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Abstract

A graph-theoretic account of logics is explored based on the general
notion of m-graph (that is, a graph where each edge can have a finite
sequence of nodes as source). Signatures, interpretation structures and
deduction systems are seen as m-graphs. After defining a category freely
generated by a m-graph, formulas and expressions in general can be seen
as morphisms. Moreover, derivations involving rule instantiation are also
morphisms. Soundness and completeness theorems are proved. As a conse-
quence of the generality of the approach our results apply to very different
logics encompassing, among others, substructural logics as well as logics
with nondeterministic semantics, and subsume all logics endowed with an
algebraic semantics.

1 Introduction

Diagrammatic representation has been used in several areas of knowledge rang-
ing from basic and human sciences to engineering as can be witnessed by several
conferences in very different areas dedicated to the topic every year (for instance
see [25, 30, 28]). One of the reasons is because diagrams are intuitive and pro-
vide a clear view of the phenomena they explain. Moreover, they can be used
to make inferences about the reality they describe (see for instance [15] for a
very broad introduction to diagrammatic techniques, [29] for a specific example
in justice consisting of the use of a mathematical diagrammatic layout of argu-
ments to make inferences instead of adopting only a traditional jurisprudential
model, and [11] for applications in argumentation theory). Another example is
category theory [20] that provides a diagrammatic notation for abstract algebra,
where, for instance, an equation is substituted by a commutative diagram.

The quest for rigorous diagrammatic reasoning has old roots and at the
same time is very contemporary. For instance, L. Euler employed diagrams
in order to illustrate relations between classes. J. Venn greatly improved the
Euler’s approach [31], and later on, an important contribution to the further
development of Euler-Venn diagrams was made by C. S. Peirce [23]. Recently,
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some effort has been dedicated to the definition of a formal system sound and
complete for reasoning with diagrams [27, 17, 18]. For a nice discussion on
diagrammatic logics see [6].

The right setting for defining logic systems has deserved a lot of attention
from the scientific community. The most common approach, see [14, 7], is to
look at specific logic systems and try to abstract its general features following
the pioneering work in [3]. A promising direction is to incorporate diagram-
matic features in logical reasoning [4, 5, 1] (as in Tarski’s World, Hyperproof
or Openproof).

Herein, we propose diagrams as a unifying technique to present and rea-
son with logics in an abstract way. More precisely, we use multi-graphs (or,
for short, m-graphs) to define the language, the semantics and the deduction
in a logic system. In signatures, the nodes of the m-graph are seen as sorts
and the m-edges as language constructors. In interpretation structures, nodes
are truth-values and m-edges are relations between truth-values (this approach
to semantics can be seen as generalizing algebraic approaches to semantics of
logics, see the overview in the classical monograph [24] and also in [14]). In
deductive systems, the nodes are language expressions and the m-edges are
inference rules.

However, we need a bit more of structure to define language, denotation
and derivation. For this purpose, we consider the category with non empty
finite products freely generated from a given m-graph. At this stage, we look at
formulas and at derivation steps as morphisms in that appropriate categories
(here we are close to Lambek and Scott approach to categorical logic [19]).
Furthermore, in this setting, we are able to cope appropriately with schematic
reasoning.

A novel feature of our approach is that interpretation structures and de-
ductive systems are related to signatures through an abstraction process. That
is, every m-graph corresponding to an interpretation structure is associated to
the m-graph representing the underlying signature via an m-graph morphism.
The same applies to deductive systems. This feature allows the definition of
non-deterministic and partial semantics in a natural way.

As a consequence of the generality of the approach we can define in this
setting very different logics including substructural logics as well as logics with
nondeterministic semantics and covering all logics endowed with an algebraic
semantics [22, 21, 26, 10]. Our notion of derivation allows the rigorous control
of the hypotheses used. Thus, it seems worthwhile to explore in the future this
fine feature for logics where hypotheses are considered as resources.

The structure of the paper is as follows. Section 2 is dedicated to defin-
ing signatures and interpretation structures as m-graphs. The central notions
of m-graph and m-graph morphism are introduced in this section. Section 3
deals with formulas. They are morphisms in a category with non empty finite
products freely generated from the signature m-graph. Section 4 concentrates
on satisfaction and semantic entailment. In Section 5 we introduce deductive
systems as an m-graph where the nodes are language expressions and m-edges
include inference rules. Following this trend, in Section 6 we introduce deriva-
tion also with a diagrammatic intuition coping with the subtle notion of instan-
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tiation of schematic rules and formulas. In Section 7, we state general results
for soundness and completeness of logic systems. Finally, in Section 8, we give
some insight of how to accommodate provisos and quantification in our setting.

We assume a very moderate knowledge of category theory (the interested
reader can consult [20]).

2 Signatures and models as m-graphs

A signature is to be seen as a multi-graph whose nodes are the sorts (indicating
the relevant kinds of notions) and whose m-edges are the language constructors.
For instance, a propositional signature can be seen as a multi-graph with a
node, named π, representing the notion of formula and including an m-edge ¬
from π to π for the negation constructor and an m-edge ⊃ for the implication
constructor from ππ to π.

π
��

⊃

¬
\\

Figure 1: Multi-graph for a propositional signature.

Propositional symbols are zero-ary constructors and should also be repre-
sented in the multi-graph. For this purpose we consider a special node, named
♦, and an m-edge for each propositional symbol from ♦ to π.

π
��

⊃

¬
\\♦

q1
''q2 22

q3

88

Figure 2: Multi-graph for a propositional signature with propositional symbols.

By a multi-graph, in short, an m-graph, we mean a tuple

G = (V,E, src, trg)

where:

• V is a set (of vertexes or nodes);

• E is a set (of m-edges);

• src : E → V +;

• trg : E → V ;
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where V + denotes the set of all finite non-empty sequences of V . We may write
e : s → v or e ∈ G(s, v) when e ∈ E, src(e) = s and trg(e) = v, and may write
G(−,−) for the collection of m-edges in E.

A language signature or, simply, a signature is a tuple Σ = (G, π, ♦) where
G = (V,E, src, trg) is a m-graph, π and ♦ are in V , and such that no m-
edge has ♦ as target. The nodes in V play the role of language sorts, node π
being the propositions sort (the sort of schema formulas), and node ♦ being the
concrete sort. The m-edges play the role of constructors for building expressions
of the available sorts. The concrete sort allows the construction of concrete
expressions.

Example 2.1 Let Π be a set of propositional symbols. The propositional sig-
nature ΣΠ is a m-graph with sorts π and ♦ and the following m-edges:

• p : ♦→ π for each p in Π;

• ¬ : π → π;

• ⊃ : ππ → π.

The m-edges ¬ and ⊃ represent the connectives negation and implication, re-
spectively. ∇

Example 2.2 The modal signature Σ�
Π is a m-graph obtained from ΣΠ by

adding the m-edge � : π → π for representing the modal operator � of necessity.
∇

Example 2.3 The propositional signature with conjunction and disjunction
Σ∧,∨Π is a m-graph obtained from ΣΠ by adding the m-edges ∧,∨ : ππ → π
for representing conjunction ∧ and disjunction ∨. ∇

Example 2.4 The propositional signature Σ∧,∨,◦Π is a m-graph obtained from
Σ∧,∨Π by adding the m-edge ◦ : π → π. ∇

Example 2.5 Let F = {Fn}n∈N0 be a family where Fn is a set (with the
function symbols of arity n). The equational signature ΣEQ

F is a m-graph with
the sorts π, ♦ and θ, and the following m-edges:

• f : ♦→ θ for each f in F0;

• f :

n︷ ︸︸ ︷
θ . . . θ → θ for each f in Fn;

• ≈: θθ → π.

The m-edge ≈ represents the equality symbol. ∇

An interpretation structure, also called a model, over a signature includes
an m-graph where the nodes are values and the m-edges are operations on the
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Figure 3: The operations m-graph for an interpretation structure over the
propositional signature described in Figure 2.

values. For instance, in the case of propositional logic, that m-graph could be
the one specified in Figure 3.

However, this is not enough because we need to know how the values are
related to sorts and how operations are related to constructors, that is, we need
to relate m-graphs, as depicted in Figure 4 and illustrated in Table 1 for the
case of the propositional logic.
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Figure 4: Abstraction map from the operations m-graph presented in Figure 3
and the signature m-graph presented in Figure 2.

By a m-graph morphism h : G1 → G2 we mean a pair of maps{
hv : V1 → V2

he : E1 → E2

such that:
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f , t  π
�  ♦

q′1  q1

q′2  q2

q′3  q3

¬f ,¬t  ¬
⊃ff ,⊃ft,⊃tf ,⊃tt  ⊃

Table 1: Correspondence between the constructors and the operations for
propositional logic.

• src2 ◦ he = hv ◦ src1;

• trg2 ◦ he = hv ◦ trg1.

In the sequel we denote by mGraph the category of m-graphs and their mor-
phisms where identities and compositions are defined as expected. Moreover,
given a set S and s ∈ S+, we denote by |s| the length of s and, for each
i = 1, . . . , |s|, we denote by (s)i the i-th element of s. Furthermore, given a
map f : S → R, we let f+ be the map λ s . f((s)1) . . . f((s)n) : S+ → R+. For
the sake of simplicity, we tend to write f for f+ when no confusion arises.

We now define the concept of interpretation structure, which departs from a
novel perspective in which semantics is abstracted into the syntax and not the
other way around. In many cases an interpretation structure is an algebra (that
is, it includes operations and sets for each sort) and the denotation consists of
assigning to each logical constructor an operator over the appropriate sort. In
other words, in many cases, denotation is a concretization process. In our case,
we adopt a dual approach. We instead use a graph-theoretic approach (more
general than an algebra) for representing truth-values and, possibly nondeter-
ministic operations, and then we assign them to sorts and constructors. In a
sense we abstract from the truth-values and operations the linguistic expressions
assigned to them.

An interpretation structure I over a signature (G, π, ♦) is a tuple

(G′, α,D, �)

such that G′ is an m-graph (the operations graph), α : G′ → G is an m-graph
morphism (the abstraction morphism), D ⊆ (αv)−1(π) is a non-empty set and
� ∈ (αv)−1(♦).

The set V ′ of nodes of the operations graph is called the universe. Observe
that V ′ is partitioned by α: we denote by V ′v the domain (αv)−1(v) of values
for each v in V . The elements of V ′π are the truth values and the elements of V ′♦
are the concrete values. The elements of the set D are the distinguished truth
values. The requirement on D excludes trivial cases.

Given s in V + we denote by V ′+s the subset of V ′+ consisting of the set
((αv)+)−1(s), that is, {s′ : (αv)+(s′) = s}. The set E′ of m-edges of the
operations graph is also partitioned by α: we denote by E′e the set (αe)−1(e)
for each e in E. In the sequel, we may call the pair (G′, α) a basis over a
m-graph G.
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An interpretation structure is a pair (Σ, I) where Σ is a signature and I is
an interpretation structure over Σ. An interpretation system I is a pair (Σ, I)
where Σ is a signature and I is a class of interpretation structures over Σ.

Example 2.6 Interpretation structure for propositional logic.
Consider the signature ΣΠ as introduced in Example 2.1 where Π = {q1, q2, q3}.
Let v : {q1, q2, q3} → {f , t} be a classical valuation such that v(q1) = t and
v(q2) = v(q3) = f . The interpretation structure (G′, α,D, �) over ΣΠ corre-
sponding to v is as follows:

• G′ is such that1:

V ′ = {f , t} ∪ {�};
E′ = {q′1, q′2, q′3,¬f ,¬f ,⊃ff ,⊃ft,⊃tf ,⊃tt};
src′ and trg′ are such that:

q′1 : �→ t;
q′2 : �→ f ;
q′3 : �→ f ;
¬f : f → t;
¬t : t→ f ;
⊃ff : f f → t;
⊃ft : f t→ t;
⊃tf : t f → f ;
⊃tt : t t→ t.

• α : G′ → G is such that:

αv(f) = π;

αv(t) = π;

αv(�) = ♦;

αe(q′i) = qi for i = 1, 2, 3;

αe(¬v′) = ¬ for each v′ in V ′π;

αe(⊃v′1v′2) = ⊃ for each v′1 and v′2 in V ′π.

• D = {t}.

Observe that V ′π = {f , t} and, for instance,

E′¬ = {¬f : f → t,¬t : t→ f}

where the m-edges ¬f and ¬t represent the pairs (f , t) and (t, f), respectively.
∇

1Using module 2 arithmetical operations within V ′.

7



Example 2.7 Interpretation structure for modal logic T.
Consider the signature Σ�

Π as introduced in Example 2.2 where Π = {q1, q2, q3}.
Let (A,∧,∨,−,⊥,>,�) be a modal algebra for modal logic T , and v a valu-
ation over the algebra, that is, a map from {q1, q2, q3} → A (see [9]). The
interpretation structure (G′, α,D, �) over Σ�

Π corresponding to the algebra and
the valuation is as follows:

• G′ is such that:

V ′ = A ∪ {�};
E′ = {q′1, q′2, q′3}∪{¬a : a ∈ A}∪{⊃a1a2 : a1 ∈ A and a2 ∈ A}∪{�a :
a ∈ A};
src′ and trg′ are such that:

q′i : �→ v(qi) for i = 1, 2, 3;
¬a : a→ −a for each a in A;
⊃a1a2 : a1 a2 → ((−a1) ∨ a2) for each a1 and a2 in A;
�a : a→ �a for each a in A.

• α : G′ → G is such that:

αv(a) = π;

αv(�) = ♦;

αe(q′i) = qi for i = 1, 2, 3;

αe(¬a) = ¬;

αe(⊃a1a2) = ⊃;

αe(�a) = �.

• D = {>}. ∇

Substructural logics can also be represented in our graph-theoretic context
as we illustrate in the next example.

Example 2.8 Interpretation structure for relevance logic R.
Consider the signature Σ∧,∨Π as introduced in Example 2.3 where Π = {q1, q2}.
Let m = (W,R, 0, ∗, v) be an R-frame for relevance logic R (see [12]) with a
valuation v. The interpretation structure (G′, α,D, �) over Σ∧,∨Π corresponding
to m is defined as follows:

• G′ is such that:

V ′ = ℘W ∪ {�};
E′ = {q′1, q′2} ∪ {¬b : b ∈ ℘W} ∪ {⊃b1b2 : b1, b2 ∈ ℘W} ∪ {∧b1b2 :
b1, b2 ∈ ℘W} ∪ {∨b1b2 : b1, b2 ∈ ℘W};
src′ and trg′ are such that:

q′1 : �→ ∅;
q′2 : �→W ;
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¬b : b→ {w ∈W : w∗ /∈ b};
⊃b1b2 : b1 b2 → {w ∈W : Rww1w2 and w1∈b1 implies w2 ∈ b2};
∧b1b2 : b1 b2 → b1 ∩ b2;
∨b1b2 : b1 b2 → b1 ∪ b2.

• α : G′ → G is such that:

αv(b) = π;

αv(�) = ♦;

αe(q′i) = qi for i = 1, 2;

αe(¬b) = ¬;

αe(⊃b1b2) = ⊃;

αe(∧b1b2) = ∧;

αe(∨b1b2) = ∨.

• D is the set of all subsets of W containing 0. ∇

Although in the examples above the graph-theoretic interpretation struc-
tures are algebraic in nature, that is not necessarily so. Indeed, graph-theoretic
interpretation structures can even be non deterministic or partial. This is the
case with the interpretation structure that we now consider.

Example 2.9 Non-deterministic interpretation structure.
Consider the signature Σ∧,∨,◦Π as introduced in Example 2.4 for Π = {q1, q2},
and the interpretation structure Ind = (G′, α,D, �) over Σ∧,∨,◦Π (inspired by [2])
where:

• G′ is such that2:

V ′ = {t, I, f} ∪ {�};
E′ is composed of the following m-edges (note that src′ and trg′ are
also being defined):

q′1 : �→ f ;
q′2 : �→ I;
¬v′1v′2 : v′1 → v′2 where v′1 is in {I, f} and v′2 is in D;
¬tf : t→ f ;
◦v′1v′2 : v′1 → v′2 where v′1 is in {t, f} and v′2 is in V ′π;
◦If : I→ f ;
⊃v′1v′2v′ : v′1 v

′
2 → v′ where v′1 is f or v′2 is in D, and v′ is in D;

⊃v′ff : v′ f → f for v′ is in D;
∧v′1v′2v′ : v′1 v

′
2 → v′ where v′1, v′2 and v′ are in D;

2Intuitively speaking, t represents a consistently true formula, that is, a true formula
whose negation is false; I represents a inconsistently true formula, that is, a true formula
whose negation is true; f represents a false formula. Observe that in Ind is not possible to
have both a formula and its negation as false.
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∧v′1v′2f : v′1 v
′
2 → f where v′1 is f or v′2 is f ;

∨v′1v′2v′ : v′1 v
′
2 → v′ where v′1 or v′2 are in D, and v′ is in D;

∨fff : f f → f .

• α : G′ → G is such that:

αv(v′) = π with v′ in {t, I, f};
αv(�) = ♦;

αe(q′1) = q1;

αe(q′2) = q2;

αe(¬v′1v′2) = ¬ for every ¬v′1v′2 in E′;

αe(◦v′1v′2) = ◦ for every ◦v′1v′2 in E′;

αe(⊃v′1v′2b) = ⊃ for every ⊃v′1v′2b in E′;

αe(∧v′1v′2b) = ∧ for every ∧v′1v′2b in E′;

αe(∨v′1v′2b) = ∨ for every ∨v′1v′2b in E′.

• D = {t, I}.

A graphical perspective of part of the interpretation structure Ind, comprising
negation and propositional symbols, can be seen in Figure 5.

π
¬

cc♦

q1
**

q2

44

�
I

t

f

q′1 11

q′2

""

¬II

��
¬It

��

¬fI

KK

¬ft

GG¬tf

��

α

KS

Figure 5: Part of interpretation structure Ind described in Example 2.9.

Observe that the denotation of the paraconsistent negation ¬ and of the con-
sistency connective ◦ is not deterministic. ∇

Semantics of logics using several sorts can also be expressed very intuitively
in our setting as we illustrate in the following example.
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Example 2.10 Interpretation structure for equational logic.
Consider the signature ΣEQ

F as introduced in Example 2.5. Let (A, {FnA : n ≥
0}) be an algebra for (one-sorted) equational logic EQ where fA : An → A for
each fA ∈ FnA (see [8, 16]). The interpretation structure (G′, α,D, �) over ΣEQ

F

corresponding to the algebra is as follows:

• G′ is such that:

V ′ = A ∪ {�} ∪ {0, 1};
E′ = {fa1...an : a1, . . . , an ∈ A} ∪ {≈a1a2 : a1, a2 ∈ A};
src′ and trg′ are such that:

fa1...an : a1 . . . an → fA(a1 . . . an);
≈a1a2 : a1a2 → b where b is 1 iff a1 is equal to a2.

• α : G′ → G is such that:

αv(a) = θ;

αv(�) = ♦;

αv(0) = π;

αv(1) = π;

αe(fa1...an) = f ;

αe(≈a1a2) is ≈.

• D = {1}. ∇

3 Formulas as paths

At first sight a formula can be seen as a path over the signature m-graph.
For instance, in the context of the signature for propositional logic presented
in Example 2.1, the formula (¬ q1) ⊃ q2 corresponds to the path described in
Figure 6. It is convenient however to work on the richer setting of the category

♦
q1 // π

¬ // π

>>>>>>>>

⊃ // π

♦
q2 // π

��������

Figure 6: Formula (¬ q1)⊃ q2 as a path in the signature m-graph.

generated by the signature m-graph. In this setting sequences of sorts are
first class citizens as well as pairing of morphisms. Moreover projections will
be available (they are very useful for dealing with schema formulas). In this
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♦ π
⊃ ◦ 〈¬ ◦ q1, q2〉 //

Figure 7: Formula (¬ q1)⊃ q2 as a morphism in the category generated by the
signature m-graph.

context, the formula (¬ q1) ⊃ q2 corresponds to the morphism presented in
Figure 7.

Before proceeding with the study of language expressions in the graph-
theoretic account of logics proposed herein, we have to present first some tech-
nical preliminaries (we illustrate some of the constructions with the running
example of the formula (¬ q1)⊃ q2).

By a non-empty path en . . . e1 over a m-graph G we mean a finite and non-
empty sequence of elements of E such that src(ek+1) = trg(ek) for k = 1, . . . , n−
1. The source of a non-empty sequence en . . . e1 is src(e1) and the target of that
sequence is trg(en). To each element s of V + we associate an empty path,
denoted by εs. The source and target of an empty sequence εs is s. A path w
can be written as w : s → t whenever the source of w is s and the target of w
is t. We denote by paths(G) the set of all paths over the m-graph G.

The main objective now is to freely generate a category with non empty finite
products out of a given m-graph. The idea is that the objects of the generated
category are non-empty finite sequences of vertexes of the m-graph and that
each path w : s → t induces a morphism ŵ : s → t. Moreover, the object
v1 . . . vn is the object v1 × · · · × vn in the obtained category. The construction
is done in several steps. (i) From a m-graph G we obtain a (classical) graph G†

where the vertexes are in V + and the edges besides containing the m-edges in G
contain also additional edges for projections and tuples; (ii) from G† we freely
generate a category G‡ whose objects are the same as the vertexes of G† and
including morphisms for edges, paths, projections and tuples; (iii) from G‡ we
get the envisaged category G+ by making a quotient over the class of morphisms
ensuring that projections and tuples have the required universal properties.

Before presenting the construction we introduce some notation. Let fpCat
be the category of categories with non empty finite products. As usual in a
category with products, we denote by pb1×...×bni the i-th canonical projection of
the product b1×. . .×bn for n ≥ 1. Given morphisms f1 : b→ b1, . . . , fn : b→ bn,
we refer to

〈f1, . . . , fn〉 : b→ (b1 × . . .× bn)

as the unique morphism such that pb1×...×bni ◦ 〈f1, . . . , fn〉 = fi for every i. If
f1 : b1 → b′1, . . . , fn : bn → b′n are morphisms then

f1 × . . .× fn : b1 × . . .× bn → b′1 × . . .× b′n

will stand for the morphism 〈f1 ◦ pb1×...×bn1 , . . . , fn ◦ pb1×...×bnn 〉. As usual,
〈f1, . . . , fn〉 and f1 × . . .× fn will be identified with f1 when n is 1.

The aim now is to define the category with non empty finite products G+

from a m-graph G, following the steps sketched above.
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i. From a m-graph G to a graph G†. We start by defining a family

{G†k = (V +, E†k, src
†
k, trg

†
k)}k≥1

of m-graphs such that

• E†1 = E ∪ {pv1...vn
i : v1, . . . , vn ∈ V, n ≥ 2, i = 1, . . . , n};

• src†1(e) = src(e) and trg†1(e) = trg(e) whenever e is in E, src†1(pv1...vn
i ) =

v1 . . . vn and trg†1(pv1...vn
i ) = vi;

• E†k is the union of E†k−1 with ∪j=2,...,k{〈w1, . . . , wj〉 : w1, . . . , wj are
paths over G†k−1 with target in V and with the same source};

• src†k(e) = src†k−1(e) and trg†k(e) = trg†k−1(e) if e ∈ E†k−1, otherwise e is
〈w1, . . . , wj〉, src†k(e) = src†k−1(w1) and trg†k(e) = trg†k−1(w1) . . . trg†k−1(wj).

So G† is (V +, E†, src†, trg†) where E† is ∪k∈NE†k, src†(e) = src†j(e) and trg†(e) =

trg†j(e) for e in E†j .

♦ ππ π
〈¬q1, q2〉 // ⊃ //

Figure 8: Formula (¬ q1)⊃q2 represented as a path over the graph G† generated
by the signature m-graph G described in Example 2.1.

ii. From a graph G† to a category G‡. Given a graph G†, G‡ is the category
freely generated by graph G†. That is, the category obtained as follows:

• the objects are the vertexes of G†;

• each path w : s→ t in over G† determines a unique morphism w‡ : s→ t
in G‡ in such a way that if w is in E we set w‡ = w;

• the identity morphism ids : s→ s is εs‡;

• (w2)‡ ◦ (w1)‡ = (w2w1)‡ whenever w2 : s→ t and w1 : r → s.

♦ πππ

⊃ ◦ 〈¬q1, q2〉

##〈¬q1, q2〉 // ⊃ //

Figure 9: Formula (¬ q1) ⊃ q2 represented as a morphism in the category G‡

generated from the signature m-graph G described in Example 2.1.

iii. From a category G‡ to a category G+ with non empty finite products. Given
a category G‡, the category G+ is defined as follows:
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• the set of objects of G+ is the same as the set of objects of G‡, i.e., is V +;

• the collection G+(−,−) of morphisms in G+ is the quotient G‡(−,−)/∆‡

where ∆‡ ⊆ G‡(−,−)2 is the least equivalence relation such that:

– ((pv1...vn
i 〈w1, . . . , wn〉)‡, wi‡) is in ∆‡ for i = 1, . . . , n, where wj : s→

vj are paths over G† and vj is in V for j = 1, . . . , n;

– (w‡, 〈u1, . . . , un〉‡) is in ∆‡ if ((pv1...vn
i w)‡, ui‡) is in ∆‡ where w : s→

v1 . . . vn and ui : s→ vi are paths over G† and vi ∈ V , i = 1, . . . , n;

– ((w2w1)‡, (u2u1)‡) is in ∆‡ if (w2
‡, u2

‡) and (w1
‡, u1

‡) are in ∆‡ where
w2, u2 : s1 → t and w1, u1 : s→ s1 are paths over G†;

• in G+ the identity in s is the morphism [εs‡]∆‡ ;

• in G+ the operation ◦ is such that [w2
‡]∆‡ ◦ [w1

‡]∆‡ = [(w2w1)‡]∆‡ .

We denote by
ŵ

the equivalence class [w‡]∆‡ . The first clause of the equivalence relation es-
tablishes that the i-th projection has the expected behavior when applied to a
tuple, that is, is equivalent to the i-th component. The second clause imposes
the universal property of the product. Finally, the third clause asserts that
composition preserves equivalence.

♦ ππ π

⊃̂ ◦ 〈¬̂ ◦ q̂1, q̂2〉

%%〈¬̂ ◦ q̂1, q̂2〉 // ⊃̂ //

Figure 10: Formula (¬ q1) ⊃ q2 as a morphism in the category G+ generated
from the signature m-graph G described in Example 2.1.

The previous construction deserves some comments. Firstly, note that for
any path en . . . e1 over G† where ei is in E† for i = 1, . . . , n, if ek is a projection
and k > 1 then ek−1 is a tuple. Secondly, it is immediate to see that the
domains and codomains of the morphisms in G+ are well defined. In fact it is
very easy to prove the following lemma by induction on ∆‡:

Lemma 3.1 Given a m-graph G, if (w1
‡, w2

‡) is in ∆‡ and w1 : s→ t then w2

is also a path from s to t.

Thirdly, note that G+ is, by construction, a category with non empty finite
products.

Proposition 3.2 The category G+ has non empty finite products.
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Proof: For simplicity, consider the objects v1, v2 which are sequences of length
one. Their product is

(v1v2, p̂
v1v2
1 , p̂v1v2

1 ).

Given morphisms ŵ1 : s → v1 and ŵ2 : s → v2. We will show that ̂〈w1, w2〉 is
the unique morphism in G+ such that p̂v1v2

i ◦ ̂〈w1, w2〉 = ŵi for i = 1, 2.

(a) p̂v1v2
1 ◦ ̂〈w1, w2〉 = ŵ1. Note that

p̂v1v2
1 ◦ ̂〈w1, w2〉 = [pv1v2

1
‡]∆‡ ◦ [〈w1, w2〉‡]∆‡

which is [pv1v2
1 〈w1, w2〉‡]∆‡ = [w1

‡]∆‡ = ŵ1.

(b) Unicity. Assume that û : s → v1v2 such that p̂v1v2
i ◦ û = ŵi for i = 1, 2.

Hence, [pv1v2
i u‡]∆‡ = p̂v1v2

i ◦ û = ŵi = [wi‡]∆‡ . Therefore, ((pv1v2
i u)‡, wi‡) is in

∆‡ for i = 1, 2 and so (u‡, 〈w1, w2〉‡) is in ∆‡. Hence [u‡]∆‡ = [〈w1, w2〉‡]∆‡ .
That is, û = ̂〈w1, w2〉. QED

It is worthwhile to note that 〈ŵ1, . . . , ŵn〉 is ̂〈w1, . . . , wn〉 when wi : s →
vi and vi ∈ V according to Proposition 3.2. Given the path wi : s → si
over G† where si has length mi, for i = 1, . . . , n, the tuple 〈ŵ1, . . . , ŵn〉 is

̂〈ps11 w1, . . . , p
s1
m1w1, . . . , p

sn
1 wn, . . . , p

sn
mnwn〉. Moreover, for i = 1, . . . , n, let si in

V + be vi1 . . . vimi , where vi1, . . . , vimi are in V . Then the product of s1, . . . , sn
denoted by

(s1 × . . .× sn, ps1×...×sn1 , . . . , ps1×...×snn )

can be taken to be the object v11 . . . v1m1 . . . vn1 . . . vnmn with the morphisms
̂〈pv11...v1m1 ...vn1...vnmn

m1+...+mi−1+1 , . . . , p
v11...v1m1 ...vn1...vnmn
m1+...+mi−1+mi

〉 for i = 1, . . . , n.
Given a signature Σ = (G, π, ♦), the objects of G+ are the finite and non-

empty sequences of sorts in the signature Σ and the morphisms of G+ play
the role of expressions (schema formulas, schema terms, whatever) over Σ, and
constitute the language generated by the signature, also denoted by L(Σ). More
precisely, each morphism ŵ : s→ t in G+ represents an expression of type s→ t.
Note that a morphism in G+ corresponds to a path over the signature m-graph
G.

For instance, using the constructors of signature ΣΠ, the morphism

⊃̂ ◦ 〈¬̂ ◦ q̂1, q̂2〉

corresponds to the path ⊃〈¬ q1, q2〉 over G† where q1 and q2 are propositional
symbols, that is, are m-edges in E of type ♦→ π, since:

• q1, q2,⊃,¬ ∈ E†1;

• 〈¬ q1, q2〉 ∈ E†2;

hence ⊃〈¬ q1, q2〉 is a path over G†2 and so over G†. Moreover, it is straightfor-
ward to see that ⊃̂ ◦ 〈¬̂ ◦ q̂1, q̂2〉 is ̂⊃〈¬ q1, q2〉. Indeed,

⊃̂ ◦ 〈¬̂ ◦ q̂1, q̂2〉 = ⊃̂ ◦ 〈¬̂ q1, q̂2〉

= ⊃̂ ◦ ̂〈¬ q1, q2〉

= ̂⊃ ◦ 〈¬ q1, q2〉.

15



In the sequel, when there is no ambiguity, we may denote a morphism ê of G+

where e is a m-edge of E simply by e. Expressions with the object ♦ as source
are said to be concrete expressions. Thus, G+(♦, π) is the set of all concrete
formulas, or simply the set of all formulas in the language of Σ. This set
corresponds to the traditional (set-theoretic) notion of language of propositions
over Σ.

For instance, the morphism:

⊃ ◦ 〈¬ ◦ p1,⊃ ◦ 〈p2, p1〉〉 : ♦→ π

is an expression of type ♦ → π and so is a formula, represented more simply
as ((¬ p1) ⊃ (p2 ⊃ p1)). In the sequel we may simplify the representation of
morphisms in a similar way. Clearly, it is possible to write expressions with a
non-concrete object as source. Such expressions are said to be schema expres-
sions because only part of their structure is known (or determined), and when
its target is π we may call them schema formulas. So by a schema formula
we mean a morphism in G+ whose target is π and with no constraints over
the source. Schema variables are projections from π . . . π to π, or from π . . . π♦

to π, where the π-sequence at the source is non-empty, and are denoted by
ξ, ξ′, ξ′′, . . . , ξ1, ξ

′
1, ξ
′′
1 , . . . , ξ2, ξ

′
2, ξ
′′
2 , . . ..

Example 3.3 Consider the signature ΣΠ defined in Example 2.1. The schema
formula

(ξ1 ⊃ (ξ1 ⊃ ξ1))⊃ ξ2

is the morphism

⊃ ◦ 〈⊃ ◦ 〈ξ1,⊃ ◦ 〈ξ1, ξ1〉〉, ξ2〉 : ππ → π

where ξi is p̂ππi , for i = 1, 2; and the schema formula

(ξ3 ⊃ (ξ1 ⊃ ξ2))⊃ ξ4

is the morphism

⊃ ◦ 〈⊃ ◦ 〈ξ3,⊃ ◦ 〈ξ1, ξ2〉〉, ξ4〉 : ππππ → π

where ξi is p̂ππππi , for i = 1, . . . , 4. Given the propositional symbol p : ♦ → π,
the morphism

⊃ ◦ 〈⊃ ◦ 〈p ◦ p̂ππ♦
3 ,⊃ ◦ 〈ξ1, p ◦ p̂ππ♦

3 〉〉, ξ2〉 : ππ♦→ π

where ξi is p̂ππ♦
i , for i = 1, 2, corresponds to the schema formula

(p⊃ (ξ1 ⊃ p))⊃ ξ2.

Finally, given the propositional symbols p, q : ♦→ π, the morphism

⊃ ◦ 〈⊃ ◦ 〈p ◦ p̂π♦
2 ,⊃ ◦ 〈ξ1, q ◦ p̂π♦

2 〉〉, ξ1〉 : π♦→ π

represents the schema formula

(p⊃ (ξ1 ⊃ q))⊃ ξ1

where ξ1 is p̂π♦
1 . ∇
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Non-concrete expressions are very useful for setting up deductive rules that
can be instantiated using substitutions. Deductive rules with non-concrete ex-
pressions are called schema rules. Expression instantiation and rule instantia-
tion is achieved using morphism composition. Given the expressions ŵ : s2 → s3

and û : s1 → s2, the expression instantiation of the former by the latter is the
expression ŵ ◦ û.

Example 3.4 Let ϕ be the schema formula

⊃ ◦ 〈⊃ ◦ 〈¬ ◦ ξ, ξ′〉,⊃ ◦ 〈ξ, ξ′′〉〉

where ξ is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 . We can interchange ξ with ξ′ by
instantiating ϕ with 〈ξ′, ξ, ξ′′〉 : πππ → πππ, obtaining the following schema
formula

ϕ ◦〈ξ′, ξ, ξ′′〉 = ⊃ ◦ 〈⊃ ◦ 〈¬ ◦ ξ, ξ′〉 ◦ 〈ξ′, ξ, ξ′′〉,⊃ ◦ 〈ξ, ξ′′〉 ◦ 〈ξ′, ξ, ξ′′〉〉

= ⊃ ◦ 〈⊃ ◦ 〈¬ ◦ ξ′, ξ〉,⊃ ◦ 〈ξ′, ξ′′〉〉

from πππ to π. On the other hand, if we want to make concrete the second slot
of ϕ we could consider the propositional symbol p : ♦→ π, and then instantiate
ϕ with 〈ξ1, p ◦p̂ππ♦

3 , ξ2〉 : ππ♦→ πππ where ξj = p̂ππ♦
j for j = 1, 2 obtaining the

following schema formula

ϕ ◦〈ξ1, p ◦p̂ππ♦
3 , ξ2〉 =

= ⊃ ◦ 〈⊃ ◦ 〈¬ ◦ξ, ξ′〉 ◦ 〈ξ1, p ◦p̂ππ♦
3 , ξ2〉,⊃ ◦ 〈ξ, ξ′′〉 ◦ 〈ξ1, p ◦p̂ππ♦

3 , ξ2〉〉

= ⊃ ◦ 〈⊃ ◦ 〈¬ ◦ ξ1, p ◦p̂ππ♦
3 〉,⊃ ◦ 〈ξ1, ξ2〉〉

from ππ♦ to π. ∇

4 Satisfaction as a path

The main objective of the section is to introduce the notion of denotation of an
expression, and the notion of entailment of an expression from a set of expres-
sions. Intutively, denotation of a formula in the context of an interpretation
structure, is expected to be the set of the targets of all paths in the operations
m-graph that are mapped by the abstraction map to the formula. Consider the
denotation of the formula (¬ q1)⊃q2 in the interpretation structure described in
Example 2.6. Then, it is not difficult to see that the denotation of that formula
is the target of the path in Figure 11, that is, the truth value t. Equivalently,
as we will see, denotation of a formula can also be defined as the set of targets
of all morphisms in the category G′+, corresponding to the formula (¬ q1)⊃ q2.
As an example see Figure 12.

As a consequence, we need to extend the abstraction map α to a functor α+

from the category G′+ generated from the operations m-graph to the category
G+ generated from the signature m-graph.
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�
q′1 // t

¬t // f

;;;;;;;;

⊃ff // t

�
q′2 // f

��������

Figure 11: Path in the operations m-graph G′, introduced in Example 2.6 for
propositional logic, corresponding to formula (¬ q1)⊃ q2.

� ff t

⊃̂ff ◦ 〈¬̂f ◦ q̂′1, q̂′2〉

%%〈¬̂f ◦ q̂′1, q̂′2〉 // ⊃̂ff //

Figure 12: Morphism in G′+ denoting formula (¬ q1)⊃ q2.

So, given an m-graph morphism h : G′ → G, we now present a general way
to induce a functor h+ : G′+ → G+. First, we need to induce a graph morphism
h† from a m-graph morphism h. Given a m-graph morphism h : G′ → G we
define inductively the graph morphism h† : paths(G′†)→ paths(G†) as follows:

• h†(εv′1...v′n) = εhv(v′1)...hv(v′n) for v′1, . . . , v
′
n in V ′;

• h†(e′w′) = he(e′)h†(w′) where e′ is a m-edge in E′;

• h†(pv
′
1...v

′
n

i w′) = p
hv(v′1)...hv(v′n)
i h†(w′);

• h†(〈w′1, . . . , w′n〉w′0) = 〈h†(w′1), . . . , h†(w′n)〉h†(w′0).

Note that, if w′ : s′ → t′ then h†(w′) : (hv)+(s′) → (hv)+(t′). The main result
to be stated is the following one:

Proposition 4.1 Given a m-graph morphism h : G′ → G, the pair

h+ = ((hv)+, (he)+),

where (he)+(ŵ′) = ĥ†(w′) and (hv)+ is the extension of hv to sequences, is a
functor from G′+ to G+.

In order to prove the result above, we need an auxiliary technical lemma
stating that (he)+ is well defined (that is, its value does not depend on the
particular chosen representative of the equivalence class).

Lemma 4.2 Given a m-graph morphism h : G′ → G, if (w′1
‡, w′2

‡) is in ∆′‡

then (h†(w′1)‡, h†(w′2)‡) is in ∆‡.
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Proof: We show by induction on ∆′‡ that (h†(w′1)‡, h†(w′2)‡) is in ∆‡:

- (w′1
‡, w′2

‡) is such that w′1 is p
v′1...v

′
n

i 〈u′1, . . . , u′n〉 and w′2 is u′i. The result fol-

lows since (ph
v(v′1)...hv(v′n)
i 〈h†(u′1), . . . , h†(u′n)〉

‡
, h†(u′i)

‡) is in ∆‡, h†(w′1)‡ is the
first element of that pair and h†(w′2)‡ is the second;

- (w′1
‡, w′2

‡) is such that w′2 is 〈u′1, . . . , u′n〉 and ((pv
′
1...v

′
n

i w′1)
‡
, u′i
‡) ∈ ∆′‡ for

i = 1, . . . , n. So ((ph
v(v′1)...hv(v′n)
i h†(w′1))

‡
, h†(u′i)

‡) ∈ ∆‡ for i = 1, . . . , n by in-
duction hypothesis. Then (h†(w′1)‡, 〈h†(u′1), . . . , h†(u′n)〉‡) is in ∆‡ by definition
of ∆‡. The result follows since 〈h†(u′1), . . . , h†(u′n)〉 is h†(〈u′1, . . . , u′n〉);

- (w′1
‡, w′2

‡) is such that w′1 is g′1f
′
1, w′2 is g′2f

′
2, and (g′1

‡, g′2
‡) and (f ′1

‡, f ′2
‡) are

in ∆′‡. Hence, by induction hypothesis, (h†(g′1)‡, h†(g′2)‡) and (h†(f ′1)‡, h†(f ′2)‡)
are in ∆‡, and so (h†(g′1)h†(f ′1)‡, h†(g′2)h†(f ′2)‡) is also in ∆‡. The result follows
since h†(w′1)‡ is the first element of that pair and h†(w′2)‡ is the second.

- (w′1
‡, w′2

‡) is such that w′1
‡ = w′2

‡. Then by the uniqueness of the representa-
tion w′1 = w′2 and so the result follows straightforwardly.

- (w′1
‡, w′2

‡) is such that (w′2
‡, w′1

‡) is in ∆′‡. The result follows straightforwardly
by induction hypothesis.

- (w′1
‡, w′2

‡) is such that (w′1
‡, g′‡) and (g′‡, w′2

‡) are in ∆′‡. Then the result
follows straightforwardly by induction hypothesis. QED

Proof: (of Proposition 4.1)
The map (he)+ is well defined by Lemma 4.2, and preserves identities since
(he)+(idv′1...v′n) = (he)+(ε̂v′1...v′n) = ̂h†(εv′1...v′n) = ε̂hv(v′1)...hv(v′n) = idhv(v′1)...hv(v′n).

The map (he)+ preserves compositions since (he)+(ŵ′2 ◦ ŵ′1) = (he)+(ŵ′2w
′
1) =

̂h†(w′2w′1) = ̂h†(w′2)h†(w′1) = ĥ†(w′2) ◦ ĥ†(w′1) = (he)+(ŵ′2) ◦ (he)+(ŵ′1). QED

Finally, we observe that, from the results above, we obtain a functor ·+ :
mGraph→ fpCat defined in the obvious way.

So, we are now able to define denotation of a path, and then, denotation
of a morphism. With this purpose in mind, we have to give, for each sort,
the starting values so that we can define denotation inductively. Observe that,
as hinted before, the denotation of a path is a set of values. Recall that the
concatenation A · B, or even AB, of the sets of sequences A and B is the
set of sequences {ab : a ∈ A and b ∈ B}. Moreover, given an interpretation
structure I over a signature Σ, and v1, . . . , vn in V , a subset S of V ′+v1...vn is
a concatenation of basic sets whenever there exist S1 ⊆ V ′v1

, . . . , Sn ⊆ V ′vn
such that S is S1 . . . Sn. Given a concatenation of sets S1 . . . Sn we denote by
(S1 . . . Sn)i its i-th component, that is, the set Si.

The denotation of a concrete path w : ♦→ t over G† at I, represented by

[[w]]I

is a concatenation of basic sets contained in V ′+t , inductively defined on the
complexity of the path w as follows:
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• [[ε♦]]I is {�};

• [[pv1...vm
i w1]]I is ([[w1]]I)i where v1, . . . , vm are in V ;

• [[〈w1, . . . , wn〉w0]]I is [[w1w0]]I . . . [[wnw0]]I ;

• [[ew1]]I is the union of trg′(E′e(v
′,−)) for each v′ in [[w1]]I , when e is in E.

For instance, for evaluating ew1 over I, we start by evaluating w1 and getting
a set of values. For each value s′ in the evaluation of w1, we pick all the m-
edges in G′ with source s′ and which are mapped into e. Finally, the envisaged
denotation is obtained by taking the collection of targets of such m-edges.

Denotation is now extended to non-concrete paths. The denotation of the
schema variables is given by an assignment, which must be also a component
in the denotation process. An assignment

ρ

for an interpretation structure I over a signature Σ is a family {ρs}s∈V + such
that ρs is [[ws]]

I for some concrete path ws : ♦→ s. Observe that ρs is contained
in V ′+s and is a concatenation of basic sets, and ρ♦ = {�}.

The denotation of a path w : s→ t over G† at I and ρ, denoted by

[[w]]Iρ

is a concatenation of basic sets contained in V ′+t , inductively defined on the
complexity of the path w similarly to the denotation of a concrete path with
the exception that [[εs]]

Iρ is ρs.

Example 4.3 Consider the interpretation structure Ind in Example 2.9. Then

• [[q1 ∧ (¬ q1)]]Indρ = {I, t} since

[[ε♦]]Indρ = {�}

[[q1]]Indρ = trg′(E′q1([[ε♦]]Indρ,−))
= trg′(E′q1({�},−))
= trg′({q′1 : �→ I})
= {I}

[[¬ q1]]Indρ = trg′(E′¬([[q1]]Indρ,−))
= trg′(E′¬(I,−))
= trg′({¬II : I→ I,¬It : I→ t}
= {I, t}

[[q1 ∧ (¬ q1)]]Indρ = trg′(E′∧([[q1]]Indρ[[¬ q1]]Indρ,−))
= trg′(E′∧({I}{I, t},−))
= trg′(E′∧({II, It},−))
= trg′({∧III : II→ I,∧IIt : II→ t,

∧ItI : It→ I,∧Itt : It→ t})
= {I, t};
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• [[ ◦ q1]]Indρ = {f} since

[[ ◦ q1]]Indρ = trg′(E′◦([[q1]]Indρ,−))
= trg′(E′◦({I},−))
= trg′({◦If : I→ f})
= {f}

∇

As it is expected, the denotation of a path that is concrete does not depend
on the assignments as the following result states.

Proposition 4.4 Given an interpretation structure (Σ, I), assignments ρ1 and
ρ2 over I, and a concrete path w, [[w]]Iρ1 = [[w]]Iρ2 .

The next step is to extend denotation of paths to morphisms in order to eval-
uate expressions and, in particular, formulas. But first we have to state some
technical lemmas.

Proposition 4.5 Given an interpretation structure (Σ, I) and an assignment
ρ over I such that ρs = [[ws]]

I , then [[w]]Iρ = [[wws]]
I for any path w : s→ t over

G†.

Proof: The proof follows by induction on the complexity of w:

- w is εs. Then [[w]]Iρ = ρs = [[ws]]
I = [[wws]]

I ;

- w is pŝiw0. Then [[w]]Iρ = [[pŝiw0]]Iρ = ([[w0]]Iρ)i = ([[w0ws]]
I)i = [[pŝiw0ws]]

I =
[[wws]]

I ;

- w is 〈u1, . . . , un〉u0. Then [[w]]Iρ = [[〈u1, . . . , un〉u0]]Iρ = [[u1u0]]Iρ . . . [[unu0]]Iρ =
[[u1u0ws]]

I . . . [[unu0ws]]
I = [[〈u1, . . . , un〉u0ws]]

I = [[wws]]
I ;

- w is ew0. The thesis follows since [[w]]Iρ = [[ew0]]Iρ = ∪v′∈[[w0]]Iρtrg
′(E′e(v

′,−)) =

∪v′∈[[w0ws]]
I trg′(E′e(v

′,−)) = [[ew0ws]]
I = [[wws]]

I . QED

In the sequel, we use ρs/[[w]]Iρ to refer to the assignment obtained from ρ by

replacing ρs by the set [[w]]Iρ. Note that, by Poposition 4.5, ρ is well defined.
The first result, in Proposition 4.6, is a substitution lemma adapted to our
setting.

Proposition 4.6 Given an interpretation structure (Σ, I) and an assignment
ρ over I, [[w2w1]]Iρ=[[w2]]Iρs/[[w1]]Iρ for paths w1 :s1→s2 and w2 :s2→s3 over G†.

Proof: The proof follows by induction on the complexity of w2:

- w2 is εs. So [[w2w1]]Iρ = [[w1]]Iρ = (ρs/[[w1]]Iρ)s = [[w2]]Iρs/[[w1]]Iρ ;

- w2 is psiw0. So [[w2w1]]Iρ = [[psiw0w1]]Iρ = ([[w0w1]]Iρ)i = ([[w0]]Iρs/[[w1]]Iρ )i =
[[psiw0]]Iρs/[[w1]]Iρ = [[w2]]Iρs/[[w1]]Iρ ;
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- w2 is 〈u1, . . . , un〉u0. Then [[w2w1]]Iρ = [[〈u1, . . . , un〉u0w1]]Iρ = [[u1u0w1]]Iρ . . .
[[unu0w1]]Iρ = [[u1u0]]Iρs/[[w1]]Iρ . . . [[unu0]]Iρs/[[w1]]Iρ = [[〈u1, . . . , un〉u0]]Iρs/[[w1]]Iρ =
[[w2]]Iρs/[[w1]]Iρ ;

- w2 is ew0. Therefore [[w2w1]]Iρ = [[ew0w1]]Iρ = trg′(E′e([[w0w1]]Iρ,−)) =
trg′(E′e([[w0]]Iρs/[[w1]]Iρ ,−)) = [[ew0]]Iρs/[[w1]]Iρ = [[w2]]Iρs/[[w1]]Iρ . QED

The following result states that denotation is well defined.

Proposition 4.7 Given an interpretation structure (Σ, I), if (w‡, u‡) is in ∆‡

then [[w]]Iρ = [[u]]Iρ for any assignment ρ over I.

Proof: The proof follows by induction on ∆‡:

- (w‡, u‡) is such that w is pv1...vn
i 〈w1, . . . , wn〉 and u is wi. Then [[w]]Iρ =

[[pv1...vn
i 〈w1, . . . , wn〉]]Iρ = ([[〈w1, . . . , wn〉]]Iρ)i = ([[w1]]Iρ . . . [[wn]]Iρ)i = [[wi]]

Iρ =
[[u]]Iρ;

- (w‡, u‡) is such that u is 〈u1, . . . , un〉, w : s → v1 . . . vn, ui : s → vi and
((pv1...vn

i w)‡, ui‡) is in ∆‡ for i = 1, . . . , n. Hence [[pv1...vn
i w]]Iρ = [[ui]]

Iρ by
induction hypothesis, for i = 1, . . . , n. So ([[w]]Iρ)i = [[ui]]

Iρ for i = 1, . . . , n.
Since [[w]]Iρ is a concatenation of basic sets then [[w]]Iρ = [[u1]]Iρ . . . [[un]]Iρ, and
so the thesis follows straightforwardly;

- (w‡, u‡) is such that w is w2w1, u is u2u1, and (w2
‡, u2

‡) and (w1
‡, u1

‡) are in
∆‡. So [[w1]]Iρ = [[u1]]Iρ and [[w2]]Iρ = [[u2]]Iρ by induction hypothesis for any
assignment ρ. Then, by Proposition 4.6, [[w]]Iρ = [[w2w1]]Iρ = [[w2]]Iρs/[[w1]]Iρ =
[[u2]]Iρs/[[u1]]Iρ = [[u2u1]]Iρ = [[u]]Iρ;

- (w‡, u‡) is such that w‡ = u‡. Then by the uniqueness of the representation
w = v and so the result follows straightforwardly;

- (w‡, u‡) is such that (u‡, w‡) is in ∆‡. The result follows straightforwardly by
induction hypothesis;

- (w‡, u‡) is such that (w‡, u0
‡) and (u0

‡, u‡) are in ∆‡. Then the result follows
straightforwardly by induction hypothesis. QED

Capitalizing on Proposition 4.7, the denotation [[ŵ]]Iρ of a morphism ŵ in
G+ over I and ρ is defined as

[[ŵ]]Iρ = [[w]]Iρ.

The notions of local and global satisfactions are the usual ones. A schema
formula ϕ is said to be satisfied by I and ρ, written as

I, ρ 
 ϕ

whenever [[ϕ]]Iρ is non-empty and is contained in D. Moreover, we say I satisfies
ϕ, written as

I 
 ϕ
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whenever I, ρ 
 ϕ for every assignment ρ over I. Satisfaction is extended to
sets of schema formulas as expected: I, ρ 
 Γ if I, ρ 
 γ for each γ ∈ Γ, and
similarly for sequences of schema formulas: I, ρ 
 ϕ1 . . . ϕn if I, ρ 
 ϕi for
i = 1, . . . , n.

The definition of denotation given above is the usual for most logics. Exam-
ples of logics with a different notion of denotation are the paraconsistent logics
referred to in [2]. In the case of these logics, although some of the operations
are non deterministic, the denotation of a formula is always a fixed truth value.
The definition in our approach of that variant of denotation seems feasible and
we intend to explore the details in the future.

Example 4.8 Consider the interpretation structure Ind in Example 2.9. Then

Ind 
 q1 ∧ (¬ q1)

since [[q1 ∧ (¬ q1)]]Indρ = {I, t} is contained in D, see Example 4.3. Moreover,

Ind 6
 ◦q1

since [[ ◦ q1]]Indρ = {f} is not contained in D as shown in the same example.
Therefore,

Ind 6
 (q1 ∧ (¬ q1))⊃ (◦q1)

as expected for logics of formal inconsistency, see [10]. ∇

We are now ready to define semantic entailment. Given an interpretation
system I = (Σ, I) and a set Γ ∪ {ϕ} of schema formulas over Σ, we say that Γ
entails ϕ in I, written as

Γ �I ϕ,

whenever I 
 Γ implies I 
 ϕ for every I in I. Similarly we define entailment
over sequences of schema formulas as follows: ~γ �I ~ϕ whenever I 
 ~γ implies
I 
 ~ϕ for every I in I.

The graph-theoretic semantics developed in this work can be said to sub-
sume algebraic semantics, in the sense that, any logic endowed with an algebraic
semantics can be presented in our setting in such a way that satisfaction and
entailment are preserved. By a logic with an algebraic semantics we mean a
pair composed by a signature and a class of algebras over that signature. Each
algebra A is a triple (A, ·, DA) composed by a set A of (truth values) with
an operation cA : An → A for each constructor c of arity n in the signature
and a subset DA contained in A of distinguished values. In this context the
denotation [[ϕ]]A is homomorphic, that is

[[c(ϕ1, . . . , ϕn)]]A = cA([[ϕ1]]A, . . . , [[ϕn]]A).

A logic L with an algebraic semantics induces an interpretation system I(L)
with the obvious signature and containing, for each algebra A, an interpretation
structure IA = (G′, α,DA, �) defined as follows:

• V ′ is the set of truth values of the algebra;
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• E′ is composed, for each n-ary constructor c, by the set of m-edges
ca1,...,an : a1 . . . an → cA(a1, . . . , an) for each a1, . . . , an ∈ A when n ≥ 1,
or by c : �→ cA when n = 0;

• αv(a) = π for each a ∈ A;

• αe(ca1,...,an) = c for each a1, . . . , an ∈ A and αe(c) = c.

The graph-theoretic semantics induced by the algebraic semantics coincides
exactly in terms of denotation, satisfaction and entailment with the algebraic
semantics, as we show now.

Lemma 4.9 Given a logic with an algebraic semantics and an algebra A, then

[[ϕ]]A = [[ϕ]]IA .

Proof: By induction on the structure of ϕ: ϕ is c(ϕ1, . . . , ϕn). Therefore
[[ϕ]]A = [[c(ϕ1, . . . , ϕn)]]A = cA([[ϕ1]]A, . . . , [[ϕn]]A) = cA([[ϕ1]]IA , . . . , [[ϕn]]IA) =
trg′(c[[ϕ1]]IA ,...,[[ϕn]]IA ) = trg′(E′c([[ϕ1]]IA . . . [[ϕn]]IA ,−)) = [[ϕ]]IA . QED

Lemma 4.10 Given a logic with an algebraic semantics and an algebra A, then

A 
 ϕ iff IA 
 ϕ.

Proof: Assume that A 
 ϕ. Then [[ϕ]]A ∈ DA. Hence [[ϕ]]IA ∈ DA by
Lemma 4.9. So IA 
 ϕ. The other direction follows similarly. QED

Proposition 4.11 Let L be a logic with an algebraic semantics. Then, L and
I(L) share the same entailment.

Proof: Suppose Γ �L ϕ and let IA be in I(L) such that IA 
 Γ. Then A 
 Γ
by Lemma 4.10 and so A 
 ϕ. Hence also by Lemma 4.10, IA 
 ϕ as we wanted
to show. The other direction follows similarly. QED

5 Deductive systems as m-graphs

A deductive system is also described as a m-graph, the deductive m-graph. The
nodes are formulas and inference rules are m-edges. The sources of each of
those m-edges are the premises of the rule and the target is the conclusion. As
an example consider the case of the well known Modus Ponens rule as depicted
in Figure 13. The intuition behind this rule is as follows: starting with a pair
of formulas, we select the first one (with the projection p̂ππ1 ) and consider the
formula obtained by their implication (with ⊃). Then, by MP, we conclude the
second formula (with the projection p̂ππ2 ).

But, in a deductive system it is also necessary to consider an abstraction
map to a deductive signature in order to abstract, to explain, the components
of the deductive m-graph. So, herein, a deductive system is composed of three
parts: the deductive signature, the deductive m-graph and the abstraction map.
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ππ

π

p̂ππ1

���
�
�
� ππ

π

⊃
���
�
�
� ππ

π

p̂ππ2

���
�
�
�

MP
//

Figure 13: Modus Ponens as an m-edge.

The deductive signature is a language signature enriched with new m-edges for
representing inference rules and new m-edges for axioms.

By a deductive signature or, simply, a meta-signature we mean a tuple

Φ = (Σ,>,R)

where Σ = (G, π, ♦) is a language signature such that

GΦ = (V Φ, EΦ, srcΦ, trgΦ)

is a m-graph extending G with

• V Φ = V ;

• EΦ = E ∪ R where R = {Rn :
n︷ ︸︸ ︷

π . . . π → π}n>0;

and > is a set {>s : s→ π}s∈V + . As an example consider the enriched m-graph
in Figure 14 for a deductive signature for propositional logic.

π
��

⊃,R2

. . . ¬,R1

cc♦
p //

Figure 14: Enriched m-graph GΦ for the deductive signature of propositional
logic.

Each Rn is a symbolic expression for representing inference rules with n
premises. Each >s is called s-verum and is important to represent, in our
setting, axioms. An axiom is the target of a unary rule whose antecedent is a
verum schema formula.

The next step is to define deductive system. A deductive system over a de-
ductive signature is a m-graph where the nodes are language expressions, that
is, morphisms of the category generated by the deductive m-graph enriched
with the verum edges, and the m-edges include, besides the language construc-
tors (ensuring the commutativity of diagrams), the given inference rules. For
instance, the well known Modus Ponens inference rule is seen as a m-edge
whose source is the pair composed by the two morphisms corresponding to the
premises and whose target is the morphism corresponding to the conclusion,
see Figure 13.

Given a deductive signature (Σ,>,R), where Σ is (G, π, ♦), we denote by
G> the m-graph obtained by enriching G with the m-edges >s : s → π. We
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say that a morphism ŵ of G+

> is in G+ whenever there is a path u over G† and
û = ŵ. We may denote a schema formula of G+

> not in G+ as a verum schema
formula. Given morphisms ŵ1 : s → s1 and ŵ2 : s1 → s2 of G+

> in G+ it is
straightforward to see that ŵ2 ◦ ŵ1 is also in G+. Moreover given the morphism
>̂s : s→ π of G+

> it is straightforward to see that for any û : s→ s1 in G+

> the
morphism >̂s ◦ û is also not in G+.

By a deductive system over a meta-signature Φ we mean a basis (G′′, β) over
GΦ where G′′ = (V ′′, E′′, src′′, trg′′) is such that

• V ′′ is the class of morphisms of G+

> whose target is in V ;

• E′′(ŵ1 : s→ v1 . . . ŵn : s→ vn, ŵ : s→ v), for ŵ in G+, contains, among
others, the m-edges e : v1 . . . vn → v of E such that ŵ = e ◦ 〈ŵ1, . . . , ŵn〉
in G+;

• E′′(ŵ1 : s1 → v1 . . . ŵn : sn → vn, ŵ : s→ v) = ∅ whenever ŵ is not in G+

or si 6= s for some i = 1, . . . , n, or ŵi is not in G+ and n 6= 1;

and β is such that

• βv(ŵ : s→ v) = v;

• βe(e : (ŵ1 : s → v1 . . . ŵn : s → vn) → (ŵ : s → v)) = e if e is in E and
ŵ = e ◦ 〈ŵ1, . . . , ŵn〉;

• βe(f ′) ∈ R otherwise.

The first condition on E′′ imposes that E′′ contains the language construc-
tors, as it is usually considered in categorical logic. As imposed in the last
condition for βe the other m-edges correspond to inference rules. All the m-
edges corresponding to inference rules must have as premises and conclusion,
expressions with the same source, and with target π. The same source condition
is imposed by the second condition on E′′ and is crucial for defining instanti-
ation as we will see below. The target is π by definition of β and of R. The
m-edges in (βe)−1(Rn) are called n-ary inference rules or simply n-ary rules.

By a deductive system D we mean a triple

(Φ, G′′, β)

such that Φ is a meta-signature and (G′′, β) is a deductive system over Φ. We
now illustrate our notion of deductive system by presenting deductive systems
for a variety of logics.

Example 5.1 Deductive system for classical propositional logic.
Consider the well known Hilbert axiomatization of classical propositional logic
with three axiom schemas and Modus Ponens. This axiomatization can be
represented as the deductive system (ΦΠ, G

′′, β), denoted by DPL
Π , such that:

• ΦΠ is the meta-signature (ΣΠ,>,R) where ΣΠ is the propositional signa-
ture (G, π, ♦) introduced in Example 2.1;
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Figure 15: Part of the deductive system of Example 5.1.

• G′′ has, besides the mandatory m-edges for connectives, the following ones
for rules:

– m-edge ax1 : >ππ → (ξ ⊃ (ξ′ ⊃ ξ)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax2 : >πππ → ((ξ ⊃ (ξ′ ⊃ ξ′′))⊃ ((ξ ⊃ ξ′)⊃ (ξ ⊃ ξ′′))) where ξ
is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax3 : >ππ → (((¬ ξ) ⊃ (¬ ξ′)) ⊃ (ξ′ ⊃ ξ)) where ξ is p̂ππ1 and
ξ′ is p̂ππ2 ;

– m-edge MP : p̂ππ1 ⊃ → p̂ππ2 ;

• β : G′′ → GΦΠ is such that:

– βe(axi) = R1 for i = 1, 2, 3;

– βe(MP) = R2.

In the sequel, we can abbreviate the target of the m-edges corresponding to
axioms as A. This deductive systems contains the three axiom schemes, repre-
sented as unary rules with a verum schema formula as antecedent, and the 2-ary
inference rule of MP. Part of the deductive system is depicted in Figure 15. ∇

Example 5.2 Deductive system for classical propositional modal logic T.
Consider the Hilbert axiomatization of the global consequence relation for the
classical propositional modal logic T with three axiom schemas for the propo-
sitional part, Modus Ponens, a rule stating that (�ϕ) holds for each theorem
ϕ, the normality axiom K and the reflexivity axiom T. This axiomatization can
be represented as the deductive system (ΦΠ, G

′′, β) such that:

27



• ΦΠ is the meta-signature (Σ�
Π,>,R) where Σ�

Π is the propositional modal
signature (G, π, ♦) introduced in Example 2.2;

• G′′ has, besides the mandatory m-edges for connectives, the following
ones:

– m-edge ax1 : >ππ → (ξ ⊃ (ξ′ ⊃ ξ)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax2 : >πππ → ((ξ ⊃ (ξ′ ⊃ ξ′′))⊃ ((ξ ⊃ ξ′)⊃ (ξ ⊃ ξ′′))) where ξ
is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax3 : >ππ → (((¬ ξ) ⊃ (¬ ξ′)) ⊃ (ξ′ ⊃ ξ)) where ξ is p̂ππ1 and
ξ′ is p̂ππ2 ;

– m-edge axK : >ππ → ((�(ξ ⊃ ξ′)) ⊃ ((�ξ) ⊃ (�ξ′))) where ξ is p̂ππ1

and ξ′ is p̂ππ2 ;

– m-edge axT : >ππ → ((�ξ)⊃ ξ) where ξ is idπ;

– m-edge MP : p̂ππ1 ⊃ → p̂ππ2 ;

– m-edge � : idπ → �;

• β : G′′ → GΦΠ is such that:

– βe(axi) = R1 for i = 1, 2, 3,K, T ;

– βe(MP) = R2;

– βe(�) = R1. ∇

Example 5.3 Deductive system for intuitionistic propositional logic.
Consider the well known Hilbert axiomatization of intuitionistic propositional
logic with axiom schemas and Modus Ponens. This axiomatization can be
represented as the deductive system (ΦΠ, G

′′, β) such that:

• ΦΠ is the meta-signature (Σ∧,∨Π ,>,R) where Σ∧,∨Π is the intuitionistic
propositional signature (G, π, ♦) introduced in Example 2.3;

• G′′ has, besides the mandatory m-edges for connectives, the following
ones:

– m-edge ax1 : >ππ → (ξ ⊃ (ξ′ ⊃ ξ)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax2 : >πππ → ((ξ ⊃ (ξ′ ⊃ ξ′′))⊃ ((ξ ⊃ ξ′)⊃ (ξ ⊃ ξ′′))) where ξ
is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax3 : >ππ → (ξ ⊃ (ξ′ ⊃ (ξ ∧ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax4 : >ππ → ((ξ ∧ ξ′)⊃ ξ) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax5 : >ππ → ((ξ ∧ ξ′)⊃ ξ′) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax6 : >ππ → (ξ ⊃ (ξ ∨ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax7 : >ππ → (ξ′ ⊃ (ξ ∨ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax8 : >πππ → ((ξ ⊃ ξ′′)⊃ ((ξ′ ⊃ ξ′′)⊃ ((ξ ∨ ξ′)⊃ ξ′′))) where
ξ is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;
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– m-edge ax9 : >ππ → ((ξ ⊃ ξ′)⊃ ((ξ ⊃ (¬ ξ′))⊃ (¬ ξ))) where ξ is p̂ππ1

and ξ′ is p̂ππ2 ;

– m-edge ax10 : >ππ → (ξ ⊃ ((¬ ξ)⊃ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge MP : p̂ππ1 ⊃ → p̂ππ2 ;

• β : G′′ → GΦΠ is such that:

– βe(axi) = R1 for i = 1, . . . , 10;

– βe(MP) = R2. ∇

Example 5.4 Deductive system for propositional relevance logic R.
Consider the Hilbert axiomatization of relevance logic R with axiom schemas,
MP and AR. This axiomatization can be represented as the deductive system
(ΦΠ, G

′′, β) such that:

• ΦΠ is the meta-signature (Σ∧,∨Π ,>,R) where Σ∧,∨Π is the intuitionistic
propositional signature (G, π, ♦) introduced in Example 2.3;

• G′′ has, besides the mandatory m-edges for connectives, the following
ones:

– m-edge ax1 : >ππ → (ξ ⊃ ξ) where ξ is idπ;

– m-edge ax2 : >πππ → ((ξ ⊃ ξ′) ⊃ ((ξ′′ ⊃ ξ) ⊃ (ξ′′ ⊃ ξ′))) where ξ is
p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax3 : >ππ → ((ξ ⊃ (ξ ⊃ ξ′))⊃ (ξ ⊃ ξ′)) where ξ is p̂ππ1 and ξ′

is p̂ππ2 ;

– m-edge ax4 : >πππ → ((ξ ⊃ (ξ′ ⊃ ξ′′)) ⊃ (ξ′ ⊃ (ξ ⊃ ξ′′))) where ξ is
p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax5 : >ππ → ((ξ ∧ ξ′)⊃ ξ) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax6 : >ππ → ((ξ ∧ ξ′)⊃ ξ′) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax7 : >πππ → (((ξ ⊃ ξ′) ∧ (ξ ⊃ ξ′′))⊃ (ξ ⊃ (ξ′ ∧ ξ′′))) where ξ
is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax8 : >ππ → (ξ ⊃ (ξ ∨ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax9 : >ππ → (ξ′ ⊃ (ξ ∨ ξ′)) where ξ is p̂ππ1 and ξ′ is p̂ππ2 ;

– m-edge ax10 : >πππ → (((ξ ⊃ ξ′′) ∧ (ξ′ ⊃ ξ′′))⊃ ((ξ ∨ ξ′)⊃ ξ′′)) where
ξ is p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax11 : >πππ → ((ξ ∧ (ξ′ ∨ ξ′′)) ⊃ ((ξ ∧ ξ′) ∨ ξ′′)) where ξ is
p̂πππ1 , ξ′ is p̂πππ2 and ξ′′ is p̂πππ3 ;

– m-edge ax12 : >π → ((ξ ⊃ (¬ ξ))⊃ (¬ ξ)) where ξ is idπ;

– m-edge ax13 : >ππ → ((ξ ⊃ (¬ ξ′))⊃ (ξ′ ⊃ (¬ ξ))) where ξ is p̂ππ1 and
ξ′ is p̂ππ2 ;

– m-edge ax14 : >π → ((¬(¬ ξ))⊃ ξ) where ξ is idπ;

– m-edge MP : p̂ππ1 ⊃ → p̂ππ2 ;

– m-edge AR : p̂ππ1 p̂ππ2 → (∧ ◦ 〈p̂ππ1 , p̂ππ2 〉);
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• β : G′′ → GΦΠ is such that:

– βe(axi) = R1 for i = 1, . . . , 14;

– βe(MP) = R2;

– βe(AR) = R2. ∇

Example 5.5 Deductive system for (one-sorted) equational logic.
Consider the Hilbert axiomatization of equational logic with one axiom schema
and four inference rules. This axiomatization can be represented as the deduc-
tive system (ΦΠ, G

′′, β) such that:

• ΦΠ is the meta-signature (ΣEQ
F ,>,R) where ΣEQ

F is the equational signa-
ture (G, π, ♦) introduced in Example 2.5;

• G′′ has, besides the mandatory m-edges for connectives, the following
ones:

– ax : >θ →≈ ◦〈idθ, idθ〉;
– SYM :≈→≈ ◦〈p̂θθ2 , p̂θθ1 〉;
– TRANS : (≈ ◦〈p̂θθθ1 , p̂θθθ2 〉)(≈ ◦〈p̂θθθ2 , p̂θθθ3 〉)→ (≈ ◦〈p̂θθθ1 , p̂θθθ3 〉);
– CONGf : (≈ ◦〈p̂θ...θ1 , p̂θ...θn+1〉) . . . (≈ ◦〈p̂θ...θn , p̂θ...θ2n 〉)→

(≈ ◦〈f ◦ 〈p̂θ...θ1 , . . . , p̂θ...θn 〉, f ◦ 〈p̂θ...θn+1, . . . , p̂
θ...θ
2n 〉〉);

– SUBt′,t′′,t :≈ ◦〈t′, t′′〉 →≈ ◦〈t′, t′′〉 ◦ t for each t′, t′′ : s → θ and
t : s1 → s morphisms of G+;

• β : G′′ → GΦΠ is such that:

– βe(ax) = R1;

– βe(SYM) = R1;

– βe(TRANS) = R2;

– βe(CONGf ) = Rn whenever f is in Fn;

– βe(SUBt′,t′′,t) = R1. ∇

6 Derivation as a path

The next step is to define derivation in the context of a deductive system.
The basic ingredient is instantiation of rules. The instantiation of a rule r is
accomplished by enriching G′′+ with new morphisms r̂� û, denoting the result
of the instantiation of r by û (see Figure 16).
We will also denote by � the simultaneous instantiation of several rules.

Example 6.1 In order to understand better instantiation of rules in our set-
ting, we make the parallel with the traditional view. Assume that MP is a
schema rule of the form

ξ1 (ξ1 ⊃ ξ2)
ξ2

.
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Figure 16: Instantiation of MP by û.

By instantiating ξ1 7→ q1 and ξ2 7→ (q3 ⊃ q2) we get the following inference:

q1 (q1 ⊃ (q3 ⊃ q2))
q3 ⊃ q2

.

This can be shortly written as

MP[ξ1/q1, ξ2/(q3 ⊃ q2)]

corresponding to the morphism MP� 〈q1, q3 ⊃ q2〉. This example is illustrated
in Figure 17. ∇
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Figure 17: Instantiation of MP as described in Example 6.1.

Intuitively, derivations are seen as a sequence of derivation steps, also called
derivation levels, see Figure 18 and Figure 22, where in each level one or several
rules may be applied to different schema formulas coming from the preceding
level. The morphism ididπ is applied in a level to a schema formula when no
rule is applied to it in that level. Note that axioms are seen as unary rules
whose antecedent is a verum schema formula. So, in order to define derivations,
besides the operation �, which denotes the instantiation of a derivation level by
a substitution, we need to consider a new operation ⊗ for defining a derivation
level. That operation interacts appropriately with �.

Before defining those operations we introduce some convenient notation.
Given i = 1, . . . , n, si = vi1 . . . vimi in V + where vi1, . . . , vimi are in V , we
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denote by ps1...snsi the tuple 〈ps1...snm1+...+mi−1+1, . . . , p
s1...sn
m1+...+mi

〉. Moreover, given
âi : s → vi in G+ for i = 1, . . . , n we denote by (â1 . . . ân) ◦ û the sequence
â1 ◦ û . . . ân ◦ û.

So, in order to define derivations we consider a new category, G′′?, which
is a smallest category with non empty finite products obtained from G′′+ by
adding the morphisms

• f1 ⊗ · · · ⊗ fn :
(â11. . . â1m1)◦ p̂s1...sns1 . . . (ân1. . . ânmn)◦ p̂s1...snsn → (ĉ1 ◦ p̂s1...sns1 . . . ĉn ◦ p̂s1...snsn )
where fi : âi1 . . . âimi → ĉi is ididπ or is in (βe)−1(R) and src(ci) = si;

• ` � û : (â1 . . . âm) ◦ û → (ĉ1 . . . ĉn) ◦ û whenever û in G+ is composable
with ĉ1 and ` : â1 . . . âm → ĉ1 . . . ĉn is of the form f1 ⊗ · · · ⊗ fn;

while imposing:

• ididπ � û = idbu;

• `� ids = `;

• (`� û2)� û1 = `� (û2 ◦ û1);

• (f1 ⊗ · · · ⊗ fn)� û = (f1 � (p̂s1...sns1 ◦ û))⊗ · · · ⊗ (fn � (p̂s1...snsn ◦ û)).

Given a morphism f1 ⊗ · · · ⊗ fn named ` in G′′?, denoting a derivation
step, we denote by CONC(`) the target of ` and by ANT(`) the source of `.
When presenting derivations it is more convenient not indicate explicitly the
substitutions used, but instead the rule or axiom resulting from the instantiation
by that substitution. For this purpose we write ` ? ~ϕ whenever there is a
substitution û (a morphism in G+) with ~ϕ = ANT(`) ◦ û and such that ` ? ~ϕ =
`� û. For instance, in Example 6.1, ~ϕ is q1, q1⊃ (q3⊃ q2) and û is 〈q1, q3⊃ q2〉.
Note that, by definition, a substitution û never involves verum schema formulas
since û is a morphism in G+. In the sequel we may use commas to separate
elements in a sequence of formulas. We are now ready to define derivations.
But first we give a bit of motivation.

Example 6.2 Consider the following derivation in the Hilbert calculus for clas-
sical logic stating that p⊃ q follows from q:

1. q Hyp

2. q ⊃ (p⊃ q) A1

3. p⊃ q MP 1, 2

which is represented graphically in Figure 18. So p ⊃ q is obtained by an
application of MP:

q q ⊃ (p⊃ q)
p⊃ q

where only q is an hypothesis since the other premise q ⊃ (p ⊃ q) is an axiom.
In more detail, the derivation can be seen as consisting of two steps, the first

32



q >ππ ◦ 〈q, p〉 ~ϕ1

q q ⊃ (p⊃ q) ~ϕ2

p⊃ q ~ϕ3

ididπ

��

ax1

��

XXXXXXXXX
eeeeeeeeee

MP

��

l1

l2

Figure 18: Graphical representation of the derivation in Example 6.2 and in
Example 6.3.

one for concluding the axiom q ⊃ (p⊃ q), and the second step consisting of an
application of MP with substitution ξ1 7→ q and ξ2 7→ p⊃ q. This second step,
is represented, in our setting, by the morphism

MP� 〈q, p⊃ q〉

denoted, more conveniently, by

MP ? q, q ⊃ (p⊃ q).

The first step of the derivation is represented, in our setting, by the morphism

(ididπ ⊗ ax1)� 〈q, q, p〉

which can be denoted also by

(ididπ ⊗ ax1) ? q,>ππ ◦ 〈q, p〉

(see Figure 18). ∇

Let D be a deductive system. A derivation step in D is a morphism of the
form f1 ⊗ . . . ⊗ fm where fi is either ididπ or is an element of (βe)−1(R), for
i = 1, . . . ,m and m > 0. An illustration of a derivation step is presented in
Figure 20.

By a derivation in D we mean a pair

d = `1, . . . , `n; ~ϕ1

where each `i is a derivation step and ~ϕ1 is a sequence of morphisms in V ′′

such that the sequence given by ~ϕi+1 = CONC(`i ? ~ϕi), for i = 1, . . . , n, is well
defined, and so there exists the composite morphism

(`n ? ~ϕn) ◦ . . . ◦ (`1 ? ~ϕ1)
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l2 ? ~ϕ2
��

...

...

ln ? ~ϕn
��

ln ? ~ϕn ◦ . . . ◦ l1 ? ~ϕ1

��

Figure 19: (Effective) derivation as a composite morphism in G′′?.

in G′′? (see Figure 19). The morphism above is called the effective derivation
associated with the derivation `1, . . . , `n; ~ϕ1. When there is no ambiguity we
may use the term derivation to refer also to the effective derivation. In the
sequel we will denote by di the morphism (`i ? ~ϕi) ◦ . . . ◦ (`1 ? ~ϕ1).

The set of hypothesis HYP(d) of the derivation d = `1, . . . , `n; ~ϕ1, where ~ϕ1

is of the form ϕ11 . . . ϕ1m1 for m1 > 0, is the set of the ϕ1i’s that are in G+. As
usual we write

Γ `D ~ϕ

if there is a derivation d in D such that CONC(dn) = ~ϕ and HYP(d) ⊆ Γ, where
~ϕ is a sequence and Γ a set of schema formulas of G+.

The definition of consequence deserves some comments. Firstly, observe
that ~ϕ is a sequence of formulas possibly containing more than one formula.
So multi-conclusion derivations can be naturally defined. Secondly, a set of
hypothesis was considered instead of a sequence. This classical perspective
intends to reflect derivations in standard Hilbert systems, as it is treated in
this work. However, instead of Γ itself, we could pick the subsequence of ~ϕ1 of
hypothesis. This would provide us with more information about the effective
number and even about the order of the premises used in the derivation, in line
with some substructural logics of resources. Thirdly, note that it is possible
to use several rules in parallel by means of the ⊗ operator in each step of the
derivation. This could open the possibility of considering parallel reasoning.
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MP⊗ ididπ��

Figure 20: Graphical representation of the first derivation step in Example 6.4.

Finally, observe that schema formulas not in G+, that is, morphisms involving
verum schema formulas, can only appear as antecedents of the first step of a
derivation, since: 1. the conclusion of a deductive rule, by definition, is in G+,
2. substitutions are morphisms in G+. So, axiom rules can only be used in the
first step of a derivation.

Example 6.3 The derivation in Example 6.2 depicted in Figure 18 can be
expressed in our setting as the derivation d in DPL

{p,q} given by

MP, (ididπ ⊗ ax1); ~ϕ1

stating that

q `DPL
{p,q}

p⊃ q

where ~ϕ1 is the sequence q,>ππ ◦ 〈q, p〉. In fact, ~ϕ1 is ANT(ididπ ⊗ ax1) ◦ û1 for
û1 = 〈q, q, p〉. So, ~ϕ2 = q, q⊃ (p⊃q) and ~ϕ2 = ANT(MP)◦ û2 for û2 = 〈q, p⊃q〉.
Hence ~ϕ3 = p ⊃ q since ~ϕ3 = CONC(MP) ◦ û2. The set HYP(d) is {q} since
>ππ ◦ 〈q, p〉, an instance of the ππ-verum, is a schema formula not in G+. ∇

Example 6.4 The derivation d given by

MP, (MP⊗ ididπ); ξ1, ξ1 ⊃ ξ2, ξ2 ⊃ ξ3

where ξ1, ξ2 and ξ3 are the projections p̂πππ1 , p̂πππ2 and p̂πππ3 respectively, states
that

ξ1, (ξ1 ⊃ ξ2), (ξ2 ⊃ ξ3) `DPL
Π
ξ3.

In fact, the morphism û1 = 〈ξ1, ξ2, ξ2 ⊃ ξ3〉 is such that

~ϕ1 = ANT(MP⊗ ididπ) ◦ û1

since ANT(MP ⊗ ididπ) is the sequence p̂ππ1 ◦ p̂πππ1,2 ,⊃ ◦ p̂πππ1,2 , idπ ◦ p̂πππ3 . Thus
(MP⊗ ididπ) ? ~ϕ1 : ~ϕ1 → ~ϕ2 is a morphism in G′′? where

~ϕ2 = (p̂ππ2 ◦ p̂πππ1,2 , idπ ◦ p̂πππ3 ) ◦ û1 = ξ2, ξ2 ⊃ ξ3.
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Figure 21: Graphical representation of the derivation in Example 6.4.

The second derivation step is as follows: the morphism û2 = 〈ξ2, ξ3〉 is taken
such that ~ϕ2 = (p̂ππ1 ,⊃) ◦ û2 where the sequence p̂ππ1 ,⊃ is ANT(MP). Hence,
MP ? ~ϕ2 : ~ϕ2 → ~ϕ3 in G′′?, where ~ϕ3 = p̂ππ2 ◦ û2 = ξ3. This derivation is
graphically represented in Figure 21. ∇

Example 6.5 In the Hilbert calculus for classical logic we can derive ξ1 from
ξ2 and ¬ ξ2, as follows:

1. ξ2 Hyp

2. ¬ ξ2 Hyp

3. (¬ ξ2)⊃ ((¬ ξ1)⊃ (¬ ξ2)) A1

4. (¬ ξ1)⊃ (¬ ξ2) MP 2, 3

5. ((¬ ξ1)⊃ (¬ ξ2))⊃ (ξ2 ⊃ ξ1) A3

6. ξ2 ⊃ ξ1 MP 4, 5

7. ξ1 MP 1, 6

In order to understand how derivations are expressed in our setting we should
distinguish between the assumed formulas (hypothesis or axioms) and the for-
mulas derived during the process. In the above derivation the formulas in steps
1., 2., 3. and 5. are assumed and the others are derived. Intuitively speaking, in
our setting the assumed formulas are putted altogether in the initial sequence
~ϕ1. The intuition behind the derivation is depicted in Figure 22. Formally we
can consider the derivation d in DPL

Π given by

MP, (ididπ ⊗MP), (ididπ ⊗MP⊗ ididπ), (ididπ ⊗ ididπ ⊗ ax1 ⊗ ax3); ~ϕ1
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ξ2 ¬ ξ2 >ππ ◦ 〈¬ ξ2,¬ ξ1〉 >ππ ◦ 〈ξ1, ξ2〉

ξ2 ¬ ξ2 ¬ ξ2 ⊃ (¬ ξ1 ⊃ ¬ ξ2) (¬ ξ1 ⊃ ¬ ξ2)⊃ (ξ2 ⊃ ξ1)

ξ2 ¬ ξ1 ⊃ ¬ ξ2 (¬ ξ1 ⊃ ¬ ξ2)⊃ (ξ2 ⊃ ξ1)

ξ2 ξ2 ⊃ ξ1

ξ1

YYYYYY
hhhhh

MP

��

ZZZZZZZZZZZZZZZ
ccccccccccccccccccccc

MP

��

ZZZZZZZZZZZZZZZZZ
ccccccccccccccccc

MP
��

ididπ

��

ididπ

��

ax1

��

ax3

��

ididπ

��

ididπ

��

ididπ

��

Figure 22: Deduction steps of the derivation of Examples 6.5.

where ~ϕ1 is the sequence ξ2,¬ ξ2,>ππ ◦ 〈¬ ξ2,¬ ξ1〉,>ππ ◦ 〈ξ1, ξ2〉, and ξ1 and ξ2

are pππ1 and pππ2 , respectively, stating that

ξ2,¬ξ2 `DPL
Π
ξ1.

In fact, taking û1 = 〈ξ2,¬ ξ2,¬ ξ2,¬ ξ1, ξ1, ξ2〉 we get ~ϕ2 equal to the sequence
ξ2,¬ξ2,¬ξ2 ⊃ (¬ξ1 ⊃ ¬ξ2), (¬ξ1 ⊃ ¬ξ2) ⊃ (ξ2 ⊃ ξ1). Moreover taking û2 =
〈ξ2,¬ ξ2,¬ ξ1⊃¬ ξ2, (¬ ξ1⊃¬ ξ2)⊃ (ξ2⊃ ξ1)〉 we get ~ϕ3 = ξ2,¬ ξ1⊃¬ ξ2, (¬ ξ1⊃
¬ ξ2) ⊃ (ξ2 ⊃ ξ1) by applying the second derivation step. Now, by taking
û3 = 〈ξ2,¬ ξ1⊃¬ ξ2, ξ2⊃ξ1〉 we get ~ϕ4 = ξ2, ξ2⊃ξ1 by the third derivation step.
Finally, û4 = 〈ξ2, ξ1〉 allows to conclude ~ϕ5 = ξ1 by the last inference step. This
derivation can be visualized in Figure 22. ∇

The notion of relevant deduction can be expressed in our setting with minor
adjustments by defining ~γ `D ~ϕ whenever there is a derivation d = `1, . . . , `n; ~ϕ1

such that CONC(dn) = ~ϕ and ~γ is ~ϕ1 without the schema formulas not in G+.

7 Putting semantics and deduction together

We start by defining logic system, obtained by putting together a signature, a
interpretation system and a deduction system. As seen in previous sections all
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of these components are defined in terms of m-graphs. More rigorously, a logic
system is a triple

L = (Σ, I,D)

such that:

• I = (Σ, I) is an interpretation system;

• D = (Φ, G′′, β) is a deductive system where Φ is a meta-signature over Σ.

The logic system L is said to be sound if Γ �I ϕ whenever Γ `D ϕ, where ϕ
is a formula and Γ is a set of formulas of G+, and is said to be complete if the
converse holds. A logic system is said to be weakly complete if `D ϕ whenever
�I ϕ, for each formula ϕ of G+.

7.1 Soundness

Given a logic system L, I in I is said to be sound for a deductive rule r in D, if
I, ρ 
 CONC(r) whenever I, ρ 
 proper(ANT(r)) for every assignment ρ over I,
where the map proper(·) when applied to a sequence ~ϕ of schema formulas in
G+

> returns the subsequence of schema formulas that are in G+. These schema
formulas are called proper. The logic system L is said to be sound for a deductive
rule r in D, if all its interpretation structures over its signature are sound for r.

We now prove two propositions useful to establish the soundness theorem.

Proposition 7.1 A logic system L sound for a deductive rule r is such that
I, ρ 
 CONC(r) ◦ û whenever I, ρ 
 proper(ANT(r)) ◦ û for I in I, assignment
ρ over I and morphism û in G+ composable with the schema formulas in r.

Proof: Let r : (ψ1 : s → π . . . ψm : s → π) → (ϕ : s → π) and denote by
ϕ1, . . . , ϕn the proper antecedents of r. Assume that I, ρ 
 proper(ANT(r)) ◦ û,
that is, I, ρ 
 ϕi ◦ û for i = 1, . . . , n. Hence, [[ϕi ◦ û]]Iρ ⊆ D, and so, using
Proposition 4.6, [[ϕi]]

Iρ
s/[[u]]Iρ ⊆ D, for i = 1, . . . , n. Since L is sound for r,

then [[ϕ]]Iρs/[[u]]Iρ ⊆ D, and by Proposition 4.6 and definition of denotation,
[[ϕ ◦ û]]Iρ ⊆ D. So I, ρ 
 CONC(r) ◦ û. QED

Proposition 7.2 Given a logic system L sound for its rules, a derivation step
`, and a morphism û in G+ such that `� û is definable, then I, ρ 
 CONC(`� û)
whenever I, ρ 
 proper(ANT(`� û), for every I in I and assignment ρ over I.

Proof: Assume I, ρ 
 proper(ANT(` � û) and let ` be f1 ⊗ . . . ⊗ fn where
fi : â′i1 . . . â

′
im′i
→ ĉi is ididπ or is in (βe)−1(R), and i = 1, . . . , n. Denote by

âi1 . . . âimi the subsequence of proper antecedents of fi. Then proper(ANT(`�
û) = ((â11 . . . â1m1)◦p̂s1...sns1 . . . (ân1 . . . ânmn)◦p̂s1...snsn )◦û and CONC(`�û) = (ĉ1◦
p̂s1...sns1 . . . ĉn◦ p̂s1...snsn )◦ û. So I, ρ 
 proper(ANT(fi)◦(p̂s1...snsi ◦ û) for i = 1, . . . , n.
We now show that I, ρ 
 CONC(`� û) that is I, ρ 
 CONC(fi) ◦ (p̂s1...snsi ◦ û) for
i = 1, . . . , n. Let i ∈ {1, . . . , n}. There are two cases to consider: (i) fi is ididπ .
Then CONC(fi) = proper(ANT(fi)) and so I, ρ 
 CONC(fi) ◦ (p̂s1...snsi ◦ û) using
the hypothesis. (ii) f1 is in (βe)−1(R), and so f1 is a deductive rule. Then the
result follows by Proposition 7.1. QED
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The soundness theorem establishes soundness for rules as a sufficient con-
dition for a logic system to be sound.

Theorem 7.3 A logic system is sound if it is sound for its deductive rules.

Proof: Let L = (Σ, I,D) be a logic system sound for all its deductive rules,
and assume that Γ `D ~ϕ for a sequence ~ϕ and a set Γ of formulas of G+. Let
`1, . . . , `n; ~ϕ1 be a derivation for Γ `D ~ϕ, and I in I such that I 
 Γ. Denote
by ~ϕ1p the sequence with the proper formulas of ~ϕ1. Since the schema formu-
las in ~ϕ1p are in Γ, by definition of derivation, we can conclude that they are
concrete formulas and that I 
 ~ϕ1p using the hypothesis. We prove that I 
 ~ϕ
by induction on n. Let ρ be an assignment over I.

Base (n = 1) Note that proper(ANT(`1 ? ~ϕ1)) = ~ϕ1p , and that there is a mor-
phism û1 inG+ such that ~ϕ1p = proper(ANT(`1))◦û1 and `1?~ϕ1 = `1�û1. Hence
I 
 proper(ANT(`1 � û1)) and so, by Proposition 7.2, I, ρ 
 CONC(`1 � û1),
that is, I, ρ 
 CONC(`1 ? ~ϕ1). The thesis follows since CONC(`1 ? ~ϕ1) = ~ϕ.

Step: Let ~ϕn = CONC(`n−1 ? ~ϕn−1 ◦ . . .◦`1 ? ~ϕ1). Note that the schema formulas
in ~ϕn are in G+, that is, they do not involve verum schema formulas. On the
other hand, `1, . . . , `n−1; ~ϕ1 is a derivation for Γ `D ~ϕn. Hence, by the induction
hypothesis, Γ �I ~ϕn. So I 
 ~ϕn since I 
 Γ. Therefore I 
 ANT(`n ? ~ϕn), and
there is a morphism ûn in G+ such that ~ϕn = ANT(`n)◦ûn and `n?~ϕn = `n�ûn.
Hence I 
 ANT(`n� ûn) and so, by Proposition 7.2, I, ρ 
 CONC(`n� ûn), that
is, I, ρ 
 CONC(`n ? ~ϕn). The thesis follows since CONC(`n ? ~ϕn) = ~ϕ. QED

7.2 Completeness

Our completeness result relies on the notion of a canonical interpretation struc-
ture generated by a deductive system and a set of formulas. More rigorously,
let D be a deductive system and Γ a set of formulas in G+. The canonical in-
terpretation structure SΓ(D) = (Σ, (G′, α,D, �)) generated by D and Γ, is such
that:

• G′ = (V ′, E′, src′, trg′) where

– V ′ are the morphisms of G+ whose target is an element of V ;

– E′(ŵ1 . . . ŵn, ŵ) is composed by all the m-edges e of E such that
ŵ = ê ◦ 〈ŵ1, . . . , ŵn〉 in G+;

– the definition of src′ and trg′ is straightforward from the definition
of m-edges;

• αv(ŵ : s→ v) = v and αe(e) = e;

• D = {ŵ ∈ V ′ : Γ `D ŵ};

• � is the morphism id♦ in G+.

We may write S(D) for S∅(D). Denotation in the canonical structure has a
very simple form as we show in the next lemma.
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Lemma 7.4 Given a deductive system D, a set Γ of formulas in G+, a path
w : s→ t over G†, and an assignment ρ over SΓ(D), then [[w]]S

Γ(D),ρ = ŵ ◦ ρs.

Proof: The proof follows by induction on the complexity of w:

- w is εs. Then [[w]]S
Γ(D),ρ = ρs = ids ◦ ρs = ε̂s ◦ ρs = ŵ ◦ ρs;

- w is ps1i w1. Then [[w]]S
Γ(D),ρ = [[ps1i w1]]S

Γ(D),ρ = ([[w1]]S
Γ(D),ρ)i = (ŵ1 ◦ ρs)i =

p̂s1i ◦ ŵ1 ◦ ρs = ŵ ◦ ρs;

- w is 〈w1, . . . , wn〉w0. Hence [[w]]S
Γ(D),ρ = [[w1w0]]S

Γ(D),ρ . . . [[wnw0]]S
Γ(D),ρ =

(ŵ1 ◦ ŵ0 ◦ ρs) . . . (ŵn ◦ ŵ0 ◦ ρs) = ̂〈w1, . . . , wn〉 ◦ ŵ0 ◦ ρ̂s as we wanted to show;

- w is ew1. Therefore [[w]]S
Γ(D),ρ = trg′(E′e([[w1]]S

Γ(D),ρ,−)) = trg′(E′e(ŵ1 ◦
ρs,−)) = ê ◦ ŵ1 ◦ ρs = ŵ ◦ ρs. QED

Capitalizing on the result of denotation in the canonical structure, it is
possible to establish an important lemma relating satisfaction in the canonical
structure with derivation.

Lemma 7.5 Given a deductive system D, a set Γ of formulas and a schema
formula ϕ : s→ π over the signature of D, Γ `D ϕ◦ρs if and only if SΓ(D), ρ 

ϕ, for every assignment ρ over SΓ(D).

Proof: Let ρ be an assignment over SΓ(D). Then Γ `D ϕ ◦ ρs if and only if,
by Lemma 7.4, Γ `D [[ϕ]]S

Γ(D),ρ iff [[ϕ]]S
Γ(D),ρ ⊆ D iff SΓ(D), ρ 
 ϕ. QED

In a subsequent proposition we show that SΓ(D) is sound for the rules in
D, but first we show a useful lemma.

Lemma 7.6 For every deductive rule r in D, set of formulas Γ, and expression
û in G+, then Γ `D CONC(r) ◦ û whenever Γ `D proper(ANT(r)) ◦ û.

Proof: Let ANT(r) be the sequence ϕ1 . . . ϕn. We start by considering the
case that all the antecedents of r are in G+, that is, proper(ANT(r)) is equal to
ANT(r). Assume that Γ `D ϕi ◦ û for i = 1, . . . , n. Let `i1, . . . , `imi ; ~ϕi1 be a
derivation for Γ `D ϕi ◦ û for i = 1, . . . , n. Let m be the maximum of the mi,
and let `imi+1, . . . , `im denote the morphism ididπ , for i = 1, . . . , n. Moreover,
assume that `ij is fij1⊗. . .⊗fijmij for i = 1, . . . , n and j = 1, . . . ,m, and denote
by `k the morphism f1k1 ⊗ . . .⊗ f1km1k

⊗ fnk1 ⊗ . . .⊗ fnkmnk for k = 1, . . . ,m.
Note that `1, . . . , `m; ~ϕ11 . . . ~ϕn1 is a derivation for Γ `D ϕ1 ◦ û . . . ϕn ◦ û. So
`1, . . . , `m, r; ~ϕ11 . . . ~ϕn1 is a derivation for Γ `D CONC(r) ◦ û as we wanted to
show.

Assume now that r has an antecedent a1 not in G+, that is, involving a verum
schema formula. Then r has no other antecedent. So r; (a1 ◦ û) is a derivation
for `D CONC(r) ◦ û and so for Γ `D CONC(r) ◦ û. QED

Proposition 7.7 For every deductive rule r in D, set of formulas Γ, and as-
signment ρ over SΓ(D), SΓ(D), ρ 
 CONC(r) if SΓ(D), ρ 
 proper(ANT(r)).
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Proof: Assume that SΓ(D), ρ 
 proper(ANT(r)) and denote by ϕ1 . . . ϕn the
sequence proper(ANT(r)). Then Γ `D ϕi ◦ ρs, by Lemma 7.5, for i = 1, . . . , n.
Hence Γ `D CONC(r) ◦ ρs, by Lemma 7.6, and so, SΓ(D), ρ 
 CONC(r), by
Lemma 7.5. QED

In order for completeness to hold in a logic system it is not necessary to
impose as sufficient condition that its interpretation system contains canonical
structures, as we show below. It is enough to guarantee that its interpretation
system contains structures that share with canonical structures some charac-
teristics. We call these structures, representatives of a canonical structure. A
logic system contains a representative of the canonical structure over a set Γ
when it contains an interpretation structure IΓ such that

• IΓ 
 ϕ implies SΓ(D) 
 ϕ;

• IΓ 
 Γ;

for every formula ϕ and set of formulas Γ in G+.

Theorem 7.8 A logic system with representatives of the canonical structures
over all sets of formulas is complete.

Proof: Let Γ be a set of formulas and ϕ a formula. Assume that Γ 6`D ϕ. Let
IΓ ∈ I be the representative of SΓ(D). Then SΓ(D) 
 Γ and SΓ(D) 6
 ϕ by
Lemma 7.5. Then IΓ 
 Γ and IΓ 6
 ϕ. So Γ 6�I ϕ since IΓ ∈ I. QED

A similar theorem can be established for weak completeness. The proof of
the theorem is omitted since it very similar to the proof of Theorem 7.8.

Theorem 7.9 A logic system is weakly complete if it contains a representative
of the canonical structure over the empty set.

Corollary 7.10 A logic system is (weakly) complete whenever it contains all
the interpretation structures that are sound with respect to the rules.

Proof: Assume that L contains all the interpretation structures that are sound
with respect to the rules. Then SΓ(D) ∈ I, for any set Γ, using Proposition 7.7
and so, by Theorem 7.8, we conclude that L is complete. QED

We now present several cases of logic systems enjoying sufficient conditions
for completeness.

Example 7.11 Some logic systems to which Corollary 7.10 apply:

• the logic system for classical propositional logic with the deductive system
presented in Example 5.1 and all the interpretation structures sound for
MP and the axioms;

• the logic system for classical propositional modal logic T with the deduc-
tive system presented in Example 5.2 and all the interpretation structures
sound for MP, K, T and the axioms;
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• the logic system for intuitionistic propositional logic with the deductive
system presented in Example 5.3 and all the interpretation structures
sound for MP and the axioms;

• the logic system for relevance logic R with the deductive system presented
in Example 5.4 and all the interpretation structures sound for MP, AR
and the axioms, provided some minor adjustments are made in the def-
inition of consequence in order to accommodate the notion of relevant
deduction. In this case we only apply Corollary 7.10 in order to establish
weak completeness.

• the logic system for one-sorted equational logic with the deductive system
presented in Example 5.5 and all the interpretation structures sound for
SYM, TRANS, CONGf , SUBt′,t′′,t and the axiom A. ∇

8 Towards provisos and quantification

The next step extending this work is to investigate how to accommodate quan-
tification and provisos in deduction rules. We now give some preliminary ideas
on how to proceed in this direction, using as example the logic in [13] including
classical and intuitionistic connectives. More specifically we are interested in
its axiom (ϕ⊃c (ψ ⊃i ϕ)) which has the proviso that ϕ is a persistent formula.
A persistent formula is one where every occurrence of classical implication ⊃c
and classical negation ¬c is in the scope of the intuitionistic implication ⊃i or
in the scope of the intuitionistic negation ¬i.

In our setting this proviso should be accommodated at all levels: at the
signature level, at the semantic level and at the deductive level. At the signature
level, a new sort ν and a m-edge P : π → ν should be introduced. At the
semantic level, ν should be interpreted as either true or false and the m-edges
mapping to P relate a truth value with true if the proviso is satisfied by all the
(schema) formulas that may have as denotation that truth value, and to false
otherwise. At the deductive level we should consider (ϕ⊃c (ψ⊃i ϕ)) as a unary
rule having as antecedent P (ϕ) (stating that ϕ is persistent) and as consequent
the axiom. Moreover, we should add specific rules for dealing with persistency.
For instance, we should add a rule stating that for every formula ϕ, we have
P ◦ ¬i ◦ϕ.

Dealing with quantification is also a challenge. Besides accommodating
the first-order provisos we have to deal with the definition in our setting of
the substitution of variables and its relationship with quantification. In the
presence of quantifiers, the interplay between the variables and term schema
should also be clarified.

9 Concluding remarks

We presented a uniform and diagrammatic way of describing logics systems
using m-graphs. Signatures, interpretation structures and deductive systems
are based on m-graphs. Under this perspective, formulas and derivations are
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morphisms in the appropriate generated categories. The approach is general
enough to represent logics in different guises, namely substructural logics and
logics endowed with a nondeterministic semantics. Moreover, it subsumes all
logics endowed with an algebraic semantics. It seems worthwhile to explore in
our setting the notion of denotation of a formula as a single truth-value even in
the presence of non-deterministic operations as in the case of some paraconsis-
tent logics [2]. General soundness and completeness results were proved.

One of the major challenges is to extend the graph-theoretic approach to
logics that support provisos and quantification as we already anticipated in
Section 8. Another topic of interest is to investigate how to adjust our approach
for algebraizable and protoalgebraic logics. On the deductive side, herein we
concentrated on Hilbert axiomatizations. We intend to extend it to other kinds
of deductive systems, namely sequent calculi. Furthermore, deductive systems
over higher-order languages are also worthwhile to explore. General results
about cut elimination and interpolation are also envisaged in this extended
framework.
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