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The number of independent messages a physical system can carry is limited by the number of its adjustable 

properties. In particular, the systems with just one adjustable property cannot carry more than a single message at a 

time. We demonstrate this is the case for the single photons in the double-slit experiment, and the root of the 

fundamental limit on measuring the complementary aspect of the photons. Next, we analyze the other “quantal” 

behavior of the systems with a single adjustable property. Finally, we formulate a mathematical theory to describe 

the dynamics of such systems and derive the standard Hilbert-space formalism of quantum mechanics. Our 

derivation demonstrates the underlying physical foundation of the quantum theory. 
 

Introduction 
The single-photon Young’s double-slit experiment is the ideal presentation of the dual wave-

particle nature of the light. In the basic version of this experiment, a coherent light beam illuminates a 

plate pierced by two parallel slits, and the light passing through the slits is observed on a screen behind 

the plate forming an interference pattern. The experiment performed by sending single photons shows 

they also collectively construct an interference pattern [1-4] that is incompatible with the pattern of single 

particles that go through either of the slits. This apparent contradiction has served as the quintessential 

example of the wave-particle complementarity encountered in the quantum world. Quoting Feynman, this 

experiment is a phenomenon “which has in it the heart of quantum mechanics. In reality, it contains the 

only mystery” of the theory [5].   

Many studies have confirmed this feature of the photons’ behavior in the double-slit experiment: an 

experiment designed to observe the wave-like interference necessarily gives up the option of observing 

the particle-like trajectories and vice versa [6, 7]. Any effort to force the observation of both effects 

introduces an element of randomness that makes the results non-conclusive [8]. The quantum mechanical 

statement of this happening is that it is only possible to observe one of the complementary wave or 

particle properties of the photons at a time, but not both, due to the complementarity principle. No further 

explanation is provided, and the complementarity principle is regarded as an essential feature of quantum 

mechanics (QM), demarcating between quantum and classical physics. 

In this paper, we first show that the complementarity principle in the double-slit experiment results 

from information consideration of the interacting photons. We start by analyzing the properties of the 

physical systems to carry pieces of information. In particular, those with the capacity for only one 

message cannot carry more than an independent message at a time. We will show this is the case for the 

photons in the double-slit experiment and this limitation is the underlying reason behind the 

complementarity in the double-slit experiment. Next, we discuss other peculiarities in the behavior of 

such systems and their similarities with quantum systems. Finally, we develop a theory to analyze the 

behavior of the systems with a single messaging capacity under possible measurements and derive the 

standard formalism of quantum theory. 
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 The communicational properties of physical systems  

Consider a physical system with several adjustable variables. In principle, any property of a 

physical system that can be adjusted may be used as a substrate to load a message upon. For example, a 

token with 2 possible faces (“head” or “tail”), 8 possible colors, and 4 possible sizes to choose from, can 

be used to convey three independent messages: a 1-bit message using its face, a 3-bit message via its 

color, and finally a 2-bit message through its chosen size. We define the messaging capacity of a physical 

system as the total number of independent messages the system can contain. Each independently 

adjustable property of a physical system can convey one message; therefore, the messaging capacity of a 

system is determined by the number of its independently adjustable properties:  

 𝑀𝐶 = 𝐽, (1) 

in which 𝐽 is the total number of the independently adjustable properties of the system. This concept 

should not be confused with the information capacity1 of a physical system, which is a mathematical 

measure of its number of adjustable states in bits  

 𝐼𝐶 = 𝑙𝑜𝑔2(𝑑𝑡𝑜𝑡) (2) 

in which 𝑑𝑡𝑜𝑡 is the total number of adjustable states of the system. Accordingly, the bit value of a 

message loaded on an adjustable property of a system with 𝑑𝑗 states is 𝑙𝑜𝑔2(𝑑𝑗) bits. In our example, the 

token can be in each of the 2 × 8 × 4 = 64 different possible states, which leads to the total information 

capacity of 𝑙𝑜𝑔2(64) = 6 bits, which, in turn, is the sum of the bit values of the three messages it can 

convey. 

The information capacity of a physical system is conceptually different from its messaging 

capacity. The information capacity of a system is a mathematical construct that measures the number of 

its possible states in the logarithmic scale of bits. In the physical world, however, the messages are not 

necessarily stored and conveyed in bits – the binary (0 or 1) states of the systems – as in nature the 

adjustable properties of the systems generally contain more than just two states.  Meaning that unlike the 

abstract world of mathematics, where conventionally information is treated as units of bit, in the physical 

world, the messages get communicated in various non-integer chunks of bits. Furthermore, the messaging 

capacity of a physical system is a discrete-valued aspect of the system that directly represents the number 

of its independent variables. Information capacity, on the other hand, deals with the available states of 

those variables. That means for a variable with a continuous state-space – say the energy modes available 

to the photon – the information capacity is formally infinite. A more detailed account of the difference 

between the information capacity and the messaging capacity of a physical system is presented in 

Appendix A.  

Generally, the capacity of the macroscopic physical systems for processing data, while bounded, is 

immense [9]. In particular, the number of independent messages that a physical system can communicate 

is limited to the number of its independent adjustable properties. A macroscopic object, like a token, has a 

large number of adjustable properties, such as mass, temperature, color, and width. In the microscopic 

realm, however, many such attributes cease to exist in a well-defined or independent manner. 

 
1 The word information in the term information capacity could be misleading; for example, a 5GB hard disk drive 

does not necessarily contain 5 gigabytes of information since it usually contains many sectors containing random 

bits of data, conveying no information. The term “data storage capacity” can be a better one for describing the 

concept. Here we followed the established term in the literature. 
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Furthermore, microscopic physical systems have a much smaller number of components compared to 

macroscopic systems. Therefore, in general, microscopic systems have a much smaller number of 

independently adjustable properties, and accordingly, a much lower messaging capacity. For example, 

attributes such as color or temperature are not well-defined for an elementary particle like an electron, and 

it has only a few independently adjustable properties: energy, position, and spin. Nevertheless, like in any 

other physical system, these attributes of the electrons can store and convey messages. 

The case of photons in the double-slit experiment 

Similar to other microscopic systems, photons possess only a few adjustable attributes, which 

makes their messaging capacity very limited. Individual photons have three independently adjustable 

properties that may be used to convey messages: direction, frequency, and polarization. These properties 

of the photons are all utilized in the 3D movie theatres using ‘polarized 3D systems’ to convey the shape, 

color, and depth perception of the moving pictures. The cosmic microwave background (CMB) maps are 

also made by extracting these three pieces of information from the photons: direction (which way they 

were coming), frequency (energy), and polarization [10, 11]. In short, a free photon has the messaging 

capacity to carry only three independent pieces of information. 

The photon's messaging capacity can be reduced further by putting constraints on its attributes. For 

example, in performing the double-slit experiment, the setup requires a coherent monochromatic light 

source. This means the incoming photons all should be highly directional –i.e., pointing to the same 

location– and all should have the same energies. This prerequisite fixes two out of the three adjustable 

attributes of the photons –the direction & frequency– and leaves the photons in the double-slit experiment 

with only one non-fixed attribute. Thus, the photons in the double-slit experiment have only a single 

messaging capacity. 

This representation of the matter gives us a new perspective on the situation. The photons in the 

experiment are physical systems with just a single adjustable attribute that would be able to convey 

exclusively one message. This account explains why performing two independent measurements on them 

would not result in consistent outcomes and the reasoning behind the unique behavior of the photons in 

the double-slit experiment. In short, a system with a single messaging capacity cannot simultaneously 

carry two independent pieces of information. The case of the photons in the double-slit experiment is an 

example of such a situation, where the two independent measurements are either about extracting the 

which-way information (particle-like property) of the photon or its wave-like property. On such systems, 

once a measurement is performed, a second measurement associated with an independent proposition 

must necessarily result in an outcome with zero informational content. 

The physical meaning of zero information 
In physics, we gain information from a physical object with the act of measurement. By performing 

a measurement, we always get a reading. Even a ‘zero’ reading is still a result and obtained data. 

Therefore, acquiring ‘zero information’ cannot be assumed to be equivalent to obtaining no results, but it 

means that the obtained results represent zero information. 

The information content of a message, composed of bits of data, can be evaluated mathematically. 

The expected information gain in a process involving possible outcomes of 𝑋 = {𝑥1, 𝑥2, 𝑥3, … . . }, is 

mathematically defined as the change in the Shannon entropy 
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 𝐼 = 𝐻2(𝑋) − 𝐻1(𝑋) (3) 

in which the Shannon entropy is defined as 

 𝐻𝑡(𝑋) = − ∑ 𝑃𝑡(𝑥𝑖) log2(𝑃𝑡(𝑥𝑖)) (4) 

where 𝑃𝑡(𝑥𝑖) are the probabilities of the outcomes [12]. 

We can easily verify the two cases in which the information gain is zero: the case that the obtained 

data is the same old reading, and the case of having a random reading as randomness is an expression of 

zero information. In the case of no new data, when one keeps getting the same result 𝑟, we have 𝑃𝑡(𝑟) =

1 and hence 𝐻𝑡(𝑋) = 0 and 𝐼 = 0.  In the case of randomness, the outcomes do not follow a deterministic 

pattern and the probability distribution of the outcomes remains the same regardless of the previous 

outcomes, that is, 𝑃1(𝑥𝑖) = 𝑃2(𝑥𝑖). Accordingly, the Shannon entropy stays constant, 𝐻1(𝑋) = 𝐻2(𝑋), 

and therefore the information gain, in this case, is also zero. The relationship between ‘true randomness’ 

and ‘no information’ has been known in information theory since the early stages of its development, 

epitomized as perfect secrecy in cryptography [13]. In layman’s terms, zero information means either no 

new result or receiving random results; basically, either no news or conflicting news. 

This argument demonstrates mathematically why in the double-slit experiment, the result of a 

complementary measurement on the photons should always contain an element of randomness, and, 

hence, explains the basis of the complementary principle. The randomness in the results of the 

complementary measurement –associated with an independent proposition from the first– indicates that 

the measurement is performed on a system with zero informational content. Furthermore, this account 

entails that such randomness is ontological and not removable. 

Here, with no need to postulate any concept outside classical physics, by recognizing the single 

messaging capacity of the photons in the double-slit experiment, we showed how information theory 

explains the complementary behavior of the photons. The case of the single variable physical systems, or 

single-messaging systems (hereafter, SM-systems), as we will explore, provides us with an unprecedented 

occasion in physics. For example, as demonstrated above, there is a fundamental indeterminism involved 

in performing independent measurements on such systems. This means even when there is no uncertainty 

in the state of the system, performing measurements in the SM-systems are generally associated with 

some intrinsic uncertainty. This characteristic indicates that the dynamics of the SM-systems should be 

fundamentally different from the familiar deterministic dynamics of classical physics. 

The canonical role of Measurement in physics 
The main goal of physics, as an applied science, is to be able to predict the outcomes of future 

events while explaining past phenomena. We need a theory to describe the future state of a system before 

the planned experiment is performed and realized. This feature is, in a sense, similar to the analysis we 

are interested in the financial market or politics. In such fields, one can provide explanations of past 

events. However, the descriptive aspect of a theory does not have much significance if it is not associated 

with the theory's predictive power. The laws of physics are those formulations that explain natural 

phenomena in the past and the future. The primary interest of a physicist is to figure out the future state of 

a system under an experiment that is not yet performed; after performing the experiment the state of the 

system and the results are known, in reality, and principle.  
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One can also look at the situation either retroactively or prospectively: either we know the state of a 

system and want to know the state it will be in after performing a specified experiment, or we know the 

current state of a system and are interested to know its previous state before performing the experiment. 

In either case, we deal with a known state and are interested to understand the effect of the process 

already performed or to be performed. The system at hand, in any case, is in a defined state, as the result 

of some previous measurement (the state of an informationally isolated system is indefinite). Regardless 

of whether a measurement process changes the state of the system, we know that if we immediately repeat 

the same measurement on a system, we’ll get the same result. Therefore, the state of the system can be 

defined according to the performed measurement on it. In physics, we deal with systems with definite 

states2 and are interested to know about the state that the system would be in after a measurement. In 

other words, the state of a system is not an abstract a priori concept, as opposed to in philosophy or 

epistemology. We, therefore, need to base our discussions on pieces of evidence as they would appear in 

the outcomes of the realizable measurements. 

Hence, the measurement is the cornerstone of physics. The information gain after a measurement, 

however, needs some scrutiny. Mathematically the information gain can be quantified according to 

equation (3) which is a measure of “surprise” after the process. In deterministic theories –including all the 

classical physics– however, the results of the measurements are predictable in principle (for example, 

where a projectile lands, given its initial velocity, gravity, etc.). Therefore, in the final analysis, 

performing a measurement does not involve producing a new piece of information, in the strict 

mathematical sense. Considering the act of measurement however, the SM-systems are in a different 

category.  As discussed earlier, in performing independent measurements on the SM-system, the perfect 

secrecy rule affirms that the outcomes contain randomness and cannot be determined from the previous 

state of the system in principle. Therefore, in the SM-systems performing a measurement generally 

involves an element of surprise and unpredictability, and accordingly information gain (For instance, 

measuring the X component of an electron spin that is in Z+ state).  That only in non-deterministic 

theories performing measurements involve information gain can sound counterintuitive; however, once 

we realize that information is a measure of surprise rather than collecting data, it becomes clear that only 

in theories that are not deterministic measurements involve producing new pieces of information.  

Measurements and the SM-systems 
In discussing measurements, the essential difference between the physics of SM-systems and 

classical physics becomes evident. Since an SM-single cannot have more than a definite property at a 

time, any measurement performed to measure an independent property of the system entails erasing the 

previous content of the system and putting the system in a new unpredictable state –corresponding to an 

outcome of the measurement being performed–. In general, performing measurements in SM-systems 

involves information gain and producing new pieces of information, and therefore, an unpredictable 

change to the state of the system and an element of surprise. This is in contrast to classical physics, which 

has a deterministic structure. In classical physics, measurement outcomes are essentially predictable and 

do not involve information gain. This makes classical physics unsuitable for explaining systems in which 

measurements intrinsically involve producing new pieces of information. Therefore, due to the 

fundamental impossibility of prediction in SM-systems, these systems require a new kind of physics; a 

 
2 Note that the knowledge of the state of a system does not mean the knowledge of the states of its subsystems; e.g., 

a system composed of two coupled particles with zero total momentum. 
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general theory that would relate the initial state of the SM-system to the possible measurement outcomes, 

but not in a deterministic manner. If constructed successfully, such a theory of “SM-physics” would 

essentially be a generalized probability theory. Consequently, it should be of no surprise that the theory’s 

predictive power would only be probabilistic, as opposed to the deterministic nature of classical physics. 

Particularities of the SM-systems in measurements 
The limited messaging capacity of the SM-systems gives them some characteristics radically 

different from that of classical objects. We already discussed the ontological randomness in performing 

independent measurements. Here we identify some other unique situations involved in performing 

measurements on the SM-systems. 

Fundamental Uncertainty: unless performing the same measurement, the outcome of a new 

measurement on an SM-system is fundamentally uncertain. This is since an SM-system cannot hold more 

than one piece of information, so a measurement either should produce the previous result (which is the 

case in repeating the same measurement and no information gain) or erase that and produce a new result 

(an information gain) that in the latter case necessarily involves surprise and an unpredictable change of 

the state of the system. 

Complete information erasure: an SM-system cannot hold more than one piece of information; hence 

once a new independent measurement is performed on the system and a new piece of information results, 

the previous information content of the system is necessarily lost forever. That means in SM-systems, the 

information content of the system can be erased, in principle, by performing a new independent 

measurement. This situation contrasts with the classical systems, in which information is conserved, say 

when you erase a file from a hard drive, the process can be reverted in principle by looking where the 

energies dissipate, photons escaped, etc., and reversing the involved physical processes. 

Projection: performing an independent measurement on SM-systems entails an abrupt unpredictable 

change to the state of the system from the previous one to a new unpredictable one. This non-classical 

situation is the same as what is referred to as the projection postulate, the reduction of the wave packet, or 

the collapse of the state vector in QM. Note that we cannot expect a real information gain from a system 

without a real abrupt and unexpected change in the description of the system. Hence, it is reasonable that 

information gain disrupts the course of nature. 

Notation: Here, we use the following notation to represent the measurements on the SM-system. 

Performing the measurements type 𝑆, 𝑀̂𝑆, on the SM-systems can result in any of the mutually exclusive 

outcomes 𝑀̌𝑖
𝑆, 𝑖 ∈ {1, … , 𝑁}. As we discussed, if a system is already in a state that corresponds to an 

outcome of the same type of measurement, 𝑀̌𝑗
𝑆, performing the measurement does not change the state of 

the system and we’ll have 

 𝑀𝑆𝑀̌𝑗
𝑆 = 𝑀̌𝑗

𝑆 (5) 

Performing an independent 𝑃 type measurement, 𝑀̂𝑃, however, will change the state of the system to an 

outcome of the new measurement 

 𝑀𝑃𝑀̌𝑛
𝑆 → 𝑀̌𝑟

𝑃 (6) 

which is a random outcome among the possible outcomes of the new measurement. In short: 

 𝑀𝐼𝑀̌𝑛
𝐼 = 𝑀̌𝑛

𝐼  (7) 
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𝑀𝐼𝐼𝑀̌𝑛
𝐼 → 𝑀̌𝑟

𝐼𝐼 

On the “quantal” properties of the SM-systems 

The SM-systems exhibit several other features, such as no-cloning, non-commutation, and non-

contextuality, which are considered peculiarities of the quantum systems. Below, we propound some of 

the “quantal” properties of the SM-systems in an axiomatic manner. 

Axiom 1 (Existence of systems with a single adjustable property). There exist physical systems 

with only one adjustable property. In practice, the other independent properties of such a system either are 

fixed by various screenings in the experimental setup (e.g., the photons in the double-slit experiment) or 

can be abstracted away since the specified property of the system can be considered isolated and in total 

seclusion from the rest (e.g., electron spin).  

Theorem 1 (Single-messaging systems). A system with single adjustable property can hold no 

more than one message. 

The proof is obvious by contradiction. Note that an SM-system can have a huge information 

capacity. In theory, one can devise methods to code more than one message on the sequence of the data 

carried by the system. In practice, this can be possible if the coding algorithm is shared with the other 

party. However, this includes separate communications and a wealth of shared background knowledge 

between the parties which none are in the single physical message transmitted. Thus, physically it cannot 

carry more than one message. (See Appendix A, for a discussion about our notion of information –which 

includes a lot of implied shared knowledge– versus physical information which bears no tag). 

Corollary 1 (Single context recording). The SM-system at any time can contain only a single 

message, one piece of information relating to the last measurement performed on the system. 

Corollary 2 (No simultaneous encoding). The SM-system cannot simultaneously contain more than 

one message.  

Corollary 3 (No Counter-factual reasoning). Since at any time, SM-systems cannot contain more 

than one content, in discussing SM-systems one cannot reason about properties of the system that have 

not been measured and the results of different measurements that have not been performed. This feature 

contrasts with the case of classical systems that properties of objects can always be assumed to have 

values even when they have not been measured. Counter-factual reasoning thus cannot be applied in the 

SM-systems, as no more than one property can have a meaning and definiteness at any time. This means 

the level of reality that can be attributed simultaneously to physical quantities in SM-systems is very 

confined. 

Corollary 4 (Contextuality). In discussing SM-systems, unless already performed, a measurement 

contains no pre-existing values. It follows since an SM-system cannot have more than a single content 

(corollary 1). Therefore, in SM-systems a question like “what is the X value of the system when its P 

value is p” is meaningless; neither has it admitted an operational definition, nor does it reflect an 

understanding of the SM-systems. 
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Corollary 5 (No hidden content). The content of the SM-system is fully determined as the result of 

the performed measurement. Note that the single content of the SM-system indicates there is no extra 

content to the SM-system besides what can be inferred from the outcome of the measurement. In other 

words, the description that the SM-system is in the state that measurement 𝑄̂ would result in 𝑞̌2, fully 

characterizes the state of the system. Any other information that can be deduced from that description, 

usually from the setup of the experiment, also may characterize the state. For example, in the Stern–

Gerlach experiment setup the outcome that “the particle is deflected upward” could mean that the spin of 

the particle is in 𝑆̌+
𝑧 state; therefore, one can also describe that state as “𝑆̌+

𝑧”. 

Axiom 2 (No null measurement). An observation always yields a result. In performing a 

measurement, obtaining a zero reading is also a piece of data and an outcome. 

Theorem 2 (physical representation of zero information). In the physical world, obtaining zero 

information means either getting the same old result or collecting random readings.  

See the paragraph following equation (3) for proof. 

Corollary 6 (consistency in repeated measurements). An immediate repeated measurement on a 

system yields the same outcome. Besides expecting accord in the physical world, we don’t expect 

information gain in the sequential measurements of the same property. Accordingly, after performing a 

measurement a state –which corresponds to the outcome of the measurement– can be attributed to the 

SM-system. 

Theorem 3 (ontological randomness) In SM-systems performing measurements associated with 

independent propositions results in random readings.  

From Axiom 1, SM-systems can contain only one message. Once a measurement performed on the 

system produces an outcome, there is no more informational content to the system (corollary 5). A later 

measurement associated with an independent proposition should yield an outcome (axiom 2). The zero 

informational content of the system means that the outcome either should be the same old one, or a 

random reading (theorem 2). The first case is rejected by corollary 4, thus, the outcome of the new 

measurement must contain randomness. 

Corollary 7 (No history) The SM-system cannot contain its past. The only information an SM-

system holds is its current state, as it can’t hold more than one piece of information. This means the result 

of the previous measurements on the SM-system gets erased right after performing an independent 

measurement. Accordingly, the future state of the SM-system following an independent measurement 

does not depend on its history (cf. ontological randomness). 

Corollary 8 (Collapse) In SM-systems, performing an independent measurement involves erasing 

the previous content of the system and putting it into a new state. This entails the change of the previous 

state of the system to a state corresponding to an unpredictable outcome of the new measurement 

(theorem 3). This abrupt unpredictable change of the state due to performing measurement is commonly 

referred to as collapse in the QM literature.  

Theorem 4 (noncommutativity) In SM-systems, the result of performing two different 

measurements depends on the order in which the measurements are performed.   

This is a manifestation of the physical fact that the system cannot hold more than one message at a 

time and follows from theorem 3 and corollary 7. Given that performing independent measurements on 

the SM-system results in erasing the previous state and getting a random outcome, the final state of the 
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SM-system depends on the order that the measurements get performed (cf. corollary 4-contextuality). We, 

therefore, expect the underlying algebra of SM-systems to be non-commutative.  

Symbolically we may represent the two situations as 

 𝑀̂𝐼𝐼𝑀̂𝐼𝑀̌𝑗
0 → 𝑀̂𝐼𝐼𝑀̌𝑘

𝐼 → 𝑀̌𝑚
𝐼𝐼 (8) 

 𝑀̂𝐼𝑀̂𝐼𝐼𝑀̌𝑗
0 → 𝑀̂𝐼𝑀̌𝑏

𝐼𝐼 → 𝑀̌𝑤
𝐼  (9) 

in which the final outcomes are not the same. 

Theorem 4 (no-cloning) An SM-system cannot be cloned in general. 

The proof we present here is similar to the one provided by Dieks [14]. Start with an SM-system in 

a certain state. Assume we have a way to clone the SM-system. We make 𝑛 copies of the state. When we 

repeat the original measurement on the copies, all consistently yield the same result as the original state. 

Next, on the copies, we perform an independent measurement. This measurement on the copies results in 

different random readings (theorem 2). Therefore, the final states of the copied ones are not all identical 

as required by the definition of the cloning apparatus. This indicates we cannot make copies of an SM-

state in a consistent way. The envisioned cloning assumption therefore should be false.  

Symbolically we may represent the cloning apparatus as  

 𝑈̂(00|𝑀̌𝑛
𝑆) ⟼ (𝑀̌𝑛

𝑆|𝑀̌𝑛
𝑆) (10) 

where 00 is the “neutral” state of the cloning apparatus before the procedure. 𝑀̌𝑗
𝑠 is the initial state of the 

system, which, in turn, is an outcome of the measurement type 𝑆̂, that is 

 𝑀̂𝑆𝑀̌𝑗
𝑆 = 𝑀̌𝑗

𝑆 (11) 

Suppose we perform the measurement 𝑆̂ on the system 

 𝑀̂𝑆 (𝑈̂(00|𝑀̌𝑗
𝑆)) ⟼ 𝑀̂𝑆(𝑀̌𝑗

𝑆|𝑀̌𝑗
𝑆) = (𝑀̌𝑗

𝑆|𝑀̌𝑗
𝑆) (12) 

The effect should be –and is– the same if we had performed the measurement initially on the state to be 

cloned: 

 𝑈̂ (𝑀̂𝑆(00|𝑀̌𝑗
𝑆)) = 𝑈̂(00|𝑀̂𝑆𝑀̌𝑗

𝑆) = 𝑈̂(00|𝑀̌𝑗
𝑆) ⟼ 𝑀̌𝑗

𝑆|𝑀̌𝑗
𝑆 (13) 

On the other hand if we perform an independent measurement 𝑄̂ on the system 

 𝑀̂𝑄 (𝑈̂(00|𝑀̌𝑗
𝑆)) ⟼ 𝑀̂𝑄(𝑀̌𝑗

𝑆|𝑀̌𝑗
𝑆) → 𝑀̌𝑖

𝑄|𝑀̌𝑡
𝑄

 (14) 

the outcome is not consistent with the final result acquired by the effect of the cloning apparatus: 

 𝑈̂ (𝑀̂𝑄(00|𝑀̌𝑗
𝑆)) = 𝑈̂(00|𝑀̂𝑄𝑀̌𝑗

𝑆) → 𝑈̂(00|𝑀̌𝑟
𝑄

) ⟼ 𝑀̌𝑟
𝑄|𝑀̌𝑟

𝑄
 (15) 

Since the outcomes are not the same, the cloning fails. 

As demonstrated, the SM-systems comprise many unique features of quantum physics, with 

intuitively understandable descriptions. These shared characteristics strongly suggest that the SM-systems 

are quantum systems. Next, we construct a mathematical theory to describe the dynamics of the SM-

systems. Whether the SM-systems are indeed QM systems should be decided once we have the 

mathematical theory of the SM-systems and can compare the algebraic structures of the two theories. 

 

Stating the framework and constructing the theory of SM-systems 
We discussed the fundamental role of measurement in physics and how the unique standing of the 

SM-systems about conducting measurements distinguishes these systems from classical ones; the 

unprecedented situation that performing an independent measurement indeed changes the state of the SM-

system to a new unpredictable outcome of the measurement. Measurements are usually performed in the 
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experiments and sometimes are called observations. We don’t use the latter term as it implies the 

existence of an ‘observer’ or an ‘operator’. In our description, measurements can be performed using 

measuring apparatuses. (Note that by referring to measurement, we in no way imply that it is being 

performed in the experiment, and certainly we don’t refer to a measuring apparatus itself.) 

A measuring apparatus is a physical system that consists of at least three parts: a fixed state (the 

zero of the reading parts, the “zero state”), a pointer that its state can change due to interacting with the 

system being measured, and finally a register part (the memory) that saves the reading of the pointer 

compared to the fixed state (the outcome). Any system with such a tripartite structure can be considered 

as a measuring apparatus. A molecule interacting with another, for example, cannot be considered as a 

measuring apparatus unless it has enough degrees of freedom to register the state of the other system 

independently. A measuring apparatus, in the sense used here, however, does not need to be, say complex, 

or being operated by a conscious agent. 

With this description, measuring devices are not SM-systems. If we try to use an SM-system as a 

measuring apparatus (ignoring the tripartite structure for now) the trouble is evident: upon coupling, the 

correlation formed between the two systems, i.e., the ‘SM-measuring device’ and the ‘measured SM-

system’, entails that the combined system (measuring device + SM-system) is just another SM-system, as 

it has no more than a single independent variable.  

Schematically one can represent the tripart measuring apparatus in its expanded form as 

  |0|𝑝𝑜𝑖𝑛𝑡𝑒𝑟|𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟|̂  (16) 

however, for all practical purposes, the only variable that one needs to report to convey the measurement 

outcome is the registered pointer reading 

 0|0|0̌ → 0|𝑛|𝑛̌ ≡ 𝑛̌ (17) 

since in performing measurements on SM-systems, the reading of the apparatus fully specifies the state of 

the SM-system after the measurement (cf. Corollary 5-No hidden content). 

In building our framework, we start with an SM-system in a certain state. Our goal is to construct a 

theory to explain the possible behavior of the SM-system under any of the realizable measurements, a 

theory that would be probabilistic. Here we use the propensity interpretation of probability in discussing 

the dynamics of the SM-systems. This interpretation thinks of probability as being resulted from an 

existing propensity, disposition, or tendency of a physical system in a given situation to result in a 

specified outcome. Propensities are not relative frequencies but can be adjudged as the causal basis for the 

observed long-run frequencies. For example, consider a particular biased coin with the propensity of 0.42 

to land heads every time it is tossed. The frequentist approach to probability cannot assign a chance for 

single tosses of the coin since relative frequencies do not exist for individual observations, but only for 

large ensembles. On the flip side, propensities can be used along with the law of large numbers to explain 

the long-run frequencies. Apart from this interpretational distinction, we use the terms probability and 

propensity in the same general sense. 

We argued that SM-physics is not a deterministic theory. We envisage the SM-physics to, given the 

present state of an SM-system, provide us with the machinery for computing the probabilities of the 

system for the outputs of different possible measurements. Our aim is thus to specify the system’s 

propensities for the outcomes of realizable measurements. By realizing that: 1) the state of the SM-system 
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is an outcome of an already performed measurement (Corollary 4) and 2) SM-systems have single-content 

(Corollary 5), the problem reduces to specifying the propensities of the outcome of the first measurement 

for those of the next measurement. Therefore, we have a clear roadmap to follow: we need to find out 

how the relationship between the two measurements determines the propensities of the SM-system. Our 

goal is to develop a mathematical theory to associate the relationship between two measurements with the 

propensities of an outcome of one measurement for the outcomes of the other measurement. 

Construction of formalism 
In discussing the possible outcomes of an SM-system for a specified measurement, as mentioned 

above, we can consider the relationship between two measurements: the one that has defined the state of 

the system, and the one that we are interested in to calculate the propensities of the system for its different 

outcomes. Two measurements could be either dependent or independent. For two independent 

measurements, the outcome of the second one is independent of the outcomes of the first one, while for 

the dependent measurements, certain outcomes of the second one can be more probable or less probable 

depending on the outcome of the previous measurement. An example of the dependent measurement can 

be measuring the spin of an electron already in 𝑆̌+
𝑧 state, in the direction that is tilted 20o from the z-axis in 

the zx-plane.  

Without losing generality, let’s assume measurements with 𝑁 distinguishable outcomes on an SM-

system (generalization to the infinite case should not be difficult.). We represent a measurement type 𝐾 

symbolically as 𝑀̂𝐾, which its possible outcomes are the independent members of the set 𝑆(𝑀̂𝐾) defined 

as:  

 𝑆(𝑀̂𝐾) = {𝑀̌1
𝐾 , . . , 𝑀̌𝑁

𝐾} (18) 

Let us write 𝑃𝑗
𝐼 to indicate the propensity of the SM-system to end up in the final state 𝑚̌𝑗

𝐼 due to 

measurement 𝑀̂𝐼. Since the measurement eventually yields a result, we have 

 ∑ 𝑃𝑗
𝐼

𝑁

𝑗=0

= 1 (19) 

In a few cases 𝑃𝑗
𝐼 can be evaluated readily. For an already performed measurement 𝑄̂ on the system 

with the outcome 𝑀̌𝑖
𝑄

, we know that 𝑀𝑄𝑀̌𝑖
𝑄 = 𝑀̌𝑖

𝑄
; therefore, for the case of the second measurement 

being 𝑀̂𝑄 we have 

 𝑃𝑗
𝑄 = 𝛿𝑗,𝑖 (20) 

At the same time, the outcomes of an independent realizable measurement 𝑆̂ are all equally possible, and 

therefore the system has an equal propensity for those  

 𝑃𝑗
𝑆 =

1

𝑁
   (21) 

with 𝑁 being the total number of possible outcomes of the measurement. 

Besides these two specific cases, we need to construct an extensible framework to evaluate the 

propensities of the system for the outcomes of a general type of the second measurement, i.e., the case 

that the measurement is neither the same as the previous one nor is fully independent of that. Consider 
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two dependent measurements 𝑀̂𝐾& 𝑀̂𝐿 with the inter-probability between their possible outcomes, 

written as  

 𝑇𝑗,𝑖
𝐿,𝐾 = 𝑃(𝑀̌𝑗

𝐿|𝑀̌𝑖
𝐾) (22) 

(the probability of obtaining the jth outcome in measurement 𝐿̂, given the ith outcome of measurement 𝐾̂). 

The inter-probability of the two measurements can be framed in an 𝑁 × 𝑁 ‘interrelation matrix’. One can 

recognize a number of properties for this matrix. For example, for any fixed 𝑖 we should have 

 ∑ 𝑇𝑗,𝑖
𝐿,𝐾

𝑗
= 1  (23) 

since the 𝑀̂𝐿 measurement is presumed to produce one and only one result. Now, representing the 

propensity of the SM-system for the measurement 𝑀̂𝐾 as 𝑃𝑖
𝐾, it is straightforward to calculate the 

propensity of the system for the measurement 𝑀̂𝐿: 

 𝑃𝑛
𝐿 = ∑  𝑃(𝑀̌𝑛

𝐿|𝑀̌𝑖
𝐾)𝑃𝑖

𝐾

𝑖
= ∑  𝑇𝑛,𝑖

𝐿,𝐾𝑃𝑖
𝐾

𝑖
  (24) 

which is summing all the possible ways the system can end up in 𝑀̌𝑛
𝐿. We expect these matrices to 

conserve the total probability, i.e., we should have ∑ 𝑃𝑛
𝐿

𝑛 = 1. This is guaranteed since 

 ∑ 𝑃𝑛
𝐿

𝑛
= ∑ ∑   𝑇𝑛,𝑖

𝐿,𝐾𝑃𝑖
𝐾

𝑖
=

𝑛
∑ 𝑃𝑖

𝐾 ∑   𝑇𝑛,𝑖
𝐿,𝐾

𝑛𝑖
= 1 (25) 

given Eqs. (19) & (23). 

Now assume we start with 𝑀̂𝐿 as our first measurement, which the system has the propensity of 𝑃𝑖
𝐿. In the 

same way, for the dependent measurement 𝑀̂𝐾 we can write the inter-probability matrix of 

 𝑆𝑗,𝑖
𝐾,𝐿 = 𝑃(𝑀̌𝑗

𝐾|𝑀̌𝑖
𝐿). (26) 

In practice, these interrelation matrices indicate how the probabilities of getting a specific outcome in a 

first measurement transfer to that of having a specific outcome in the second measurement. In other 

words, these matrices are mappings from the probability-space of the first measurement to that of the 

second.  

These mapping matrices should possess certain properties. Their components are probabilities 

which should be positive values less than or equal to one:  

 0 ≤ 𝑇𝑗,𝑖 ≤ 1 (27) 

 0 ≤ 𝑆𝑗,𝑖 ≤ 1 (28) 

We also have 

 ∑ 𝑇𝑗,𝑖
𝑗

= 1 (29) 

 ∑ 𝑆𝑗,𝑖
𝑗

= 1 (30) 

for any fixed 𝑖, as the measurements will result in one and only one outcome (cf. Eq. (23)). Furthermore, 

these matrices map the SM-propensities from one measurement-space to another.  

 𝑃𝑗
𝐿 = ∑ 𝑇𝑗,𝑖

𝑖
𝑃𝑖

𝐾 (31) 
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 𝑃𝑗
𝐾 = ∑ 𝑆𝑗,𝑖

𝑖
𝑃𝑖

𝐿 (32) 

which means the consecutive action of these reciprocal maps should take an initial state back to itself. 

Therefore, we should have  

 𝑇𝑆 = 𝑆𝑇 = 𝑰 (33) 

in which 𝑰 is the identity matrix. However, the current construct of the interrelation matrices does not 

allow such an identity. The problem arises since the components of the matrices, i.e., 𝑃(𝑀̌𝑗
𝐾|𝑀̌𝑖

𝐿) are 

positive value probabilities, which would not add up to zero for the non-diagonal components of the 

multiplied 𝑇𝑆 and 𝑆𝑇 matrices. And the sole possible instance of 𝑆 = 𝑇 = 𝑰 refers to the trivial case of 

identical measurements.  

To overcome this issue, we can try using probability-amplitudes, 𝜌, instead of the probabilities, 𝑃, 

defined according to 

 𝑃(𝑀̌𝑗
𝐾|𝑀̌𝑖

𝐿) = |𝜌𝑗,𝑖
 𝐾,𝐿|

2
 (34) 

The new inter-measurement matrices can be then constructed accordingly as 

 Γ𝑗,𝑖
𝐿,𝐾 = 𝜌𝑗.𝑖

𝐿,𝐾
 (35) 

and 

  Δ𝑗,𝑖
𝐾,𝐿 = 𝜌𝑗.𝑖

𝐾,𝐿
 (36) 

For these interrelation matrices we now have  

 ∑ |Γ𝑗,𝑖|
2

𝑗
= 1  (37) 

 ∑ |Δ𝑗,𝑖|
2

𝑗
= 1 (38) 

with the same logic that a measurement eventually yields a result and the probabilities should add up to 1 

(cf. Eqs. (29) & (30)). Moreover, similar to (27) & (28) the components are confined according to  

 0 ≤ |Γ𝑗,𝑖|
2

≤ 1 (39) 

 0 ≤ |Δ𝑗,𝑖|
2

≤ 1 (40) 

which mean in this construct the components can be negative and complex too. 

We can employ these interrelation matrices to pursue the SM-system’s propensities analogous to 

the previous construct, but with an adjustment. Instead of acting on the propensities, 𝑃𝑗
𝐼, of the SM-

system, these mappings should act on the propensity-amplitudes of the SM-system to keep the 

calculations consistent. Accordingly, we define the propensity-amplitudes of the SM-system, σ𝑗
𝐼, in terms 

of its propensities, 𝑃𝑗
𝐼, as  

 𝑃𝑗
𝐼 = |σ𝑗

𝐼|
2
 (41) 

in which σ𝑗
𝐼 indicates the propensity-amplitude of the SM-system to end up in the outcome 𝑀̌𝑗

𝐼 for 

measurement 𝑀̂𝐼. For the propensity-amplitude of the system we have 
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 ∑ |σ𝑗
𝐼|

2

𝑗
= ∑ 𝑃𝑗

𝐼

𝑗
= 1 (42) 

To evaluate the propensities of the system for a second measurement we proceed as before. The 

interrelation matrices Γ𝐿,𝐾 an Δ𝐾,𝐿 are mappings between the possible outcomes of the two measurements 

𝐿̂ and 𝐾̂, but for the propensity-amplitudes 

 σ𝑗
𝐿 = ∑ Γ𝑗,𝑖

𝑖
σ𝑖

𝐾 (43) 

 σ𝑗
𝐾 = ∑ Δ𝑗,𝑖

𝑖
σ𝑖

𝐿 (44) 

Similar to the previous construct, these mappings should conserve the total probability, i.e.,  

 ∑ |σ𝑗
𝐿|

2

𝑗
= ∑ |σ𝑗

𝐾|
2

𝑗
= 1 (45) 

This means Γ and Δ matrices have to be unitary. (We reject the antiunitary case since these matrices 

describe continuous transformations between the propensity-amplitudes. see also Eqs. (37) & (38)).  

The second property of these interrelation matrices comes from the fact that they are mappings 

between the two measurement spaces in opposite directions, and therefore their consecutive actions 

should map any state back to itself (cf. Eq. (33)). Thus, we should have 

 ΓΔ = ΔΓ = 𝑰 (46) 

This immediately results that these unitary matrices are conjugate transpose of each other 

 

Δ = Γ−1 = Γ∗  

Γ = Δ−1 = Δ∗ 

 

(47) 

That means the interrelation matrices between the two measurements are conjugate transpose of each 

other. In other words, in the SM-systems the propensity-amplitudes between any pair of measurements  𝐼 

and 𝐼𝐼 outcomes are related as  

 𝜌(𝑀̌𝑏
𝐼𝐼|𝑀̌𝑎

𝐼 ) = 𝜌∗(𝑀̌𝑎
𝐼 |𝑀̌𝑏

𝐼𝐼). (48) 

Here, we derived the specificities of the SM-systems’ state-spaces by analyzing the constraints on 

the transformation of the propensities of the SM-systems between measurements. Interestingly, the 

principal constraint that we observed was the conservation of the total probability in the mappings, and 

from the consistency requirements, the properties of the transformations followed. 

 State vectors, operator algebras, and Hilbert spaces 

It is now straightforward to recognize the Hilbert-space formalism of the SM-systems theory and to 

identify the denotations of the elements of our SM-theory. From our construct, the rescaled probabilities 

of the SM-system, i.e., the probability-amplitude, 𝜎𝐼 can be used to describe the state of the system as a 

vector of length one in the 𝑁-dimensional space defined by the 𝑁 independent outcomes of the 

measurement 𝐼 (Eq. (18)). Using the common bra-ket notation and Eq. (42), for the SM-system’s state-

vector we have 

 〈𝜎𝐼|𝜎𝐼〉 = 1. (49) 
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With this representation of the SM-state as vectors in the complex vector space of propensity-amplitudes, 

the algebraic structure of the complex vector space of SM-systems is evident. In this representation, once 

we fix a basis to present the SM-state in, |𝜎𝐼⟩, the system’s propensity-amplitude for any other possible 

measurement can be described according to Eq. (43) as a linear combination of these bases  

 |𝜎𝐼𝐼⟩ = 𝜌𝐼𝐼,𝐼|𝜎𝐼⟩ (50) 

 

where 𝜌𝐼𝐼,𝐼 are the unitary transformations between the measurements, portrayed in Eq. (48). In our 

construct, the transformations of the state of the SM-system between different measurements are carried 

out by the interrelation matrices of the measurements. The logic is simple: an SM-state can be thought to 

be the result of a certain measurement, so the dependency of two SM-states can be judged by the 

dependence of the two measurements that would produce those two SM-states. 

One can easily realize that the Born rule for probability is already embedded in our construct. To 

calculate the propensity of the SM-system for a specified measurement outcome, 𝑀̌𝑏
𝐼𝐼, given its initial 

state, 𝜎𝐼 = 𝑀̌𝑎
𝐼  one can use Eq. (50) to get 

 𝜌𝑏,𝑎
𝐼𝐼,𝐼 = 〈𝜎𝑎

𝐼 |𝜎𝑏
𝐼𝐼〉 = 〈𝑀̌𝑎

𝐼 |𝑀̌𝑏
𝐼𝐼〉 (51) 

Therefore, using Eq. (34), the propensity of obtaining a specified outcome in the measurement given an 

initial state, is 

 𝑃𝑏,𝑎
𝐼𝐼,𝐼 = |𝜌𝑏,𝑎

𝐼𝐼,𝐼|
2

= |〈𝜎𝑎
𝐼 |𝜎𝑏

𝐼𝐼〉|
2

= |〈𝑀̌𝑎
𝐼 |𝑀̌𝑏

𝐼𝐼〉|
2
 (52) 

This is the Born probability rule, resulted as an inherent consequence of the theory.  

In sum, in this framework, the “state-vectors” of Hilbert space are complex-valued conditional 

propensity-amplitudes of the SM-system for different realizable measurements. The vector algebra of the 

SM-systems’ Hilbert space accordingly describes the transformations of these propensity-amplitudes of 

the system between the realizable measurements. 

Superposition of possibilities 

 In our construct, one can write the propagation of the propensity-amplitude of the system under a 

series of measurements by consecutively applying the interdependency matrices of the measurements3 

 
|𝜎𝐼𝐼𝐼⟩ = 𝜌𝐼𝐼𝐼,𝐼𝐼|𝜎𝐼𝐼⟩ = 𝜌𝐼𝐼𝐼,𝐼𝐼𝜌𝐼𝐼,𝐼|𝜎𝐼⟩ 

           = 𝜌𝐼𝐼𝐼,𝐼|𝜎𝐼⟩ 
(53) 

in which  

 𝜌𝑓,𝑖
𝐼𝐼𝐼,𝐼 = ∑ 𝜌𝑓,𝑛

𝐼𝐼𝐼,𝐼𝐼𝜌𝑛,𝑖
𝐼𝐼,𝐼

𝑛
 (54) 

describes the interrelation between the measurements.  

We can use this chain rule to determine the system’s propensity-amplitude for a third measurement 

from the previous measurements’ interrelation matrices. Importantly, this sum accounts for the 

“interference effects”. The joint probability of the final and initial state, calculated according to  

 
3 Note that by the term ‘measurement’ we don’t imply ‘observation’ or ‘collapse’; we merely peruse the 

transformation of the system’s propensity-amplitude between different types of measurements. 
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 𝑃(𝑀̌𝑓
𝐼𝐼𝐼|𝑀̌𝑖

𝐼) = 𝑃𝑓,𝑖
𝐼𝐼𝐼,𝐼 = |𝜌𝑓,𝑖

𝐼𝐼𝐼,𝐼|
2

= |∑ 𝜌𝑓,𝑛
𝐼𝐼𝐼,𝐼𝐼𝜌𝑛,𝑖

𝐼𝐼,𝐼

𝑛
|

2

 (55) 

can include extra terms (the interference terms) that make the result different from the classical method of 

calculating joint probabilities. For example, the interference in the double-slit experiment follows as the 

photons have two options (𝑠𝑙𝑖𝑡1 and 𝑠𝑙𝑖𝑡2) to go from the source (O) to the screen (𝑆): 

 
𝑃(𝑀̌𝑆

𝑆𝑐𝑟𝑒𝑒𝑛|𝑀̌O
𝑆𝑜𝑢𝑟𝑐𝑒) = |𝜌𝑆,O

𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑜𝑢𝑟𝑐𝑒|
2

= |𝜌𝑆,𝑠𝑙𝑖𝑡1
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌𝑠𝑙𝑖𝑡1,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒 + 𝜌𝑆,𝑠𝑙𝑖𝑡2
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌𝑠𝑙𝑖𝑡2,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒|
2
 

(56) 

which the result is clearly different from the classical expectation of 

 

𝑃(𝑀̌𝑆
𝑆𝑐𝑟𝑒𝑒𝑛|𝑀̌O

𝑆𝑜𝑢𝑟𝑐𝑒) = 𝑃(𝑆|𝑠𝑙𝑖𝑡1)𝑃(𝑠𝑙𝑖𝑡1|O) + 𝑃(𝑆|𝑠𝑙𝑖𝑡2)𝑃(𝑠𝑙𝑖𝑡2|O)

≡ |𝜌𝑆,𝑠𝑙𝑖𝑡1
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌𝑠𝑙𝑖𝑡1,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒|
2

+ |𝜌𝑆,𝑠𝑙𝑖𝑡2
𝑆𝑐𝑟𝑒𝑒𝑛,𝑆𝑙𝑖𝑡𝜌𝑠𝑙𝑖𝑡2,O

𝑆𝑙𝑖𝑡,𝑆𝑜𝑢𝑟𝑐𝑒|
2
 (57) 

The chain rule for the propagation of the propensity-amplitudes between the measurements, Eq. 

(53), is a rather fundamental feature of the SM-systems. One can see here that it is the connection 

between the propensity-amplitudes of outcomes of different measurements –instead of their propensities–, 

that modifies the result from that of classical probability. The structure of our derivation permits a clear 

statement about the basis of interference and demonstrates the essential role of the presence of the 

intermediate measurement. In SM-physics, where reality emerges as the outcome of the measurements, 

the interference –which is resulted from the superposition of the possible outcomes of the intermediate 

measurement– indicates that the presence of the intermediate non-performed measurements (the 

“interaction-free” measurements) cannot be neglected in the SM-systems. Furthermore, we can discern 

that interference results as a consequence of mathematical bookkeeping of the SM-systems’ propensity-

amplitudes for the possible measurements, not the physical reality of those.  

Time evolution and derivation of the Schrödinger equation 

So far, analysis of the mappings between different measurements’ propensity spaces for the SM-

system allowed us to obtain the algebraic structure of the operators in their state-spaces, i.e., the Hilbert 

space and the Born probability rule. The inclusion of time evolution in this framework is straightforward, 

as discussed in many mathematical physics textbooks (see for example [15] Sec 3.3). 

A measurement can be labeled by the time variable 𝑡, indicating the time at which it is performed. 

Taking the relationship between two measurements does not depend on time, their interrelation matrices 

must have the same structure at different times; therefore, there should be a unitary transformation 

𝕋(𝑡2 − 𝑡1) such that 

 𝜌(𝑡2) =  𝕋−1(𝑡2 − 𝑡1) 𝜌(𝑡1)𝕋(𝑡2 − 𝑡1) (58) 

With common assumption about time evolution, one can write  

 𝕋(𝑡2 − 𝑡1) = e−𝑖𝐻(𝑡2−𝑡1) (59) 

in which 𝐻 is a self-adjoint matrix that can be used as a definition of the Hamiltonian.  

Borrowing the conventional QM terminology, so far, our discussion has been in the “Heisenberg 

picture”, in which the state of an isolated system remains fixed, whereas the matrices which represent the 

observables vary in time. Transposition into the “Schrödinger picture” of operators renders the evolution 

of the state, and the Schrödinger equation follows:  
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 𝑖
𝑑

𝑑𝑡
𝜎𝐼(𝑡) = 𝐻𝜎𝐼(𝑡) (60) 

We found the operator algebra of Hilbert space can express the relations between the outcomes of 

measurement in SM-systems, by mapping the propensity-amplitudes of various realizable measurements 

to each other. Note that these universal relations contain no randomness. We can now properly identify 

the elements of the theory. The state of the SM-system, 𝜎𝐼, codes the information from the past 

measurement, and in the propensities of the system for future realizable measurements. The SM-states is a 

representation of conditional probability-amplitudes that can be specified for different measurements, 

using the interrelations between the measurements. The interrelation matrices, 𝜌𝐼𝐼,𝐼, are unitary matrices 

transforming the SM-state, 𝜎𝐼, between the measurements. The construct of the theory guarantees that the 

total propensity is conserved in transforming from one possible measurement to another. Finally, when a 

measurement is performed, the state of the system is adjusted as the result of the observation.  

In sum, by analyzing the constraints that the probabilistic nature of the SM-systems under 

measurements imposes, we found the general properties of the mappings that transform the state of an 

SM-system from one measurement-state-space to another. The algebra of the theory follows from the 

transformations that describe the deterministic relationships between measurements. Significantly, the 

standard formalism of QM, as well as the Born probability rule, was entirely obtained from our 

construction. 

Equivalence of SM- and QM-systems 
In discussing the photons’ behavior in the double-slit experiment, we recognized the case of SM-

systems, which explained the complementary dual behavior of the photons. We further realized that the 

SM-systems comprise features such as noncommutativity and no-cloning, which are uniquely 

peculiarities of the quantum systems. We discussed that classical physics cannot explain the SM-systems, 

and a distinct theory is needed to describe these systems. Finally, we derived the mathematical theory of 

SM-systems, which is equal to the standard formalism of QM. This consideration leads the SM-systems 

and QM-systems to be the same. This judgment needs a bit of discussion as we have had no clear 

demarcation criteria to discern quantum systems from the other physical systems. 

The quantum world has been thought to be related to the microscopic world, with QM describing 

the physics of atomic and subatomic particles. On the other hand, the SM-systems are not intrinsically 

bound to any specific physical size. Nevertheless, since macroscopic systems usually have a large number 

of independent properties and, accordingly, a large capacity to simultaneously hold different pieces of 

information, we don’t expect to find SM-systems among them. Moreover, since the messaging capacity of 

the systems scales with their size, it is understandable that in the microscopic world, where the systems 

have numerable properties that in certain situations could get confined to just one, we would expect 

predominantly more cases of SM-systems. The same argument is valid for the system’s behavior in the 

cryogenic temperatures, another area where quantum behavior such as in superfluidity [16, 17], 

superconductivity [18], quantum Hall effect [19], and laser-cooled trapped ions [20, 21] emerges. 

Our description provides a clear benchmark for the systems that would not obey classical physics: a 

physical system exhibits quantum behavior when it possesses only one adjustable property. This criterion 

has an easily testable corollary: it is not the case that the photons –or in general other microscopic 
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systems– should always behave quantum mechanically. Corpuscular theories of classical physics indeed 

explain many aspects of electronics and optics. Even most aspects of Magnetic Resonance (MR) physics, 

which is based on the spin –a quantum concept–, are perfectly understandable from a classical perspective 

[22]. Therefore, it is not the size that defines quantum behavior, and accordingly, identifying QM as the 

physics of the microscopic world is an oversight. On the other hand, there is no physical constraint, in 

principle, to prevent having macroscopic systems with just a single adjustable variable. Macroscopic 

quantum phenomena, as in Bose-Einstein condensate or as in superconducting quantum interference 

device (SQUID) [23], indicate that quantum systems are not size-dependent, but it is the number of 

independently adjustable properties of a system that specifies its behavior. 

In interference experiments with single large molecules [24, 25], a similar type of argument can be 

made for each of the macroscopic molecules in the meticulously prepared homogeneous beam of the 

macromolecule selected for performing the experiment. Observing “quantumness” in such coherence 

experiments in effect is not feasible without a dynamical screening of the molecules in the preparation 

phase that puts a portion of the molecules in a coherent monochromatic beam [26], informationally 

isolated enough to exhibit signs of interference. In these experiments, the presence of interference is 

inferred by observing whether the amplitude of the collected signal shows sinusoidal modulation that 

exceeds the experimental uncertainty, i.e., whether there is some interference effect on top of the classical 

expectation. In practice, in the molecular experiments, unlike the optical experiments that use highly 

coherent monochromatic beams, the signal minimum does not reach zero, which is due to the molecules 

in the beam that behave classically.  

Following the derivation of standard QM formalism based on properties of the SM-systems, we, 

therefore, have a clearer picture of the world. There are two main types of physical objects in the world: 

the SM-systems which QM describes their behavior, and the rest which are classical systems. 

Accordingly, a comprehensible account of “the physical systems with a single adjustable property” fully 

defines the quantum system. In what follows, therefore, we use the terms SM-systems and QM-systems 

equivalently. 

Interpretation of some controversial concepts 
In the light of our derivation, we can elucidate a number of the controversial issues in quantum 

literature and, as well, provide clear interpretations for some concepts like “state” and “measurement”. 

Irreducible randomness vs. hidden variable: We argued that the physics of the SM-system, 

unlike classical physics, cannot be deterministic in principle. At first, this could look counterintuitive 

since in the SM-systems the exact property of the system can be determined entirely by a single 

observation. However, as we demonstrated, this single contextuality of the SM-systems leads also to the 

inevitable uncertainty in the outcome of a later independent measurement. Our presentation indicates that 

the physics of the SM-systems is intrinsically indeterministic, and no deeper reality is hidden beneath the 

unpredictable behavior of the SM-systems. Our account is illustrative of von Neumann’s irreducible 

randomness [27] for the observed quantum randomness.  

Physical state and the state-function: In classical physics, the state of physical systems is the list 

of their physical configurations with their values. The SM-systems are then in a peculiar situation, as they 

only possess a single physical property which limits the level of reality attributed to them. This means the 

state of an SM-system has a single entry, portraying the result of the last measurement on the system. 
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Also, in classical physics, the state of a system can be used to determine its future behavior, a task that is 

fundamentally impossible for the SM-systems. In the SM-systems, a theory can only probabilistically 

describe the outcomes of measurement, i.e., provide their propensities. However, as we saw, in SM-

physics, one may use the state of the SM-system to list the propensities of the system for any realizable 

measurements using a mathematical construct, referred to as the state-function of the system. This wealth 

of information may look contradictory at first, given that the state of the SM-system has a single entry and 

the single context recording of the SM-systems. How can an SM-state contain all information for 

propensities of the system for any realizable measurement?  

From our derivation, we can see that such information is not buried in the system’s state-vector, but 

in fact, it is embedded in the mappings which directly reflect the relations between the measurements4.  

The state is a mathematical description of the physical state of an SM-system, which is an outcome of the 

last performed measurement on the system. It can be used to describe the probabilities of the outcomes of 

future realizable experiments. The SM-theory provides the machinery to calculate the propensities of the 

system for different measurements. As it is clear from our derivation, the transformations which map the 

state-function between different measurements are the interrelation matrices of the measurements. We use 

the dependency of two measurements (one that the state of the SM-system is in, and the other one to be 

realized) to calculate the propensity of the system for the new measurement. This resolves the 

misconceptions about the state of an SM-system, that it contains all the information about its 

representation in various measurements (for example, this statement from WIKIPEDIA ‘a quantum state 

"carry" a larger amount of (classical) information – thanks to quantum superposition’). That information 

exists in the relationship between the two measurements, not the SM-system. The “extra information” is 

the interdependency of the possible measurements, not the information contained in the SM-system5. One 

should note that the decomposition of an SM-state in the state-space of another measurement, say, 𝑆̌+
𝑋 =

1

√2
 (𝑆̌+

𝑍 + 𝑆̌−
𝑍), is a mathematical description of the dependency of the two measurements’ outcomes, not 

the actual portrayal of the SM-system in an unperformed measurement. The mathematical expansions of 

the SM-states should not be interpreted physically as if the SM-systems have more than one objective 

reality –which is, by the way, its pure state description–. One should always keep in mind the limited 

realism of the SM-system and its single context recording. 

Unlike in many non-individualist views of the quantum state (e.g., [28, 29]), we advocate that a 

state is assigned to individual SM-systems, not just to the ensembles of similarly prepared SM-systems. 

The state-function, in its broad sense, represents the knowledge of possibilities and their probabilities, 

rather than the state of reality. We can perceive the state-function as a list of propensities, which while 

being an objective property of the system, has no reality. Note that not all objective entities are 

necessarily real; borrowing the terms used in philosophy (for example see [30]), we can discern epistemic 

realities, such as money, the banking systems, and other social constructs, versus ontological objective 

realities, like a paper-money(bill) and a bank building. In this account, the SM-state is epistemically 

objective. The idea of intrinsic quantum probabilities of individual systems (calculated from a state vector 

 
4 Maybe an example can make the difference between the information buried in a statement, and that which is 

embedded in the background clear. From the statement “Janice is 6-years old” one may infer that, “Janice is not 

married” or “Janice cannot drive a car”, but none such information is contained in the original statement, rather 

contained in the background information about human societies. 
5 In a similar sense, a bill does not carry the information about its purchase power for different market items. That 

information is contained in the market dynamics, not in the paper money. 
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or density matrix) has been around in QM literature [31-33]. The notion of objective quantum 

propensities, not only can explain the statistical interpretation of quantum theory [31], but also enables us 

to make sense of single-case probability attributions in quantum events, say the probability of decay of a 

decaying atom at a particular time.  

Schrödinger equation and the measurement problem: In our construct, we analyzed the 

transformation of the SM-system’s propensities between the measurements. From our derivation of the 

Schrödinger equation, which is a deterministic, linear equation, it is clear that the equation describes the 

dynamics of the propensity-amplitude state of the SM-systems between the measurements. Two points 

about this equation should be elaborated: First, the obtained formulation is concerned with the SM-

systems and not all physical systems. Second, the equation describes how the state of the SM-systems 

transforms between different types of realizable measurement, and, accordingly, how the propensities of 

the system can be evaluated for those measurements. This formalism is complete, linear, and 

deterministic in describing the evolution of the propensity state until a measurement is performed, and as 

the result the state of the system changes.   

In our construct, we clearly defined and distinguished the SM-systems from classical ones. 

Therefore, there is no confusion about the divide between quantum and classical, as well as many other 

situations that arise because of no clear definition of that line. For example, in our framework with the 

provided description of the measurement apparatus as a tripartite classical system (Eq. (16)), there are no 

problems parallel to the “measurement problem” discussed in quantum literature (insisting on describing 

measurements by QM-physics), as well as Schrödinger's cat [34, 35], Wigner’s friend [36], the observer 

and observed,  and many other situations that essentially are the extension of the measurement problem. 

With this clear distinction, when it comes to applying the Schrödinger equation to physical situations, we 

should regard the definition and applicability of the theory, which is to the systems that have an extremely 

limited messaging capacity, one to be exact. This denotes that while SM-theory is a fundamental theory, it 

is not a universal physical theory.  

 When considering the role of measurement in physics, there is a fundamental difference between 

classical physics (which is a deterministic theory) and SM-physics. As discussed, (e.g., in Corollary 8 

(Collapse)), in SM-physics, performing a measurement generally involves an unpredictable outcome and 

an element of surprise. Therefore, the linearity of SM formalism cannot extend to after performing a 

measurement and the act of observation. The reason is clear: the Schrödinger equation fully determines 

the evolution of the SM-state, and with deterministic equations, there is no surprise and information gain. 

The described dynamics of the SM-system mirror the fact that in these systems the physical reality is 

shaped by the choice of the performed measurement, and the information gain always involves surprise 

and unpredictability. 

Our construct reveals there is no need to reconcile the reduction of the SM-system’s state with the 

Schrödinger linear evolution. The question of specifying exactly how, when and why collapse (as 

opposed to unitary dynamics) occurs in observations (“the analysis of the measurement process”) is 

predicated on a false assumption: that the Schrodinger unitary evolution is still valid in performing a 

measurement, as the SM-system interacts with a system which is not an SM-system; and that the 

mathematical decompositions of SM-states denote the factual presentation of these single-content 

systems.  
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In sum, the measurement problem loses its problematic aspect by noting: 1) the measuring 

apparatus is not an SM-system, 2) an SM-system has no content rather than the outcome of the performed 

measurement; the mathematical expansion of an SM-system’s state in the non-measured state-spaces has 

no physical meaning and is not an element of reality, and 3) for an SM-system, observation generally 

involves information gain from the system and thus comprises an element of surprise and sudden change 

(collapse). 

Some past approaches to the problem of deriving QM 
In contrast to most physical theories, the quantum theory had not been grounded yet on 

fundamental physical principles. Since its beginning, an underlying axiomatic mathematical formalism of 

the theory (based on Hermitian operators and their corresponding eigenvectors and eigenvalues, mainly 

developed by Dirac and von Neuman [27, 37]) has been known; however, a conceptual physical 

foundation in terms of simple axioms and meaningful principles on which the entire theory could be built 

upon had been missing. There have been many attempts to find physical principles behind quantum 

theory [38-54]. In general, however, they either fail in deriving the complete formalism of the theory or 

are based on abstract mathematical assumptions with no clear physical basis. Our elucidation of the 

single-photon double-slit experiment situation resolved the challenge of what should be designated as an 

axiom to derive QM from. By recognizing the SM-systems, and realizing their “quantal” characteristics, 

we developed a theory of conditional propensity-amplitudes for those systems, which presents the 

complete standard formulation of quantum mechanics. 

Most of the past works to derive, or to reconstruct QM from some principles, in general, have been, 

in the final analysis, mathematical endeavors to analyze the internal structure of the theory and its 

mechanism in the hope to find the cornerstones of the theory. In simple words, by analyzing how the 

different characteristics of the quantum systems relate to each other, there were studies aiming to provide 

new insights into the characteristics that structure QM, and accordingly, to shine a light on its 

foundations. For example, Clifton, Bub, and Halvorson [52] used an approach in C*-algebraic formalism 

to demonstrate how several information-theoretic constraints on physical systems (to be specific: no 

Superluminal information transfer, no perfect broadcasting, no bit commitment) suffice to deduce some of 

the features of QM (to be specific: kinematic independence, noncommutativity, nonlocality). Another 

approach by Hardy focuses on general properties of probability theories and discusses the reasons which 

distinguish quantum theory from classical probability theories [51].  

There have been some conceptually similar works to the current work, aiming to understand the 

physical origin of the mathematical structure of the theory based on the informational properties of the 

quantum systems (most noteworthy [47, 55]). These studies commonly base their axioms on the finite 

information capacity of an “elementary system”. While such works present some interesting conceptual 

results, one should note that postulating statements like ‘the information capacity of a quantum system is 

finite’ as the antecedent already affirms the consequent that ‘a quantum system cannot carry enough 

information to provide answers to all different experiments’, and hence, in the final analysis, does not 

provide new physics. Thus, even if such works had been successful in deriving the quantum theory, 

without explaining what an “elementary system” means ontologically, the employed assumption remains 

ineligible in grounding QM on a fundamental physical principle. (Rovelli [47] presented a possible 

reconstruction scheme, which parts of its ingredients were implemented in our work). 
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In general, the reconstruction of quantum theory starts by formulating the foundational principles 

which the authors believe plausible and then translating them into mathematical axioms. One expects the 

first principle to be simple physical statements with easily understandable meaning, not highly abstract 

mathematical assumptions (for example [39, 41]). Compared to our approach, it appears that the main 

shortcoming of such approaches could be constructing their theory based on mathematics rather than the 

physics of the situation. In particular, it appears customary to base the approach on information and bits, 

which are abstract mathematical concepts, rather than on physical messages that are pieces of information 

conveyed physically. In our approach, we primarily based our argument on the physics of the situations.  

After recognizing and defining the messaging capacity of a system, we used information theory’s perfect 

secrecy rule to explain unavoidable randomness in the physical systems with a single messaging capacity. 

Following the construct on this discrete physical property, we finally could derive the full theory. 

The perfect secrecy rule has been utilized in a similar context in other works too. Predominantly in 

the works initiated by Zeilinger [49] and extended later in a series of papers [55-59]. It is worth analyzing 

how using the abstract notion of information, rather than the physical concept of the message, could lead 

to a construct stray. In that work, Zeilinger puts forward a Foundational Principle (FP) for QM that 

postulates a quantum system as an elementary system that carries one bit of information. The FP postulate 

then provides an explanation for the observed randomness in quantum measurements for the spin of a spin 

1/2 particle case, as was analyzed in the aforementioned paper. The proposed principle, however, fails to 

apply to quantum particles in general: the spin of a spin 3/2 particle, for example, carries 2 bits of 

information, or a photon has a continuous energy state-space, which makes its information capacity 

infinite in principle [60]. Motivated by the FP postulate, Brukner and Zeilinger [61] tried to avoid this 

inconsistency in the information capacity of quantum particles by discussing the inapplicability of the 

Shannon information in quantum measurements and defining their own measure of information. Their 

argument against the suitability of the Shannon information in quantum measurements, however, turned 

out to be erroneous; besides the notion that the Shannon information only makes sense for the systems 

with pre-existing values, their reasoning against the applicability of the Shannon information in quantum 

measurements is based on an incorrect application of conditional probability in quantum physics (several 

textbook examples of this occasional misunderstanding was mentioned years earlier by Ballentine [62]). 

Incidentally, the FP postulate, which Brukner and Zeilinger based their picture upon, utilizes the perfect 

secrecy rule, which, in turn, is based on the Shannon information that they argued against its applicability 

in quantum physics. Not long after publication, Brukner and Zeilinger’s argument on the inadequacy of 

the Shannon information in QM was comprehensively refuted by Timpson [63, 64] and the consistency of 

Shannon information in both the classical and quantum settings was emphasized in several papers [65-

67]. Zeilinger and Brukner’s measure of information has been criticized for several other reasons and still 

calls for careful analysis [68-70]. While Brukner and Zeilinger suggest their interpretation provides an 

explanation for a number of quantum phenomena, their speculative approach leaves an important point 

moot: that a quantum particle can be regarded as having just a single bit of information content. 

Discussion and Conclusion 
In classical physics, the dynamics of a particle’s evolution is governed by its position and 

momentum. In QM, the uncertainty principle forbids simultaneous determination of the position and 

momentum of a quantum particle. No further explanation is offered for this fundamental limitation. Here 

we recognized and discussed the case of the SM-systems in which their single context recording limits 
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simultaneous determination of their independent properties. We demonstrated the “quantal” behavior of 

these systems is the natural consequence of their limited messaging capacity. Finally, we developed a 

theory to explain the dynamics of such SM-systems and derived the conventional formalism of QM.  

We started primarily by recognizing that such a theory cannot be deterministic and would be a 

probabilistic theory. The task of the theory is then to describe how to evaluate the system's propensities 

for possible measurements outcomes. The input is the state of the SM-system, which, in turn, is the result 

of an already performed measurement. The derivation followed based on considering how the propensity 

of an SM-system transforms between different types of measurements. In particular, we used 

conservation of probability to find the properties of the operators acting on the state space of the SM 

systems. Significantly, the standard Hilbert-space formalism of QM, as well as the Born probability rule, 

was completely obtained from our construction. 

When properly identified in terms of measurement procedures, the algebra of the theory describes 

the transformation of complex conditional propensity-amplitudes. This, in turn, originates from the 

correct computational tools to predict the corresponding probabilities for the measurements, rooted in the 

deterministic relations between physical properties. Two considerations helped us in configuring the 

formalism of the theory: 1) the relationships between measurements are invariant, and 2) one should be 

able to change her measurement decisions in principle and get the same propensities. The latter means 

that it should be mathematically possible to render the propensities of the system from one type of 

measurement to another, and in principle, that process should be reversible so that total propensity 

remains conserved. These observations yield us to derive the full formalism of the theory.  

Our derivation of the formal machinery of QM gives us a clear interpretation of its constituent. In 

particular, the state describes the system’s propensity-amplitudes for the outcomes of realizable 

measurements. Therefore, the state is not an abstract a priori concept but takes its reality from being the 

result of an already performed measurement on the system, with its objectivity being with respect to 

another realizable measurement. We also have a clear divide between classical physics and quantum 

physics, and thus the meaning of the linear Schrödinger equation and its limits of applicability, which in 

turn resolves the measurement problem.  

Traditionally QM has been understood as an operator algebra over a Hilbert space of quantum 

states, with a few interpretation rules. While the mathematical premises of the theory lack physical 

grounding, the success of the theory in practice has been astonishing. Our derivation helps the theory to 

eventually acquire a precise meaning in virtue of the first principles. The only new physical concept that 

we introduced is the number of the independently adjustable properties of a physical system, which 

indicates the number of independent messages that the system can simultaneously carry. The premise that 

a quantum system is a physical system with a single adjustable property explains where the structure of 

the theory comes from. At the levels of the single content SM-systems, not more than a single proposition 

of objective reality can be defined. This leads to quantum theory not being a deterministic theory, but a 

general probabilistic theory. At its core, quantum theory is a mathematical tool for computing 

probabilities for the outcomes of the measurement that will be our experimental interventions to the 

system. The theory describes the transformation of the SM-systems’ propensities for different 

measurements relative to each other. It is not a theory about the processes internal to the systems being 

measured that give rise to the measurement outcome. In other words, the theory is not as much about the 

system (which does not have complex internal mechanisms) but rather about what could be known about 
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the possible outcomes of realizable measurements. Quantum theory is not about the ingredients of the 

world or a theory of space or time. It is a theory of mechanics of the SM-systems whose role is to provide 

a framework for computing the probabilities of events given that other events have occurred by 

accounting for the general structure of the correlations in the physical world. 

With this perspective, QM essentially is a probability theory for the SM systems that can be derived 

completely based on the relationships between the possible outcomes of different measurements. Its 

formalism is the consequence of the consistency of the bookkeeping of the system’s propensities for 

different measurements. It is un-exotic and free of underlying metaphysical groundings mentioned in 

some complex theories or interpretations, such as hidden variables [71-74], multiple worlds [75-77], 

many minds [78-80], etc. Such works, while claiming to provide a better “explaining” of QM, have not 

served us with a better understanding of the underlying mechanism of the theory.  

QM does have a simple and intuitive principle at its heart. Effectively, the principle behind its 

formalism is that the total sum of probability values should be one, i.e., the fact that experimenting yields 

a result, and therefore the sum of the propensities of the system for different outcomes should be one. 

This principle is not only simple but also has an easily understandable physical meaning: independently 

of a measurement’s type, the propensities for the outcomes should add up to one. Therefore, in describing 

the transformation of the SM-system’s propensities for different types of measurement, the total should be 

conserved. Once you posit this criterion, the rest of the theory follows from the consistency requirement. 

The extent of the structure of the theory – basically the whole standard Hilbert space formalism– that was 

derived solely from such a constraint is interesting. The complete formalism of QM can be derived from 

one simple constraint that the total probability of a set of related events should always add up to one. 

Our derivation would not cause a huge revision in quantum theory from the familiar formalism we 

learned from our textbooks. However, it places the results of quantum physics into a much larger context. 

The presented picture explains the physical origins of the theory, clarifies where the formalism of QM 

comes from, and provides us with the vivid meanings of its elements. With this new perspective, we can 

revisit the scenarios described by conventional quantum mechanics and resolve the misunderstandings in 

our understanding of physics and the world around us. This work could be a beginning for us to 

understand quantum mechanics finally; a theory that perplexed generations of physicists, a puzzle that 

Feynman famously had described as “impossible, absolutely impossible, to explain in any classical way” 

which he suspected “very strongly that it is something that will be with us forever” [5]. In the light of the 

present derivation, now we have a clear and precise interpretation of the quantum theory. 
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Appendix A: Information vs. inference 

One may wonder about a claim such that a photon can convey at most three distinct messages on its 

direction, energy, and polarization. Is it not possible for example, to load two messages just on the two 

independent components of its polarization, regardless of its other degrees of freedom? 

Here we should differentiate between our notion of information (semantic information) in contrast 

to the physical information (information carried by physical objects). In short, our concept of semantic 

information is what gets inferred and interpreted in a web of shared background knowledge and implied 

assumptions, while physical information bears no such references and comes with no tags. 

The following example can help show the difference: one may use a pulse of laser with adjustable 

wavelength –say with exact values between 100 to 999 nm– to send a message to the other party. The 

information to be sent will be encoded on the wavelength of the light. With this setup, the physical carrier 

can convey a message worth up to log2(899)=9.8 bits of data. In the receiving end, however, the 

wavelength measured in nm can be converted to binary (a number between 0001100100 and 1111100111) 

in which the value on each placing can represent the answer to a different pre-assigned yes/no question, 9 

in total. With such encodings and with a wise choice of questions, one can thus transmit a wealth of 

information just by using a pulse of the laser. So it seems, that the wavelength of the photons can convey 

a lot more than just one message. 

One should, however, not confuse this human ability to encode many pieces of information on the 

wavelength of a beam of light –that benefits from many shared background knowledge– with the physical 

message that bears the information. In such encodings, the agents at the ends implicitly or explicitly 

benefit from myriads of shared background knowledge between themselves, e.g., they both know what a 

wavelength, a nm, number bases, the choice of the questions, their order, etc., are, which none are part of 

the transmitted physical message. 

Similarly, a single electron does not carry on itself per se the background knowledge of, for 

example, spatial directions, so that the observer at the receiving end would be able to project and read the 

momentum in specific directions. In practice, physical information is distinguishable only based on the 

distinctive physical properties of the message carrier. Meaning, that a single physical property with a 

huge number of states, physically only bears one message containing a big chunk of data equal to 

log2(#states) bits. 


