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New algorithms for the numerical solution of Ordinary Differen-
tial Equations (ODEs) with initial condition are proposed. They
are designed for work on a new kind of a supercomputer – the
Infinity Computer, – that is able to deal numerically with finite,
infinite and infinitesimal numbers. Due to this fact, the Infin-
ity Computer allows one to calculate the exact derivatives of
functions using infinitesimal values of the stepsize. As a con-
sequence, the new methods described in this paper are able to
work with the exact values of the derivatives, instead of their ap-
proximations.
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1 INTRODUCTION

Numerical solutions to Ordinary Differential Equations (ODEs) are required
very often in practical problems (see, e.g., [5–7, 13–15, 21]). In this paper,
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we introduce numerical methods for solving ODEs on the Infinity Computer
(see [29, 31, 32, 35]). We consider the following Initial Value Problem (IVP)

y′(x) = f(x, y), y(x0) = y0, x0 = a, x ∈ [a, b]. (1)

and we suppose that f(x, y) is a “black-box” function, i.e., f(x, y) is given by
a computer procedure and the analytical representation of f(x, y) is unknown
to the person who solves (1).

There exists a huge number of numerical methods proposed to solve ODEs
on conventional computers (see, e.g., [5–7, 13–16, 21, 27]). The simplest al-
gorithm to solve the problem (1) is probably the explicit Euler Method (see,
e.g., [6]). At each step it constructs a linear approximation of y(x) starting
from the initial point (x0, y(x0)). The (n + 1)th step of the Euler algorithm
describes how to move from the point xn to xn+1 = xn + h, n ≥ 0, and is
executed as follows

yn+1 = yn + hf(xn, yn). (2)

The Infinity Computer is based on a new numeral system described in
[29,31,32,37,41,46] for performing computations with infinite and infinites-
imal quantities. This allows one to calculate the exact values of the deriva-
tives numerically without finding the respective derivatives analytically and
to work with infinitesimal steps of integration in (2). The first attempts to use
the Infinity Computer in this direction has been done in [38, 42, 44].

In order to see the place of the new approach in the historical panorama of
ideas dealing with infinite and infinitesimal, see [20,22–24,28,34,36,48]. In
particular, connections of the new approach with bijections are studied in [24]
and metamathematical investigations on the theory and its non-contradictory
can be found in [23]. The new methodology has been successfully used
in several fields. We can mention numerical differentiation and optimiza-
tion (see [8, 38, 52]), models for percolation and biological processes (see
[17, 18, 40, 50]), hyperbolic geometry (see [25, 26]), fractals (see [17, 18, 30,
33, 40, 47]), infinite series (see [19, 34,39, 51]), the first Hilbert problem, lex-
icographic ordering, and Turing machines (see [36, 43, 45, 48, 49]), cellular
automata (see [9–11]), etc.

The numeral system proposed in [32, 37, 41] is based on an infinite unit
of measure expressed by the numeral ¬ called grossone and introduced as
the number of elements of the set N of natural numbers (a clear difference
with non-standard analysis can be seen immediately since non-standard infi-
nite numbers are not connected to concrete infinite sets and do not belong to
N). Other symbols dealing with infinities and infinitesimals (∞, Cantor’s ω,
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ℵ0,ℵ1, ..., etc.) are not used together with ¬. Similarly, when the positional
numeral system and the numeral 0 expressing zero had been introduced, sym-
bols V, X, and other symbols from the Roman numeral system had not been
involved.

The numeral ¬ allows one to construct different numerals expressing dif-
ferent infinities and infinitesimals and to execute numerical computations
with all of them. As a result, in occasions requiring infinities and infinitesi-
mals indeterminate forms and various kind of divergence are not present when
one works with any (finite, infinite, or infinitesimal) numbers expressible in
the new numeral system and it becomes possible to execute arithmetical op-
erations with a variety of different infinities and infinitesimals. For example,
for ¬ and ¬4.5 (that are examples of infinities) and ¬−1 and ¬−4.5 (that are
examples of infinitesimals) it follows

0 ·¬ = ¬ · 0 = 0, ¬−¬ = 0,
¬

¬
= 1, ¬0 = 1, 1¬ = 1, 0¬ = 0,

(3)
0 ·¬−1 = ¬−1 · 0 = 0, ¬4.5 > ¬1 > 1 > ¬−1 > ¬−4.5 > 0,

¬−1 −¬−1 = 0,
¬−1

¬−1 = 1,
6 + ¬−4.5

¬−4.5 = 6¬4.5 + 1, (¬−1)0 = 1,

¬ ·¬−1 = 1, ¬ ·¬−4.5 = ¬−3.5,
¬4.5 + 61¬

¬
= ¬3.5 + 61,

¬4.5

¬−4.5 = ¬9, (¬4.5)0 = 1, ¬4.5 ·¬−1 = ¬3.5, ¬4.5 ·¬−4.5 = 1.

It can be seen in (3) that ¬0 = 1, therefore, a finite number a can be rep-
resented in the new numeral system simply as a¬0 = a, where the numeral a
itself can be written down by any convenient numeral system used to express
finite numbers. The simplest infinitesimal numbers are represented by numer-
als having only negative finite powers of ¬ (e.g., 40.17¬−13.26+87.32¬−25.7,
see also examples above). Notice that all infinitesimals are not equal to zero.
In particular, 1

¬
> 0 because it is a result of division of two positive numbers.

In Section 2, methods using infinitesimals are described briefly. In partic-
ular, Section 2.1 presents the main idea regarding the usage of infinitesimals
for approximating derivative and Section 2.2 recall the Taylor methods solv-
ing ODEs and the core Method 1.0 from [42]. Sections 2.3–2.5 present new
methods evolving the Method 1.0. Section 2.6 contains detailed results of
numerical experiments in a compact form presenting a comparison with the
Runge-Kutta methods on a class of test functions taken from the literature.
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Optimal in certain sense parameters for the new methods are calculated in
the Appendix, which also contains a description of test problems used in the
numerical experiments. Finally, Section 3 concludes the paper.

2 METHODS USING NUMERICAL INFINITESIMALS
FOR SOLVING ODES

2.1 Approximation of the derivative
Many numerical methods for solving ODEs require the computation of the
derivative of the unknown function y(x) at some specific points. In particular,
this is the case with methods based on Taylor expansion.

Let us denote by y(j)
i an estimate of the j-th derivative of the solution y(x)

at the point xi. It has been shown in [42] that in order to calculate the j-th
derivative at the point xi j infinitesimals steps from the point xi using the
Euler formula with h = ¬−1 should be executed as follows

yi1 = yi + ¬−1f(xi, yi), yi2 = yi1 + ¬−1f(xi + ¬−1, yi1), . . .

yik = yik−1 + ¬−1f(xi + (k − 1)¬−1, yik−1).

Then, since approximations of the derivatives can be obtained by the for-
ward differences ∆j

h, 1 ≤ j ≤ k, with h = ¬−1 as follows

∆k
¬−1 =

k∑
j=0

(−1)j
(
j

k

)
yxi+(k−j)¬−1 , (4)

where
(
j
k

)
is a binomial coefficient, we have

y(k)(xi) ≈
∆k

¬−1

¬−k
+O(¬−1), (5)

i.e., the value
∆k

¬−1

¬−k is finite and it gives us the exact derivative y(k)(xi). For
a more detailed description of the computation of derivatives see [42].

Usually derivatives are approximated by using automatic or numerical dif-
ferentiation. Automatic differentiation makes use of specific tools based on
the involved elementary functions (see [4]) and allows one to speed up the
computation and does not suffers from typical problems of numerical differ-
entiation when finite precision arithmetic is used. Numerical differentiation,
especially when higher order derivative are necessary, suffer of numerical in-
stability and is not able to reach a higher precision. Finite difference formulas
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are, in fact, ill-conditioned, moreover the cancellation error produces a value
of zero if h is small. We observe that the use of the Infinity Computer makes
finite difference formulas exact when the stepsize is equal to ¬−1. This fea-
ture, besides preventing the above mentioned ill-conditioning phenomenon,
is particularly appealing in the case where the function to be differentiated is
a “black box”.

2.2 The main idea and the core Method 1.0
The main idea of the usage of numerical infinitesimals and a core method for
solving the IVP (1) on the Infinity Computer has been proposed in [42].

Since we are able to compute values of k derivatives of the function y(x)

at a generic point x0, we can estimate y(x) in a neighborhood of the point x0

by its Taylor expansion

y(x) ≈ ŷ(x) = y0 +

k∑
i=1

y(i)(x0)

i!
(x− x0)i. (6)

In cases where the radius of convergence of the Taylor expansion ŷ(x)

from (6) covers the whole interval [a, b] of our interest, then there is no ne-
cessity to execute several steps with a finite value of h. In fact, thanks to the
exact derivatives calculated numerically on the Infinity Computer the function
y(x) can be approximated in the neighborhood of the initial point x0 by its
Taylor expansion ŷ(x) with an order k depending on the desired accuracy and
then ŷ(x) can be evaluated at any point x ∈ [a, b]. This method is called Tay-
lor for the Infinity Computer (TIC) hereinafter. This method does not assume
the execution of several iterations with the step h.

Table 1 presents results of numerical experiments executed on a class
of 12 test functions taken from the literature and described in Table 7 of
the Appendix. The method TIC is compared over the interval [0, 0.2] with
the Runge-Kutta method of the fourth order (RK4) with the integration step
h = 0.04, i.e., to obtain an approximation at the point x = 0.2 the method
RK4 executes 5 steps and 20 evaluations of the function f(x, y) from (1).
After the results for RK4 had been obtained, the TIC method was applied to
each of 12 problems. The method TIC stopped when the accuracy ε TIC at
the point x = 0.2 was better than the accuracy ε RK4 of the method RK4.
The last column, N TIC, in Table 1 presents the number of evaluations of
f(x, y) executed by the TIC to reach the accuracy ε TIC. In other words, it
shows the number of infinitesimal steps executed by the TIC that is equal to
the number of exact derivatives calculated by this method. The respective
solutions y RK4 and y TIC are also shown in the table. For the considered
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y RK4 ε RK4 y TIC ε TIC N TIC
1 0.837462 -8.62538e-009 0.837462 -5.91687e-009 6
2 1.242806 8.11157e-009 1.242806 4.19151e-009 6
3 1.221403 4.12685e-009 1.221403 2.13248e-009 6
4 1.221403 3.89834e-008 1.221403 2.13248e-009 6
5 1.491817 1.27726e-007 1.491817 1.13693e-008 7
6 0.135416 -5.96529e-004 0.135379 -3.24420e-004 10
7 36.154673 -8.16405e-005 36.149608 5.84540e-005 9
8 35.968459 -8.18293e-005 35.963409 5.85817e-005 9
9 1.239230 -5.78803e-009 1.239230 -4.08211e-009 10

10 0.781397 -1.76949e-009 0.781397 7.94128e-011 7
11 1.153846 8.98577e-009 1.153846 4.09600e-009 11
12 0.472441 2.95775e-010 0.472441 -1.60782e-010 10

TABLE 1
Results of a comparison of the Taylor for the Infinity Computer method with the
Runge-Kutta method of the fourth order that executes 20 evaluations of f(x, y) to
reach the accuracy ε RK4

problem the TIC method executes fewer evaluations of f(x, y), in comparison
with the Runge-Kutta method. The Taylor method with automatic differen-
tiation, provides, if applicable, the same solution given by TIC, we observe,
however that, if the evaluation of f(x, y) involves k elementary functions (*;
=; ln; exp; sin; cos; . . .) then the computational complexity of the evaluation
of the first n − 1 derivatives is kn2 + O(n). For the TIC the computational
cost is exactly n, considering that the arithmetic operation are executed on
the Infinity Computer Arithmetic.

Suppose now that the interval [a, b] of our interest is wider than the radius
of convergence of the Taylor expansion, or that the rate of convergence is so
slow as to make the method unsuitable for the problem at hand. Then finite
values of the integration step h should be used together with infinitesimal
ones. So, we consider a mesh of n+ 1 points xi where

x0 = a, xi+1 = xi + h, 0 ≤ i ≤ n− 1, xn = b,

where h is a finite integration step.
Let us consider the Method 1.0 from [42] being our core algorithm that

is used hereinafter for further developments. At each iteration it calculates
k derivatives (in [42] the particular case k = 2 has been considered) at a
point xi using infinitesimal steps and then executes a finite step of the length
h = (b − a)/n to the point xi+1. So, at each iteration it applies the TIC
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y RK4 ε RK4 y 1.0 ε 1.0 N 1.0
1 0.735759 -2.20568e-008 0.735759 -1.51306e-008 30
2 3.436564 3.26429e-008 3.436564 1.68677e-008 30
3 2.718282 2.06343e-008 2.718282 1.06624e-008 30
4 2.718281 3.02546e-007 2.718282 1.65499e-008 30
5 7.388579 6.38533e-007 7.388584 5.66017e-008 35
6 0.000046 -2.98620e-003 0.000045 -1.62315e-003 50
7 20.026862 -1.22480e-006 20.026819 8.76400e-007 45
8 18.474354 -1.34674e-006 18.474311 9.47222e-007 45
9 2.732051 -7.46806e-009 2.732051 -8.00658e-010 50
10 -0.301169 6.85909e-008 -0.301169 -3.02846e-010 35
11 1.000000 3.82195e-008 1.000000 1.37934e-009 55
12 0.571429 7.69103e-009 0.571429 -2.01651e-011 50

TABLE 2
Results of a comparison of the Method 1.0 with the Runge-Kutta method of the fourth
order that executes 100 evaluations of f(x, y) to reach the accuracy ε RK4

for i = 0; i < n; i = i+ 1

y(x, xi) = yi +
∑k

j=1
y
(j)
i

j! (x− xi)j ,
yi+1 = y(xi+1, xi)

endfor

FIGURE 1
Method 1.0 from [42]

method. The Method 1.0 uses the initial values x0 = a, y0 = y(x0), from (1)
and its detailed description is presented in Figure 1.

Table 2 presents results for the Method 1.0 extending numerical exper-
iments described in Table 1 from the interval [0, 0.2] to the interval [0, 1].
Thus, the Method 1.0 executed five finite steps during which the method TIC
was applied five times at the points xi = a + ih, where a = 0, h = 0.2.
The Method 1.0 is compared with the method RK4 with the same integration
step as before (h = 0.04). At each interval [xi, xi+1] the method TIC ex-
ecuted N TIC evaluations of the function f(x, y), where N TIC was taken
from sixth column of the Table 1 for each test function. It can be seen from
Table 2 that the accuracy of the Method 1.0 is better than the accuracy of the
Runge-Kutta method of the fourth order and the Method 1.0 executes fewer
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Method 1.0 Method RK2 Method 1.2
# yn εn yn εn yn εn
1 0.74148 -7.77538e-003 0.74148 -7.77538e-003 0.73262 4.26152e-003
2 3.40542 9.06351e-003 3.40542 9.06351e-003 3.42709 2.75755e-003
3 2.70271 5.72923e-003 2.70271 5.72923e-003 2.71354 1.74310e-003
4 2.69451 8.74561e-003 2.65824 2.20893e-002 2.70459 5.03795e-003
5 7.10043 3.89998e-002 7.10041 3.90024e-002 7.24952 1.88217e-002
6 1.00000 -2.20255e+004 1.00000 -2.20255e+004 -2.33333 5.13961e+004
7 31.63147 -5.79454e-001 31.63147 -5.79454e-001 -55.88025 3.79027e+000
8 30.04452 -6.26285e-001 30.05380 -6.26787e-001 -57.20706 4.09657e+000
9 2.74018 -2.97481e-003 2.73309 -3.80229e-004 2.72931 1.00341e-003
10 -0.30737 -2.05896e-002 -0.29889 7.56958e-003 -0.29849 8.89270e-003
11 0.99078 9.21515e-003 0.99824 1.76122e-003 1.00396 -3.96140e-003
12 0.57150 -1.33171e-004 0.57099 7.59569e-004 0.57166 -4.02684e-004

TABLE 3
For all the methods taken into consideration resulting values yn at the point x = 1
and the respective relative error εn = y(1)−yn

y(1)
are reported, where y(1) is the exact

solution

evaluations of f(x, y) in comparison with the RK4 method.

2.3 Methods 1.1 and 1.2

Let us describe now a new algorithm called Method 1.2 hereinafter. It is a
generalization of the Method 1.1 from [42]. The main idea is to use deriva-
tives calculated at the point xi+1 in order to return to the point xi and to
construct at this point a correction leading to a new approximation yci+1 that
is better than the original value yi+1 provided by the Method 1.0.

The Method 1.2 works as follows. First, initial values are chosen in the
same way as in the Method 1.0 and values yi, i = 1, ..., n, and functions
y(x, xi) are calculated as in the Method 1.0. Then for each i = 1, ..., n−1, the
backward functions yi(x) using forward differences from (5) are computed
as follows

yi(x) = y(xi, xi−1) +

k∑
j=1

y(j)(xi, xi)

j!
(x− xi)j . (7)

Note that for i = n the backward differences and the points xn −¬−1, xn −
2¬−1, ..., xn−k¬−1 should be used (see Corollary 1 in [42]) to calculate the
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derivatives y(j)(xn, xn). After that, the function ri(x) is defined as follows:

ri(x) = yi−1 + [p0yi−1 − (1− p0)yi(xi−1)]+

+
∑k

j=1
1
j! [pjy

(j)(xi−1, xi−1) + (1− pj)y(j)
i (xi−1)](x− xi−1)j ,

(8)

where the weights pj ∈ [0, 1], j = 0, ..., k, are parameters of the Method 1.2.
So, the global correction ci can be obtained following the rule

ci = c(xi) = c(xi−1) + ri(xi)− y(xi, xi−1), i = 1, ..., n, (9)

with c0 = 0. As a result, the desired corrected value yci can be computed

ycn = y(xn, xn−1) + c(xn). (10)

The choice of the parameters of the Method 1.2 can be done using different
criteria. For instance, the simplest choice for k = 2, p0 = p1 = p2 = 0.5

gives us the Method 1.1 from [42]. If we apply the method to the standard
test equation y′ = λy we could choose the parameters by imposing that the
method should become equivalent to the Taylor series method of the highest
possible order. For example, for k = 2, it is shown in the Appendix that
the choice of parameters p0 = 0, p1 = 5/6, p2 = 0.5 makes the method
equivalent to the Taylor series method with k = 4. This means that for the
test equations the order increases from two to four. Results of numerical
experiments executed with this choice of the parameters, compared with the
method 1.0 used with k = 2 and with the Runge-Kutta method of second
order on the same class of test functions from the Appendix are shown in
Table 3.

As can be seen from Table 3, the introduced correction has allowed us to
improve the results on some problems with respect to the Method 1.0. Again,
as it was with the Method 1.0, among the Runge-Kutta methods a natural
competitor for the Method 1.2 with k = 2 is the Runge-Kutta method of the
second order since both methods execute f(x, y) two times at each iteration.
Then, the behavior of the Method 1.2 is comparable with that of the Runge-
Kutta method of the second order on the considered test problems.

2.4 Method 1.3
Another possible way to approximate the solution to the problem (1) is intro-
duced in the Method 1.3 described below. The main two differences between
the Method 1.2 and the Method 1.3 are the following:
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for i = 1; i ≤ n; i = i+ 1

y(x, xi−1) = yi−1 +
∑k

j=1

y
(j)
i−1

j! (x− xi−1)j ,

ỹi(x) = y(xi, xi−1) +
∑k

j=1
ỹ
(j)
i

j! (x− xi)j ,
r̃i(x) = yi−1 + [p0yi−1 − (1− p0)ỹi(xi−1)]+

+
∑k

j=1
1
j! [pjy

(j)(xi−1, xi−1) + (1− pj)ỹ(j)
i (xi−1)](x− xi−1)j ,

yi = r̃i(xi)

endfor

FIGURE 2
Method 1.3

i.) The Method 1.2 executes n iterations of the Method 1.0 to calculate the
approximated values of yi, i = 1, ..., n, and then these values are corrected
by the backward function yi(x) from (7) and the mixed function ri(x) from
(8). The Method 1.3 at each subinterval [xi−1, xi] executes the evaluation
of the approximated value yi and then immediately evaluates the backward
function ỹi(x) and the mixed function r̃i(x) before moving to the next inter-
val [xi, xi+1].

ii.) The Method 1.2 in the formula (7) of yi(x) uses for the forward func-
tion y(x, xi) at each point (xi, y(xi, xi−1)) old values of derivatives calcu-
lated at points (xi, yi) before the correction. However, the values yi and
y(xi, xi−1) can be different and, as a consequence, the respective derivatives
can be also different. Thus, the Method 1.3 after the correction and before
moving to the next interval [xi, xi+1] calculates the exact derivatives at each
point (xi, y(xi, xi−1)).

Let us denote now as y(j)
i−1 the approximation of the j-th derivative using

the rule (5) calculated at the point (xi−1, yi−1) and as ỹ(j)
i the approximation

of the j-th derivative again using the rule (5) but at the point (xi, y(xi, xi−1)).
Notice that for i = 1, ..., n − 1, the forward differences are used and the
backward ones (see Corollary 1 from [42]) are applied for i = n. Taking into
consideration that the initial values are the same as in the previous cases and
the values pj , j = 0, ..., k, are parameters of the Method 1.3 having the same
meaning as in the Method 1.2, the Method 1.3 is described in Figure 2.

Results of numerical experiments for the Method 1.3 with the value k = 2

and the same parameters used in the Method 1.2 are given in Table 4 for the
same test problems. As can be seen from this table, the attained accuracy of
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Method 1.3 Method RK2 Method RK3 Method RK4
# yn εn yn εn yn εn yn εn
1 0.73577 -1.57578e-005 0.74148 -7.77538e-003 0.73547 3.91315e-004 0.73577 -1.57578e-005
2 3.43650 1.78619e-005 3.40542 9.06351e-003 3.43502 4.49549e-004 3.43650 1.78619e-005
3 2.71825 1.12909e-005 2.70271 5.72923e-003 2.71751 2.84169e-004 2.71825 1.12909e-005
4 2.71718 4.03706e-004 2.65824 2.20893e-002 2.71351 1.75595e-003 2.71787 1.52387e-004
5 7.38632 3.06560e-004 7.10041 3.90024e-002 7.35996 3.87457e-003 7.38632 3.06113e-004
6 0.00412 -8.96439e+001 1.00000 -2.20255e+004 -0.00412 9.16439e+001 0.00412 -8.96439e+001
7 20.11564 -4.43440e-003 31.63147 -5.79454e-001 20.00000 1.34005e-003 20.11564 -4.43440e-003
8 18.56287 -4.79261e-003 30.05380 -6.26787e-001 18.44666 1.49775e-003 18.56337 -4.81998e-003
9 2.73185 7.36503e-005 2.73309 -3.80229e-004 2.73178 9.74546e-005 2.73207 -5.35061e-006
10 -0.30091 8.73137e-004 -0.29889 7.56958e-003 -0.30105 3.94699e-004 -0.30116 4.13631e-005
11 1.00100 -1.00013e-003 0.99824 1.76122e-003 1.00093 -9.33299e-004 0.99997 3.18508e-005
12 0.57176 -5.73749e-004 0.57099 7.59569e-004 0.57164 -3.64397e-004 0.57143 5.73049e-006

TABLE 4
For all the methods taken into consideration resulting values yn at the point x = 1
and the respective relative error εn = y(1)−yn

y(1)
are reported, where y(1) is the exact

solution. The Method 1.3 uses the following parameters: p0 = 0, p1 = 5/6, p2 = 0.5

the Method 1.3 is better with respect to the Runge-Kutta method of second
order for all test problems. This is due to the choice of the parameters, that
make the methods of order at least three. A formal discussion related to the
convergence properties of this method is presented in [2], where it has been
proved that the order of convergence of this method is 3. The behavior of
the Method 1.3 is comparable with respect to the Runge-Kutta method of
third order on all the test problems. Finally, we observe that similar results
are obtained with respect to the Runge-Kutta method of fourth order for linear
problems. It should be mentioned that the obtained improvement has its price.
In fact, the Method 1.3 executes 2kn evaluations of the function f(x, y) from
(1) whereas the Method 1.2 performs just kn+ k evaluations of f(x, y).

2.5 Method 1.4
The main idea of this method is to avoid calculation of the derivatives at
the close points (xi, yi) and (xi, y(xi, xi−1)). Since these points are close,
the difference between yi and y(xi, xi−1) can be relatively small. Thus, in-
stead of recalculating derivatives at the points (xi, yi) as it is done in the
Method 1.3, the values of the derivatives calculated at the points (xi, y(xi, xi−1))

can be used also at the points (xi, yi). This is the main difference between
the Methods 1.3 and 1.4.

Let us again denote the approximation of the j-th derivative using infinites-
imals starting from the point (xi, yi) as y(j)

i and the approximation of the j-
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Method 1.4 Method RK2 Method RK3 Method RK4
# yn εn yn εn yn εn yn εn
1 0.73495 1.09797e-003 0.74148 -7.77538e-003 0.73547 3.91315e-004 0.73577 -1.57578e-005
2 3.43265 1.13895e-003 3.40542 9.06351e-003 3.43502 4.49549e-004 3.43650 1.78619e-005
3 2.71632 7.19955e-004 2.70271 5.72923e-003 2.71751 2.84169e-004 2.71825 1.12909e-005
4 2.71142 2.52314e-003 2.65824 2.20893e-002 2.71351 1.75595e-003 2.71787 1.52387e-004
5 7.32003 9.27820e-003 7.10041 3.90024e-002 7.35996 3.87457e-003 7.38632 3.06113e-004
6 0.03704 -8.14795e+002 1.00000 -2.20255e+004 -0.00412 9.16439e+001 0.00412 -8.96439e+001
7 23.46140 -1.71498e-001 31.63147 -5.79454e-001 20.00000 1.34005e-003 20.11564 -4.43440e-003
8 21.89863 -1.85355e-001 30.05380 -6.26787e-001 18.44666 1.49775e-003 18.56337 -4.81998e-003
9 2.73104 3.68986e-004 2.73309 -3.80229e-004 2.73178 9.74546e-005 2.73207 -5.35061e-006
10 -0.30030 2.87314e-003 -0.29889 7.56958e-003 -0.30105 3.94699e-004 -0.30116 4.13631e-005
11 1.00311 -3.10616e-003 0.99824 1.76122e-003 1.00093 -9.33299e-004 0.99997 3.18508e-005
12 0.57188 -7.83660e-004 0.57099 7.59569e-004 0.57164 -3.64397e-004 0.57143 5.73049e-006

TABLE 5
For all the methods taken into consideration resulting values yn at the point x = 1
and the respective relative error εn = y(1)−yn

y(1)
are reported, where y(1) is the exact

solution. The Method 1.4 uses the following parameters: p0 = 0, p1 = 5/6, p2 = 0.5

for i = 1; i ≤ n; i = i+ 1

ŷi(x) = y(xi, xi−1) +
∑k

j=1
ŷ
(j)
i

j! (x− xi)j ,
ri(x) = yi−1 + [p0yi−1 − (1− p0)ŷi(xi−1)]+

+
∑k

j=1
1
j! [pjy

(j)(xi−1, xi−1) + (1− pj)ŷ(j)
i (xi−1)](x− xi−1)j ,

yi = ri(xi)

y(x, xi) = yi +
∑k

j=1
ŷ
(j)
i

j! x
j ,

endfor

FIGURE 3
Method 1.4

th derivative using infinitesimals but starting from the point (xi, y(xi, xi−1))

as ŷ(j)
i for i = 1, ..., n − 1, (for i = n the backward approximation, see

Corollary 1 from [42], is used). The initial values are the same as above
and pj , j = 0, ..., k are parameters of the method. Then the Method 1.4 is
described in Figure 3.

The results of the experiments on the same class of test functions are given
in Table 5. For the Method 1.4 the value k = 2 and the same optimal param-
eters used for the Method 1.3.

12



Method 1.0 Method 1.2 Method 1.3 Method 1.4
# yn εn yn εn yn εn yn εn
1 0.74148 -7.77538e-003 0.73262 4.26152e-003 0.73577 -1.57578e-005 0.73495 1.09797e-003
2 3.40542 9.06351e-003 3.42709 2.75755e-003 3.43650 1.78619e-005 3.43265 1.13895e-003
3 2.70271 5.72923e-003 2.71354 1.74310e-003 2.71825 1.12909e-005 2.71632 7.19955e-004
4 2.69451 8.74561e-003 2.70459 5.03795e-003 2.71718 4.03706e-004 2.71142 2.52314e-003
5 7.10043 3.89998e-002 7.24952 1.88217e-002 7.38632 3.06560e-004 7.32003 9.27820e-003
6 1.00000 -2.20255e+004 -2.33333 5.13961e+004 0.00412 -8.96439e+001 0.03704 -8.14795e+002
7 31.63147 -5.79454e-001 -55.88025 3.79027e+000 20.11564 -4.43440e-003 23.46140 -1.71498e-001
8 30.04452 -6.26285e-001 -57.20706 4.09657e+000 18.56287 -4.79261e-003 21.89863 -1.85355e-001
9 2.74018 -2.97481e-003 2.72931 1.00341e-003 2.73185 7.36503e-005 2.73104 3.68986e-004
10 -0.30737 -2.05896e-002 -0.29849 8.89270e-003 -0.30091 8.73137e-004 -0.30030 2.87314e-003
11 0.99078 9.21515e-003 1.00396 -3.96140e-003 1.00100 -1.00013e-003 1.00311 -3.10616e-003
12 0.57150 -1.33171e-004 0.57166 -4.02684e-004 0.57176 -5.73749e-004 0.57188 -7.83660e-004

TABLE 6
Comparison of the Methods 1.0–1.4

As can be seen from Table 5, the attained accuracy of the Method 1.4 is
better than the accuracy of the Runge-Kutta method of the second order for
many test problems. The Method 1.4 executes less evaluations of the func-
tion f(x, y) than the Method 1.3. Namely, it works doing the same number
of evaluations of f(x, y) as the Method 1.2, i.e., kn + k. The accuracy of
the Method 1.4 is worse with respect to the Runge-Kutta methods of higher
orders in all test problems. The reason is that the Method 1.4 does not use the
exact derivatives at points (xi, yi) as the Method 1.3 does and the difference
between the derivatives at the points (xi, yi) and (xi, y(xi, xi−1)) causes er-
rors. However, we can observe that the Method 1.4 executes the number of
evaluations of the function f(x, y) that is similar to the Runge-Kutta method
of the second order and at the same time the accuracy of the Method 1.4 is
better with respect to RK2. A detailed description of the convergence and
stability properties of the Methods 1.3 and 1.4 is presented in [2], in the next
section we report some experiments that show the potentiality of numerical
methods using derivatives computed on the Infinity Computer.

2.6 A detailed description of results of numerical experiments
In Section 2.2 we have already seen the nice performance of the Method 1.0
with large values of k. In this subsection we analyze this method with k up to
three in order to compare its behavior with the Methods 1.3 and 1.4 and the
Runge-Kutta Methods of order 2 and 3.

Figures 4–7 show the behavior of the error for all the twelve considered test
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FIGURE 4
Relative error versus stepsize and function evaluation versus relative error for prob-
lems 1,2 and 3.

problems, changing the stepsize and the computational cost using the number
of function evaluations (observe that the latter are performed in the Infinity
Computer Arithmetic). From the pictures it could be seen that the behavior of
the Method 1.3 is similar to the RK4 for linear problems, while for nonlinear
ones, the order 3 of the method is experienced and the behavior is very close
to the one of the Method 1.4 and of the Method 1.0 with k = 3. The Method
1.4 has order 3 for all the test problems and for the nonlinear tests requires a
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FIGURE 5
Relative error versus stepsize and function evaluation versus relative error for prob-
lems 4,5 and 6.

smaller computational effort to reach the same precision of the Method 1.3.
The main potentiality of the numerical schemes using derivatives is that the
use of the Infinity Computer allows one to compute the derivatives without
error by a linear combinations of the computed infinitesimal values. This
means that computing the exact derivatives does not give any computational
problem to the method. We are aware that the Infinity Computer Arithmetic
requires a computational effort that is higher than the one required by standard
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FIGURE 6
Relative error versus stepsize and function evaluation versus relative error for prob-
lems 7,8 and 9.

one, but for a computer based on this arithmetic all the complexity effort is
hidden to the user, who needs only to use, in the arithmetic operations, the
new numeral ¬.

3 A BRIEF CONCLUSION

This paper introduces several numerical methods for solving the initial value
problem on the Infinity Computer able to execute numerical computations
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FIGURE 7
Relative error versus stepsize and function evaluation versus relative error for prob-
lems 10,11,12.

with infinities and infinitesimals. The new methods can mix finite and in-
finitesimal steps in their work opening so new possibilities for constructing
numerical algorithms.

The obtained results seem to be very promising and show that one of the
the most significant advantages of the Infinity Computer applied for solving
ODEs consists of the possibility to calculate the exact values of the derivatives
of the solution. This becomes possible thanks to a smart usage of infinitesimal
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values of the integration step h.
Numerical experiments executed on a class of problems taken from the

literature show that the possibility to use exact values of derivatives of the
solution allows the authors to introduce new numerical schemes that can be
competitive with respect to Runge-Kutta methods widely used in practice.

4 ACKNOWLEDGEMENTS

The authors thank Olga Rubchenkova for useful discussions and executing
some preliminary numerical experiments.

Research of Ya.D. Sergeyev and M.S. Mukhametzhanov was supported by
the Russian Science Foundation, project No.15-11-30022 “Global optimiza-
tion, supercomputing computations, and applications”.

Research of P. Amodio, F. Iavernaro and F. Mazzia was supported by the
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in Nonlinear Science and Numerical Simulation, 21(1–3):52–69.

[29] Ya.D. Sergeyev. (2003, 2nd ed. 2013). Arithmetic of Infinity. Edizioni Orizzonti Merid-
ionali, CS.

[30] Ya.D. Sergeyev. (2007). Blinking fractals and their quantitative analysis using infinite and
infinitesimal numbers. Chaos, Solitons & Fractals, 33(1):50–75.

[31] Ya.D. Sergeyev. (2007). Infinity computer and calculus. In Simos T.E., Psihoyios G.,
and Tsitouras Ch., editors, AIP Proc. of the 5th International Conference on Numerical
Analysis and Applied Mathematics, volume 936, pages 23–26. Melville, New York.

19



[32] Ya.D. Sergeyev. (2008). A new applied approach for executing computations with infinite
and infinitesimal quantities. Informatica, 19(4):567–596.

[33] Ya.D. Sergeyev. (2009). Evaluating the exact infinitesimal values of area of Sierpinski’s
carpet and volume of Menger’s sponge. Chaos, Solitons & Fractals, 42(5):3042–3046.

[34] Ya.D. Sergeyev. (2009). Numerical point of view on Calculus for functions assuming finite,
infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear
Analysis Series A: Theory, Methods & Applications, 71(12):e1688–e1707.

[35] Ya.D. Sergeyev. (2010). Computer system for storing infinite, infinitesimal, and finite
quantities and executing arithmetical operations with them. USA patent 7,860,914.

[36] Ya.D. Sergeyev. (2010). Counting systems and the First Hilbert problem. Nonlinear
Analysis Series A: Theory, Methods & Applications, 72(3-4):1701–1708.

[37] Ya.D. Sergeyev. (2010). Lagrange Lecture: Methodology of numerical computations with
infinities and infinitesimals. Rendiconti del Seminario Matematico dell’Università e del
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APPENDIX

The choice of parameters for the methods 1.2–1.4
We propose a possible way to choose parameters p0, p1, . . . pk for the Meth-
ods 1.2–1.4 using k = 2 derivatives calculated thanks to k infinitesimal steps
of the explicit Euler method.

Let us consider the following IVP:

y′ = λy, y(x0) = y0. (11)

Thus, it follows y(k) = λky for k = 1, 2, ... and the Taylor series for the
function y(x) is

y(x, x0) = y0 + λy0(x− x0) +
1

2
λ2y0(x− x0)2 +O(|x− x0|3). (12)

Let us use designations h = x1 − x0 and q = λh and consider the first three
summands from the Taylor series to approximate the value y1

y1 = y0 + qy0 +
1

2
q2y0. (13)

The function y(x) can be then defined as follows

y(x) = y1 + λy1(x− x1) +
1

2
λ2y1(x− x1)2 + o(|x− x1|2) =

= y1 + λy1(x− x0 + x0 − x1) +
1

2
λ2y1(x− x0 + x0 − x1)2+

+o(|x− x1|2) = (y1 − qy1 +
1

2
q2y1)+

+(λy1 − hλ2y1)(x− x0) +
1

2
λ2y1(x− x0)2 + o(|x− x1|2).
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As a result, for the function r1(x) from (8) with the parameter p0 = 0 we
can write

r1(x) = y0 + [p1λy0 + (1− p1)λy1(1− q)](x− x0)+

[
p2λ

2

2
y0 +

(1− p2)λ2

2
y1](x− x0)2.

This allows us to calculate the value of the function r1(x) at the point x1 as
follows

r1 = y0 + p1qy0 + (1− p1)qy1(1− q)+

p2q
2

2
y0 +

(1− p2)q2

2
y1 =

= y0 + p1qy0 + (1− p1)q(y0 + qy0 +
1

2
q2y0)(1− q)+

p2q
2

2
y0 +

(1− p2)q2

2
(y0 + qy0 +

1

2
q2y0) =

= y0 + qy0 +
q2y0

2
+ (
−1 + p1

2
− 1− p2

2
)q3y0 + (

−1 + p1

2
− 1− p2

4
)q4y0.

Now we can choose parameters p1 and p2 in such a way that

r1 = y0 +

4∑
i=1

1

i!
qiy0.

To do this it is necessary to solve the following system of linear equations{ p1

2 −
p2

2 = 1
3!

p1

2 −
p2

4 = 1
4! + 1

4

(14)

By solving this system we get the desired values of the parameters

p∗1 =
5

6
, p∗2 = 0.5. (15)
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# ODE y0 yn solution source

1 y′ = x− y 1 0.735759 y(x) = x− 1 + 2e−x [1]

2 y′ = x + y 1 3.436564 y(x) = 2ex − x− 1 [1]

3 y′ = y 1 2.718282 y(x) = ex [6]

4 y′ = 2y − ex 1 2.718282 y(x) = ex [6]

5 y′ = 2y(1− 0.00001y) 1 7.388584 y(x) = 100000e2x/(100000 + e2x − 1) [3]

6 y′ = −10y 1 0.000045 y(x) = e−10x [12]

7 y′ = −8(y − 20) 100 20.026837 y(x) = 80e−8x + 20 [13]

8 y′ = −8(y − 15e−x/8 − 5) 100 18.474329 y(x) = 1675
21

e−8x + 320
21

e−x/8 + 5 [13]

9 y′ = y+x
y−x

1 2.732051 y(x) = x +
√

1 + 2x2 [6]

10 y′ = −y · tan(x)− 1
cos(x)

1 -0.301169 y(x) = cos(x)− sin(x) [6]

11 y′ = y−2xy2

1+x
1 1 y(x) = 1+x

1+x2 [6]

12 y′ = y−2xy2

1+x
0.4 0.571429 y(x) = 1+x

2.5+x2 [6]

TABLE 7
Test problems
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