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In this work, we derive the standard formalism of quantum theory by analyzing the behavior of 

single-variable systems under measurements. These systems, with minimal information capacity, 

exhibit indeterministic behavior in independent measurements while yielding probabilistically 

predictable outcomes in dependent measurements. Enforcing probability conservation in the 

probability transformations leads to the derivation of the Born rule, which subsequently gives rise 

to the Hilbert space structure and the Schrödinger equation. Additionally, we show that preparing 

physical systems in coherent states —crucial for observing quantum phenomena— effectively 

reduces the number of independent variables to one. This first-principles derivation of quantum 

theory from probability conservation in single-variable systems offers new insights into the physical 

meaning of quantum theory and clarifies its domain of applicability. 

 

I. INTRODUCTION. 

 

Quantum mechanics is a cornerstone of modern physics, 

providing fundamental insights into the behavior of particles 

at atomic and subatomic scales. It has been extraordinarily 

successful in explaining phenomena such as atomic structure 

and electron behavior in solids. Despite its overwhelming 

empirical success, the foundational principles of quantum 

theory –particularly the derivation of its core equations from 

fundamental physical laws– remain an open question. 

Traditional approaches to quantum theory often rely on 

abstract, axiomatic postulates [1-9], leaving a gap in 

explanations grounded in first physical principles. 

In this paper, we aim to bridge this gap by deriving quantum 

theory through the study of physical systems with a single 

independent variable. Due to their extremely limited 

information capacity, these systems exhibit indeterministic 

behavior upon measurements, best described 

probabilistically. By enforcing the principle of probability 

conservation in the transformations across different 

measurement scenarios, we derive the core components of 

quantum theory. Furthermore, we demonstrate that the 

coherence requirement in conducting quantum experiments 

effectively reduces the number of independent variables in the 

physical systems, transforming them into single-variable 

systems. 

Our approach establishes a framework where the standard 

formalism of quantum theory naturally emerges from the 

principle of probability conservation in single-variable 

systems, plays a fundamental role in their behavior. This 

derivation, grounded in intuitive physical principles, provides 

new insights into the origins of quantum phenomena. Beyond 

its theoretical significance, this framework has the potential 

to drive future advancements in both quantum technologies 

and fundamental physics. 
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II. METHODS 

 

A. Informational description of physical systems 

Translating concepts from physics into the language of 

information theory is relatively straightforward. In physics, 

measurements are performed to obtain outcomes. A physical 

measurement 𝑀𝐾 with 𝑁 possible outcomes 𝑚1
𝐾  to 𝑚𝑁

𝐾   and 

their corresponding probabilities 𝑝1
𝐾  to 𝑝𝑁

𝐾  (in which ∑ 𝑝𝑖
𝐾𝑁

𝑖 =
1), can be translated into an informational query 𝑄K, asking, 

“What is the outcome of measurement 𝑀𝐾?”, with 𝑁 possible 

answers 𝑞1
𝐾 to 𝑞𝑁

𝐾, corresponding to the same probabilities. 

The relationships between dependent and independent 

measurements mirror those between dependent and 

independent questions. These parallels allow the full 

apparatus of information theory –such as Shannon entropy, 

information content, information gain– to be applied in the 

analysis of physical systems. 

Physical systems inherently contain and convey pieces of 

information. Each independent variable within a physical 

system can be considered a carrier of a single piece of 

information, or a message. Accordingly, the number of 

independent messages a physical system can convey is equal 

to the number of its independent variables. The length of each 

message is determined by the number of possible 

configurations of the variable. For instance, a variable with 

eight possible states can encode a three-bit message.  

 

B. Single-variable physical systems  

Microscopic systems often involve only a small number of 

independent variables. At the most fundamental level, certain 

systems can be entirely described by a single variable. These 

systems are inherently limited to carrying only one piece of 

information at a time, a property that uniquely distinguishes 

them from classical systems, which can simultaneously 

convey multiple independent messages.  
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A notable consequence arises when attempting to extract 

two independent pieces of information from a single-variable 

system that can retain only one. From an information-

theoretic perspective, the second piece of information cannot 

provide any additional value, and zero information equates to 

randomness.  This suggests that performing independent 

measurements on such a system will inevitably yield random 

outcomes. The observed randomness is a direct result of the 

system's inability to store more than one piece of information, 

rather than being due to any underlying hidden variables.  

While independent measurements on single-variable 

systems yield random outcomes, dependent measurements 

allow for probabilistic analysis of their behavior. In dependent 

measurements, the probability of obtaining a specific 

outcome in one measurement correlates with the outcome in 

the other. These probabilistic correlations are quantified by 

the conditional probabilities between the outcomes, with 

𝑝(𝑚𝑖
𝐿|𝑚𝑗

𝐾) representing the probability of obtaining outcome 

𝑚𝑖
𝐿 in measurement 𝐿 given outcome 𝑚𝑗

𝐾  in measurement 𝐾. 

The law of total probability ensures that for a given outcome 

in the first measurement, the sum of conditional probabilities 

equals one, i.e., ∑ 𝑝(𝑚𝑖
𝐿|𝑚𝑗

𝐾)𝑖 = 1, for fixed 𝑗. 

 

C. Probability calculations  

Given the probabilities of the system for measurement 𝐾, 

𝑷𝐾 = [𝑝1
𝐾 , … , 𝑝𝑁

𝐾]𝑇, the probabilities for the outcomes of 

measurement 𝐿 can be calculated using their conditional 

probabilities as 𝑝𝑗
𝐿 = ∑ 𝑝(𝑚𝑗

𝐿|𝑚𝑖
𝐾)𝑖 𝑝𝑖

𝐾 .  The mapping 

𝑃𝑖𝑗
𝐿𝐾 = 𝑝(𝑚𝑖

𝐿|𝑚𝑗
𝐾) preserves total probability: ∑ 𝑝𝑖

𝐿
𝑖 =

∑ ∑ 𝑃𝑖𝑗
𝐿𝐾

𝑗 𝑝𝑗
𝐾

𝑖 = ∑ 𝑝𝑗
𝐾 ∑ 𝑃𝑖𝑗

𝐿𝐾
𝑖𝑗 = ∑ 𝑝𝑗

𝐾 ∑ 𝑝(𝑚𝑖
𝐿|𝑚𝑗

𝐾)𝑖𝑗 =

∑ 𝑝𝑗
𝐾

𝑗 = 1. 

 Conversely, mapping the probabilities from measurement 

𝐿 to measurement 𝐾 involves 𝑃𝑖𝑗
𝐾𝐿 = 𝑝(𝑚𝑖

𝐾|𝑚𝑗
𝐿), and the 

probabilities can be calculated as 𝑝𝑗
𝐾 = ∑ 𝑃𝑗𝑖

𝐾𝐿
𝑖 𝑝𝑖

𝐿. 

While these mappings conserve total probability, they are 

not bidirectionally reversible. Reversibility would require 

𝑝𝑗
𝐾 = ∑ 𝑃𝑗𝑖

𝐾𝐿
𝑖 𝑝𝑖

𝐿 = ∑ 𝑃𝑗𝑖
𝐾𝐿

𝑖 ∑ 𝑃𝑖𝑛
𝐿𝐾

𝑛 𝑝𝑛
𝐾 , for all 𝑗, 𝑛, or 

equivalently, 

 

∑ 𝑃𝑗𝑖
𝐾𝐿𝑃𝑖𝑛

𝐿𝐾
𝑖 = 𝛿𝑗𝑛.  (1) 

 

This condition, however, is generally not satisfied, since the 

multiplication of positive values cannot sum to zero. The 

positivity constraint on the values of the mapping elements is 

what prevents bidirectional reversibility in the direct mapping 

of the probabilities. 

To establish bidirectional mappings, the mappings 𝜎𝑗
𝐾 =

∑ 𝜌𝑖𝑗
𝐾𝐿

𝑖 𝜎𝑖
𝐿 (and similarly for 𝐾 and 𝐿 switched) must allow 

non-positive elements, 0 ≤ |𝜌𝑖𝑗
𝐾𝐿| ≤ 1. Consequently, a 

probability measure capable of handling non-positive values 

is required. This measure must preserve probabilities at 0 and 

1 (i.e., 𝑃(0) = 0, and 𝑃(1) = 1), be a monotonic single-

parameter function with 𝑃(𝑥) ∈ [0,1], and be scale-invariant 

(i.e., 𝑃(𝜆𝑥) = 𝜆𝛼𝑃(𝑥)).  

These criteria lead to the following power-function 

probability measures: 

 

𝑃(𝑥) = |𝑥|𝛼 , 𝛼 ∈ ℝ+.  (2) 

 

This is the most general form of probability measures 

satisfying these conditions and allowing non-positive values. 

The revised mappings are thus given by 𝜎𝑗
𝐾 = ∑ 𝜌𝑖𝑗

𝐾𝐿
𝑖 𝜎𝑖

𝐿, in 

which |𝜌𝑖𝑗
𝐾𝐿|

𝛼
= 𝑝(𝑚𝑖

𝐾|𝑚𝑗
𝐿) and |𝜎𝑖

𝐿|𝛼 = 𝑝𝑖
𝐿.  

 

III. RESULTS 

 

A. The square probability measure  

We solve for the exponent 𝛼 that enables bidirectional 

reversible mappings, satisfying the condition: 

 

∑ 𝜌𝑎𝑛
𝐿𝐾𝜌𝑛𝑏

𝐾𝐿
𝑛 = ∑ 𝜌𝑎𝑖

𝐾𝐿𝜌𝑖𝑏
𝐿𝐾

𝑖 = 𝛿𝑎𝑏, (3) 

 

while conserving total probability. The law of total 

probability implies ∑ 𝑃(𝑚𝑛
K|𝑚𝑖

L)𝑛 = 1, or equivalently, 

 

∑ |𝜌𝑛𝑖
𝐾𝐿|𝛼

𝑛 = 1.  (4) 

 

Equating this with the (𝑖, 𝑖) element of 𝝆𝐿𝐾𝝆𝐾𝐿 from (3) yields 

∑ 𝜌𝑖𝑛
𝐿𝐾𝜌𝑛𝑖

𝐾𝐿
𝑛 = ∑ |𝜌𝑛𝑖

𝐾𝐿|𝛼
𝑛 . This must hold term by term, 

implying: 

 

𝜌𝑖𝑛
𝐿𝐾 = |𝜌𝑛𝑖

𝐾𝐿|(𝛼−1).  (5) 

 

Combining this with the law of total probability for 𝝆𝐿𝐾, i.e., 

∑ |𝜌𝑖𝑛
𝐿𝐾|𝛼

𝑖 = ∑ 𝑃(𝑚𝑖
L|𝑚𝑛

𝐾)𝑖 = 1, leads to: 

 

1 = ∑ |𝜌𝑖𝑛
𝐿𝐾|𝛼

𝑖 = ∑ ||𝜌𝑛𝑖
𝐾𝐿|(𝛼−1)|

𝛼

𝑖 = ∑ |𝜌𝑛𝑖
𝐾𝐿|(𝛼2−𝛼)

𝑖 . (6) 

 

Employing (5) along with the (𝑛, 𝑛) element of 𝝆𝐾𝐿𝝆𝐿𝐾 leads 

to: 

 

1 = ∑ 𝜌𝑛𝑖
𝐾𝐿𝜌𝑖𝑛

𝐿𝐾
𝑖 = ∑ 𝜌𝑛𝑖

𝐾𝐿|𝜌𝑛𝑖
𝐾𝐿|(𝛼−1)

𝑖 = ∑ |𝜌𝑛𝑖
𝐾𝐿|𝛼

𝑖 . (7) 

 

Finally, comparing (6) and (7) yields 𝛼2 − 𝛼 = 𝛼, which 

uniquely determines 𝛼 = 2, resulting in the square probability 

measure: 

 

𝑃(𝑥) = |𝑥|2,  (8) 

 

based on the square of the probability amplitudes. 

 

Unitarity of the mappings  

Identifying the square probability measure as the one that 

conserves total probability in bidirectional mappings implies 

that it is the probability amplitude state of the system, 𝝈𝐾 =
[𝜎1

𝐾 , … , 𝜎𝑁
𝐾]𝑇, rather than the probability itself, that can 
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consistently transform in these mappings. The probability 

amplitudes are transformed between the measurements 

according to: 

 

𝝈𝐿 = 𝝆𝐿𝐾𝝈𝐾 ,  (9) 

 

in which 

 

|𝜌𝑖𝑗
𝐿𝐾|

2
= 𝑝(𝑚𝑖

𝐿|𝑚𝑗
𝐾),  (10) 

 

and 

 

|𝜎𝑖
𝐾|2 = 𝑝𝑖

𝐾 .  (11) 

 

Moreover, substituting 𝛼 = 2 into (4) and (7) shows that the 

sum of the squares of the mapping elements in each row and 

each column equals one, indicating the unitary nature of the 

mappings. 

Mathematically, our goal was to identify a diffeomorphic 

transformation between probability spaces associated with 

different measurements. We found that unitary mappings, 

along with the square probability measure, uniquely preserve 

total probability within bidirectional mappings. Specifically, 

the unitary transformations conserve total probability by 

preserving the length of the probability amplitude vectors in 

the mappings: ∑ |𝜎𝑖
𝐿|2𝑁

𝑖 = ∑ |𝜎𝑖
𝐾|2𝑁

𝑖 = ∑ 𝑝𝑖
𝐾𝑁

𝑖 = 1. 

 

B. The Hilbert space formalism 

The Hilbert space formalism seamlessly emerges in our 

framework from the derived square probability measure and 

unitary mappings. Specifically, unitary transformations of the 

system’s probability amplitude state correspond to rotations 

of the system’s state vector. Using conventional bra-ket 

notation, the probability amplitude state of the system can be 

written as a vector within an N-dimensional vector space 

spanned by the independent outcomes of a specific 

measurement 𝑚1
𝐾  to 𝑚𝑁

𝐾:  |𝜎𝐾⟩ = ∑ 𝜎𝑖
𝐾

𝑖 |𝑚𝑖
𝐾⟩, which is of unit 

length, ⟨𝜎𝐾|𝜎𝐾⟩ = ∑ |𝜎𝑖
𝐾|2𝑁

𝑖 = 1. These state vectors are 

mapped between different measurement’s probability spaces 

through unitary transformations according to |𝜎𝐾⟩ =
𝝆LK|𝜎𝐾⟩. 

 

C. The Born probability rule 

The Born rule for calculating probabilities is inherently 

embedded in our framework through the derived square 

probability measure. The probability of a specific 

measurement outcome is given by the square of the inner 

product between the system's current state and the outcome 

state: 

 

𝑃(𝑚𝑎
𝐿 |𝑚𝑏

𝐾) = |𝜌𝑎𝑏
𝐿𝐾|2 = |⟨𝜎𝑏

𝐾|𝜎𝑎
𝐿⟩|2.  (12) 

 

Our derivation shows that the Born rule is a conservation law, 

which is a direct consequence of probability conservation in 

bidirectional transformations between different 

measurements. 

 

D. The Schrödinger equation 

Time evolution can be incorporated into our framework by 

associating the transformations with a time variable: 

 

𝝈𝐿 = 𝝆𝐿𝐾(𝑡)𝝈𝐾 .  (13) 

 

Given that the correlations between the measurements are 

time-independent, the time evolution of 𝝆𝐿𝐾(𝑡) is governed 

by a unitary transformation: 𝝆𝐿𝐾(𝑡2) = 𝐔−1(𝑡2 −
𝑡1)𝝆𝐿𝐾(𝑡1)𝐔(𝑡2 − 𝑡1). Under standard assumptions about 

time evolution (continuity and 𝐔(0) = 𝟏), this transformation 

can be expressed as 𝐔(𝑡2 − 𝑡1) = 𝑒−𝑖𝑯(𝑡2−𝑡1), in which 𝑯 is 

a self-adjoint operator (the Hamiltonian) governing the 

system's dynamics. Shifting the focus to the time evolution of 

the state itself, rather than the transformations (i.e., switching 

from the Heisenberg picture to the Schrödinger picture), 

leads to the following equation for the time evolution of the 

state: 

 
𝑑

𝑑𝑡
𝝈K(𝑡) = −𝑖𝑯𝝈K(𝑡).  (14) 

 

In the above, we have developed a mathematical framework 

to describe the behavior of single-variable physical systems 

with a finite number of states. This framework can be readily 

extended to the infinite-dimensional case without 

complications. Remarkably, our framework directly leads to 

the core formalism of the standard quantum theory: the 

Hilbert Space operator algebra, the Born probability rule, and 

the Schrödinger equation. By identifying the minimal 

physical principles required to establish the mathematical 

foundation of quantum theory, we have revealed the principle 

of probability conservation in single-variable physical 

systems as the cornerstone of the entire framework. 

 

IV. DISCUSSION 

 

Quantum mechanics (QM) is traditionally seen as the 

framework for describing microscopic systems and 

elementary particles. However, this perspective has been 

contested, as the QM formalism does not inherently impose a 

scale limit, and there appears to be no clear boundary between 

classical and quantum domains, often referred to as the 

Heisenberg cut. While Schrödinger’s cat thought experiment 

[10] was originally conceived to critique the application of 

QM to macroscopic objects, numerous experiments have 

since expanded the scale at which quantum effect can be 

observed. This includes interference experiments with 

increasingly larger macromolecules [11-15]. However, 

whether QM can serve as a truly universal theory remains an 

open question. 

In this paper, we derived quantum theory as the governing 

framework for physical systems with a single independent 
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variable. Our findings not only establish quantum theory from 

first principles but also offer a novel perspective on the nature 

of quantum systems. Specifically, we propose that quantum 

systems can consistently be described as physical systems 

with no more than a single independent variable. In what 

follows, we demonstrate how this interpretation aligns with 

the physical realization of quantum experiments and clarifies 

the scope of quantum theory’s applicability.  

 

A. Coherence 

The success of quantum experiments relies on preparing 

and maintaining systems in coherent states, typically achieved 

under stringent laboratory conditions, such as extremely low 

temperatures or high fields. In these conditions, many of the 

system’s variables are effectively constrained, reducing the 

number of independent variables. We assert that strong 

coherence, essential for observing quantum phenomena, 

reduces the number of independent variables of the systems 

to a single variable, which becomes the primary focus of the 

measurement.  

To illustrate this, consider the structure of electron guns, 

which, along with lasers, are commonly used in quantum 

experiments as sources of coherent electrons and photons, 

respectively. An electron gun (Fig.1) extracts electrons from 

a heated filament via thermionic emission. The electrons are 

then accelerated by an anode in a collimator, directing them 

into a uniform beam. This design ensures that the electrons 

possess identical energy and identical momentum, leaving 

spin as their only independent variable. Similarly, a coherent 

beam of light consists of photons with equal energy and equal 

direction, leaving polarization as the only variable. While the 

availability of laser pointers has made the demonstration of 

interference phenomena very accessible, it is important to 

note that ordinary incoherent light sources do not produce 

interference patterns.  

 

  
FIG 1. Schematic of an electron gun structure, a device 

that produces single-variable systems (not to scale): 

Electrons are produced through thermionic emission from a 

heated filament at the cathode. Attracted to the anode, they 

travel in parallel lines through a collimator. The applied 

voltage accelerates the electrons to high velocities. The 

resulting electron beam consists of electrons with identical 

energy and identical momentum, leaving spin as the only 

independent variable. This device effectively generates a 

stream of single-variable particles. 

Achieving coherence involves fixing the values of a 

system’s variables, which becomes increasingly difficult as 

the size of the system and, concurrently, the number of 

variables increase. Figure 2 illustrates the patterns observed 

in interference experiments with particle beams exhibiting 

varying degrees of coherence. The appearance of interference 

fringes is directly linked to the presence of coherence within 

the population. While coherence can be easily achieved in 

microscopic systems, macroscopic systems, such as golf 

balls, cannot be prepared in coherent states, and their 

interference patterns lack undulation. 

 

   
FIG 2. Effect of coherence on the intensity of interference 

fringes: full coherence (top), no coherence (middle), and 

partial coherence (bottom). In the case of partial coherence, 

the fringe minima do not reach zero, as observed in 

interference experiments with macromolecules. However, 

framing the fringes can make them resemble those in fully 

coherent systems (see dashed line inset). 

 

At intermediate scales, full coherence remains elusive, 

although partial coherence is achievable. This results in 

hybrid interference patterns (Figure 2, bottom), in which 

interference fringes are superimposed on classical pattern, 

indicating the presence of quantum effects beside the classical 

expectations. Unlike in fully coherent cases, interference 

fringe minima in partially coherent cases do not reach zero, as 

observed in experiments with macromolecules. The results, 

however, can be framed or rescaled (see, for example, Refs. 

[15-17]) to resemble full coherence, creating the impression 

of full quantum coherence even in macroscopic systems. 

 

B. The Heisenberg cut 

Our results offer new insights into the Heisenberg cut, 

suggesting that the boundary where quantum theory ceases to 

apply is not determined by the size of a system, but by the 

number of its independent variables. Systems with many 

independent variables, such as cats or measuring devices, do 

not qualify as single-variable systems and thus fall outside of 

the formalism of quantum theory. On the other hand, quantum 

theory can be applied on large scales in degenerate stars [18, 

19], which exist in coherent states under extreme gravitational 
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fields. Systems with partial coherence exhibit a blend of 

quantum and classical behavior, with quantum effects 

manifesting according to the degree of coherence. 

 

C. The state function 

Our derivation also sheds light on the nature of the quantum 

state function, which we identify as the probability amplitudes 

of single-variable systems corresponding to different 

measurement outcomes. Essentially, the state function 

represents the system’s propensity for specific measurement 

outcomes. This propensity depends on both the system’s 

current state and the type of measurement being performed. 

While this relational property between the system and the 

measurement is objective, it does not correspond to any direct 

physical attribute. Borrowing from philosophical terminology 

[20], quantum state functions are best understood as epistemic 

realities, rather than ontological objective realities. 

That being said, one must still address where in the physical 

world these propensities reside. The present derivation 

suggests that the propensities are embedded in the 

transformations that map the state of the system to the planned 

measurement, 𝝆𝐿𝐾, which, in turn, reflect the correlations 

between two measurements –one that defines the state of the 

system, and the other, the planned measurement. As our 

derivation demonstrates, the transformations that map the 

state function between different measurements involve the 

conditional probability amplitudes of the measurement 

outcomes. Therefore, the propensities are contained within 

the correlations between the measurements, not in the single-

variable system itself. 

 

D. Quantum entanglement 

An intriguing implication of our findings relates to quantum 

entanglement. Single-variable physical systems can, in 

principle, be multipartite and physically extended, with parts 

separated by large distances. As we shall see, this is the case 

for entangled quantum systems. Consider, for example, the 

generalized Greenberger-Horne-Zeilinger (GHZ) state [21], 

which is a superposition of 𝑛 subsystems, all in the state | ↑⟩ 
with all in the state | ↓⟩, represented as |GHZ >=
1

√2
(| ↑⟩⊗𝑛 + | ↓⟩⊗𝑛) . Although a collection of 𝑛 single-

variable subsystems might suggest 𝑛 independent variables in 

the system, the 𝑛 − 1 correlations between the subsystems in 

the GHZ state (i.e., |𝑆1〉 =  |𝑆2〉, |𝑆2〉 = |𝑆3〉, …, 

and |𝑆𝑛−1〉 = |𝑆𝑛〉, where |𝑆𝑖〉 represents the states of a 

subsystem) reduce the number of independent variables of the 

system to just one. Thus, the entire 𝑛-component entangled 

system comprises a single variable.  

The unified description of quantum systems –single-

variable physical systems that can convey only one piece of 

information– highlights the fundamental role of shared 

information in quantum entanglement. In entangled quantum 

systems, the entire system conveys only one piece of 

information, enforcing perfect correlations between 

subsystems, regardless of their physical separation.  

 

V. CONCLUSIONS 

 

This work presents a novel perspective on the foundations 

of quantum theory, grounded in single-variable physical 

systems that exhibit inherently indeterministic behavior. By 

deriving quantum theory from first principles and specifying 

its domain of applicability, we provide new insights into key 

concepts such as coherence, the quantum-classical boundary, 

and entanglement. This new lens can also be applied to 

reinterpret other well-established quantum concepts. 

The implications of our derivation extend beyond 

theoretical insights. By providing clear criteria for observing 

quantum effects, our findings deepen understanding of the 

quantum realm, its limitations, and potential extensions. 

These insights also offer opportunities for advancing quantum 

technologies. Ultimately, the consistent framework for 

understanding quantum physics presented here has the 

potential to reshape and enrich our comprehension of the 

fundamental physical principles that govern the universe.  
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