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Is the Liar Paradox Never Strictly Classical?*
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【Abstract】The present paper investigates whether strictly classical inferences 
contribute to the formalization of (genuine) paradoxes within natural deduction. 
Tennant's criterion for paradoxicality relies on the generation of an infinite 
reduction sequence, which distinguishes genuine paradoxes from mere 
inconsistencies. His methodological conjecture posits that genuine paradoxes 
are never strictly classical and can be derived without classical inferences such 
as the Law of Excluded Middle, Dilemma, Classical Reductio, and Double 
Negation Elimination.

It appears that there were two reasons for Tennant's proposal of the 
methodological conjecture. The one is that strictly classical inferences hinder 
the generation of an infinite reduction sequence and the other is that strictly 
classical inferences have no role in the formalization of genuine paradoxes. 

This paper raises questions about these two reasons. Focusing on the liar 
paradox, it will be argued that strictly classical inferences do not interfere with 
the generation of an infinite reduction sequence and that the liar sentence may 
implicitly entail strictly classical inferences. Should this analysis hold, it would 
call into question not only Tennant’s motivation for advancing the 
methodological conjecture, but also challenge his contention that genuine 
paradoxes—exemplified by the liar paradox—are never constructed with 
reliance on strictly classical inferences.
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1 Introduction

Philosophical investigations often center on the extent to which
classical inference contributes significantly to the derivation of con-
tradictions through paradoxes. Dummett (1993: p. 454) proposes that
the emergence of paradoxes is intertwined with the indefinitely ex-
tensible concept, defined as those whose extensions are inherently
indeterminable, allowing for any object set under such a concept to
be expanded. It is frequently observed that his view forms the basis
of an argument challenging classical logic, suggesting that a logic
capable of expressing indefinitely extensible concepts would be non-
classical, characterized by the indeterminate truth value of its state-
ments.

In discussing the disconnection between semantic paradoxes and
the idea of indefinitely extensible concepts, Williamson (1998: p.
2) highlights the limitations of intuitionistic logic in blocking para-
doxes, stating:

From a purely technical perspective, intuitionistic logic presents no
obvious advantage. In the simplest paradoxes, a plausible general
principle turns out to have a substitution instance of the form [ϕ ↔
¬ϕ], which is inconsistent in both intuitionistic and classical logic.
Adopting intuitionistic logic would not enable us to retain the plausi-
ble general principle while blocking the inference to a contradiction.

In contrast to Williamson, Field (2008: p. 8) outlines an approach
for deriving the explicit contradiction ϕ ∧¬ϕ from ϕ ↔¬ϕ , termed
the Central Argument. He states, “Without [excluded middle], it isn’t
immediately obvious why [ϕ ↔ ¬ϕ] should be contradictory.” He
then points out that the absence of excluded middle in intuitionistic
logic leads to the invalidation of the Central Argument regarding the
contradiction of ϕ ↔¬ϕ . His analysis primarily focuses on the ex-
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cluded middle, suggesting its critical role in paradoxes. Field (2008:
p. 15) writes:

... we should seriously consider restricting the law of excluded
middle (though not in the way intuitionists propose) ... I take
excluded middle to be clearly suspect only for certain sen-
tences that have a kind of “inherent circularity” because they
contain predicates like ‘true’ ..

In a noteworthy discourse, Tennant (2017: Ch. 11) recognized as an
intuitionistic relevant logician or a core logician, argues that the law
of excluded middle is not essential in deriving the explicit contra-
diction ϕ ∧¬ϕ from ϕ ↔¬ϕ . Additionally, Tennant (2017: p. 282)
proposes a methodological principle:

One is dealing with a case of genuine semantic paradox only if
it can be derived relevantly, and without using excluded mid-
dle (or any of its intuitionistic equivalents).

This principle stems from what he earlier termed the methodologi-
cal conjecture in Tennant (2015a: p. 589) that “paradoxes are never
strictly classical.”

Tennant’s strictly classical inferences of negation include the law
of excluded middle, dilemma, classical reductio, and double nega-
tion elimination, in addition to any inferences that demand an ap-
peal to any of these specific rules (cf. Tennant (2015a: p. 4)). His
methodological conjecture, or principle, posits that the set-theoretic
paradoxes, as well as the semantic paradoxes relating to ‘true’ and
‘true-of,’ emerge from reasoning that is fundamentally constructive
and adheres to relevantist principles. It claims that strictly classical
inferences should not be held responsible for the emergence of such
paradoxes.
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Tennant (2015a: p. 589) introduces the methodological conjecture
that genuine paradoxes are never strictly classical and claims that
some troubles in formalizing paradoxes in natural deduction are specif-
ically caused by strictly classical inferences, as opposed to those in
constructive reasoning.

The acceptability of classical inferences within constructivist rea-
soning remains a contentious issue, with numerous constructivists,
including Tennant (1996; 2002; 2015a), not accepting them as con-
structive. Nevertheless, the “troubles” associated with the method-
ological conjecture diverge slightly from issues surrounding the con-
structiveness of the classical reductio. The primary concern lies in the
troubles arising from the classical reductio in the exploration of the
proof-theoretic structure of paradoxes. Specifically, deriving the liar
paradox through classical reductio fails to generate the anticipated
fundamental outcome in paradoxical reasoning: an infinite reduction
sequence. As a potential resolution, the methodological conjecture is
put forth.

The present paper explores two reasons put forth by Tennant in
support of the methodological conjecture: (1) classical inferences im-
pede the generation of an infinite reduction sequence, and (2) clas-
sical inferences have no role in the formalization of genuine para-
doxes. The analysis of (1) will demonstrate that using classical re-
ductio in the liar paradox derivation can lead to an infinite reduction
sequence. The argument will be made that the generation of an infi-
nite reduction sequence hinges on the selected reduction procedures
and rules. For (2), the analysis will concentrate on the liar paradox,
which Tennant deems a genuine paradox, showing that its formaliza-
tion in natural deduction may require strictly classical inferences. As
an intuitionistic relevant logician who refers to himself as a ’core lo-
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gician’, Tennant should consider the liar sentence as lacking a proof.
However, the standard natural deduction system he utilizes fails to
adequately express prooflessness. Consequently, a sentence leading
to a contradiction, such as the liar sentence, becomes derivable in
natural deduction, which in turn derives forms of strictly classical
inferences.

Section 2 will present foundational terminology and the rules of
natural deduction, subsequently introducing Tennant’s criteria for Gen-
uine paradoxes and offering a proposed solution to these paradoxes.
The discussion in Section 3 revolves around Tennant’s methodolog-
ical conjecture, aimed at defending the proof-theoretic solution to
paradoxes. This section will expound on two key motivations under-
lying this conjecture: the prevention of the generation of an infinite
reduction sequence, and the lack of any substantive role for classical
inferences in the process of formalizing genuine paradoxes in natural
deduction.

Section 4 refutes the first reason. Specifically, it will be argued that
an infinite reduction sequence can be generated even when employ-
ing strictly classical inferences such as Classical Reductio. Further-
more, it will be discussed that generating an infinite reduction se-
quence is determined by which reduction procedures are selected.
Section 5 will contend that while the formalization of paradoxes
in natural deduction may not overtly employ strictly classical infer-
ences, it does permit the form of classical inference for certain state-
ments. This phenomenon is due to the limitations of the standard nat-
ural deduction system in expressing the concept of prooflessness as
used for the liar sentence by intuitionists such as Tennant, and it will
be argued that this weakens Tennant’s second reason for proposing
the methodological conjecture, thus providing grounds for its recon-
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sideration.

2 Tennant’s Genuine Paradoxes and Their Resolutions

Following the exploration by Prawitz (1965: pp. 94–95) into the
derivation of ⊥ originating from the set-theoretic paradox, which
generates an infinite reduction sequence, Tennant (1982; 2016) iden-
tified the infinite reduction sequence as the key inferential character-
istic separating a mere inconsistency from what he termed a “genuine
paradox.”

Tennant (1982: p. 283) initially introduced a proof-theoretic crite-
rion for paradoxicality, stating that a paradoxical derivation, employ-
ing a specific type of id est inferences, leads to ⊥ (or an unaccept-
able conclusion) while also producing an infinite reduction sequence.
Tennant (2016: p. 598) interpreted these infinite reduction sequences
as the proof-theorist’s depiction of the inherent circularity (or helical-
ity) in paradoxes. The criterion is recognized as a measure for iden-
tifying infinite reduction sequences that arise from the derivation of
⊥ pertinent to the paradoxes under consideration.

Criticism soon arose against the early version of the proof-theoretic
criterion for paradoxicality, notably from Schroeder-Heister and Tran-
chini (2017; 2018), who challenged its broad scope. This critique
was substantiated using an Ekman case from Ekman (1998) as a rep-
resentative counterexample, showing the criterion’s tendency to be
overly inclusive. This particular case demonstrated that the criterion
could erroneously classify intuitively non-paradoxical derivations as
paradoxical. To rectify this issue of overgeneration, Tennant (2016;
2017) refined the criterion, adding a new condition requiring the gen-
eralized form of all elimination rules in paradoxical derivations.
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The preliminary clarification in Section 2.1 lays the groundwork
for a comprehensive understanding of Tennant’s concept of ’genuine
paradox’, which, along with solutions to genuine paradoxes, is elab-
orated upon in Section 2.2.

2.1 Preliminaries: Some terminologies and natural deduc-
tion rules

In the interest of clarity, our language incorporates the constants ¬
for negation and ⊥ for absurdity. A unary truth predicate T (x) and
the corner quotes pq can also be used.1) Let ϕ , ψ , and σ be arbi-
trary formulas. A derivation in natural deduction signifies the process
of inferring results from given assumptions or premises via particu-
lar inference rules, aligning with the descriptions in “deduction” as
outlined by Prawitz (1965: p. 17) and “proof” as detailed by Tennant
(2017: p. 17). In addition, the following conventions are adopted: if a
derivation D ends with a formula ϕ , it is expressed as shown on the
left below, and ϕ is called an end-formula.

There are rules for ¬, T (x), and some strictly classical rules for
classical reductio(CR), dilemma(DL), and the law of excluded mid-
dle(LEM) in the natural deduction with the form of general elimina-
tion rules.2)

1) The left and right corner quotes, pq, are often used in the truth predicate T (x) to
encode formulae into coded expressions. For instance, if ϕ is a given formula,
pϕq refers to ϕ . If ψ(x) is a formula with one free variable x, then ψ(pϕq) is a
formula describing that ϕ denoted by pϕq is ψ .

2) While Tennant (2016; 2017; 2021) showed a preference for the term “paral-
lelized” over “general,” this paper employs the term “general” in reference to
general elimination rules. This terminology stems from the initial introduction of
general elimination rules by Schroeder-Heister (1984a; 1984b), who developed
a general schema for the introduction and elimination rules concerning principal
operators. Additionally, Tennant (2017) implemented standard (or serial) ver-
sions of the ¬E−rule in his core logic. In this work, the general ¬E−rule is
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The formulas directly above the line in each rule is referred to as
the “premise,” and the formula directly below the line is the “conclu-
sion.” Assumptions that can be discharged are in square brackets, for
example, [ϕ]. Similar to restrictions on Tennant’s intuitionistic rel-
evant logic, recently called “core logic,” when the ¬I−, CR−, and
DL− rules are applied, vacuous discharge is prohibited. (Cf. Ten-
nant (2015b; 2015c; 2016; 2017; 2021). The open assumptions of
a derivation are assumptions on which the end formula depends. A
derivation is called closed if it does not include any open assumptions
and is called open otherwise. A major premise of the elimination rule
for an operator is the premise that contains the operator in the elim-
ination rule. For clarity, the major premise of the E−rule is placed
at the far left of the premises in elimination rules, with all remaining
premises labeled as minor premises. Maximum formula occurrence
is the conclusion of an introduction rule simultaneously serving as
the major premise of an elimination rule.3) Standard reduction pro-

adopted to minimize potential disputes, with the findings being underpinned by
Tennant’s core logic.

3) It is commonly acknowledged that a conclusion of the CR−rule, if it is not an
atomic formula and also acts as the major premise in an elimination rule, is typi-
cally considered a maximum formula occurrence.(Cf. Prawitz (1965)) Nonethe-
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cedures for ¬ and T (x) are acknowledged and accepted. (Cf. Choi
(2019; 2023).)

For any two derivations with the same end formula Da and Db,
an immediate sub-derivation of Da is an initial part of Da that ends
with the premise of the last inference rule in Da. A sub-derivation
is the reflexive and transitive closure of an immediate sub-derivation.
Further, DaBDb means that Da reduces to Db by applying a single
reduction procedure to a sub-derivation of Da. Then, “DaBT (x)Db”
means that Da reduces to Db. Let R be a set of reductions. The fol-
lowing definitions are used.4)

Definition 2.1. A sequence < D1, ...,Di,Di+1, ... > is a reduction
sequence relative to R iff DiBDi+1 relative to R, where 1 6 i for
any natural number i. A derivation D1 is reducible to Di (D1 �Di)

relative to R iff there is a sequence <D1,D2, ...,Di > relative to R
where for each j < i, DjBDj+1; D1 is irreducible relative to R iff
there is no derivation D′ to which D1BD′ relative to R except D1

itself.

Definition 2.2. The derivation D is normal (or in normal form) rel-
ative to R iff D has no maximum formula occurrence and is irre-
ducible to R. A reduction sequence terminates iff it has a finite num-

less, instances exist where an atomic formula, serving as both the conclusion of
the CR−rule and the major premise of an elimination rule, is deemed a maximum
formula. Attention should be given to the fact that the definitions of “maximum
formula occurrence” and “normal form” can vary based on the author or the in-
tent of the proof. In the present discourse, if an atomic formula is the conclusion
of the CR−rule and the major premise of an elimination rule, it will not be treated
as a maximum formula.

4) In Definition 2.1, for any term x and y, let x≤ y mean that x is less than or equal
to y. In the context of Definition 2.2, the term “relative to R” is excluded for
ease of presentation, assuming the concise descriptions maintain their clarity and
precision.
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ber of derivations and its last derivation is in normal form. A deriva-
tion D is normalizable relative to R iff there is a terminating reduc-
tion sequence relative to R starting from D.

Non-terminating reduction sequences bifurcate into two principal
types. The first type is characterized by a derivation incapable of be-
ing reduced to a normal form by any reduction procedure, while the
second type comprises a derivation capable of generating an infinite
reduction sequence. To elaborate, for any derivation D, D generates
an infinite reduction sequence iff there is a derivation D′ such that
D �D′ but its reduction sequence does not terminate. It is thus ev-
ident that when D generates an infinite reduction sequence, D has a
non-terminating reduction sequence and is not normalizable.

Following this section, an examination will be conducted of Ten-
nant’s derivation of the liar paradox as presented in Tennant (2016;
2017). The purpose is to elucidate his concept of genuine paradoxes
and the resolutions he proposes for them.

2.2 Tennant’s Solution to Genuine Paradoxes

Let SL be a natural deduction system with rules for ¬, T (x), and
the following Tennant’s rules for the liar sentence Φ used in Tennant
(2017: pp. 298 – 302). As presented by Tennant (2017: p. 299), the
reduction procedure for Φ is as follows.5)

5) Tennant (2017: p. 299) illustrates the reduction procedure for T (x) through a
separate graphical representation. Nonetheless, the fundamental concept under-
pinning this reduction remains congruent with the ongoing discussion, thus main-
taining a perspective compatible with the prevailing discourse.
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SL also incorporates a set RL of reduction procedures, which involve
reductions for ¬, T (x), and Φ. Then, it can be easily shown that there
is a closed derivation of ⊥ in SL relative to RL that generates an
infinite reduction sequence and thus is not normalizable. (Cf. Choi
(2023: Sec. 2.2) and Tennant (2017: Sec. 11.5).)

The infinite reduction sequence from the liar paradox has been
characterized by Tennant (1982: pp. 270–271) as a falling into a
looping reduction sequence, and the completeness conjecture on para-
doxicality was put forth as the proof-theoretic criterion for identify-
ing paradoxical derivations.

The completeness conjecture is then that [a] set of sentences
is paradoxical ... iff there is some proof of [⊥] ... , involving
those sentences in id est inferences that [have] a looping re-
duction sequence. Tennant (1982: p. 283)

The concept of id est inferences is used to describe cases where a
formula can be interchanged with its negation or predication. Serving
as the id est rules for the liar sentence Φ are the ΦI− and ΦE−rules.
Moreover, the infinite reduction sequence has been identified as the
quintessential element of paradoxical derivations, a proof-theoretic
criterion expounded upon in Tennant (2016).6) :

6) The term "non-terminating reduction sequence" used by Tennant (1982; 1995;
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Tennant (1982) proposed a proof-theoretic criterion, or test,
for paradoxicality—that of [an infinite] reduction sequence
initiated by the “proofs of ⊥” associated with the paradoxes
in question (p. 271).

The initial criterion established that a derivation is deemed para-
doxical if it effectively deduces ⊥, relies on id est inferences, and
generates an infinite reduction sequence. Building further on the ini-
tial criterion, Tennant (2016; 2017) suggested a further condition that
mandates all elimination rules to be presented in a generalized form,
aiming to sidestep the problem presented by Schroeder-Heister and
Tranchini (2017). While Schroeder-Heister and Tranchini (2017) and
Choi (2019) have criticized the supplementary condition for its inad-
equacy in addressing the issue, this critique does not substantially
hinder the investigation into the role of classical inference within
paradoxical derivations, which remains the central theme of our dis-
cussion. A summary of Tennnat’s criterion for paradoxicality presents
itself thus7) :

Tennant’s Criterion for Paradoxicality(TCP): Let D be any derivation

2015a; 2016; 2017) is synonymous with the infinite reduction sequence in this
context. Both looping and spiral reduction sequences are not only instances of
non-terminating reduction sequences but also exemplify infinite reduction se-
quences.

7) Certain elements demand contemplation from a philosophical standpoint. In re-
lation to condition (i), it is observed that ⊥ is not the sole conclusion emanat-
ing from paradoxical derivations. During the formalization of Curry’s paradox,
the usage of a propositional variable p is considered viable. (Refer to Tennant
(1982)). Concerning condition (ii), it is acknowledged that infinite reduction se-
quences are bifurcated into loops and spirals. As Tennant (1995: p. 207) sug-
gests, self-referential paradoxes are primarily characterized by looping reduction
sequences, whereas non-self-referential paradoxes are inclined towards spiraling
reduction sequences. Choi (2021) offers an expanded discussion on Tennant’s
conjecture regarding self-referential paradoxes. The focus of the present paper is
exclusively on self-referential paradoxes.
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of a natural deduction system S and R be a set of reduction proce-
dures of S. D is paradoxical iff

(i) D is a (open/closed) derivation of ⊥,

(ii) id est inferences (or rules) are used in D,

(iii) D generates an infinite reduction sequence, and

(iv) all elimination rules in D are stated in general form.

The criterion, as delineated by Tennant (1982: p. 285), manifests
the completeness conjecture pertaining to genuine paradoxes, leading
to a subsequent summarization.

The Completeness Conjecture for Genuine Paradoxes: For any deriva-
tion D in a natural deduction, D formalizes a genuine paradox iff D
is paradoxical.

It is discernible from Tennant (2017: pp. 286–287) that the com-
pleteness conjecture bears a relationship to the resolution of genuine
paradoxes.

How ... are we to solve the paradoxes? It is not from this
study to venture any new suggestions beyond those of Tennant
(1982) and Tennant (1995). Those works provided ... proofs,
formalized as natural deductions, for all the major paradoxes
... . They showed that all these ... proofs ... cannot be con-
verted into normal form. The original proof-theoretic thesis
stands:

Genuine paradoxes are those whose associated proofs
of absurdity, when formalized as natural deduc-
tions, cannot be converted into normal form.

This conjecture provides a proof-theoretic criterion for the
identification of genuine paradoxes ... .
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If the conjecture is correct, then any derivation associated with gen-
uine paradoxes, particularly those identified as paradoxical deriva-
tions, will initiate an infinite reduction sequence, rendering it non-
normalizable. This conjecture, if true, would present a proof-theoretic
resolution to paradoxes.

As a proponent of anti-realism and constructivism, Tennant (2015a:
p. 578) asserts that “every truth is knowable, and its truth consists in
the existence of a(n in principle) surveyable truthmaker, also called
a (canonical) proof.” In addition, he contends that a (constructive)
proof should be capable of conversion into normal form, leading him
to propose a proof-theoretic principle for constructive mathematics.

The following principle is a cornerstone of proof-theoretic
foundations for constructive mathematics:

For every proof Π that we may provide for a mathematical
theorem ϕ , it must be possible, in principle, to transform Π,
via a finite sequence of applicable reduction procedures, into
a canonical proof of ϕ , that is, a proof of ϕ that is in normal
form, so that none of the reduction procedure is applicable to
it. Tennant (2015a: p. 579)

While advocating the proof-theoretic principle for constructive math-
ematics, it’s noted that the principle has applicability in a general
case. The belief is that any derivation representing a proof of a true
statement should, in principle, be capable of being transformed into
normal form. Moreover, in proposing his earlier criterion, Tennant
(1982) emphasizes the significance of normalizability, stating:

The general loss of normalizability, confined as it is accord-
ing to [TCP] to just the paradoxical part of the semantically
closed language, is a small price to pay for the protection it
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gives against paradox itself. Logic plays its role as an instru-
ment of knowledge only insofar as it keeps proofs in sharp
focus, through the lens of normality. Normali[z]ability, in the
context of semantically closed languages, is not to be pressed
as a general pre-condition for the very possibility of talking
sense; rather, normality of proof is to be pressed as a general
pre-condition for the very possibility of telling the truth. Ten-
nant (1982: p. 284)

Under the assumption that each derivation representing a proof of a
true statement, ought in principle to be reducible to a normal deriva-
tion, such a requirement could act as a barrier to paradoxical deriva-
tions, thereby serving as a proof-theoretic resolution to paradoxes.
While Tennant did not explicitly put forward the requirement as a
proof-theoretic solution, from TCP, it is reasonable to infer the fol-
lowing principle as a plausible proof-theoretic answer to paradoxes.

The Requirement of a Normal Derivation(RND): For any derivation D

in natural deduction, D is acceptable iff D is (in principle) convert-
ible into a normal derivation.

In his analysis contrasting his natural deduction system for naive
set-theory with that of Fitch’s, Prawitz (1965: p. 95) proposes a re-
quirement akin to RND, articulating that “the set-theoretical para-
doxes ruled out by the requirement that the [derivations] shall be
normal.” Furthermore, Prawitz (1965: p. 96) contends that this re-
quirement is less ad hoc compared to the simple/special restrictions
Fitch introduced, as noted in Fitch (1952: Sec. 18 and 20). Although
neither Prawitz nor Tennant explicitly state that RND (or a similar
requirement) constitutes a solution to paradoxes, their perspectives
suggest the possibility that they considered RND as a solution.



182 Seungrak Choi

3 Tennant’s Methodological Conjecture

As identified by Tennant (2016: pp. 12-16), the liar paradox stands
as a significant example of a genuine paradox. Tennant (2015a: pp.
588-589) intriguingly suggests a derivation for the liar paradox, ap-
plying the classical reductio rule in a manner that avoids the genera-
tion of an infinite reduction sequence. A similar derivation of the liar
paradox can be envisaged through a corresponding method.

Proposition 3.1. Let SLC be an extension of SL by adding the CR−rule.
RLC is an extension of RL by adding admissible reductions related to the
CR−rule.8) There is a closed normal derivation of ⊥ in SLC relative to
RLC.

Proof. Two claims verify this result.

Claim 1. There is a closed derivation Σ2 of ⊥ in SLC.

First, an open derivation Σ1 of ⊥ from [¬Ψ] is obtained, as shown below.

[¬Φ]1

[T (pΦq)]3
[¬Φ]1 [Φ]2 [⊥]4

¬E,4⊥
T E,2⊥

ΦI,3
Φ [⊥]5

¬E,5⊥

8) Let S and S′ constitute any natural deduction system. S′ is an extension of S iff
S′ is S itself or results from S by adding further rules. Let R and R′ be any set
of reduction procedures. A set R′ is an extension of R iff R′ is R itself or results
from R by adding further reductions.



Is the Liar Paradox Never Strictly Classical? 183

Subsequently, a closed derivation Σ2 of ⊥ in SLC is demonstrated below.

[¬Φ]6

Σ1

⊥
CR,6

Φ

[¬T (pΦq)]7

[¬Φ]1

Σ1

⊥
CR,1

Φ
T I

T (pΦq) [⊥]8
¬E,8⊥

ΦE,7⊥

Claim 2. Σ2 is in normal form.

Φ in the ΦE−rule of Σ2 is not a maximum formula because Φ is an
atomic. There is no reduction procedure in RLC applicable to Σ2. There-
fore, Σ2 is in normal form.

No reduction in RLC applies to the liar sentence Φ when it is the
conclusion of the CR−rule, due to its nature as an atomic formula in
SLC. It is essential to recognize that if an atomic formula, concluding
the CR−rule, is also the major premise of the ΦE− rule, then Σ2 does
not qualify as a normal derivation. Utilizing the DL rule for dilemma,
the ensuing conclusion can be drawn:

Proposition 3.2. Let SLD be an extension of SL by adding the DL−rule.
Then, there is a closed normal derivation of ⊥ in SLD relative to RL.

Proof. Two claims verify this result.

Claim 1. There is a closed derivation Σ4 of ⊥ in SLD.

Initially, a closed derivation Σ3 of ⊥ is established, as below.

[T (pΦq)]2
[Φ]3

[¬T (pΦq)]1 [T (pΦq)]2 [⊥]4
¬E,4⊥

ΦE,1⊥
T E,3⊥

ΦI,2
Φ
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Then, by using DL−rule, a closed derivation Σ4 of ⊥ is obtained.

[¬Φ]5
Σ3

Φ [⊥]7
¬E,7⊥

[Φ]8
[¬T (pΦq)]6

[Φ]8

T I
T (pΦq) [⊥]9

¬E,9⊥
ΦE,6⊥

DL,5,8⊥

Claim 2. Σ4 is in normal form Given that Σ4 lacks a maximum formula
and is devoid of any applicable reduction procedures within RL, it follows
that Σ4 is in its normal form.

In the context of Proposition 3.1, Σ2 and Σ4 of Proposition 3.2 con-
stitute normal derivations of ⊥. However, their inability to meet the
requirements of TCP precludes them from being classified as deriva-
tions of a genuine paradox, as per the standards of the completeness
conjecture. A notable issue is the perspective of Tennant (2016), who
considered the liar paradox as a genuine paradox. Another concern is
the ineffectiveness of RND as a solution to the liar paradox when Σ2

and Σ4 are taken as accurate formalizations of the liar. The scope of
this paper, however, is centered on the latter issue with the assump-
tion that the liar paradox is a genuine one.9)

The acceptance of the liar paradox as a genuine paradox, to sidestep
needless controversies, highlights a significant point: the derivations
Σ2 and Σ4 do not meet the requirements of TCP. Therefore, it be-
comes evident that RND does not offer a viable solution to the liar
paradox when considering Σ2 and Σ4. In tackling the challenge, Ten-
nant (2015a: p. 289) suggested that certain classical inferences, in-
cluding CR and DL, introduce difficulties in the derivations associ-
ated with the liar paradox. He termed this issue as a classical rub.

9) For an exploration of the first problem, readers may refer to Choi (2023).
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Now here’s the classical rub: this proof appears to be in nor-
mal form. The use of classical reductio has masked the real
defect that lies at the heart of paradoxical reasoning (accord-
ing to my account) – the abnormality that makes itself evident
only when one hews to a constructivist line ... .

His view is that classical inference introduces the trouble absent in
constructive reasoning. While there is a debate over the construc-
tivist’s endorsement of CR and DL, and many constructivists chal-
lenge their constructiveness, his emphasis is different. His concern
revolves around the role of CR and DL in scrutinizing the proof-
theoretic structure of paradoxes. There are two key issues: first, the
liar paradox derivations utilizing CR and DL, such as Σ2 and Σ4, do
not lead to the central aspect of paradoxical derivation, the infinite
reduction sequence. Second, the application of classical inferences
in formalizing the liar paradox is unnecessary. Tennant (2015a: pp.
589) puts forward the methodological conjecture as a response to the
trouble, diverging from the perspective that the difficulty is limited
to instances involving classical inferences.

Paradoxes are never strictly classical. The kind of conceptual
trouble that a paradox reveals will afflict the intuitionist just
as seriously as it does the classicist. Therefore, attempted so-
lutions to the paradoxes, if they are to be genuine solutions,
must be available to the intuitionist. Nothing about an at-
tempted solution to a paradox should imply that the trouble
it reveals lies with strictly classical moves of reasoning.

Based on his methodological conjecture, which is also described as
a methodological principle in Tennant (2017: p. 282), coupled with
RND, there is an implication that avoiding classical inference in the
construction of genuine paradoxes might resolve the issue that their
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derivations do not lead to an infinite reduction sequence.

Should the application of classical inference be independent of gen-
erating an infinite reduction sequence, then RND may be unsuitable
as a solution for Tennant’s genuine paradox. Section 4 addresses this
issue, while the subsequent Section 5 explores whether strictly clas-
sical inference is truly unnecessary in formalizing the liar paradox,
or if there is a possibility that the application of the liar sentence it-
self suggests an implicit use of classical inference. In such a case,
Tennant’s methodological conjecture would also be undermined.

4 Classical Reductio Does Not Affect the Generation of
an Infinite Reduction Sequence.

This section demonstrates that the simple application of the CR−rule
is not a contributing factor in generating an infinite reduction se-
quence. It becomes evident in the initial case that when the liar para-
dox is derived through the use of the CR−rule, an infinite reduction
sequence is generated. Conversely, the second case reveals a deriva-
tion of the liar paradox, where the absence of strictly classical infer-
ences results in the failure to generate an infinite reduction sequence.

Consider first a case where the use of the CR−rule leads to the
generation of an infinite reduction sequence. The CR−rule is often
regarded as an elimination rule, due to its role in negating assump-
tions within a formula. On occasion, the CR−rule is thought of as
a succinct representation of both the ¬I−rule and the double nega-
tion elimination rule. Meanwhile, Milne (1994: p. 58) interpreted the
CR−rule as a rule for introducing the formula ϕ; that is, the deriva-
tion of ⊥ from the assumption ¬ϕ introduces ϕ . This gives rise to
the set of rules presented on the left. The CRE−rule and ¬E−rule
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differ from one another in that they have distinct major premises.
The standard reduction procedure for the CR− and the CRE−rules is
delineated to the right.

[¬ϕ]1

D1

⊥
CR,1

ϕ

ϕ

D2

¬ϕ

[⊥]1

D3

ψ
CRE,1

ψ

[¬ϕ]1

D1

⊥
CR,1

ϕ

D2

¬ϕ

[⊥]2

D3

ψ
CRE,2

ψ BCRE

D2

¬ϕ

D1

⊥
D3

ψ

We then obtain a system SLCE by adding the CRE−rule to SLC. In
addition, RLCE is obtained by supplementing BCRE with RLC.

Proposition 4.1. There is a closed derivation of ⊥ in SLCE relative to
RLCE , which generates an infinite reduction sequence and is therefore not
normalizable.

Proof. Two claims establish this result.

Claim 1. There is a closed derivation Π3 of ⊥.

First, we have an open derivation Π1 of ⊥ from [¬Φ].

[¬Φ]2

[T (p(Φ)q)]3
[Φ]1 [¬Φ]2 [⊥]4

CRE,4⊥
T E,1⊥

ΦI,3
Φ [⊥]5

¬E,5⊥

With Π1, there is an open derivation Π2 of ⊥ from [Φ] as follows.
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[Φ]6
[¬T (pΦq)]7

[¬Φ]2

Π1

⊥
CR,2

Φ
T I

T (pΦq) [⊥]8
¬E,8⊥

ΦE,7⊥

Then, we have a closed derivation Π3 of ⊥.

[¬Φ]2

Π1

⊥
CR,2

Φ

[Ψ]6

Π2

⊥
¬I,6¬Φ [⊥]9

CRE,9⊥

Claim 2. Π3 generates an infinite reduction sequence and is therefore not
normalizable.

Since Φ in the CRE−rule of Π3 is a maximum formula, we apply BCRE

to Π3 to obtain the following derivation:

[Φ]10

Π2

⊥
¬I,10¬Φ

[T (pΦq)]3
[Φ]1

[Φ]6

Π2

⊥
¬I,6¬Φ [⊥]9

CRE,9⊥
T E,1⊥

ΦI,3
Φ [⊥]11

¬E,11⊥

The maximum formula ¬Φ persists in the last ¬E− rule. By applying B¬
and BΦ, we obtain the following derivation.
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[T (pΦq)]3
[Φ]1

[Φ]6

Π2

⊥
¬I,6¬Φ [⊥]9

CRE,9⊥
T E,1⊥

¬I,3¬T (pΦq)

[¬Φ]2

Π1

⊥
CR,2

Φ
T I

T (pΦq) [⊥]12

¬E,12⊥

Then, the application of B¬ and BT (x) yields the same derivation as Π3.
Therefore, Π3 generates an infinite reduction sequence and is not normaliz-
able.

Although both the derivations Σ2 in Proposition 3.1 and Π3 in Propo-
sition 4.1 use the CR−rule, Σ2 does not satisfy TCP, but Π3 does. Σ2

causes the classical rub that it formalizes the liar paradox but does not
generates an infinite reduction sequence, whereas Π3 does not.10)

Π3 illustrates that an infinite reduction sequence can still be gener-
ated even with the use of the CR− rule.11) This raises the question:
Could cases of classical rub occur independently of the CR− rule?
Should such cases be discovered, it would establish that the utiliza-

10) Milne’s view on the CR−rule as an introduction may be slightly questionable
in this regard. For instance, one may ask, “Can the CR−rule serve as a proper
introduction?” and “Is it possible to prove the normalization theorem for clas-
sical logic using Milne’s reduction?” His idea has not yet been systematically
investigated. However, whether Milne’s idea is acceptable is beyond the scope
of this paper. The study primarily focuses on finding the cause that prevents the
infinite reduction sequence. We use his idea to explain the fact that when every
rule applied in the derivation has a corresponding introduction and elimination
rule, the classical rub does not occur.

11) While certain critics may refute the above conclusion due to their rejection of
Milne’s rule, it remains possible to generate an infinite reduction sequence from
Σ2 in Proposition 3.2 by utilizing Stålmarck (1991)’s reduction for CR. This holds
true regardless of one’s stance on Milne’s rule. For a more comprehensive exam-
ination of this matter, consult Choi (2021: Sec. 3).
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tion of the CR− rule in formalizing the liar paradox is not connected
to the generation of an infinite reduction sequence.

In Tennant (2015a: pp. 585-589), he derives the liar paradox, apply-
ing the axiom pΦq = p¬T (pΦq)q to the liar sentence Φ. The elim-
ination rule for equality, =, first put forward by Martin-Löf (1971)
and expanded upon by Tennant (2007) and Read (2016), is directly
applicable to the axiom. The focus here is on applying the general-
ized form of the elimination rule for =.12)

t1 = t2

D1

ϕ(t1)

[ϕ(t2)]
1

D2

ψ
= E1,1

ψ

t1 = t2

D3

ϕ(t2)

[ϕ(t1)]
1

D4

ψ
= E2,1

ψ

Applying T (x) to ϕ within both = E1− and = E2− rules leads par-
ticular instances of = E− rules, notably = ET1− and = ET2− rules.

t1 = t2

D1

T (t1)

[T (t2)]
1

D2

ψ
= ET1,1

ψ

t1 = t2

D3

T (t2)

[T (t1)]
1

D4

ψ
= ET2,1

ψ

Then, a closed normal derivation of⊥ is obtained that formalizes the
liar paradox without applying the CR−rule and does not generate an
infinite reduction sequence.

Let ST be a natural deduction system containing T I−, T E−, ¬I−,
¬E−, and = ET−rules. ST has a set RT of reduction procedures for

12) Read (2016) formulated introduction and elimination rules for = as higher-order
rules. He also required that the formula ϕ be a predicate variable limited to
monadic predicate letters, ensuring that ϕ(t1) and ϕ(t2) are atomic. Despite the
generalized elimination rule for = aligning with his proposal, it is not treated as a
higher-order rule in this context. Read’s restrictions are not considered essential
for implementing the elimination rule for = in here.
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T (x) and ¬ with the permutation conversions for the general elimi-
nation rules. For some formula Ψ, pΨq = p¬T (pΨq)q is an axiom
of ST . Then, we have the following result.

Proposition 4.2. There is a closed normal derivation of ⊥ in ST relative
to RT .

Proof. Two claims prove this result.
Claim 1. There is a closed derivation Π5 of ⊥.
First, an open derivation Π4 of ⊥ from [T (pΨq)] is established.

Ax
pΨq= p¬T (pΨq)q [T (pΨq)]1

[T (p¬T (pΨq)q)]2
[¬T (pΨq)]4 [T (pΨq)]1 [⊥]3

¬E,3⊥
T E,4⊥

= ET1,2⊥

Then, there is a closed derivation Π5 of ⊥.

Ax
pΨq= p¬T (pΨq)q

[T (pΨq)]1

Π4

⊥
¬I,1¬T (pΨq)

T I
T (p¬T (pΨq)q)

[T (pΨq)]3

Π4

⊥
= ET2,3⊥

Claim 2. Π5 is in normal form.
Π5 has no maximum formula and is irreducible. Hence, we have the result.

In summary, Π3 in Proposition 4.1 employs the CR− rule to formal-
ize the liar paradox and subsequently generates an infinite reduction
sequence. Conversely, Π5 in Proposition 4.2, which does not utilize
the CR− rule for the same purpose, fails to generate an infinite reduc-
tion sequence. This demonstrates that applying the CR− rule does not
influence the generation of an infinite reduction sequence.
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The following section will discuss whether strictly classical in-
ference is indeed unnecessary for formalizing the liar paradox, or
whether the application of the liar sentence itself might imply an im-
plicit use of classical inference.

5 The Liar Paradox May Imply Strictly Classical
Inferences.

Tennant (2017: Ch.11) argues against the necessity of strictly clas-
sical inferences in the formalization of genuine paradoxes. The pri-
mary justification for this stance lies in the observation that paradoxes
can be formalized within standard natural deduction systems, with-
out resorting to strictly classical inferences. However, this argument
may be undermined if standard natural deduction systems inherently
permit strictly classical inferences. Should it be feasible to derive
strictly classical inferences without explicit use of strictly classical
rules, Tennant’s foundation weakens, subsequently diminishing the
support for the methodological conjecture.

A primary consideration is the challenge of articulating the intu-
itionists’ notion of "prooflessness" within the framework of standard
natural deduction. The liar paradox, for instance, receives an intu-
itionistic resolution by declaring the liar sentence devoid of truth
value due to its lack of proof, thereby precluding the derivation of any
contradiction as no consequences can be entertained. Accurate analy-
sis of the liar paradox necessitates the capacity to express "proofless-
ness." The inability to convey this concept within standard natural
deduction might render the system inadequate for properly evaluat-
ing the reasoning employed in the liar paradox.

Intuitionists typically attribute no truth value to the liar sentence,
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given that the intuitionistic interpretation of truth provides three clas-
sifications for determining a sentence’s truth-value: true, false, and
truth-valueless. A sentence ϕ is classified as true if and only if it pos-
sesses a proof, false if it has a disproof, and truth-valueless in the
absence of both. According to this interpretation, ’ϕ is not true’ car-
ries three potential meanings. First, it’s unknown whether there’s a
proof for ϕ . Second, it’s known that there’s no proof for ϕ . Third,
there exists a disproof of ϕ . If we follow the first interpretation of
the sentence, ϕ becomes a meaningless statement and thus carries no
consequences.

As noted by Choi (2018), the standard natural deduction system
lacks the capacity to express the intuitionistic concept of ’proofless-
ness,’ and the systems introduced in this paper similarly lack the
means to express a sentence without proof. From an intuitionistic per-
spective, the statement ‘ϕ is false,’ equivalent to ‘¬ϕ is true,’ implies
‘ϕ is not true,’ but the converse does not hold. Notably,‘ϕ is not true’
can only be expressed in natural deduction as ¬T (pϕq), which is
equivalent to T (p¬ϕq). (Cf. Choi (2018: Appendix A).) This shows
that standard natural deduction systems, however, fail to capture this
nuanced distinction.13)

Furthermore, in standard natural deduction systems, there exists a
normal derivation for the liar sentence Φ, and it is possible to derive
strictly classical inferences using this derivation. It has been noted
that Tennant’s strictly classical negation inferences include CR, DL,

13) The supposition that Tennant might equate ’ϕ is not true’ solely with ’ϕ is false’
could be entertained. However, this perspective fails to address the pivotal con-
cept of ’prooflessness’ in intuitionistic (relevance) logic. The absence of a means
to articulate this crucial notion persists as a significant limitation. Acknowledg-
ment is due to Professor Eunsuk Yang for bringing this interpretative possibility
to light.
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LEM, and double negation elimination DNE. Utilizing Tennant’s rule
for the liar sentence Φ, it is possible to derive a normal derivation D1

for Φ with ease, on the left below. Subsequently, applying the ∨-rule
results in the normal derivation D2 of Φ∨¬Φ on the right below.

[T (pΦq)]2
[Φ]4

[¬T (pΦq)]1 [T (pΦq)]2 [⊥]3
¬E,3⊥

ΦE,1⊥
T E,4⊥

ΦI2
Φ

D1

Φ
∨I

Φ∨¬Φ

The derivation D2 demonstrates that the law of excluded middle
holds for the liar sentence Φ. Similarly, by employing the → I-rule
with an undischarged assumption, one can derive ¬¬Φ→ Φ as a
normal derivation. Utilizing this, it can also be shown that CR, DL,
and LEM hold specifically for Φ.

Of course, for a core logician(a.k.a an intuitionistic relevant logi-
cian) who accepts RND, since a normal derivation is a genuine (or a
canonical) proof, it can be said that a sentence raising paradoxes like
the liar sentence has a proof or a disproof, but not a genuine proof.
However, since the liar sentence Φ possesses what he terms a canon-
ical proof, making it a meaningful statement with a genuine proof, it
is implausible to regard Φ as a truth-valueless statement, or as one
having a genuine proof.

From the perspective of a core logician (a.k.a an intuitionistic rel-
evant logician), who accepts RND, a normal derivation constitutes
a genuine or canonical proof. Consequently, it can be argued that a
sentence inducing paradoxes, such as the liar sentence, possesses a
(dis)proof, albeit not a genuine proof. Yet, this necessitates explain-
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ing the significance of deriving a normal derivation of the liar sen-
tence Φ through D1 above. Φ is deemed to have a canonical proof,
which establishes it as a meaningful statement with a genuine proof.
This characterization precludes the classification of Φ as either truth-
valueless or as having a genuine proof.

Can this stance be interpreted as suggesting that the liar sentence φ

or the liar’s rule for Φ implicitly implies a strictly classical inference?
On this matter, Tennant (2021: p. 30) would assert that such a claim is
incorrect because rules such as ¬I− and→ I− do not permit vacuous
discharge.

The systems of Core Logic and Classical Core Logic differ
from the three aforementioned orthodox systems in certain
crucial ways. ... The tweaks that the Core systems impose, of
which there are three, are as follows. First, ¬I does not al-
low vacuous discharge. This holds for both the Core systems.
Likewise, in Classical Core Logic, Classical Reductio does
not allow vacuous discharge.

Nevertheless, the restriction on vacuous discharge applies solely
within the framework of Tennant’s core logic. Given that the argu-
ment that classical inference is irrelevant to paradoxes is aimed at
classicists, if Tennant’s philosophical standpoint is grounded in his
core logic, classicists are under no obligation to accept it. Therefore,
his belief that classical inferences has no role to formalize the liar
paradox in natural deduction holds true only within the context of his
core logic.

Although this analysis falls short of demonstrating that strictly clas-
sical inferences play a definitive role in formalizing specific para-
doxes within natural deduction, the arguments presented in Sections
4 and 5 substantially undermine the two primary reasons for Ten-
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nant’s methodological conjecture. This weakening of support opens
the door for a reevaluation of his conjecture.

6 Conclusion

In the present paper, Tennant’s criterion for genuine paradoxes and
his methodological conjecture regarding the role of strictly classical
inferences in the paradoxical derivation of these paradoxes are ex-
plored. Tennant’s criterion emphasizes the generation of an infinite
reduction sequence, distinguishing genuine paradoxes from mere in-
consistencies. He claims that formalizations of genuine paradoxes
in natural deduction do not need to use strictly classical inferences,
such as LEM, DL, CR, and DNE, thus supporting his conjecture that
paradoxes are never strictly classical.

Tennant introduces the concept of ’classical rub,’ arguing that strictly
classical inferences, particularly classical reductio, introduce com-
plications that obstruct the infinite reduction sequence essential for
formalizing genuine paradoxes. His ’classical rub’ highlights how
classical inferences can mask the underlying abnormalities in para-
doxical reasoning, further supporting his stance that genuine para-
doxes can and should be derived within a framework excluding these
classical inferences. He maintains that genuine paradoxes can be ade-
quately addressed using a constructive and relevantist approach, avoid-
ing the pitfalls of classical reasoning. By adhering to intuitionistic
relevant logic, Tennant believes it is possible to circumvent issues
arising from strictly classical inferences, thereby providing a clearer
and more accurate formalization of genuine paradoxes.

Sections 4 and 5 critically examine Tennant’s claims by investigat-
ing whether classical reductio impacts the generation of an infinite
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reduction sequence and considering the possibility that the use of the
liar sentence inherently suggests classical inferences. Through de-
tailed analysis, Section 4 argues that the use of Classical Reductio
does not impede the generation of an infinite reduction sequence.
This finding challenges his main reason for the methodological con-
jecture by demonstrating that classical reductio, contrary to Tennant’s
assertion, does not affect the infinite reduction sequence.

Additionally, Section 5 explores the characteristics of the liar sen-
tence formalized in natural deduction. The analysis suggests that the
derivation of the liar sentence leads to have the same form of strictly
classical inferences. This is because standard natural deduction sys-
tems, including those introduced in the present paper, are irrelevant
to expressing an intuitionist’s (or core logician’s) notion of proofless-
ness. This result calls into question Tennant’s assertion that genuine
paradoxes are devoid of any inferential role for strictly classical in-
ferences.

In conclusion, the present paper challenges Tennant’s two reasons
for suggesting the methodological conjecture. It demonstrates that
classical reductio does not hinder the generation of an infinite reduc-
tion sequence. Furthermore, it argues that it remains an open ques-
tion whether strictly classical inferences have no role in formaliz-
ing genuine paradoxes in natural deduction. These results suggest
that strictly classical inferences might still play a crucial role in the
derivation of genuine paradoxes, contrary to Tennant’s assertions.

The investigation calls for a reconsideration of the role of strictly
classical inferences in the formalization of genuine paradoxes, ad-
vocating for a more nuanced understanding of the interplay between
different logical systems in the formalization and resolution of gen-
uine paradoxes. This critical perspective aims to advance the ongoing
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discourse in philosophical logic and contribute to a deeper compre-
hension of the foundational issues surrounding paradoxes and their
derivations.
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거짓말쟁이 역설은 절대 엄격히 고전적이지 않은가?

최 승 락

본 논문은 자연연역 체계에서 (진정한) 역설을 형식화하는 데 순

수히 고전적인 추론의 기여 여부를 탐구한다. 테넌트의 역설에 대

한 기준은 무한한 환원열을 생성하는지에 의존하며, 이를 통해 그

는 단순한 모순과 진정한 역설을 구별한다. 그의 방법론적 가설은 

진정한 역설은 결코 엄밀히 고전적인 추론에 의존하지 않으며, 배
중률, 딜레마, 고전적 귀류법, 이중 부정 제거와 같은 엄밀히 고전

적인 추론 없이도 도출될 수 있다는 주장에 기인한다.
테넌트가 방법론적 가설을 제안한 이유는 두 가지로 보인다. 첫

째, 엄밀히 고전적인 추론은 무한한 환원열의 생성을 방해하며, 둘
째, 엄밀히 고전적인 추론은 진정한 역설의 형식화에 기여하지 않

는다는 것이다.
본 논문은 이 두 가지 이유에 대해 의문을 제기한다. 특히 거짓

말쟁이 역설에 초점을 맞추어, 엄밀히 고전적인 추론이 무한한 환

원열의 생성을 방해하지 않으며, 거짓말쟁이 문장이 암묵적으로 엄

밀히 고전적인 추론을 허용할 수 있음을 논할 것이다. 만약 이 분

석이 옳다면, 이는 테넌트의 방법론적 가설 제안 동기뿐만 아니라, 
거짓말쟁이 역설과 같은 진정한 역설이 엄밀히 고전적인 추론에 의

존하지 않고 구성된다는 그의 주장에 대한 도전이 될 것이다.

주요어: 거짓말쟁이 역설, 진정한 역설, 엄밀히 고전적인 추론, 
직관주의 연관 논리, 니일 테넌트.


