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Abstract 

Physical systems can store information and the laws of information dictate their informational properties. In particular, the 

amount of information that a physical system can convey is limited by the number of its degrees of freedom and their 

distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The 

central point in these systems is the tight limitation on their information capacity. Discussing the implications of this 

limitation we demonstrate that such systems exhibit a number of features, such as randomness, no-cloning, and non-

commutativity, which are peculiarities attributed to quantum mechanics (QM). With many astonishing parallels to quantum 

behavior, we postulate an interpretation of quantum physics as the physics of systems with a single degree of freedom. By 

considering the limitation on the information capacity of those systems, we also show how a number of other quantum 

riddles can be understood. For example, we explain why the superposition state can be presumed in QM and also resolve 

the EPR paradox. In the present work, we assume that the formalism of the QM is correct and well-supported by 

experimental verification and concentrate on the interpretational aspects of the theory. 

Keywords  Interpretation of quantum mechanics. Information theory. Quantum ontology. Entanglement. EPR paradox 

1. Introduction 
A one-bit message can be stored on any physical system possessing at least two possible 

distinguishable states. The two states may be distinct voltage levels in an electrical device, two 

directions of magnetization in a small region of a computer disk, two faces of a coin, etc. All such 

attributes in a physical system can be employed to represent bits of data and to convey pieces of 

information. The messages and pieces of information represented by those attributes can be read 

later using appropriate physical measurements.  

Physical systems can be used accordingly to store data and convey messages1. Conventional 

memory storages in computers use Avogadro-scale numbers of particles to register a single bit; 

the idea of using one quantum degree of freedom for each bit was an inspiration to design quantum 

computers. In any case, a physical system’s capacity to store data and pieces of information is 

bounded [1]. Generally, the capacity of macroscopic physical systems for storing information is 

huge. For example, a coin is conventionally thought of as a representation of a 1-bit system since 

its two faces can represent a one-bit message. However, a coin has many other physical attributes, 

such as diameter, weight, height, temperature, that can also be used to convey messages. For 

instance, given only four possible options for the coin’s monetary value, 1, 5, 10 & 25 cents, the 

coin’s monetary value itself can represent a two-bits message. 

                                                 
1 Hereafter we use ‘a message’ and ‘a piece of information’ in the same sense: a message, composed of bits of data, 

is a piece of information. 
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The information capacity of a physical system is limited by the number of its attributes that can be 

reliably distinguished and varied independently. Each of the independent variable attributes which 

can be assigned to specify a physical system can be thought of as a degree of freedom (DOF) of 

the system. A physical system with 𝑁 number of DOF, each with 𝑑𝑛 distinguishable states, 

possesses the total number of 𝑑𝑡𝑜𝑡 =  𝑑1 × 𝑑2 × …  × 𝑑𝑁 = ∏ 𝑑𝑛𝑛  distinct states that can be used 

for storing data. Thus on this physical system, up to log2 𝑑𝑡𝑜𝑡 = ∑ log2 𝑑𝑛𝑛  bits of data can be 

stored. Furthermore, a message with the information content of 𝐻𝑖 bits can be loaded to any one 

of those DOFs if its number of states satisfies the relation 𝑑𝑛 ≥ 2𝐻𝑖.  

To read the information content of a physical system one needs to perform a physical measurement 

on each of the system’s DOF. The capacity of a physical system for conveying distinct pieces of 

information is thus limited by the number of its DOF; hence, a system with 𝑁 number of DOF, 

each with 𝑑𝑛 states has the information capacity to convey 𝑁 distinct messages, each with the 

maximum amount of log2 𝑑𝑛 bits of data. It is important to note that once we do a measurement 

on a DOF and read the stored message on that attribute, an additional measurement on the same 

DOF does not give away any independent piece of information; the new result in this case provides 

a measure of the mutual dependence between the two correlated measurements. 

Macroscopic physical systems usually have an Avogadro-scale number of DOF that each can be 

used to store a piece of information. As the number of components of a system is reduced, its 

number of DOF also starts to decrease. Furthermore, in the microscopic realm, many classical 

attributes, like temperature and viscosity, cease to exist in a well-defined manner. Thus, the 

physical systems usually have much fewer number of DOF and therefore, a much lower 

information capacity compared to macroscopic physical systems. For example, for an elementary 

particle like an electron, attributes such as color or temperature are not well-defined, and it has 

only three independent DOF: energy, position, and spin. 

The information capacity of a physical system can also be lowered by fixing the attributes of the 

system hence reducing the system’s number of DOF. By preselecting the values of a number of a 

system’s DOF, its information capacity reduces by the same number. For example, in the 

abovementioned coin example, if we are obliged to only use a 5-cent coin, this pre-selection of the 

monetary value of the coin, reduces the system’s information capacity by exactly 1 compared to 

the prior amount. 

Microscopic systems with only a few numbers of DOF can also be considered as a medium for the 

storage, transmission, and retrieval of information and the same abovementioned relationships 

apply to their informational properties. Yet, down to the smallest scales of information capacity, 

for the systems that can contain only one piece of information, the rules of information have 

implications for the physical system that can look foreign. We discuss those implications by 

analyzing the behavior of the physical systems reaching to the lowest limits of information storage. 
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2. Physical systems with a single degree of freedom, the 1-bit systems 
In his famous lectures, Richard Feynman used the double-slit experiment to explain the “mystery” 

of quantum mechanics (QM), an experiment that “has in it, the heart of quantum mechanics” [2]. 

A prominent feature in the double-slit experiment is the fundamental limitations on what properties 

of the photons can be measured: either extracting the which-way information (particle property) 

of the photons, or observing the interference (wave property) of the photons, but not both. Any 

effort to force the observation of both effects introduces an element of randomness that makes the 

results non-conclusive [3]. 

In practice, setting up a double-slit experiment to observe the “mysterious” quantum effects is not 

an easy task and requires certain prerequisites. For example, an ordinary light source cannot be 

used to form the interference patterns. To see the quantum interference, all the incoming photons 

should be highly directional, originate from the same location, and also be coherent so their 

energies are the same. Using a laser source provides these conditions and has made demonstrating 

such experiments more readily possible. 

An elementary particle, such as a photon, is a physical system that has few numbers of DOF and 

therefore its information capacity is very limited. A photon’s position, frequency or spin can be 

used as information carriers to convey messages. These three attributes are utilized in the 

‘polarized 3D systems’ to convey the shape, color and depth perception in many 3D movie theatres. 

In using electrons as information carriers at most, three pieces of information can be loaded on 

either of its similarly limited attributes.  

Similar to other physical systems, the available DOF of the microscopic systems can be reduced 

by pre-selection and screening. For example, in a setup that uses a stream of photons in which all 

come from the same source and have equal energy, the position and energy of the incoming 

photons are already fixed and the incoming photons are left with only one DOF, the spin. This is 

the setup of the double-slit experiment, i.e. leaving the interacting photons with only one DOF. 

Physical systems with a single DOF can convey only one piece of information. Due to this 

limitation on their information capacity, they show some unique properties, for example, they 

cannot be used to store or convey two independent pieces of information.  

In this paper, we study properties of those physical systems that are left with only one DOF and 

therefore have only one ‘bit’ of information capacity. Hereafter we use the term ‘bit’ in the sense 

of ‘one piece’ and not in the sense of ‘a binary digit’.  For our purpose, a 1-bit system is a physical 

system with the information capacity of only one piece of information, a single message. Such 1-

bit systems can physically be realized in elementary particles like photons, in big chunks of helium 
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atoms in the Bose-Einstein condensate, or in macromolecules2. For the sake of consistency, we 

exemplify the 1-bit system by an electron spin. 

It is important to remember that the 1-bit systems as defined above should not be mistaken with 

what are classically considered one bit systems, like a coin, which possess many more than one 

DOF. While in such cases the other DOF of the system are usually ignored as redundancies, the 1-

bit systems have no more than a single DOF for storing messages. Having only one DOF puts a 

tight limit on the information capacity of the system. This limit for conveying pieces of 

information, gives rise to behavior for the 1-bit system that is very different from the familiar 

behavior of ordinary physical systems. 

The goal of this paper is to determine the limits that the laws of information theory place on the 

physical properties of the 1-bit systems. We show that many peculiarities of quantum physics can 

be understood in regard to the ultimate informational limits of these systems; thus we present a 

new interpretation of QM as the physics of the physical systems with only one DOF. Apart from 

its inherent interest, this interpretation can be used to untangle a number of quantum dilemmas. 

One of those is the EPR paradox that we shall resolve after presenting the evidences of the 

interpretation. 

2.1 Randomness 

When performing a measurement on a 1-bit system, e.g. measuring the spin state of an electron, 

the information content of the spin system gets fully extracted and the system goes into zero 

information state. A further measurement will generally result in a piece of information that is 

correlated with what is already known about the system. What happens however if one performs 

a measurement to extract information on an independent attribute of the system that is already in 

zero information state, for example measuring the spin of the electron in a perpendicular direction 

to that of the previous measurement?  

It is important to note that measurements always result in readings; and, even a ‘zero’ reading is 

still a result. Thus, getting no result after performing a measurement is not an answer. One may 

answer the abovementioned question by considering the laws of information theory. 

Mathematically the information content of a measured 1-bit system is fully extracted and the 

system is left with no unknown information; meaning, unless we perform a correlated 

measurement to collect the mutual information, we should only obtain zero amount of information. 

In the mathematical language of the information theory, the data we collect should represent zero 

information, meaning, we should end up collecting random readings, since randomness is an 

expression of zero information.  

                                                 
2 There is no physical reason, in principle, to prevent having macroscopic systems with just one DOF; if the substantial 

number of DOF of a system gets fixed, then its information capacity is reduced accordingly without having to resort 

to the microscopic world. It has been shown in several experiments that by careful screenings on a homogeneous beam 

of macromolecules, the informationally isolated macromolecules can also exhibit interference effects [4, 5]. 
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Mathematically the expected information gain in a process is defined as the change in the Shannon 

entropy [6]  

𝐼12 = 𝐻(𝑋1) − 𝐻(𝑋2),    (1) 

in which the Shannon entropy is defined as 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖),       (2) 

where 

𝑋 = {𝑥1, 𝑥2, 𝑥3, … . . },     (3) 

is the set of probable outcomes with 𝑃(𝑥𝑖) being their probabilities. 

We can examine the two cases where the information gain is zero: the case of no new data, and 

the case of randomness. In the first case, when one keeps getting the same result 𝑟, we have 𝑃(𝑟) =

1 and hence 𝐻(𝑋) = 0 and 𝐼 = 0. The other case is randomness which is collecting conflicting 

data. Randomness is when the outcomes do not follow a deterministic pattern and the probability 

distribution of the outcomes remains the same regardless of the previous outcomes, that is 𝑃1(𝑥𝑖) =

𝑃2(𝑥𝑖). In this case, the Shannon entropy stays constant, 𝐻(𝑋1) = 𝐻(𝑋2), and therefore 𝐼12 = 0 

and the information gain is zero. In layman terms, zero information means either no new data, or 

receiving random data; basically, either no news or conflicting news. 

In this description, the random unpredictable results in measuring the spin of an electron in 

independent directions are a true manifestation of dealing with a system with zero information 

content.  Because it is impossible to extract more than one piece of information from a physical 

system with a single DOF, mathematics dictates zero information gain though the random results 

of the uncorrelated measurements. Meaning, the observed randomness in the results of the 

uncorrelated measurements on the 1-bit systems is ontological and not removable.  

This behavior is very similar to quantum physics and in contrast with what we encounter in 

classical physics. In classical physics, perfect knowledge of the initial conditions would render 

outcomes perfectly predictable and the ‘randomness’ stems from ignorance of physical 

information in the initial conditions. In quantum physics, however, there are many indications that 

randomness does not stem from any such situations [7, 8]. In the physics of 1-bit systems as we 

saw, randomness is an inherent consequence of independent measurements on the system. 

2.2 Non-commutativity 

A consequence of having only a single DOF in a physical system is that the system has a tight 

limit on its information capacity because it can only convey one piece of information.  Therefore, 

the first measurement of the system extracts the information content and, as we just explained a 

second independent measurement will result in a random reading; making, in contrast to classical 

physics, the order of operations important. 
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This behavior is recognized as the non-commutativity of the operators. In QM the pair of operators 

that do not commute, represents mutually complementary variables, meaning they cannot be 

simultaneously measured. In the picture we presented, this limitation is explained by the 

impossibility of gaining two pieces of independent information from a system that contains only a 

single piece of information. 

2.3 The singularity of the zero information state, the superposition state 

Consider a 1-bit system where its information content is already extracted, i.e. a system in the zero-

information state. For example, a spin state that is already measured. What can we tell about the 

spin state of the system in a perpendicular direction? Because this is an unfamiliar case, the answer 

is not obvious and only fabricated situations will help with understanding.  

Imagine having to install a clock on a city tower with only the hour hand on the face. During the 

installation, the clock should not be loaded with any piece of information regarding the time so 

bystanders won’t be misled. There are different ways to accomplish this: for example, temporarily 

detaching the hand off the clock face so no piece of time information gets conveyed to the 

onlookers or, during installation, placing twelve hands on the clock pointing to all of the 12 

positions so no time can be inferred. The aforementioned aren’t the only options, any number of 

hands can be placed on the clock, provided they don’t point to a certain direction. In short, the 

clock can be in all these states and carry no piece of information about the time.  

In the physical systems, however, the constituents of a system do not change when they reach the 

zero-information state. For example, electrons always have spin3 so we cannot have an electron 

with no spin (cf. the exampled clock with no hand) or a different total spin (cf. the exampled clock 

with more than one hand). But how would it be possible for a system in the zero-information state 

to have attributes with no values? Again imagine the clock now in utterly empty space, with no 

numbers on its face. In such informational isolation, the unspecified position of the hand indicates 

and implies no piece of information about the time. This mirrors the case of a 1-bit system’s state 

in the zero-information state.  

Before a measurement, that is before a 1-bit system gets in touch with a reference point, it is 

informationally isolated from the outside world. With no reference to discern the states of the 1-

bit system, they are not distinguishable, meaning, the states of the 1-bit state is indefinite before 

measurement. Mathematically speaking, in such a situation, all 𝑥𝑖’s in equation (3) lose their 

distinction and, with no distinguishability among the possible states, the zero-information state can 

be regarded as being in all possible states, or in the superposition of all the states. Simultaneously, 

this state can be interpreted as being in none. A perceptible example of such a singular state is the 

longitude of the North Pole: it can be simultaneously viewed as all degree values and none.  

                                                 
3 This does not imply that the spin necessarily “has’’ a value, the measured property, before the measurement. 
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This means that down to the smallest scale of physical reality, for a physical system that can 

contain only one piece of information, before it gets in touch with another system with a reference, 

the system is informationally isolated. The state of the system is indefinite and will only possess a 

value after interacting with a system containing a fixed point as a reference. 

2.4 Measurement and the collapse of superposition 

In informational isolation, no distinction exists among the possible states of a DOF; this explains 

how a 1-bit system in the zero-information can have attributes void of values and exist in 

superposition. The value of an attribute gets defined in comparison and hence a reference point is 

always needed to quantify the state of a 1-bit system. A measuring apparatus, a physical system 

containing a fixed state, the “zero” point, so that its “pointers” can be evaluated in comparison, 

after interacting with the measured system, provides such a reference.  

In measurement, the measuring apparatus physically interacts with the 1-bit system and breaks its 

informational isolation. The measurement, and accordingly extracting information, is thus 

essentially a physical event, entailing the establishment of a correlation between the measuring 

device and the system. It is, therefore, the physical act of measurement which breaks the 

informational isolation of the 1-bit system and creates value for the physical system. Hence, 

making any statement about the informational content of a 1-bit system is ultimately subject to 

performing a measurement.  

In sum, a 1-bit system is not in a defined state before being in contact with another system with a 

reference. The singularity of the state is removed and it acquires value after the state gets in contact 

with a measuring apparatus having a fixed point. This process corresponds to what in quantum 

physics is described as the measurement and the collapse of the state function. We’ll discuss the 

state function and the collapse in more detail later. 

2.5 Indeterminism and gaining information 

One should note that extracting information always involves a factor of unpredictability and 

probability. The mathematical formulation of information can be interpreted as a measure of the 

surprise in the outcome; the less probable an outcome it contains the more surprise and more 

informational value. In fact, fully predictable outcomes have zero informational worth. This is the 

case of deterministic formalism in classical physics, when no new piece of information, in the pure 

mathematical sense, is gained by solving its equations4.  

The situation is different in cases where results are in principle unpredictable. Before 

measurement, the 1-bit system is in a zero information state with no definite value. Measurement 

leads to value and results in a piece of information. The piece of information is new and 

unpredictable, subject to the type of measurement being performed; thus rendering the act of 

                                                 
4 One may wonder then what is the point of doing physics; the point is that having the results in advance gives us the 

predictive power. This is how for example one can design on paper a piece of heavy machinery –an airplane over 

500 tons – which when manufactured can “miraculously” lift itself to the sky.  
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measuring a 1-bit system a unique event in the physical world in which, in the exact mathematical 

sense, a new piece of information is gained. In classical physics, with all the information already 

present, the reality is a primary concept prior to and independent of the measurement. In contrast, 

in the physics of the 1-bit systems, any statement about reality is ultimately subject to the type of 

the measurement being performed and the information being extracted. The concepts of reality 

and information are now on an equal footing and reality independent of measurement in this realm 

of physics cannot exist. 

2.6 No counterfactual definiteness 

Counterfactual definiteness is the ability to assume the definiteness of the results of measurements 

that have not been performed. The familiar counterfactual definiteness of classical physics such as 

‘the moon is there even if no one looks’ [9] is not applicable to the 1-bit systems. In systems that 

can only contain one piece of information, there can be no more than one piece of “definiteness” 

at a time and thus "counterfactual definiteness” cannot be presumed.  

The rejection of the counterfactual definiteness for the 1-bit systems is a neat consequence to our 

picture equating the physics of the 1-bit systems with quantum physics. This feature has been 

debated in many discussions that contrast quantum physics with classical physics and in which 

many paradoxes are rooted [10-12]. As mentioned, given that a corresponding measurement for 

an attribute is not already performed, the 1-bit systems possess no value for that attribute, and 

hereupon ‘the unperformed experiments have no results’ [13]. For these systems, values result 

after the measurement is performed, but should not be considered the disclosure of pre-existing 

values. 

2.7 Qubit  

A1-bit system whose information content is not yet measured (informationally isolated, in an 

indefinite state, with no distinction among the possible states) can be thought of as being anywhere 

in the state-space of the DOF. This is the description of a qubit [14]. A qubit, compared to a 

classical bit (which is always in either 0 or 1 state), can be in any mixture of those states before 

being observed. This means the qubit is the description of any two-state 1-bit system before 

measurement.  

2.8 No-cloning 

The state of a 1-bit system before measurement is indefinite. An indefinite state cannot be 

duplicated in principle. Part of the peculiarity of the 1-bit system lies in the system’s information 

capacity of just one; the system jumps from being in a completely unspecific state when it is in the 

zero-information state, to a fully known state after being measured. A 1-bit system moves between 

the two ultimate informational configurations for a physical system by a single act of measurement.  

In general, there is no constraint on copying a state, but in the case of the 1-bit system, before 

measurement, the system is in no defined state, and hence cannot be duplicated. Such a peculiarity 
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has been known in quantum physics as the no-cloning theorem [15, 16] in which it is 

mathematically proven impossible to create a copy of an arbitrary unknown quantum state. 

3. Entanglement 
We found that the physics of the 1-bit systems involves many peculiarities rooted upon the tight 

limit on their information capacity. The situation changes radically, however, as the system gains 

more information capacity. In a 2-bits system, for example, since in principle each subsystem may 

be evaluated with respect to the other, its state cannot be described as being in all possible 

configurations of the state-space. Nevertheless, as we will demonstrate below, it is not impossible 

to have composite systems made up of two or more 1-bit subsystems that display all the 

peculiarities of the 1-bit systems. 

The entanglement among the subsystems can make it possible to get a composite 1-bit system 

made up of more than one 1-bit subsystem. In a simple case, two electron spins with the total 

maximum capacity of two bits can be coupled to each other so that the resulting entangled system 

will be in a 1-bit state. In this entanglement, one bit of information is already registered in the 

correlation they share (the subsystems have complete covariance, for example, the electrons have 

opposite spins) leaving only one bit of information capacity for the system. The entangled electrons 

therefore jointly contain just one bit of information capacity and this composite two-electron 

system encompasses all the same peculiarities described in the 1-bit systems.  

This construct can be generalized for making a 1-bit system out of n number of 1-bit systems, as 

in Greenberger–Horne–Zeilinger (GHZ) states [17], in which all the n components jointly contain 

the one bit of information capacity (see Appendix). At first, such composite systems look different 

than the 1-bit systems, as they seem to have many more than one DOF, but the entanglement 

among the subsystems makes it feasible to have the composite 1-bit system.  

4. Information theory based interpretation of QM 
We started this paper with a mention of the double-slit experiment, which contains, quoting 

Feynman, the heart of QM. Feynman warned about attempts to understand the inner workings of 

quantum systems at a fundamental level stating “No one can explain…No one will give you any 

deeper representation of the situation”[2]. We elucidate that the photons in the double-slit 

experiment setup are 1-bit information systems and their limited information capacity forbids 

performing independent measurements and extracting more than one piece of information from 

them. We further established several fundamental results about the unique behaviors of such 

systems which are in parallel with the behaviors attributed to quantum systems. With these strong 

similarities found between behaviors of the 1-bit information systems and quantum systems, we 

thus postulate an interpretation of QM as the physics of the 1-bit information systems. 

The correspondence between quantum systems and 1-bit systems may not generally be as evident 

as in the double-slit experiment. We mentioned the entanglement phenomenon that can be 
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considered in explaining how a composite system can have an information capacity of no more 

than 1-bit. In some other cases, while the system can have more than just one DOF, the other DOF 

of the system could be irrelevant to the problem. For example, in the Bell states, the spin DOF of 

the electrons can be considered unlinked to the other DOF of the system as no physical interplay 

is assumed between the spin state and the other DOF of the electron. In another example, in the 

hydrogen atom, with regard to the electric force between the electron and the proton, the electron’s 

position and energy DOF are correlated through Coulomb’s law and therefore jointly make a 1-bit 

system, and the spin DOF is irrelevant in the context. Therefore, the equivalence of the quantum 

systems and the 1-bit system is not an unjustified assumption. 

Next, in the light of this interpretation, we attempt to use our picture for a better understanding of 

some quantum riddles and peculiar concepts. 

5. The EPR paradox and the ‘spooky action at a distance’ 
In a thought experiment proposed by Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) 

[11] two entangled particles, S1& S2, are spatially separated. When the particles are so far apart 

that any classical interaction between the two would be impossible, a measurement on one particle 

nonetheless determines the corresponding result of the measurement of the other. How is it 

possible for the particles to coordinate the outcomes of the measurements?  

This experiment also poses another challenge to quantum physics: In this setup, it seems possible 

to measure non-commuting variables (for example Sx and Sy) on each particle: the values of S1x 

and S2y, can be measured directly on the corresponding particle without the classical disturbance 

from the other and at the same time the values of S1y and S2x can be determined due to the particle’s 

correlation. Einstein and colleagues argued that "every element of the physical reality must have 

a counterpart in the physical theory", and pointed out that in terms of QM formalism "when the 

operators corresponding to the two physical quantities do not commute, the two quantities cannot 

have simultaneous reality" [11]. 

Later Einstein restated this as "the real factual situation of system S1 is independent of what is done 

with system S2, which is spatially separated from the former" [18]. In QM, if you measure S1’s 

spin, the state gets "set" by the measurement, but somehow S2 also instantly, in a spooky way, 

"feels" what spin it is supposed to take on. To Einstein, this was a clear violation of the principle 

of locality and he argued against the notion that the theory provided "a complete description of a 

real factual situation" [18]. Hence, questioning the completeness of quantum theory. 

Here we discuss the situation according to the interpretation presented in the current paper. The 

two entangled electrons in the EPR pair already share one bit of information, namely, their sum of 

spins is zero. The remaining one bit of information capacity is jointly shared by the two 

subsystems. The pair is thus in the zero-information state; a priori this joint 1-bit system has the 

same properties as any other isolated 1-bit system. That means its state is not defined, so no 

assumption can be made regarding its value as it only will possess value after a measurement. Bell 
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inequalities also indicate clearly that the presumption of value on the pair leads to contradictions 

[7]. In short, the EPR pair is two spatially separated entangled electrons that jointly have the 

information capacity of one; it is a physically expanded 1-bit system. We argue that the solution 

to the EPR paradox is to bear in mind that I) mathematical correlations are non local, and II) a 

system in the zero-information state holds no element of reality. 

Informational correlations are mathematical and while mathematical correlations can be shared 

between two physical systems, this does not make them local. For example, if my brother and I 

jointly have $10,000.00 in an account, it does not matter whether we reside in the same location 

or not. Assuming I withdraw nothing, as soon as I look up the account balance, I know 

instantaneously the amount he has taken regardless of his physical distance. Physical systems can 

jointly share correlations between themselves, but one does not force the other to be correlated. 

(cf. temperature does not prompt the molecules to go fast). A distinction should be made between 

nonlocal enforcement of correlations –as in the EPR case– and nonlocal communication, which, 

although sometimes confused with the former, is a far stronger condition. It has been made clear 

that EPR’s nonlocality of correlations cannot be exploited for nonlocal observer-to-observer 

communication [19-21]. 

In the EPR pair, we should note that any separated measurements of the properties of an extended 

1-bit system should be treated as parts of the same informational state, regardless of the degree of 

separation of the measurements in time and/or space. Considering the nonlocal nature of the 

informational correlations, the relative time ordering of the observations on the two systems, as 

well as their relative spatial arrangement, are irrelevant to the result. It has to be also noted that 

before the measurement, no value pre-exists on the system and there is no physical reality to be 

changed.  

With these considerations there is no magical interaction between the EPR pair: the informational 

correlation that is shared between the pair secures the combined value of information on the 

system. When compared, the results on the subsystems match if the measurement decisions were 

consistent; otherwise, there is randomness. In any case, no message can be transmitted between 

the two. The problem of completeness postured in the EPR paper is also quashed as there exists 

no value (physical quantity) in the zero-information states to be concerned about. 

6. Null-information state: Does God play dice with the universe? 
In dealing with situations involving the zero-information state, confusions can arise because 

reaching that state is not part of our natural familiar world and grasping its peculiarities needs 

contemplation. We mentioned that the 1-bit information systems should not be mistaken with the 

classical one bit systems since the latter still can be loaded with many other pieces of information 

in its other DOFs. A similar distinction exists between the zero-information state and the more 

familiar classical zero information state. In a classical zero information state, regardless of its 

nomenclature, the system is in a certain, yet unknown state, for the observer. The classical systems 
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possess many more than one DOF which are not informationally isolated and their states are 

definable. Thus, in classical systems, a measurement reveals the value of the state of the system, 

unlike the 1-bit system in which the measurement creates value for the state of the system by 

collapsing the singularity. Meaning, classical systems in the zero information contain pieces of 

information on their states, albeit inaccessible to the observer; but, the 1-bit systems in the zero-

information state contain no value before getting measured, they are in the null-information state. 

This is the crucial difference between the classical zero information state and the null-information 

state. In the classical zero information case, the system is in a certain state, and one’s ignorance is 

due to the lack of knowledge that the omniscient God has access. In the null-information case, 

there is no definite state, even for the omnipotent, omniscient God. This distinction was not evident 

to Einstein when he rejected the probabilistic nature of QM by saying that “God does not play dice 

with the universe” [22]. Zero information is about the unknown, while null-information is about 

the indefinite.  

7. State function 
Following the aforementioned points, a question arises about whether a 1-bit system in the null-

information state can even be studied.  To be exact, nothing definite can be said about the state of 

a 1-bit system before a measurement; but one may still be able to make a few probabilistic remarks 

about that system, using the boundary conditions and “peripheral” facts that confine the system5. 

This approach can help in getting some statistical idea about the situation. While having some 

general idea does not provide a definite predictive power, it is still better than no information.   

In this approach, a mathematical construct can be employed to represent the statistical knowledge 

of the behavior of the 1-bit system. The null-information state is literally in no state, however, one 

can theorize a function describing a pseudo-state which can be interpreted as the superposition of 

all possible states. This state function should include all the possible outcomes of the planned 

measurement of the system. This is similar to contemplating all possible scenarios when there is 

no information available. In the statistical analysis of such no information cases, it is taken into 

account that for the classical zero information cases the alternatives are not possible 

simultaneously; however, for the null-information cases, the singular state can be interpreted as 

the coexistence of all the possibilities at the same time. One should bear in mind, however, that 

there is no underlying reality in the null-information case and not to be misled by the term “state” 

in the ‘state function’. The state function should, therefore, be understood as an epistemic state 

(state of knowledge) rather than an ontic state (state of reality). 

The aforementioned approach can help us to understand the general framework that is followed in 

the mathematical formalism of QM. Unlike classical physics, where seeking deterministic results 

                                                 
5 A similar example is gaining knowledge about the future 50th president of the United States. As of now, the United 

States has only had 45 presidents and the 50th president is unknown; however, common knowledge and census 

information can give some idea, for example, about the probable gender, age, weight, and height of that person. Such 

analyses however, are not about a real physical matter and are not definite. 
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is the common practice, in QM generally, the outcome of a measurement is unpredictable and only 

probabilistic knowledge is possible. The mathematics that is employed no longer represents the 

behavior of the quantum system but rather the statistical knowledge of its behavior. 

7.1 Collapse of the state function 

In the presented interpretation, the state function does not represent a physical entity and is solely 

the mathematical expansion of the null-information state according to the possible outcomes of the 

planned independent measurement6. Therefore, the state function collapse is the collapse of that 

mathematical expansion of the unknowable to a piece of information. The collapse happens when 

the informationally isolated 1-bit system interacts with another system that contains a set point and 

hence the singularity of the null-information state instantaneously breaks. Such symmetry breaking 

is not an unfamiliar occurrence in physics and constitutes the underlying concept of a vast number 

of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter 

physics to the Higgs mechanism in the standard model of elementary particles. 

It is, therefore, the act of measurement that creates an “element of reality” and a value for the 

quantum system. This means that the collapse of the state function happens at the time of 

measurement by a physical act, which is in sharp contrast with some metaphysical suggestions 

[23-25] attempting to explain that process. 

8. Concluding remarks 
“I remember discussions with Bohr which went through many hours till very late at night and ended almost 

in despair; and when at the end of the discussion I went alone for a walk in the neighbouring park I repeated 

to myself again and again the question: Can nature possibly be so absurd as it seemed to us in these atomic 

experiments?” W. Heisenberg [26] 

About a century has passed since its development and, quantum physics still remains somewhat 

mysterious. Despite the unparalleled predictive capacity of QM, an uncontroversial interpretation 

of its formalism is not available to the scientific community.  Basically, there is no consensus on 

the interpretational aspect of the theory [27-29]. 

In this paper we showed that the physical systems with only a single degree of freedom exhibit a 

number of peculiarities that are very similar to those of quantum systems. Those similarities lead 

us to postulate an interpretation of QM as the physics of the systems with only a single DOF. 

Furthermore, we showed how this picture provides comprehensible explanations for concepts such 

as the nature of randomness, no-cloning, non-commutativity, superposition, state function, and the 

collapse. We also solved the EPR paradox and rejected Einstein’s attacks on QM. In establishing 

the presented interpretation, we used two principal elements: 

                                                 
6 Note that at this stage we solely discuss the independent measurement cases. The notion of state function for 

predicting the results of a dependent measurement would be an extension of the current picture and will be discussed 

elsewhere. 
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1. There are physical systems at the extreme that have only one unoccupied degree of freedom 

and accordingly the information capacity to contain no more than one piece of information. 

2. Zero information means either getting no new data or conflicting data (randomness). 

We also benefited from four axioms: I) Physical systems’ capacity to store pieces of information 

is limited; II) Measurement always results in value; III) Information can be shared and held jointly 

by physical systems, and IV) Mathematical correlations are not necessarily local. 

A novel subject that we presented in our interpretation is the concept of null information. Similar 

to times in history when a new concept, like the number zero, negative numbers or imaginary 

numbers were introduced, it is not unexpected that controversies in interpreting the philosophical 

and epistemological implications of null information arise; however, as in the other cases, soon 

this concept can be a part of common scientific knowledge. 

This interpretation depicts quantum behavior as the result of the interplay between physics and 

mathematics at the ultimate informational limits of a physical system. It is the information theory 

that dictates the behavior of the physical systems at the lowest levels of information handling. This 

makes the interrelation between the laws of physics and information in nature very fascinating: at 

large scale, the laws of physics dictate the information processing limitations of a system [1], and 

at the other end, the laws of information dictate the physical systems how to behave. 

The interpretation we presented in this paper, quantum physics as the physics of the systems with 

single DOF, can be the unification model for explaining QM by explaining where quantum physics 

comes from. By clarifying the apparent oddness and confusion of quantum physics, this 

interpretation can help to finally clearly grasp the physical meaning of the theory. It is suggestive 

that our presented picture sheds new light on the meaning and philosophical implications of 

concepts such as entanglement, information, reality, and quantum computation. 

------------------------------------------------------- 

Appendix: GHZ and W entangled states 
Greenberger–Horne–Zeilinger state is a type of entangled quantum state that involves at least three 

subsystems. In simple words, it is a superposition of all subsystems being in state |↑〉 with all of 

them being in state|↓〉. The 3-qubit GHZ state can be written as 

|𝐺𝐻𝑍〉 =
|↑↑↑〉+|↓↓↓〉

√2
 ,          (A.1) 

and in the general form with n ≥ 3 subsystems as 

|𝐺𝐻𝑍〉 =
|↑〉⊗𝑛+|↓〉⊗𝑛

√2
.           (A.2) 

For the general n-particle |𝐺𝐻𝑍〉 entangled state the information capacity of the system can be 

found by these considerations: the n subsystems can hold n bits of information in total. However, 
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𝑛 − 1bits are already set in the correlations among the subsystems in the type of: |𝑆1〉 =

|𝑆2〉,|𝑆2〉 = |𝑆3〉, …, |𝑆𝑛−1〉 = |𝑆𝑛〉. That leaves only 1 bit of information capacity for this n-

particle system. 

The W state involves another class of a multipartite entangled state. For three qubits it has the 

following form 

|𝑊〉 =
|↑↓↓〉+|↓↑↓〉+|↓↓↑〉

√3
.          (A.3) 

The notion of W state can be generalized for n-particles [27] as the superposition state with equal 

expansion coefficients of all possible pure states in which exactly one of the particles is in an 

“excited state”, |↑〉, while all other ones are in the “ground state”, |↓〉: 

|𝑊〉 =
1

√𝑛
(|↑↓↓. . . ↓〉 + |↓↑↓ ⋯ ↓〉 + ⋯ + |↓↓ ⋯ ↓↑〉).     (A.4) 

For general n-particle |𝑊〉 state also the information capacity of the system is only 1 bit; from the 

n bits of information that can be carried by the system𝑛 − 1 bits are already set: 1 bit of information 

is embedded in ∑⟨ ↑ |𝑆𝑘⟩ = 1 (i.e. exactly one of the subsystems is in the “excited state”). The 𝑛 −

2 correlations of the form |𝑆𝑖〉 = |𝑆𝑗〉 among the 𝑛 − 1 subsystems (i.e. all these subsystems are in 

the same state) fix 𝑛 − 2 bits of information. Thus, only 1 bit of information remains as the 

information capacity of the system. 

A.1 Pairwise entanglement 

Note that the GHZ state can be written as 

|↑↑↑〉 + |↓↓↓〉 = (|↑↑〉 + |↓↓〉) ⊗ |→〉 − (|↑↑〉 − | ↓↓〉) ⊗ |←〉    (A.5) 

where the third particle is written as a superposition in the X basis (in contrast with the Z basis) in 

which |↑〉 = |→〉 − |←〉 and |↓〉 = |→〉 + |←〉. In this case, measurement of the GHZ state along 

the X basis for the third particle then results in a maximally entangled Bell state. 

In writing the GHZ according to this expansion one bit of information is fixed by |𝑆1〉 = |𝑆2〉. For 

the remaining two bits of information, measurement in the X basis yields one bit of information, 

and finally, the remaining 1 bit of information is shared between the first two particles, in a Bell 

state. 

------------------------------------------------------- 
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