MIPRO 2020, September 28 - October 02, 2020, Opatija, Croatia

A Different Approach for Clique and Household
Analysis in Synthetic Telecom Data Using
Propositional Logic

Sandro Skansi*, Kristina Sekrst ** and Marko Kardum***

* Faculty of Croatian Studies, Zagreb, Croatia
** Faculty of Humanities and Social Sciences, Zagreb, Croatia
*** Faculty of Croatian Studies, Zagreb, Croatia
sskansi@hrstud.hr

Summary — In this paper we propose an non-machine
learning artificial intelligence (AI) based approach for
telecom data analysis, with a special focus on clique
detection. Clique detection can be used to identify
households, which is a major challenge in telecom data
analysis and predictive analytics. Our approach does not use
any form of machine learning, but another type of
algorithm: satisfiability for propositional logic. This is a
neglected approach in modern AI, and we aim to
demonstrate that for certain tasks, it may be a good
alternative to machine learning-based approaches. We have
used a simple DPLL satisfiability solver over an artificially
generated telecom dataset (due to GDPR regulations), but
our approach can be implemented on any telecom data by
following the SAT encoding we have developed, and the
DPLL solver can be substituted by a more advanced
alternative such as CDCL. This paper extends the method
presented in [1] for banking logs to data containing caller
information, and proposes a more efficient encoding.

Keywords — Clique Detection; SAT Solving; DPLL;
Household Identification; SAT encodings; Telecom Data
Analysis

L INTRODUCTION

The problem of clique detection (or informally, in the
case of telecom data, reciprocal callers) is considered a
rare event, unsuitable for machine-learning algorithms.
Rare-event problems usually deal with unbalanced
datasets, while most of machine-learning algorithms
presuppose balanced classes in predictive classification.
An example of using a non-machine-learning algorithm
for rare events is [2], which relies on genetic algorithms,
based on population-based optimization. Even though
modern deep-learning methods hardly ever consider such
occurrences, rare events are often interesting events
pointing to unusual or peculiar behavior, or are able to
give us insight into previously unknown relations. For
example, detecting reciprocal payers in [1] may lead to
fraud detection or uncovering money-laundering schemes.

The clique problem is one of well-known
computational and optimization problems of finding
complete subgraphs or cliques: subsets of graph vertices
such that every two distinct vertices in it are adjacent.
Clique detection — the task of finding such a clique — is

NP-complete (NP stands for nondeterministic polynomial
time), i.e. its validity can be quickly tested in polynomial
time, but there is no known way to find a solution quickly
(see [3] for more insight). If posed as a non-decision
problem, clique detection is NP-hard, and due to it, exact
solutions also exhibit exponential complexity. In order to
solve NP-complete problems, we are left with brute-force
search methods that check if every possible candidate in
the list satisfies the given statement. Since such methods
are unusable in large datasets with an exponential rise of
computational complexity, various heuristic and
approximation methods are often used for coarse-grained
results. Because finding a solution to one NP-complete
problem guarantees a solution to another of the same
class, we aim to use a non-machine-learning Al algorithm
based on Boolean satisfiability that performs better in
changeable dynamic datasets.

In real-world settings, social networks are commonly
represented as graphs, where vertices stand for people, the
edges represent their acquaintances, and a clique is a
subset of mutual friends, i.e. people that know each other.
Such networks may be used to analyze business
relationships or family relations, in order to improve sales
and marketing techniques. In this paper we are focusing
on cliques as household members, and our analysis can
show that a detected clique may be really connected or
just formally connected. We differentiate between
functional and official households. Functional households
comprise household members that actually live together,
while official households are seen as households only on
paper, for a variety of purposes, such as studying or
working abroad, or even tax evasion.

Recently, the concept of a household has been of great
importance in business and finance. For example, Guiso
and Sodini [4] consider household economy as a new field
since financial services and products used by households
constitute a substantial part of financial industries in first-
world countries. Households are today even more directly
involved in financial decisions, such as pension funds,
streaming accounts and services, or loan markets, which
may be of interest to businesses in sales, marketing or
banking. In order to detect households, we presuppose that
household members communicate with each other more

1286

thorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 24,2020 at 08:41:47 UTC from IEEE Xplore. Restrictions app

often than with others. Even though it may seem
counterintuitive that family members communicate more
using phones since they live together and therefore their
communication over the phone would seemingly decrease
in quantity, recent research [5], [6] has addressed this
issue, stating that mobile phones are regularly used,
especially between parents and young people. Hence, we
equate cliques to functional households using telecom data
and presupposing their mutual communication.

By grouping people into households, such analysis
may be used for marketing and sales, especially for
telecom providers offering different plans and packages.
For example, the services may be offered to one
household leader to call rather than spend time on
contacting three, four, five or even more household
members. In order to do that, we require households to be
functional, and not official, and a clique is a distinguishing
feature of such households. Cliques outside of a household
indicated a closed social network, and various standard
social network analyses can be used to identify a
household leader [7]. By identifying a household leader, a
probability of successful product placement is thus
increased.

II. SATISFIABILITY

SAT or the Boolean satisfiability problem is the issue
of determining a satisfying assignment of a given Boolean
formula. Usually, the formula needs to be in the so-called
conjunctive normal form (CNF), in which we deal with a
conjunction of one more clauses, where a clause is defined
as a disjunction of possibly negated literals. That is, we
are dealing with a conjunction of different disjunctions,
often used in automated theorem proving. We need to note
that the conversion into CNF may lead to exponentially
large formulas, thus slowing the automation process. A
clause A; V A, V ... V A,is valid iff there exist i, j such
that A; = -A;. A CNF formula ¢; A ¢, A ... ¢, is valid if
each of its clauses is valid.

The Boolean satifiability problem (SAT) was the first
known NP-complete problem, proved independently by
Cook [8] and Levin [9] in the early 1970's, when the
notion of NP-complete problems still had not been
established. Cook and Levin had shown that NP problems
can be reduced to SAT problems for CNF formulas, which
also includes clique-detection reductions [10]. The first
SAT solvers were propositional truth tables developed by
Charles Sanders Peirce [11] and Ludwig Wittgenstein
[12]. The first real SAT algorithm was the Davis-Putnam
algorithm [13], and a complete backtracking-based search
extension was the Davis—Putnam—Logemann-Loveland
(DPLL) algorithm from 1962 [14]. After more than 50
years, DPLL forms the basis of most modern SAT solvers
today. Since decision problems inside the NP class have
worst-case exponential complexity, efficient SAT solvers
are constantly being improved, especially from the early
2000s [15] up to recent years [16].

DPLL algorithm chooses a literal, assigns a truth value
to it, and thus by simplifying the formula, it recursively
checks if it is satisfiable. If that turns out to be the case,
the original formula is satisfiable, otherwise the same
procedure is performed with the opposite truth value. If
there is a unit clause, we have a unary constraint, and one

promising assignment to the corresponding variable.
While trying different assignments, the algorithm is
building partial solutions, which might prove successful or
not. The basic process of DPLL is:

DPLL Algorithm:

1. Guess a variable.

2. Find all unit clauses from the last assignment
and assign the needed value.

3. Loop step 2 until there is no change.

4. 1If the current assignment does not yield true
for every clause, break from the recursion and
try a different assignment.

5. Ifitis possible, guess another variable. The
algorithm terminates if there is a solution, i.e.
all clauses are satisfied, or step 5 is unable to be
performed since there is no solution.

Standard DPLL implementations use CNF files in the
widely accepted DIMACS (named after the Center for
Discrete Mathematics and Theoretical Computer Science)
file format, which defines Boolean expressions stated in
conjunctive normal forms. Such input file is a textual file
containing comments, problem type and clauses of the
parsed formula:

1. The file may begin with comment lines denoted
with a lowercase ¢, which can occur throughout
the file, but are usually placed in the beginning.

2. The problem line denoted with lowercase p
consists of the problem type (cnf for CNF files)
and the number of variables and clauses.

3. The list of clauses is given line by line, where
each line is a clause, and clauses are separated by
spaces, tabs or newline/carriage-return characters.
A variable is defined as i, while its negated
version is represented as -i. The variables are
assumed to be numbered from 1 to n. The
definition of a clause may extend to multiple
lines; however, the end of a clause is determined
with a final value of 0.

Im. IMPLEMENTATION

In order to efficiently analyze reciprocal callers, we
want to use hypergraphs in order to better streamline the
analysis of functional and official households. A
hypergraph is a generalization of a graph, where an edge
can connect any number of vertices, that is a hypergraph
H is a pair (V, E), where V is a set of vertices/nodes, and E
is a family of subsets of V, known as hyperedges.
Hypergraphs are usually represented using multi-
dimensional arrays, and are often used in improving SAT
solvers, with various optimization-methods such as
decomposition [17] or [18].

As noted in the introduction, our approach is based on
converting a dummy Telco dataset with standard
parameters to a hypergraph, and then encoding it to a CNF
formula written in the DIMACS file format, and then
finally using a satisfiability-solving algorithm to find a

1287

thorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 24,2020 at 08:41:47 UTC from IEEE Xplore. Restrictions app

satisfiable assignment of the formula which corresponds
to a clique of size k, where k is a parametrization
argument. This in turn means that all j up to k will be
checked in the final algorithm, resulting in O(nk), where n
is the complexity of the satisfiability algorithm, i.e.
polynomially increasing the overall complexity.

The first question is about the dataset format. We will be
needing a simple comma-separated values file (CSV) of
the form:

numberFrom, IDcallerFrom, numberTo, IDcallerTo

The synthetic dataset we have used was made by
randomly generating 50000 entries consisting of 8-digit
strings in the numberFrom column, one number at the
time with a 0.03 probability of resampling a number
which has occured previously. The numberTo column
entries where generated by randomly sampling from the
numberFrom entries. The IDcallerFrom column was
made by assigning random IDs to the numbers, with a
0.08 probability of repeating the same ID for different
numbers. The IDcallerTo was inferred from the
IDcallerFrom column.

Additional parameters such as time or date can be
included, but we will not be using them in our approach.
Whether filtering by additional parameters can improve
the overall effectiveness of finding households we leave
open for future research.

The conversion of this dataset to a hypergraph is quite
simple. A first step is to notice that a conversion to a
graph based on IDcallerFrom and IDcallerTo is trivial. A
hypergraph is then obtained by adding all numbers
(numberFrom) belonging to a IDcallerFrom and making a
hyperedge between all of them and the IDcallerTo. In the
same manner the IDcallerTo is expanded. The final
hyperedge exists encompassing all numberFrom and
numberTo iff there is a call between any pair of them.

We use a hypergraph since we want to be able to
equate e.g. 12340001 calls 00001111 and 56782222 calls
00001111 when 12340001 and 56782222 belong to the
same [DcallerFrom. We are not interested in the direction
of the call, but we keep this information since it is the
usual way Telco data is presented.

The next step is to encode this hypergraph in a CNF
formula. We will use an encoding of the ID-graph (a
graph using only IDcallerFrom and IDcallerTo where two
nodes are connected iff there is call between the respective
IDs) and then a simple expansion of clauses will create
the needed hypergraph encoding. We follow a slight
modification of the approach taken in [19] to encode the
ID-graph to SAT, while the subsequent expansion to a
hypergraph is a simple extension of the original encoding
which is, to the best of our knowledge, our small
contribution. The encoding of hypergraphs that we
formulate is then just a simple generalization of the graph
encoding. The idea behind the encoding is that we want a
propositional variable x;, to be true if and only if m is the
j-th node in the clique. As we said earlier, the
transformation is parameterized by clique size, and we
denote it by k. If the final CNF is satisfiable, there is a

clique of size k, and its nodes are exactly the components
that are true. Get such an output, a proper encoding is
needed, and two types of constraints are needed:

1. For each j, there is a j-th node in the clique, i.e.
Xj, n1 V Xj, n2 V...V Xj, nM » where nL, 1=<L=<N
are all nodes in the ID-graph

2. It is impossible that two nodes n and m not
connected in the ID-graph both belong to the
clique: =X, V —X;m, for every node n, m, and
every j, n.

The expansion to the hypergraph is then a simple
matter of adding to every clause a copy of these
constraints for every numberFrom and numberTo present
in nodes that are connected in the hypergraph.

IV. ANALYSIS

To our knowledge, this is the first application of a
SAT solver to telecom data in order to inspect and
evaluate reciprocal callers. One possible objection might
be that a simple lookup using a dictionary or a database
query may seem faster on smaller datasets. However,
such telecom data is not suitable for different methods
since 1) datasets are big enough so that brute-force
method complexity may rise exponentially 2) datasets are
extremely dynamic and large, and may not be suitable for
relational models. For example, relations per database
limits are easily reached, along with maximal relation
sizes and columns/rows per table. In case of simple
scripting lookups, memory and disk space can be a huge
issue, along with building possible dictionaries, while
machine-learning methods are generally problematic for
“needles in the haystack” data classification. Advances
have been made in the cases of credit-card fraud
detection, where fradulent activities are rare events, but in
such cases there is a strong need of labeled datasets, and
contextual information is needed to build accurate
profile-based systems, which is often against privacy
regulations [20]. Since different datasets and different
providers may have different data quality, unbalanced
datasets remain an issue in data mining and machine-
learning procedures. Therefore, we used a propositional-
logic algorithm to efficiently solve NP-complete
consequences, in order to acquire a solution suitable for
everyday practices and business purposes, hence
eliminating unnecessary cost and resources.

V. CONCLUSION

Our goal was to show that artificial-intelligence
approach not based on machine-learning may be used for
telecom data analysis. An application of a Boolean
satisfiability solver to telecom data may yield interesting
relations for detecting different kinds of households and
their properties: 1) do members of each household
actually communicate with each other 2) if so, one can use
this finding for business advantage, especially for
marketing and sales departments by identifying functional
households and their leaders. Our basis was the DPLL
algorithm, which can be substituted by more advanced

1288

thorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 24,2020 at 08:41:47 UTC from IEEE Xplore. Restrictions app

counterparts, such as CDCL (conflict-driven clause [9]

learning) [21], in which backtracking to appropriate

decision level is non-chronological. As a final note, this [10]

method and analysis may be used for other datasets and

clique analysis of different social connections and

statuses, in order to gain more insight for business and 17

research.

[12]
BIBLIOGRAPHY

[1] S. Skansi, and B. Dropulji¢. Identifying Reciprocal Payers in [13]
Banking Logs using SAT Solvers. IEEE Conference Publications:
39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pp. [14]
1500-1503. 2016.

[2] G. Weiss, and H. Hirsh. Learning to Predict Extremely Rare
Events. AAAI Technical Report WS-00-05. 2000. [15]

[3] A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini. A
Tutorial on Clique Problems in Communications and Signal
Processing. arXiv:1808.07102 [cs.IT]. 2018. [16]

[4] L. Guiso, and P. Sodini. Household Finance: An Emerging Field.
Handbook of the Economics of Finance. Elsevier B. V., pp. 1397— [17]
1532. 2013.

[5] K. Devitt, and D. Roker. The Role of Mobile Phones in Family
Communication. Children & Society, vol. 23, pp. 189-202. 2009.

[6] M. Castells, M. Fernandez-Ardévol, J. Linchuan Quiu, and A. Sey. [18]
Mobile Communication and Society: A Global Perspective. The
MIT Press. 2007.

[71 M. Zubair Shafig, M. U. Ilyas, A. X. Liu, and H. Radha.
Identifying Leaders and Followers in Online Social Networks. [19]
IEEE Journal on Selected Areas in Communications 31(9), pp.
618-628. 2013. [20]

[8] S. A. Cook. The Complexity of Theorem-Proving Procedures.
Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing, pp. 151-158. 1971. [21]

1289

L Levin. YuuBepcanbHble 3azaun riepebopa. [IpobieMsr mepesaum
uHpopmauuu. 9 (3): pp. 115-116. 1973. [Universal'nye
perebornye zadachi/Problemy peredachi informatsii]

N. Dahale, N. S. Chaudhari, and Maya Ingle. CLISAT — Clique
Encodings in Implementation of SAT. Mathematical Sciences
International Research Journal, vol. 3 (2), pp. 565. 2014.

A. Biere, M. Heule, H. van Maaren, and T. Walsh (eds.).
Handbook of Satisfiability. IOS Press. 2009.

Wittgenstein, L. Tractatus Logico-Philosophicus.
Routledge. 1974 [Original edition 1921].

M. Davis, and H. Putnam. A Computing Procedure for
Quantification Theory. Journal of the ACM, vol. 7, no. 3, pp. 201—
215. 1960.

M. Davis, G. Logemann, and D. Loveland. A Machine Program
for Theorem Proving. Communications of the ACM, vol. 5, no. 7,
pp. 394-397. 1962.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, Chaff: Engineering an Efficient SAT Solver. 39th Design
Automation Conference. 2001.

T. Toda, and T. Soh. Implementing Efficient All Solutions SAT
Solvers. Journal of Experimental Algorithmics 1.12. 2016.

We Li, and P. van Beek, Guiding Real-world SAT Solving with
Dynamic Hypergraph Separator Decomposition. 16th IEEE
International Conference on Tools with Artificial Intelligence,
Boca Raton, FL, USA, 2004, pp. 542-548. 2004.

F. Capelli, A. Durand, and S. Mengel. Hypergraph Acyclicity and
Propositional Model Counting. International Conference on
Theory and Applications of Satisfiability Testing 2014, pp. 399—
414.2014.

M. Sipser. Introduction to the Theory of Computation. Boston:
Thompson Course Technology. 2006.

N. Yousefi, M. Alaghband and I. Garibay. A Comprehensive
Survey on Machine Learning Techniques and User Authentication
Approaches for Credit Card Fraud Detection. arXiv:1912.02629

J. P. Marques-Silva; K. A. Sakallah. GRASP-A New Search
Algorithm for Satisfiability. Digest of IEEE International
Conference on Computer-Aided Design (ICCAD). pp. 220-227.
1996.

London:

thorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 24,2020 at 08:41:47 UTC from IEEE Xplore. Restrictions app

