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There is a broader philosophical point here also, one that links Parsons’s

scenario with the tradition of paradoxes and supertasks stretching back to
Zeno. Note that all of our (and Parsons’s) discussion thus far has pro-
ceeded on the assumption that drinking involves a series of discrete and
instantaneous sips. But this doesn’t have to be the case. Indeed the con-
sumption of beer (or any other liquid) is more naturally modelled as the
continuous ingestion of a quantity of drink over a finite period of time. For
example, one might start with the notion of a swig, [q, x, y], defined as the
drinking at a steady rate of some quantity, q, of beer, beginning at time x
and ending at time y. There is nothing wrong per se with modelling
drinking as a series of discrete, instantaneous sips. But it is both philo-
sophically dubious and physiologically implausible to assume – as Parsons
does – that whether you down your pint in one sip, two sips or seventeen
sips should dramatically alter the nature and duration of its effects. Drink-
ing discretely does not make this sort of difference.
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Parting smoothly?

Nicholas Shackel

In ‘How to part ways smoothly’ Hud Hudson (2007) presents ‘two
temporally-continuous spatially unextended material objects that ... share
all of their temporal parts up until their very last time-slice’ (2007: 156).
They share their location throughout all but the last instant of their lives,
at which instant they are a metre apart. Hudson claims that they part
smoothly. I shall show that they don’t.

The two objects are named Three and Nine. Three is the diachronic
fusion of the objects named Common and Here, Nine is the diachronic
fusion of Common and There.
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Common is ... always on the move. At t0 (the first moment of his
existence), Common sits at the 12:00 point on a one metre diameter
wall clock. He Zeno-sprints around the perimeter of the clock from t0

up to but not including t100 (the first moment of his non-existence).
That is, during the first 1/2 of his life he moves from the 12:00 point
to the 3:00 point, during the next 1/4 of his life he moves from 3:00
to 6:00, during the next 1/8 of his life he moves from 6:00 to 9:00,
during the next 1/16 he moves from 9:00 to 12:00...and so on.... he
happily passes every point on the perimeter infinitely many times.
(2007: 156)

At t100, however, there are two instantaneous, point-sized objects, one
positioned at the 3:00 point and one positioned at the 9:00 point on
our wall clock. Name them Here and There. (2007: 157)

By parting smoothly Hudson means that they part whilst ‘neither ...
engages in discontinuous motion’ (2007: 156).1 For an object’s motion to
be continuous is for there to be a continuous function from the times of its
existence to its spatial position. So consider the function, f, that maps the
times of Three’s existence, the interval [t0, t100], to its spatial position on
the clock face. If Three is temporally continuous then f is a continuous
function, and so is continuous at t100.2 f is continuous at t100 iff

for any e > 0 there exists a d > 0 such that for all times, t � [t0, t100],
if |t100 - t| < d then |f(t100) - f(t)| < e.3

I shall now show that the later proposition is false, that is to say, I shall
show that

(1) there is an e > 0 such that for all d > 0 there exists a time,
t � [t0, t100], such that |t100 - t| < d and |f(t100) - f(t)| > e

Hence I will have shown that Three moves discontinuously, and a similar
proof shows the same for Nine.

1 Mathematicians use ‘smooth’ to mean more than continuous: a smooth function has
continuous derivatives up to the nth derivative for some n or for all n (see, e.g.
http://mathworld.wolfram.com/SmoothFunction.html). In this sense, the continuity
of a function does not imply its smoothness, whereas Hudson’s argument requires
continuity of motion to imply smoothness of motion. So I do not think we should
interpret him in those terms, and in fact I think it is clear that Hudson is using
‘smooth’ colloquially to mean, and to mean no more than, continuous.

2 A function is continuous iff it is continuous at every point in its domain.
3 See, e.g., the general definition of continuity at a point for mappings of metric spaces,

Kolmogorov and Fomin 1975: 44 (§5.2).
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I prove this technically below, but the quick way to see the result is this.

For f to be continuous at t100 means that as the time approaches t100,
Three gets and remains arbitrarily close to its position at t100. Getting and
remaining arbitrarily close means that for any distance from its position at
t100, however small, there is a correlate (possibly very small) interval of
time ending at t100, during which interval Three is always within that
distance of its position at t100. Now if we consider the way that Three is
at the point 9:00 on the clock face infinitely many times before t100, it is
evident that in any interval of time leading up to t100, however small we
make it, there is a time at which Three is at 9:00 on the clock face, which
is to say, one metre from its final position, and so Three does not remain
arbitrarily close to its final position.

So Hudson is mistaken in his characterization of continuous motion
when he says

neither character ever moves discontinuously, for no matter how
small the open region you take about the space-time point occupied
by Here you find a temporal slice of Three present in that region prior
to t100. (2007: 157)

This satisfies a necessary condition for continuous motion, namely, getting
arbitrarily close, but fails the condition of remaining arbitrarily close. If
this were sufficient for continuous motion, a particle whose position on the
x-axis was given by the function

p:[ ]0 1, → �
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would be moving continuously while approaching zero, when in fact its
motion is radically discontinuous (as it approaches zero there are instants

at which it is arbitrarily far away, since for any x ∈� there is an n ∈�
such that 2n > x). Clearly similar cases could be formulated in which
intervals during which the particle approaches zero alternate with intervals
during which the particle occupies positions arbitrarily far away. Conse-
quently the problem could not be avoided by redefining continuous
motion in terms of continuous motion almost everytime (i.e. being allowed
to exclude sets of times of measure zero).

Proof of (1): Let {tk} be the sequence of times at which Three is at 9:00
on the clock face. This sequence is defined by

t tk k
= −( )−100 4 1

1
1

2
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Since for all k in � , f(tk) = 9:00, and f(t100) = 3:00, we have for all k in �
|f(t100) - f(tk)| = 1 > 1/2. So setting e = 1/2 and t = tj, (tj ∈{tk}), to prove (1)
we now need only to show that

(2) for all d > 0 there exists a j ∈� such that |t100 - tj| < d.

(2) will follow if t100 is the limit of the sequence {tk}, which it is:4
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By definition, t100 is the limit of the sequence {tk} iff

for all d > 0 there exists an m ∈� such that for all k > m,
|t100 - tk| < d

So given any d we simply choose any j greater than the corresponding
m ∈�and for that j, |t100 - tj| < d, whence we have (2).
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4 First step by the combination theorem (Binmore 1982: 30 §4.8). Second step by the

sandwich theorem (Binmore 1982: 31 §4.10): for all k, 1
1
2

1
1
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1

4 1
− ≤ − ≤−k k

, and

both the sequences 1
1
2

−{ }k
and {1} converge to 1.

324 nicholas shackel

mailto:shackel@philosophy.ox.ac.uk



