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Abstract: Maxwell’s Demon is a thought experiment devised by J. C. Maxwell in 1867 in order to 
show that the Second Law of thermodynamics is not universal, since it has a counter-example. Since 
the Second Law is taken by many to provide an arrow of time, the threat to its universality threatens 
the account of temporal directionality as well. Various attempts to “exorcise” the Demon, by 
proving that it is impossible for one reason or another, have been made throughout the years, but 
none of them were successful. We have shown (in a number of publications) by a general state-space 
argument that Maxwell’s Demon is compatible with classical mechanics, and that the most recent 
solutions, based on Landauer’s thesis, are not general. In this paper we demonstrate that Maxwell’s 
Demon is also compatible with quantum mechanics. We do so by analyzing a particular (but highly 
idealized) experimental setup and proving that it violates the Second Law. Our discussion is in the 
framework of standard quantum mechanics; we give two separate arguments in the framework of 
quantum mechanics with and without the projection postulate. We address in our analysis the 
connection between measurement and erasure interactions and we show how these notions are 
applicable in the microscopic quantum mechanical structure. We discuss what might be the 
quantum mechanical counterpart of the classical notion of “macrostates”, thus explaining why our 
Quantum Demon setup works not only at the micro level but also at the macro level, properly 
understood. One implication of our analysis is that the Second Law cannot provide a universal 
lawlike basis for an account of the arrow of time; this account has to be sought elsewhere. 
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1. Introduction 

J. C. Maxwell devised his so-called Demon in 1867 to show that the Second Law of 
thermodynamics cannot be universally true if classical mechanics is universally true. In this paper 
we show that a Maxwellian Demon is compatible with standard quantum mechanics. 

Maxwell’s Demon is a way of demonstrating that the laws of mechanics are compatible with 
microstates and Hamiltonians that lead to an evolution which violates the Second Law of 
thermodynamics by transferring heat from a cold gas to a hot one without investing work. That is, 
the Demon is not a practical proposal for constructing a device that would violate the Second Law of 
thermodynamics, but rather a statement to the effect that the Second Law cannot be universally true 
if the laws of mechanics are universally true. 

Attempts to prove the Second Law as a universal theorem in classical statistical mechanics, 
encounter the following issue: since the fundamental microscopic dynamics is invariant under 
velocity reversal, one can show that given any Hamiltonian, if there are entropy-increasing trajectory 
segments in the system’s state space, then there are also entropy-decreasing ones, and so the 
thermodynamic law cannot be strictly true. Essentially the same issue arises in the context of the 
standard approaches to quantum statistical mechanics (see [1–6]). The prevalent approaches for 
explaining why we do not encounter anti-thermodynamic evolutions is that those are extremely a-
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typical or unlikely. The meaning of typicality and probability in this context is a subject of ongoing 
debates in both classical and quantum statistical mechanics. The standard approaches, however, 
depend on a choice of measure on the state space, which in our view is not dictated by the underlying 
theory (see [7,8]). For other views and the debate on the meaning of typicality and the difference 
between typicality and probability, see [9–16]. In the context of the question of the Demon, one needs 
to distinguish between the Second Law and the law of approach to equilibrium, which underlies it; 
see [17]. 

Since Maxwell, many attempts have been made to disprove Maxwell’s intuition. In [7,18–22] we 
provide a phase space argument to demonstrate that a classical mechanical macroscopic evolution 
that satisfies Liouville’s theorem can be entropy decreasing. By this we have shown that classical 
mechanics does not rule out a dynamical evolution that takes most or even all the points in an initial 
macrostate of the universe to a macrostate with a smaller Lebesgue measure, i.e., with lower total 
entropies. (In Albert’s proof [10] of a Maxwellian Demon in the classical context the thermodynamic 
cycle is not complete. The missing link to complete the cycle required proving that erasing the 
Demon’s memory is not dissipative. More generally, one needs to show that the so-called Landauer–
Bennett thesis is mistaken. In [7,18–22] we provided this missing link; in [19] we described a concrete 
example of a Demonic setup in Szilard’s engine). 

The situation just described is in the context of classical mechanics. There is a vast literature (see 
[23] and references therein) on the question of Maxwell’s Demon also in the context of quantum 
mechanics. Most of the literature is based on the classical Landauer–Bennett thesis (see [24–28]; for 
the use of the classical thesis in the quantum context, see the discussion by Earman and Norton [29] 
of Zurek’s [30]), which is central in the contemporary attempts to exorcise Maxwell’s Demon.  

In the literature about the Landauer–Benett thesis, the notion of “entropy” is usually applied 
without explaining it. However, as is well known, there are two “theoretical frameworks”, both called 
statistical mechanics, that offer two different notions of entropy that are supposed to account (at least 
approximately) for the thermodynamic notion of entropy (See [10,31–36]: one framework follows the 
work of Boltzmann and the other of Gibbs. The notion standardly used in the literature in classical 
statistical mechanics is a Boltzmannian one: the entropy of a system in a given microstate is a function 
of the (Lebesgue) measure of the macrostate to which this microstate belongs. The Gibbs entropy is 
defined for systems in equilibrium, where “equilibrium” is understood as a measure that is invariant 
under the dynamics. On this account, “entropy” is a function of the entire phase space, that may be 
seen as some sort of weighted averages calculated given the appropriate measures over that space 
(for the appropriate ensembles). A consequence of this is that this notion of Gibbsian entropy remains 
constant, and cannot account for the approach to thermodynamic equilibrium. To solve this problem 
Gibbs introduced the idea of successive coarse graining. Unlike the Boltzmannian coarse graining 
into macrostates, the Gibbsian coarse graining is not associated with macrovariables, and moreover, 
it needs to change constantly in a way that makes the graining finer and finer, and in the limit the 
graining has to be maximally finer (e.g., finer than the capabilities of any measuring device). The 
Gibbsian approach is known to be conceptually very problematic; see [37,38]). One explanation for 
its usefulness in practice is that it can be explained in terms of Botlzmann’s macrostates, if the 
dynamics is taken into account; this idea is described in [7], Chapter 11). It seems to us that the 
Gibbsian notion of entropy cannot be usefully applied in the context of Landauer’s thesis, which 
concerns the evolution of a system from an initial macrovariable to a final one. In our view, the 
“translation” of this idea to Gibbsian terms leaves out the essential magnitudes of this thesis, and the 
arguments for it; see [38]. 

In his ground-breaking paper, Landauer [24] described his thesis in the classical context as 
follows. 

“Consider a statistical ensemble of bits in thermal equilibrium. If these are all reset to one, the 
number of states covered in the ensemble has been cut in half. The entropy therefore has been reduced 
by klog2 = 0.6931 per bit. The entropy of a closed system, e.g., a computer with its own batteries, 
cannot decrease; hence this entropy must appear elsewhere as a heating effect, supplying 0.6931 kT 
per restored bit to the surroundings.” (See [24], p. 265) 
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According to this line of thinking, the thesis is grounded in the Second Law of thermodynamics 
(or its statistical mechanical counterparts). This is the prevalent approach, both in arguments 
supporting Landauer’s thesis (including e.g., [26,27,39–43]) and in arguments criticizing it (including 
e.g., [29,39,44–46]). (The connection between information, entropy and probability is also under 
dispute: see [47,48]). 

One problem in grounding Landauer’s thesis in the Second Law is that Landauer’s thesis is itself 
central in contemporary defenses of the universality of the Second Law; thus, relying on the Second 
Law to establish Landauer’s thesis is viciously circular. There are two ways to establish the universal 
truth of the Second Law of thermodynamics. One is on the basis of empirical evidence: the Second 
Law enjoys enormous empirical support, and the overwhelming empirical evidence makes it 
uncontroversial that there are no perpetual motion machines in our world. (Recent attempts to test 
experimentally Landauer's thesis are, e.g., [49–51]). The second way to establish the universal truth 
of the Second Law is by showing that this universal truth is a theorem of fundamental physics (which 
is, in turn, taken to be fundamentally universally true). Maxwell’s Demon is a thought experiment 
that challenges this latter grounding of the Second Law. 

Importantly, Maxwell’s Demon is not in conflict with the empirical evidence, because the 
available proofs that Maxwell’s Demon is compatible with fundamental physics leave open the 
possibility that both Second Law behavior and Maxwellian Demon behavior are compatible with 
fundamental physics; they may hold for different initial conditions of the universe, for example. 
Nevertheless, for many thinkers, this last option is not satisfactory, and they strive to prove that 
Maxwellian Demons are incompatible with fundamental physics. One way of doing so, in fact the 
most prevalent way in contemporary research, is by relying on Landauer’s thesis (see [23] and 
references therein). For this reason, relying on the Second Law in establishing Landauer’s thesis is 
circular if that law itself is defended by relying on Landauer’s thesis. Not every circularity is vicious; 
it seems to us that this one is vicious (see also [29,44]). In order to defend the universality of the 
Second Law, Landauer’s thesis should be grounded, not in the Second Law, but in independent 
arguments based on fundamental physics. (We thank James Ladyman for a correspondence about 
this point). 

The same idea applies to the question of Maxwell’s Demon, which can be phrased roughly as 
follows: Can there be, as a matter of principle, a mechanical system (even highly idealized), and 
dynamical evolution that satisfy the laws of mechanics (quantum or classical), but violate the Second 
Law of thermodynamics? Our answer in this paper is in the affirmative. 

We consider a thought experiment along the lines of Szilard’s (see [52]) and Bennett’s (see 
[26,27]) particle-in-a-box, in a quantum mechanical context (see our [19] for a classical analysis of this 
setup). Since we are interested in the question of whether or not thermodynamics is consistent with 
quantum mechanics as a matter of principle, we consider the experiment in a highly idealized 
framework, disregarding practical questions (some of which we shall mention along the way). (We 
do not address the question of whether a single particle in a box is a thermodynamic system; see e.g., 
[53]). Since the arguments in the literature concerning the entropic cost of measurement and erasure 
have been given in this setup, this is the setup we consider). In particular we assume, for simplicity 
only, that in our idealized setup there is no environmental decoherence. (For the role of the number 
of degrees of freedom in macroscopic irreversibility, see [54]). For quantum decoherence theory and 
its role in recovering the so-called classical limit of quantum mechanics, see [55]). We explain in the 
last section why our argument is (in principle) applicable also in the presence of decoherence. 

Our discussion is in the framework of standard quantum mechanics in von Neumann’s 1932 
formulation (see [56]). We give two separate arguments in the context of standard quantum 
mechanics: one argument is in the context of quantum mechanics with the so-called projection 
postulate, and another without it. We set aside questions concerning the physical interpretation of 
such theories, nor do we consider realistic applications of our setup. 

The structure of the paper is this. In Section 2 we start with an analysis of a Demonic evolution 
in standard quantum mechanics without the projection postulate. In Section 3 we consider the same 
setup in quantum mechanics with the projection postulate. In Section 4 we describe the connection 
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between measurement and erasure in quantum mechanics with and without the projection postulate. 
We conclude in Section 5 with some remarks addressing decoherence and the question of whether 
our argument for a quantum mechanical Maxwellian Demon can be carried over to a macroscopic 
setup in quantum statistical mechanics. In appendix A we describe briefly the notion of a quantum 
macrostate. 

2. A Quantum Mechanical Demon in Unitary Quantum Mechanics 

Consider the setup in Figure 1. At t0 a particle is placed in a box. At 1t  a partition is inserted 
exactly at the center of the box so that the particle is trapped in the left-hand side L or the right-hand 
side R of the box. At 2t  a measurement of the location of the particle, left or right, is carried out and 
the outcome of the measurement, 0 or 1, respectively, is registered in the memory state of the 
measuring device. At t3 the partition is replaced by a piston (in accordance with the measurement 
outcome), which is subsequently pushed by the particle at t4 . The piston is coupled to a weight 
located outside the box which is raised during the expansion. At t5 the particle is again free to move 
throughout the box and the weight is at its maximal height. At t6 the memory of the device is erased 
and returns to its initial standard state. The particle returns to its initial energy state by receiving from 
the environment the energy it has lost to the weight. The cycle of operation is thus closed. By this last 
statement we mean that everything returns to its initial state except for the energy transfer from the 
heat bath (environment) to the weight (see our [7,18,19]). 

 
Figure 1. A quantum mechanical Maxwellian Demon. 

We will now show that according to quantum mechanics this setup can be a Maxwellian Demon. 
We start by constructing a quantum mechanical microscopic dynamical evolution that satisfies the 
Schrödinger equation at all times (i.e., without applying the projection postulate in measurement). 
We consider the implications of our setup in standard quantum mechanics with the projection 
postulate in the next section. In both cases, our dynamical evolution includes measurement and 
erasure under idealized assumptions. Again, we set aside questions concerning the interpretation of 
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such theories. In the last section we argue that as a matter of principle from our microscopic setup 
one can construct a quantum mechanical macroscopic Demonic evolution. We discuss in Appendix 
A the notion of the quantum mechanical analogue of a classical macrostate, according to which the 
system is in a microstate, but there is ignorance concerning which quantum microstate it is. 

At t0 the quantum state of the entire setup is the following: 

Ψ(0) = x0 p S m down w e0 e
 (1) 

where x0 p
 is the initial state of the particle in a one-dimensional box; S m is the initial standard 

(ready) state of the measuring device; down w  is the initial state of the weight which is positioned 

at some initial height we denote by down; and e0 e is the initial state of the environment, which we 
assume does not interact at t0 with the particle or the weight (or the partition). 

The initial energy state of the particle x0 p
 is some superposition of energy eigenstates which 

depend on the width a of the box, where the amplitudes in x0 p
 give the expectation value x0  

for the energy of the particle. We assume for simplicity that the box is an infinite potential well so 
that all the energy eigenstates at the initial time have a node in the center of the box, and the quantum 
mechanical probability of finding the particle exactly in the center of the box is zero. In general, the 
quantum state of the particle x0 p

 will be a superposition of energy eigenstates of the form: sin ഏೣೌ 𝑒ିቀಶℏ ቁ௧ with an eigenvalue 𝐸 = మమఴಾೌమ, where n is an even number and M is the mass of the 
particle. In standard quantum mechanics, such a superposition does not express ignorance about the 
energy eigenstates of the particle. It is the fine-grained complete energy state of the particle. In this 
sense one can say that such a superposition is the quantum mechanical analogue of a classical 
microstate. 

S m is the standard ready state of the measuring device which is an eigenstate of the so-called 
pointer observable in this setup. For simplicity, we may take a spin-1 particle to represent the 
measuring device with S m = −1  in the z-direction. The two other spin-1 eigenstates, 0  and 

1  in the z-direction, correspond to the two possible outcomes of the measurement. Another 
alternative is to take the device to be a spin ½ particle, the pointer states in this case would be the up 
and down eigenstates of (say) the spin in the z-direction, and the initial ready state S m would be 
a superposition of these two states with equal weights (e.g., either spin up or down in the x-direction). 

At 1t  we insert a partition in the center of the box, where the wavefunction is zero, so that the 
expectation value for the energy remains completely unaltered. This is highly idealized, to be sure, 
creating many technical questions. For example, given the quantum mechanical uncertainty relations, 
one cannot insert the partition exactly at a point since in this case its momentum would be infinitely 
undetermined. To avoid this, one may assume that the partition and consequently also the particle 
are fairly massive, but that nonetheless they are kept at t0 in isolation from the environment. 
Alternatively, if there is a certain amount of decoherence, we may assume that the degrees of freedom 
in the environment are controllable in the subsequent stages of our experiment. Of course, assuming 
that the partition is massive, the idealization of zero width may also be problematic, and consequently 
the wavefunction may change when the partition is inserted. What we need is a way of inserting a 
partition such that it will not change the expectation values of the energy of the particle. In this sense 
we assume here that the effects of the above issues are negligible and we continue with our 
idealization. Again, we are not concerned here with the experiment’s feasibility, but rather with its 
consistency with thermodynamics. 

We therefore take it that ideally at 1t  immediately after the insertion of the partition in the 
center of the box the quantum state of the setup becomes: 

Ψ(1) = x1 p S m down w e0 e
 (2) 
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where 

x1 p = 1
2
( L p + R p ) (3) 

and L p
 and R p

 are (in general) superpositions of the energy states of a particle in a box of 

width a/2, where for L p
 the position x varies over the range [0, a/2] and for R p

 x varies over 

the range [a/2, a], while the equal amplitudes are a consequence of our idealization that the partition 
is placed exactly in the center of the box. The expectation value of the energy of the particle is 
unaltered x0 = x1  (On each side of the partition the superposition involves both odd and even 
eigenstates, but the width of the box is now a/2). Although the expectation value for the particle’s 
energy does not change in this interaction, the wavefunction of the particle now becomes a 
superposition of two components, as in (3). We assume that there are no other changes in the 
quantum state of the particle from t0 up to t1. 

At 2t  a measurement of the coarse-grained position observable X of the particle is carried out, 
corresponding to whether the particle is located in the left- or right-hand side of the box. The quantum 
state immediately after the measurement, as described by the Schrödinger equation is: 

Ψ(2) = 1
2

( L
p

0
m

+ R
p

1
m

) down
w
e0 e

 (4) 

where the states 0
m

 and 1
m

 are the recording (pointer) states of the device, which are one-to-

one correlated (respectively) with the locations of the particle given by the energy states L p
 and 

R p
. Notice that here we have assumed that the overall quantum state of the setup evolves unitarily 

and we do not apply the projection postulate. Additionally, we do not consider the question 
concerning the interpretation of this state, e.g., whether and in what sense the reduced state of the 
pointer, which is quantum mechanically mixed, records a determinate outcome of the measurement. 

The measurement at time 2t  increases the von Neumann entropy of the device and of the 
particle, since the reduced quantum states of both are (improperly) mixed. However, this is irrelevant 
for the issue of Maxwell’s Demon in this setup since as we will see, the particle and the device will 
return to their separate pure states at time t5, when their von Neumann entropy will decrease to its 
initial zero value. (For why the identification of von Neumann entropy with thermodynamic entropy 
fails, see our [57]. For an alternative understanding of the von Neumann entropy, see [6]). 

At t3 the partition is released, so that it becomes a piston. We assume that the piston is coupled 
to the weight in a way that is correlated with the outcome of the measurement, such that if the 
outcome is L the piston is free to move to the right, and the weight is lifted, and if the outcome is R, 
the piston is free to move to the left and the weight is equally lifted. In other words, there is a record 
of the outcome of the measurement in the motion of the piston, in the material of the weight, and in 
whatever connects them; but there is no record of the outcome in the height of the weight. Note that 
if the memory states of the device are not strictly orthogonal, there is a nonzero probability that the 
particle will be on the right side of the box and at the same time we shall release the piston from the 
right side, and in this case the weight clearly will not rise. However, nothing in quantum mechanics 
stands in the way of making this probability as small as we wish. 

At t4  the piston is pushed (to the left or to the right) by the particle. The quantum state of the 
setup at t4  has the form: 

Ψ(4) = 1
2
L(w(t))

p
0

m
+ R(u(t))

p
1
m( ) y(t) w

e0 e  (5) 

where the energy states L(w(t))  and R(u(t))  change with the changing width of the box, w(t) 
and u(t), respectively. The expectation value of the particle’s energy x(t) p

 is given by 

x(t) =
1
2
L(w(t)) + R(u(t))( )  and decreases continuously over time in the interval from t4  up 
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to t5. The energy state of the weight y(t) w  changes accordingly, so that y(t) ranges from the down 
to the up position, and the expectation value of the energy of the weight increases accordingly. 
Conservation of energy, which is stated in terms of expectation values in quantum mechanics 
according to Ehrenfest’s theorem, implies that 

x(t) p + y(t) w = x0 p
 (6) 

Since the weight is positioned in a gravitational field, higher energy expectation values for the 
weight are coupled with higher positions of the weight. This means that the quantum-mechanical 
transfer of energy increases the probability that the weight will be found at higher positions upon 
measurement. 

The Hamiltonian is such that during the expansion of the particle, as described by (5), the 
correlations between the memory states of the device and the energy states of the particle are 
gradually lost. The energy states L(w(t)) p

 and R(u(t)) p
are such that at any time t the overall 

probability of finding the particle in the left- or right-hand side of the box is invariably ½. The 
conditional probability of finding the particle in the right- (left-) hand side, given that the device is in 
the state 0

m
 ( 1

m
) at t3, is almost zero, but it increases with time and becomes ½ at t5, since the 

correlations between the memory state of the device and the location of the particle are completely 
lost at t5. At this stage, since the time evolution of the total state is reversible, there may be some 
records of the memory state of the device for each of the two components of the superposition. For 
example, there may be traces of the memory of the device in the state of the weight or of the pulleys, 
due to the difference in the motion of the piston to the right or to the left. We can use the memory in 
the pointer states of the device to erase these traces. When all this is done at t5 the quantum state of 
the setup is given by: 

Ψ(5) = x5 p
1
2

( 0
m

+ 1
m

) up
w
e0 e

 (7) 

where x5 p
 is the energy state of a particle in a one-dimensional box of width a with amplitudes 

which match the decrease in the expectation value of the energy, x5 p
= x0 p

− up
w

, and up w 

corresponds to the up-state of the weight in which the expectation value of the energy is higher. The 
measuring device remains in the superposed state 1

2
( 0

m
+ 1

m
) , but the particle and the device 

are now decoupled (and disentangled). This means that at this stage there are no memories of the 
outcome of the measurement in the state of the device or in the state of any other system in the setup. 
If we take the device to be a spin ½ particle, then it is now back in the ready state. If the device is a 
spin-1 particle we need to evolve the state 1

2
( 0

m
+ 1

m
)  to its initial state S m. Since the device 

is no longer entangled with the particle, these two states are non-orthogonal pure states, and so there 
is a quantum-mechanical Hamiltonian that will do that. 

To complete the cycle of operation we need to evolve the particle back to its initial energy state. 
We carry out this task by extracting energy from the environment e. For this purpose, we let the 
particle interact with e in such a way that the particle will certainly return to its initial energy state 
x0 p

. Since we assume that the environment is initially in a pure state, possibly very complex but 

nevertheless a pure state rather than a mixture, there is a deterministic evolution that will yield 
precisely this energy transfer, no matter how complicated it may be. In this interaction, the 
expectation value of the energy of e decreases by the same amount as the expectation value of the 
energy of the particle (or ultimately the weight) increases, e0 e

− e1 e
= up

w
− down

w
, as 

required by conservation of energy (where e1 e
 is the expectation value of the environment’s 

energy after the interaction with the particle). (Strictly speaking, the energy of the environment is 
finite. For a discussion of the limitations of the idealization of an infinite heat bath, see our [7], 
Chapter 1)). Of course, the reverse evolution is also possible—namely that the particle will transfer 
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energy to the environment—but we assume that the initial conditions in our setup match the first 
course of evolution. The expectation value of the weight’s energy is now greater than it was in its 
initial state. 

The quantum state of the setup at the end of the process at t6 is this: |Ψ(6)⟩ = |𝑥⟩|S⟩|up⟩௪ |𝑒ଵ⟩ (8) 

Therefore, the cycle is completed and the setup is ready to go once again. 
What is a completion of an operation cycle? Once the cycle is completed, we do not want the 

environment and the weight to return to their initial state. Instead, the idea is that at the end of the 
cycle the situation will be such that the only change in the universe is that energy has been transferred 
from the environment to the weight as in state (8). Bennett and Szilard, for example, argue that 
completing the cycle of operation involves dissipation in the environment, and therefore the 
environment’s final state is a fortiori different from its initial state. For them, not only the state of the 
environment changes, but the entropy of the environment, increases. However, in our setup there is 
no reason to think that the transfer of energy from the environment to the weight results in an increase 
of entropy of the environment. Such increase does not follow from the equations of motion. (For 
example, as long as the interaction with the environment does not lead to decoherence (as we assume 
here for simplicity; see the last section), the von Neumann entropy does not change, since the 
environment evolves from one pure state to another). As we said in Section 1, one should not assume 
the Second Law in the context of the question of Maxwell’s Demon, since the Demon is meant to 
challenge the Second Law. We have thus demonstrated that a Maxwellian Demon is compatible with 
quantum mechanics without the projection postulate. 

In our above discussion, we have phrased our argument in terms of entropy. There are different 
notions of entropy in the literature, for example, thermodynamic entropy (see [58]); Boltzmann’s 
entropy, Gibbs’s entropy (see e.g., [33,34,37]); and von Neumann’s entropy (see [57]). All these 
notions of entropy can be applied to our setup as long as they can be translated to quantum mechanics 
(for the notions of macrostates and entropy in quantum mechanics, see [1–6,59], and Appendix A). 
Our conclusion remains intact: we have a reversible quantum evolution of a closed system (including 
the environment), in which energy is extracted from the environment and transferred to the weight; 
the weight ends up in its up state; there are no traces of this process in the state of everything else; 
and the particle and everything else return to their initial states or to states of equal entropy. As long 
as the Second Law is not assumed from the outset, there is no reason to think that the entropy of any 
subsystem in the setup should increase at the end of each cycle. 

3. A Demon in Quantum Mechanics with the Projection Postulate 

Let us now consider our setup in the framework of standard quantum mechanics in von 
Neumann’s formulation with the projection postulate in measurement. As standardly understood, 
we take the projection postulate to express the so-called collapse of the quantum state: a pure-to pure 
(nonlinear and stochastic) state transition of a single setup in measurement. Applying the projection 
postulate at 2t  to the location measurement, the quantum state is either: 

Ψc (2) = L p 0 m down w e0 e
 (9) 

or 

Ψc (2) = R p 1 m down w e0 e
 (10) 

with probability ½, and at t5 (before the interaction of the particle with e) it is either 

Ψc (5) = x5 p
0 m up w e0 e

 (11) 

or 
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Ψc (5) = x5 p
1 m up w e0 e

 (12) 

The unitary Schrödinger equation cannot map the final states 
m

0  and 
m

1  of the device to 

m
S . However, we can erase the memory of the device non-unitarily in a way suggested explicitly 

by von Neumann (see [56] Chapter 5). We can measure on the device an observable λ , which does 
not commute with the pointer observable. Subsequently, to bring the device back to its standard state, 
we measure the pointer observable (i.e., spin in the z-direction) on the device until the outcome 
corresponding to 

m
S  is obtained, at which case the cycle is completed. 

We assume that the second device required for the erasure of the memory by the above process 
is part of the environment. In general, the state of this second measuring device will be different from 
its initial state. However, the important point for the question of the Demon is that at the end of this 
process there is no memory in the state of this second device of the outcome, left or right, that has 
been registered earlier, and that there is no increase of entropy as a result of this second measurement. 
For a proof that a quantum measurement does not result in an increase of entropy in a collapse theory, 
see our [57]. 

By the above erasure of the memory of the device we have completed the thermodynamic cycle 
(as explained at the end of the previous section). This shows that a Maxwellian Demon is compatible 
also with quantum mechanics with the projection postulate. 

4. The Connection between Measurement and Erasure 

Often in the literature it is argued that the erasure of the memory is accompanied by dissipation, 
according to the Landauer–Bennett thesis. We have disproved this thesis in the classical case in our 
[7,18–22,57]. The physical details of erasure evolutions do not require any dissipation that would 
compensate for the decrease of entropy in our setup. Discussions of Maxwell’s Demon in the 
quantum mechanical context rely on the classical Landauer–Bennett thesis (see Earman and Norton 
[29] concerning Zurek [30]. There are no independent sound arguments in support of this thesis that 
are genuinely quantum mechanical. 

The discussion of Maxwell’s Demon in the literature focuses on the notions of measurement and 
erasure. In the classical case, because of the determinism of the dynamics, these notions must be 
understood as referring to a macroscopic evolution, namely evolutions of sets of microstates (see our 
[7,18–22]). In quantum mechanics, as we saw in the previous sections, these two notions can be 
understood microscopically and are intertwined as we explain below. 

Consider first measurement and erasure in standard quantum-mechanics without the projection 
postulate. In particular, let us describe only the transition of states of the measuring device, by tracing 
over the rest of the setup throughout the entire evolution. As we saw, the measurement and erasure 
evolutions of the measuring device m are given by the following sequence of states: 

S → 1
2 ( 0 0 + 1 1 ) → 1

2
( 0 + 1 ) → S  (13) 

where the first arrow stands for the measurement, the second for the erasure of the outcome, and the 
third for the return (or re-setting) of the device to the ready state (the third arrow is needed only if 
the device is the spin-1 particle). The measurement interaction (represented by the first arrow on the 
left-hand side of (13)) transforms the device from a pure to a mixed (i.e., improper) state; the erasure 
(represented by the arrow in the middle of the sequence) evolves the device from a quantum 
mechanically mixed (improper) state to a pure state, which is a superposition of the two memory 
states; and the resetting arrow (represented by the third arrow in the right-hand side of the sequence) 
transforms the device from this superposition to the initial standard state. The entire evolution 
described by (13) is possible, since it is brought about by the Schrödinger evolution of the global 
quantum state Ψ(t) , which is time-reversible. Notice that although the von Neumann entropy 
increases by the first arrow, it decreases to zero by the second arrow, and therefore it has no effect on 
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the total entropy change in the Demonic evolution. (See our [57] for a detailed argument explaining 
why the von Neumann entropy is not identical to thermodynamic entropy). 

It might seem that the second arrow in (the middle of) (13) does not actually erase the outcome 
of the measurement, since the Schrödinger evolution is reversible. However, this impression is 
mistaken for the following reason. If one posits that the third arrow in evolution (13) does not bring 
about an erasure just because the dynamics is reversible, then by the same argument the determinism 
of the dynamics entails that the first arrow in (13) does not bring about a measurement with a definite 
outcome. Any account in which one obtains a determinate outcome at the end of the measurement, 
would also be an account in which the outcome is erased at the end of the erasure. 

In standard quantum mechanics with the projection postulate in measurement, there are two 
possible evolutions of the quantum state of the measuring device (since the outcome of the 
measurement is stochastic), each with probability ½, as follows: |𝑆⟩ → |0⟩ → ଵ√ଶ(|0⟩ + |1⟩) → |𝑆⟩ (14) 

or |𝑆⟩ → |1⟩ → ଵ√ଶ(|0⟩ + |1⟩) → |𝑆⟩ (15) 

As before, the first arrow on the left-hand side represents the measurement, the second arrow 
represents the erasure and the third represents the return to the ready state (and again, the third 
arrow is needed only if the device is the spin-1 particle). As we saw in Section 3, the left or right 
location of the particle is measured by coupling the memory states 0  and 1  of the device to the 
states of the particle, and then collapsing the memory onto one of them. The memory of the outcome 
of the measurement is erased in the standard collapse theory by measuring the observable λ  of the 
measuring device, which is quantum-mechanically incompatible with the pointer (or memory) 
observable. As we explain in Section 3 after this (second) measurement, which here plays the role of 
erasure, there is no record in the state of the second device of the outcome of the first location 
measurement, and there is no increase of entropy as a result of this second measurement. 

In standard quantum mechanics (with and without the projection postulate), as we saw, the 
measurement of any observable that does not commute with the memory observable is an erasure, 
since after such a measurement it is impossible to retrodict the pre-erasure state of the memory 
system from the post-erasure state. In a collapse theory after a quantum erasure, one cannot even 
retrodict which observables had definite values in the past. In our setup, since λ  is maximally 
incompatible with the pointer (or memory) observable, even if we assume that there is a memory of 
the identity of the pointer observable, one cannot retrodict even probabilistically which memory 
state, 0  or 1 , and therefore which outcome of the measurement existed at t2. This is quite unlike 
a classical erasure which can only be macroscopic, and therefore requires (what we have called in our 
2012) a macroscopic blending dynamics. It is this sort of macroscopic dynamics that makes the 
recovery of macroscopic records (measurement outcomes, memories, etc.) impossible in the classical 
theory (see our [7,18–22]). In quantum mechanics, macroscopic blending is not needed just because 
measurements of observables that do not commute with the pointer observable (or the memory 
observable) described at the quantum mechanical microlevel are microscopic erasures. 

In the context of classical statistical mechanics, we showed (see [7,18–22]) that macroscopic 
measurement and erasure need not increase thermodynamic entropy. Our analysis in the previous 
sections shows that the same conclusion carries over to standard quantum mechanics (with and 
without collapse) with respect to microscopic measurement and erasure (for the case of measurement 
and von Neumann entropy, see our [57]). 

Finally, notice that the question of whether or not the evolution in (13) describes measurement 
and erasure per se, turns out to be immaterial to the issue at stake: what is important here is whether 
or not our cyclic evolution results in total entropy increase anywhere in the universe. As we saw, we 
have a reversible quantum evolution of a closed system (including the environment), in which energy 
is transferred from the environment to the weight; the weight ends up in its up state; at the end of 
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each cycle all other subsystems return to their initial states or to states of equal entropy; and there are 
no further changes in entropy in the universe. This is why such an evolution is a Maxwellian Demon. 

5. Maxwell’s Demon 

In this paper we have shown that an entropy decreasing evolution, which includes measurement 
and erasure, is compatible with quantum mechanics. The entropy decrease in our setup, which is of 
a closed system (albeit highly idealized), violates the Second Law of thermodynamics. In the classical 
case there are no microscopic measurements and erasures. Therefore, the question of Maxwell’s 
Demon must be analyzed by introducing macrostates and macroscopic evolutions. In standard 
quantum mechanics, however, measurement and erasure can be constructed microscopically, as we 
have demonstrated above. In other words, in quantum mechanics there is no need to introduce 
quantum mechanical macrostates in order to consider the question of Maxwell’s Demon. 

However, if one is interested in a macroscopic description of a Demonic evolution in quantum 
mechanics, it is important to note that the classical notions of macrostates and macroscopic 
preparations do not have trivial counterparts in quantum mechanics (on this issue, see [1–6]). In 
Appendix A we describe the quantum mechanical analogue of a classical macrostate. We believe that 
this notion of a quantum macrostate should be considered in the description of a macroscopic Demon 
in quantum mechanics. In order to carry out a macroscopic Demonic evolution analogous to the 
classical case, all we need is that the eigenvalue associated with the initial energy eigenstate of the 
particle x0 p

 will be degenerate, and moreover that there will be more than one possible history of 

the particle that leads to that state by the same Hamiltonian (see Appendix A below). There is no no-
go theorem in quantum mechanics which prevents the possibility of preparing a state of this kind. 
Since our Demonic evolution does not depend on any other details of the initial energy eigenstate of 
the particle, it applies to all the quantum states that belong to the degenerate energy eigenvalue. This 
means that typicality (or probabilistic) considerations that often come up in the attempts to account 
for the Second Law in statistical mechanics are irrelevant here. Therefore, it seems to us that as a 
matter of principle a genuine macroscopic Maxwellian Demon is consistent with quantum statistical 
mechanics. 

This result implies that the Second Law of thermodynamics is not a universal theorem of 
quantum statistical mechanics. Our previous result of a classical Maxwellian Demon (see our [7,18–
21]) implies that the Second Law is not a universal theorem of classical statistical mechanics. As we 
said, these results are not in conflict with the empirical evidence that supports Second Law behavior: 
the proof that Maxwell’s Demon is compatible with fundamental physics leaves open the possibility 
that both the entropy increase described by the Second Law and the entropy decrease described by 
Demonic evolutions are both compatible with fundamental physics; they may hold for different 
initial conditions of the universe. However, one implication of our result is that the Second Law 
cannot provide a lawlike basis for an account of the arrow of time; this account has to be sought 
elsewhere (for details about how this can be done, and why the Second Law cannot ground the 
direction of time, see our [60]). 

Finally, in our construction of the Demonic setup above, we have assumed that the entire system 
consisting of the spin-½ particle, the measuring device, which is a spin-1 or spin-½ particle, the piston 
and the pulleys, which connect the piston to the weight, and everything else, are not subject to 
environmental decoherence. If some of these subsystems do undergo decoherence interactions with 
the environment, then of course we shall have to erase the records of the measurement outcome that 
might be present in the environment states. This can be done for example in a no-collapse theory by 
re-interfering the environment states in essentially the same way we described above with respect to 
the pointer states. Obviously, such re-interference would require complete control over many degrees 
of freedom in the environment, but there is no lawlike limitation in quantum mechanics (that does 
not depend on the Second Law) that prevents such re-interference. As we said, we are not interested 
here in practical limitations. Therefore, environmental decoherence does not impose a quantum 
mechanical lawlike limitation on our thought experiment. 
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Appendix A. Quantum Macrostates 

How can one prepare a macroscopic state according to quantum mechanics? We take it that the 
quantum mechanical counterparts of thermodynamic magnitudes are eigenvalues of certain 
observables. Suppose that we prepare a collection of systems by measuring on each of them the 
observable M, applying the projection postulate, and collecting only those with eigenvalue M0 (with 
the corresponding eigenstate or eigensubspace). Then (in the standard theory with the projection 
postulate, except in special cases described below) the resulting quantum state is known with 
complete accuracy: it is a pure state. Unlike the classical case of preparing a system by measuring a 
macrovariable on it, which leaves us with ignorance concerning the other aspects of the microstates, 
here the information about the quantum state is complete, not partial. No ignorance remains. 

The only case (in standard quantum mechanics) where one can prepare a system with a certain 
eigenvalue and nevertheless remain with a set of quantum microstates compatible with the measured 
eigenvalue is the measurement of degenerate observables in special circumstances. In the general 
case, upon measurement of the observable A on some quantum state |ψ>, if the outcome is eigenvalue 
an with degree of degeneracy gn, then according to the projection postulate, the final state is a 
(normalized) superposition of all the gn eigenvectors of A associated with an. However, if the initial 
quantum state |ψ> is itself one of the eigenvectors associated with an then the final state will remain 
unchanged and will not become a superposition of all the eigenvectors of an. This has the following 
consequence. Suppose that before A was measured, a non-degenerate observable B was measured 
non-selectively, and then a suitable Hamiltonian was applied on the resulting proper mixture, such 
that each eigenstates bn of B in the mixture evolved to an eigenstate of the degenerate eigenvalue an 
of A. In this case, the state of affairs just prior to the measurement of A can be described in terms of 
a proper mixture of the eigenstates associated with an and this proper mixture will carry over to the 
state after the measurement of A, with the same (normalized) probability distribution. The result is 
that by the end of the measurement process we know that the quantum state is a definite pure 
quantum eigenstate of an, but we do not know which it is—much like in a classical preparation. This 
is the only way to understand a preparation of macrostate, i.e., a set of microstates in standard 
quantum statistical mechanics. 
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