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Abstract

In this paper, a number of traditional models related to the percolation theory has been
considered by means of new computational methodology that does not use Cantor’s ideas and
describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less
than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities
numericallyby using a new kind of a computer – the Infinity Computer – introduced recently in
[18]. The new approach does not contradict Cantor. In contrast, it can be viewed as an evolution
of his deep ideas regarding the existence of different infinite numbers in a more applied way.
Site percolation and gradient percolation have been studied by applying the new computational
tools. It has been established that in an infinite system the phase transition point is not really a
point as with respect of traditional approach. In light of new arithmetic it appears as a critical
interval, rather than a critical point. Depending on “microscope” we use this interval could be
regarded as finite, infinite and infinitesimal short interval. Using new approach we observed
that in vicinity of percolation threshold we havemanydifferent infinite clustersinstead ofone
infinite clusterthat appears in traditional consideration.
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1 Introduction

Numerous trials have been done during the centuries in order to evolve existing numeral sys-
tems1 in such a way that infinite and infinitesimal numbers could be included in them (see
[3, 5, 7, 12, 14, 16, 32]). Particularly, in the early history of the calculus, arguments involv-
ing infinitesimals played a pivotal role in the derivation developed by Leibnitz and Newton
(see [12,14]). The notion of an infinitesimal, however, lacked a precise mathematical definition
and in order to provide a more rigorous foundation for the calculus infinitesimals were gradually
replaced by the d’Alembert-Cauchy concept of a limit (see [6,8]).

The creation of a mathematical theory of infinitesimals to base on the calculus remained
an open problem until the end of 1950s when Robinson (see [16]) introduced his famous non-
standard analysis approach. He showed that non-archimedean ordered field extensions of the
reals contained numbers that could serve the role of infinitesimals and their reciprocals could
serve as infinitely large numbers. Robinson then has derived the theory of limits, and more
generally of Calculus, and has found a number of important applications of his ideas in many
other fields of Mathematics (see [16]).

In his approach, Robinson used mathematical tools and terminology (cardinal numbers,
countable sets, continuum, one-to-one correspondence, etc.) taking their origins from the fa-
mous ideas of Cantor (see [5]) who has shown that there existed infinite sets having different
number of elements. It is well known nowadays that while dealing with infinite sets, Cantor’s
approach leads to some counterintuitive situations that often are called by non-mathematicians
‘paradoxes’. For example, the set of even numbers,E, can be put in a one-to-one correspon-
dence with the set of all natural numbers,N, in spite of the fact thatE is a part ofN:

even numbers: 2, 4, 6, 8, 10, 12, . . .
l l l l l l

natural numbers: 1, 2, 3, 4 5, 6, . . .
(1)

The philosophical principle of Ancient Greeks ‘The part is less than the whole’ observed in the
world around us does not hold true for infinite numbers introduced by Cantor, e.g., it followsx+
1 = x, if x is an infinite cardinal, although for any finitex we havex+1 > x. As a consequence,
the same effects necessary have reflections in the non-standard Analysis of Robinson (this is
not the case of the interesting non-standard approach introduced recently in [3]).

Due to the enormous importance of the concepts of infinite and infinitesimal in science,
people try to introduce them in their work with computers, too (see, e.g. the IEEE Standard
for Binary Floating-Point Arithmetic). However, non-standard Analysis remains a very theoret-
ical field because various arithmetics (see [3, 5, 7, 16]) developed for infinite and infinitesimal
numbers are quite different with respect to the finite arithmetic we are used to deal with. Very
often they leave undetermined many operations where infinite numbers take part (for example,
∞−∞, ∞

∞ , sum of infinitely many items, etc.) or use representation of infinite numbers based
on infinite sequences of finite numbers. These crucial difficulties did not allow people to con-
struct computers that would be able to work with infinite and infinitesimal numbersin the same

1We are reminded that anumeralis a symbol or group of symbols that represents anumber. The difference
between numerals and numbers is the same as the difference between words and the things they refer to. Anumber
is a concept that anumeralexpresses. The same number can be represented by different numerals. For example,
the symbols ‘8’, ‘eight’, and ‘VIII’ are different numerals, but they all represent the same number.
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manneras we are used to do with finite numbers and to study infinite and infinitesimal objects
numerically.

Recently a new applied point of view on infinite and infinitesimal numbers has been intro-
duced in [17, 23, 27]. The new approach does not use Cantor’s ideas and describes infinite and
infinitesimal numbers that are in accordance with the principle ‘The part is less than the whole’.
It gives a possibility to work with finite, infinite, and infinitesimal quantitiesnumericallyby
using a new kind of computers – the Infinity Computer – introduced in [18, 19, 28, 29]. It is
worthwhile noticing that the new approach does not contradict Cantor. In contrast, it can be
viewed as an evolution of his deep ideas regarding the existence of different infinite numbers
in a more applied way. For instance, Cantor showed that there exist infinite sets having dif-
ferent cardinalitiesℵ0 andℵ1. In its turn, the new approach specifies this result showing that
in certain cases within each of these classes it is possible to distinguish sets with the number
of elements being different infinite numbers. We emphasize that the new approach has been
introduced as an evolution of standard and non-standard Analysis and not as a contraposition
to them. One or another version of Analysis can be chosen by the working mathematician in
dependence on the problem he deals with.

In this paper, we consider a number of applications related to the theory of percolation and
study them using the new approach. On the one hand, percolation represents the simplest model
of a disordered system. Disordered structures and random processes that are self-similar on cer-
tain length and time scales are very common in nature. They can be found on the largest and
the smallest scales: in galaxies and landscapes, in earthquakes and fractures, in aggregates and
colloids, in rough surfaces and interfaces, in glasses and polymers, in proteins and other large
molecules. Disorder plays a fundamental role in many processes of industrial and scientific
interest. On the other hand, percolation reveals a concept of self-similarity and demonstrate
numerous fractal features. Owing to the wide occurrence of self-similarity in nature, the sci-
entific community interested in this phenomenon is very broad, ranging from astronomers and
geoscientists to material scientists and life scientists. From mathematic point of view, self-
similarity implies a recursive process and, consequently, is tightly connected with concept of
infinity. This turn us to an idea that percolation is very suitable to demonstrate advantages of
the new computational approach proposed recently in [17,23].

The outline of the paper is as follows. In Sec. 2 we introduce the new approach that allows
one to write down different finite, infinite, and infinitesimal numbers by a finite number of
symbols as particular cases of a unique framework and to execute numerical computations with
all of them. Than in Sec. 3 we apply the new methodology to the percolation phase transition.
Generalized percolation problem known as gradient percolation analyzed in terms of infinity
computations in Sec. 4 In the final section, the applications are summarized and discussed.

2 Methodology

In this section, we give a brief introduction to the new methodology that can be found in a
rather comprehensive form in [23, 27] downloadable from [19] (see also the monograph [17]
written in a popular manner). A number of applications of the new approach can be found in
[13,20–22,24,28,29]. We start by introducing three postulates that will fix our methodological
positions (having a strong applied character) with respect to infinite and infinitesimal quantities
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and Mathematics, in general.
Usually, when mathematicians deal with infinite objects (sets or processes) it is supposed

that human beings are able to execute certain operations infinitely many times (e.g., see (1)).
Since we live in a finite world and all human beings and/or computers finish operations they
have started, this supposition is not adopted.

Postulate 1. There exist infinite and infinitesimal objects but human beings and machines
are able to execute only a finite number of operations.

Due to this Postulate, we accept a priori that we shall never be able to give a complete
description of infinite processes and sets due to our finite capabilities.

The second postulate is adopted following the way of reasoning used in natural sciences
where researchers use tools to describe the object of their study and the instrument used in-
fluences the results of observations. When physicists see a black dot in their microscope they
cannot say: The object of observationis the black dot. They are obliged to say: the lens used
in the microscope allows us to see the black dot and it is not possible to say anything more
about the nature of the object of observation until we change the instrument - the lens or the
microscope itself - by a more precise one.

Due to Postulate 1, the same happens in Mathematics studying natural phenomena, num-
bers, and objects that can be constructed by using numbers. Numeral systems used to express
numbers are among the instruments of observations used by mathematicians. Usage of powerful
numeral systems gives the possibility to obtain more precise results in mathematics and in the
same way usage of a good microscope gives the possibility of obtaining more precise results in
Physics. However, the capabilities of the tools will be always so limited due to Postulate 1 and
due to Postulate 2 that we shall never tell,what is, for example, a number but shall just observe
it through numerals expressible in a chosen numeral system.

Postulate 2.We shall not tellwhat arethe mathematical objects we deal with; we just shall
construct more powerful tools that will allow us to improve our capacities to observe and to
describe properties of mathematical objects.

Particularly, this means that from our point of view, axiomatic systems do not define math-
ematical objects but just determine formal rules for operating with certain numerals reflecting
some properties of the studied mathematical objects. Throughout the paper, we shall always em-
phasize this philosophical triad – researcher, object of investigation, and tools used to observe
the object – in various mathematical and computational contexts.

Finally, we adopt the principle of Ancient Greeks mentioned above as the third postulate.
Postulate 3.The principle ‘The part is less than the whole’ is applied to all numbers (finite,

infinite, and infinitesimal) and to all sets and processes (finite and infinite).
Due to this declared applied statement, it becomes clear that the subject of this paper is

out of Cantor’s approach and, as a consequence, out of non-standard analysis of Robinson.
Such concepts as bijection, numerable and continuum sets, cardinal and ordinal numbers cannot
be used in this paper because they belong to the theory working with different assumptions.
However, the approach used here does not contradict Cantor and Robinson. It can be viewed
just as a more strong lens of a mathematical microscope that allows one to distinguish more
objects and to work with them.

In [17,23], a new numeral system has been developed in accordance with Postulates 1–3. It
gives one a possibility to execute numerical computations not only with finite numbers but also
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with infinite and infinitesimal ones. The main idea consists of the possibility to measure infinite
and infinitesimal quantities by different (infinite, finite, and infinitesimal) units of measure.

A new infinite unit of measure has been introduced for this purpose as the number of ele-
ments of the setN of natural numbers. It is expressed by the numeral① calledgrossone. It
is necessary to note immediately that① is neither Cantor’sℵ0 nor ω. Particularly, it has both
cardinal and ordinal properties as usual finite natural numbers (see [23]).

Formally, grossone is introduced as a new number by describing its properties postulated by
the Infinite Unit Axiom(IUA) (see [17, 23]). This axiom is added to axioms for real numbers
similarly to addition of the axiom determining zero to axioms of natural numbers when integer
numbers are introduced. It is important to emphasize that we speak about axioms of real num-
bers in sense of Postulate 2, i.e., axioms define formal rules of operations with numerals in a
given numeral system.

Inasmuch as it has been postulated that grossone is a number, all other axioms for numbers
hold for it, too. Particularly, associative and commutative properties of multiplication and ad-
dition, distributive property of multiplication over addition, existence of inverse elements with
respect to addition and multiplication hold for grossone as for finite numbers. This means that
the following relations hold for grossone, as for any other number

0·① = ① ·0 = 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0. (2)

Let us comment upon the nature of grossone by some illustrative examples.
Infinite numbers constructed using grossone can be interpreted in terms of the number of

elements of infinite sets. For example,①−1 is the number of elements of a setB = N\{b},
b ∈ N, and ① + 1 is the number of elements of a setA = N∪ {a}, wherea /∈ N. Due to
Postulate 3, integer positive numbers that are larger than grossone do not belong toN but also
can be easily interpreted. For instance,①2 is the number of elements of the setV, where
V = {(a1,a2) : a1 ∈ N,a2 ∈ N}. 2

Grossone has been introduced as the quantity of natural numbers. As a consequence, simi-
larly to the set

A = {1,2,3,4,5} (3)

consisting of 5 natural numbers where 5 is the largest number inA, ① is the largest number2 in
N and① ∈ N analogously to the fact that 5 belongs toA. Thus, the set,N, of natural numbers
can be written in the form

N= {1,2, . . .
①

2
−2,

①

2
−1,

①

2
,
①

2
+1,

①

2
+2, . . . ①−2, ①−1, ①}. (4)

Note that traditional numeral systems did not allow us to see infinite natural numbers

. . .
①

2
−2,

①

2
−1,

①

2
,
①

2
+1,

①

2
+2, . . . ①−2,①−1,①. (5)

2This fact is one of the important methodological differences with respect to non-standard analysis theories
where it is supposed that infinite numbers do not belong toN.
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Similarly, Pirah̃a3 are not able to see finite numbers larger than 2 using their weak numeral
system but these numbers are visible if one uses a more powerful numeral system. Due to
Postulate 2, the same object of observation – the setN – can be observed by different instruments
– numeral systems – with different accuracies allowing one to express more or less natural
numbers. 2

This example illustrates also the fact that when we speak about sets (finite or infinite) it
is necessary to take care about tools used to describe a set (remember Postulate 2). In order
to introduce a set, it is necessary to have a language (e.g., a numeral system) allowing us to
describe its elements and the number of the elements in the set. For instance, the setA from (3)
cannot be defined using the mathematical language of Pirahã.

Analogously, the words ‘the set of all finite numbers’ do not define a set completely from
our point of view, as well. It is always necessary to specify which instruments are used to
describe (and to observe) the required set and, as a consequence, to speak about ‘the set of all
finite numbers expressible in a fixed numeral system’. For instance, for Pirahã ‘the set of all
finite numbers’ is the set{1,2} and for another Amazonian tribe – Mundurukú4 – ‘the set of
all finite numbers’ is the setA from (3). As it happens in Physics, the instrument used for an
observation bounds the possibility of observation. It is not possible to say how we shall see the
object of our observation if we have not clarified which instruments will be used to execute the
observation.

Introduction of grossone gives us a possibility to compose new (in comparison with tradi-
tional numeral systems) numerals and to see through them not only numbers (3) but also certain
numbers larger than①. We can speak about the set ofextended natural numbers(includingN
as a proper subset) indicated asN̂ where

N̂= {1,2, . . . ,①−1,①,①+1,①+2,①+3, . . . ,①2−1,①2.①2 +1, . . .} (6)

However, analogously to the situation with ‘the set of all finite numbers’, the number of ele-
ments of the set̂N cannot be expressed within a numeral system using only①. It is necessary
to introduce in a reasonable way a more powerful numeral system and to define new numerals
(for instance,②, ③, etc.) of this system that would allow one to fix the set (or sets) somehow.
In general, due to Postulate 1 and 2, for any fixed numeralA system there always be sets that
cannot be described usingA .

Analogously to (4), the set,E, of even natural numbers can be written now in the form

E= {2,4,6 . . . ①−4, ①−2, ①}. (7)

Due to Postulate 3 and the IUA (see [17, 23]), it follows that the number of elements of the set
of even numbers is equal to①2 and① is even. Note that the next even number is① + 2 but it

3Pirah̃a is a primitive tribe living in Amazonia that uses a very simple numeral system for counting: one, two,
‘many’(see [10]). For Pirah̃a, all quantities larger than two are just ‘many’ and such operations as 2+2 and 2+1
give the same result, i.e., ‘many’. Using their weak numeral system Pirahã are not able to distinguish numbers
larger than 2 and, as a result, to execute arithmetical operations with them. Another peculiarity of this numeral
system is that ‘many’+ 1= ‘many’. It can be immediately seen that this result is very similar to our traditional
record∞+1 = ∞.

4Munduruḱu (see [15]) fail in exact arithmetic with numbers larger than 5 but are able to compare and add large
approximate numbers that are far beyond their naming range. Particularly, they use the words ‘some, not many’
and ‘many, really many’ to distinguish two types of large numbers (in this connection think about Cantor’sℵ0 and
ℵ1).
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is not natural because①+2 > ①, it is extended natural (see (6)). Thus, we can write down not
only initial (as it is done traditionally) but also the final part of (1)

2, 4, 6, 8, 10, 12, . . . ①−4, ①−2, ①

l l l l l l l l l
1, 2, 3, 4 5, 6, . . . ①

2 −2, ①
2 −1, ①

2

concluding so (1) in a complete accordance with Postulate 3. It is worth noticing that the new
numeral system allows us to solve many other ‘paradoxes’ related to infinite and infinitesimal
quantities (see [17,23,24]). 2

In order to express numbers having finite, infinite, and infinitesimal parts, records similar to
traditional positional numeral systems can be used (see [17, 23]). To construct a numberC in
the new numeral positional system with base①, we subdivideC into groups corresponding to
powers of①:

C = cpm①pm + . . .+cp1①
p1 +cp0①

p0 +cp−1①
p−1 + . . .+cp−k①

p−k. (8)

Then, the record
C = cpm①pm . . .cp1①

p1cp0①
p0cp−1①

p−1 . . .cp−k①
p−k (9)

represents the numberC, where all numeralsci 6= 0, they belong to a traditional numeral system
and are calledgrossdigits. They express finite positive or negative numbers and show how many
corresponding units①pi should be added or subtracted in order to form the numberC.

Numberspi in (9) are sorted in the decreasing order withp0 = 0

pm > pm−1 > .. . > p1 > p0 > p−1 > .. . p−(k−1) > p−k.

They are calledgrosspowersand they themselves can be written in the form (9). In the record
(9), we write ①pi explicitly because in the new numeral positional system the numberi in
general is not equal to the grosspowerpi . This gives the possibility to write down numerals
without indicating grossdigits equal to zero.

The term havingp0 = 0 represents the finite part ofC because, due to (2), we havec0①0 =
c0. The terms having finite positive grosspowers represent the simplest infinite parts ofC.
Analogously, terms having negative finite grosspowers represent the simplest infinitesimal parts
of C. For instance, the number①−1 = 1

①
is infinitesimal. It is the inverse element with respect

to multiplication for①:
①−1 ·① = ① ·①−1 = 1. (10)

Note that all infinitesimals are not equal to zero. Particularly,1
①

> 0 because it is a result of
division of two positive numbers. All of the numbers introduced above can be grosspowers, as
well, giving thus a possibility to have various combinations of quantities and to construct terms
having a more complex structure.

3 Geometric phase transition

In 1957, two mathematicians, S.R. Broadbent and J.M. Hammersley, have published an arti-
cle [4] where they have shared with readers an idea of probabilistic formalizations of water
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infiltration in electric coffee maker. Their description, named laterpercolation theory, repre-
sents one of the simplest models of a disordered system.

Consider a square lattice, where each site is occupied randomly with probabilityp or empty
with probability1− p. Occupied and empty sites may stand for very different physical proper-
ties [1, 2, 9, 31]. For simplicity, let us assume that the occupied sites are electrical conductors
(represented by gray pixels in figure 1), the empty sites (shown by black pixels in figure 1) rep-
resent insulators, and that electrical current can flow only between nearest neighbor conductor
sites.

10 20 30 40 50 60 70 80 90 100
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p = 0.21

Figure 1: Site percolation on a square lattice. Grey cells of a square lattice correspond to
conducting pixels, black stand for non-conducting, white cells belong to maximal conducting
cluster. Concentration of conducting pixels equals top = 0,21

At a low concentrationp, the conductor sites are either isolated or form small clusters of
nearest neighbor sites (see figure 1). We suppose that two conductor sites belong to the same
cluster if they are connected by a path of nearest neighbor conductor sites, and a current can
flow between them. At lowp values, the mixture is an insulators, since a conducting path
connecting opposite edges of our lattice does not exist. At largep values, on the other hand,
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many conducting paths between opposite edges exist, where electrical current can flow, and the
mixture is a conductor (see figure 2).

At some concentration in between, therefore, a threshold concentrationpc must exist where
for the first time electrical current can percolate from one edge to the other (see figure 3). Thus,
for the valuesp < pc we have an insulator, and forp≥ pc we have a conductor. The threshold
concentration is called thepercolation threshold, or, since it separates two different phases,
the critical concentration. For a site problem on a square lattice the percolation threshold is
approximately equal to 0.59, i.e.,p≈ 0.59 [1, 2, 9, 31]. A situation for a valuep close to the
threshold is displayed in Figure 3.

If the occupied sites are superconductors and the empty sites are conductors, thenpc sep-
arates a normal-conducting phase for valuesp < pc transition from a superconducting phase
wherep≥ pc. Another example is a mixture of magnets and paramagnets, where the system
changes atpc from a paramagnet to a magnet.

In contrast to the more common thermal phase transitions, where the transition between two
phases occurs at a critical temperature, the percolation transition described here is a geomet-
rical phase transition, which is characterized by the geometric features of large clusters in the
neighborhood ofpc. At low values ofp only small clusters of occupied sites exist. When the
concentrationp increases, the average size of the clusters increases, as well. At the critical con-
centrationpc, a large cluster appears which connects opposite edges of the lattice. This cluster
commonly namedspanning clusteror percolating cluster[1, 2, 9, 31]. In the thermodynamic
limit, i.e. in the infinite system limit spanning cluster namedinfinite cluster, since its size di-
verges when the size of the lattice increases to infinity. It should be emphasized here that from
traditional standpoint there exist uniqueinfinitecluster and thisinfinitecluster always coincides
with spanningcluster [1,2,9,31].

When p increases further, the density of the infinite cluster also increases, since more and
more sites start to be a part of the infinite cluster. Simultaneously, the average size of the
finite clusters, which do not belong to the infinite cluster, decreases. Atp = 1, trivially, all
sites belong to the infinite cluster. In percolation, the concentrationp of occupied sites plays
the same role as the temperature in thermal phase transitions. Similar to thermal transitions,
long range correlations control the percolation transition and the relevant quantities nearpc are
described by power laws and critical exponents [1,2,9,31].

The percolation transition is characterized by the geometrical properties of clusters for val-
ues ofp that are close topc. One of important characteristics describing these properties is the
probability,P∞, that a site belongs to the infinite cluster. Forp < pc, only finite clusters exist,
and, therefore, it followsP∞ = 0. For valuesp > pc, P∞ behaves similarly to the magnetization
below critical temperature, and increases withp by a power law

P∞ ∼ (p− pc)
β , (11)

whereβ = 5/36 is critical exponent in 2D case [1,2,9,31].
The linear size of the finite clusters, below and above percolation transition, is characterized

by thecorrelation lengthξ. The correlation length is defined as the mean distance between two
sites on the same finite cluster. Whenp approachespc, ξ increases as

ξ' a· |p− pc|−ν , (12)
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p = 0.63

Figure 2: Site percolation on a square lattice. Concentration of conducting pixels is equal to
p = 0,63. Grey cells of a square lattice correspond to the conducting pixels isolated from
maximal (white) cluster

with the same exponentν = 4/3 below and above the threshold [1,2,9,31].
To obtainξ averages over all finite clusters in the lattice are required.
That is whelsy to note that all quantities described above are defined in the thermodynamic

limit of large systems. In a finite system,P∞, for example, is not strictly zero belowpc.
The structure of percolation cluster can be well described in the framework of the fractal

theory. We begin by considering the percolation cluster at the critical concentrationpc. A
representative example of thespanningclusters shown in Fig. 3. As seen in the figure, the
infinite cluster contains holes of all sizes. The cluster is self-similar on all length scales (larger
than the unit size and smaller than the lattice size), and can be regarded as a fractal. Thefractal
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Figure 3: Site percolation on a square lattice. Concentration of conducting pixels is equal to
p = 0,588

dimension, df , describes how, on the average, the mass,M, of the cluster within a sphere of
radiusr scales with ther,

M (r)∼ rdf . (13)

In random fractals,M (r) represents an average over many different cluster configurations or,
equivalently, over many different centers of spheres on the sameinfinite cluster. Below and
abovepc, the mean size of the finite clusters in the system is described by the correlation length
ξ. At pc, ξ diverges and holes occur in theinfinite cluster on all length scales. Abovepc, ξ
also represents the linear size of the holes in theinfinite cluster. Sinceξ is finite abovepc, the
infinite cluster can be self-similar only on length scales smaller thanξ. We can interpretξ(p)
as a typical length up to which the cluster is self-similar and can be regarded as a fractal. For
length scales larger thanξ, the structure is not self-similar and can be regarded as homogeneous.
If our length scales is smaller thanξ, we see a fractal structure. On length scales larger thanξ,
we see a homogeneous system which is composed of many unit cells of sizeξ. Mathematically,
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this can be summarized as

M (r)∼
{

rdf , r ¿ ξ,
rd, r À ξ.

(14)

One can relate the fractal dimensiondf of percolation cluster to the exponentsβ and ν
[1, 2, 9, 31]. The probability that an arbitrary site within a circle of radiusr smaller thanξ
belongs to theinfinitecluster, is the ratio between the number of sites on theinfinitecluster and
the total number of sites,

P∞ ∼ rdf

r2 , r < ξ. (15)

This equation is certainly correct forr = λξ, whereλ is an arbitrary constant smaller than 1.
Substitutingr = λ ξ in (15) yields

P∞ ∼ λdf−2 · ξdf

ξ2 ∼
ξdf

ξ2 . (16)

Both sides are powers ofp− pc. By substituting (11) and (12) into (16) we obtain,

df = 2− β
ν
. (17)

Thus the fractal dimension of theinfinite cluster atpc is not a new independent exponent but
depends onβ andν. Sinceβ andν are universal exponents,df is also universal. It can be
shown [31] that (17) also represents the fractal dimension of the finite clusters atpc and below
pc, as long as their linear size is smaller thanξ.

The exponentsβ, ν, andγ describe the critical behavior of typical quantities associated with
the percolation transition, and are called thecritical exponents. The exponents are universal
and depend neither on the structural details of the lattice (e.g., square or triangular) nor on the
type of percolation (site, bond, or continuum), but only on the dimensiond of the lattice (d = 2
in our present consideration).

This universality is a general feature of phase transitions, where the order parameter van-
ishes continuously at the critical point (second order phase transition). In Table 1, the values of
the critical exponentsβ, ν, andγ in percolation are listed for 2D case [1].

Table 1.

Percolation d = 2
Order parameter P∞ : β 5/36
Correlation lengthξ : ν 4/3
Mean cluster size S: γ 43/18
Fractal dimention 91/48

The fractal dimension, however, is not sufficient to fully characterize a percolation cluster.
For a further intrinsic characterization of a fractal we consider the shortest path between two
sites on the cluster. We denote the length of this path, which is called the ‘chemical distance’,
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by l [1, 2, 9, 31]. Thegraphdimensiondl , which is also called the ‘chemical’ or ‘topological’
dimension, describes how the cluster massM within the chemical distancel from a given site
scales withl ,

M (l)∼ ldl . (18)

While the fractal dimensiondf characterizes how the mass of the cluster scales with the Euclid-
ean distancer, the graph dimensiondl characterizes how the mass scales with the chemical
distancel .

The concept of the chemical distance also plays an important role in the description of
spreading phenomena such as epidemics and forest fires, which propagate along the shortest
path from the seed.

Let us investigate the percolation problem from positions of the new arithmetics of infinite
and infinitesimal numbers (see [17,20,23]). Consider a 2D square lattice with perioda and the
linear sizeL = a·①. The full number of cells of such a lattice is, therefore, infinite and is equal
to V = ①2. Since the critical parameter is defined as the attitude of the occupied sites number
N to their full numberp = N/V = N/①2 then the smallest change in concentrationδp = ①−2

is equivalent to adding or substracting only one occupied site. The infinitesimal small value
δp is the maximum precision level we can distinguish by concidering the critical parameterp
on the①×① lattice. In order to obtain a higher precision level we should increase our lattice
linear size. For example, if we use a lattice with perioda and linear sizeL = a ·①1+ϑ/2, where
ϑ > 0, the maximum precision level we can distinguish by considering the critical parameterp
is δp = 1/V = ①−(2+ϑ).

When we investigate the percolation problem we increase or decrease the critical parameter
p using an appropriate precision levelδp starting from an arbitrary point in betweenp = 0
and p = 1. According to thePostulate 1we are able to execute only a finite number of steps
with lengthδp. Therefore, the length of critical parameterp interval that we can investigate is
determined by the precision level we chose.

Concider the behavior of correlation radius. In the vicinity of percolation threshold the
correlation radius diverges according to (12). On the other hand, the radius of correlation cannot
exceed the system linear sizeξ . ξmax= L = a·①, whereξmax= a·① is the maximal correlation
length. The situation is depicted in Figure 4. We see that in the range[pc−①−1/ν, pc+①−1/ν]
the radius of correlation in our①×① lattice does not change and keeps the valueξmax= a·①.

Now we should decide which step we shall use to express different points onp axis. Infi-
nitely many variants can be chosen dependent on the precision level we want to obtain. All these
variants form three groups. The first group appears when in order to changep we use a small but
still finite stepδp¿ 1. In the case the phase transition is infinitely sharp becauseδpÀ①−1/ν.
The second group appears whenδp = c ·①−1/ν, wherec is a finite grossdigit that is less than
one. In the case the phase transition occupies the finite interval[pc−①−1/ν, pc +①−1/ν]. The

third group appears whenδp = ①−ς, where
1+ν

ν
≤ ς≤ 2. 5 In the case phase transition inter-

val contains more than① different points and if we execute a finite number of steps with length
δp along this infinite transition area there exist three possibilities: 1) system contains a lot of
finite andinfinite clusters that coagulate butspanningcluster is still absent; 2)spanningclus-

5For example, if we add only one occupied site in our greed, thenp increases byδp = ①−2, and that is the
smallest step alongp we can distinguish in our①×① lattice.
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Figure 4: Correlation length versusp

ter already exists and absorbs finite and infinite clusters; 3) at the beginning of our execution
spanningcluster is absent but it appears after finite number of steps. This appearance is due to
adding only one occupied site in our grid that produce confluence of either two infinite clusters
or one finite and one infinite clusters.

Figure 5 shows thatspanningcluster could envelop a set of embedded infinite clusters
of different scales when we choose the critical parameter infinitesimally close to percolation
threshold value. One infinite cluster is embedded into another also infinite but already spanning
cluster. This situation is similar to that with finite clusters, when in finite system one finite clus-
ter is embedded into another also finite but already spanning cluster. Some of the embedded
infinite clusters are comparable with thespanningcluster and have linear sizesR that could be
expressed by following:

R=
a
K

①, (19)
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Figure 5: Embedded infinite clusters of different scales

whereK > 1 is a finite number. Remainder of the embedded infinite clusters has linear sizes
that are indefinitely small as compared with① and could be expressed asR= ε ·①, whereε is
infinitesimal number.

On the step whenspanningcluster appears the order parameter jumps from zero value up to
the infinitesemal value as seen in Fig. 6

P∞min∼C1①df−2 = C1①−β/ν = C1①− 5
48, (20)

whereC1 is a finite number. The first equality in (20) definesP∞min as a measure of the relative
size ofspanningcluster expressible as a proportion of elements number of spanning cluster
C1①df to total number of grid elementsC1①2. The second equality in (20) appears as a con-
sequence of Eq. (17). Actually, spanning clusters could come in different size and shapes, so
the constantC1 depicted in Fig. 6 could vary distinctly. In addition, when spanning cluster al-
ready exists and we increasep by adding new occupied sites the spanning cluster could expand
because it engrosses other finite and infinite clusters.

We see that application of the new arithmetic of infinite and infinitesimal numbers gives us
a unique opportunity to consider a point of phase transition in more detail (viewed just like a
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Figure 6:P∞ vs p

point with respect of traditional approach).

4 Gradient percolation

An important site-percolation problem generalization appears when the concentrationp of oc-
cupied sites varies with the vertical distancez in our square grid. In literature (see [11]), this
generalization is commonly named as thegradient percolation. It can be conveniently pictured
in a geographical description in which the set of sites connected to the areap . 1 is called the
‘land’. In Fig 7, it is shown by white pixels. In this geographical language the set of connected
empty sites not surrounded by land is called the ‘sea’, in Fig 7, it is shown by black pixels.
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Then, there naturally exist groups of occupied sites that are not connected with the land called
‘islands’. They are shown by grey pixels in Fig 7. Analogously, there exist also connected
empty sites surrounded by the land. They are calle ‘lakes’, which are shown also in black in
Fig 7. In this geographical description, the part of the land in contact with the sea is called the
‘seashore’. In [11] this line is attributed as thediffusion front.

The diffusion front is conveniently described (see [11]) by its average widthhf , that can
be related easily to the concentration gradientdp/dz at the position of the front. We see in
Fig. 7 that, far from the front, islands or lakes are very small, whereas, near the front, their size
becomes comparable to the width of the front. The islands correspond to the finite clusters in a
percolation system, and the lakes correspond to the finite holes. The typical linear size of both
quantities scales asξ. Relation (12) tells that the size of the islands or lakes should increase
when approaching the mean position of the front. But this size, even atzf , is bounded due to
the finite gradient ofp(z). The maximum typical size of islands and lakes is then given by the
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Figure 7: Gradient percolation in two dimensions

width of the front, which represents the only characteristic length scale in the problem, and we
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can assume
hf ' ξ(zc±hf ). (21)

This assumption expresses our observation that islands or lakes near the front have the size
comparable to the width of the front. Using (21) and expandingp(z) aroundz= zc we obtain

hf ' a|p(zc±hf )− pc|−ν ' a
∣∣∣hf

dp
dz

(zc)
∣∣∣
−ν

,

which gives

hf ' a
β f
ν

∣∣∣dp
dz

(zc)
∣∣∣
−β f

, (22)

where
β f =

ν
1+ν

. (23)

As percolation is a critical phenomenon, the exponentβ f depends only on the dimensionality
of the system (ford = 2 it follows β f = 4/7), and not on the particular lattice structure (square,
triangular, etc.).

Let us assume now, that we examine the gradient percolation phenomenon on a square lattice
N2 whereN = ①, and the critical parameterp changes linearly, accepting infinitesimal value
p(z= a) = 1

a ·①−1 (value equal to zero) in the first line of lattice cells and value equal to unit
p(z= a·①) = 1 in the last,①-s. In other words,

p(z) = A·z,

whereA = 1
a ·①−1 andz changes discretely. Then the value of the derivative in (22) is1

a ·①−1,
and the diffusion front width makes

hf ' a·①β f = a·①4/7, (24)

Thus, on scales of the observation commensurable with the size of the entire system, the
diffusion front width is viewed as infinitesimally small and it is represented by the sharp border
of two contrast phases – ‘sea’ and ‘land’. On the contrary, length scales commensurable with
the finite number of the lattice periodsa are completely absorbed by huge fluctuations of the
front. At last, on scales proportional withhf the width of front appearers to the observer as a
finite value.

5 A brief conclusion

In this paper, it has been shown that infinite and infinitesimal numbers introduced in [17,23,27]
allow us to obtain exact numerical results instead of traditional asymptotic forms at different
points at infinity. We consider a number of traditional models related to the percolation theory
using the new computational methodology. It has been shown that the new computational tools
allow one to create new, more precise models of percolation and to study the existing models
more in detail. The introduction in these models new, computationally manageable notions of
the infinity and infinitesimals gives a possibility to pass from the traditional qualitative analysis
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of the situations related to these values to the quantitative one. Naturally, such a transition is
very important from both theoretical and practical viewpoints.

The point of view presented in this paper uses strongly two methodological ideas borrowed
from Physics: relativity and interrelations holding between the object of an observation and the
tool used for this observation. The latter is directly related to connections between Analysis and
Numerical Analysis because the numeral systems we use to write down numbers, functions, etc.
are among our tools of investigation and, as a result, they strongly influence our capabilities to
study mathematical objects.

Note that foundations of Analysis have been developed more than 200 years ago with the
goal to develop mathematical tools allowing one to solve problems arising in the real world,
as a result, they reflect ideas that people had about Physics in that time. Thus, Analysis that
we use now does not include numerous achievements of Physics of the XX-th century. The
brilliant efforts of Robinson made in the middle of the XX-th century have been also directed
to a reformulation of the classical Analysis in terms of infinitesimals and not to the creation of
a new kind of Analysis that would incorporate new achievements of Physics. In fact, he wrote
in paragraph 1.1 of his famous book [16]: ‘It is shown in this book that Leibnitz’ ideas can be
fully vindicated and that they lead to a novel and fruitful approach to classical Analysis and to
many other branches of mathematics’.

Site percolation and gradient percolation have been studied by applying the new computa-
tional tools. It has been established that in infinite system phase transition point is not really a
point as with respect of traditional approach. In light of new arithmetic it appears as a critical
interval, rather than a critical point. Depending on “microscope” we use this interval could be
regarded as finite, infinite and infinitesimal short interval. Using new approach we observed
that in vicinity of percolation threshold we havemanydifferent infinite clustersinstead ofone
infinite clusterthat appears in traditional consideration. Moreover, we have now a tool to dis-
tinguish those infinite clusters. In particular, we can distinguishspanning infiniteclusters from
embeddedinfinite clusters.

Than we consider gradient percolation phenomenon on infinite square lattice with infin-
itesimal gradient of critical parameterp that changes linearly, accepting infinitesimal value
p(z= a) = 1

a ·①−1 (value equal to zero) in the first line of lattice cells and value equal to unit
p(z= a·①) = 1 in the last,①-s line of lattice cells. We observe that diffusion front width in this
case stretches for an infinite number of lattice spacing:hf ' a ·①β f = a ·①4/7. And again this
value could be regarded as finite, infinite and infinitesimal short depending on “microscope” we
use.
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