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Abstract

The Turing machine is one of the simple abstract computatidevices
that can be used to investigate the limits of computabilitytthis paper, they
are considered from several points of view that emphasigantiportance
and the relativity of mathematical languages used to dessthie Turing ma-
chines. A deep investigation is performed on the interi@iatbetween me-
chanical computations and their mathematical descriptemerging when
a human (the researcher) starts to describe a Turing maghieebject of
the study) by different mathematical languages (the insénis of investiga-
tion). Together with traditional mathematical languags®s@ such concepts
as ‘enumerable sets’ and ‘continuum’ a new computationdhouwlogy al-
lowing one to measure the number of elements of differennitefisets is
used in this paper. It is shown how mathematical languages esdescribe
the machines limit our possibilities to observe them. Irtipatar, notions
of observable deterministic and non-deterministic Turirachines are intro-
duced and conditions ensuring that the latter can be sieulilat the former
are established.
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1 Introduction

The fundamental nature of the concepitomatic computationattracted a great
attention of mathematicians (and later of computer scientists) since 1930’s (see
[5, 13, 14, 15, 17, 18, 21, 32] and more recent monographs [2,BL]). At that

time, this strong impetus for understanding what is computable was actively sup
ported by David Hilbert who believed that all of Mathematics could be pricise
axiomatized. Several mathematicians from around the world proposed their in
dependent definitions of what it means to be computable and what it means an
automatic computing machine. In order to perform a rigorous study of seque
tial computations, they worked with different mathematical models of computing
machines. Surprisingly, it has been discovered (see detailed discussidhis

topic in, e.g., [2, 6, 7]) that all of these models were equivalent, e.g., iagyth
computable in tha-calculus is computable by a Turing machine.

In spite of the fact that the famous results of Churcbdél, and Turing have
shown that Hilbert's programme cannot be realized, the idea of findindeguate
set of axioms for one or another field of Mathematics continues to be among the
most attractive goals for contemporary mathematicians as well. Usually, wisen it
necessary to define a concept or an object, logicians try to introducebenwof
axioms describing the object. However, this way is fraught with dangexusecof
the following reasons.

First, when we describe a mathematical object or concept we are limited by
the expressive capacity of the language we use to make this descriptiache r
language allows us to say more about the object and a weaker languagge — le
Thus, development of the mathematical (and not only mathematical) languages
leads to a continuous necessity of a transcription and specification of gigoma
systems. Second, there is no guarantee that the chosen axiomatic sylte® de
‘sufficiently well’ the required concept and a continuous comparison wbtjce
is required in order to check the goodness of the accepted set of adimwsver,
there cannot be again any guarantee that the new version will be thadadefni-
tive one. Finally, the third limitation already mentioned above has been diszbver
by Godel in his two famous incompleteness theorems (see [8]).

In linguistics, the relativity of the language with respect to the world around
us has been formulated in the form of the Sapir-Whorf thesis (see [4,6123])
also known as the ‘linguistic relativity thesis’ (that has also interesting rekatmn
the ideas of K.E. Iverson exposed in his Turing lecture [12]). As besactear
from its name, the thesis does not accept the idea of the universality afdgeg
and postulates that the nature of a particular language influences théatloditg
speakers. The thesis challenges the possibility of perfectly represémtingprid
with language, because it implies that the mechanisms of any language condition
the thoughts of its speakers.

In this paper, we study the relativity of mathematical languages in situations
where they are used to observe and to describe automatic computationsniwe ¢
sider the traditional computational paradigm mainly following results of Turing



(see [32]) whereas emerging computational paradigms (see, e.g. , [34,133])
are not considered here). Let us illustrate the concept of the relativityathe-
matical languages by the following example. In his study publish&tiancdsee
[9]), Peter Gordon describes a primitive tribe living in Amazonia — Riralthat
uses a very simple numeral systefor counting: one, two, ‘many’. For Pird@hall
guantities larger than two are just ‘many’ and such operations as 2+2+dngiz
the same result, i.e., ‘many’. By using their weak numeral system & aad not
able to see, for instance, numbers 3, 4, and 5, to execute arithmeticatiopsr
with them, and, in general, to say anything about these numbers becausé in th
language there are neither words nor concepts for that.

The numeral system of Piralinas another interesting feature particularly inter-
esting in the context of the study presented in this paper:

‘many’+1="'many’, ‘many’ +2="‘many’, ‘many’+‘many’ =‘many’. (1)

These relations are very familiar to us in the context of our views on infingg us
in the calculus

wil=w,  wt2=m  otfo=cw )

Thus, the modern mathematical numeral systems allow us to distinguish a larger
quantity of finite numbers with respect to Pigabut give similar results when we
speak about infinite numbers. Formulae (1) and (2) lead us to the folloviing o
servation: Probably our difficulty in working with infinity is not connected to the
nature of infinity but is a result of inadequate numeral systems usegtessxin-
finite numbersAnalogously, Piraé do not distinguish numbers 3 and 4 not due to
the nature of these numbers but due to the weakness of their numerah syste

This remark is important with respect to the computability context because of
the following reason. Investigations of traditional computational models vetl
discuss emerging computational paradigms, see, e.g. [3]) executeduseafor
studying infinite computational processes mathematical instruments develpped b
Georg Cantor (see [3]) who has shown that there exist infinite setsghdiiarent
number of elements. In the theory of computations, two infinite sets — countable
sets and continuum — are used mainly. Cantor has proved, by using hisfamo
diagonal argument, that the cardinaliyp, of the setN, of natural numbers is less
than the cardinalityC, of real numbers € [0, 1].

Cantor has also developed an arithmetic for the infinite cardinal numbere So
of the operations of this arithmetic includifigy andC are given below:

Oo+1 =0, Oo+2 =0y, Uo+0Uo = Uo,

1We remind thanhumeralis a symbol or group of symbols that representsimber The differ-
ence between numerals and numbers is the same as the differencerbetvds and the things they
refer to. Anumberis a concept that aumeralexpresses. The same number can be represented by
different numerals. For example, the symbols ‘9’, ‘nine’, and ‘B¢e different numerals, but they
all represent the same number.



C+1 =C, C+2 =C, C+C =C, C+0g =C.

Again, it is possible to see a clear similarity with the arithmetic operations used in
the numeral system of Pirah

Advanced contemporary numeral systems enable us to distinguish within*many
various large finite numbers. As a result, we can use large finite numbessin ¢
putations and construct mathematical models involving them. Analogously, if we
were be able to distinguish more infinite numbers probably we could undérstan
better the nature of the sequential automatic computations (remind the famous
phrase of Ludwig Wittgenstein: ‘The limits of my language are the limits of my
world.").

The goal of this paper is to study Turing machines using a new approach intr
duced in [24, 25, 26] and allowing one to write down different finite, infinged
infinitesimal numbers by a finite number of symbols as particular cases of aauniq
framework. Its applications in several fields can be found in [24, 283@931]. It
is worthy to mention also that the new computational methodology has given a pos
sibility to introduce the Infinity Computer (see [25] and the European pa2é&iy [
working numerically with finite, infinite, and infinitesimal numbers (its software
simulator has already been realized).

The rest of the paper is structured as follows. In Section 2, a brief imttaxh
to the new methodology is given. Due to a rather unconventional chafdtes
new methodology, the authors kindly recommend the reader to study theysurve
[26] (downloadable from [25]) before approaching Sections 3 — 5.

Section 3 presents some preliminary results regarding description of infinite
sequences by using a new numeral system. Section 4 shows that thedattodu
methodology applied together with a new numeral system allows one to have a
fresh look at mathematical descriptions of Turing machines. A deep investiga
tion is performed on the interrelations between mechanical computations and the
mathematical descriptions emerging when a human (the researcher) stagts to d
scribe a Turing machine (the object of the study) by different mathematical la
guages (the instruments of investigation). Mathematical descriptions of aitoma
computations obtained by using the traditional language and the new onanare ¢
pared and discussed. An example of the comparative usage of botlatprsgis
given in Section 5 where they are applied for descriptions of deterministic an
non-deterministic Turing machines. After all, Section 6 concludes the paper.

2 Methodology and a new numeral system

In this section, we give just a brief introduction to the methodology of the new
approach [24, 26] dwelling only on the issues directly related to the sulj¢ioe
paper. This methodology will be used in the subsequent sections to study Tu
ing machines and to obtain some more detailed results related to the further un-
derstanding of what is effectively computable — the problem that was statdd
widely discussed in [5, 32].



We start by introducing three postulates that will fix our methodological posi-
tions (having a strong applied character) with respect to infinite and infimiéés
guantities and Mathematics, in general.

Postulate 1.There exist infinite and infinitesimal objects but human beings and
machines are able to execute only a finite number of operations.

Postulate 2.We shall not tellvhat are the mathematical objects we deal with;
we just shall construct more powerful tools that will allow us to improveaaa-
bilities to observe and to describe properties of mathematical objects.

Postulate 3. The principle ‘The part is less than the whole’ is applied to all
numbers (finite, infinite, and infinitesimal) and to all sets and processet® @nd
infinite).

In Physics, researchers use tools to describe the object of their stddye
used instrument influences results of observations and restricts possiloifitie-
servation of the object. Thus, there exists the philosophical triad — csgaob-
ject of investigation, and tools used to observe the object. Postulates 1hasiag
existence of this triad in Mathematics and Computer Science, as well. Mathemat-
ical languages (in particular, numeral systems) are among the tools useatiry
ematicians to observe and to describe mathematical objects. As a consequenc
very often difficulties that we find solving mathematical problems are related no
to their nature but to inadequate mathematical languages used to solve them.

It is necessary to notice that due to the declared applied statement fixed by
Postulates 1-3, such concepts as bijection, numerable and continuumeseits,
nal and ordinal numbers cannot be used in this paper because theyg belie
theories working with different assumptions. As a consequence, thapeteach
is different also with respect to the non-standard analysis introducezRjrahd
built using Cantor’s ideas. However, the approach used here doesmoadict
Cantor. In contrast, it evolves his deep ideas regarding existencefaredit infi-
nite numbers in a more applied way and can be viewed as a more strong lens of
our mathematical microscope that allows one, e.g., not only to separateliffer
classes of infinite sets but also to measure the number of elements of some infinite
sets.

By accepting Postulate 1 we admit that it is not possible to have a complete
description of infinite processes and sets due to our finite capabilities. Sfanae,
we accept that we are not able to observe all elements of an infinite satéiins
will be discussed in detail hereinafter).

It is important to emphasize that our point of view on axiomatic systems is also
more applied than the traditional one. Due to Postulate 2, mathematical objects
are not defined by axiomatic systems that just determine formal rules foatepe
ing with certain numerals reflecting some properties of the studied mathematical
objects.

Due to Postulate 3, infinite and infinitesimal numbers should be managed in the
same manner as we are used to deal with finite ones. This Postulate in ounopinio
very well reflects organization of the world around us but in many traditioRa
finity theories it is true only for finite numbers. Due to Postulate 3, the traditional
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point of view on infinity accepting such resultsas- 1 = o« should be substituted
in a way ensuring thab + 1 > oo,

This methodological program has been realized in [24, 26] where a aew p
erful numeral system has been developed. This system gives aifitystibex-
ecutenumericalcomputations not only with finite numbers but also with infinite
and infinitesimal ones in accordance with Postulates 1-3. The main ideatsonsis
of measuring infinite and infinitesimal quantities by different (infinite, finiteg an
infinitesimal) units of measure.

A new infinite unit of measure has been introduced for this purpose 24,
in accordance with Postulates 1-3 as the number of elements of the&eatural
numbers. It is expressed by a new numéralalledgrossone

It is necessary to emphasize immediately that the infinite nurmbisrnot ei-
ther Cantor's or w. Particularly, it has both cardinal and ordinal properties as
usual finite natural numbers. Formally, grossone is introduced as auratvan by
describing its properties postulated by thénite Unit Axiom(see [24, 26]). This
axiom is added to axioms for real numbers similarly to addition of the axiom de-
termining zero to axioms of natural numbers when integer numbers are iogddu
Again, we speak about axioms of real numbers in sense of Postulate &xioens
define formal rules of operations with numerals in a given numeral system.

Inasmuch as it has been postulated that grossone is a number, all atimes ax
for numbers hold for it, too. Particularly, associative and commutativegpties
of multiplication and addition, distributive property of multiplication over addi-
tion, existence of inverse elements with respect to addition and multiplication hold
for grossone as for finite numbers. This means, for example, that theviiogo
relations hold for grossone, as for any other number

O
0-0=0-0=0, O0-0O=0, E:1, 0°=1, 17=1, 0°=0. (3)
Let us comment upon the nature of grossone by some illustrative exanmgses (s

the survey [26] for a detailed discussion).

Example2.1 Infinite numbers constructed using grossone can be interpreted in
terms of the number of elements of infinite sets. For exaniple 2 is the number

of elements of a sé® = N\{by,b,} whereb;,b, € N. Analogously,d + 1 is the
number of elements of a sAt= NU{a}, wherea ¢ N. Due to Postulate 3, integer
positive numbers that are larger than grossone do not beloNgotd also can be
easily interpreted. For instandfa\,3 is the number of elements of the 8&twhere

V ={(a1,a,a3) : &g € N,ay € N,ag € N}. |

Example2.2 Grossone has been introduced as the quantity of natural numbers.
Similarly to the set
A={1,2,3 45} (4)



having 5 elements where 5 is the largest numbeAir is the largesinfinite
natural numberand € N. As a consequence, the sit,of natural numbers can
be written in the form

N={1,23, .. O-2 0-1, O (5)

Traditional numeral systems did not allow us to see infinite natural numbérs-

2,0 -1, 0. Similarly, the Pirah are not able to see finite natural numbers greater
than 2. In spite of this fact, these numbers (e.g., 3 and 4) belofgand are
visible if one uses a more powerful numeral system. Thus, we have the same
object of observation — the sit— that can be observed by different instruments —
numeral systems — with different accuracies (see Postulate 2). O

As it has been mentioned above, the introduction of the nunémdlows us
to introduce various numerals that can be used to express integer poaitiNers
larger than grossone such@$, 0° — 4, and also 2,10° + 3, etc. (their meaning
will be explained soon). This leads us to the necessity to introduce the set of
extended natural numbe(gcludingN as a proper subset) indicatedNsvhere

N={12,...,0-1,0,04+1,0+420+3,...,0°-1,0%0%+1,...}. (6)

It is useful to notice that, due to Postulates 1 and 2, the new numeral system
cannot give answers tall questions regarding infinite sets. A mathematical lan-
guage can allow one to formulate a question but not its answer. For instaisce
possible to formulate the question: ‘What is the number of elements of theset
but the answer to this question cannot be expressed within a numerahsysitey
only 0. It is necessary to introduce in a reasonable way a more powerful abmer
system by defining new numerals (for instaride/[], etc.).

Example2.3 Let us consider the set of even numbé&isfrom the traditional point
of view. Cantor’s approach establishes the following one-to-one smoredence
with the set of all natural number¥, in spite of the fact thak is a part ofN:

even numbers: 24 6, 8 10, 12 ...
K ()
natural numbers: 12 3, 4 5 6,

9

This result can be viewed in the following way: traditional mathematical tools do
not allow us to distinguish inside the class of enumerable sets infinite sets having
different number of elements.

From the new point of view, the one-to-one correspondence camnaséd
as atool for working with infinite sets because, due to Postulate 1, we are able
to execute only a finite number of operations and the Besmd N are infinite.

2This fact is one of the important methodological differences with regpewn-standard analy-
sis theories where it is supposed that infinite numbers do not beldig to



However, analogously to (5), the sé, of even natural numbers can be written
(see [26] for a detailed discussion) in the form

E={246 .. 0O-4 0-2 0O}, (8)

sincel] is even and the number of elements of the set of even natural numbers is
equal to%. Note that the next even numberlis+ 2 but it is not natural because
O+2> [0 (see (6)), itis extended natural. Thus, we can write down not only initial
(as it is done traditionally) but also the final part of (7) as follows

2, 4, 6, 8 10, 12 ... O0-4, 0O-2 O

1111 1 ¢ Di Di % 9)

1, 23 4 5 6 .. 5-2 5-1 5
concluding so (7) in a complete accordance with Postulate 3. O

Note that record (9) does not affirm that we have established the emeeto
correspondence amoiad) even numbers and a half of natural ones. We cannot do
this because, due to Postulate 1, we can execute only a finite number afioper
and the considered sets are infinite. The symholsih (9) indicate that there are
infinitely many numbers between 12 and- 4 in the first line and between 6 and

% —2in the second line. The record (9) affirms that for any even naturabeu
expressible in the chosen numeral system it is possible to indicate thepmr des
ing natural number in the lower row of (9) if it is also expressible in this numera
system.

We conclude the discussion upon Example 2.3 by the following remark. With
respect to our methodology, the mathematical results obtained by Cantoaimd7)
our results (9) do not contradict each oth€hey both are correct with respect to
mathematical languages used to express tHEms relativity is very important and
it has been emphasized in Postulate 2. The result (7) is correct in Gaatuwyuage
and the more powerful language developed in [24, 26] allows us to obtaira
precise result (9) that is correct in the new language.

The choice of the mathematical language depends on the practical problem
that is to be solved and on the accuracy required for such a solutionreSh#

(7) just means that Cantor’s mathematical tools do not allow one to distinguish two
observed mathematical objects, namely, the number of elements of tHe aeds

N from the point of view of the number of their elements. If one is satisfied with
this accuracy, this answer can be used (aad usedsince Cantor has published
his results in 1870’s) in practice.

However, if one needs a more precise result, it is necessary to intraduoes
powerful mathematical language (a numeral system in this case) allowingpone
express the required answer in a more accurate way. Obviously, it gossible
to mix languages. For instance, the question ‘what is the result of thetmpera
‘many’+47?’, where ‘many’ belongs to the numeral system of Firasinonsense.



3 Infinite sequences

In the traditional definition of the Turing machine the notion of infinity is used in
a strong form (see [32] and, e.g., [7]). First, the Turing machine hasfante
one-dimensional tape divided into cells and its outputs are computable (infinite)
sequences of numerals. Second, an infinite sequence of operatiohe exe-
cuted by the machine and it is supposed the availability of an infinite time for the
computation. Turing writes in pages 232 and 233 of [32]:

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of 0 and 1 (the others being called
symbols of the second kind), then the machine will be called a com-
puting machine. If the machine is supplied with a blank tape and set
in motion, starting from the correct initiah-configuration, the subse-
quence of the symbols printed by it which are of the first kind will be
called thesequence computed by the machifiee real number whose
expression as a binary decimal is obtained by prefacing this sequence
by a decimal point is called theumber computed by the machiife.]

Circular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind it will be calledircular. Otherwise it is
said to becircle-free [...]

Computable sequences and numbers.
A sequence is said to be computable if it can be computed by a circle-
free machine.

It is clear that the notion of the infinite sequence becomes very important for
our study of the Turing machine. Thus, before considering the notioredfuhing
machine from the point of view of the new methodology, let us explain how the
notion of the infinite sequence can be viewed from the new positions.

Traditionally, aninfinite sequencéa,},a, € A, n € N, is defined as a function
having the set of natural number$, as the domain and a s&fas the codomain. A
subsequencéb,} is defined as a sequen¢€a, } from which some of its elements
have been removed. In spite of the fact of the removal of the elements{fgin
the traditional approach does not allow one to register, in the case wheabth
tained subsequendd,} is infinite, the fact thafb,} has less elements than the
original infinite sequencéa,}.

From the point of view of the new methodology, an infinite sequence can be
considered in a dual way: either as an object of a mathematical study or as a
mathematical instrument developed by human beings to observe other objgcts a
processes (see Postulate 2). First, let us consider it as a mathematictlaoioje
show that the definition of infinite sequences should be done more preitise w



the new methodology. The following result (see [24, 26]) holds. Weodore
here its proof for the sake of completeness.

Theorem 3.1. The number of elements of any infinite sequence is less or equal
to .

Proof. The new numeral system allows us to express the number of elements
of the setN as[J. Thus, due to the sequence definition given above, any sequence
havingN as the domain has elements.

The notion of subsequence is introduced as a sequence from whichadome
its elements have been removed. Due to Postulate 3, this means that the resulting
subsequence will have less elements than the original sequence. Tehabtain
infinite sequences having the number of members less than grossone. O

It becomes appropriate now to define ttemplete sequen@s an infinite se-
guence containingl elements. For example, the sequence of natural numbers is
complete, the sequences of even and odd natural numbers are nottedmegkuse

they have% elements each (see [24, 26]). Thus, the new approach imposes a more
precise description of infinite sequences than the traditional one.

To define a sequend@, } in the new language, it is not sufficient just to give
a formula fora,,, we should determine (as it happens for sequences having a finite
number of elements) its number of elements and/or the first and the last elements
of the sequence. If the number of the first element is equal to one, weseathe
record{a, : k} wherea, is, as usual, the general element of the sequencé &nd
the number (that can be finite or infinite) of members of the sequence.

In connection with this definition the following question arises inevitably. Sup-
pose that we have two sequences, for examfie; ki } and{c, : ko}, where both
k; andk, are infinite numbers such thiet < O andk, < O butk; +k, > 0. Can
we create a new sequendel, : k}, composed from both of them, for instance, as
it is shown below

b1, by, ... bx,—2, bx,—1, by, C1, C2, ... C,—2, Ck,—1, Cky

and which will be the value of the number of its eleméiits

The answer to this question is ‘no’ because due to Theorem 3.1, a sequen
cannot have more than elements. Thus, the longest sequencdis: O}. After
arriving to the last elemerd,,, the sequencéd, : O} will stop. However, the
second sequence can then be started.

Example3.1 Suppose thak; = % andky, = %. Then starting from the ele-
mentb; we can arrive at maximum to the elemel%i being the elemerd; in the

sequencéd, : O} which we construct. Therefork= [ and

b1, ... b2y, c1, ...Can, Cao ... Cag .
1, X 1 Ly V34 4

U elements 2 elements
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The remaining memberts%uﬂ,... Can of the sequencéch : %} will form the

second sequencégn : |} havingl = % — % = % elements. Thus, we have

formed two sequences, the first of them is complete and the second is not2

We have already seen the influence of Postulates 2 and 3 on the notion of the
infinite sequence. Let us study now what Postulate 1 gives us in this toRtest,
since the object of the study — the sequence — has an infinite number of nsember
it follows from Postulate 1 that we cannot observe all of them. We canrebse
only a finite number of its elements, precisely, those members of the sequence f
which there exist the corresponding numerals in the chosen numerahsyste

Example3.2 Let us consider the numeral systef,of Pirala able to express only
numbers 1 and 2. If we add t8 the new numerall, we obtain a new numeral
system (we call itP). Let us consider now a sequence of natural numbers]}.

It goes from 1 td] (note that both numbers, 1 ah can be expressed by numerals
from ). However, the numeral systefis very weak and it allows us to observe
only ten numbers from the sequer{ge [} represented by the following numerals

O O 0o 0O 0
1,2, 5-25-lo.5+L5+2 ... 0-20-10. (10
finite . infinite
infinite

The first two numerals in (10) represent finite numbers, the remaining eight
merals express infinite numbers, and dots represent members of thecegfe
natural numbers that are not expressibl@iand, therefore, cannot be observed if
one uses only this numeral system for this purpose. O

Note that Pirah are not able to see finite numbers larger than 2 using their
weak numeral system but these numbers are visible if one uses a mordysowe
numeral system. In particular, this means that when we speak about si¢sq(fi
infinite) it is necessary to take care about tools used to describe a setleinto
introduce a set, it is necessary to have a language (e.g., a numeral s3ibenmy
us to describe both the form of its elements in a way and the number of its elements.
For instance, the sétfrom (4) cannot be defined using the mathematical language
of Pirafa.

Analogously, the words ‘the set of all finite numbers’ do not define dreat
our point of view. It is always necessary to specify which instrumergsiaed to
describe (and to observe) the required set and, as a consecoespaak about ‘the
set of all finite numbers expressible in a fixed numeral system’. For instéoic
Pirat® ‘the set of all finite numbers’ is the sét,2} and for another Amazonian
tribe — Munduruk® — ‘the set of all finite numbers’ is the séatfrom (4). As it
happens in Physics, the instrument used for an observation boundsstibifity

SMundurukii (see [20]) fail in exact arithmetic with numbers larger than 5 but diestalcompare
and add large approximate numbers that are far beyond their namige. iBarticularly, they use the
words ‘some, not many’ and ‘many, really many’ to distinguish two typelsirge numbers (in this
connection think about Cantorf$g and;).
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of the observation and determines its accuracy. It is not possible to sayweh
shall see during our observation if we have not clarified which instrunveititse
used to execute the observation.

Let us consider now infinite sequences as one of the instruments usedhiy ma
ematicians to study the world around us and other mathematical objects and pro-
cesses. The first immediate consequence of Theorem 3.1 is thaequogntial
process can have at maximurrelements. This means that a process of sequential
observations of any object cannot contain more thastep$. Due to Postulate 1,
we are not able to execute any infinite process physically but we assuragishe
tence of such a process. Moreover, again due to Postulate 1, only anfiniteer
of observations of elements of the considered infinite sequence caetge by
a human who is limited by the numeral system used for observation. Howleger,
researcher can choose how to organize the required sequencseofatibns and
which numeral system to use for it, defining so which elements of the objésttene
can observe. This situation is exactly the same as in natural sciencee Sisfid-
ing to study a physical object, a scientist chooses an instrument and ite@gcu
for the study.

Example3.3. Let us consider the sel, of extended natural numbers from (6) as
an object of our observation. Suppose that we want to organize tbegzof the
sequential counting of its elements. Then, due to Theorem 3.1, startingtieom
number 1 this process can arrive at maximuniltolf we consider the complete
counting sequencgn : O}, then we obtain

1,2,3,4, ... 0-20-1,0,0:1,0:2,0-3,...
(A AN AN AN AN

(11)
[l steps

In this formula, a more powerful (with respectfbfrom (10)) numeral system,
P, is used. It allows us to see also numbers three and four through thealsmer

3 and 4 and, of course, such numbersias 4, %, % — 3, and other numbers that
can be viewed through numerals obtained as combinations of symbols, an&
‘/"and numerals 1, 2, 3, 4, and sirpilarly to (10) (we assume that finite numbers
larger than 4 are not expressibled). We omit them in the record (11) due to a
straightforward similarity with (10).

Analogously, if we start the process of the sequential counting frome3, th

4t is worthy to notice a deep relation of this observation to the Axiom of Choirce Theo-
rem 3.1 states that any sequence can have at maximalements, so this fact holds for the process
of a sequential choice, as well. As a consequence, it is not possibledsekequentially more than
O elements from a set. This observation also emphasizes the fact thatréflelpmputational
paradigm is significantly different with respect to the sequential oneusegeparallel processes can
choosep- 0 elements from a set.
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process arrives at maximum fo+ 2:

1,2,3,4, ... 0-2,0-1,0,0:1,0:2,0-3,...
(AN AN 0 N A N N

[l steps

The corresponding complete sequence used in this cgeeH2 : [}. We can also
change the length of the step in the counting sequence and considestéonde,
the complete sequeng@n—1:}:

1,2,3,4, ... 0-1,0,0+1,0+2, ... 20-3,20-2,20-1,20,20-1, ...
(N U N A o N o A N 0 — o

0 ;rteps

If we use again the numeral syste?r,l then among finite numbers it allows us to
see only numbers 1 and 3 because already the next number in the ssduesc
not expressible irP. The last two elements of the sequence ate-23 and 21 -1
and? allows us to observe them. a

The introduced definition of a sequence allows us to work not only with the
first but also with the last element of any sequence (if they are expiesgsithe
chosen numeral system) independently whether it has a finite or an infinitieenu
of elements. Let us use this new definition together with Postulate 2 for studying
infinite sets of numerals, in particular, for calculating the number of pointseat th
interval [0,1) (see [24, 26]). To do this we need a definition of the term ‘point’
and mathematical tools to indicate a point. Since this concept is one of the most
fundamental, it is very difficult to find an adequate definition. If we ac¢aptis
usually done in modern Mathematics) thad@nt Abelonging to the interveD, 1)
is determined by a numera) x € S, calledcoordinate of the point AvhereS is
a set of numerals, then we can indicate the paibl its coordinatex and we are
able to execute the required calculations.

It is worthwhile to emphasize that we have not postulatedximationgs to the
set,R, of real numbers as it is usually done, because we can expressnaiesd
only by numerals and different choices of numeral systems lead to va#tsi®f
numerals. This situation is a direct consequence of Postulate 2 and is tigpical
natural sciences where it is well known that instruments influence thésesu
observations. Remind again the work with a microscope: we decide the fevel o
the precision we need and obtain a result which is dependent on thendeusk
of accuracy. If we need a more precise or a more rough answer,angelthe lens
of our microscope.

We should decide now which numerals we shall use to express coordafiates
the points. After this choice we can calculate the number of numerals epeess
in this system and, as a result, we obtain the number of points at the in@r/al
Different variants (see [24, 26]) can be chosen depending on #uispn level we
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want to obtain. For instance, we can choose a positional numeral systera w
finite radixb that allows us to work with numerals

(Oajas...a g_pag), aic{0l..b-2b-1}, 1<i<O (12)

Then, the number of numerals (12) gives us the number of points within the in-
terval [0,1) expressed by these numerals. Note that a number using the positional
numeral system (12) cannot have more than grossone digits (contrasiystalis-
cussed in Example 3.3) because a numeral haying digits would not be ob-
servable in a sequence. In this case such a record becomes useksgsentisl
computations because it does not allow one to identify numbers girde nu-
merals remain non observed.

Theorem 3.2. If coordinates of points x [0,1) are expressed by numerals (12),
then the number of the points x oVérl) is equal to b.

Proof. In the numerals (12) there is a sequence of digitsa »...a_(;_1)a o,
used to express the fractional part of the number. Due to the definitiore afeth
guence and Theorem 3.1, any infinite sequence can have at maxinel@ments.
As a result, there i8] positions on the right of the dot that can be filled in by one
of theb digits from the alphabef0,1,...,b—1}. Thus, we havé” combinations
to express the fractional part of the number. Hence, the positional alisystem
using the numerals of the form (12) can exprigésumbers. O

Corollary 3.1. The number of numerals
(a1@@g...85 285 18)p, & €10,1,...b-2,b—-1}, 1<i<0O, (13)

expressing integer numbers in the positional system with a finite radix b in the
alphabet{0,1,...b—2,b—1} is equal to b.

Proof. The proof is a straightforward consequence of Theorem 3.2 and is so
omitted. ]

Corollary 3.2. If coordinates of points x (0,1) are expressed by numerals (12),
then the number of the points x o€ 1) is equal to b — 1.

Proof. The proof follows immediately from Theorem 3.2. O

Note that Corollary 3.2 shows that it becomes possible now to observe and to
register the difference of the number of elements of two infinite sets (the @hterv
[0,1) and the interval(0, 1), respectively) even when only one element (the point
0) has been excluded from the first set in order to obtain the second one

4 The Turing machines viewed through the lens
of the new methodology

In the previous section, we studied static infinite mathematical objects — sets — by
using infinite sequences as tools of the research. Let us establish redwaviwe
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say with respect to physical and mathematical processes viewed as albjebts
servation having in mind the triad ‘object, instrument, and researcher’ esizgia
by Postulate 2. Our main attention will be focused on processes related torthe T
ing machines and various manifestations of infinity taking place during the work
of the machines and during mathematical descriptions of the machines pedforme
by researchers.

Remind that traditionally, a Turing machine (see, e.g., [11, 32]) can beedefin
as a 7-tuple _

M =(Q,T,b,Z,qo,F,3), (14)

whereQ is a finite and not empty set of statésis a finite set of symboldy € I is

a symbol called blankz C {I" — b} is the set of input/output symbolgg € Q is the
initial state;F C Qis the set of final state$;: {Q—F} xI — QxT x {RL,N}is

a partial function called the transition function, whéreeans leftR means right,
andN means no move.

Specifically, the machine is supplied with: (daperunning through it which is
divided into cells each capable of containing a symbell", whererl is called the
tape alphabet, andle I is the only symbol allowed to occur on the tape infinitely
often; (ii) anheadthat can read and write symbols on the tape and move the tape
left and right one and only one cell at a time. The behavior of the machine is
specified by itdransition functiond and consists of a sequence of computational
steps; in each step the machine reads the symbol under the head and thgplies
transition functionthat, given the current state of the machine and the symbol it
is reading on the tape, specifies (if it is defined for these inputs): (i) thebsly
y € ' to write on the cell of the tape under the head; (ii) the move of the lafar (
one cell left,R for one cell right,N for no move); (iii) the next statg € Q of the
machine.

Following Turing (see [32]), we consider machines that have finite inpdt a
output alphabets, inputs of a finite length, a finite number of internal statesbu
work an infinite time and are able to produce outputs of an infinite length. Here-
inafter such a machine is called an imaginary Turing machifi, In order to
study the limitations of practical automatic computations, we also consider ma-
chines, 77, that can be constructed physically. They are identical tobut are
able to work only a finite time and can produce only finite outputs. We study both
kinds of machines:

- from the point of view of their outputs called by Turing ‘computable num-
bers’ or ‘computable sequences’;

- from the point of view of algorithms that can be executed by a Turing ma-
chine.
4.1 Computable sequences
Let us consider first a physical machi@é. We suppose that its output is written

on the tape using an alphaB®tontaining symbolq0,1,...b—2,b— 1} where
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b is a finite number (Turing in [32] usds= 10). Thus, the output consists of a
sequence of digits that can be viewed as a humber in a positional systeith
the radixb.

It follows from Postulate 1 (reflecting a fundamental law existing in the real
world) thatZ? should stop after a finite number of iterations. The magnitude of
this value depends on the physical construction of the machine, the wagttbe n
‘iteration’ has been defined, etc., but in any case this number is finite. Ttleimea
stops in two cases: (i) it has finished execution of its program and sigpshés
not finished execution of the program and stops just because ofkalgeaf some
of its components. In both cases the output sequence

(a1a2a3...ak,1,ak)b, q {O, 1,...b—2,b—1}, 1<i<Kk, (15)

of 7% has a finite lengtk. Suppose that the maximal length of the output sequence
that can be computed by? is equal to a finite numbek,». Then it follows

k < Ky». This means that there exist problems that cannot be solvedi’bif

the length of the output necessary to write down the solution outnurkberslf

a machineT? has stopped to write the output after it has prinkege symbols
then it is not clear whether the obtained output is a solution or just a resthie of
depletion of its computational resources. In particular, with respect toatiad
problem it follows that all algorithms stop @h”.

Let us call a person working with the machine and reading the output as a
researcher(or ausen. Then, in order to be able to read and to understand the
output, the researcher should have his/her own positional numerafrsysigith
an alphabef0,1,...u—2,u— 1} whereu > b from (15). Otherwise, the output
cannot be understood and decoded by the user. Moreover, hbfslid be able to
read and to interpret output sequences of symbols with the ld¢agth K,». If
the situatiorKy; < K- holds, then this means that the user is not able to interpret
the obtained result. Thus, the numt&r = min{K¢,, K-} defines the length of
the outputs that can be computed and then observed and interpreted [sethe u
As a consequence, algorithms producing outputs having morekhaoositions
become less interesting from the practical point of view.

It is possible to make analogous considerations with respect to alphaldets an
numeral systems used for input sequences restricting so again the nofhaber
gorithms useful from the practical point of view. Finally, the algorithm $tidne
written down someway. This operation is executed by using an alphabed and
numeral system used for writing down the algorithm introduces limitations to the
algorithms that can be proposed for executing them on a machine. Thesid-co
erations are important because on the one hand, they establish limits ofgdractic
automatic computations and on the other hand, they emphasize the role of humera
systems in codifying algorithms and interpreting results of computations.

Let us turn now to imaginary Turing machings. Such a machine can pro-
duce outputs (15) with an infinite number of symbkildn order to beobservable
in a sequencgean output should have < [0 (remind that the positional numeral
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systemB includes numerals beingsequence®f digits, in order to be a numeral,
the output should have< [J). Outputs observable in a sequence play an important
role in the further consideration.

Theorem 4.1.Let M be the number of all possible complete computable sequences
that can be produced by imaginary Turing machines using outputs gibymu-
merals in the positional numeral syste®n Then it follows M< b”.

Proof. This result follows from the definitions of the complete sequence and
the positional numeral system considered together with Theorem 3.2 antt Co
lary 3.1. a

Corollary 4.1. Let us consider an imaginary Turing machifé working with the
alphabet{0, 1,2} and computing the following complete computable sequence

0,1,2,0,1,2,0,1,2, ... 0,1,2,0,1,2. (16)

O positions

Then imaginary Turing machines working with the output alphdlet} cannot
produce observable in a sequence outputs that codify and compute (16)

Proof. Since the numeral 2 does not belong to the alph&®gt} it should be
coded by more than one symbol. One of the coding using the minimal number of
symbols in the alphab€t0,1} necessary to code numbersl(® is {00,01,10}.

Then the output corresponding to (16) and computed in this codificatiaridshe

00,01, 10,00,01,10,00,01, 10, ... 00,01, 10,00,01, 10. (17)

Since the output (16) contains grossone positions, the output (17) wontdin
20 positions. However, in order to be observable in a sequence, (1@)dshot
have more than grossone positions. This fact completes the proof. O

At first glance results established by Theorem 4.1 and Corollary 4.1dsoun
quite unusual for a person who studied the behavior of Turing machimigginite
computable sequences using traditional mathematical tools. However, tmey do
contradict each other. Theorem 4.1 and Corollary 4.1 do not speak albdur-
ing machines. They consider only those machines that produce completg outp
sequences. If the object of observation (in this case — the output) ceomtaire
than grossone elements, it cannot be observed and, therefore, istéssting
from the point of view of practical computations.

It is important to emphasize that these results are in line with the situation that
we have in the real world with a finite number of positions in the output se@senc
For instance, suppose that a physical Turing macHiffiehas 6 positions at its
output, the numeral systefi®, 1,2}, and the sequenceD2,0,1,2 is computed.
Then there does not exist a Turing machine working with the output alpkhélig
able to calculate the sequencd @, 0, 1,2 using the output having 6 positions.

In order to understand Theorem 4.1 and Corollary 4.1 better, let ustettine
Turing machine as it has been described in [32] and comment upon d¢omsec
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between the traditional results and the new ones. First, it is necessary tiormen
that results of Turing and results of Theorems 3.2, 4.1, and Corollaryede tieen
formulated using different mathematical languages. The one used bygTham
been developed by Cantor and did not allow Turing to distinguish within camtinu
various sets having different number of elements. The new numerahsysiag
grossone allows us to do this.

Cantor has proved, by using his famous diagonal argument, that the nambe
elements of the sé¥ is less than the number of real numbers at the intgfval)
without calculating the latterTo do this, he expressed real numbers in a positional
numeral system. We have shown that this number will be different depgiodin
the radixb used in the positional system to express real numbers. However, all
of the obtained numbers?, are larger than the number of elements of the set of
natural numberg,].

Thus, results presented in Theorem 4.1 and Corollary 4.1 should bielemats
just as a more precise analysis of the situation related to the existence ofriffe
infinities discovered by Cantor. The usage of a more powerful numgsats
gives a possibility to distinguish and to describe more mathematical objects within
the continuum, in the same way as the usage of a stronger lens in a microscope
gives a possibility to distinguish more objects within an object that seems to be
indivisible when viewed by a weaker lens.

As a consequence, the mathematical results obtained by Turing and teese pr
sented in Theorems 3.2, 4.1, and Corollary 4.1 do not contradict eaah otiey
are correct with respect to mathematical languages used to expressaheé cor-
respond to different accuracies of the observati@oth mathematical languages
observe and describe the same object — computable sequences — buffevitntd
accuracies. This fact is one of the manifestations of the relativity of mathexhatic
results formulated by using different mathematical languages.

Another manifestation of this relativity is obviously related to the concept of
the universal Turing machine and to the process of establishing equieake-
tween machines. Notice that Theorem 4.1 and Corollary 4.1 emphasize-depen
dence of the outputs of Turing machines on a finite alph&@gt,...b—2,b— 1}
used for writing down computable sequences. Therefore, when arcbse de-
scribes a Turing machine, there exists the dependence of the descriptibe o
finite numeral system used by the researcher. First, the description is linyited b
alphabets{0,1,...b—2,b— 1} known to the humanity at the present situation.
Second, by the maximal lengtK;, of the sequence of symbols written in the
fixed alphabet that the researcher is able to read, to write, and to tartkrs

Itis not possible to describe a Turing machine (the object of the study) wtitho
the usage of a numeral system (the instrument of the study). Our possilidities
observe and to describe Turing machines and to count their number are loypited
the numeral systems known to the humanity at the moment. Again, as it happens
in natural sciences, the tools used in the study limit the researcher. Asilg res
it becomes not possible to speak about an absolute numiadirpadssible Turing
machinesZ’. It is always necessary to speak about the number of all possible
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Turing machines ! expressible in a fixed numeral system (or in a group of them).
The same limitations play an important role in the process of simulating one
machineZ !/ by another. In order to be able to execute this operation it is necessary
to calculate the respective description number (see [32]) and this will §silpe
only for description numbers expressible in the finite alphabets known authe
rent moment to the researcher and the length of these numbers will be limited by
the numbekK¢;. A machineZ ! having the description number not satisfying these
constraints cannot be simulated because the instrument — a numeral sygem —
quired for such re-writing is not powerful enough (as usual, devil théndetails).
Let us consider now from positions of the new numeral system includivggsgr
one the situation related to the enumerability of machifiéstudied by Turing.

Theorem 4.2. The maximal number of complete computable sequences produced
by imaginary Turing machines that can be enumerated in a sequencasbteq].

Proof. This result follows from the definition of a complete sequence. O

Let us consider the results of Theorems 4.1 and 4.2 together. Theorges1
an upper bound for the number of complete computable sequences thatcam-
puted using a fixed radii. However, we do not know how many bf sequences
can be results of computations of a Turing machine. Turing establishes divat th
number is enumerable. In order to obtain this result, he used the mathematical lan
guage developed by Cantor and this language did not allow him to distingish s
having different infinite numbers of elements, e.g., in the traditional langtieage
he used the sets of even, natural, and integer numbers all are enumerable

The introduction of grossone gives a possibility to execute a more precise

analysis and to determine that these sets have different numbers of elze%ets
and 27+ 1, respectively. If the number of complete computable sequektes,s
larger than grossone, then there can be different sequential eriinggnacesses
that enumerate complete computable sequences in different ways. irhédte
states that, in any case, each of these enumerating sequential proeesssson-
tain more than grossone members.

We conclude this subsection by noticing that the results presented in it dstablis
limitations for the number of computable sequences only from the point of iiew o
the output sequences and their alphabets. An analogous analysisa@mehesing
limitations imposed by the number of states of Turing machines, their inputs, and
the respective finite alphabets, as well.

4.2 Processes of automatic computations and their descriphs

First, we take notice that if we want to observe a process of computaiipes-
formed by a Turing machinef(* or 77) while it executes an algorithm, then we
do it by executing observations of the machine in a sequence of momenést,In f
it is not possible to organize@ntinuousobservation of the machine. Any instru-
ment used for an observation has its accuracy and there will alwaysnigiraal
period of time related to this instrument allowing one to distinguish two different
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moments of time and, as a consequence, to observe (and to register) th®fktate
the object in these two moments. In the period of time passing between these two
moments the object remains unobservable.

Hence, the observations are made in a sequence (that is an instrumeat of th
research) and the process of computatiénis the object of the study. In the
simplest case we obsergeonly two times: at the starting point when we supply
the input data and at the ending point of the process of computation whesade
the results. In alternative, observations are made to look at intermediates @s
even at particular moves of the parts of the machine (e.qg., reading a synnitiolg w
a symbol, etc.).

On the one hand, since our observations are made in a sequence, isfollow
from Theorem 3.1 that the process of observations can have at maximele:
ments. This means that inside a computational process it is possible to fix more
than grossone steps (defined someway) but it is not possible to coombtieeby
one in a sequence containing more than grossone elements. For instanteean
interval[0, 1), numerals (12) can be used to identify moments of time but not more
than grossone of them can be observed in a sequence.

On the other hand, it is important to stress that any process itself, coedider
independently on the researcher, is not subdivided in iterations, int&taad-
sults, moments of observations, etc. This is a direct consequence ofao&tu
the consequence that is also in line with the Sapir—Whorf thesis, particuiétthy,
results of Whorf (see [4]) related to his analysis of the differencesdmtWestern
languages and the Hopi language (a Uto-Aztecan language spokentdghpeo-
ple of northeastern Arizona, USA). Analyzing the relationship betweeayuiage,
thought, and reality in these two types of languages (see also recenineipizl
data and the relative discussion in [10, 16]) Whorf raises a barrierdggtthem.

Western languages tend to analyze reality as objects in space. Thesist
languages, including many Native American languages, that are oriematit
processes. To monolingual speakers of such languages, the ctiosswf West-
ern languages related to objects and separate events may make little sense. On
the other hand, due to Whorf, the relativistic physics — a subject beiryghasd
for understanding for a Western language speaker — a Hopi speaked find
fundamentally easier to grasp. Whorf writes:

We dissect nature along lines laid down by our native language. The
categories and types that we isolate from the world of phenomena we
do not find there because they stare every observer in the face; on the
contrary, the world is presented in a kaleidoscope flux of impressions
which has to be organized by our minds — and this means largely by
the linguistic systems of our minds. We cut nature up, organize it into
concepts, and ascribe significances as we do, largely because we are
parties to an agreement to organize it in this way — an agreement that
holds throughout our speech community and is codified in the patterns
of our language. . ]
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The Sapir—Whorf thesis is interesting for us because, in a complete accerd
with our methodological positions, it separates the object of observatiomsits
representation by one or another language. In particular, with retspagtomatic
computations we emphasize that a machine (a physical or an imaginary ene) ex
ecuting a computation does not distinguish an importance of one moment during
the execution of an action with respect to another and does not count@egtain
milestones inside a process (computational steps defined someway, opel&tio
erations, etc.) are introduced from outside of the studied process bgsbarcher
because these specific points are interesting for the observer for sasmns and
can be expressed in his language. The notion ‘sequence’ is a tootenviey hu-
man beings, it is a part of the modern mathematical languages (developed mainly
in the frame of Western languages dissecting processes in separas),atdoes
not take part of the object of the study.

When we speak about a computer executing iterations of a certain algorithm,
we subdivide the process of computations on iterationswadount them. As
a result, it is necessary to speak about the computational power of casfinte
particular, of Turing machines) coupled with our possibilities to use them, to fol-
low computational processes, to be able to provide input data, and toe=atsr
of computations. The understanding of the fact that computations exdoytad
computer and our observations and descriptions of these computatiatiffexent
processes lead to the necessity to rethink such notioitsrason andalgorithm

At the moment when we decide what is an iteration of our algorithm, we are
choosing the instrument of our investigation and the further results willrdepe
the chosen accuracy (or granularity) of observations. For instavite respect
to Turing machines an iteration can be a single operation of the machine such as
reading a symbol from the tape, or moving the tape, etc. Another possiepdx
of such a choice (that is usually used in the Computer Science literature) is to
observe the machine when its configuration has been changed. All theise<
produce different sequences of observations that form an algoifittue add to
them an input and an output being the symbols present on the tapeatfthe first
and at the last observation, respectively.

In order to conclude our discussion on the notion of the algorithm it is sacgs
to remind that any sequence cannot contain more then grossone stepsaftér
we have chosen what is the iteration of our algorithm, the maximal number ef thes
iterations cannot outnumbér. As usual, the choice of the numeral system used
to describe iterations and their results determines what will be observaliteefo
researcher. Similarly, the choice of the numeral system (and, in geoéitle
mathematical language) used to describe the algorithm will limit the type of the
algorithms that can be described.

The notion of the result of a computation @i has the same sense as it was
for 7%. If T has not stopped aftét observations, then this means that we have
finished our possibilities of observations and we cannot say whetheyigots
present at the tape during this observation are effectively the solutioe fardip-
lem. By a complete analogy with?, computations finish either because the ma-
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chineT ! stops or because we are not any more able to observe computations (since
7' is an imaginary one, the possibility of its breakage is not taken into consider-
ation). In particular, this means that with respect to the halting problem al algo
rithms stop but this does not mean that the obtained result is a solution.

The analysis given above shows us that it is not possible to speak tigout
computational power of a Turing machine without taking into consideratioma nu
ber of limitations introduced by the languages. Among them there are at least th
following: the language used to describe the algorithm and iterations it ¢®nsis
of; the language used to describe the process of computations; and ghaden
used to describe the Turing machine itself (its input and output alphabetstés,s
etc.). Notice that this situation with a description of automatic computations is just
a particular case of the situation emphasized by Postulate 2: when we study an
object it is necessary to be aware of the accuracy and the capabilitytrfimments
used for the study.

The obtained picture of the computability is significantly richer and complex
with respect to traditional views (see [5, 6, 7, 13, 14, 15, 17, 21, 32 classic
Turing theory contains a number of theoretical results showing the sameueomp
tational power of different variants of Turing machines and establishiagttie
differences among machineg! and 7, result only in the different number of
steps that will be necessary to each machine for computing the requireat.outp
Some of the limitations on this point of view have been already discussed in Sec-
tion 4.1. In this section, we have emphasized a number of additional limitations.
Again, as it was in Section 4.1, the difference with the traditional results is not
contradiction. These differences arise because the mathematical langexbfor
these traditional studies did not allow people to see the differences amnogsva
models of computations.

5 Usage of traditional and new languages for comparing
deterministic and non-deterministic Turing machines

In order to illustrate the new way of reasoning, let us discuss the tradifodalew
results regarding the computational power of deterministic and non-detetiminis
Turing machines. For simplicity, we do not take into consideration limitations
described in Section 4.1. Let us first remind the traditional point of view.
A non-deterministic Turing machine (see [11]) can be defined (cf. @ggn
7-tuple B
MN = <Q,F,b,Z,qo,F, 6N>7 (18)

whereQ is a finite and not empty set of statésjs a finite set of symboldy € '
is a symbol called blankZ C {I" — b} is the set of input/output symbolg € Q
is the initial stateF C Q is the set of final state$y : {Q—F} x I — P(Qx T x
{R,L,N}) is a partial function called the transition function, whermeans leftR
means right, antl means no move.
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Figure 1: The computational tree of a non-deterministic Turing maciigéav-
ing the non-deterministic degrele= 3

As for a deterministic Turing machine (see (14)), the behavidyfis speci-
fied by its transition functio®y and consists of a sequence of computational steps.
In each step, given the current state of the machine and the symbol itlingean
the tape, the transition functidy returns (if it is defined for these inputs) a set of
triplets each of which specifies: (i) a symbok I to write on the cell of the tape
under the head; (i) the move of the tapefér one cell left,R for one cell right,

N for no move); (iii) the next statg € Q of the Machine. Thus, in each computa-
tional step, the machine caron-deterministicallyexecute different computations,
one for each triple returned by the transition function.

An important characteristic of a non-deterministic Turing machine (see, 2., [
is its non-deterministic degree

d=v(My)=__max_[on(V)|
defined as the maximal number of different configurations reachable iimgbke s
computational step starting from a given configuration. The behavioreofrié-
chine can be then represented as a tree whose branches are the tGongtltat
the machine can execute starting from the initial configuration representis b
node 0 and nodes of the tree at the levels 1, 2, etc. represent sebsegufigura-
tions of the machine.
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Let us consider an example shown in Fig. 1 where a non-deterministic machine
My having the non-deterministic degrde- 3 is presented. The depth of the com-
putational tree is equal ta In this example, it is supposed that the computational
tree of My is complete (i.e., each node has exadilghildren). Then, obviously,
the computational tree dffy hasd® = 3¢ leaf nodes.

An important result for the classic theory on Turing machines (see e.g., [2]
is that for any non-deterministic Turing machifidy there exists an equivalent
deterministic Turing machin@/y. Moreover, if the depth of the computational tree
generated byMy is equal tok, then for simulatingMy, the deterministic machine
Mp will execute at most

% jd) = O(kd)

computational steps.

Intuitively, for simulatingMy, the deterministic Turing machin®&p executes
a breadth-first visit of the computational tree%fy. If we consider the example
from Fig. 1 withk = 3, then the computational tree 81y hasd* = 27 leaf nodes
anddX = 27 computational paths consistinglof 3 branches (i.e., computational
steps). Then, the tree contaitis 1 = 9 computational paths consistinglof 1 = 2
branches andk 2 = 3 computational paths consistinglof- 2 = 1 branches. Thus,
for simulating all the possible computations @y, i.e., for complete visiting the
computational tree of\fy and considering all the possible computational paths of
j computational steps for each<Qj < k, the deterministic Turing machin®fp
will executeKy,, steps. In particular, ifVy reaches a final configuration (e.g., it
accepts a string) ik > 0 steps and if\p could consider only théX computational
paths which consist df computational steps, it will executes at mkdf steps for
reaching this configuration.

These results show an exponential growth of the time required for reachin
a final configuration by the deterministic Turing machihg with respect to the
time required by the non-deterministic Turing machivig, assuming that the time
required for both machines for a single step is the same. However, in tisécclas
theory on Turing machines it is not known if there is a more efficient simulation
of My. In other words, it is an important and open problem of Computer Science
theory to demonstrate that it is not possible to simulate a non-deterministic Turing
machine by a deterministic Turing machine with a sub-exponential numbers of
steps.

Let us now return to the new mathematical language. Since the main interest
to machines (18) is related to their theoretical properties, hereinafter vegta
a comparison of imaginary deterministic Turing machin&d, with imaginary
machinesMy from (18) denoted ag /’C. Physical machineg? and 77X are
considered at the end of this section.

Due to the analysis made in Section 4.2, we should choose the accurasy (gra
ularity) of processes of observation of both machirg$,and 7/?C. In order to
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be close as much as possible to the traditional results, we consider an tigplica
of the transition function of the machine as our observation granularity. \&fth r
spect to7 X this means that the nodes of the computational tree are observed.
With respect toZ  we consider sequences of such nodes. For both cases the initial
configuration is not observed, i.e., we start our observations fronh lewé the
computational tree.

This choice of the observation granularity is particularly attractive due to its
accordance with the traditional definitions of Turing machines (see defiaitict)
and (18)). A more fine granularity of observations allowing us to follow imaér
operations of the machines can be also chosen but is not so convemdatt, |
such an accuracy would mix internal operations of the machines with opesatio
the algorithm that is executed. A coarser granularity could be considesedell.
For instance, we could define as a computational step two consecutliaasipps
of the transition function of the machine. However, in this case we do netrobs
all the nodes of the computational tree. As a consequence, we could miss so
results of the computation as the machine could reach a final configurafmne be
completing an observed computational step and we are not able to obdsue w
and on which configuration the machine stopped. Then, fixed the chossrofe
granularity the following result holds immediately.

Theorem 5.1. (i) With the chosen level of granularity no more thancomputa-
tional steps of the machin&’ can be observed in a sequence. (i) In order to give
possibility to observe at least one computational path of the computati@ebfr
71 from the level 1 to the level k, the depthKL, of the computational tree
cannot be larger than grossone, i.e.<k.

Proof. Both results follow from the analysis made in Section 4.2 and Theo-
rem 3.1. O

Corollary 5.1. Suppose that d is the non-deterministic degre@ bt and S is
the number of leaf nodes of the computational tree with a depth k refilegd¢ine
possible results of the computationdf?C. Then it is not possible to observe all
S possible results of the computation®fX if the computational tree of /X is
complete and ti>0.

Proof. For the number of leaf nodes of the tr&of a generic non-deterministic
Turing machineZ X the estimateS < d¥ holds. In particularS= d if the com-
putational tree is complete, that is our case. On the other hand, it follows fro
Theorem 3.1 that any sequence of observations cannot have morgrtdssone
elements. As a consequence, the same limitation holds for the sequenceref obs
vations of the leaf nodes of the computational tree. This means that we tare no
able to observe all the possible results of the computation of our non-detgimin
Turing machineZ I if d > 0. o

Corollary 5.2. Any sequence of observations of the nodes of the computational
tree of a non-deterministic Turing machifie’’* cannot observe all the nodes of
the tree if the number of nodes N is such thatN.
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Proof. The corollary follows from Theorems 3.1, 5.1, and Corollary 5.1

These results lead to the following theorem again under the same assumption

about the chosen level of granularity of observations, i.e., the nodas cbmpu-
tational tree of7 /X representing configurations of the machine are observed.

Theorem 5.2. Given a non-deterministic Turing machif@ with a depth, k, of
the computational tree and with a non-deterministic degree d such that
d(kd“** — (k+1)dk+1)
(d—1)2

<0, (19)

then there exists an equivalent deterministic Turing macHihevhich is able to
simulateZ ' and can be observed.

Proof. For simulating'T”‘C, the deterministic machin@’ executes a breadth-
first visit of the computational tree 6f /. In this computational tree, whose depth
is 1< k<, each node has, by definition, a number of childrevhere 0< c < d.
Let us suppose that the tree is complete, i.e., each node-haschildren. In this
case the tree had¥ leaf nodes andl! computational paths of lengthfor each
1< j < k. Thus, for simulating all the possible computationszgf\, i.e., for a
complete visiting the computational tree 7 and considering all the possible
computational paths consisting pfcomputational steps for each<lj < k, the
deterministic maching ! will execute

k

Kyr=Y jd! (20)
"

steps (note that if the computational treeZof\ is not completeZ! will execute
less tharK.;:). Due to Theorems 3.1 and 5.1, and Corollary 5.2, it follows that
in order to prove the theorem it is sufficient to show that under conditibitiseo
theorem it follows that

Ky < O. (21)
To do this let us use the well known formula
ko dktl_q
d = , (22)
3=

and derive both parts of (22) with respecttoAs the result we obtain

kK k1 _ k
ZjdH:kol (k+d“+1 (23)
P d—1)?2

Notice now that by using (20) it becomes possible to represent the nipbhers

k k
KTI_JZ jd’ dJZ jd!
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This representation together with (23) allow us to write

d(kd“t1 — (k+1)d* + 1)
(d-1)

Ky = (24)
Due to assumption (19), it follows that (21) holds. This fact concludeprbef of
the theorem. O

Corollary 5.3. Suppose that the length of the input sequence of symbols of a non-
deterministic Turing maching /"’ is equal to a number n and@’*’ has a complete
computational tree with the depth k such that k', i.e., polynomially depends on

the length n. Then, if the valuesrg and | satisfy the following condition

d(n'd" L — (n' + 1)d" +1)
(d-1)2

<0, (25)

then: (i) there exists a deterministic Turing machiié that can be observed and
able to simulateZ /?(; (ii) the number, K, of computational steps required to a
deterministic Turing maching’ to simulateZ /X for reaching a final configura-
tion exponentially depends on n.

Proof. The first assertion follows immediately from theorem 5.2. Let us prove
the second assertion. Since the computational tré&/8f is complete and has the
depthk, the corresponding deterministic Turing machifié for simulatingZ /X
will executeK;: steps wher&r is from (21). Since condition (25) is satisfied for
71N we can substitute = n' in (24). As the result of this substitution and (25)
we obtain that
d(n'd"+1— (n + 1)d" +1)

(d-1)

i.e., the number of computational steps required to the deterministic Turing ma-
chineZ ! to simulate the non-deterministic Turing machifié for reaching a fi-
nal configuration i, < [0 and this number exponentially depends on the length
of the sequence of symbols provided as inpu t6\. a
Results described in this section show that the introduction of the new math-
ematical language including grossone allows us to perform a more sublle ana
sis with respect to traditional languages and to introduce in the processsof th
analysis the figure of the researcher using this language (more pretiseiypha-
size the presence of the researcher in the process of the descripiatoofatic
computations). These results show that there exist limitations for simulating non-
deterministic Turing machines by deterministic ones. These limitations can be
viewed now thanks to the possibility (given because of the introduction afeive
numeralll) to observe final points of sequential processes for both casestef fin
and infinite processes.
Theorems 5.1, 5.2, and their corollaries show that the discovered limitations
and relations between deterministic and non-deterministic Turing machines have

Kyr = <0, (26)
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strong links with our mathematical abilities to describe automatic computations
and to construct models for such descriptions. Again, as it was in théopeev
cases studied in this paper, there is no contradiction with the traditional results
because both approaches give results that are correct with réspeetanguages
used for the respective descriptions of automatic computations.

We conclude this section by the note that analogous results can be obtained f
physical machineg? and 7%, as well. In the case of imaginary machines, the
possibility of observations was limited by the mathematical languages. In the case
of physical machines they are limited also by technical factors (we remind aga
the analogy: the possibilities of observations of physicists are limited by their in-
struments). In any given moment of time the maximal number of iteratkns,
that can be executed by physical Turing machines can be determinegehdis on
the speed of the fastest machié available at the current level of development
of the humanity, on the capacity of its memory, on the time available for simulating
a non-deterministic machine, on the numeral systems known to human beings, etc
Together with the development of technology this number will increase bull it w
remain finite and fixed in any given moment of time. As a result, theorems pre-
sented in this section can be re-written 6 and 7%?C by substituting grossone
with Kmaxin them.

6 Conclusion

The problem of mathematical descriptions of automatic computations (the ¢oncep
of the Turing machine has been used as a model of a device executingsueh
putations) has been considered in this paper from several points of Vst,

the problem has been studied using a new methodology emphasizing in a strong
form the presence in the process of the description of automatic computafions
the researcher who describes a computational device and its prop@itesole

of the philosophical triad — the researcher, the object of investigatiahjaols

used to observe the object — has been emphasized in the study. A degp inve
tigation has been performed on the interrelations that arise between medhanic
computations themselves and their mathematical descriptions when a human (the
researcher) starts to describe a Turing machine (the object of the byudifjerent
mathematical languages (the instruments of investigation).

Along with traditional mathematical languages using such concepts as ‘enu-
merable sets’ and ‘continuum’ to describe the potential of automatic computations
a language introduced recently and the corresponding computationalduletgy
allowing one to measure the number of elements of different infinite sets bawe b
used in this paper. It has been emphasized that mathematical descriptaingob
by using different languages depict the object of the study — the Turichima—in
different ways. It has been established that the obtained descripgirsthough
in certain cases they give different answers to the same questionst dontia-
dict each other. All of them are correct with respect to the language fosehe
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observation and the description of the machines.

It has been established that there exists the relativity of mathematical descrip
tions of the object and there cannot be ever any assurance that adgncjuosen
for the current description expresses the object in an absolutelyctamd com-
plete way. Aricher language allows the researcher to reflect betterdapenties of
the studied object and a weaker language does this worse (howevéagtidan be
noticed only if a richer language is already known to the researcheig sithation
is similar to the work with a microscope where, when we need a more precise or
a more rough answer, we change the lens of our microscope. For iestane
pose that by using a weak leAswe see the object of observation as one black
dot while by using a stronger lefiswe see that the object of observation consists
of two (smaller) black dots. Thus, we have two different answers: (ipthject
consists of one dot; (ii) the object consists of two dots. Both answersoarect
with respect to the lens used for the observation.

The new mathematical language applied in this study has allowed the authors
to establish a number of results regarding sequential computations exbyubed
Turing machine and results regarding computable sequences produtiedirba-
chine. Deterministic and non-deterministic machines have been studied using bo
the traditional and the new languages. The obtained results have beearedmp
and discussed.

It has been emphasized that all mathematical (and not only mathematical) lan-
guages (including the new one used in this study) have limited expressibilities.
This fact leads to several important reflections. First, for any fixeduageg there
always exist problems that cannot be formulated using it (these probfeenscan
be seen when a new, sufficiently powerful for this purpose languaigedsated).
Second, there always exist problems such that questions regardéegpitedlems
can be formulated in a language but this language is too weak to express-the d
sired answer or the accuracy of the obtained answer is insufficietitdgractical
needs. Finally, in any given moment of time for each concrete problem¢Rests
a finite number of languages that can be used to attack the problem. Themghe
powerful language among them defines computational bounds for thkeprohat
exist both for physical and imaginary Turing machines (i.e., in both cases &h
maximal finite or a maximal infinite number of iterations is considered).
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