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1 Introduction

Since the beginning of the last century, the fundamentalreadf the concept of
automatic computationattracted a great attention of mathematicians and computer
scientists (see [5,15-17,23,24,28,43]). The first studéesas their reference con-
text the David Hilbert programme, and as their referencguage that introduced by
Georg Cantor [4]. These approaches lead to different matieah models of com-
puting machines (see [2,7,10]) that, surprisingly, weseadlered to be equivalent
(e.g., anything computable in tRecalculus is computable by a Turing machine).
Moreover, these results, and expecially those obtainedlbyzd Church, Alan Tur-

ing [5,11,43] and Kurt @del, gave fundamental contributions to demonstrate that
David Hilbert programme, which was based on the idea thaifdatie Mathematics
could be precisely axiomatized, cannot be realized.

In spite of this fact, the idea of finding an adequate set obrasi for one or
another field of Mathematics continues to be among the masicive goals for
contemporary mathematicians. Usually, when it is necgdsadefine a concept or
an object, logicians try to introduce a number of axioms dbsy the object in the
absolutely best way. However, it is not clear how to reachk #fiisoluteness; indeed,
when we describe a mathematical object or a concept we ateditoy the expressive
capacity of the language we use to make this descriptionclerilanguage allows
us to say more about the object and a weaker language — less, fhe continu-
ous development of the mathematical (and not only mathealptanguages leads
to a continuous necessity of a transcription and specificaif axiomatic systems.
Second, there is no guarantee that the chosen axiomatensykfines ‘sufficiently
well’ the required concept and a continuous comparison piigtctice is required in
order to check the goodness of the accepted set of axiomseWowhere cannot be
again any guarantee that the new version will be the last afiditive one. Finally,
the third limitation already mentioned above has been dmeal by Gdel in his two
famous incompleteness theorems (see [11]).

Starting from these considerations, in this paper, we sthieyelativity of math-
ematical languages in situations where they are used tov@baad to describe au-
tomatic computations. We consider the traditional comjputal paradigm mainly
following results of Turing (see [43]) whereas emerging poiational paradigms
(see, e.g., [1,26,45,47]) are not considered here. Incpdati we focus our atten-
tion on different kinds of Turing machines by enriching andieading the results
presented in [42].

The point of view presented in this paper uses strongly threthiodological ideas
borrowed from Physics and applied to Mathematics, namiedydistinction between
the object (we speak here about a mathematical object) obaargation and the
instrument used for this observation; interrelations mydetween the object and
the tool used for this observation; the accuracy of the olasien determined by the
tool.
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The main attention is dedicated to numeral systethat we use to write down
numbers, functions, models, etc. and that are among ous tifoinvestigation of
mathematical and physical objects. It is shown that nunmsrstems strongly influ-
ence our capabilities to describe both the mathematicapagsdical worlds. A new
numeral system introduced in [31, 33, 38]) for performinghpaoitations with infinite
and infinitesimal quantities is used for the observation athematical objects and
studying Turing machines. The new methodology is based@piiinciple ‘The part
is less than the whole’ introduced by Ancient Greeks and rvlksein practice. It is
applied to all sets and processes (finite and infinite) andwatibers (finite, infinite,
and infinitesimal).

In order to see the place of the new approach in the histqperabrama of ideas
dealing with infinite and infinitesimal, see [20,21, 36, 3,4'he new methodology
has been successfully applied for studying a number of eqdins: percolation (see
[14,44]), Euclidean and hyperbolic geometry (see [22,30dctals (see [32,34,41,
44]), numerical differentiation and optimization (see3B,39,49]), infinite series
(see [36,40,48]), the first Hilbert problem (see [37]), antiudar automata (see [9]).

The rest of the paper is structured as follows. In Sectiorirgyl& and Multi-tape
Turing machines are introduced along with “classical” tessconcerning their com-
putational power and related equivalences; in Section &éihtroduction to the new
language and methodology is given whereas their exploitdtr analyzing and ob-
serving the different types of Turing machines is discuss&kction 4. It shows that
the new approach allows us to observe Turing machines witreehaccuracy giving
so the possibility to better characterize and distinguisttiines which are equiva-
lent when observed within the classical framework. Fina@lgction 5 concludes the
paper.

2 Single and Multi-tape Turing Machines

The Turing machine is one of the simple abstract computatidevices that can be
used to model computational processes and investigatariite 6f computability. In
the following Subsections 2.1 and 2.2, Single and Multetdprring machines will

be described along with important classical results canogrtheir computational
power and related equivalences.

2.1 Single Tape Turing Machines
A Turing Machine (see, e.g., [13,43]) can be defined as a [&tup

o =(Q,T,b,%,qo,F,3), 1)

1 We are reminded that aumeralis a symbol or group of symbols that representsuanber The
difference between numerals and numbers is the same as threliffebetween words and the things they
refer to. Anumberis a concept that aumeralexpresses. The same number can be represented by different
numerals. For example, the symbols ‘7’, ‘seven’, and ‘VII’ aifedlent numerals, but they all represent
the same number.
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whereQ is a finite and not empty set of statésis a finite set of symboldy € I is
a symbol called blankz C {I" — b} is the set of input/output symbolgy € Q is the
initial state;F C Qs the set of final state$;: {Q—F} xI'— QxI x{RL,N}isa
partial function called the transition function, whéreneans leftR means right, and
N means no move.

Specifically, the machine is supplied with: (ifaperunning through it which is
divided into cells each capable of containing a sympell", whererl is called the
tape alphabet, and e I is the only symbol allowed to occur on the tape infinitely
often; (ii) aheadthat can read and write symbols on the tape and move the tfipe le
and right one and only one cell at a time. The behavior of thehime is specified
by itstransition functiond and consists of a sequence of computational steps; in each
step the machine reads the symbol under the head and ap@iesrsition function
that, given the current state of the machine and the symimréading on the tape,
specifies (if it is defined for these inputs): (i) the symbal " to write on the cell of
the tape under the head; (ii) the move of the tdpéof one cell left,R for one cell
right, N for no move); (iii) the next statg € Q of the machine.

Starting from the definition of Turing Machine introducedas, classical results
(see, e.g., [2]) aim at showing that different machines imgeof provided tape and
alphabet have the same computational power, i.e., theynded@execute the same
computations. In particular, two main results are repoteldw in an informal way.

Given a Turing Machines = {Q,I",b, %, qo, F, 8}, which is supplied with an infi-
nite tape, itis always possible to define a Turing Machine= {Q'.I",b,>’, g, F',d'}
which is supplied with a semi-infinite tape (e.g., a tape witleft boundary) and is
equivalent tor , i.e., is able to execute all the computationsiof

Given a Turing Machiner ={Q,I",b, %, qo,F,d}, itis always possible to define a
Turing Machinem ' = {Q/,["",b,%’,qp, F’, &'} with |Z'| = 1 andl’ = ' U {b}, which
is equivalent tav , i.e., is able to execute all the computationsof

It should be mentioned that these results, together witlusual conclusion re-
garding the equivalences of Turing machines, can be irgtgrin the following,
less obvious, way: they show that when we observe Turing mastby exploiting
the classical framework we are not able to distinguish, ftbencomputational point
of view, Turing machines which are provided with alphabedsiihg different num-
ber of symbols and/or different kind of tapes (infinite or sémfinite) (see [42] for a
detailed discussion).

2.2 Multi-tape Turing Machines

Let us consider a variant of the Turing Machine defined in (hewe a machine

is equipped with multiple tapes that can be simultaneoustessed and updated
through multiple heads (one per tape). These machines caselgefor a more direct

and intuitive resolution of different kind of computatidmaoblems. As an example,

in checking if a string is palindrome it can be useful to have tapes on which rep-

resent the input string so that the verification can be effttigperformed by reading

a tape from left to right and the other one from right to left.
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Moving towards a more formal definitionkatapesk > 2, Turing machine (see [13])
can be defined (cf. (1)) as a 7-tuple

M = (Q,b.Z,60.F,8) @)

wheres = |JX_, 5; is given by the union of the symbols in the k input/output alpéts
%1,..., 2 T =ZU{b} whereb is a symbol called blankQ is a finite and not empty
set of statesg € Q is the initial statef C Q is the set of final state§ : {Q —
FlxTyx--xT— QxTyx--xTx {RL N}Kis a partial function called the
transition function, wher€; = ZjU{b},i=1,... k L means leftR means right, and
N means no move.

This definition of8®¥) means that the machine executes a transition starting from
an internal state; and with thek heads (one for each tape) above the characters
ai1, ..., a 1.e., it 3%(qu,air,...,ak) = (0j,aj,..-,8),. 2, --,2j,) the machine
goes in the new statgj, write on the k tapes the charactexrs,...,a;, respec-
tively, and moves each of its k heads left, right or no movespecified by the
zj, c{RL,N}I=1,... k

A machine can adopt for each tape a different alphabet, itasg, for each tape,
as for the Single-tape Turing machines, the minimum portiontaining characters
distinct fromb is usually represented. In general, a typical configuratioa Multi-
tape machine consists of a read-only input tape, severdlaed write work tapes,
and a write-only output tape, with the input and output tegasessible only in one
direction. In the case of letapes machine, the instant configuration of the machine,
as for the Single-tape case, must describe the internal stet contents of the tapes
and the positions of the heads of the machine.

More formally, for ak-tapes Turing machinery = <Q,F,5,Z, o, F, 6(k)> with
> = U!‘:l Z; (see 2) a configuration of the machine is given by:

gHoy 1T Ba#an T Bo#. . #ak 1 Bk, (3

whereq € Q; a; € Zil[' U {e} andpB; € 7 Z; U{b}. A configuration idfinal if q € F.

The starting configuration usually requires the input strirgn a tape, e.g., the
first tape so that € 2}, and onlyb symbols on all the other tapes. However, it can be
useful to assume that, at the beginning of a computatiosgetteges have a starting
symbolZy ¢ T = Uik::L I;. Therefore, in the initial configuration the head on the first
tape will be on the first character of the input stringvhereas the heads on the other
tapes will observe the symba, more formally, by re-placing; = %; U{b, Zy} in all
the previous definition, a configuratiagto; 1 B1#02 T Bo#. .. #ok T Bk is aninitial
configurationif aj =¢€,i=1,...,k,B1 € 21,Bi = Zo,i = 2,...,kandqg = dp.

The application of the transition functiéd® at a machine configuration (c.f. (3))
defines acomputational stepf a Multi-tape Turing Machine. The set of computa-
tional steps which bring the machine from the initial confagion into a final config-
uration defines theomputationexecuted by the machine. As an example, the com-
putation of a Multi-tape Turing maching&k which computes the functiofy,,, (x)
can be represented as follows:

Qo 1301 Zoth.. . #1 Zo My G 3T T (O# T DH#...#T D (4)
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.
whereq € F and#k indicates the transition among machine configurations.

It is worth noting that, although thketapes Turing Machine can be used for a
more direct resolution of different kind of computationabplems, in the classical
framework it has the same computational power of the Sitegbe-Turing machine.
More formally, given a Multi-tape Turing Machine it is alwaypossible to define a
Single-tape Turing Machine which is able to fully simulate behavior and there-
fore to completely execute its computations. In particulhe Single-tape Turing
Machines adopted for the simulation use a particular kintheftape which is di-
vided into tracks (multi-track tape). In this way, if the &apasm tracks, the head is
able to access (for reading and/or writing) all thecharacters on the tracks during
a single operation. If for then tracks the alphabets,,... 'y, are adopted respec-
tively, the machine alphabétis such thatl'| = |1 x --- x ['y| and can be defined
by an injective function from the sét; x --- x [, to the setl"; this function will
associate the symbblin I to the tuple(b,b, ... b) in 1 x --- x ['y. In general, the
elements of” which correspond to the elementdlinx - -- x 'y can be indicated by
[@1,87,...,8m| wherea;; € T'j.

By adopting this notation it is possible to demonstrate ¢iagn ak-tapes Turing
Machine sk = {Q,T",b,3,qo,F,8} it is always possible to define a Single-tape
Turing Machine which is able to simulatecomputational steps affx = in O(t?)
transitions by using an alphabet wiBi{(2|I"|)*) symbols (see [2]).

The proof is based on the definition of a machié = {Q',I"’,b,%’,qy,F’, &'}
with a Single-tape divided intokxracks (see [2])k tracks for storing the characters
in the k tapes ofak andk tracks for signing through the markérthe positions of
the k heads on thé tapes ofary. As an example, this kind of tape can represent
the content of each tapes of and the position of each machine heads in its even
and odd tracks respectively. As discussed above, for dhtpmSingle-tape machine
able to represent thesk Racks, it is sufficient to adopt an alphabet with the require
cardinality and define an injective function which assasat 2k-ple characters of a
cell of the multi-track tape to a symbols in this alphabet.

The transition functiod® of thek-tapes machine is given B (g1, a1, ..., ai) =
(9,851, @)y, Zjq,- -+, Zjy ), With Zj,, ..., 7, € {R,L,N}; as a consequence the cor-
responding transition functiodi of the Single-tape machine, for each transition spec-
ified by 3K must individuate the current state and the position of thekerdor each
track and then write on the tracks the required symbols, ntiegemarkers and go
in another internal state. For each computational stefof the machinev ' must
execute a sequence of steps for covering the portion of tagtegeen the two most
distant markers. As in each computational step a marker cae at most of one cell
and then two markers can move away each other at most of tWg) aéiert steps
of ark the markers can be at modt &lls distant, thus ifwk executes stepsa’
executes at most:¥_; i =t?+t = O(t?) steps.

Moving to the cost of the simulation in terms of the numbereafuired characters
for the alphabet of the Single-tape machine, we recall [fhgt= |21 + 1 and that
ITi| = |Zi|+ 2 for 2<i < k. So by multiplying the cardinalities of these alphabets we
obtain that] | = 2(|Z1| + 1) [1<,(|Zi] +2) = O((2max <i<k|i))¥).
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3 The Grossone M ethodol ogy

In this section, we give just a brief introduction to the nuetblogy of the new ap-
proach [31, 33] dwelling only on the issues directly relatethe subject of the paper.
This methodology will be used in Section 4 to study Turing aes and to obtain
some more accurate results with respect to those obtaibghlsing the traditional
framework [5,43].

In order to start, let us remind that numerous trials haven lweme during the
centuries to evolve existing numeral systems in such a watyntmerals representing
infinite and infinitesimal numbers could be included in theseeg([3,4,6,18,19, 25,
29,46]). Since new numeral systems appear very rarely,éh eancrete historical
period their significance for Mathematics is very often uedémated (especially by
pure mathematicians). In order to illustrate their impoct, let us remind the Roman
numeral system that does not allow one to express zero amadiveegumbers. In this
system, the expression IlI-X is an indeterminate form. Assult, before appearing
the positional numeral system and inventing zero mathemast were not able to
create theorems involving zero and negative numbers angeituge computations
with them.

There exist numeral systems that are even weaker than tharfRone. They se-
riously limit their users in executing computations. Letrasall a study published
recently inSciencgsee [12]). It describes a primitive tribe living in Amazan(Pi-
rahd). These people use a very simple numeral system for cqumtire, two, many.
For Piral@, all quantities larger than two are just ‘many’ and suchrajpens as 2+2
and 2+1 give the same result, i.e., ‘many’. Using their weakeral system Pirgh
are not able to see, for instance, numbers 3, 4, 5, and 6, taexarithmetical op-
erations with them, and, in general, to say anything abagdmumbers because in
their language there are neither words nor concepts for that

In the context of the present paper, it is very important thatweakness of Pi-
rah&’s numeral system leads them to such results as

‘many’+ 1= "'many’, ‘many’+2 = ‘many’, (5)

which are very familiar to us in the context of views on infynitsed in the traditional
calculus
0-+1=o00, 042 =00, (6)

The arithmetic of Pirahinvolving the numeral ‘many’ has also a clear similaritytwi
the arithmetic proposed by Cantor for his Alephs

Oo+1= 0y, Oo+ 2=y, O1+1="04, O142=0;: (7)

Thus, the modern mathematical numeral systems allow ustmgiuish a larger
quantity of finite numbers with respect to Pigahut give results that are similar to

2 This similarity becomes even more pronounced if one considemthar Amazonian tribe —
Mundurukl (see [27]) — who fail in exact arithmetic with numbers largeart 5 but are able to com-
pare and add large approximate numbers that are far beyomahéimeing range. Particularly, they use the
words ‘some, not many’ and ‘many, really many’ to distinguish twoes of large numbers using the rules
that are very similar to ones used by Cantor to operate Witland(] 1, respectively.
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those of Pirah when we speak about infinite quantities. This observatiadd us to
the following idea:Probably our difficulties in working with infinity is not coected
to the nature of infinity itself but is a result of inadequateneral systems that we
use to work with infinity, more precisely, to express infinitenbers.

The approach developed in [31,33,38] proposes a numeramnsythat uses the
same numerals for several different purposes for dealitiyiwiinities and infinitesi-
mals: in Analysis for working with functions that can assuifeerent infinite, finite,
and infinitesimal values (functions can also have derieati@ssuming different in-
finite or infinitesimal values); for measuring infinite sefts; indicating positions of
elements in ordered infinite sequences; in probability Wheetc. (see [8,9,14,22,
30,32,34-37,39-41,44,48,49)). It is important to empeghat the new numeral
system avoids situations of the type (5)—(7) providing ltssensuring that ifa is a
numeral written in this system then for aayi.e.,a can be finite, infinite, or infinites-
imal) it follows a+1 > a.

The new numeral system works as follows. A new infinite unitrefasure ex-
pressed by the numeral calledgrossones introduced as the number of elements
of the set)N, of natural numbers. Concurrently with the introductiorgodssone in
the mathematical language all other symbols (kkeCantor'sw, Og,y,..., etc.)
traditionally used to deal with infinities and infinitesiraare excluded from the lan-
guage because grossone and other numbers constructetswigin not only can be
used instead of all of them but can be used with a higher acgtir&rossone is in-
troduced by describing its properties postulated by thaibefiUnit Axiom (see [33,
38]) added to axioms for real numbers (similarly, in ordep&ss from the sety,
of natural numbers to the sét, of integers a new element — zero expressed by the
numeral 0 — is introduced by describing its properties).

The new numerdl allows us to construct different numerals expressing idifie
infinite and infinitesimal numbers and to execute computatioith them. Let us give
some examples. For instance, in Analysis, indeterminatagare not present and,
for example, the following relations hold faf and 0~ (that is infinitesimal), as
for any other (finite, infinite, or infinitesimal) number exgsible in the new numeral
system

0.0=0.0=0, 0-0=0, —=1 0%°=1 1°=1 0'=0, (8)

o-0t=0'to=0 0O'>0 0O%2%>0 0O'-0t=0, 9

o 02 1,0 1 2 1

F:1 P:1, @H=1 0.o0t=1 0.0?%=0t @O0
The new approach gives the possibility to develop a new Asisl{see [36])

where functions assuming not only finite values but also itefiand infinitesimal

ones can be studied. For all of them it becomes possible ftodinte a new notion

of continuity that is closer to our modern physical knowledgunctions assuming

finite and infinite values can be differentiated and integgtat

)

3 Analogously, when the switch from Roman numerals to the Arahis has been done, numerals X,
V, I, etc. have been excluded from records using Arabic nulsiera
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By using the new numeral system it becomes possible to measutain infinite
sets and to see, e.g., that the sets of even and odd number fiaelements each.
The setZ, of integers has2+1 elements(( positive elementd,] negative elements,
and zero). Within the countable sets and sets having cditglinfthe continuum (see
[20,37,38]) it becomes possible to distinguish infinitessedving different number
of elements expressible in the numeral system using gresand to see that, for
instance,

O
E<D—1<D<D+1<2D+1<2D2—1<2DZ<2D2+1<

o242<28 1l oyl «coPo1<coP <ol

Another key notion for our study of Turing machines is thaindinite sequence.
Thus, before considering the notion of the Turing machinenfthe point of view of
the new methodology, let us explain how the notion of the itfisequence can be
viewed from the new positions.

Traditionally, aninfinite sequencéan},a, € A, n € N, is defined as a function
having the set of natural numberfs, as the domain and a s&tas the codomain. A
subsequencéby} is defined as a sequen¢a,} from which some of its elements
have been removed. In spite of the fact that the removal oélments from{a,}
can be directly observed, the traditional approach doeslimt one to register, in
the case where the obtained subsequ€ibgé is infinite, the fact thafbn} has less
elements than the original infinite sequereg}.

Let us study what happens when the new approach is used. Repoint of
view of the new methodology, an infinite sequence can be derel in a dual way:
either as an object of a mathematical study or as a matheahiastrument developed
by human beings to observe other objects and processes|élitss consider it as a
mathematical object and show that the definition of infindgleences should be done
more precise within the new methodology. In the finite casecuencey, ay, ..., an
hasn elements and we extend this definition directly to the indimiase saying that
an infinite sequencay, ay, ..., a, hasn elements whera is expressed by an infinite
numeral such that the operations with it satisfy the methogical Postulate 3. Then
the following result (see [31, 33]) holds. We reproduce hergroof for the sake of
completeness.

Theorem 1 The number of elements of any infinite sequence is less ol exqua

Proof. The new numeral system allows us to express the number otatsmof
the sefN as[]. Thus, due to the sequence definition given above, any seqiening
N as the domain h&s elements.

The notion of subsequence is introduced as a sequence frach wtme of its
elements have been removed. This means that the resultisgguence will have
less elements than the original sequence. Thus, we obfaiiténsequences having
the number of members less than grossone. a

It becomes appropriate now to define tt@mplete sequencas an infinite se-
guence containing elements. For example, the sequence of natural numbensis co
plete, the sequences of even and odd natural numbers aremptate because they
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have% elements each (see [31,33]). Thus, the new approach impasese precise
description of infinite sequences than the traditional eoetefine a sequende,}

in the new language, it is not sufficient just to give a fornfolaa,, we should deter-
mine (as it happens for sequences having a finite number wieslts) its number of
elements and/or the first and the last elements of the sequérthe number of the
first element is equal to one, we can use the re€exd k} wherea, is, as usual, the
general element of the sequence &risithe number (that can be finite or infinite) of
members of the sequence; the following example clarifieseticencepts.

Example 1Let us consider the following three sequences:

(an:0V=1{4, 8 .. 40-1), 40); (12)

{bn:%—1}={4, 8 .. 4(%—2), 4(%—1)}; (13)
o0, 201 20]

{Cn.?}—{4, 8 ... 4(?—1)7 4?} (14)

The three sequences hasg= b, = ¢, = 4n but they are different because they
have different number of members. Sequef&g hasl elements and, therefore, is

complete {bn} has% —1, and{cp} has % elements. O

Let us consider now infinite sequences as one of the instrigsed by mathe-
maticians to study the world around us and other mathenhatipacts and processes.
The first immediate consequence of Theorem 1 is thatsmuyentialprocess can
have at maximuni] elements. This means that a process of sequential obsgrvati
of any object cannot contain more tharstep4. We are not able to execute any infi-
nite process physically but we assume the existence of spigitass; moreover, only
a finite number of observations of elements of the considefetdte sequence can be
executed by a human who is limited by the numeral system usetié observation.
Indeed, we can observe only those members of a sequence ifdr thiere exist the
corresponding numerals in the chosen numeral system; tier loddrify this point the
following example is discussed.

Example 2Let us consider the numeral system, of Piral& able to express only
numbers 1 and 2. If we add te the new numeral], we obtain a new numeral
system (we call it?). Let us consider now a sequence of natural numberd]}. It
goes from 1 tdd (note that both numbers, 1 afd can be expressed by numerals
from E). However, the numeral systeﬁ is very weak and it allows us to observe
only ten numbers from the sequenfge: O} represented by the following numerals

a O o ad O
1,2 ——2,——-1—-.—+1 -+2 O0-20-10. 15
) ) 2 72 72?2+ 72+ ) ) ) ( )
finite R infinite
infinite

4 It is worthy to notice a deep relation of this observationtte Axiom of Choice. Since Theorem 1
states that any sequence can have at maxifwetements, so this fact holds for the process of a sequential
choice, as well. As a consequence, it is not possible to &seguentially more thal elements from
a set. This observation also emphasizes the fact that thégba@mputational paradigm is significantly
different with respect to the sequential one becguparallel processes can chogse elements from a
set.
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The first two numerals in (15) represent finite numbers, theairing eight numer-
als express infinite numbers, and dots represent membehe setjuence of natural
numbers that are not expressibleﬁrand, therefore, cannot be observed if one uses
only this numeral system for this purpose. O

In the light of the limitations concerning the process ofisatial observations,
the researcher can choose how to organize the requiredresxjofobservations and
which numeral system to use for it, defining so which elemehthe object he/she
can observe. This situation is exactly the same as in nataighces: before starting
to study a physical object, a scientist chooses an instruarahits accuracy for the
study.

Example 3Let us consider the set A%,2,3,...,20-1,20} as an object of our ob-
servation. Suppose that we want to organize the proces® afetjuential counting
of its elements. Then, due to Theorem 1, starting from thebmurh this process can
arrive at maximum t@J. If we consider the complete counting sequefice] }, then
we obtain

(16)

Analogously, if we start the process of the sequential dogritom 5, the process
arrives at maximum tal + 4:

1,2,3,4,5 ... 0-1,0,0+1,0+2,0+3,0+4,0+5,...,20-1,20
NN LN A A W A A

17
[ steps @

The corresponding complete sequence used in this cgsetig : 0}. We can also
change the length of the step in the counting sequence asitleonfor instance, the
complete sequenc@n—1:0}:

1,2,3,4, ... 0-1,0,0+1,0+2, ... 20-3,20-2,20-1,20
A N A Nl N A e N

18
[ steps (18)

If we use again the numeral syste@nthen among finite numbers it allows us to see
only number 1 because already the next number in the sequ&ns@ot expressible
in 2. The last element of the sequenceli$21 and allows us to observe it. O

The introduced definition of the sequence allows us to wotlonty with the first
but with any element of any sequence if the element of ourestas expressible in
the chosen numeral system independently whether the segjueder our study has
a finite or an infinite number of elements. Let us use this neimidien for studying
infinite sets of numerals, in particular, for calculating thumber of points at the
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interval [0,1) (see [31,33]). To do this we need a definition of the term ‘pand
mathematical tools to indicate a point. If we accept (as igallg done in modern
Mathematics) that point Abelonging to the intervdD, 1) is determined by a numeral
X, X € S, called coordinate of the point AvhereS is a set of numerals, then we
can indicate the poinA by its coordinatex and we are able to execute the required
calculations.

It is worthwhile to emphasize that giving this definition wavie not used the
usual formulation X belongs to the seR, of real numbers This has been done be-
cause we can express coordinates only by numerals andediffeinoices of numeral
systems lead to different sets of numerals and, as a resdifférent sets of numbers
observable through the chosen numerals. In fact, we caregxmoordinates only
after we have fixed a numeral system (our instrument of therehton) and this
choice defines which points we can observe, namely, poinisig@oordinates ex-
pressible by the chosen numerals. This situation is tyfporalatural sciences where
it is well known that instruments influence the results ofeskations. Remind the
work with a microscope: we decide the level of the precisiemnged and obtain a
result which is dependent on the chosen level of accuraeye lieed a more precise
or a more rough answer, we change the lens of our microscope.

We should decide now which numerals we shall use to expressioates of the
points. After this choice we can calculate the number of matseexpressible in the
chosen numeral system and, as a result, we obtain the nufi@nts at the interval
[0,1). Different variants (see [31, 33]) can be chosen dependirth@precision level
we want to obtain. For instance, we can choose a positiomakral system with a
finite radixb that allows us to work with numerals

(Oaud...a, pa)s, @&€{0,1..b—2b-1}, 1<i<D. (19

Then, the number of numerals (19) gives us the number of paiithin the interval
[0,1) that can be expressed by these numerals. Note that a nunibgrtlis posi-
tional numeral system (19) cannot have more than grossaits ¢(ttontrarily to sets
discussed in Example 3) because a numeral hayind! digits would not be observ-
able in a sequence. In this cagex{ (1) such a record becomes useless in sequential
computations because it does not allow one to identify nuséetirely sincey— [
numerals remain non observed.

Theorem 2 If coordinates of points x [0,1) are expressed by numerals (19), then
the number of the points x ov); 1) is equal to b.

Proof. In the numerals (19) there is a sequence of digis;...a,_1)a;, used
to express the fractional part of the number. Due to the disfimbf the sequence
and Theorem 1, any infinite sequence can have at maxim@hements. As a result,
there islJ positions on the right of the dot that can be filled in by onehefti digits
from the alphabef0,1,...,b— 1} that leads td" possible combinations. Hence,
the positional numeral system using the numerals of the {d®) can expresb”
numbers. O

Corollary 1 The number of numerals

(a1apas...as2a-—1a7)p, & €{0,1,...b—2b—-1}, 1<i<0O, (20)
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expressing integers in the positional system with a finidixd in the alphabet
{0,1,...b—2,b—1} is equal to B.

Proof.The proof is a straightforward consequence of Theorem 2sssmlomitted.
O

Coroallary 2 If coordinates of points ¥ (0,1) are expressed by numerals (19), then
the number of the points x ovéd, 1) is equal to b — 1.

Proof. The proof follows immediately from Theorem 2. O
Note that Corollary 2 shows that it becomes possible now szoke and to reg-
ister the difference of the number of elements of two infigiés (the intervalo, 1)
and the interval0, 1), respectively) even when only one element (the point 0, ex-
pressed by the numeraldD. .. 0 with [J zero digits after the decimal point) has been
excluded from the first set in order to obtain the second one.

4 The Turing Machines observed through thelens of the Grossone
M ethodology

In this Section the different types of Turing machines idtroed in Section 2 are ana-
lyzed and observed by using as instruments of the obsemnioGrossone language
and methodology presented in Section 3. In particular, mswlts for Multi-tape Tur-
ing machines are presented and discussed.

Before starting the discussion, it is useful to recall themmesults from the pre-
vious Section: (i) any infinite sequence can have maximualements; (ii) the ele-
ments which we are able to observe in this sequence depeind @aopted numeral
system.

Then, in order to be able to read and to understand the outpufuwwing machine,
writing its output on the tape using an alphaBetontainingb symbols{0,1,...b—
2,b—1} wherebis a finite number, the researcher (the user) should knowitigre
numeral systent; with an alphabef0,1,...u—2,u— 1} whereu > b, otherwise
the output cannot be decoded by the user. Moreover, therobssamust be able
to observe a number of symbols at least equal to the maximgtheof the output
sequence that can be computed by machine, otherwise this nstiable to interpret
the obtained result (see [42] for a detailed discussion).

In this Section, a first set of results aims to specify, withhair accuracy with re-
spect to that provided by the mathematical language degdlbp Cantor and adopted
by Turing, how and when the computations performed by a Mafie Turing ma-
chine can be observed in a sequence. Moreover, it is showrhth&rossone lan-
guage and methodology will allow us to perform a more aceunatestigation of
situations interpreted traditionally like equivalencesoag different Multi-tape ma-
chines and among Multi and Single-tape machines.
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4.1 Observing computations performed by a Multi-tape Tyirimachine

Before starting to analyze the computations performed kyapes Turing machine
(with k> 2) ati = (Q.T,b,%,60,F.8%) (see (1), Section 2.2), itis worth to make
some considerations about the process of observatiofiitseeé light of the Grossone
methodology. As discussed above, if we want to observe theegs of computation
performed by a Turing machine while it executes an algorjttiven we have to exe-
cute observations of the machine in a sequence of momerfegtinit is not possible
to organize a continuous observation of the machine. Antyungent used for an ob-
servation has its accuracy and there always be a minimabgefi time related to
this instrument allowing one to distinguish two differenbments of time and, as a
consequence, to observe (and to register) the states objbet in these two mo-
ments. In the period of time passing between these two mantleatobject remains
unobservable.

Since our observations are made in a sequence, the procebseasf/ations can
have at maximunt] elements. This means that inside a computational procéss it
possible to fix more than grossone steps (defined in a way} ot possible to
count them one by one in a sequence containing more thanog®sdements. For
instance, in a time intervgD, 1), up to bY numerals of the type (19) can be used
to identify moments of time but not more than grossone of tlzaim be observed
in a sequence. Moreover, it is important to stress that aoggss itself, considered
independently on the researcher, is not subdivided intitars, intermediate results,
moments of observations, etc. The structure of the langueagese to describe the
process imposes what we can say about the process (see [42{l&ailed discus-
sion).

On the basis of the considerations made above, we shouldehbe accuracy
(granularity) of the process of the observation of a Turirechine; for instance we
can choose a single operation of the machine such as readigmidol from the
tape, or moving the tape, etc. However, in order to be closawh as possible to
the traditional results, we consider an application of ta@gition function of the
machine as our observation granularity (see Section 2).

Moreover, concerning the output of the machine, we consigesymbols written
on all the k tapes of the machine by using, on eachitapih 1 <i <k, the alphabet
7; of the tape, containinlg; symbols, plus the blank symbdi)( Due to the definition
of complete sequence (see Section 3) on each tape aflesgstbols can be produced
and observed. This means that on a tiapéter the last symbols belonging to the tape
alphabet;, if the sequence is not complete (i.e., if it has less thasymbols) we
can consider a number of blank symbdi} fiecessary to complete the sequence. We
say that we are consideringcamplete outpudf a k-tapes Turing machine when on
each tape of the machine we consider a complete sequencmbbdls/belonging to
2 U {b}

Theorem 3 Let ark = <Q,l‘,t_),z, qo,F76(k)> be a k-tapes, k 2, Turing machine.
Then, a complete output of the machine will resultslindymbols.
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Proof. Due to the definition of the complete sequence, on each tapeddtnum
O symbols can be produced and observed and thus by considedogplete se-
guence on each of the k tapes of the machine the completetaidtime machine will
result inkd symbols. O

Having proved that a complete output that can be produced kyapes Tur-
ing machine results ik(] symbols, it is interesting to investigate what part of the
complete output produced by the machine can be observedeigueesce taking into
account that it is not possible to observe in a sequence rhare’t symbols (see
Section 3). As examples, we can decide to make in a sequercef dine following

observations: (i)J symbols on one among thketapes of the machine, (i.%i symbols

on each of thé&-tapes of the machine; (iii%— symbols on 2 among thetapes of the
machine, an so on.

Theorem 4 Let vk = <Q,F,5,Z, qo,F,é(k)> be a k-tapes, k> 2, Turing machine.

Let M be the number of all possible complete outputs that @prbduced by .
Then it follows M= 1 (b +1)".

Proof. Due to the definition of the complete sequence, on eachitapih 1 <
i <k, at maximumC symbols can be produced and observed by usingitisgm-
bols of the alphab€el; of the tape plus the blank symbdd)( as a consequence, the
number of all the possible complete sequences that can deged and observed on
a tapei is (bj +1)”. A complete output of the machine is obtained by considesing
complete sequence on each of thekttapes of the machine, thus by considering all
the possible complete sequences that can be produced aerd@dsn each of the k
tapes of the machine, the numb@érof all the possible complete outputs will results
in 1< (bi +1)". O

As the numbeM = |‘|ik:l(bi +1)" of complete outputs that can be produced
by ark is larger than grossone, then there can be different seglenumerating
processes that enumerate complete outputs in differens vwayany case, each of
these enumerating sequential processes cannot contagntihaor grossone members
(see Section 3).

4.2 Equivalences among different Multi-tape machines andrey Multi and
Single-tape machines

In the classical framework-tape Turing machines have the same computational
power of Single-tape Turing machines and given a Multi-tapeng Machinea it

is always possible to define a Single-tape Turing Machinekwis able to fully simu-
late its behavior and therefore to completely execute isprdgations. As showed for
Single-tape Turing machine (see [42]), the Grossone methgyl allows us to give a
more accurate definition of the equivalence among diffemgathines as it provides
the possibility not only to separate different classes fifiite sets with respect to
their cardinalities but also to measure the number of elésnefrsome of them. With
reference to Multi-tape Turing machines, the Single-tapenf Machines adopted
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for their simulation use a particular kind of tape which igidéd into tracks (multi-
track tape). In this way, if the tape hagracks, the head is able to access (for reading
and/or writing) all them characters on the tracks during a single operation. Thés tap
organization leads to a straightforward definition of théadeor of a Single-tape
Turing machine able to completely execute the computatidres given Multi-tape
Turing machine (see Section 2.2). However, the so defineglé&Stape Turing ma-
chineas , to simulatet computational steps @i, needs to execut®(t?) transitions
(t?+t in the worst case) and to use an alphabet W32 | + 1) [1<_,(|Zi| 4 2) sym-
bols (again see Section 2.2). By exploiting the Grossoné&oaeiogy is is possibile

to obtain the following result that has a higher accuracywéspect to that provided
by the traditional framework.

Theorem 5 Let us considem/x = <Q,F,5,Z,qo,F,6(k>>,a k-tapes, k> 2, Turing

machine, wher& = U!(:1 % is given by the union of the symbols in the k tape alpha-
betsZ;,...,Zx andl' = ZU{b}. If this machine performs t computational steps such
that

t< %(\/4D+1—1), (21)
then there existsr’ = {Q, I, b5’ o, F’, &'}, an equivalent Single-tape Turing ma-
chine with|'| = 2¢(|Z4| + 1) [T*_,(|Zi| + 2), which is able to simulaterk and can
be observed in a sequence.

Proof. Let us recall that the definition afr’ requires for a Single-tape to be
divided into X tracks;k tracks for storing the characters in théapes ofark andk
tracks for signing through the markgthe positions of th& heads on thé& tapes of
My (see Section 2.2). The transition functid¥) of the k-tapes machine is given by
3N (0, i1, .-, @ik) = (0, @jq,- - @) Zjgs- -5 Zjy), With Zj ..., Zj, € {R,.L,N}; as a
consequence the corresponding transition fundiiaf the Single-tape machine, for
each transition specified B must individuate the current state and the position of
the marker for each track and then write on the tracks theiredjsymbols, move
the markers and go in another internal state. For each cartiqual step ofvk, a¢’
must execute a sequence of steps for covering the porticapektbetween the two
most distant markers. As in each computational step a madeemove at most of
one cell and then two markers can move away each other at rinwgd cells, aftert
steps ofark the markers can be at modt&lls distant, thus ik executes steps,
o' executes at most:*_,; i =t?+t steps. In order to be observable in a sequence
the numbet? +t of steps, performed byr’ to simulatet steps ofary, must be less
than or equal tdl. Namely, it should b&? 4+t <[J. The fact that this inequality is
satisfied fort < %(\/4D +1—1) completes the proof. O

5 Concluding Remarks

In the paper, Single and Multi-tape Turing machines haven liscribed and ob-
served through the lens of the Grossone language and mélagddhis new lan-

guage, differently from the traditional one, makes it pbkesio distinguish among in-
finite sequences of different length so enabling a more ateuiescription of Single



Single-tape and Multi-tape Turing Machines through the lefthe Grossone methodology 17

and Multi-tape Turing machines. The possibility to exprésslength of an infinite
sequence explicitly gives the possibility to establish enaccurate results regarding
the equivalence of machines in comparison with the obsenathat can be done by
using the traditional language.

It is worth noting that the traditional results and thosesprdged in the paper
do not contradict one another. They are just written by usiifigrent mathemati-
cal languages having different accuracies. Both mathealdéinguages observe and
describe the same objects — Turing machines — but with difteaccuracies. As a
result, both traditional and new results are correct wipeet to the mathematical
languages used to express them and correspond to differeura@ies of the obser-
vation. This fact is one of the manifestations of the relgtiof mathematical results
formulated by using different mathematical languagesérstime way as the usage of
a stronger lens in a microscope gives a possibility to distish more objects within
an object that seems to be unique when viewed by a weaker lens.

Specifically, the Grossone language has allowed us to givdefinition ofcom-
plete outpubf a Turing machine, to establish when and how the output chehime
can be observed, and to establish a more accurate reldapdretiveen a Multi-tape
Turing machine and a Single-tape one which simulates itspooations. Future re-
search efforts will be geared to apply the Grossone langaadenethodology to the
description and observation of new and emerging compuiatizaradigms.
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