiple of 3, there is a contra-
diction to the implicit assumption that n2 is a multiple of 3. If this argument were
treated as a proof of the contrapositive, it would be peculiar to mention “the
contrary” in [1]. However, under that interpretation, this final step could be omitted
entirely or replaced by “Thus, in either case, n2 is not a multiple of 3.” We regard
this argument as a proof of the theorem, although it might be written more clearly.
If the role of n2 and the division into two independent subarguments (cases) were
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made explicit rather than implicit in [2], [3], [4], [5], and [6], this proof would be
less confusing for a validator, especially an inexperienced one. 

“Proof (c)”: The Gap

PROOF. Let n be an integer such that n2 = 3x where x is an integer. Then 3| n2.
Since n2 = 3x, nn = 3x. Thus, 3|n. Therefore if n2 is a multiple of 3, then n is a
multiple of 3. ■

Analysis of “Proof (c)”

[1] Let n be an integer such that n2 = 3x where x is an integer. Except for the
omission of the word “positive,” this representation is an appropriate way to begin
a proof of this theorem. However, it is very abbreviated, and for mathematics at
this level, the argument would be more clearly linked to the theorem by supposing
that n2 is a multiple of 3 before claiming n2 = 3x, where x is an integer. 

[2] Then 3| n2. This inference is correct, but not likely to be useful. It is read “3
divides n2” and is just another way of saying n2 = 3x, where x is an integer, which
was the supposition in [1]. 

[3] Since n2 = 3x, nn = 3x. The inference is not wrong, but it is still just the infor-
mation of [1] written in a slightly different form. 

[4] Thus, 3|n. Read “3 divides n,” this statement means that n is a multiple of 3.
Nothing in [1], [2], or [3] indicates why [4] should be true. Indeed, to fill the gap
would amount to proving the theorem. 

[5] Therefore if n2 is a multiple of 3, then n is a multiple of 3. ■ This conclusion
is just a restatement of the theorem. The argument really ends with [4]. If the
reasoning from [1] to [4] were correct (which it is not), [5] would be true. In the
genre of mathematical proofs at and beyond the collegiate level, a theorem is not
normally restated at the end of an argument purporting to prove it. However, this
sort of summary sentence can be found in sample proofs in transition course text-
books, especially when an argument for the contrapositive has been given
(Velleman, 1994). 

“Proof (d)”: The Converse

PROOF. Let n be a positive integer such that n2 is a multiple of 3. Then n = 3m
where m ∈ Z+. So n2= (3m)2 = 9m2 = 3(3m2). This breaks down into 3m times 3m
which shows that m is a multiple of 3. ■

Analysis of “Proof (d)”

[1] Let n be a positive integer such that n2 is a multiple of 3. This representation
and supposition is an appropriate way to begin proving the theorem. Beginning this
way, the theorem would be proved if the argument led to n is a multiple of 3.

[2] Then n = 3m where m ∈ Z+. Here Z+ represents the set of positive integers.
Statement [2] is incorrect. The meaning of multiple and [1] yields n2 = 3m, where
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m ∈ Z+, but [2] does not follow directly from [1] (except by an application of the
theorem being proved).

[3] So n2 = (3m)2 = 9m2 = 3(3m2). All three equations are correct, given [2].
[4] This breaks down into 3m times 3m This statement follows from [3]. 
[5] which shows that m is a multiple of 3.■ This inference does not follow from

[4] or anything else in the argument. The author probably “meant” that n2, rather
than m, is a multiple of 3. When changed, [3] yields that n2, not n, is a multiple of
3, which means the converse has been proved (by [2], [3], [4], and the altered [5]). 

All four of the undergraduate student-generated arguments above correctly
use a logical and rhetorical device that is particularly common in the genre of math-
ematical proofs. That is, to prove a theorem claiming some property about all
(each) of the elements in some set, for example, about all positive integers, it is
sufficient to argue about a particular, but arbitrary, element of the set. In the
language of secondary school algebra, one might say that the argument is made
about an unknown constant rather than a variable. Typically, the element is
named very early in the argument to avoid the possibility of inadvertently compro-
mising its arbitrariness. At the conclusion of the argument, it is implicit that
whichever element of the set might be of interest, the argument could have been
about that element. Although this rhetorical device is simple, it is very powerful
and simplifies the logic required of validators, thereby perhaps avoiding some
errors. In the historical development of calculus, this device together with care-
fully formulated, analytic definitions (like the epsilon-delta definition of limit)
allowed theorems about motion (for centuries a difficult concept) and, in partic-
ular, about rate of change, to have proofs in which nothing changes and motion
is not mentioned.

The textual analysis above differs from a description of actual validations. It
provides background information about the theorem and the four “proofs” useful
for understanding validations of them. However, it does not include descriptions
of actual validators’ mental processes, abilities, missteps, and so on, in their
attempts to determine which of the arguments are really proofs. We now describe
how some undergraduate mathematics and mathematics education majors judged
whether these same four arguments were proofs.

THE EXPLORATORY STUDY OF VALIDATION

Eight undergraduates (four secondary education mathematics majors and four
mathematics majors) at a comprehensive state university in the United States were
interviewed individually outside of class in the 4th and 5th weeks of a 15-week
“bridge” or “transition to proofs” course. Although this course is normally
studied in the 2nd or 3rd year at university, three of the eight students were in
their 4th year. The eight formed the entire cohort of this learning-to-prove-theo-
rems course required of all mathematics and secondary mathematics education
majors at the institution. The goal of such courses, offered by many U.S. math-
ematics departments, is to help students make the transition from an earlier
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traditional calculus sequence to later, more proof-based courses, such as abstract
algebra and real analysis. They typically cover various aspects of logic; a little
about sets, relations, and functions; proof by mathematical induction; and perhaps
a few additional topics, such as elementary number theory or introductory graph
theory, about which students are asked to prove theorems. The emphasis is on
having students learn to make their own proofs as opposed to the amount of math-
ematics covered. Kurtz’s Foundations of Abstract Mathematics (1992), a typical
textbook, was used in the course. In addition, students were to spend much of
their class time, in pairs, proving theorems at the chalkboard. All eight students
had taken single-variable calculus; some had also taken multivariable calculus,
differential equations, matrix algebra, or discrete structures. One student (referred
to as BH) was concurrently enrolled in a dual-listed graduate/undergraduate
number theory course.

The Structure of the Interviews

Each student was interviewed individually for about 1 hour in a semistructured
manner using an interview script consisting of four phases.

Phase 1. During this phase, which could be termed the warm-up phase, each
student was given a brief fact sheet (see Appendix 1) and this written statement:
For any positive integer n, if n2 is divisible by 3, then n is divisible by 3. They were
asked to explain in their own words what the statement said, to give some exam-
ples of it, and to decide whether it was true and how they would know. Finally,
they were asked to give a proof of the statement if they could. Two successfully
did so. After some time had elapsed, those who could not complete a proof were
advised that they need not continue, because proving the theorem was not the point
of the interview; rather, they were to judge the correctness of other students’
“proofs” of the statement. Students were told that since some of the “proofs” they
would see might seem a bit unusual, having attempted a proof would help them
appreciate the variety of approaches taken.

Phase 2. Each student was shown the four “proofs,” one after the other, and asked
to think out loud as they read each one and decided whether it was, or was not, a
proof. If it was not a proof, they were to point out which part(s) were problematic.
If they could, they were to say where, or in what ways, the purported proof had gone
wrong. They were also informed that these “proofs” had been submitted as part of
a take-home test in a previous year by transition-course students like themselves.
The four “proofs” were presented to the students as they appear in Appendix 2.

They were told to take as long as they liked and seemed not to be hurried. For
example, one student (JB) spent 15 minutes reading and rereading the first “proof”
before deciding (incorrectly) that it was indeed a proof, except for a minor nota-
tional error. Several of the students did not want to commit themselves and were
allowed during this phase to say that they were unsure whether a given argument
was, or was not, a proof.
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Phase 3. Having seen and thought about all four “proofs” one after the other, the
students were then given an opportunity to reread them all together and rethink their
earlier decisions with an opportunity to change their minds, and some did. At the
end of this phase, they were not allowed to say that they were unsure, but were asked
to make a decision and declare whether each argument was, or was not, a proof.

Phase 4. Finally, the students were asked eight general questions about proofs
and how they read, understand, and validate proofs. 

The data collected consisted of the audiotaped interviews, the interviewer’s
notes, and the students’ work on the “proof” sheets provided during the interview.
(See Appendix 2 for details.)

The Conduct of the Interviews

The interviews were treated as “teaching interviews.” Not only was the inter-
viewer the instructor for the transition course that the students were taking, it also
seemed appropriate and opportune to the interviewer-instructor to answer their
implicit and explicit questions. The interviewer would respond generally about the
structure or style of written proofs but never indicate whether the four specific argu-
ments that the students were examining were actually proofs of the theorem. This
procedure kept the tone of the interviews as relaxed and conversational as possible.

In addition, as the interviews proceeded, the students sometimes seemed to
need encouragement to keep reading and thinking about the four “proofs.” Thus,
to obtain as much information as possible, the interviewer intermittently made
comments and answered or asked questions to keep students on task. All the
students seemed to take the interviews seriously and seemed genuinely engaged
with the task at hand. 

Informing students of mathematical practices and norms. Keeping the students
on task occasionally had the effect of suggesting to them practices and norms of
the wider mathematics community. In the following excerpt, student MM has just
begun to consider “Proof (a)” for the first time. She examines it silently for 1 min-
ute, then asks whether another 3 should be in the expression 3n(n + 2) + 1. With
encouragement from the interviewer, she makes her suggested correction, writing
9n2 + 6n + 1 = 3n(3n + 2) + 1. She then continues reading silently for an addi-
tional 30 seconds. Then, the following interchange occurs.

MM. I don’t like this one ’cause it’s confusing [laughs].

I. OK, you don’t like it. In addition to being confusing and not liking it–which is a very
good reason not to like it and which is why I’m going to insist you all [meaning the
students in the transition class] write nonconfusing proofs [both laugh]. OK? 

MM. There’s an error.
I: Ahh, there’s an error there. . . . Let’s pretend the student meant to write that [indi-

cating MM’s correction 9n2 + 6n + 1 = 3n(3n + 2) + 1]. . . .
MM: OK.
I: . . . and see if that makes a proof.
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The norm12 being suggested here is that stylistic clarity (i.e., writing proofs in a
nonconfusing way) is valued, but that lack of clarity in itself does not make an argu-
ment incorrect. In addition, it is implied through the overt act of correcting an alge-
braic error that small errors in written proofs (e.g., those similar to misprints) can
be fixed during the validation process.

In the following example, student ST is in the midst of considering “Proof (a).” 

ST: They also have n2 = (3n)2. They use the same variable for everything so it kind of
throws (?) everything together.
[ST and the interviewer agree to fix this by writing n2 = (3m)2.]

ST: I think that’s what, . . . that’s what, . . . threw me off at the beginning because I was
looking at all those n’s trying to equal each other.

I: That’s really hard, isn’t it? There’s a principle in there that you don’t, uh, use the same
letter to mean two different things in one proof. You can finish a proof—and then
the idea is finished—and then use the letter to mean something new, but that’s
because there’s a break in the ideas.

In this excerpt, ST comments on the confusion caused by using n in several
different ways. The interviewer corroborates this and gives an additional bit of infor-
mation regarding when it is permissible to use the same letter, such as n, again. This,
and other similar comments made during the interviews, had the effect of introducing
these students to some stylistic features of written proofs at the same time as the
students saw (for themselves) a rationale for those bits of mathematical practice.

Further reflection encouraged by the interviewer’s remarks. All students were
kept on task by the interviewer’s deliberate attempts to probe their thinking. We
illustrate this procedure with comments from KC, a particularly expressive and
responsive student. She told the interviewer that she ordinarily likes to read proofs
aloud to herself, that is, she had no problem converting inner speech to regular
speech during the interview. Below is a condensed version of her first attempt at
validating “Proof (d).” It proceeded along a tortuous sequence of meandering
stages, numbered 1–8 below, apparently assisted by the interviewer’s probing
questions. (For the entire transcript, see Appendix 3.)

1. KC reads the entire proof aloud slowly once and remarks that “Proof (d)” looks
a lot like “Proof (a)” and says, “I think that’s a proof.” 

2. On being questioned by the interviewer who is genuinely surprised by this
analogy, she explains something about 3(3m2) and tries to rewrite that portion of
the proof, concentrating on the form she wants to see, “three times some integer.” 

3. After some time, the interviewer asks whether that is good enough for a proof

12 This kind of norm (of the wider mathematical community) is reminiscent of sociomathematical
norms, the negotiation of which has been investigated in classroom settings, for example, at the under-
graduate level by Yackel, Rasmussen, and King (2000). It would be interesting to investigate how such
norms are maintained and, in particular, adopted by novices in the wider mathematical community. The
kinds of discussions associated with these interviews may not occur often enough in university courses
to explain the maintenance of such norms.
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now, and KC comments that her wording may not be right. She and the interviewer
discuss this at some length and agree there are lots of equivalent ways to word
things. 

4. The interviewer then asks whether she has finished, and KC responds with an
explanation, “. . . Let’s see, they showed that m was a multiple of 3 but they didn’t
show n was a multiple of 3.”

5. She tries to substitute back in and then suddenly blurts out, “OK, wait, wait . . . ,”
followed by 30 seconds of intense silent concentration. She then thumps her pencil
twice emphatically on the desk and asserts, “I don’t think that’s a proof.”

6. The interviewer asks why she changed her mind, and KC says, “They showed
that m was a multiple of 3, but they didn’t show n was a multiple of 3.”

7. The interviewer then asks, “Where did that m come from anyhow?” to which
KC responds, “. . . they let n = 3m right up here . . .” [looking back to the begin-
ning of the argument], and notes that they did not start in the right place, that is,
n2 = 3m. 

8. She reiterates, “I don’t think that’s a proof.”

In responding to the interviewer at stages (2), (3), (4), (6), and (7), KC is encour-
aged to reflect further on “Proof (d)” and notices features of the argument that went
undetected earlier. However, it is not easy to conjecture what happened to KC
during the 30 seconds of intense silent concentration at stage (5). Her insight
cannot reasonably be attributed to anything specific that the interviewer did; she
appears to have had something like a genuine “Aha!” experience (Barnes, 2000).

It would be very interesting to know what KC was conscious of during this expe-
rience. We suspect such an experience might be described immediately after its
occurrence, but is often not well remembered later. The interviewer did question
KC immediately about why she changed her mind, but not about the contents of
her conscious experience. To have done so might have considerably altered the
overall validation process. 

Overall Results

On analyzing the data, it became clear that most students made a judgment
regarding the correctness of each “proof” at four different times, namely, at the begin-
ning and at the end of each of two readings (in Phases 2 and 3). These times were
labeled Time 1 through Time 4. All students, except JB, maintained or increased
the number of their correct judgments from Time 1 to Time 4. (See Figure 1, which
displays the changing number of correct judgments by each student across time.)
For example, KC gradually improved from one correct judgment at Time 1 to four
correct judgments at Time 4. This improvement appears to be the result of further
reflection.

Eight students were interviewed regarding the four “proofs,” making a total of
32 person-proof judgments. Table 1 gives the percentage of correct judgments made
at the various times. 
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What happened over time that might have caused students to change their
minds? During the second phase of the interview, between Time 1 and Time 2, the
interviewer asked and answered questions, encouraging the student validators to
reflect further. By the beginning of the third phase of the interview, they had seen
and pondered all four “proofs” and were more experienced. At Time 4, the inter-
viewer would no longer accept “unsure,” and the students made their final judg-
ment for each “proof.”

At Time 1, less than half (46%) of the students’ judgments were correct. This
remarkable fact suggests that given this task on a test, where no one would have
been encouraging them to reflect further, the students would probably have done
about as well by chance.13 They initially made the most correct judgments on
“Proof (b),” with five correctly stating that it was a proof and three being unsure.
They also initially made the fewest correct judgments on “Proof (d),” with only
two making the correct judgment and four incorrectly stating it was a proof. This
difficulty with “Proof (d)” supports our observation below that the students were
primarily checking local details instead of looking for global/structural difficulties.
After the first sentence, “Proof (d)” can be regarded as an argument for the
converse, modulo one notational error. The students also seemed to be relying on
their feelings of understanding in a way that sometimes misled them. Student MM

0
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Figure 1. The number of each student’s correct judgments across time (Time 1 to Time 4) 

Table 1
Percentage and Number of Judgments Over Time

Time 1 Time 2 Time 3 Time 4  

Correct 46% (15) 56% (18) 72% (23) 81% (26)  
Incorrect 25% (8) 28% (9) 22% (7) 18% (6)  
Unsure 28% (9) 16% (5) 6% (2) 0% (0)  

Note. The total number of judgments was 32.

13 Although the students’ ability to determine whether these arguments were proofs appeared to be
very limited, we are not claiming this is unchangeable. Indeed, we saw some evidence of improved judg-
ments even during the course of the interviews and conjecture that the students’ initial lack of ability
was largely due to a lack of appropriate experiences. 
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commented about “Proof (d)” that she “liked it” and could “see it better than the
rest.” Table 2 shows how the aggregated students’ judgments on the four purported
proofs changed over time. The entries represent numbers of students.

Table 2
Changes in the Pattern of Judgments

“Proof (a)” “Proof (b)” “Proof (c)” “Proof (d)”  

Correct 4 3 5 5 5 6 7 8 4 4 6 6 2 5 5 7  
Incorrect 3 4 3 3 0 1 0 0 1 1 1 2 4 3 3 1  
Unsure 1 1 0 0 3 1 1 0 3 3 1 0 2 0 0 0  

Note. Entries give the number of students responding “correct,” “incorrect,” or “unsure” at each of the
four times. For example, under “Proof (a)” for Correct, there were 4, 3, 5, and 5 correct judgments at
Time 1, Time 2, Time 3, and Time 4, respectively.

A clear trend can be seen for “Proof (b)” and “Proof (d)”; when comparing Time
1 with Time 4, all students’ judgments improved or stayed the same. However, the
data for “Proof (a)” and “Proof (c)” are more complex. For example, on “Proof (a)”
the improvement from four correct judgments at Time 1 to five at Time 4 resulted
from two students changing to correct judgments and one student changing to an
incorrect judgment.

In general, the students considerably improved their judgments over time (even
though this was neither the purpose nor the expectation of the interviewer).
Furthermore, this improvement seems largely to have been due to interactions with
the interviewer that somehow enhanced the way that these students used the
experiences and knowledge that they brought to the task. This phenomenon
appears similar to occurrences in the zone of proximal development that were
described by Vygotsky (1978) in studying the sociocognitive development of chil-
dren. It would be interesting to know more about such student-interviewer inter-
actions when the interviewer’s purpose was to enhance a student’s mathematical
practices. For example, small portions of these interviews might be seen as dialec-
tical situations that allowed the interviewer to suggest certain aspects of the prac-
tices and norms of the wider mathematical community. In other portions of the
interviews, a small comment or question apparently induced a student to refocus
his or her attention on another part of the task (i.e., on another part of the argu-
ment being validated). 

What the Students Said as They Carried Out Their Validations

Most of the errors detected were of a local/detailed nature rather than a
global/structural nature. For example, in validating “Proof (a),” five students (JB,
KC, SD, BH, ST) commented on notational errors like n2 = 9n2. Four (KC, SD,
MM, ST) noted that odd/even was not correctly expressed in the symbolism, for
example, 3n + 1 for odd. And two (BH, ST) observed that divisibility by 3 could
not be concluded in the odd case from the expression 3n(n + 2) + 1.
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Three students (KC, RC, MM) queried the interviewer regarding the use of odd
and even cases in “Proof (a),” but they were willing to continue their validation
efforts after mutually agreeing that, although this particular breakdown into cases
might be peculiar, nothing was wrong with it logically. For example, student RC
read “Proof (a)” silently for 1 minute and then the following interchange occurred.

RC: I didn’t. . . . It looks like a proof. The only thing I’m questioning is how can they say
it’s odd or even. Can you do that? [It] would seem that. . . . It seems like it would
take care of both cases. . . . The positive integers. . . . 

I: We were just beginning to talk about that in class. . . . If you feel you want to do some-
thing by cases in a proof, as long as the cases cover everything, it’s OK.

RC: OK.
I: Sometimes like this, they [meaning the odd and even cases] are nonoverlapping. But

they can even be overlapping. It doesn’t hurt to prove something twice as long as the
union of the cases covers everything.

RC: It’s kind of tricky. I would never have thought of that. Whatever’s given me, I try to
prove it.

[RC continues to consider the proof for some time.]
I: OK so, uh, if it’s OK to do odd and even, do you agree with what they’ve done? Is

that a proof? 
RC: It looks like one. [He then examines “Proof (b).”]

Student BH, who had successfully proved the theorem earlier in the interview
after a false start, thought that the conclusion in “Proof (a)” was being assumed in
the even case. That is, she apparently ignored [4] and wrongly interpreted [5] to
include the implicit supposition that n = 3m. On reading further, she concluded that
the converse had been proved. She stated “ . . . [they’re] doing it the way I wanted
to,” suggesting that her initial failed attempt to prove the result influenced her to
incorrectly see her own misstep in the argument. Only BH and ST had succeeded
in proving the theorem earlier in the interview; they were also the only students
who correctly stated that the converse had been shown in “Proof (d).” These sorts
of structural comments were rare. Thus, as one might expect, the experience of
proving a theorem can have positive effects on subsequent validations of other argu-
ments for the same theorem. And, perhaps counterintuitively, such earlier experi-
ences can sometimes have negative effects on validations, as described above when
BH seems to have been more influenced by an early false start on a proof than by
her later success.

What the Students Said They Did When Reading Proofs 

Most students seemed content to attempt a careful line-by-line check to see
whether each mathematical assertion followed from previous assertions. When
queried (in Phase 4) about what they do when reading a proof, the students said
they did many things: They made sure all steps were logical and looked to see that
everything was supported. They checked the computations and whether anything
was left out. They said, “[I] take it step by step; [I] like to read it real slow” and
“I go through more than once. . . . See if from step to step, it follows.” Several
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students said that they would try to go through a proof with an example, but few
gave evidence of doing so during their validations.

KC, whose validation of “Proof (d)” was paraphrased above, said, “[It’s] not like
reading a newspaper; more understanding is involved. I go through more than once.
Something will come out at me that didn’t the first time.” When queried about how
she tells that a proof is not correct, KC explained, “because they didn’t show it and
they didn’t say it [meaning the conclusion].” She added, “Plus I expect to see the
steps that say, that lead you up to n is . . . or whatever.” She further explained, “And
also if you find something that goes, . . . that, that, . . . that is definitely wrong in
the steps above. Like the one up here [pointing to one of the four “proofs”]. So that’s
not . . . [a proof].” Given KC’s limited experience with validating proofs, other than
those in textbooks, this final remark about finding something definitely wrong in
just one step seems quite reasonable. However, in the odd case of “Proof (a),” there
are four mistakes that are extraneous to obtaining n2 is divisible by 3 from itself.
(See the textual analysis above.) In general, the students’ self-descriptions sounded
thorough and competent. 

Making Sense as a Criterion for Determining Correctness of Proofs

In general, for these students, a feeling of understanding or not—that is, of making
sense or not—seemed to be an important criterion when making a judgment about
the correctness of these four “proofs.” For them, it seemed a question of whether
the written text, together with their efforts at comprehension, engendered a personal
feeling of understanding. For example, after initially reading through “Proof (a)”
slowly, JB concentrated on the last statement, n2 = 9n2, reiterating several times
that it did not make sense. Then he said, “I’m saying I don’t think this is a proof
because it [n2 = 9n2] doesn’t make sense.” After the interviewer suggested that
perhaps the author had meant to write n2 = 9m2, JB concurred and continued his
validation attempt for some time, finally deciding incorrectly it was a proof “after
variable renaming.” Although the judgment was incorrect, it is clear that JB’s main
focus was on making sense, perhaps residing in the form of some conscious, but
unarticulated, feeling of understanding. 

When KC first came to the gap in “Proof (c),” she reread the argument several
times and tried to expand on it (on paper). When she could not, she explained her
thinking to the interviewer, as follows.

KC: Maybe I just don’t understand the concept of . . . I . . . , I understand 3 divides n2.
I understand all that stuff, but I don’t . . . I don’t . . . I understand getting from here
. . . [from] there [n2 = 3x] to there [nn = 3x], but from here [nn = 3x] to here [3|n] . . . .

I: Uh, huh. So when you tried to fill it out you couldn’t basically?

[KC agrees and says she could probably give an example, but that is not a proof.]

KC: I still don’t think that, . . . that is . . . [a proof]. I don’t know. I don’t think that is . . .
[a proof].

I: So that’s not a proof?

KC: But I may decide later . . . [reserving the right to rethink the argument].



27Annie Selden and John Selden

At this point, a sense of not understanding makes KC cautious about whether
the argument is a proof. Another student, MM, in summing up her final judgments,
wrote under “Proof (c)” that it was not a proof and “I don’t understand the
reasoning.” Then, under “Proof (d),” she wrote an asterisk followed by “Proof—
this one is the easiest for me to understand.” However, this argument is not a proof
of the theorem, but rather a proof of its converse. In her case, a feeling of under-
standing did not mean the argument was correctly linked (via a proof framework)
to the theorem. 

The students also indicated (in Phase 4) that they usually read proofs for under-
standing. Student BH, who was taking number theory concurrently, said “It’s got
to be true but got to make sense. Last night I was lost 20 minutes in number theory.
I found somebody’s thesis in the library. Just one step [was missing]. . . . ” This
comment suggests that the feeling of making sense, or of understanding, is a
matter of considerable importance to BH—important enough to search through
theses in the library. Student KC, commenting on her previous calculus textbook,
said, “Some of the proofs in the calc book were ‘off the wall.’ I had to sit and write
them up; [I had to] go home and see where the things were coming from.”

For these students, understanding was required of them when reading proofs.
When given a proof by an instructor or in a textbook, they quite reasonably
assumed that it was correct. Indeed, they probably had very little previous prac-
tice in deciding whether “proofs” are correct, that is, in validation. Thus, they appear
to have depended on their wider personal experiences of understanding, which did
not always serve them well in validation. This unreliability may occur because a
feeling of understanding itself and one’s tendency to rely on it are influenced and
sharpened by experiences in validation—experiences these students largely lacked.
Also, although the students spoke of understanding quite freely, they apparently
did not always mean more or less the same thing by it. Their responses to ques-
tions in Phase 4, together with their validation attempts, suggest that they had a range
of meanings for understanding from verifying short computations in a text using
their own procedural knowledge to a feeling of understanding associated with a
gestalt view of an entire argument. Perhaps this variation is due to a general diffi-
culty in negotiating meaning for concepts such as understanding, which do not refer
to underlying physical objects (e.g., cars or basketballs).

CONCLUSIONS AND IMPLICATIONS FOR TEACHING

What students say about how they read proofs seems to be a poor indicator of
whether they can actually validate proofs with reasonable reliability. They tend to
“talk a good line.” They say that they check proofs step by step, follow arguments
logically, generate examples, and make sure the ideas in a proof make sense.
However, their first reading judgments (see Table 1, Time 1) yield no better than
chance results, suggesting that they cannot reliably implement their intentions. 

On the other hand, even without explicit instruction, the reflection and recon-
sideration engendered by the interview process eventually yielded 81% correct
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judgments (see Table 1, Time 4). This improvement suggests that instruction in
validation could be effective. The interviews also suggest that students should be
encouraged to attend more to possible global/structural errors, for example, proving
the converse of the statement. In particular, students need to devote attention to what
we have called proof frameworks (Selden & Selden, 1995), a topic that we suspect
is relatively easy to master because it does not depend on a deep understanding of
the mathematical concepts involved in the statement of a theorem.

Validation of proofs is part of the implicit curriculum, but it is a largely invis-
ible mental process. Few university teachers try to teach it explicitly, although some
may admonish students to “read with pencil and paper in hand” or the like. This
advice is at best descriptive, but certainly not usefully prescriptive, so students tend
to interpret such vague directions idiosyncratically, spotting mainly local notational
and computational difficulties. They appear to be substituting their feeling of
overall understanding, plus a focus on surface features, for validation. We suspect
such a feeling of overall understanding is useful and reliable for mathematicians
who will have included in it their notion of correctness, but is often unreliable and
misleading for students.

“Bridge” courses in the United States tend to give students some idea of the
logical structure of theorems, covering such topics as direct and indirect proofs and
indicating that the converse is not logically equivalent to a theorem. These courses
also cover some logic, set theory, functions, and assorted other topics. Often, the
material on logic precedes student work with proofs, and perhaps for that reason,
tends to be presented in an abstract, decontextualized way that may not be very
effective. Textbooks for such courses have from none to just a few to a moderate
number of exercises that involve the critiquing of “proofs.” The directions vary;
students may be asked to (a) find the fallacy in a “proof”; (b) tell whether a “proof”
is correct; (c) grade a “proof,” A for correct, C for partially correct, or F; or (d) eval-
uate both a “proof” and a “counterexample.” Most of these “proofs” have been care-
fully constructed by textbook authors so there is just one error to detect. For
example, in Smith, Eggen, and St. Andre (1990; p. 39) we find the following “proof
to grade”:

Suppose m is an integer.
Claim. If m2 is odd, then m is odd.
“Proof.” Assume m is odd. Then m = 2k + 1 for some integer k. Therefore, m2

= (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, which is odd. Therefore, if m2 is odd,
then m is odd. ■

The “proof” above does not present a student with anywhere near the complexity
or kinds of difficulties seen in our student-generated arguments.14 Consideration of
such contrived “proofs” is no doubt valuable practice for those beginning to learn
validation. However, we suggest that additional practice in validating such actual

14 The Smith, Eggen, and St. Andre textbook (1990), and subsequent editions thereof, does contain
more complex “proofs to grade,” however, many transition course textbooks do not. 
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student “proofs” as those in this study, together with small-group discussion, could
be beneficial, especially for preservice secondary teachers who one day may need
to judge the correctness of their own students’ proofs or novel solutions to problems.

FUTURE RESEARCH QUESTIONS

One might consider the students in our empirical study as novices at validation
and ask what experts—advanced undergraduates, graduate students, and mathe-
maticians—would do. The students in our study could not reliably validate rela-
tively short purported proofs of a simple theorem, but mathematicians can. At some
point, therefore, mathematics students learn to do so. When does this happen, and
through what kinds of experiences is the process of validation learned? 

Proofs of the theorem used in this study do not seem to have a very complex
structure. What would happen if one considered a theorem whose proof was
inherently more complex or where the potential for more subtle errors was greater?
Students often have views of proof (Harel & Sowder, 1998) that differ markedly
from mathematicians’ views. How would such views be influenced by attempts
to increase students’ ability to validate proofs?

How does the ability to validate proofs relate to the ability to construct them?
How does it relate to a knowledge of logic, especially when taught in the rather
formal, symbolic, decontextualized way that is found in many transition courses?
What are students’ perceived and actual criteria for correctness, for example,
that they agree the calculations are legitimate, that they can follow the argument
line by line, that they can see why the argument begins where it does, and so
on? The students in this study were sometimes misled by a feeling of overall
understanding, whereas mathematicians can use such feelings beneficially.
What accounts for the difference? How does one learn to have a feeling at the
“right time” and not otherwise? What parts of validations consist of reading plus
assent, without additional conscious experiences, such as inner speech or vision
or feeling? What kind of teaching might promote a correct use of assent during
validation? 

Here, after introducing the idea of validation, we discussed its nature in a way
that depended on information we take to be common knowledge among most math-
ematicians. However, without additional investigations, there is no way to be sure
that we are right about what is common knowledge or that the common knowl-
edge itself is correct. Taking much of this discussion as partly conjectural yields
a number of additional research questions. For example, suppose one recorded
what was being attended to during the construction of a proof and extracted, in
order, those parts that appeared in its final form. Would this order, as we have
suggested, differ greatly from the order of the final proof? In teaching, one of us
has sometimes encouraged students to write a proof framework, that is, the begin-
ning and ending few lines of a proof, before attempting the middle. Some students
resist this advice, and it would be interesting to investigate whether such students
have more difficulty constructing proofs than others.
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We have also alluded to mathematicians’ ability to agree on the correctness of
proofs and the truth of theorems and that they can often decide this individually
and believe “you do not vote on the truth of theorems.” It would be interesting to
investigate the degree to which these are the perceptions of mathematicians as well
as the degree to which those perceptions are accurate. Information about such
perceptions and abilities might enhance the role played by validation in social
constructivist views of mathematics.

Last, what is a good way to teach validation? Is it a concept like proof or defin-
ition, which is perhaps best learned through experiences, such as finding and
discussing errors in actual student “proofs”? 
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APPENDIX 1

Facts About the Positive Integers

FACT 1. The positive integers, Z+, can be divided up into three kinds of integers—
those of the form 3n for some integer n, those of the form 3n + 1 for some integer
n, and those of the form 3n + 2 for some integer n.

For example, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 . . .
3n 3n + 1 3n + 2 3n 3n + 1 3n + 2

where n = 1 where n = 2

FACT 2. Integers of the form 3n (that is, 3, 6, 9, 12, . . .) are called multiples of 3.

FACT 3. No integer can be of two of these kinds simultaneously. So m is not a
multiple of 3 means the same as m is of the form 3n + 1 or 3n + 2.

APPENDIX 2

Interview Data Collection Phases

PHASE 1: Warm-Up Exercises

For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3.
1. Explain, in your own words, what the above statement says.
2. Give some examples of the above statement.
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3. Does the above statement seem to be true? How do you tell?
4. Do you think you could give a proof of the above statement? 

PHASE 2: Sequential consideration of ‘Proofs’ (a), (b), (c), (d).

PHASE 3: ‘Recap’ on the ‘Proofs’ 
Below are several purported proofs of the following statement:

For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3.
For each one, decide whether or not it is a proof. Try to “think out loud” so you
can let me in on your decision process. If it is not a proof, point out which part(s)
are problematic. If you can, say where, or in what ways, the purported proof has
gone wrong.

(a). PROOF: Assume that n2 is an odd positive integer that is divisible by 3. That is
n2 = (3n + 1)2 = 9n2 + 6n + 1 = 3n(n + 2) + 1. Therefore, n2 is divisible by 3. Assume
that n2 is even and a multiple of 3. That is n2 = (3n)2 = 9n2 = 3n(3n). Therefore,
n2 is a multiple of 3. If we factor n2 = 9n2, we get 3n(3n); which means that n is a
multiple of 3. ■

(b). PROOF: Suppose to the contrary that n is not a multiple of 3. We will let 3k be
a positive integer that is a multiple of 3, so that 3k + 1 and 3k + 2 are integers that
are not multiples of 3. Now n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1. Since
3(3k2 + 2k) is a multiple of 3, 3(3k2 + 2k) + 1 is not. Now we will do the other possi-
bility, 3k + 2. So, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 is not a multiple
of 3. Because n2 is not a multiple of 3, we have a contradiction. ■

(c). PROOF: Let n be an integer such that n2 = 3x where x is any integer. Then 3|n2.
Since n2 = 3x, nn = 3x. Thus 3|n. Therefore if n2 is a multiple of 3, then n is a multiple
of 3. ■

(d). PROOF: Let n be a positive integer such that n2 is a multiple of 3. Then n = 3m
where m ∈ Z+. So n2 = (3m)2 = 9m2 = 3(3m2). This breaks down into 3m times 3m
which shows that m is a multiple of 3. ■

PHASE 4. Final Questions
1. When you read a proof is there anything different you do, say, than in reading
a newspaper?
2. Specifically, what do you do when you read a proof?
3. Do you check every step?
4. Do you read it more than once? How many times?
5. Do you make small subproofs or expand steps?
6. How do you tell when a proof is correct or incorrect?
7. How do you know a proof proves this theorem instead of some other theorem?
8. Why do we have proofs? 
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APPENDIX 3

Transcript of KC Validating “Proof (d)”

[Note: Segmentation into stages is our own. Emphases in boldface indicate portions
of the transcript discussed earlier in the condensed version.]
Initial validation attempt in Phase 2

Stage 1

I: OK, this is the last one. We have four of these.
KC: OK. [Reads theorem aloud slowly once. There’s a pause at the end of the first

sentence, after which she says “OK” and goes on reading.] Yah. That, that looks a
lot like the one that we just did.

I: Ahh, which means it’s good or it’s not good?
KC: Yah. No, not just did. I mean this one over here [pointing to the paper with (a)].
I: Oh, it looks like. . . . [Spreads out the four papers with the ‘proofs’ on them.] We had

(a), (b), (c), (d).
KC: Like that one. Like that one. [Pointing to (a).]
I: It looks like. . . . It looks a lot like the, ah, (a) one. 
KC: Yah. Yah, I think that’s a proof. 

Stage 2

I: OK. OK. You think this one’s a proof. Ookay. 
KC: ’Cause, see, ’cause this is what I was talking about by 3 times 3m2. 
I: Ah, OK. 
KC: Then you could let this 3m2 be some integer k. 
I: OK. So you want to see this displayed like that? 
KC: Yah. 
I: OK.
KC: Then you could say that like… 
I: Well, I don’t want to have it upside down [turns paper around].
KC: You could also . . . say . . . this breaks down. Well, this one. . . . What I would do, is

say, uhm, uhm 3 . . . then, 3m2 equals to k, some integer k such that 3k, or something
like, equals to 3k, uhm. . . . 

I: [Interrupting] Why don’t you write that down? Your talking here.
KC: OK.
I: You need your pencil then.
KC: Like here, I probably would say [writes and talks more slowly]. Let 3m2 equal to k,

for some positive integer k . . . [pause] . . . integer k. OK. Uhm. [long pause] Then 3
times 3m2 would equal to 3k . . . [pause] which . . . [pause] makes, uhm, or I don’t
know the wording may have to be wrong, uhm, which makes, uhm . . . [pause] which
is . . . , I don’t know how to say it, but that’s. . . .

I: That’s what you wanted to say.
KC: See that’s what I want to say, and then, like, insert it in here. Then you could say that

this, by proving that it’s three times some integer, some. . . . Then you could say
that it’s now. . . . 

I: It’s now a multiple of 3. [Finishes sentence for KC.]
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KC: Yah, it’s now a multiple of 3, OK. [Says and writes] Now n2 is a multiple of 3. 
I: Uh, huh.
KC: I don’t know if I’d word it in that way, but that’s what I’m thinking.
I: That n2 is a multiple of 3?
KC: I don’t know if I’d word it in that way.
KC: ’Cause then you have it in the form three times something else. . . . Because this

breaking down to 3m times 3m, uh that, that kind of . . . because you have this already. 
I: Uh, hmm.
KC: Do you understand what, what I’m saying?

Stage 3

I: Yah. Yah. I understand you want to get it displayed like that. Uhm, and that’s good
enough for a proof now?

KC: Now, my wording right here probably is wrong , I mean it could be. . . . 
I: There’s lots of different ways you can word things. . . . [Continues for some time.]
KC: I mean. I mean. I could. . . . A lot of this could be like… Even this could be reworded.

You don’t have to say “let” or just say, you know, k, uhm, for some integer k equals,
or something, or just let this be something else. So you could have it in the form. . . .
Or even that’s fine. But, this 3m times 3m stuff, that’s gotta go.

Stage 4

I: Then, how do you know you’re finished with? I mean. . . . 
KC: [Interrupts] Because, because you have it now, now you have it. . . . [Long pause] Let’s

see. They showed that m was a multiple of 3, but they didn’t show that n was a
multiple of 3. [Long pause] ’Cause you have to show that n is a multiple of 3.

Stage 5

I: Uh, huh.
KC: Uhmmm. [Long pause] Hmmm. [Long pause] So you’d have to go back and you’d

have to substitute back in here. [Writes (3m)(3m) = (3m)n = 3(mn).] 
I: Uh, huh.
KC: Anyway that. . . . [Long pause] Well, it would. . . . OK, wait. OK, wait, wait. . . . Then

you’d have. . . . Let’s see . . . [long silence, lasting 30 seconds]. Well, [taps pencil
quickly twice, and again quickly twice] . . . [pause] I don’t think that’s a proof [said
definitely].

Stage 6

I: Oh! [surprised] Oh, OK. [KC laughs.] Now why did you change your mind?
KC: Well, because they didn’t, they didn’t say . . . that n was . . . they didn’t say n was a

multiple of 3. They didn’t figure that out. They showed that m was a multiple of
3, but they didn’t show that n was . . . and. . . . 

Stage 7

I: [Interrupting] Where’d that m come from anyhow?
KC: Well, the m came from… they let n = 3m right up here [pointing to top of proof]. 
I: Yah.
KC: Just to, just to to. . . . 
I: That’s just like your using k, as far as I can tell.
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KC: See, you’re, and . . . they’re supposed to have let n2 be a multiple of 3, so it should
have been “let n2 = 3m.” 

Stage 8

I. Uh, hmm.
KC: So. . . . So, at least I showed you how I was, . . . I would have worded. . . . [Both laugh.]

I don’t think that’s a proof.
I: OK this one’s not a proof. OK, that’s one’s not a proof. OK, we can come back and

change our minds. 

Subsequent “recap” validation attempt in Phase 3

KC: [Reads “proof” aloud, followed by a pause of 18 seconds.] No.
I: Not a proof?
KC: No, because they still, I mean, they didn’t define . . . they didn’t prove what the n

was, which is what they were supposed to prove.
I: So they didn’t prove what they were supposed to prove. Which was what?
KC: That, that n is a multiple of 3.
I: Uh, hmm. . . . OK. 


