INDICATIVE CONDITIONALS ARE MATERIAL
EXPANDING THE SURVEY
Draft of August 24, 2021
Matheus Silva

ABSTRACT
Adam Rieger (2013) has carried out a survey of arguments in favour of the material account of indicative conditionals. These arguments involve simple and direct demonstrations of the material account. I extend the survey with new arguments and clarify the logical connections among them. I also show that the main counter-examples against these arguments are not successful either because their premises are just as counter-intuitive as the conclusions, or because they depend on contextual fallacies. The conclusion is that the unpopularity of the material account is unjustified and that a more systematic approach in the analysis of arguments is long overdue in our attempts to understand the nature of conditionals.

1. INTRODUCTION
The material account of indicative conditionals states that indicative conditional sentences and the material implication have the same truth conditions. Recently, Adam Rieger (2013) has carried out a survey of arguments in favour of the material account. In this paper, I extend this survey by presenting yet more arguments for the material account and clarify the logical connections among them. Towards the end, I defend why there are good reasons to accept these new arguments and try to explain why similar arguments have been somewhat unpopular.

The article will be divided as follows. Sections 1.1–1.5 present a series of positive arguments for the material account of conditionals. Some of main principles used in these arguments are general conditional proof, conditional proof, or-to-if and conditional negation. Interesting logical connections include the equivalence between ex contradictione quodlibet and the first paradox of material implication, the equivalence between the second paradox of material implication and simplification, and the equivalence between conditional negation and or-to-if. Section 2 discusses some of the main counter-examples presented against the main principles employed in the positive arguments for the material account. Section 3 tries to resist these counter-examples with two arguments. The first is that they are not genuine counter-examples, since in each instance the premises are just as counter-intuitive as the conclusion. Genuine counter-examples have premises that are intuitively true and a conclusion that is intuitively false, since they are supposed to exemplify an instance of an argumentative form that has a true premise and a false conclusion. The second argument is that in the few instances that can’t be explained in this manner are also inadequate because they commit contextual fallacies. Section 4 concludes with methodological considerations about the need to rethink our evaluation of logical principles.

1.1 POSITIVE ARGUMENTS WITH (GCP)
One of the central arguments in Rieger’s paper involves General Conditional Proof (GCP), the principle which states that if \(A, B \) entails \(C \), it follows that \(A \) entails \(B \rightarrow C \). Rieger–

1 Here ‘→’ stands for indicative conditionals, ‘⇒’ stands for material conditional, and ‘⊨’ stands for entailment. All argumentative forms and metalogical principles discussed will be initially named, and from then on will be referred by their respective abbreviations. Some of the known argumentative forms will be introduced only by
correctly in my view—uses the following example to claim that this principle is intuitively valid: given that having eggs and olive oil entails that I can make mayonnaise, it follows that having eggs entails that if I have olive oil I can make mayonnaise.

In his paper, Rieger recognises that there are more arguments involving (GCP), but discusses just two arguments, one involving Modus Ponens (MP), and the other involving Ex Contradictione Quodlibet (ECQ), the principle that states that anything is entailed by a contradiction. It is worth investigating other arguments with (GCP) that rely on different logical assumptions. The following argument proves that any conditional \(A \rightarrow B \) can be inferred from \(\neg A \), which is the First Paradox of Material Implication (FPM). On top of (GCP), the argument assumes the transitivity of entailment (TE), double negation (DN), and the truth conditions of conjunction, ‘\&’:

<table>
<thead>
<tr>
<th>Prem</th>
<th>1</th>
<th>(\neg A \models \neg(A & \neg B))</th>
<th>from the truth conditions of ‘&’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prem</td>
<td>2</td>
<td>((A & \neg B), A \models \neg B)</td>
<td>from the truth conditions of ‘&’</td>
</tr>
<tr>
<td>Prem</td>
<td>3</td>
<td>(\neg B \models B)</td>
<td>(DN)</td>
</tr>
<tr>
<td>2,3</td>
<td>4</td>
<td>((A & \neg B), A \models B)</td>
<td>2,3 (TE)</td>
</tr>
<tr>
<td>2,3</td>
<td>5</td>
<td>((A & \neg B) \models A \rightarrow B)</td>
<td>4, (GCP)</td>
</tr>
<tr>
<td>1,2,3</td>
<td>6</td>
<td>(\neg A \models A \rightarrow B)</td>
<td>1,5 (TE)</td>
</tr>
</tbody>
</table>

We can also show that \(A \rightarrow B \) can be inferred from \(B \), which is the Second Paradox of Material Implication (SPM). The proof relies on the truth conditions of ‘\&’, (GCP), (DN), and (TE):

<table>
<thead>
<tr>
<th>Prem</th>
<th>1</th>
<th>(B \models \neg(A & \neg B))</th>
<th>from the truth conditions of ‘&’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prem</td>
<td>2</td>
<td>((A & \neg B), A \models \neg B)</td>
<td>from the truth conditions of ‘&’</td>
</tr>
<tr>
<td>Prem</td>
<td>3</td>
<td>(\neg B \models B)</td>
<td>(DN)</td>
</tr>
<tr>
<td>2,3</td>
<td>4</td>
<td>((A & \neg B), A \models B)</td>
<td>2,3 (TE)</td>
</tr>
<tr>
<td>2,3</td>
<td>5</td>
<td>((A & \neg B) \models A \rightarrow B)</td>
<td>4, (GCP)</td>
</tr>
<tr>
<td>1,2,3</td>
<td>6</td>
<td>(B \models A \rightarrow B)</td>
<td>1,5 (TE)</td>
</tr>
</tbody>
</table>

Finally, we can establish (SPM) simply with (E&) and (GCP):

<table>
<thead>
<tr>
<th>Prem</th>
<th>1</th>
<th>(B & A \models B)</th>
<th>(E&)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>(B \models A \rightarrow B)</td>
<td>1, (GCP)</td>
</tr>
</tbody>
</table>

their names and their logical form will not be introduced. For simplicity of exposition, I will use the same numeration (1,2,3...) for each positive argument and the capital letters \(A, B, C \ldots \) for both sentence letters and propositional variables—the context will make it clear which one is being used. I will not use quotes to highlight the use-mention distinction when there is no risk of confusion, and the symbols and variables quoted will be modified to ensure that the notation remains uniform.

2 Rieger (2013: 3164).
3 Rieger (2013: 1363; 1365).
4 The argument is adapted from Simons (1965: 80).
5 The argument is adapted from Simons (1965: 80).
The argument is breathtakingly simple: it just involves the acceptance of (E&), an uncontroversial principle. Thus, what we need to prove that conditionals are material beyond the use of (GCP), is (DN), (TE), and (E&). Each of these principles seem fundamental to our understanding of certain notions: (DN) is a consequence of classical negation, (TE) of the notion of entailment, and (E&), of the notion of conjunction. Thus, the most promising way to block the argument is by refusing (GCP), which is a tall order.

What is most surprising is that (GCP) can be used with another metalogical principle to devastating effect. Each rule of inference has a corresponding rule of proof. (GCP) is a rule of proof corresponding to Exportation (EXP): \((B \& A) \rightarrow B \equiv A \rightarrow (B \rightarrow C)\). There is also a metalogical principle corresponding to Importation (IMP): \(A \rightarrow (B \rightarrow C) \equiv (A \& B) \rightarrow C\). We can call this rule of proof General Importation Proof (GIMP):

\[
\text{(GIMP): Give that } A \vdash B \rightarrow C, \text{ it follows that } A \& B \vdash C
\]

This rule is intuitively valid. If having eggs entails that I can make mayonnaise if I have olive oil, it follows that having eggs and olive oil entails that I can make mayonnaise. Now, in his paper, Rieger shows that from (GCP) and (ECQ), it follows (FPM)\(^7\). We can use this information together with (GIMP) to show that (ECQ) is equivalent to (FPM) as follows:

\[
\begin{align*}
\text{Prem} & \quad (1) \quad \neg A \& A \equiv B \quad \text{(ECQ)} \\
1 & \quad (2) \quad \neg A \equiv A \rightarrow B \quad 1, \text{(GCP)} \\
1 & \quad (3) \quad \neg A \& A \equiv B \quad 2, \text{(GIMP)} \\
1 & \quad (4) \quad \neg A \equiv A \rightarrow B \equiv \neg A \& A \equiv B \quad 1, 2, 3
\end{align*}
\]

Since (SPM) follows from (E&) and (GCP), we can use this information together with (GIMP) to show that (SPM) is equivalent to (E&):

\[
\begin{align*}
\text{Prem} & \quad (1) \quad B \& A \equiv B \quad \text{(E&)} \\
1 & \quad (2) \quad B \equiv A \rightarrow B \quad 1, \text{(GCP)} \\
1 & \quad (3) \quad B \& A \equiv B \quad 2, \text{(GIMP)} \\
1 & \quad (4) \quad B \& A \equiv B \equiv B \equiv A \rightarrow B \quad 1, 2, 3
\end{align*}
\]

These results are surprising. Someone who denies the validity of (SPM) would not think of himself as denying the validity of an uncontroversial argumentative form such as (E&), but this is the consequence of accepting (GCP) and (GIMP). The relation between (FPM) and (ECQ) is even more perplexing, because (FPM) is the most counter-intuitive aspect of the material account and (ECQ) is a consequence of the classical conception of validity. Thus, denying (FPM) amounts to deny (ECQ) and, consequently, the classical conception of validity.

There are other ways of making this connection more intuitive. The connection between (FPM) and (ECQ) can be explained as follows: when \(A \rightarrow B\) is asserted under the assumption of \(\neg A\), what is actually being asserted is \((\neg A \& A) \rightarrow B\), which should be interpreted as saying that any consequent is materially implied by the conjunction of two inconsistent antecedents\(^8\). The connection between (SPM) and (E&) can also be made plausible if we consider that a material implication with a true consequent has the truth of this consequent implicit in its

\(^6\) With the exception of intuitionists, they don’t need to apply.

\(^7\) Rieger (2013: 5).

\(^8\) Russell (1970: 136).
antecedent. The assertion of \(A \rightarrow B \) under the assumption of \(B \) should be interpreted as \(B \rightarrow (A \rightarrow B) \), which by importation (IMP) leads us to \((B \& A) \rightarrow B\), which means that a consequent is materially implied by its combination with its antecedent\(^9\).

Fitelson argued that (EXP) and (IMP) can also be used to prove that conditionals are intuitionist\(^{10}\). While this is true, it does not represent a threat to the material account for one simple reason: it has too many similarities with the material account to be perceived as convincing alternative by its opponents. The intuitionist conditional validates paradoxes such as (FPM) and (SPM)\(^{11}\), which can hardly be considered an improvement.

It can also be argued that (GCP) is equivalent to \textit{Condition E} (CE), which states that for any true \(A \rightarrow B \), there is a set \(S \) of true propositions such that \(B \) is inferable from \(A \) together with \(S \). (CE) is plausibly a necessary and sufficient condition for the truth of \(A \rightarrow B \). Take, for instance, a conditional such as ‘If Smith is taller than Jones, Smith is taller than Robinson’. This conditional will be true if there is at least one set \(S \) that makes \(B \) inferable from \(A \). This set could be the statement \textit{Jones is at least as taller as Robinson}.

Now, \(B \) can be inferred from \(A \) and \(A \supset B \). Therefore, if \(A \supset B \) is true there is a set \(S \) of true propositions, i.e., the set that consists solely of the proposition \(A \supset B \), such that \(B \) is inferable from \(A \) together with \(S \). It follows that if \(A \supset B \) is true, (CE) is satisfied. But if (CE) is satisfied, \(A \rightarrow B \) is true. Thus, if the proposition \(A \supset B \) is true, \(A \rightarrow B \) is true. Since it is accepted that \(A \supset B \) is inferable from \(A \rightarrow B \), it follows that \(A \supset B \) and \(A \rightarrow B \) are logically equivalent. The interesting bit is that the argument uses (CE) as follows: if \(B \) is inferable from \(A \) and \(A \supset B \), given that \(A \supset B \) is true, (CE) is satisfied, and \(A \rightarrow B \) is also true; but this is just a different way of saying that from \(A \), \(A \supset B \equiv B \) it follows that \(A \supset B \equiv A \rightarrow B \), which is the formulation of (GCP). Consequently, (GCP) is equivalent to (CE).

1.2 POSITIVE ARGUMENTS WITH (CP)

Rieger presented arguments involving \textit{Conditional Proof} (CP)\(^{12}\):

\((CP) \): From \(A \equiv B \), it follows that \(\equiv A \rightarrow B \)

There are some principles with similar logical forms that are also intuitively valid. They can be considered different versions of conditional proof. I will use a number and a connective to identify each version of conditional proof:

\((CP^1 \rightarrow) \) From \(A \equiv B \), it follows that \(\equiv A \rightarrow B \)

\((CP^2 \rightarrow) \) From \(\equiv A \rightarrow B \), it follows that \(\equiv A \equiv B \)

\((CP^1 \supset) \) From \(A \equiv B \), it follows that \(\equiv A \supset B \)

\((CP^2 \supset) \) From \(\equiv A \supset B \), it follows that \(\equiv A \equiv B \)

One of the most striking examples involving (CP) is the proof that all tautological conditionals are material. The proof that \(A \supset B \) is logically equivalent to \(A \rightarrow B \) is made in two

\(^{10}\) Fitelson (2013).

\(^{11}\) For an exposition of the paradoxes see Priest (2008: 113).

\(^{13}\) Rieger (2013: 3164).
steps. First, we need to show that if \(A \supset B \) is a logical truth, so is \(A \rightarrow B \). Here is the demonstration:

\[
\begin{array}{ll}
\text{Prem} & (1) \; \models A \supset B \\
1 & (2) \; A \nvdash B \quad 1, \text{ by (CP:>)} \\
1 & (3) \; \models A \rightarrow B \quad 2, \text{ by (CP:<)} \\
1 & (4) \; \models A \supset B \text{ entails } \models A \rightarrow B \quad \text{from 1–3}
\end{array}
\]

Now we need to show that if \(A \rightarrow B \) is a logical truth, so is \(A \supset B \):

\[
\begin{array}{ll}
\text{Prem} & (1) \; \models A \rightarrow B \\
1 & (2) \; A \nvdash B \quad 1, \text{ by (CP:<)} \\
1 & (3) \; \models A \supset B \quad 2, \text{ by (CP:>)} \\
1 & (4) \; \models A \rightarrow B \text{ entails } \models A \supset B \quad \text{from 1–3}
\end{array}
\]

Another argument for the conclusion that tautological conditionals are material involves the principle of Trivial Validity (TV), according to which any inference with a tautological conclusion is valid:

\[
\begin{array}{ll}
\text{Prem} & (1) \models A \rightarrow B \quad \text{tautology} \\
1 & (2) \; \text{From } \neg A \text{ it follows that } \models A \rightarrow B \quad 1, \text{ by (TV)} \\
1 & (3) \; \text{From } B \text{ it follows that } \models A \rightarrow B \quad 1, \text{ by (TV)} \\
1 & (4) \; \models A \rightarrow B \quad \models A \supset B \quad \text{from 2,3}
\end{array}
\]

This conclusion that tautological conditionals are material reinforces the view that true conditionals in mathematics are material. The connection lies in the fact that mathematical truths are necessary. The proposition ‘If 3 is a prime, it is only divisible by 1 and itself’ is not just true, but necessarily true; it is a logical consequence of the axioms of arithmetic. Now, if a conditional expressing a mathematical truth is a tautology, it must be material, since any tautological conditional is material.

If tautological conditionals are material, alternatives to the material account of indicative conditionals are forced to assume that the logic of conditionals in mathematics is distinct from the one used in natural language. This concession puts some pressure on them, for any acceptable theory of indicative conditionals must be simplified to the material account to mathematical contexts15. After all, it cannot be ignored that the language of mathematics is in continuity with the ordinary language, since the mathematical activity occurs in natural language. Thus, since mathematical conditionals are conditionals of natural language, a proper explanation of conditionals must be a proper explanation of mathematical conditionals16.

In order to avoid the material account, it would be needed to argue that mathematical conditionals are only material because mathematical contexts have special features, but this is

14 Fitelson (2008: 2). \\
15 Burgess (2004: 568). \\
16 Barwise (1986: 21).
implausible since we understand the use of conditionals in mathematics by following our ordinary use, and since mathematical conditionality is expressed by using standard conditional forms of a given natural language17. Perhaps there is little doubt that mathematical conditionals are material since the counter-intuitive aspects usually associated with the material implication such as temporal flexion and causal connections are not present in mathematics18. But if that is the only difference between mathematical conditionals and other conditionals, perhaps these counter-intuitive aspects have no logical significance. In any case, the fact that the material account must not assume that indicative conditionals have a different semantics when they are tautological is an advantage over its alternatives.

It is also possible to show that conditionals are material if they obey conditional negation (CN), i.e., the principle that \(A \rightarrow B \) is equivalent to \(\neg(A \& \neg B) \). The following argument involves (E&), (MP), (I&), (CP1→) and reduction to absurdity (I¬)19:

\[
\begin{array}{lcl}
\text{Prem} & (1) & A \rightarrow B \\
\text{Sup} & (2) & A \& \neg B & \text{assumption} \\
2 & (3) & A & 2, \text{ (E&)} \\
1,2 & (4) & B & 1,3 \text{ (MP)} \\
2 & (5) & \neg B & 2, \text{ (E&)} \\
1,2 & (6) & B \& \neg B & 4,5 \text{ (I&)} \\
1 & (7) & \neg(A \& \neg B) & 2–6, \text{ (I¬)} \\
\end{array}
\]

\[
\begin{array}{lcl}
\text{Prem} & (1) & \neg(A \& \neg B) \\
\text{Sup} & (2) & A & \text{assumption} \\
\text{Sup} & (3) & \neg B & \text{assumption} \\
2,3 & (4) & A \& \neg B & 2,3 \text{ (I&)} \\
1,2,3 & (5) & \neg(A \& \neg B) \& (A \& \neg B) & 1,4 \text{ (I&)} \\
1,2 & (6) & B & 3,5 \text{ (I¬)} \\
1 & (7) & A \rightarrow B & 2,6 \text{ (CP1→)} \\
\end{array}
\]

One could object that (CP1→) implies that any conditional of the form \(A \rightarrow B \) is entailed by \(B \), since from the mere acceptance of \(B \) and the assumption of \(A \), it follows that \(A \rightarrow B \) from \(B \) alone by (CP1→). This happens because (CP1→) allows us to reason with assumptions instead of accepted premises, as it is evidenced by the argumentative strategy used above. The assumption that \(A \) is introduced in the step 2 only to be later used in a reductio in order to obtain the desired conclusion in the step 6; then is finally discharged from the assumption dependence column as the antecedent of the conclusion in the step 20.

The use of (CP1→) can be unsettling in many ways. It allows us, for instance, to infer conditionals by making vacuous discharge of assumptions. Take the following example:

17 Rumfitt (2013: 183).
18 Orayen (1985: 235–236).
19 Hanson (1991: 54).
20 Adams (1975: 24).
Prem (1) \(B \)

1 (2) \(A \rightarrow B \) \(1, \text{(CP}^1 \rightarrow \text{)} \)

2 (3) \(B \rightarrow (A \rightarrow B) \) \(1,2 \text{ (CP}^1 \rightarrow \text{)} \)

The conditional derived in line 3 is the usual case in which the line number corresponding to the antecedent of \(B \rightarrow (A \rightarrow B) \) is discharged from the assumption dependence column. But in line 2 there is vacuous discharge of assumptions. Since the antecedent of 2 has no prior occurrence, there is no assumption to discharge from the dependence column\(^{21} \). And as if this result was not unnatural enough, notice that the use of \(\text{(CP}^1 \rightarrow \text{)} \) in the step 3 would imply that \(B \) entails \(A \rightarrow B \), which is \(\text{(SPM)} \).

However, in order to deny \(\text{(CP}^1 \rightarrow \text{)} \) we need to accept that \(A \rightarrow B \) can be false when \(A \) entails \(B \), which is patently absurd\(^{22} \). Moreover, denying the validity of \(\text{(CP}^1 \rightarrow \text{)} \) would require a complete reformulation of mathematics as it is known since mathematical proofs rely heavily on applications of \(\text{(CP}^1 \rightarrow \text{)} \). When a mathematician deduces \(B \) from a hypothesis \(A \) and axioms \(X \), she asserts \(A \rightarrow B \) on the strength of \(X \) alone\(^{23} \). If its validity on mathematics is not to be abandoned, at the very least, it would be needed to explain why \(\text{(CP}^1 \rightarrow \text{)} \) is invalid in our nonmathematical deductions. The fact of the matter is that our uneasiness with the unforeseen aspects of \(\text{(CP}^1 \rightarrow \text{)} \) involve extreme examples that are not supported by our inferential practices. If these intuitions go against a basic and intuitive principle, maybe they should not be trusted\(^{24} \). Rather, we should rely on the basic assumptions that are grounded on inferential practices.

Another distinctive argumentative form implied by the material account is strengthening of the antecedent \(\text{(SA)} \): \(A \rightarrow B \vdash (A \& C) \rightarrow B \). We can show that \(\text{(SA)} \) follows from Left Weakening \(\text{(LW)} \), i.e., if \(A \vdash B \), then \(A \& C \vdash B \), \(\text{(CP}^2 \rightarrow \text{)} \) and \(\text{(CP}^1 \rightarrow \text{)} \):

Prem (1) \(A \rightarrow A \) Tautology

1 (2) \(A \nvdash A \) \(1, \text{(CP}^v \rightarrow \text{)} \)

1 (3) \(A \& C \nvdash A \) \(2, \text{(LW)} \)

1 (4) \((A \& C) \rightarrow A \) \(3, \text{(CP}^1 \rightarrow \text{)} \)

1 (5) \(A \rightarrow A \nvdash (A \& C) \rightarrow A \) 1–4, \(\text{(TE)} \)

Since \(\text{(CP}^1 \rightarrow \text{)} \), \(\text{(CP}^2 \rightarrow \text{)} \) and \(\text{(TE)} \) are fundamental features of entailment, any attempt to bar the argument will focus on \(\text{(LW)} \). However, \(\text{(LW)} \) should be interpreted as a consequence of monotonicity. Thus, in order to refuse \(\text{(SA)} \), we should refuse monotonicity for deductive logic. That is a high price to pay to avoid the material account of conditionals.

Another argument for \(\text{(SPM)} \) involves \(\text{(CP}^1 \rightarrow \text{)} \), \(\text{(CP}^2 \rightarrow \text{)} \), simplification \(\text{(E&)} \), and exportation \(\text{(EXP)} \)\(^{25} \):

Prem (1) \(B \& A \nvdash B \) \(\text{(E&)} \)

\(^{22}\) Hanson (1991: 54).

\(^{23}\) Rumfitt (2013: 183).

\(^{24}\) Orayen (1983: 16).

\(^{25}\) Leavitt (1972: 10). Leavitt attributes the authorship of the argument to Bertrand Russell. Its original formulation is presented in natural language. Rieger (2013: 3163–4) uses a similar argument to prove that \(\text{(CP}^1 \rightarrow \text{)} \), \(\text{(EXP)} \) and \(\text{(E&)} \) entail \(\text{(GCP)} \). The only difference is that the premise is \(A, B \nvdash C \), which leads to the conclusion that \(A \nvdash B \rightarrow C \).
There are many arguments for the material account involving Or-to-If (OTF): $A \lor B \not\equiv \neg A \rightarrow B$. The following argument proves (OTF) with Disjunctive Syllogism (DS), (CP$^1\rightarrow$), (CP$^2\rightarrow$) and (EXP)26:

Prem (1) $(A \lor B) \& \neg A \equiv B$ (DS)
1 (2) $((A \lor B) \& \neg A) \rightarrow B$ 1, (CP$^1\rightarrow$)
1 (3) $(A \lor B) \rightarrow (\neg A \rightarrow B)$ 2, (EXP)
1 (4) $A \lor B \equiv \neg A \rightarrow B$ from 3, by (CP$^2\rightarrow$)

The logical assumptions of this argument are beyond suspicion. (DS) is universally accepted, while (CP$^1\rightarrow$) and (CP$^2\rightarrow$) seem to be a triviality about the relation between tautological conditionals and entailment. (EXP) would also be regarded as irreproachable weren’t for its association with other positive arguments for the material account. I will discuss some attempts to refute (EXP) and other fundamental principles in section 3.

It is worth observing that (CP) implies the material account only if the negation assumed is classic. In an intuitionist logic, (CP) is valid, but the conditional is not material for $\neg A \lor B$ entails $A \rightarrow B$, but the converse entailment is invalid27. However, since the main alternatives to the material account, such as suppositional theory and possible world theories, endorse the classic negation, the assumption of (CP) is still strong.

1.3 POSITIVE ARGUMENTS WITH (OTF)

The argumentative form (OTF) is intuitively plausible. Consider the following reasoning: The disjunction ‘Either A or B’ is true if at least one of its disjuncts is true, i.e., if either A is true or B is true. Thus, if not-A or B is true then either not-A is true or B is true. But if A is true not-A can’t be true, and since either not-A or B must be true then B must be true, i.e., ‘If A then B’ is true. Therefore, it was shown that if either not-A or B is true then ‘If A then B’ is true28. Thus, if (OTF) is valid, conditionals are material, for if the disjunction is material, so it is the conditional that is implied by it29. This point is reinforced by the fact that (FPM) follows from (IV), (OTF), (DN) and (TE)30:

<table>
<thead>
<tr>
<th>Prem</th>
<th>(1) $\neg A$</th>
<th>1, (IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2) $\neg A \lor B$</td>
<td>1, (OTF)</td>
</tr>
<tr>
<td>1</td>
<td>(3) $\neg A \rightarrow B$</td>
<td>2, (OTF)</td>
</tr>
<tr>
<td>1</td>
<td>(4) $A \rightarrow B$</td>
<td>3, (DN)</td>
</tr>
</tbody>
</table>

26 Katz (1999: 411).
27 Rumfitt (2013: 166).
28 Pollock (1969: 19).
29 For a similar argument see also Rieger (2013: 3165–3166).
30 Gensler (2010: 370).
1. (4) \(\neg A \equiv A \to B \) 1–3 (TE)

A similar argument could be used to show (SPM):

<table>
<thead>
<tr>
<th>Prem 1 B</th>
<th>1 (2) (B \lor \neg A) 1, (Iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (3) (\neg A \lor B) 2, Commutativity of Disjunction (CD)</td>
</tr>
<tr>
<td></td>
<td>1 (4) (\equiv \neg A \to B) 3, (OTF)</td>
</tr>
<tr>
<td></td>
<td>1 (5) (A \to B) 4, (DN)</td>
</tr>
<tr>
<td></td>
<td>1 (6) (B \equiv A \to B) 1–5 (TE)</td>
</tr>
</tbody>
</table>

Notice that while (IV) and (OTF) allow us to infer (FPM), the validity of (FPM) and (OTF) enable us to deduce the same conclusion allowed by (IV):

<table>
<thead>
<tr>
<th>Prem 1 A</th>
<th>1 (2) (\neg A \to B) 1, (FPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (3) (A \lor B) 2, (OTF)</td>
</tr>
</tbody>
</table>

The same can be said about (IV) and (OTF) entailing (SPM), since (SPM) and (OTF) are enough to infer the same conclusion allowed by (IV):

<table>
<thead>
<tr>
<th>Prem 1 B</th>
<th>1 (2) (\neg A \to B) 4, (SPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (3) (B \lor A) 5, (OTF)</td>
</tr>
<tr>
<td></td>
<td>1 (4) (A \lor B) 6, (CD)</td>
</tr>
</tbody>
</table>

Thus, (IV), (OTF), (FPM) and (SPM) are linked. One who denies the material account could block either argument by refusing (IV) instead of attacking (OTF). That’s what Anderson & Belnap (1975: 165–167) did when they argued that \(A \) only entails \(A \lor B \) if the disjunction is extensional. One reply is that a disjunction ‘Either \(A \) or \(B \)’ is denied by ‘Neither \(A \), nor \(B \)’, and that from the last proposition we can infer ‘not-\(A \)’. Thus, if we could not infer ‘Either \(A \) or \(B \)’ from \(A \), we should not be able to infer ‘not-\(A \)’ from ‘Neither \(A \), nor \(B \)’.

Since (OTF) implies the material account, any argument that shows the validity of (OTF) is an argument for the material account. One powerful argument for (OTF) involves the principle that if two propositions imply the same conclusion by means of the same premises, they must be equivalent. Given that \(\neg A \lor B \) and \(A \to B \) entail \(B \) by means of \(A \), and \(\neg A \) by means \(\neg B \), they must be equivalent. What is important about this argument is that it relies on a basic principle that establishes the plausibility of (OTF) by means of the validity of (DS), (MP) and (MT).

Another powerful argument for (OTF) requires nothing more than two tautologies and (CD):

| Prem 1 A \(\to B \) | Prem 2 \(\neg A \to \neg A \) tautology |

31 The argument is adapted from Johnston (1996).
33 Sen (1961: 46).
Prem (3) \(A \lor \neg A \) tautology
1 (4) \(B \lor \neg A \) 1–3, given the possible inferences with \(A \) and \(\neg A \) in 1 and 2
1 (5) \(\neg A \lor B \) 4, (CD)

It is not obvious how someone could prevent the conclusion above given its logical assumptions. Thus, a case can be made that (OTF) is valid and therefore the material account is true.

1.4 POSITIVE ARGUMENTS WITH (CN)

In these discussions, there is too much focus on certain argumentative forms that have conditionals in the premise or in the conclusion. Other connectives are either ignored or have a marginal role. For instance, disjunctions are only considered in the discussion about (OTF). However, the truth conditions of conjunctions and their role in (CN), i.e., \((A \rightarrow B) \equiv A \land \neg B \), are central to this discussion. (CN) is a mark of the material account since it implies that any conditional is false if, and only if, its antecedent is true and its consequent is false. Otherwise, it is true. A conditional that requires a stronger truth conditions, e.g., that could be false when the antecedent is false, would violate (CN) and thus would not be material. (CN) is intuitive. Consider the following reasoning: if \(A \rightarrow B \) is true, then if \(A \) is true, \(B \) must be true. Since is not the case that \(A \) is true and \(B \) is false, \(A \land \neg B \) is false, and consequently \(\neg (A \land \neg B) \) is true. If \(\neg (A \land \neg B) \) is true, and \(A \) is true, then \(B \) is not false, since \(A \land \neg B \) is not true. Therefore, \(B \) must be true. Thus, if \(A \) is true, so is \(B \), i.e., \(A \rightarrow B \) is true. Thus, (CN) is valid35.

If we accept (CN) and consider the circumstances under which the conditional and disjunction are false, we can show that (OTF) is valid, and, therefore, that the material account is true. If \(\neg A \lor B \) is false, then \(A \) is true and \(B \) is false, which is exactly the circumstance in which \(A \rightarrow B \) is predicted to be false according to (CN). If \(A \rightarrow B \) is false, \(\neg A \lor B \) will be false since \(A \land \neg B \) will be true. Thus, the validity of (CN) implies the validity of (OTF) and, consequently, the truth of the material account. (CN) can also be used to infer (FPM) in the following demonstration:

Prem (1) \(\neg A \models \neg (A \land \neg B) \) from the truth conditions of ‘\&’
Prem (2) \((A \land \neg B) \models A \rightarrow B \) (CN)
1,2 (2) \(\neg A \models A \rightarrow B \) 1,2 (TE)

The importance of (CN) lies in the fact that it provides a bridge between a conditional and a disjunction via the negation of a conjunction. A similar argument works for (SPM):

Prem (1) \(B \models \neg (A \land \neg B) \) from the truth conditions of ‘\&’
Prem (3) \(\neg (A \land \neg B) \models A \rightarrow B \) (CN)
1,2 (4) \(B \models A \rightarrow B \) 1,2 (TE)

It is important to observe that (CN) is logically equivalent to (OTF). First, let’s consider the demonstration that (CN) implies (OTF) above:

Prem (1) $A \rightarrow B$
1 (2) $\neg (A \& \neg B)$ 1, (CN)
1 (3) $\neg A \lor \neg B$ 2, (DM)
1 (4) $\neg A \lor B$ 3, (DN)

We can show that (OTF) implies (CN) using (DM), (DN), and the Truth Preservation principle (TP), which states that if A entails B, then $\neg B$ entails $\neg A$:

Prem (1) $\neg A \lor B \models A \rightarrow B$ (OTF)
1 (2) $\neg (A \rightarrow B) \models \neg (\neg A \lor B)$ 1, (TP)
1 (3) $\neg (A \rightarrow B) \models \neg A \& \neg B$ 2, (DM)
1 (4) $\neg (A \rightarrow B) \models A \& \neg B$ 3, (DN)

This proves that (OTF) and (CN) are logically equivalent. One indirect way to criticise (CN) is by attacking (MP), since it is implied by it. (MP) follows from (CN)\(^{36}\) and the transitivity of entailment (TE). The demonstration is as follows\(^{37}\):

Prem (1) $A \rightarrow \neg B \models \neg (A \& B)$ (CN)
1 (2) $\neg (A \& B) \& A \models \neg B$ 1, given the truth conditions of ‘&’ and ‘¬’
1 (3) $(A \rightarrow \neg B) \& A \models \neg B$ 1, 2 (CN) and (TE)
1 (4) $(A \rightarrow B) \& A \models B$ 1, 3 (TE) given ‘¬’, every proposition is equivalent to a negation, ergo, (CN) entails (MP)

However, even though the refusal of (MP) is a path to block (CN), it is not a promising one. Everyone who rejects (MP) will most likely already reject (CN)\(^{38}\) for independent reasons.

1.5 MISCELLANEOUS ARGUMENTS

In other to show that $A \supset B$ and $A \rightarrow B$ are logically equivalent, we need to show that the entailment relation between them goes both ways. First, we need to show that ‘\supset’ entails ‘\rightarrow’. This conclusion follows from the assumption that (MP) is valid for ‘\rightarrow’. If the entailment of $A \rightarrow B$ and A to B were to fail, there would be an A and a B for which $A \rightarrow B$ is true, but $A \supset B$ is false. But if A were true and B false, we would be able to infer by (MP) that for ‘\rightarrow’ B is true, which is a contradiction\(^{39}\).

Now, we need to show that ‘\supset’ entails ‘\rightarrow’. This can be shown with hypothetical syllogism (HS). Given T, a tautology, consider the following proof\(^{40}\):

| Prem (1) $A \supset B$ |
| Prem (2) $A \& B$ |
Prem (3) $A \rightarrow T$	tautology
2 (4) Even if A, B	from 2
1 (5) $T \rightarrow (A \supset B)$	from 1

\(^{36}\) Rumfitt (2013) describes this rule as ‘a particular case of importation’.
\(^{37}\) Rumfitt (2013: 176).
\(^{38}\) For further discussions involving (CN) see Wiredu (1972: 253–254) and Neidorf (1967: 66–67).
\(^{39}\) Rieger (2013: 3163).
The only way to block the argument is by refusing the validity of (HS). Another argument involves the fact that it is relatively uncontroversial that conditionals satisfy the first line of the truth table (FL). Based on this information and the validity of (CON), we can easily show that conditionals must satisfy the fourth line of the truth table. The demonstration is as follows:

<table>
<thead>
<tr>
<th>Prem</th>
<th>(1)</th>
<th>A&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2)</td>
<td>A → B</td>
</tr>
<tr>
<td>1</td>
<td>(3)</td>
<td>¬B → ¬A</td>
</tr>
<tr>
<td>1</td>
<td>(6)</td>
<td>A&B ⇔ ¬B → ¬A</td>
</tr>
</tbody>
</table>

This shows that any conditional with a false antecedent and a false consequent must be true\(^{41}\). Given that (FL) is widely accepted, any criticism should be directed to the validity of (CON), but it is arguable that (CON) follows from the truth conditions of ‘ columnIndex’\(^{42}\).

<table>
<thead>
<tr>
<th>Prem</th>
<th>(1)</th>
<th>A ⇔ B ≡ (A → B)&(B → A)</th>
<th>given the truth conditions of ‘ columnIndex’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prem</td>
<td>(2)</td>
<td>A ⇔ B ≡ (A → B)&(¬A → ¬B)</td>
<td>given the truth conditions of ‘ columnIndex’</td>
</tr>
<tr>
<td>1, 2</td>
<td>(3)</td>
<td>B → A ≡ ¬A → ¬B</td>
<td>1, 2 if A&B ≡ A&C, then B ≡ C</td>
</tr>
</tbody>
</table>

Another argument for (CON) involving the biconditional is that ‘A if and only if B’ is intuitively equivalent to ‘if A then B and if B then A’. A conjunction is true when both of its conjuncts are true. A biconditional is true when both of its members A and B have the same truth value, i.e., when both are true or both are false. Thus, when both are false, ‘A if and only if B’ is true, but in this case the conjunction can only be true if each of the conjuncts are true. Thus, if ‘A if and only if B’ is true when A and B are false, then ‘If A then B and if B then A’ is true when A and B are false\(^{43}\). Now if (CON) and (FL) entail the material account, and (CON) follows from ‘ columnIndex’, it is necessary to refuse either ‘ columnIndex’ or (FL) in order to refute the material account.

2. ARE THE POSITIVE ARGUMENTS COUNTER-EXAMPLES?

Despite the intuitive appeal of the positive arguments, some philosophers will use these logical connections as arguments against the material account. First, let’s consider the counter-examples presented against (EXP) and (IMP). For instance, we can use (A&B) → A as a logical truth to infer by (EXP) and (IMP) that B → (A → B) is also a logical truth. If B → (A → B) is a logical truth, then B entails A → B by (CP\(^2\)→). Now, if B → (A → B) is a logical truth, both conditionals ‘if I am going to be run over by a car tomorrow, then even if I take precautions, I will still be run over’, and ‘if I am not going to be run over by a car tomorrow, then even if I fail to take precautions, I won’t be run over’ will be true. But both conditionals seem false since

\(^{41}\) Ortiz (2007: 87).

\(^{42}\) Ortiz (2009: 3).

\(^{43}\) Ortiz (2007: 87).
the can be used in an argument for fatalism: if both conditionals are true, I must conclude that any precautions are useless.\footnote{Kremer (1987: 212). See also Lycan (2005: 82) for a similar criticism. Notice that a similar objection could be directed against the use of (E&) and (GCP) to derive (SPM).}

Following a similar reasoning, some philosophers argued that the use of (EXP) and (IMP) coerces us to abandon the validity of (MP). If \((A&B) \rightarrow A\) is a logical truth, given (EXP) and (IMP), \(B \rightarrow (A \rightarrow B)\) will also be a logical truth. But if (MP) was valid, we should always infer \(A \rightarrow B\) from \(B\) and \(B \rightarrow (A \rightarrow B)\). However, it is assumed that the inference of \(A \rightarrow B\) from \(B\) is not valid. Thus, either we should maintain (EXP) and (IMP), or abandon the validity of (MP).\footnote{Adams (1975: 33).} This criticism will resonate later on with Vann McGee, who claims that if (EXP) and (IMP) are valid, either (MP) is invalid or the material account is true.\footnote{McGee (1985).}

One could also deny the validity of (EXP) with the following counter-intuitive: ‘If Harry runs fifteen miles this afternoon and he is killed in a swimming accident this morning, then he will run fifteen miles this afternoon. Therefore, if Harry runs fifteen miles this afternoon, then if he is killed in a swimming accident this morning, he will run fifteen miles this afternoon.’\footnote{Lycan (2005: 82).}

Notice that the counter-intuitive instances of \(B \rightarrow (A \rightarrow B)\) reflect a certain disbelief about the counter-intuitive aspects of (SPM), which follows from this propositional form by (CP), since it is a logical truth. Thus, these counter-examples can also be interpreted as an attack against (SPM), since what it is being argued is that (EXP) and (IMP) cannot be valid since this would imply the validity of (SPM).

Other attacks were made against (OTF). Stalnaker uses the counter-intuitive consequences of the material account as an indication that (OTF) should not be trusted. First, let’s consider an instance of (OTF): ‘Either the butler or the gardener did it. Therefore, if the butler didn’t do it, the gardener did’. This is intuitively valid, but now consider the following example: ‘The butler did it; therefore, if he didn’t, the gardener did’. The premise of this counter-intuitive argument entails the premise of the (OTF) instance—for if the butler did it, that implies that either the butler or the gardener did it by (IV)—and the conclusion of both arguments are the same. The problem is that if the first intuitive argument is valid, then the second counter-intuitive argument must be valid. But since it isn’t, (OTF) must be invalid after all.\footnote{Stalnaker (1975: 269).}

Another counter-intuitive instance of (OTF) is presented in the following context: suppose that there are two balls in a bag, labelled as \(x\) and \(y\). We know that ball \(x\) comes from a collection in which 99% of the balls are red. But I don’t have any reason to think that ball \(y\) is red. Maybe ball \(y\) comes from a collection in which only 1% of the balls are red. My confidence that \(x\) is red, justifies my belief that either \(x\) is red, or \(y\) is red, but doesn’t justify the conclusion that if \(x\) is not red, \(y\) is red.\footnote{Stalnaker (1975: 269).} What these counter-examples have in common is the assumption that (OTF) is invalid since it implies (FPM) given that the premise of (OTF) must be obtained by (IV). Since (OTF) implies (FPM), and (FPM) is invalid, so it is (OTF).

No attack against the material account would be complete without counter-examples aimed specifically at (GCP). Let \(A\) be the disjunction ‘Bob will retire next year or we will be
invaded by Martians50 and suppose that A is true only because the first disjunct is true. Now let B be ‘Bob will not retire next year’. The conjunction of A and B entails ‘We will be invaded by Martians’. From this it follows by (GCP) that ‘Bob will retire next year or we will be invaded by Martians’ entails ‘If Bob does not retire next year, we will be invaded by Martians’. This is apparently a counter-example since we would be inclined to accept the first argument, but not the second51. The use of (GCP) when the premises are contradictory can also be questioned. The accusation is that it is reasonable to doubt that $A \land \neg A \equiv B$ entails $A \equiv \neg A \rightarrow B$ because maybe one should be able to derive anything from a contradiction even if the conditional of the second argumentative form is false52.

Notice that what is being assumed in both counter-examples is that (GCP) must be invalid since it entails (FPM). In the first counter-example, the use of (GCP) involves the inference of an instance of (OTF), which is assumed to be intuitively invalid, from another instance of (DS), which is perceived as intuitively valid. The instance of (OTF) is intuitively invalid for the same reason the previous counter-examples against (OTF) are counter-intuitive: it implies (FPM) since the conclusion has a false antecedent given that the premise of (OTF) is obtained by (IV). Thus, in order to deflect the attack to (GCP), we also need to save (OTF) from the counter-intuitive aspects of (FPM). The connection between (FPM) and (GCP) in the second counter-example is more direct, since it is directly entailed by (GCP) from (ECQ).

An exhaustive list of every counter-example would be beyond the scope of this paper, but this list is representative of the material account’s main difficulties forces, since it undermines the most plausible argumentative forms associated with it. If the apparent invalidity of these counter-intuitive instances cannot be explained away, this will be a decisive blow against the material account.

3. RESISTING THE COUNTER-EXAMPLES

The fact that philosophers can draw the opposite conclusion based on the same data supports the dictum that one philosopher’s \textit{modus ponens} is another philosopher’s \textit{modus tollens}. However, in order to interpret the data in the opposite direction, a principled rationale must be provided, otherwise there is a risk of begging the question. The line of reasoning assumed in the objections can be summarised in the following way: some intuitive argumentative forms that imply the material account of indicative conditionals also imply some counter-intuitive argumentative forms. But since these counter-intuitive argumentative forms are invalid, these intuitive argumentative forms must be invalid after all. This line of reasoning distorts the dialectics of discussion. Instead, what we should say about the role of positive arguments is that some intuitive argumentative forms imply the material account of indicative conditionals, and, consequently, indirectly imply all of its argumentative forms, including the counter-intuitive ones. This is exactly what we should expect if the data was strong enough to confirm a theory. It would also confirm its theoretical implications, no matter how counter-intuitive they may be. To claim that positive arguments should not be trusted because they force us to accept the paradoxes of the material account amounts to claim that arguments should be ignored if they force us to accept the material account. This is circular reasoning, because it

50 I’m slightly simplifying the original counter-example proposed by Lycan (2005: 82). The only differences are that in the original the left disjunct is ‘My friend Bob will retire next year’ and the right disjunct is ‘in 2004 the planet Ynoon will spontaneously explode, causing a rain of blood over Fairbanks, Alaska’. This will not affect the argumentation.

51 Lycan (2005: 82).

52 Gibbins (1979: 451).
is assumed that only the counter-intuitive aspects of classical argumentative forms have an evidentiary role in our understanding of conditionals. It makes the defence of the material account an impossible task.

This line of reasoning assumes that the counter-intuitive instances of material account are the last word about the subject because they cannot be explained away. But they can be explained away. They can be accused of not being genuine counter-examples, since in each instance the premises are just as counter-intuitive as the conclusion. Genuine counter-examples have premises that are intuitively true and a conclusion that is intuitively false, since they are supposed to exemplify an instance of an argumentative form that has a true premise and a false conclusion.

The first counter-intuitive example is that conditionals with the propositional form \((A&B) \rightarrow A\) cannot be equivalent to conditionals with the propositional form \(B \rightarrow (A \rightarrow B)\), since this implies that they are logical truths and that the following pair of conditionals is true:

(C1) If I am going to be run over by a car tomorrow, then even if I take precautions, I will still be run over.

(C2) If I am not going to be run over by a car tomorrow, then even if I fail to take precautions, I will still be run over.

But notice how in the counter-example above no consideration is given to the premise that implies each conclusion. They are assumed as intuitively true given that they remain uninterpreted under the logical form of \((A&B) \rightarrow A\), but a closer look reveals that they are just as counter-intuitive as their corresponding conclusions:

(P1) If I am going to be run over by a car tomorrow and take precautions, I will still be run over.

(P2) If I am not going to be run over by a car tomorrow and fail to take precautions, I will still be run over.

What is counter-intuitive about these premises is that it is assumed in the antecedent of each that one person, maybe a speaker that asserts the conditional, will be run over by a car tomorrow. That is what give both the premises and their corresponding conclusions their fatalist character. (EXP) and (IMP) do not allow us to draw any conclusions that are not already assumed in the premises. Thus, there is no genuine counter-example in this case. If this example is the reason that would force us to choose between the validity of (EXP)-(IMP) and (MP), as Adams would want us to believe, then there is no real dilemma. We can choose both of them, since they face no real threat.

The other counter-example to (EXP) can be explained in a similar fashion. The conclusion of the argument, ‘if Harry runs fifteen miles this afternoon, then if he is killed in a swimming accident this morning, he will run fifteen miles this afternoon’, is just as counter-intuitive as its premise, ‘if Harry runs fifteen miles this afternoon and he is killed in a swimming accident this morning, then he will run fifteen miles this afternoon’. The reason why the premise is counter-intuitive is that the antecedent of the premise can only be true if Harry run fifteen miles after dying in an accident, i.e., the antecedent of the premise is false. The inference with (EXP) only transfers this counter-intuitive aspect.
Now consider the counter-examples against (OTF). The first argument is that (OTF)’s validity implies the validity of the following instance of (FPM): ‘The butler did it; therefore, if he didn’t, the gardener did’. However, the instance of (OTF) is just as counter-intuitive as this conclusion, since we accept the argument ‘Either the butler or the gardener did it. Therefore, if the butler didn’t do it, the gardener did’, under the assumption that the butler did it. A similar reasoning explains what is wrong with the other counter-intuitive instance of (OTF). The disjunction in the premise is also counter-intuitive since it involves the consideration of two alternatives when in fact it is accepted under the assumption of just one of them, i.e., the premise that ‘either x is red, or y is red’ is accepted only because it is accepted that x is red. Thus, the counter-intuitiveness of concluding that ‘if x is not red, y is red’ does not matter, since it was already present in the premise.

One could object that the disjunction that is accepted under the assumption of the truth of one of its disjuncts is less counter-intuitive than a conditional that is accepted under the assumption that its antecedent is false, but that already involves the admission that the premise is counter-intuitive, which defeats the whole purpose of presenting a clear example in which the premises are true and the conclusion is false. At the very least, it would be necessary to admit that only the counter-intuitive aspects of the disjunction can be properly explained away, which is far from obvious.

Finally, let’s consider the counter-example against (GCP). The example involves a counter-intuitive instance of (OTF) that is entailed by an instance of (DS). But this is not a proper counter-example since the instance of (DS) that is the basis of the inference is just as counter-intuitive as the instance of (OTF). One of the premises is the disjunction ‘Bob will retire next year or we will be invaded by Martians’, which is accepted only because Bob will retire next year, and the other premise is the claim ‘Bob will not retire next year’. The conjunction of the disjunction and the claim entail, ‘We will be invaded by Martians’. Now notice how counter-intuitive is the disjunction ‘Bob will retire next year or we will be invaded by Martians’, which includes two completely unrelated facts, and how counter-intuitive is the second premise given that the disjunction was accepted mainly due to the assumption of its negation. Thus, the instance of (DS) has both counter-intuitive premises and a counter-intuitive conclusion, being the second premise and the conclusion assumed as false by the arguer. Of course, it is important to observe that each counter-intuitive instance of (OTF) and (DS) is not invalid, since in each case the premise is just as counter-intuitive as the conclusion.

However, not every counter-intuitive instance of argumentative form can be explained away as cases in which the conclusion preserves the counter-intuitiveness of the premise. This solution does not work in all cases, e.g., the argument ‘The butler did it; therefore, if he didn’t, the gardener did’, has an intuitive premise and a counter-intuitive conclusion. It does not work also in the following counter-example to strengthening of the antecedent: ‘If Brown wins the election, Smith will retire to private life. Therefore, if Smith dies before the election and Brown wins it, Smith will retire to private’\(^{53}\). Thus, if the validity of these argumentative forms are to be rescued from the contrary intuitions, a different explanation is required\(^ {54}\).

\(^{53}\) Adams (1965: 166).

\(^{54}\) It also does not explain the counter-intuitive aspect of trivially valid argumentative forms in which the premises are contradictory or the conclusion is tautological, e.g., the argumentative form, \(\neg A \& A \vdash B\), is counter-intuitive, but while the premise is counter-intuitive for being a contradiction, \(B\) can still be intuitive; and the argumentative form, \(A \vdash B \lor \neg B\), can have an intuitive conclusion even if the premise is intuitive. What make these argumentative forms counter-intuitive is the fact that they are valid despite the irrelevance of the premise for the conclusion. But while these counter-intuitive aspects need to be explained, they are not urgent as the other counter-examples contrary to the material account. The reason is that they assume a strong relevance requirement that is inconsistent.
I think that we can explain these counter-intuitive aspects as the result of an illicit alteration of the context in the evaluation of the argument. They seem invalid because we commit a contextual fallacy. The conclusion ‘if the butler didn’t, the gardener did’ is counter-intuitive if the only reason to accept it is the assumption that ‘the butler did’, because it is evaluated in a context that ignores this contextual assumption made in the premise. But if we retain the contextual assumptions fixed, the conclusion will lose its counter-intuitive aspect. The same explanation holds for the second example. The conclusion seems false because it is evaluated in a context where it is assumed that Smith dies before the election, but the premise that is the basis of this conclusion discards this possibility. Once we recognise that this possibility must be discarded in the evaluation of the conclusion, its seeming falsity is neutralised. The conclusion may still look strange for a different reason, namely, that the antecedent is irrelevant for the conclusion. But strange is not necessarily false, and a strong relevance requirement is not widely assumed among the material account critics.

The principle that the context should be kept constant is not an ad hoc solution, but a basic tenet of semantics. The violation of this basic tenet implies that all classical inference rules would be invalid. Conversely, its observance implies that all classical inference rules are valid. Thus, in order to make their case, the critics of the material account must refute this basic principle, but it is far from obvious how this could be successful.

Moreover, if we maintain the context constant, the paradoxes of material conditional turn out to be valid for indicative conditionals. From the premise ‘John will not drink sulphuric acid’ it is legitimate to conclude that ‘If John drinks sulphuric acid, he will gain super powers’. The conclusion only seems false if we consider a context where the antecedent is true, but the conclusion only follows from the premise because the antecedent is false. The perception that the conditional is false when the antecedent is true is irrelevant because the antecedent is false in the context of evaluation.

The importance of using a constant context also explains why it is so plausible to think that conditionals in mathematics are material. In mathematics, an argument is evaluated using a single context-set, but in evaluating arguments in general, especially the counter-intuitive instances presented as counter-examples, logicians tend to change the background facts in the passage of the premises to the conclusion.

4. CONCLUDING REMARKS

This systematic approach is long overdue and we should not waste the knowledge we acquired about the logical connections between these principles and meta-principles. The use of surveys of positive arguments not only provides invaluable data in our attempt to understand conditionals, but also represent a change of paradigm in the way the evidence is examined.

with widely accepted principles such the first line of the truth table of material implication. These principles are accepted even by most critics of the material account. However, a proper rebuttal of these relevantist intuitions is beyond the scope of this paper.

55 Traditionally, the principled defence of logical systems in face of counter-intuitive instances has been the bread and butter of the proponents of the material account. See Ajdukiewicz (1956); Allott & Uchida (2009a; 2009b); Grice (1989); Jackson (1987; 2006); Noh (1998); Rieger (2006; 2015); Smith (1983), Smith & Smith (1988), Williamson (2020). However, an analysis and comparison of the strengths of the different approaches would go beyond the scope of this paper.

56 Allott & Uchida (2009a; 2009b).

57 See Allott & Uchida (2009a; 2009b); Brogaard & Salerno (2008); Gauker (2005: 94); Kaplan (1989).

Instead of thinking in terms of individual argumentative forms and their supposed counter-instances in natural language are, we should think in terms of clusters of argumentative forms that gravitate together due to their logical dependence. This change of mindset will represent a significant improvement over the prevailing approach to counter-examples.

Perhaps even more importantly, it can be argued that the counter-examples against the material account fail either because they have counter-intuitive premises or because they commit contextual fallacies. Therefore, it would be prudent to scrutinise with a fine-tooth comb every argumentative principle and theoretical assumption in order to determine whether they fall in the same traps or not. It would be hard to overestimate the impact of this simple methodological observance on the prevailing views about conditionals.

REFERENCES

