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Abstract. The traditional possible-worlds model of belief describes agents
as ‘logically omniscient’ in the sense that they believe all logical consequences
of what they believe, including all logical truths. This is widely considered
a problem if we want to reason about the epistemic lives of non-ideal agents
who—much like ordinary human beings—are logically competent, but not log-
ically omniscient. A popular strategy for avoiding logical omniscience centers
around the use of impossible worlds: worlds that, in one way or another, vio-
late the laws of logic. In this paper, we argue that existing impossible-worlds
models of belief fail to describe agents who are both logically non-omniscient
and logically competent. To model such agents, we argue, we need to ‘dy-
namize’ the impossible-worlds framework in a way that allows us to capture
not only what agents believe, but also what they are able to infer from what
they believe. In light of this diagnosis, we go on to develop the formal details of
a dynamic impossible-worlds framework, and show that it successfully models
agents who are both logically non-omniscient and logically competent.

Keywords Logical omniscience ⋅ Resource-bounded reasoning ⋅ Bounded
rationality ⋅ Impossible worlds ⋅ Doxastic logic ⋅ Epistemic logic

1 Introduction

Consider the standard possible-worlds model of belief:1
1For early developments of this approach to the semantics of belief (and related no-

tions), see Hintikka (1962) and von Wright (1951).
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(Belief) An agent believes a proposition p iff p is true at all possible
worlds that are doxastically possible for the agent.

Whatever else might be said about the nature of possible worlds, they are
usually assumed to respect the laws of classical logic. That is, the truths at
any given possible world form a deductively closed and consistent set. As a
consequence, the possible-worlds model of belief describes agents as ‘logically
omniscient’ in the sense that they believe all logical consequences of what
they believe, including all logical truths. To see why, suppose that an agent
believes a proposition p, and let q be any logical consequence of p. Since
the agent believes p, p is true at all possible worlds that are doxastically
possible for the agent. And since p entails q, all possible worlds that verify
p also verify q. Hence q is true at all doxastically possible worlds for the
agent, which means that the agent believes q. So if the agent believes p, she
believes all logical consequences of p.

The assumption of logical omniscience is widely considered a problem if
we want to reason about the epistemic lives of agents who—much like ordi-
nary human beings—are logically competent, but not logically omniscient.
It may well be that Goldbach’s Conjecture follows from the Peano Axioms.
Yet, just because I believe that the Peano Axioms are true, I need not believe
that Goldbach’s Conjecture is true. The same goes for artificial agents such
as computers or robots that are subject to computational limitations. While
such agents are able to compute some of the logical consequences of what is
stored in their memory, they are not able to compute all such consequences.
Relatedly, the assumption of logical omniscience is a problem if we want to
develop a normative theory of belief that is sensitive to the cognitive limi-
tations of ordinary agents. As Weirich (2004) points out, while such agents
fail to live up to the idealized rationality standards of logically omniscient
agents, they need not “be irrational in any way. They may fully conform to
all standards for agents with their limitations” (Weirich 2004, p. 100). So if
we want to reason about bounded rationality, logical omniscience should be
avoided.

If our sole goal is to model agents who fall short of logical omniscience,
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our job is done once we have a model of agents who fail to believe all logical
consequences of what they believe. As we shall see in §2, there are worked out
formal theories of belief that meet this objective. But if we—like Cherniak
(1986), Jago (2013; 2014), Weirich (2004), and many others—are interested
in logically non-omniscient agents who are nevertheless (to some extent) log-
ically competent, there is more work to be done. For, as we will shall see, it
is a non-trivial task to avoid logical omniscience without sacrificing all traits
of logical competence.

What do we mean by ‘logically competence’? As a first pass, we will
say that an agent is logically competent when she at least does not miss out
on any trivial logical consequences of what she believes. To get an intuitive
handle on this idea, consider the following test: suppose an agent believes p,
and let q be any trivial consequence of p. We can then ask: upon being asked
whether q is the case, is the agent immediately able to answer “yes”? If she is,
she passes the test and counts as logically competent. For example, suppose
you believe that it rains and that it rains only if the streets are wet. We can
then ask: are you able to immediately answer “yes” when asked whether the
streets are wet? Assuming that you are attentive, mentally well-functioning,
and so on, it surely seems so. So you do not miss out on this trivial logical
consequence of your beliefs, and hence count as logically competent in the
relevant sense.

Why should we care about agents who are logically competent in roughly
this sense? Because many of the reasons for being interested in logically non-
omniscient agents are also reasons for being interested in logically competent
agents. Suppose we aim to model real-world agents, such as humans or
computers, who have the ability to perform at least fairly simple chains of
logical reasoning. You are about to leave your house and notice that it snows
heavily outside. Well aware of your fragile health, you believe that if it snows
heavily, you should wear a winter jacket when outside. Surely, in the normal
run of things, you will wear the winter jacket when leaving your house. To
explain this behavior, we must appeal not only to your desire not to get sick,
but also to your ability to engage in simple logical reasoning. For based on
your beliefs that it snows heavily and that if it snows heavily, you should wear
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a winter jacket, you can infer that you should wear a winter jacket. Had you
missed out on this trivial consequence of your beliefs, you would not have
been able to act in ways that would satisfy your desire not to get sick. This is
not to say that ordinary humans never make mistakes even in simple logical
reasoning. But we take it that most ordinary people have at least a basic
ability—albeit a fallible one—to engage in simple logical reasoning; and it is
this ability that we want to capture by developing a model of agents who do
not miss out on any trivial logical consequences of what they believe.

Obviously, what counts as a ‘trivial’ logical consequence depends on the
cognitive resources that agents have available for logical reasoning. If you
are an experienced logician, it might be trivial for you to see that ‘¬q →
¬p’ entails ‘¬(p ∧ ¬q)’, whereas this inference may be non-trivial for a first-
year philosophy student. To capture this agent-relativity, we will adopt a
simple step-based picture of what it means to reason with limited cognitive
resources.2 On this picture, agents reason logically by applying rules from
a set R of inference rules, where one ‘step’ of reasoning corresponds to one
application of a rule in R. This allows us to model an agent’s cognitive
resources in terms of the number n of steps of reasoning in R that the agent
can easily or trivially perform. In the limit where n = 0, agents have no
cognitive resources available, and hence no logical consequences will count as
trivial (assuming that nothing is provable in zero steps of reasoning). In the
opposite limit where n approaches infinity, agents have unlimited cognitive
resources, in which case all logical consequences, however complicated, will
count as trivial. In-between these extremes, we find a spectrum of agents
with different levels of cognitive resources. For such agents, some but not all
logical consequences will count as trivial.

We can then give the following precisification of what it means for a
logical consequence to be trivial:

(Trivial consequence) A proposition q is a trivial logical consequence
of a set Γ of propositions iff q can be inferred from Γ within n applications
of the inference rules in R.

2We are here inspired by work in active logic (or step logic) by Drapkin et al. (1999),
Drapkin & Perlis (1986; 1990), and others.
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Accordingly, we will say that an agent counts as ‘logically competent’ just
in case she has the ability to infer at least the trivial logical consequences
of what she believes. Since such agents have the ability to tease out what
follows within n steps of logical reasoning from what they believe, they do
not miss out on any trivial logical consequences of what they believe.

What counts as a trivial consequence of a given set of propositions de-
pends not only on the value of n, but also on the rules included in R. If
R contains only modus tollens, ¬p will be the only trivial consequence of
{p → q,¬q}, no matter how high n goes. By contrast, if R is a complete
proof system for classical propositional logic, the number of trivial conse-
quences of {p → q,¬q} can be much larger, depending on the value of n.
We will deliberately leave the specification of R and n open in what follows.
In doing so, our framework will be applicable in a wide range of theoretical
contexts that may call for different sets of inference rules and different levels
of cognitive resources. For instance, someone who is interested in relatively
complex agents with powerful reasoning mechanisms and high levels of cog-
nitive resources may let R be a rich proof system and choose a relatively
high value of n. By contrast, someone who is interested in relatively simple
agents with weak reasoning mechanisms and low levels of cognitive resources
may give a sparse characterization of R and choose a relatively low value of
n.

With these preliminaries in place, our aim in the remainder of the paper
is to develop a model of agents who are logically non-omniscient, yet logically
competent in the sense specified above. We will build our model on a ver-
sion of the impossible-worlds framework developed by Cresswell (1970; 1972;
1973), Fagin et al. (1995), Hintikka (1975), Rantala (1982), Wansing (1990),
and others. Subtleties aside, such models retain (Belief) as the semantics for
belief, but extend the underlying space of worlds to include impossible worlds:
worlds that, in one way or another, violate the laws of classical logic (we re-
turn to the details below). To set the stage for our proposal, we will hence
focus exclusively on the impossible-worlds framework and leave a discussion
of other approaches to logical omniscience for another occasion.3

3For an overview of classical approaches to logical omniscience, see Fagin et al. (1995).
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Here is an overview of the rest of the paper. In §2, we argue that exist-
ing impossible-worlds models of belief fail to describe agents who are both
logically non-omniscient and logically competent. To model such agents, we
argue in §3, we need to ‘dynamize’ the impossible-worlds framework in a way
that allows us to model not only what agents believe, but also what they are
able to infer from what they believe. In light of this diagnosis, we go on to
develop the formal details of a dynamic impossible-worlds framework, and
show that it successfully models agents who are both logically non-omniscient
and logically competent. In §4, we argue that the proposed framework has a
number of advantages over a related impossible-words model recently devel-
oped by Mark Jago (2013; 2014). Finally, in §5, we provide some concluding
remarks.

2 Impossible worlds and logical omniscience

The central idea behind the impossible-worlds model of belief is to extend the
space of possible worlds with what Hintikka called impossible possible worlds:
worlds that “look possible and hence must be admissible as epistemic alter-
natives but which none the less are not logically possible” (Hintikka 1975,
p. 477). The motivating thought is that, for agents with limited cognitive
resources, the space of doxastic possibilities is larger than the space of logical
possibilities. Since such agents may well believe each of the Peano Axioms
but fail to believe Goldbach’s Conjecture, the Peano Axioms can be true
in all their doxastic alternatives, even if the Conjecture is not. Yet, if the
Conjecture in fact follows from the Axioms, no logically possible world veri-
fies the Axioms but falsifies the Conjecture. So doxastic possibility seems to
outstrip logical possibility.

Consider then the following impossible-worlds model of belief:

(Belief-impossible) An agent believes a proposition p iff p is true at all
worlds (whether possible or impossible) that are doxastically possible for
the agent.

Thus formulated, the impossible worlds model of belief says nothing about

6



the nature of impossible worlds. Corresponding to different conceptions of
what impossible worlds are, we get different versions of the impossible-worlds
model. On one conception—what Berto (2013) calls the “American stance”—
impossible worlds are allowed to be arbitrarily logically ill-behaved: for any
set of propositions, however blatantly inconsistent, some impossible world
verifies just those propositions. On a second conception—what Berto (2013)
calls the “Australasian stance”—impossible worlds are required to respect
the laws of some non-classical logic. Yet, as we shall argue now, neither
stance allows us to model agents who are both logically non-omniscient and
logically competent.

The American stance: Suppose that impossible worlds are not closed
under any notion of logical consequence. Impossible worlds then satisfy the
following principle:

(Non-closure) For any two propositions p and q, some impossible world
verifies p but not q.

It is easily seen that logical omniscience is avoided if we accept (Non-closure):
if some impossible world verifies p but not q, for any p and q, nothing prevents
it from being the case that some doxastically possible worlds verify p but not
q. So agents may believe p without believing q, and hence they need not
believe all logical consequences of what they believe. At the same time,
however, it is also easy to see that (Non-closure) does not give us the tools
to model logically competent agents: if agents may believe p but not q, for
any p and q, they need not believe any logical consequences of what they
believe. As such, nothing in the formalism allows us to capture the sense in
which ordinary agents are logically competent.

The Australasian stance: Suppose next that impossible worlds are closed
under logical consequence in some non-classical logic L (e.g. intuitionistic or
paraconsistent logic).4 Impossible worlds then satisfy the following principle:

(Non-classical closure) For any two propositions p and q such that q
is a logical consequence of p in L, any impossible world that verifies p

4See Fagin et al. (1995), Levesque (1984), and Lakemeyer (1987) for approaches to
logical omniscience that appeal to a non-classical logic.
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verifies q.

Given that L is weaker than classical logic, this closure principle allows us
to avoid logical omniscience with respect to classical logic: even if q follows
from p in classical logic, agents may believe p without believing q. Hence
they need not believe all classical consequences of what they believe.

However, agents are still characterized as logically omniscient with re-
spect to the non-classical logic L. For instance, if we understand L as a
paraconsistent logic, agents will believe all paraconsistent consequences of
what they believe, including all paraconsistent tautologies. But just as it is
implausible that cognitively limited agents believe all classical consequences
of what they believe, so it is implausible that they believe all paraconsistent
consequences of what they believe. Even supposing that such agents reason
paraconsistently, they clearly cannot reason unlimited in that logic. So the
Australasian stance still commits us to an undesirable kind of logical omni-
science. Moreover, it does not adequately capture the sense in which agents
are logically competent. After all, not all bounded agents have a non-classical
reasoning mechanism, let alone the same reasoning mechanism. Consider, for
instance, a proof generator for classical propositional logic. Such a generator
reasons purely classically but nevertheless falls short of logical omniscience
due to its computational limitations. So the strategy of describing this proof
generator as omniscient with respect to some non-classical logic simply misses
the target.

In light of these problems with the American and Australasian stances,
one might naturally consider a closure principle on impossible worlds that
closely reflects the characterization of trivial logical consequence from above:

(Trivial closure) For any two propositions p and q such that q is a
trivial logical consequence of p (that is, such that q is n-step inferable in
R from p), any impossible world that verifies p also verifies q.

By closing impossible worlds under trivial logical consequence, we ensure
that agents believe all trivial consequences of what they believe. Consider
an agent who believes p, and let q be any trivial logical consequence of p. By
(Belief-impossible), p is true at all worlds that are doxastically possible for
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the agent. By (Trivial closure), q must then also be true at all such worlds.
So, by (Belief-impossible), the agent believes q.

Needless to say, if we accept (Trivial closure), we must at the same time
ensure that impossible worlds are not fully deductively closed with respect
to R. If they were, we would end up describing agents as logically omniscient
with respect to R. So the challenge is to satisfy both (Trivial closure) and
the following principle:

(Deductive openness) For some impossible world w and proposition
p, the set of true propositions at w entails p in some number of steps in
R, but w does not verify p.

However, it turns out, perhaps surprisingly, to be impossible to satisfy both
(Trivial closure) and (Deductive openness).5 To see this, consider any infer-
ence in R from a set Γ of premises to a conclusion q. In order for (Trivial
closure) and (Deductive openness) to be jointly satisfiable, there must be at
least one impossible world w such that:

(i) w verifies all the premises in Γ;
(ii) w verifies all trivial logical consequences of the truths at w; and
(iii) w does not verify the conclusion q.

However, it can be shown that no world can jointly satisfy (i) to (iii). As
a first step, note that since Γ entails q in R, there exists a sequence of
propositions ⟨Γ, q1, q2, . . . , q⟩ corresponding to an inference from Γ to q by
some number of applications of the rules in R.6 Given that n ≥ 1 (that is,
given that agents meet a minimal level of logical competence), it follows by

5Earlier versions of this argument can be found in Bjerring (2013; 2014) and Jago
(2014).

6While the details of the inference from Γ to q depends on the rules in R, nothing of
importance hinges on whether we think of R as a natural deduction system, a sequent
calculus, or some other proof system. To establish that (i) to (iii) are not jointly satisfiable,
we only need the assumption that there exists an inference in R from Γ to q such that
each step in the inference is trivial. And at least for standard rules such as conjunction
introduction, modus ponens, and double negation elimination, it is plausible that each
such rule is cognitively or computationally trivial to apply. For further motivation of
these thoughts, see also Bjerring (2013; 2014), Bjerring and Schwarz (2017), and Jago
(2014).
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(Trivial consequence) that each qi is a trivial consequence of qi−1. Consider
now a world w that satisfies (i) and (ii): w verifies each premise in Γ as well
as every trivial logical consequence of the truths at w. It then follows that
w verifies q1. If it did not, it would fail to verify a trivial consequence of
Γ and hence fail to satisfy (ii). But given that w verifies q1, it must also
verify q2 since q2 is a trivial logical consequence of q1. Continuing this line
of reasoning, it follows that w must verify q, and hence fail to satisfy (iii).
So if w satisfies (i) and (ii), it cannot satisfy (iii). As such, (Trivial closure)
and (Deductive openness) cannot be satisfied simultaneously: as soon as we
attempt to close a world under trivial logical consequence, we end up closing
it under full logical consequence. Intuitively, that is, a world that is closed
under trivial logical consequence “collapses” under its own deductive weight
to a world that is closed under full logical consequence.

This “collapse result” can in fact be established without appeal to any
particular formal theory of belief. In line with the reasoning above, it is easy
to see that no agent can satisfy the following conditions:

(1) The agent believes all the premises in Γ;
(2) The agent believes all trivial consequences of what she believes; and
(3) The agent does not believe the conclusion q.

When both (1) and (2) are satisfied, (3) cannot be. That is, if an agent
believes every proposition that follows trivially from her beliefs, she ends
up believing all logical consequences of what she believes. Hence we cannot
model agents who are both logically non-omniscient and logically competent
by closing beliefs under trivial logical consequence.

How then can we model such agents? We propose an answer in the next
section.

3 A dynamic model of belief

Consider a logically non-omniscient agent who passes the test for logical
competence: for any p and q such that q is a trivial consequence of p, if
the agent believes p, then, upon being asked whether q is the case, she can
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answer “yes” immediately. Given the collapse result, we know that we cannot
model this ability by saying that the agent believes q prior to being asked
about it. If she did, she would have to believe all logical consequences of her
beliefs, and hence qualify as logically omniscient. Instead we can model how
she passes the test by citing her ability to engage in logical reasoning. When
asked about q, the question primes her to infer q from p and thereby move
from a belief state that contains p to one that contains q as well. This enables
the agent to answer the question about q positively despite not believing q
to begin with.

We thus suggest that a proper solution to the problem of logical om-
niscience should appeal to an appropriate relation between doxastic states.
This relation should be understood “dynamically” as a reasoning process
that issues a transition from a doxastic state containing the premises of a
given inference to an updated doxastic state that contains the conclusion
as well.7 To formalize this idea, we will develop a dynamic version of the
impossible-worlds model of belief that will allow us to capture not only what
agents believe, but also what they can infer from what they believe. We will
approach matters from a purely model-theoretic point of view and leave a
proof-theoretic investigation for another occasion.8

We begin by recalling that a chain of logical reasoning from p to q counts
as trivial just in case q can be inferred from p by at most n steps of logical
reasoning using the rules in R. More generally, if Γ and Γ′ are sets of sen-
tences, we will write ‘Γ ⊢n

R Γ′’ to say that Γ′ is n-step inferable from Γ using
the rules in R. For the central results below, we assume that the relation ⊢n

R

is monotonic:

(R-monotonicity) If Γ ⊆ Γ′ and Γ ⊢n
R p, then Γ′ ⊢n

R p.

This ensures that logical inferences are never defeated by the addition of
further assumptions.

We will base our model on the following object-language:
7The idea of modeling belief change in terms of transitions or relations between doxastic

states is well-known from dynamic epistemic logic; see, e.g., van Ditmarsch et al. (2008)
and Duc (1997).

8For some preliminary work in this direction, see Duc (1997) and Rasmussen (2015).
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Definition 1. (Language) The language L is defined in the usual inductive
way from a set Φ of atomic sentences, a set {¬,∧} of connectives, a belief
operator B, and a countably infinite set of dynamic operators ⟨n⟩ and [n]:

p ∶∶= ϕ ∣ ¬p ∣ p ∧ q ∣ Bp ∣ ⟨n⟩p ∣ [n]p,

where n = 0,1,2, . . . and ϕ ∈ Φ.

The operators in L have the following intended readings:

Bp: p is believed.
⟨n⟩p: p is the case after some n steps of logical reasoning.
[n]p: p is the case after any n steps of logical reasoning.

For example, the sentence ‘⟨n⟩Bp’ should be interpreted as “the agent be-
lieves p after some n steps of logical reasoning” or, equivalently, that “the
agent believes p after some trivial chain of logical reasoning.” Likewise, the
sentence ‘[n]Bp’ says that “the agent believes p after any n steps of logical
reasoning” or, equivalently, that “the agent believes p after any trivial chain
of logical reasoning.”

Next, we can define our doxastic models:

Definition 2. (Doxastic model) Let W P and W I be non-empty sets (of
possible and impossible worlds, respectively), and let W =W P ∪W I . A dox-
astic model for a single agent is a structure:

M = ⟨W P ,W I , f, V ⟩,

where f ∶W ↦ 2W is an accessibility function that assigns a set of worlds in
W to each world in W , and V ∶ W ↦ 2L is a function that assigns a set of
sentences in L to each world in W .

The function f associates each world with a set of doxastically accessible
worlds, where the accessible worlds may be either possible or impossible.
We can think of possible worlds as complete and deductively closed enti-
ties, whereas impossible worlds need neither be complete nor subject to any

12



closure constraints (we will make this informal characterization precise be-
low). The function V will play a somewhat unusual role in our framework
since we will evaluate sentences for truth and falsity differently at possible
and impossible worlds. More specifically, as we shall see, V is going to de-
liver truth-values to atomic sentences only at possible worlds, but is going
to deliver truth-values to all sentences at impossible worlds.

For the central results below, we will assume the following comprehension
principle for impossible worlds (cf. Nolan 1997):

(Comprehension principle) For any incomplete and/or inconsistent
set of sentences Γ ⊆ L, there is an impossible world w ∈ W I such that
V (w) = Γ.

This principle ensures that our models will be rich enough to represent all the
different ways the world could not possibly be. Since (Non-closure) follows
from (Comprehension principle), note that we effectively take an American
stance on impossible worlds.

We can now go on to develop our semantics for L. Since we will retain
(Belief-impossible) as our semantics for belief, we only need to develop a
semantics for the dynamic operators ⟨n⟩ and [n]. To flag the core idea
behind our semantics for ⟨n⟩, begin by considering the special sentence type
⟨n⟩Bp. The semantics below will tell us that ⟨n⟩Bp is true at a world w

just in case p follows within n steps of logical reasoning in R from each
doxastically accessible world from w. The truth conditions for ⟨n⟩Bp will
thus be weaker than those for Bp: while the semantics for Bp requires that
p is true at all doxastically accessible worlds, the semantics for ⟨n⟩Bp merely
requires that p follows within n steps from the truths at each doxastically
accessible world.

To spell out the details of this semantics, we first need a formal device
that can tell us what follows within n steps of reasoning from the truths at
a given world. The notion of an ‘n-radius’ of a world will play this role:

Definition 3. (n-radius) The n-radius of a world w ∈ W is written ‘wn’
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and is defined as follows:

wn =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{w} for w ∈W P

{w′ ∈W I ∶ V (w) ⊆ V (w′) and V (w) ⊢n
R V (w′)} for w ∈W I

Each member of wn is called an ‘n-expansion’ of w.

That is, the n-radius of a world w is the set of n-expansions of w, where the
conditions for being an n-expansion of w depends on whether w is possible
or impossible. If w is possible, w is simply its own unique n-expansion.
This reflects the fact that possible worlds are deductively closed entities that
already verify everything that follows within n steps from what they verify
(for any value of n). Given this, it might seem odd to define the n-radius
of possible worlds in the first place. Indeed, one could in principle spell
out the formalism below in terms of a restricted version of (n-radius) that
applies to impossible worlds only. But for reasons of formal simplicity, it will
be convenient to have the means to talk about the n-radius of an arbitrary
world, whether possible or impossible. So, going forward, we will treat each
possible world as its own unique n-expansion.

More interestingly, if w is an impossible world, w′ is an n-expansion of
w just in case the following three conditions are satisfied: first, w′ is im-
possible; second, w′ verifies everything that w verifies; and, third, w′ does
not verify anything that cannot be derived from what w verifies within n

steps of reasoning in R. Consequently, every impossible world is a mem-
ber of its own n-radius, just like every possible world is a member of its
own n-radius. But in contrast to possible worlds, impossible worlds need
not be deductively closed, and hence they may have more than one n-
expansion. For example, if V (w) = {p → q,¬q}, V (w1) = {p → q,¬q,¬p},
and V (w2) = {p → q,¬q,¬q ∧ ¬q}, then w1 and w2 are both in the 1-radius
of w, assuming that R contains modus tollens and conjunction introduction.
So, while the n-radius of a possible world is always a singleton set, this is
not the case for impossible worlds.

For the semantics of ⟨n⟩Bp, we want to require that at least one n-
expansion of each doxastically accessible world verifies p. So we need a
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formal device that can pick out exactly one n-expansion of each doxastically
accessible world:

Definition 4. (Choice function) Let C ∶ 22W
↦ 22W be a function that

takes a set W = {W1, . . . ,Wn} of sets of worlds as input and returns the set
C(W) of sets of worlds which results from all the ways in which exactly one
element can be picked from each Wi ∈ W. Each member of C(W) is called a
‘choice’ of W.

To illustrate this definition, letW = {{w1,w2},{w3}}. Since each choice ofW
corresponds to one way of picking out exactly one world from each member
of W, there are two choices of W: we can either pick {w1,w3} or {w2,w3}.
So C(W) = {{w1,w3},{w2,w3}}.

We can now use (n-radius) and (Choice function) to define a relation
‘n∼’ between pointed models. When the relation holds between two pointed
models (M,w) and (M ′,w′), we write ‘(M,w)

n
∼ (M ′,w′)’ and say that

(M ′,w′) is ‘n-accessible’ from (M,w). Informally, if (M,w) characterizes
an agent’s current belief state, we want to say that (M ′,w′) is n-accessible
from (M,w) just in case (M ′,w′) characterizes a belief state that the agent
can enter from (M,w) by performing up to n steps of logical reasoning. To
capture this idea, (M ′,w′) should be n-accessible from (M,w) just in case
the set of doxastically accessible worlds from w in M is replaced in M ′ by a
choice of n-expansions of the accessible worlds from w in M . So we need a
device that can help us to replace a set accessible worlds with a choice of n-
expansions of those worlds. The notion of an ‘n-variation’ of an accessibility
function will serve this purpose:

Definition 5. (n-variation) Let M = ⟨W P ,W I , f, V ⟩ be a model. We
define Fn (for n = 0,1,2, . . . ) as a function from pointed models to sets of
accessibility functions:

Fn(M,w) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g ∣ g(v) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

c for v = w

f(v) for v ≠ w

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

where c ∈ C({w′n∣w′ ∈ f(w)}). If g is a member of Fn(M,w), we say that g
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Figure 1: Illustration of (n-accessibility). A solid arrow from w to w′ represents that w′ is
doxastically accessible from w, and a dashed arrow labelled ‘n’ from w to w′ represents that
w′ is an n-expansion of w. (M ′,w) is n-accessible from (M,w), since the set {α1, . . . , αr}
of accessible worlds from w in M is replaced in M ′ by a choice {ε1, . . . , εr} of n-expansions
of these accessible worlds.

is an ‘n-variation’ of f .

This definition says that an accessibility function g counts as an n-variation
of the accessibility function f just in case g(w) is a choice of n-expansions
of f(w). For example, if f(w) = {α1, α2} and g(w) = {ε1, ε2}, then g is an n-
variation of f , if ε1 ∈ αn

1 and ε2 ∈ αn
2 . In general, there will be many different

n-variations of f , insofar as there are many different available choices of
n-expansions of f(w).

We can use the notion of an n-variation to give the following definition
of the n-accessibility relation ‘n∼’ between pointed models:

Definition 6. (n-accessibility) Let M = ⟨W P ,W I , f, V ⟩ and
M ′ = ⟨W P ′

,W I ′, f ′, V ′⟩ be any two models. Then (M,w)
n
∼ (M ′,w′) iff w′ =

w, W ′ =W , V ′ = V , and f ′ ∈ Fn(M,w).

According to this definition, (M ′,w′) is n-accessible from (M,w) just in case
the set of doxastically accessible worlds from w in M is replaced in M ′ by
a choice of n-expansions of the accessible worlds from w in M (see figure 1
for an illustration). We can think of the set of n-accessible pointed models
as representing all the different ways in which an agent’s doxastic state can
change as a result of performing up to n steps of logical reasoning.
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Given (n-accessibility), we can now complete our semantics:

Definition 7. (Satisfaction) Sentences are evaluated for truth and falsity
on pointed models, where a pointed model is a pair consisting of a model and
a world. We write ‘M,w ⊧ p’ to say that p is true (or satisfied) at w in M ,
and we write ‘M,w â p’ to say that p is false (or dissatisfied) at w in M .

For any possible world w ∈W P :

(P1) M,w ⊧ ϕ iff ϕ ∈ V (w), where ϕ ∈ Φ.
(P2) M,w ⊧ ¬p iff M,w ⊭ p.
(P3) M,w ⊧ p ∧ q iff M,w ⊧ p and M,w ⊧ q.
(P4) M,w ⊧ Bp iff M,w′ ⊧ p for all w′ ∈ f(w).
(P5) M,w ⊧ ⟨n⟩p iff M ′,w′ ⊧ p for some (M ′,w′) ∶ (M,w)

n
∼ (M ′,w′).

(P6) M,w ⊧ [n]p iff M ′,w′ ⊧ p for all (M ′,w′) ∶ (M,w)
n
∼ (M ′,w′).

(P7) M,w â p iff M,w ⊭ p.

For any impossible world w ∈W I :

(I1) M,w ⊧ p iff p ∈ V (w).
(I2) M,w â p iff ¬p ∈ V (w).

A few comments about this semantics are in order. First, note that it holds
for both possible and impossible worlds that p is false just in case ¬p is true.
However, at impossible worlds, p may be neither true nor false (that is, p
may constitute a ‘truth-value gap’), and p may be both true and false (that
is, p may constitute a ‘truth-value glut’). By contrast, possible worlds never
contain any truth-value gaps or gluts.

Second, (P4) is simply a formalization of (Belief-impossible). Since we
have not imposed any logical constraints on impossible worlds, this means
that agents may believe both a proposition and its negation. This obviously
raises some questions about how agents should react when they discover that
they have contradictory beliefs. While we do not want to enter a discussion of
this question here, it is worth noting that our framework is compatible with
a number of different answers. Classically inclined philosophers may supply
R with an ‘explosion rule’ that allows agents to infer any proposition from a
contradiction. Non-classically inclined philosophers may instead specify R in
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accordance with a suitable paraconsistent logic that deals with contradictions
in a non-explosive way. So our proposal is general enough to accommodate
various views of how one might reason rationally with contradictions.9

Third, (P5) says that ⟨n⟩p is true at w in M just in case p is satisfied by
at least one n-accessible pointed model from (M,w). In particular, ⟨n⟩Bp is
satisfied by (M,w) just in case Bp is satisfied by some n-accessible pointed
model from (M,w) (see figure 2 for an illustration). Hence (P5) captures
the central idea that an agent can come to believe p after a trivial chain
of logical reasoning whenever there is a transition from the agent’s doxastic
state through n applications of the rules in R to a state in which she believes
p. Likewise, (P6) gives the conditions under which an agent believes p after
any trivial chain of logical reasoning. Note that the conditions under which
an agent believes p after any trivial chain of logical reasoning are the same
as the conditions under which the agent believes p. While this makes the
semantics for [n]Bp somewhat uninteresting, it captures the intended idea
that among all the possible chains of trivial reasoning that an agent can
perform is the chain that merely infers what is already believed.

Finally, for the central results below, we define validity with respect to
possible worlds only. That is, if Γ is a set of sentences and q is a sentence,
Γ ⊧ q just in case, for all models, q is true at all possible worlds that verify
all sentences in Γ.

With our semantics on the table, we can now establish the main result of
the paper (see figure 3 for a diagrammatic representation of the proof):

Theorem 1. If {p1, . . . , pk} ⊢n
R q, then {⟨m1⟩Bp1, . . . , ⟨mk⟩Bpk} ⊧ ⟨ω+n⟩Bq,

where ω =m1 +⋯ +mk.

Proof. Let M = ⟨W P ,W I , f, V ⟩ be any model, and suppose {p1, . . . , pk} ⊢n
R q

andM,w ⊧ ⟨mi⟩Bpi, for 1 ≤ i ≤ k, where w ∈W P . We must show thatM,w ⊧

⟨ω +n⟩Bq, where ω =m1 +⋯+mk. By (P5), Mi,wi ⊧ Bpi for some (Mi,wi) ∶

(M,w)
mi∼ (Mi,wi), for 1 ≤ i ≤ k. By (n-accessibility), Mi,w ⊧ Bpi for some

Mi = ⟨W P ,W I , fi, V ⟩, where fi ∈ Fmi(M,w). By (n-variation), fi(w) = ci

for some choice ci ∈ C({vmi ∣v ∈ f(w)}). By (P4), Mi, ε ⊧ pi for all ε ∈ ci.
9For discussions of paraconsistent reasoning, see Andreas and Verdee (2016).
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Figure 2: Illustration of the semantics for ⟨n⟩Bp. ⟨n⟩Bp is true at w since p follows
within n steps of reasoning from the truths at each accessible world from w. The ps in
the n-expansions of the accessible worlds {α1, ..., αr} are not names, but indicate that p is
true at the relevant worlds.

By (R-monotonocity), there is a choice c′ ∈ C({vω ∣v ∈ f(w)}) such that if
M ′ = ⟨W P ,W I , f ′, V ⟩, where f ′(w) = c′, then M ′, ε′ ⊧ pi for all ε′ ∈ c′. Given
(Comprehension principle) and the assumption that {p1, . . . , pk} ⊢n

R q, there
will be a choice c′′ ∈ C({vω+n∣v ∈ f(w)}) such that if M ′′ = ⟨W P ,W I , f ′′, V ⟩,
where f ′′(w) = c′′, then M ′′, ε′′ ⊧ q for all ε′′ ∈ c′′. By (P4), M ′′,w ⊧ Bq. By
(n-variation), f ′′ ∈ Fω+n(M,w). By (n-accessibility), (M,w)

ω+n
∼ (M ′′,w).

So, for some model (M ′′,w′′) ∶ (M,w)
ω+n
∼ (M ′′,w′′), M ′′,w′′ ⊧ Bq. Thus, by

(P5), M,w ⊧ ⟨ω + n⟩Bq.

Theorem 1 says that if a conclusion q follows within n steps in R from a
set of premises {p1, ..., pk}, and the agent believes the ith premise after some
mi steps of reasoning, for 1 ≤ i ≤ k, then the agent believes q after some
n +m1 +m2 + ⋯ +mk steps of reasoning. For instance, if an agent believes
p after 1 step and believes p → q after 2 steps, then she can apply modus
ponens once to infer q and hence come to believe q after 1+ 2+ 1 = 4 steps of
reasoning.

The following result is a special case of Theorem 1:

Corollary 1. (n-distribution) If {p1, . . . , pk} ⊢n
R q, then {Bp1, . . . ,Bpk} ⊧

⟨n⟩Bq.

According to (n-distribution), if a conclusion q follows within n steps of
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Figure 3: Diagrammatic representation of the proof of Theorem 1. As in Figure 2, the ps
and qs are not names of worlds, but indicate that p is true at the relevant worlds.

reasoning from a set {p1, . . . , pk} of premises, and the agent believes all of
the premises, then the agent believes q after some n steps of reasoning. We
can understand (n-distribution) as a dynamic counterpart of the distribution
axiom K from standard doxastic logic:

K (Bp ∧B(p→ q)) → Bq.

While K says that beliefs are closed under believed entailment, (n-distri-
bution) carries no such commitment. It merely says that agents have the
ability to immediately form a belief in any proposition that follows within n
steps of reasoning from what they already believe.

As a special case of (n-distribution), we get:

Corollary 2. (n-necessitation) If ⊢n
R p, then ⊧ ⟨n⟩Bp.

According to (n-necessitation), if p follows from the empty set within n steps
of reasoning, then the agent believes p after some chain of n-step reasoning.
We can see (n-necessitation) as a dynamic counterpart of the necessitation
rule from standard doxastic logic:

Nec If ⊢ p, then ⊢ Bp.

While Nec entails that agents believe all logical truths, (n-necessitation)
carries no such commitment. It merely says that agents have the ability to

20



immediately form a belief in any proposition that is n-step inferable in R
from the empty set.

We are now in a position to show how our framework successfully models
agents who are both logically non-omniscient and logically competent. To
see how logical omniscience is avoided, suppose Bp is true at w, for some
w ∈ W P , and consider any q that is logically entailed by p. By (P4), p is
true at all doxastically accessible worlds for the agent. However, since (P4)
quantifies over both possible and impossible worlds, q need not be true at
all these doxastically accessible worlds. So Bq need not be true at w, which
means that logical omniscience is avoided.

To see how logical competence is secured, suppose Bp is true at w, for
some w ∈ W P , and consider any q that follows from p within n steps of
logical reasoning. By (n-distribution), ⟨n⟩Bq is true at w. So it follows that
the agent has an ability to immediately form a belief in any trivial logical
consequence of what she already believes.10 Hence our model explains why
the agent need never miss out on anything trivial: she can always make
any trivial consequence q of her beliefs count in reasoning and action. As
such, (n-distribution) helps us explain how logically competent agents pass
the test for logical competence. Suppose we ask the agent whether q is the
case. While Bq need not be true at w—a desirable result in light of the
collapse result—the fact that ⟨n⟩Bq is true at w tells us that the agent can
immediately form a belief in q and, as a result, immediately answer “yes” to
the question whether q.

By varying the value of n, our framework allows us to model a whole
spectrum of agents with different levels of cognitive resources. In the limit
where n = 0, agents have no cognitive resources available, and ⟨n⟩Bq will
be false for any q that follows from the agent’s beliefs (assuming, as above,
that nothing is 0-step inferable in R). In the opposite limit, where n goes
towards infinity, agents have unlimited cognitive resources available, and,

10Note, though, that our semantics for ⟨n⟩Bp does not commit us to claiming that
agents have an ability to infer all logical consequences of what they believe. In general, if
Bp is true at w, and q follows from p in more than n steps of logical reasoning, it is easily
seen that ⟨n⟩Bq is false at w. So there are plenty of non-trivial logical consequences that
lie beyond the cognitive reach of agents.
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by (Corollary 1), ⟨n⟩Bq will be true for any q that follows logically from
the agent’s beliefs. In-between these extremes, we find agents with different
intermediate levels of cognitive resources. For such agents, ⟨n⟩Bq will be
true for some, but not all logical consequences q of what they believe.

It is worth noting that if we identify R with a complete proof system for
propositional logic, and if we let n approach infinity, we get the following
pleasant symmetry between (n-distribution) and the axiom K: for any clas-
sical consequence q of an agent’s beliefs, ⟨n⟩Bq will be true in our logic just
in case Bq is true in standard doxastic logic, since q will be n-step inferable
in R whenever q is inferable (simpliciter) in propositional logic. As such, our
framework is even able to model agents who are logically omniscient in the
sense that they are able to tease out all logical consequences of what they
believe, including all logical truths.11

4 Jago on logical omniscience

Mark Jago (2013; 2014) has recently proposed an impossible worlds model of
belief that, much like ours, promises to steer clear of both logical omniscience
and logical incompetence. In this section, we argue that our proposal has a
number of advantages over Jago’s.

In response to the collapse result, Jago rightly concludes that agents must
either be logically omniscient or fail to believe at least some trivial conse-
quences of what they believe—he refers to this dilemma as “the problem of ra-
tional knowledge” (Jago 2013, p. 1152). On pain of logical omniscience, Jago
accepts that it must be “possible to fail to know or believe trivial truths (and,
more generally, trivial consequences of one’s beliefs)” (Jago 2014, p. 243). As
he notes,

[t]here is, to be sure, something counter-intuitive in this result. If an
agent fails to know or believe that A∨¬A for some ‘A’, then her epis-
temic or doxastic state misses out on something trivial. Similarly, if
an agent knows or believes that such-and-such, from which ‘A’ triv-

11Thanks to an anonymous reviewer for drawing our attention to this point.
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ially follows and yet she does not know or believe that A, then again
her epistemic or doxastic state misses out on something trivial. I’ll
call such cases, in which an agent fails to know (or believe) some triv-
ial consequence of what she knows (or believes), epistemic oversights.
[. . . ] Epistemic oversights are bizarre, but we know they must exist.
For every logically non-omniscient agent, there is some knowledge she
has which trivially entails something she does not know. Otherwise,
her knowledge would be closed under all trivial inference rules and
hence deductively closed. (Jago 2014, p. 206)

Epistemic oversights are “counter-intuitive” or “bizarre”, according to Jago,
because an agent who suffers from an epistemic oversight seems to “miss out
on something trivial” and so seems irrational or logically incompetent.12 To
avoid treating agents as logically incompetent, Jago suggests that epistemic
oversights must always be indeterminate: we can never rationally assert that
an agent has a particular epistemic oversight. For if we do, we thereby treat
the agent as logically incompetent (Jago 2013, p. 1152).

To ensure that epistemic oversights are always indeterminate, Jago de-
velops epistemic models that satisfy the following principle:

(Indeterminacy) [I]f ‘A’ is a trivial consequence of what an agent i
knows, then it’s never determinate that i fails to know that A. (Jago
2013, pp. 1166–1167)

According to Jago, since it is never rational to assert what is indeterminate,
(Indeterminacy) prevents us from attributing particular epistemic oversights
to agents and thereby prevents us from treating them as logically incompe-
tent.

While we agree with Jago that logically non-omniscient agents must suffer
from epistemic oversights—the collapse result shows that much—we believe
that there are several problems involved in using (Indeterminacy) to avoid
logical incompetence. Below we raise five such problems.

12Since Jago’s use of “rationality” and our use of “logical competence” are supposed to
do more or less the same work, we will use these terms interchangeably in what follows.
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1. (Indeterminacy) is dispensable. We do not agree with Jago’s claim
that agents who suffer from determinate epistemic oversights must be logi-
cally incompetent. For even such agents can have the ability to infer the triv-
ial consequences of what they believe. And such agents, as we have shown,
need not “miss out on anything trivial”: they can always make any triv-
ial consequence of what they believe count in reasoning and action. Hence
(Indeterminacy) is dispensable for modeling agents who are both logically
non-omniscient and logically competent.

2. (Indeterminacy) lacks independent motivation. Jago might grant that
(Indeterminacy) is dispensable but hold that it nevertheless does the required
job: it allows us to treat agents as logically competent. In point 4 below we
argue that (Indeterminacy) in fact cannot do this job, but even if it could, we
can ask for some independent reasons to accept (Indeterminacy)—reasons,
that is, that do not derive from the need to avoid logical incompetence. Jago
suggests that (Indeterminacy) is motivated by a structural similarity between
the problem of rational knowledge and the sorites paradox:

The problem of rational knowledge can be formulated in terms of a
step-by-step deduction D from premises C which the agent in question
clearly knows, to a conclusion ‘A’ that the agent clearly does not
know. By assumption, not every step of reasoning in D preserves the
agent’s knowledge (since we eventually arrive at a conclusion the agent
does not know). Yet any attempt to say precisely at which point in
the deduction the agent’s knowledge gives out is doomed to failure.
[...] Formulating the problem in this way brings out its structural
similarity with the sorites paradox. In this case, the principle that
rational agents know the trivial consequences of what they know plays
the role that tolerance conditionals play in the sorites. The tolerance
conditionals for ‘red’, for example, say that (in a sorites series of colour
samples), if sample n is red then so is sample n + 1. Clearly, not all
such conditionals are true; but we cannot say or discover which is
false. (Jago 2013, p. 1155)

However, the alleged structural similarity between the problem of rational
knowledge and the sorites paradox presupposes rather than independently
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motivates (Indeterminacy). The similarity is brought out by the claim that
“any attempt to say precisely at which point in the deduction the agent’s
knowledge gives out is doomed to failure” and the claim that “any attempt
to say precisely which tolerance conditional fails to hold is doomed to failure.”
But the former claim is plausible only if we already accept (Indeterminacy).
For if we do not, nothing prevents us from pointing out precisely at which
point in a deduction the agent’s knowledge gives out. So there is only a struc-
tural similarity between the problem of rational knowledge and the sorites
paradox if (Indeterminacy) is already assumed. As such, Jago has offered no
independent reasons to accept (Indeterminacy).

3. (Indeterminacy) faces potential counterexamples. Consider a simple,
logically non-omniscient artificial agent who believes just the propositions
p1, p1 → p2, p2 → p3, . . . , pk−1 → pk, and suppose the agent can apply modus
ponens only once. Given this, there is exactly one trivial consequence of the
agent’s beliefs, namely p2. Since the agent is logically non-omniscient, the
collapse result shows that the agent must suffer from at least one epistemic
oversight. And since p2 is the only trivial consequence of the agent’s beliefs, it
follows that the agent cannot believe p2. So we determinately know that the
agent fails to believe p2. But this runs counter to (Indeterminacy): logically
competent agents may well suffer from determinate epistemic oversights.

4. (Indeterminacy) lacks explanatory power. Even if we set aside the
problems above, we doubt that (Indeterminacy) can adequately capture the
sense in which agents are logically competent. Consider again the simple
agent from point 3. Due to her logical competence, the agent can be as-
sumed to pass the test for logical competence: she is able to answer “yes”
immediately when asked whether p2 is true. On the face of it, this seems
hard to reconcile with the fact that the agent does not believe p2. What
explains why the agent is able to give the correct answer when she does
not believe the answer? Our model provides a straightforward explanation:
since the agent believes p1 and p1 → p2, (n-distribution) tells us that the
agent can come to believe p2 after one step of reasoning—assuming that R
contains modus ponens. Since, by description, the agent can immediately
apply modus ponens once, we know that she can immediately infer p2 and
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hence immediately enter a belief state that contains p2. This fact explains
the agent’s ability to immediately answer “yes” when asked about p2. By
contrast, (Indeterminacy) merely tells us that the agent’s lack of belief in p2

is indeterminate. We have already argued against this claim, but even if we
grant it, we are left without an explanation of why the agent is able to assent
to p2 despite not believing it.

Of course, the agent above is quite simple: her reasoning mechanism is
highly incomplete, her computational resources are very limited, and she only
has a small number of beliefs. One might wonder how (Indeterminacy) fares
in more complex cases where there are more than one trivial consequence of
an agent’s beliefs. Consider a logically non-omniscient, yet logically compe-
tent agent such that there are m different trivial consequences q1, . . . , qm of
the agent’s beliefs. Suppose we were to ask this agent a series of questions
concerning these trivial consequences: first, we ask whether q1 is true, then
whether q2 is true, and so on. Due to her logical competence, we can assume
that she is able to immediately answer “yes” to each such question. Due
to her logical non-omniscience, however, we know that she must suffer from
at least one epistemic oversight. So again we face an explanatory challenge.
How do we explain the agent’s ability to answer “yes” to each question when
she fails to believe at least one of the answers? As above, our model gives
a straightforward answer. When asked about qi, (n-distribution) says that
the agent can immediately infer qi, and, as such, immediately enter a belief
state that contains qi. This fact explains the agent’s ability to immediately
answer “yes” when asked about qi. (Indeterminacy), by contrast, does not
help us explain the agent’s logically competent behavior. It prevents us from
rationally ascribing any particular epistemic oversight to the agent, but it
does not explain how the agent can answer each question correctly despite
failing to believe at least one of the answers.

5. Elusive justification for belief ascriptions. The case above also points
out a different tension in Jago’s proposal. Suppose the logically competent
agent from above in fact answers “yes” to the question concerning q1. This
seems to give us good (albeit fallible) justification for saying that the agent
believes q1. By repeating this procedure for q2, . . . , qm, we acquire good jus-
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tification for saying that the agent believes each qi. Yet, due to her logical
non-omniscience, we determinately know that the agent fails to believe at
least one qi. So we seem to end up with good justification for the claim that
the agent believes each of q1, . . . , qm and yet fails to believe at least one of
q1, . . . , qm. To avoid this absurdity, it seems that Jago must hold that we
somehow lose justification for at least one of the belief ascriptions during
the process of questioning. It is unclear to us why our justification for belief
ascriptions should be “elusive” in this way. But if it is, we should expect
an independently plausible story of why our justification is lost during the
process of questioning—a story that Jago does not provide.

In sum, since our dynamic framework does not appeal to (Indeterminacy),
it avoids the problems and tensions that Jago faces. For this reason, our
framework seems to provide a superior model of logically non-omniscient,
yet logically competent agents.

5 Summary

We began this paper by motivating the idea that a proper solution to the
problem of logical omniscience should allow us to model agents who are both
logically non-omniscient and logically competent. We then argued that stan-
dard versions of the impossible worlds framework cannot model such agents.
Instead, we proposed to dynamize the impossible worlds framework in a way
that allows us to capture not only what agents believe, but also what they
believe after having performed a chain of logical reasoning. Finally, we devel-
oped the formal details of a dynamic impossible worlds model of belief, and
showed that it successfully models agents who are logically non-omniscient,
yet logically competent.
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