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Abstract 

Recent studies indicate that indicative conditionals like "If people wear masks, the spread of 

Covid-19 will be diminished" require a probabilistic dependency between their antecedents 

and consequents to be acceptable (Skovgaard-Olsen et al., 2016). But it is easy to make the 

slip from this claim to the thesis that indicative conditionals are acceptable only if this 

probabilistic dependency results from a causal relation between antecedent and consequent. 

According to Pearl (2009), understanding a causal relation involves multiple, hierarchically 

organized conceptual dimensions: prediction, intervention, and counterfactual dependence. In 

a series of experiments, we test the hypothesis that these conceptual dimensions are 

differentially encoded in indicative and counterfactual conditionals. If this hypothesis holds, 

then there are limits as to how much of a causal relation is captured by indicative conditionals 

alone. Our results show that the acceptance of indicative and counterfactual conditionals can 

become dissociated. Furthermore, it is found that the acceptance of both is needed for 

accepting a causal relation between two co-occurring events. The implications that these 

findings have for the hypothesis above, and for recent debates at the intersection of the 

psychology of reasoning and causal judgment, are critically discussed. Our findings are 

consistent with viewing indicative conditionals as answering predictive queries requiring 

evidential relevance (even in the absence of direct causal relations). Counterfactual 

conditionals in contrast target causal relevance, specifically. Finally, we discuss the 

implications our results have for the yet unsolved question of how reasoners succeed in 

constructing causal models from verbal descriptions.  
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Introduction1 

There is wide agreement that conditional statements of the type “if A, then C” play a 

central role in reasoning and argumentation (where ‘A’ refers to the antecedent and ‘C’ to the 

consequent). For instance, in 2019 much political discussion centered around the statement “If 

Trump is impeached, then it will affect the 2020 election”. At the same time, conditionals 

pose many unsolved theoretical problems that have kept researchers busy, despite continuous, 

multidisciplinary efforts (Bennett, 2003; Kern-Isberner, 2001; Kratzer, 2012; Nickerson, 

2015; Oaksford & Chater, 2010a; Spohn, 2013). 

One of the reasons why conditionals are thought to be so central in our cognitive lives 

is due to their relationship with causal knowledge (Oaksford & Chater, 2010b). The linguistic 

encoding of knowledge about causal relations in conditionals plays a vital role for the cultural 

transfer of causal knowledge across generations. For causal knowledge about objects that are 

not in our immediate vicinity, we rely on culturally transferred causal knowledge. The same 

goes for objects that are governed by mechanisms, which we do not fully understand, like 

artifacts designed by engineers. In addition, the acquisition of causal knowledge through 

observed covariances and interventions dealing with the objects that are in our direct vicinity 

is often guided by linguistically acquired causal schemes (Gopnik et al., 2004). Various 

authors have emphasized that probably most of our causal knowledge comes through this 

linguistic source (e.g. Pearl, 2009, Ch. 7). But according to Danks (2014, Ch. 4), it is also the 

one that is the least investigated empirically.  

The relationship between conditionals and causal relations has, however, been the 

focus of much theoretical discussion. The importance of this issue is highlighted by 

counterfactual approaches to causation coming from philosophy (Goodman, 1947; Lewis, 

 
1  We would like to thank Dominik Glandorf, Louisa Reins, and Maike Holland-Letz for 

their help in coding responses and setting up experiments. We also thank audiences at talks at 

London Reasoning Workshop (2019), EuroCogSci (2019), Regensburg University (2020), 

and the Reviewers and our Editor, Pierre Barrouillet, for valuable feedback. 
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1973; Collins, Hall, & Paul 2004), computer science (Pearl, 2009), and statistics (Morgan & 

Winship, 2018; VanderWeele, 2015). Recently, various authors in psychology and philosophy 

have also made a case for causal interpretations of indicative conditionals (e.g. Oaksford & 

Chater, 2017; Andreas & Günther, 2018; van Rooij & Schulz, 2019; Vandenburgh, 2020).  

In this paper, we investigate whether indicative conditionals by themselves suffice to 

express causal relations or whether there are aspects of causal relations that are not captured 

by indicatives.2 We will rely on Pearl’s (2009) theory of causality and his idea of a hierarchy 

of causal queries. Through our experiments, we present new evidence in support of this 

framework and investigate its relations to natural language conditionals. Before we turn to our 

research questions, we first sketch some recent developments in the psychology of reasoning, 

which have kindled a renewed debate about the causal interpretation of indicative 

conditionals. Secondly, we outline Pearl’s theory of a hierarchy of causal queries and discuss 

its critical potential vis-à-vis this debate.  

 

Indicative Conditionals and Probabilities 

Building on the work of Adams (1975), Edgington (1995), and Bennett (2003), psychologists 

have found support for the hypothesis that: 

[Eq1.]  P(if A, then C) = P(C|A), 

which goes by the name of “the Equation” or “the conditional probability hypothesis” (Evans, 

Handley, & Over, 2003; Oberauer & Wilhelm, 2003; Over, Hadjichristidis, Evans, Handley, 

& Sloman, 2007; Pfeifer & Kleiter, 2009). Recently, these results were challenged, however. 

 
2  As a short-form, we refer to indicative conditionals, like “If A, then C”, as 

‘indicatives’, and to counterfactual conditionals, like “If A had not been the case, then C 

would not have been the case”, as ‘counterfactuals’. Our focus will be on paradigmatic cases 

of indicative conditionals, like the examples provided in the main text. Other controversial 

examples like non-interference conditionals (“If Trump won the 2020-election, then pigs can 

fly!”) are not treated here but see Douven (2016) and Skovgaard-Olsen (2016) for further 

discussion. 



4 

 

It has been found that the relationship between P(if A, then C) and P(C|A) is moderated by 

relevance effects of the probabilistic dependency between A and C (Skovgaard-Olsen, 

Collins, et al., 2019; Skovgaard-Olsen, Kellen, et al., 2017; Skovgaard-Olsen, Singmann, & 

Klauer, 2016; Vidal & Baratgin, 2017). This type of probabilistic dependency can be captured 

by ΔP as a measure of the extent to which A changes the probability of C:  

[Eq2.]  ΔP = P(C|A) - P(C|¬A) 

These studies have found that in the case of Positive Relevance, (ΔP > 0), the 

conditional probability remained a good predictor of both the acceptance and probability of 

indicative conditionals. An example would be “If Paul pushes down the gas pedal, then the 

car will speed up” in the context of a scenario describing Paul driving in his car and running 

late for work. For cases of Negative Relevance (ΔP < 0) and Irrelevance (ΔP = 0) this 

relationship was disrupted, however. Two examples would be “If Paul pushes down the gas 

pedal, then the car will slow down” (Negative Relevance) and “If Paul is wearing a shirt, then 

his car will suddenly break down” (Irrelevance).  

These findings suggest that participants tend to view indicative conditionals as 

defective if their antecedents fail to raise the probability of their consequents. In such cases, 

their antecedents fail to provide a reason for the consequent (Douven, 2016; Krzyżanowska, 

Collins, et al., 2017; Skovgaard-Olsen, 2016; Spohn, 2013). Drawing on the literature on 

confirmation measures, the notion of A being a reason for or against C is here explicated in 

terms of its evidential relevance, or the difference in degrees of beliefs that A makes to C 

(Spohn 2012, Ch. 6). If A raises the probability of C (ΔP > 0), then A is said to be a reason for 

C, or positively relevant to C. If A lowers the probability of C (ΔP < 0), then A is said to be a 

reason against C, or negatively relevant to C. If A leaves the probability of C unchanged (ΔP 

= 0), then A is said to be irrelevant to C, or neither a reason for nor against C. Indicative 

conditionals are said to express such qualitative reason relation assessments on this account 

(Brandom, 1994; Spohn, 2013; Skovgaard-Olsen, 2016; see also Rott, 1986; Krzyżanowska, 
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Wenmackers, et al., 2013; Douven, 2016). Throughout the paper, we will measure qualitative 

assessments of the extent to which A is a reason for/against C on an ordinal scale and refer to 

them as ‘ordinal reason relation assessments’. 

As a psychological construct, it is possible that multiple factors influence the 

assessment of relevance and reason relations including topical relevance, processing effort, 

and goals in a dialogue (Walton, 2004; Wilson & Sperber, 2004). Potentially, such factors 

influence the categorization of variables as capable or incapable of affecting the probability 

of the consequent. Variables that are categorized as incapable get ignored. This makes it seem 

defective to find such variables in the antecedent of conditionals, where one expects to find a 

reason for the consequent (Skovgaard-Olsen, Collins et al., 2019). As a measure of the 

cognitive effects of a variable, we rely on the notion of probabilistic difference-making from 

above but note that there is a discussion with mixed evidence concerning further factors 

influencing the perceived relevance.3 

The data pattern described above constitutes the Relevance Effect as an interaction 

effect (see Figure 1).   

 

Figure 1. The left panel illustrates relationship predicted by [Eq1.]. The right panel illustrates 

the Relevance Effect, i.e. the moderation of the slope by relevance, in case of irrelevance (ΔP 

= 0) or negative relevance (ΔP < 0), after Skovgaard-Olsen, Kellen et al. (2019). 
 

 
3  See e.g. Cruz et al. (2016), Skovgaard-Olsen, Singmann et al. (2017, supplementary 

materials), Vidal and Baratgin (2017), Krzyżanowska et al. (2017). 
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Accounts differ on whether this finding is to be given a semantic or pragmatic 

interpretation (see e.g. Skovgaard-Olsen, Collins, et al., 2019 for a review), but here we focus 

on a different issue. It has recently been suggested (e.g. in Oasksford & Chater, 2020a, 2020b; 

van Rooij & Schulz, 2019) that relevance effects of this kind need to be given a causal 

interpretation. One of the goals of the present paper is to systematically explore this link 

through a series of experiments.  

As we will explain further below, these experiments have a bearing on whether (1) 

P(C|A) is a good predictor of P(if A, then C) as predicted by [Eq1.] (Evans & Over, 2004; 

Oaksford & Chater, 2017), (2) whether a causal interpretation (van Rooij & Schulz, 2019; 

Oaksford & Chater, 2020a, 2020b) or (3) an evidential relevance interpretation of P(if A, then 

C) is needed (Skovgaard-Olsen, Singmann, & Klauer, 2016). According to Evans and Over 

(2004), people assess P(C|A) via the Ramsey Test: 

 RAMSEY TEST: to evaluate 'if A, then C' add the antecedent (i.e. A) to the set of 

background beliefs, make minimal adjustments to secure consistency, and evaluate the 

consequent (i.e. C) on the basis of this temporarily augmented set.  

Using the Ramsey Test as a basis of explicating the relationship between conditionals and 

suppositional reasoning has been influential in at least three competing research programs in 

logic (Horacio, 2007). However, in and of itself it is an abstract description of a mental 

algorithm which needs to be fleshed out in terms of psychological processes to be of use for 

cognitive scientists. As Over et al. (2007) have noted:  

Explaining how the Ramsey Test is actually implemented—by means of deduction, 

induction, heuristics, causal models, and other processes—is a major challenge, in our 

view, in the psychology of reasoning. (p. 63) 

In the past decade, psychologists have made extensive use of the Ramsey Test (for a review, 

see Oaksford & Chater, 2020a). But the fundamental problem that Over et al. (2007) pointed 

to remains. Resolving this issue is important, because [Eq1.] and the abovementioned 
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probabilistic view on conditionals has not just been taken to be one view on conditional 

reasoning among others. Rather, it has been treated as “one of the defining features of what 

has come to be referred to as the new paradigm in cognitive psychology” (Nickerson, 2015, p. 

199) and been said to be “at the heart of the probabilistic new paradigm in reasoning” 

(Oaksford & Chater, 2017, p. 330; see also Vance & Oaksford, 2020). 

 One of the processes for implementing the Ramsey Test that Over et al. (2007) 

consider is the use of causal models. In line with this, Fernbach, Darlow, et al. (2011) and 

others have argued that causal beliefs are used as a guide for estimating subjective 

probabilities. The notion that conditional probabilities are assessed based on causal models 

via the Ramsey Test is interesting. If it can be corroborated, then this would have implications 

for which of the previously mentioned interpretations relating P(C|A) and P(if A, then C) is 

correct. For if the conditional probabilities estimated via the Ramsey Test were to rely on 

causal models, then P(C|A) would not be independent of a causal interpretation. In that case, 

P(if A, then C) would also not be independent of causal considerations given [Eq1.].  

 In addition, recent work on causal power suggests another possible connection 

between indicative conditionals and causality, which we will now turn to, because it will 

figure centrally in our later experiments. 

Causal Power and Alternative Causes 

On Cheng’s (1997) account of causal power, the generative power of a cause to produce its 

effect is explicated by a scaled version of ΔP, where the causal contribution of alternative 

causes is shielded off:  

 [Eq3.]                WCause=
ΔP

1-P(effect|¬cause)
  , ΔP = P(effect|cause) - P(effect|¬cause) 

Causal power (WCause) is here understood as the probability with which a target cause 
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PCause 

WCause WAlternative 

generates its effect4 independently of alternative causes: P(effect|cause,¬alternatives). [Eq3.] 

measures this quantity by determining how much the candidate cause contributes to raising 

the probability of the effect, while bracketing the influence of alternative causes. Following 

Glymour (2001), causal power has been used to parameterize Bayes nets (see e.g. Griffiths & 

Tenenbaum, 2005; Fernbach, Darlow, et al., 2010, 2011; Fernbach & Erb 2013; Cummins, 

2014; Meder, Mayrhofer, et al., 2014; Aßfalg & Klauer, 2019; Stephan & Waldmann, 2018), 

as illustrated in Figure 2: 

 

  

 

 

 

 

 

 

 

Figure 2. Common-effects Bayes Net, parameterized by the base-rate (PCause) 

of the cause, C, its causal power (WCause), and the combined base-rate and 

causal power (WAlternatives) of the alternative cause(s), A. ‘E’ = effect.  

Here ‘C’ refers to the cause and ‘A’ refers to alternative causes. Throughout this paper, we 

follow, however, the convention of using ‘A’ and ‘C’ to refer to the antecedent and 

consequent of conditionals, whether or not they are related as cause and effect. Based on this 

parametrization and other assumptions (discussed in Luhmann & Ahn, 2005), conditional 

probabilities have been explicated as follows, with 'W' representing the causal powers of the 

respective causes: 

[Eq4.]   P(effect|cause) = Wcause + Walternative - Wcause  Walternative 

Notice how conditional probabilities are here explicated in terms of causal power parameters, 

which in turn are defined via conditional probabilities. There is accordingly a choice as to 

which of these constructs (i.e. conditional, subjective degrees of belief or mental 

 
4  For preventive causes, a separate equation was given by Cheng (1997), which we 

return to in Experiment 1 (see [Eq5.]). 
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representations of causal powers) is to be treated as psychologically primitive. For example, 

for Cheng (1997) causal powers represent latent, causal capacities of distal objects. On this 

view, the relative frequencies encoded in conditional probabilities are merely the 

manifestations of these latent capacities. But this is not the only position possible and the 

answer to the question of psychological primacy will have repercussions for the relationships 

between conditionals, conditional probabilities, and causality.   

 Oaksford and Chater (2017) have suggested that a causal interpretation of indicative 

conditionals can be combined with work in probabilistic treatments of conditionals based on 

the Ramsey Test (e.g. Adams, 1975; Edgington, 1995; Bennett, 2003; Evans & Over, 2004; 

Oaksford & Chater, 2007). Oaksford and Chater (2017) do this by combining the thesis P(if 

A, then C) = P(C|A) [Eq1.] with a causal power explication of conditional probabilities (see 

[Eq4.]). Making this move allows Oaksford and Chater (2017) to emphasize that there is an 

inferential dependency between antecedents and consequents of indicative conditionals (in 

line with, e.g., Douven, 2016; Krzyżanowska, Collins, et al., 2017; Skovgaard-Olsen, 

Singmann, et al., 2016; Spohn, 2013). At the same time, it allows Oaksford and Chater (2017) 

to build on the work on probability logic of Adams (1975), which has been applied to the 

psychology of reasoning (e.g. in  Evans & Over 2004; Oaksford & Chater, 2007; Pfeifer & 

Kleiter, 2009). 

 One challenge to this account, however, is that the Relevance Effect (Skovgaard-

Olsen, Singmann, et al., 2016) identifies boundary conditions on P(C|A) as a predictor of P(if 

A, then C). As a consequence, if probabilistic dependency is factored into the account through 

a causal power explication of conditional probabilities, then we are left without an account of 

why relevance moderates the relationship between P(C|A) and P(if A, then C) in violation of 

[Eq1.]. The interaction effect depicted in Figure 1 shows that P(if A, then C) can vary due to 

the influence of relevance even when P(C|A) is held constant.  

 Accordingly, Oaksford and Chater (2020b) discuss the different possibility where the 
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Relevance Effect is itself an indicator of a causal interpretation of indicative conditionals. But 

this amounts to abandoning [Eq1.] in its full generality. 

 As noted by van Rooij and Schulz (2019), there is, however, also a different 

possibility for interpreting the relationship between conditional probabilities, causal power, 

and P(if A, then C). The general account relies on interpreting the acceptability of indicative 

conditionals in terms of causal power. But by introducing this conjecture, van Rooij and 

Schulz rely on the auxiliary hypothesis that participants tend to ignore alternative causes.  

The motivation for this auxiliary hypothesis is that the equation for causal power [Eq3.]     

shows that causal power collapses to the conditional probability of the effect given the cause 

when there are no alternative causes: 

{x: x is an alternative cause of E} = ∅    ⟹   WCause = P(effect|cause) 

If participants by mistake treat P(effect|¬cause) as 0 (because they ignore alternative causes), 

then they will underestimate P(effect|cause). Their estimate of P(effect|cause) will then 

coincide with the value of causal power, which would explain the studies corroborating 

[Eq1.]. In van Rooij and Schulz (2019), an formal analysis of such limiting cases was used to 

propose a causal power measure of the acceptability of conditionals by arguing that it is the 

presence of causal power that makes indicative conditionals acceptable. 

 Studies in the psychology of causal judgments have shown that reasoners often tend to 

neglect alternative causes (see, e.g. Rottman & Hastie, 2014, for an overview). These 

findings, in turn, fit with well-known effects from the psychology of reasoning concerning 

inferences like denial of the antecedent (If A, C; ¬A, therefore ¬C) and affirmation of the 

consequent (If A, C; C, therefore A). Indeed, a neglect of alternative antecedents (e.g. “If B, 

then C”) has long been suspected as being part of the explanation why participants would 

endorse these logically fallacious inferences (Cummins, 1995; Politzer & Bonnefon, 2006). In 

linguistics, there is a convergent body of research studying conditional perfection (for review, 

see Liu, 2019), which describes the tendency to strengthen an indicative conditional into a bi-
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conditional that suppresses alternative antecedents. Moreover, the tendency to suppress the 

impact of alternative hypotheses has long been suspected of playing a role in the confirmation 

bias (Nickerson, 1998).  

 According to Fernbach, Darlow, et al. (2010, 2011), participants who are asked for 

conditional probabilities report them but are biased by their neglect of alternative causes. 

Alternatively, one may hold that participants who are asked for conditional probabilities 

construe the task differently and give causal power estimates instead (but see Aßfalg & 

Klauer, 2019). For our purposes, it is, however, interesting to note that if participants tend to 

ignore alternative causes, then the causal power interpretation of indicative conditionals in 

van Rooij and Schulz (2019) can be used to account for the Relevance Effect. 

 Accordingly, van Rooij and Schulz conjecture that what explains when P(C|A) is and 

when it is not a good predictor of P(if A, then C) in studies like Skovgaard-Olsen, Singmann, 

et al. (2016) is exactly whether participants take alternative causes into account. Participants 

are thereby portrayed as ignoring alternative causes when processing positive relevance 

conditionals, like “If Paul pushes down the gas pedal, then the car will speed up”. In contrast, 

participants are predicted to take alternative causes into account when processing irrelevance 

items, like “If Paul is wearing a shirt, then his car will function normally”, where the 

antecedent is obviously not an appropriate cause.  

 In Experiment 1, we test whether participants’ tendency to ignore alternative causes 

makes them estimate P(C|A) as causal power in scenarios that can be interpreted causally. 

Experiment 1 thereby provides a critical test of the following hypotheses based on van Rooij 

and Schulz's (2019) work: 

 (H1) causal power [Eq. 3] accounts for the acceptance of indicative conditionals. 

 (H2) participants’ tendency to ignore alternative causes is part of the explanation of the 

Relevance Effect. 

We now turn to Pearl’s (2009) theory of causality, which we will use to reconceptualize the 
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relationship between indicative conditionals and causal relations. Of central importance in this 

context is the following observation. While Oaksford and Chater (2017) and van Rooij and 

Schulz (2019) argue for a causal interpretation of indicative conditionals, Pearl’s idea of a 

hierarchy of causal queries invites a more complex picture in which indicative conditionals 

only play a partial role. 

 

Pearl’s Hierarchical Theory of Causality 

According to Pearl (2009) and Pearl and Mackenzie (2018), there are three conceptual layers 

of causality: prediction, intervention, and counterfactual dependency. An understanding of 

these three conceptual layers is manifested by the ability to answer three different types of 

queries concerning the relationship between two variables, X and Y. In Pearl and Mackenzie 

(2018), these queries take, roughly, the following form: 

Table 1. The Hierarchy of Causal Queries 

Query Type Natural Language Query Computational Model 

Predictive “What happens to my belief in Y if I see X?” Bayes net, SEM 

Interventional “What happens to Y if I do X?” causal Bayes net, SEM 

Counterfactual ”Would Y not have occurred if X had not occurred?” SEM 

Note. SEM = Structural Equation Modelling (see Appendix A). The distinction between 'Bayes nets' and 

'causal Bayes nets' is made to emphasize that Bayes nets exist with both undirected edges representing 

symmetrical relations of evidential relevance, as well Bayes nets that encode directed edges used for 

representing assymmetrical relations of causal relevance (Højsgaard, Edwards, et al., 2012; Danks, 2014). 
 

In Pearl (2009, p. 29), the following examples are given: 1) “would the pavement be slippery 

if we find the sprinkler off” (prediction), 2) “would the pavement be slippery if we make sure 

that the sprinkler is off” (intervention), and 3) “would the pavement be slippery had the 

sprinkler been off, given that the pavement is in fact not slippery and the sprinkler is on?” 

(counterfactual). As a normative competence model of causal inference, Pearl (2009) presents 

a theory of causal Bayes nets augmented by structural equation modelling (SEM). For Pearl 

(2009), it is important to emphasize that there are three irreducible layers of conceptual 

understanding of causal relations: 1) statistical associations for predictive inference (which 

can be computed by conditionalization, e.g. via Bayes nets), 2) predictions based on 
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interventions (which are observed through manipulations in randomized, experimental 

studies),5 and 3) counterfactual inferences (which can only be computed based on structural 

equation models of the data generating processes). In Appendix A, we illustrate the distinction 

between these computational models via one of Pearl’s examples. 

Several aspects of Pearl’s theory have been investigated in psychological studies. For 

instance, whether reasoners differentiate between observational probabilities and 

interventional probabilities (Sloman & Lagnado, 2005; Waldmann & Hagmayer, 2005). 

Similarly, studies have looked at participants’ understanding of the Markov assumption and 

the implied conditional independencies (Rehder, 2014; Rottman & Hastie, 2014; Mayrhofer & 

Waldmann, 2015). But whereas the causal Bayes net component of the theory has received 

extensive attention, the structural equation component has received less attention in 

psychology. Yet, some exceptions like Lagnado, Gerstenberg, et al. (2014) do exist. In 

Appendix A, we explain why it is important for psychology to focus more on SEM. 

 

Research Questions Motivating this Investigation 

The central question motivating the present inquiry is this: what role do conditionals as 

linguistic expressions play in representing causal information? Or: by accepting a conditional 

statement in a causal scenario, which of the three aspects of the causal relation highlighted by 

Pearl does a reasoner thereby accept, if any? Looking back at Table 1, answering the first two 

types of queries seems6 equivalent to processing indicatives (“will the pavement be slippery, 

if we see/make sure that the sprinkler is off?”). Moreover, answering the third type of query is 

 
5  In addition, these interventions can now also be computed by applying Pearl's (2009) 

do-calculus to observational studies (see also Morgan & Winship, 2018). 
6  Note that Pearl (2009, p. 29) uses “would” instead of “will” in the consequents of the 

observational and interventionist queries. However, the resulting conditional questions are 

closer in meaning to the indicatives above given the indicative antecedents than the 

corresponding counterfactuals. When Pearl wants to stress a counterfactual interpretation, he 

often uses “would have” (see e.g. Pearl & Mackenzie, 2018, p. 320).   
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naturally taken to involve processing counterfactuals (“would the pavement have been 

slippery, if the sprinkler had been off?”). It is then natural to formulate the following 

hypothesis based on Pearl’s view:  

(H3) causal relations encode multiple layers, some of which can be expressed by 

indicatives (i.e. predictive queries), whereas the most advanced one requires the use of 

counterfactuals (i.e. counterfactual queries). 

This, in turn, makes it natural to conjecture that: 

(H4) indicatives that support and indicatives that do not support counterfactuals can be 

empirically distinguished (see also Lassiter, 2017).  

(H5) the use of indicatives and the acceptance of causal relations can be dissociated 

even in causal scenarios.  

To illustrate (H5), indicatives based on spurious correlations can be used to answer predictive 

queries, but they do not express direct causal links between their antecedents and consequents. 

A well-known example is “If the barometer falls, then bad weather is coming”. According to 

(H4), we would expect that a characteristic of such indicative conditionals expressing spurious 

correlations is that they do not support counterfactuals.  

  Depending on the query, the intervention might represent a natural continuation 

expressed in the indicative mood (e.g. “the cappuccino will taste better, if I use espresso 

beans”). Alternatively, the intervention might represent an unlikely continuation expressed in 

the subjunctive mood (e.g. “the cappuccino would taste better, if I bought an espresso 

machine for 10.000 €”). In our experiments, we are less concerned with interventions, 

however. Instead, we focus instead on different aspects of the distinction between predictive 

use of indicative conditionals for expressing statistical associations of evidential relevance 

and use of counterfactuals to answer queries that target causal relevance. For a psychological 

theory of probabilistic reasoning, ΔP is often used to represent evidential relevance and causal 

power can be used to represent causal relevance.  
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Overview of the Experiments 

To address the above research questions, we conducted experiments that contrast a situation 

in which participants are provided a detailed representation of a mechanism linking inputs and 

outputs with observations of blackbox trials in which the mechanism was covered. The 

animations were inspired by the 1993 computer game, “The Incredible Machine”. Illustrations 

of the trials are shown in Figures 3 and 4 below:  

 

Figure 3. Annotated illustration of a Machine Trial in which the whole mechanism 

is visible. See https://osf.io/fa9rj/ for a video illustration. 

 

Figure 4. Annotated Illustration of a Blackbox Trial in which the mechanism is   

covered. See https://osf.io/fa9rj/ for a video illustration. 

https://osf.io/fa9rj/?view_only=763d1f9c553a48ffaa4c5fc318381a98
https://osf.io/fa9rj/?view_only=763d1f9c553a48ffaa4c5fc318381a98
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Figures 3 and 4 show annotated snapshots of the animations. Figure 3 depicts the Machine 

condition in which a causal chain unfolds when a blue bowling ball (root cause) falls onto a 

mouse wheel connected to a conveyor belt. This chain of events ends with the basketball 

dropping into the basket. In Figure 4, the mechanism is concealed. Note that this system is not 

deterministic because the mice can start to run on their own and they may sometimes not run 

even if a bowling ball hits their cage. We adopted this format as a way of manipulating the 

depth of participants’ understanding of a causal relation in light of long-standing debates in 

the psychology of causal judgment about possession of structural knowledge that goes beyond 

associative learning (Waldmann, 1996; Waldmann & Hagmayer, 2005; Pelley, Griffiths, et 

al., 2017).  

 The animations that we used conveyed the information in a trial-by-trial format. 

Usually, the psychology of reasoning (Manktelow, 2012) follows the research tradition on 

cognitive illusions (Kahneman, Slovic, et al., 1982) in studying reasoning problems via verbal 

scenarios. However, trial-by-trial learning paradigms are common in areas such as the 

psychology of learning (Bouton, 2016) and causal reasoning (Waldmann, 2017). The finding 

of the description-experience gap (Hertwig & Erev, 2009; Rehder & Waldmann, 2017) shows 

that the two paradigms can lead to different results. There is therefore a need for applying 

trial-by-trial learning paradigms to problems in the psychology of reasoning (Vance & 

Oaksford, 2020). 

 In our experiments, we manipulated different levels of contingency (ΔP), conditional 

probability (P(C|A)), and causal power (WCause). A trial-by-trial learning paradigm with the 

animated mouse-wheel machine was used in Experiments 2-6. Table 2 provides a brief 

overview of the experiments: 
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Table 2. Overview of the Experiments 

Exp Purpose Method Hypothesis  

1 Critical test of assumptions needed to 

account for the Relevance Effect based 

on van Rooij and Schulz (2019). 

Verbal scenarios, test of causal power as a 

predictor of P(if A, then C) and the influence 

of alternative causes on the Relevance Effect.  

H1, H2 

2 Replication of the Relevance Effect in a 

trial-by-trial learning paradigm. 

Animations with the mouse-wheel machine 

task in a causal chain structure.   

See below. 

3 Investigate the relationship between 

judgments of causal power, indicatives, 

counterfactuals, and singular causation.  

Animations with the mouse-wheel machine 

task in a causal chain structure with a 

blackbox condition.   

H3 

4 Test of the acceptance of indicatives and 

counterfactuals as predictors of singular 

causation judgments. 

  

" 

H3 

5 Test of dissociation between the 

acceptance of indicatives and 

counterfactuals. 

Animations with the mouse-wheel machine 

task in a common cause structure with a 

blackbox condition. 

H4, H5 

6 Replicating Experiment 4 while 

controlling for the influence of tense and 

the order of events. 

 

" 

H4, H5 

 

Using the verbal stimulus materials used to originally document the Relevance Effect in 

Skovgaard-Olsen, Singmann, et al. (2016), Experiment 1 aimed at providing a critical test of 

assumptions in van Rooij and Schulz (2019). Experiment 1 thereby probed a causal power 

account of the acceptance of indicative conditionals (H1) and whether participants’ tendency 

to ignore alternative causes accounts for the Relevance Effect (H2).  

The goal of Experiment 2 was to test whether the Relevance Effect could be replicated 

in a trial-by-trial learning task.  

The next two experiments involved singular causation judgments. Singular causation 

judgments typically concern situations in which both the potential cause and effect are known 

to have co-occurred and reasoners have to establish whether the former actually caused the 

effect on this specific occasion. Our interest in these types of judgments originates in their 

role in testing (H3) – with its claim of multiple conceptual layers in the understanding of 

causal relations. Moreover, we investigated singular causation judgments to ensure that 

participants were making the causal attributions intended by our experimental designs. 

Experiment 3 investigated whether the four central constructs of 1) causal power, 2) 
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indicative conditionals, 3) counterfactual conditionals, and 4) singular causation are 

influenced by the same factors in a large between-subjects experiment. The motivation for 

this comparison was that according to a causal interpretation of conditionals, one would 

expect conditionals to be affected by manipulations that influence causal judgments.  

 The purpose of Experiment 4 was to investigate whether singular causation judgments 

could be predicted by the acceptance of indicative and counterfactual conditionals. In line 

with the hierarchy of causal queries, Pearl (2009, Ch. 10) and Halpern (2019) build in explicit 

counterfactual conditions in their accounts of singular causation. Experiment 4 therefore tests 

whether the acceptance of counterfactual conditionals plays a role for singular causation. 

 Experiments 5 and 6 compared the acceptance of indicative and counterfactual 

conditionals in a common-cause version of the trial-by-trial learning paradigm. The goal was 

to investigate whether the acceptance of indicatives and counterfactuals would become 

dissociated for diagnostic and common-cause conditionals to test (H4) and (H5). The 

investigation of common-cause and diagnostic reasoning scenarios is crucial because they 

exemplify cases, where the answers to predictive queries need not represent relations of direct 

causal impact. For instance, measurements on a barometer are diagnostic for the coming 

weather conditions and can be used to answer predictive queries (e.g. “Can we expect bad 

weather, if the barometer falls?”). But the common cause of both are changes in atmospheric 

pressure.    

Experiment 1 

According to van Rooij and Schulz (2019), the acceptability of indicative conditionals 

is determined by causal power (H1). Based on this account, it is natural to conjecture that 

participants assign probabilities to indicative conditionals, ‘if A, then C’, based on causal 

power.7 On the auxiliary assumption that participants ignore alternative causes, causal power 

 
7  Note that van Rooij and Schulz (2019) are careful in stating their theory only in terms 

of categorical acceptance of indicative conditionals. But they indicate an extension of it to 
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would coincide with the conditional probability, as we have seen. van Rooij and Schulz 

(2019) suggest (H2) that we can use this observation to account for the Relevance Effect in 

Skovgaard-Olsen et al. (2016). To do so, one would have to conjecture that participants’ 

tendency to ignore alternative causes makes P(C|A) a good predictor of P(if A, then C) for 

Positive Relevance (∆p > 0) items. In contrast, the lack of causal dependence of consequent 

on the antecedent would make P(C|A) overestimate P(if A, then C) for Irrelevance items (∆p 

= 0). In addition, we probe whether we can replicate the Relevance Effect in a situation, 

where it is difficult to ignore alternative causes by using a task that builds on Byrne (1989). 

The purpose of this was to provide a critical test of (H2) as an auxiliary assumption of van 

Rooij and Schulz (2019), however.  

In a much-discussed study, Byrne (1989) presented participants with conditional 

inference problems like, e.g. “If Lisa has an essay to write, then Lisa will study late in the 

library”, along with an additional premise presenting an alternative antecedent, e.g. “If Lisa 

has some textbooks to read, then Lisa will study late in the library”. Applying this idea to our 

context, we asked participants for probability evaluations in the presence of alternative 

causes. We did this by first obtaining alternative causes generated by other participants from a 

pilot study. We then displayed these above the test questions in the present study for 

participants in the Alternative-Causes condition. The goal was to see whether the Relevance 

Effect could be replicated even under full knowledge of alternative causes, when the potential 

cognitive effort of generating alternative causes had been removed.  

Experiment 1 thus provides a critical test of the assumptions needed to account for the 

Relevance Effect based on van Rooij and Schulz’ (2019) causal power account of indicative 

conditionals. 

 

account for degrees of acceptability as here and explicitly apply their theory to data from 

psychological experiments that asked for degrees of acceptability in the form of subjective 

probabilities. For this reason, we empirically test such an extension of their theory. 
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Procedures shared by all Experiments  

Experiment 1, like all the other experiments reported in this paper, was conducted as 

an online study testing a large and demographically diverse sample. Participants were 

sampled over the Internet (via Mechanical Turk) from the USA, UK, Canada, and Australia. 

Subjects received a monetary compensation for their participation. The following exclusion 

criteria were used: 1) not having English as native language, completing the task in less than 

min seconds or in more than max seconds,8 2) failing to answer two simple SAT 

comprehension questions correctly in a warm-up phase, 3) answering ‘not serious at all’ to the 

question 'how serious do you take your participation' at the beginning of the study, and 4) 

answering “yes” to whether they recognized the animation from the computer game 

“Incredible Machines”.9 For each experiment, it was found that these exclusion criteria had a 

minimal effect on the demographic variables. 

To reduce the dropout rate during the experiment, participants first went through three 

pages in all the experiments. These three pages stated our academic affiliations, posed the two 

SAT comprehension questions in a warm-up phase, and presented a seriousness check asking 

how careful the participants would be in their responses (Reips, 2002). Participants were also 

shown two dummy probability questions to familiarize them with the use of a slider. 

Participants 

A total of 1004 people completed Experiment 1. After applying the a priori exclusion 

criteria the final sample consisted of 681 participants. Mean age was 39.82 years, ranging 

 
8  Due to differences among the tasks, the min and max varied between experiments: 

Experiment 1 = [60s, 1800s], Experiments 2, 3 = [240s, 3600s], Experiment 4 = [120s, 

1800s], Experiment 5, 6 = [240s, 1800s]. 
9  This last exclusion criterion was used only in Experiments 3-6, which introduced a 

blackbox condition that required controlling the background knowledge of the participants. 
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from 18 to 79.10 46.1 % of the participants were male. 72.39 % indicated that the highest level 

of education that they had completed was an undergraduate degree or higher.  

Design 

The experiment had a between-subjects design with three factors. The first was 

Relevance (with two levels: Positive Relevance (PO) vs. Irrelevance (IR)). The second was 

Priors (with four levels: HH vs. HL vs. LH vs. LL; for example, HL means that P(A) = high 

and P(C) = low). The third was Group (with two levels: Alternative-Causes vs. Control). 

Thus, there were 16 between-subjects conditions in total.  

We will abbreviate the 2 Relevance × 4 Prior conditions as follows below: POHH, 

POHL, POLH, POLL, IRHH, IRHL, IRLH, IRLL. The Relevance and Prior factors were 

combined factorially to ensure that the examined relationship generalize across a wide range 

of different probabilities. This ensures that our results do not merely pertain e.g. to 

conditionals with high antecedent and consequent probabilities, which tend to sound more 

plausible, but generalize across a wider spectrum.  

Materials and Procedures 

Each of the 16 between-subjects conditions was randomly assigned to one of 12 

scenarios. Random assignment was performed with replacement, such that each participant 

saw a different scenario for each condition. This ensured that the mapping of condition to 

scenario was counterbalanced across participants. One of the 16 between-subjects conditions 

was randomly assigned to a participant within a block. The block consisted of one page 

displaying a scenario and three pages presenting the dependent variables (see below). As a 

reminder, the scenario was presented in grey on the top of these three pages. These scenario 

texts have been found in previous experiments (Skovgaard-Olsen, Singmann, et al., 2016, 

2017) to reliably induce assumptions about relevance and prior probabilities of the antecedent 

 
10  One participant indicated the age of ‘14’, but given Amazon’s regulations we doubt 

this value. 
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and the consequent that implement our experimental conditions. Table 3 displays sample 

items of the Paul scenario for Positive Relevance (∆p > 0), and Irrelevance (∆p = 0). 

Table 3. Stimulus Materials of the Paul Scenario 

Scenario Paul is driving on a straight road with hardly any traffic ahead. He is on his way to work 

in an investment bank and is running late. At this point the drive will take about one hour 

and he is supposed to arrive in 40 minutes.  

 Positive Relevance Irrelevance 

HH If Paul pushes down the gas pedal, then the car will 

speed up. 

If Paul is wearing a shirt, then his car will 

function normally. 

HL If Paul drives fast, then he will be there in time for 

work. 

If Paul is wearing a shirt, then his car will 

suddenly break down. 

LH If Paul’s car suddenly breaks down, then he will be 

late for work. 

If Paul is wearing shorts, then his car will 

function normally. 

LL If Paul pushes down the brake pedal, then the car will 

slow down. 

If Paul is wearing shorts, then his car will 

suddenly break down. 

 Positive relevance (PO):                   

Irrelevance (IR)               

                              

mean ΔP     =  .32                              

mean ΔP     = -.01 

                                               

High antecedent:       

Low antecedent:        

High consequent: 

Low consequent:             

mean P(A)  =  .70 

mean P(A)  =  .15 

mean P(C)  =  .77 

mean P(C)  =  .27 

Note. HL: P(A) = High, P(C) = low; LH: P(A) = low, P(C) = high. The bottom rows display the mean values 

for all 12 scenarios pretested in (Skovgaard-Olsen, Singmann, et al., 2017). ∆p = P(C | A) – P(C |¬A) 

For the Paul scenario text in Table 3, participants assume that the event “Paul pushes 

down the gas pedal” raises the probability of the event “the car will speed up”. They moreover 

assume that both sentences have a high prior probability (Positive Relevance, HH). 

Conversely, participants assume that the event “Paul is wearing a shirt” is irrelevant for 

whether “his car will function normally”, and that both have a high prior (Irrelevance, HH). 

Previous studies have moreover confirmed that participants view “Paul pushes down the gas 

pedal” as a reason for the event “the car will speed up” and “Paul is wearing a shirt” as 

neither a reason for nor against “his car will function normally”. The full list of scenarios can 

be found at: https://osf.io/j4swp/. 

On the three randomly ordered pages following the initial scenario, participants were 

asked to provide estimates of conditional probabilities (P(C|A), P(C|¬A)) via the Ramsey 

Test. They were thus asked to suppose that the antecedent is the case, and evaluate the 
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probability of the consequent under this assumption on a scale from 0-100%. In addition, 

participants were asked to assign probabilities on the same scale to conditional statements 

across relevance conditions, e.g.: “IF Paul pushes down the gas pedal, THEN the car will 

speed up”. 

In a pilot study, we had participants generate alternative causes for the Positive 

Relevance and Irrelevance items. Two independent raters coded how many independent and 

plausible causes the participants listed (see https://osf.io/fa9rj/ for the coding instructions). It 

was found that the rank order |AlternativesPO| > |AlternativesIR| obtained not only for the 

averaged ratings across conditions (𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑃𝑂= 3.13, 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐼𝑅= 2.06), t(3.56) = 

3.39, p = 0.033, but also for each condition and each rater within each condition. For 

participants in the Alternative-Causes Group, an alternative cause generated by the 

participants in the pilot study was selected for each of the 144 Relevance × Prior × Scenario 

combinations. This alternative cause was presented to participants as the antecedent of a 

conditional. For instance, some participants in the Alternative-Causes Group were shown the 

following conditional presenting an alternative antecedent for the item above: 

“IF Paul is driving down a hill, THEN Paul's car will speed up.” 

This conditional was displayed on a separate page after the scenario and repeated on every 

page above the test question for participants in the Alternative-Causes Group. In contrast, 

participants in the Control Group were presented with the three dependent variables without 

alternative antecedents. 

Results and Discussion 

Causal power was calculated based on participants’ responses to the conditional 

probability questions through calculations of ΔP and the following formulas: 

[Eq5.]                 𝑝𝑜𝑤𝑒𝑟 =  {

∆𝑃

1−𝑃(𝐶|¬𝐴)
              𝑖𝑓 ∆𝑃 ≥ 0

−∆𝑃

𝑃(𝐶|¬𝐴)
                 𝑖𝑓 ∆𝑃 < 0

 

https://osf.io/fa9rj/?view_only=763d1f9c553a48ffaa4c5fc318381a98
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The formulas calculate causal power for generative and preventive causes, respectively.11  

The first goal of the analysis was to establish whether the contrast between the Alternative-

Causes and the Control Group influenced the Relevance Effect.  

A mixed ANOVA was first conducted using the R-packages afex (Singmann et al. 

2020) and emmeans (Lenth, 2020). The Condition factor (POHH vs. POHL vs. POLH vs. 

POLL vs. IRHH vs. IRHL vs. IRLH vs. IRLL) and Alternatives factor (Alternative-Causes vs. 

Control Group) were specified as varying between-subjects. The DV factor (P(C|A) vs. 

P(C|¬A) vs. P(if A, then C) vs. ∆P vs. power) was specified as a within-subject factor. 

Through this model, we tested the impact of the Alternative-Causes vs. Control Group 

contrast on both the three measured (P(C|A), P(C|¬A), P(if A, then C)) and the two calculated 

dependent variables (∆P, power) across the between-subjects conditions.  

Table 4. ANOVA Table for Experiment 1 

Effect df MSE F η
G
2  p 

Condition 7, 665 0.19 73.58 

2.62 

1.55 

.23 < .0001 

Alternatives 1, 665 0.19 .002 ns 

Condition:Alternatives 7, 665 0.19 .006 ns 

DV 2.49, 1655.62 0.12 192.73 .15 < .0001 

Condition:DV 17.43, 1655.62 0.12 22.24 .13 < .0001 

Alternatives:DV 2.49, 1655.62 0.12 0.79 .0007 ns 

Condition:DV:Alternatives 17.43, 1655.62 0.12 0.89 .006 ns 

Note.  η
G
2  is generalized eta squared, which is an effect size measure that is recommended 

for repeated measures ANOVA in Bakeman (2005). The Alternatives factor encodes the 

contrast between the Alternative-Causes Group and the Control Group (alternative causes 

absent). 
 

Given that the contrast between the Alternatives-Causes and the Control Group was 

neither involved in a simple effect nor in any statistically significant interactions (Table 4), 

Figure 5 displays the results without this factor:  

 
11  When ΔP = 0 causal power was stipulated to be zero to avoid the problem of 

undefined values for cases when P(C|¬A) = 1. Removing the 41 participants with undefined 

values does not change the relative fit of the models, however. For the purpose of predicting 

P(if A, then C) by causal power (see M1 below), it would also have been possible to only 

apply the causal power formula to the subset of cases where ΔP ≥ 0. Figure 5 reveals, 

however, that the fit of M1 would not have improved by predicting P(if A, then C) = 0 in such 

cases due to zero generative, causal power. 
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Figure 5. The measured and calculated mean estimates of the five DVs are displayed across 

the eight Relevance × Priors conditions. The error-bars represent 95% CI intervals. 

The systematic differences between P(C|A) and P(if A, then C) for the IR items are 

noteworthy in Figure 5, because they violate [Eq.1]. At the same time, the two constructs are 

nearly identical for the PO items. Both findings are in line with the predictions of the 

Relevance Effect shown in Figure 1. The lack of coincidence of Wcause and P(C|A), and the 

finding that P(C|¬A) estimates are consistently above 0, is also noteworthy, because it casts 

doubt on van Rooij and Schulz’s (2019) auxiliary assumption. 

The goal of the second analysis was to test whether causal power predicted P(if A, 

then C) better than a range of other models. Four mixed linear models were contrasted for 

modelling P(if A, then C), with random intercepts for scenarios using the R-package lme4 

(Bates et al., 2015): 

(M1) a model that predicts P(if A, then C) based on causal power (van Rooij & 

Schulz, 2019), which measures P(effect|cause,¬alternatives). 

(M2) a model that predicts P(if A, then C) based on the following noisy-OR 

parameterization: P(effect|cause,alternatives;Wcause, Walternatives) = Wcause + Walternatives - 
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Wcause × Walternatives. Under the assumption that the alternatives are always present as a 

tacit causal background, Walternatives = P(effect|¬cause). Notice the difference to (M1). 

(M1) employs causal power by removing the influence of alternative causes. In 

contrast, (M2) was used in Fernbach et al. (2011) to model predictive inferences while 

representing the influence of alternative causes. 

(M3) a model that predicts P(if A, then C) by P(C|A) as measured by the Ramsey Test, 

which corresponds to the suppositional theory of conditionals (Evans & Over, 2004; 

Oaksford & Chater, 2007; Pfeifer & Kleiter, 2009). 

(M4) a model that predicts P(if A, then C) based on an interaction between P(C|A) and 

the Relevance Condition factor (Positive Relevance vs. Irrelevance), which 

corresponds to the model used by Skovgaard-Olsen, Singmann, et al. (2016). 

The outcome of the model comparison is displayed in Table 5: 

Table 5. Model Comparison for Indicative Conditionals 

Model χ2 df p AIC BIC 

M1 Causal Power 241.52 1 < .0001 481.70 499.80 

M2 Noisy-Or  450.47 1 < .0001 344.19 362.28 

M3  P(C|A) 652.26 1 < .0001 232.43 250.53 

M4 P(C|A) 515.81 1 < .0001 38.87 66.01 

 Relevance Condition 200.67 1 < .0001   

 P(C|A): Relevance Condition 28.72 1 < .0001   

Note. The lower AIC and BIC values indicate that M4 is superior to M1-M3 in light of the 

parsimoni vs. fit trade-off. ‘Relevance’ is a categorical factor encoding ‘Positive Relevance’ 

vs. ‘Irrelevance’. 

 

The information criteria clearly converge on M4. This model permits an interaction 

between P(C|A) and the Relevance Condition factor such that a lower slope of P(C|A) is 

expected in the Irrelevance Condition.  

In this experiment, the Relevance Effect reported in Skovgaard-Olsen et al. (2016) was 

replicated both in the Alternative-Causes and the Control Group. It was thereby found that 

there was no significant effect of explicitly presenting alternative causes to the participants in 

the manner of Byrne (1989) for the Relevance Effect. This finding, in turn, challenges the 
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auxiliary assumption (H2) in van Rooij and Schulz (2019) that participants’ tendency to ignore 

alternative causes accounts for the Relevance Effect.  

Summary 

 Based on the pilot study, we know that participants can generate alternative causes for 

both the positive relevance and irrelevance items. Hence, the stimuli in Skovgaard-Olsen, 

Singmann, et al. (2016) implicitly manipulate the presence of alternative causes. When 

comparing participants’ probability assignments when the presence of alternative causes is 

implicitly manipulated (the Control Group) and when it is explicitly manipulated (the 

Alternative-Causes Group), we find no significant differences (see Table 4).12 

 In a direct model comparison, it was found that when comparing the Suppositional 

Theory of Conditionals (Evans & Over, 2004; Oaksford & Chater, 2007; Pfeifer & Kleiter, 

2009), the causal power theory of the acceptability of indicative conditionals (van Rooij & 

Schulz, 2019), and the model used in Skovgaard-Olsen, Singmann, et al. (2016), the latter 

turned out to be the best fitting model. What allowed this model to outperform the other 

models was that it includes a main effect of Relevance and an interaction between P(C|A) and 

the Relevance Condition factor. This interaction term expects a lower slope of P(C|A) in the 

Irrelevance Condition, where indicative conditionals are predicted to appear defective. At the 

same time, it allows the use of P(C|A) as a predictor of P(if A, then C), which is especially 

well-supported in the Positive Relevance Condition. In Appendix B, we further investigate the 

issue of why causal power theories could not account for our findings through a simulation 

analysis. 

 

Experiment 2 

 
12  As such, the relationship between the Alternative-Causes Group and the Control 

Group can be viewed as resembling the relationship between the so-called explicit paradigm 

in Byrne (1989) and the implicit paradigm in Cummins, et al. (1991). These two paradigms 

also led to similar results. 
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Beginning with Experiment 2, we used the animated mouse-wheel-machine paradigm. 

In Experiment 1, the Relevance Effect was replicated with verbal scenarios. The purpose of 

Experiment 2 was to replicate this effect using a trial-by-trial learning paradigm involving 

mechanistic knowledge for the first time.  

 

Method 

Participants 

A total of 350 people completed the experiment. The same sampling procedures and 

exclusion criteria were used as in Experiment 1. The final sample after applying the a priori 

exclusion criteria consisted of 221 participants. Mean age was 40.27 years, ranging from 20 to 

74. 38.91 % of the participants were male. 69.23 % indicated that their highest level of 

education was an undergraduate degree.  

Design 

The experiment had a within-subject design with Relevance as a within-subject factor 

(with three levels: Positive Relevance (PO) vs. Negative Relevance (NE) vs. Irrelevance 

(IR)), which refers to three types of items explained below. In total, 20 trials were shown 

which implemented the following conditions: 

Table 6. Experimental Design 
 P(C|A) P(C|¬A) ΔP 

PO  0.83 0.75 0.08 

IR  0.80 0.80 0.00 

NE  0.75 0.83 -0.08 

Note. Contingencies calculated based on the initial trial, where 

the mc questions were presented, and the subsequent 19 

randomly ordered machine trials.  
 

A pilot study13 had found that although ΔP in the trials shown differed modestly, participants 

were able to arrive at stronger ΔP differences across conditions when processing the items 

introduced below. Their background knowledge and the evidence presented concerning the 

 
13  https://osf.io/fa9rj/ 

https://osf.io/fa9rj/?view_only=763d1f9c553a48ffaa4c5fc318381a98
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mechanism permitted them to arrive at stronger subjective ΔP values than what was displayed 

in the trials. These subjective ΔP values correlated with participants’ ordinal reason relation 

assessments, rpolyserial (97) = .73, p < .0001. The pilot study thus showed that we could use a 

single contingency condition to reliably manipulate the differences Positive Relevance, 

Negative Relevance, and Irrelevance using the items introduced below. 

Materials and Procedure  

To ensure that the animations were displayed properly, participants were instructed to 

adjust their browser so that they would see the whole box in which the animation was 

presented. We first presented one trial with three multiple-choice questions. After the display 

of a fixation cross in the upper left corner, participants saw an animation with the mechanistic 

set-up depicted in Figure 3. In the animation, a blue bowling ball fell down on a mouse-wheel, 

connected to a conveyor belt, which set a chain of events in action that eventually resulted in 

a red basketball falling down the basket on the right side of the screen. Participants were 

instructed that the animations would always start with the display of a white fixation cross in 

the upper left corner (the position in which the blue bowling ball occurred). Secondly, 

participants learned that there was a process bar in the middle of the screen that visualizes 

when the animations would stop. Thirdly, they were asked to pay attention to the animation in 

all trials, and that they could not press “continue” until all animations had been shown. 

In the first trial, the animation paused several times to pose multiple-choice questions 

to ensure that participants had understood what they had seen. After this trial, participants 

were given the following instruction: 

As you will see, sometimes the mice can be sleepy (“ZzzZZZz”) and fail to run 

despite being prompted. The mice can also be excited (“Wo hoo!”) and start to 

run without being prompted. 

This information was given to make participants aware that (1) the effect could occur in the 

absence of the target cause and (2) sometimes the effect could remain absent even in the 
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presence of the target cause. The next page informed participants about the change of an 

irrelevant feature of the machine to implement the Irrelevance condition: 

Sometimes, the bricks also look a bit brighter due to small random shifts in the 

lights.  

Participants then saw 19 further trials implementing the conditions outlined in Table 6. An 

illustration of the trials can be found on: https://osf.io/fa9rj/.  

Following these further animations, three blocks of items were displayed in random 

order containing several randomly ordered questions. These three blocks implemented the 

within-subject Relevance factor by presenting participants with the following Positive 

Relevance (PO), Negative Relevance (NE), and Irrelevance (IR) items, which all concerned 

properties of the machine shown:  

PO: IF the blue bowling ball falls down, THEN the red basketball drops down in the 

basket. 

IR: IF the lights make the bricks in the machine look brighter, THEN the red 

basketball drops down in the basket. 

NE: IF none of the blue bowling balls are moving, THEN the red basketball drops 

down in the basket. 

Within each block, participants were asked to evaluate the probability of these conditionals 

and the conditional probability of the consequent given the antecedent via the Ramsey Test on 

a scale from 0% to 100%.  

Finally, participants were asked whether they recognized the animation as originating 

from the computer game “The Incredible Machine”, and a list of demographic questions. 

 

Results and Discussion 

As a manipulation check, it was found that the following percentages of the participants 

answered the initial MC question correctly: 81.45%, 96.38%, 94.57%, 
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Regressing P(if A, then C) on P(C|A), the following differences across Relevance 

conditions were found: 

 
Figure 6. The figure displays predictions of their ratings of P(if A, then C) by their P(C|A) responses. 

Both variables were rescaled by dividing by 100. The dashed lines indicate the predictions by [Eq. 1]. 

The root mean square error (RMSEA) values displayed were calculated based on fitting separate least 

square linear regressions to the PO, NE, and IR conditions.  
 

To test for the influence of Relevance on P(C|A) as a predictor of P(if A, then C), three mixed 

linear models were contrasted, with random intercepts for participants using the R-package 

lme4 (Bates et al., 2015), as shown in Table 7: 

Table 7. Model Comparison for Indicative Conditionals 

Model χ2 df p AIC BIC 

M1 P(C|A) 637.15 1 < .0001 57.03 75.01 

M2  P(C|A) 

Relevance Condition 

291.66 

166.98 

1 

2 

< .0001 

< .0001 

-72.58 -45.60 

M3 P(C|A) 302.04 1 < .0001 -86.08 -50.11 

 Relevance Condition 172.46 2 < .0001   

 P(C|A): Relevance Condition 24.81 2 < .0001   

Note. Note that ‘P(C|A)’ here refers to the values measured by the Ramsey Test. The lower 

AIC and BIC values indicate that M3 is superior to M1 and M2 in light of the parsimoni vs. 

fit trade-off.  

 

The information criteria favor M3. The results thus indicate that there was both a main 

effect of Relevance on P(If A, then C) and an interaction between P(C|A) and Relevance.  

For the PO item, the estimated marginal means of the P(if A, then C) ratings were 0.55, 

95% CI [0.51, 0.60], 0.74, 95% CI [0.71, 0.77], and 0.92, 95% CI [0.88, 0.97], when P(C|A) 

was held fixed as 0.50, 0.75, and 1.00, respectively. In contrast, when P(C|A) was held fixed 

at the same values for the IR item, the estimated marginal means of the P(if A, then C) rating 

were 0.36, 95% CI [0.33, 0.39], 0.50, 95% CI [0.46, 0.54], and 0.64, 95% CI [0.59, 0.70], 
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respectively. For the NE item, the corresponding values were 0.29, 95% CI [0.25, 0.32], 0.37, 

95% CI [0.32, 0.42], and 0.46, 95% CI [0.39, 0.53].  

 There is a striking match between the data pattern in Figure 6 and the pattern outlined 

in Figure 1. The results indicate that while participants’ responses are well described by [Eq. 

1] for the Positive Relevance item, substantial divergences are found for the NE and IR items. 

Previously, this effect has only been reported using verbal scenarios (Skovgaard-Olsen, 

Singmann, et al., 2016; Skovgaard-Olsen, Kellen, et al., 2019; Vidal & Baratgin, 2017), 

which was replicated in Experiment 1. Now we show that this Relevance Effect can also be 

found in a trial-by-trial learning paradigm in the presence of mechanistic knowledge for the 

first time. 

 

Experiment 3 

To investigate the impact of mechanistic knowledge, Experiment 3 introduced a 

contrast between one group of participants seeing the underlying mechanism (as in 

Experiment 2) and another group of participants seeing the same setting covered by a 

blackbox. The black box concealed the underlying mechanism of the events participants saw 

(see Figure 4). Our experiments thus allowed us to investigate the effects of knowledge about 

the operation of a machine, compared with when one can only form associations based on 

observed covariances in blackbox trials. Experiment 3 used this blackbox manipulation to 

investigate the impact of participants’ causal knowledge on estimates of conditional 

probabilities and conditional reasoning. Because participants in the blackbox condition only 

had observed covariances to rely on, we will refer to this group as ‘the Regularity Group’. 

While other studies have investigated indicative conditionals and singular causation 

judgments in the same experiment (e.g. Sikorski et al., 2019), we decided to additionally have 

participants provide counterfactual conditionals and causal power judgments. To investigate 

the relationship between mechanistic knowledge, causality, conditionals, and contingency, a 
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large online study was therefore conducted with 32 between-subjects conditions that 

factorially varied these factors.  

According to (H3), causal relations encode multiple conceptual layers, some of which 

require answers to queries that go beyond what is expressed by indicative conditionals. On the 

opposing view, indicative conditionals themselves express causal relations. To corroborate 

(H3), it would have to be shown that there are aspects of causal relations that go beyond the 

acceptance of indicative conditionals. Experiments 4-6 were devoted to this aim. In contrast, 

evidence against (H3) would have to show that participants evaluate indicative conditionals 

equivalently to explicit causal notions like singular causation and causal power. Experiment 3 

tested this hypothesis.  

Experiment 3 therefore investigated whether experimental manipulations known to 

influence causal reasoning (i.e. contingency conditions and the Machine vs. Blackbox 

contrast) had a similar impact on four outcome variables of theoretical interest (the probability 

of indicative conditionals, counterfactual conditionals, singular causation, and causal power). 

Secondly, Experiment 3 investigated whether participants evaluated these four variables 

equivalently, or whether differences between them emerged in support of (H3). To test this, 

SEM models were fitted to the data across all 32 conditions. A comparison of these models 

revealed whether it was possible to constraint the four main DVs to be identical. Of interest 

for these comparisons was whether indicative conditionals were evaluated as explicit causal 

constructs such as causal power and singular causation in a between-subjects comparison. 

Thirdly, Experiment 3 was designed to investigate whether the influence of our experimental 

manipulations on the four main DVs was mediated by participants' estimations of Ramsey 

Test conditional probabilities. Fourthly, it was investigated whether this mediational 

relationship in turn was moderated by reason relation assessments.  

Method 

Participants 
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A total of 2211 people completed the experiment. The same sampling procedures and 

exclusion criteria were used as in Experiment 1 with one addition. Experiment 3 additionally 

excluded participants who recognized the set-up from the computer game “The Incredible 

Machine”, because such participants will know the mechanism of the machine even in the 

blackbox condition. The final sample after applying the a priori exclusion criteria consisted of 

1472 participants. Mean age was 38.94 years, ranging from 18 to 81.14 40.42 % of the 

participants were male. 70.72 % indicated that their highest level of education was an 

undergraduate degree.  

Design 

The experiment had a between-subjects design with three factors: DVtype (with four 

levels: indicative conditional vs. singular causation vs. counterfactual conditional vs. causal 

power), Contingency (with four levels outlined in Table 8 below: a vs. b vs. c vs. d), and 

Group (with two levels: Machine vs. Regularity, which differed on whether participants saw 

the underlying mechanism as in Figure 3 or only the blackbox trials as in Figure 4).  

Table 8. Experimental design, contingency conditions 

 P(C|A) P(C|¬A) ΔP WAntecedent 

a 0.75 0.50  0.25 0.50 

b 0.25 0.00  0.25 0.25 

c 0.25 0.25  0.00 0.00 

d 0.75 0.75 0.00 0.00 

Note. The contingency conditions were introduced through the first initial 

trial and consecutive 15 randomly ordered blackbox trials. These were 

subject to the constraint that the last trial displayed was a <bowling ball, 

basketball> trial. This was done to enable, e.g., participants to make 

singular causation judgments about whether the bowling ball caused the 

basketball to fall down the basket. ‘WAntecedent’ = the causal power of the 

antecedent of the conditionals.       

Materials and Procedure  

Participants were randomly assigned to one of these 32 between-subjects conditions. 

To investigate the impact of mechanistic knowledge, we first presented one group of 

 
14  One participant answered ‘5’. This answer was excluded from the reported age range. 
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participants (those in the Machine condition) with a trial showing the mechanistic set-up from 

Experiment 2. Participants in the Regularity Group, by contrast, only saw a blackbox trial.  

In the first trial, the animation was paused several times to pose multiple-choice 

questions to ensure that participants had understood what they had seen.  

For the 15 trials that followed, all participants saw 15 blackbox trials (Figure 4) 

conveying the different contingencies listed in Table 8. Participants in the Machine Group 

were instructed that the blackbox covered most of the animation with the machine that they 

had seen on the first trial.15 Following these trials, participants were shown a block with three 

dependent variables in random order. Two of the dependent variables were shown to all 

participants. One of these was the following Ramsey Test question: 

Suppose that the blue bowling ball falls down. [highlighted in blue] 

Under this assumption, how probable is the following statement on a scale from 0 to 

100%:  

The red basketball drops down in the basket. [highlighted in blue] 

The second question was an ordinal reason relation assessment on a five-point Likert-scale, 

where the quoted sentences were highlighted in blue: 

Please indicate the extent to which “the blue bowling ball falls down” is a reason 

for/against “the red basketball falls into the basket”: 

A strong reason against; a reason against; neutral; a reason for; a strong reason for. 

The third dependent variable was a probability judgment on a scale from 0 to 100% with an 

item determined randomly based on the chosen between-subjects condition from the 

following list: 

Singular causation: 

 
15  Since the mechanism was covered for these trials, participants were never exposed to 

animations of sleepy or excited mice as disablers and alternative antecedents like in 

Experiment 2. Moreover, since the IR item from Experiment 2 was not used, the colour of the 

bricks remained constant throughout. 
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The blue bowling ball caused the red basketball to drop down in the basket.      

Indicative Conditional: 

IF the blue bowling ball falls down, THEN the red basketball drops down in the 

basket.  

Counterfactual Conditional: 

IF the blue bowling ball had NOT fallen down, THEN the red basketball would NOT 

have dropped down in the basket.  

Causal Power: 

Some instances of the red basketball dropping down in the basket are due to hidden 

alternative causes. Imagine there are 100 runs of the animation in which no alternative 

causes are present. Suppose that the blue bowling ball falls down in all of these 100 

runs. In how many of them would the red basketball drop down in the basket?  

The formulation of the causal power question followed a standard formulation found in the 

literature on causal judgment (see e.g., Cheng & Lu, 2017; Liljeholm & Cheng, 2009). 

Finally, participants were asked whether they recognized the animation as originating 

from the computer game “The Incredible Machine”, and a list of demographic questions. 

 

Results and Discussion 

Pilot Study for Experiment 3 

We first conducted a pilot study. We here summarize some of its results, because they 

concern the issue of whether participants ignore alternative causes in our experimental 

paradigm, which was the auxiliary hypothesis used to explain the Relevance Effect in van 

Rooij and Schulz (2019). Further results concerning the impact of mechanistic knowledge on 

changes to contingencies are reported on: https://osf.io/fa9rj. 

The pilot study presented participants with two open-ended questions, where 

participants were requested to list up to seven other alternative causes of the basketball 
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dropping into the basket than the blue bowling ball falling down. An acceptable answer to this 

question might be that one of the mice started to run on their own volition. Secondly, 

participants were asked to explain the mechanism in the black box which makes the 

basketball fall into the basket. To analyze participants’ open-ended responses, we had two 

raters classify the number of alternative causes to the blue bowling ball falling down. As a 

proxy for the complexity of the explanations, the two raters also classified the number of 

functional units in participants’ explanations of why the red basketball dropped into the 

basket. Details on the classification can be found on: https://osf.io/fa9rj.  

The Machine Group (M = 4.35, SD = 2.25) produced significantly more functional 

units in their explanations than the Regularity Group (M = 1.84, SD = 1.13), t(127.18) = 9.17, 

p < .0001. Moreover, it was found that the Machine Group (M = 1.21, SD = 1.4) produced 

significantly more alternative causes than the Regularity Group (M = 0.82, SD = 0.99), 

t(153.42) = 2.054, p  = .042. In the Machine condition, 39.54% produced zero (plausible) 

alternative causes. In the Regularity condition, 47.5% of the participants produced zero 

(plausible) alternative causes. However, these proportions did not differ significantly, 𝜒2(1) = 

0.77, p = 0.38. In sum, it was found that the explanations of the Machine Group were more 

complex, as measured by the number of functional units used in their explanations. Moreover, 

the Machine Group tended to list more alternative causes than the Regularity Group. 

However, the two groups did not differ in the frequency with which zero physically plausible, 

alternative causes were listed, which was found to be high (>39%) in both groups.  

Main Study 

Participants in the Machine Group were asked three MC questions. In the Regularity 

Group, two MC questions were presented. As a manipulation check, it was found that the 

following percentages of participants answered the initial mc question correctly: (Machine 

Group) 83.70%, 98.10%, 96.20%, (Regularity Group) 88.18%, 88.45%. 

Structural Equation Model 
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To analyze all 32 between-subjects conditions, a structural equation model with four 

groups (one for each of the main dependent variables, yj) and moderated mediation was fitted 

to the data of all 1472 participants (see Figures 7, 8). Structural equation modelling (SEM) is 

a generalization of regression models used for causal inference in statistics, which is based on 

modelling the covariance matrix. SEM moreover permits the estimation of direct and indirect 

effects of explanatory variables as well as imposing conditional independence constraints 

from a causal model (Kline, 2016; Shipley, 2016). For our purposes, SEM is suited for 

identifying the sensitivity of our four main outcome variables to the experimental 

manipulations while holding other factors fixed. Moreover, we use the SEM model for testing 

the indirect effects of the experimental manipulations through mediating variables. 

Due to the theoretical importance of Ramsey Test conditional probabilities, they were 

considered as a mediator of our manipulations. In line with previous reseach, the indirect 

paths through the Ramsey test (P(C|A)DV) were furthermore moderated by a qualitative reason 

relation assessment, ReasonDV. Across the four groups, the two mediators, P(C|A) and 

Reason, were modeled in the same way. But the model allowed for differential influence of 

these on the main outcome variable across the four different types.  

 

 

 

Figure 7. Conceptual Diagram. The dashed edges could vary between the four main dependent variables; 

the solid lines were fixed for all. ‘Contingency’ (a, b, c, d) was coded into three contrasts: x1, x2, and x3 
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(see below). A mean structure and covariances (not displayed here) were also added to the SEM model: 

see https://osf.io/fa9rj for further details. ‘P(C|A)*R’ = interaction between P(C|A) and Reason.  
 

The model permits the experimental conditions to influence the four main outcomes variables 

via two causal chains: 1) through the direct effects of the objective input (i.e. the experimental 

conditions) on the subjectively evaluated DVs, and 2) through indirect effects, where the 

objective input affects subjective evaluations of P(C|A) and reason relations, which in turn 

influence the subjectively evaluated DVs. On the hypothesis of a causal interpretation of 

indicatives, similar psychological processes should be involved in evaluating the four central 

DVs. The model implements this by allowing the same structure across all four DVs. In 

addition, the model permits the rejection of this hypothesis by allowing the dashed edges to 

differ across the four DVs. Comparing models that set the dashed edges equal for some of the 

four main DVs thus provides a test of differences between these psychological constructs.  

In the following, P(C|A) and the four main outcome variables were divided by 100, 

and the P(C|A) and reason relation were centered on their means. Furthermore, the 

Contingency factor (a, b, c, d) outlined in Table 8 was encoded in three indicator variables 

representing the following contrasts: (x1) a - b, (x2) c - b, and (x3) d - b. The model was fitted 

using the R-package lavaan (Rosseel, 2012).   

https://osf.io/fa9rj
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P(counterfactual) P(singular) Power P(indicative) 

 

 
 

P(C|A) ~ x1 + x2 + x3 + machine,  

R2 = 33.3 

Reason ~ x1 + x2 + x3 + machine + P(C|A),         

R2 = 30.4 

y ~ x1 + x3 + machine + Reason,                    

R2 = 31.9 

 

 

R2 = 29.9 

 

R2 = 30.9 

y ~ x3 + machine + P(C|A)*Reason,               

R2 = 54.9 

 

 

R2 = 35.7 

 

R2 = 27.3 

y ~ x1 + x3 + machine + Reason + P(C|A),      

R2 = 63.6 

 

 

R2 = 33.7 

 

R2 = 31.6 

y ~ x1 + x3 + Reason* P(C|A),                      

R2 = 82.2 

Figure 8. SEM model. ‘P(C|A)*R’ = two-way interaction of mean-centered P(C|A) and Reason. Contingency contrasts: ‘x1’ = a – b; ‘x2’ = c – b; ‘x3’ = d – b. Only statistically significant effects 

(p < .05) are shown. The regressions for the two mediators (P(C|A), Reason) are fixed to have the same regression coefficients across groups.  
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The model in Figure 8 was arrived at by trimming down a saturated model. We did this 

through a combination of domain knowledge, statistical tests, and by introducing equality 

constraints between coeffiecients of the predictors of the four main outcome variables. Only 

statistically significant paths are displayed and were retained. Figure 8 shows that, except for 

counterfactuals, the linear models of the main outcome variable, yj, were in each case capable 

of accounting for more than 50% of the total variance. In the case of indicative conditionals, 

the model accounted for over 82% of the variance. Global fit statistics moreover indicated that 

the covariance matrix predicted by the model did not significantly misfit the data, χ2(59) = 

73.56, p = 0.096, and that the model met widely used benchmarks for fit measures in SEM 

modelling (Finch & French, 2015; Kline, 2016): RMSEA = 0.026, 90% CI [0.00, 0.043], 

p
ε0 ≤ .05 > 0.99, CFI = .996, SRMR = 0.037, AIC = 1306.85, BIC = 1926.30.  

 What enabled this model to do comparably well was by imposing differences between 

the four main DVs corresponding to the dashed edges in the conceptual diagram (Figure 7) 

and as illustrated in the diagram of the fitted model (Figure 8). In contrast, imposing the 

constraint that all four main DVs were identical resulted in a model that significantly misfit 

the data, χ2(68) = 377.18, p < 0.001, and which performed worse in terms of the fit vs. 

parsimony trade-off, AIC = 1592.47, BIC = 2164.27. Similarly, imposing the constraint that 

the evaluation of indicative conditionals was identical to causal power and singular causation 

led to an inferior model that significantly misfit the data, χ2(66) = 175.09, p < 0.001, AIC = 

1394.38, BIC = 1976.77. Finally, imposing the constraint that only the evaluation of 

indicative conditionals and causal power were identical led to an inferior model that 

significantly misfit the data, χ2(61) = 88.92, p = 0.011, AIC = 1318.21, BIC = 1927.06. Of the 

latter three, the last was, however, the most competitive. But it still failed to capture the 

differences between indicative conditionals and causal power displayed in Figure 8.    

 Across the 16 Contingencies × DV conditions, the main outcome variables were 

consistently rated higher on the 0-100% scale in the Machine Group than in the Regularity 
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group (Mdifference=17.57, SD = 5.25). Figure 8 shows that this effect was in part mediated 

through the influence of the Machine factor (0 vs. 1) on the reason relation assessment and the 

Ramsey test assessment of P(C|A). In addition, Figure 8 shows that all four dependent 

variables were influenced by the contingency and machine manipulations.  

A further finding in Figure 8 is that while the reason relation assessment affected all 

four main dependent variables to varying degrees, the Ramsey test assessment of P(C|A) did 

not affect the evaluation of the counterfactual “if A had not been the case, then C would not 

have been the case”. Finally, a moderation of P(C|A) by qualitative reason relation 

assessments was only found for singular causation judgments and indicative conditionals. We 

test this moderated mediation effect below. 

Ramsey Test Conditional Probabilities and Causal Power 

It was found that participants’ Ramsey Test conditional probabilities, P(C|A)DV, were 

sensitive to the Machine vs. Regularity manipulation. Participants in the Machine Condition 

tended to overestimate P(C|A)DV when P(C|A)design = low (conditions: b, c), x̅b = .43, t(185) = 

6.67, p < .0001, x̅c = .48, t(176) = 9.86, p < .0001. Conversely, participants in the Regularity 

Condition tended to underestimate P(C|A)DV when  P(C|A)design = high (conditions: a, d), x̅a = 

.65, t(166) = -5.82, p < .0001, x̅d = .66, t(201) = -5.55, p < .0001. These divergences from the 

manipulated conditional probabilities are illustrated through the distances to the dashed lines 

in Figure 9. 
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Figure 9. Ramsey Test conditional probabilities across conditions. 

The dashed lines indicate the manipulated conditional probabilities 

through the experimental design (see Table 8).   
 

It was, moreover, found that P(C|A)DV was highly correlated with participants’ estimates for 

causal power, powerDV: r = 0.90, t(367) = 38.56, p < .0001. Controlling for the other 

predictors shown in Figure 8, P(C|A)DV continued to be a significant predictor of causal 

power, b  = .60, z = 13.65, p < .0001.   

The high correlation between Ramsey Test conditional probability and powerDV could 

be interpreted as follows. In the pilot study, it was found that many participants produced zero 

physically plausible, independent, alternative causes (>39%) in both the Machine and the 

Regularity conditions when prompted. This finding could in turn be interpreted as supporting 

van Rooij and Schulz’s (2019) hypothesis that participants treat conditional probabilities as 

equal to causal power because they tend to ignore alternative causes. Such a tendency would 

count as a bias, insofar as participants also see trials in which the effect occurs in the absence 

of the target cause. In these trials the effect must be attributed to alternative causes.  

However, a comparison with the manipulated conditional probability and causal power 

through the Contingency conditions invites a different interpretation. Based on Powerdesign, the 

pattern that would be expected for the indicator variables (x1, x2, x3) encoding the 

Contingency conditions is shown in Table 9: 

Table 9. Comparison of causal power and P(C|A) 

Indicator Contingency Powerdesign Sign P(C|A)design Sign 

x1 a – b .50 - .25 =  .25  + .75 - .25 = .50 + 

x2 c – b 0    - .25 = -.25    - .25 - .25 = 0      0 

x3 d – b 0    - .25 = -.25     - .75 - .25 = .50 + 

Note. See Table 8 for the Contingency conditions. 

 

As Table 9 shows, the predicted signs of the causal power estimates for the 

contingency contrasts are: +, -, -. In contrast, the predicted signs for the conditional 

probability estimates: +, 0, +. Figure 10 displays the signs of participants' causal power 



 

44 

 

estimates in the data. More specifically, Figure 10 shows the total effects of x1, x2, and x3 on 

powerDV, along with the proportion that is mediated through P(C|A)DV alone:16  

 
Figure 10. Total effect of x1, x2, and x3 on powerDV. The 

proportion of the total (positive) effect that is mediated 

through P(C|A)DV alone is labelled. 

As is clear from a comparison between Figure 10 and Table 9, the magnitudes and signs of 

the total effects of x1, x2, and x3 on PowerDV are more compatible with P(C|A)design than with 

Powerdesign. Had participants estimated PowerDV based on the causal power calculated by the 

actual trials shown, the effects of x1, x2, and x3 would have had to follow the following 

order: +, -, -. Instead, the effects of x1, x2, and x3 followed the order of the manipulated 

conditional probabilities: +, 0, +.  

The results therefore suggest that the high correlation between Ramsey Test 

conditional probability and powerDV is to be accounted for by participants’ causal power 

estimates as follows: Participants appear to be more sensitive to manipulations in conditional 

probabilities (P(C|A)design) than to variations in the manipulated causal power (Powerdesign) in 

our experimental task. A simulation study in Appendix B shows what the expected 

relationship is between conditional probabilities and causal power for different types of 

 
16  Note that there is a slight imprecision in these numbers due to the indirect effects of x1 

(b = -.009, 95% CI [-.018, -.001]), x2 (b = -.006, 95% CI [-.011, .000]), and x3 (b = -.013, 

95% CI [-.023, -.002]) through the mediator, Reason, with opposite signs. But these 

adjustments are so slight that they do not impact the interpretation substantially and they are 

thus ignored in the total (positive) effects displayed below. 
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statistical analyses. In the General Discussion, we will return to this issue and interpret van 

Rooij and Schulz’s (2019) hypotheses in light of these results. 

 

Moderated Mediation 

To test for the influence of reason relation assessments on the indirect effects of 

Ramsey test conditional probabilities, a moderated mediation analysis was conducted (Hayes, 

2018). In this analysis, the Reason factor is used as a moderator of the mediation by the 

Ramsey Test conditional probabilities. The Reason factor was recoded from its measurement 

on a five-point Likert-scale to values between 0 and 1: strong reason against (0.2), reason 

against (0.4), neutral (0.6), reason for (0.8), and a strong reason for (1.0). By trimming down a 

saturated model, the coefficients were constrainted to be zero for counterfactuals and causal 

power. Moreoever, as shown in Figure 8, the coeffeicients were set to be equal for singular 

causation and indicative conditionals. It was found that there was a significant interaction 

between P(C|A)DV and ReasonDV for singular causation and indicative conditionals, b  = .34, z 

= 3.64, p < .0001. In addition, it was found that there was a conditional effect of P(C|A)DV on 

causal power, b  = .34, z = 3.64, p < .0001. Following Hayes (2018), the indirect effect of the 

experimental conditions through P(C|A)DV on singular causation and indicative conditionals 

can be viewed as moderated by ReasonDV, whenever a bootstrap interval of the index of 

partial moderated mediation does not cross zero (as found in Table 10). 

 

Table 10. Indices of moderated mediation  

Xi → P(C|A) → y Moderator Index: aibj  95% Bootstrap CI 

Xi =  x1 Reason .12 [.056, .19] 

[.005, .040] 

[.060, .21] 

[.020, .073] 

 x2 Reason .022 

 x3 Reason .13 

 machine Reason .047 

Note. The index ‘aibj’ is a product out of the regression coefficients of Xi in the 

mediator regression model (ai) and the regression coefficients of the moderator 

on the indirect path (bj) in the outcome regression model. A bootstrap interval   

is used, because it has been shown in previous studies that the assumption of 

normality is violated for this index (Hayes, 2018).  
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The moderated mediation of P(C|A) by reason relation assessments for the outcome variable, 

P(if A, then C), replicates the influence of reason relations on P(if A, then C) from 

Experiments 1 and 2. 

 

Summary 

The main findings of Experiment 3 were as follows: First, support for the conceptual layer 

hypothesis (H3) could be obtained, because models that treated indicative conditionals and 

explicit causal constructs (i.e. singular causation and causal power) equivalently were found 

to significantly misfit the data. Differences between the four main outcome variables thus 

emerged, which are illustrated in Figure 8. Most notably, it was found that there was no direct 

effect of Ramsey Test assessments of P(C|A) on counterfactual conditionals (“If A had not 

been the case, then C would not have been the case”) and that the interaction between Ramsey 

Test conditional probabilities and reason relation assessments could only be found for 

indicative conditionals and singular causation judgments. In contrast, no such interaction 

occurred for causal power judgments. Secondly, it was found that Ramsey Test conditional 

probabilities and measured causal power were highly correlated. It was considered whether 

this correlation should be interpreted considering the findings of a pilot study showing that 

many participants failed to produce physically plausible, independent, alternative causes in 

both the Machine and the Regularity conditions when prompted. Yet, this interpretation was 

rejected due to the finding that the causal power judgments deviated strongly from the 

manipulated causal powers. Instead it was found that participants were more sensitive to 

manipulations of conditional probability in their causal power judgments than to variations in 

the manipulated causal power in our experimental task. 

The general finding of higher ratings in the Machine condition than in the Regularity 

condition suggests that participants rely on structural information that go beyond mere 

observed covariances for the four main outcome variables, when mechanistic knowledge is 
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available. This is in agreement with previous findings (see e.g. Johnson & Ahn, 2017) but is 

here also found for indicative and counterfactual conditionals. Since our experimental task 

had this knowledge component, participants had to integrate background information with the 

observed trials to form their subjective responses (as modelled by the SEM in Figures 7 and 

8). But importantly, it was found that participants’ evaluations of indicative conditionals 

could not be equated with their subjective judgments of explicit causal constructs in a 

between-subjects comparison.   

 

Experiment 4 

The results of Experiment 3 displayed in Figure 8 indicate that singular causation and 

indicative/counterfactual conditionals are influenced by similar factors and mediational 

processes. Still, it was found that the evaluation of indicative conditionals is not equivalent to 

the processing of explicit causal notions. According to the hypothesis of multiple conceptual 

layers of causal understanding (H3), it is expected that indicative and counterfactual 

conditionals capture separate components of causal relations. To test this hypothesis, the goal 

of Experiment 4 was to probe whether participants’ singular causation judgments could be 

predicted by their acceptance of indicative or counterfactual conditionals in a within subject 

design. This within-subject design was adopted to test within each participant whether 

participants’ singular causation judgments could be predicted by their acceptance of indicative 

and counterfactual conditionals. 

 

Method 

Participants 

A total of 594 people completed the experiment. The same sampling procedures and 

exclusion criteria were used as in Experiment 3. The final sample after applying the a priori 

exclusion criteria consisted of 330 participants. Mean age was 40.02 years, ranging from 18 to 
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74. 46.1 % of the participants were male. 67.88 % indicated that the highest level of education 

that they had completed was an undergraduate degree or higher.  

Procedure 

Participants were randomly assigned to the same 4 Contingency × 2 Group between-

subjects conditions as in Experiment 3. The procedure was identical to the one in Experiment 

3 with one exception: in Experiment 4, only the Singular Causation, Indicative Conditional, 

and Counterfactual Conditional dependent variables were included, and these were 

manipulated within subject.  

 

Results and Discussion 

To test whether singular causation judgments can be predicted by the probabilities 

assigned to indicatives and counterfactuals, a within-subject comparison was conducted 

across the 8 Group (Machine, Regularity) x Contingency (a, b, c, d) conditions. Three 

regression models were compared (see Table 11 below). First, a model that predicts singular 

causation judgments based on the Group factor (Machine vs. Regularity) and the probability 

assigned to indicative conditionals alone (M1). Secondly, a model that is like (M1) but 

additionally includes the probability assigned to counterfactual conditionals as a predictor 

(M2). Thirdly, a model that is like (M2) but additionally controls for the influence of the 

Contingency factor.  

Table 11. Singular Causation Judgments 
Model b SE  p R2 AIC BIC 

M1 Intercept .38 .037 < .0001 .30 102.12 117.32 

 Indicative .47 .048 < .0001    

 GroupRegular -.15 .032 < .0001    

M2  Intercept .14 .041   < .001 .45 21.61 40.61 

 Indicative .44 .042 < .0001    

 Counterfactual .38 .040 < .0001    

 GroupRegular -.076 .029    .0089    

M3  Intercept .18 .051 < .001 .46 24.67 55.06 

 Indicative .41 .052 < .0001    

 Counterfactual .39 .043 < .0001    

 GroupRegular -.077 .029 .008    

 Contingencyb -.064 .045 ns    

 Contingencyc -.026 .043 ns    
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 Contingencyd -.050 .038 ns    

Note. The lower AIC and BIC values indicate that M2 is superior to M1 and M3 in light 

of the parsimoni vs. fit trade-off. 

The model comparison favors (M2). It was thus found that a model that includes participants’ 

evaluations of counterfactuals was a better fitting model than one that only included 

indicatives (M1). This suggests that both the ratings of indicative and counterfactual 

conditionals were needed to predict singular causation judgments. It was also found that 

including ratings of counterfactuals accounted for unique variance when including a model 

that controls for the influence of the experimental conditions (M3). Thus, even if we take 

differences in presented contingencies into account, the relationship between singular 

causation judgments and indicative and counterfactual conditionals holds.17 

Pearl (2000) and Pearl and Mackenzie (2018) have argued that there are three types of 

queries that represent different layers of conceptual understanding of causal relations, which 

can be expressed via conditionals, as we have seen. Here we have not tested interventions. 

But the results of Experiment 4 indicate that participants’ predictive judgments (expressed via 

indicatives)—and their counterfactual comparisons (expressed via counterfactuals)—are good 

predictors of their singular causation judgments. This finding is in line with the hypothesis 

that there are different layers of conceptual understanding of causal relations that can be 

expressed by natural language conditionals (H3).  

More broadly, the finding that counterfactual judgments influence singular causation 

judgements is in line with causality theories from philosophy (Goodman, 1947; Lewis, 1973; 

Collins, Hall, & Paul 2004), computer science (Pearl, 2009), and statistics (Morgan & 

Winship, 2018; VanderWeele, 2015) emphasizing the close connection between 

 
17  To control for random effects due to variation across participants in a mixed regression 

analysis, trial replications would be needed of the DV factor. This would require presenting 

participants with multiple machines analog to the mouse-wheel machine in Figures 3 and 4. 

While such an analysis would be desirable, it goes beyond the limits of the present 

investigation. Aggregating the data and fitting models corresponding to M1 and M2 lead to 

similar results favoring M2 over M1 in both Experiment 3 and 4. 
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counterfactuals and singular causal relations. Finally, in their accounts of singular causation, 

Pearl (2009, Ch. 10) and Halpern (2019) both build in counterfactual conditions in agreement 

with our results. 

 

Experiment 5 

The results of Experiment 4 suggest that there is more to the acceptance of a causal 

relation than the endorsement of indicative conditionals. In Experiment 5, this point was 

further corroborated through the investigation of a common-cause structure with two 

correlated effects. The use of such common-cause models permitted us to contrast 

probabilistic dependencies based on spurious correlations with probabilistic dependencies 

based on direct causal influence. 

To further test the hypothesis (H3) that reasoners grasp multiple conceptual layers of 

causal relations, Experiment 5 made a direct comparison of the acceptance of indicatives and 

non-backtracking,18 interventionalist counterfactuals. Through the common-cause structure, 

we investigated the contrast between these two types of conditionals in the presence and 

absence of direct causal relations relating their antecedents and consequents. In our 

experimental task, the following common-cause version of the mouse wheel machine was 

implemented. First, a purple bowling ball drops on a mouse wheel, which sets off two 

sequences of events. One terminating with a yellow basketball following down. Another 

terminating with a red basketball falling, as shown in Figure 11 below: 

 
18  In back-tracking counterfactuals, one engages in abductive reasoning and starts 

reasoning backwards from, e.g., the non-occurrence of an event to the non-occurrence of its 

typical cause. When modelling interventions in a causal system, this type of reasoning is 

blocked in Pearl (2009). Pearl achieves this by the stipulation that the intervention sets a 

variable to a given value while removing the causal influence of variables that would 

normally have affected it.  
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Figure 11. Annotated illustration of a common-cause trial in which the whole 

mechanism is visible. Instead of the annotation, participants saw animated trials. 

See https://osf.io/fa9rj/ for a video illustration. 

In this common-cause scenario, causal relevance and probabilistic relevance come apart. The 

reason is that there was a probabilistic dependence between the yellow and the red 

basketballs, which was not grounded in a direct causal relation. So, although events with the 

yellow basketball is relevant to the probability of the red basketball falling down, the yellow 

basketball is not a cause for this and is thereby not causally relevant.   

According to Lassiter (2017), the causal irrelevance of the yellow basketball for the 

red basketball is decisive for probabilistic counterfactuals. Yet, Lassiter holds that it should 

play no role for probabilistic indicatives, in line with the following hypotheses: 

(H4) indicatives that support and those that do not support counterfactuals can be 

empirically distinguished,  

(H5) the use of indicatives and the acceptance of causal relations can be dissociated 

even in causal scenarios. 

To examine these hypotheses, Experiment 5 contrasts indicatives and counterfactuals in 

predictive, diagnostic, and common-cause conditions. We moreover compare the assessment 

of these conditionals with singular causation judgments in situations where the causal relation 

https://osf.io/fa9rj/?view_only=763d1f9c553a48ffaa4c5fc318381a98
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is either present or absent. Our goal was to test for possible dissociations between the 

acceptance of indicative and counterfactual conditionals. 

Method 

Participants 

A total of 949 people completed the experiment. The same sampling procedures and 

exclusion criteria were used as in Experiment 4. The final sample after applying the a priori 

exclusion criteria consisted of 542 participants. Mean age was 40.16 years, ranging from 18 to 

91. 39.48 % of the participants were male. 73.43 % indicated that the highest level of 

education they had was an undergraduate degree.  

Design 

The experiment had a mixed design. It contained one within-subject factor, DV (with 

three levels: indicative conditional vs. singular causation vs. counterfactual conditional). In 

addition, there were two between-subjects factors: Contingency (with four levels outlined in 

Table 12 below: a vs. b vs. c vs. d), and Condition (with three levels: predictive vs. diagnostic 

vs. common-cause). In total, 12 conditions were manipulated between subjects.  

Table 12. Experimental design, contingency conditions   

 P(E1|C) ΔPE1,C P(C|E1) ΔPC,E1 P(E2|E1) ΔPE2,E1 

a 0.80 0.47  0.80 0.47 0.80 0.47 

b 0.50 0.33  0.83 0.33 0.83 0.53 

c 0.83 0.33  0.50 0.33 0.80 0.47 

d 0.80 0.47 0.80 0.47 0.50 0.33 

Note. The contingency conditions were introduced through the first initial trial and consecutive 15 

randomly ordered blackbox trials. These trials were subject to the constraint that the last trial displayed 

was a <bowling ball, yellow basketball, red basketball> trial. This was done to enable participants to 

make singular causation judgments about whether the bowling ball caused the basketball to fall into 

the basket.  

 

Materials and Procedure  

Participants were randomly assigned to one of the 12 between-subjects conditions. The 

experimental procedure was similar to the one of Experiment 4. One difference was that 

Experiment 4 featured a group comparison between the machine vs. blackbox conditions. In 
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contrast, in Experiment 5 all participants saw an initial common-cause machine trial (see 

Figure 11) and subsequently 15 blackbox trials, implementing the Contingency conditions 

outlined in Table 12. Because the common-cause version featured three events, there were 

eight possible combinations of events. To make the task less complex, participants were 

instructed in advance which of the three balls they should pay special attention to for 

answering the questions after the 15 blackbox trials. 

Following these trials, participants were shown a block with two types of test 

questions (the dependent variables) in random order. One of these asked for the probability of 

an indicative conditional in one of the following three Conditions (predictive vs. diagnostic 

vs. common-cause), on a slider permitting continuous values between 0-100%.  

Predictive Condition: 

IF the purple bowling ball falls down, THEN the yellow basketball falls down. 

Diagnostic Condition: 

IF the yellow basketball falls down, THEN the purple bowling ball fell down. 

Two Spuriously Related Effects of a Common-Cause: 

IF the yellow basketball falls down, THEN the red basketball drops into the basket. 

The second question asked for the probability of a counterfactual conditional. For the 

counterfactuals, participants were encouraged to imagine an intervention that would have 

prevented the antecedent from occurring: 

Imagine that we had prevented the purple bowling ball [/yellow basketball] from 

falling down (e.g. by constructing a safety net under it) [/e.g. by gluing it to the 

surface]. 

As a reminder, the statement describing the hypothetical intervention was displayed in grey 

on the following page. Participants were then asked to rate the probability of one of the 

following counterfactuals on a scale from 0 to 100% under this assumption: 

Predictive Condition: 
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IF the purple bowling ball had NOT fallen down, THEN the yellow basketball would 

NOT have fallen down.  

Diagnostic Condition: 

IF the yellow basketball had NOT fallen down, THEN the purple bowling ball would 

NOT have fallen down. 

Two Spuriously Related Effects of a Common-cause: 

IF the yellow basketball had NOT fallen down, THEN the red basketball would NOT 

have dropped into the basket. 

Following this block, participants were asked for singular causation judgments by assigning 

probabilities to the following statements: 

Predictive Condition: 

The purple bowling ball falling down caused the yellow basketball to fall down.    

Diagnostic Condition: 

The yellow basketball falling down caused the purple bowling ball to fall down. 

Two Spuriously Effects of a Common-Cause: 

The yellow basketball falling down caused the red basketball to drop into the basket. 

 

Results and Discussion 

To test whether participants’ ratings for the indicative and counterfactual conditional 

statements were influenced by the Condition and Contingency factors, a mixed ANOVA was 

fitted to the data. The R-packages afex (Singmann et al. 2020) and emmeans (Lenth, 2020) 

were used to this end. Condition (common-cause vs. diagnostic vs. predictive) and 

Contingency (a vs. b vs. c vs. d) were specified as between-subjects factors. DV (indicative 

vs. counterfactual vs. singular causation) was specified as a within-subject factor. The goal 

was to investigate possible dissociations between the probability of indicatives and 

counterfactuals within the levels of the Condition factor, in line with (H4) and (H5). 



 

55 

 

We found a significant three-way interaction between the Condition, Contingency, and 

DV factors, F(11.30, 998.59) = 5.15, p  < .0001, 𝜂G
2  = .03. In addition, a significant two-way 

interaction between the Condition and DV factors was found, F(3.77, 998.59) = 44.66, p  < 

.0001, 𝜂G
2  = .07. There were also significant simple effects of the DV factor, F(1.88, 998.59) = 

76.34, p  < .0001, 𝜂G
2  = .06, and the Condition factor, F(2, 530) = 123.01, p  < .0001, 𝜂G

2  = .20.  

The results are displayed in Figure 12 below:  

 

Figure 12. The three DVs are displayed across the 12 levels of the Contingency (a vs. b 

vs. c vs. d) × Condition (predictive vs. diagnostic vs. common cause) factors. 

‘causation’ = singular causation judgment; 'indicative' = indicative conditional; 

'counterfactual' = counterfactual conditional. The error-bars represent 95% CI intervals. 

Most participants gave high ratings for the singular causation question in the predictive 

condition (M = 0.70, SD = 0.24) and low ratings in the diagnostic condition (M = 0.13, SD = 

0.23). In contrast, they displayed more uncertainty about whether the two target variables 

were causally linked in the common-cause condition (M = 0.50, SD = 0.32), with 53 

participants in the 3th quantile (≥ .75) and 54 participants in the 1th quantile (≤  .20). 

Bonferroni-Holm corrected pairwise contrasts revealed dissociations between 

counterfactuals and indicatives. In the common-cause condition, counterfactuals were rated 

lower than the corresponding indicatives for Contingency a (b = -0.19, 95% CI [-0.31, -

0.061]), t(530) = -3.58, p < .01) and Contingency b (b = -0.19, 95% CI [-0.33, -0.043]), t(530) 

= -3.10, p < .01). For the diagnostic condition, the same relationship was found for 
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Contingency a (b = -0.26, 95% CI [-0.39, -0.12]), t(530) = -4.52, p < .0001), Contingency b (b 

= -0.39, 95% CI [-0.52, -0.25]), t(530) = -6.77, p < .0001), Contingency c (b = -0.22, 95%CI 

[-0.36, -0.086]), t(530) = -3.92, p < .001), and Contingency d (b = -0.40, 95% CI [-0.55, -

0.26]), t(530) = -6.84, p < .0001). In the predictive condition, counterfactuals were rated 

higher than the corresponding indicatives for Contingency b (b = 0.18, 95% CI [0.049, 0.30]), 

t(530) = 3.32, p < .01) and lower than indicatives for Contingency c (b = -0.17, 95% CI [-

0.31, -0.033]), t(530) = -2.97, p < .01). 

Across Contingency conditions, it was found, on the one hand, that the three 

dependent variables were very similar in the predictive condition (bcounterfactual - indicative = -0.03, 

95% CI [-0.10, 0.038]), t(530) = -1.085, ns; bindicative - causation = -0.033, 95% CI [-0.09, 0.026]), 

t(530) = -1.34, ns; bcounterfactual - causation = -0.064, 95% CI [-0.12, -0.0064]), t(530) = -2.67, p = 

0.023). On the other, it was found that the three dependent variables differed increasingly in 

the common-cause condition  (bcounterfactual - indicative = -0.11, 95% CI [-0.17, -0.045]), t(530) = -

4.09, p < .001; bindicative - causation = 0.080, 95% CI [0.025, 0.13]), t(530) = 3.52, p < .001; 

bcounterfactual - causation = -0.030, 95% CI [-0.08, 0.024]), t(530) = -1.33, ns), and completely in the 

diagnostic condition (bcounterfactual - indicative = -0.32, 95% CI [-0.39, -0.25]), t(530) = -11.06, p < 

.0001; bindicative - causation = 0.43, 95% CI [0.37, 0.49]), t(530) = 17.64, p < .0001; bcounterfactual - 

causation = 0.11, 95% CI [0.053, 0.17]), t(530) = 4.65, p < .0001).  

The results warrant the following conclusions. First, the acceptance of indicatives can 

clearly become dissociated from the acceptance of the corresponding counterfactuals and 

singular causation judgments corroborating (H4) and (H5). Secondly, it was found that 

counterfactual judgments tend to align with singular causation judgments. This in turn 

supports the hypothesis of a hierarchy of causal queries. On this view, singular causation 

judgments require affirmative answers to counterfactual queries (“does the consequent 

counterfactually depend on the antecedent?”), in addition to affirmative answers to the 
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predictive queries (“is the antecedent a good predictor of the consequent?”) expressed by 

indicative conditionals. 

The finding of a dissociation was most striking in the comparison between the 

predictive and diagnostic conditions. A factor contributing to this was the individual variation 

in whether participants accepted the existence of a direct causal relation in the common-cause 

condition. The use of blackbox trials may have made it more difficult for the minority who 

accepted a causal relation in the common-cause condition to distinguish between common-

cause conditional and predictive conditionals.  

 Indicative conditionals can be acceptable both in the direction “if A, then C” and in the 

direction “if C, then A”. This is an indicator that indicatives do not themselves encode causal 

relations, but rather the inferential potential based on causal (and non-causal) probabilistic 

dependencies. Whereas causal relations are asymmetrical, our results are consistent with the 

probabilistic dependency between antecedent and consequents of indicative conditionals 

being symmetrical (Spohn, 2012a, Ch. 6; Skovgaard-Olsen, 2015).  

In Ali et al. (2011), the alternative view is put forward that participants spontaneously 

recode causal relationships. Accordingly, the consequent can serve as the cause of the 

antecedent although the reverse direction would normally be expected. This recoding strategy 

is, however, challenged in cases like the one investigated in Experiment 5, where both the 

antecedent and the consequent are two effects of a common cause. It is worth noting, 

moreover, that Ali et al.’s (2011) case for the recoding hypothesis relies on indirect evidence 

from inference patterns, which showed deviations from participants’ responses. We therefore 

regard this distinction between the spontaneous recoding hypothesis and the hypothesis of 

symmetry between antecedents and consequents of indicative conditionals (as introduced by 

the symmetry of probabilistic dependence) as a fruitful area for further inquiry. 
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Experiment 6 

The comparison between predictive and diagnostic conditionals in Experiment 5 

involved a tacit comparison between a forward and backward temporal order of the 

antecedents and consequents. Yet, Experiment 5 only investigated common-cause 

conditionals in the forward direction, where the event mentioned in the antecedent occurred 

before the event mentioned in the consequent. To exclude possible confounds, Experiment 6 

sought to contrast forward and backward common-cause conditionals within a single 

contingency condition. It was expected that a similar dissociation between indicative and 

counterfactual conditionals would be found in Experiment 6, and that this dissociation would 

be moderated by the temporal order (the antecedent occurring before vs. after the 

consequent).    

Method 

Experiment 6 followed the same method as Experiment 5 unless otherwise stated. 

Participants 

A total of 323 participants completed the experiment. The same sampling procedures 

and exclusion criteria were used as above. The final sample after applying the a priori 

exclusion criteria consisted of 166 participants. Mean age was 42.86 years, ranging from 19 to 

74. 38.55 % of the participants were male. 77.71 % indicated that the highest level of 

education they had was an undergraduate degree.  

Design 

The experiment had a mixed design. The DV factor (with three levels: indicative 

conditional vs. singular causation vs. counterfactual conditional) was varied within subject. 

The Condition factor was varied between subjects (with four levels: predictive vs. diagnostic 

vs. common cause forward vs. common cause backward).  

In contrast to Experiment 5, only Contingency a of Table 12 was used in Experiment 

6. This contingency fixes the conditional probabilities and ΔP values of the examined 
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conditionals to the same values: P(E1|C) = P(C|E1) = P(E2|E1) = P(E1|E2) = 0.80; ΔPE1,C = 

ΔPC,E1 = ΔPE2,E1 = ΔPE1,E2 = 0.47. In total, 4 conditions were manipulated between subjects.  

Materials and Procedure  

In Experiment 6, the backward common-cause conditional was introduced:  

Two Spuriously Correlated Effects of a Common-Cause, Backward: 

IF the red basketball dropped into the basket, THEN the yellow basketball fell down. 

In addition, Experiment 6 held the tense of all conditionals constant. Both the antecedent and 

consequents of all examined indicative conditionals were thus manipulated to be in past tense. 

To create a context of epistemic uncertainty suitable for indicative conditionals, participants 

were instructed for indicative conditionals that they had to evaluate these sentences with 

respect to a further unknown run of the animation. For counterfactuals and singular causation 

judgments, participants were instructed to evaluate the sentences while thinking back on the 

last trial that they had seen. Like in Experiment 5, this last trial was fixed to be a <bowling 

ball, yellow basketball, red basketball> trial.  

 

Results and Discussion 

An ANOVA with Condition (common-cause backward vs. common-cause forward vs. 

diagnostic vs. predictive) as a between-subjects factor and DV (indicative vs. counterfactual 

vs. singular causation) as a within-subject factor was fitted to the data. The R-packages afex 

(Singmann et al. 2020) and emmeans (Lenth, 2020) were used. Like in Experiment 5, the goal 

was to investigate possible dissociations between the probability of indicatives and 

counterfactuals within the levels of the Condition factor, as a test of (H4) and (H5).  

It was found that there was a significant two-way interaction between the Condition 

and DV factors, F(5.79, 312.79) = 3.33, p  < .01, 𝜂G
2  = .03. In addition, significant main 

effects of the Condition factor, F(3, 162) = 23.58, p  < .0001, 𝜂G
2  = .19, and the DV factor, 
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F(1.93, 312.79) = 9.33, p  = .0001, 𝜂G
2  = .03, were found. The results are displayed in Figure 

13 below: 

 
Figure 13. The three DVs are displayed across the 4 levels of the Condition factor. 

‘CCBackward’ = common-cause backward; ‘CCForward’ = common-cause forward; 

‘causation’ = singular causation judgment; 'indicative' = indicative conditional; 

'counterfactual' = counterfactual conditional. The error-bars represent 95% CI intervals. 

Bonferroni-Holm corrected pairwise contrasts revealed dissociations between 

counterfactuals and indicatives. Counterfactuals were rated lower than the corresponding 

indicatives in the common-cause backward condition (b = -0.22, 95% CI [-0.35, -0.098]), 

t(162) = -4.30, p = .0001) and in the diagnostic condition (b = -0.16, 95% CI [-0.31, -0.018]), 

t(162) = -2.71, p = .015). 

Like in Experiment 5, the results warrant the following conclusions. First, the 

acceptance of indicative conditionals can become dissociated from the acceptance of the 

corresponding counterfactuals and singular causation judgments, in accordance with (H4) and 

(H5). Secondly, counterfactual judgments tend to align with singular causation judgments, in 

line with the hypothesis of a hierarchy of causal queries (H3). But in contrast to Experiment 5, 

the dissociation of indicatives and counterfactuals was not found for forward common-cause 

conditionals. We attribute this difference of results to the procedural changes in Experiment 6, 

whereby past tense was adopted uniformly for the antecedents and consequents of all 

indicative conditionals.  
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One thing is striking about the results shown in Figure 13. Although the conditional 

probabilities and contingencies were identical for every condition, the indicative conditionals 

in the predictive condition were systematically higher than in all the other conditions. This 

finding may have resulted from the participants’ need to integrate their background 

knowledge, and knowledge of the mechanism from the first trial, with their learning 

experiences in the blackbox trials. Participants may thus have used assumptions about the 

underlying mechanism to provide clues about how stable the observed covariances were.  

Alternatively, the finding could indicate that diagnostic and common-cause 

conditionals have different acceptability conditions than predictive conditionals. Accordingly, 

indicative conditionals in the diagnostic and common-cause conditions would have 

acceptability conditions that are systematically below the corresponding conditional 

probabilities even under positive contingency. Such a finding would be noteworthy, because it 

is not part of any of the main theories of indicative conditionals in the psychology of 

reasoning (see e.g. Bennett, 2003; Evans & Over, 2004; Oaksford & Chater, 2007, 2010a; 

Rescher, 2007; Douven, 2015; Nickerson, 2015; Goodwin & Johnson-Laird, 2018).  

Accordingly, Evans et al. (2007) state that "the Ramsey test predicts that belief in the 

conditional will be based on the probability of (q|p), regardless of the causal roles instantiated 

by p and q" (p. 639). To back this up, Evans et al. report evidence concerning predictive and 

diagnostic conditionals. Worth noticing in their results, however, is that the beta weight does 

change from .69 in the predictive conditional to .52 in the diagnostic conditional, when the 

probability of these conditionals is regressed on the corresponding Ramsey test conditional 

probabilities (see Evans et al. 2007, Table 2). This in turn would be consistent with the 

hypothesis of different acceptability conditions and the results reported here. Future research 

will have to determine whether the hypothesis of different acceptability conditions for various 

types of indicatives is correct in our trial-by-trial learning paradigm and in their paradigm.  
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General Discussion 

The linguistic encoding of knowledge about causal relations plays a vital role for determining 

the basis for the cultural transfer of causal knowledge across generations. Causative verbs 

indicating the central contributing factor play a role in this transfer. An example is the verb 

“to break” in the example “the hammer broke the window” (Neeleman & van de Koot, 2012). 

Central among the linguistic constructions that facilitate the acquisition of causal knowledge 

are, moreover, natural language conditionals (Sloman, 2005, Ch. 11; Spohn, 2013). 

Conditionals play this role as a primary vehicle for expressing dependencies between 

variables (e.g. ‘if you hit it with a hammer, then it will break’). However, exactly what aspects 

of causal relations are linguistically encoded in indicative conditionals is still very much in 

dispute; with some authors interpreting recent findings of the role of probabilistic dependency 

as evidence for a causal interpretation, as we have seen. We will start by discussing what 

bearing our results have on that debate below and then turn to outlining a more general 

framework based on Pearl’s hierarchical theory of causation in which our various 

experimental findings can be interpreted in the remainder of the General Discussion. 

Indicative Conditional, Causal Power, and the Relevance Effect 

Experiment 1 followed previous studies (e.g. Skovgaard-Olsen, Singmann, et al., 

2016, Skovgaard-Olsen, Kellen, et al. 2019) in replicating the Relevance Effect with verbal 

scenarios. In Experiment 2, it was found that the Relevance Effect could also be found in a 

trial-by-trial learning paradigm involving mechanistic knowledge.   

Possible interpretations of the Relevance Effect reported by Skovgaard-Olsen, 

Singmann, et al. (2016) have played a role in recent work in the psychology of reasoning (see 

e.g. van Rooij & Schulz, 2019; Oaksford & Chater 2020a, 2020b; Over & Cruz, 2018; Over, 

2020). There is a strong temptation to interpret the Relevance Effect as indicating that 

indicative conditionals are often read causally as that the antecedent is a cause of the 

consequent (Oaksford & Chater, 2020a, 2020b; van Rooij & Schulz, 2019). The latter view 
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connects with another broad theme; namely, the assumption that causal models underlie most 

of our subjective judgments of probability (Fernbach et al., 2011). On this view, causal 

models can thus provide a basic building block for the new paradigm in the psychology of 

reasoning by, inter alia, solving the puzzle of how the Ramsey Test is psychologically 

implemented. Accordingly, Evans et al. (2007) and Over (2020) both suggest that the Ramsey 

test is implemented via causal models.  

In van Rooij and Schulz (2019), a further step was taken in connecting recent work on 

the probability of conditionals with theories of causal judgement. van Rooij and Schulz 

suggest that causal power can be used to account for the acceptability conditions of indicative 

conditionals (H1). Since causal power in turn has been used to parameterize causal Bayes nets 

(Glymour, 2001; Fernbach et al. 2011; Oaksford & Chater, 2017; Aßfalg & Klauer, 2019), 

this hypothesis would directly show how the subjective probabilities of indicative conditionals 

could be based on causal models. In addition, van Rooij and Schulz (2019) also suggest as an 

auxillary hypothesis that participants’ tendency to ignore alternative causes could explain why 

previous research has found evidence in support of [Eq1.] under some conditions (H2). The 

reason being that causal power collapses to conditional probability whenever there are no 

alternative causes. 

In line with this conjecture, it was found in the pilot study to Experiment 3 that 

39.54% and 47.5% of the participants produced zero (plausible) alternative causes in the 

Machine condition and the Blackbox conditions, respectively. This finding might in turn 

explain why causal power and Ramsey test conditional probabilities were found to be highly 

correlated in Experiment 3 in the trial-by-trial learning paradigm.  

To test van Rooij and Schulz's (2019) conjecture (H2) directly, Experiment 1 made a 

between-subjects comparison of participants' judgments employing the verbal scenarios 

originally used to discover the Relevance Effect. In a pilot study preparing such a comparison, 

it was found, however, that participants had no trouble generating alternative causes for these 
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stimulus materials both in the Positive Relevance condition and in the Irrelevance condition. 

In fact, participants tended to generate more alternative causes in the former condition than in 

the latter. They did this in spite of the fact that the irrelevance items presented participants 

with a candidate cause (e.g. Paul is wearing a shirt), which was patently useless for producing 

the effect (e.g. Paul’s car suddenly breaking down). To get a more direct critical test, we 

presented participants with the alternative causes that their peers had generated in a between-

subjects comparison in Experiment 1. It made no difference for all the investigated effects 

whether participants were presented with alternative causes explicitly while making their 

judgments. These findings suggest that it is not the presence or absence of an accessible 

alternative cause that accounts for the Relevance Effect. 

In a second direct test of van Rooij and Schulz's (2019) conjecture that causal power 

accounts for the acceptability of indicative conditionals (H1), it was found in a model 

comparison in Experiment 1 that neither causal power nor Ramsey Test conditional 

probabilities alone could account for participants' ratings of P(if A, then C) across conditions. 

Instead, the analysis replicated Skovgaard-Olsen et al.'s (2016) finding that a model 

permitting P(C|A) to interact with the Relevance factor best accounted for participants' 

ratings. In Skovgaard-Olsen, Kellen, et al. (2019) patterns of individual variation in these 

results were investigated.  

Given these negative findings, it is useful to return to the high correlation between 

causal power and Ramsey test conditional probability in Experiment 3. On closer inspection, 

it was found that participants' causal power ratings were more sensitive to the manipulated 

conditional probabilities than the manipulated causal power (see Table 9 and Figure 10). This 

could suggest that participants were biased in the other direction; by estimating conditional 

probabilities in a task designed to elicit their causal power judgments. Over et al. (2007, 

Experiment 2) also found that conditional probabilities calculated based on participants' 

responses were highly correlated with their ratings of causal strength (r = .87), and that the 
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latter even correlated with probabilities of conjunctions to the same degree (r = .86). This 

finding, together with the much weaker associations of causal strength estimates with 

P(effect|¬cause), could also be interpreted as failures to give proper causal strength estimates 

in the investigated paradigms.  

As a final option, one could adopt a causal power account but drop van Rooij and 

Schulz's (2019) auxillary assumption that participants' tendency to ignore alternative causes 

make them evaluate P(if A, then C) as P(C|A). In Appendix B, we investigate this possibility 

via a simulation analysis. Again, it is found that the simulation analysis did not turn out 

favorably for a causal power account of P(if A, then C).  

Additionally, it was found in Experiment 3 that equating the evaluation of indicative 

conditionals with judgments of singular causation and causal power would result in a model 

that significantly misfit the data. In light of these various negative results (as well as further 

results discussed below), one must be careful not to make the slip from stating that the 

acceptability of indicative conditionals requires probabilistic dependency to the thesis that 

indicative conditionals are acceptable just in case there is causal relation between the 

antecedent and consequent. Instead, our results are consistent with the hypothesis (H3) that 

causal relations involve a hierachy of causal queries, which goes beyond what is expressed by 

indicative conditionals alone.  

Having dealt with causal power interpretations of indicative conditionals in relation to 

debates in the psychology of reasoning, we now turn to our remaining results and broaden our 

view by outlinning a general framework based on Pearl’s hierachical theory of causation in 

which our various experimental findings can be interpreted. 

Learning Causal Relations Through Descriptions 

According to Danks (2014): “A full account of causal learning from description 

remains an open research problem, particularly the question of when learners infer the 

absence of a causal relation (C does not cause E) from absence of information” (p. 68).  
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Several of our experiments can be interpreted as providing hints for constructing such 

an account. In Experiment 4 it was found that singular causation judgments could not be 

predicted by the probability of indicative conditionals alone. Instead it was found that the 

probability assigned to both indicatives and counterfactuals was needed to predict singular 

causation judgments. This finding already suggests that causal relations have multiple 

conceptual dimensions which are differentially encoded in indicatives and counterfactuals.  

In our task involving counterfactuals, participants were asked to evaluate the 

probability of that the red basketball would not have fallen if the blue bowling ball had not 

fallen down, after being shown a trial where both balls fell down. This type of task requires 

participants to evaluate the following counterfactual probability: P(Yx′ = false | X = true, Y = 

true). In words: under the assumption that both events actually occurred, what is the 

probability that Y would not have occurred had X not occurred. According to Pearl (2009), 

evaluating counterfactual expressions of this type is not possible based on causal Bayes nets, 

as illustrated in Appendix A. Instead the evaluation of counterfactual expressions requires a 

causal model with equations that represent in autonomous mechanisms of the data generating 

processes underlying directed edges, like in structural equation models (SEM), as we explain 

in Appendix A.  

The counterfactual probability evaluates the causal necessity of the first event for the 

second event (counterfactual query). In contrast, predictive queries evaluate whether the 

occurrence of the antecedent is sufficient for predicting the consequent. By showing that 

singular causation judgments cannot be predicted by the acceptance of indicative conditionals 

alone, our results indicate that participants are sensitive to the counterfactual dimension of 

causal judgments.  

For example, when a colleague says “Germany got the first wave of Covid-19 under 

control because of masks and social distancing”, and intends a causal interpretation, then this 

involves accepting the counterfactual, “If Germany had not introduced masks and social 
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distancing, the first wave of Covid-19 would not have gotten under control”. In Spohn (2013, 

p. 1100), these sentences are taken as equivalent. Our results suggest that the colleague would 

also have to accept indicative conditionals like “if masks and social distancing are introduced, 

then Covid-19 will get under control” to make this type of causal attribution. The debate with 

the colleague over the causal attribution can then be focused on arguments concerning the 

acceptance/rejection of these indicative and counterfactual conditionals. 

Corroborating the hypothesis of differential encoding of multiple conceptual 

dimensions, it was found in Experiments 5 and 6 that the probability of indicatives and 

counterfactuals could become dissociated in causal scenarios (H4). This result was obtained 

by investigating diagnostic and common-cause conditionals in addition to predictive 

conditionals. Usually,19 the focus in the psychology of reasoning has been on the acceptance 

of predictive, indicative conditionals. Theories have thus been formulated for the probability 

of indicative conditionals, which do not consider possible asymmetries between the 

probability of predictive, diagnostic, and common-cause indicative conditionals. Yet such 

asymmetries were found when holding P(consequent|antecedent) constant in Experiment 6.  

Taken together, our finding of the need to predict singular causation judgments based 

on both indicatives and counterfactuals (Experiment 4) and the dissociations between the 

latter (Experiments 5 and 6) point in the same direction. They both suggest that one part of an 

account of causal learning from description may consist in subtle patterns of acceptance and 

rejection of indicatives and counterfactuals. For instance, the speaker's unwillingness to assert 

“bad weather would not be coming, if the barometer had been prevented from falling” after 

having stated “if the barometer falls, bad weather is coming” would suggest that the speaker 

does not take his/her answer to a predictive query as supporting a causal relation. 

 
19  One notable exception is Ali et al. (2010, 2011), which complement our results. 
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Accordingly, the acceptance of an indicative conditional suggests that there is a 

symmetric, evidential relevance relation between two variables or propositions. But this does 

not yet imply that the evidential relationship is based on direct causation. As Edgington 

(2008, p. 18) observes, it is never contradictory to assert ‘If A happens, B will happen, but A 

won’t cause B to happen’. In contrast, the acceptance of interventionalist, non-backtracking 

counterfactuals suggests that there is an asymmetric, direct causal relation. This means that 

learners should be able to infer the absence of a causal relation from a verbal description 

indicating either that there is no probabilistic dependency (because the indicative rejected) or 

that it is a mere probabilistic dependency (because the counterfactual is rejected).  

Oaksford and Chater (2010b, 2020) have suggested that conditionals describing 

inferential dependencies can be viewed as structure building operators in causal Bayes nets. 

The account we have unfolded above is in accordance with this general idea. But the 

hypothesis of differential linguistic encoding of causal relations through conditionals 

advanced in this paper opens up for more detailed investigations of the construction of causal 

models based on linguistic testimony. To illustrate, blackbox observations of three events may 

either correspond to a causal chain, a common-cause structure, or causal structures with 

hidden variables. Through indicative conditionals, the edges of the graph can be conveyed. 

Through the tense of the antecedents and consequents, temporal cues about the ordering of 

events can be given (e.g. “If it rains, then the streets will be wet” vs. “If the streets are wet, 

then it rained”). Such temporal cues can be used to infer the direction of edges. Moreover, the 

acceptance and rejection patterns of interventionalist, non-backtracking counterfactuals can be 

used to read off the direction of edges. For instance, in a situation where it rains and the 

streets are wet, “If we had built a pavilion, then the street would not have been wet” sounds 

acceptable, but “If we had built a pavilion, then it would not have rained” sounds off. 

A further component of the ability to infer a qualitative causal structure is the ability to 

imagine a mechanism whereby cause and effects are related (Lagnado et al., 2007; Johnson & 
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Ahn, 2017). Our use of the contrast between a Blackbox and a Machine condition led to the 

finding in Experiment 3 of higher ratings of the four examined outcome variables when 

mechanistic knowledge was available. This finding suggests that participants rely on 

structural information that go beyond mere observed covariances when evaluating both 

conditionals and explicit causal constructs like singular causation and causal power. 

Assumptions about the underlying mechanism provides clues about how stable observed 

covariances are and permit participants to make distinctions between predictive/diagnostic 

relationships and effects of a common cause as in Experiments 5 and 6.  

Causal vs. Evidential or Informational Relevance 

In Spohn (2010, 2012a, Ch. 14), the distinction between evidential and causal 

relevance is expressed through the attempt of explicating causal relations as a specific case of 

a generic reason relation. Pearl (2009) draws a parallel distinction as follows: 

Informational relevance is concerned with questions of the form: “Given that we know 

Z, would gaining information about X give us new information about Y?” Causal 

relevance is concerned with questions of the form: “Given that Z is fixed, would 

changing X alter Y?” (pp. 234-235, italics added) 

The distinction between the evidential and causal relevance of factors also plays a role in 

distinguishing between purely predictive uses of regression approaches from causally 

interpreted models in statistics (Gelman & Hill, 2007; Kline, 2016; Pearl, Glymour, & Jewell, 

2016; Shipley, 2016; Morgan & Winship, 2018). The distinction is moreover central in 

discussions over the opposition between evidential and causal decision theory (Hitchcock, 

1993; 1996; Meek & Glymour, 1994; Pearl, 2009; Spohn, 2012b).  

According to Danks (2014), the graphical models in Bayes nets “can be understood as 

compact representations of relevance relations, where different types of graphical models 

present different types of relvance (e.g. informational, causal, probabilistic, communicative)” 

(p. 39). In causal Bayes nets parameterized via base rates and causal power (see Figure 2), the 
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directed edges represent relations of causal relevance. In contrast, in undirected graphical 

models, the edges represent symmetric, evidential relevance relations (ibid, Ch. 3). In cases of 

confounding arising via common-cause scenarios, and other cases of spurious correlations,20 

causal relevance and probabilistic relevance come apart. For a psychological theory of 

probabilistic reasoning, ΔP is often used to represent evidential relevance21 and causal power 

can be used to represent causal relevance.  

For a causal Bayes net like Figure 2, the parents of a variable represent all the 

variables that are directly causally relavant to the given variable (Spohn, 2010). Bayes nets 

are normally only used to encode variables that are at least unconditionally relevant to one 

another. Answering predictive queries in a Bayes net via conditionalization is therefore unlike 

the cases of missing-link conditionals, where conditionalization is applied to variables that are 

categorized as being completly unrelated. Hence, answering predictive queries based on 

Bayes nets is akin to making predictions based on reason relations.  

To acknowledge the counterfactual dimension of causal relations, causal power can 

also be replaced with the following counterfactual notion of sufficiency: P(Yx = true|Y = false, 

X = false). In words: under the assumption that both events did not occur, what is the 

probability that Y would have occurred had X occurred. This counterfactual concept of 

sufficiency is identifiable based on Cheng’s (1997) account of causal power, provided that no 

confounding is present and that the cause is generative (Pearl, 2009, ch. 7). The counterfactual 

notion is, however, stronger than the evidential relationship that we take indicative 

conditionals to express. The reason is that evidential relevance does not require that the 

 
20  In addition to spurious correlations created by a common cause, spurious correlations 

are introduced by conditioning on either a collider or the descendant of a collider in common-

effects structures (Pearl et al., 2016). 
21  It should be noted, though, that the factorization of undirected graphical models 

permits the use of any non-negative function defined over the variables in a clique (Højsgaard 

et al., 2012), yet ΔP can take negative values. However, ΔP is only one of a larger class of 

confirmation measures (Crupi et al., 2007) and measures of covariation (Hattori & Oaksford, 

2007), which all merit further empirical investigation.  
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antecedent and the consequent are actually false, but only that the antecedent can be used to 

predict the occurrence of the consequent (as a sufficient reason for believing in the 

consequent). 

Coming from linguistics, Lassiter (2017) puts forward the view that the causal 

irrelevance of a factor is decisive for probabilistic counterfactuals. At the same time, Lassiter 

argues that such causal irrelevance plays no role for probabilistic, indicative conditionals. 

Lassiter argues this point by considering the reversal of truth values of the counterfactual “If 

Fran had made her flight, it is likely that she would have died”. Although this counterfactual 

would normally be considered true after a plane crash, Lassiter argues that its truth value 

reverses, when considering the manipulation of the causally relevant factor that Fran is a 

highly skilled pilot. In contrast, when evaluating the indicative conditional, “If Fran made the 

flight it is likely that she died”, the fact that the plane crashed is held fixed. Varying 

information about Fran’s skills as a pilot should therefore make no difference.22 

Lassiter’s (2017) formal linguistic analyses are in line with Pearl’s (2009) idea of a 

hierarchy of causal queries. They are also congenial to the possibility of mapping natural 

language expressions of indicatives onto the processing of generic predictive queries and 

counterfactuals onto the processing of distinctively causal, counterfactual queries, as we have 

done in the present study. The dissociations of the probability of indicatives and 

counterfactuals in Experiments 5 and 6 in situations where ratings of singular causation are 

low corroborate this hypothesis. These dissociations corroborate a conceptual distinction 

between indicatives that support counterfactuals and indicatives that do not support 

counterfactuals (H4) due to the absence of direct causal relations.  

Viewed from this perspective, it is worth highlighting that Kirk (2013) notes in his 

book on experimental design that scientific hypotheses share the characteristic that they “can 

 
22  For a dissenting perspective see Over & Cruz (2019) and Over (2020), who hold that 

counterfactuals can “collapse” to indicative conditionals in examples of this kind. 
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be reduced to the form of an if-then statement. For example, “If John smokes, then he will 

show signs of high blood pressure” (p. 49). Kirk proceeds to explain how such if-then 

statements are to be evaluated through statistical hypothesis testing and confidence interval 

estimation. But it would have been highly controversial, if he had then gone on to state that 

these methods of classical statistics were themselves sufficient for establishing causal claims. 

For this, statistical methods for causal inference make use of procedures for evaluating 

counterfactuals (Morgan & Winship, 2018; VanderWeele, 2015; Pearl, Glymour, & Jewell, 

2016). In addition, the experimental method investigates the scope for intervention, which can 

now also be emulated through Pearl’s (2009) do-calculus based on observational studies.  

In other words, validating a scientific hypothesis expressed as an indicative 

conditional is only the first step towards establishing a causal relation. In addition, it must also 

be established whether the probabilistic dependency that the conditional expresses can form 

the basis for intervention, whenever feasible. Secondly, it must be established whether it 

supports counterfactual conditionals, which are used for causal explanation (e.g. a colleague 

claiming that “Germany has gotten the first wave of Covid-19 under control because of masks 

and social-distancing”). In short, the assessment of causal relations requires probabilistic 

prediction, investigation of intervention, and counterfactually based explanations.   

The low singular causation ratings in Experiment 6 to the backward common-cause 

and the backward diagnostic cases further suggest that participants recognize temporal 

precedence as a requirement of (direct) causal relevance. In both cases, where the antecedent 

occurred later than the consequent, very low singular causation judgments were obtained. 

Yet, the dissociation of these singular causation judgments with the probability of indicative 

conditionals suggests that participants accept that the antecedent may nevertheless be 

evidentially relevant for the consequent, in spite of its low (direct) causal relevance. 

Finally, we contrast mental model theory with the account above and make some 

further comparisons. 
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Alternative Frameworks 

 On the newest version of mental model theory (Khemlani et al., 2018), indicatives are 

viewed as conjunctive assertions about possibilities as shown in table 13: 

Table 13. Mapping between indicative and counterfactuals, MMT 

Row Partition  Factual:    

If A then C            

Counterfactual: 

If A had happened, then C would 

have happened 

Counterfactual with Neg.: 

If A had not occurred, then 

C would not have occurred 

1 A C  Possibility Counterfactual possibility Fact 

2 A Not-C Impossibility Impossibility Counterfactual possibility 

3 Not-A C Possibility Counterfactual possibility Impossibility 

4 Not-A Not-C Possibility Fact Counterfactual possibility 

Note. Quelhas et al. (2018) call indicative conditionals "factual conditionals". The last “Counterfactual with 

Negations” column was added here. 

On this view, ‘if the sun is setting, then the sky is red’ makes a categorical assertion 

that it is impossible that the sun is setting and the sky is not red, and that it is possible that:  

the sun is setting and the sky is red,  

the sun is not setting and the sky red,  

the sun is not setting and the sky is not red.  

In Johnson-Laird and Khemlani (2017), various causal relations are also explicated in terms 

of mental model theory. Interestingly, Johnson-Laird and Khemlani distinguish between a 

weak and a strong notion of causation. On the weak notion, ‘the sun is setting causes the sky 

to be red’ asserts the same three possibilities as ‘if the sun is setting, then the sky is red’. The 

only difference is that the weak notion of causation imposes the temporal constraint that ‘the 

sun is setting’ occurs before ‘the sky is red’, whereas indicative conditionals would be 

compatible with either temporal direction. Hence, on mental model theory, the weak notion of 

causation is almost identical in meaining to indicative conditionals, but indicative conditionals 

need not express a causal relation. 

 In our account, we have emphasized that in addition to accepting indicative 

conditionals, and respecting a temporal order, counterfactual conditionals of the type ‘if the 

sun had not set, then the sky would not have been red’ should be accepted in causal 

attributions as well. The results from Experiments 4-6 have corroborated this view. 
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Inspecting Table 13, a special problem emerges for mental model theory in taking this 

finding on board. The problem is that while the indicative conditional asserts that it is 

impossible that the sun is setting and the sky is not red, the counterfactual with negated 

antecedent and consequent asserts that this is a counterfactual possibility. However, on the 

notion of impossibility that Johnson-Laird and Khemlani (2017, p. 170) adopt, there exist no 

possibilities in which an impossible proposition holds. But this means that in accepting an 

indicative conditional, ‘if A, then C’, and the counterfactual with negated clauses, ‘if A had 

not occurred, then C would not have occurred’, as part of causal attributions, one is depicted 

as inconsistently claiming both that A and not-C is a counterfactual possibility and that there 

are no possibilities in which A and not-C holds. We can therefore conclude that Pearl’s 

hierarchy of causal queries does not sit well with the revised mental model theory. 

In philosophy and linguistics, the possible worlds semantics of Stalnaker (1968) and 

Lewis (1973) remain popular alternatives. Pearl (2009, Ch. 7) showed that it was possible to 

use his account of interventions in causal models to explicate the elusive notion of similarity 

in Lewis (1973). In doing so, Pearl showed that it was possible to derive the same conditional 

logics based on his structural semantics for counterfactuals as on Lewis’ account. On this 

logic, conditional sufficiency, or and-to-if inferences, are valid. For indicative conditionals, 

these types of inferences are, however, the focus of a recent controversy in the psychology of 

reasoning (Over & Cruz, 2018; Skovgaard-Olsen, Kellen, et al., 2019).  

At the time of Nute (1980), they were already considered problematic for 

counterfactual conditionals. Accordingly, Nute (1980) discusses various ways of weakening 

possible worlds semantics into a logic, where they are invalid. Lewis (1973) earlier showed 

that he could apply his truth conditions for this logic as well if he allowed that other possible 

worlds could be as similar to the actual world as the actual world itself.  

In a causal model, this would correspond to considering further possible values of the 

background variables characterizing the current situation than the ones actually instantiated, 
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and calculating the effects of forcing the antecedent to be true under those circumstances as 

well. This could give rise to cases where the consequent is false leading to a failure of 

conjunctive sufficiency. It would be interesting to see if Pearl could follow the extensions of 

possible worlds semantics in Nute (1980) to evaluate the counterfactuals with respect to a set 

of sufficiently similar possible worlds in case the antecedent is true in the actual world.  

Other conditional logics have been developed along these lines to avoid conjunctive 

sufficiency also for indicative conditionals. For instance, Vidal (2017) builds on Nute (1980) 

but introduces a two-stage impementation of the Ramsey Test that brackets the current beliefs 

and disbeliefs in the antecedent before evaluating the consequences of adding the antecedent 

to one’s belief set. Simiarly, Rott (2019) has developed a logic for an expanded notion of the 

Ramsey Test to ensure that the antecedent is relevant for the consequent, which he suggests 

could either be part of the truth or acceptability conditions of indicative conditionals. See 

further Raidl (2020) for an overview of several such formal systems.  

Conclusion 

In sum, the evidence across the six experiments we reported is most consistent with the 

view that indicative conditionals encode inferential relations (as shown by the Relevance Effect, 

which was replicated in Experiments 1 and 2) and are used to answer predictive queries. 

Following Skovgaard-Olsen, Collins, et al. (2019), these inferential relations may be viewed as 

conventional implicatures. The results also suggest that there are multiple layers of conceptual 

understanding involved in causal relations that are differentially encoded in indicative and 

counterfactual conditionals, which has not been demonstrated before. Both the acceptance of 

indicatives and counterfactuals are required to predict singular causation judgments 

(Experiment 4). However, when the acceptance of indicative and counterfactual conditionals 

become dissociated (Experiments 5 and 6), the acceptance of counterfactuals track singular 

causation judgments and the (direct) causal relevance of the antecedent for the consequent. In 

contrast, indicative conditionals track evidential relevance.  
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Moreover, although causal power may be used to parameterize causal Bayes nets 

(Glymour, 2001), and its application to indicative conditionals can be theoretically motivated 

(van Rooij & Schulz, 2019), it turns out empirically that causal power does not fit our data for 

indicative conditionals (Experiments 1, 3, Appendix B). Instead, an account that assumes that 

participants make reason relation assessments using conditional probabilities while being 

sensitive to when the antecedent lowers or raises the probability of the consequent turns out to 

better account for our results. This is in line with the idea of indicative conditionals as answering 

predictive queries based on evidential relevance without necessarily representing causal 

relevance. 
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Appendix A: Bayes Nets and SEM 

 

We here illustrate the difference between causal Bayes nets and structural equation 

modelling (SEM) in Pearl’s (2009) theory of causal inference. While Pearl (1988) earlier 

argued that one could explain causal inferences solely in terms of causal Bayes nets, he later 

revised this account due to the need for structural equation models for counterfactual 

reasoning (Pearl, 2009; Pearl & Mackenzie, 2018).  

On Pearl’s (2009) current account, there are three irreducible layers of conceptual 

understanding of causal relations: 1) statistical associations for predictive inference (which 

can be computed by conditionalization, e.g. via Bayes nets), 2) predictions based on 

interventions (which are observed through manipulations in randomized, experimental 

studies),23 and 3) counterfactual inferences (which can only be computed based on structural 

equation models of the data generating processes, as we show below). 

 
23  In addition, these interventions can now also be computed by applying Pearl's (2009) 

do-calculus to observational studies (see also Morgan & Winship, 2018). 
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Bayes nets encode a set of conditional independence statements to simplify the 

specification of a joint probability distribution over a set of causally relevant variables 

(Darwiche, 2009), such as the following: 

 

Figure A1. Bayes net representing a causal chain. 

To illustrate their use in answering the queries above, the occurrence of the effect (e.g. 

cancer) can be predicted by conditionalizing on information about its possible causes (e.g. 

smoking), P(cancer|smoking). To evaluate the effect of an intervention (e.g. a hypothetical 

treatment designed to remove tar in the lungs), graph-surgery can be performed on the Bayes 

net. Graph surgery works by removing all incoming edges to the node intervened on, setting it 

to a given value (e.g. Z=0), and calculating the effects of the intervention on the descending 

nodes, P(cancer|do(tar=0)).  

Finally, we can evaluate the counterfactual scenario in which we consider whether the 

the patient would have been cured, if the tar had been removed. But we need to make this 

evaluation while taking into account that the patient is in fact in a condition in which he has 

cancer and tar in his lungs. As a result, we need to be able to do both: 1) conditionalize on the 

factual information (cancer=1, tar=1) to update our distribution of the boundary conditions 

(U) representing the actual circumstances, and 2) perform graph surgery to calculate the 

effects of our counterfactual intervention. However, this latter step is not possible without 

structural equations representing the causal mechanisms underlying the causal diagram, which 

are shown below in Figure A2. 

   

Smoking Tar in the lungs Cancer 
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a) 

 

b) 

 

X = f1(U1) 

Z = f2(X, U2) 

Y= f3(Z, U1) 

X = f1(U1) 

Z = 0 

Y= f3(Z, U1) 

Figure A2. Left-side: structural equation model of the causal chain in Figure A1 with 

structural equations determining the values of endogenous variables X, Y, Z as a 

function of their parents and the exogenous variables, U1 and U2, representing the 

boundary conditions. Right-side: sub-model obtained by performing graph surgery 

on a) by replacing the equation for Z with Z = 0 and removing all edges to Z.  

In this case, the boundary conditions might be unknown factors influencing both the 

amount of tar in the patient’s lungs (U2) and whether the patient smokes and has cancer (U1). 

The structural equations in Figure A2 are used to update the distribution of the boundary 

conditions based on the available evidence, P(U | smoke=1, cancer=1, tar=1). This updated 

distribution remains invariant when considering the counterfactual scenario in which an 

intervention is introduced to set tar=0, through graph surgery to generate the submodel 

displayed as b) above. Finally, the counterfactual probability, P(cancer=0tar=0 | cancer=1, 

tar=1), is calculated based on both the updated distribution of the boundary conditions and the 

submodel, where the graph surgery has been applied (Pearl, 2009, Ch. 7). Since Bayes nets 

lack structural equations representing the influence of the boundary conditions, Bayes nets 

cannot handle cases, where we both update based on the evidence (cancer=1, tar=1) and 

consider what would have happened if tar had been 0 under the actual circumstances. 

Formally, this double evaluation of 1) an update by factual information (cancer=1, 

tar=1) concerning the actual world and 2) computation of probabilities in counterfactual 

scenarios (cancer=0, tar=0) would give rise to inconsistency, if represented by standard 

probability theory via conditionalization alone. The use of structural models illustrated in 

Figure 2A prevents this by separating the update that is kept invariant between the models a) 

and b), and computating the counterfactual update in the submodel b) only. To represent this 
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type of computational query, Pearl introduces the notation P(Yx′ = false | X = true, Y = true). 

In words: under the assumption that both events actually occurred (P( ∙ | X = true, Y = true)),24 

what is the probability that Y would not have occurred had X not occurred (P(Yx′ = false | ∙ )). 

Sometimes the term ‘Structural Causal Model’ (SCM) is used by Pearl to emphasize 

the integration of SEM as a statistical tool with causal graphs, a counterfactual semantics, and 

an explicit causal interpretation of strutural equations. Recent books on SEM have integrated 

many of these developments (see e.g. Kline, 2016; Shipley, 2016). We provide further details 

on structual equation models, when we apply them as a statistical tool in Experiment 3. 

Appendix B: Simulation Analysis, Causal Power 

In Appendix B, we consider the option of adopting a causal power account while 

dropping van Rooij and Schulz's (2019) auxillary assumption that participants' tendency to 

ignore alternative causes make them evaluate P(if A, then C) as P(C|A). Instead, the causal 

power account of the acceptability of indicative conditionals could be strengthened by the 

observation that the equation in Cheng (1997) requires causal power and P(C|A) to be highly 

correlated for generative causes. This observation might in turn account for the positive 

association between P(if A, then C) and P(C|A). To examine exactly how strongly P(C|A) and 

P(if A, then C) would be associated on a pure causal power account, a simulation analysis was 

carried out with 488422 probability distributions generated through gridsearch (see Table B1, 

upper part): 

Table B1. Simulation Analysis, Pure Casual Power Account 
 r(Y, P(C|A)) r(Y, P(C|¬A)) m1: (Y ~ P(C|A)) m2: (Y ~ P(C|A) + P(C|¬A)) 

Simulation 

Y = power rY,P(C|A) = .82 

rY,P(C|A).P(C|-A) = .94 

rY,P(C|-A) = 0.03 

rY,P(C|-A).P(C|A) = -.79 

β1 = .82,              

R2 = .68 

β1 = 1.08, β2 = -.52 

R2 = .88 

Y = ΔP rY,P(C|A) = .5 

rY,P(C|A).P(C|-A) = 1.0 

rY,P(C|-A) = -.5 

rY,P(C|-A).P(C|A) = -1.0 

β1 = .5,                    

R2 = .25 

β1 = 1.0, β2 = -1.0 

R2 = 1 

Experiment 1 

Y = If rY,P(C|A).P(C|-A) = .72 rY,P(C|-A).P(C|A) = .04 β1 = .75        β1 = .74, β2 = .03 

Y = power rY,P(C|A).P(C|-A) = .69 rY,P(C|-A).P(C|A) = -.42 β1 = .61  β1 = .74, β2 = -.37 

 
24  The dot, ⋅ , is here used as a placeholder for an event, proposition, or random variable. 
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Note. The comparison is based on Positive Relevance conditions only. Upper half: correlation and least 

square regression analysis of simulated data based on 488422 probability distributions, which were 

generated meeting the criterion of Positive Relevance. Lower half: reanalysis of the Positive Relevance 

condition of Experiment 1 based on mixed regression models. 
  

As the simulation shows, it is required that a causal power construct not only is 

strongly positively associated with P(C|A), β1 = 1.08, in a regression analysis, but also 

negatively associated with P(C|¬A), β2 = -.52.  

In Over et al. (2007), it was assumed that on a causal analysis, it would be required 

that the negative assocaition of P(C|¬A) with P(if A, then C) would be of the same magnitude 

as the positive association of P(C|A). However, as the simulation analysis shows, this 

constraint only holds for ΔP. In contrast, on a causal power account, the absolute magnitude 

of the positive association of P(C|A) is twice that of the negative association with P(C|¬A). 

Nevertheless, in previous studies—like Evans et al. (2007) and Over et al. (2007)—it was 

found that although weak, negative associations between P(C|¬A) and P(if A, then C) did 

occur, they were of a much smaller magnitude than the ones shown above.  

In the lower part of Table B1, a reanalysis of parts of the data from Experiment 1 was 

carried out with the type of mixed regression model reported in Table 5. This type of model 

also contains a random intercept controlling for differences between scenarios, while 

estimating fixed, mean effects. The required negative association of P(C|¬A) with P(if A, 

then C) was not obtained for this subset of the data. P(C|¬A) was, however, negatively 

associated with causal power. Thus, like the model comparison in Table 5, this reanalysis did 

not turn out favorably for a causal power account of P(if A, then C).  

 


