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Foreword

This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical

and applied contributions of researchers working in different fields of applications and in mathematics,

and is available in open-access. The collected contributions of this volume have either been published

or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf

or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars,

workshops and journals, or they are new. The contributions of each part of this volume are chronologically

ordered.

First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified

Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening

techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set

classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria

analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of

(quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes.

Because more applications of DSmT have emerged in the past years since the apparition of the fourth

book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly

in building change detection, object recognition, quality of data association in tracking, perception in

robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image

fusion, coarsening techniques, recommender system, levee characterization and assessment, human

heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria

analysis, group decision, human activity recognition, storm prediction, data association for autonomous

vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST

code library for information fusion including PCR rules, and network for ship classification.

Finally, the third part presents interesting contributions related to belief functions in general published

or presented along the years since 2015. These contributions are related with decision-making under

uncertainty, belief approximations, probability transformations, new distances between belief functions,

non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes

theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence

numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy,

imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well.

We want to thank all the contributors of this fifth volume for their research works and their interests

in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for

encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions

and comments on DSmT through the years. We thank the International Society of Information Fusion

(www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the

international fusion conferences series over the years.

Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially

sponsored him to attend international conferences, workshops and seminars on Information Fusion.

Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the

French Aerospace Lab (Office National d’É tudes et de Recherches Aérospatiales), Palaiseau, France, 
for encouraging him to carry on this research and for its financial support.

Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during

more than 20 years to follow and share his smart and beautiful visions and ideas in the development

of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of

Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to

attend international conferences on Information Fusion.
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Abstract—In this paper, we propose a modification of PCR5
and PCR6 fusion rules with degrees of intersections for taking
into account the cardinality of focal elements of each source
of evidence to combine. We show in very simple examples the
interest of these new fusion rules w.r.t. classical Dempster-Shafer,
PCR6, Zhang’s and Jaccard’s Center rules of combination.

Keywords: Information fusion, belief functions, DSmT,

PCR6, degrees of intersection.

I. INTRODUCTION

In this paper, we propose modifications of the Proportional

Conflict Redistribution rule no. 6 (PCR6) [1] (Vol. 3) for

the combination of basic belief assignments (BBA’s) which

integrate the degrees of intersections of focal elements of

each source of evidence to combine. Because we consider two

possible definitions of degrees of intersections (i.e. Zhang’s

and Jaccard’s degrees) and also two normalization methods

(simplest and sophisticate), we propose four modified versions

of PCR6 rules1. After a brief presentation of classical rules

of combination and a detailed presentation of our modified

PCR6 rules, we evaluate and compare their behaviors in

different emblematic examples to guide the choice of the most

interesting one.

II. BELIEF FUNCTIONS AND CLASSICAL FUSION RULES

Belief functions have been introduced by Shafer in 1976

from Dempster’s works [2] in Dempster-Shafer’s theory (DST)

of evidence. DST is mainly characterized by a frame of

discernment (FoD), sources of evidence represented by basic

belief assignment (BBA), belief (Bel) and plausibility (Pl)

functions, and Dempster’s rule of combination, denoted as DS

rule in the sequel2 of combination. DST has been modified

and extended into Dezert-Smarandache theory [1] (DSmT) to

work with quantitative or qualitative BBA and to combine the

sources of evidence in a more efficient way thanks to new

proportional conflict redistribution (PCR) fusion rules – see

[3]–[6] for discussion and examples.

1The methodology proposed in this paper is general and can also be applied
to modify similarly other PCR rules. Since we consider PCR6 rule the most
efficient one [6], we focus our presentation on PCR6 only

2DS acronym standing for Dempster-Shafer since Dempster’s rule has been
widely promoted by Shafer in the development of his mathematical theory of
evidence.

More precisely, let’s consider a finite discrete FoD Θ =
{θ1, θ2, . . . , θn}, with n > 1, of the fusion problem under

consideration and its fusion space GΘ which can be chosen

either as the power-set 2Θ, the hyper-power set3 DΘ, or the

super-power set SΘ depending on the model that fits with

the problem [1]. A BBA associated with a given source of

evidence is defined as the mapping m(.) : GΘ → [0, 1]
satisfying m(∅) = 0 and

∑
A∈GΘ m(A) = 1. The quantity

m(A) is called mass of belief of A committed by the source

of evidence. Belief and plausibility functions are defined by

Bel(A) =
∑

B⊆A

B∈GΘ

m(B), and Pl(A) =
∑

B∩A�=∅

B∈GΘ

m(B). (1)

If for some A ∈ GΘ, m(A) > 0 then A is called a focal ele-

ment of the BBA m(.). When all focal elements are singletons

and GΘ = 2Θ then the BBA m(.) is called a Bayesian BBA [2]

and its corresponding belief function Bel(.) is homogeneous

to a (possibly subjective) probability measure, and one has

Bel(A) = P (A) = Pl(A), otherwise in general one has

Bel(A) ≤ P (A) ≤ Pl(A), ∀A ∈ GΘ. The vacuous BBA , or

VBBA for short, representing a totally ignorant source is

defined as mv(It) = 1, where the total ignorance defined as

It � θ1 ∪ θ2 ∪ . . . ∪ θn if the FoD is Θ = {θ1, θ2, . . . , θn}.

Since in Shafer’s book [2], the total ignorance It is also

denoted Θ, we will adopt this notation in the sequel.

Many rules have been proposed in the literature over the

decades (see [1], Vol. 2 for a detailed list of fusion rules) to

combine several distinct sources of evidence represented by

the BBA’s m1(.), m2(.), . . . , ms(.) (s ≥ 2) defined on same

fusion space GΘ. In DST, the combination of s ≥ 2 BBA’s

is traditionally accomplished with Dempster-Shafer (DS) rule

[2] defined by mDS
1,...,s(∅) = 0 and for all X 	= ∅ in 2Θ

m
DS
1,...,s(X) �

1

1−m1,...,s(∅)

∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi), (2)

where the numerator of (2) is the mass of belief on the con-

junctive consensus on X . The denominator 1−m1,...,s(∅) is a

3which corresponds to a Dedekind’s lattice, see [1] Vol. 1.
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normalization constant. The total degree of conflict m1,...,s(∅)
between the s sources of evidences is defined by

m1,...,s(∅) �
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=∅

s∏

i=1

mi(Xi). (3)

DS rule is associative and commutative and preserves the

neutrality of the VBBA. s sources of evidence are said in

total conflict if m1,...,s(∅) = 1. In this case the combination

of the sources by DS rule cannot be done because of the

mathematical 0/0 indeterminacy in (2). In DS rule, m1,...,s(∅)
is redistributed to all focal elements of the conjunctive operator

only proportionally to their mass (i.e. without taking care of

their cardinalities). So with DS rule and with combination

of 2 BBA’s, the product m1(X1)m2(X2) is transferred to

X1 ∩ X2 = X only, no matter how the ratio between the

cardinality of X and X1 ∪ X2 varies. This DS principle of

redistribution has been questioned by Zhang in [7] and Fixsen

and Malher in [8] because it does not discriminate the case

where X1∪X2 is large but X1∩X2 is small with respect to the

case where X1∪X2 is small but X1∩X2 is large. To palliate

this problem, Zhang proposed in 1994 a modified version of

DS rule [7] including a measure of degree of intersection of

focal elements. The general formula of this modified DS rule

is defined by mD
1,...,s(∅) = 0 and for all X 	= ∅ in 2Θ

m
D
1,...,s(X) �

1

KD
1,...,s

·
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

D(X1, . . . , Xs)
s∏

i=1

mi(Xi),

(4)

where D(X1, . . . , Xs) denotes a measure of the degree of

intersection between the focal elements X1, X2, . . .Xs, and

where KD
1,...,s is a normalization constant allowing to get∑

X∈2Θ mD
1,...,s(X) = 1. Because the measure of degree of

intersection D(X1, . . . , Xs) can be defined in different ways,

this yields to different versions of the modified DS rule above.

In [7], Zhang suggested to define D(X1, . . . , Xs) as

D
Z(X1, . . . , Xs) �

|X1 ∩X2 ∩ . . . ∩Xs|

|X1| · |X2| · . . . · |Xs|
, (5)

where |X1 ∩ X2 ∩ . . . ∩ Xs| is the cardinality of the in-

tersection of the focal elements X1, X2,. . . , Xs, and |X1|,
|X2|, . . . |Xs| their cardinalities. Replacing D(X1, . . . , Xs) by

DZ(X1, . . . , Xs) in the formula (4) defines Zhang’s Center

Rule (ZCR) of combination [7], denoted mZCR
1,...,s(.) in the

sequel. The normalization constant of ZCR is denoted KZCR
1,...,s.

If we use Jaccard’s index as measure of the degree of

intersection [9] which is defined by

D
J (X1, . . . , Xs) �

|X1 ∩X2 ∩ . . . ∩Xs|

|X1 ∪X2 ∪ . . . ∪Xs|
, (6)

then we obtain Jaccard’s center rule (JCR) of combination,

and we denote it mJCR
1,...,s(.), in replacing D(X1, . . . , Xs) by

DJ(X1, . . . , Xs) in the formula (4). The normalization con-

stant of JCR is denoted KJCR
1,...,s. ZCR and JCR rules are partic-

ular instances of Modified DS rule (MDS) proposed by Fixsen

and Mahler in [8]. ZCR and JCR are commutative but not

idempotent. It can be proved that Zhang’s degree is associative

that is DZ(X1, X2, . . . , Xs) = DZ(X1, D
Z(X2, . . . , Xs)),

whereas Jaccard’s degree is not associative. If one combines

three (or more) BBA’s and there is no conflicting mass, then

ZCR is associative, whereas JCR is not associative. If there is

conflicting masses, then ZCR is still associative, but JCR is

not associative. Zhang’s and Jaccard’s degrees pose a problem

because ZCR and JCR become strictly equivalent with DS

rule when the cardinality is 1 for all relevant sets, or when

|X1 ∩ X2 ∩ . . . ∩ Xs| = |X1| · |X2| · . . . · |Xs| in the

circumstance of conflicting evidence. Therefore, it inherits the

same limitations as DS rule – see example 2 in Section V.

The doubts of the validity of DS rule has been discussed

by Zadeh in 1979 [10]–[12] based on a very simple example

with two highly conflicting sources of evidences. Since 1980’s,

many criticisms have been done about the behavior and the

justification of such DS rule. More recently, Dezert et al. in

[3], [4], [18] have put in light other counter-intuitive behaviors

of DS rule even in low conflicting cases and showed serious

flaws in logical foundations of DST [5]. To overcome the

limitations and problems of DS rule of combination, a new

family of PCR rules have been developed in DSmT framework

[1]. In PCR rules, we transfer the conflicting mass only to the

elements involved in the conflict and proportionally to their

individual masses, so that the specificity of the information is

entirely preserved. The general principle of PCR consists: 1) to

apply the conjunctive rule, 2) to calculate the total or partial

conflicting masses; 3) then redistribute the (total or partial)

conflicting mass proportionally on non-empty sets according

to the integrity constraints one has for the frame Θ. Because

the proportional transfer can be done in different ways, there

exist several versions of PCR rules of combination. PCR6

fusion rule has been proposed by Martin and Osswald in [1]

Vol. 2, Chap. 2, as a serious alternative to PCR5 fusion rule

proposed originally by Smarandache and Dezert in [1] Vol.

2, Chap. 1. When only two BBA’s are combined, PCR6 and

PCR5 fusion rules coincide, but they differ in general as soon

as more than two sources have to be combined altogether.

Recently, it has been proved in [6] that only PCR6 rule is

consistent with the averaging fusion rule which allows to

estimate the empirical (frequentist) probabilities involved in

a discrete random experiment, and that is why we recommend

to use it in applications when possible. For Shafer’s model of

FoD4, the PCR65 combination of two BBA’s m1(.) and m2(.)

is defined by m
PCR5/6
1,2 (∅) = 0 and for all X 	= ∅ in 2Θ

m
PCR5/6
1,2 (X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

+
∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
], (7)

4that is when GΘ = 2Θ, and assuming all elements exhaustive and
exclusive.

5which turns to be equal to PCR5 formula in case of fusion of two BBA’s
only.
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where all denominators in (7) are different from zero. If a

denominator is zero, that fraction is discarded. All proposi-

tions/sets are in a canonical form [1]. Basic MatLab codes of

PCR rules can be found in [1], [13] or from the toolboxes

repository on the web [14]. The general and concise formula

of PCR6 rule for combining s > 2 sources of evidences is

m
PCR6
1,2,...,s(X) = m1,2,...,s(X) + CR

PCR6(X) (8)

where m1,2,...,s(X) corresponds to the conjunctive consensus

on X between s sources of evidence, which is defined by

m1,2,...,s(X) �
∑

X1,...Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi), (9)

and where CRPCR6(X) is the part of the conflicting masses
redistributed back to the focal element X according to PCR6
redistribution principle, that is

CR
PCR6(X) �

s−1∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[mi1(X) +mi2(X) + . . .+mik(X)]·

·
mi1(X) . . .mik(X)mik+1

(Xik+1
) . . .mis(Xis )

mi1(X) + . . .+mik(X) +mik+1
(Xik+1

) + . . .+mis(Xis )
.

(10)

In Eq.(10), Ps({1, . . . , s}) is the set of all permutations of

the elements {1, 2, . . . , s}. It should be observed that Xi1 ,

Xi2 ,. . .,Xis may be different from each other, or some of

them equal and others different, etc. As discussed and justified

in [6], we focus here and in the sequel on PCR6 rule of

combination rather than PCR5, but the general formula of

PCR5 rule can be found in [1], [6] with examples, and a

concise PCR5 general formula similar to (11) is possible. Like

the averaging fusion rule, the PCR5 and PCR6 fusion rules are

commutative but not associative.

III. PCR6 RULE WITH DEGREES OF INTERSECTION

As presented in the previous section, the original versions

of PCR5 or PCR6 rules of combination (as well as original

DS rule) use only part of the whole information available

(i.e. the values of the masses of belief only), because they

do not exploit the cardinalities of focal elements entering in

the fusion process. Because the cardinalities of focal elements

are fully taken into account in the computation of the measure

of degree of intersection between sets, we propose to improve

PCR rules using this measure. The basic idea is to replace

any conjunctive product by its discounted version thanks to

the measure of degree of intersection D when the intersection

of focal elements is not empty. The product of partial (or total)

conflicting masses are not discounted by the measure of degree

of intersection because the degree of intersection between two

(or more) conflicting focal elements always equals zero, that

is if X ∩ Y = ∅, then D(X,Y ) = 0. Because there are

different ways to define degrees of intersection between set

(here we consider only Zhang’s and Jaccard’ degrees), and

there are different ways to make the normalization because

of the weighted conjunctive product involved in formulas,

we come up with several versions of modified PCR6 rule of

combination. We consider in fact two main modified versions

of PCR6. The first modified version uses a classical normal-

ization step based on the division by a normalization factor.

The second modified version uses a sophisticate normalization

step as shown through the general modified PCR6 formulas.

A. Simplest modified PCR6 rule

The simplest modified PCR6 rule including the measure of

degree of intersection between sets is defined for s ≥ 2 BBA

by mDPCR6
1,2,...,s (∅) = 0 and for any non empty X ∈ 2Θ, by

m
DPCR6
1,2,...,s (X) �

1

KDPCR6
1,2,...,s

· [mD
1,2,...,s(X) + CR

PCR6(X)], (11)

where KDPCR6
1,2,...,s is a normalization constant allowing to get∑

X∈2Θ mPCR6
1,2,...,s(X) = 1; CRPCR6(X) is the part of the

conflicting masses redistributed back to the focal element X
according to PCR6 redistribution principle and defined by

(10); and mD
1,2,...,s(X) is the discounted conjunctive consensus

by the measure of the degree of intersection, defined by

m
D
1,2,...,s(X) �

∑

X1,...Xs∈2Θ

X1∩...∩Xs=X

D(X1, . . . , Xs)
s∏

i=1

mi(Xi). (12)

A similar general formula holds for the modified PCR5 rule
with degrees of intersection between focal elements. For the
fusion of two BBA’s m1(.) and m2(.), the modified PCR6 and
PCR5 formulas coincide and reduce to the formula below

m
DPCR5/6
1,2 (X) =

1

K
DPCR5/6
1,2

·

[ ∑

X1,X2∈2Θ

X1∩X2=X

D(X1, X2)m1(X1)m2(X2)

+
∑

Y ∈2Θ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]
]
. (13)

Depending on the degree of intersection we take (either DZ

or DJ ), we get two versions of this modified PCR6 rule.

The result of the fusion for each version will be denoted

mZPCR6
1,2,...,s (.) and mJPCR6

1,2,...,s (.) in the sequel. ZPCR6 and JPCR6

rules6 are commutative but not associative.

B. Sophisticate modified PCR6 rule

We propose here a more sophisticate modified PCR6 rule

which does not use the normalization by the division with

a normalization constant but which makes a proportional

redistribution of the non conflicting mass missing from the

discounted conjunctive rule (after including a degree of inter-

section). Before providing the general formula of this sophis-

ticate modified PCR6 rule, let’s explain how the redistribution

that we propose is done in the two BBA’s case at first for

simplicity.

6ZPCR6 and JPCR6 denote the PCR6 rules modified with Zhang’s and
Jaccard’s degrees of intersection respectively.
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Let’s suppose to have only two BBA’s m1(.) and
m2(.) defined on the same FoD Θ (assuming Shafer’s
model for simplicity). When X1 ∩ X2 = X , then (1 −
D(X1, X2))m1(X1)m2(X2) will be transferred back to X1
and X2 proportionally with respect to their masses (following
PCR5/6 principle), that is:

α

m1(X1)
=

β

m2(X2)
=

(1−D(X1, X2))m1(X1)m2(X2)

m1(X1) +m2(X2)
,

whence,

α = (1−D(X1, X2)) ·
m2

1(X1)m2(X2)

m1(X1) +m2(X2)
,

β = (1−D(X1, X2)) ·
m1(X1)m

2
2(X2)

m1(X1) +m2(X2)
.

The formula of this sophisticate modified combination rule,

denoted7 SDPCR5/6, is given by m
SDPCR5/6
1,2 (∅) = 0 and by

m
SDPCR5/6
1,2 (X) �

∑

X1,X2∈2Θ

X1∩X2=X

D(X1, X2)m1(X1)m2(X2)

+
∑

Y ∈2Θ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]

+
∑

Y ∈2Θ\{X}
X∩Y �=∅

(1−D(X,Y ))[
m1(X)2m2(Y )

m1(X) +m2(Y )

+
m2(X)2m1(Y )

m2(X) +m1(Y )
].

(14)

The third sum of Eq.(14) represents the non-conflicting mass

missing from the conjunctive rule including a degree of inter-

section. As for ZPCR6 or JPCR6 rules, we can choose Zhang’s

or Jaccard’s degrees (or any other measures of degree of

intersection if preferred). The generalization of this principle

of redistribution of missing discounting conjunctive masses

yields the following general sophisticate modified PCR6 rule

of combination.

m
SDPCR6
1,2,...,s (X) = m

D
1,2,...,s(X) + CR

PCR6(X) +MR
PCR6(X),

(15)
where MRPCR6(X) is the part of the missing conjunctive
masses due to discounting back to the focal element involved
in the conjunction which is redistributed according to PCR6
redistribution principle. MRPCR6(X) is defined by

MR
PCR6(X) �

s−1∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈2Θ\X

(
⋂k

j=1 Xij
)∩X �=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

(1−D(X, . . . ,X,Xik+1
, . . . , Xis)) ·

k∑

j=1

mij (X)

·
mi1(X) . . .mik(X)mik+1

(Xik+1
) . . .mis(Xis )

mi1(X) + . . .+mik(X) +mik+1
(Xik+1

) + . . .+mis(Xis )
.

(16)

SZPCR6 and SJPCR6 rules8 are commutative but not associa-

tive.

7S letter in this acronym stands for Sophisticate.
8SZPCR6 and SJPCR6 denote the PCR6 rules modified with Zhang’s and

Jaccard’s degrees of intersection respectively.

IV. ANALYSIS OF THE NEUTRALITY OF VBBA

When there is no conflict between BBA’s, DS, PCR5 or

PCR6 rules reduce to the conjunctive rule which preserves the

neutrality of VBA. When there is conflict between BBA’s only

DS preserves neutrality of VBA because DS is associative. In

general, PCR5 and PCR6 do not preserve the neutrality of

the VBA if more than two conflicting BBA’s (including the

VBA) are combined altogether9. In general, the VBA mv(.)
is not a neutral element for the conjunctive rule of combination

discounted with Jaccard’s degree of intersection when combin-

ing two (or more) BBA’s as shown in the following counter-

example. If we take Θ = {A,B}, with A∩B = ∅, and m1(.)
defined as m1(A) = 0.5, m1(B) = 0.3 and mv(A∪B) = 0.2.

Then the result of the JCR fusion is mJCR
1v (A) ≈ 0.4167,

mJCR
1v (B) = 0.25 and mJCR

1v (A∪B) ≈ 0.3333, which shows

that mJCR
1v (.) 	= m1(.). The VBA mv(.) is a neutral element

for the ZCR combination of m1(.) with the VBA mv(.),
because the discounted conjunctive mass for any focal element

X is m1v(X) = |X∩Θ|
|X|·|Θ|m1(X)mv(Θ) = |X|

|X|·|Θ| ·m1(X) ·1 =
1
nm1(X), where n = |Θ|. The normalization constant equals

KZCR
1,v =

∑
X

1
nm1(X) = 1/n. Therefore, after dividing by

KZCR
1,v , we always gets mZCR

1v (X) = m1(X) for any focal

element X of m1(.). Same property holds if we combine

three (or more) BBA’s with the VBA and even if these

BAA’s are in conflict or not. Because DZ(X1, . . . , Xn,Θ) =
DZ(X1, . . . , Xn)/|Θ| and mv(Θ) = 1, the constant |Θ|
always simplifies in normalization step of ZCR and because

conjunctive rule and Zhang’s degree are associative. In the

general case, ZPCR6, SZPRC6, JPRC6 and SJPCR6 do not

preserve the neutrality of the VBA. This can be verified using

the simple example of the footnote no 9. More precisely, the

combination [m1 ⊕m2 ⊕ . . . ⊕ mn ⊕ mv](.) is not equal to

[m1⊕m2⊕ . . .⊕mn](.). In the very specific case when there

is no conflict between the BBA’s, only ZPCR6 rule preserves

the neutrally of VBA because it coincides with ZCR.

V. EXAMPLES

Here we analyze the behavior of the different rules (DS,

PCR6, ZCR, JCR, ZPCR6, JPCR6, SZPCR6 and SJPCR6) in

emblematic examples to determinate which one presents the

best interest for the combination of BBA’s.

Example 1: (No conflicting case)

Let’s consider the FoD Θ = {A1, A2, . . . , A10} with

Shafer’s model, and the following two BBA’s to combine

m1(A1) = 0.9, m1(Θ) = 0.1, m2(X) = 0.9 and m2(Θ) =
0.1 where the focal element X of m2(.) can take the values

A1, A1 ∪A2, A1 ∪A2 ∪A3, . . . , or Θ.

In this case, the DS and PCR5/6 rules coincide with

the conjunctive rule of combination because there is no

9For example, if one considers Θ = {A,B} with Shafer’s model, and
the BBA’s {m1(A) = a1,m1(B) = b1,m1(Θ) = c1}, {m2(A) =
a2,m2(B) = b2,m2(Θ) = c2, mv(Θ) = 1}. Then [m1 ⊕ m2](.) �=
[m1 ⊕ m2 ⊕ mv](.) (where ⊕ denotes the PCR5 or PCR6 fusion rule)
because in m1 ⊕m2 nothing from the redistribution of the conflicting mass
goes to ignorance, contrarily to what happens in [m1 ⊕m2 ⊕mv ](.).
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conflicting mass to redistribute because m1,2(∅) = 0. If

X = A1, then mDS
1,2 (A1) = mPCR6

1,2 (A1) = m1(A1)m2(A1)+
m1(A1)m2(Θ) + m1(Θ)m2(A1) = 0.99 and mDS

1,2 (Θ) =
mPCR6

1,2 (Θ) = m1(Θ)m2(Θ) = 0.01, which is a reasonable

result since the belief in A1 is reinforced because each source

does strongly support the same hypothesis A1. When X ⊃ A1

and |X | > 1, the behavior of the conjunctive rule becomes

questionable because one always gets

mDS
1,2 (A1) = m

PCR5/6
1,2 (A1) = m1(A1)(m2(X) +m2(Θ)) = 0.9,

mDS
1,2 (X) = m

PCR5/6
1,2 (X) = m1(Θ)m2(X) = 0.09,

mDS
1,2 (Θ) = m

PCR5/6
1,2 (Θ) = m1(Θ)m2(Θ) = 0.01.

When X → Θ, m2(.) tends to become a fully ignorant source

of evidence, and the combination of m1(.) with m2(.) tends

towards m1(.) because m2(.) brings none useful information

at all in this limit case. This behavior of conjunctive rule

is then conform with what we intuitively expect. However,

when |X | decreases from r = 10 to r = 2, the behavior of

conjunctive rule (and in this case DS and PCR6 rules also) is

not very satisfactory, because we obtain same results on the

mass of A1 whatever the cardinality of X is. In fact, it is rather

intuitively expected that after the combination, the mass of A1

should substantially increase if the cardinality of X decreases

because m2(.) becomes more and more specific (and focused

towards A1). When m2(.) is more in agreement with m1(.),
the combination of m1(.) with m2(.) should reinforce the

belief on A1 when |X | decreases, which is not what happens

with the pure (strict) conjunctive rule.

Let’s examine how ZCR, JCR rules work in this example.

Let |X | = r ≥ 1, and r ≤ 10. Also |Θ| = |A1 ∪ A2 ∪
. . .∪A10| = 10. If we compute the (unnormalized) discounted

conjunctive fusion with Zhang’s degree of intersection, we get

mZ
1,2(A1) =

|A1 ∩X|

|A1| · |X|
m1(A1)m2(X) +

|A1 ∩Θ|

|A1| · |Θ|
m1(A1)m2(Θ)

=
1

r
(0.9)(0.9) +

1

10
(0.9)(0.1) =

0.81

r
+ 0.009,

mZ
1,2(X) =

|Θ ∩X|

|Θ| · |X|
m1(Θ)m2(X) =

1

10
(0.1)(0.9) = 0.009,

mZ
1,2(Θ) =

|Θ ∩Θ|

|Θ| · |Θ|
m1(Θ)m2(Θ) =

1

10
(0.1)(0.1) = 0.001.

If we compute the (unnormalized) discounted conjunctive
fusion with Jaccard’s degree of intersection, we get

mJ
1,2(A1) =

|A1 ∩X|

|A1 ∪X|
m1(A1)m2(X) +

|A1 ∩Θ|

|A1 ∪Θ|
m1(A1)m2(Θ)

=
1

r
(0.9)(0.9) +

1

10
(0.9)(0.1) =

0.81

r
+ 0.009,

mJ
1,2(X) =

|Θ ∩X|

|Θ ∪X|
m1(Θ)m2(X) =

r

10
(0.1)(0.9) = 0.009 · r,

mJ
1,2(Θ) =

|Θ ∩Θ|

|Θ ∪Θ|
m1(Θ)m2(Θ) =

10

10
(0.1)(0.1) = 0.01.

After normalization of mZ
1,2(.) by KZ

1,2 = 0.81
r + 0.019, and

mJ
1,2(.) by KJ

1,2 = 0.81
r + 0.009 · r + 0.010 we get the result

of ZCR and JCR rules, which are

mZCR
1,2 (A1) = [

0.81

r
+ 0.009]/KZ

1,2, mJCR
1,2 (A1) = [

0.81

r
+ 0.009]/KJ

1,2,

mZCR
1,2 (X) = 0.009/KZ

1,2, mJCR
1,2 (X) = 0.009 · r/KJ

1,2,

mZCR
1,2 (Θ) = 0.001/KZ

1,2, mJCR
1,2 (Θ) = 0.01/KJ

1,2.

In the limit case when r = 1 we get

mZCR
1,2 (A1) = 0.988, mJCR

1,2 (A1) = 0.988,

mZCR
1,2 (Θ) = 0.012, mJCR

1,2 (Θ) = 0.012.

In the limit case when r = 10 we get

mZCR
1,2 (A1) = 0.90, mJCR

1,2 (A1) = 0.4337,

mZCR
1,2 (Θ) = 0.10, mJCR

1,2 (Θ) = 0.5263.

Clearly, one sees that both ZCR and JCR have now a good

expected behavior when |X | decreases, but only ZCR provides

also a good behavior when r = 10 because in this case one

gets mZCR
1,2 (.) = m1(.) which is normal because m2(.) is the

VBA (fully ignorant source). With JCR, the result we obtain

when |X | = r = 10 is not good because mZCR
1,2 (.) 	= m1(.).

Because there is no conflict, ZPCR6 rule coincides with ZCR

rule in this example, and JPCR6 rule coincides with JCR rule.

Therefore, JPCR6 rule does not work well (at least for this

example) as explained previously. The evaluation of masses

of A1 and of Θ after the combination of m1(.) with m2(.) for

the different rules is shown in Fig. 1 and Fig. 2 respectively

and for different values of r = |X |.
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Figure 1. m(A1) after combination of m1(.) with m2(.).
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Figure 2. m(Θ) after combination of m1(.) with m2(.).
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If we apply sophisticate normalization procedures we ob-
tain10 with SZPCR6 and SJPCR6

mSZPCR6
1,2 (A1) = 0.0819 + 0.81 ·

1

r
+ 0.405 ·

r − 1

r
,

mSZPCR6
1,2 (X) = 0.0819 + 0.405 ·

r − 1

r
,

mSZPCR6
1,2 (Θ) = 0.0262,

mSJPCR6
1,2 (A1) = 0.0819 + 0.81 ·

1

r
+ 0.405 ·

r − 1

r
,

mSJPCR6
1,2 (X) = 0.009 · r + 0.405 ·

r − 1

r
+ (10 − r) · 0.0081,

mSJPCR6
1,2 (Θ) = 0.0181 + (10 − r) · 0.0081.

In the limit case, when r = 1 we get

mSZPCR6
1,2 (A1) = 0.9738, mSJPCR6

1,2 (A1) = 0.9738,

mSZPCR6
1,2 (Θ) = 0.0262, mSJPCR6

1,2 (Θ) = 0.0262.

In the limit case, when r = 10 we get

mSZPCR6
1,2 (A1) = 0.5274, mSJPCR6

1,2 (A1) = 0.5274,

mSZPCR6
1,2 (Θ) = 0.4726, mSJPCR6

1,2 (Θ) = 0.4726.

This result shows clearly that SZPCR6 and SJPCR6 rules

behave better than conjunctive rule (and so better than DS

and PCR6 rules) in the limit case when X = A1 because

after the combination the mass committed to A1 is reinforced

(as it is naturally expected). But the reinforcement of mass

of A1 is lower than with ZPCR6 or JPCR6 rules11 based on

simple normalization because the sophisticate normalization

procedure degrades the specificity of the information. In

the other limit case when r = 10, (i.e. X = Θ, and m2(.)
equals the VBA) SZPCR6 and SJPCR6 rules do not work

well because clearly one has mSZPCR6
1,2 (.) 	= m1(.) and

mSJPCR6
1,2 (.) 	= m1(.) also. So we at least have shown one

example where SZPCR6 and SJPCR6 are not very efficient

and consequently, we do not recommend to use them. In

summary, only ZCR and ZPCR6 (equivalent to ZCR in this

example) allow to get an acceptable behavior for combining

the two BBA’s m1(.) and m2(.) for any focal element

X ⊇ A1.

Example 2 (Zadeh [10], [12]): (Conflicting case)

Let’s Θ = {A,B,C} with Shafer’s model, and the two

BBA’s to combine m1(A) = 0.9, m1(C) = 0.1, m2(B) = 0.9
and m2(C) = 0.1.

In this case, Shafer’s conflict is m1,2(∅) = m1(A)(m2(B)+
m2(C)) +m1(C)m2(B) = 0.9 + 0.1 · 0.9 = 0.99. If we use

DS rule (2), we get mDS
1,2 (C) = 1. The discounted conjunctive

consensus D(C,C)m1(C)m2(C) (with Zhang’s or Jaccard’s

degree) is always equal to the un-discounted conjunctive con-

sensus m1(C)m2(C) = 0.01 because DZ(C,C) = |C∩C|
|C|·|C| =

1 and DJ(C,C) = |C∩C|
|C∪C| = 1. Therefore the degree of

intersection does not impact the conjunctive combination result

10Here there is no conflicting mass to redistribute which makes the
derivation more easier.

11which coincide here with ZCR and JCR rule because there is no
conflicting mass to redistribute.

and ZCR and JCR rules (4) give same counter-intuitive result

as DS rule, that is mZCR
1,2 (C) = mJCR

1,2 (C) = mDS
1,2 (C) = 1.

Because the degree of intersection does not impact the

conjunctive combination part of PCR6 rule in this example,

modified PCR6 rules (ZPCR6, JPCR6, SZPCR6 and SJPCR6)

give the same result as PCR6 rule which is m
PCR5/6
1,2 (A) =

0.486, m
PCR5/6
1,2 (B) = 0.486 and m

PCR5/6
1,2 (C) = 0.028.

In summary, ZCR and JCR rules do not help to modify the

result obtained by DS rule in Zadeh’s example and cannot

be viewed as real alternatives to DS rule for this example.

Conversely, ZPCR6, JPCR6, SZPCR6 and SJPCR6 rule

(which coincide with PCR6 rule in this example) remain

good alternatives to DS rule.

Example 3 (Voorbraak [15]): (Conflicting case)

Let’s consider the FoD Θ = {A,B,C} with Shafer’s model,

and the following two BBA’s to combine m1(A) = 0.5,

m1(B ∪ C) = 0.5, m2(C) = 0.5, and m2(A ∪B) = 0.5.

One has m1,2(∅) = m1(A)m2(C) = 0.25, and DS rule

gives mDS
1,2 (A) = mDS

1,2 (B) = mDS
1,2 (C) = 1/3. As reported

by Voorbraak [15], this result is counterintuitive, since in-

tuitively B seems to share twice a probability mass of 0.5,

while both A and C only have to share once 0.5 with B
and are once assigned 0.5 individually. This counterintuitive

result comes from the fact that DS rule implicitly assumes

that all possible pairs of focal elements are equally confirmed

by the combined evidence, while intuitively, in this example

B = (B∪C)∩(A∪B) is less confirmed than A = A∩(A∪B)
and C = (B ∪C) ∩ C. With ZCR and JCR rules, we get

mZCR
1,2 (A) = 0.40, mJCR

1,2 (A) = 0.375,

mZCR
1,2 (B) = 0.20, mJCR

1,2 (B) = 0.250,

mZCR
1,2 (C) = 0.40, mJCR

1,2 (C) = 0.375.

Contrarily to DS rule, with ZCR or JCR rules one sees

that the mass committed to B is less than of A and of

C which is a more reasonable result. In applying PCR6

rule, we also circumvent this problem because we get from

Eq. (13), mPCR6
1,2 (A) = 0.375, mPCR6

1,2 (B) = 0.25 and

mPCR6
1,2 (C) = 0.375 (same as with JCR results for this

particular example).

With ZPCR6 rule, we compute at first the following (un-

normalized) discounted conjunctive masses added with pro-

portional conflict redistribution

mZ
1,2(A) =

|A ∩ (A ∪ B)|

|A| · |A ∪ B|
m1(A)m2(A ∪ B) +

1

2
m1,2(∅) = 0.25,

mZ
1,2(B) =

|(B ∪ C) ∩ (A ∪ B)|

|B ∪ C| · |A ∪ B|
m1(B ∪ C)m2(A ∪B) = 0.0625,

mZ
1,2(C) =

|(B ∪ C) ∩ C|

|B ∪C| · |C|
m1(B ∪ C)m2(C) +

1

2
m1,2(∅) = 0.25.

After a simple normalization (dividing by KZ
1,2 = 0.25 +

0.0625 + 0.25 = 0.5625), we get finally
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mZPCR6
1,2 (A) = 0.25/0.5625 ≈ 0.4444,

mZPCR6
1,2 (B) = 0.0625/0.5625≈ 0.1112,

mZPCR6
1,2 (C) = 0.25/0.5625 ≈ 0.4444.

Similarly, if we apply JPCR6 rule based on Jaccard’s index

and simple normalization step, we will get the following result

mJPCR6
1,2 (A) = [(0.25/2) + 0.125]/KJ

1,2 ≈ 0.4286,

mJPCR6
1,2 (B) = (0.25/3)/KJ

1,2 = 0.1428,

mJPCR6
1,2 (C) = [(0.25/2) + 0.125]/KJ

1,2 ≈ 0.4286,

where the normalization factor equals KJ
1,2 = (0.25/2) +

0.125 + (0.25/3) + (0.25/2) + 0.125 ≈ 0.5833.

These results show that ZPCR6 and JPCR6 rules diminish

substantially the mass committed to B (as expected) and

reinforce more strongly the masses of A and C than with

ZCR, JCR or PCR6 rules.

If we apply the sophisticate normalization for SZPCR6, the

lost discounted mass (1 − |A∩(A∪B)|
|A|·|A∪B| )m1(A)m2(A ∪ B) =

0.125 is redistributed to A and to A ∪ B proportionally12 to

m1(A) = 0.5 and m2(A∪B) = 0.5. Similarly, the second lost

discounted mass (1− |(B∪C)∩(A∪B)|
|B∪C|·|A∪B| )m1(B∪C)m2(A∪B) =

0.1875 is redistributed to B ∪C and to A ∪B proportionally

to m1(B ∪ C) = 0.5 and m2(A ∪ B) = 0.5, and the third

lost discounted mass (1 − |(B∪C)∩C|
|B∪C|·|C| )m1(B ∪ C)m2(C) =

0.125 is redistributed to B ∪ C and to C proportionally to

m1(B ∪ C) = 0.5 and m2(C) = 0.5. Similar computations

are done for SJPCR6 in replacing Zhang’s degree by Jaccard’s

degree of intersection. Finally we obtain with SZPCR6 and

SJPRC6 the following combined masses:

mSZPCR6
1,2 (A) = 0.3125, mSZPCR6

1,2 (A ∪B) = 0.15625,

mSZPCR6
1,2 (B) = 0.0625, mSZPCR6

1,2 (B ∪ C) = 0.15625,

mSZPCR6
1,2 (C) = 0.3125,

and

mSJPCR6
1,2 (A) = 0.3125, mSJPCR6

1,2 (A ∪ B) ≈ 0.14585,

mSJPCR6
1,2 (B) ≈ 0.0833, mSJPCR6

1,2 (B ∪C) ≈ 0.14585,

mSJPCR6
1,2 (C) = 0.3125.

Of course, these results are a bit less specific than with ZPCR6

and JPCR6, which is normal. As shown, SZPCR6 and SJPCR6

rules diminish also the mass committed to B (as expected)

but reinforce less strongly the masses of A and C because the

specificity of the result is degraded because one gets positive

masses committed to new uncertainties A ∪ B and B ∪ C.

For this example, ZPCR6 and JPCR6 are the most interesting

rules for combining BBA’s m1(.) and m2(.).

12equally in fact in this case.

Example 4 (Dezert et al. [3]): (Conflicting case)

This emblematic example is very interesting to analyze

because for in this case the DS rule does not respond to level of

conflict between the sources. This anomaly has been analyzed

and discussed in details in [3].

Let’s consider the FoD Θ = {A,B,C} with Shafer’s model,

and the following two BBA’s to combine

m1(A) = 0.9, m1(A ∪B) = 0.1, m2(A ∪B) = 0.1,

m2(C) = 0.7, m2(A ∪B ∪C) = 0.2.

In this example, the two sources are not vacuous (they are

truly informative), they are in conflict because m1,2(∅) = 0.7
but DS rule does not respond to the level of conflict because

one gets m1,2(.) = m1(.). In fact, the second source has no

impact in the DS fusion as if it is equivalent to the VBA.

If we apply PCR6 rule of combination the first par-

tial conflict m1(A)m2(C) = 0.72 is redistributed to A and

C proportionally to m1(A) and m2(C), and the sec-

ond conflict m1(A ∪B)m2(C) = 0.08 is redistributed to

A ∪B and to C proportionally to m1(A ∪ B) and m2(C).
So with PCR6 rule (7), we obtain mPCR6

1,2 (A) = 0.6244,

mPCR6
1,2 (A ∪B) = 0.0388 and mPCR6

1,2 (C) = 0.3369. One

sees that the PCR6 fusion result now reacts with the value

of second sources because mPCR6
1,2 (.) 	= m1(.) which makes

sense if both sources are equireliable, truly informative and in

some disagreement.

In discounting with Zhang’s degree, one gets the (unnor-

malized) discounted conjunctive BBA

mZ
1,2(A) =

1

2
(0.9)(0.1) +

1

3
(0.9)(0.2) = 0.1050,

mZ
1,2(A ∪B) =

2

2 · 2
(0.1)(0.1) +

2

2 · 3
(0.1)(0.2) ≈ 0.0117.

After the normalization by the factor KZ
1,2 =

0.1050 + 0.0117 = 0.1167, we get finally

mZCR
1,2 (A) = 0.1050/0.1167 ≈ 0.9 and mZCR

1,2 (A ∪ B) ≈
0.0117/0.1167 ≈ 0.1. Therefore as with DS rule, we get

same behavior with ZCR rule that is mZCR
1,2 (.) = m1(.) as if

the second informative source does not count in the fusion

process, which is abnormal.

If we use Jaccard’s degree, one gets

mJ
1,2(A) =

1

2
(0.9)(0.1) +

1

3
(0.9)(0.2) = 0.1050,

mJ
1,2(A ∪B) =

2

2
(0.1)(0.1) +

2

3
(0.1)(0.2) ≈ 0.0233.

After the normalization by the factor KJ
1,2 = 0.1050 +

0.0233 = 0.12833, we get finally mJCR
1,2 (A) ≈ 0.8182 and

mZCR
1,2 (A∪B) ≈ 0.1818. One sees that JCR fusion result is not

equal to the BBA m1(.), which means that m2(.) has had some

impact in the fusion process with JCR (as expected). However,

it is not clear why such JCR result will really make sense or

not. Because we have already shown in Example 1, that it

can happen than JCR does not work well, we have serious
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doubt on the interest of using JCR result in such emblematic

example.

With ZPCR6 rule of combination, we obtain

mZPCR6
1,2 (A) = 1

KZPCR6
1,2

[0.1050 + x(A)] = 0.56250,

mZPCR6
1,2 (A ∪ B) = 1

KZPCR6
1,2

[0.0117 + x(A ∪ B)] = 0.0250,

and mZPCR6
1,2 (C) = 1

KZPCR6
1,2

[x1(C) + x2(C)] = 0.4125,

where KZPCR6
1,2 is the normalization constant, and where

x(A) = m1(A)
m1(A)m2(C)
m1(A)+m2(C) = 0.354375 is the part of the

conflicting mass m1(A)m2(C) = 0.63 transferred to A;

x1(C) = m1(C) m1(A)m2(C)
m1(A)+m2(C) = 0.275625 is the part of

the conflicting mass m1(A)m2(C) = 0.63 transferred to C;

x(A∪B) = m1(A∪B) m1(A∪B)m2(C)
m1(A∪B)+m2(C) = 0.00875 is the part

of the conflicting mass m1(A ∪B)m2(C) = 0.07 transferred

to A ∪ B; and x2(C) = m1(C) m1(A∪B)m2(C)
m1(A∪B)+m2(C) = 0.06125

is the part of the conflicting mass m1(A ∪ B)m2(C) = 0.07
transferred to C.

With JPCR6 rule of combination, we obtain

mJPCR6
1,2 (A) ≈ 0.55458, mJPCR6

1,2 (A ∪ B) = 0.03873
and mJPCR6

1,2 (C) = 0.40669, which is close to ZPCR6

result. Comparatively to PCR6, we diminish the mass of

belief committed to A and to A ∪ B and we reinforce the

mass committed to C using ZPCR6 and JPCR6 rules. We

do not give results with SZPCR6 and SJPRC6 due to space

constraint and because we know that these rules do not

perform so well as shown in the previous examples.

Example 5 (Sebbak [16]): (Conflicting case with 3 sources)

Let’s consider the FoD Θ = {A,B,C} with Shafer’s model,

and the following three BBA’s to combine

m1(A) = 0.8, m1(A ∪B ∪ C) = 0.2,

m2(A) = 0.1, m2(C) = 0.9,

m3(A) = 0.4, m3(A ∪B ∪ C) = 0.6.

The conjunctive rule gives

m1,2,3(A) = m1(A)m2(A)m3(A) +m1(A)m2(A)m3(Θ)

+m1(Θ)m2(A)m3(Θ) +m1(Θ)m2(A)m3(A) = 0.10

m1,2,3(C) = m1(Θ)m2(C)m3(Θ) = 0.108

with the total conflicting mass

m1,2,3(∅) = m1(A)m2(C)m3(A) +m1(A)m2(C)m3(Θ)

+m1(Θ)m2(C)m3(A) = 0.792.

With DS rule we get mDS
12 (A) ≈ 0.4808 and mDS

12 (C) ≈
0.5192, and With PCR5 and PCR6 rules [17]

mPCR5
1,2,3 (A) = 0.3450, mPCR6

1,2,3 (A) = 0.4340,

mPCR5
1,2,3 (C) = 0.5327, mPCR6

1,2,3 (C) = 0.4437,

mPCR5
1,2,3 (Θ) = 0.1223, mPCR6

1,2,3 (Θ) = 0.1223.

Note that with PCR5 one gets 0.4247/0.7920 ≈ 53.62% of

the total conflicting mass redistributed to C, but not almost all

conflicting mass. Using PCR6, C actually gained from the total

conflicting mass only 0.3357/0.7920 ≈ 42.3864%, not even

half of it, not almost all of the conflicting mass (the majority)

as the authors wrongly claimed in [16].

With ZCR and JCR rules, one gets

mZCR
1,2,3 (A) = 0.8125, mJCR

1,2,3(A) = 0.6032,

mZCR
1,2,3 (Θ) = 0.1875, mJCR

1,2,3(Θ) = 0.3968.

With ZPCR6, JPCR6, SZPCR6 and SJPCR6 rules13 one gets

mZPCR6
1,2,3 (A) = 0.4511, mJPCR6

1,2,3 (A) = 0.4405,

mZPCR6
1,2,3 (C) = 0.4061, mJPCR6

1,2,3 (C) = 0.4210,

mZPCR6
1,2,3 (Θ) = 0.1428, mJPCR6

1,2,3 (Θ) = 0.1385.

mSZPCR6
1,2,3 (A) = 0.4102955, mSJPCR6

1,2,3 (A) = 0.412699,

mSZPCR6
1,2,3 (C) = 0.3984240, mSJPCR6

1,2,3 (C) = 0.409718,

mSZPCR6
1,2,3 (Θ) = 0.1912805, mSJPCR6

1,2,3 (Θ) = 0.177616.

One sees that C gained (0.4061−0.108)/0.7920≈ 37.64%
using ZPCR6, (0.4210 − 0.108)/0.7920 ≈ 39.52% using

JPCR6, (0.398424−0.108)/0.7920≈ 36.67% using SZPCR6,

and (0.409718− 0.108)/0.7920 ≈ 38.10% using SJPCR6.

VI. CONCLUSIONS

The modifications of the PCR6 rule of combination pre-

sented exploit judiciously Zhang’s and Jaccard’s degrees of in-

tersections of focal elements. Our analysis shows that ZPCR6

rule is in fact the most interesting modified PCR6 rule because

it behaves well in all emblematic examples contrarily to other

rules. SZPCR6 and SJPCR6 rules are more complicate to

implement and they increase the non-specificity of the result in

general which is not good for helping the decision-making. So

we do not recommend them for applications. All these rules

are not associative and do not preserve the neutrality of VBA

when some sources are in conflict.
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Abstract—In many applications involving epistemic uncertain-

ties usually modeled by belief functions, it is often necessary

to approximate general (non-Bayesian) basic belief assignments

(BBAs) to subjective probabilities (called Bayesian BBAs). This

necessity occurs if one needs to embed the fusion result in a sys-

tem based on the probabilistic framework and Bayesian inference

(e.g. tracking systems), or if one wants to use classical decision

theory to make a decision. There exists already several methods

(probabilistic transforms) to approximate any general BBA to a

Bayesian BBA. From a fusion standpoint, two approaches are

usually adopted: 1) one can approximate at first each BBA in

subjective probabilities and use Bayes fusion rule to get the final

Bayesian BBA, or 2) one can fuse all the BBAs with a fusion rule,

typically Dempster-Shafer’s, or PCR6 rules (which is very costly

in computations), and convert the combined BBA in a subjective

probability measure. The former method is the simplest method

but it generates a high loss of information included in original

BBAs, whereas the latter is intractable for high dimension
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I. INTRODUCTION

The theory of belief functions, known as Dempster-Shafer
Theory (DST) has been developed by Shafer [1] in 1976
from Dempster’s works [2]. Belief functions allow to model
epistemic uncertainty and they have been already used in many
applications since the 1990’s [3], mainly those related to expert
systems, decision-making support and information fusion. To
palliate some limitations of DST, Dezert and Smarandache
have proposed an extended mathematical framework of belief
functions with new efficient quantitative and qualitative rules
of combinations, which is called DSmT (Dezert and Smaran-
dache Theory) in the literature [4], [5] with applications listed
in [6]. One of the major drawbacks of DST and DSmT is their
high computational complexities, as soon as the fusion space
(i.e. frame of discernment - FoD) and the number of sources
to combine are large1.

1DSmT is more complex than DST, and the Proportional Conflict Redistri-
bution rule #6 (PCR6 rule) becomes computationally intractable in the worst
case as soon as the frame of discernment has at least six elements.

To reduce the computational cost of operations with belief
functions when the number of focal elements is very large,
several approaches have been proposed by different authors.
Basically, the existing approaches rely either on efficient
implementations of computations as proposed for instance in
[7], [8], or on approximation techniques of original Basic
Belief Assignment (BBA) to combine [9]–[12], or both. In
many applications involving epistemic uncertainties usually
modeled by belief functions, it is often necessary to approxi-
mate general (non-Bayesian) basic belief assignments (BBAs)
to subjective probabilities (called Bayesian BBAs). This neces-
sity occurs if one needs to embed the fusion result in a system
based on the probabilistic framework and Bayesian inference
(e.g. tracking systems), or if one wants to use classical decision
theory to make a decision. From a fusion standpoint, two
approaches are usually adopted: 1) one can approximate at
first each BBA in subjective probabilities and use Bayes fusion
rule to get the final Bayesian BBA, or 2) one can fuse all
the BBAs with a fusion rule, typically Dempster-Shafer’s, or
PCR6 rules (which is very costly in computations), and convert
the combined BBA in a subjective probability measure. The
former method is the simplest method but it generates a high
loss of information included in original BBAs, whereas the
latter direct method is intractable for high dimension problems.
This paper presents a new method to achieve this task based
on hierarchical decomposition (coarsening) of the frame of
discernment, which can be seen as an intermediary approach
between the two aforementioned methods.

This paper presents a new approach to fuse BBAs into a
Bayesian BBA in order to reduce computational burden and
keep the fusion tractable even for large dimension problems.
This method is based on a hierarchical decomposition (coars-
ening) framework which allows to keep as much as possible
information of original BBAs in preserving lower complexity.
The main contributions of this paper are:

1) the presentation of the FoD bintree decomposition on
which will be done the BBAs approximations;

2) the presentation of the fusion of approximate BBAs from
bintree representation.

This hierarchical structure allows to encompass bintree
decomposition and BBAs approximations on it to obtain the
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Combine BBAs in Probabilities, in Proc. of 20th Int. Conf. on Information Fusion (Fusion 2017), Xi’an, 
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final approximate fusioned Bayesian BBA.
This paper is organized as follows. In section II, we recall

some basics of DST and DSmT that are relevant to the new
method presented in this paper. More details with examples
can easily be found in [1], [5]. We will also briefly recall
our preliminary works about hierarchical coarsening of FoD.
Section III presents the novel hierarchical flexible (adaptive)
coarsening method which can be regarded as the extension of
our previous works. Two simple examples are given in section
IV to illustrate the detailed calculation steps. Simulation
experiments are presented in section V to show the rationality
of this new approach. Finally, Sect.VI concludes the paper
with future works perspectives.

II. MATHEMATICAL BACKGROUND

This section provides a brief reminder of basics of DST and
DSmT, and of original hierarchical coarsening method which
are necessary for the presentation and the understanding of
the more general flexible coarsening approximate method of
section III.

A. Basics of DST and DSmT

In DST framework, the frame of discernment2 ⇥ ,
{✓1, . . . , ✓n} (n � 2) is a set of exhaustive and exclusive
elements (hypotheses) which represent the possible solutions
of the problem under consideration and thus Shafer’s model
assumes ✓i \ ✓j = ; for i 6= j in {1, . . . , n}. A basic
belief assignment (BBA) m(·) is defined by the mapping:
2⇥ 7! [0, 1], verifying m(;) = 0 and

P
A22⇥ m(A) = 1. In

DSmT, one can abandon Shafer’s model (if Shafer’s model
doesn’t fit with the problem) and refute the principle of
the third excluded middle3. Instead of defining the BBAs
on the power set 2⇥ , (⇥,[) of the FoD, the BBAs
are defined on the so-called hyper-power set (or Dedekind’s
lattice) denoted D⇥ , (⇥,[,\) whose cardinalities follows
Dedekind’s numbers sequence, see [5], Vol.1 for details and
examples. A (generalized) BBA, called a mass function, m(·)
is defined by the mapping: D⇥ 7! [0, 1], verifying m(;) = 0
and

P
A2D⇥ m(A) = 1. DSmT framework encompasses DST

framework because 2⇥ ⇢ D⇥. In DSmT we can take into ac-
count also a set of integrity constraints on the FoD (if known),
by specifying all the pairs of elements which are really
disjoint. Stated otherwise, Shafer’s model is a specific DSm
model where all elements are known to be disjoint. A 2 D⇥ is
called a focal element of m(.) if m(A) > 0. A BBA is called
a Bayesian BBA if all of its focal elements are singletons
and Shafer’s model is assumed, otherwise it is called non-
Bayesian [1]. A full ignorance source is represented by the
vacuous BBA mv(⇥) = 1. The belief (or credibility) and
plausibility functions are respectively defined by Bel(X) ,P

Y 2D⇥|Y✓X m(Y ) and Pl(X) , P
Y 2D⇥|Y \X 6=; m(Y ).

BI(X) , [Bel(X), P l(X)] is called the belief interval of

2We use the symbol , to mean equals by definition.
3The third excluded middle principle assumes the existence of the comple-

ment for any elements/propositions belonging to the power set 2⇥.

X . Its length U(X) , Pl(X)�Bel(X) measures the degree
of uncertainty of X .

In 1976, Shafer did propose Dempster’s rule4 to combine
BBAs in DST framework. DS rule is defined by mDS(;) = 0
and 8A 2 2⇥ \ {;},

mDS(A) =

P
B,C22⇥|B\C=A m1(B)m2(C)

1�
P

B,C22⇥|B\C=; m1(B)m2(C)
. (1)

DS rule formula is commutative and associative and can be
easily extended to the fusion of S > 2 BBAs. Unfortunately,
DS rule has been highly disputed during the last decades
by many authors because of its counter-intuitive behavior in
high or even low conflict situations, and that is why many
rules of combination have been proposed in the literature to
combine BBAs [13]. To palliate DS rule drawbacks, the very
interesting PCR6 (Proportional Conflict redistribution rule #6)
has been proposed in DSmT and it is usually adopted5 in
recent applications of DSmT. The fusion of two BBAs m1(.)
and m2(.) by the PCR6 rule is obtained by mPCR6(;) = 0
and 8A 2 D⇥ \ {;}

mPCR6(A) = m12(A)+
X

B2D⇥\{A}|A\B=;

[
m1(A)2m2(B)

m1(A) +m2(B)
+

m2(A)2m1(B)

m2(A) +m1(B)
],

(2)
where m12(A) =

P
B,C2D⇥|B\C=A m1(B)m2(C) is the

conjunctive operator, and each element A and B are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCR6 formula for combining more than two BBAs
altogether is given in [5], Vol. 3. We adopt the generic notation
mPCR6

12 (.) = PCR6(m1(.),m2(.)) to denote the fusion of
m1(.) and m2(.) by PCR6 rule. PCR6 is not associative
and PCR6 rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing D⇥ by 2⇥ in Eq. (2).

B. Hierarchical coarsening for fusion of Bayesian BBAs

Here, we briefly recall the principle of hierarchical coarsen-
ing of FoD to reduce the computational complexity of PCR6
combination of original Bayesian BBAs. The fusion of original
non-Bayesian BBAs will be presented in the next section.

This principle was called rigid grouping in our previous
works [17]–[19]. The goal of this coarsening is to replace
the original (refined) Frame of Discernment (FoD) ⇥ by a
set of coarsened ones to make the computation of PCR6 rule
tractable. Because we consider here only Bayesian BBA to
combine, their focal elements are only singletons of the FoD
⇥ , {✓1, . . . , ✓n}, with n � 2, and we assume Shafer’s model
of the FoD ⇥.

A coarsening of the FoD ⇥ means to replace it with another
FoD less specific of smaller dimension ⌦ = {!1, . . . , !k} with
k < n from the elements of ⇥. This can be done in many

4We use DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone book [1].

5PCR6 rule coincides with PCR5 when combining only two BBAs [5].
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ways depending the problem under consideration. Generally,
the elements of ⌦ are singletons of ⇥, and disjunctions of
elements of ⇥. For example, if ⇥ = {✓1, ✓2, ✓3, ✓4}, then the
possible coarsened frames built from ⇥ could be, for instance,
⌦ = {!1 = ✓1, !2 = ✓2, !3 = ✓3 [ ✓4}, or ⌦ = {w1 =
✓1[✓2, !2 = ✓3[✓4}, etc. When dealing with Bayesian BBAs,
the projection6 m⌦(.) of the original BBA m⇥(.) is simply
obtained by taking

m⌦(!i) =
X

✓j✓!i

m⇥(✓j). (3)

The hierarchical coarsening process (or rigid grouping) is
a simple dichotomous approach of coarsening obtained as
follows:

• If n = |⇥| is an even number:
The disjunction of the n/2 first elements ✓1 to ✓n

2
of ⇥

define the element !1 of ⌦, and the last n/2 elements
✓n

2 +1 to ✓n of ⇥ define the element !2 of ⌦, that is

⌦ , {!1 = ✓1 [ . . . [ ✓n
2
, !2 = ✓n

2 +1 [ . . . [ ✓n},

and based on (3), one has

m⌦(!1) =
X

j=1,...,n2

m⇥(✓j), (4)

m⌦(!2) =
X

j=n
2 +1,...,n

m⇥(✓j). (5)

For example, if ⇥ = {✓1, ✓2, ✓3, ✓4}, and one considers
the Bayesian BBA m⇥(✓1) = 0.1, m⇥(✓2) = 0.2,
m⇥(✓3) = 0.3 and m⇥(✓4) = 0.4, then ⌦ = {!1 =
✓1 [ ✓2, !2 = ✓3 [ ✓4} and m⌦(!1) = 0.1 + 0.2 = 0.3
and m⌦(!2) = 0.3 + 0.4 = 0.7.

• If n = |⇥| is an odd number:
In this case, the element !1 of the coarsened frame ⌦ is
the disjunction of the [n/2+1]7 first elements of ⇥, and
the element !2 is the disjunction of other elements of ⇥.
That is

⌦ , {!1 = ✓1 [ . . .[ ✓[n2 +1], !2 = ✓[n2 +1]+1 [ . . .[ ✓n},

and based on (3), one has

m⌦(!1) =
X

j=1,...,[n2 +1]

m⇥(✓j), (6)

m⌦(!2) =
X

j=[n2 +1]+1,...,n

m⇥(✓j). (7)

For example, if ⇥ = {✓1, ✓2, ✓3, ✓4, ✓5}, and one consid-
ers the Bayesian BBA m⇥(✓1) = 0.1, m⇥(✓2) = 0.2,
m⇥(✓3) = 0.3, m⇥(✓4) = 0.3 and m⇥(✓5) = 0.1, then
⌦ = {!1 = ✓1 [ ✓2 [ ✓3, !2 = ✓4 [ ✓5} and m⌦(!1) =
0.1 + 0.2 + 0.3 = 0.6 and m⌦(!2) = 0.3 + 0.1 = 0.4.

6For clarity and convenience, we put explicitly as upper index the FoD for
which the belief mass refers.

7The notation [x] means the integer part of x.

Of course, the same coarsening applies to all original BBAs
m⇥

s (.), s = 1, . . . S of the S > 1 sources of evidence to work
with less specific BBAs m⌦

s (.), s = 1, . . . S. The less specific
BBAs (called coarsened BBAs by abuse of language) can then
be combined with PCR6 rule of combination according to
formula (2). This dichotomous coarsening method is repeated
iteratively l times as schematically represented by a bintree8.
The last step of this hierarchical process is to calculate the
combined (Bayesian) BBA of all focal elements according
to the connection weights of the bintree structure, where the
number of iterations (or layers) l of the tree depends on
the cardinality |⇥| of the original FoD ⇥. Specifically, the
assignment of each focal element is updated according to the
connection weights of link paths from root to terminal nodes.
This principle is illustrated in details in the following example.

Example 1: Let’s consider ⇥ = {✓1, ✓2, ✓3, ✓4, ✓5}, and the
following three Bayesian BBAs

Focal elem. m⇥
1 (.) m⇥

2 (.) m⇥
3 (.)

✓1 0.1 0.4 0
✓2 0.2 0 0.1
✓3 0.3 0.1 0.5
✓4 0.3 0.1 0.4
✓5 0.1 0.4 0

The hierarchical coarsening and fusion of BBAs is obtained
from the following steps:

Step 1: We define the bintree structure based on iterative
half split of FoD as shown in Fig. 1.

1 2 3 4 5

1 2 3 4 5

1 2

1 2

3 4 5

1 2

11 12 21 22

111 112

1 2

3 4 5 6

7 8

Figure 1: Fusion of Bayesian BBAs using bintree coarsening
for Example 1.

The connecting weights are denoted as �1, . . . , �8. The
elements of the frames ⌦l are defined as follows:

• At layer l = 1: ⌦1 = {!1 , ✓1 [ ✓2 [ ✓3, !2 , ✓4 [ ✓5}
• At layer l = 2:

⌦2 = {!11 , ✓1 [ ✓2, !12 , ✓3, !21 , ✓4, !22 = ✓5}
8Here we consider bintree only for simplicity, which means that the

coarsened frame ⌦ consists of two elements only. Of course a similar method
can be used with tri-tree, quad-tree, etc.
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• At layer l = 3: ⌦3 = {!111 , ✓1, !112 , ✓2}
Step 2: The BBAs of elements of the (sub-)frames ⌦l are

obtained as follows:
• At layer l = 1, we use (6)-(7) because |⇥| = 5 is an odd

number. Therefore, we get
Focal elem. m⌦1

1 (.) m⌦1
2 (.) m⌦1

3 (.)
!1 , ✓1 [ ✓2 [ ✓3 0.6 0.5 0.6

!2 , ✓4 [ ✓5 0.4 0.5 0.4
• At layer l = 2: We work with the two subframes ⌦21 ,

{!11, !12} and ⌦22 , {!21, !22} of ⌦2 with the BBAs:
Focal elem. m⌦21

1 (.) m⌦21
2 (.) m⌦21

3 (.)
!11 , ✓1 [ ✓2

1
2

4
5

1
6

!12 , ✓3
1
2

1
5

5
6

Focal elem. m⌦22
1 (.) m⌦22

2 (.) m⌦22
3 (.)

!21 , ✓4
3
4

1
5 1

!22 , ✓5
1
4

4
5 0

These mass values are obtained by the proportional
redistribution of the mass of each focal element with
respect to the mass of its parent focal element in the bin
tree. For example, the value m⌦21

2 (!11) = 4/5 is derived
by taking

m⌦21
2 (!11) =

m⇥
2 (✓1) +m⇥

2 (✓2)

m⇥
2 (✓1) +m⇥

2 (✓2) +m⇥
2 (✓3)

=
0.4

0.5
=

4

5
.

Other mass values are computed similarly using this
proportional redistribution method.

• At layer l = 3: We use again the proportional redistribu-
tion method which gives us

Focal elem. m⌦3
1 (.) m⌦3

2 (.) m⌦3
3 (.)

!111 , ✓1
1
3 1 0

!112 , ✓2
2
3 0 1

Step 3: The connection weights �i are computed
from the assignments of coarsening elements. In each
layer l, we fuse sequentially9 the three BBAs us-
ing PCR6 formula (2). More precisely, we compute at
first mPCR6,⌦l

12 (.) = PCR6(m⌦l
1 (.),m⌦l

2 (.)) and then
mPCR6,⌦l

(12)3 (.) = PCR6(mPCR6,⌦l
12 (.),m⌦l

3 (.)). Hence, we
obtain the following connecting weights in the bintree:

• At layer l = 1:

�1 = mPCR6,⌦1

(12)3 (!1) = 0.6297,

�2 = mPCR6,⌦1

(12)3 (!2) = 0.3703.

• At layer l = 2:

�3 = mPCR6,⌦21

(12)3 (!11) = 0.4137,

�4 = mPCR6,⌦21

(12)3 (!12) = 0.5863,

�5 = mPCR6,⌦22

(12)3 (!21) = 0.8121,

�6 = mPCR6,⌦22

(12)3 (!22) = 0.1879.

9Because PCR6 fusion is not associative, we should apply the general
PCR6 formula to get best results. Here we use sequential fusion to reduce the
computational complexity even if the fusion result is approximate.

• At layer l = 3:

�7 = mPCR6,⌦3

(12)3 (!111) = 0.3103,

�8 = mPCR6,⌦3

(12)3 (!112) = 0.6897.

Step 4: The final assignment of belief mass to the elements
of original FoD ⇥ are calculated using the product of the
connection weights of link paths from root (top) node to
terminal nodes (leaves). We finally get the following resulting
combined and normalized Bayesian BBA

m⇥(✓1) = �1 · �3 · �7 = 0.6297 · 0.4137 · 0.3103 = 0.0808,

m⇥(✓2) = �1 · �3 · �8 = 0.6297 · 0.4137 · 0.6897 = 0.1797,

m⇥(✓3) = �1 · �4 = 0.6297 · 0.5863 = 0.3692,

m⇥(✓4) = �2 · �5 = 0.3703 · 0.8121 = 0.3007,

m⇥(✓5) = �2 · �6 = 0.3703 · 0.1879 = 0.0696.

III. NEW HIERARCHICAL FLEXIBLE COARSENING METHOD

Contrary to the (rigid) hierarchical coarsening method pre-
sented in section II, in our new flexible coarsening approach
the elements ✓i, i = 1, . . . , n in FoD ⇥ will not be half
split to build coarsening focal elements !j , j = 1, . . . , k of
the FoD ⌦l. In the hierarchical flexible (adaptive) coarsening
method, the elements ✓i chosen to belong to the same group
are determined using the consensus information drawn from
the BBAs provided by the sources. Specifically, the degrees
of disagreement between the provided sources on decisions
(✓1, ✓2, · · · , ✓n) are first calculated using the belief-interval
based distance dBI [16], [20] to obtain disagreement vector.
Then, the k-means algorithm is applied for clustering elements
✓i, i = 1, . . . , n based on the corresponding value in consensus
vector. It is worth noting that values of disagreement reflect the
preferences of independent sources of evidence for the same
focal element. If they are small, it means that all sources have
a consistent opinion and these elements should be clustered in
the same group. Conversely, if disagreement values are large,
it means that the sources have strong disagreement on these
focal elements, and these focal elements need to be clustered
in another group.

A. Calculating the disagreement vector
Let us consider several BBAs m⇥

s (·), (s = 1, . . . , S) defined
on same FoD ⇥ of cardinality |⇥| = n. The specific BBAs
m✓i(.), i = 1, . . . , n entirely focused on ✓i are defined by
m✓i(✓i) = 1, and for X 6= ✓i m✓i(X) = 0. The disagreement
of opinions of two sources about ✓i is defined as the L1-
distance between the dBI distances of the BBAs m⇥

s (.), s =
1, 2 to m✓i(.), which is expressed by

D12(✓i) , |dBI(m
⇥
1 (·),m✓i(·)))�dBI(m

⇥
2 (·),m✓i(·))|. (8)

The disagreement of opinions of S � 3 sources about ✓i, is
defined as

D1�S(✓i) ,
1

2

SX

i=1

SX

j=1

|dBI(m
⇥
i (·),m✓i(.))

� dBI(m
⇥
j (·),m✓i(.))|, (9)
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where dBI distance is defined by10 [20]

dEBI(m1,m2) ,

vuutnc ·
2n�1X

i=1

[dI(BI1(✓i), BI2(✓i))]2. (10)

Here, nc = 1/2n�1 is the normalization constant and
dI([a, b], [c, d]) is the Wasserstein’s distance defined by
dI([a, b], [c, d]) =

q
[a+b

2 � c+d
2 ]2 + 1

3 [
b�a
2 � d�c

2 ]2. And
BI(✓i) = [Bel(✓i), P l(✓i)].

The disagreement vector D1�S is defined by

D1�S , [D1�S(✓1), . . . , D1�S(✓n)]. (11)

B. Clustering focal elements

Once D1�S is derived, a clustering algorithm is used to
coarsen focal elements according to their corresponding values
in D1�S . In this paper, we have used the k-means algorithm11

to cluster focal elements. For each source s = 1, . . . , S, the
mass assignments of focal elements in two12 different clusters
are added up according to formulas (12)–(13).

m⌦
s (!1) =

X

✓i2!1

m⇥(✓i), (12)

m⌦
s (!2) =

X

✓j2!2

m⇥(✓j). (13)

C. Combination of the BBAs

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure based on this flexible coarsening
decomposition is obtained (see example in the next section)
and the elements in FoD ⇥ are grouped more reasonably
in each layer of the decomposition. Once the adaptive bin-
tree structure is derived, other steps (multiplications of link
weights) can be implemented which are identical to hierarchi-
cal (rigid) coarsening method presented in section II to get the
final combined Bayesian BBA.

D. Summary of the method

The fusion method of BBAs to get a combined Bayesian
BBA based on hierarchical flexible decomposition of the FoD
consists of the four steps below illustrated in Fig. 2.

• Step 1 (pre-processing): At first, all input BBAs to
combine are approximated to Bayesian BBAs with DSmP
transform.

• Step 2 (disagreement vector): D1�S(·) is calculated us-
ing dBI distances to estimate the degree of disagreement
of BBAs m⇥

1 , . . . , m⇥
S on potential decisions ✓1,. . . , ✓n.

• Step 3 (adaptive bintree): The adaptative bintree de-
composition of the FoD ⇥ is obtained using k-Means
algorithm to get elements of subframes ⌦l.

• Step 4 (assignments and connection weights): For
each source m⇥

s (·) to combine, the mass assignment of

10For simplicity, we assume Shafer’s model so that |2⇥| = 2n, otherwise
the number of elements in the summation of (10) should be |D⇥| � 1 with
another normalization constant nc.

11which is implemented in Matlab™
12because we use here the bisection decomposition.

each element of subframe ⌦l is computed by (12)–(13).
The weight of links between two layers of the bintree
decomposition are obtained with PCR6 rule13.

• Step 5 (fusion): The final result (combined Bayesian
BBA) is computed by the product of weights of link paths
from root to terminal nodes.

PCR6 fusion

All layers 
explored?

is Bayesian?

DSmP
transform

Final Combined 
Bayesian BBA

yes

no no

Flexible grouping using 
K-Means

yes

no

Input BBAs 
1 , , Sm m

sm

2

Product of path 
link weights

yes

Figure 2: Hierarchical flexible decomposition of FoD for
fusion.

IV. TWO SIMPLE EXAMPLES

A. Example 1 (fusion of Bayesian BBAs)

Let us revisit example 1 presented in section II-B. It can be
verified in applying formula (9) that the disagreement vector
D1�3 for this example is equal to

D1�3 = [0.4085, 0.2156, 0.3753, 0.2507, 0.4086]

The derivation of D1�3(✓1) is given below for convenience.

D1�3(✓1) = |dBI(m
⇥
1 (·),m✓1(✓1))� dBI(m

⇥
2 (·),m✓1(✓1))|

+ |dBI(m
⇥
2 (·),m✓1(✓1))� dBI(m

⇥
3 (·),m✓1(✓1))|

+ |dBI(m
⇥
1 (·),m✓1(✓1))� dBI(m

⇥
3 (·),m✓1(✓1))|

= 0.4085.

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure is obtained and shown in Fig. 3.
Compared to Fig. 1, the elements in FoD ⇥ are grouped more
reasonably. In vector D1�3, ✓1 and ✓5 lie in similar degree of
disagreement so that they are put in the same group. Similarly
for ✓2 and ✓4. However, element ✓3 seems weird, which is
put alone at the beginning of flexible coarsening. Once this
adaptive bintree decomposition is obtained, other steps can
be implemented which are identical to hierarchical coarsening
method of section II to get the final combined BBA.

The flexible coarsening and fusion of BBAs is obtained from
the following steps:

13general formula preferred, or applied sequentially to reduce complexity.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

31



1 2 3 4 5

3
1 2 4 5

1 2 45

1 2

21 22

1 2

3 4

5 6 7 8

1 5 2 4

211 212 221 222

Figure 3: Example 1: Flexible bintree decomposition of FoD.

Step 1: According to Fig.3, the elements of the frames ⌦l

are defined as follows:
• At layer l = 1: ⌦1 = {!1 , ✓3, !2 , ✓1 [ ✓2 [ ✓4 [ ✓5}
• At layer l = 2: ⌦2 = {!21 , ✓1 [ ✓5, !22 , ✓2 [ ✓4}
• At layer l = 3: ⌦3 = {!211 , ✓1, !212 , ✓5, !221 ,

✓2, !222 , ✓4}
Step 2: The BBAs of elements of the (sub-)frames ⌦l are

obtained as follows:
• At layer l = 1, we use (12)-(13) and we get

Focal elem. m⌦1
1 (.) m⌦1

2 (.) m⌦1
3 (.)

!1 , ✓3 0.3 0.1 0.5
!2 , ✓1 [ ✓2 [ ✓4 [ ✓5 0.7 0.9 0.5

• At layer l = 2: We use again the proportional redistribu-
tion method which gives us:

Focal elem. m⌦2
1 (.) m⌦2

2 (.) m⌦2
3 (.)

!21 , ✓1 [ ✓5
3
7

4
9

1
5

!22 , ✓2 [ ✓4
4
7

5
9

4
5

• At layer l = 3: We work with the two subframes ⌦31 ,
{!211, !212} and ⌦32 , {!221, !222} of ⌦3 with the
BBAs

Focal elem. m⌦31
1 (.) m⌦31

2 (.) m⌦31
3 (.)

!211 , ✓1
1
2

1
2

1
2

!212 , ✓5
1
2

1
2

1
2

Focal elem. m⌦32
1 (.) m⌦32

2 (.) m⌦32
3 (.)

!221 , ✓2
2
5 0 1

5

!222 , ✓4
3
5 1 4

5
Step 3: The connection weights �i are computed from the

assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

• At layer l = 1:

�1 = 0.2226; �2 = 0.7774.

• At layer l = 2:

�3 = 0.2200; �4 = 0.7800.

• At layer l = 3:

�5 = 0.5; �6 = 0.5;�7 = 0.0669; �8 = 0.9331.

Step 4: We finally get the following resulting combined and
normalized Bayesian BBA

m⇥(·) = {0.0855, 0.0406, 0.2226, 0.5658, 0.0855}.

B. Example 2 (with non-Bayesian BBAs)

Example 1bis: Let’s consider ⇥ = {✓1, ✓2, ✓3, ✓4, ✓5}, and the
following BBAs given by

Focal elem. m⇥
1 (.) m⇥

2 (.) m⇥
3 (.)

✓1 0.1 0.4 0
✓2 0.2 0 0
✓3 0.3 0.05 0
✓4 0.03 0.05 0
✓5 0.1 0.04 0

✓1 [ ✓2 0.1 0.04 0
✓2 [ ✓3 [ ✓5 0 0.02 0.1

✓3 [ ✓4 0.02 0.1 0.2
✓1 [ ✓5 0.1 0.3 0.2

⇥ 0.05 0 0.5

Step 1 (Pre-Processing): All these three BBAs are trans-
formed into Bayesian BBAs with DSmP transform and the
generated BBAs are illustrated as

Focal elem. m⇥
1 (.) m⇥

2 (.) m⇥
3 (.)

✓1 0.1908 0.7127 0.2000
✓2 0.2804 0 0.1334
✓3 0.3387 0.1111 0.2333
✓4 0.0339 0.1 0.2000
✓5 0.1562 0.0761 0.2333

It can be verified in applying formula (9) that the disagree-
ment vector D1�3 for this example is equal to

D1�3 = [0.5385, 0.3632, 0.3453, 0.2305, 0.2827].

Step 2: According to the clustering algorithm, the elements
of the frames ⌦l are defined as follows:

• At layer l = 1: ⌦1 = {!1 , ✓1, !2 , ✓2 [ ✓3 [ ✓4 [ ✓5}
• At layer l = 2: ⌦2 = {!21 , ✓2 [ ✓3, !22 , ✓4 [ ✓5}
• At layer l = 3: ⌦3 = {!211 , ✓2, !212 , ✓3, !221 ,

✓4, !222 , ✓5}
Step 3: The BBAs of elements of the (sub-)frames ⌦l are

obtained as follows:
• At layer l = 1, we use (12)-(13) and we get

Focal elem. m⌦1
1 (.) m⌦1

2 (.) m⌦1
3 (.)

!1 , ✓1 0.1908 0.7127 0.2000
!2 , ✓2 [ ✓3 [ ✓4 [ ✓5 0.8092 0.2873 0.8000

• At layer l = 2: We use again the proportional redistribu-
tion method which gives us:

Focal elem. m⌦2
1 (.) m⌦2

2 (.) m⌦2
3 (.)

!21 , ✓2 [ ✓3 0.7651 0.3867 0.4584
!22 , ✓4 [ ✓5 0.2349 0.6133 0.5416
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• At layer l = 3: We work with the two subframes ⌦31 ,
{!211, !212} and ⌦32 , {!221, !222} of ⌦3 with the
BBAs:

Focal elem. m⌦31
1 (.) m⌦31

2 (.) m⌦31
3 (.)

!211 , ✓2 0.4529 0 0.3638
!212 , ✓3 0.5471 1 0.6362

Focal elem. m⌦32
1 (.) m⌦32

2 (.) m⌦32
3 (.)

!221 , ✓4 0.1783 0.5679 0.4616
!222 , ✓5 0.8217 0.4321 0.5384

Step 4: The connection weights �i are computed from the
assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

• At layer l = 1:

�1 = 0.2345; �2 = 0.7655.

• At layer l = 2:

�3 = 0.5533; �4 = 0.4467.

• At layer l = 3:

�5 = 0.1606; �6 = 0.8394;

�7 = 0.3349; �8 = 0.6651.

Step 5: We finally get the following resulting combined and
normalized Bayesian BBA

m⇥(·) = {0.2345, 0.0681, 0.3555, 0.1145, 0.2274}.

V. SIMULATION RESULTS AND PERFORMANCES

A. Flexible Grouping of Singletons

1) Similarity: 14 Assuming that ⇥ = {✓1, ✓2, ✓3, ✓4, ✓5, ✓6,
✓7, ✓8, ✓9, ✓10, ✓11, ✓12, ✓13, ✓14, ✓15} and first, we randomly
generate 2 BBAs, denoted as m⇥

1 (·) and m⇥
2 (·), which can

be seen in Table I.

Table I: BBAs for Two Sources m⇥
1 (·) and m⇥

2 (·)

✓1 ✓2 ✓3 ✓4 ✓5

m

⇥
1 (·) 0.1331 0.0766 0.0175 0.0448 0.0229

m

⇥
2 (·) 0.1020 0.0497 0.1094 0.0612 0.0612

✓6 ✓7 ✓8 ✓9 ✓10

m

⇥
1 (·) 0.1142 0.0023 0.2254 0.1583 3.4959e-04

m

⇥
2 (·) 0.0069 0.0070 0.0128 0.0833 0.0338

✓11 ✓12 ✓13 ✓14 ✓15

m

⇥
1 (·) 0.0075 0.0514 0.1121 0.0314 0.0021

m

⇥
2 (·) 0.1180 0.1202 0.1351 0.0686 0.0309

In order to fully verify the similarity between hierarchical
flexible coarsening method and PCR6 in DSmT, a new strict

14Similarity represents the approximate degree between fusion results using
flexible coarsening and PCR6.
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Figure 4: Structure of Hierarchical Flexible Coarsening.

distance metric between two BBAs, denoted dEBI , was recently
proposed in [20], [16] and it will be used in this paper.

In this paper, we regard dEBI as one criteria for evaluating
the degree of similarity between the fusion results obtained
from flexible coarsening and PCR6.

Based on (8) and (10), the disagreement vector D(·) is
obtained:

D(·) = (0.0032, 0.0020, 0.0290, 0.0092, 0.0147, 0.0228,

0.0059, 0.0537, 0.0154, 0.0131, 0.0338, 0.0235,

0.0118, 0.0145, 0.0120).

Thus, bintree structure of hierarchical flexible coarsening is
illustrated in Fig. 4 and the similarity between fusion results of
hierarchical flexible coarsening and PCR6 is 0.9783. And the
similarity between hierarchical coarsening method and PCR6
is 0.9120. In particular, terminal nodes (the red small box
in Fig. 4) of flexible grouping are not in accordance with the
original order ✓1, ✓2, · · · , ✓15. This is quite different compared
to original hierarchical coarsening method.

From the point of view of statistics, 100 BBAs are randomly
generated to be fused with three methods: hierarchical flexible
coarsening, hierarchical coarsening and also PCR6. Compar-
isons are made in Fig. 5, which show the superiority of our
new approach proposed in this paper (Average value of new
method is 97% and the old method is 93.5%).

B. Flexible Grouping of Conflicting Focal Elements

Assuming that there are five sources of evidence
m⇥

1 (·),m⇥
2 (·),m⇥

3 (·),m⇥
4 (·),m⇥

5 (·), and the restricted hype-
power set D⇥ = {✓1, ✓2, ✓3, ✓4, ✓5, ✓6, ✓7, ✓8, ✓9, ✓10, ✓1 \
✓2, ✓5 \ ✓6 \ ✓7, ✓1 \ ✓5 \ ✓9 \ ✓10}. And then we randomly
generate 1000 BBAs for each source to calculate the similarity
using (10). From Fig. 6, we can find that hierarchical flexible
coarsening method can also maintain high degree of similarity
which performs better than hierarchical coarsening.
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C. Flexible Grouping of Uncertain and Hybrid Focal Elements

We can also deal with uncertain and hybrid focal el-
ements. Assuming that there are also five sources of
evidence m⇥

1 (·),m⇥
2 (·),m⇥

3 (·),m⇥
4 (·),m⇥

5 (·) and D⇥
1 =

{✓1, ✓2, ✓3, ✓4, ✓5, ✓6, ✓7, ✓8, ✓9, ✓10, ✓1 [ ✓2, ✓5 [ ✓6 [ ✓7, ✓1 [
✓5[✓9[✓10}; D⇥

2 = {✓1, ✓2, ✓3, ✓4, ✓5, ✓6, ✓7, ✓8, ✓9, ✓10, ✓2\
✓4 [ ✓6, ✓1 [ ✓3 \ ✓5 [ ✓7 \ ✓9}15. And then we respectively
and randomly generate 1000 BBAs for these two cases D⇥

1

and D⇥
2 . Finally, we calculate the average similarity degree of

HFC and HC with PCR6 in Table II, which illustrates HFC
performs better than old method. However, there exist the extra
time cost of HFC compared to HC due to the clustering steps
in coarsening process.

Table II: Similarity Comparisons

Hierarchical Flexible Coarsening Hierarchical Coarsening

D

⇥
1 98% 91%

D

⇥
2 97% 93%

VI. CONCLUSION AND PERSPECTIVES

A novel hierarchical flexible approximate method in DSmT
is proposed here. Compared to original hierarchical coarsen-

15In this case, D⇥
1 represents uncertain focal elements and D

⇥
2 represents

hybrid focal elements.

ing, flexible strategy guarantees higher similarity with PCR6
rules in fusion process. Besides, whether focal elements in
hyper power set are singletons, conflicting focal elements,
uncertain or even hybrid focal elements, the new method
works well. In the future work, we will focus on the general
framework of hierarchical coarsening, which could generate
final non-Bayesian BBAs in order to avoid loss of informa-
tion. Furthermore, other advantages or disadvantages of our
proposed methods such as computational efficiency and time
consumption need to be further investigated.
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Abstract—The dynamical systems in various science and en-
gineering problems are often governed by nonlinear equations
(differential equations). Due to insufficiency and incompleteness
of system information, the parameters in such equations may
have uncertainty. Interval analysis serves as an efficient tool for
handling uncertainties in terms of closed intervals. One of the
major problem with interval analysis is handling “dependency
problems” for computation of tightest range of solution enclosure
or exact enclosure. Such dependency problems are often observed
while dealing with complex nonlinear equations. In this regard,
initially two test problems comprising of interval nonlinear
equations are considered. The Set Inversion via Interval Analysis
(SIVIA) along with Monte-Carlo approach is used to compute the
exact enclosure of the test problems. Further, the efficiency of the
proposed approach has also been verified for solving nonlinear
differential equations (Van der Pol oscillator) subject to interval
initial conditions.

Keywords: uncertain nonlinear equations, nonlinear oscillator,
dependency problem, SIVIA Monte-Carlo, contractor.

I. INTRODUCTION

Various vibration problems in science and engineering dis-
ciplines viz. structural mechanics, control theory, seismology,
physics, biology etc. may be expressed in terms of nonlinear
equations, system of nonlinear equations and nonlinear differ-
ential equations. Generally, the parameters in such equations
deal with precise variables. But, the insufficiency and incom-
pleteness of the system information often led to parameters or
variables with imprecision or uncertainty. For instance, let us
consider a nonlinear damped spring-mass system as given in
Fig. 1 governed by the equation,

mẍ+ cẋ+ αẋ2 + kx+ βx3 = f(t), (1)

where, m, c and k are respectively mass, damping and stiffness
of the nonlinear system. Here, the external force applied on
the system is f(t) with damping force fd = cẋ + αẋ2 and
spring force fs = kx+ βx3.

Figure 1. Damped spring-mass system.

The uncertainty of the material properties in Eq. (1) led to
uncertain nonlinear differential equation. Such uncertainties
may be modeled either using probabilistic approach, interval
computation or fuzzy set theory. In case of non-availability of
sufficient experimental data, probabilistic methods may not be
able to deliver reliable results. Moreover, in fuzzy set theory a
fuzzy number is expressed in terms of closed intervals through
α-cut approach. As such, interval analysis have emerged as a
powerful tool for various practical problems in handling the
uncertainties.

In early 1960s the pioneer concept related to interval com-
putations, functions, matrices, integral and differential equa-
tions has been started by R. E. Moore [12]–[14]. System of
equations, algebraic eigenvalue problems, second order initial
and boundary value problems has been discussed by Alefeld
and Herzberger [3]. Guaranteed interval computations with
respect to set approximations, parameter and state estimation
with applications in robust control and robotics are addressed
by Jaulin et al. [10]. While dealing with interval computations,
one of the major obstacle is to handle the ‘dependency prob-
lems’ effectively such that the tightest enclosure of solution
bound may be obtained. Such dependency problems often
occur in dealing with systems governed by complex nonlinear
equations which often lead to over-estimation of solution
bound. The dependency problem due to overestimation (wrap-
ping effect) has been studied by Krämer [11] with respect
to generalized interval arithmetic proposed by Hansen [9].

Originally published as: N.R. Mahato, L. Jaulin, S. Chakraverty, J. Dezert, Validated Enclosure of 
Uncertain Nonlinear Equations using SIVIA Monte-Carlo, in Proc. of 8th National Conference on Wave 
Mechanics and Vibrations (WMVC 2018), National Institute of Technology Rourkela (NITR), Odisha, 
India, Nov. 26-28, 2018, and reprinted with permission.
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Other approach for reduction of overestimation while handling
dependency problem may be performed using contractors [10],
affine arithmetic [15] and/or parametric forms. As such, the
present work proceeds with the introduction section. The
preliminaries of classical arithmetic of Interval Analysis (IA)
along with its application for two complex nonlinear equations
comprising of imprecise variables are considered in Section
II. The Set Inversion via Interval Analysis (SIVIA) along
with Monte-Carlo approach is then used to compute the exact
enclosure of the two test problems in Section III. Further,
the proposed approach has also been verified for computing
validated enclosure of nonlinear differential equations (Van der
Pol oscillator) subject to interval initial conditions in Section
IV.

II. CLASSICAL INTERVAL COMPUTATIONS

Interval analysis deals with interval computations on a set
of closed intervals IR of real line R, in order to obtain the
tightest bound or enclosure for uncertain systems. A closed
interval [x] ⊂ IR is denoted by [x] = [x, x] such that

[x] = [x, x] = {t | x ≤ t ≤ x, where x, x ∈ R}.

Here, x = inf[x] is the inifimum or lower bound of [x] and
x = sup[x] is the supremum or upper bound of [x]. The width
and center of [x] may be referred as [x]w = x− x and [x]c =
x+x
2 respectively.
Basic operations using classical interval arithmetic given in

Moore et al. [14] are illustrated as follows:
• Addition:

[x] + [y] = [x+ y, x+ y],

• Subtraction:

[x]− [y] = [x− y, x− y],

• Multiplication:

[x] · [y] = [min{S· ([x], [y])},max{S· ([x], [y])}] ,

where S· ([x], [y]) = {xy, xy, xy, xy}.
• Division:

[x]/[y] =

{
[x, x] ·

[
1
y ,

1
y

]
, 0 /∈ [y, y],

(−∞,∞) , 0 ∈ [y, y]

• Power:
– If n > 0 is an odd number, then

[x]
n
= [xn, xn] ;

– If n > 0 is an even number, then

[x]n =

 [xn, xn] , [x] > 0,
[xn, xn] , [x] < 0,

[0,max{xn, xn}], 0 ∈ [x].

Then, we have illustrated two test examples for the
implementation of basic interval arithmetic in Examples 1
and 2.

Example 1: Compute the bound [z1] satisfying constraint

z1 = x1y1 + x1y3 + x3y1. (2)

such that x1 + x2 + x3 = 1 and y1 + y2 + y3 = 1.
Here, x1 ∈ [x1] = [0.2, 0.3], x2 ∈ [x2] = [0.1, 0.2],
y1 ∈ [y1] = [0.4, 0.6] and y2 ∈ [y2] = [0.2, 0.3].

Using classical IA, the bounds [x3] and [y3] are
initially estimated as [x3] ∼ 1− [x1]− [x2] = [0.5, 0.7] and
[y3] ∼ 1− [y1]− [y2] = [0.1, 0.4] respectively with respect to
the constraints x1 + x2 + x3 = 1 and y1 + y2 + y3 = 1. Then,
the bound [z1] is obtained as

[z1]
IA ∼ [x1] · [y1]+ [x1] · [y3]+ [x3] · [y1] = [0.30, 0.72]. (3)

Further, we have considered a more complicated nonlinear
constraint in Example 2, related to problems of multi-criteria
decision-making under imprecise scores given in Dezert et al.
[7].

Example 2: [7] Compute the bound [z2] satisfying con-
straint given by the imprecise proportional conflict redistribu-
tion (PCR) fusion rule

z2 = z1 +
x21y2
x1 + y2

+
y21x2
y1 + x2

(4)

such that x1 ∈ [0.2, 0.3], x2 ∈ [0.1, 0.2], y1 ∈ [0.4, 0.6] and
y2 ∈ [0.2, 0.3].

Here, the bound of [z2] is obtained as

[z2]
IA ∼ [z1]

IA+
[x1]

2
[y2]

[x1] + [y2]
+

[y1]
2
[x2]

[y1] + [x2]
= [0.3333, 0.9315].

(5)
The enclosures obtained in Eqs. (3) and (5) have been com-
pared with enclosures obtained using Monte-Carlo simulation
in Table I.

Table I
INTERVAL BOUNDS OF z1 AND z2 .

i Interval bounds
[zi]

IA [zi]
MC

1 [0.30, 0.72] [0.3850, 0.5935]
2 [0.3333, 0.9315] [0.4617, 0.6825]

Here, the Monte-Carlo simulation approach using uniformly
distributed 100000 independent random sample values of
variables x1, x2, y1 and y2 have been considered, where x1 ∼
U([x1]), x2 ∼ U([x2]), y1 ∼ U([y1]) and y2 ∼ U([y2]).
From Table I, it is worth mentioning that the bounds for
i = 1, 2 satisfy

[zi]
MC ⊂ [zi]

IA.

In case of more sample values, the Monte-Carlo simu-
lation may yield better interval enclosure with respect to
the constraints (2) and (4), but such approach is inefficient
with respect to computational time. So, we may consider the
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problem in handling interval computations as to interpret the
tightest or the exact enclosure [zi] of zi that satisfies

[zi]
MC ⊂ [zi] ⊂ [zi]

IA, (6)

such that {
inf [zi]

IA ≤ inf [zi] ≤ inf [zi]
MC ,

sup [zi]
MC ≤ sup [zi] ≤ sup [zi]

IA.
(7)

or {
zIAi ≤ zi ≤ zMC

i ,

zMC
i ≤ zi ≤ zIAi .

(8)

Although in the above computations, interval arithmetic
looks simple for basic operations with intervals and seems
appealing. But, the “dependency problem” is a major obstacle
when complicated expressions have to be computed in order
to find tightest enclosure. In this regard, the dependency effect
has been discussed in detail in next section.

A. Dependency Problem in IA
Variable or parameter dependency problem in IA is gen-

erally exhibited when we have more than one occurrence of
imprecise parameter in the governing constraint. For instance,
in case of the nonlinear constraint

z = x2 + y2 for x ∈ [0.1, 0.5] and y ∈ [−0.6, 0.1],
the occurrence of each imprecise variable x and y is once.
The computation of enclosure with respect to constraint z =
x2 + y2 using classical IA results to [z]IA = [0.01, 0.61]
which is found equivalent to the Monte-Carlo simulation of
x ∼ U ([0.1, 0.5]), y ∼ U ([−0.6, 0.1]) for 100000 sample
values yield [z]MC = [0.01, 0.61]. But, the complexity occurs
while dealing with complex nonlinear constraints as given in
Examples 1 and 2, where the dependency effect is exhibited
due to multiple occurrence on imprecise variables.

The dependency effect may be reduced by replacing the
constraint given in Eq. (2) with an equivalent simpler con-
straint having less (or none) redundant variables. For instance,
the equivalent constraint

z1 = (1− x2)y2 + x3y1 (9)

results to a better enclosure approximation [z1]
IA =

[0.34, 0.66]. Here, the interval bound [0.34, 0.66] is contained
in the bound [0.30, 0.72] obtained using the equivalent con-
straint given in Eq. (2). But, on the other-hand an equivalent
constraint

z1 = (1− y2)x1 + (1− x2)y1 − x1y1 (10)

results to an overestimated bound [z1]
IA = [0.28, 0.70].

Due to such dependency, the interval bounds often yield
overestimation of the tightest enclosure. Similar, dependency
effect is exhibited while computing [z2]

IA for constraints

z2 = z1 +
(

1
x1y2

+ 1
x2
1

)−1

+
y2
1x2

y1+x2
and z2 = z1 +

x2
1y2

x1+y2
+(

1
y1x2

+ 1
y2
1

)−1

with respect to (4). As such, identification of
constraint yielding tightest enclosure is cumbersome. In this
regard, the problem formulation for reduction of dependency
effect has been carried out in the next section.

1) Problem Formulation: The main aim in the present work
is to compute tightest enclosure [zi, zi] or exact enclosure such
that [zi]MC ∼ [zi]

IA or{
zIAi = zi = zMC

i ,

zMC
i = zi = zIAi ,

(11)

associated with some nonlinear constraint zi =
f(x1, x2, y1, y2), where xi ∈ [xi] and yi ∈ [yi] for
i = 1, 2. In this regard, SIVIA Monte-Carlo approach based
on set inversion via interval computations and Monte-Carlo
simulation have been proposed to estimate exact bounds in
next section.

III. SIVIA MONTE-CARLO APPROACH

Initially, the general procedure of SIVIA has been incorpo-
rated in Section III-A followed by contractors in Section III-B.
Finally, the combination of SIVIA with Monte-Carlo approach
(i.e SIVIA-MC) has been performed in Section III-C.

A. SIVIA

Set inversion of a typical set X ⊂ Rm with respect to
function f : Rm → Rn is expressed as

X = f−1(Y ) = {x ∈ Rm | f(x) ∈ Y },

where, Y ⊂ Rn. In case of SIVIA [10], an initial search
set [x0] is assumed containing the required set X . Then,
using sub-pavings as given in Fig. 2, the desired enclosure of
solution set X is obtained based on the inclusion properties:

1) Case I: [f ]([x]) ⊂ Y =⇒ [x] ⊂ X , then [x] is a
solution,

2) Case II: [f ]([x]) ∩ Y = φ =⇒ [x] ∩X = φ, then [x]
is not a solution,

3) Case III: [f ]([x]) ∩ Y 6= φ and [f ]([x]) 6⊂ Y then, [x]
is an undetermined solution.

Figure 2. Set inversion via interval analysis.

The detailed illustration of set computation using SIVIA
based on regular sub-pavings, bisections etc. may be found in
[10]. The sub-pavings in SIVIA may be improved with the
usage of contractors discussed in next section.
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B. Contractor

Contractor: ( [4], [10]) A contractor C associated with a
set X ⊂ Rn over domain D is an operator

C : IRn → IRn

satisfying the following properties:
• Contraction: C([x]) ⊂ [x], ∀[x] ∈ IRn,
• Completeness: C([x]) ∩ X = [x] ∩ X, ∀[x] ∈ IRn.

The pictorial representation of implementation of contractor
over set X ⊂ R2 is illustrated in Fig. 3

Figure 3. Contraction of [x].

There exist various types of contractors viz. fixed-point,
forward-backward, Newton, Gauss-Seidel contractors etc.
Contractor based set inversion of leminscate curve (x2+y2)2+
a2(x2 − y2) = 0 having width a ∈ [2, 3] has been obtained
based on the PyIbex library [6] and depicted in Fig. 4, where
the initial search set is [−4, 4]× [−4, 4].

Figure 4. SIVIA of leminscate curve with width [2, 3].

In order to perform SIVIA Monte-Carlo approach, we have
used forward-backward and fixed-point contractors. Detailed
implementation of forward-backward and fixed-point contrac-
tors have been incorporated in Appendix.

C. SIVIA Monte-Carlo

SIVIA Monte-Carlo (or SIVIA-MC) is two form iterative
methodology that includes implementation of SIVIA using
contractor programming and the Monte-Carlo simulation till
the exact enclosure is obtained satisfying (11). In this regard,
the iterative procedure is incorporated in Algorithm 1 with
respect to constraint z = f(x1, x2, . . . , xn) such that each
xi ∈ [xi] ∈ IR for i = 1, 2, . . . , n. Here, the initial search set
containing the exact enclosure is assumed as [z0].

Algorithm 1: Implementation of SIVIA-MC approach
Input: [xi] for i = 1, 2, . . . , n; Initial domain
X = [x1], [x2], . . . , [xn];

Initial search set [z0]

Step 1: Compute enclosure using Monte-Carlo
zMC = mcl(X) and zMC = mcu(X)

Step 2: Compute enclosure using contractors
zIA = Ctcl(X, [z0]) and zIA = Ctcu(X, [z0])

Step 3: Improve lower and upper range of z
z ∈

[
zIA, zMC

]
and z ∈

[
zMC, zIA

]
Step 4: Compute improved lower X = [f ]−1(

[
zIA, zMC

]
)

and
upper X = [f ]−1(

[
zMC, zIA

]
) domains using SIVIA

X,X=SIVIA(X, [f ], [z0], ε)
Step 5: Repeat steps 1 to 3 for domains X and X
Step 6: Repeat step 4 for different domains X and X
Step 7: Iterate steps 4 and 5 till z = zIA ∼ zMC and
z = zMC ∼ zIA
Output: [z, z]

In Algorithm 1, mcl(·),mcu(·) are functions that compute
the minimum and maximum function value with respect to
domain X. Then, Ctcl(·), Ctcu(·) uses forward-backward con-
tractor along with fixed-point contractor for computing interval
enclosure based on classical IA. Further, SIVIA(·) computes
the set inversion for domain X based on constraint function f
with precision ε.

Let us again consider the Examples 1 and 2 in order to
compute the exact enclosure using SIVIA Monte-Carlo in
Example 3.

Example 3: Compute the interval bounds for the constraints

z1 = x1y1 + x1y3 + x3y1 and z2 = z1 +
x21y2
x1 + y2

+
y21x2
y1 + x2

using SIVIA Monte-Carlo such that x1 + x2 + x3 = 1 and
y1 + y2 + y3 = 1. Again, x1 ∈ [x1] = [0.2, 0.3], x2 ∈ [x2] =
[0.1, 0.2], y1 ∈ [y1] = [0.4, 0.6] and y2 ∈ [y2] = [0.2, 0.3].
Using Algorithm 1 for SIVIA precision ε = 0.001 and
different sample values viz. 100000, 1000, 100, 10, the tightest
enclosures with respect to constraints z1 = x1y1+x1y3+x3y1
and z2 = z1 +

x2
1y2

x1+y2
+

y2
1x2

y1+x2
for different sample values are

obtained and incorporated in Tables II and III respectively.
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Table II
INTERVAL ENCLOSURE OF z1

Iterations
SIVIA (0.001 precision) and Monte Carlo samples

100000 samples 1000 samples
z1 ∈ z1 ∈ z1 ∈ z1 ∈

1 [0.3796, 0.385] [0.5935, 0.6007] [0.3796, 0.3850] [0.5935, 0.6007]
2 [0.3796, 0.3807] [0.5993, 0.6007] [0.3796, 0.3822] [0.5971, 0.6007]
3 [0.3796, 0.3801] [0.5999, 0.6006] [0.3796, 0.3808] [0.5987, 0.6008]
4 — — [0.3797, 0.3803] [0.5995, 0.6007]
[z1] [0.38, 0.6] [0.38, 0.6]

Time (s) 5.1388 5.5936

Iterations 100 samples 10 samples
z1 ∈ z1 ∈ z1 ∈ z1 ∈

1 [0.3796, 0.385] [0.5935, 0.6007] [0.3796, 0.385] [0.5935, 0.6007]
2 [0.3796, 0.3833] [0.5965, 0.6007] [0.3796, 0.384] [0.5945, 0.6007]
3 [0.3797, 0.3817] [0.5982, 0.6007] [0.3796, 0.3836] [0.595, 0.6007]
4 [0.3797, 0.3814] [0.5989, 0.6007] [0.3797, 0.3829] [0.5971, 0.6007]
5 [0.3797, 0.3808] [0.5995, 0.6006] [0.3797, 0.3811] [0.5977, 0.6007]
6 [0.3797, 0.3805] [0.5996, 0.6006] [0.3797, 0.3808] [0.5978, 0.6006]
7 — — [0.3797, 0.3805] [0.5988, 0.6006]
[z1] [0.38, 0.6] [0.38, 0.6]

Time (s) 6.0616 9.511

It may be observed from Table II that the SIVIA Monte-
Carlo method iteratively converge to exact enclosure [0.38, 0.6]
(up to two decimals) even for less sample values viz. 100
and 10 respectively. Also, it may be noted that the iterative
enclosures converge to exact bound though the computational
time increases from 5.1388 to 9.511 seconds for different
samples ranging from 100000 to 10 respectively. From Table
II, the proposed method seems appealing as even for less
sample values the convergent or exact solution bound is
achieved. Many practical application problems do not yield
sufficient data and sometimes availability of large data are cost
effective, in such cases the proposed method may be used to
obtain exact enclosure and the increase in computational time
may be neglected.

Similar observations of exact enclosure convergence may
be found in Table III with respect to different sample values.
Moreover, due to complexity of the constraint (4), the required
computational time 24.847 seconds for [z2] is comparatively
higher than time 9.511 seconds required for [z1]. Further,
a nonlinear differential equations with respect to dynamic

problems has been considered in next section for verification
and effectiveness of SIVIA Monte-Carlo approach.

IV. NONLINEAR OSCILLATOR

Sometimes, dynamic problems are governed by mẍ+ cẋ+
kx = f(t) having nonlinear stiffness (k1x+k2x2+ . . .) which
result to nonlinear differential equations (nonlinear oscilla-
tors). In case of uncertain nonlinear oscillators, the SIVIA
Monte-Carlo method has been implemented using nonlinear
equations obtained based on Runge-Kutta 4th order [5], [8].
As such, the enclosure obtained in present section yield a
validated enclosure rather than the tighest bound. There exists
several validated interval methods and solvers viz. DynIbex
[16] and CAPD [1] libraries for obtaining validated bounds.

Example 4: Consider Van der Pol equation (crisp or precise
case given in Akbari et al. [2]),

ẍ(t) + 0.15
(
1− x2

)
ẋ+ 1.44x = 0, (12)

subject to uncertain initial conditions x(0) ∈ [0.1, 0.3] and
ẋ(0) = 0.
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The system of first-order differential equation corresponding
to (12) is obtained as

u̇ = v = fu(t, u, v), v̇ = 0.15(u2−1)v−1.44u = fv(t, u, v),

subject to initial conditions u(0) ∈ [0.1, 0.3] and v(0) = 0. Us-
ing Runge-Kutta fourth-order (RK4), the nonlinear constraints
involved in computation of (12) are

un+1 = un +
h

6
(k1 + 2k2 + 2k3 + k4) , (13)

vn+1 = vn +
h

6
(l1 + 2l2 + 2l3 + l4) , (14)

where,

k1 = hfu(tn, un, vn), l1 = hfv(tn, un, vn),

k2 = hfu

(
tn +

h

2
, un +

k1
2
, vn +

l1
2

)
,

l2 = hfv

(
tn +

h

2
, un +

k1
2
, vn +

l1
2

)
,

k3 = hfu

(
tn +

h

2
, un +

k2
2
, vn +

l2
2

)
,

l3 = hfv

(
tn +

h

2
, un +

k2
2
, vn +

l2
2

)
,

k4 = hfu (tn + h, un + k3, vn + l3) ,

l4 = hfv (tn + h, un + k3, vn + l3) .

Using Algorithm 1 with respect to constraints (13) and
(14), the validated enclosure of x(t)|t=T is obtained and
incorporated in Table IV and Fig. 5.

Table IV
INSTANTANEOUS SOLUTION ENCLOSURE OF x(t)|t=T .

T Enclosures
[x](T ) = [u](T ) [v](T )

0.1 [0.0992,0.2978] [-0.0428,-0.0143]
0.2 [0.0971,0.2917] [-0.0843,-0.0282]
0.3 [0.0898,0.2828] [-0.1242,-0.0414]

Figure 5. Enclosure of x(t) for t ∈ [0, 1].

V. CONCLUSION

Generally, dynamical systems occurring in various science
and engineering problems are governed by nonlinear equations
or nonlinear differential equations. An iterative procedure
based on set inversion via interval analysis and Monte-Carlo
method has been proposed for computation of exact enclosure
of nonlinear equations having imprecise or uncertain variables.
The effectiveness of SIVIA Monte-Carlo method has also
been verified based on the considered test problems that yield
exact enclosures even with respect to very less sample values.
So, the method may be well implemented in computation of
exact enclosures of various nonlinear equations irrespective of
the dependency problem. Further, the method has also been
implemented to compute validated enclosure in case of Van der
Pol oscillator. Accordingly, the method may be applied to other
practical nonlinear system of equations involving uncertain
parameters.

APPENDIX

Forward-backward contractor: The forward-backward
contractor is based on constraint f(x) = 0 where x ∈ [x] and
[x] ∈ IRn which is illustrated using an example problem.

Example A1: Perform forward-backward contractor subject
to constraint w = 2u+ v where, [w] = [3, 20], [u] = [−10, 5]
and [v] = [0, 4].

Here, the constraint w = 2u + v may be expressed in
terms of function f as f(u, v, w) = w − 2u− v. Further, the
possible different forms of the constraint may be written are:

u =
w − v
2

,

v = w − 2u,

w = 2u+ v.

The forward-backward steps are then followed with respect to
classical interval computations mentioned in Section II as:

[u]∩
(
[w]− [v]

2

)
= [−10, 5]∩

(
[3, 20]− [0, 4]

2

)
= [−0.5, 5],

[v] ∩ ([w]− 2[u]) = [0, 4] ∩ ([3, 20]− 2[−0.5, 5]) = [0, 4],

[w] ∩ (2[u] + [v]) = [3, 20] ∩ (2[−0.5, 5] + [0, 4]) = [3, 14].

As such, the new interval bounds are [z] = [3, 14],
[x] = [−0.5, 5] and [y] = [0, 4].

Fixed-point contractor: A fixed-point contraction associ-
ated with ψ is implemented with respect to the constraint
f(x) = 0 as x = ψ(x), where x ∈ [x] ∈ IRn. The fixed-
point contractor with respect to constraint u2 + 2u+ 1 = 0 is
performed as

u ∈ [u] and u = ψ(u) =⇒ u ∈ [u] and u ∈ ψ([u]),
=⇒ u ∈ [u] ∩ [ψ]([u]).
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In case of implementation of forward-backward contractor
along with fixed point contractor helps in computation of
forward-backward contractor until the fixed interval is reached.
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Abstract—The classifier based on rough sets is widely used in
pattern recognition. However, in the implementation of rough set-
based classifiers, there always exist the problems of uncertainty.
Generally, information decision table in Rough Set Theory
(RST) always contains many attributes, and the classification
performance of each attribute is different. It is necessary to
determine which attribute needs to be used according to the
specific problem. In RST, such problem is regarded as attribute
reduction problems which aims to select proper candidates.
Therefore, the uncertainty problem occurs for the classification
caused by the choice of attributes. In addition, the voting
strategy is usually adopted to determine the category of target
concept in the final decision making. However, some classes of
targets cannot be determined when multiple categories cannot
be easily distinguished (for example, the number of votes of
different classes is the same). Thus, the uncertainty occurs for
the classification caused by the choice of classes. In this paper, we
use the theory of belief functions to solve two above mentioned
uncertainties in rough set classification and rough set classifier
based on Dezert-Smarandache Theory (DSmT) is proposed. It
can be experimentally verified that our proposed approach can
deal efficiently with the uncertainty in rough set classifiers.
Keywords: Classification, rough set, uncertainty, evidence
reasoning, DSmT, belief functions..

I. INTRODUCTION

a) Motivation: In recent years, we have witnessed the
rapid development of Rough Set Theory (RST) [1]. There are
many practical applications of this theory [2], [3], [4], [5].
Among these, Rough Set Classifier (RSC) has been widely
used in the real classification problems [6], [7], [8], [9].

b) Challenges: However, in the practical use of RSC,
there always exists uncertainty. In the literature [10] and [11],
the discussions of the uncertainty in RST mainly focus on
the following points of view: Chen [10] proposed several
uncertainty measures of neighborhood granules, which are
neighborhood accuracy, information quantity, neighborhood
entropy and information granularity in the neighborhood RST;
Zheng [11] estimated the uncertainty of rough set originated
from two parts of boundary region. Although the uncertainties
discussed in the above literature are of certain significance,
however, the uncertainties discussed in this paper are shown
in two aspects:

1) The choice of attributes: for example, in the decision
information table, some attributes are not significant in a
representation and deleting of these attributes has no real
impact on the classification results. However, such concept
of significancy is relative, for different problems, the role of

each attribute is quite different. Thus, the problems of attribute
selection are always ad hoc and depending on the user’s
preference. Obviously, different attribute selections correspond
to different strategies, which generally yield different results.
For example, in [12], authors attempted to select the most
information-rich attributes from a dataset by incorporating a
controlled degree of misclassification into approximations of
rough sets. Gao et.al [13] proposed a new uncertainty measure,
named maximum decision entropy, for attribute reduction in
the decision-theoretic rough set model. Although many robust
and efficient reduction algorithms have been proposed, most of
them concentrate on the properties of data or user preference
in the definition of attribute reduction, which result in the
difficulties of choosing appropriate attribute reductions for
specific applications. For the same data, different users can
define different reductions and obtain their interested results
according to their applications. Jia et.al [14] reviewed nearly
twenty two different attribute reduction methods, but to design
of a robust attribute reduction method is not the focus of this
paper. We emphasize the uncertainty caused by the choice
of attributes, which is not discussed in details in the recent
development of RST. For this aim, one typically seeks a policy
for avoiding choosing attributes, and we propose to emphasize
the importance of each attribute for the specific problems.

2) The choice of classes: besides, in RST, the category of
target concept is determined according to the element compo-
sition of its corresponding approximate set: if the number of
elements belonging to one class is the largest, the concept of
target is labelled as this class. However, this kind of voting
method often leads to uncertainty in making decisions, which
affects the final precision of RSC. In order to illustrate this
problem more vividly, we explain it through Figure 1: in case
one, the approximate set of target concept (red five-poited
star) has four elements (plus) belonging to class 1, three
elements (plus) belonging to class 2 and two elements (plus)
belonging to class 3. Thus, in case one, we can easily draw
the conclusion that the target belongs to class 1. However,
in case two or case three, the target cannot be labelled with
single category because there are some classes (class 1 and
class 2 in case two, class 1, class 2 and class 3 in case three)
that have the same number of votes. More specifically, if
the approximate set of such target is empty-set (case four),
which category should be allocated to the target concept?
As aforementioned, for the RSCs, there are two mentioned
neglected uncertainty issues. The theory of belief functions
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[15] is widely used in uncertainty management and uncertainty
reasoning for decision-making. In this paper, we attempt to use
it to model and manage the uncertainty incorporated in RSCs.

Figure 1: Uncertainty in Voting Strategy.

c) Contributions: Because a certain attribute does not
have the ability to distinguish items on a particular problem,
but there may be a discriminative performance on another
problem. Thus, according to the classification performance of
each attribute, the corresponding weights of all attributes in
information decision table are calculated, which are used as the
evaluation index of the importance of an attribute. At the same
time, we do not directly delete unimportant attributes which
the classical reduction algorithms have done. We just consider
all the attributes in the final classification, after all, we consider
that all existing attributes must play a role in the decision.
For the uncertainty of the voting strategy in traditional RSC,
we have no statistics of the number of votes of each class
in approximate sets. Instead, we first calculate the coordinate
of each class with respect to each attribute and then get the
distance between the target concept and each class in every
attribute, in order to calculate the Basic Belief Assignment
(BBA) of the target in each attribute. Then, we use the classical
combination rule (PCR5 is used in this paper) proposed in
DSmT [16] to sequentially1 combine all BBAs (each attribute
has a corresponding BBA). Finally, according to the principle
of maximum belief mass, we can obtain the final class of the
target concept.

This paper is organized as follows. Section II reviews some
basic concepts of Dempster-Shafer Theory (DST), and DSmT.
The new rough set classifier based on DSmT (RSCD) is
proposed in section III. Section IV gives the summary of the

1Because PCR5 rule is not associative, which means that the fusion results
depend on the order you have chosen. Here, our default way of combination
is to combine BBAs in order from small to large. For example, if there are
three BBAs: m1,m2,m3, the way of fusion is m1 = PCR5 (m1,m2) !
m123 = PCR5(m12,m3) ! m

fusion

= m123.

proposed classifier. In section V, we give some experimental
results to show the performances of our new method. Also,
some meaningful discussions about the extension of RSCD
are given in section VI. Section VII concludes the paper with
a summary and direction for future.

II. PRELIMINARIES

This section provides a brief reminder of the basics of
DST and DSmT, which is necessary for the presentation and
understanding of the more general fusion of evidence.

In DST framework, the Frame of Discernment (FoD)2

⇥ , {✓1, ..., ✓n} (n � 2) is a set of exhaustive and exclusive
elements (hypotheses) which represent the possible solutions
of the problem under consideration and thus Shafer’s model
assumes ✓

i

\ ✓
j

= ; for i 6= j in {1, . . . , n}. A BBA
m (·) is defined by the mapping: 2⇥ 7! [0, 1], verifying
m (;) = 0 and

P
A22⇥ m (A) = 1. In DSmT, one can abandon

Shafer’s model (if Shafer’s model doesn’t fit with the prob-
lem) and refute the principle of the third excluded middle.
The third excluded middle principle assumes the existence
of the complement for any elements/propositions belonging
to the power set 2⇥. Instead of defining the BBAs on the
power set 2⇥ , (⇥,[) of the FoD, the BBAs are defined
on the so-called hyper-power set (or Dedekind’s lattice) de-
noted D⇥ , (⇥,[,\) whose cardinalities follows Dedekind’s
numbers sequence, see [17], Vol.1 for details and examples.
A (generalized) BBA, called a mass function, m (·) is de-
fined by the mapping: D⇥ 7! [0, 1], verifying m (;) = 0
and

P
A2D

⇥ m (A) = 1. The DSmT framework encompasses
DST framework because 2⇥ ⇢ D⇥. In DSmT, we can take
into account also a set of integrity constraints on the FoD
(if known), by specifying all the pairs of elements which
are really disjoint. Stated otherwise, Shafer’s model is a
specific DSm model where all elements are deemed to be
disjoint. A 2 D⇥ is called a focal element of m (.) if
m(A) > 0. A BBA is called a Bayesian BBA if all of its
focal elements are singletons and Shafer’s model is assumed,
otherwise it is called non-Bayesian [18]. A full ignorance
source is represented by the vacuous BBA m

v

(⇥) = 1. The
belief (or credibility) and plausibility functions are respectively
defined by Bel(X) , P

Y 2D

⇥|Y 2X

m(Y ) and Pl(X) ,P
Y 2D

⇥|Y \X 6=; m(Y ). BI(X) , [Bel(X), P l(X)] is called
the belief interval of X . Its length U(X) , Pl(X)�Bel(X)
measures the degree of uncertainty of X .

In 1976, Shafer did propose Dempster’s rule and we use
DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone
book [18]) to combine BBAs in DST framework. DS rule
for combining two distinct sources of evidence characterized
by BBAs m1(·) and m2(·) is defined by m

DS

(;) = 0 and
8A 2 2⇥ \ {;}:

m
DS

(A) =

P
B,C22⇥|B\C=A

m1(B)m2(C)

1�
P

B,C22⇥|B\C=; m1(B)m2(C)
. (1)

2Here, we use the symbol , to mean equals by definition.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

44



The DS rule formula is commutative and associative and
can be easily extended to the fusion of S > 2 BBAs. Un-
fortunately, DS rule has been highly disputed during the
last decades by many authors because of its counter-intuitive
behavior in high or even low conflict situations, and that is
why many rules of combination were proposed in literature to
combine BBAs [19]. To palliate DS rule drawbacks, the very
interesting PCR5 was proposed in DSmT and it is usually
adopted3 in recent applications of DSmT. The fusion of two
BBAs m1(.) and m2(.) by the PCR5 rule is obtained by
m

PCR5(;) = 0 and 8A 2 D⇥ \ {;}

m
PCR5(A) = m12(A)+

X

B2D

⇥\{A}|A\B=;


m2

1(A)m2(B)

m1(A) +m2(B)
+

m2
2(A)m1(B)

m2(A) +m1(B)

�
,

(2)

where m12(A) =
P

B,C2D

⇥|B\C=A

m1(B)m2(C) is the
conjunctive operator, and each element A and B are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCR5 formula for combining more than two BBAs
altogether is given in [17], Vol. 3. We adopt the generic nota-
tion mPCR5

12 (.) = PCR5(m1(.),m2(.)) to denote the fusion
of m1(.) and m2(.) by PCR5 rule. PCR5 is not associative
and PCR5 rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing D⇥ by 2⇥ in Eq (2).

III. NEW ROUGH SET CLASSIFIER BASED ON DSMT
(RSCD)

A. Weights of each attribute
RST is a mathematical tool to deal with vagueness and

uncertainty [1], which can effectively analyse the incomplete
information and does not need additional data beyond the prior
information. Next, we briefly give several relevant definitions
to show how to calculate the weights of attributes:

Definition 1: An information decision system S is S =
(U,A,D), where U = {x1, x2, · · · , xn

} is non-empty finite
set of samples, A = {a1, a2, · · · , am} is a non-empty finite set
of attributes, D is a non-empty set of finite decision classes.

Definition 2: Each attribute a 2 A defines an information
function f

a

: U ! V
a

, and V
a

is the set value of the attribute
a. We further extend these notations for a set of attributes
B ✓ A, an indiscernibility relation Ind(B) can be defined as
follows:

Ind(B) =
�
(x

i

, x
j

) 2 U2 | f
i

(a) = f
j

(a), 8a 2 B , (3)

where xi and xj are indiscernible when (xi,xj) 2 Ind(B).
Some equivalence classes or elementary sets are generated by
Ind(B). The elementary set of xi is represented by [xi]

B

.
Any finite union of elementary sets is called a B-definable
set. For pattern classification, elements have the same class

3Recently, a new combination rule PCR6 was proposed to combine all the
BBAs altogether in a single fusion step, which can be found in [20]. Because
PCR6 rule coincides with PCR5 when combining only two BBAs [17], we
just use PCR5 rule to combine BBAs in this paper.

label consisting of a concept X so that X 2 U/D, where
U/D = {[xi]

D

| xi 2 U} and [xi]
D

represents the elementary
sets of xi with respect to decision attribute D. Sometimes X ✓
U is not B-definable. In other words, there exists elements
that are in the same elementary set, but have different class
labels, so that X becomes a vague concept. For this, we give
the following definitions of approximation sets of such vague
concept:

Definition 3: The B-upper approximation BX and the B-
lower approximation BX of the vague concept X is defined
as follows:

BX = {x
i

2 U | [x
i

]
B

✓ X} , (4)
BX = {x

i

2 U | [x
i

]
B

\X 6= ;} . (5)

BX ✓ BX , and BX consists of elements that certainly
belong to X , whereas B consists of elements that possibly
belong to X . The set BN

B

(X) = BX�BX is called the B-
boundary region of X, and thus consists of those objects that
we cannot decisively classify into X on the basis of knowledge
in B.

Definition 4: POSB(D) is a positive region of the partition
U/D with respect to B and is defined as follows:

POS
B

(D) =
[

X2U/D

BX (6)

=
[

{Y | Y ✓ X,Y ✓ U/B,X 2 U/D} . (7)

Definition 5: The degree of support of the condition at-
tributes B with respect to the decision attribute D is defined
as follows:

⇣B
D

=
|POS

B

(D)|
|U | . (8)

Here, ⇣ is regarded as the degree of importance of each
attribute in the information decision table S. In order to
illustrate how to calculate the weight of a particular attribute
based on the aforementioned five definitions, we give a simple
example below:

Example 1: Table I is an information decision table
with U = {x1, x2, · · · , x12}, A = {a1, a2, a3, a4},
D = {d1 = 1, d2 = 2, d3 = 3}. According to the decision
attribute d and Eq.(3), if xi is set to U and B is
equal to d, we can get the [xi]

B

= [U ]
d

= U/D =
{{x1, x4, x7, x8, x12} , {x2, x3, x9, x10, x11} , {x5, x6}}.
Meanwhile, we can also partition U by using each attribute
a
i

, i = 1, · · · ,m based on the indiscernibility relation
Ind(B), which are illustrated in Table II.

Thus, each element X in [U ]
d

can be approximated by each
condition attribute a

i

, i = 1, · · · ,m, and then we can obtain
a
i

X in Table III according to Definition 3. Based on Eq.(7),
we can get the positive domain of D with respect to each
attribute a

i

, which is also given in Table IV.
In order to explain how positive domains are calculated in

detail, we take POS
a1(D) as an example: U/D = [U ]

D

=
{{x1, x4, x7, x8, x12} , {x2, x3, x9, x10, x11} , {x5, x6}},
U/a1 = [U ]

a1
= {{x1, x4} , {x2} , {x3} , {x5} , {x6} , {x7} ,
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Table I: Information decision table.

U a1 a2 a3 a4 a5
x1 5.1 3.5 1.4 0.2 1
x2 6.6 2.9 4.6 1.3 2
x3 5.2 2.7 3.9 1.4 2
x4 5.1 3.8 1.5 0.3 1
x5 6.4 2.7 5.3 1.9 3
x6 6.8 3.0 5.5 2.1 3
x7 5.5 4.2 1.4 0.2 1
x8 5.0 3.3 1.4 0.2 1
x9 5.0 2.0 3.5 1.0 2
x10 5.9 3.0 4.2 1.5 2
x11 5.7 2.6 3.5 1.0 2
x12 4.6 3.6 1.0 0.2 1

Table II: Results of partitioning the domain U using each
attribute.

The partitioning domain

[U ]
a1

{{x1, x4} , {x2} , {x3} , {x5} , {x6} , {x7}
{x8, x9} , {x10} , {x11} , {x12}}

[U ]
a2

{{x1} , {x2} , {x3, x5} , {x4} , {x6, x10}
{x7} , {x8} , {x9} , {x11} , {x12}}

[U ]
a3

{{x1, x7, x8} , {x2} , {x3} , {x4} , {x5}
{x6} {x9, x11} , {x10} , {x12}}

[U ]
a4

{{x1, x7, x8, x12} , {x2} , {x3} , {x4} , {x5}
{x6} , {x9, x11} , {x10}}

Table III: The lower approximation of elements in [U ]
d

using
each attribute.

BX The B-lower approximation
a1{x1, x4, x7, x8, x12} {{x1, x4}, {x7}, {x12}}
a1{x2, x3, x9, x10, x11} {{x2}, {x3}, {x10}, {x11}}

a1{x5, x6} {{x5}, {x6}}
a2{x1, x4, x7, x8, x12} {{x1}, {x4}, {x7}, {x8}, {x12}}
a2{x2, x3, x9, x10, x11} {{x2}, {x9}, {x11}}

a2{x5, x6} ;
a3{x1, x4, x7, x8, x12} {{x1, x7, x8}, {x4}, {x12}}
a3{x2, x3, x9, x10, x11} {{x2}, {x3}, {x9, x11}, {x10}}

a3{x5, x6} {{x5}, {x6}}
a4{x1, x4, x7, x8, x12} {{x1, x7, x8, x12}, {x4}}
a4{x2, x3, x9, x10, x11} {{x2}, {x3}, {x9, x11}, {x10}}

a4{x5, x6} {{x5}, {x6}}

Table IV: The positive domain of [U ]
d

with respect to each
attribute and weights of each attribute according to Eq.(8).

Attribute Domain ⇣

POS
a1 (D)

{x1, x2, x3, x4, x5, 10
12x6, x7, x10, x11, x12}

POS
a2 (D)

{x1, x2, x4, x7, 10
12x8, x9, x11, x12}

POS
a3 (D)

{x1, x2, x3, x4, x5, x6, 10
12x7, x8, x9, x10, x11, x12}

POS
a4 (D)

{x1, x2, x3, x4, x5, x6, 10
12x7, x8, x9, x10, x11, x12}

{x8, x9} , {x10} , {x11} , {x12}}, for any elements Y , where
Y 2 U/a1, if Y meets the condition: Y ✓ X , where
X 2 U/D, then Y belongs to the domain POS

a1(D), for

example, when Y = {x1, x4} and X = {x1, x4, x7, x8, x12},
it satisfies Y ✓ X , so {x1, x4} belongs to POS

a1(D).
However, if Y = {x8, x9}, Y is not a subset of any elements
in U/D, so {x8, x9} does not belong to POS

a1(D). Thus,
according to Eq.(8), we can obtain the degree of support
of a

i

with respect to the decision attribute D in Table IV,
which will be regarded as the weights of each attribute in the
classification problem.

B. Construction of BBA of Target Concept
As discussed in the introduction section, the traditional

way of voting decision will cause uncertainty when using
RSC, and directly affect the final classification accuracy. The
evidence theory has a good ability to deal with the uncer-
tainty problem, and evidence theory generally describes such
concept of uncertainty through BBAs. However, the BBAs
in evidence theory are always given by experts depending
on their own experience, which cannot be obtained directly
in practical problems. Thus, this requires that, when solving
such problems, the corresponding BBAs are first constructed
and calculated before using them to make decisions. Referring
to the construction methods of BBAs in [21], [22], [23], we
propose in this paper a new construction method for the BBA
based on so-called attribute polygon in RST. Each polygon
represents an attribute and each vertice in a polygon represents
one category. That is to say, if it is a two-classification
problem, the attribute polygon is the line segment; Similarly,
if it is the three-classification problem, such polygon is the
triangle, and so on. Figure 2 illustrates the corresponding
four polygons which represent for two, three, four and five
classification problems.

Figure 2: Attribute polygon. Pentagram represents the test
example and for example, in three classification, the distances
(dotted line) are calculated between the value of one attribute
of pentagram and the vertices of one attribute triangle.

Besides, the coordinates of all vertices in all
attribute polygons are calculated according to [U ]

d

=
{{x1, x4, x7, x8, x12} , {x2, x3, x9, x10, x11} , {x5, x6}}.
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Then, the Euclidean distance is used to calculate the distance
between test example and each attribute polygon. Finally, we
can get the belief mass value of this example belonging to
each class with respect to one attribute by using Eq.(9) and
Eq.(10).

mx

⇤

ai
(✓

s

) = ↵e�sd
�

, (9)

mx

⇤

ai
(⇥) = 1� ↵e�sd

�

, (10)

where ↵, �
s

and � are turning parameters and according to
the recommendations given in [24], these parameters are set
to ↵ = 0.95, �

s

= �2 and � = 1. Besides, d is the distance
between the vertices of a

i

attribute polygon and each attribute
value of text example x⇤. Next, we will show how to calculate
BBAs through Example 1.

Example 1 revisited:

According to the decision attribute d in Table I, we
know that this simple example is a three-class problem
because D = {d1, d2, d3}, so we need to construct the
triangles. Because the decision table has four condition
attributes, we need to construct four triangles. In order
to show how to calculate the coordinates of vertices in
each attribute triangle, we give the calculation steps as
follows: Based on the partitions of the decision attribute
d : {{x1, x4, x7, x8, x12}, {x2, x3, x9, x10, x11}, {x5, x6}},
we can obtain the coordinates of each category with respect
to attribute a1:

• the coordinate of class one with respect to a1:

1

|X(a1)|
X

x2X(a1)

f(x, a1) = 5.06,

where X(a1) = {x1, x4, x7, x8, x12} and |·| denotes the
cardinality;

• the coordinate of class two with respect to a1:

1

|X(a1)|
X

x2X(a1)

f(x, a1) = 5.6800,

where X(a1) = {x2, x3, x9, x10, x11};
• the coordinate of class three with respect to a1:

1

|X(a1)|
X

x2X(a1)

f(x, a1) = 6.6000,

where X(a1) = {x5, x6}.
Here, f(x

i

, a
j

) is the value of the cell of the Table I corre-
sponding to value x

i

and attribute a
j

.

Table V: All coordinates of three classes in each attribute.

Attribute Class 1 Class 2 Class 3
a1 5.0600 5.6800 6.600
a2 3.6800 2.6400 2.8500
a3 1.3400 3.9400 5.4000
a4 0.2200 1.2400 2.0000

Similarly, we can calculate all the coordinates of three
classes of four attributes, which is given in Table V as
follows. Then, we randomly select a test example, which is
denoted as x⇤ = {5.1000, 3.5000, 1.4000, 0.2000}. Based on
the Euclidean distance4, the corresponding distances between
x⇤ and each attribute polygon is given in Table VI.

Table VI: Distances between target x⇤ and all vertices of
attribute polygons.

Distance Class 1 Class 2 Class 3
a1 $ x⇤ 0.0400 0.5800 1.5000
a2 $ x⇤ 0.1800 0.8600 0.6500
a3 $ x⇤ 0.0600 2.5400 4.0000
a4 $ x⇤ 0.0200 1.0400 1.8000

Based on Eq.(9) and Eq.(10), we can transform these values
of distances into belief mass so as to obtain the BBAs of each
attribute, which is given in Table VII.

Table VII: BBAs of x⇤ with respect to each attribute.

m(·) Class 1 Class 2 Class 3 ⇥
m1(·) 0.7778 0.0523 0.0005 0.1694
m2(·) 0.3862 0.0129 0.0368 0.5641
m3(·) 0.7038 0.0000 0.0000 0.2962
m4(·) 0.8596 0.0052 0.0043 0.1309

Finally, we use PCR5 formula Eq.(2) to combine the weight
of each attribute and the BBAs of each attribute so as to obtain
the final BBA of x⇤5. According to the fusion result, we can
draw a conclusion that x⇤ belong to class 1 based on maximum
of belief mass principle, which is consistent with the label of
x⇤ in the original dataset.

m
fusion

(✓1) = 0.8827;m
fusion

(✓2) = 0.0009;

m
fusion

(✓3) = 0.0007;m
fusion

(⇥) = 0.1157;

IV. THE SUMMARY OF RSCD
On the next page, we give a brief pseudo-code of RSCD in

Algorithm 1. Because RSCD in this paper is a data-driven
model, so, first of all, we need to divide original dataset
into training datasets and test samples (the experiments in
this paper are using ten-fold cross validation). Afterwards, the
training datasets are applied to construct attribute polygons
and calculate the weights of attributes. Finally, we can obtain
the corresponding BBAs of each test samples by calculating
the distances between test examples and attribute polygons.

V. SIMULATIONS

We have tested the different classifiers on real datasets
given in the machine learning repository of the University of
California Irvine (UCI) [25] and listed in Table VIII.

4The Euclidean distance d
ij

= d
�
xi,xj

�
=

q
(xi � xj)T (xi � xj) is

used here.
5In the final BBA, for the sake of convenience, ✓1, ✓2, ✓3 and ⇥

represent class 1, class 2, class 3 and unknown; And m
fusion

(·) =
[(m1(·)�m2(·))�m3(·)]�m4(·), where � denotes PCR5 rule.
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Algorithm 1 Solving classification problem by RSCD
Dataset, ↵ = 0.95, �

s

= �2, and � = 1
ThefinalBBAoftestdata : m

fusion

(·)
1) Calculate the weights of attributes w

B

, by

POS
B

(D) =
[

X2U/D

BX;!
B

= ⇣D
B

=
|POS

B

(D)|
|U | ;

2) Calculate the BBA of each attribute, by

mx

⇤

ai
(✓

s

) = ↵e�sd
�

;mx

⇤

ai
(⇥) = 1� ↵e�sd

�

;

3) Combine all BBAs of attributes sequentially, by
m

fusion

(·) = 1 i = 1
4) while i  m do m

fusion

(·) = PCR5(m
fusion

(·),!
i

·
m

i

(·)) Normalization(m
fusion

(·)).

Table VIII: UCI datasets used in the experiments.

Datasets Class Num. Feature Dimention Sample Num.
Iris 3 4 150
Wine 3 13 178
Pima 2 8 768
Bupa 2 6 345

Ionosphere 2 34 351

In our tests, we do not deal with the missing data problem,
all the samples with missing values have been eliminated.
Features of the samples are normalized by their means and
standard deviations before their classification. As with the
artificial datasets, we have evaluated the nearest neighbor (NN)
classifier, the nearest class centroid (NC) classifier, two k-NN
classifiers (one is with big k (k = 40) and the other with a
small k (k = 5)), and the ER-NN-NC classifier (both with
DS+BetP option, and with PCR5+DSmP option) [26]. The
results are listed in Table IX. As we can see in Table IX,
RSCD performs better in three datasets (Iris, Pima and Bupa)
and the classification results are close to ER-NN-NC on the
other two datasets (Wine and Ionosphere).

Figure 3: The principle of expanded attribute polygon.

VI. DISCUSSIONS

In this paper, the Frame of Discernment (FoD) is ⇥ =
{✓1, ✓2, · · · , ✓n} where ✓

i

represents the category and here we
just consider singletons without compound focal elements6.
Actually, some examples are difficult to be divided into a
single class, and it may be possible to belong to two categories
or several categories at the same time. On the basis of con-
structing attribute polygons in this paper, we can easily expand
the mentioned principle above to more complex circumstances
so as to ensure the particular target can belong to several
classes simultaneously. The principle is illustrated in Figure 3:
In this figure, we give a brief description of the expanded
principle by using the three classification problem (triangle).
In this triangle, three vertices (light blue and solid frame)
represent single class, which is denoted by ✓1, ✓2 and ✓3.
The difference is that, the centers of the three edges of such
triangle and the center of gravity of this triangle are defined as
compound focal elements, respectively. Specifically, the center
of ✓1 and ✓2 is denoted as ✓1 \ ✓2, in turn, we can define all
the centers of all edges of this triangle. Besides, the center
of gravity of this triangle is defined as ✓1 \ ✓2 \ ✓3. Then,
we can calculate all the coordinates of these centers and also
the corresponding distances so as to obtain the BBAs of all
attributes. To illustrate the principle of the expanded attribute
polygon, we again revisit Example 1 as follows: Since the
extension method is mainly aimed at constructing BBAs, there
is no impact on the calculation of attribute weights, so the
following steps are only for BBAs calculation.

• Step 1: Calculate all relevant points in expanded polygon
which are given in Table X. In Table X, ✓1, ✓2 and ✓3
represent Class 1, Class 2 and Class 3. ✓1\✓2 corresponds
to the hypothesis for which the target belongs to two
categories simultaneously, and so on. The coordinates of
✓1\✓2 and ✓1\✓2\✓3 are calculated as for example by:

a1(✓1 \ ✓2) =
a1(✓1) + a1(✓2)

2
= 5.37,

a1(✓1 \ ✓2 \ ✓3) =
a1(✓1) + a1(✓2) + a1(✓3)

3
= 5.78.

• Step 2: Based on Euclidean distance, we can obtain the
corresponding distances between the target concept x⇤

and all relevant points in expanded polygon, which is
given in Table XI.

• Step 3: According to Eq.(9) and Eq.(10), BBAs of x⇤

with respect to each attribute are shown in Table XII.
• Step 4: Sequentially combine all four BBAs with PCR5

6Here, we do not regard ⇥ in Eq (10) as a compound focal element even
though ⇥ can be defined as ⇥ = ✓1 [ ✓2 [ · · · [ ✓

n

. Because ⇥ represents
the ignorance or unknown of category of target concept, however, compound
focal elements here mean that this target belongs to two categories or three
categories at the same time.
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Table IX: UCI datasets used in the experiments.

Classifiers Iris(%) Wine(%) Pima(%) Bupa(%) Ionosphere(%).
NN 93.84 94.76 69.04 60.46 84.41

NN(Center) 92.09 95.68 72.70 56.54 79.25
ER�NN �NC(DSmT +DSmP ) 95.15 96.42 73.38 60.96 87.76

k �NN(k = 40) 89.43 95.28 71.60 61.99 67.63
k �NN(k = 5) 95.65 95.28 72.10 59.57 82.41

RSCD 98.00 94.17 74.50 62.87 84.11

rule and then, we can get the final BBA as follows.

m
fusion

(✓1) = 0.8763;m
fusion

(✓2) = 0.0001;

m
fusion

(✓3) = 0.0000;m
fusion

(✓1 \ ✓2) = 0.0240;

m
fusion

(✓2 \ ✓3) = 0.0000;m
fusion

(✓1 \ ✓3) = 0.0006;

m
fusion

(✓1 \ ✓2 \ ✓3) = 0.0004;m
fusion

(⇥) = 0.0985.

Thus, we can also get the result that x⇤ belongs to Class
1 (✓1). The biggest difference between the extension method
and the RSCD is that the possible category of target is
further divided so as to reduce the uncertainty in classification
problem, which can be embodied in m2(·) in Table VII and
Table XII. In RSCD, the assignment of x⇤ to ⇥ with respect
to a2 is 0.5640 (see the BBA m2(·) of Table VII), which
means the class of x⇤ cannot be determined if the principle
of maximum belief mass is applied. However, in expanded
strategy, ⇥ is further divided into ✓1 \ ✓2, ✓2 \ ✓3, ✓1 \ ✓3,
✓1 \ ✓2 \ ✓3, which ensure the target can be labelled with the
correct class.

VII. CONCLUSION

In this paper, a new rough set classifier based on DSmT has
been proposed to manage uncertainties using belief function
theory. Our simulation results show clearly that RSCD per-
forms well and its implementation is relatively simple since
the attribute reduction in traditional rough set is avoided. In the
implementation of RSCD, different types of combination rules
can be used which give some flexibility to the users. In this
paper, only one combination rule in DSmT (PCR5) has been
tested. Of course many more could be implemented and tested,
especially globally combing all BBAs in a single fusion step
with PCR6 rule, which is left for future investigations. Also,
The way of the attribute weights and BBAs’ calculation used in
RSCD is an open question and we plan to make investigations
on this question, and evaluate the robustness of RSCD in future
research works.
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Abstract—In this paper, we prove that any dichotomous basic
belief assignment (BBA) m can be expressed as the combination
of two simple belief assignments mp and mc called respectively
the pros and cons BBAs thanks to the proportional conflict
redistribution rule no 5 (PCR5). This decomposition always exists
and is unique and we call it the canonical decomposition of the
BBA m. We also show that canonical decompositions do not exist
in general if we use the conjunctive rule, the disjunctive rule,
Dempster’s rule, Dubois and Prade’s or Yager’s rules, or even the
averaging rule of combination. We give some numerical examples
of canonical decompositions and discuss of the potential interest
of this canonical decomposition for applications in information
fusion.

Keywords: Belief Functions, Contra-evidence, Pro-evidence,

PCR5, Canonical Decomposition.

I. INTRODUCTION

The belief functions (BF) introduced by Shafer in the

mid of 1970’s [1] from Dempster’s works are well known

and used in the artificial intelligence community to model

epistemic uncertainty and to reason with it for information

fusion. In Dempster-Shafer theory, the combination of basic

belief assignments (BBAs) provided by distinct sources of

evidence is done with Dempster’s rule of combination which

suffers of serious drawbacks in high conflict situation as

discussed by Zadeh [16], [17], but also in very low conflict

situations [4]. As a matter of fact many rules of combination

have been proposed in the literature [2] (Vol. 2), among

them the combination of two sources of evidence based on

the proportional conflict redistribution principle no5 (PCR5

rule) [8] has been shown successful in applications, and well

justified theoretically. However its complexity remains one of

its limitations to prevent its use in large fusion problems.

In this study, we show how the fusion of dichotomous

BBAs could be done thanks to their PCR5-based canonical

decomposition which is always possible. Such decomposition

of dogmatic or nondogmatic BBA has never been presented in

the literature so far. Only a canonical decomposition based on

conjunctive rule involving improper BBA has been proposed

by Smets in 1995 [3] and extended later by Denœux [12] to

develop the cautious rule of combination. Here the canonical

decomposition we present is done differently, and we show

that any dichotomous BBA is always the result of the PCR5

fusion of a simple proper pro-evidence BBA mp with a

simple proper contra-evidence BBA mc, and we show that

this decomposition is unique.

This paper is organized as follows. After a brief recall

of basics of belief functions in section II, we present the

canonical decomposition problem (CDP) in section III and

we show the impossibility to realize the CDP of a non

dogmatic BBA with conjunctive rule, disjunctive rule, Yager’s

and Dubois & Prade rules, and even with the averaging rule

of combination. In section IV, we analyze the CDP based on

Dempster’s rule of combination and we show that it cannot

be done for a dogmatic BBA. In section V, we prove that

the canonical decomposition based on PCR5 rule always exist

for all the cases. In section VI, we present some particular

decompositions of a dichotomous BBA (including dogmatic

BBA). Some numerical examples are presented in section

VII, and potential interests of this PCR5-based canonical

decomposition are discussed in section VIII. The last section

concludes this paper and opens a challenging question for

application of this new approach.

II. BASICS OF BELIEF FUNCTIONS

BF have been introduced by Shafer in [1] to model epis-

temic uncertainty. We assume that the answer1 of the problem

under concern belongs to a known (or given) finite discrete

frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn}, with

n > 1, and where all elements of Θ are mutually exclusive2.

The set of all subsets of Θ (including empty set ∅ and Θ)

is the power-set of Θ denoted by 2Θ. A proper Basic Belief

Assignment (BBA) associated with a given source of evidence

is defined [1] as a mapping m(·) : 2Θ → [0, 1] satisfying

m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. In some BF related

frameworks, like in Smets Transferable Belief Model (TBM)

[3], m(∅) is allowed to take a positive value. In this case, m(·)
is said improper because it does not satisfy Shafer’s definition

[1]. The quantity m(A) is called the mass of A committed by

the source of evidence. Belief and plausibility functions are

respectively defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B), (1)

1That is, the solution, or the decision to take.
2This is so-called Shafer’s model of FoD [2].

Originally published as: J. Dezert, F. Smarandache, Canonical Decomposition of Dichotomous Basic Belief 
Assignment, Int. J. of Intelligent Systems, Vol. 35, No. 7, pp. 1105–1125, July 2020, and reprinted with 
permission.
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and

Pl(A) =
∑

B∈2Θ|A∩B 6=∅
m(B) = 1− Bel(Ā), (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted, respectively, as

lower and upper bounds of an unknown (subjective) probabil-

ity measure P (A). A is called a focal element (FE) of m(·)
if m(A) > 0. When all FEs are singletons then m(·) is called

a Bayesian BBA [1] and its corresponding Bel(·) function is

equal to Pl(·), and they are homogeneous to a (subjective)

probability measure P (·). The vacuous BBA, or VBBA for

short, representing a totally ignorant source is defined as3

mv(Θ) = 1. A dogmatic BBA is a BBA such that m(Θ) = 0.

If m(Θ) > 0 the BBA m(·) is nondogmatic. A simple BBA is

a BBA that has at most two focal sets and one of them is Θ.

A dichotomous non dogmatic mass of belief is a BBA having

three focal elements A, Ā and A ∪ Ā with A and Ā subsets

of Θ.

In his Mathematical Theory of Evidence [1], Shafer pro-

posed to combine s ≥ 2 distinct sources of evidence rep-

resented by BBAs m1(.), . . . ,ms(.) over the same FoD Θ
with Dempster’s rule (i.e. the normalized conjunctive rule).

The justification and behavior of Dempster’s rule have been

disputed over the years from many counter-examples involving

high and low conflicting sources (from both theoretical and

practical standpoints) as reported in [4]–[7].

Many rules of combination exist in the literature4, among

them we recommend the rule based on the proportional

conflict redistribution principle no5 (PCR5 rule) [8] which

has been shown successful in applications and well justified

theoretically. That is why we analyze it in details for solving

the BF canonical decomposition problem (BF-CDP). PCR5

transfers the conflicting mass only to the elements involved

in the conflict and proportionally to their individual masses,

so that the specificity of the information is entirely preserved

in this fusion process. (see [2], Vol. 2 and Vol. 3 for full

justification and examples). The PCR5 combination of two

BBAs m1 and m2 defined on the same FoD Θ, denoted

by mPCR5 = PCR5(m1,m2), is mathematically defined as

mPCR5(∅) = 0, and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
], (3)

where all denominators in (3) are different from zero. If a

denominator is zero, that fraction is discarded. The proper-

ties of PCR5 can be found in [9]. Extension of PCR5 for

combining qualitative BBA’s can be found in [2], Vol. 2 and

3. All propositions/sets are in a canonical form. A variant

3The complete ignorance is denoted Θ in Shafer’s book [1].
4see [2], Vol. 2 for a detailed list of fusion rules.

of PCR5, called PCR6 has been proposed by Martin and

Osswald in [2], Vol. 2, for combining s > 2 sources. The

general formulas for PCR5 and PCR6 rules are also given in

[2], Vol. 2. PCR6 coincides with PCR5 when one combines

two sources. The difference between PCR5 and PCR6 lies

in the way the proportional conflict redistribution is done as

soon as three (or more) sources are involved in the fusion.

From the implementation point of view, PCR6 is simpler

to implement than PCR5. For convenience, very basic (not

optimized) Matlab codes of PCR5 and PCR6 fusion rules can

be found in [2], [10] and from the toolboxes repository on

the web [11]. In the sequel we work with PCR5 rule because

only two BBAs are involved in the canonical decomposition

process we present.

III. THE CANONICAL DECOMPOSITION PROBLEM

We consider a dichotomous (simplest) FoD Θ made of only

two exclusive elements A and Ā, that is Θ = {A, Ā} and we

consider a given proper5 BBA m(·) : 2Θ → [0, 1] of the form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b, (4)

with 0 < a < 1, 0 < b < 1, and a+ b < 1.

The conditions 0 < a < 1 and 0 < b < 1 mean that A and

Ā are FEs of the BBA. The restriction a+b < 1 means that the

BBA is nondogmatic. This assumption of nondogmaticity of

the BBA m(·) can be justified because most (if not all) states

of belief, being based on imperfect and not entirely conclusive

evidence, should be represented by nondogmatic BFs, even if

the mass m(Θ) is very small as argued by Denœux in [12]

(p. 240). In fact, we can always slightly modify a dogmatic

BBA m(·) in a nondogmatic BBA by discounting it with some

small discount rate ǫ > 0, and letting ǫ tend towards 0 [3].

The case of dogmatic belief, as well as degenerate cases with

a = 0 and b = 0 will be discussed in Section VI. Note that his

assumption of nondogmaticity of the BBA m(·) is necessary

for Smets canonical decomposition [3], but it is not essential

for our PCR5-based canonical decomposition because it also

works with a dogmatic BBA as discussed in section VI.

The belief function canonical decomposition problem can

be expressed as follows:

Given a nondogmatic BBA m(·) as in (4) and a chosen rule

of combination, find the two following simple proper BBAs

mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1− x, (5)

mc(Ā) = y, mc(A ∪ Ā) = 1− y, (6)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted Fusion(·, ·).
mp(·) is called the pro-BBA (or pro-evidence) of A, and

mc(·) the contra-BBA (or contra-evidence) of A. In the section

V we prove that this decomposition is always possible and

unique and we call it the (PCR5-based) canonical decompo-

sition of the BBA m(·). The BBA mp(·) is interpreted as

5which means that m(∅) = 0.
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a source of evidence providing uncertain evidence in favor

of A, whereas mc(·) is interpreted as a source of evidence

providing uncertain evidence against A. The BBA m(·) can

be interpreted as the result of the PCR5 fusion of these two

(pros and cons) aspects of evidence about A.

It is worth noting that this BF-CDP must not be confused

with canonical decomposition problem addressed by Smets in

[3] in his TBM framework, which is based on conjunctive

rule of combination and which involves, in general, improper

BBAs, called generalized simple BBA (GSBBA) in Smets

terminology.

A. Impossibility of decompositions by some well-known rules

Here we analyze briefly the impossibility of a canonical

decomposition for some well-known rules of combination.

1) Conjunctive rule: We consider x > 1 and y > 1 so that

the two BBAs are really informative (otherwise they become

vacuous and useless from decision-maing standpoint). In this

case we always have a conflict between mp(·) and mc(·)
resulting of the conjunctive rule of combination. That is

mconj(∅) = mp(A)mc(Ā) = x · y > 0 (7)

Hence mconj(∅) 6= 0 is incompatible with the constraint

m(∅) = 0. Therefore, the canonical decomposition of the

BBA m(·) expressed as the conjunctive fusion of pros and

cons BBAs mp(·) and mc(·) is impossible to get in general6,

but in the very degenerate cases where a = 0, or b = 0, or

a = 0 and b = 0 which would involve vacuous BBAs in the

decomposition and of course will be useless.

2) Disjunctive rule: If we consider the disjunctive rule

of combination of mp(·) and mc(·) we will always obtain

the vacuous BBA because mp(A)mc(Ā), mp(A)mc(A ∪ Ā),
mp(A ∪ Ā)mc(Ā) and mp(A ∪ Ā)mc(A ∪ Ā) will all be

committed to the uncertainty A∪Ā. Therefore the combination

result is nothing but the vacuous belief assignment mv, that

is Disj(mp,mc) = mv. In conclusion, we cannot make a

decomposition of the BBA m(·) based on the disjunctive rule

in general because if m(·) is informative (e.g. not vacuous)

one always has a + b < 1 so that m(A ∪ Ā) < 1 whereas

the disjunctive rule of mp(·) and mc(·) will always provide

m(A ∪ Ā) = 1.

3) Yager’s and Dubois & Prade rules: Due to the

particular simple form of BBAs mp(A) and mc(·), Yager’s

rule [13] and Dubois-Prade rule [14] coincide. Based on these

rules we are searching x and y in [0, 1] such that

m(A) = a = x(1 − y) (8)

m(Ā) = b = (1− x)y (9)

m(A ∪ Ā) = 1− a− b = (1 − x)(1 − y) + xy (10)

Because the third equation is dependent of the two first,

we have only to solve the following system of equations

6that is for any a and b values of mass of FEs A and Ā of the BBA m·).

x− xy = a and y − xy = b. Assuming7 y < 1, one gets from

the first equation x = a
1−y

. By replacing x by its expression

in the second equation y− xy = b we have to find y in [0, 1)
such that (after basic algebraic simplifications)

y2 + (a− b− 1)y + b = 0 (11)

This second-order equation admits one or two real solutions

y1 and y2 if and only if the discriminant is null or positive

respectively, that is if (a − b − 1)2 − 4b ≥ 0. However this

discriminant can become negative depending on the values of

a and b. For instance, for a = 0.4 and b = 0.5, we have

(a− b− 1)2 − 4b = −0.79 which means that there is no real

solution for the equation y2 − 1.1 · y+ 0.5 = 0. Therefore, in

general, the canonical decomposition of the BBA m(·) cannot

be accomplished from Yager’s and Dubois & Prade rules of

combination.

4) Averaging rule: Suppose we combine mp(·) and mc(·)
with the averaging rule. Then we are searching x and y in

[0, 1] such that

m(A) = a = (x+ 0)/2 (12)

m(Ā) = b = (0 + y)/2 (13)

m(A ∪ Ā) = 1− a− b = ((1− x) + (1− y))/2 (14)

This means that x = 2a and y = 2b with x and y in [0, 1].
So, if a > 0.5 or b > 0.5 the canonical decomposition is

impossible to make with the averaging rule of combination.

Therefore, in general, the averaging rule is not able to provide

a canonical decomposition of the BBA m(·).
IV. DECOMPOSITION BASED ON DEMPSTER’S RULE

Let consider a nondogmatic BBA m(A) = a, m(Ā) = b and

m(A ∪ Ā) = 1− a− b with 0 ≤ a, b ≤ 1 and 1− a− b > 0,

and let’s see if a decomposition of (·) is possible based on

Dempster’s rule of combination [1]. For this, we are searching

x and y in [0, 1] such that xy 6= 1 and

m(A) = a =
x(1 − y)

1− xy
, (15)

m(Ā) = b =
y(1− x)

1− xy
, (16)

m(A ∪ Ā) = 1− a− b =
(1− x)(1 − y)

1− xy
. (17)

Because the third equality is redundant with the two first,

we just have to solve the system of two equations expressed

as

(1 − xy)a = x(1− y), (18)

(1 − xy)b = y(1− x). (19)

That is, one should have

x− xy + axy = a, (20)

y − xy + bxy = b, (21)

7taking y = 1 would means that x(1− y) = 0 but m(A) = a with a 6= 0
in general, so that the choice of y = 1 is not possible.
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with the constraints 0 < x < 1 and 0 < y < 1. So one must

have

x =
a

1− y + ay
, y 6= 1

1− a
, (22)

and solve the equation y− xy+ bxy = b with x expressed as

function of y as above. We get the equation for a 6= 1

(a− 1)y2 + (1 + b− a)y − b = 0, (23)

whose solutions have the form

y =
−(1 + b− a)±

√
∆

2(a− 1)
, (24)

where the discriminant ∆ is given by

∆ = (1 + b− a)2 − 4(1− a)b

= 1 + b2 + a2 + 2b− 2a− 2ab+ 4ab− 4b

= a2 + b2 + 1− 2b+ 2ab− 2a

= (a+ b− 1)2 = (1− a− b)2.

One sees that ∆ is strictly positive because a + b < 1 (m
being a nondogmatic BBA). So, there exist two real solutions

y1 and y2 of (23) of the form

y1 =
−(1 + b− a) +

√
∆

2(a− 1)
=

b

1− a
, (25)

y2 =
−(1 + b− a)−

√
∆

2(a− 1)
=

1− a

1− a
= 1. (26)

For the case a 6= 1, the second “solution” y2 = 1 implies

x = a
1−y2+ay2

= a
a
= 1 which is not an acceptable solution8

because one must have xy 6= 1. The solution (x, y) of the

decomposition problem for a 6= 1 is actually given by the first

solution y1, that is

y = y1 =
b

1− a
∈ [0, 1) (27)

x =
a

1− y + ay
=

a

1− b
∈ [0, 1) (28)

The case a = 1 corresponding to the dogmatic BBA given

by m(A) = a = 1, m(Ā) = b = 0, m(A∪ Ā) = 1−a−b = 0
is analyzed in details in Section VI - See lemma right after

Theorem 4.

In summary, the unique solution of decomposition of a

nondogmatic BBA with 0 < a < 1, 0 < b < 1 and a+ b < 1
using Dempster’s rule is x = a

1−b
and y = b

1−a
.

Example 1: Consider m(A) = a = 0.6, m(Ā) = b = 0.2
and m(A ∪ Ā) = 1− a− b = 0.2. The solution (x, y) of

the decomposition of m(·) based on Dempster’s rule is

x = a
1−b

= 0.6
1−0.2

= 0.75 and y = b
1−a

= 0.2
1−0.6

= 0.5. There-

fore, mp(A) = x = 0.75, mp(A ∪ Ā) = 1− x = 0.25 and

mc(Ā) = y = 0.5, mc(A ∪ Ā) = 1− y = 0.5. It can be ver-

ified that mp ⊕mc = m, where ⊕ represents symbolically

Dempster’s rule of combination [1].

8otherwise the denominators of Eqs. (15)–(17) will be equal to zero.

V. DECOMPOSITION BASED ON PCR5 RULE

In this section we prove that the decomposition of a

dichotomous nondogmatic BBA m(·) based on PCR5 rule

of combination is always possible and unique. Suppose we

combine mp(·) and mc(·) with the PCR5 rule of combination.

Then we are searching (x, y) ∈ [0, 1]2 satisfying

m(A) = a = x(1 − y) +
x2y

x+ y
=

x2 + xy − xy2

x+ y
, (29)

m(Ā) = b = (1− x)y +
xy2

x+ y
=

y2 + xy − x2y

x+ y
, (30)

m(A ∪ Ā) = 1− a− b = 1− x− y + xy, (31)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a+ b < 1.

The equations (29) and (30) can be rewritten as

x− xy2

x+ y
= a, (32)

y − x2y

x+ y
= b, (33)

from which (31) is redundant because (29) + (30) gives

x+ y − xy = a+ b. (34)

Therefore (1− x)(1 − y) = 1− (a+ b) and that is why the

constraint a+ b ≤ 1 is necessary9 for the existence of the

solution (x, y).
With x and y in [0, 1] the solutions of (32) and (33) verify

x ≥ a, (35)

y ≥ b. (36)

Moreover, the equality (34) implies

x(1 − y) = a+ b− y ⇒ y ≤ a+ b, (37)

y(1− x) = a+ b− x ⇒ x ≤ a+ b. (38)

For x 6= 1, from (34) one gets y = a+b−x
1−x

and from (32) one

has

x2 + xy − xy2 = ax+ ay. (39)

Putting this expression of y in (39), yields the equation

x2 + (x− a)
a+ b− x

1− x
− x(

a+ b− x

1− x
)
2

− ax = 0, (40)

which can be expressed after elementary algebraic calculation

as

x4 + (−a− 2)x3 + (2a+ b)x2

+ (a+ b− ab− b2)x+ (−a2 − ab) = 0. (41)

This equation of degree 4 has at most four real solutions.

We have to take only the solution x from the open interval

(0, 1) and y = (a+ b− x)/(1 − x) with y ∈ [0, 1].
The general expression of the solutions of this quartic

equation [15] is very complicate to obtain analytically even

9In fact we use the constraint a + b < 1 because in this section we consider
only nondogmatic BBA. The canonical decomposition of a dichotomous
dogmatic BBA will be analyzed in the section VI.
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with modern symbolic computing systems like Maple™, or

Mathematica™, but the solutions can be easily calculated

numerically by these computing systems, and even with

Matlab™system (thanks to the fsolve command) as soon

as the numerical values are committed to a and to b.
Another method to make the decomposition consists to solve

numerically the system of equations x2
+xy−xy2

x+y
= a and

y2
+xy−x2y
x+y

= b for numerical values committed to a and b
thanks to Mathematica™, Maple™, or Matlab™computing

systems for instance. Of course the solutions provided by the

two methods are the same.

Example 2: Let consider m(A) = 0.6, m(Ā) = 0.3 and

m(A ∪ Ā) = 0.1, therefore a = 0.6 and b = 0.3. The quartic

equation (41) becomes

x4 − 2.6x3 + 1.5x2 + 0.63x− 0.54 = 0. (42)

The four solutions of this quartic equation provided by the

computing system10 are approximately

x1 ≈ 0.7774780438,

x2 ≈ 0.9297589637,

x3 ≈ 1.419151582,

x4 ≈ −0.5263885898,

which are shown on the graph of figure 1 obtained easily from

Desmos online tool11.

Figure 1. Plot of the quartic function.

Clearly x3 and x4 are not acceptable solutions because they

do not belong to [0, 1]. If we take x1 ≈ 0.7774780438 then

will get y1 = (a+ b− x1)/(1− x1) = (0.9− x1)/(1− x1) ≈
0.5506061437, so the pair (x1, y1) ∈ [0, 1]2 is a solution of

the decomposition problem of the BBA m(·). If we take x2 ≈
0.9297589637 then will get y2 = (a + b − x2)/(1 − x2) =
(0.9 − x2)/(1 − x2) ≈ −0.4236692006, so we see that y2 /∈
[0, 1] and therefore the pair (x2, y2) cannot be a solution of

the decomposition problem of the BBA m(·). Therefore the

canonical masses mp(·) and mc(·) are given by

mp(A) ≈ 0.7774780438, mp(A ∪ Ā) ≈ 0.2225219562,

mc(Ā) ≈ 0.5506061437, mc(A ∪ Ā) ≈ 0.4493938563.

10We did also obtain the same solutions with Maple™, and also with
Matlab™.

11https://www.desmos.com/calculator

It can be verified that the PCR5 combination of the BBAs mp

and mc, denoted PCR5(mp,mc), is equal to the BBA m(·).
The following important theorem holds.

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with

A 6= Θ and A 6= ∅ and a nondogmatic BBA m(·) : 2Θ → [0, 1]
defined on Θ by m(A) = a, m(Ā) = b, and m(A ∪ Ā) =
1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA

m(·) has a unique canonical decomposition using PCR5 rule

of combination of the form m = PCR5(mp,mc) with pro-

evidence mp(A) = x, mp(A∪Ā) = 1−x and contra-evidence

mc(Ā) = y, mc(A ∪ Ā) = 1− y, where x, y ∈ [0, 1].

Proof: Based on (29)-(30), we have to prove that the following

system Sa,b of equations always admits one and only one

solution (x, y) ∈ [0, 1]× [0, 1]

Sa,b :

{

h(x, y) = a,

h(y, x) = b,
(43)

with h(x, y) = x2
+xy−xy2

x+y
= x− xy2

x+y
. The h function can be

prolonged in (0, 0) by continuity by setting h(0, 0) = 0.

One has to prove the existence of a unique

x ∈ [a, a+ b] ⊂ [0, 1] and y ∈ [b, a+ b] ⊂ [0, 1] solutions of

Sa,b, or equivalently solutions of y = a+b−x
1−x

and of (41)

P (x) = 0 with

P (x) , x4 + (−a− 2)x3 + (2a+ b)x2

+ (a+ b)(1− b)x− a(a+ b). (44)

Because12 lim
x→−∞

P (x) = +∞ and13 P (a) < 0, there exists

x1 ∈ (−∞, a) such that P (x1) = 0. The solution x1 is not

acceptable because x1 6∈ [a, a + b]. Because14 P (1) < 0 and

lim
x→+∞

P (x) = +∞, there exists also x4 ∈ (1,+∞) such that

P (x4) = 0. The solution x4 is not acceptable because x4 6∈
[a, a+b]. For a+b 6= 1, one has15 P (a+b) > 0 and P (1) < 0.

Therefore there exists x3 ∈ (a+b, 1) such that P (x3) = 0 but

this solution x3 is also not acceptable because x3 6∈ [a, a+ b].
Because P (a) < 0 and P (a+b) > 0 there exists x2 ∈ [a, a+b]
such that P (x2) = 0 which is the only satisfactory solution.

The value y2 is given by y2 = a+b−x2

1−x2
, and one has y2 > 0

because x2 < a+ b and y2 < 1 because a+ b < 1. Moreover,

from (33), y2− b =
x2

2
y2

x2+y2
which is always positive, therefore

y2 > b, and from (34) y2 − (a + b) = x2(y2 − 1) which

is always negative, therefore y2 < a + b. This completes the

proof of Theorem 1.

12P (x) being polynomial, it is continuous and if P (c)P (d) < 0 there
exist at least one solution between [c, d]. Therefore, we are not sure a priori
there is only one solution between [c, d]. In our case, the signs of P (x) for
x = −∞, a, a + b, 1,+∞ are respectively +,-,+,- and +. But because one
has four intervals, into each interval it is not possible to have more than one
solution (because otherwise will get five or more solutions, while this equation
has only up to four real solutions). Therefore in each interval there exists only
one real solution.

13because P (a) = a2b− ab(a + b) = −ab2.
14because P (1) = −1 + a+ b+ (a + b)(1 − b− a) = −(a + b− 1)2.
15because from (40), P (a + b)/(1 − a − b)2 = (a + b)2 − a(a + b) ⇒

P (a+ b) = b(a + b)(1 − a− b)2 > 0.
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VI. PARTICULAR CASES OF DECOMPOSITIONS

Here we examine the canonical decomposition of particular

cases, including dogmatic BBA.

A. Dogmatic BBA: a+ b = 1

Theorem 2: Any dogmatic BBA defined by m(A) = a and

m(Ā) = b, where a, b ∈ [0, 1] and a+ b = 1, has a canonical

decomposition using PCR5 rule of combination of the form

m = PCR5(mp,mc) with mp(A) = x, mp(A ∪ Ā) = 1− x
and mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Proof: Any solution of Sa,b verifies

x− a =
xy2

x+ y
, (45)

y − b =
x2y

x+ y
, (46)

and therefore from (45)+(46) one has

(x− y)− (a− b) =
xy(y − x)

x+ y
, (47)

which can be rewritten as

(x− y)[1 +
xy

x+ y
] = (a− b). (48)

This means that differences (x − y) and (a − b) have the

same sign. Moreover from (34) with a+ b = 1 one has

x+ y − xy = 1, or equivalently (1− x)(1 − y) = 0 which is

satisfied if x = 1, or if y = 1 or both equal one. We must

distinguish three cases as follows:

• If a < b then16 x < y therefore y = 1 and h(x, 1) = a.

Solving h(x, 1) = a is equivalent to solve x2−ax−a = 0
which admits only one positive solution x ∈ [a, a+b = 1]

given by x = a+
√
a2+4a
2

. Note if a + b = 1 and a < b,
then necessarily a < 0.5.

• If a > b then x > y therefore x = 1 and h(1, y) = b.
Solving h(1, y) = b is equivalent to solve y2−by−b = 0
which admits only one positive solution y ∈ [b, a+b = 1]

given by y = b+
√
b2+4b
2

. Note if a + b = 1 and a > b,
then necessarily b < 0.5.

• If a = b and a+ b = 1 then a = b = 0.5 and x = y = 1.

So we have proved that a decomposition based on PCR5 al-

ways exists and it is unique also for any dogmatic dichotomous

BBA. Therefore, this decomposition of dogmatic dichotomous

BBA is canonical, which completes the proof of Theorem 2.

Theorem 3: Any dogmatic BBA m(A) = a, m(Ā) = b with

a+ b = 1 and 0 < a < 1 is not decomposable from Yager’s

rule and Dubois-Prade rule of combination.

Proof: We have the following system of equations to solve

x− xy = a, (49)

y − xy = b. (50)

16because (x− y) and (a − b) have the same sign.

From (49) and (50), we get a−b = x−xy−(y−xy) = x−y,

so y = x − a + b. After replacing this expression of y into

(49) and algebraic manipulations, we have to solve

x2 − 2ax+ a = 0,

whose solutions are of the form

x = a±
√

a(a− 1).

For 0 < a < 1 the system has no real solutions because

a(a− 1) < 0, which completes the proof of Theorem 3.

Theorem 4: Any dogmatic BBA m(A) = a, m(Ā) = b
with a + b = 1 is not decomposable from Dempster’s

rule of combination for the case when (a, b) 6= (1, 0) and

(a, b) 6= (0, 1).

Proof: We have the following system of equations to solve

with 0 ≤ x, y ≤ 1 and 1− xy 6= 0

x− xy

1− xy
= a, (51)

y − xy

1− xy
= b. (52)

After adding the two equations (51) and (52) and because

a + b = 1, we obtain x−xy+y−xy
1−xy

= a + b = 1, whence

x+y−2xy = 1−xy, or x+y−xy = 1, or x+y(1−x) = 1,

or y(1 − x) = 1− x, or = 1−x
1−x

= 1 when x 6= 1. From (52),

one should have y−xy
1−xy

= b with y = 1, that is1−x·1
1−x·1 = b, or

1 = b which is false because if 0 < a < 1 then b = 1−a 6= 1.

This completes the proof of theorem 4.

Lemma: The dogmatic BBAs m(A) = 1, m(Ā) = 0 (case

(a, b) = (1, 0)), or m(A) = 0, m(Ā) = 1 (case (a, b) = (0, 1))
have infinitely many decompositions based on Dempster’s rule

of combination.

Proof: For the case (a, b) = (1, 0) one has to solve with 0 ≤
x, y ≤ 1 and 1− xy 6= 0 the system of equations

x− xy

1− xy
= 1, and

y − xy

1− xy
= 0. (53)

This system is satisfied for x = 1 and y ∈ [0, 1), that is any

value in [0, 1) can be chosen for y.

For the case (a, b) = (0, 1) one has to solve with

0 ≤ x, y ≤ 1 and 1− xy 6= 0 the system of equations

x− xy

1− xy
= 0, and

y − xy

1− xy
= 1. (54)

This system is satisfied for y = 1 and x ∈ [0, 1), that is any

value in [0, 1) can be chosen for x. Therefore one sees that

for the case (a, b) = (1, 0) and the case (a, b) = (0, 1) there

is no unique decomposition of these BBAs from Dempster’s

rule of combination, which completes the proof of the lemma.
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B. Case when a = 0 and b = 0 (i.e., m is the vacuous BBA)

This is the most degenerate case where the BBA m(·) cor-

responds to the vacuous BBA. For averaging rule, conjunctive

rule, Yager’s, Dubois-Prade’s, Dempster’s and PCR5 rules one

has x = 0 and y = 0 (conflict between canonical masses is

zero). In fact the vacuous BBA m(·) can always be interpreted

as the fusion of mp and mc, where mp and mc are also

vacuous BBAs. This degenerate case has no particular interest

in practice but to model the total ignorant state of knowledge.

C. Case when a = 0, or b = 0

In the case a = 0 and 0 < b ≤ 1, then for conjunctive rule,

Yager’s, Dubois-Prade’s, Dempster’s and PCR5 rules one has

x = 0 and y = b (conflict between canonical masses is zero)

and m(·) corresponds to the fusion of vacuous pro-evidence

mp = mv with the contra-evidence mc = m. In the case

0 < a ≤ 1 and b = 0, then for conjunctive rule, Yager’s,

Dubois-Prade’s, Dempster’s and PCR5 rules one has x = a
and y = 0 (conflict between canonical masses is zero) and

m(·) corresponds to the fusion of the pro-evidence mp = m
with the vacuous contra-evidence mc = mv. These cases have

no particular interest because they can be seen just as the

combination of pros (or cons) BBA with the vacuous BBA

D. Case when a = b ∈ (0, 0.5)

Theorem 5: In the case a = b ∈ (0, 0.5), the BBA

m(A) = m(Ā) = a and m(A ∪ Ā) = 1 − 2a can be

canonically decomposed from PCR5 rule with the BBAs

mp(A) = 1 −
√
1− 2a, mp(A ∪ Ā) =

√
1− 2a and

mc(Ā) = 1−
√
1− 2a, mc(A ∪ Ā) =

√
1− 2a.

Proof: From (29) and (30), one has x2
+xy−xy2

x+y
= a and one

has also in this case y2
+xy−x2y
x+y

= b = a. Therefore x2 +

xy − xy2 = y2 + xy − x2y, or x2 − xy2 − y2 + x2y = 0,

or (x − y)(x + y + xy) = 0. x ≥ 0 and y ≥ 0 because they

represent the masses. Therefore x + y + xy ≥ 0. The sum

x + y + xy = 0 if and only if x = y = 0, but this produces

the degenerate case, which is corresponding to a = b = 0
(i.e. the vacuous BBA). Yet, in our theorem’s hypothesis we

assumed a, b ∈ (0, 0.5), so a > 0, and b > 0. Therefore

x+ y+ xy > 0. Hence x = y. Therefore the canonical BBAs

must be of the form mp(A) = x, mp(A ∪ Ā) = 1 − x and

mc(Ā) = x, mc(A ∪ Ā) = 1 − x. So one must solve the

equation17 x − x2 + x2

2
= m(A) = a, or equivalently 1

2
x2 −

x + a = 0, whose solutions are x1 = 1 +
√
1− 2a, and

x2 = 1 −
√
1− 2a. For 0 < a < 0.5, the solution x1 >

1 is not admissible because x1 /∈ [0, 1]. The solution x2 is

acceptable because if 0 < a < 0.5, then 0 < 2a < 1, or

−1 < −1+ 2a < 0, or (by multiplying by -1 the inequalities)

1 > 1− 2a > 0, or 0 < 1− 2a < 1, or
√
0 <

√
1− 2a <

√
1,

or 0 > −
√
1− 2a > −1, or 1 > 1 −

√
1− 2a > 0 hence

x2 ∈ (0, 1). This completes the proof of Theorem 5.

17In fact, we have also the second equation x−x2+ x2

2
= m(Ā) = b = a

to solve which is the same as the first one.

VII. EXAMPLES

We give in Tables I-IX some numerical examples of PCR5-

based canonical decompositions of BBA m(·) for different

sampled values of a and b for convenience. These numerical

examples may be useful for researchers working with belief

functions and interested by this new type of decomposition in

their own examples. The values have been approximated at

the 10th digit.

(a, b) x y
(0.1,0.1) 0.1055728059 0.1055728059
(0.1,0.2) 0.1155063468 0.2085867463
(0.1,0.3) 0.1283308324 0.3116654549
(0.1,0.4) 0.1445620975 0.4155040377
(0.1,0.5) 0.1653570911 0.5207531320
(0.1,0.6) 0.1926613985 0.6284087006
(0.1,0.7) 0.2298437881 0.7403124237
(0.1,0.8) 0.2834628414 0.8604398965
(0.1,0.9) 0.3701562119 1

Table I
DECOMPOSITION OF BBA WHEN m(A) = 0.1.

(a, b) x y
(0.2,0.1) 0.2085867463 0.1155063468
(0.2,0.2) 0.2254033308 0.2254033308
(0.2,0.3) 0.2477759456 0.3353044255
(0.2,0.4) 0.2763932022 0.4472135955
(0.2,0.5) 0.3133633342 0.5630877072
(0.2,0.6) 0.3628331876 0.6861104563
(0.2,0.7) 0.4339764332 0.8233289109
(0.2,0.8) 0.5582575695 1

Table II
DECOMPOSITION OF BBA WHEN m(A) = 0.2.

(a, b) x y
(0.3,0.1) 0.3116654549 0.1283308324
(0.3,0.2) 0.3353044255 0.2477759456
(0.3,0.3) 0.3675444680 0.3675444680
(0.3,0.4) 0.4098895428 0.4916206002
(0.3,0.5) 0.4669657064 0.6247896197
(0.3,0.6) 0.5506061437 0.7774780438
(0.3,0.7) 0.7178908346 1

Table III
DECOMPOSITION OF BBA WHEN m(A) = 0.3.

(a, b) x y
(0.4,0.1) 0.4155040377 0.1445620975
(0.4,0.2) 0.4472135955 0.2763932022
(0.4,0.3) 0.4916206002 0.4098895428
(0.4,0.4) 0.5527864045 0.5527864045
(0.4,0.5) 0.6442577571 0.7188975951
(0.4,0.6) 0.8633249581 1

Table IV
DECOMPOSITION OF BBA WHEN m(A) = 0.4.

(a, b) x y
(0.5,0.1) 0.5207531320 0.1653570911
(0.5,0.2) 0.5630877072 0.3133633342
(0.5,0.3) 0.6247896197 0.4669657064
(0.5,0.4) 0.7188975951 0.6442577571
(0.5,0.5) 1 1

Table V
DECOMPOSITION OF BBA WHEN m(A) = 0.5.
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(a, b) x y
(0.6,0.1) 0.6284087006 0.1926613985
(0.6,0.2) 0.6861104563 0.3628331876
(0.6,0.3) 0.7774780438 0.5506061437
(0.6,0.4) 1 0.8633249581

Table VI
DECOMPOSITION OF BBA WHEN m(A) = 0.6.

(a, b) x y
(0.7,0.1) 0.7403124237 0.2298437881
(0.7,0.2) 0.8233289109 0.4339764332
(0.7,0.3) 1 0.7178908346

Table VII
DECOMPOSITION OF BBA WHEN m(A) = 0.7.

(a, b) x y
(0.8,0.1) 0.8604398965 0.2834628414
(0.8,0.2) 1 0.5582575695

Table VIII
DECOMPOSITION OF BBA WHEN m(A) = 0.8.

(a, b) x y
(0.9,0.1) 1 0.3701562119

Table IX
DECOMPOSITION OF BBA WHEN m(A) = 0.9.

Figures 2 and 3 show the shapes of the pro-evidence x =
f(a, b) and the contra-evidence y = g(a, b) surfaces proving

graphically the existence of canonical decomposition based

on PCR5 at the sampling rate of 0.025. The values (a, b) for

which a + b > 1 are not acceptable and f(a, b) and g(a, b)
have been set to zero in the figures.

Figure 2. Plot of x = f(a, b) pro-evidence surface.

VIII. INTEREST OF CANONICAL DECOMPOSITION

The canonical decomposition based on PCR5 offers several

practical interests and advantages that are briefly listed here.

1) From the theoretical standpoint, one has proved that the

canonical decomposition based on PCR5 rule always

Figure 3. Plot of y = g(a, b) contra-evidence surface.

exists in all the cases for nondogmatic or dogmatic

BBAs contrariwise to other rules of combination that

only work in some restrictive cases. Therefore this

decomposition is more general and mathematically well

justified.

2) This canonical decomposition of any dichotomous BBA

m(·) into the pro-evidence mp(·) and the contra-

evidence mc(·) allows to define now the notion of

internal conflict of a (dichotomous) source of evidence,

denoted Kint(m), by

Kint(m) , mp(A)mc(Ā), (55)

where mp(A) = x and mc(Ā) = y are the canoni-

cal factors of the BBA m(·) based on PCR5 rule of

combination. It is worth noting that the BBA m(·) has

no internal conflict, if and only if at least one of its

factor is the vacuous belief mass, that is if x = 0 or

y = 0, or both, which makes sense. For instance the

BBA m(A) = 0.3 and m(A ∪ Ā) = 0.7 does not carry

internal conflict because mp = m and mc = mv (the

vacuous BBA) so that its internal conflict Kint(m) ,

mp(A)mc(Ā) = 0.3 · 0 = 0. In fact in this example

the BBA m(·) carries only uncertain pro-evidence, and

vacuous contra-evidence. This internal conflict measure

should contribute somehow in the definition of the

information content carried by a (dichotomous) source

of evidence. This aspect however is not detailed in this

paper and is left for future research works. It is clear

that the maximum of internal conflict Kint(m) = 1 is

obtained for the dogmatic BBA m(A) = m(Ā) = 0.5
whose canonical decomposition by PCR5 is mp(A) = 1
and mc(Ā) = 1 which shows the full conflict between

the pro-evidence mp(·) and the contra-evidence mc(·) of

the source. Of course, there is no internal conflict for the

vacuous BBA. More precisely, Kint(mv) = 0 because
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if a = b = 0 then one has x = y = 0 calculated from

PCR5-based decomposition. Figure 4 shows the internal

conflict Kint(m) of a dichotomous BBA m.

Figure 4. Internal conflict Kint(m).

3) This canonical decomposition allows also to define the

notion of level of uncertainty U(m) of a dichotomous

source of evidence m(·) as the conjunction of the

uncertainties of pro and contra evidences, that is

U(m) , mp(A ∪ Ā)mc(A ∪ Ā)

= (1 − x)(1 − y) = 1− x− y + xy

= 1− x− y +Kint(m). (56)

Because of PCR5-based decomposition one gets (as

already shown in (31)) U(m) = 1 − a − b which

always belongs to [0, 1]. The formula (56) is interesting

because it clearly shows the link between the pro-

evidence value x, the contra-evidence value y and the

internal conflict Kint(m) = xy. Clearly, if x = 0 and

y = 0, then Kint(m) = 0 and the uncertainty is maximal

(i.e. U(m) = 1) because the dichotomous BBA m is the

vacuous BBA m(A ∪ Ā) = 1. It can be verified that a

dichotomous BBA m has no uncertainty (U(m) = 0) if

and only if x = 1, or y = 1, or both which means that

m(·) is a Bayesian dichotomous BBA.

4) The canonical decomposition allows also to adjust/revise

easily a dichotomous source of evidence (if needed)

according the knowledge one has on it. For instance,

suppose one knows that the source which provides the

BBA m(·) usually over estimates with a reinforce-

ment factor of βp = 20% the belief mass committed

to hypothesis A but is always fair (unbiased) when

committing its mass to Ā. Under this condition, we

make the canonical decomposition of m(·) to get mp(·)

and mc(·) and we have to discount18 the pro-evidence

mp(·) with the discounting rate of αp = 1/(1 + βp)
to get the new unbiased BBA m′

p(·) and keep the

contra-evidence mc(·) unchanged, so that the corrected

(unbiased) BBA m′(·) will be obtained by the PCR5

combination of m′
p(·) with mc(·). Of course similar

principles can be applied to discount (or reinforce) mc(·)
as we prefer (and when necessary) by choosing the

adequate discounting (or reinforcing) factors.

5) This canonical decomposition opens the door to new

rules of combination for the fusion of S ≥ 2 (dichoto-

mous) distinct19 BBAs ms(·), s = 1, 2 . . . , S. After

making their canonical decompositions to get S pro-

evidences mp,s = (mp,s(A),mp,s(Ā),mp,s(A ∪ Ā))
equal to (xs, 0, 1− xs), and S contra-evidences

mc,s = (mc,s(A),mc,s(Ā),mc,s(A ∪ Ā)) equal to

(0, ys, 1− ys) for s = 1, 2, . . . , S, one can for instance

combine the S informative non-conflicting pro-

evidences mp,s altogether by the conjunctive rule (or

any rule one prefers) to get the combined pro-evidence

mp(·), and do similarly to combine altogether the non

conflicting contra-evidences mc,s to get the combined

contra-evidence mc(·). Once mp(·) and mc(·) are

calculated, we combine them with PCR5 to get the

final resulting BBA. Processing this way will greatly

simplify the combination of many dichotomous BBAs.

Once the decomposition of each dichotomous BBA is

done, we could also consider to apply some importance

discounting [10] with rates βs to combine separately

the set of BBAs {mp,s, s = 1, . . . , S} and the set of

BBAs {mc,s, s = 1, . . . , S} before making their PCR5

combination.

IX. CONCLUSIONS

In this study, we have proved that any dichotomous basic

belief assignment (nondogmatic, or dogmatic) can be decom-

posed into two simpler proper belief assignments called the

pro-evidence and contra-evidence that can be combined with

PCR5 rule to retrieve the original BBA. This canonical decom-

position is unique and is always possible. No simple explicit

form of the expression of the solution exists but the solution

can be found quite easily with numerical solvers (Matlab,

Maple, etc). We have also shown that the decomposition of

any dichotomous basic belief assignment cannot be done in all

the cases with other well-known rules of combination, which

reinforce the interest of PCR5 principle for BF combination.

This PCR5-based canonical decomposition allows also to es-

tablish the notion of internal conflict of a dichotomous source

of evidence which could be helpful in some applications. It

offers the possibility to combine several dichotomous sources

of evidence based on the fusion of their canonical components.

This will be presented in details in a forthcoming publication.

The open challenging question is how to extend this notion of

18We use classical Shafer’s discounting method [1].
19i.e., cognitively independent.
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canonical decomposition for working with more general basic

belief assignments to make their combination more effective

(if possible), and how could we define a measure of (uncertain)

information thanks to this canonical decomposition.
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Abstract—We present a new methodology for decision-making
support based on belief functions thanks to a new theoretical
canonical decomposition of dichotomous basic belief assignments
(BBAs) that has been developed recently. This decomposition
based on proportional conflict redistribution rule no 5 (PCR5)
always exists and is unique. This new PCR5-based decomposition
method circumvents the exponential complexity of the direct
fusion of BBAs with PCR5 rule and it allows to fuse quickly
many sources of evidences. The method we propose in this paper
provides both a decision and an estimation of the quality of the
decision made, which is appealing for decision-making support
systems.

Keywords: Decision-Making, Belief Functions, PCR5.

I. INTRODUCTION

This paper deals with the decision-making support prob-

lem from many sources of evidence characterized by belief

functions (BF) defined over a same frame of discernment.

Belief functions introduced by Shafer [1] are appealing to

model epistemic uncertainty. They are well-known and used

in the artificial intelligence community to fuse uncertain

information and to make a decision. However, many debates in

scientific community started with Zadeh’s criticism [2], [3] -

see additional references in [4] - have bloomed on the validity

of Dempster’s rule of combination and its counter-intuitive

behavior (not only in high conflicting situations, but also in

low conflicting situations as well). That is why many rules

of combination have been developed by different researchers

[5] (Vol. 2) over the last decades. In this work we consider

only the rule based on the proportional conflict redistribution

principle no 5 (PCR5 rule) to combine basic belief assignments

(BBAs). This choice is motived not only by its conflict

redistribution principle, but also by its ability to generate a

unique canonical decomposition of any dichotomous BBA that

will be convenient for decision-making from many sources of

evidence.

This paper is organized as follows. After a brief recall of

basics of belief functions in Section II, we present succinctly

the canonical decomposition of a (dichotomous) BBA in

Section III based on [6]. Then we propose a new decision-

making support methodology that exploits this canonical de-

composition in Section IV for working in a general framework

with many (non dichotomous) sources of evidences, with basic

illustrative examples. Conclusions are given in Section V.

II. BASICS OF BELIEF FUNCTIONS

A. Definitions

The answer1 of the problem under concern is supposed to

belong to a given finite discrete frame of discernment (FoD)

Θ = {θ1, θ2, . . . , θn}, with n > 1. All elements of Θ are

mutually exclusive2. The set of all subsets of Θ (including

empty set ∅ and Θ) is the power-set of Θ denoted by 2Θ. A

Basic Belief Assignment (BBA) given by a source of evidence

is defined [1] as m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The quantity m(A) is the mass of belief

of A. Belief and plausibility functions are respectively defined

from m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B), (1)

and

Pl(A) =
∑

B∈2Θ|A∩B 6=∅
m(B) = 1− Bel(Ā). (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted respectively as

lower and upper bounds of an unknown (subjective) proba-

bility measure P (A). A is called a Focal Element (FE) of

m(·) if m(A) > 0. When all focal elements are singletons

then m(·) is called a Bayesian BBA [1] and its corresponding

Bel(·) function is equal to Pl(·) and they are homogeneous

to a (subjective) probability measure P (·). The vacuous BBA

(VBBA for short) representing a totally ignorant source is

defined as3 mv(Θ) = 1. A dogmatic BBA is a BBA such that

m(Θ) = 0. If m(Θ) > 0 the BBA m(·) is nondogmatic. A

simple BBA is a BBA that has at most two focal sets and

one of them is Θ. A FoD is a dichotomous FoD if it has

only two elements, say Θ = {A, Ā} with A 6= ∅ and A 6= Θ.

A dichotomous BBA is a BBA defined over a dichotomous

FoD.

B. PCR5 Rule of Combination

The combination of distinct sources of evidence character-

ized by their BBAs is done by Dempster’s rule of combi-

nation in Shafer’s mathematical theory of evidence [1]. The

1I.e. the solution, or the decision to take.
2This is so-called Shafer’s model of FoD [5].
3The complete ignorance is denoted Θ in Shafer’s book [1].

Originally published as: J. Dezert, F. Smarandache, Canonical Decomposition of Basic Belief Assignment 
for Decision-Making Support, in Proc. of 7th Int. Conf. on Modelling and Development of Intelligent 
Systems (MDIS 2020), Lucian Blaga Univ. of Sibiu, Sibiu, Romania, Oct. 22–24, 2020, and reprinted 
with permission.
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justification and behavior of Dempster’s rule (corresponding

to the normalized conjunctive rule) have been disputed from

many counter-examples involving high and low conflicting

sources (from both theoretical and practical standpoints) as

reported in [4]. Many alternatives to Dempster’s rule are

now available [5], Vol. 2. Among them, we consider in the

sequel the PCR5 rule which transfers the conflicting mass only

to the elements involved in the conflict and proportionally

to their individual masses, so that a more sophisticate and

precise distribution is done with the PCR5 fusion process.

The PCR5 rule is presented in details (with justification and

examples) in [5], Vol. 2 and Vol. 3. We only briefly recall

for convenience its formula for the fusion of two BBAs,

which is symbolically noted as mPCR5 = PCR5(m1,m2),
where PCR5(·, ·) represents the PCR5 fusion rule for two

BBAs. With this PCR5 rule, one has mPCR5(∅) = 0, and

∀X ∈ 2Θ \ {∅}

mPCR5(X) = mConj(X)

+
∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)

+
m2(X)2m1(X2)

m2(X) +m1(X2)
], (3)

where mConj(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2) is the con-

junctive rule, and where all denominators in (3) are different

from zero. If a denominator is zero, that fraction is discarded.

Extension of PCR5 for combining qualitative BBA’s can be

found in [5], Vols. 2 & 3. All propositions/sets are in a

canonical form. A variant of PCR5, called PCR6 has been

proposed by Martin and Osswald in [5], Vol. 2, for combining

s > 2 sources. The general formulas for PCR5 and PCR6 rules

are also given in [5], Vol. 2. PCR6 coincides with PCR5 when

one combines two sources. The difference between PCR5 and

PCR6 lies in the way the proportional conflict redistribution

is done as soon as three (or more) sources are involved in the

fusion.

III. CANONICAL DECOMPOSITION OF A DICHOTOMOUS

BASIC BELIEF ASSIGNMENT

Because the canonical decomposition of a dichotomous

BBA has been presented in details in [6], we only make

a succinct presentation here. A FoD is a dichotomous FoD

if it is made of only two elements, say Θ = {A, Ā} with

A ∪ Ā = Θ and A ∩ Ā = ∅. A is different from Θ and from

Empty-Set because we want to work with informative FoD. A

dichotomous BBA m(·) : 2Θ → [0, 1] has the general form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b, (4)

with a, b ∈ [0, 1] and a+ b ≤ 1.

The canonical decomposition problem consists in finding

the two following simpler BBAs mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1− x, (5)

mc(Ā) = y, mc(A ∪ Ā) = 1− y, (6)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted by Fusion(·, ·). The

simple BBA mp(·) is called the pro-BBA (or pro-evidence)

of A, and the simple BBA mc(·) the contra-BBA (or contra-

evidence) of A. The BBA mp(·) is interpreted as a source

of evidence providing an uncertain evidence in favor of A,

whereas mc(·) is interpreted as a source of evidence providing

an uncertain contrary evidence about A. In [6], we proved that

this decomposition always exists and is unique if we use the

PCR5 fusion rule. In the vacuous BBA case when a = 0 and

b = 0, the BBA m(·) can be interpreted as the PCR5 fusion

of two degenerate pro- and contra-evidences BBAs mp(·) and

mc(·) which coincide with the vacuous BBA with x = 0 and

y = 0. Hence any (Bayesian, or non Bayesian) dichotomous

BBA m(·) can be always interpreted as the result of the PCR5

fusion of these two (pros and cons) aspects of evidence about

A. It is worth noting that this type of canonical decomposition

is different of Smets’ canonical decomposition problem [7]

which needs to work with generalized simple BBA which are

not stricto sensu valid BBAs as defined by Shafer [1].

For the case of dichotomous dogmatic BBA, the expression

of solutions x and y of canonical decomposition are as follows

[6]:

• if a = b and a+ b = 1 then a = b = 0.5 and x = y = 1;

• if a < b then x < y, and we have
{

y = 1,

x = a+
√
a2+4a
2

;

• if a > b then x > y, and we have
{

x = 1,

y = b+
√
b2+4b
2

.

For the case of dichotomous non-dogmatic BBA, the ex-

pression of solutions x and y of the canonical decomposition

do not have simple analytical expression because one has to

find x and y solutions of the system

a = x(1 − y) +
x2y

x+ y
=

x2 + xy − xy2

x+ y
, (7)

b = (1− x)y +
xy2

x+ y
=

y2 + xy − x2y

x+ y
, (8)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1.

In fact, we have proved in [6] that x ∈ [a, a + b] ⊂ [0, 1]
and y ∈ [b, a + b] ⊂ [0, 1], but the explicit expression of x
and y are very complicated to obtain analytically (even with

modern symbolic computing systems like Mathematica™, or

Maple™) because after algebraic calculation, and for x 6= 1,

one has to solve the following quartic equation which has at

most four real solutions with only a valid one in [a, a+ b]

x4 + (−a− 2)x3 + (2a+ b)x2

+ (a+ b − ab− b2)x + (−a2 − ab) = 0, (9)

and then compute y by y = (a+ b− x)(1 − x).
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Once the numerical values are committed to a and to b the

numerical (approximate) solutions x and then y can be easily

obtained by a standard numerical solver. For instance, with

Matlab™we can use the fsolve command, and this is what

we use to make the canonical decomposition of dichotomous

non-dogmatic BBA.

A. Canonical Decompositions From Other Well-Known Rules

In [6] we did prove that this type of canonical decom-

position cannot be obtained by the conjunctive rule only,

because if mp and mc exist and if x > 0 and y > 0 then

mConj(∅) = x · y > 0 which means that m = Conj(mp,mc)
is not a proper BBA as defined by Shafer’s. If we use

the disjunctive rule of combination we will always ob-

tain the vacuous BBA as the result4 of Disj(mp,mc) be-

cause mp(A)mc(Ā), mp(A)mc(A ∪ Ā), mp(A ∪ Ā)mc(Ā)
and mp(A ∪ Ā)mc(A ∪ Ā) will all be committed to the

uncertainty A ∪ Ā. So for any choice of mp and mc we

always get same result (the vacuous BBA) when using the

disjunctive rule making the canonical decomposition of non

vacuous dichotomous BBA m just impossible. Due to the

particular simple form of BBAs mp(·) and mc(·), Yager’s

rule [8] and Dubois-Prade rule [9] coincide, and we have to

search x and y in [0, 1] such that m(A) = a = x(1 − y)
and m(Ā) = b = (1− x)y. Assuming5 y < 1, one gets from

the first equation x = a/(1 − y). By replacing x by its

expression in the second equation y − xy = b we have to

find y in [0, 1) such that (after basic algebraic simplifications)

y2+(a− b−1)y+ b = 0. This 2nd order equation admits one

or two real solutions y1 and y2 if and only if the discriminant

is null or positive respectively, that is if (a− b−1)2−4b ≥ 0.

However this discriminant can become negative depending on

the values of a and b. For instance, for a = 0.3 and b = 0.6,

we have (a− b− 1)2 − 4b = −0.71 which means that there

is no real solution for the equation y2 − 1.3 · y + 0.6 = 0.

Therefore, in general (that is for all possible values a and b of

the BBA m), the canonical decomposition of the BBA m(·)
cannot be obtained from Yager’s and Dubois & Prade rules of

combination. If we use the averaging rule, we are searching

x and y in [0, 1] such that m(A) = a = (x + 0)/2 and

m(Ā) = b = (0 + y)/2, which means that x = 2a and y = 2b
with x and y in [0, 1]. So, if a > 0.5 or b > 0.5 the canonical

decomposition is impossible to make with the averaging rule

of combination. Therefore, in general, the averaging rule is not

able to provide a canonical decomposition of the BBA m(·).

If we consider the canonical decomposition of a dichoto-

mous non-dogmatic BBA (a+ b <1) using Dempster’s rule

of combination [1], denoted DS(mp,mc), we have to obtain

4Disj(mp, mc) denotes the disjunctive fusion of mp with mc.
5Taking y = 1 would means that x(1−y) = 0 but m(A) = a with a 6= 0

in general, so the choice of y = 1 is not possible.

x and y in [0, 1] such that6 xy 6= 1 and

m(A) = a =
x(1− y)

1− xy
, (10)

m(Ā) = b =
y(1− x)

1− xy
, (11)

with the constraints 0 < x < 1 and 0 < y < 1.

Therefore,

x =
a

1− y + ay
, y 6= 1

1− a
, (12)

and we solve the equation y − xy + bxy = b with x expressed

as function of y as above. We get the equation for a 6= 1

(a− 1)y2 + (1 + b− a)y − b = 0, (13)

whose two solutions are y1 = b/(1− a) and y2 = 1 - see [6]

for details.

For the case a 6= 1, the second “solution” y2 = 1 implies

x = a
1−y2+ay2

= a
a
= 1 which is not an acceptable solution7

because one must have xy 6= 1. The solution (x, y) of the

decomposition problem for a 6= 1 is actually given by the first

solution y1, that is

y = y1 =
b

1− a
∈ [0, 1), (14)

x =
a

1− y + ay
=

a

1− b
∈ [0, 1). (15)

The analysis of the case a = 1 corresponding to the

dogmatic BBA given by m(A) = a = 1, m(Ā) = b = 0,

m(A ∪ Ā) = 1− a− b = 0 shows that this BBA is not canon-

ically decomposable by Dempster’s rule. Why? Because one

has to solve with 0 ≤ x, y ≤ 1 and 1− xy 6= 0 the system of

equations (x− xy)/(1 − xy) = 1 and (y − xy)(1− xy) = 0
which is satisfied for x = 1 and y ∈ [0, 1), that is any

value in [0, 1) can be chosen for y. Similarly, for the

case (a, b) = (0, 1) one has to solve with 0 ≤ x, y ≤ 1 and

1− xy 6= 0 the system of equations (x− xy)/(1− xy) = 0
and (y − xy)/(1− xy) = 1 which is satisfied for y = 1 and

x ∈ [0, 1), that is any x value in [0, 1) can be chosen.

Therefore one sees that for the case (a, b) = (1, 0) and the

case (a, b) = (0, 1) there is no unique decomposition of these

dogmatic BBAs from Dempster’s rule of combination. More

generally, any dogmatic BBA m(A) = a, m(Ā) = b with

a+ b = 1 is not decomposable from Dempster’s rule of com-

bination for the case when (a, b) 6= (1, 0) and (a, b) 6= (0, 1)
- See Theorem 4 with its proof in [6].

In summary, the canonical decomposition based on Demp-

ster’s rule of combination is possible only for nondogmatic

BBA with 0 < a < 1, 0 < b < 1 and a + b < 1 and we

have x = a
1−b

and y = b
1−a

. Dempster’s rule does not allow

to obtain a canonical decomposition if the BBA is a Bayesian

(dogmatic) dichotomous BBA.

6The third equality m(A∪Ā) = 1−a−b = (1−x)(1−y)

1−xy
being redundant

with (10) and (11) is useless.
7Otherwise the denominator of (10) and (11) will equal zero.
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Example where Dempster’s canonical decomposition is

possible

Consider m(A) = a = 0.6, m(Ā) = b = 0.2 and m(A ∪
Ā) = 1−a−b = 0.2. The solution (x, y) of the decomposition

of m(·) based on Dempster’s rule is

x′ =
a

1− b
=

0.6

1− 0.2
= 0.75,

and

y′ =
b

1− a
=

0.2

1− 0.6
= 0.50.

Therefore, the pro- and contra- evidential BBAs mp and mc

are given by

mp(A) = x = 0.75, mp(A ∪ Ā) = 1− x = 0.25,

mc(Ā) = y = 0.50, mc(A ∪ Ā) = 1− y = 0.50.

It can be verified that DS(mp,mc) = m.

If we make the PCR5-based canonical decomposition, we

will obtain in this example x ≈ 0.6861 and y ≈ 0.3628.

Therefore, the pro- and contra- evidential BBAs mp and mc

based on the PCR5-based canonical decomposition are

mp(A) = x = 0.6861, mp(A ∪ Ā) = 1− x = 0.3139,

mc(Ā) = y = 0.3628, mc(A ∪ Ā) = 1− y = 0.6372.

It can be verified that PCR5(mp,mc) = m.

In the case where Dempster’s rule can be applied for making

the canonical decomposition (that is when a+ b < 1) we see

that the canonical values (parameters) x and y can be very

different from those obtained with PCR5 rule as shown in the

previous example. This is normal because the principles of

conflicting information redistribution of Dempster’s rule and

PCR5 rule are very different, and there is no link between

parameters x and y obtained with Dempster’s rule versus those

obtained from PCR5. In PCR5 rule the conflict is a refined

conflict, i.e. the conflict is split into partial conflicts, so in

PCR5 the total conflict is more accurately redistributed than

in Dempster’s rule because each partial conflict is redistributed

only to the elements involved into it, while in Dempster’s rule

the total conflict is redistributed to all focal elements, therefore

even the elements that were not involved in the conflict receive

conflicting mass, which is inaccurate.

It is worth noting that the internal conflict

of m based on Dempster’s rule will be in this

example xy = 0.75 · 0.5 = 0.375, whereas the internal

conflict of m based on PCR5 rule will be only

xy ≈ 0.6861 · 0.3628 ≈ 0.2489. In fact we can attest

that the internal conflict obtained from PCR5-based

canonical decomposition is always lesser (or equal) to

the internal conflict obtained from Dempster-based canonical

decomposition. Although such claim cannot be proved

algebraically8, we can always make a fine sampling of (a, b)
values in [0, 1) satisfying a + b < 1 to evaluate numerically

8Because there is no simple analytical expressions for solutions x and y
of PCR5-based canonical decomposition.

x and y and compare the internal conflict xy to the internal

conflict, denoted x′y′ = a
1−b

· b
1−a

, obtained with Dempster-

based canonical decomposition. In doing this we see that

the difference ∆ = x′y′ − xy is always greater (or equal)

to zero as clearly shown in Figure 1. This means that the

PCR5-based canonical decomposition is more efficient than

Dempster-based canonical decomposition because it always

yield pro- and contra-evidences which are less conflicting

when using PCR5 rule than when using Dempster’s rule,

which is normal.
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 Difference between internal conflicts based on Dempster's and PCR5 decompositions
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Figure 1. Plot of ∆ = x′y′ − xy as function of a and b.

It is important to keep in mind that Dempster-based canon-

ical decomposition is only possible for non-dogmatic BBAs

(when a+b < 1) but cannot be obtained with dogmatic BBAs,

whereas PCR5-based canonical decomposition works for all

types of dichotomous BBAs (dogmatic and non-dogmatic

ones).

B. Simple Example of PCR5-Based Canonical Decomposition

Let consider m(A) = 0.3, m(Ā) = 0.4 and m(A ∪ Ā) =
1−m(A)−m(Ā) = 0.3, therefore a = 0.3 and b = 0.4. The

quartic equation (9) becomes

x4 − 2.3x3 + x2 + 0.42x− 0.21 = 0. (16)

The four solutions of this quartic equation are approxi-

mately9

x1 ≈ 1.5203,

x2 ≈ −0.4243,

x3 ≈ 0.7942,

x4 ≈ 0.4099.

One sees that x1 and x2 are not acceptable solutions because

they do not belong to [0, 1]. If we take x3 ≈ 0.7942 then

will get y3 = (a + b − x3)/(1 − x3) = (0.7 − x3)/(1 −
x3) ≈ −0.4576. We see that y3 /∈ [0, 1] and therefore the pair

(x3, y3) cannot be a solution of the PCR5-based canonical

9The solutions can be easily obtained with the roots command of Matlab™.
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decomposition problem for the BBA m(·) of this example. If

we take x4 ≈ 0.4099 then will get y4 = (a+b−x4)/(1−x4) =
(0.7− x4)/(1− x4) ≈ 0.4916 which belongs to [0, 1]. So the

pair (x4, y4) ∈ [0, 1]2 is the unique solution of the canonical

decomposition problem. Therefore the canonical masses mp(·)
and mc(·) are given by

mp(A) ≈ 0.4099, mp(A ∪ Ā) ≈ 0.5901,

and

mc(Ā) ≈ 0.4916, mc(A ∪ Ā) ≈ 0.5084.

It can be verified that PCR5(mp,mc) = m.

C. Advantages and Limitation of PCR5-Based Decomposition

The PCR5-based canonical decomposition offers the follow-

ing advantages:

1) It is well justified theoretically.

2) It gives us access to the simpler pro- and contra-

evidences mp(·) and mc(·) which are unique and always

exist for any possible (dogmatic, or non-dogmatic) di-

chotomous BBA m(·).
3) It allows to define clearly the notion of internal con-

flict of a dichotomous source of evidence simply as

Kint(m) , mp(A)mc(Ā).
4) It always provides less conflicting pro- and contra-

evidences than what we would obtain with Dempster’s

rule when considering non-dogmatic dichotomous BBA

m(·). This proves the superiority of PCR5-based canon-

ical decomposition over Dempster’s-based canonical de-

composition in general.

5) It allows also to adjust or revise10 quite easily a dichoto-

mous source of evidence (if needed) according to the

knowledge one has on it by reinforcing or discounting

its pro- or contra-evidential BBA.

6) It can be easily achieved with classical numerical solvers

on the shelf.

7) The decomposition can be done off-line for many sam-

pled (a, b) values at any precision we want, and stored in

computer memory for working directly with mp(·) and

mc(·) instead of making the decomposition on the fly.

This is of prime importance for real-time applications

where this method could be used.

8) It allows to establish efficient fast11 suboptimal PCR5

fusion scheme, see [10] for details, examples and eval-

uations.

The only important limitation of this PCR5-based canon-

ical decomposition is that it applies only to dichotomous

BBAs, and it seems very difficult (maybe impossible) to

use or to extend it for making directly some new canonical

decomposition of non dichotomous BBAs. Because of this

limitation the use of PCR5-based canonical decomposition

appears, at first glance, quite restrictive for being really useful

in applications involving non dichotomous BBAs. Of course

10This point is not detailed here because is out of the scope of this paper.
11Where the complexity is linear with the number of dichotomous BBAs

to fuse.

in applications working with dichotomous BBAs (like those

in robotics or for autonomous vehicle navigation using belief-

based perception based on grid occupancy) this PCR5-based

canonical decomposition may have a great interest. In fact we

have already used it for belief-based inter-criteria analysis in

[11] and that is why we do not present our results in this

work. Nevertheless we will show in the next section how this

PCR5-based canonical decomposition could be used for the

decision-making support in a more general context involving

many non-dichotomous BBAs. This is a problem which has

not been addressed in [6].

IV. DECISION-MAKING USING PCR5-BASED

DECOMPOSITION

In this section we propose a new simple general decison-

making scheme based on PCR5-based canonical decomposi-

tion of dichotomous BBA. We consider S > 2 distinct sources

of evidence characterized by their BBAs12 mΘ
s (·) defined over

the same (possibly non dichotomous) FoD Θ = {θ1, . . . , θn},

with n > 1.

Can we exploit the PCR5-based canonical decomposition in

this context to make a decision? How? We answer positively to

the first question and explain in details how we can proceed.

For this, we need to express the problem in the framework

of dichotomous BBAs that has been presented in the previous

section. More precisely, suppose one has a BBA mΘ(.) defined

on 2Θ with |Θ| ≥ 2, then based on Bel and Pl formulas (1)-

(2), it is always possible to calculate BelΘ(X) and PlΘ(X)
for any X ∈ 2Θ. From BelΘ(X) and PlΘ(X) one can

always build a simpler coarsened dichotomous BBA on the

dichotomous (coarsened) FoD ΘX , {X, X̄} if X 6= ∅ and

X 6= ΘX as follows

mΘX (X) = BelΘ(X), (17)

mΘX (X̄) = 1− PlΘ(X), (18)

mΘX (X ∪ X̄) = PlΘ(X)−BelΘ(X). (19)

Hence, BelΘX (X) = mΘX (X) = Bel(X) and PlΘX (X) =
mΘX (X) + mΘX (X ∪ X̄) = BelΘ(X) + PlΘ(X) −
BelΘ(X) = PlΘ(X). This dichotomous BBA mΘX (·) can

always be decomposed canonically into its pro- and contra-

evidences mΘX

p (.) and mΘX

c (.).
Therefore, instead of combining S > 1 non dichotomous

BBAs mΘ
s (.) for s = 1, 2, . . . , S altogether from which a

decision is classically drawn, we propose to make the decision

from the set of all combined coarsened BBAs relatively to

each possible dichotomous frame of discernment ΘX . Of

course this decision-scheme is only suboptimal because the

whole information is not processed (combined) altogether, but

separately using only the coarsened (less informative) BBAs

mΘX

s (X). However, this method allows to use fast suboptimal

PCR5 fusion of mΘX

s (X) thanks to PCR5-based canonical

decomposition as presented in [10] which can be applied with

many (hundreds or even thousands) sources of dichotomous

12For clarity, we need to introduce in the notations a superscript to indicate
the FoD we are working on.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

65



BBAs. With this simple suboptimal decision-scheme we can

easily restrict the domain D on which the decisions can be

made, for instance D can be chosen as the set of singletons

of 2Θ, or any other subset of 2Θ depending on the application

under concern as it will be shown in the next section. The

generic steps of the method we propose are as follows:

• Inputs: BBAs mΘ
s (·), s = 1, . . . , S, and the decision domain

D ⊂ 2Θ.

• Step 1: For s = 1, . . . , S, coarsening of mΘ
s (·) into

dichotomous BBA mΘX

s (·), for each X ∈ D based on (17)-

(19).

• Step 2: For s = 1, . . . , S, PCR5-based canonical decom-

position of mΘX

s (·) to get pro- and contra-evidences mΘX

p,s (·)
and mΘX

c,s (·).
• Step 3: Conjunctive fusion of all the pro-evidences mΘX

p,s (·)
to get mΘX

p (·).
• Step 4: Conjunctive fusion of all the contra-evidences

mΘX

c,s (·) to get mΘX

c (·).
• Step 5: PCR5 fusion of mΘX

p (·) with mΘX

c (·) to get

mΘX

PCR5
(·) for X ∈ D.

• Step 6: Decision-making from the set of the combined

coarsened dichotomous BBAs {mΘX

PCR5
(·), X ∈ D} to get the

final decision X̂ ∈ D.

• Output: the final decision X̂ ∈ D

In steps 3 and 4 we use the conjunctive fusion because there

is no conflict between all pro-evidences mΘX

p,s (·), and there is

also no conflict between all contra-evidences mΘX

c,s (·), s =
1, . . . , S. The steps 1 to 5 do not require high computational

burden and they can be done very quickly, specially if PCR5-

based decompositions have been done off-line (as they should

be) [10].

We must detail a bit more the principle of the decision-

making for the step 6. Actually, the decision-making for

step 6 can be interpreted as a decision-making problem from

a set or coarsened BBAs mΘX

PCR5
(·) defined over different

dichotomous FoD ΘX which are all the different coarsenings

of the whole (refined original) FoD Θ. In this paper we

propose two methods to make the decision from the set of

coarsened BBAs {mΘX

PCR5
(·), X ∈ D}.

A. Method 1 for Step 6

This method is very simple. We take the decision X̂
corresponding to the largest value of mΘX

PCR5
(X), that is

X̂ = argmax
X∈D

(mΘX

PCR5
(X)) (20)

If there exist several arguments having the largest value (i.e.

there is a tie), we select the one whose mΘX

PCR5
(X̄) is smaller.

Example 1 (without tie): Suppose Θ = {A,B,C,D,E} and

we want to make a decision/choice only among the elements

of D = {A,B,C}. Suppose after applying steps 1-5 we get

the following 3 BBAs

mΘA

PCR5
(A) = 0.3,mΘA

PCR5
(Ā) = 0.2,mΘA

PCR5
(A ∪ Ā) = 0.5,

mΘB

PCR5
(B) = 0.1,mΘB

PCR5
(B̄) = 0.5,mΘB

PCR5
(B ∪ B̄) = 0.4,

mΘC

PCR5
(C) = 0.4,mΘC

PCR5
(C̄) = 0.3,mΘC

PCR5
(C ∪ C̄) = 0.3.

The decision will be X̂ = C because

mΘC

PCR5
(C) > mΘA

PCR5
(A) > mΘB

PCR5
(B).

Example 2 (with tie) We consider same mΘB

PCR5
(.) and

mΘC

PCR5
(.) as in example 1 but mΘA

PCR5
(.) is given by

mΘA

PCR5
(A) = 0.4,mΘA

PCR5
(Ā) = 0.2,mΘA

PCR5
(A ∪ Ā) = 0.4.

In this case, there is a tie between A and C because

mΘA

PCR5
(A) = mΘC

PCR5
(C) = 0.4. But because mΘA

PCR5
(Ā) <

mΘC

PCR5
(C̄) we will take X̂ = A as the final decision.

The interest of this method is above all its simplicity, but

it does not allow to quantify the quality (trustfulness) of the

decision which is often useful and required in decision-making

support systems, and that is why we propose a second method

for the decision-making of step 6.

B. Method 2 for Step 6

This second method is a bit more sophisticate but it circum-

vents the exponential complexity of the direct PCR6 fusion

of S ≥ 2 BBAs defined on non dichotomous FoD Θ. Once

the step 5 is accomplished we propose to fuse altogether the

(coarsened) dichotomous mΘX

PCR5
(·) and to apply the decision-

making method based on the distance between the belief

intervals [12]. Because the fusion must operate on the same

common frame, we need just to express each BBA mΘX

PCR5
(·)

as a dichotomous BBA on Θ which is denoted mΘX↑Θ
PCR5

(·).
This is done very easily by just expressing each X̄ as the

disjunction of all elements of Θ included in X̄ . The fusion

of BBAs mΘX↑Θ
PCR5

(·) is done by the weighted averaging rule

of combination, where each weighting factor depends on the

decisioning-making easiness of the BBA mΘX

PCR5
(·) to fuse.

The easier the decision-making, the higher the weighting

factor. We summarize this method 2:

1) For each X ∈ D, establish mΘX↑Θ
PCR5

(·) from mΘX

PCR5
(·)

2) For each X ∈ D, compute the weighting factor w(X) of

mΘX↑Θ
PCR5

(·) by

w(X) =
1

C
(1 − h(mΘX↑Θ

PCR5
)), (21)

where C is a normalization factor given

by C =
∑

X∈D(1− h(mΘX↑Θ
PCR5

)), and where

h(mΘX↑Θ
PCR5

) = H(mΘX↑Θ
PCR5

)/Hmax ∈ [0, 1] is the

normalized pignistic entropy of the BBA mΘX↑Θ
PCR5

defined

by H(mΘX↑Θ
PCR5

) = −∑

X∈2Θ
BetP (X) log2(BetP (X))

and BetP (X) is the pignistic probability of X [13], and

Hmax = log2 |Θ|.
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3) Make the weighting average of mΘX↑Θ
PCR5

(·) for all X ∈ D
to get the BBA

mΘ(·) =
∑

X∈D
w(X)mΘX↑Θ

PCR5
(·). (22)

4) From mΘ(·) make the decision based on minimum of

belief-interval distance [12], that is

X̂ = arg min
X∈D

dBI(m
Θ,mΘ

X), (23)

where mΘ
X is the BBA focused on X that is mΘ

X(X) = 1
and mΘ

X(Y ) = 0 if Y 6= X , and where dBI(., .) is the

belief-interval distance defined by (see [12] for details,

justification and examples)

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)),

(24)

where Nc = 1/2|Θ|−1 is a normalization factor to have

dBI(m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X)) is the

Wassertein’s distance between belief intervals

BI1(X) , [Bel1(X), P l1(X)] = [a1, b1],

and

BI2(X) , [Bel2(X), P l2(X)] = [a2, b2],

given by

dW ([a1, b1], [a2, b2]) ,
[

[
a1 + b1

2
− a2 + b2

2
]2

+
1

3
[
b1 − a1

2
− b2 − a2

2
]2
]

1

2

.

5) The quality (or trustfulness) of the decision is given by

q(X̂) , 1− dBI(m,m
X̂
)

∑

X∈D dBI(m,mX)
. (25)

q(X̂) ∈ [0, 1] becomes maximum (equal to one) when

dBI(m
Θ,mΘ

X̂
) is zero, which means that mΘ(·) is fo-

cused only on X̂ . The higher q(X̂) is, the more confident

in the decision X̂ we are. When there exists a tie between

multiple decisions {X̂j, j > 1}, then the prudent decision

corresponding to their disjunction X̂ = ∪jX̂j should be

preferred (if allowed), or we can apply the method 1

to resolve the tie, or in desperation select randomly X̂
among the elements X̂j involved in the tie.

Of course we could adopt a more complicate method

where the averaging fusion could operate on all the possible

dichotomous BBAs related with each element X ∈ 2Θ\{∅,Θ}

instead of X ∈ D, but this would substantially increase

the computational burden. Because the decision X̂ must be

constrained to belong to D, we restrict the fusion to be applied

only for the dichotomous BBAs related to these elements only.

By doing this we can reduce substantially the computational

burden if |D| is much lesser than 2|Θ|.

For convenience, we show how works the method 2 in the

previous Example 1 using the same Θ and D = {A,B,C}.

We have to make the weighted average of the three following

BBAs










mΘA↑Θ
PCR5

(A) = 0.3,

mΘA↑Θ
PCR5

(B ∪C ∪D ∪ E) = 0.2,

mΘA↑Θ
PCR5

(A ∪ Ā = Θ) = 0.5,










mΘB↑Θ
PCR5

(B) = 0.1,

mΘB↑Θ
PCR5

(A ∪ C ∪D ∪ E) = 0.5,

mΘB↑Θ
PCR5

(B ∪ B̄ = Θ) = 0.4,










mΘC↑Θ
PCR5

(C) = 0.4,

mΘC↑Θ
PCR5

(A ∪B ∪D ∪ E) = 0.3,

mΘC↑Θ
PCR5

(C ∪ C̄ = Θ) = 0.3,

with B ∪ C ∪ D ∪ E = Ā, A ∪ C ∪ D ∪ E = B̄ and

A ∪B ∪D ∪E = C̄. The pignistic entropies are respectively

equal to H(mΘA↑Θ
PCR5

) ≈ 2.1710, H(mΘB↑Θ
PCR5

) ≈ 2.3201

and H(mΘC↑Θ
PCR5

) ≈ 2.0754, and their normalized values are

h(A) ≈ 2.1710/2.3219 = 0.9350, h(B) ≈ 2.3201/2.3219 =
0.9992 and h(C) ≈ 2.0754/2.3219 = 0.8938. From Eq.

(21) we get the weighting factors w(A) ≈ 0.37803, w(B) ≈
0.00463 and w(C) ≈ 0.61734, and the weighted average BBA

is

mΘ(A) = w(A)mΘA↑Θ
PCR5

(A) + w(B) · 0 + w(C) · 0 ≈ 0.1134,

mΘ(B) = w(A) · 0 + w(B)mΘB↑Θ
PCR5

(B) + w(C) · 0 ≈ 0.0005,

mΘ(C) = w(A) · 0 + w(B) · 0 + w(C)mΘC↑Θ
PCR5

(C) ≈ 0.2469,

mΘ(B ∪C ∪D ∪E) = w(A)mΘA↑Θ
PCR5

(B ∪ C ∪D ∪ E)

+ w(B) · 0 + w(C) · 0 ≈ 0.0756,

mΘ(A ∪ C ∪D ∪E) = w(A) · 0
+ w(B)mΘB↑Θ

PCR5
(A ∪ C ∪D ∪ E)

+ w(C) · 0 ≈ 0.0023,

mΘ(A ∪B ∪D ∪ E) = w(A) · 0 + w(B) · 0
+ w(C)mΘC↑Θ

PCR5
(A ∪B ∪D ∪ E)

≈ 0.1852,

mΘ(Θ) = w(A)mΘA↑Θ
PCR5

(Θ) + w(B)mΘB↑Θ
PCR5

(Θ)

+ w(C)mΘC↑Θ
PCR5

(Θ) = 0.3761.

From Eq. (24) we get










dBI(m
Θ,mΘ

A) ≈ 0.6818,

dBI(m
Θ,mΘ

B) ≈ 0.7541,

dBI(m
Θ,mΘ

C) ≈ 0.5874.

Because dBI(m
Θ,mΘ

C) < dBI(m
Θ,mΘ

A) < dBI(m
Θ,mΘ

B),
the final decision must be X̂ = C because it corresponds

to the smallest dBI distance value. This decision is the

same as with method 1. Based on Eq. (25) one has

q(X̂ = C) ≈ 0.7096 indicating a pretty good trustful decision

because it is much greater than 0.5. If one have preferred

X̂ = A (the second best choice) then q(X̂ = A) ≈ 0.6630
which is a bit worse, and for X̂ = B one gets the least

trustful decision because q(X̂ = B) ≈ 0.6273. Note that a
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more optimistic attitude (if preferred) could be obtained by

replacing the BetP probability by the DSmP probability [5]

(Chap. 3 of Vol. 3) in the entropy derivation.

V. CONCLUSIONS

In this work we have presented a very new methodology

for decision-making under uncertainty in the framework of

belief functions thanks to the unique PCR5-based canonical

decomposition of any (dogmatic or non-dogmatic) dichoto-

mous BBAs. We have shown that this new canonical decom-

position provides less conflicting contra- and pro-evidences

with respect to the decomposition based on Dempster’s rule

when the latter can be applied. Any BBAs defined on a general

(non dichotomous) frame of discernment can be transformed

into a set of coarsened dichotomous BBAs that can always

be decomposed canonically and combined easily and quickly

in one PCR5 fusion step to get a suboptimal fusion result for

each element of the decision space under consideration. The

final decision can be made in two ways: either by a simple

comparative analysis of masses of elements of the decision

space, or on the minimization of belief-interval distance which

also offers the advantage of quantifying the quality of the

decision. The evaluation of this new methodology for real ap-

plications is under progress and it will reported in forthcoming

publications.
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Abstract—In this paper, we propose a new fusion approach
to combine basic belief assignments (BBAs) defined on a di-
chotomous frame of discernment based on their canonical de-
composition. In a companion paper, we have already proved
that the canonical decomposition of this type of BBA (called
dichotomous BBA) is always possible and unique thanks to
the proportional conflict redistribution rule No 5 (PCR5). More
precisely, any dichotomous BBA is always the PCR5 combination
of two simpler basic belief assignments named respectively the
pro-evidence, and the contra-evidence. From this interesting
canonical decomposition, we present a new way of combining
many dichotomous BBAs and we show that the computational
time for fusing these dichotomous BBAs based on their canonical
decomposition is quasi-linear with the number of sources to
combine, contrary to the direct fusion of the dichotomous BBAs
altogether.

Keywords: Information fusion, canonical decomposition, be-

lief functions, PCR5 rule, PCR6 rule.

I. INTRODUCTION

The belief functions (BF) introduced by Shafer in the

mid of 1970’s [1] from Dempster’s works are well known

and used in the artificial intelligence community to model

epistemic uncertainty and to reason with it for informa-

tion fusion and decision-making support. Dempster’s rule to

combine distinct sources of evidence characterized by their

basic belief assignments (BBAs) defined on the same frame

of discernment (FoD) is the historical and emblematic rule

of combination in Dempster-Shafer Theory (DST). Unfortu-

nately, Dempster’s rule (denoted by DS rule for short) suffers

of serious drawbacks in high conflict evidences as pointed

out by Zadeh [2], [3], but more importantly also in some

very low conflict situations [4] as well. That is why many

rules have been proposed in the literature [5] (Vol.2), among

them the combination of two sources of evidence based on

the proportional conflict redistribution principle No. 51 (PCR5

rule) justified theoretically in [6], which has been shown

successful in applications. However its complexity remains

1Actually PCR6 rule is preferentially used for the combination of more than
two sources altogether. For two sources, PCR5 and PCR6 rules coincide and
because canonical decomposition involved only two sources, we only need to
work with PCR5 rule to combine the pro-evidence with its contra-evidence.

one of its limitations which prevents its use in fusion problems

involving many sources of evidence to combine, and its non

associativity property2 which make it not so appealing because

the fusion order matters when sequential PCR5 fusion is

applied instead of global combination of the sources altogether.

In this work, we show how the fusion of many sources

of evidences represented by BBAs defined on a same di-

chotomous frame of discernment can be easily done based on

the PCR5-based canonical decomposition of the BBAs. Such

decomposition of BBA has been proposed recently in [7].

We recall that another canonical decomposition based on

conjunctive rule (but involving improper3 BBA) had been

proposed in 1995 by Smets [8], and extended later by Denœux

[11] to develop the so-called cautious rule of combination.

In this new approach we use our well justified canonical

decomposition based on PCR5 which is strictly based on a

proper (i.e. normal) BBAs as defined by Shafer himself. We

have shown that any dichotomous BBA is always the result

of the PCR5 fusion of a simple proper pro-evidence BBA

mp with a simple proper contra-evidence BBA mc, and that

this decomposition is unique. Based on this important result,

we address in this work the problem of combination of many

dichotomous BBAs based on their canonical decomposition.

This paper is organized as follows. After a brief recall of

basics of belief functions in section II, we present briefly the

canonical decomposition for any dichotomous BBA based on

PCR5 rule of combination in section III which is explained

in more details with proofs, and examples in [7]. The fusion

of dichotomous BBAs based on the principle of canonical

decompositions is detailed in section IV. Concluding remarks

with perspectives are given in the last section.

II. BASICS OF BELIEF FUNCTIONS

Belief functions (BF) have been introduced by Shafer in [1]

to model epistemic uncertainty. We assume that the answer4 of

the problem under concern belongs to a known (or given) finite

2PCR5 is only quasi-associative.
3We call a BBA improper when it does not satisfy Shafer’s original

definition. Smets called it a generalized simple BBA (GSBBA).
4i.e. the solution, or the decision to take.

Originally published as: J. Dezert, F. Smarandache, A. Tchamova, D. Han, Fast Fusion of Basic Belief 
Assignments Defined on a Dichotomous Frame of Discernment, in Proc. of Int. Conf. on Information 
Fusion (Fusion 2020), Online Conference, July 6-9, 2020, and reprinted with permission.
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discrete frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn},

with n > 1, and where all elements of Θ are mutually

exclusive and exhaustive5. The FoD is said dichotomous when

it involves only two elements (one subset and its complement),

that is Θ = {A, Ā} where Ā is the complement of A in

Θ. The set of all subsets of Θ (including empty set ∅ and

Θ) is the power-set of Θ denoted by 2Θ. A proper Basic

Belief Assignment (BBA) associated with a given source of

evidence is defined [1] as a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑

A∈2Θ
m(A) = 1. In some BF

related frameworks, like in Smets Transferable Belief Model

(TBM) [8], m(∅) is allowed to take a positive value. In this

case, m(·) is said improper because it does not satisfy Shafer’s

definition [1]. The quantity m(A) is called the mass of A
committed by the source of evidence. Belief and plausibility

functions are respectively defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B), (1)

and

Pl(A) =
∑

B∈2Θ|A∩B 6=∅
m(B) = 1− Bel(Ā), (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are interpreted respectively as lower and

upper bounds of an unknown (subjective) probability measure

P (A) in original Dempster’s works [9], [10]. The quantities

m(·) and Bel(·) are one-to-one and the following Möbius

inverse formula holds (see [1], p. 39)

m(A) =
∑

B⊆A⊆Θ

(−1)|A−B|Bel(B). (3)

A is called a Focal Element (FE) of m(·) if m(A) > 0.

When all focal elements are singletons, m(·) is called a

Bayesian BBA [1] and its corresponding Bel(·) function is

equal to Pl(·) and they are homogeneous to a (subjective)

probability measure P (·). The vacuous BBA, or VBBA for

short, representing a totally ignorant source is defined as6

mv(Θ) = 1. A dichotomous BBA is a BBA defined on

a dichotomous FoD. A dogmatic BBA is a BBA such that

m(Θ) = 0. If m(Θ) > 0 the BBA m(·) is nondogmatic. A

simple BBA is a BBA that has at most two focal sets and one

of them is Θ. A dichotomous non dogmatic mass of belief is

a BBA having three focal elements A, Ā and A ∪ Ā with A
and Ā subsets of Θ.

In his Mathematical Theory of Evidence [1], Shafer pro-

posed to combine s ≥ 2 distinct sources of evidence rep-

resented by BBAs m1(.), . . . ,ms(.) over the same FoD Θ
with Dempster’s rule (i.e. the normalized conjunctive rule).

5This is so-called Shafer’s model of FoD [5].
6The complete ignorance is denoted Θ in Shafer’s book [1].

For the combination of two BBAs, Dempster’s rule formula

[1] is given by mDS(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mDS(X) =
1

K12

∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2), (4)

with K12 = 1−
∑

X1,X2∈2Θ|X1∩X2=∅
m1(X1)m2(X2).

The justification and behavior of Dempster’s rule have been

disputed over the years from many counter-examples involving

high and low conflicting sources (from both theoretical and

practical standpoints) as reported in [4], [12]–[14]. Many rules

of combination exist in the literature7, among them we recom-

mend the rule based on the proportional conflict redistribution

principle No. 5 (PCR5 rule) [6] which has been shown to

be successful in applications and well justified theoretically.

That is why we analyze it in details for solving the BF

canonical decomposition problem (BF-CDP). PCR5 transfers

the conflicting mass only to the elements involved in the

conflict and proportionally to their individual masses, so that

the specificity of the information is entirely preserved in this

fusion process (see [5], Vol. 2 and Vol. 3 for full justification

and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
], (5)

where all denominators in (5) are different from zero. If a

denominator is zero, that fraction is discarded. The properties

of PCR5 can be found in [15]. Extension of PCR5 for

combining qualitative BBA’s can be found in [5], Vol. 2 & 3.

A variant of PCR5, called PCR6 has been proposed by Martin

and Osswald in [5], Vol. 2, for combining s > 2 sources. The

general formulas for PCR5 and PCR6 rules are also given in

[5], Vol. 2. PCR6 coincides with PCR5 when one combines

two sources. The difference between PCR5 and PCR6 lies

in the way the proportional conflict redistribution is done as

soon as three (or more) sources are involved in the fusion.

From the implementation point of view, PCR6 is simpler

to implement than PCR5. For convenience, very basic (not

optimized) Matlab™codes of PCR5 and PCR6 fusion rules

can be found in [5], [16] and from the toolboxes repository

on the web [17]. The main drawback of PCR5 and PCR6

rules is their combinatorial complexity when the number of

source is big. Even for combining BBAs defined on a simple

dichotomous frame of discernment, the computational time for

combining more than 20 sources can take several hours8.

Our main motivation and contribution is to propose a faster

fusion method to combine many dichotomous BBAs in order

7see [5], Vol. 2 for a detailed list of fusion rules.
8due to the exponential complexity of the PCR6 rule (as shown in Figure

4). For our simulations, we did use a MacBook Pro 2.8 GHz Intel Core i7
with 16 Go 1600 MHz DDR3 memory running Matlab™ R2018a.
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to overcome the combinatorial complexity problem by estab-

lishing a new effective (approximating) fusion method based

on the new PCR5-based canonical decomposition principle.

It is worth noting that our new method is very different

of the method based on the clustering of non conflicting

BBAs followed by a discounting step and the conjunctive rule

presented in [18].

III. CANONICAL DECOMPOSITION OF DICHOTOMOUS BBA

A FoD Θ = {A, Ā} is called dichotomous if it consists of

only two elements A and Ā with A∪ Ā = Θ and A∩ Ā = ∅.

A is different from Θ and from Empty-Set because we want

to work with informative FoD. Indeed, the very special frame

{Θ, ∅} does not bring any useful information since the only

possible BBA with such frame is the vacuous BBA. So, we

consider a given proper9 BBA m(·) : 2Θ → [0, 1] of the form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b, (6)

with 0 < a < 1, 0 < b < 1 and a+ b < 1.

The conditions 0 < a < 1 and 0 < b < 1 mean that A and

Ā are focal elements of the BBA. The restriction a + b < 1
means that the BBA is nondogmatic.

This assumption of nondogmaticity of the BBA m(·) is

necessary for Smets canonical decomposition [8], but it is

not essential for our PCR5-based canonical decomposition (as

we will show in the sequel) because our decomposition also

works directly with a dogmatic BBA. Of course any dogmatic

BBA can always be modified as a non-dogmatic BBA by

using a very small discounting number (ǫ > 0) so that, in

practice, Smets’ decomposition can always be applied, but

this is not sufficient to prove that Smets approach always

provides relevant results. Why? just because we know (and we

have proved) that Dempster’s (normalized conjunctive rule)

and even the conjunctive rule in Smets’ TBM suffers of

serious drawbacks - see justifications in our aforementioned

references. That is why we explore in this work another way of

making a canonical decomposition, which is, for now, limited

to dichotomous BBA.

Our canonical decomposition problem consists in finding

the two following simple proper BBAs mp and mc of the

form

mp(A) = x, mp(A ∪ Ā) = 1− x, (7)

mc(Ā) = y, mc(A ∪ Ā) = 1− y, (8)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted by Fusion(·, ·). The

simple BBA mp(·) is called the pro-BBA (or pro-evidence)

of A, and the simple BBA mc(·) the contra-BBA (or contra-

evidence) of A. The BBA mp(·) is interpreted as a source

of evidence providing an uncertain evidence in favor of A,

whereas mc(·) is interpreted as a source of evidence providing

an uncertain contrary evidence about A.

This decomposition is possible with Dempster’s rule only

if 0 < a < 1, 0 < b < 1 and a+ b < 1, and in this case we

9which means that m(∅) = 0.

have x = a
1−b

and y = b
1−a

. However, any dogmatic BBA

m(A) = a, m(Ā) = b with a + b = 1 is not decomposable

from Dempster’s rule for the case when (a, b) 6= (1, 0) and

(a, b) 6= (0, 1) (see Theorem 4 in [7]), and the dogmatic

BBAs m(A) = 1, m(Ā) = 0 (case (a, b) = (1, 0)),
or m(A) = 0, m(Ā) = 1 (case (a, b) = (0, 1)) have

infinitely many decompositions based on Dempster’s rule of

combination (see Lemma in [7]). In [7], we have shown

that our canonical decomposition cannot be achieved from

conjunctive, disjunctive, Yager’s [19] or Dubois-Prade [20]

rules of combination, neither from averaging rule. However,

such type of decomposition is unique and is always possible

in all cases of dichotomous BBA m(·) using the PCR5 rule

of combination. In [7], we did prove the following Theorem.

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with

A 6= Θ and A 6= ∅ and a nondogmatic BBA m(·) : 2Θ → [0, 1]
defined on Θ by m(A) = a, m(Ā) = b, and m(A ∪ Ā) =
1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA

m(·) has a unique canonical decomposition using PCR5 rule

of combination of the form m = PCR5(mp,mc) with pro-

evidence mp(A) = x, mp(A∪Ā) = 1−x and contra-evidence

mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Moreover, we also proved in [7] that the canonical decom-

position also exists even if the dichotomous BBA is dogmatic

(i.e. Bayesian) and the following theorem also holds.

Theorem 2: Any dogmatic BBA defined by m(A) = a and

m(Ā) = b, where a, b ∈ [0, 1] and a+ b = 1, has a canonical

decomposition using PCR5 rule of combination of the form

m = PCR5(mp,mc) with mp(A) = x, mp(A ∪ Ā) = 1− x
and mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorems 1 & 2 prove that the decomposition based on

PCR5 always exists and it is unique for any dichotomous

(nondogmatic, or dogmatic) BBA.

For the case of dichotomous dogmatic BBA considered

in Theorem 2, the expression of solutions x and y can be

established explicitly as follows - see [7] for details

• If a < b then x < y, and we have y = 1 and x =
a+

√
a2+4a
2

.

• If a > b then x > y, and we have x = 1 and y =
b+

√
b2+4b
2

.

• If a = b and a+ b = 1 then a = b = 0.5 and x = y = 1.

For the case of dichotomous nondogmatic BBA considered

in Theorem 1, one has to find x and y solutions of the system

a = x(1 − y) +
x2y

x+ y
=

x2 + xy − xy2

x+ y
, (9)

b = (1− x)y +
xy2

x+ y
=

y2 + xy − x2y

x+ y
. (10)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1. In

fact, it has been proved in [7] that x ∈ [a, a + b] ⊂ [0, 1]
and y ∈ [b, a + b] ⊂ [0, 1], but the explicit expression of x
and y are very complicated to obtain analytically (even with

modern symbolic computing systems like Mathematica™, or
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Maple™) because after algebraic calculation, and for x 6= 1,

one has to solve the following quartic equation which has at

most four real solutions with only a valid one in [a, a+ b]

x4 + (−a− 2)x3 + (2a+ b)x2

+ (a+ b− ab− b2)x+ (−a2 − ab) = 0, (11)

and then compute y as y = a+b−x
1−x

.

Fortunately, the solutions can be easily calculated nu-

merically by these computing systems, and even with Mat-

lab™system10 as soon as the numerical values are committed

to a and to b, and this is what we do in our simulations in the

sequel.

Example 1: Let consider Θ = {A, Ā} and m(A) = 0.6,

m(Ā) = 0.3 and m(A∪Ā) = 1−m(A)−m(Ā) = 0.1. Hence,

a = 0.6 and b = 0.3. The quartic equation (11) becomes

x4 − 2.6x3 + 1.5x2 + 0.63x− 0.54 = 0. (12)

The four solutions of this quartic equation provided by the

computing system11 are approximately

x1 ≈ 0.7774780438, x2 ≈ 0.9297589637,

x3 ≈ 1.4191515820, x4 ≈− 0.5263885898.

Clearly x3 and x4 are not acceptable solutions because they

don’t belong to [0, 1]. If we take x1 ≈ 0.7774780438, then

we will get y1 = (a + b − x1)/(1 − x1) = (0.9 − x1)/(1 −
x1) ≈ 0.5506061437. The pair (x1, y1) ∈ [0, 1]2 is a solution

of the decomposition problem of the BBA m(·). If we take

x2 ≈ 0.9297589637, then we will get y2 = (a+ b− x2)/(1−
x2) = (0.9 − x2)/(1 − x2) ≈ −0.4236692006. We see that

y2 /∈ [0, 1], and therefore the pair (x2, y2) cannot be a solution

of the decomposition problem of the BBA m(·). Therefore the

canonical masses mp(·) and mc(·) are given by

mp(A) ≈ 0.7774780438, mp(A ∪ Ā) ≈ 0.2225219562,

mc(Ā) ≈ 0.5506061437, mc(A ∪ Ā) ≈ 0.4493938563.

It can be verified that the PCR5 combination of BBAs mp and

mc, denoted by PCR5(mp,mc), is equal to the BBA m(·).
Of course there are necessarily numerical approximations

involved by the proposed decomposition because this decom-

position is obtained by numerical solvers. This may have some

little impact in the PCR5 fusion result but because PCR5 rule

is numerically robust to small input changes (contrariwise to

Dempster’s rule) the PCR5 result will not change substantially

with small changes (due to small numerical imprecisions) in

the values of BBAs to combine.

A. Particular cases

1) Case (a, b) = (0, 0) (i.e. m is the vacuous BBA): This

is the most degenerate case where the BBA m(·) corresponds

to the vacuous BBA. For averaging rule, conjunctive rule,

Yager’s, Dubois-Prade’s, Dempster’s and PCR5 rules one has

10thanks to the fsolve Matlab™ command.
11We did get same solutions with Maple™, and with Matlab™.

x = 0 and y = 0 (conflict between canonical masses is

zero). In fact the vacuous BBA m(·) can always be interpreted

as the fusion of mp and mc, where mp and mc are also

vacuous BBAs. This degenerate case has no particular interest

in practice but to model the total ignorant state of knowledge.

2) Case when a = 0, or b = 0: In the case a = 0 and

0 < b ≤ 1, then for conjunctive rule, Yager’s, Dubois-Prade’s,

Dempster’s and PCR5 rules one has x = 0 and y = b (conflict

between canonical masses is zero) and m(·) corresponds to

the fusion of vacuous pro-evidence mp = mv with the contra-

evidence mc = m. In the case 0 < a ≤ 1 and b = 0, then

for conjunctive rule, Yager’s, Dubois-Prade’s, Dempster’s and

PCR5 rules one has x = a and y = 0 (conflict between

canonical masses is zero) and m(·) corresponds to the fusion

of the pro-evidence mp = m with the vacuous contra-evidence

mc = mv . These cases have no particular interest because they

can be seen just as the combination of pro (or contra) BBA

with the vacuous BBA.

3) Case when a = b ∈ (0, 0.5): In this case, the BBA

m(A) = m(Ā) = a and m(A∪Ā) = 1−2a can be canonically

decomposed from PCR5 rule with the BBAs mp(A) = 1 −√
1− 2a, mp(A∪ Ā) =

√
1− 2a and mc(Ā) = 1−

√
1− 2a,

mc(A ∪ Ā) =
√
1− 2a - see details and proof in [7].

B. Benefits of canonical decomposition

The canonical decomposition based on PCR5 offers several

interests and advantages that are briefly listed.

1) This canonical decomposition of m(·) into the pro-

evidence mp(·) and the contra-evidence mc(·) allows to

define the notion of internal conflict of a dichotomous

source of evidence, denoted by Kint(m), as

Kint(m) , mp(A)mc(Ā), (13)

where mp(A) = x and mc(Ā) = y are the canonical

factors of the BBA m(·) based on PCR5 rule of combi-

nation.

2) The canonical decomposition also allows to adjust/revise

easily a dichotomous source of evidence (if needed)

according to the knowledge one has on it. For instance,

if one knows that a source over (or under) estimate the

hypothesis A, then one could apply an adjustment (based

on some discounting or reinforcing factors) on the pro

(or contra) evidence to de-bias this source of evidence.

3) This canonical decomposition can help to develop

new fast rules of combination for the fusion of

S ≥ 2 (dichotomous) distinct12 BBAs ms(·) =
(ms(A),ms(Ā),ms(A ∪ Ā)) = (as, bs, 1 − as − bs),
s = 1, 2, . . . , S. This is presented next.

IV. FAST FUSION OF DICHOTOMOUS BBAS

In this section, we show how to combine many dichotomous

BBAs defined on the same FoD Θ thanks to their canonical

decompositions.

12i.e. cognitively independent.
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A. Principle of the fast fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous

BBAs is, at first, to decompose canonically each dichoto-

mous BBA ms(.), for s = 1, 2, . . . , S into their pro and

contra evidences mp,s = (mp,s(A),mp,s(Ā),mp,s(A∪ Ā)) =
(xs, 0, 1−xs) and mc,s = (mc,s(A),mc,s(Ā),mc,s(A∪Ā)) =
(0, ys, 1 − ys), and then to combine the pro-evidences mp,s

for s = 1, 2, . . . , S altogether on one hand to get a global

pro-evidence mp, and to combine the contra-evidences mc,s

for s = 1, 2, . . . , S altogether on the other hand to get a

global contra-evidence mc. The fusion step of pro and contra

evidences is discussed in section IV-D. Once mp and mc

are calculated, then one combines them with PCR5 fusion

rule to get the final result. This general principle of the new

fusion method is represented by the diagram of figure 1 for

convenience.

Figure 1. General principle of the fusion of dichotomous BBAs from their
canonical decompositions.

This new fusion approach is interesting because the fusion

of the pro-evidence mp,s (resp. contra-evidences mc,s) is quite

simple because there is non conflict between mp,s (resp.

between mc,s), so that their fusion can be done quite easily

and a large number of sources can be combined without a high

computational burden. In fact, with this fusion approach, only

one PCR5 fusion step of simple (combined) canonical BBAs

is needed at the very end of the fusion process. It is worth

noting that in this work there is no link with the canonical

decomposition proposed by Shafer and then extended by

Smets because here we use another fusion rule based on the

proportional conflict redistribution principle.

B. Analysis of the effectiveness of this new fusion approach

Because the PCR5 rule13 of combination is not associative,

the fusion14 of the canonical BBAs followed by their PCR5

13The same remark holds for PCR6 rule with more than two BBAs.
14We assume here that the fusion of all the pro-evidences (resp. contra-

evidences) is done with PCR5 rule which coincides in this case with the
conjunctive rule because there is no conflict between the pro-evidences (resp.
the contra-evidences).

fusion will not provide in general the same result as the

direct fusion of the dichotomous BBAs altogether but only

an approximate result, which is normal.

The main question is to know how good is the approx-

imation obtained by this new fusion method based on the

fusion of pro-evidences and contra-evidences with respect to

the direct fusion of the BBAs with PCR5 (or PCR6 when

considering more than two sources to combine). To answer to

this important question we make a statistical analysis of the

quality of the combined result m, with respect to the direct

PCR5, or PCR6 fusion of all BBAs altogether.

The measure of the goodness is obtained by the normalized

(Euclidean) Belief Interval distance dBI(mPCR5,m) (for the

case of two BBAs only), or by dBI(mPCR6,m) if more

than two sources are considered in the fusion process, where

m is the result of the fusion principle based on canonical

decompositions, and mPCR5 (resp. mPCR6) is the result

of the combination of original BBAs altogether with PCR5

(resp. PCR6) rule. The dBI distance between two BBAs

m1(·) and m2(·) defined on the powerset of a given FoD

Θ = {θ1, . . . , θn} has been proposed and justified in [21],

[22]. It is defined by

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)), (14)

where Nc = 1/2n−1 is a normalization factor to

make dBI(m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X))
is Wassertein’s distance [23] between belief intervals

BI1(X) , [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) ,

[Bel2(X), P l2(X)] = [a2, b2]. Here, d2W (BI1(X), BI2(X))
entering in (14) is given by

d2W ([a1, b1], [a2, b2]) ,

[

a1 + b1
2

− a2 + b2
2

]2

+
1

3

[

b1 − a1
2

− b2 − a2
2

]2

. (15)

Figure 2 shows the normalized histogram (i.e. the

empirical probability distribution) of the distance values

dEBI(mPCR5,m) based on 20000 random15 generations of

dichotomous BBAs m1 and m2. One observes that the new

fusion approach based on the canonical decompositions of

BBAs (with the conjunctive fusion of pro-evidences, and the

conjunctive fusion of contra-evidences) provides a solution

which is very close to what we obtain from the direct ap-

plication of PCR5 rule, with a mean of 0.0287 and a standard

deviation of 0.0289. In 98.20% of cases, the final decision

(based on the min of dEBI decision-making strategy explained

in [22]) based on mPCR5, or on m are in agreement. This

means that the decision agreement (DA) rate is 98.20%.

Figures 3 show the normalized histograms of the

dEBI(mPCR6,m) values based also on 20000 random runs

for the fusion of 6 dichotomous BBAs respectively. We use

15For this, we generate three random numbers uniformly distributed in [0, 1]
and we normalize them to generate randomly a dichotomous BBA.
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Figure 2. Normalized histogram of dE
BI

(mPCR5,m) for 2 dichotomous
BBAs case (20000 runs).

PCR6 rule instead of PCR5 rule to combine the 6 dichotomous

BBAs altogether because PCR6 rule has been recognized to

be more effective than PCR5 in applications [5] (Vol.2 - Chap.

2). As we can observe, the shape of the histograms is a bit

different from the histogram of fig. 2, but what matters is that

the mean value and the standard deviation of the dEBI distance

are still low (0.1119 and 0.0392 respectively) indicating that

the approximation obtained by this new fusion method is

globally very good. Also the decision based on this new

fusion approach is globally coherent with the decision taken

by the direct PCR6 fusion of the BBAs (95.84% of decision

coherence).

Figure 3. Normalized histogram of dE
BI

(mPCR6,m) for 6 dichotomous
BBAs case (20000 runs).

Several Monte Carlo simulations have been done with

different numbers of dichotomous BBAs to combine. The

results obtained based on 20000 runs Monte Carlo simulations

are summarized in the Table I.

The second column of Table I indicates the mean value,

denoted by mean(dEBI), of the normalized Euclidean belief

Interval distance between the direct fusion of the BBAs by

the PCR5 (when combining 2 BBAs only), or PCR6 rule

(when combining more than two BBAs) and the new fusion

# of BBAs mean(dE
BI

) std(dE
BI

) Decision Agreement (%)

2 0.0287 0.0289 98.20
3 0.0578 0.0373 97.52
4 0.0838 0.0394 96.69
5 0.1008 0.0397 96.05
6 0.1119 0.0392 95.84
7 0.1169 0.0385 95.40
8 0.1200 0.0374 94.89
9 0.1211 0.0365 94.25
10 0.1204 0.0348 94.21

Table I
COMPARATIVE EVALUATION OF CANONICAL DECOMPOSITION FUSION

METHOD W.R.T. THE DIRECT PCR-BASED FUSION METHOD.

rule based on their canonical decomposition. The third column

of the Table I shows the corresponding standard deviation

values denoted by std(dEBI ). The last column indicates the

decision agreement (DA) factor between the decision taken

from the direct fusion method, and the indirect (canonical

decomposition based) method. As we can see, the DA factors

are very high which means that most of the time the decisions

taken from the direct fusion method and from the indirect

fusion method are the same.

After a deep analysis of our simulation results, one can

attest that the decision-making disagreement occurs when the

numerical values of the mass of A and the mass of Ā are very

close. This indicates a very high ambiguity in the decision to

take in such situation which can be easily tracked in practice

by evaluating the quality indicator of the decision-making -

see [22] for details.

In this paper we did not investigate the quality of the

approximation of the fusion result based on this canonical

decomposition when replacing the PCR5 fusion step of mp

and mc by other rules of combination because the core of the

canonical decomposition is based on PCR5.

C. Computational time of the new fusion method

Because of very high combinatorial complexity (and thus

high computational time) required for applying the direct

PCR6 fusion of many BBAs, we did only make the perfor-

mance evaluation up to the fusion of ten BBAs only with

PCR6. We conjecture that the performances of this new fusion

method based on canonical decomposition will very slowly

degrade with the increase of the number of BBAs involved in

the fusion process. Of course the new fusion method based on

this canonical decomposition does not suffer of combinatorial

complexity limitation which is of great interest in some

applications (like in multi-spectral imagery for detection and

classification) because many (hundreds or even thousands) of

dichotomous BBAs could be easily combined very quickly.

Actually with this method what takes a bit time is only the

canonical decomposition done by the numerical solver16.

Figure 4 shows the average (based on 50 random runs)

computational time (in seconds) of the direct PCR6 fusion

of the BBAs altogether (red plot), and the average compu-

tational time of the new fusion method based on canonical

decomposition (blue plot). It is clear that the computational

16We did use Matlab™ fsolve function for this.
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time of the direct PCR6 fusion method (the red curve) grows

exponentially with the number of sources, whereas the com-

putational time grows only slowly and quasi-linearly with the

new method proposed in this work.
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Figure 4. Computing time versus number of BBAs to combine.

Based on a set of 1000 random dichotomous BBAs, figure

5 shows that the computational time (in seconds) of the

fusion based on the canonical decomposition is a quasi-linear17

function of the number of BBAs to combine.
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Figure 5. Computing time versus number of BBAs to combine.

Figures 4 and 5 show the computational times including

the canonical decomposition itself done on the fly. Of course,

the canonical decomposition could be done off-line once for

all and stored in the computer memory (if necessary) - see

for instance the (x, y) values given in [7] for convenience.

If we have n dichotomous BBAs to combine, we have to

make their canonical decomposition at first and because the n

17It is not strictly linear because the time for the numerical fsolve search
of pro-evidence and contra-evidence factors for making the canonical decom-
position is not constant.

pro-evidence BBAs to combine (resp. contra evidence BBAs)

have a very simple structure their conjunctive fusion mp(A)
is obtained very quickly by the direct product of n real

numbers, that is mp(A) =
∏n

i=1
mp,i(A), and we need

also a subtraction because mp(A ∪ Ā) = 1 − mp(A). The

complexity of this fast suboptimal PCR fusion approach (once

the canonical decomposition is available) is therefore 2(n−1)
multiplications and 2 subtractions for making the conjunctive

fusion of mp,i and the conjunctive fusion of mc,i, and 7

additions and 5 multiplications for making the PCR5 fusion of

mp with mc. There is no need to use the commonality function

or the Smets canonical decomposition to make the fusion of

these dichotomous BBAs. These figures show clearly the real

advantage of the fusion of dichotomous BBAs based on their

canonical decompositions in term of computational time, and

that is why we can say that the new proposed method is really

a fast fusion method with respect to the direct PCR5 or PCR6

rule of combination when working with a dichotomous frame

of discernment.

D. On the fusion of pro and contra evidences

In the previous analysis, we did use the conjunctive rule for

the intermediary fusion step of pro-evidences in one hand, and

the intermediary fusion step of contra-evidences in the other

hand. It is worth noting that the intermediary step of fusion of

pro-evidences, and the intermediary step of fusion of contra-

evidences can be done in parallel which offers a computational

advantage with respect to the direct fusion method (if one

has many sources to combine in a specific application). This

parallelization cannot be achieved in general with the other

existing rules of combination of evidences.

Because of the fusion principle depicted in Figure 1, this

new fusion method offers also the possibility (if one prefers

for some own specific reasons) of selecting other fusion rules

for the intermediary fusion steps for combining the pro-

evidences, and the contra-evidences. Of course the choice of

the fusion rules used for the combination of pro-evidences and

the combination of contra-evidences impacts the final result,

but depending on the type of rules chosen we can obtain an

associative rule, an idempotent rule, and even a new cautious

rule. For example, let’s consider the same type of fusion rule

for combining the pro-evidences mp,s s = 1, . . . , S, and for

combining contra-evidences mc,s s = 1, . . . , S and consider

the following cases:

1) If we use the conjunctive rule [5] (Vol. 1), denoted by

Conj(., . . . , .) (as we did previously in our Monte Carlo

simulations for histogram plots), then

mp = Conj(mp,1, . . . ,mp,S),

and one has mp(A∪ Ā) =
∏S

s=1
(1−xs) and mp(A) =

1−mp(A∪ Ā). Because the conjunctive rule is associa-

tive the fusion of pro-evidences can be done sequentially.

Similarly, for the fusion of contra-evidences using the

conjunctive rule one has mc(A∪Ā) =
∏S

s=1
(1−ys) and

mp(Ā) = 1 −mc(A ∪ Ā). Because there is no conflict

between the pro-evidences (resp. contra-evidences), the
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fusion result of the pro-evidences (resp. the contra-

evidences) by PCR5 (or PCR6) rules is equivalent to the

conjunctive fusion result. The conjunctive rule however

is not idempotent in general but in very specific cases

where only one focal element gets all the mass of belief.

2) If we prefer to use the averaging rule, then we will

have mp(A) = 1

S

∑S

s=1
xs and mp(A ∪ Ā) = 1 −

mp(A) = 1

S

∑S

s=1
(1 − xs), and mc(Ā) = 1

S

∑S

s=1
ys

and mc(A ∪ Ā) = 1 − mc(Ā) = 1

S

∑S

s=1
(1 − ys).

Because the averaging rule is not associative, the se-

quential fusion of pro-evidences (and contra-evidences)

is not recommended, however the averaging rule allows

to get an idempotent fusion rule based on canonical

decompositions if needed.

3) We could also prefer to use the min rule to build a new

cautious rule of combination which will be associative

and idempotent. For this, we just have to take mp(A) =
mins=1,...,S(xs) and mp(A∪Ā) = 1−mp(A). Similarly,

mc(Ā) = mins=1,...,S(ys) and mc(A∪Ā) = 1−mc(Ā).

V. CONCLUSIONS

In this research paper, we did propose a new fusion

method to combine very quickly many BBAs defined on a

dichotomous frame of discernment thanks to their unique

canonical decompositions. This new interesting method can

be parallelized and offers the advantage to have a quasi-linear

computational time with the number of sources. For now, this

method is limited to the fusion of many BBAs that are defined

on a simple (dichotomous) frame of discernment. After some

unsuccessful attempts, it appears that the development of a fast

fusion method based on the canonical decomposition principle

for working with non-dichotomous frames of discernment is

actually a very difficult problem that we want to address to the

scientific community working with belief functions as a future

research challenge. This very new method brings already a

significant benefit for real application involving inter-criteria

analysis for the evaluation of multiple-objective ant colony op-

timization algorithm for wireless sensor networks deployment

that should be reported in a forthcoming publication.

REFERENCES

[1] G. Shafer, A mathematical theory of evidence, Princeton Univ. Press,
1976.

[2] L.A. Zadeh, On the validity of Dempster’s rule of combination, ERL
Memo M79/24, Department of EECS, Univ. of California, Berkeley,
U.S.A., 1979.

[3] L.A. Zadeh, A simple view of the Dempster-Shafer theory of evidence

and its implication for the rule of combination, The Al Magazine,
Vol. 7(2), pp. 85–90, 1986.

[4] J. Dezert, P. Wang, A. Tchamova, On the validity of Dempster-Shafer

theory, Proc. of Fusion 2012, Singapore, July 9–12, 2012.
[5] F. Smarandache, J. Dezert (Editors), Advances and applications of DSmT

for information fusion – Collected works, American Research Press,
Vol. 1–4, 2004–2015.
http://www.onera.fr/staff/jean-dezert?page=2

[6] F. Smarandache, J. Dezert, Information fusion based on new proportional
conflict redistribution rules, in Proc. of the 8th Int. Conf. on Information
Fusion, Philadelphia, USA, 25–29 July, 2005.

[7] J. Dezert, F. Smarandache, Canonical decomposition of dichotomous

basic belief assignment, International Journal of Intelligent Systems,
March 2020.

[8] P. Smets, The canonical decomposition of a weighted belief, Int. Joint
Conf. on Artificial Intelligence, Morgan Kaufman, San Mateo, CA,
USA, pp. 1896–1901, 1995.

[9] A.P. Dempster, Upper and lower probabilities induced by a multivalued

mapping, The Annals of mathematical Statistics, Vol. 38, No. 2, April
1967.

[10] A.P. Dempster, The generalization of bayesian inference, Technical
report No. 20, Dept. of Statistics, Havard University, November 15,
1967.

[11] T. Denœux, Conjunctive and disjunctive combination of belief func-

tions induced by nondistinct bodies of evidence, Artificial Intelligence
Vol. 172, pp. 234–264, 2008.

[12] A. Tchamova, J. Dezert, On the behavior of Dempster’s rule of combi-
nation and the foundations of Dempster-Shafer theory, in Proc. of 6th
IEEE Int. Conf. on Int. Syst., Sofia, Bulgaria, Sept. 6–8, 2012.

[13] J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and
its interpretation as a generalization of bayesian fusion rule, Int. J. of
Intelligent Syst., Vol. 29, No. 3, pages 223–252, March 2014.

[14] F. Smarandache, J. Dezert, On the consistency of PCR6 with the

averaging rule and its application to probability estimation, in Proc.
of Int. Conf. on Information Fusion (Fusion 2013), Istanbul, Turkey,
July 2013.

[15] J. Dezert, F. Smarandache,Non bayesian conditioning and decondition-
ing, Int. Workshop on Belief Functions, Brest, France, April 2010.

[16] F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of sources of evidence

with different importances and reliabilities, in Proc. of Int. Conf. on
Information Fusion (Fusion 2010), Edinburgh, UK, July 2010.

[17] https://bfasociety.org/
[18] K. Zhou, A. Martin, Q. Pan, A belief combination rule for a large number

of sources, Infinite Study, 17 pages, 2018.
[19] R. Yager, On the Dempster-Shafer framework and new combination

rules, Information Sciences, Vol. 41, pp. 93–138, 1987.
[20] D. Dubois, H. Prade, Representation and combination of uncertainty

with belief functions and possibility measures, Computational Intelli-
gence, Vol. 4, pp. 244–264, 1988.

[21] D. Han, J. Dezert, Y. Yang, Belief interval based distances measures in

the theory of belief functions, IEEE Trans on SMC: Systems, Vol. 48,
No. 6, pp. 833–850, June 2018.

[22] J. Dezert, D. Han, J.-M. Tacnet, S. Carladous, Y. Yang, Decision-making

with belief interval distance, Proc. of Belief 2016 Int. Conf., Prague, CZ,
September 21–23, 2016.

[23] A. Irpino, R. Verde, Dynamic clustering of interval data using a

Wasserstein-based distance, Pattern Rec. Letters, Vol. 29, pp.1648–1658,
2008.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

76



Fast BF-ICrA Method for the Evaluation
of MO-ACO Algorithm for WSN Layout

Jean Dezerta, Stefka Fidanovab, Albena Tchamovab

aThe French Aerospace Lab, ONERA, F-91761 Palaiseau, France.
bInstitute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria.

Emails: jean.dezert@ onera.fr, stefka@ parallel.bas.bg, tchamova@ bas.bg

Abstract—In this paper, we present a fast Belief Function
based Inter-Criteria Analysis (BF-ICrA) method based on the
canonical decomposition of basic belief assignments defined on
a dichotomous frame of discernment. This new method is then
applied for evaluating the Multiple-Objective Ant Colony Op-
timization (MO-ACO) algorithm for Wireless Sensor Networks
(WSN) deployment.

Keywords: Inter-Criteria Analysis, belief functions, informa-
tion fusion, canonical decomposition, PCR5 rule.

I. INTRODUCTION

In our previous work [1] we propose a new and improved
version of classical Atanassov’s InterCriteria Analysis (ICrA)
[2]–[4] approach based on Belief Functions (BF-ICrA). This
method proposes a better construction of Inter-Criteria Matrix
that fully exploits all the information of the score matrix, and
the closeness measure of agreement between criteria based
on belief interval distance. In [5], we show how the fusion
of many sources of evidences represented by Basic Belief
Assignments (BBAs) defined on a same dichotomous frame
of discernment can be fast and easily done thanks to the Pro-
portional Conflict Redistribution rule no.5 (PCR5) and based
on canonical decomposition of the BBAs, proposed recently
in [6]. In the recent paper we consider BF-ICrA based on this
promising technique. Then we show how to apply it for the
evaluation of the Multiple-Objective Ant Colony Optimization
(MO-ACO) algorithm for Wireless Sensor Networks (WSN)
deployment. After a condensed presentation of basics of belief
functions in Section II, including the short description of
canonical decomposition of dichotomous BBAs approach, and
the main steps of fast fusion method of dichotomous BBAs,
in Section III the BF-ICrA method is described and analyzed.
Section IV is devoted to the multi-objective ACO algorithm.
In Section V the results of the fast BF-ICrA method with the
MO-ACO algorithm for WSN layout deployment is presented
and discussed. Conclusion is given in Section VI.

II. BAS ICS OF B EL IEF FUNCTIONS

A. Basic definitions

Belief functions (BF) have been introduced by Shafer in
[7] to model epistemic uncertainty and to combine distinct
sources of evidence thanks to Dempster’s rule of combination.

In Shafer’s framework, we assume that the answer1 of the
problem under concern belongs to a known finite discrete
frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn}, with
n > 1, and where all elements of Θ are mutually exclusive
and exhaustive. The set of all subsets of Θ (including empty
set ∅ and Θ) is the power-set of Θ denoted by 2Θ. A proper
Basic Belief Assignment (BBA) associated with a given source
of evidence is defined [7] as a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑

A∈2Θ
m(A) = 1. The quantity

m(A) is called the mass of A committed by the source of
evidence. Belief and plausibility functions are respectively
defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B), (1)

and
Pl(A) =

∑

B∈2Θ|A∩B 6=∅
m(B) = 1− Bel(Ā), (2)

where Ā is the complement of A in Θ.
Bel(A) and Pl(A) are usually interpreted respectively as

lower and upper bounds of an unknown (subjective) probabil-
ity measure P (A). The quantities m(·) and Bel(·) are one-
to-one and linked by the Möbius inverse formula (see [7], p.
39). A is called a Focal Element (FE) of m(·) if m(A) > 0.
When all focal elements are singletons, m(·) is called a
Bayesian BBA [7] and its corresponding Bel(·) function is
equal to Pl(·) and they are homogeneous to a (subjective)
probability measure P (·). The vacuous BBA, representing
a totally ignorant source, is defined as mv(Θ) = 1. A
dichotomous BBA is a BBA defined on a FoD which has only
two proper subsets, for instance Θ = {A, Ā} with A 6= Θ and
A 6= ∅. A dogmatic BBA is a BBA such that m(Θ) = 0. If
m(Θ) > 0 the BBA m(·) is nondogmatic. A simple BBA is
a BBA that has at most two focal sets and one of them is Θ.
A dichotomous non dogmatic mass of belief is a BBA having
three focal elements A, Ā and A ∪ Ā with A and Ā subsets
of Θ.

In his Mathematical Theory of Evidence [7], Shafer pro-
posed to combine s ≥ 2 distinct sources of evidence repre-
sented by BBAs with Dempster’s rule (i.e. the normalized con-
junctive rule), which unfortunately behaves counterintuitively

1i.e. the solution, or the decision to take.

Originally published as: J. Dezert, S. Fidanova, A. Tchamova, Fast BF-ICrA Method for the Evaluation of 
MO-ACO Algorithm for WSN Layout, in Proc. of FedCSIS Int. Conf., Sofia, Bulgaria, Sept. 6–9, 2020, 
and reprinted with permission.
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both in high and low conflicting situations as reported in [8]–
[11]. In our previous works (see [12], Vol. 2 and Vol. 3 for full
justification and examples) we did propose new rules of combi-
nation based on different Proportional Conflict Redistribution
(PCR) principles, and we have shown the interest of the PCR
rule No 5 (PCR5) for combining two BBAs, and PCR rule
No 6 (PCR6) for combining more than two BBAs altogether
[12], Vol. 2. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6 lies in
the way the proportional conflict redistribution is done as soon
as three (or more) sources are involved in the fusion. PCR5
transfers the conflicting mass only to the elements involved in
the conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved in
this fusion process.

The general (complicate) formulas for PCR5 and PCR6
rules are given in [12], Vol. 2. The fusion of two BBAs based
on PCR5 (or PCR6) rule which will be use for canonical
decomposition of a dichotomous BBA is obtained by the
formula

mPCR5(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
], (3)

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded.

From the implementation point of view, PCR6 is simpler
to implement than PCR5. For convenience, very basic (not
optimized) Matlab™ codes of PCR5 and PCR6 fusion rules
can be found in [12], [13] and from the toolboxes repository
on the web [14]. The main drawback of PCR5 and PCR6 rules
is their very high combinatorial complexity when the number
of source is big, as well as the cardinality of the FoD. In this
case, PCR5 or PCR6 rules cannot be used directly because
of memory overflow. Even for combining BBAs defined on a
simple dichotomous FoD as those involved in the Inter-Criteria
Analysis (ICrA), the computational time for combining more
than 10 sources can take several hours2. That is why a fast
fusion method to combine dichotomous BBAs is necessary,
and we present it in the next subsections.

B. Canonical decomposition of dichotomous BBA

A FoD Θ = {A, Ā} is called dichotomous if it consists of
only two proper subsets A and Ā with A∪Ā = Θ and A∩Ā =
∅, where Ā is the complement of A in Θ and A is different
from Θ and from Empty-Set. We consider a given proper BBA
m(·) : 2Θ → [0, 1] of the general form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b. (4)

2with a MacBook Pro 2.8 GHz Intel Core i7 with 16 Go 1600 MHz DDR3
memory running Matlab™ R2018a.

The canonical decomposition problem consists in finding the
two following simple proper BBAs mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1− x, (5)

mc(Ā) = y, mc(A ∪ Ā) = 1− y, (6)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted by Fusion(·, ·). The
simple BBA mp(·) is called the pro-BBA (or pro-evidence)
of A, and the simple BBA mc(·) the contra-BBA (or contra-
evidence) of A. The BBA mp(·) is interpreted as a source
of evidence providing an uncertain evidence in favor of A,
whereas mc(·) is interpreted as a source of evidence providing
an uncertain contrary evidence about A.

In [6], we have shown that this decomposition is possible
with Dempster’s rule only if 0 < a < 1, 0 < b < 1 and
a + b < 1, and we have x = a

1−b
and y = b

1−a
. However,

any dogmatic BBA m(A) = a, m(Ā) = b with a + b = 1
is not decomposable from Dempster’s rule for the case when
(a, b) 6= (1, 0) and (a, b) 6= (0, 1), and the dogmatic BBAs
m(A) = 1, m(Ā) = 0, or m(A) = 0, m(Ā) = 1 have
infinitely many decompositions based on Dempster’s rule of
combination. We have also proved that this canonical decom-
position cannot be done from conjunctive, disjunctive, Yager’s
[15] or Dubois-Prade [16] rules of combination, neither from
the averaging rule. The main result of [6] is that this canonical
decomposition is unique and is always possible in all cases
using the PCR5 rule of combination. This is very useful to
implement a fast efficient approximating fusion method of
dichotomous BBAs as presented in details in [5]. We recall
the following two important theorems proved in [6].

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with
A 6= Θ and A 6= ∅ and a nondogmatic BBA m(·) : 2Θ → [0, 1]
defined on Θ by m(A) = a, m(Ā) = b, and m(A ∪ Ā) =
1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA
m(·) has a unique canonical decomposition using PCR5 rule
of combination of the form m = PCR5(mp,mc) with pro-
evidence mp(A) = x, mp(A∪Ā) = 1−x and contra-evidence
mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorem 2: Any dogmatic BBA defined by m(A) = a and
m(Ā) = b, where a, b ∈ [0, 1] and a+ b = 1, has a canonical
decomposition using PCR5 rule of combination of the form
m = PCR5(mp,mc) with mp(A) = x, mp(A ∪ Ā) = 1− x
and mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorems 1 & 2 prove that the decomposition based on
PCR5 always exists and it is unique for any dichotomous
(nondogmatic, or dogmatic) BBA.

For the case of dichotomous nondogmatic BBA considered
in Theorem 1, one has to find x and y solutions of the system

a = x(1 − y) +
x2y

x+ y
=

x2 + xy − xy2

x+ y
, (7)

b = (1− x)y +
xy2

x+ y
=

y2 + xy − x2y

x+ y
, (8)
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under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1.
The explicit expression of x and y are difficult to obtain
analytically (even with modern symbolic computing systems
like Mathematica™ , or Maple™ ) because one has a quartic
equation to solve whose general analytical expression of its
solutions is very complicate. Fortunately, the solutions can be
easily calculated numerically by these computing systems, and
even with Matlab™ system (thanks to the fsolve function) as
soon as the numerical values are committed to a and to b, and
this is what we use in our simulations.

C. Fast Fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous
BBAs ms(.), for s = 1, 2, . . . , S defined on the same FoD Θ
is based on the three following main steps:

1) In the first step, one decomposes canonically each di-
chotomous BBA ms(·) into its pro and contra evidences
mp,s = (mp,s(A),mp,s(Ā),mp,s(A∪ Ā)) = (xs, 0, 1−
xs) and mc,s = (mc,s(A),mc,s(Ā),mc,s(A ∪ Ā)) =
(0, ys, 1− ys);

2) In the second step, one combines the pro-evidences
mp,s for s = 1, 2, . . . , S altogether to get a global
pro-evidence mp, and in parallel one combines all the
contra-evidences mc,s for s = 1, 2, . . . , S altogether to
get a global contra-evidence mc. The fusion step of pro
and contra evidences is based on conjunctive rule of
combination;

3) Once mp and mc are calculated, then one combines
them with PCR5 fusion rule to get the final result.

Because the PCR5 rule of combination is not associative, the
fusion of the canonical BBAs followed by their PCR5 fusion
will not provide in general the same result as the direct fusion
of the dichotomous BBAs altogether but only an approximate
result, which is normal. However, this new fusion approach
is interesting because the fusion of the pro-evidence mp,s

(resp. contra-evidences mc,s) is very simple because there is
no conflict between mp,s (resp. between mc,s), so that their
fusion can be done quite easily and a large number of sources
can be combined without a high computational burden. In fact,
with this fusion approach, only one PCR5 fusion step of simple
(combined) canonical BBAs is needed at the very end of the
fusion process. In [5], we have proved with a Monte-Carlo
simulation analysis that the approximation obtained by this
new fusion method based on the fusion of pro-evidences and
contra-evidences with respect to the direct fusion of the BBAs
with PCR5 (or PCR6 when considering more than two sources
to combine) is effective because the agreement between the
decision taken from the direct fusion method, and the indirect
(canonical decomposition based) method is very good. This
new fusion method based on this canonical decomposition
does not suffer of combinatorial complexity limitation which is
of great interest in some applications because many (hundreds
or even thousands) of dichotomous BBAs could be easily
combined very quickly. Actually with this method what takes
a bit time is only the canonical decomposition done by the

numerical solver. Our analysis [5] has shown that complexity
of this fast approach is quasi-linear with the number of sources
to combine.

III. THE B F-ICRA METHOD

In [1], we did present an improved version of Atanassov’s
Inter-Criteria Analysis (ICrA) method [2]–[4] based on belief
functions. This new method has been named BF-ICrA (Belief
Function based Inter-Criteria Analysis) for short. It has already
been applied to GPS surveying problems in [17]. We present
briefly in this section the principles of BF-ICrA.

BF-ICrA starts with the construction of an M × N BBA
matrix M = [mij(·)] from the score matrix S = [Sij ]. The
BBA matrix M is obtained as follows - see [18] for details
and justification.

mij(Ai) = Belij(Ai), (9)
mij(Āi) = Belij(Āi) = 1− Plij(Ai), (10)

mij(Ai ∪ Āi) = Plij(Ai)−Belij(Ai), (11)

where3

Belij(Ai) , Supj(Ai)/A
j
max, (12)

Belij(Āi) , Infj(Ai)/A
j
min, (13)

with

Supj(Ai) ,
∑

k∈{1,...,M}|Skj≤Sij

|Sij − Skj |, (14)

Infj(Ai) , −
∑

k∈{1,...,M}|Skj≥Sij

|Sij − Skj |, (15)

and

Aj
max , max

i
Supj(Ai), (16)

Aj
min

, min
i

Infj(Ai). (17)

For another criterion Cj′ and the j′-th column of the score
matrix we will obtain another set of BBA values mij′ (·).
Applying this method for each column of the score matrix we
are able to compute the BBA matrix M = [mij(·)] whose each
component is in fact a triplet (mij(Ai),mij(Āi),mij(Ai ∪
Āi)) of BBA values in [0, 1] such that mij(Ai) +mij(Āi) +
mij(Ai ∪ Āi)) = 1 for all i = 1, . . . ,M and j = 1, . . . , N .

The next step of BF-ICrA approach is the construction of
the N × N Inter-Criteria Matrix K = [Kjj′ ] from M × N
BBA matrix M = [mij(·)] where elements Kjj′ corresponds
to the BBA (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄)) about positive
consonance θ, negative consonance θ̄ and uncertainty between
criteria Cj and Cj′ respectively. The construction of the triplet
Kjj′ = (mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪ θ̄)) is based on two steps:

• Step 1 (BBA construction): Getting mi
jj′ (.).

For each alternative Ai for i = 1, . . . ,M , we first
compute the BBA (mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ ∪ θ̄)) for

3assuming that Aj
max 6= 0 and Aj

min
6= 0. If Aj

max = 0 then
Belij(Ai) = 0, and if Aj

min
= 0 then P lij(Ai) = 1.
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any two criteria j, j′ ∈ {1, 2, . . . , N}. For this, we
consider two sources of evidences (SoE) indexed
by j and j′ providing the BBA mij and mij′

defined on the simple FoD {Ai, Āi} and denoted
mij = [mij(Ai),mij(Āi),mij(Ai ∪ Āi)] and mij′ =
[mij′ (Ai),mij′ (Āi),mij′ (Ai∪Āi)]. We also denote Θ =
{θ, θ̄} the FoD about the relative state of the two SoE,
where θ means that the two SoE agree, θ̄ means that they
disagree and θ ∪ θ̄ means that we don’ t know. Hence,
two SoE are in total agreement if both commit their
maximum belief mass to the same element Ai or to
the same element Āi. Similarly, two SoE are in total
disagreement if each one commits its maximum mass
of belief to one element and the other to its opposite,
that is if one has mij(Ai) = 1 and mij′ (Āi) = 1, or
if mij(Āi) = 1 and mij′ (Ai) = 1. Based on this very
simple and natural principle, one can now compute the
belief masses as follows:

mi
jj′ (θ) = mij(Ai)mij′ (Ai) +mij(Ā)mij′ (Ā), (18)

mi
jj′ (θ̄) = mij(Ai)mij′ (Āi) +mij(Āi)mij′ (Ai), (19)

mi
jj′ (θ ∪ θ̄) = 1−mi

jj′ (θ)−mi
jj′ (θ̄). (20)

mi
jj′ (θ) represents the degree of agreement between the

BBA mij(·) and mij′ (·) for the alternative Ai, mi
jj′ (θ̄)

represents the degree of disagreement of the two BBAs
and mi

jj′ (θ ∪ θ̄) the level of uncertainty (i.e. how much
we don’t know if they agree or disagree). By construction
mi

jj′ (·) = mi
j′j(·), mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ ∪ θ̄) ∈ [0, 1]

and mi
jj′ (θ) + mi

jj′ (θ̄) + mi
jj′ (θ ∪ θ̄) = 1. This BBA

modeling permits to build a set of M symmetrical
Inter-Criteria Belief Matrices (ICBM) K

i = [Ki
jj′ ] of

dimension N ×N relative to each alternative Ai whose
components Ki

jj′ correspond to the triplet of BBA values
mi

jj′ = (mi
jj′ (θ),m

i
jj′ (θ̄),m

i
jj′ (θ ∪ θ̄)) modeling the

belief of agreement and of disagreement between Cj and
Cj′ based on Ai.

• Step 2 (fusion): Getting mjj′(.).

In this step, one needs to combine the BBAs m
i
jj′(.) for

i = 1, . . . ,M altogether to get the component Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪θ̄)) of the Inter-Criteria Belief
matrix4 (ICBM) K = [Kjj′ ]. For this and from the
theoretical standpoint, we recommend to use the PCR6
fusion rule [12] (Vol. 3) because of known deficiencies
of Dempster’s rule.

Once the global Inter-Criteria Belief Matrix (ICBM) K =
[Kjj′ = (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄))] is calculated, we
can identify the criteria that are in strong agreement, in
strong disagreement, and those on which we are uncertain.
For identifying the criteria that are in strong agreement, we
evaluate the distance of each component of Kjj′ with the BBA

4For the presentation convenience, the ICBM K, with K =
[Kjj′ = (mjj′ (θ), mjj′ (θ̄), mjj′ (θ ∪ θ̄))], is decomposed into three ma-
trices K(θ) = [Kθ

jj′
= mjj′ (θ)], K(θ̄) = [K θ̄

jj′
= mjj′ (θ̄)] and

K(θ ∪ θ̄) = [Kθ∪θ̄
jj′

= 1−mjj′ (θ)−mjj′ (θ̄)].

representing the best agreement state and characterized by the
specific BBA5 mT (θ) = 1. From a similar approach we can
also identify, if we want, the criteria that are in very strong
disagreement using the distance of mjj′ (·) with respect to the
BBA representing the best disagreement state characterized
by the specific BBA mF (θ̄) = 1. We use the belief interval
distance dBI(m1,m2) presented in [19] for measuring the
distance between the two BBAs.

A. Fast BF-ICrA method

The computational complexity of BF-ICrA is of course
higher than the complexity of ICrA because it makes a more
precise evaluation of local and global inter-criteria belief
matrices with respect to inter-criteria matrices calculated by
Atanassov’s ICrA. The overall reduction of the computational
burden of the original MCDM problem thanks to BF-ICrA
depends highly on the problem under concern, the complexity
and cost to evaluate each criteria involved in it, as well as the
number of redundant criteria identified by BF-ICrA method.

The main drawback of BF-ICrA method is the PCR6
combination required in its step 2 for combining altogether
the dichotomous BBAs mi

jj′ (.). Because of combinatorial
complexity of PCR6 rule, it cannot work in reasonable com-
putational time as soon as the number of sources to combine
altogether is greater than 10, which prevents its use for solving
ICrA problems involving more than 10 alternatives (as in
the examples 2 and 3 presented in section V). That is why
it is necessary to adapt the original BF-ICrA method for
working with a large number of alternatives and criteria. For
this, we can in step 2 of BF-ICrA exploit the method for
the fast fusion of dichotomous BBAs presented in section
II-C. More precisely, each dichotomous BBA mi

jj′ (.) will be
canonically decomposed in its pro-evidence mi

jj′,p(.) and its
contra-evidence mi

jj′,c(.) that will be combined separately to
get the global pro-evidence mjj′,p(.) and the global contra-
evidence mjj′,c(.). Then, the BBAs mjj′,p(.) and mjj′,c(.)
are combined with PCR5 rule to get the BBAs mjj′ (.) and,
finally, the global Inter-Criteria Belief Matrix K = [Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄))]. The principle of this mod-
ified step 2 of BF-ICrA is summarized in the Figure 1 for
convenience.

Another simpler fusion method to combine the dichotomous
BBAs mi

jj′ (.) would just consist to average them. In section V,
we will show how these two methods behave in the examples
chosen for the evaluation of MO-ACO Algorithm for optimal
WSN deployment.

IV. MULTI-OB J ECTIVE ACO AL GORITHM

Recently Wireless Sensor Networks (WSNs) have attracted
the attention of the research scientists community, conditioned
by a set of challenges: theoretical and practical. WSNs consists
of distributed sensor nodes and their main purpose is to
monitor the real-time environmental status, based on gathering
available sensor information, processing and transmitting the

5We use the index T in the notation mT (·) to refer that the agreement is
true, and F in mF (·) to specify that the agreement is false.
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Figure 1. Principle of fast fusion of mi
jj′

(.) of Step 2 of BF-ICrA.

collected data to the specified remote base station. It is a
promising technology that is used in a coverage of application
requiring minimum human contribution, ranging from civil
and military to healthcare and environmental monitoring. One
of the key mission of WSN is the full surveillance of the moni-
toring region with a minimal number of sensors and minimized
energy consumption of the network. The lifetime of the sensors
is strongly related to the amount of the power loaded in the
battery, that is why the control of the energy consumption
of sensors is an important active research problem. The small
energy storage capacity of sensor nodes intrudes the possibility
to gather the information directly to the main base. Because
of this they transfer their data to the so called High Energy
Communication Node (HECN), which is able to collect the
information from across the network and to transmit it to the
base computer for processing. The sensors transmit their data
to the HECN, either directly or via hops, using closest sensors
as communication relays. The WSN can have large numbers
of nodes and the problem can be very complex.

In order to solve successfully the key mission of WSNs, in
[20], we did apply multi-objective Ant Colony Optimization
(ACO) to solve this hard, from the computational point of
view, telecommunication problem. The number of ants is
one of the key algorithm parameters in the ACO and it is
important to find the optimal number of ants needed to achieve
good solutions with minimal computational resources. In [20],
the optimal solution was obtained by applying the classical
Atanassov’s ICrA method. In the next section we will present
the results obtained by the fast BF-ICrA approach and compare
their results.

The problem of designing a WSN is multi-objective, with
two objective functions: 1) one wants to minimize the energy
consumption of the nodes in the network, and 2) one wants
to minimize the number of nodes. The full coverage of the
network and connectivity are considered as constraints. For
solving this problem, we have proposed to use a Multi-

Objective Ant Colony Optimization (MO-ACO) algorithm in
[20] and we have studied the influence of the number of ants
on the algorithm performance and quality of the achieved solu-
tions. The computational resources, which the algorithm needs,
are not negligible. The computational resources depends on the
size of the solved problem and on the number of ants. The aim
is to find a minimal number of ants which allow the algorithm
to find good solution for WSN deployment.

The ACO algorithm uses a colony of artificial ants that
behave as cooperating agents. With the help of the pheromone
and the heuristic information they try to construct better solu-
tions and to find the optimal ones. The pheromone corresponds
to the global memory of the ants and the heuristic information
is a some preliminary knowledge of the problem. The problem
is represented by a graph and the solution is represented by
a path in the graph or by tree in the graph. Ants start from
random nodes and construct feasible solutions. When all ants
construct their solution the pheromone is updated. The new,
added, pheromone depends to the quality of the solution. The
elements of the graph, which belong to better solutions will
receive more pheromone and will be more desirable in the
next iteration. In our implementation, we use the MAX-MIN
Ant System (MMAS) which is one of the most successful
ant approaches originally presented in [21]. In our case, the
graph of the problem is represented by a square grid. The
nodes of the graph are enumerated. The ants will deposit
their pheromone on the nodes of the grid. We will deposit
the sensors on the nodes of the grid too. The solution is
represented by tree. An ant starts to create a solution starting
from random node, which communicates with the HECN.
Construction of the heuristic information is a crucial point
in the ant algorithms. Our heuristic information represented
by (21) is a product of three values.

ηij(t) = sij lij(1− bij) (21)

where sij is the number of the new points (nodes of the
graph) which the new sensor will cover, and which are not
covered by other sensors, and

lij =

{

1 if communication exists ;
0 if there is no communication.

(22)

and where bij is the solution matrix. The matrix element
bij equals 1 when there is sensor on this position, otherwise
bij = 0. With sij , we try to increase the number of points
covered by one sensor and thus to decrease the number of
sensors we need. With lij , we guarantee that all sensors
will be connected. With bij we guarantee that maximum one
sensor will be mapped on the same point. The search stops
when transition probability pij = 0 for all values of i and
j. It means that there are no more free positions, or that
all area is fully covered. At the end of every iteration the
quantity of the pheromone is updated according to the rule:
τij ← ρτij + ∆τij , with the increment ∆τij = 1/F (k) if
(i, j) belongs to the non-dominated solution constructed by
ant k, or ∆τij = 0 otherwise. The parameter ρ is a pheromone
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decreasing parameter chosen in [0, 1]. This parameter ρ models
evaporation in the nature and decreases the influence of old
information on the search process. After that, we add the new
pheromone, which is proportional to the value of the fitness
function constructed as F (k) = f1(k)

maxi(f1(i))
+ f2(k)

maxi(f2(i))
,

where f1(k) is the number of sensors proposed by the k-th ant,
and f2(k) is the energy of the solution of the k-th ant. These
are also the objective functions of the WSN layout problem.
We normalize the values of two objective functions with their
maximal achieved values from the first iteration.

V. APPL ICATION OF THE FAS T B F-ICRA METHOD

In this section we present the results of the fast BF-
ICrA method with the MO-ACO algorithm for WSN layout
deployment. Fidanova and Roeva have developed a software,
which realizes the MO-ACO algorithm. This software can
solve the problem at any rectangular area, the communication
and the coverage radius can be different and can have any
positive value. We can have regions in the area. The program
was written in C language, and the tests were run on computer
with an Intel Pentium 2.8GHz processor. In their tests, they
use an example where the area is square. The coverage and
communication radii cover 30 points. The HECN is fixed in
the centre of the area. In the sequel we consider three examples
of areas with three sizes: 350× 350 points, 500× 500 points,
and 700×700 points. The MO-ACO algorithm is based on 30
runs for each number of ants. We extract the Pareto front from
the solutions of these 30 runs, and we show the achieved non
dominated solutions (approximate Pareto fronts) for each case
on which the BF-ICrA will be applied. The score matrices for
each case is given in Tables I, II and III [20].

S =















ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

111 30 36 30 30 30 30 30 30 30 30

112 30 36 30 30 30 30 30 30 30 30

113 28 35 28 30 30 30 28 28 28 28

114 26 26 26 26 26 26 26 26 26 26

115 26 26 26 26 26 26 26 26 26 26

116 26 26 26 26 26 26 25 25 26 25















Table I
THE 6× 10 S CORE MATRIX S FOR 350 × 350 CAS E (E X AMPL E 1).

S =















































































ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

223 90 96 90 90 89 81 90 90 90 90

224 61 96 89 89 88 65 61 59 57 71

225 61 96 74 58 60 58 57 58 57 57

226 59 95 73 57 59 57 56 58 57 57

227 60 57 57 57 57 56 56 57 57 57

228 60 57 57 57 57 56 56 57 54 57

229 58 57 57 55 57 56 56 56 54 56

230 57 57 57 55 57 52 56 54 54 56

231 57 55 57 55 55 52 56 54 54 56

232 57 55 55 51 54 50 52 51 54 48

233 57 55 55 51 54 50 51 51 54 48

234 57 55 55 51 53 50 51 48 53 48

235 57 55 54 51 53 50 51 48 50 48

236 57 55 54 51 53 50 51 48 50 48

237 57 55 54 51 53 50 51 48 50 48

238 57 55 53 51 53 50 51 48 50 48

239 56 55 53 50 53 50 51 48 50 48

240 53 53 53 50 53 50 51 48 50 48

241 53 53 53 50 53 50 51 48 50 48

242 53 53 53 50 53 50 51 48 50 48

243 53 53 53 50 53 50 51 48 50 48

244 53 53 53 50 52 50 51 48 50 48















































































Table II
THE 22× 10 S CORE MATRIX S FOR 500× 500 CAS E (E X AMPL E 2).

Each row of S corresponds to the number of sensors used in
WSN to cover the area as indicated in the first column at the
left side of the score matrix. Each column of S corresponds

S =



































































ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

437 173 173 173 173 173 118 168 172 261 172

438 173 173 173 173 173 118 112 117 260 172

439 172 173 173 173 140 93 110 115 131 172

440 172 173 173 173 115 93 110 114 111 162

441 172 173 173 122 111 93 110 114 111 110

442 172 173 173 114 111 93 110 112 111 110

443 172 150 123 114 111 93 110 112 111 110

444 124 112 112 106 107 93 110 102 111 105

445 117 112 112 106 107 93 110 102 108 105

446 117 112 105 105 105 93 107 102 104 105

447 117 112 105 105 105 93 105 102 102 105

448 115 111 105 105 105 93 105 102 102 105

449 115 111 105 105 105 93 102 99 102 105

450 113 111 105 105 105 93 102 99 102 105

451 113 109 105 105 105 93 102 99 97 105

452 113 109 105 105 105 93 99 99 97 104

453 113 109 105 105 105 93 99 99 97 104

454 113 109 105 105 96 93 96 96 96 104

455 106 106 105 105 96 93 96 96 96 97



































































Table III
THE 19× 10 S CORE MATRIX S FOR 700× 700 CAS E (E X AMPL E 3).

to ACOj algorithm used with j ants (j = 1, 2, . . . , 10). Each
element Sij of S corresponds to the energy corresponding to
this number of sensors and with the number of ants used for
Multiple Objective ACO algorithm.

Application of BF-ICrA in example 1 (350× 350 points)

In this example, one sees from the score matrix of the
Table I that ACO1, ACO3 and ACO9 algorithms perform
equally for all alternatives (i.e. all rows) and they define
a first group/cluster of methods providing exactly the same
performances. Similarly, ACO4, ACO5 and ACO6 constitute a
second group of algorithms. The third group is made of ACO7,
ACO8 and ACO10 algorithms. It is worth noting that these
three groups {ACO1,ACO3,ACO9}, {ACO4,ACO5,ACO6},
and {ACO7,ACO8,ACO10} differ only very slightly, whereas
the ACO2 algorithm (i.e the 2nd column of the score matrix
S) differs a bit more from all the three aforementioned groups.

Example 1 with fast PCR6: If we apply the fast BF-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 6 dichotomous BBAs
(mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ ∪ θ̄)), we get the matrix of mass of

belief of agreement between criteria given in Table6 IV.






























0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806

0.821 0.928 0.821 0.950 0.950 0.950 0.805 0.805 0.821 0.805

0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806

0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795

0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795

0.790 0.950 0.790 1.000 1.000 1.000 0.795 0.795 0.790 0.795

0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843

0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843

0.865 0.821 0.865 0.790 0.790 0.790 0.806 0.806 0.865 0.806

0.806 0.805 0.806 0.795 0.795 0.795 0.843 0.843 0.806 0.843































Table IV
MATRIX K≈PCR6(θ) FOR EX AMPL E 1.

The matrix of distances to full agreement based on fast BF-
ICrA method, denoted by D≈PCR6(θ), is given in Table V.

In examining the table V, one sees that ACO1, ACO3
and ACO9 are at a small distance 0.134, with respect to
other algorithms, so that they belong to the same group
and behave similarly. Same remarks holds for the group
{ACO4,ACO5,ACO6} because its inter-distance is zero,

6All the numerical values presented in the matrices have been truncated at
their 3rd digit for typesetting convenience.
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





























0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193

0.178 0.071 0.178 0.049 0.049 0.049 0.194 0.194 0.178 0.194

0.134 .0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193

0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204

0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204

0.209 0.049 0.209 0 0 0 0.204 0.204 0.209 0.204

0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156

0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156

0.134 0.178 0.134 0.209 0.209 0.209 0.193 0.193 0.134 0.193

0.193 0.194 0.193 0.204 0.204 0.204 0.156 0.156 0.193 0.156































Table V
MATRIX D≈PCR6(θ) WITH FAS T B F-ICRA FOR EX AMPL E 1.

and for the group {ACO7,ACO8,ACO10} because its inter-
distance is 0.156. In a relative manner ACO2 appears closer
to {ACO4,ACO5,ACO6}, than {ACO1,ACO3,ACO9} or
{ACO7,ACO8,ACO10}, which intuitively makes sense when
comparing directly the columns of the matrix of Table I.

Example 1 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by DAver.(θ), is given in Table VI.































0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156

0.082 0.030 0.082 0.016 0.016 0.016 0.142 0.142 0.082 0.142

0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156

0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138

0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138

0.081 0.016 0.081 0 0 0 0.138 0.138 0.081 0.138

0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198

0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198

0.084 0.082 0.084 0.081 0.081 0.081 0.156 0.156 0.084 0.156

0.156 0.142 0.156 0.138 0.138 0.138 0.198 0.198 0.156 0.198































Table VI
MATRIX DAVER . (θ) WITH B F-ICRA US ING AVERAGING RUL E FOR

EX AMPL E 1.

One sees that only the group {ACO4,ACO5,ACO6}
can be clearly identified based on the averaging fu-
sion rule. The other groups ACO2 appears also close to
{ACO4,ACO5,ACO6}. But ACO1, ACO3 and ACO9 are
closer to {ACO4,ACO5,ACO6} also than in-between. Same
remarks holds for ACO7, ACO8, and ACO10. So one sees that
the averaging fusion rule is not recommended for making the
BF-ICrA in this example.

Application of BF-ICrA in example 2 (500× 500 points)

Example 2 with fast PCR6: If we apply the fast BF-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 22 dichotomous BBAs
(mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ ∪ θ̄)), we get the following matrix

of distances to full agreement, denoted by D≈PCR6(θ), given
in Table VII.































0.158 0.376 0.338 0.300 0.286 0.279 0.247 0.251 0.225 0.280

0.376 0.324 0.426 0.456 0.437 0.453 0.457 0.433 0.435 0.449

0.338 0.426 0.407 0.411 0.382 0.423 0.418 0.402 0.393 0.414

0.300 0.456 0.411 0.349 0.323 0.381 0.368 0.370 0.362 0.363

0.286 0.437 0.382 0.323 0.284 0.348 0.334 0.334 0.328 0.333

0.279 0.453 0.423 0.381 0.348 0.316 0.298 0.317 0.308 0.308

0.247 0.457 0.418 0.368 0.334 0.298 0.235 0.276 0.255 0.283

0.251 0.433 0.402 0.370 0.334 0.317 0.276 0.265 0.260 0.303

0.225 0.435 0.393 0.362 0.328 0.308 0.255 0.260 0.211 0.304

0.280 0.449 0.414 0.363 0.333 0.308 0.283 0.303 0.304 0.277































Table VII
MATRIX D≈PCR6(θ) WITH FAS T B F-ICRA FOR EX AMPL E 2.

Based on these results, one sees that no clear group can
be identified but we emphasize in boldface in Table VII the
minimal value for each row of the distance matrix D≈PCR6(θ)

(diagonal elements excluded). We see that ACO2 is at the
farthest distance of ACO1 because D12(θ) = 0.376, but in
the mean time ACO2 is at closest distance to ACO1 because
D2j(θ) > 0.376 (for j > 2) as shown in second line of
Table VII. So we can conclude that ACO2 is not close to
any other algorithm in fact. If we choose a ad-hoc distance
threshold, say for instance 0.28, then we can identify the group
{ACO1,ACO7,ACO8,ACO9}.
Example 2 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by DAver.(θ), is given in Table VIII.































0.361 0.316 0.310 0.311 0.336 0.300 0.306 0.316 0.320 0.309

0.316 0.125 0.158 0.198 0.225 0.187 0.216 0.225 0.240 0.206

0.310 0.158 0.165 0.185 0.215 0.178 0.200 0.215 0.227 0.193

0.311 0.198 0.185 0.183 0.216 0.181 0.197 0.217 0.231 0.192

0.336 0.225 0.215 0.216 0.243 0.214 0.231 0.249 0.261 0.226

0.300 0.187 0.178 0.181 0.214 0.159 0.175 0.194 0.210 0.176

0.306 0.216 0.200 0.197 0.231 0.175 0.181 0.202 0.216 0.186

0.316 0.225 0.215 0.217 0.249 0.194 0.202 0.215 0.229 0.204

0.320 0.240 0.227 0.231 0.261 0.210 0.216 0.229 0.233 0.222

0.309 0.206 0.193 0.192 0.226 0.176 0.186 0.204 0.222 0.183































Table VIII
MATRIX DAVER . (θ) WITH B F-ICRA US ING AVERAGING RUL E FOR

EX AMPL E 2.

Based on the average fusion rule there is no clear
clustering of algorithms. However based on shortest inter-
distance we could make the following distinct pairwise group-
ings {ACO2,ACO3}, {ACO6,ACO7}, {ACO4,ACO10},
{ACO8,ACO9} and {ACO1,ACO5} if necessary, but remem-
ber that average fusion rule cannot provide the best result as
shown in Example 1.

Application of BF-ICrA in example 3 (700× 700 points)

Example 3 with fast PCR6: If we apply the fast BF-ICrA
method using approximate PCR6 fusion rule based on the
canonical decomposition of the M = 19 dichotomous BBAs
(mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ∪θ̄)), we get the matrix of distances

to full agreement, denoted by D≈PCR6(θ), given in Table IX.






























0.313 0.388 0.465 0.498 0.469 0.500 0.426 0.451 0.498 0.477

0.388 0.339 0.403 0.496 0.461 0.500 0.421 0.440 0.497 0.464

0.465 0.403 0.348 0.493 0.456 0.500 0.416 0.437 0.495 0.457

0.498 0.496 0.493 0.362 0.385 0.500 0.376 0.391 0.470 0.303

0.469 0.461 0.456 0.385 0.230 0.380 0.256 0.288 0.300 0.324

0.500 0.500 0.500 0.500 0.380 0 0.312 0.356 0.308 0.500

0.426 0.421 0.416 0.376 0.256 0.312 0.137 0.185 0.272 0.330

0.451 0.440 0.437 0.391 0.288 0.356 0.185 0.205 0.314 0.351

0.498 0.497 0.495 0.470 0.300 0.308 0.272 0.314 0.283 0.438

0.477 0.464 0.457 0.303 0.324 0.500 0.330 0.351 0.438 0.228































Table IX
MATRIX D≈PCR6(θ) WITH FAS T B F-ICRA FOR EX AMPL E 3.

We observe that the average distance between ACO algo-
rithms is much higher than in Tables V and VII of examples
1 and 2. This shows clearly the difficulty to precisely identify
the clusters of similar algorithms because only few ACO
algorithms perform actually very well for this third example.
Eventually, and based on shortest inter-distance we could make
the first pairwise group {ACO7,ACO8} because D78(θ) =
0.185 is the minimal inter-distance we have between the ACO
algorithms. Once the rows and columns of Table IX corre-
sponding to ACO7 and ACO8 are eliminated, then the second
best group will be {ACO5,ACO9} because D59(θ) = 0.300.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

83



Similarly, we will get the group {ACO4,ACO10} because
D4,10(θ) = 0.303, and then the group {ACO1,ACO2} because
D12(θ) = 0.388. Finally we could also cluster ACO3 with
ACO6 because D36(θ) = 0.500, although this distance of
agreement is quite large to be considered as a trustable cluster.

Example 3 with averaging fusion: The matrix of distances
to full agreement based on BF-ICrA method using average
fusion rule, denoted by DAver.(θ), is given in Table X.































0.170 0.154 0.142 0.221 0.351 0.350 0.392 0.345 0.332 0.298

0.154 0.120 0.092 0.167 0.321 0.295 0.369 0.313 0.290 0.261

0.142 0.092 0.042 0.114 0.289 0.237 0.342 0.279 0.242 0.224

0.221 0.167 0.114 0.054 0.255 0.139 0.327 0.260 0.184 0.177

0.351 0.321 0.289 0.255 0.339 0.245 0.391 0.355 0.287 0.324

0.350 0.295 0.237 0.139 0.245 0 0.304 0.242 0.115 0.247

0.392 0.369 0.342 0.327 0.391 0.304 0.390 0.368 0.336 0.387

0.345 0.313 0.279 0.260 0.355 0.242 0.368 0.328 0.288 0.341

0.332 0.290 0.242 0.184 0.287 0.115 0.336 0.288 0.190 0.279

0.298 0.261 0.224 0.177 0.324 0.247 0.387 0.341 0.279 0.261































Table X
MATRIX DAVER . (θ) WITH B F-ICRA US ING AVERAGING RUL E FOR

EX AMPL E 3.

Surprisingly, the use of averaging rule provides in this
example lower distance values on average with respect to
values given in Table IX. However no clear clustering of
algorithms can be made because only few ACO algorithms
perform actually very well for this third example. If we adopt
the pairwise strategy to cluster algorithms, we will obtain
now as first group {ACO2,ACO3} because D23(θ) = 0.092,
as second group {ACO6,ACO9} because D69(θ) = 0.115,
as third group {ACO4,ACO10} because D4,10(θ) = 0.177,
as fourth group {ACO1,ACO8} because D18(θ) = 0.345,
and finally we could also cluster ACO5 with ACO7 because
D57(θ) = 0.391. one sees that there is no strong correlation
between results obtained from BF-ICrA based on fast PCR6
and those based on averaging rule, which is not surprising
because the rules are totally different. Nevertheless the group
{ACO4,ACO10} is agreed by both methods here.

VI. CONCL US IONS

The fast Belief Function based Inter-Criteria Analysis
method, using the canonical decomposition of basic belief
assignments defined on a dichotomous frame of discernment
was applied, tested and analysed in this paper. This new
method was applied for evaluating the Multiple-Objective
Ant Colony Optimization (MO-ACO) algorithm for Wireless
Sensor Networks (WSN) deployment. Based on the BF-ICrA
outcomes it was shown a very high correlation with fast
PCR6 rule for the ACO1, ACO3 and ACO9 group, for the
ACO4, ACO5 and ACO6 group, and for the ACO7, ACO8

and ACO10 group of algorithms in example 1 (case of
size 350 × 350) as intuitively expected. This is because the
considered ACO algorithms can solve the problem with good
solution quality in example 1. These high correlations were
not observed in the other two cases for example 2 (case of
size 500 × 500) and 3 (case of size 700 × 700) because
only few ACO algorithms perform actually very well for
these examples. So, if we considered results in case of larger

problem sizes, the BF-ICrA results show that the number of
ants has the significant influence on the obtained results, as
already pointed out in [20].
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Abstract—This paper discusses and analyzes the behaviors of
the proportional conflict redistribution rules no. 5 (PCR5) and
no. 6 (PCR6) to combine several distinct sources of evidence
characterized by their basic belief assignments defined over the
same frame of discernment. After a brief review of these rules,
the paper shows through simple examples why their behaviors
can sometimes increase the uncertainty more than necessary
which is detrimental to decision-making support drawn from the
result of the combination. We present a theoretical improvement
of these rules, and establish new PCR5+ and PCR6+ rules of
combination. These new rules overcome the weakness of PCR5
and PCR6 rules by computing binary keeping-indexes that allow
to keep only focal elements that play an effective role in the
partial conflict redistribution. PCR5+ and PCR6+ rules are not
associative but they preserve the neutrality of the vacuous belief
assignment contrary to the PCR5 and PCR6 rules, and they make
a more precise redistribution which does not increase improperly
the mass of partial uncertainties.

Keywords: information fusion, belief functions, PCR5+,

PCR6+, PCR5, PCR6 fusion rules..

I. INTRODUCTION

There exist different theories based on distinct representa-

tions and modelings of uncertainty to deal with uncertain infor-

mation to conduct information fusion [1]. The theory of prob-

ability [2], [3], the theory of fuzzy sets [4], [5], the possibility

theory [6], [7], and the theory of belief functions [8]–[10] are

the most well-known ones. This paper addresses the problem

of information fusion in the mathematical framework of the

belief functions introduced by Shafer from Dempster’s works

[11], [12]. The belief functions are often used in decision-

making support applications because the experts are generally

able to express only a belief in a hypothesis (or a set of

hypotheses) from their partial knowledge, experience and from

their own perception of the reality. To conduct information

fusion, we need some efficient rules of combination that are

able to manage the conflicting sources of evidence (if any), or

expert opinions expressed in terms of belief functions. Readers

interested in belief functions can found classical related papers

in [13] and in the special issue [14] which includes also a list

of good selected papers. It is worth to mention that the recent

book of Cuzzolin [15] includes 2137 references, with many

of them related to belief functions.

In this paper, we adopt the notion of conflict introduced

by Shafer in [8] (p. 65). This notion of conflict is often

adopted by researchers working with belief functions, as in

[16] p. 17 for instance, because this notion is quite simple to

understand. Different definitions and interpretations of conflict

can be also found in [17]–[27] for readers interested in this

topic. In this paper, two (or more) sources are said conflict-

ing if they support incompatible (disjoint, or contradictory)

hypotheses. We also work with distinct sources of evidences

that are considered as (cognitively) independent and reliable.

We do not consider, nor apply discounting techniques of belief

assessments listed in [14] before combining them to keep the

presentation and notations as simple as possible1.

While the conjunctive rule makes it possible to combine

information between different sources of information by esti-

mating the level of existing conflict, Dempster-Shafer (DS)

rule [8], [16] proposes a distribution of this conflict on

the hypotheses characterized by the sources of information.

The normalization carried out by the DS rule may however

be considered counter-intuitive especially when the level of

conflict between the sources of information is high [28],

[29], but also in some situations where the level of conflict

between sources is low as shown in [30] showing a dictatorial

behavior of DS rule. The Proportional Conflict Redistribution

rules (PCR5 [31] and PCR6 [32], [33]) have been proposed

to circumvent the problem of the DS rule to make a more

judicious management of the conflict.

In this paper, we put forward a flawed behavior of these

combination rules in some cases attributed to the non-

neutrality of the vacuous BBA (Basic Belief Assignment),

and we propose an improvement of these two combination

rules (denoted by PCR5+ and PCR6+) in order to ensure the

neutrality property of the vacuous BBA. This is achieved by

discarding specific elements implied in the partial conflict and

which are not useful for making the conflict redistribution.

In the PCR rules [32]–[34] one redistributes the product of

masses of belief of incompatible (i.e. conflicting) elements

whose intersection is empty only to elements involved in

1Of course discounted belief assignments can also be combined by the rules
presented in this paper.

Originally published as: T. Dezert, J. Dezert, F. Smarandache, Improvement of Proportional Conflict 
Redistribution Rules of Combination of Basic Belief Assignments, Journal of Advances in Information 
Fusion (JAIF), Vol. 16, No. 1, June 2021, and reprinted with permission.
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this product and proportionally to their mass of belief. For

instance, let’s consider two elements A, B of a frame of

discernment (FoD) with A ∩ B = ∅, and three basic belief

assignments m1(·), m2(·), m3(·) defined on this FoD with

m1(A) > 0, m2(B) > 0, and m3(A ∪B) > 0. The product

m1(A)m2(B)m3(A ∪ B) > 0 is called a conflicting product

hereafter because A∩B ∩ (A∪B) = ∅. Based on PCR5 (and

PCR6) rule, we will redistribute the value of this product back

to the focal2 elements A, B and A∪B, and proportionally to

m1(A), m2(B) and m3(A ∪ B). In the improved PCR rules

developed in this paper we will redistribute this conflicting

product only to the focal elements A and B since the focal

element A∪B is neither in conflict with A, nor with B. Such

an improvement in the proportional conflict redistribution is

made possible by defining a binary keeping-index for each

focal element involved in the conflicting product. This index

will allow the identification of elements of the conflicting

product that will have an effective role in the proportional

redistribution of conflicting product. All elements (if any)

having a binary keeping-index equal to zero are discarded of

the conflict redistribution process. This main idea is developed

in this paper and illustrated with several examples. It allows to

preserve the neutrality of the total ignorant source of evidence

in the improved versions of PCR5 and PCR6 rules, which

is often considered as a desirable property for a rule of

combination of distinct and reliable sources of evidence.

For the reader not immersed in the belief mathematics

notion, the comparative numerical examples of Example 1 of

section III-B as compared with Example 1 revisited of section

VII, provide a quick verification of the improvements.

This paper is organized as follows. We give the basics of

belief functions in Section II. We present the PCR5 and PCR6

rules of combination in Section III with new general formulas

in subsection III-C, and associated examples in Section IV.

The flawed behavior of PCR5 and PCR6 rules are highlighted

in Section V through specific examples. Then, Section VI

proposes the mathematical expression of the new improved

PCR5+ and PCR6+ rules of combination, as well as the

very detailed procedure to select the focal elements for these

new proportional redistributions. Finally, comparative results

for relevant examples are shown in Section VII in order to

compare the PCR5 and PCR6 results with the PCR5+ and

PCR6+ results. Concluding remarks are given in section VIII.

For convenience, two MatlabTM routines are also given in the

appendix 3 of this paper for PCR5+ and PCR6+ rules of

combination.

II. BASICS OF BELIEF FUNCTIONS

We consider a given finite set Θ of n > 1 distinct elements

Θ = {θ1, θ2, . . . , θn} corresponding to the frame of discern-

ment (FoD) of the fusion problem, or the decision-making

problem, under concern. All elements of Θ are mutually

2A focal element is an element (i.e. a subset) having a strictly positive mass
of belief committed to it - see section II elements

exclusive3 and each element is an elementary choice of the

potential decision to take. The power set of Θ is the set of all

subsets of Θ (including empty set ∅ and Θ) and it is usually

denoted 2Θ because its cardinality equals 2|Θ|. We adopt

Shafer’s formalism whereby propositions are represented by

subsets [8] (Chap.2, pp. 35–37). Hence, the propositions under

concern are in one-to-one correspondance with subsets of Θ.

We also use classical notations of set theory [35], i.e. ∅ for

the empty set, A ∪B for the union4 of sets A and B (which

is the set of all objects that are a member of the set A, or

the set B, or both), A ∩ B for their intersection (which is

the set of all objects that are members of both A and B),

etc. A Basic Belief Assignment (BBA) given by a source of

evidence is defined by Shafer [8] in his Mathematical Theory

of Evidence (known also as Dempster-Shafer Theory, or DST)

as m(·) : 2Θ → [0, 1] satisfying
{

m(∅) = 0,
∑

A∈2Θ
m(A) = 1,

(1)

where m(A) is the mass of belief exactly committed to A,

what we usually call the mass of A. A BBA is said proper

(or normal) if it satisfies Shafer’s definition (1). The subset

A ⊆ Θ is called a Focal Element (FE) of the BBA m(·) if

and only if m(A) > 0. The empty set is not a focal element

of a BBA because m(∅) = 0 according to definition (1). The

set of all focal elements of a BBA m(·) is denoted F(m). Its

mathematical definition is F(m) = {X ∈ 2Θ|m(X) > 0}.

The cardinality |F(m)| of the set F(m) is denoted Fm. The

order of focal elements of F(m) does not matter and all the

focal elements are different. The set F(m) of focal elements

of m(·) has at least one focal element, and at most 2|Θ| − 1
focal elements.

Belief and plausibility functions are respectively defined

from m(·) by [8]

Bel(A) =
∑

X∈2Θ|X⊆A

m(X), (2)

and

Pl(A) =
∑

X∈2Θ|A∩X 6=∅
m(X) = 1− Bel(Ā). (3)

where Ā represents the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted respectively as

lower and upper bounds of an unknown (subjective) probabil-

ity measure P (A) [11], [12]. The functions m(.), Bel(.) and

Pl(.) are one-to-one. A belief function Bel(.) is Bayesian if

all Bel’s focal elements are singletons [8] (Theorem 2.8 p.

45). In this case, m(X) = Bel(X) for any (singleton) focal

element X , and m(.) is called a Bayesian BBA. Corresponding

Bel(·) function is equal to Pl(·) and these functions can be

3This standard assumption is called Shafer’s model of FoD in DSmT
(Dezert-Smarandache Theory) framework [34].

4We prefer the notation A ∪ B for denoting the union of sets A and B,
which is a formal mathematical notation for the union of two sets, instead of
the notations AB or {A,B} used by some authors.
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interpreted as a same (possibly subjective) probability measure

P (·). The vacuous BBA (VBBA for short) representing a

totally ignorant source is defined as mv(Θ) = 1.

III. COMBINATION OF BBAS

This Section presents at first the conjunctive rule of com-

bination which is one of the main rules to combine reliable

sources of evidence and which allows to identify the con-

flicting information among the sources. Then we present the

proportional conflict redistribution rules no. 5 (PCR5) [31]

and no. 6 (PCR6) [32], [33] as alternatives of Dempster’s rule

of combination [8]. The development of these rules has been

motivated by the counter-intuitive behavior of Dempster’s rule

[8] when combining high conflicting sources of evidences, but

also when combining low conflicting sources of evidences as

well5. The reader interested in this topic can refer to [13],

[28]–[30] to see theoretical justifications and examples. In the

following, and for simplicity, we restrain our presentation to

the classical framework of belief functions, and we work with

BBAs defined only on the power set 2Θ of a FoD Θ. PCR

rules have been defined originally for working with Dedekind’s

lattice as well, see Chapter 1 of [34] (Volume 2). In this paper,

we present simple general expressions of PCR5 and PCR6

fusion rules because they are more easy to understand than

the original general formulas, and they afford expressions of

the improved PCR5+ and PCR6+ rules in a direct and useful

manner.

After a brief presentation of the main notations used in

this paper, we will recall both PCR5 and PCR6 rules for

historical and technical reasons. PCR5 has been developed at

first, and then PCR6 has been proposed based on a modified

redistribution principle inspired by PCR5. In this paper, we

follow the logical and historical development of these PCR5

and PCR6 rules to make the presentation of their improved

versions PCR5+ and PCR6+. It seems easier to understand

PCR6+ fusion formula once the PCR5+ formula will have

been established. By presenting both rules, we offer to the

readers a global deeper view on how these new rules work and

their fundamental and mathematical differences in their con-

flict redistribution principles. In the sequel, all the introducedg

examples assume the model of Shafer’s frame of discernment

as in the classical DST framework.

A. Notations

When we make the combination of S ≥ 2 BBAs by the

conjunctive rule, or by the PCR5 and PCR6 fusion rules,

we have to compute the product of the masses of the focal

elements composing any possible S-tuple of focal elements.

Each possible S-tuple is noted by6

Xj , (Xj1 , Xj2 , . . . , XjS ) ∈ F(m1)×F(m2)×. . .×F(mS),

where j1 ∈ {1, 2, . . . ,Fm1
}, j2 ∈ {1, 2, . . . ,Fm2

}, . . . ,

jS ∈ {1, 2, . . . ,FmS
}. The element Xji is the focal element

5Which is known as the dictatorial behavior of Dempster’s rule [30].
6The symbol , means “equals by definition”.

of mi(·) that makes the i-th component of the j-th S-tuple

Xj .

For notation convenience also, the cartesian product

F(m1)×F(m2)×. . .×F(mS) is denoted by F(m1, . . . ,mS)
in the sequel.

We have F , |F(m1, . . . ,mS)| =
∏S

i=1
|F(mi)| =

∏S

i=1
Fmi

products of masses of focal elements to consider

and to calculate because we have Fm1
focal elements in

F(m1), Fm2
focal elements in F(m2), . . . , and FmS

focal

elements in F(mS). Each product for j = 1 to F is of the

form

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS ) ,

S
∏

i=1

mi(Xji). (4)

There are two types of products:

• πj(Xj1 ∩ Xj2 ∩ . . . ∩ XjS ) is called a non-conflicting

(mass) product if

Xj1 ∩Xj2 ∩ . . . ∩XjS = X 6= ∅.
In this case, πj(Xj1 ∩Xj2 ∩ . . . ∩XjS ) is also noted by

πj(X) for short.

• πj(Xj1 ∩Xj2 ∩ . . . ∩XjS ) is called a conflicting (mass)

product if

Xj1 ∩Xj2 ∩ . . . ∩XjS = ∅.
In this case, πj(Xj1 ∩Xj2 ∩ . . . ∩XjS ) is also noted by

πj(∅) for short.

It is worth noting that an element X ∈ 2Θ\{∅} may belong

to sets of focal elements of the different BBAs to combine,

and therefore a S-tuple Xj can have duplicate components.

Because all the BBAs are normalized, we always have

F
∑

j=1

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS ) = 1. (5)

As a simple example to illustrate our notations, let’s con-

sider two BBAs m1(·) and m2(·) defined over the FoD Θ =
{A,B,C} with respectively two and three focal elements,

say F(m1) = {A,B ∪ C} and F(m2) = {B,C,A ∪ C}.

Here Fm1
= |F(m1)| = 2 and Fm2

= |F(m2)| = 3. For

j1 = 1 (the first focal element of m1(·)) one has Xj1 = A,

and for j1 = 2 (the second focal element of m1(·)) one has

Xj1 = B ∪C. Similarly, for j2 = 1 (the first focal element of

m2(·)) one has Xj2 = B, for j2 = 2 (the 2nd focal element

of m2(·)) one has Xj2 = C, and j2 = 3 (the 3rd focal

element of m2(·)) one has Xj2 = A ∪ C. In this case we

have F = Fm1
· Fm2

= 6 products of masses to consider in

the conjunctive fusion rule (see next sub-section) which are

π1(A ∩B) = m1(A)m2(B),

π2(A ∩ C) = m1(A)m2(C),

π3(A ∩ (A ∪ C)) = m1(A)m2(A ∪ C),

π4((B ∪C) ∩B) = m1(B ∪ C)m2(B),

π5((B ∪ C) ∩ C) = m1(B ∪ C)m2(C),

π6((B ∪ C) ∩ (A ∪ C)) = m1(B ∪ C)m2(A ∪ C).
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The products π1 and π2 are called conflicting products because

• for π1, the focal elements A and B involved in π1 are

incompatible (i.e. disjoint) because A∩B = ∅. π1(A∩B)
is of course equivalent to πj(Xj1 ∩Xj2) with j = 1 by

taking Xj1 = A and Xj2 = B;

• for π2, one has A ∩ C = ∅. π2(A ∩ C) is equivalent

to πj(Xj1 ∩ Xj2) with j = 2 by taking Xj1 = A and

Xj2 = C, etc.

The products π3, . . . , and π6 are not conflicting products

because the focal elements involved in each product have

non-empty intersection. Because m1(A) + m1(B ∪ C) = 1
and m2(B) + m2(C) + m2(A ∪ C) = 1, one has

(m1(A) +m1(B ∪C))(m2(B) +m2(C) +m2(A∪C)) = 1,

and therefore
∑6

j=1
πj = 1. This illustrates the formula (5).

In this paper, i ∈ {1, . . . , S} represents the index of the i-th
source of evidence characterized by the BBA mi(·), and j ∈
{1, . . . ,F} represents the index of the j-th product πj(Xj1 ∩
Xj2 ∩ . . . ∩XjS ).

B. The conjunctive rule of combination

Let’s consider S ≥ 2 distinct reliable sources of evidence

characterized by their BBA ms(·) (s = 1, . . . , S) defined on

2Θ. Their conjunctive fusion7 is defined for all A ∈ 2Θ by

mConj

1,2,...,S(A) =
∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=A

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS )

=
∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=A

S
∏

i=1

mi(Xji). (6)

The symbol ∩© is also used in the literature, for instance in [36],

to note the conjunctive fusion operator, i.e. mConj

1,2,...,S(A) =
[m1 ∩©m2 ∩© . . . ∩©mS ](A).

The total conflicting mass between the S sources of evidence,

denoted mConj
1,2,...,S(∅), is nothing but the sum of all existing

conflicting mass products, that is

mConj
1,2,...,S(∅) =

∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=∅

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS )

= 1−
∑

A∈2Θ\{∅}
mConj

1,2,...,S(A). (7)

Note that the combined BBA mConj

1,2,...,S(.) given in (6) is not

a proper BBA because it does not satisfy Shafer’s definition

(1). In general the S sources of evidence to combine do not

fully agree, and we have consequently mConj

1,2,...,S(∅) > 0.

Dempster’s rule of combination (called also orthogonal sum

by Shafer [8], p. 6) coincides with the normalized version

of the conjunctive rule. It is defined by mDS
1,2,...,S(A) =

7The conjunctive fusion rule is also called Smets’ rule of combination by
some authors because it has been widely used by Philippe Smets in his works
related to belief functions. But Smets himself call it conjunctive rule, see his
last paper [20], p. 388.

mConj
1,2,...,S(A)/(1 −mConj

1,2,...,S(∅)), assuming mConj
1,2,...,S(∅) 6= 1.

The DS upper notation refers to initials of Dempster and

Shafer names because Dempster’s rule has gained its pop-

ularity through Shafer’s works on belief functions. Shafer

uses the symbol ⊕ to note Dempster’s fusion operator, i.e.

mDS
1,2,...,S(A) = [m1 ⊕ m2 ⊕ . . . ⊕ mS ](A) for A 6= ∅, and

mDS
1,2,...,S(∅) = 0. A probabilistic analysis of Dempster’s rule

of combination can be found in [37], and the geometry of

Dempster’s rule is analyzed in [38].

Example 1: Consider Θ = {A,B} and two following BBAs

m1(A) = 0.1, m1(B) = 0.2, m1(A ∪ B) = 0.7,

m2(A) = 0.4, m2(B) = 0.3, m2(A ∪ B) = 0.3.

We have mConj
1,2 (∅) = 0.11, and

mConj
1,2 (A) = 0.35, mConj

1,2 (B) = 0.33, mConj
1,2 (Θ) = 0.21.

Symbolically we denote the conjunctive fusion of S sources

as m
Conj

1,2,...,S = Conj(m1,m2, . . . ,mS). This conjunctive rule

is commutative and associative. This means that the sources

can be combined altogether in one step, or sequentially in any

order and it does not matter. Also, the total ignorant source

represented by the vacuous (non-informative) BBA has no

impact in the fusion result - see Lemma 1 below.

Lemma 1: The vacuous BBA mv has a neutral impact in the

conjunctive rule of combination, that is

Conj(m1,m2, . . . ,mS ,mv) = Conj(m1,m2, . . . ,mS). (8)

Proof: see appendix 1.

The main drawback of this fusion rule is that it does

not generate a proper BBA because mConj

1,2,...,S(∅) > 0 in

general, and also it can provide a fusion result mConj
1,2,...,S(∅)

that quickly tends to one after only few steps of a sequential

fusion processing of the sources which is not very useful

for decision-making support. This is because the empty set

∅ is the absorbing element for the conjunctive operation since

∅ ∩ A = ∅ for all A ∈ 2Θ so that the mass committed to the

empty set always increases through the repeated conjunctive

fusion rule. The main interest of this rule is its ability to

identify the partial conflicts and to provide a measure of the

total level of conflict mConj

1,2,...,S(∅) between the sources which

can be used to manage (select or discard) the sources in the

fusion process if one prefers, see [39] for an application in

geophysics for instance.

C. PCR5 and PCR6 rules of combination

The Proportional Conflict Redistribution Rules (PCR) have

been developed originally in the framework of DSmT (Dezert-

Smarandache Theory) [31], [32], [34] but they can work also

in the classical framework of Shafer’s belief functions as well.

Six rules have been proposed and they are referred as PCR1,

. . . , PCR6 rules of combination having different complexities,

PCR1 being the most simplest (but less effective) one. All

these rules share the same general principle which consists of

three steps:
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• apply the conjunctive rule (6);

• calculate the conflicting mass products πj(∅);
• redistribute the conflicting mass products πj(∅) propor-

tionally on all non-empty sets involved in the conflict.

The way the conflicting mass product πj(∅) is redistributed

yields to different versions of PCR combination rules that work

for any degree of conflict. The sophistication/complexity and

preciseness of PCR rules increases from the first PCR1 rule up

to the last rule PCR6. The main disadvantage of these rules,

aside their complexity, is their non-associativity properties

which impose to combine all the BBAs altogether with PCR

rules rather than sequentially to expect the best fusion result.

In this paper, we focus on the presentation of PCR5 and

PCR6 only because they are the most well-known advanced

fusion rules used so far in the belief functions community. A

detailed presentation of other rules of combination encoun-

tered in the literature can be found in [40]. Symbolically,

the PCR5 fusion and the PCR6 fusion of S ≥ 2 BBAs

are respectively denoted mPCR5
1,2,...,S = PCR5(m1,m2, . . . ,mS),

and mPCR6
1,2,...,S = PCR6(m1,m2, . . . ,mS).

Readers familiar with PCR rules could quickly read the

example 1 given in section III-B, and the results obtained with

classical and improved PCR5 and PCR6 rules in section VII

to appreciate the discussion throughout the paper.

The PCR5 rule of combination [31]: This rule transfers

the conflicting mass πj(∅) to all the elements involved in

this conflict and proportionally to their individual masses, so

that a more sophisticate and specific distribution is done with

the PCR5 fusion process with respect to other existing rules

(including Dempster’s rule). The PCR5 rule is presented in

details (with justification and examples) in [34], Vol. 2 and

Vol. 3.
• The PCR5 fusion of two BBAs is obtained by mPCR5

1,2 (∅) = 0,

and for all A ∈ 2Θ \ {∅} by

mPCR5
1,2 (A) = mConj

1,2 (A)+

∑

X∈2Θ

X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
], (9)

where mConj
1,2 (A) is the conjunctive rule formula (6) with

S = 2, and where all denominators in (9) are different from

zero. If a denominator is zero, that fraction is discarded. All

propositions/sets are in a canonical form. We take the disjunc-

tive normal form, which is a disjunction of conjunctions, and

it is unique in Boolean algebra and simplest. For example,

X = A ∩B ∩ (A ∪B ∪ C) it is not in a canonical form, but

we simplify the formula and X = A ∩ B is in a canonical

form.

The PCR5 formula (9) for two BBAs can also be expressed

by considering only the focal elements of m1(·) and m2(·) as

follows

mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑

(Xj1
,Xj2

)∈F(m1)×F(m2)

Xj1
∩Xj2

=∅

Xj1
=A

m1(Xj1 ) ·
m1(Xj1 )m2(Xj2)

m1(Xj1 ) +m2(Xj2)

+
∑

(Xj1
,Xj2

)∈F(m1)×F(m2)

Xj1
∩Xj2

=∅

Xj2
=A

m2(Xj2 ) ·
m1(Xj1)m2(Xj2)

m1(Xj1) +m2(Xj2 )
,

(10)

or equivalently, with shorthand πj notations, as

mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑

j∈{1,...,F}|Xj∈F(m1,m2)

Xj1
∩Xj2

=∅

A∈Xj

[

mi∈{1,2}|Xji
=A(Xji)

·
πj(Xj1 ∩Xj2 )

m1(Xj1 ) +m2(Xj2)

]

, (11)

where F = |F(m1)| · |F(m2)| is the total number of products

πj(Xj1 ∩Xj2) = m1(Xj1)m2(Xj2), and A ∈ Xj means that

at least one component of Xj equals A.

• The explicit formula of the PCR5 fusion of three BBAs is

given in [41].

• A simple formulation of the general expression of

the PCR5 fusion of S > 2 basic belief assignments

is obtained by redistributing each conflicting product

πj(∅) = πj(Xj1 ∩ . . . ∩XjS = ∅) = ∏S
i=1

mi(Xji) to some

elements of the power set of the FoD that are involved in the

conflict. Each πj(∅) is redistributed proportionally to elements

involved in this conflict based on the PCR5 redistribution

principle. When an element A ∈ 2Θ is not involved in a

conflicting product πj(∅), i.e. A /∈ Xj , the conflicting product

πj(∅) is not redistributed to A. If an element A is involved in

the conflict Xj1 ∩ . . .∩XjS = ∅, i.e. A ∈ Xj and πj(∅) occur,

then the proportional redistribution of πj(∅) to A is given by

xj(A) ,
(

∏

i∈{1,...,S}|Xji
=A

mi(Xji)
)

·
πj(∅)

∑

X∈Xj

(
∏

i∈{1,...,S}|Xji
=X

mi(Xji)
) , (12)

where A ∈ Xj means that at least one component of the S-

tuple Xj = (Xj1 , . . . , XjS ) ∈ F(m1, . . . ,mS) equals A.

Finally the mass value of A obtained by the PCR5 rule is

calculated by

mPCR5
1,2,...,S(A) = m

Conj

1,2,...,S(A) +
∑

j∈{1,...,F}|A∈Xj∧πj(∅)
xj(A),

(13)

where A ∈ Xj ∧ πj(∅) is a shorthand notation meaning that

at least one component of the S-tuple Xj equals A and the

components of Xj are conflicting, i.e. Xj1 ∩ . . . ∩XjS = ∅.
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Therefore the general PCR5 formula can be expressed as

mPCR5
1,2,...,S(∅) = 0, and for A ∈ 2Θ \ {∅} by

mPCR5
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

∏

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(∅)
∑

X∈Xj

(
∏

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

. (14)

It is worth noting that the formula (14) is a generalization

of the formula (11), i.e. (14) coincides with (11) when S = 2.

This general PCR5 formula is equivalent to the original

PCR5 formula given in [31] but it involves only the focal

elements of the BBAs to combine which makes the derivation

more efficient (less computationally demanding) than the orig-

inal general PCR5 formula, specially when each BBA has only

few focal elements. We use this new general PCR5 formula

because it is relatively simple and easy to improve it into

PCR5+ formula - see section VI-B. The extension of PCR5

for combining qualitative8 BBAs can be found in [34], Vol. 2

& 3, and in [33]. PCR5 rule is not associative and the best

fusion result is obtained by combining the sources altogether at

the same time when possible. A suboptimal fast fusion method

using PCR5-based canonical decomposition [42] can be found

in [43].

The PCR6 rule of combination [32]: A variant of PCR5

rule, called PCR6 rule, has been proposed by Martin and

Osswald in [32], [33] for combining S > 2 sources. Because

PCR6 coincides with PCR5 when one combines two sources,

we do not provide the PCR6 formula for two sources which is

the same as (9). The difference between PCR5 and PCR6 lies

in the way the proportional conflict redistribution is done as

soon as three (or more) sources are involved in the fusion as it

will be shown in the example 2 introduced in the next section.

The explicit formula of the PCR6 fusion of three BBAs is

given in [41] for convenience.

The PCR6 fusion of S > 2 BBAs is obtained by

mPCR6
1,2,...,S(∅) = 0, and for all A ∈ 2Θ \ {∅} by9

mPCR6
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

∑

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(∅)
∑

X∈Xj

(
∑

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

. (15)

The difference between the general PCR5 and PCR6

formulas is that the PCR5 proportional redistribution in-

volves the products
∏

i∈{1,...,S}|Xji
=A

mi(Xji) of multiple same

8A qualitative BBA is a BBA whose values are labels (e.g. low, medium,
high, etc) instead of real numbers.

9We wrote this PCR6 general formula in the style of PCR5 formula (14).

focal elements A (if any) in the conflict, whereas the

PCR6 conflict redistribution principle works with their sum
∑

i∈{1,...,S}|Xji
=A

mi(Xji) instead. The next section presents

some examples for PCR5 and PCR6 rules of combinations.

We use this general PCR6 formula instead of the original

Martin-Osswald’s PCR6 formula [32] because it is more

easy to improve it into PCR6+ formula - see section VI-B.

From the implementation point of view, PCR6 is simpler

to implement than PCR5. From the Decision-Making (DM)

standpoint, PCR6 is better than PCR5 when S > 2 as reported

by Martin and Osswald in [32] (see also the Example 3

in the next section) in their applications. For convenience,

some MatlabTM codes of PCR5 and PCR6 fusion rules can

be found in the appendix of [44], also in Chap. 7 of [34]

(Vol. 3), or from Arnaud Martin’s web page [45]. PCR6 code

(in R programming language) can be found also in iBelief

package developed by Kuang Zhou and Arnaud Martin from

the BFAS10 repository [46], or directly from [47] as well.

When we have only two BBAs to combine, PCR5 and PCR6

rules provide the same result because formulas (14) and (15)

coincide for S = 2.

In this paper, we have voluntarily chosen to present the

two rules PCR5, PCR6 and their improved versions mainly

for historical reasons and because these two rules have strong

theoretical links as we have shown. By doing this, we offer the

possibility to readers (and potential users) to test each of these

advanced fusion methods and evaluate their performances

on their own applications. Even though PCR6 is posterior

to PCR5, since some researchers have implemented and are

using PCR5 fusion rule, it appears important to introduce the

improved version of this rule. Furthermore, PCR5 goes back

exactly on the tracks of the conjunctive rule, while PCR6 does

not.

IV. EXAMPLES FOR PCR5 AND PCR6 FUSION RULES

Here we provide two simple examples showing the dif-

ference of the results between PCR5 and PCR6 rules. For

convenience, all numerical values given in the examples of this

paper have been rounded to six decimal places when necessary.

Example 2: We consider the simplest FoD Θ = {A,B}, and

the three following BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪B) = 0.5.

Because Fm1
= |F(m1)| = 3, Fm2

= |F(m2)| = 3 and
Fm3

= |F(m3)| = 3, we have F = Fm1
· Fm2

· Fm3
= 27

products to consider. Fifteen products are non-conflicting and

will enter in the calculation of mConj
1,2,3(A), mConj

1,2,3(B) and

mConj
1,2,3(A ∪ B), and twelve products are conflicting products

10Belief Functions and Applications Society.
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that will need to be proportionally redistributed. The conjunc-
tive combination of these three BBAs is

mConj
1,2,3(A) = m1(A)m2(A)m3(A)

+m1(A)m2(A)m3(A ∪ B)

+m1(A)m2(A ∪B)m3(A)

+m1(A ∪B)m2(A)m3(A)

+m1(A)m2(A ∪B)m3(A ∪ B)

+m1(A ∪B)m2(A)m3(A ∪ B)

+m1(A ∪B)m2(A ∪B)m3(A)

= 0.5370,

mConj
1,2,3(B) = m1(B)m2(B)m3(B)

+m1(B)m2(B)m3(A ∪B)

+m1(B)m2(A ∪B)m3(B)

+m1(A ∪B)m2(B)m3(B)

+m1(B)m2(A ∪B)m3(A ∪B)

+m1(A ∪B)m2(B)m3(A ∪B)

+m1(A ∪B)m2(A ∪B)m3(B)

= 0.0900,

mConj
1,2,3(A ∪B) = m1(A ∪B)m2(A ∪ B)m3(A ∪B)

= 0.3 · 0.2 · 0.5 = 0.0300,

and

mConj
1,2,3(∅) = 1−mConj

1,2,3(A)−mConj
1,2,3(B)−mConj

1,2,3(A ∪B)

= 0.3430.

In this example we have twelve partial conflicts, noted πj(∅)
(j = 1, . . . , 12), which are given by the following products

π1(∅) = m1(A)m2(A)m3(B) = 0.0300,

π2(∅) = m1(A)m2(B)m3(A) = 0.0720,

π3(∅) = m1(B)m2(A)m3(A) = 0.0200,

π4(∅) = m1(B)m2(B)m3(A) = 0.0120,

π5(∅) = m1(B)m2(A)m3(B) = 0.0050,

π6(∅) = m1(A)m2(B)m3(B) = 0.0180,

π7(∅) = m1(A ∪B)m2(A)m3(B) = 0.0150,

π8(∅) = m1(A ∪B)m2(B)m3(A) = 0.0360,

π9(∅) = m1(B)m2(A)m3(A ∪ B) = 0.0250,

π10(∅) = m1(A)m2(B)m3(A ∪ B) = 0.0900,

π11(∅) = m1(A)m2(A ∪B)m3(B) = 0.0120,

π12(∅) = m1(B)m2(A ∪B)m3(A) = 0.0080.

In applying the PCR5 formula (14), and the PCR6 formula

(15) we obtain finally mPCR5
1,2,3(∅) = mPCR6

1,2,3(∅) = 0, and11

mPCR5
1,2,3(A) ≈ 0.723281,

mPCR5
1,2,3(B) ≈ 0.182460,

mPCR5
1,2,3(A ∪B) ≈ 0.094259,

11The symbol ≈ means “approximately equal to”.

and

mPCR6
1,2,3(A) ≈ 0.743496,

mPCR6
1,2,3(B) ≈ 0.162245,

mPCR6
1,2,3(A ∪B) ≈ 0.094259.

We see a difference between the BBAs mPCR5
1,2,3 and mPCR6

1,2,3

which is normal because the PCR principles are quite different.

Using the PCR5 fusion rule the first partial conflicting mass

π1(∅) = m1(A)m2(A)m3(B) = 0.03 will be redistributed

back to A and B proportionally to m1(A)m2(A) and to

m3(B) as follows

x1(A)

m1(A)m2(A)
=

x1(B)

m3(B)
=

π1(∅)
m1(A)m2(A) +m3(B)

,

whence

x1(A) =
m1(A)m2(A)π1(∅)

m1(A)m2(A) +m3(B)
= 0.0225,

x1(B) =
m3(B)π1(∅)

m1(A)m2(A) +m3(B)
= 0.0075.

We can verify π1(∅) = x1(A) + x1(B) = 0.03.

Using the PCR6 fusion rule the first partial conflicting

mass π1(∅) = 0.03 will be redistributed back to A and B
proportionally to (m1(A) + m2(A)) and to m3(B). So we

will get the following redistributions x1(A) = 0.0275 for A
and x1(B) = 0.0025 for B because

x1(A)

m1(A) +m2(A)
=

x1(B)

m3(B)
=

π1(∅)
m1(A) +m2(A) +m3(B)

whence

x1(A) =
(m1(A) +m2(A))π1(∅)

m1(A) +m2(A) +m3(B)
= 0.0275

x1(B) =
m3(B)π1(∅)

m1(A) +m2(A) +m3(B)
= 0.0025

We can verify π1(∅) = x1(A) + x1(B) = 0.03.

Note that for all the partial conflicts having no duplicate
element involved in the conflicting product πj(∅) we make
the same redistribution with PCR5 rule and with PCR6 rule.
For instance, for π7(∅) = m1(A∪B)m2(A)m3(B) = 0.0150
we get

x7(A ∪ B)

m1(A ∪B)
=

x7(A)

m2(A)
=

x7(B)

m3(B)

=
π7(∅)

m1(A ∪B) +m2(A) +m3(B)
,

whence π7(∅) = x7(A∪B)+x7(A)+x7(B) = 0.0150 with

x7(A ∪B) =
m1(A ∪B)π7(∅)

m1(A ∪B) +m2(A) +m3(B)
= 0.0050,

x7(A) =
m2(A)π7(∅)

m1(A ∪B) +m2(A) +m3(B)
≈ 0.0083,

x7(B) =
m3(B)π7(∅)

m1(A ∪B) +m2(A) +m3(B)
≈ 0.0017.

The next example shows also the difference between PCR5

and PCR6 rules, and it justifies why PCR6 rule is usually

preferred to PCR5 rule in applications.
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Example 3: we consider the FoD Θ = {A,B,C}, and the

four very simple BBAs defined by

m1(A∪B) = 1,m2(B) = 1,m3(A∪B) = 1, and m4(C) = 1.

These BBAs are in conflict because the intersection of their

focal elements is (A ∪B) ∩ A ∩ (A ∪B) ∩ C = ∅. In this

example, one has only one product of masses to calculate,

which is π1((A ∪ B) ∩ A ∩ (A ∪ B) ∩ C) = m1(A ∪
B)m2(A)m3(A ∪ B)m4(C) = 1. In fact this product is

a conflicting product denoted π1(∅). We can also denote

it π(∅) because the index j = 1 is useless in this case.

Moreover, these BBAs are also in total conflict because

π(∅) = m1(A ∪B)m2(A)m3(A ∪B)m4(C) = 1.

If one applies the PCR5 rule principle we get

x(A ∪B)

m1(A ∪B)m3(A ∪B)
=

x(B)

m2(B)
=

x(C)

m4(C)

=
π(∅)

m1(A ∪B)m3(A ∪B) +m2(B) +m4(C)

whence x(A ∪ B) = 1/3, x(B) = 1/3 and x(C) = 1/3 so

that

mPCR5
1,2,3,4(A ∪B) = x(A ∪B) = 1/3

mPCR5
1,2,3,4(B) = x(B) = 1/3

mPCR5
1,2,3,4(C) = x(C) = 1/3

This PCR5 result appears counter-intuitive because three

sources among the four sources exclude definitely the hypoth-

esis C because one has Pl1(C) = Pl2(C) = Pl3(C) = 0, so

it is intuitively expected that after the combination of all the

four BBAs the mass committed to C should not be greater

than 1/4 = 0.25.

If one applies the PCR6 rule principle we get

x(A ∪B)

m1(A ∪B) +m3(A ∪ B)
=

x(B)

m2(B)
=

x(C)

m4(C)

=
π(∅)

m1(A ∪B) +m3(A ∪ B) +m2(B) +m4(C)
,

whence x(A ∪ B) = 2/4, x(B) = 1/4 and x(C) = 1/4 so

that

mPCR6
1,2,3,4(A ∪B) = x(A ∪B) = 0.5,

mPCR6
1,2,3,4(B) = x(B) = 0.25,

mPCR6
1,2,3,4(C) = x(C) = 0.25,

which is in better agreement with what we intuitively expect

because mPCR6
1,2,3,4(C) is not greater than than 1/4. Of course

in this example, Dempster’s rule of combination cannot be

simply applied because the conflict is total yielding a division

by zero in Dempster’s rule formula [8], but by using eventually

some discounting methods to modify the BBAs to combine.

V. FLAWED BEHAVIOR OF PCR5 AND PCR6 RULES

Formula (17) shows that in general PCR6 is not associative,

and by combining two sources in a row each time and we

continue doing that the results is different from the global

combination of all sources using PCR6. The formula is true.

Formula (18) says that in general PCR5 is different from

PCR6, of course except the case when we combine only 2

sources. Formula (19) shows that in general PCR5 does not

have the ignorance source as a neutral element.

The PCR5 and PCR6 rules of combination are not associa-

tive which means that the fusion of the BBAs must be done

using general formulas (14) or (15) if one has more than two

BBAs to combine, which is not very convenient. Therefore,

the sequential PCR5 or PCR6 combination of S > 2 BBAs are

not in general equal to the global PCR5 or PCR6 fusion of the

S BBAs altogether because the order of the combination of the

sources does matter in the sequential combination. In general

(i.e. when conflicts exist between the sources of evidence to

combine) one has for S > 2

PCR5(m1,m2, . . . ,mS) 6=
PCR5(PCR5(PCR5(m1,m2),m3), . . . ,mS), (16)

and

PCR6(m1,m2, . . . ,mS) 6=
PCR6(PCR6(PCR6(m1,m2),m3), . . . ,mS), (17)

and also for S > 2 PCR5 fusion result is generally different

of PCR6 fusion result that is

PCR5(m1,m2, . . . ,mS) 6= PCR6(m1,m2, . . . ,mS). (18)

PCR5 and PCR6 rules can become computationally in-

tractable for combining a large number of sources and for

working with large FoD. This is a well-known limitation of

these rules, but this is the price to pay to get better results

than with classical rules.

Aside the complexity of these rules, it is worth to mention

that the neutral impact property of the vacuous BBA mv is lost

in general when considering the PCR5 or PCR6 combination

of S > 2 BBAs altogether, that is

PCR5(m1, . . . ,mS−1,mv) 6= PCR5(m1, . . . ,mS−1), (19)

and

PCR6(m1, . . . ,mS−1,mv) 6= PCR6(m1, . . . ,mS−1). (20)

This is due to the redistribution principles used in PCR5 and

in PCR6 rules. Example 4 shows the non-neutral impact of

the vacuous BBA in PCR5 and PCR6 rules for convenience.

Note that the vacuous BBA has a neutral impact in the fusion

result if and only if one has only two BBAs to combine

with PCR5, or PCR6, and one of them is the vacuous BBA

because in this case there is no possible (partial) conflict to

redistribute between any BBA m(·) defined over the FoD Θ
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and the vacuous BBA mv(·). That is, for any BBA m1(·) one

always has

PCR5(m1,mv) = PCR6(m1,mv) = m1. (21)

Example 4: we consider the FoD Θ = {A,B} having only

two elements, and the following four BBAs as follows:

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪B) = 0.5,

m4(A ∪B) = 1

BBAs m1, m2 and m3 are as in example 2, and the BBA m4

is nothing but the vacuous BBA mv defined over this FoD Θ.

In example 2, we did obtain with PCR5(m1,m2,m3) and

with PCR5(m1,m2,m3,m4) the following resulting BBAs

mPCR5
1,2,3(A) ≈ 0.723281,

mPCR5
1,2,3(B) ≈ 0.182460,

mPCR5
1,2,3(A ∪B) ≈ 0.094259,

and

mPCR5
1,2,3,4(A) ≈ 0.654604,

mPCR5
1,2,3,4(B) ≈ 0.144825,

mPCR5
1,2,3,4(A ∪B) ≈ 0.200571.

Clearly, PCR5(m1,m2,m3) 6= PCR5(m1,m2,m3,m4) even

if m4 is the vacuous BBA.

Analogously, we did obtain with PCR6(m1,m2,m3) and

with PCR6(m1,m2,m3,m4)

mPCR6
1,2,3(A) ≈ 0.743496,

mPCR6
1,2,3(B) ≈ 0.162245,

mPCR6
1,2,3(A ∪B) ≈ 0.094259,

and

mPCR6
1,2,3,4(A) ≈ 0.647113,

mPCR6
1,2,3,4(B) ≈ 0.128342,

mPCR6
1,2,3,4(A ∪B) ≈ 0.224545.

Therefore, PCR6(m1,m2,m3) 6= PCR6(m1,m2,m3,m4),
even if m4 is the vacuous BBA.

This example 4 shows clearly that the vacuous BBA does

not have a neutral impact in the PCR5 and PCR6 rules of

combination. In fact, adding more vacuous BBAs mv in the

PCR5 or PCR6 fusion will increase more and more the mass of

A∪B while decreasing more and more the masses of A and of

B with PCR5, and PCR6. When the number of vacuous BBAs

mv increases, we will have12 mPCR5/6
1,2,3,mv,...,mv

(A ∪ B) → 1,

mPCR5/6
1,2,3,mv,...,mv

(A) → 0, and mPCR5/6
1,2,3,mv,...,mv

(B) → 0.

This is unsatisfactory because the vacuous BBA brings no

useful information to exploit, and it is naturally expected that it

12The notation mPCR5/6 indicates “mPCR5 or mPCR6” for convenience.

must not impact the fusion result in the combination of BBAs.

This can be seen as a flaw of the behavior of PCR5 and PCR6

rules of combination.

To emphasize this flaw, we give in the example 5 a case

where the mass committed to some partial uncertainties can

increase more than necessary with PCR5 and with PCR6 rules

of combination. This is detrimental for the quality of the fusion

result and for decision-making because the result is more

uncertain than it should be, and consequently the decision is

more difficult to make.

Example 5: we consider the FoD Θ = {A,B,C,D,E}, and
the following three BBAs



















m1(A ∪B) = 0.70,

m1(C ∪D) = 0.06,

m1(A ∪B ∪ C ∪D) = 0.15,

m1(E) = 0.09,

and


















m2(A ∪B) = 0.06,

m2(C ∪D) = 0.50,

m2(A ∪B ∪ C ∪D) = 0.04,

m2(E) = 0.40,

and
{

m3(B) = 0.01

m3(A ∪B ∪ C ∪D ∪E) = 0.99.

Note that the BBA m3 is not equal to the vacuous BBA but

it is very close to the vacuous BBA because m3(Θ) is close

to one.

If we make the PCR6(m1,m2) fusion of only the two BBAs

m1 and m2 altogether, which is also equal to PCR5(m1,m2),
we obtain



















mPCR6
1,2 (A ∪ B) ≈ 0.465309,

mPCR6
1,2 (C ∪D) ≈ 0.296299,

mPCR6
1,2 (A ∪ B ∪ C ∪D) ≈ 0.023471,

mPCR6
1,2 (E) ≈ 0.214921.

If we make the PCR6(m1,m2,m3) fusion of all these three

BBAs altogether we obtain



































mPCR6
1,2,3(B) ≈ 0.000962,

mPCR6
1,2,3(A ∪ B) ≈ 0.286107,

mPCR6
1,2,3(C ∪D) ≈ 0.203454,

mPCR6
1,2,3(A ∪ B ∪ C ∪D) ≈ 0.012203,

mPCR6
1,2,3(E) ≈ 0.116038,

mPCR6
1,2,3(A ∪ B ∪ C ∪D ∪E) ≈ 0.381236.

One sees that combining the BBAs m1, m2 with the BBA

m3 (where m3 is close to vacuous BBA, and therefore m3 is

almost non-informative) generates a big increase of the belief

of the uncertainty in the resulting BBA. This behaviour is

clearly counter-intuitive because if the source is almost vac-

uous, only a small degradation of the uncertainty is expected

and in the limit case when m3 is the vacuous BBA no impact

of m3 on the fusion result should occur. Note that this behavior
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also occurs with PCR5(m1,m2,m3) because one has for this

example


































mPCR5
1,2,3(B) ≈ 0.001103,

mPCR5
1,2,3(A ∪B) ≈ 0.286107,

mPCR5
1,2,3(C ∪D) ≈ 0.203384,

mPCR5
1,2,3(A ∪B ∪ C ∪D) ≈ 0.012203,

mPCR5
1,2,3(E) ≈ 0.115967,

mPCR5
1,2,3(A ∪B ∪ C ∪D ∪E) ≈ 0.381236.

The deep analysis of the partial conflict redistributions done

in this interesting example reveals clearly the flaw of the

principles of PCR5 and PCR6 rules of combination. Indeed,

for this example one has Fm1
· Fm2

· Fm3
= 4 · 4 · 2 = 32

products πj(Xj1 ∩Xj2 ∩Xj3) = m1(Xj1)m2(Xj2)m3(Xj3)
to calculate, where Xj1 ∈ F(m1) = {A∪B,C ∪D,A∪B ∪
C∪D,E}, Xj2 ∈ F(m2) = {A∪B,C∪D,A∪B∪C∪D,E},

and Xj3 ∈ F(m3) = {B,A∪B ∪C ∪D ∪E}. Among these

32 possible conjunctions of focal elements, twenty products

corresponds to partial conflicts when Xj1 ∩ Xj2 ∩ Xj3 = ∅,

which need to be redistributed properly to some elements of

2Θ \ {∅} according to the PCR5, or the PCR6 redistribution

principles.

More precisely, we have to consider all the following
products πj for calculating the result

π1(B) = m1(A ∪ B)m2(A ∪B)m3(B) = 0.00042,

π2(A ∪B) = m1(A ∪B)m2(A ∪B)m3(Θ) = 0.04158,

π3(∅) = m1(A ∪B)m2(C ∪D)m3(B) = 0.0035,

π4(∅) = m1(A ∪B)m2(C ∪D)m3(Θ) = 0.3465,

π5(B) = m1(A ∪ B)m2(A ∪B ∪ C ∪D)m3(B) = 0.00028,

π6(A ∪B) = m1(A ∪B)m2(A ∪B ∪ C ∪D)m3(Θ) = 0.02772,

π7(∅) = m1(A ∪B)m2(E)m3(B) = 0.0028,

π8(∅) = m1(A ∪B)m2(E)m3(Θ) = 0.2772,

π9(∅) = m1(C ∪D)m2(A ∪B)m3(B) = 0.000036,

π10(∅) = m1(C ∪D)m2(A ∪B)m3(Θ) = 0.003564,

π11(∅) = m1(C ∪D)m2(C ∪D)m3(B) = 0.0003,

π12(C ∪D) = m1(C ∪D)m2(C ∪D)m3(Θ) = 0.0297,

π13(∅) = m1(C ∪D)m2(A ∪B ∪ C ∪D)m3(B) = 0.000024,

π14(C ∪D) = m1(C ∪D)m2(A ∪B ∪ C ∪D)m3(Θ)

= 0.002376,

π15(∅) = m1(C ∪D)m2(E)m3(B) = 0.00024,

π16(∅) = m1(C ∪D)m2(E)m3(Θ) = 0.02376,

π17(B) = m1(A ∪B ∪ C ∪D)m2(A ∪B)m3(B) = 0.00009,

π18(A ∪B) = m1(A ∪B ∪ C ∪D)m2(A ∪B)m3(Θ) = 0.00891,

π19(∅) = m1(A ∪ B ∪ C ∪D)m2(C ∪D)m3(B) = 0.00075,

π20(C ∪D) = m1(A ∪B ∪ C ∪D)m2(C ∪D)m3(Θ)

= 0.07425,

π21(B) = m1(A ∪B ∪ C ∪D)m2(A ∪B ∪ C ∪D)m3(B)

= 0.00006,

π22(A ∪B ∪ C ∪D) = m1(A ∪B ∪ C ∪D)m2(A ∪B ∪ C ∪D)

·m3(Θ) = 0.00594,

π23(∅) = m1(A ∪ B ∪ C ∪D)m2(E)m3(B) = 0.0006,

π24(∅) = m1(A ∪ B ∪ C ∪D)m2(E)m3(Θ) = 0.0594,

π25(∅) = m1(E)m2(A ∪B)m3(B) = 0.000054,

π26(∅) = m1(E)m2(A ∪ B)m3(Θ) = 0.005346,

π27(∅) = m1(E)m2(C ∪D)m3(B) = 0.00045,

π28(∅) = m1(E)m2(C ∪D)m3(Θ) = 0.04455,

π29(∅) = m1(E)m2(A ∪ B ∪ C ∪D)m3(B) = 0.000036,

π30(∅) = m1(E)m2(A ∪ B ∪ C ∪D)m3(Θ) = 0.003564,

π31(∅) = m1(E)m2(E)m3(B) = 0.00036,

π32(E) = m1(E)m2(E)m3(Θ) = 0.03564.

The conjunctive rule gives

mConj
1,2,3(B) = π1(B) + π5(B) + π17(B) + π21(B) = 0.00085,

mConj
1,2,3(A ∪B) = π2(A ∪B) + π6(A ∪B) + π18(A ∪ B)

= 0.07821,

mConj
1,2,3(C ∪D) = π12(C ∪D) + π14(C ∪D) + π20(C ∪D)

= 0.106326,

mConj
1,2,3(A ∪B ∪ C ∪D) = π22(A ∪B ∪ C ∪D) = 0.00594,

mConj
1,2,3(E) = π32(E) = 0.03564.

The total conflicting mass between these three BBAs is

mConj
1,2,3(∅) =

∑

j=3,4,7,...,11,13,15,16,19,23,...,31

πj(∅)

= 1−mConj
1,2,3(B)−mConj

1,2,3(A ∪B)−mConj
1,2,3(C ∪D)

−mConj
1,2,3(A ∪B ∪ C ∪D)−mConj

1,2,3(E) = 0.773034.

Let’s examine how the mPCR5
1,2,3(Θ) ≈ 0.381236 value is

obtained based on the PCR5 redistribution principle. Based
on the structures of πj(∅) products, we have to consider only
products involving a proportional redistribution to Θ. So we
get a proportional redistribution to Θ only from the following
products

π4(∅) = m1(A ∪ B)m2(C ∪D)m3(Θ) = 0.3465,

π8(∅) = m1(A ∪ B)m2(E)m3(Θ) = 0.2772,

π10(∅) = m1(C ∪D)m2(A ∪B)m3(Θ) = 0.003564,

π16(∅) = m1(C ∪D)m2(E)m3(Θ) = 0.02376,

π24(∅) = m1(A ∪B ∪ C ∪D)m2(E)m3(Θ) = 0.0594,

π26(∅) = m1(E)m2(A ∪B)m3(Θ) = 0.005346,

π28(∅) = m1(E)m2(C ∪D)m3(Θ) = 0.04455,

π30(∅) = m1(E)m2(A ∪B ∪ C ∪D)m3(Θ) = 0.003564.

Because there is no duplicate focal elements in each of these

products, the PCR5 and PCR6 redistributions to Θ will be the

same in this example.

The proportional redistribution of π4(∅) to Θ is

x4(Θ) =
m3(Θ)π4(∅)

m1(A ∪B) +m2(C ∪D) +m3(Θ)
≈ 0.156637.

The proportional redistribution of π8(∅) to Θ is

x8(Θ) =
m3(Θ)π8(∅)

m1(A ∪ B) +m2(E) +m3(Θ)
≈ 0.131305.
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The proportional redistribution of π10(∅) to Θ is

x10(Θ) =
m3(Θ)π10(∅)

m1(C ∪D) +m2(A ∪ B) +m3(Θ)
≈ 0.003179.

The proportional redistribution of π16(∅) to Θ is

x16(Θ) =
m3(Θ)π16(∅)

m1(C ∪D) +m2(E) +m3(Θ)
≈ 0.016222.

The proportional redistribution of π24(∅) to Θ is

x24(Θ) =
m3(Θ)π24(∅)

m1(A ∪B ∪ C ∪D) +m2(E) +m3(Θ)
≈ 0.038186.

The proportional redistribution of π26(∅) to Θ is

x26(Θ) =
m3(Θ)π26(∅)

m1(E) +m2(A ∪ B) +m3(Θ)
≈ 0.004643.

The proportional redistribution of π28(∅) to Θ is

x28(Θ) =
m3(Θ)π28(∅)

m1(E) +m2(C ∪D) +m3(Θ)
≈ 0.027914.

The proportional redistribution of π30(∅) to Θ is

x30(Θ) =
m3(Θ)π30(∅)

m1(E) +m2(A ∪B ∪ C ∪D) +m3(Θ)
≈ 0.003150.

Therefore we finally obtain the quite big value for the mass

committed to Θ

mPCR5
1,2,3(Θ) = x4(Θ) + x8(Θ) + x10(Θ) + x16(Θ) + x24(Θ)

+ x26(Θ) + x28(Θ) + x30(Θ)

≈ 0.381236.

We see clearly why PCR5 (and PCR6) redistributes some

mass to uncertainty Θ although the focal element Θ is not in

conflict with other focal elements involved in each product

π4(∅), π8(∅), π10(∅), π16(∅), π24(∅), π26(∅), π28(∅) and

π30(∅), which is an undesirable behavior that we want to avoid.

That is why we propose in the next section some improvement

of PCR5 and PCR6 rules of combination.

VI. IMPROVEMENT OF PCR5 AND PCR6 RULES

To circumvent the weakness of the orignal PCR5 and PCR6

redistribution principles, we propose an improvement of these

rules that will be denoted as PCR5+ and PCR6+ in the sequel.

These new rules are not redundant with PCR5 nor with PCR6

when combining more than two BBAs altogether..

The very simple and basic idea to improve PCR5 and

PCR6 redistribution principles is to discard the elements that

contain all the other elements implied in the partial conflict

πj(∅) calculation. Indeed, the elements discarded are regarded

as non-informative and not useful for making the conflict

redistribution.

For instance, if we consider the previous Example 5, the
conflicting mass with PCR5+ and PCR6+ for the conflicting
product π4(∅) = m1(A ∪ B)m2(C ∪ D)m3(Θ) will be
proportionally redistributed back only to A∪B and to C ∪D
but not to Θ because A ∪ B ⊆ Θ and C ∪ D ⊆ Θ. Thus

with PCR5+ and PCR6+ rules we will make the following
redistribution:

x4(A ∪B)

m1(A ∪B)
=

x4(C ∪D)

m2(C ∪D)
=

π4(∅)

m1(A ∪ B) +m2(C ∪D)
.

Here, x4(Θ) is set to 0 with PCR5+ and PCR6+ principles

because no proportion of π4(∅) must be redistributed to Θ.

However, with PCR5 and PCR6 rule we make the redistri-
butions according to

x4(A ∪ B)

m1(A ∪B)
=

x4(C ∪D)

m2(C ∪D)
=

x4(Θ)

m3(Θ)

=
π4(∅)

m1(A ∪ B) +m2(C ∪D) +m3(Θ)
.

A. Selection of focal elements for proportional redistribution

The main issue to improve PCR5 and PCR6 rules of

combination is how to identify in each conflicting product

πj(∅) the set of elements to keep for making the improved

proportional redistribution.

In this section we propose a solution of this problem that

can be easily implemented. For convenience, we give also the

basic Matlab™codes of PCR5+ and PCR6+ in appendix 3.

Let’s consider πj(∅) = m1(Xj1)m2(Xj2) . . .mS(XjS ) a

conflicting product13 where Xj1 ∩ Xj2 ∩ . . . ∩ XjS = ∅. We

denote by Xj = {X1, . . . , Xsj , sj ≤ S} the set of all distinct

components of the S-tuple Xj related with the conflicting

product πj(∅). The order of the elements in Xj does not matter.

The number sj of elements in Xj can be less than S because

it is possible to have duplicate focal elements in πj(∅). We

consider in Xj only the distinct focal elements involved in

πj(∅) (see the next example) and we will define their binary

keeping-index indicator which will allow to know if each

element of Xj needs to be kept in the proportional conflict

redistribution, or not, in the improved PCR5 and PCR6 rules

of combination.

For each element Xl ∈ Xj we first define its binary

containing indicator δj(Xl′ , Xl) with respect to Xl′ ∈ Xj to

characterize if Xl contains (includes) Xl′ in wide sense, or

not. Therefore, we take δj(Xl′ , Xl) = 1 if Xl′ ∩Xl = Xl′ , or

equivalently if Xl′ ⊆ Xl, and δj(Xl′ , Xl) = 0 otherwise. The

definition of this binary containing indicator is summarized by

the formula

δj(Xl′ , Xl) ,

{

1 if Xl′ ⊆ Xl,

0 if Xl′ * Xl.
(22)

Of course δj(Xl, Xl) = 1 because Xl ∩ Xl = Xl, and we

have δj(Xl′ , Xl) = 0 as soon as |Xl′ | > |Xl|, where |Xl′ | and

|Xl| are the cardinalities of Xl′ and Xl respectively. We have

13We consider S > 2 BBAs because for S = 2 BBAs no improper
increasing of uncertainty occurs with PCR5 or PCR6.
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also δj(Xl′ , Xl) = 0 when Xl′ ∩Xl 6= Xl′ . For Xl = Θ, we

have δj(Xl′ , Xl) = δj(Xl′ ,Θ) = 1 for any Xl′ ∈ Xj .

To know if a focal element Xji ∈ Xj must be kept, or

not, in the proportional redistribution of the j-th conflicting

mass πj(∅) with PCR5+ and PCR6+ rules, we have to

determinate its binary keeping-index κj(Xji). For this, we

define κj(Xji) ∈ {0, 1} as follows

κj(Xji) , 1−
∏

Xl′ ,Xl∈Xj

Xl′ 6=Xl

|Xji
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl). (23)

The value κj(Xji) = 1 stipulates that the focal element

Xji ∈ Xj must receive some proportional redistribution

from the conflicting mass πj(∅). The value κj(Xji) = 0
indicates that the focal element Xji will not be involved

in the proportional redistribution of the conflicting mass πj(∅).

The binary keeping-index can also be defined equivalently

as

κj(Xji) =











1 if c(Xji) is true,

1−∏

Xl′∈Xj

Xl′ 6=Xji

|Xl′ |≤|Xji
|

δj(Xl′ , Xji) if c(Xji) is false,

(24)

where the condition c(Xji) is defined as

c(Xji) , ∃Xl ∈ Xj such |Xl| > |Xji | and κj(Xl) = 1.

Because this second definition of κj(Xji) is self-

referencing, we need to calculate the binary keeping-indexes

iteratively starting by the element of Xj of highest cardinality

(say X), then for elements of Xj of cardinality |X | − 1 (if

any), then for elements of Xj of cardinality |X | − 2 (if any),

etc. From the implementation standpoint the definition (24) is

more efficient than the direct definition (23).

Remark 1: We always have κj(Θ) = 0 if Θ ∈ Xj because

Θ always includes all other focal elements of Xj and Θ has

the highest cardinality, so δj(Xl′ ,Θ) = 1 for all Xl′ ∈ Xj .

Therefore the binary keeping-index formula (23) reduces to

κj(Θ) = 1−
∏

Xl′∈Xj

δj(Xl′ ,Θ) = 1− 1 · 1 · . . . · 1
︸ ︷︷ ︸

|Xj | terms

= 0.

Remark 2: For a given FoD and a given number of BBAs

to combine, it is always possible to calculate off-line the

values of the binary keeping-indexes of focal elements of all

possible combinations of focal elements involved in conflicting

products πj(∅) > 0 because the binary keeping-index depends

only on the structure of the focal elements, and not on the

numerical mass values of the focal elements. This remark is

important, especially in applications where we have thousands

or millions of fusion steps to make because we will not have to

recalculate in each fusion step the binary keeping-indexes for

each πj(∅) even if the input BBAs values to combine change.

Remark 3: It is worth to recall that PCR5+ and PCR6+ have

interest if and only if we have more than two (S > 2) BBAs

to combine. If we have only two BBAs to combine (S = 2)

we always get mPCR5 = mPCR5+ = mPCR6 = mPCR6+ because

in this case the PCR5, PCR5+, PCR6, PCR6+ rules coincide.

For convenience, we illustrate the calculation of these

binary keeping-indexes based on the direct calculation (23)

for different examples.

Example 6: We consider the FoD Θ = {A,B,C,D}, six

BBAs, and the j-th conflicting (assumed strictly positive)

product whose structure is as follows

πj(∅) = m1(A)m2(B ∪ C)m3(A ∪ C)m4(B ∪ C)

·m5(A ∪B ∪ C)m6(A ∪B ∪ C ∪D)

In this product πj(∅) we have the duplicate focal element B∪
C because it appears both in m2(B∪C) and in m4(B∪C). The

focal elements entering in each BBA of πj(∅) are respectively

Xj1 = A, Xj2 = B ∪ C, Xj3 = A ∪ C, Xj4 = B ∪ C,

Xj5 = A ∪ B ∪ C, and Xj6 = A ∪ B ∪ C ∪ D = Θ. So

we have to consider only the following set of distinct focal

elements for this πj(∅) product

Xj = {X1 = A,X2 = B ∪ C,X3 = A ∪ C,

X4 = A ∪B ∪ C,X5 = A ∪B ∪ C ∪D}

Therefore, considering only Xl′ 6= Xl and |Xl′ | ≤ |Xl| that

are conditions entering in formula (23), we have the following

binary containing indicator δj(Xl′ , Xl) values:

δj(X1,X2) = 0 because (X1 = A) * (X2 = B ∪ C),

δj(X1,X3) = 1 because (X1 = A) ⊆ (X3 = A ∪ C),

δj(X1,X4) = 1 because (X1 = A) ⊆ (X4 = A ∪ B ∪C),

δj(X1,X5) = 1 because (X1 = A) ⊆ (X5 = Θ),

δj(X2,X3) = 0 because (X2 = B ∪ C) * (X3 = A ∪C),

δj(X2,X4) = 1 because (X2 = B ∪ C) ⊆ (X4 = A ∪ B ∪ C),

δj(X2,X5) = 1 because (X2 = B ∪ C) ⊆ (X5 = Θ),

δj(X3,X2) = 0 because (X3 = A ∪ C) * (X2 = B ∪C),

δj(X3,X4) = 1 because (X3 = A ∪ C) ⊆ (X4 = A ∪ B ∪ C),

δj(X3,X5) = 1 because (X3 = A ∪ C) ⊆ (X5 = Θ),

δj(X4,X5) = 1 because (X4 = A ∪ B ∪ C) ⊆ (X5 = Θ).

The binary keeping-indexes κj(Xji) for i = 1, 2, . . . , 6 are

calculated based on the formula (23) as follows:

• For the focal element Xj1 = A = X1 of Xj having
|Xj1 | = 1, we get

κj(A) = 1−
∏

X
l′
,Xl∈Xj

Xl′ 6=Xl

|Xj1
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X2)δj(X1, X3)δj(X1, X4)δj(X1, X5)

· δj(X2, X3)δj(X2, X4)δj(X2, X5)δj(X3, X2)

· δj(X3, X4)δj(X3, X5)δj(X4, X5)]

= 1− 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.
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Hence the focal element Xj1 = A will be kept in the

proportional redistribution of the conflicting mass πj(∅).
• For the focal element Xj2 = B ∪ C = X2 of Xj having

|Xj2 | = 2, we get

κj(B ∪ C) = 1−
∏

X
l′
,Xl∈Xj

Xl′ 6=Xl

|Xj2
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X2)δj(X1, X3)δj(X1, X4)

· δj(X1, X5)δj(X2, X3)δj(X2, X4)

· δj(X2, X5)δj(X3, X2)δj(X3, X4)

· δj(X3, X5)δj(X4, X5)]

= 1− 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence the focal element Xj2 = B∪C will be kept in the

proportional redistribution of the conflicting mass πj(∅).
• For the focal element Xj3 = A ∪ C = X3 of Xj having

|Xj3 | = 2, we get

κj(A ∪ C) = 1−
∏

Xl′ ,Xl∈Xj

Xl′ 6=Xl

|Xj3
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X2)δj(X1, X3)δj(X1, X4)

· δj(X1, X5)δj(X2, X3)δj(X2, X4)

· δj(X2, X5)δj(X3, X2)δj(X3, X4)

· δj(X3, X5)δj(X4, X5)]

= 1− 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence the focal element Xj3 = A ∪ C will be kept in the

proportional redistribution of the conflicting mass πj(∅).
• For the duplicate focal element Xj4 = B ∪ C of Xj hav-

ing |Xj4 | = 2, we have κj(Xj4) = 1 because Xj4 = Xj2

and κj(Xj2) = 1.

• For the focal element Xj5 = A ∪B ∪ C = X4 of Xj

having |Xj5 | = 3, we get

κj(A ∪B ∪ C) = 1−
∏

Xl′ ,Xl∈Xj

Xl′ 6=Xl

|Xj5
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X4)δj(X1, X5)

· δj(X2, X4)δj(X2, X5)δj(X3, X4)

· δj(X3, X5)δj(X4, X5)]

= 1− 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0.

Hence the focal element Xj5 = A ∪ B ∪ C will

be discarded in the proportional redistribution of the

conflicting mass πj(∅).
• For the focal element Xj6 = A ∪B ∪ C ∪D = Θ = X5

of Xj having |Xj6 | = 4, we get

κj(Θ) = 1−
∏

Xl′ ,Xl∈Xj

X
l′
6=Xl

|Xj6
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− δj(X1, X5)δj(X2, X5)δj(X3, X5)δj(X4, X5)

= 1− 1 · 1 · 1 · 1 = 0.

This result illustrates the validity of the aforementioned

remark 1. Hence the focal element Xj5 = A∪B∪C∪D =
Θ will be discarded in the proportional redistribution of

the conflicting mass πj(∅).

In summary, the conflicting product πj(∅) = m1(A)m2(B∪
C)m3(A ∪ C)m4(B ∪ C)m5(A ∪ B ∪ C)m6(Θ) will be

redistributed only to the three focal elements A, B ∪ C and

A ∪C with the improved rules PCR5+ and PCR6+, whereas

it would have been redistributed to all five focal elements A,

B ∪C, A∪C, A∪B ∪C and Θ with the classical PCR5 and

PCR6 rules. Thus, two focal elements were discarded.

Example 7: This example is somehow an extension of ex-

ample 6 by including a new element E in the FoD. So,

the FoD is Θ = {A,B,C,D,E}, seven BBAs, and the j-th

conflicting (assumed strictly positive) product whose structure

is as follows

πj(∅) = m1(A∪E)m2(B∪C∪E)m3(A∪C∪E)m4(B∪C∪E)

·m5(A ∪ B ∪ C ∪E)m6(A ∪B ∪ C ∪D ∪E)m7(A).

In this product πj(∅) we have the duplicate focal element

B ∪ C ∪ E because it appears both in m2(B ∪ C ∪ E) and

in m4(B ∪C ∪E). The focal elements entering in each BBA

of πj(∅) are respectively Xj1 = A ∪ E, Xj2 = B ∪ C ∪ E,

Xj3 = A∪C ∪E, Xj4 = B ∪C ∪E, Xj5 = A∪B ∪C ∪E,

Xj6 = A∪B ∪C ∪D∪E = Θ and Xj7 = A. So we have to

consider only the following set of distinct focal elements for

this πj(∅) product

Xj = {X1 = A ∪E,X2 = B ∪ C ∪ E,X3 = A ∪ C ∪ E,

X4 = A∪B ∪C ∪E,X5 = A∪B ∪C ∪D∪E,X6 = A}.
Therefore, considering only Xl′ 6= Xl and |Xl′ | ≤ |Xl| that
are conditions entering in formula (23), we have the following
binary containing indicator δj(Xl′ , Xl) values:

δj(X6,X1) = 1 because (X6 = A) ⊆ (X1 = A ∪ E),

δj(X6,X2) = 0 because (X6 = A) * (X2 = B ∪ C ∪ E),

δj(X6,X3) = 1 because (X6 = A) ⊆ (X3 = A ∪ C ∪ E),

δj(X6,X4) = 1 because (X6 = A) ⊆ (X4 = A ∪ B ∪ C ∪E),

δj(X6,X5) = 1 because (X6 = A) ⊆ (X5 = Θ),

δj(X1,X2) = 0 because (X1 = A ∪ E) * (X2 = B ∪C ∪ E),

δj(X1,X3) = 1 because (X1 = A ∪ E) ⊆ (X3 = A ∪ C ∪E),

δj(X1,X4) = 1 because (X1 = A ∪ E) ⊆ (X4 = A ∪ B ∪ C ∪E),

δj(X1,X5) = 1 because (X1 = A ∪ E) ⊆ (X5 = Θ),

δj(X2,X3) = 0 because (X2 = B ∪C ∪ E) * (X3 = A ∪ C ∪E),

δj(X2,X4) = 1 because (X2 = B ∪C ∪ E) ⊆ (X4 = A ∪ B ∪ C ∪E),
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δj(X2,X5) = 1 because (X2 = B ∪C ∪ E) ⊆ (X5 = Θ),

δj(X3,X2) = 0 because (X3 = A ∪ C ∪ E) * (X2 = B ∪ C ∪E),

δj(X3,X4) = 1 because (X3 = A ∪ C ∪ E) ⊆ (X4 = A ∪ B ∪ C ∪ E),

δj(X3,X5) = 1 because (X3 = A ∪ C ∪ E) ⊆ (X5 = Θ),

δj(X4,X5) = 1 because (X4 = A ∪ B ∪ C ∪ E) ⊆ (X5 = Θ).

The binary keeping-indexes κj(Xji) for i = 1, 2, . . . , 7 are

calculated based on the formula (23) as follows

• For the focal element Xj1 = A ∪ E = X1 of Xj having
|Xj1 | = 2, we get

κj(Xj1) = 1−
∏

Xl′ ,Xl∈Xj

Xl′ 6=Xl

|Xj1
|≤|Xl|

|Xl′ |≤|Xl|

δi(Xl′ , Xl)

= 1− [δj(X1, X2)δj(X1, X3)δj(X1, X4)δj(X1, X5)

· δj(X2, X3)δj(X2, X4)δj(X2, X5)δj(X3, X2)

· δj(X3, X4)δj(X3, X5)δj(X4, X5)δj(X6, X1)

· δj(X6, X2)δj(X6, X3)δj(X6, X4)δj(X6, X5)]

= 1− 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence the focal element Xj1 = A ∪ E will be kept in the

proportional redistribution of the conflicting mass πj(∅).
• For the focal element Xj2 = B ∪ C ∪ E = X2 of Xj

having |Xj2 | = 3, we get

κj(Xj2) = 1−
∏

Xl′ ,Xl∈Xj

X
l′
6=Xl

|Xj2
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X2)δj(X1, X3)δj(X1, X4)δj(X1, X5)

· δj(X2, X3)δj(X2, X4)δj(X2, X5)δj(X3, X2)

· δj(X3, X4)δj(X3, X5)δj(X4, X5)δj(X6, X2)

· δj(X6, X3)δj(X6, X4)δj(X6, X5)]

= 1− 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1

= 1.

Hence the focal element Xj2 = B ∪ C ∪ E will also be

kept in the proportional redistribution of the conflicting

mass πj(∅).

• For the focal element Xj3 = A ∪C ∪ E = X3 of Xj

having |Xj3 | = 3, we get

κj(Xj3) = 1−
∏

Xl′ ,Xl∈Xj

Xl′ 6=Xl

|Xj3
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X2)δj(X1, X3)δj(X1, X4)δj(X1, X5)

· δj(X2, X3)δj(X2, X4)δj(X2, X5)δj(X3, X2)

· δj(X3, X4)δj(X3, X5)δj(X4, X5)δj(X6, X2)

· δj(X6, X3)δj(X6, X4)δj(X6, X5)]

= 1− 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1

= 1.

Hence the focal element Xj3 = A ∪ C ∪ E is also kept

in the redistribution.

• For the duplicate focal element Xj4 = B ∪ C ∪ E having

|Xj4 | = 3, we have κj(Xj4) = 1 because Xj4 = Xj2 and

κj(Xj2 ) = 1.

• For the focal element Xj5 = A ∪B ∪C ∪ E = X4 hav-
ing |Xj5 | = 4, we get

κj(Xj5 ) = 1−
∏

Xl′ ,Xl∈Xj

Xl′ 6=Xl

|Xj5
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X4)δj(X1, X5)δj(X2, X4)δj(X2, X5)

· δj(X3, X4)δj(X3, X5)δj(X4, X5)δj(X6, X4)

· δj(X6, X5)]

= 1− 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0.

Hence the focal element Xj5 = A ∪B ∪ C ∪ E must be

ignored in the proportional redistribution.

• For Xj6 = A ∪B ∪C ∪D ∪ E = Θ = X5 having
|Xj6 | = 5, we get

κj(Xj6 ) = 1−
∏

Xl′ ,Xl∈Xj

X
l′
6=Xl

|Xj6
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X5)δj(X2, X5)δj(X3, X5)δj(X4, X5)

· δj(X6, X5)]

= 1− 1 · 1 · 1 · 1 · 1 = 0.

This result illustrates the validity of the aforementioned

remark 1. Hence the focal element Xj6 = A ∪ B ∪ C ∪
D∪E must be ignored in the proportional redistribution.

• For the focal element Xj7 = A = X6 having |Xj7 | = 1,
we get naturally (see our previous remark 1)

κj(Xj7 ) = 1−
∏

Xl′ ,Xl∈Xj

X
l′
6=Xl

|Xj7
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl)

= 1− [δj(X1, X2)δj(X1, X3)δj(X1, X4)δj(X1, X5)

· δj(X2, X3)δj(X2, X4)δj(X2, X5)δj(X3, X2)

· δj(X3, X4)δj(X3, X5)δj(X4, X5)δj(X6, X2)

· δj(X6, X3)δj(X6, X4)δj(X6, X5)]

= 1− 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1

= 1.

Hence the focal element Xj7 = A must be kept in the

proportional redistribution.

In summary, the conflicting product πj(∅) =
m1(A ∪ E)m2(B ∪ C ∪ E)m3(A ∪ C ∪ E)
m4(B ∪ C ∪ E)m5(A ∪ B ∪ C ∪ E)m6(Θ)m7(A) will

be redistributed only to focal elements A ∪ E, B ∪ C ∪ E,

A ∪ C ∪ E and A with the improved rules PCR5+ and

PCR6+, whereas it would have been redistributed to all focal

elements A ∪E, B ∪C ∪E, A ∪C ∪E, A ∪B ∪C ∪E, Θ
and A with the classical PCR5 and PCR6 rules.
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Example 8: This is a somehow simplified version of example

6. We consider the FoD Θ = {A,B,C,D}, only five BBAs,

and suppose that the j-th conflicting (assumed strictly positive)

product is as follows

πj(∅) = m1(A)m2(B ∪ C)m3(A ∪ C)m4(B ∪ C)

·m5(A ∪B ∪ C ∪D).

Based on (23), it can be verified14 that the binary keeping-

indexes of focal elements involved in conflicting products are

κj(A) = 1,

κj(B ∪ C) = 1,

κj(A ∪ C) = 1,

κj(A ∪B ∪ C ∪D) = 0.

Example 9: We consider the FoD Θ = {A,B,C,D}, seven

BBAs, and suppose that the j-th conflicting (assumed strictly

positive) product is as follows

πj(∅) = m1(A)m2(B ∪ C)m3(A ∪ C)m4(B ∪ C)

·m5(A ∪ B ∪ C ∪D)m6(A ∪B ∪ C)m7(A ∪ B ∪ C).

Based on (23), it can be verified that the binary keeping-

indexes of focal elements involved in conflicting products are

κj(A) = 1,

κj(B ∪ C) = 1,

κj(A ∪ C) = 1,

κj(A ∪B ∪ C ∪D) = 0,

κj(A ∪B ∪ C) = 0.

Example 10: We consider the FoD Θ = {A,B,C}, three

BBAs, and suppose that the j-th conflicting (assumed strictly

positive) product is as follows

πj(∅) = m1(A)m2(B ∪ C)m3(A ∪ C).

Based on (23), it can be verified that the binary keeping-

indexes of focal elements involved in conflicting products are

κj(A) = 1,

κj(B ∪ C) = 1,

κj(A ∪ C) = 1.

Example 11: We consider the FoD Θ = {A,B,C}, four

BBAs, and suppose that the j-th conflicting (assumed strictly

positive) product is as follows

πj(∅) = m1(A)m2(B ∪ C)m3(A ∪ C)m4(A ∪ B).

14The verification is left to the reader.

Based on (23), it can be verified that the binary keeping-

indexes of focal elements involved in conflicting products are

κj(A) = 1,

κj(B ∪ C) = 1,

κj(A ∪ C) = 1,

κj(A ∪B) = 1.

Example 12: We consider the FoD Θ = {A,B,C}, three

BBAs, and suppose that the j-th conflicting (assumed strictly

positive) product is as follows

πj(∅) = m1(A ∪B ∪ C)m2(A)m3(B ∪ C).

Based on (23), it can be verified that the binary keeping-

indexes of focal elements involved in conflicting products are

κj(A ∪B ∪ C) = 0,

κj(A) = 1,

κj(B ∪C) = 1.

Example 13: We consider the FoD Θ = {A,B,C,D}, and

the three following BBAs

m1(A ∪B) = 0.8,m1(C ∪D) = 0.2,

m2(A ∪B) = 0.4,m2(C ∪D) = 0.6,

m3(B) = 0.1,m3(A ∪B ∪C ∪D) = 0.9.

We have F = |F(m1)| · |F(m2)| · |F(m3)| = 2 · 2 · 2 = 8
products πj (j = 1, . . . ,F ) entering in the fusion process as

follows

π1(B) = m1(A ∪B)m2(A ∪B)m3(B) = 0.032,

π2(A ∪B) = m1(A ∪B)m2(A ∪B)m3(Θ) = 0.288,

π3(∅) = m1(A ∪B)m2(C ∪D)m3(B) = 0.048,

π4(∅) = m1(A ∪B)m2(C ∪D)m3(Θ) = 0.432,

π5(∅) = m1(C ∪D)m2(A ∪B)m3(B) = 0.008,

π6(∅) = m1(C ∪D)m2(A ∪B)m3(Θ) = 0.072,

π7(∅) = m1(C ∪D)m2(C ∪D)m3(B) = 0.012,

π8(C ∪D) = m1(C ∪D)m2(C ∪D)m3(Θ) = 0.108.

Based on (23), it can be verified15 that the binary keeping-

indexes of focal elements involved in conflicting products

π3(∅) to π7(∅) are

κ3(A ∪B) = 1, κ3(C ∪D) = 1, κ3(B) = 1,

κ4(A ∪B) = 1, κ4(C ∪D) = 1, κ4(Θ) = 0,

κ5(C ∪D) = 1, κ5(A ∪B) = 1, κ5(B) = 1,

κ6(C ∪D) = 1, κ6(A ∪B) = 1, κ6(Θ) = 0,

κ7(C ∪D) = 1, κ7(B) = 1.

In summary, once the binary keeping-index of κj(Xji) of

all focal elements Xji involved in a conflicting product πj(∅)
are calculated, we can apply PCR5, or PCR6 redistribution

principle only with the focal elements for which κj(Xji) = 1.

15The verification is left to the reader.
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With this new improved method of proportional redistribution

PCR5+ and PCR6+ rules will never increase the mass of non

conflicting elements involved in each πj(∅) (if any), and in

doing this way we will preserve the neutrality of the vacuous

belief assignment in the PCR5+ and PCR6+ fusion rules,

which is a very desirable behavior.

B. Expressions of PCR5+ and PCR6+ fusion rules

The expressions of PCR5+ and PCR6+ fusion rules are

proper modifications of PCR5 and PCR6 formulas (14) and

(15) taking into account the selection of focal elements on

which the proportional redistribution must apply thanks to the

value of their binary keeping-index.

The PCR5+ fusion of S > 2 BBAs is obtained by

mPCR5+

1,2,...,S(∅) = 0, and for all A ∈ 2Θ \ {∅} by

mPCR5+

1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

κj(A)
∏

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(∅)
∑

X∈Xj

(

κj(X)
∏

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

. (25)

The PCR6+ fusion of S > 2 BBAs is obtained by

mPCR6+

1,2,...,S(∅) = 0, and for all A ∈ 2Θ \ {∅} by

mPCR6+

1,2,...,S(A) = m
Conj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

κj(A)
∑

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(∅)
∑

X∈Xj

(

κj(X)
∑

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

, (26)

where κj(A) and κj(X) are respectively the binary keeping-

indexes of elements A and X involved in the conflicting

product πj(∅), that are calculated by the formula (23) or (24).

Remark 4: It is worth mentioning that PCR5+ formula (25)

is totally consistent with PCR5 formula (14) when all binary

keeping-indexes are equal to one. Similarly, the PCR6+

formula (26) reduces to PCR6 formula (15) if all binary

keeping-indexes equal one.

Theorem: The vacuous BBA mv has a neutral impact in

PCR5+ and PCR6+ rules of combination.

Proof: see appendix 2.

C. On the complexity of PCR5+ and PCR6+ fusion rules

The complexity of PCR5 and PCR6 rules is difficult to

establish precisely because the number of computations highly

depends on the structure of focal elements of the BBAs

to combine, but definitely it is higher than Dempster’s rule

of combination. What about the complexity of PCR5+ and

PCR6+ fusion rules? On the one hand, PCR5+ and PCR6+

seem more complex than PCR5 and PCR6 rules because one

needs extra computational burden with respect to PCR5 and

PCR6 rules to calculate the binary keeping-indexes. But in

fact, the calculation of binary keeping-indexes do not depend

on the mass values of focal elements but only on their struc-

ture. Hence, the binary keeping-indexes can be calculated off-

line once for all for many possible structures of focal elements

of BBAs to combine. On the other hand, if the binary keeping-

index calculation is done off-line, then PCR5+ and PCR6+

become less complex than PCR5 and PCR6 rule because some

elements are discarded with PCR5+ and PCR6+ making the

redistribution simpler and more effective than with PCR5 and

PCR6 rules. It is not possible to say for sure if globally

PCR5+ and PCR6+ are more (or less) complex than PCR5 and

PCR6 because it really depends on the fusion problem under

consideration and the structure of focal elements of BBAs

to combine. If the sources of evidence to combine generate

many partial conflicts to redistribute including many elements

to discard, then PCR5+ and PCR6+ are more advantageous

than PCR5 and PCR6 in terms of reduction of complexity.

VII. EXAMPLES FOR PCR5+
AND PCR6+

FUSION RULES

Here we compare the results obtained with PCR5+ and

PCR6+ with respect to those drawn from PCR5 and PCR6

rules on the examples from 1 to 13 in the previous sections.

Since these following examples, for PCR5+ and PCR6+

fusion rules, respectively consider the same FoD and BBAs as

those presented, they will be denoted as “revisited examples”.

Example 1 (revisited): Consider Θ = {A,B} and two

following BBAs

m1(A) = 0.1, m1(B) = 0.2, m1(A ∪B) = 0.7,

m2(A) = 0.4, m2(B) = 0.3, m2(A ∪B) = 0.3.

Because there is only two BBAs to combine, we have

PCR5(m1,m2) = PCR6(m1,m2)

PCR5+(m1,m2) = PCR6+(m1,m2).

We have m
Conj
1,2 (A) = 0.35, m

Conj
1,2 (B) = 0.33, and

mConj
1,2 (Θ) = 0.21, and we have the two conflict-

ing products π1(∅) = m1(A)m2(B) = 0.03 and

π2(∅) = m2(A)m1(B) = 0.08 to redistribute.

Applying PCR5 principle for π1(∅) = 0.03 we get

x1(A)

m1(A)
=

x1(B)

m2(B)
=

π1(∅)
m1(A) +m2(B)

,

whence x1(A) = 0.1 · 0.03
0.1+0.3

= 0.0075 and x1(B) = 0.3 ·
0.03

0.1+0.3
= 0.0225.

Applying PCR5 principle for π2(∅) = 0.08 we get

x2(A)

m2(A)
=

x2(B)

m1(B)
=

π2(∅)
m2(A) +m1(B)

,

whence x2(A) = 0.4 · 0.08
0.4+0.2

≈ 0.0533 and x2(B) = 0.2 ·
0.08

0.4+0.2
≈ 0.0267.
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Therefore we get

mPCR5
1,2 (A) = mPCR6

1,2 (A) = mConj
1,2 (A) + x1(A) + x2(A)

= 0.35 + 0.0075 + 0.0533 = 0.4108,

mPCR5
1,2 (B) = mPCR6

1,2 (B) = mConj
1,2 (B) + x1(B) + x2(B)

= 0.33 + 0.0225 + 0.0267 = 0.3792,

mPCR5
1,2 (A ∪B) = mPCR6

1,2 (A ∪B) = mConj
1,2 (A ∪B) = 0.21.

If we want to apply PCR5+, or PCR6+, rule we need to

compute the binary keeping-indexes of each focal element

entering in the conflicting products π1(∅) and π2(∅). In this

example for π1(∅) = m1(A)m2(B) we have X1 = {A,B},

and for π2(∅) = m2(A)m1(B) we have X2 = {A,B}.

Applying formula (22), we get δ1(A,B) = 0 because A * B,

and δ1(B,A) = 0 because B * A (and also δ2(A,B) = 0
and δ2(B,A) = 0). Applying formula (23) we get the binary

keeping-indexes κ1(A) = 1, κ1(B) = 1, κ2(A) = 1, and

κ2(B) = 1 indicating that the redistribution of π1(∅) must

operate on all elements of X1 = {A,B}, and the redistribution

of π2(∅) must also operate on all elements of X2 = {A,B},

so there is no element that must be discarded for making the

improved redistribution in this example. Therefore PCR5+, or

PCR6+ results coincide with PCR5 and PCR6 results, that

is mPCR5(·) = mPCR6(·) = mPCR5+(·) = mPCR6+(·) which is

normal.

Example 2 (revisited): Consider Θ = {A,B} and the three

following BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪B) = 0.5.

As shown in Section IV, for this example one has the follow-

ing twelve conflicting products to redistribute when applying

PCR5, or PCR6 fusion formulas.

π1(∅) = m1(A)m2(A)m3(B) = 0.0300,

π2(∅) = m1(A)m2(B)m3(A) = 0.0720,

π3(∅) = m1(B)m2(A)m3(A) = 0.0200,

π4(∅) = m1(B)m2(B)m3(A) = 0.0120,

π5(∅) = m1(B)m2(A)m3(B) = 0.0050,

π6(∅) = m1(A)m2(B)m3(B) = 0.0180,

π7(∅) = m1(A ∪B)m2(A)m3(B) = 0.0150,

π8(∅) = m1(A ∪B)m2(B)m3(A) = 0.0360,

π9(∅) = m1(B)m2(A)m3(A ∪ B) = 0.0250,

π10(∅) = m1(A)m2(B)m3(A ∪ B) = 0.0900,

π11(∅) = m1(A)m2(A ∪B)m3(B) = 0.0120,

π12(∅) = m1(B)m2(A ∪B)m3(A) = 0.0080.

With PCR5 and PCR6 the products π1(∅) to π6(∅) are

redistributed to A and B only, whereas the products π7(∅)
to π12(∅) are redistributed to A, B and A ∪ B. Apply-

ing PCR5 formula (14), and PCR6 formula (15) we obtain

mPCR5
1,2,3(∅) = mPCR6

1,2,3(∅) = 0 and











mPCR5
1,2,3(A) ≈ 0.723281,

mPCR5
1,2,3(B) ≈ 0.182460,

mPCR5
1,2,3(A ∪B) ≈ 0.094259,

and











mPCR6
1,2,3(A) ≈ 0.743496,

mPCR6
1,2,3(B) ≈ 0.162245,

mPCR6
1,2,3(A ∪B) ≈ 0.094259.

The calculation of the binary keeping-indexes by the for-

mula (23) gives in this example
{

κj(A) = 1, κj(B) = 1, for j = 1, . . . , 6

κj(A) = 1, κj(B) = 1, κj(A ∪B) = 0, for j = 7, . . . , 12

Therefore, if we apply the PCR5+ and PCR6+ improved

rules of combination, we redistribute the products π1(∅) to

π6(∅) to A and B (as for PCR5 and PCR6 rule), but the

products π7(∅) to π12(∅) will be redistributed to A, B only,

and not to A ∪B because κj(A ∪B) = 0 for j = 7, . . . , 12.

So finally, we obtain mPCR5+

1,2,3 (∅) = mPCR6+

1,2,3 (∅) = 0 and











mPCR5+

1,2,3 (A) ≈ 0.768631,

mPCR5+

1,2,3 (B) ≈ 0.201369,

mPCR5+

1,2,3 (A ∪B) = 0.03,

and











mPCR6+

1,2,3 (A) ≈ 0.788847,

mPCR6+

1,2,3 (B) ≈ 0.181153,

mPCR6+

1,2,3 (A ∪ B) = 0.03.

We can verify that we obtain a more precise redistribution

with PCR5+ (resp. PCR6+) rule with respect to PCR5 (resp.

PCR6) rule because mPCR5+

1,2,3 (A ∪ B) < mPCR5
1,2,3(A ∪ B) and

also mPCR6+

1,2,3 (A ∪B) < mPCR6
1,2,3(A ∪B).

Example 3 (revisited): we consider Θ = {A,B,C}, and the

four very simple BBAs defined by

m1(A∪B) = 1,m2(B) = 1,m3(A∪B) = 1, and m4(C) = 1

These four basic belief assignments are in total conflict be-

cause (A ∪B) ∩ A ∩ (A ∪B) ∩ C = ∅, and one has only one

product π(∅) = m1(A ∪B)m2(A)m3(A ∪B)m4(C) = 1 to

consider, so j = 1 in this case and it can be omitted in the

notations of the binary keeping-indexes.

As shown previously, one has











mPCR5
1,2,3,4(A ∪B) = 1/3,

mPCR5
1,2,3,4(B) = 1/3,

mPCR5
1,2,3,4(C) = 1/3,

and











mPCR6
1,2,3,4(A ∪B) = 0.5,

mPCR6
1,2,3,4(B) = 0.25,

mPCR6
1,2,3,4(C) = 0.25.

Because all focal elements A ∪ B, A and C entering in

π(∅) are conflicting then one has the binary keeping-indexes

κ(A∪B) = 1, κ(A) = 1 and κ(C) = 1 i.e. all these elements

will receive a redistribution of the conflicting mass π(∅).
Therefore there is no restriction for making the redistribution.

Consequently, PCR5+ result coincides with PCR5 result,

and PCR6+ result coincides with PCR6 result.

Example 4 (revisited): we consider Θ = {A,B}, and the

following four BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪B) = 0.5,

m4(A ∪B) = 1 (m4 is the vacuous BBA).
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The BBAs m1, m2 and m3 are the same as in Example 2, and

the BBA m4 is the vacuous BBA. We have already shown that

PCR5(m1,m2,m3) 6= PCR5(m1,m2,m3,m4) even if m4 is

the vacuous BBA, and










mPCR5
1,2,3,4(A) ≈ 0.654604,

mPCR5
1,2,3,4(B) ≈ 0.144825,

mPCR5
1,2,3,4(A ∪ B) ≈ 0.200571.

Similarly, PCR6(m1,m2,m3) 6= PCR6(m1,m2,m3,m4),
and











mPCR6
1,2,3,4(A) ≈ 0.647113,

mPCR6
1,2,3,4(B) ≈ 0.128342,

mPCR6
1,2,3,4(A ∪ B) ≈ 0.224545.

Applying the PCR5+ formula (25), and the PCR6+ formula

(26) we will obtain mPCR5+

1,2,3 (∅) = mPCR6+

1,2,3,4(∅) = 0 and











mPCR5+

1,2,3,4(A) ≈ 0.768631,

mPCR5+

1,2,3,4(B) ≈ 0.201369,

mPCR5+

1,2,3,4(A ∪ B) = 0.03,

and











mPCR6+

1,2,3,4(A) ≈ 0.788847,

mPCR6+

1,2,3,4(B) ≈ 0.181153,

mPCR6+

1,2,3,4(A ∪ B) = 0.03.

One has PCR5+(m1,m2,m3,m4) = PCR5+(m1,m2,m3)
and also PCR6+(m1,m2,m3,m4) = PCR6+(m1,m2,m3)
because with the improved proportional redistribution of

PCR5+ and PCR6+ rules the vacuous BBA has always

a neutral impact in the fusion result, which is what we

intuitively expect.

Example 5 (revisited): we consider Θ = {A,B,C,D,E}, and

the following three BBAs


















m1(A ∪B) = 0.70,

m1(C ∪D) = 0.06,

m1(A ∪B ∪ C ∪D) = 0.15,

m1(E) = 0.09,

and 

















m2(A ∪B) = 0.06,

m2(C ∪D) = 0.50,

m2(A ∪B ∪ C ∪D) = 0.04,

m2(E) = 0.40,

and
{

m3(B) = 0.01,

m3(A ∪B ∪ C ∪D ∪E) = 0.99.

Note that the BBA m3 is not equal to the vacuous BBA but

it is very close to the vacuous BBA because m3(Θ) is close

to one.

If we consider the fusion of only the two first BBAs m1

and m2, we have PCR6(m1,m2) = PCR6+(m1,m2) =
PCR5(m1,m2) = PCR5+(m1,m2) because all these rules

coincide when combining two BBAs.


















mPCR6
1,2 (A ∪B) ≈ 0.465309,

mPCR6
1,2 (C ∪D) ≈ 0.296299,

mPCR6
1,2 (A ∪B ∪ C ∪D) ≈ 0.023471,

mPCR6
1,2 (E) ≈ 0.214921.

If we make the PCR5, PCR5+, PCR6 and PCR6+ fu-

sion of these three BBAs altogether we obtain now dif-

ferent results which is normal, because for S > 2
one has PCR5+(m1, . . . ,mS) 6= PCR5(m1, . . . ,mS) and

PCR6+(m1, . . . ,mS) 6= PCR6(m1, . . . ,mS) in general. So,

in this example 5 we get results shown in Tables I and II.

Focal Elements mPCR5
1,2,3(·) mPCR5+

1,2,3 (·)

B 0.001103 0.001107
A ∪ B 0.286107 0.464483
C ∪D 0.203385 0.296186
A ∪ B ∪ C ∪D 0.012203 0.023408
E 0.115966 0.214816
A ∪ B ∪ C ∪D ∪ E 0.381236 0

Table I
EXAMPLE 5: RESULTS OF PCR5+ VERSUS PCR5.

Focal Elements mPCR6
1,2,3(·) mPCR6+

1,2,3 (·)

B 0.000962 0.000967
A ∪ B 0.286107 0.464483
C ∪D 0.203454 0.296255
A ∪ B ∪ C ∪D 0.012203 0.023408
E 0.116038 0.214887
A ∪ B ∪ C ∪D ∪ E 0.381236 0

Table II
EXAMPLE 5: RESULTS OF PCR6+ VERSUS PCR6.

These values highlight the great ignorance of the results

proposed by PCR5 and PCR6 when the third (almost

vacuous) source of information is taken into account. Indeed,

mPCR5
1,2,3(Θ) = mPCR6

1,2,3(Θ) is the greatest mass among the set

of hypotheses, whereas the results proposed with PCR5+ and

PCR6+ combination rules discard the ignorant information

and propose results closer to those obtained by merging two

sources. Indeed, the largest mass is allocated to A ∪B.

The next examples 6 to 12 are very simple examples

involving only categorical BBAs so that only one conflicting

product (equals to one) needs to be redistributed based on

PCR5, PCR6, PCR5+ and PCR6+ rules. These examples

offer the possibility to the reader to do the derivations

manually for making a verification of our results.

Example 6 (revisited): we consider Θ = {A,B,C,D}, and

the following categorical BBAs m1(A) = 1, m2(B ∪C) = 1,

m3(A ∪ C) = 1, m4(B ∪ C) = 1, m5(A ∪ B ∪ C) = 1 and

m6(A ∪ B ∪ C ∪ D) = 1. If we make the PCR5, PCR5+,

PCR6 and PCR6+ fusion of these six BBAs altogether we

obtain results given in Tables III and IV.

In this example, we have only one conflicting product π1(∅)
to redistribute which is given by

π1(∅) = m1(A)m2(B ∪ C)m3(A ∪C)m4(B ∪ C)

·m5(A ∪B ∪ C)m6(A ∪B ∪ C ∪D).

Because κ1(A∪B∪C) = 0 and κ1(A∪B∪C∪D) = 0, these

two disjunctions are discarded and more mass is committed
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Focal Elements mPCR5
1,2,3,4,5,6(·) mPCR5+

1,2,3,4,5,6(·)

A 1/5 1/3
A ∪C 1/5 1/3
B ∪ C 1/5 1/3
A ∪B ∪C 1/5 0
A ∪B ∪C ∪D 1/5 0

Table III
EXAMPLE 6: RESULTS OF PCR5+ VERSUS PCR5.

Focal Elements mPCR6
1,2,3,4,5,6(·) mPCR6+

1,2,3,4,5,6(·)

A 1/6 1/4
A ∪C 1/6 1/4
B ∪ C 1/3 1/2
A ∪B ∪C 1/6 0
A ∪B ∪C ∪D 1/6 0

Table IV
EXAMPLE 6: RESULTS OF PCR6+ VERSUS PCR6.

to A, A∪C and B∪C with PCR5+ and PCR6+ rules. There

is more mass allocated to B ∪C with PCR6+ and PCR6 than

with PCR5+ and PCR5 because two sources of information

support this hypothesis.

Example 7 (revisited): we consider Θ = {A,B,C,D,E},

and the following seven categorical BBAs m1(A ∪ E) = 1,

m2(B∪C∪E) = 1, m3(A∪C∪E) = 1, m4(B∪C∪E) = 1,

m5(A ∪B ∪C ∪E) = 1, m6(A ∪B ∪C ∪D ∪E) = 1, and

m7(A) = 1. If we make the PCR5, PCR5+, PCR6 and PCR6+

fusion of these seven BBAs altogether we obtain results given

in Tables V and VI.

Focal Elements mPCR5
1,2,3,4,5,6,7(·) mPCR5+

1,2,3,4,5,6,7(·)

A 1/6 1/4
A ∪ E 1/6 1/4
A ∪ C ∪ E 1/6 1/4
B ∪ C ∪ E 1/6 1/4
A ∪ B ∪ C ∪E 1/6 0
A ∪ B ∪ C ∪D ∪ E 1/6 0

Table V
EXAMPLE 7: RESULTS OF PCR5+ VERSUS PCR5.

Focal Elements mPCR6
1,2,3,4,5,6,7(·) mPCR6+

1,2,3,4,5,6,7(·)

A 1/7 1/5
A ∪ E 1/7 1/5
A ∪ C ∪ E 1/7 1/5
B ∪ C ∪ E 2/7 2/5
A ∪ B ∪ C ∪E 1/7 0
A ∪ B ∪ C ∪D ∪ E 1/7 0

Table VI
EXAMPLE 7: RESULTS OF PCR6+ VERSUS PCR6.

In this example 7, we have only one conflicting product

π1(∅) to redistribute which is given by

π1(∅) = m1(A ∪E)m2(B ∪ C ∪ E)m3(A ∪C ∪ E)

·m4(B ∪ C ∪E)m5(A ∪B ∪ C ∪ E)

·m6(A ∪B ∪ C ∪D ∪ E)m7(A).

Because κ1(A∪B∪C∪E) = 0 and κ1(A∪B∪C∪D∪E) = 0,

these two disjunctions are discarded and more mass is

committed to A, A ∪ E, A ∪ C ∪ E and B ∪ C ∪ E with

PCR5+ and PCR6+ rules. There is more mass allocated

to B ∪ C ∪ E with PCR6+ and PCR6 than with PCR5+

and PCR5 because two sources of information support this

hypothesis.

Example 8 (revisited): we consider Θ = {A,B,C,D}, and

the following categorical BBAs m1(A) = 1, m2(B ∪C) = 1,

m3(A∪C) = 1, m4(B∪C) = 1 and m5(A∪B∪C∪D) = 1.

If we make the PCR5, PCR5+, PCR6 and PCR6+ fusion of

these seven BBAs altogether we obtain results given in Tables

VII and VIII.

Focal Elements mPCR5
1,2,3,4,5(·) mPCR5+

1,2,3,4,5(·)

A 1/4 1/3
A ∪ C 1/4 1/3
B ∪C 1/4 1/3
A ∪ B ∪C ∪D 1/4 0

Table VII
EXAMPLE 8: RESULTS OF PCR5+ VERSUS PCR5.

Focal Elements mPCR6
1,2,3,4,5(·) mPCR6+

1,2,3,4,5(·)

A 1/5 1/4
A ∪ C 1/5 1/4
B ∪C 2/5 1/2
A ∪ B ∪C ∪D 1/5 0

Table VIII
EXAMPLE 8: RESULTS OF PCR6+ VERSUS PCR6.

Because κ1(A ∪B ∪C ∪D) = 0, this disjunction is

discarded and more mass is committed to A, A ∪ C and

B ∪ C with PCR5+ and PCR6+ rules. There is more mass

allocated to B ∪C with PCR6+ and PCR6 than with PCR5+

and PCR5 because two sources of information support this

hypothesis.

Example 9 (revisited): we consider Θ = {A,B,C,D},

and the following seven categorical BBAs m1(A) = 1,

m2(B ∪ C) = 1, m3(A ∪ C) = 1, m4(B ∪ C) = 1,

m5(A ∪ B ∪ C ∪ D) = 1, m6(A ∪ B ∪ C) = 1, and

m7(A ∪ B ∪ C) = 1. If we make the PCR5, PCR5+, PCR6

and PCR6+ fusion of these seven BBAs altogether we obtain

results given in Tables IX and X.

Focal Elements mPCR5
1,2,3,4,5,6,7(·) mPCR5+

1,2,3,4,5,6,7(·)

A 1/5 1/3
A ∪ C 1/5 1/3
B ∪ C 1/5 1/3
A ∪ B ∪ C 1/5 0
A ∪ B ∪ C ∪D 1/5 0

Table IX
EXAMPLE 9: RESULTS OF PCR5+ VERSUS PCR5.

Because κ1(A ∪B ∪C ∪D) = 0 and κ1(A ∪B ∪C) = 0,

these disjunctions are discarded and more mass is committed
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Focal Elements mPCR6
1,2,3,4,5,6,7(·) mPCR6+

1,2,3,4,5,6,7(·)

A 1/7 1/4
A ∪ C 1/7 1/4
B ∪ C 2/7 1/2
A ∪ B ∪ C 2/7 0
A ∪ B ∪ C ∪D 1/7 0

Table X
EXAMPLE 9: RESULTS OF PCR6+ VERSUS PCR6.

to A, A∪C and B∪C with PCR5+ and PCR6+ rules. There

is more mass allocated to B ∪C with PCR6+ and PCR6 than

with PCR5+ and PCR5 because two sources of information

support this hypothesis. Similarly, more mass is allocated to

(A ∪ B ∪ C) with PCR6 than PCR5 since two sources of

information support this hypothesis.

Example 10 (revisited): we consider Θ = {A,B,C}, and the

following three categorical BBAs m1(A) = 1, m2(B∪C) = 1,

and m3(A ∪ C) = 1. We have only one conflicting product

π1(∅) = m1(A)m2(B ∪ C)m3(A ∪ C) = 1 to redistribute,

and for this example we have κ1(A) = 1, κ1(A ∪ C) = 1
and κ1(B ∪ C) = 1 which means that all focal elements A,

A∪C and B ∪C must be kept, and they must receive a mass

through the proportional redistribution principle. Hence in this

example we have mPCR5
1,2,3 = mPCR6

1,2,3 = mPCR5+

1,2,3 = mPCR6+

1,2,3 , and

the combined masses are evenly distributed as shown in the

Table XI.

Focal Elements mPCR5
1,2,3(·) mPCR5+

1,2,3 (·) mPCR6
1,2,3(·) mPCR6+

1,2,3 (·)

A 1/3 1/3 1/3 1/3
A ∪ C 1/3 1/3 1/3 1/3
B ∪C 1/3 1/3 1/3 1/3

Table XI
EXAMPLE 10: RESULTS OF PCR5, PCR5+ , PCR6, PCR6+ .

Example 11 (revisited): we consider Θ = {A,B,C},

and the following four categorical BBAs m1(A) = 1,

m2(B ∪ C) = 1, m3(A ∪ C) = 1, and m4(A ∪ B) = 1.

Because we have only one conflicting product

π1(∅) = m1(A)m2(B ∪ C)m3(A ∪ C)m4(A ∪ B) = 1
and κ1(A) = 1, κ1(A ∪ B) = 1, κ1(A ∪ C) = 1
and κ1(B ∪ C) = 1 no hypothesis is discarded in

the proportional conflict redistribution, and we get

mPCR5
1,2,3,4 = mPCR6

1,2,3,4 = mPCR5+

1,2,3,4 = mPCR6+

1,2,3,4 with the merged

masses being evenly distributed, that is mPCR5
1,2,3,4(A) = 1/4,

mPCR5
1,2,3,4(A ∪ B) = 1/4, mPCR5

1,2,3,4(A ∪ C) = 1/4, and

mPCR5
1,2,3,4(B ∪ C) = 1/4.

Example 12 (revisited): we consider Θ = {A,B,C}, and

the following three categorical BBAs m1(A ∪ B ∪ C) = 1,

m2(A) = 1, m3(B ∪ C) = 1. If we make the PCR5

fusion, and the PCR5+ fusion, of these three BBAs

altogether we obtain results given in Table XII. Because

π1(∅) = m1(A ∪ B ∪ C)m2(A)m3(B ∪ C), we get

κ1(A∪B ∪C) = 0, κ1(A) = 1 and κ1(B ∪C) = 1 based on

(23). Therefore, using the PCR5+ combination rule, we get a

Focal Elements mPCR5
1,2,3(·) mPCR5+

1,2,3 (·)

A 1/3 1/2
B ∪ C 1/3 1/2
A ∪ B ∪ C 1/3 0

Table XII
EXAMPLE 12: RESULTS OF PCR5, PCR5+ .

redistribution of the conflicting mass π1(∅) = 1 only between

A and B ∪C. In this example we have mPCR5
1,2,3 = mPCR6

1,2,3, and

mPCR5+

1,2,3 = mPCR6+

1,2,3,4 because no mass is allocated on the same

hypothesis by two different sources.

Example 13 (revisited): we consider Θ = {A,B,C,D}, and

the three following BBAs

m1(A ∪B) = 0.8, m1(C ∪D) = 0.2,

m2(A ∪B) = 0.4, m2(C ∪D) = 0.6,

m3(B) = 0.1, m3(A ∪ B ∪ C ∪D) = 0.9.

If we make the PCR5, PCR5+, PCR6 and PCR6+ fusion of

these seven BBAs altogether we obtain results given in Tables

XIII and XIV.

Focal Elements mPCR5
1,2,3(·) mPCR5+

1,2,3 (·)

B 0.041797 0.041797
A ∪ B 0.487632 0.613029
C ∪D 0.258327 0.345174
A ∪ B ∪ C ∪D 0.212244 0

Table XIII
EXAMPLE 13: RESULTS OF PCR5+ VERSUS PCR5.

Focal Elements mPCR6
1,2,3(·) mPCR6+

1,2,3 (·)

B 0.037676 0.037676
A ∪ B 0.487632 0.613029
C ∪D 0.262448 0.349295
A ∪ B ∪ C ∪D 0.212244 0

Table XIV
EXAMPLE 13: RESULTS OF PCR6+ VERSUS PCR6.

Because κj(Θ) = 0 for any conflicting product πj(∅)
involving Θ, this hypothesis is discarded in the redistribution

of π4(∅) and of π6(∅) (see Example 13 in subsection VI-A

for details), and therefore more mass is redistributed to A∪B
and C ∪ D with PCR5+ and PCR6+ rules. No more mass

is committed to B with PCR5+ and PCR6+ respectively in

comparison with PCR5 and PCR6. This is because B is not

implied in any partial conflict with Θ (cf. subsection VI-A for

details).

VIII. CONCLUSION

In this paper, after having demonstrated the flawed behavior

of PCR5 and PCR6 rules of combination for S > 2 BBAs (in-

cluding possibly vacuous BBAs), we proposed improvements

to correct these behaviors. A computation of a binary keeping-

index has been detailed which makes it possible to discard
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ignorant information sources for the calculation of each partial

conflict. This binary keeping-index has been integrated into

the original formulations of PCR5 and PCR6 in order to

ensure the neutrality property of the vacuous BBA and to

propose two new combination rules for a number of sources

greater than 2: PCR5+ and PCR6+ rules. The interest of such

combination rules could prove to be particularly important

in an application case identifying many ignorant sources of

information. In such a scenario, the preponderant ignorance

of a certain number of sources will no longer obscure a more

precise characterization provided by other sources. These new

rules of combination have been already applied to risk analysis

issues for geophysical and geotechnical data fusion in order

to reinforce the levee protection characterizations [48].

APPENDIX 1: PROOF OF THE LEMMA 1

We prove that: mConj
1,2,...,S,S+1

(A) = mConj
1,2,...,S(A), for any A ∈

2Θ \ {∅}, where mS+1(Θ) = 1 is the vacuous BBA mv.

The set of focal elements of mS+1(·) is F(mS+1) = {Θ},

therefore FmS+1
= 1 and XjS+1

= Θ. Based on the formula

(6) written for S + 1 BBAs, we have

mConj

1,2,...,S,S+1(A) =
∑

Xj∈F(m1,...,mS ,mS+1)
Xj1

∩...∩XjS
∩XjS+1

=A

πj(Xj1 ∩ . . . ∩XjS ∩XjS+1
)

=
∑

Xj∈F(m1,...,mS ,mS+1)
Xj1

∩...∩XjS
∩Θ=A

S+1
∏

i=1

mi(Xji) (27)

Because XjS+1
= Θ is constant and mS+1(XjS+1

) =
mS+1(Θ) = 1, one has

S+1
∏

i=1

mi(Xji) = (

S
∏

i=1

mi(Xji)) ·mS+1(Θ) =

S
∏

i=1

mi(Xji)

and Xj1 ∩ . . . ∩ XjS ∩ XjS+1
= Xj1 ∩ . . . ∩ XjS ∩ Θ =

Xj1 ∩ . . . ∩XjS . Therefore the formula (27) becomes

mConj
1,2,...,S,S+1

(A) =
∑

Xj∈F(m1,...,mS,mS+1)

Xj1
∩...∩XjS

∩Θ=A

S+1
∏

i=1

mi(Xji)

=
∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=A

S
∏

i=1

mi(Xji)

= mConj

1,2,...,S(A)

which completes the proof of the Lemma 1.

APPENDIX 2: PROOF OF THE THEOREM

We prove that PCR5+(m1, . . . ,mS ,mS+1) =

PCR5+(m1, . . . ,mS), or equivalently that mPCR5+

1,2,...,S+1
(A) =

mPCR5+

1,2,...,S(A) for any A ∈ 2Θ \ {∅}, where

mS+1(XjS+1
) = mS+1(Θ) = 1 is the vacuous BBA.

It is worth noting that mConj
1,2,...,S,S+1

(A) = mConj
1,2,...,S(A) for

any A ∈ 2Θ \ {∅} because the vacuous BBA mS+1(.) is the

neutral element of the conjunctive rule (see Lemma 1). It is

important to note that when considering A = Θ, we have

always mPCR5+

1,2,...,S+1
(Θ) = mConj

1,2,...,S,S+1
(Θ) = mConj

1,2,...,S(Θ) =

mPCR5+

1,2,...,S(Θ) because the binary keeping-index of Θ is always

equal to zero (see remark 1), i.e. κj(Θ) = 0. Therefore all the

redistribution terms to Θ in PCR5+ (and in PCR6+) formula

are equal to zero when A = Θ. So, we just have to consider

A 6= Θ to make the proof.

Because mS+1(·) is the vacuous BBA, its set of focal

elements is F(mS+1) = {Θ} and it contains only one focal

element, i.e. |F(mS+1)| = 1. Therefore

F = |F(m1)| · |F(m2)| · . . . · |F(mS)| · |F(mS+1)| (28)

= |F(m1)| · |F(m2)| · . . . · |F(mS)| (29)

This means that the number of conflicting products πj(∅)
associated to the S + 1-tuple Xj = (Xj1 , . . . , XjS ,Θ) ∈
F(m1, . . . ,mS ,mS+1) is equal to the number of conflicting

products πj(∅) associated to S-tuple Xj = (Xj1 , . . . , XjS ) ∈
F(m1, . . . ,mS). Moreover, we always have

S+1
∏

i=1

mi(Xji) = (

S
∏

i=1

mi(Xji)) ·mS+1(Θ) =

S
∏

i=1

mi(Xji)

Hence, we always have

πj(Xj1 ∩ . . . ∩XjS ∩Θ = ∅) = πj(Xj1 ∩ . . . ∩XjS = ∅)

because Xj1 ∩ . . . ∩XjS ∩Θ = Xj1 ∩ . . . ∩XjS .

Based on the formula (25) written for S+1 BBAs, we have

mPCR5+

1,2,...,S,S+1(A) = mConj

1,2,...,S,S+1
(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

κj(A)
∏

i∈{1,...,S+1}|Xji
=A

mi(Xji)
)

· πj(Xj1 ∩ . . . ∩XjS ∩Θ = ∅)
∑

X∈Xj

(

κj(X)
∏

i∈{1,...,S+1}|Xji
=X

mi(Xji)
)

]

(30)

where F is given by (28).

Because XjS+1
= Θ and because we consider A 6= Θ, we

have always

∏

i∈{1,...,S+1}|Xji
=A

mi(Xji) =
∏

i∈{1,...,S}|Xji
=A

mi(Xji)

Whether X ∈ Xj = (Xj1 , . . . , XjS ) or X ∈ Xj =
(Xj1 , . . . , XjS ,Θ) the value of κj(X) is the same since the

additional binary containing indicator δj(X,Θ) entering in

the product of the computation of the binary keeping-index

is always equal to 1 and does not modify κj(X) value, and

of course when X = A. Because the binary keeping-index

entering in the numerator and denominator of formula (30)

removes the factor mS+1(Θ) from all products it belongs to
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(since Θ includes all elements of the product it belongs to),

the formula (30) reduces to the following formula

mPCR5+

1,2,...,S,S+1(A) = mConj
1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

κj(A)
∏

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(Xj1 ∩ . . . ∩XjS = ∅)
∑

X∈Xj

(

κj(X)
∏

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

= mPCR5+

1,2,...,S(A) (31)

where Xj represents now the S-tuple (Xj1 , . . . , XjS ), and

πj(∅) = πj(Xj1 ∩ . . . ∩XjS = ∅).
So, we have proved PCR5+(m1, . . . ,mS ,mS+1) =

PCR5+(m1, . . . ,mS) when mS+1 is the vacuous BBA. Sim-

ilarly, we can prove that PCR6+(m1, . . . ,mS,mS+1) =
PCR6+(m1, . . . ,mS) when mS+1 is the vacuous BBA. This

completes the proof of the theorem.

APPENDIX 3: CODES OF PCR5+
AND PCR6+

RULES

For convenience, we provide two basic Matlab™codes for

PCR5+ and PCR6+ for the fusion of S ≥ 2 BBAs for

working with 2Θ, i.e. working with Shafer’s model. No input

verification of input is done in the routines. It is assumed that

the input matrix BBA is correct, both in dimension and in

content. The derivation of all possible combinations is done

with combvec(Combinations,vec) instruction which

is included in the Matlab™ neural networks toolbox. This

combvec call can be a very time-consuming task when the

size of the problem increases. A standalone version of these

codes is also available upon request to the authors. The j-th

column of the BBA input matrix corresponds to the (vertical)

BBA vector mj(.) associated with the j-th source sj . Each

element of a BBA matrix is in [0, 1] and the sum of each

column must be one. If N is the cardinality of the frame Θ
and if S is the number of sources, then the size of the BBA

input matrix is ((2N ) − 1)) × S. Each column of the BBA

matrix must use the classical binary encoding of elements.

For example, if Θ = {A,B,C}, then we encode the elements

of 2Θ \ {∅} by the binary sequence 001 ≡ A, 010 ≡ B,

011 ≡ A ∪B, . . . , 111 ≡ A ∪B ∪C. The mass of empty set

is not included in the BBA vector because its is always set to

zero.

These codes can be used and shared for free for research

purposes only. Commercial uses of these codes, or adaptation

of them in any programming language, is not allowed without

written agreement of the authors. These codes are provided

by the copyright holders “as is” and any express or implied

warranties are disclaimed. The copyright holder will not be

liable for any direct, or indirect damages of the use of these

codes. The authors would appreciate any feedback in the use

of these codes, and publication using these codes should cite

this paper in agreement for their use.

%==========================================================================

function [mPCR5plus]=PCR5plusfusion(BBA)

%==========================================================================

% Authors and copyrights: Theo Dezert & Jean Dezert

% Input: BBA=[m1 m2 ... mS]= Matrix of BBAs to combine with PCR5+

% Output: mPCR5plus is PCR5+(m1,m2,...,mS) fusion result

%==========================================================================

NbrSources=size(BBA,2);CardTheta=log2(size(BBA,1)+1);

if(NbrSources==1), mPCR5plus=BBA(:,1);return, end

mPCR5plus=zeros(size(BBA,1),1);FocalElem = cell(NbrSources,1);

for i=1:NbrSources, FocalElem{i}=find(BBA(:,i)> 0)’;end

Combinations=combvec(FocalElem{1:NbrSources})’;

for c=1:size(Combinations,1)

PC=Combinations(c,:);masseConj=diag(BBA(PC,:))’;

massConj=prod(diag(BBA(PC,:))’,2);Intersections=PC(1);

for s=2:NbrSources, Intersections=bitand(Intersections,PC(s)); end

if(Intersections˜=0)

mPCR5plus(Intersections)=mPCR5plus(Intersections)+massConj;

else

Binary=[];CardPC=[];KeepIndex=[];

for i=1:NbrSources

Binary(i,:)=bitget(PC(i),CardTheta:-1:1,’int8’);

CardPC(i,:)=sum(Binary(i,:)==1);

end

for j=1:NbrSources

delta=[];

for js=1:NbrSources

if CardPC(js)>=CardPC(j)

for jp=1:NbrSources

if PC(jp)˜=PC(js) && CardPC(jp)<=CardPC(js)

if sum(Binary(jp,:)<=Binary(js,:))==CardTheta

delta=[delta 1]; else, delta=[delta 0];

end

end

end

end

end

if isempty(delta)==1

KeepIndex(j,1)=1;

else

KeepIndex(j,1)=1-prod(delta);

end

end

KeepIndex=KeepIndex’;

for i=1:NbrSources

if KeepIndex(i)==1, KeepIndex(i)=masseConj(i); end

end

UQ=unique(PC);Proportions=0*UQ;DenPCR5=0;

for u=1:size(UQ,2)

SamePropositions=find(PC==UQ(u));

MassProd=prod(KeepIndex(SamePropositions));

Proportions(u)= MassProd*massConj;DenPCR5=DenPCR5+MassProd;

end

Proportions=Proportions/DenPCR5;

for u=1:size(UQ,2),mPCR5plus(UQ(u))=mPCR5plus(UQ(u))+Proportions(u); end

end

end

%==========================================================================

function [mPCR6plus]=PCR6plusfusion(BBA)

%==========================================================================

% Authors and copyrights: Theo Dezert & Jean Dezert

% Input: BBA=[m1 m2 ... mS]= Matrix of BBAs to combine with PCR6+

% Output: mPCR6plus is PCR6+(m1,m2,...,mS) fusion result

%==========================================================================

NbrSources=size(BBA,2);CardTheta=log2(size(BBA,1)+1);

if(NbrSources==1), mPCR6plus=BBA(:,1);return, end

mPCR6plus=zeros(size(BBA,1),1);FocalElem = cell(NbrSources,1);

for i=1:NbrSources, FocalElem{i}=find(BBA(:,i)> 0)’;end

Combinations=combvec(FocalElem{1:NbrSources})’;

for c=1:size(Combinations,1)

PC=Combinations(c,:);masseConj=diag(BBA(PC,:))’;

massConj=prod(diag(BBA(PC,:))’,2);Intersections=PC(1);

for s=2:NbrSources, Intersections=bitand(Intersections,PC(s));end

if(Intersections˜=0)

mPCR6plus(Intersections)=mPCR6plus(Intersections)+massConj;

else

Binary=[];CardPC=[];KeepIndex=[];

for i=1:NbrSources

Binary(i,:)=bitget(PC(i),CardTheta:-1:1,’int8’);

CardPC(i,:)=sum(Binary(i,:)==1);

end

for j=1:NbrSources

delta=[];

for js=1:NbrSources

if CardPC(js)>=CardPC(j)

for jp=1:NbrSources

if PC(jp)˜=PC(js) && CardPC(jp)<=CardPC(js)

if sum(Binary(jp,:)<=Binary(js,:))==CardTheta

delta=[delta 1]; else, delta=[delta 0];

end

end

end

end

end

if isempty(delta)==1

KeepIndex(j,1)=1;

else

KeepIndex(j,1)=1-prod(delta);

end

end

KeepIndex=KeepIndex’;IgnoringSetOfFE=find(KeepIndex==0);

masseConj(IgnoringSetOfFE)=[];PC(IgnoringSetOfFE)=[];

for s=1:numel(masseConj)

Proportion= masseConj(s)*(massConj/(sum(masseConj,2)));

mPCR6plus(PC(s))=mPCR6plus(PC(s))+Proportion;

end

end

end
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Abstract—This short paper presents the explicit formulas of
the PCR5 and PCR6 rules of combination for three bayesian
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I. INTRODUCTION

Among many existing rules of combination of Basic Belief
Assignments (BBAs), the conjunctive rule, Dempster-Shafer
(DS) rule [1], and the Proportional Conflict Redistrinution
rules no 5 (PCR5) and no 6 (PCR6) are the most used rules of
combination. While the conjunctive rule makes it possible to
combine information between different sources of information
represented by belief functions by estimating the level of
existing conflict, DS rule [1], [2] proposes a distribution of
this conflict on the hypotheses characterized by the sources
of information. The normalization carried out by the DS rule
may however be considered counter-intuitive especially when
the level of conflict between the sources of information is high
[3], [4], but also in some situations where the level of conflict
between sources is low as shown in [5] showing a dictatorial
behavior of DS rule. The Proportional Conflict Redistribution
rules (PCR5 [6] and PCR6 [7], [8]) have been proposed
to circumvent the problem of the DS rule to make a more
judicious management of the conflict. Moreover, improved
versions of PCR5 and PCR6 rules preserving the neutrality
of a vacuous (i.e. a totally ignorant) source of evidence in
the PCR process have been recently proposed in [9]. They
are denoted by PCR5+ and PCR6+ fusion rules. We will
not present in detail these improved rules here because we
address the problem of fusing only Bayesian BBAs and for
these particular type of BBAs PCR5+ coincides with PCR5,
and PCR6+ coincides with PCR6 because there is no mass
committed to partial and to total ignorances (i.e. to all possible
disjunctions) involved in partial conflict to redistribute thanks
to PCR5 and PCR6 principles.

After a brief recall of basics of belief functions in section II,
we present the general formulas for PCR5 and PCR6 fusion
rules in section III based on [9], with a simple example in
section IV. In section V we present the direct formulas for
PCR5 and PCR6 rules for three general (i.e. non-Bayesian)

BBAs, and the direct formulas for PCR5 and PCR6 rules
for three Bayesian BBAs in section VI. A simple example of
application of these formulas for the fusion of three Bayesian
BBAs defined on the simple frame of discernment with two
elements is given in section VII with complete calculation for
convenience. Section VIII concludes this paper.

II. BAS ICS OF B EL IEF FUNCTIONS

We consider a given finite set Θ of n > 1 distinct elements
Θ = {θ1, θ2, . . . , θn} corresponding to the frame of discern-
ment (FoD) of the fusion problem, or the decision-making
problem, under concern. All elements of Θ are mutually
exclusive1 and each element is an elementary choice of the
potential decision to take. The power set of Θ is the set
of all subsets of Θ (including empty set ∅ and Θ) and it
is usually denoted 2Θ because its cardinality equals 2|Θ|.
A Basic Belief Assignment (BBA) given by a source of
evidence is defined by Shafer [1] in his Mathematical Theory
of Evidence (known also as Dempster-Shafer Theory, or DST)
as m(·) : 2Θ → [0, 1] satisfying

{

m(∅) = 0,
∑

A∈2Θ
m(A) = 1,

(1)

where m(A) is the mass of belief exactly committed to A,
what we usually call the mass of A. A BBA is said proper
(or normal) if it satisfies Shafer’s definition (1). The subset
A ⊆ Θ is called a Focal Element (FE) of the BBA m(·) if
and only if m(A) > 0. The empty set is not a focal element
of a BBA because m(∅) = 0 according to definition (1). The
set of all focal elements of a BBA m(·) is denoted F(m). Its
mathematical definition is F(m) = {X ∈ 2Θ|m(X) > 0}.
The cardinality |F(m)| of the set F(m) is denoted Fm. The
order of focal elements of F(m) does not matter and all the
focal elements are different. The set F(m) of focal elements
of m(·) has at least one focal element, and at most 2|Θ| − 1
focal elements.

1This standard assumption is called Shafer’s model of FoD in DSmT
(Dezert-Smarandache Theory) framework [10].
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Belief and plausibility functions are respectively defined
from m(·) by [1]

Bel(A) =
∑

X∈2Θ|X⊆A

m(X), (2)

and
Pl(A) =

∑

X∈2Θ|A∩X 6=∅
m(X) = 1− Bel(Ā). (3)

where Ā represents the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted respectively as
lower and upper bounds of an unknown (subjective) probabil-
ity measure P (A) [11], [12]. The functions m(.), Bel(.) and
Pl(.) are one-to-one. A belief function Bel(.) is Bayesian if
all Bel’s focal elements are singletons [1] (Theorem 2.8 p.
45). In this case, m(X) = Bel(X) for any (singleton) focal
element X , and m(.) is called a Bayesian BBA. Corresponding
Bel(·) function is equal to Pl(·) and these functions can be
interpreted as a same (possibly subjective) probability measure
P (·). The vacuous BBA (VBBA for short) representing a
totally ignorant source is defined as mv(Θ) = 1.

III. PCR5 AND PCR6 RUL ES OF COMB INATION

A. The PCR5 rule of combination

The PCR5 rule [6] transfers the conflicting mass to all the
elements involved in this conflict and proportionally to their
individual masses, so that a more sophisticate and specific
distribution is done with the PCR5 fusion process with respect
to other existing rules (including Dempster’s rule). The PCR5
rule is presented in details (with justification and examples)
in [10], Vol. 2 and Vol. 3.

A simple formulation of the general expression of the
PCR5 fusion of S > 2 basic belief assignments is obtained
by redistributing each conflicting product defined by

πj(∅) = πj(Xj1 ∩ . . . ∩XjS = ∅) =
S
∏

i=1

mi(Xji), (4)

to some elements of the power set of the FoD that are involved
in the conflict Xj1 ∩ . . .∩XjS = ∅. Each πj(∅) is redistributed
proportionally to elements involved in this conflict based on
the PCR5 redistribution principle. When an element A ∈ 2Θ

is not involved in a conflicting product πj(∅), i.e. A /∈ Xj ,
the conflicting product πj(∅) is not redistributed to A. If an
element A is involved in the conflict Xj1 ∩ . . .∩XjS = ∅, i.e.
A ∈ Xj and πj(∅) occur, then the proportional redistribution
of πj(∅) to A is given by

xj(A) ,
(

∏

i∈{1,...,S}|Xji
=A

mi(Xji)
)

·
πj(∅)

∑

X∈Xj

(
∏

i∈{1,...,S}|Xji
=X

mi(Xji )
) , (5)

where A ∈ Xj means that at least one component of the S-
tuple Xj equals A, with

Xj , (Xj1 , Xj2 , . . . , XjS ) ∈ F(m1, . . . ,mS),

where
• j1 ∈ {1, 2, . . . ,Fm1

},
• j2 ∈ {1, 2, . . . ,Fm2

},
• . . . ,
• jS ∈ {1, 2, . . . ,FmS

},
• and

F(m1, . . . ,mS) , F(m1)×F(m2)× . . .×F(mS),

F , |F(m1, . . . ,mS)| =
S
∏

i=1

|F(mi)| =
S
∏

i=1

Fmi
.

The element Xji is the focal element of mi(·) that makes the
i-th component of the j-th S-tuple Xj .

The mass of A obtained by the PCR5 rule is

mPCR5
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)
xj(A), (6)

where A ∈ Xj ∧ πj(∅) is a shorthand notation meaning that
at least one component of the S-tuple Xj equals A and the
components of Xj are conflicting, i.e. Xj1 ∩ . . . ∩XjS = ∅.

The general PCR5 formula can be expressed as
mPCR5

1,2,...,S(∅) = 0, and for A ∈ 2Θ \ {∅} by

mPCR5
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

∏

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(∅)
∑

X∈Xj

(
∏

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

. (7)

where mConj
1,2,...,S(A) is the mass of A obtained by the

conjunctive rule, that is

mConj
1,2,...,S(A) =

∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=A

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS )

=
∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=A

S
∏

i=1

mi(Xji). (8)

The total conflicting mass between the S sources of evidence,
denoted m

Conj
1,2,...,S(∅), is nothing but the sum of all existing

conflicting mass products, that is

mConj
1,2,...,S(∅) =

∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=∅

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS )

= 1−
∑

A∈2Θ\{∅}
mConj

1,2,...,S(A). (9)
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Note that the combined BBA mConj
1,2,...,S(.) given in (8) is not

a proper BBA because it does not satisfy Shafer’s definition
(1). In general the S sources of evidence to combine do not
fully agree, and we have consequently mConj

1,2,...,S(∅) > 0.

B. The PCR6 rule of combination

A variant of PCR5 rule, called PCR6 rule, has been pro-
posed by Martin and Osswald in [7], [8] for combining S > 2
sources. The difference between PCR5 and PCR6 lies in the
way the proportional conflict redistribution is done as soon as
three (or more) sources are involved in the fusion. The PCR6
fusion of S > 2 BBAs is obtained by mPCR6

1,2,...,S(∅) = 0, and
for all A ∈ 2Θ \ {∅} by2

mPCR6
1,2,...,S(A) = m

Conj
1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

∑

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(∅)
∑

X∈Xj

(
∑

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

. (10)

The difference between the general PCR5 and PCR6
formulas is that the PCR5 proportional redistribution in-
volves the products

∏

i∈{1,...,S}|Xji
=A

mi(Xji) of multiple same

focal elements A (if any) in the conflict, whereas the
PCR6 conflict redistribution principle works with their sum

∑

i∈{1,...,S}|Xji
=A

mi(Xji) instead.

PCR6 coincides with PCR5 when one combines two sources
of evidence.

IV. S IMPL E EX AMPL E OF PCR5 AND PCR6 FUS ION RUL ES

Here we provide a simple example showing the difference
of the results between PCR5 and PCR6 rules. This example
has been already presented in [9]. For convenience, all nu-
merical values have been rounded to six decimal places when
necessary.

Example 1: We consider the simplest FoD Θ = {A,B}, and
the three following BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪B) = 0.5.

Because Fm1
= |F(m1)| = 3, Fm2

= |F(m2)| = 3 and
Fm3

= |F(m3)| = 3, we have F = Fm1
·Fm2

·Fm3
= 27 non-

zero products to consider. Fifteen products are non-conflicting
and enter in the calculation of mConj

1,2,3(A), mConj
1,2,3(B) and

mConj
1,2,3(A ∪ B), and twelve products are conflicting products

2We wrote this PCR6 general formula in the style of PCR5 formula (7).

that need to be proportionally redistributed. The conjunctive
combination of these three BBAs is

mConj
1,2,3(A) = m1(A)m2(A)m3(A)

+m1(A)m2(A)m3(A ∪B)

+m1(A)m2(A ∪ B)m3(A)

+m1(A ∪B)m2(A)m3(A)

+m1(A)m2(A ∪ B)m3(A ∪B)

+m1(A ∪B)m2(A)m3(A ∪B)

+m1(A ∪B)m2(A ∪B)m3(A) = 0.5370,

mConj
1,2,3(B) = m1(B)m2(B)m3(B)

+m1(B)m2(B)m3(A ∪ B)

+m1(B)m2(A ∪B)m3(B)

+m1(A ∪B)m2(B)m3(B)

+m1(B)m2(A ∪B)m3(A ∪ B)

+m1(A ∪B)m2(B)m3(A ∪ B)

+m1(A ∪B)m2(A ∪B)m3(B) = 0.0900,

mConj
1,2,3(A ∪B) = m1(A ∪B)m2(A ∪B)m3(A ∪ B)

= 0.3 · 0.2 · 0.5 = 0.0300,

and the total conflict between these three BBAs is given by

mConj
1,2,3(∅) = 1−mConj

1,2,3(A)−mConj
1,2,3(B)−mConj

1,2,3(A ∪B)

= 0.3430.

In this example we have twelve partial conflicts, noted πj(∅)
(j = 1, . . . , 12), which correspond to the following products

π1(∅) = m1(A)m2(A)m3(B) = 0.0300,

π2(∅) = m1(A)m2(B)m3(A) = 0.0720,

π3(∅) = m1(B)m2(A)m3(A) = 0.0200,

π4(∅) = m1(B)m2(B)m3(A) = 0.0120,

π5(∅) = m1(B)m2(A)m3(B) = 0.0050,

π6(∅) = m1(A)m2(B)m3(B) = 0.0180,

π7(∅) = m1(A ∪B)m2(A)m3(B) = 0.0150,

π8(∅) = m1(A ∪B)m2(B)m3(A) = 0.0360,

π9(∅) = m1(B)m2(A)m3(A ∪B) = 0.0250,

π10(∅) = m1(A)m2(B)m3(A ∪B) = 0.0900,

π11(∅) = m1(A)m2(A ∪ B)m3(B) = 0.0120,

π12(∅) = m1(B)m2(A ∪B)m3(A) = 0.0080.

In applying the PCR5 formula (7), and the PCR6 formula
(10) we obtain finally mPCR5

1,2,3(∅) = mPCR6
1,2,3(∅) = 0, and3

mPCR5
1,2,3(A) ≈ 0.723281,

mPCR5
1,2,3(B) ≈ 0.182460,

mPCR5
1,2,3(A ∪B) ≈ 0.094259,

and

mPCR6
1,2,3(A) ≈ 0.743496,

mPCR6
1,2,3(B) ≈ 0.162245,

mPCR6
1,2,3(A ∪B) ≈ 0.094259.

We see a difference between the BBAs mPCR5
1,2,3 and mPCR6

1,2,3

which is normal because the PCR principles are quite different.

3The symbol ≈ means “approximately equal to”.
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Using the PCR5 fusion rule the first partial conflicting mass
π1(∅) = m1(A)m2(A)m3(B) = 0.03 is redistributed back to
A and B proportionally to m1(A)m2(A) and to m3(B) as
follows

x1(A)

m1(A)m2(A)
=

x1(B)

m3(B)
=

π1(∅)
m1(A)m2(A) +m3(B)

,

whence

x1(A) =
m1(A)m2(A)π1(∅)

m1(A)m2(A) +m3(B)
= 0.0225,

x1(B) =
m3(B)π1(∅)

m1(A)m2(A) +m3(B)
= 0.0075.

We can verify π1(∅) = x1(A) + x1(B) = 0.03.

Using the PCR6 fusion rule the first partial conflicting mass
π1(∅) = 0.03 is redistributed back to A and B proportionally
to (m1(A) +m2(A)) and to m3(B). So we get the following
redistributions x1(A) = 0.0275 for A and x1(B) = 0.0025
for B because

x1(A)

m1(A) +m2(A)
=

x1(B)

m3(B)
=

π1(∅)
m1(A) +m2(A) +m3(B)

,

whence

x1(A) =
(m1(A) +m2(A))π1(∅)

m1(A) +m2(A) +m3(B)
= 0.0275,

x1(B) =
m3(B)π1(∅)

m1(A) +m2(A) +m3(B)
= 0.0025.

We can verify π1(∅) = x1(A) + x1(B) = 0.03.

Note that for all the partial conflicts having no duplicate
element involved in the conflicting product πj(∅) we make
the same redistribution with PCR5 rule and with PCR6 rule.
For instance, for π7(∅) = m1(A∪B)m2(A)m3(B) = 0.0150
we get

x7(A ∪B)

m1(A ∪B)
=

x7(A)

m2(A)
=

x7(B)

m3(B)

=
π7(∅)

m1(A ∪B) +m2(A) +m3(B)
,

whence π7(∅) = x7(A∪B)+x7(A)+x7(B) = 0.0150, with

x7(A ∪B) =
m1(A ∪B)π7(∅)

m1(A ∪B) +m2(A) +m3(B)
= 0.0050,

x7(A) =
m2(A)π7(∅)

m1(A ∪B) +m2(A) +m3(B)
≈ 0.0083,

x7(B) =
m3(B)π7(∅)

m1(A ∪B) +m2(A) +m3(B)
≈ 0.0017.

V. PCR5 AND PCR6 RUL ES FOR THREE B BAS

The previous general formulas of PCR5 (7) and PCR6 (10)
can be written more explicitly for the fusion of three BBAs

as follows (see [13] for details4) when working with a FoD Θ
with Shafer’s model.

mPCR5
1,2,3(A) = mConj

1,2,3(A)

+
∑

X,Y ∈2Θ

A6=X,A6=Y,X 6=Y
A∩X∩Y=∅

[ m1(A)2m2(X)m3(Y )

m1(A) +m2(X) +m3(Y )

+
m1(Y )m2(A)2m3(X)

m1(Y ) +m2(A) +m3(X)

+
m1(X)m2(Y )m3(A)2

m1(X) +m2(Y ) +m3(A)

]

+
∑

X∈2Θ

A∩X=∅

[ m1(A)2m2(X)m3(X)

m1(A) +m2(X)m3(X)

+
m1(X)m2(A)2m3(X)

m1(X)m3(X) +m2(A)

+
m1(X)m2(X)m3(A)2

m1(X)m2(X) +m3(A)

]

+
∑

X∈2Θ

A∩X=∅

[ m1(A)2m2(A)2m3(X)

m1(A)m2(A) +m3(X)

+
m1(X)m2(A)2m3(A)2

m1(X) +m2(A)m3(A)

+
m1(A)2m2(X)m3(A)2

m1(A)m3(A) +m2(X)

]

(11)

and
mPCR6

1,2,3(A) = mConj
1,2,3(A)

+
∑

X,Y ∈2Θ

A6=X,A6=Y,X 6=Y
A∩X∩Y=∅

[ m1(A)2m2(X)m3(Y )

m1(A) +m2(X) +m3(Y )

+
m1(Y )m2(A)2m3(X)

m1(Y ) +m2(A) +m3(X)

+
m1(X)m2(Y )m3(A)2

m1(X) +m2(Y ) +m3(A)

]

+
∑

X∈2Θ

A∩X=∅

[ m1(A)2m2(X)m3(X)

m1(A) +m2(X) +m3(X)

+
m1(X)m2(A)2m3(X)

m1(X) +m2(A) +m3(X)

+
m1(X)m2(X)m3(A)2

m1(X) +m2(X) +m3(A)

]

+
∑

X∈2Θ

A∩X=∅

[ (m1(A) +m2(A))m1(A)m2(A)m3(X)

m1(A) +m2(A) +m3(X)

+
(m2(A) +m3(A))m1(X)m2(A)m3(A)

m1(X) +m2(A) +m3(A)

+
(m1(A) +m3(A))m1(A)m2(X)m3(A)

m1(A) +m2(X) +m3(A)

]

(12)

It is worth mentioning that if some fractions involved in the
formulas (11) and (12) have their denominators equal to zero,

4It is worth mentioning that PCR5 for three BBAs given in the section 2
of [13] is incorrect, and it must be replaced by formula (11) of this paper.
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these fractions are just discarded. It can be easily verified on
example 1 that PCR5 formula (11) gives the same result as
with the formula (7), and that the PCR6 formula (12) gives
the same result as with the formula (10).

VI. PCR5 AND PCR6 RUL ES FOR THREE BAY ES IAN B BAS

If we want to work with three Bayesian BBAs only, the
focal elements of BBAs to combine are only singletons of the
power set 2Θ. In this particular case, the previous PCR5 and
PCR6 formulas (11) and (12) can be simplified as

mPCR5
1,2,3(A) = m1(A)m2(A)m3(A)

+
∑

X,Y ∈Θ\{A}

X 6=Y

[ m1(A)2m2(X)m3(Y )

m1(A) +m2(X) +m3(Y )

+
m1(Y )m2(A)2m3(X)

m1(Y ) +m2(A) +m3(X)

+
m1(X)m2(Y )m3(A)2

m1(X) +m2(Y ) +m3(A)

]

+
∑

X∈Θ\{A}

[ m1(A)2m2(X)m3(X)

m1(A) +m2(X)m3(X)

+
m1(X)m2(A)2m3(X)

m1(X)m3(X) +m2(A)

+
m1(X)m2(X)m3(A)2

m1(X)m2(X) +m3(A)

]

+
∑

X∈Θ\{A}

[ m1(A)2m2(A)2m3(X)

m1(A)m2(A) +m3(X)

+
m1(X)m2(A)2m3(A)2

m1(X) +m2(A)m3(A)

+
m1(A)2m2(X)m3(A)2

m1(A)m3(A) +m2(X)

]

(13)

mPCR6
1,2,3(A) = mConj

1,2,3(A)

+
∑

X,Y ∈Θ\{A}

X 6=Y

[ m1(A)2m2(X)m3(Y )

m1(A) +m2(X) +m3(Y )

+
m1(Y )m2(A)2m3(X)

m1(Y ) +m2(A) +m3(X)

+
m1(X)m2(Y )m3(A)2

m1(X) +m2(Y ) +m3(A)

]

+
∑

X∈Θ\{A}

[ m1(A)2m2(X)m3(X)

m1(A) +m2(X) +m3(X)

+
m1(X)m2(A)2m3(X)

m1(X) +m3(X) +m2(A)

+
m1(X)m2(X)m3(A)2

m1(X) +m2(X) +m3(A)

]

+
∑

X∈Θ\{A}

[ (m1(A) +m2(A))m1(A)m2(A)m3(X)

m1(A) +m2(A) +m3(X)

+
(m1(A) +m3(A))m1(A)m2(X)m3(A)

m1(A) +m3(A) +m2(X)

+
(m2(A) +m3(A))m1(X)m2(A)m3(A)

m1(X) +m2(A) +m3(A)

]

(14)

In the formulas (13) and (14) the subset A is any singleton
of 2Θ (i.e. any element of Θ). For any non-singleton A of
2Θ we have mPCR5

1,2,3(A) = 0 because the fusion of Bayesian
BBAs by PCR5 and PCR6 always produces a Bayesian BBA.
It is worth mentioning that if some fractions involved in the
formulas (13) and (14) have their denominators equal to zero,
these fractions are just discarded.

VII. EX AMPL E OF PCR5 AND PCR6 FUS ION OF THREE
BAY ES IAN B BAS

Here we provide a simple example showing the differ-
ence of the results between PCR5 and PCR6 rules for three
Bayesian BBAs. For convenience, all numerical values have
been rounded to six decimal places when necessary.

Example 2: We consider the simplest FoD Θ = {A,B}, and
the three following BBAs

m1(A) = 0.2,m1(B) = 0.8,m1(A ∪B) = 0,

m2(A) = 0.1,m2(B) = 0.9,m2(A ∪B) = 0,

m3(A) = 0.6,m3(B) = 0.4,m3(A ∪B) = 0.

Because Fm1
= |F(m1)| = 2, Fm2

= |F(m2)| = 2 and
Fm3

= |F(m3)| = 2, we have F = Fm1
· Fm2

· Fm3
=

8 non-zero products to consider. Two non-zero products are
non-conflicting and enter in the calculation of mConj

1,2,3(A) and
mConj

1,2,3(B), and six non-zero products are conflicting products
that need to be proportionally redistributed. The conjunctive
combination of these three Bayesian BBAs is

mConj
1,2,3(A) = m1(A)m2(A)m3(A) = 0.012,

mConj
1,2,3(B) = m1(B)m2(B)m3(B) = 0.288,

mConj
1,2,3(A ∪ B) = m1(A ∪ B)m2(A ∪B)m3(A ∪B) = 0,

and the total conflict between these three BBAs is

mConj
1,2,3(∅) = 1−mConj

1,2,3(A)−mConj
1,2,3(B)−mConj

1,2,3(A ∪B)

= 0.70.

In this example we have six partial conflicts, noted πj(∅)
(j = 1, . . . , 6), which are given by the following products

π1(∅) = m1(A)m2(A)m3(B) = 0.008,

π2(∅) = m1(A)m2(B)m3(A) = 0.108,

π3(∅) = m1(B)m2(A)m3(A) = 0.048,

π4(∅) = m1(B)m2(B)m3(A) = 0.432,

π5(∅) = m1(B)m2(A)m3(B) = 0.032,

π6(∅) = m1(A)m2(B)m3(B) = 0.072.

A. PCR5 fusion of the three Bayesian BBAs of example 2

Using the general PCR5 fusion rule (7) with S = 3 (i.e.
3 BBAs) we manage the the conflicting mass products as
follows:
• Conflicting mass π1(∅) = m1(A)m2(A)m3(B) = 0.008

is redistributed back to A and B proportionally to
m1(A)m2(A) and to m3(B) as follows

x1(A)

m1(A)m2(A)
=

x1(B)

m3(B)
=

π1(∅)
m1(A)m2(A) +m3(B)

,
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whence

x1(A) =
m1(A)m2(A)π1(∅)

m1(A)m2(A) +m3(B)
≈ 0.000381,

x1(B) =
m3(B)π1(∅)

m1(A)m2(A) +m3(B)
≈ 0.007619.

We can verify π1(∅) = x1(A) + x1(B) = 0.008.

• Conflicting mass π2(∅) = m1(A)m2(B)m3(A) = 0.108
is redistributed back to A and B proportionally to
m1(A)m3(A) and to m2(B) as follows

x2(A)

m1(A)m3(A)
=

x2(B)

m2(B)
=

π2(∅)
m1(A)m3(A) +m2(B)

,

whence

x2(A) =
m1(A)m3(A)π2(∅)

m1(A)m3(A) +m2(B)
≈ 0.012706,

x2(B) =
m2(B)π2(∅)

m1(A)m3(A) +m2(B)
≈ 0.095294.

• Conflicting mass π3(∅) = m1(B)m2(A)m3(A) = 0.048
is redistributed back to A and B proportionally to
m2(A)m3(A) and to m1(B) as follows

x3(A)

m2(A)m3(A)
=

x3(B)

m1(B)
=

π3(∅)
m2(A)m3(A) +m1(B)

,

whence

x3(A) =
m2(A)m3(A)π3(∅)

m2(A)m3(A) +m1(B)
≈ 0.003349,

x3(B) =
m1(B)π3(∅)

m2(A)m3(A) +m1(B)
≈ 0.044651.

• Conflicting mass π4(∅) = m1(B)m2(B)m3(A) = 0.432
is redistributed back to A and B proportionally to m3(A) and
to m1(B)m2(B) as follows

x4(A)

m3(A)
=

x4(B)

m1(B)m2(B)
=

π4(∅)
m3(A) +m1(B)m2(B)

,

whence

x4(A) =
m3(A)π4(∅)

m3(A) +m1(B)m2(B)
≈ 0.196364,

x4(B) =
m1(B)m2(B)π4(∅)

m3(A) +m1(B)m2(B)
≈ 0.235636.

• Conflicting mass π5(∅) = m1(B)m2(A)m3(B) = 0.032
is redistributed back to A and B proportionally to m2(A) and
to m1(B)m3(B) as follows

x5(A)

m2(A)
=

x5(B)

m1(B)m3(B)
=

π5(∅)
m2(A) +m1(B)m3(B)

,

whence

x5(A) =
m2(A)π5(∅)

m2(A) +m1(B)m3(B)
≈ 0.007620,

x5(B) =
m1(B)m3(B)π5(∅)

m2(A) +m1(B)m3(B)
≈ 0.024380.

• Conflicting mass π6(∅) = m1(A)m2(B)m3(B) = 0.072
is redistributed back to A and B proportionally to m1(A) and
to m2(B)m3(B) as follows

x6(A)

m1(A)
=

x6(B)

m2(B)m3(B)
=

π6(∅)
m1(A) +m2(B)m3(B)

,

whence

x6(A) =
m1(A)π6(∅)

m1(A) +m2(B)m3(B)
≈ 0.025714,

x6(B) =
m2(B)m3(B)π6(∅)

m1(A) +m2(B)m3(B)
≈ 0.046286.

Therefore in applying PCR5 formula we get

mPCR5
1,2,3(A) = mConj

1,2,3(A) + x1(A) + x2(A) + x3(A)

+ x4(A) + x5(A) + x6(A) ≈ 0.258134,

mPCR5
1,2,3(B) = mConj

1,2,3(B) + x1(B) + x2(B) + x3(B)

+ x4(B) + x5(B) + x6(B) ≈ 0.741866,

and because the result is a Bayesian BBA we have also

mPCR5
1,2,3(A ∪B) = 0.

Now if we apply the PCR5 combination of the three
Bayesian BBAs of example 2 using the direct formula (13),
we have to work with Θ = {A,B}. So, for the focal element
A we must consider all X ∈ Θ \ {A} in the second and third
summations but Θ \ {A} = {B}, hence X = B only. In the
first summation there is no X,Y ∈ Θ\{A} such that X 6= Y ,
so the first summation does not exist for this example. For
the focal element A, the formula (13) reduces to the simple
expression

mPCR5
1,2,3(A) = m1(A)m2(A)m3(A)

︸ ︷︷ ︸

m
Conj
1,2,3

(A)=0.012

+
[ m1(A)2m2(B)m3(B)

m1(A) +m2(B)m3(B)
︸ ︷︷ ︸

x6(A)≈0.025714

+
m1(B)m2(A)2m3(B)

m1(B)m3(B) +m2(A)
︸ ︷︷ ︸

x5(A)≈0.007620

+
m1(B)m2(B)m3(A)2

m1(B)m2(B) +m3(A)
︸ ︷︷ ︸

x4(A)≈0.196364

]

+
[ m1(A)2m2(A)2m3(B)

m1(A)m2(A) +m3(B)
︸ ︷︷ ︸

x1(A)≈0.000381

+
m1(A)2m2(B)m3(A)2

m1(A)m3(A) +m2(B)
︸ ︷︷ ︸

x2(A)≈0.012706

+
m1(B)m2(A)2m3(A)2

m1(B) +m2(A)m3(A)
︸ ︷︷ ︸

x3(A)≈0.003349

]

≈ 0.258134

(15)
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Similarly, for the example 2 and using the direct PCR5
formula (13) for three bayesian BBAs we have for the focal
element B

mPCR5
1,2,3(B) = m1(B)m2(B)m3(B)

︸ ︷︷ ︸

m
Conj
1,2,3

(B)=0.288

+
[ m1(B)2m2(A)m3(A)

m1(B) +m2(A)m3(A)
︸ ︷︷ ︸

x3(B)≈0.044651

+
m1(A)m2(B)2m3(A)

m1(A)m3(A) +m2(B)
︸ ︷︷ ︸

x2(B)≈0.095294

+
m1(A)m2(A)m3(B)2

m1(A)m2(A) +m3(B)
︸ ︷︷ ︸

x1(B)≈0.007619

]

+
[ m1(B)2m2(B)2m3(A)

m1(B)m2(B) +m3(A)
︸ ︷︷ ︸

x4(B)≈0.235636

+
m1(B)2m2(A)m3(B)2

m1(B)m3(B) +m2(A)
︸ ︷︷ ︸

x5(B)≈0.024380

+
m1(A)m2(B)2m3(B)2

m1(A) +m2(B)m3(B)
︸ ︷︷ ︸

x6(B)≈0.046286

]

≈ 0.741866

(16)

It is clear that the results obtained with the direct formula
(13) are in agreement with those obtained by the general PCR5
formula (7) when S = 3.

B. PCR6 fusion of the three Bayesian BBAs of example 2

Using the general PCR6 fusion rule (10) with S = 3 (i.e.
3 BBAs) we manage the the conflicting mass products as
follows:
• Conflicting mass π1(∅) = m1(A)m2(A)m3(B) = 0.008

is redistributed back to A and B proportionally to m1(A) +
m2(A) and to m3(B) as follows

x1(A)

m1(A) +m2(A)
=

x1(B)

m3(B)
=

π1(∅)
m1(A) +m2(A) +m3(B)

,

whence

x1(A) =
(m1(A) +m2(A))π1(∅)

m1(A) +m2(A) +m3(B)
≈ 0.003429,

x1(B) =
m3(B)π1(∅)

m1(A) +m2(A) +m3(B)
≈ 0.004571.

We can verify π1(∅) = x1(A) + x1(B) = 0.008.

• Conflicting mass π2(∅) = m1(A)m2(B)m3(A) = 0.108
is redistributed back to A and B proportionally to m1(A) +
m3(A) and to m2(B) as follows

x2(A)

m1(A) +m3(A)
=

x2(B)

m2(B)
=

π2(∅)
m1(A) +m3(A) +m2(B)

,

whence

x2(A) =
(m1(A) +m3(A))π2(∅)

m1(A) +m3(A) +m2(B)
≈ 0.050824,

x2(B) =
m2(B)π2(∅)

m1(A) +m3(A) +m2(B)
≈ 0.057176.

• Conflicting mass π3(∅) = m1(B)m2(A)m3(A) = 0.048
is redistributed back to A and B proportionally to m2(A) +
m3(A) and to m1(B) as follows

x3(A)

m2(A) +m3(A)
=

x3(B)

m1(B)
=

π3(∅)
m2(A) +m3(A) +m1(B)

,

whence

x3(A) =
(m2(A) +m3(A))π3(∅)

m2(A) +m3(A) +m1(B)
≈ 0.022400,

x3(B) =
m1(B)π3(∅)

m2(A) +m3(A) +m1(B)
≈ 0.025600.

• Conflicting mass π4(∅) = m1(B)m2(B)m3(A) = 0.432
is redistributed back to A and B proportionally to m3(A) and
to m1(B) +m2(B) as follows

x4(A)

m3(A)
=

x4(B)

m1(B) +m2(B)
=

π4(∅)
m3(A) +m1(B) +m2(B)

,

whence

x4(A) =
m3(A)π4(∅)

m3(A) +m1(B) +m2(B)
≈ 0.112696,

x4(B) =
(m1(B) +m2(B))π4(∅)

m3(A) +m1(B) +m2(B)
≈ 0.319304.

• Conflicting mass π5(∅) = m1(B)m2(A)m3(B) = 0.032
is redistributed back to A and B proportionally to m2(A) and
to m1(B) +m3(B) as follows

x5(A)

m2(A)
=

x5(B)

m1(B) +m3(B)
=

π5(∅)
m2(A) +m1(B) +m3(B)

,

whence

x5(A) =
m2(A)π5(∅)

m2(A) +m1(B) +m3(B)
≈ 0.002462,

x5(B) =
(m1(B) +m3(B))π5(∅)

m2(A) +m1(B) +m3(B)
≈ 0.029538.

• Conflicting mass π6(∅) = m1(A)m2(B)m3(B) = 0.072
is redistributed back to A and B proportionally to m1(A) and
to m2(B) +m3(B) as follows

x6(A)

m1(A)
=

x6(B)

m2(B) +m3(B)
=

π6(∅)
m1(A) +m2(B) +m3(B)

,

whence

x6(A) =
m1(A)π6(∅)

m1(A) +m2(B) +m3(B)
≈ 0.009600,

x6(B) =
(m2(B) +m3(B))π6(∅)

m1(A) +m2(B) +m3(B)
≈ 0.062400.
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Therefore in applying PCR6 formula (10) with S = 3 we get
finally

mPCR6
1,2,3(A) = mConj

1,2,3(A) + x1(A) + x2(A) + x3(A)

+ x4(A) + x5(A) + x6(A) ≈ 0.213411,

mPCR6
1,2,3(B) = mConj

1,2,3(B) + x1(B) + x2(B) + x3(B)

+ x4(B) + x5(B) + x6(B) ≈ 0.786589,

and because the result is a Bayesian BBA we have also

mPCR6
1,2,3(A ∪B) = 0.

When using the direct formula (14) of PCR6 rule for the
three bayesian BBAs of example 2 we obtain for the focal
element A

mPCR6
1,2,3(A) = m1(A)m2(A)m3(A)

︸ ︷︷ ︸

m
Conj
1,2,3

(A)=0.012

+
[ m1(A)2m2(B)m3(B)

m1(A) +m2(B) +m3(B)
︸ ︷︷ ︸

x6(A)≈0.009600

+
m1(B)m2(A)2m3(B)

m1(B) +m3(B) +m2(A)
︸ ︷︷ ︸

x5(A)≈0.002462

+
m1(B)m2(B)m3(A)2

m1(B) +m2(B) +m3(A)
︸ ︷︷ ︸

x4(A)≈0.112696

]

+
[ (m1(A) +m2(A))m1(A)m2(A)m3(B)

m1(A) +m2(A) +m3(B)
︸ ︷︷ ︸

x1(A)≈0.003429

+
(m1(A) +m3(A))m1(A)m2(B)m3(A)

m1(A) +m3(A) +m2(B)
︸ ︷︷ ︸

x2(A)≈0.050824

+
(m2(A) +m3(A))m1(B)m2(A)m3(A)

m1(B) +m2(A) +m3(A)
︸ ︷︷ ︸

x3(A)≈0.022400

]

≈ 0.213411

(17)

Similarly, for the example 2 and using the direct formula

(14) we have for the focal element B

mPCR6
1,2,3(B) = m1(B)m2(B)m3(B)

︸ ︷︷ ︸

m
Conj
1,2,3

(B)=0.288

+
[ m1(B)2m2(A)m3(A)

m1(B) +m2(A) +m3(A)
︸ ︷︷ ︸

x3(B)≈0.025600

+
m1(A)m2(B)2m3(A)

m1(A) +m3(A) +m2(B)
︸ ︷︷ ︸

x2(B)≈0.057176

+
m1(A)m2(A)m3(B)2

m1(A) +m2(A) +m3(B)
︸ ︷︷ ︸

x1(B)≈0.004571

]

+
[ (m1(B) +m2(B))m1(B)m2(B)m3(A)

m1(B) +m2(B) +m3(A)
︸ ︷︷ ︸

x4(B)≈0.319304

+
(m1(B) +m3(B))m1(B)m2(A)m3(B)

m1(B) +m3(B) +m2(A)
︸ ︷︷ ︸

x5(B)≈0.029538

+
(m2(B) +m3(B))m1(A)m2(B)m3(B)

m1(A) +m2(B) +m3(B)
︸ ︷︷ ︸

x6(B)≈0.062400

]

≈ 0.786589
(18)

It is clear that the results obtained with the direct formula
(14) are in agreement with those obtained by the general PCR6
formula (10) when S = 3.

VIII. CONCL US ION

In this paper we have developed explicit formulas for the
PCR5 and PCR6 fusion of three bayesian BBAs which work
with any cardinality of the frame of discernment greater or
equal to two. We have verified that our formulas are coherent
with general PCR5 and PCR6 formulas. We have also provided
the correct PCR5 formula for three BBAs which was erroneous
in our 2010 original paper [13]. We hope that these formulas
will be helpful for some users of belief functions working only
with bayesian belief masses and with only three sources of
evidence to combine because these direct formulas are much
easier to implement than general PCR5 and PCR6 formulas.
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Abstract—3D Building change detection has become a popular
research topic along with the improvement of image quality
and computer science. When only building changes are of
interest, both the multi-temporal images and Digital Surface
Models provide valuable but not comprehensive information in
the change detection procedure. Therefore, in this paper, belief
functions have been adopted for fusing information from these
two sources. In the first step, two change indicators are proposed
by focusing on building changes. Both indicators have been
projected to a sigmoid curve, in which both the concordance
and discordance indexes are considered. In order to fuse the
concordance and discordance indexes and further fuse the two
change indicators, two belief functions are considered. One is
the original Dempster-Shafer Theory (DST), and the most recent
one is Dezert-Smarandache Theory (DSmT). This paper shows
how these belief-based frameworks can help in building change
detection problem. Besides using different belief functions in
obtaining the global BBAs, four decision-making criteria are
tested to extract final building change masks. The results have
been validated by compared to the manually extracted change
reference mask.

Keywords: belief functions, DSmT, satellite imaging, building
change detection.

I. INTRODUCTION

Accurate and efficient detection of changes is of great
importance for urban monitoring, which is also an important
research field in remote sensing. Change detection methods on
large scale land cover monitoring have been intensively studied
and reviewed [1], [2]. Along with the ascending of image
spectral and temporal resolution, the expectation on automatic
change detection has progressively increased, not only on
results accuracy, but also on the efficiency and robustness of
the methods. Moreover, change detection for a specific target
of interest, like buildings is becoming an important research
topic. In small scale 2D change detection, which is performed
based on only 2D multi-temporal spectral images, problems
arise due to misdetections caused by irrelevant changes. The
influence of these irrelevant changes is growing as higher
resolution images showing more details. Therefore, in this
paper, we will further work on satellite multispectral and
stereo images, which provides both spectral and height change
information.

Adopting satellite stereo imagery for 3D change detection
is an exciting and challenging task. Benefiting from improved
data quality and advanced computer vision technique, the
quality of the generated Digital Surface Models (DSMs) has
been largely improved and it is possible to detect changes
even for small objects, like single buildings. On the other

side, the DSMs may still exhibit some outliers resulting in
occlusions within the stereo/multi views. Several approaches
have been proposed for DSM assisted change detection [3], [4],
[5], [6]. According to our previous research results, the belief
functions introduced in DST allow to work more efficiently
and robustly in urban building change detection with very
high resolution satellite images [7]. So far, only a basic
DS fusion model has been proposed in [6] to define the
Basic Belief Assignments (BBAs) thanks to a sigmoid curve
considering only the concordance index. Improvement of this
DS fusion model for BBAs construction is proposed in this
paper to achieve better performance by considering both the
concordance and discordance indexes. Since DSmT [8] has
been developed in last years as an interesting alternative to
DST to circumvent problems of Dempster-Shafer’s (DS) rule
of combination [9], we also investigate the possibility of using
the Proportiobnal Conflict Redistribution Rule #6 (PCR6) of
DSmT in our application.

II. BASICS OF BELIEF FUNCTIONS

Detailed presentations of DST and DSmT can be found
in [8], [9] and [10]. Let Θ be a frame of discernment of a
problem under consideration. Θ = {θ1, θ2, . . . , θN} consists
of a list of N exhaustive and mutually exclusive elements θi,
i = 1, 2, . . . , N . Each θi represents a possible state related to
the problem we want to solve. The assumption of exhaustivity
and mutual exclusivity of elements of Θ is classically referred
as Shafer’s model of the frame Θ. A BBA also called a belief
mass function (or just a mass for short), is a mapping m(.) :
2Θ → [0, 1] from the power set1 of Θ denoted 2Θ to [0, 1],
that verifies [10]:

m(∅) = 0, and
∑
X∈2Θ

m(X) = 1; (1)

m(X) represents the mass of belief exactly committed to X .
An element X ∈ 2Θ is called a focal element if and only if
m(X) > 0. In DST, the combination (fusion) of several inde-
pendent sources of evidences is done with Dempster-Shafer2

(DS) rule of combination, assuming that the sources are not
in total conflict3. DS combination of two independent BBAs
m1(.) and m2(.), denoted symbolically by DS(m1,m2), is

1The power set is the set of all subsets of Θ, empty set included.
2Although the rule has been proposed originally by Dempster, we call it

Dempster-Shafer rule because it has been widely promoted by Shafer in DST.
3otherwise DS rule is mathematically not defined because of 0/0 indeter-

minacy.
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defined by mDS(∅) = 0, and for all X ∈ 2Θ \ {∅} by:

mDS(X) =
1

1−KDS

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2), (2)

where the total degree of conflict KDS is given by

KDS ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2). (3)

A discussion on the validity of DS rule and its incompatibility
with Bayes fusion rule for combining Bayesian BBAs can be
found in [9], [11], [12]. To circumvent the problems of DS
rule, Smarandache and Dezert (see [8], Vol. 2, Chap. 1), then
Martin and Osswald (see [8], Vol. 2, Chap. 2) have developed
in DSmT [8] two fusion rules called PCR5 and PCR6 based on
the proportional conflict redistribution (PCR) principle which
consists

1) to apply the conjunctive rule;
2) calculate the total or partial conflicting masses;
3) then redistribute the (total or partial) conflicting mass

proportionally on non-empty sets according to the
integrity constraints one has for the frame Θ.

This PCR principle transfers the conflicting mass only to the
elements involved in the conflict and proportionally to their
individual masses, so that the specificity of the information
is not degraded. Because the proportional transfer can be
done in two different ways, this has yielded to two different
fusion rules. It has been proved in [13] that only PCR6 rule
is compatible with frequentist probability estimation, and that
is why we recommend its use in the applications. PCR5 and
PCR6 rules simplify greatly and coincide for the combination
of two sources. In this case, the PCR6 combination is obtained
by taking mPCR6(∅) = 0, and for all X 6= ∅ in 2Θ by

mPCR6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
], (4)

where all denominators in Eq. (4) are different from zero. If
a denominator is zero, that fraction is discarded.

III. BUILDING CHANGE DETECTION MODELS

A. Choice of the frame of discernment

We now use two sources (indicators) of evidences to solve
our problem. As a preparation step, the indicators and focal
elements have to be introduced. Two data sources are used for
building change detection. One is the satellite images, which
contain 2D spectral information. Here we use the Iteratively
Reweighted Multivariate Alteration Detection (IRMAD) [14]
to highlight changes from the spectral images. The other is
the robust height difference which can be calculated from
the two Digital Surface Models (DSMs) [6]. Detail of the
DSM generation procedure and the characters of the DSMs
quality have been described in [5]. As it has been explained
in [6], we suppose that new, demolished or changed buildings

exhibit both height changes and spectral changes. The seasonal
changes will only influence the spectral images. Therefore,
for building change detection, we consider the following three
classes (hypotheses) to define our frame of discernment satisfy-
ing Shafer’s model: Θ = {θ1 , Pixel ∈ BuildingChange,θ2 ,
Pixel ∈ OtherChange,θ3 , Pixel ∈ NoChange}.

B. Sigmoidal model for BBA construction

BBAs construction is a prerequisite for the combination of
sources of evidence. In our previous works [6], the BBAs were
built based on sigmoid curves related with the concordance
index only. In this paper, we improve our model to construct
the BBAs thanks to sigmoidal models for both concordance
and discordance indexes following idea proposed in [15]. As
explained in [6], the original sigmoid curve is defined as

f(τ,T )(x) = 0.99/(1 + e−
x−T
τ ), (5)

where x is the original value of each indicator. Two parameters
T and τ are used to control the symmetry point and the
slope of the sigmoid function. The symmetry point indicates
a certainty of 50%. The construction of BBAs is explained in
[15] and adopted in this paper. In [15] these two parameters
T and τ are manually given to sigmoid curve. Here, the
multi-level Otsu’s thresholding method [16] is used to get
symmetry points for both concordance index and discordance
index. Otsu’s algorithm defines that an image is composed of
objects and background. A discriminant analysis is performed
by minimizing the intra-class variance. When three classes are
of interest, two threshold values are expected. Otsu’s method
can be extended to

σ2
ω(T1, T2) = ω1σ

2
1(T1, T2)

+ ω2σ
2
2(T1, T2) + ω3σ

2
3(T1, T2). (6)

The weights ωi are the probabilities obtained from the image
histogram that are separated by the thresholds T1 and T2. σi
are the variances of the three classes. T1 and T2 can be used
as the symmetry points of discordance and concordance index
respectively. Thus, using height change index as example, the
BBAs for discordance and concordance height change index
are presented as a∆H and b∆H

a∆H = fτ,T1
(∆H), and b∆H = f−τ,T2

(∆H). (7)

The factor τ is calculated with a sample value (∆H = 1,
a∆H = 0.1), which means 1 meter height change indicates
10% probability to be building changes. The BBAs for discor-
dance and concordance image change index are built similarly.
Differences appearing in 2D images give a concordance indi-
cation for all changes, which include the building changes and
other changes (θ1∪θ2). In this paper the changes from images
are named ∆Img.

C. BBAs construction using concordance and discordance

The BBAs related with the concordance and discordance
indexes are combined to get the global BBA related to each
source of evidence. These global BBAs will then be used as
input for solving the change detection problem thanks to their
combination. In the Tables I and II, we present the two ways
of construction of the BBAs of the sources of evidence based
either on DS or on PCR6 rules of combination for the height
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TABLE I. BBA CONSTRUCTION FOR HEIGHT CHANGE INDICATOR ∆H . [K∆H = a∆Hb∆H ]

Focal Elem. m1(.) m′1(.) mDS1 (.) mPCR6
1 (.)

θ1 a∆H 0 a∆H (1−b∆H )

1−K∆H
a∆H(1− b∆H) +

a∆HK∆H
a∆H+b∆H

θ2 0 0 0 0
θ3 0 0 0 0

θ1 ∪ θ2 0 0 0 0
θ2 ∪ θ3 0 b∆H

(1−a∆H )b∆H
1−K∆H

(1− a∆H)b∆H +
b∆HK∆H
a∆H+b∆H

θ1 ∪ θ2 ∪ θ3 1− a∆H 1− b∆H
(1−a∆H )(1−b∆H )

1−K∆H
(1− a∆H)(1− b∆H)

TABLE II. BBA CONSTRUCTION FOR IMAGE CHANGE INDICATOR ∆Img. [K∆Img = a∆Imgb∆Img ]

Focal Elem. m2(.) m′2(.) mDS2 (.) mPCR6
2 (.)

θ1 0 0 0 0
θ2 0 0 0 0

θ3 0 b∆Img
(1−a∆Img)b∆Img

1−K∆Img
(1− a∆Img)b∆Img +

b∆ImgK∆Img
a∆Img+b∆Img

θ1 ∪ θ2 a∆Img 0
a∆Img(1−b∆Img)

1−K∆Img
a∆Img(1− b∆Img) +

a∆ImgK∆Img
a∆Img+b∆Img

θ2 ∪ θ3 0 0 0 0

θ1 ∪ θ2 ∪ θ3 1− a∆Img 1− b∆Img
(1−a∆Img)(1−b∆Img)

1−K∆Img
(1− a∆Img)(1− b∆Img)

change indicator (i.e. the first source of evidence) and the
image change indicator (i.e. the second source of evidence).
In Table I, m1(.) and m′1(.) represent the concordance and
discordance BBAs from ∆H , whereas in Table II m2(.) and
m′2(.) represent the concordance and discordance BBAs from
images.

Here for comparison of the two belief functions, these two
BBAs are fused with both DS and PCR6 fusion rules. The
fusion rules for height change indicator and image change
indicator are explained in Table I and Table II. In Table I,
the m1 and m′1 represent the concordance and discordance
BBAs from ∆H . In Table II we use m2 and m′2 to represent
the concordance and discordance BBAs from images.

D. BBAs combination for building change detection

From the previous step of BBAs modelings, each pixel
will get two sets of BBAs to combine resulting from Table
I and II. More precisely, we will have to combine either
{mDS

1 (.),mDS
2 (.)} if DS rule is preferred for the BBA model-

ing, or {mPCR6
1 (.),mPCR6

2 (.)} if PCR6 rule is adopted. These
BBAs have been represented by a1, b1, c1 and a2, b2, c2 in
Table III.

TABLE III. FUSION MODELS FOR BUILDING CHANGE DETECTION.

Focal Elem. m1(.) m2(.) mDS12 (.) mPCR6
12 (.)

θ1 a1 0 a1(b1+b3)
1−a1b2

a1(b1 + b3) +
a1a1b2
a1+b2

θ2 0 0 a2b1
1−a1b2

a2b1

θ3 0 b2
(a2+a3)b2

1−a1b2
(a2 + a3)b2 +

b2a1b2
a1+b2

θ1 ∪ θ2 0 b1
a3b1

1−a1b2
a3b1

θ2 ∪ θ3 a2 0 a2b3
1−a1b2

a2b3

Θ a3 b3
a3b3

1−a1b2
a3b3

Based on different BBAs and fusion methods, four sets of
global BBAs can be computed from Table III.

G1 = DS{mDS
1 (.),mDS

2 (.)},
G2 = PCR6{mDS

1 (.),mDS
2 (.)},

G3 = DS{mPCR6
1 (.),mPCR6

2 (.)},
G4 = PCR6{mPCR6

1 (.),mPCR6
2 (.)}.

(8)

After the fusion step, each pixel in the images will get a
certain degree of belief for all focal elements. Based on the

these BBAs, a final decision can be made. DST and DSmT
have different approaches to get this final decision. In this
paper four decision criteria are tested. More precisely, we have
evaluated the maximum of global BBAs (Max Bel), maximum
of plausibility (Max Pl), maximum of betting probabilities
(Max BetP) and the maximum of DSmP (Max DSmP),), see
[8] (Vol. 3, Chap. 3) and [10] for the mathematical definitions
of Bel(.), Pl(.), BetP (.) and DSmP (.) functions.

IV. EXPERIMENTS

The two proposed BBAs modelings and fusion methods
(based on DS and PCR6 rules) have been tested on one real
dataset. The dataset and the results from each step are detailed
in this section.

A. Datasets

The experimental dataset for this research work are dis-
played in Fig.1. It consists of two pairs of IKONOS stereo
imagery captured at February 2006 and May 2011 respectively.
As a pre-processing step, all data have been correctly radio-
metrically and geographically co-registered as described in [6].
As shown in Fig. 1, this is a normal building change example.
Several buildings have been built on flat surface. The generated
DSMs are displayed in Fig. 1c and d.

B. Results and evaluation

As the first step, BBAs from image change and height
change are extracted and refined based on DS fusion and
PCR6 fusion rules. The four sets of global BBAs are prepared
corresponding to Eq. (8). Among them the BBA for the
focal element θ1 (Building change) are shown in Fig. 2. The
accuracy of these BBAs have been evaluated by area under
Receiver Operating Characteristic curve (AUC). The AUC has
been recorded on this figure as the caption of each subfigure.
An advantage of PCR6 can be proved here. It has to be
noted that the AUCs obtained here are much higher than
using only height (AUC = 0.9299) [6] or spectral information
(AUC=0.8823), and generally better than the fusion result
described in [6] (AUC=0.9621).
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Fig. 1. Experimental dataset: a) panchromatic image from date1; b) panchromatic image from date2; c) DSM from date1; (d) DSM from date2.

Fig. 2. Four global BBAs sets (a) G1; (b)G2; (c)G3; (d)G4.
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Besides the AUC comparison, the building change masks
extracted from these four global BBAs sets are compared and
evaluated. Each global BBA set can generate four building
change mask based on these four decision make criteria.
These building change masks are evaluated based on Kappa
statistic (KA) and true detected rate (TR). In this paper
TR = detected positive

true positive × 100 (in %). The comparison results of
TR and KA values are shown in Table IV. From Table IV,
one sees that, G3 and G4 are more advantageous than G1 and
G2. However, the highest KA is obtained by G1 by taking the
Max Pl. However, in this paper, only the reference data for
building changes are available. For better understanding these
four global BBAs and decision making criteria, reference data
of all three focal elements θ1, θ2 and θ3 are required.

TABLE IV. CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS.

G1 G2 G3 G4

TR [%] KA TR[%] KA TR [%] KA TR [%] KA
Max Bel 93.35 0.7729 93.35 0.7729 93.39 0.7725 93.39 0.7724
Max Pl 93.23 0.7768 93.23 0.7762 93.23 0.7763 93.25 0.7756

Max BetP 93.28 0.7747 93.32 0.7762 93.32 0.7745 93.32 0.7741
Max DSmP 93.30 0.7739 93.30 0.7734 93.30 0.7737 93.34 0.7734

V. CONCLUSIONS

Belief functions are good choices for DSM assisted change
detection. Firstly, once the BBA construction is well done, it
can be robustly used for other images in other regions effi-
ciently. Secondly, this fusion approach matches well with the
characteristics of our research topic. Since height information
is important for separating high/low level objects. Satellite
images directly highlight all changes on the land surface. None
of these two sources of information can easily and directly
lead to a reliable decision on building changes, which matches
with the initial idea of belief functions. Generally speaking,
both DST and DSmT frameworks offer the possibility to
reach a high accuracy result, and PCR6 looks advantageous
when a larger conflict exists between the different sources
of evidence. More experiments are under progress to provide
a finer quantitative comparative analysis in a forthcoming
publication.
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Abstract—Digital Surface Models (DSMs) generated from
satellite stereo imagery provide valuable but not comprehensive
information for building change detection. Therefore, belief func-
tions have been introduced to solve this problem by fusing DSM
information with changes extracted from images. However, miss-
detection can not be avoided if the DSMs are containing large
region of wrong height values. A refined workflow is thereby
proposed by adopting the initial disparity map to generate a
reliability map. This reliability map is then built in the fusion
model. The reliability map has been tested in both Dempster-
Shafer Theory (DST), and Dezert-Smarandache Theory (DSmT)
frameworks. The results have been validated by comparing to
the manually extracted change reference mask.

Keywords: belief functions, DSmT, satellite imaging, building
change detection.

I. INTRODUCTION

In our previous research [1] [2], belief functions have
performed very well for 3D building change detection. As we
have mentioned, the accuracy of 2D change detection is limited
due to the misdetections caused by irrelevant changes. These
irrelevant changes have a larger effect on very high resolution
(VHR) images since many details of building changes are
expected. The DSMs generated from satellite stereo imagery
can largely help to solve this problem. However, the DSMs
may still exhibit some outliers resulting in occlusions within
the stereo/multi views and due to matching mistakes. In this
case, change information from spectral information of the
original stereo imagery can and should be used together with
height changes to eventually highlight building changes. For
this purpose proper fusion theories and approaches are needed.

In paper [2], the belief functions introduced in the
Dempster-Shafer Theory (DST) [3] [4], and extended in
Dezert-Smarandache Theory (DSmT) [5] are used to deal
with the uncertainty information delivered from the DSMs.
In [2] the possibility of using Dempter’s fusion rule and the
Proportional Conflict Redistribution Rule #6 (PCR6) of DSmT
in our application have been tested. Though improvements
have been proven by comparing to the method stated in [1],
false alarms can not be avoided in case of large regions of
wrong height change values. Thereupon, in this paper the
reliability map is adopted as an additional source of evidence
to correct the basic Belief Assignments (BBAs) and thus refine
the fusion model.

This paper is organized as follow. Firstly, the belief
functions and building change detection fusion models are

briefly reviewed. Then, the reliability discounting techniques
are presented and the reliability map is generated. Later, the
final four global BBAs are described together with the four
decision criteria with which the final change detection mask
can be generated. In the end, these refined fusion models are
tested on two sets of satellite real data.

II. BELIEF FUNCTION BASED BUILDING CHANGE
DETECTION

A. Basics of belief functions

Detailed presentations of DST and DSmT can be found
in [5], [6] and [3]. Let Θ be a frame of discernment of a
problem under consideration. Θ = {θ1, θ2, . . . , θN} consists
of a list of N exhaustive and mutually exclusive elements θi,
i = 1, 2, . . . , N . Each θi represents a possible state related to
the problem we want to solve. The assumption of exhaustivity
and mutual exclusivity of elements of Θ is classically referred
as Shafer’s model of the frame Θ. A BBA also called a belief
mass function (or just a mass for short), is a mapping m(.) :
2Θ → [0, 1] from the power set1 of Θ denoted 2Θ to [0, 1],
that verifies [3]:

m(∅) = 0, and
∑
X∈2Θ

m(X) = 1. (1)

m(X) represents the mass of belief exactly committed to X .
An element X ∈ 2Θ is called a focal element if and only if
m(X) > 0. In DST, the combination (fusion) of several inde-
pendent sources of evidences is done with Dempster-Shafer2

(DS) rule of combination, assuming that the sources are not
in total conflict3. DS combination of two independent BBAs
m1(.) and m2(.), denoted symbolically by DS(m1,m2), is
defined by mDS(∅) = 0, and for all X ∈ 2Θ \ {∅} by:

mDS(X) =
1

1−KDS

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2), (2)

1The power set is the set of all subsets of Θ, empty set included.
2Although the rule has been proposed originally by Dempster, we call it

Dempster-Shafer rule because it has been widely promoted by Shafer in DST.
3otherwise DS rule is mathematically not defined because of 0/0 indeter-

minacy.

Originally published as: J. Tian, J. Dezert, P. Reinartz, Refined Building Change Detection in Satellite 
Stereo Imagery Based on Belief Functions and Reliabilities, in Proc. of IEEE Int. Conf. on Multisensor 
Fusion and Integration for Intelligent Systems (MFI2015), Extended Studies Center, San Diego State 
Univ., San Diego, CA, USA, Sept. 14–16, 2015, and reprinted with permission.
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where the total degree of conflict KDS is given by

KDS ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2). (3)

A discussion on the validity of DS rule and its incompat-
ibility with Bayes fusion rule for combining Bayesian BBAs
can be found in [6], [7], [8]. To circumvent the problems of DS
rule, Smarandache and Dezert (see [5], Vol. 2, Chap. 1), then
Martin and Osswald (see [5], Vol. 2, Chap. 2) have developed
in DSmT [5] two fusion rules called PCR5 and PCR6 based on
the proportional conflict redistribution (PCR) principle which
consists

1) to apply the conjunctive rule;
2) calculate the total or partial conflicting masses;
3) then redistribute the (total or partial) conflicting mass

proportionally on non-empty sets according to the
integrity constraints one has for the frame Θ.

This PCR principle transfers the conflicting mass only to
the elements involved in the conflict and proportionally to their
individual masses, so that the specificity of the information
is not degraded. Because the proportional transfer can be
done in two different ways, this has yielded to two different
fusion rules. It has been proved in [9] that only PCR6 rule
is compatible with frequentest probability estimation, and that
is why we recommend its use in the applications. PCR5 and
PCR6 rules simplify greatly and coincide for the combination
of two sources. In this case, the PCR6 combination is obtained
by taking mPCR6(∅) = 0, and for all X 6= ∅ in 2Θ by

mPCR6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
], (4)

where all denominators in Eq. (4) are different from zero.
If a denominator is zero, that fraction is discarded. If a
denominator, e.g., m1(X)+m2(Y ) tends towards 0, then also
the conflicting mass m1(X)m2(Y ) that is transferable tends
to zero because m1(X) and m2(Y ) tend to zero (since they
are positive), therefore the redistribution masses also tend to
zero. That reflects the continuity of PCR6.

B. BBAs for Building change detection

1) Choice of the frame of discernment: Focusing on build-
ing change detection, two change indicators, one from images
and one from DSMs are used. Changes from spectral images
are highlighted by using the Iteratively Reweighted Multivari-
ate Alteration Detection (IRMAD) [10]. Consequently height
changes from DSMs are shown after robust height difference
[1]. Three classes are considered to define the frame of
discernment satisfying Shafer’s model:

Θ = {θ1 , Pixel ∈ BuildingChange,

θ2 , Pixel ∈ OtherChange,

θ3 , Pixel ∈ NoChange},
(5)

and
θ1 ∩ θ2 ∩ θ3 = ∅. (6)

Based on the three classes, the set of focal elements FE
that are of interest in our application is:

FE = {θ1, θ2, θ3, θ1 ∪ θ2, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}. (7)

2) BBAs construction: Paper [2] constructed the sigmoidal
model for both concordance and discordance indexes. The
details and advantages of this approach are described in [11].
The concordance index measures the concordace of change
indicator and BBA in the assertion, while the discordance
measures the opposition of change indicator to the BBAs in
the assertion. The original sigmoid curve is defined as

f(τ,T )(x) = 0.99/(1 + e−
x−T
τ ), (8)

where x is the original value of each indicator. Two parameters
T and τ are used to control the symmetry point and the slope of
the sigmoid function. The symmetry point indicates a certainty
of 50%. In [11] these two parameters T and τ are manually
given. Here, the multi-level Otsu’s thresholding method [12]
is used for automatically getting the symmetry points for both
concordance index and discordance index. Otsu’s algorithm
defines that an image is composed of objects and background.
A discriminant analysis is performed by minimizing the intra-
class variance. When three classes are of interest, two threshold
values are expected. Otsu’s method can be extended to

σ2
ω(T1, T2) = ω1σ

2
1(T1, T2)

+ ω2σ
2
2(T1, T2) + ω3σ

2
3(T1, T2). (9)

The weights ωi are the probabilities obtained from the image
histogram that are separated by the thresholds T1 and T2. σi
is the standard deviation of the i-th class, for i = 1, 2, 3. T1

and T2 can be used as the symmetry points of discordance
and concordance index respectively. Thus, using height change
index as example, the BBAs for discordance and concordance
height change index are functions of values a∆H and b∆H
defined by

a∆H = fτ,T1
(∆H), and b∆H = f−τ,T2

(∆H). (10)

The factor τ is calculated with a sample value (∆H = 1,
a∆H = 0.1), which means 1 meter height change indicates
10% probability to be building changes. The BBAs for discor-
dance and concordance image change index are built similarly.
Differences appearing in 2D images give a concordance indi-
cation for all changes, which include the building changes and
other changes (θ1∪θ2). In this paper the changes from images
are named ∆Img.

In the Tables I and II, we present the two ways of
construction of the BBAs from the sources of evidence based
either on DS or on PCR6 rules of combination for the height
change indicator (i.e. the first source of evidence) and the
image change indicator (i.e. the second source of evidence).
In Table I, m1(.) and m′1(.) represent the concordance and
discordance BBAs from ∆H , whereas in Table II m2(.) and
m′2(.) represent the concordance and discordance BBAs from
images.
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TABLE I. BBA CONSTRUCTION FOR HEIGHT CHANGE INDICATOR ∆H . [K∆H = a∆Hb∆H ]

Focal Elem. m1(.) m′1(.) mDS1 (.) mPCR6
1 (.)

θ1 a∆H 0 a∆H (1−b∆H )

1−K∆H
a∆H(1− b∆H) +

a∆HK∆H
a∆H+b∆H

θ2 0 0 0 0
θ3 0 0 0 0

θ1 ∪ θ2 0 0 0 0
θ2 ∪ θ3 0 b∆H

(1−a∆H )b∆H
1−K∆H

(1− a∆H)b∆H +
b∆HK∆H
a∆H+b∆H

θ1 ∪ θ2 ∪ θ3 1− a∆H 1− b∆H
(1−a∆H )(1−b∆H )

1−K∆H
(1− a∆H)(1− b∆H)

TABLE II. BBA CONSTRUCTION FOR IMAGE CHANGE INDICATOR ∆Img. [K∆Img = a∆Imgb∆Img ]

Focal Elem. m2(.) m′2(.) mDS2 (.) mPCR6
2 (.)

θ1 0 0 0 0
θ2 0 0 0 0

θ3 0 b∆Img
(1−a∆Img)b∆Img

1−K∆Img
(1− a∆Img)b∆Img +

b∆ImgK∆Img
a∆Img+b∆Img

θ1 ∪ θ2 a∆Img 0
a∆Img(1−b∆Img)

1−K∆Img
a∆Img(1− b∆Img) +

a∆ImgK∆Img
a∆Img+b∆Img

θ2 ∪ θ3 0 0 0 0

θ1 ∪ θ2 ∪ θ3 1− a∆Img 1− b∆Img
(1−a∆Img)(1−b∆Img)

1−K∆Img
(1− a∆Img)(1− b∆Img)

III. RELIABILITY DISCOUNTING

The reliability discounting has been described and dis-
cussed in the references [13] and [14]. Briefly said, if an
additional knowledge about the reliability (α) of certain in-
dicator (X) is available, it can be adopted to refine the initial
BBAs. α would be a value ranging from 0 to 1. And α = 1
means fully reliable, while α = 0 means the indicator is
totally unreliable. Based on Shafer’s discounting model [3],
the reliability discounting factor α is introduced to discount
any BBA m(.) defined on the power set 2Θ as follows:

{
mα(X) = α ·m(X), for X 6= Θ,

mα(Θ) = α ·m(Θ) + (1− α).
(11)

In the DSM assisted building change detection, false alarms
are detected if wrong heights are present in DSM for large
regions [1]. And these wrong heights are mostly introduced
not in the stereoscope images matching procedure, but in
the gaps filling step. In our DSM generation procedure, the
height of un-matched pixels are interpolated using the height
values of neighborhood pixels. Therefore, a reliable height
value can be achieved for small gaps. When large gaps turn up
in the disparity map, for example, a whole building roof, the
height of that building can not be correctly interpolated. Thus,
the percentage of available correctly matched neighborhood
pixels inside a predefined region can be used to generate the
height reliability. Fig. 1 shows an example of the generated
reliability map. Fig. 1a is the gaps mask. The gaps region of
the disparity map is represented with black color. Pixels with
proper elevation values are displayed with white color. It can
be observed, based on our approach that pixels in the center
of a gap get lower reliability factor values than pixels next to
the gap boundary (see Fig.1b).

In the building change detection procedure, the reliability
map of two DSMs (αDSM1 and αDSM2 ) are calculated
respectively. They are then fused together to generate a final
reliability map α∆H for the height change indicator.

α∆H = αDSM1 · αDSM2. (12)

Fig. 1. Reliability map (b) generated from the gaps mask (a).

IV. GLOBAL BBAS AND CHANGE DETECTION

A. Global BBAs generation

The BBAs related with the concordance and discordance
indexes are combined to get the global BBA regarding to each
source of evidence. These global BBAs will then be used
as input for solving the change detection problem thanks to
their combination. From the previous step of BBAs modelings,
each pixel will get two sets of BBAs to combine results from
Table I and II. More precisely, we will have to combine either
{mDS

1 (.),mDS
2 (.)} if DS rule is preferred for the BBA mod-

eling, or {mPCR6
1 (.),mPCR6

2 (.)} if the PCR6 rule is adopted.
These BBAs from Table I and II have been represented by
a1, b1, c1 and a2, b2, c2. In this paper, the mass values a1,
b1, and c1 are further discounted by the generated reliability
map α∆H and denoted respectively as A1, B1, and C1. More
precisely, one computes

A1 = α∆H · a1,

B1 = α∆H · b1,
C1 = α∆H · c1 + (1− α∆H).

(13)

In this application, only the reliability map for height
change indicators is generated. The reliability map for image
change indicators can also be constructed according to the
change objects of interested. For instance, vegetation mask can
be used to discount the reliability of building changes. How-
ever, this paper focuses on the reliability of height information.
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When the reliability map of image changes is available, it could
be used as the same way as height change reliability map. Table
III and Table IV describe the final building change detection
models based either on DS or on PCR6 rules. Here, the
discounted height change indicators is denoted as m1α∆H

(.).

TABLE III. DS FUSION MODEL FOR BUILDING CHANGE DETECTION.

Focal Elem. m1α∆H
(.) m2(.) mDS12 (.)

θ1 A1 0 A1(b1+b3)
1−A1b2

θ2 0 0 A2b1
1−A1b2

θ3 0 b2
(A2+a3)b2

1−A1b2

θ1 ∪ θ2 0 b1
A3b1

1−A1b2

θ2 ∪ θ3 A2 0 A2b3
1−A1b2

Θ A3 b3
A3b3

1−A1b2

TABLE IV. PCR6 FUSION MODEL FOR BUILDING CHANGE
DETECTION.

Focal Elem. m1α∆H
(.) m2(.) mPCR6

12 (.)
θ1 A1 0 A1(b1 + b3) +

A1A1b2
A1+b2

θ2 0 0 A2b1

θ3 0 b2 (A2 + a3)b2 +
b2A1b2
A1+b2

θ1 ∪ θ2 0 b1 A3b1
θ2 ∪ θ3 A2 0 A2b3

Θ A3 b3 A3b3

m1α∆H
(.) can be obtained from the discounting of the

fusion results presented in Table I. Thus they have been
denoted respectively as mDS

1α∆H
(.) and mPCR6

1α∆H
(.). This dis-

counted height change indicators are fused in the second step
with image change indicator m2(.) to generate the final global
BBAs. From the tables III and IV, four sets of global BBAs
can be computed based on different BBAs and fusion methods
as follows:

G1 = DS{mDS
1α∆H

(.),mDS
2 (.)},

G2 = PCR6{mDS
1α∆H

(.),mDS
2 (.)},

G3 = DS{mPCR6
1α∆H

(.),mPCR6
2 (.)},

G4 = PCR6{mPCR6
1α∆H

(.),mPCR6
2 (.)}.

(14)

For example, if both the BBA modeling procedure and
global BBAs are constructed based on DS fusion rule, the
generated global BBA is recorded as G1.

B. Change mask generation

After the fusion step, each pixel in the images will get a
certain degree of belief for all focal elements. The value of
global BBAs in θ1 gives a direct building change probability
map. A change mask can be generated after giving a threshold
value. However, BBAs on the partial ignorance and full ig-
norance set should also be considered in the decision making
procedure. DST and DSmT propose different approaches to
take the final decision. In this work, the same decision criteria
as used in [2] are tested. They are: 1) maximum of global
BBAs (Max Bel), 2) maximum of plausibility (Max Pl), 3)
maximum of betting probabilities (Max BetP) and 4) the
maximum of DSmP (Max DSmP). The reader can refer to
[3] and [5] (Vol. 3, Chap. 3) for the mathematical definitions
of Bel(.), Pl(.), BetP (.) and DSmP (.) functions.

V. EXPERIMENTS

The improved building change detection fusion models
have been tested on satellite images. The datasets and the
experiments are described in this section.

A. Datasets

The experimental datasets consist of two pairs of IKONOS
stereo imagery captured in February 2006 and May 2011
respectively shown in Fig. 2 and 3. The first two images in each
figure are the panchromatic images of two dates. (c) and (d)
are the generated DSMs. They have been generated based on
the method explained in [15]. The colors represent the height
range in this test region.

Fig. 2. Experimental dataset: a) panchromatic image from date1; b)
panchromatic image from date2; c) DSM from date1; (d) DSM from date2.

Fig. 3. Datasets of the 2nd test region; a) panchromatic image from date1;
b) panchromatic image from date2; c) DSM from date1; (d) DSM from date2.
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The spatial co-registration is achieved though camera
model parameter corrections before the DSM generation pro-
cedure [15]. The radiometrical co-registration method has been
described in [1]. Fig. 2 shows a normal building change
example. Several buildings have been built on flat surface. The
generated DSMs are displayed in Fig. 2c and d. In the second
example (shown in Fig. 3), a large percentage of pixels on the
roof of the large building in the center appear as gaps in the
disparity map. In the filling procedure, the large size of the
gap in the date1 data lead to the missing of this building in
the DSM (Fig. 3c).

B. Results and evaluation

The refined DS fusion model and PCR6 fusion model
have been applied to both datasets respectively. To show the
improvement obtained by our method, we have compared
its results with the original results we can obtain with the
method in [2]. Firstly, the global BBAs of θ1 are compared
and displayed in Fig. 4 below.

Fig. 4. Global Building change BBAs (a) Initial result; (b) Refined result;
(c) Ground truth.

Fig. 4(a) corresponds to the original4 result, and Fig. 4(b)
shows the refined result based on G1(θ1). By comparing to the
ground truth (Fig. 4(c)), the improvements can be clearly ob-
served in the building boundary regions, especially the building
marked with a white circle. In the initial result, the pixels next
to this building are falsely detected as BuildingChange.

To evaluate quantitatively the performances of the different
fusion approaches, the extracted BBAs from both approaches
(original and refined) are compared to the manually extracted
change reference masks. The results are analyzed in terms of
Receiver Operating Characteristic (ROC) curve [16]. A larger
area under the ROC curve (AUC) indicates a better accuracy
of the building change map. The numerical evaluation results
are described in Table V. The obtained AUC values prove a
general improvement after reliability discounting is applied.

In addition to the AUC comparison, the building change
masks extracted from these four global BBAs sets are com-
pared and evaluated. Each global BBA set can generate four
building change masks based on these four decision criteria.

4obtained without reliability discounting, as presented in [2].

TABLE V. QUALITY COMPARISON OF GLOBAL BBA (BUILDING
CHANGE).

Test Region 1 Test Region 2
Original Refined Original Refined

G1 0.9811 0.9833 0.9509 0.9950
G2 0.9829 0.9839 0.9485 0.9931
G3 0.9815 0.9837 0.9512 0.9955
G4 0.9835 0.9844 0.9487 0.9939

These building change masks are compared with the masks
from paper [2] based on Kappa statistic (KA). The comparison
results of Test region 1 are shown in Table VI. Limited by the
reference data we can get, only the building change frame
is evaluated here. One sees the reliability discounting map
helps to improve the result accuracy in all fusion and decision
approaches.

In the second test region, there is actually no building
changes. The purpose of showing this test region is to further
prove the advantage of the extracted reliability map. Fig. 5
shows the extracted reliability discounting map of the height
changes. The windowsize we selected for this test region is
9 × 9. By using this reliability map, final fusion result of
G1(θ1) is achieved and shown in Fig. 6(a). As a comparison,
the G1(θ1) of the initial fusion model is displayed in Fig. 6(b).
This is the same building that we have discussed in paper
[1]. It can be noted in Fig. 3, this building exists in both
panchromatic images of two dates. However, only the DSM
from date1 contains the correct height of this building. In Fig.
3c, this building can not be recognized. Therefore, a very high
BBA would be achieved in the height change indicator. A high
value in m1(.) leads to a high global BBAs in building changes
(as shown in Fig. 6(a)). Thus this building would be falsely
detected as building changes. However, after discounting this
region has much lower global BBAs (see Fig. 6(b)), and can
be further correctly detected as NoChange.

Fig. 5. Generated height change reliability map of the test region 2.

Fig. 6. Global Building change BBAs (a) Initial result; (b) Refined result.
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TABLE VI. CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS.

G1 G2 G3 G4

Original Refined Original Refined Original Refined Original Refined
Max Bel 0.9271 0.9324 0.9271 0.9324 0.9266 0.9322 0.9265 0.9321
Max Pl 0.9291 0.9342 0.9288 0.9339 0.9287 0.9339 0.9284 0.9336

Max BetP 0.9283 0.9335 0.9282 0.9334 0.9279 0.9333 0.9278 0.9333
Max DSmP 0.9281 0.9333 0.9280 0.9331 0.9278 0.9331 0.9276 0.9330

VI. CONCLUSIONS

Building change detection is a difficult topic, especially
when the building changes happen together with other ir-
relevant changes. Our previous research has evidenced the
performance of the belief functions in DSM assisted change
detection [2]. In this paper, the change detection accuracy is
further improved by adopting an additional reliability map.
Height has proved to be an important feature for building
change detection. However, the DSMs from satellite images
do not always provide reliable height information, due to the
occlusion and matching errors. The wrong height information
will thus bring false alarms to the change detection procedure.
Therefore, the original unfilled disparity maps are adopted to
generate an height change reliability map, which is further used
in the fusion models.

Our first experimental results have shown that this relia-
bility map can improve the quality of all four global BBAs,
and further influences the final change detection results from
four decision criteria. However, the two test regions were
quite small to draw a definitive conclusion that is why more
experiments will be performed on a wider variety of regions
with different types of backgrounds. A detailed statistical
analysis and comparisons of the results with other techniques
is under progress and they will be presented in a forthcoming
publication.

Generally speaking, both DST and DSmT frameworks offer
the possibility to reach a high accuracy result. The workflow
proposed in this paper enables an automatic building change
detection procedure. Other reliability maps from images would
be further adopted in future work. Furthermore, besides build-
ing changes, more change objects will be considered in the
fusion model.
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Abstract—This paper proposes a new generic object recog-
nition (GOR) method based on the multiple feature fusion of
2D and 3D SIFT (scale invariant feature transform) descriptors
drawn from 2D images and 3D point clouds. We also use
trained Support Vector Machine (SVM) classifiers to recognize
the objects from the result of the multiple feature fusion. We
analyze and evaluate different strategies for making this multiple
feature fusion applied to real open-datasets. Our results show
that this new GOR method has higher recognition rates than
classical methods, even if one has large intra-class variations,
or high inter-class similarities of the objects to recognize, which
demonstrates the potential interest of this new approach.
Keywords: generic object recognition, point cloud, 2D SIFT,
3D SIFT, Feature fusion, BoW, SVM, belief functions, PCR.

I. INTRODUCTION

Generic object recognition (GOR) in real environment plays
a significant role in computer vision and artificial intelli-
gence. It has important applications in intelligent monitoring,
robotics, medical image processing, etc [1]–[3]. Contrariwise
to specific object recognition1, GOR is much more difficult
to accomplish. Mainly because the generic features of objects
which express the common properties in the same class and
help to make the difference between classes need to be found
out, instead of defining characteristics of particular category as
used in specific object recognition (SOR) methods. The current
main techniques for GOR are based on local feature extraction
algorithms on 2D images, typically the 2D SIFT (scale invari-
ant feature transform) descriptors [4], [5]. However, 2D images
lose the 3D information of the objects, and are susceptible
to change due to various external illumination conditions. To
solve this drawback, 3D SIFT descriptors based on volumes
[3], [6]–[10], and 3D descriptors based on point cloud model
[11]–[13] have been proposed recently by several researchers
because point cloud model of object is obtained from the depth
images which only depends on the geometry of the objects.
Such point cloud model has nothing to do with the brightness
and reflection features of the objects. That is the main reason
why we are also interested by these technique in this paper.
3D SIFT descriptors have been applied successfully in motion

1such as face recognition [1] (SOR) where only certain objects or certain
categories need to be recognized, which can be accomplished by training mass
samples.

recognition of consecutive video frames by Scovanner et al.
[6]. They show good performance in medical image processing
[3], [7]–[9] as well. Object recognition has also be done with
3D SIFT in complex Computed Tomography (CT) for airport
baggage inspection and security by Flitton et al. [10].

The object recognition algorithms based on single feature
only often generate erroneous object recognitions, specially
if there are big intra-class variations and some inter-class
high similarities, or if there exist important changes in pose
and appearance of objects. In these conditions, the use of a
single feature is insufficient to make a reliable recognition
and classification. To overcome this serious drawback, new
recognition algorithms based on multiple features and fusion
algorithms have been proposed recently in the literature [14]–
[17]. Compared with the recognition algorithm using single
feature only, the feature fusion algorithms combine multi-
ple features information which can improve substantially the
recognition rate.

In this paper, we propose a new method for GOR based on
feature fusion of 2D and 3D SIFT descriptors, which consists
of two main phases: 1) a training phase, and 2) a testing phase.
In the both phases, we consider two types of inputs:

1) The first type of input is a database with 3D point cloud
model representation of different objects from different
categories (classes). In this work, our database has been
just obtained from the web2. It is characterized by 3D
SIFT descriptors adapted (in this paper) for point cloud
– see the next section for details.

2) As second input, we use the same database with 2D
images including some objects that are characterized by
their 2D SIFT descriptors.

From these two inputs, the 2D and 3D SIFT feature
descriptors are transformed into the corresponding Bag of
Words (BoW) feature vector [18]. In the training phases,
these two BoW feature vectors (drawn from the 2D and 3D
SIFT) describing the object are used to train Support Vector
Machines (SVMs) [19] to get the prediction functions. After
this training phase, the system is used to recognize unknown
objects in the testing phase. These two BoW feature vectors

2http://rgbd-dataset.cs.washington.edu/dataset.html

Originally published as: M. Liu, X. Li, J. Dezert, C. Luo, Generic Object Recognition Based on the Fusion 
of 2D and 3D SIFT Descriptors, in Proc. of Fusion 2015, Washington D.C, USA, July 6-9, 2015, and 
reprinted with permission.
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describing the object are used to make the object recognition
in the testing phase. In this paper, we test:

1) the feature-level fusion strategy, where we combine
(fuse) directly the two BoW-based feature vectors and
we feed the trained SVM with the fused vector to get
the final recognition result.

2) the decision-level fusion strategy, where each of the
two BoW-based feature vectors feeds its corresponding
trained SVM to get the corresponding recognition re-
sult separately. Then we test different fusion rules to
combine these two recognition results to get the final
recognition result.

The paper is organized as follows. The recognition algo-
rithm is described in details in section II. Section III evaluates
the performances of this new method on real datasets. Con-
clusions with perspectives are given in section IV.

II. NEW GENERIC OBJECT RECOGNITION METHOD

This new method of object recognition consists in three
main steps (features extraction and representation, features
fusion, and classifier design) that we present in details in
this section. To achieve the good recognition of objects,
we propose to combine 2D scale-invariant feature transform
(2D SIFT) characterizing the object features, with 3D SIFT
(based on point clouds model). We need at first to recall the
principle of 2D SIFT [4], [5], and we explain improved 3D
SIFT descriptors applied in point cloud.

Step 1: Features extraction and representation

Feature extraction and representation are necessary for any
object recognition algorithm. In many situations the object
recognition task is very difficult because it is possible that
some (partial) similarities exist in different classes of objects,
as well as (partial) dissimilarities in the same class of objects.
So the feature extraction process must be done as efficient as
possible in order to help the recognition of objects by making
the difference between object classes biggest, and by making
the difference in the same class smallest. The objects need also
to be represented at a certain level of semantic, using limited
training objects to represent the class [2].

– 2D SIFT descriptor

In 1999, David Lowe [4] did present for the first time
a new method to extract keypoints of objects in images,
and to describe their local features that allows to make
generic object recognition, for example in computer vision
applications. His method has then been improved in [5], and
extended to 3D by other authors (see next paragraph). The
feature description of the object drawn from a training image
is then used to identify the presence (if any) of the object
in real (usually cluttered) observed scene. To get good object
recognition performances, Lowe proposed a (2D) SIFT (scale-
invariant feature transform) that warranties that the features
extracted (i.e. the key-points) from the training image are
detectable under changes in image orientation, scale, noise

and illumination, and even if partial object occlusions occur
in the observed scene. Lowe’s SIFT feature descriptor is
invariant to uniform scaling, orientation, and partially invariant
to illumination changes and robust to local geometric (affine)
distortion. The stable key-points locations of SIFT are given
by the detection of scale-space extrema in the Difference-of-
Gaussian (DoG) function D(x, y, σ) convolved with the image
I(x, y). More precisely, one defines [5]

D(x, y, σ) , L(x, y, kσ)− L(x, y, σ), (1)

where L(x, y, kσ) , G(x, y, kσ) ∗ I(x, y) and L(x, y, σ) ,
G(x, y, σ) ∗ I(x, y) are Gaussian-blurred images at nearby
scale-space σ separated by a constant multiplicative factor3

k, and where ∗ is the convolution operator and G(x, y, σ) is
the centered Gaussian kernel defined by

G(x, y, σ) ,
1

2πσ2
e−(x2+y2)/2σ2

. (2)

The local extreme points of D(x, y, σ) functions (DoG
images) define the set of keypoint candidates (the SIFT
descriptor). To detect the keypoints, each sample point (pixel)
is compared to its eight neighbors in the current image and
its nine neighbors in the scale below and above. The sample
point under test is considered as a keypoint (local extrema) if
its value is larger (or smaller) than all of its 26 neighbors. The
localization of a candidate keypoint is done by the 2nd-order
Taylor expansion of the DoG scale-space function D(x, y, σ)
with the candidate keypoint taken as the origin [5]. However
in general there are too many candidate keypoints and we need
to identify and remove the bad candidates that have too low
contrast4, or are poorly localized along an edge. For doing this,
a contrast thresholding is applied on D(x, y, σ) to eliminate
all the candidate keypoints below a chosen5 threshold value τ .
To eliminate the candidate keypoints that are poorly localized
along an edge, Lowe [5] uses a thresholding method based on
the ratio of the eigenvalues of the Hessian matrix H of the
DoG function, because for poorly defined extrema in the DoG
function the principal curvature across the edge would be much
larger than the principal curvature along it. More precisely, if
the ratio Tr(H)2/Det(H) > (rth+1)2/rth then the candidate
keypoint is rejected. Here, rth is a chosen threshold value of
the ratio between the largest magnitude eigenvalue of H and
the smaller one6.

Once all the keypoints are determined, one must assign
a consistent orientation based on local image properties,
from which the keypoint descriptor can be represented, hence
achieving invariance to image rotation. For this, the scale of
the keypoint is used to choose the Gaussian-blurred image
L with the closest scale. The keypoint descriptor is created
by computing at first the gradient magnitude m(x, y) and its

3The choice for k = 21/s is justified by Lowe in [4], where s is an integer
number of intervals

4because they are sensitive to noise.
5We have chosen τ = 0.02 in our simulations.
6In [5], Lowe takes rth = 10.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

134



orientation θ(x, y) at each pixel (x, y) in the region around
the keypoint in this Gaussian-blurred image L as follows [5]{

m(x, y) =
√
L2
x + L2

y,

θ(x, y) = tan−1(
Ly

Lx
),

(3)

with Lx , L(x + 1, y) − L(x − 1, y) and Ly , L(x, y +
1) − L(x, y − 1). In [5], a set of orientation histograms is
created on 4x4 pixel neighborhoods with 8 directions (bins)
each. These histograms are computed from magnitude and
orientation values of samples in a 16 × 16 region around
the keypoint such that each histogram contains samples from
a 4 × 4 subregion of the original neighborhood region. The
magnitudes are weighted by a Gaussian function with σ equal
to one half the width of the descriptor window. The descriptor
then becomes a 128-dimensional feature vector because there
are 4×4 = 16 histograms each with 8 directions. This vector is
then normalized to unit length in order to enhance invariance
to affine changes in illumination. Also a threshold of 0.2 is
applied to reduce the effects of non-linear illumination, and the
vector is again normalized. The figure 1 shows an example of
4 × 4 keypoint descriptor, where the space delimited by the
purple ellipse is the neighborhood under consideration.

Fig. 1: A 4× 4 Keypoint descriptor (Credit: J. Hurrelmann).

The simplest method to find the best candidate match
for each keypoint would consist in identifying its nearest7

neighbor in the database of key points from training images.
Unfortunately, SIFT-based keypoint matching requires more
sophisticate methods because many features from an image
will not have any correct match in the training database
because of background clutter in observed scene and because
of possible missing features in training images, see [5] for
details. SIFT method is patented by the University of Bristish
Columbia (US Patent 6,711,293 – March 23, 2004) and a demo
is available in [20]. Open SIFT codes can be found on the web,
for example in [21].

– 3D SIFT descriptor

The previous 2D SIFT descriptor working with pixels has
been extended to 3D using volumes in different manners by
different authors [3], [6]–[10]. In this paper, we adapt the
3D SIFT for point cloud inspired by [6], [13]. But all the
methods require same functional steps as for 2D SIFT, that

7based on Euclidean distance metric.

is 1) Keypoints detection; 2) Key points orientation; and 3)
Descriptor representation. We present these steps in detail in
the next subsections.

1) Keypoint detection

The scale space of a 3D input point cloud is defined as a 4D
function L(x, y, z, σ) = G(x, y, z, kσ) ∗ P (x, y, z) obtained
by the convolution of a 3D variable-scale centered Gaussian
kernel G(x, y, z, σ), with the input point P (x, y, z), where

G(x, y, z, σ) =
1(√

2πσ
)3 e−(x2+y2+z2)/2σ2

, (4)

Extending Lowe’s approach [5], scale-space σ is separated by
a constant multiplicative factor k, and the candidate keypoints
in 4D scale space are taken as the local extrema (maxima or
minima) of the multi-scale DoG defined for i ∈ [0, s+ 2] by

D(x, y, z, kiσ) = L(x, y, z, ki+1σ)− L(x, y, z, kiσ). (5)

To find extrema of the multi-scale DoG function, each
sample point is compared to its 27 + 26 + 27 = 80 neighbors,
where 26 neighbors belong to the current scale, and each
27 neighbors in the scale above and below. A keypoint is
chosen only if it is larger than all of its neighbors or smaller
than all of them. To eliminate the bad candidate keypoints
having low contrast, one uses a thresholding method to re-
move the erroneous points. A contrast threshold is applied on
D(x, y, z, kiσ) to eliminate all the candidate keypoints below
a chosen8 threshold value τ .

2) Keypoint orientations

Similarly to 2D SIFT, once all the keypoints are determined
in 3D, one must assign a consistent orientation based on local
points properties, from which the keypoint descriptor can be
represented, hence achieving invariance to object rotation. For
this, The two-dimensional histogram is calculated by gathering
statistics of the angles between the neighboring points and
their center. The keypoint descriptor is created by computing
at first the vector magnitude m(x, y, z) and its orientations
θ(x, y, z) (azimuth angle) and φ(x, y, z) (elevation angle)
between each point (x, y, z) in the region around the keypoint
and their center (xc, yc, zc) as follows9
m(x, y, z) =

√
(x− xc)2 + (y − yc)2 + (z − zc)2,

θ(x, y, z) = tan−1 ((y − yc)/(x− xc)) ,
φ(x, y, z) = sin−1 ((z − zc)/m(x, y, z)) .

(6)

In 3D point cloud, each point has two values which represent
the direction of the region, whereas in 2D case each pixel had
only one direction of the gradient.

Extending Lowe’s approach in 3D case, in order to find the
keypoint orientations we construct a weighted histogram for

8We have chosen τ = 0.5 in our simulations.
9In Eq.(6), θ and φ refer to the original coordinate system. In the paragraph

“Descriptor representation” on p. 4, they refer to the rotated coordinate system.
(xc, yc, zc) is not same as (xp, yp, zp). The former refers to the center of
the keypointÕs r-points neighborhood. The latter refers to the keypoint.
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the 3D neighborhood around each candidate keypoint. There
are different ways for doing this. In this work, a 2D-histogram
is produced by grouping the angles in bins which divide θ and
φ into 10 deg angular bins. A regional Gaussian weighting of
e−(2d/Rmax)2

for the points whose magnitude is d is applied to
the histogram, where Rmax represents the max distance from
the center. The sample points at a distance greater than Rmax

are ignored. The histogram is smoothed using a Gaussian filter
to limit the effect of noise. The dominant azimuth α and
elevation β of the keypoint are determined by the peaks of
the 2D-histogram. In order to enhance robustness, peaks in
the histogram within 80% of the largest peak are also retained
as possible secondary orientations.

3) Descriptor representation

Each keypoint p is described by its location p ,
[xp, yp, zp]

t, scale σp, and orientation angles αp and βp. The
descriptor representation associated with a keypoint p is based
on the local spatial characteristics around it to describe its
features. To ensure rotation invariance of the descriptor, the r-
points pi (i = 1, . . . , r) of coordinates pi , [xi, yi, zi]

t around
the keypoint of interest p are at first transformed (rotated) in
the dominant orientation of p by the following transformation

p′i =

cosαp cosβp − sinαp − cosαp sinβp
sinαp cosβp cosαp − sinαp sinβp

sinβp 0 cosβp

 · pi. (7)

Then the vector n at the key point which is normal to the
surface of the r-points neighborhood is calculated according
to the routine available in the open Point Cloud Library (PCL)
[22]. For each (rotated) point p′i (i = 1, . . . , r) in the r-points
neighborhood of the (rotated) keypoint p′, we calculate the
vector p′p′i and the magnitude m and angles θ and φ according
to Eq. (6). The angle δ between n and p′p′i is given by

δ = cos−1
( p′p′i · n
|p′p′i| · |n|

)
. (8)

Therefore, a keypoint p′ with its neighbor p′i is represented
by the 4-tuple (m, θ, φ, δ). To reduce the computational time,
instead of dividing the neighborhood into n×n×n subregions
(with n = 4 as in Lowe’s 2D SIFT descriptor), we take directly
the entire neighborhood, which means that we have n = 1. The
histogram used to generate the 3D descriptor at the keypoint
p′ is derived by splitting (θ, φ, δ) space into 45 deg bins, and
adding up the number of points with the Gaussian weighting
of e−(2m/Rmax)2

. So the dimension of our 3D SIFT descriptor
is n×n×n× 4× 4× 8 = 128 (as for the 2D SIFT descriptor
described previously), because n = 1; the azimuth angle θ ∈
[0, 360] deg which is split into 8 bins of 45 deg; the elevation
angle φ ∈ [−90, 90] deg which is split into 4 bins of 45 deg;
and δ ∈ [0, 180] deg which is also split into 4 bins of 45 deg.
Each 3D SIFT descriptor is normalized to unity.

The 2D and 3D SIFT descriptors summarize efficiently the
useful information contained in 2D and 3D images. Instead
of working directly with whole images, it is usually more
interesting (in terms of computational burden reduction) to

work directly with 2D and 3D SIFT descriptors, specially if
real-time object recognition is necessary. Generally, the objects
characterized by 2D and 3D SIFT descriptors have different
number of keypoints which makes the feature fusion (FF)
problem for object recognition very challenging. For example,
for a simple object like an apple, we can get 45 keypoints
using 3D SIFT descriptor, and 38 keypoints using 2D SIFT
descriptor. To overcome this problem, we adopt the Bag of
Words (BoW) model [18] to gather the statistics of the 2D
and 3D SIFT descriptors to describe the objects.

– BoW model for features vector

In the BoW feature model, the feature descriptors of all
the interest points are quantized by clustering them into a
pre-specified10 number of clusters. Instead of using k-means
algorithm as in [2], we use the k-means++ method [23] which
selects more effectively the initial cluster centers to complete
this step. The resultant cluster centers are now called visual
words, while the collection of these cluster centers is referred
to as the visual word vocabulary. Once our vocabulary is
computed, the descriptors are matched to each visual word
based on the Euclidean distance and the frequency of the
visual words in image and in point cloud is accumulated into
a histogram, which is the BoW feature vector of the image
and of the point cloud. So each object in 2D image and in
3D point cloud is described by a 1× 300 BoW-based feature
vector denoted respectively BoW2D and BoW3D. These two
BoW-based feature vectors will be used for feeding the trained
SVM classifiers to get the final object recognition.

Step 2: Classifier design

Once the object description is completed, SVMs are trained
to learn objects categories and to perform the object clas-
sification. SVM is a supervised and discriminative machine
learning method providing usually good performance. Through
offline training of pre-limited samples, we seek a compromise
between model complexity and learning ability, to get a
good discriminant function [19]. Linear SVM classifier is
applied for its efficiency and it is a typical classifier for
two categories problems. In many real-life applications, we
are face to multi-category classification problems and we use
trained 1V1 SVMs between classes to set up a multi-category
classifier. The training process is done as follows: for training
samples belonging to the ith category, we make a pairwise
SVM training with respect to all the other classes. So, we get
C2
n = n(n − 1)/2 1V1 SVM classifiers for training samples

of n categories.

Step 3: Features fusion strategies

When the two BoW-based features vectors of the object to
recognize have been computed from 2D and 3D SIFT descrip-
tors, we have to use them to achieve the object recognition
thanks to the trained SVMs from the BoW-based features
vectors of known objects of our data base. In this paper, we

10In our simulations, we took K = 300.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

136



present briefly the following different strategies that we have
tested:

1) The direct feature-level fusion strategy: this feature-level
fusion is for feeding SVM classifiers in training phase
and then making object recognition. With this strategy
we combine (fuse) directly the two BoW-based feature
vectors BoW2D and BoW3D, and we feed the trained
(global) SVM classifiers with the fused vector to get the
final recognition. The principle of our method based on
this strategy is summarized in Fig 2.
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Fig. 2: Direct feature-level fusion strategy.

2) The decision-level fusion strategy: each BoW-based
feature vector BoW2D and BoW3D feeds a spe-
cific trained SVM to get separately the corresponding
recognition result. Then we test different fusion rules
to combine these two recognition results to get the
final fusioned recognition result. In this work we have
evaluated the performances of the following rules:
• Average weighted fusion rule,
• PCR6 fusion rule of DSmT [24],
• Murphy’s rule of combination [26].

The principle of our method based on this strategy is
summarized in Fig 3.
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Fig. 3: Decision-level fusion strategy.

1) The direct feature-level fusion strategy

This strategy consists of the following steps:
1-a) For any object to classify, we extract its 2D and 3D

SIFT descriptors associated with each keypoint. So we
get N2D 2D SIFT descriptors of size 1×128 if one has
extracted N2D keypoints from the 2D image under test,
and we get N3D 3D SIFT descriptors of size 1 × 128
if one has extracted N3D keypoints from the 3D point
cloud under test.

1-b) From the N2D 2D SIFT descriptors of size 1× 128, we
compute 1 × 300 BoW feature vectors BoW2D, and
from the N3D 3D SIFT descriptors of size 1× 128, we

compute 1× 300 BoW feature vectors BoW3D thanks
to the BoW model representation [18].

1-c) The direct feature-level fusion is done by stack-
ing the BoW-based feature vectors BoW2D and
BoW3D to get a 1 × 600 vector BoW2D,3D ,
[BoW2D,BoW3D].

1-d) The feature-level fused vector BoW2D,3D is fed in all
1v1 trained SVMs to get the corresponding discriminant
results. The probability P (i) of the object to belong to
the category ci (i = 1, 2, . . . , n) is estimated by voting.

1-e) The object is associated to the category (or class) having
the largest probability, that is:

Class(Object) = arg max
1≤i≤n

{P (i)}. (9)

2) The decision-level fusion strategy

As stated before, with this strategy each BoW-based feature
vector BoW2D and BoW3D feeds a specific trained SVM
to get separately the corresponding recognition result. Then
different fusion rules can be used to combine these two
recognition results to get the final fusionned recognition result.

2-a) The average weighted fusion rule: This very simple
rule consists of a voting procedure. The BoW2D and
BoW3D vectors feed separately all corresponding 1v1
trained SVMs to get the discriminant results, and we
compute the corresponding number of votes vote[i] for
each class ci, i = 1, 2, . . . , n. We will denote vote2D[i]
the distribution of votes drawn from 2D SIFT, and
vote3D[i] the distribution of votes drawn from 3D SIFT.
The probability P2D(i) of the object to belong to the
class ci based on 2D SIFT descriptors is estimated
by P2D(i) = vote2D[i]/

∑n
1=1 vote2D[i], similarly we

have P3D(i) = vote3D[i]/
∑n

1=1 vote3D[i]. Then the
voting results drawn from SVMs feeded with 2D and
3D SIFT are averaged to obtain the fusion result.

2-b) PCR6 combination rule: The BBA (Basic Belief As-
signment) m1(.) and m2(.) are built from the empirical
probability obtained by voting procedure described in 2-
a). The elements of the frame of discernment Θ are the
n different classes c1, c2, . . . , cn. To get the final result,
the BBA’s m1(.) and m2(.) are fused using the PCR6
combination rule11 [24], defined by mPCR6(∅) = 0 and
for all X 6= ∅ in 2Θ,

mPCR6(X) ,
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
].

(10)

11PCR6 formula coincides with the formula of PCR5 fusion rule here
because one considers only two BBA’s to combine. If more than two BBA’s
have to be fused altogether, we advise to use PCR6 rather than PCR5 - see
[25] for a theoretical justification.
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where all denominators in Eq.(10) are different from
zero. If a denominator is zero, that fraction is discarded.
All propositions/sets are in a canonical form.

2-c) Murphy’s rule: Taking the feature-level fusion of 2D
and 3D SIFT as a separate feature, together with the 2D
and 3D SIFT, there are three features. Then the BBA
m1(.), m2(.) and m3(.) are built from the empirical
probability obtained by the voting procedure. The vote
results of the features are combined based on the Mur-
phy rule12 [26].

III. SIMULATION RESULTS

A. The experimental setup

We evaluate the recognition algorithm on a large-scale
multi-view object dataset collected using an RGB-D camera
[27]. This dataset contains color, depth images and point
clouds of 300 physically distinct everyday objects taken from
different viewpoints. The objects belong to one of 51 cate-
gories and contain three viewpoints. To test the recognition
ability of our features, we test category recognition on objects
that were not present in the training set. At each trial, we
randomly choose one test object from each category and train
classifiers on the remaining objects. We randomly choose 100
training samples and 60 test samples for each category. The
object recognition rate (ORR) is calculated by

ORR = nr/N. (11)

where nr is the number of objects correctly recognized, and
N is the total number of test samples.

B. Experiment results and analysis

B.1 Accuracy of our 3D SIFT descriptor
In this simulation, we choose six categories with significant

intra-class variations and high inter-class similarities. The
objects to recognize are apple, tomato, banana, pitcher,
cereal box, and kleenex. The Point Feature Histogram (PFH)
[11] and PFHRGB methods in open PCL [22] outperform the
existed 3D features based on point clouds [28]. In order to
verify the advantages of the proposed 3D SIFT for GOR, we
compare these tree feature descriptors under the same condi-
tions. Keypoints are detected using SIFTKeypoint module in
open PCL [22] for each feature descriptors. Then the vectors
of different feature descriptors of the keypoints are calculated.
The object recognition rates (ORR) that we get are shown in
Table I.

Type of feature descriptor ORR (in %)
PFH based on [11] 81.39
PFHRGB based on [22] 84.17
3D SIFT based on this paper 91.11

TABLE I: Object recognition rates (ORR) of three descriptors.

The PFHRGB descriptor is an improved PFH feature de-
scriptor enriched with color information which allows to im-
proves object recognition rate. As shown in Table 1, compared

12Because results of the fusion with Dempster’s rule are very close to results
with Murphy’s rule in our applications, we do not report them in our analysis.

with PFH and PFHRGB, the object recognition rate we get
with our 3D SIFT descriptor adapted for point cloud gains
6.94% w.r.t. PFHRGB and 9.72% w.r.t PFH.

B.2 Performances of feature fusion strategies
Here, we evaluate the performance (i.e. the ORR) of

the different features fusion strategies presented in Sec-
tion II (Step 3). We have chosen 10 categories (apple,
tomato, banana, pitcher, cereal box, kleenex, camera,
coffee mug, calculator, cell phone) having significant
intra-class variations and high inter-class similarities. We com-
pare our four fusion approaches: the direct feature-level fusion
and the three decision-level fusions (by average weighted
fusion, PCR6, and Murphy’s rule). The results are shown in
Fig. 4.
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where the legend of curves of Fig.4 must be read as follows:
DSmT means PCR6 rule in fact, 2D+3D SIFT means the
direct feature-level fusion of 2D and 3D SIFT, and ave means
the average weighted feature fusion rule. The horizontal axis
represents the total number of categories that we have tested.
Due to the variability of the objects, the information provided
by a single feature is too imprecise, uncertain and incomplete
for getting good ORR. As shown in Fig.4, ORR obtained with
the different feature fusion strategies are better than the ORR
obtained with the best single descriptor. The results of average
weighted fusion and PCR6 are close, but are lower than the
other two fusion methods. Feature-level fusion of 2D and 3D
SIFT is taken as the third feature for Murphy’s rule. However,
compared with the feature-level fusion, the performances of
Murphy’s rule do not improve. So, the direct feature-level
fusion performs best among these fusion strategies, and the
following experiments are completed based on the direct
feature-level fusion. One clearly sees that 3D SIFT proposed
in this work significantly outperforms 2D SIFT and PFHRGB
descriptors for GOR. As shown in Fig.4, ORR decreases
with the increasing of the number of categories because of
the design of the multi-category classifier which consists of
many 1V1 SVM classifiers. Each classification error will be
accumulated to the final voting results, leading to an increasing
of recognition errors.
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B.3 Robustness to intra-class variation and inter-class
similarities

In this study, we compare the ORR performances in dif-
ferent classes having high similarity (e.g., apple and tomato),
and in the same class but having strong variation (e.g., pitcher
object) as in Figs. 5 and 6 below. We evaluate the accuracy

Fig. 5: Apple and Tomato. Fig. 6: Pitchers.

of PFHRGB, 2D SIFT, 3D SIFT and the feature-level fusion
of 2D and 3D SIFT under the same conditions. Training and
testing samples are the same as in the first experiment. Our
simulation results are shown in Table II.

Feature descriptor PFHRGB 2D SIFT 3D SIFT 2D+3D SIFT
ORR(apple) 61.67 53.33 71.67 65.00
ORR(tomato) 100 98.33 91.67 100
ORR(banana) 91.67 93.33 93.33 100
ORR(pitcher) 70.00 95.00 96.67 98.33
ORR(cereal box) 91.67 98.33 95.00 95.00
ORR(kleenex) 90.00 90.00 100 100
Averaged ORR 84.17 88.06 91.11 93.06

TABLE II: ORR (in %) of different classes.

As we see from Table II, using 3D SIFT increases the ORR
of 3.05% w.r.t. 2D SIFT. This shows that the introduction of
the depth information improve the quality of object recogni-
tion. Three different objects of the pitcher class are shown
in Figure 6. As we see, there are great differences within
such class. 3D SIFT achieves ORR with 96.67% accuracy,
much superior to the 70% obtained with PFHRGB. Apple and
tomato displayed in Figure 5 look highly similar even if they
belong to two distinct classes. 3D SIFT provides much better
ORR than the other descriptors. As shown in Table II, our
GOR method based on feature-level fusion of 2D and 3D SIFT
offer better robustness to intra-class variations and inter-class
similarities, and 3D SIFT gives higher accuracy than the other
single descriptors.

B.4 Robustness to changes of the angle of view
In this experiment, we evaluate the performance of our GOR

method when applied under different observation conditions,
more precisely when the objects are observed under three very
distinct angles of view (30 deg, 45 deg and 60 deg).Training
samples are the same as the Experiment 1. Randomly select
60 objects from each view to be as the test samples. So for
each view, there are 360 test samples from 6 categories. The
experimental results are shown in Fig. 7.

From Fig. 7, one sees that ORR with 3D SIFT is relatively
accurate and stable compared with PFHRGB descriptor. The
direct feature-level fusion strategy (with ORR > 90%) offers
much better ORR than using the best single descriptor, which
indicates that the combination of 2D and 3D SIFT is effective

Fig. 7: ORR Performances under 3 angles of view.

and robust for category recognition even under very distinct
angles of view.

B.5 Robustness to size scaling
The training samples are the same as in the first experiment.

To evaluate the robustness of our method to size scaling
(zooming), the test samples are zoomed out to 1/2, 1/3 and
1/4. As shown in Table III.

Feature descriptor PFHRGB 2D SIFT 3D SIFT 2D+3D SIFT
ORR (no Zoom) 84.17 88.06 91.11 93.06
ORR (Zoom=1/2) 74.44 77.50 76.67 82.78
ORR (Zoom=1/3) 63.33 64.17 65.28 68.89
ORR (Zoom=1/4) 61.39 46.94 61.67 63.05

TABLE III: Averaged ORR (in %) for different zoomings.

As one sees in Table III, our GOR method with fusion is
superior to the algorithm based on single descriptor. However,
the ORR of each feature descriptor has decreased. Especially
when zoomed to 1/4, the accuracy of ORR with 2D SIFT is
only 46.94%. The main reason is that part of the images, such
as apple (whose original size is only 84 × 82) after scaling,
reduces the number of useful keypoints. The feature-level
fusion algorithm still provides an averaged ORR of 63.05%.

B.6 Computational time evaluation
The computational times (CT) of the different feature de-

scriptors have been evaluated with an i7-3770@3.4GHz CPU,
under x64 Win7 operating system and are shown in Table
IV. The training and test samples are the same as in the first
experiment. Because the Point cloud model contains a larger
amount of data and richer information than image, therefore
CT using point cloud is relatively long, which is normal. The
largest proportion of CT in the whole recognition process
is the feature extraction and description. 3D SIFT includes
keypoints detection and description. If the points’ number of
the object is n, the time complexity of keypoints detection is
O(octaves ·scale ·k ·n). Because the pyramid layers octaves,
scale of each layer scale and neighborhood of key points k
are constant, the time complexity is O(n). For the detected m
keypoints, the time complexity of calculating the descriptors
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of the key points is O(mn). So the time complexity of 3D
SIFT is O(mn + n), ignoring lower-order item, the time
complexity is O(mn). As seen in Table IV, the CT of 3D
SIFT has diminished of 34.75% w.r.t. PFHRGB, and the CT
performance with fusion of 2D and 3D SIFT turns out to be
faster (22.07%) than PFHRGB, and the ORR performance is
substantially improved.

Feature descriptors CT of CT of
360 test samples (in s) each test sample (in s)

PFHRGB 3404.628 9.4573
3D SIFT 2221.608 6.1711
2D+3D SIFT 2653.272 7.3702

TABLE IV: Computational times for feature descriptors.

IV. CONCLUSIONS

Because there are many complex objects in the real scenes
we observe in the nature and because of possible large intra-
class variations and high inter-class similarities, the generic
object recognition (GOR) task is very hard to achieve in
general. In this paper we have proposed a new GOR method
based on 2D and 3D SIFT descriptors that allows to calculate
multiple feature vectors which are combined with different
strategies, and feed SVM classifier for making object recog-
nition. The evaluation of the performances based on real
open-datasets has shown the superiority of our new 3D SIFT
descriptor adapted for point cloud with respect to the existing
3D features such as PFHRGB. Our GOR method based on
feature fusion of 2D and 3D SIFT works better than the
one using best single feature. For now, if the environment
substantially changes, we have to retrain the system. To
overcome this problem we will also consider background
segmentation within GOR in future works. Also, we would like
to reduce the computational time needed for feature extraction
and description in maintaining good recognition rate, and we
want to explore more feature fusion strategies to improve (if
possible) the recognition performances.
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Abstract—In this paper, we present a method to estimate the
quality (trustfulness) of the solutions of the classical optimal
data association (DA) problem associated with a given source of
information (also called a criterion). We also present a method to
solve the multi-criteria DA problem and to estimate the quality of
its solution. Our approach is new and mixes classical algorithms
(typically Murty’s approach coupled with Auction) for the search
of the best and the second best DA solutions, and belief functions
(BF) with PCR6 (Proportional Conflict Redistribution rule #
6) combination rule drawn from DSmT (Dezert-Smarandache
Theory) to establish the quality matrix of the global optimal
DA solution. In order to take into account the importances of
criteria in the fusion process, we use weighting factors which
can be derived by different manners (ad-hoc choice, quality of
each local DA solution, or inspired by Saaty’s Analytic Hierarchy
Process (AHP)). A simple complete example is provided to show
how our method works and for helping the reader to verify by
him or herself the validity of our results.

Keywords: Data association, Multi-criteria analysis, belief

functions, PCR6, DSmT.

I. INTRODUCTION

Efficient algorithms for modern multisensor-multitarget

tracking (MS-MTT) systems [1], [2] require to estimate and

predict the states (position, velocity, etc) of the targets evolving

in the surveillance area covered by a set of sensors. These

estimation and prediction are based on sensors measurements

and dynamical models assumptions. In the monosensor con-

text, MTT requires classicallyto solve the data association

(DA) problem to associate the available measurements at a

given time with the predicted states of the targets to update

their tracks using filtering techniques (Kalman filter, Particle

filter, etc). In the multisensor MTT context, we need to solve

more difficult multi-dimensional assignment problems under

constraints. Fortunately, efficient algorithms have been devel-

oped in the operational research and tracking communities for

formalizing and solving these optimal assignments problems

(see the related references detailed in the sequel).

Before going further, it is necessary to recall briefly the basis

of DA problem and the methods to solve it. This problem

can be formulated as follows: We have m > 1 targets Ti

(i = 1, . . . ,m), and n > 1 measurements1 zj (j = 1, . . . , n)

at a given time k, and a m× n rewards (gain/payoff) matrix

Ω = [ω(i, j)] whose elements ω(i, j) ≥ 0 represent the

payoff (usually homogeneous to the likelihood) of the asso-

ciation of target Ti with measurement zj , denoted (Ti, zj).
The data association problem consists in finding the global

optimal assignment of the targets with some measurements by

maximizing2 the overall gain in such a way that no more than

one target is assigned to a measurement, and reciprocally.

Without loss of generality, we can assume ω(i, j) ≥ 0
because if some elements ω(i, j) of Ω were negative, we

can always add the constant value3 to all elements of Ω to

work with a new payoff matrix Ω′ = [ω′(i, j)] having all

elements ω′(i, j) ≥ 0, and we get same optimal assignment

solution with Ω and with Ω′. Moreover, we can also assume

without loss of generality m ≤ n because otherwise we can

always swap the roles of targets and measurements in the

mathematical problem definition by working directly with

Ωt instead, where the superscript t denotes the transposition

of the matrix. The optimal assignment problem consists of

finding the m× n binary association matrix A = [a(i, j)]
which maximizes the global rewards

R(Ω,A) ,
m
∑

i=1

n
∑

j=1

ω(i, j)a(i, j), (1)

subject to











∑n

j=1
a(i, j) = 1 (i = 1, . . . ,m),

∑m

i=1
a(i, j) ≤ 1 (j = 1, . . . , n),

a(i, j) ∈ {0, 1}.
(2)

The association indicator value a(i, j) = 1 means that

the corresponding target Ti and measurement zj are asso-

ciated, and a(i, j) = 0 means that they are not associated

(i = 1, . . . ,m and j = 1, . . . , n).

1In a multi-sensor context targets can be replaced by tracks provided by
a given tracker associated with a type of sensor, and measurements can be
replaced by another tracks set. In different contexts, possible equivalents are
assigning personnel to jobs or assigning delivery trucks to locations.

2In some problems, the matrix Ω = [ω(i, j)] represents a cost matrix
whose elements are the negative log-likelihood of association hypotheses. In
this case, the data association problems consists in finding the best assignment
that minimizes the overall cost.

3equals to the absolute value of the minimum of Ω.

Originally published as: J. Dezert, K. Benameur, L. Ratton, J.-F. Grandin, On the Quality Estimation of 
Optimal Multiple Criteria Data Association Solutions, in Proc. of Fusion 2015, Washington D.C, USA, 
July 6–9, 2015, and reprinted with permission.
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The solution of the optimal assignment problem stated in

(1)–(2) is well reported in the literature and several efficient

methods have been developed in the operational research

and tracking communities to solve it. The most well-known

algorithms are Kuhn-Munkres (or Hungarian) algorithm [3],

[4] and its extension to rectangular matrices proposed by

Bourgeois and Lassalle in [5], Jonker-Volgenant method [6],

and Auction [7]. More sophisticated methods using Murty’s

method [8], and some variants [9], [10], [11], [12], [13], [14],

[15], are also able to provide not only the best assignment, but

also the m-best assignments. We will not present in details all

these classical methods because they have been already well

reported in the literature [16], [17].

The purpose of this paper is to propose a solution for

two important problems related with the aforementioned Data

Association issue:

• Problem 1 (mono-criterion): Suppose that the DA reward

Ω1 has been established based on a unique criterion C1 then

we want to evaluate the quality4 of each association (pairing)

provided in the optimal solution by one of the aforementioned

algorithms. The choice of the algorithm does not matter as

soon as they are able to provide the optimal DA solution

represented by a binary matrix A1 (assumed to be unique

here for convenience). So based on Ω1 and A1, we want to

estimate the quality matrix Q1 of the optimal pairing solutions

given in A1. This quality matrix will be useful to select

optimal association pairings that have sufficient quality to be

used to update the tracking filters, and not to use the optimal

data associations that have a poor quality, which will save

computational time and avoid to potentially degrade tracking

performances.

• Problem 2 (multi-criteria): We assume that we have

different Rewards matrices Ω1, . . . ,ΩK (K > 1), established

from different criteria from which we can draw optimal DA

solutions A1, . . . ,AK with their corresponding quality ma-

trices Q1, . . . ,QK (obtained by the method used for solving

Problem 1). We assume that each criterion Ck, k = 1, . . . ,K
has its own importance with respect to the others which is

expressed either by a given relative importance K×K matrix

M, or directly by a weighting M × 1 vector w. The problem

2 consists in finding the optimal (i.e. the one generating the

best global quality) DA solution based on all information

drawn from the independent multiple criteria we have, that

is from Q1, . . . , QK and M (or w) in a well-justified and

comprehensive manner.

This paper is organized as follows: in section 2 we present

a method for solving problem 1 which uses both 1st-best and

2nd-best DA solutions provided by Murty’s algorithm. Our

method is based on Belief Functions (BF), the Proportional

Conflict Redistribution fusion rule #6 (PCR6) developed in

Dezert-Smarandache Theory (DSmT) framework [19], and the

pignistic probability transform. Section 3, proposes a solution

4In this paper, the quality of a pairing of the optimal DA solution refers to
a confidence score which corresponds to a degree of trustfulness one grants
to this pairing for taking the decision to use it, or not.

for Problem 2 exploiting Saaty’s AHP method, BF and also

Murty’s algorithm. Section 4 presents a full simple detailed

example to show how the method works for readers who want

to check by themselves our results. Section 5 will conclude

this paper with perspectives.

II. SOLUTION OF PROBLEM 1 (MONO-CRITERION)

This solution has already been addressed in details in [21]

and we will just briefly present here the main ideas for making

this paper self containing. In problem 1, we want to establish

a confidence level (i.e. a quality indicator) of the pairings of

the optimal data association solution. More precisely, we are

searching for an answer to the question: how to measure the

quality of the pairings a(i, j) = 1 provided in the optimal

assignment solution A? The necessity to establish a quality

indicator is motivated by the following three main practical

reasons:

1) In some practical tracking environment with the

presence of clutter, some association decisions

(a(i, j) = 1) are doubtful. For these unreliable

associations, it is better to wait for new information

(measurements) instead of applying the hard data

association decision, and making potentially serious

association mistakes.

2) In some multisensor systems, it can be also important

to save energy consumption for preserving a high

autonomy of the system. For this goal, only the most

trustful specific associations provided in the optimal

assignment have to be used instead of all of them.

3) The best optimal assignment solution is not necessarily

unique. In such situation, the establishment of quality

indicators may help in selecting one particular optimal

assignment solution among multiple possible choices.

It is worth noting that the 1st-best, as well as the 2nd-

best, optimal assignment solutions are unfortunately not nec-

essarily unique. Therefore, we need to take into account

the possible multiplicity of assignments in the analysis of

the problem. The multiplicity index of the best optimal as-

signment solution is denoted β1 ≥ 1, and the multiplicity

index of the 2nd-best optimal assignment solution is denoted

β2 ≥ 1, and we will denote the sets of corresponding as-

signment matrices by A1 = {A(k1)

1 , k1 = 1 . . . , β1} and by

A2 = {A(k2)

2 , k2 = 1 . . . , β2}. Here are three simple examples

with different multiplicities in solutions:

Example 1: If we take Ω =

[

8 1 2
5 3 3

]

, then β1 = 2 and

β2 = 1 because the 1st best and 2nd best DA solutions are

Ak1=1
1 =

[

1 0 0
0 1 0

]

,Ak1=2
1 =

[

1 0 0
0 0 1

]

,A2 =

[

0 0 1
1 0 0

]

.
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Example 2: If we take Ω =

[

6 3 9
1 4 1

]

, then β1 = 1 and

β2 = 2 because the 1st best and 2nd best DA solutions are

A1 =

[

0 0 1
0 1 0

]

,Ak2=1
2 =

[

1 0 0
0 1 0

]

,Ak2=2
2 =

[

0 0 1
1 0 0

]

.

Example 3: If we take Ω =

[

1 2 3
4 5 6

]

, then β1 = 2 and

β2 = 2 because the 1st best and 2nd best DA solutions are

Ak1=1
1 =

[

0 1 0
0 0 1

]

, Ak1=2
1 =

[

0 0 1
0 1 0

]

,

Ak2=1
2 =

[

1 0 0
0 0 1

]

, Ak2=2
2 =

[

0 0 1
1 0 0

]

.

To establish the quality of the specific associations (pair-

ings) (i, j) satisfying a1(i, j) = 1 belonging to the optimal

assignment matrix A1, we propose to use both A1 and 2nd-

best assignment solution A2. The basic idea is to use the

values a1(i, j) = 1 in the best, and a2(i, j) in the 2nd-best

assignments to identify the change (if any) of the optimal

pairing (i, j). In fact, we assume5 that higher quality of an

entry in a quality matrix suggests that its association in an

optimal solution is more stable across those good solutions.

The connection between the stability of an association across

the good solutions and the stability over an error in measure-

ment is done through the components of the reward matrices

(the inputs of our method) which must take into account

the measurement uncertainties. Based on this assumption, our

quality indicator will be defined using both the stability of

the pairing and its relative impact in the global reward. This

proposed method works also when the 2nd-best assignment

solution A2 is not unique (as shown in examples 2 and 3).

Our method helps to select the best (most trustful) optimal

assignment in case of multiplicity of A1 matrices. We do

not claim that the definition of the quality matrix proposed

in this work is the best proposal. However, we propose a new

comprehensive way of solving this problem from a practical

standpoint.

To take into account efficiently the reward values of each

specific association given in the best assignment A1 and in

the 2nd-best assignment Ak2

2 for estimating the quality of

DA solutions, we propose to use the following construction

of quality indicators depending on the type of matching:

• When a1(i, j) = ak2

2 (i, j) = 0, one has full agreement

on “non-association” (Ti, zj) in A1 and in Ak2

2 and this

non-association (Ti, zj) has no impact on the global rewards

R1(Ω,A1) and R2(Ω,A
k2

2 ), and it will be useless. Therefore,

we can set its quality arbitrarily to any arbitrary value, typi-

cally we take qk2(i, j) = 0 because these values are not useful

at all for the application (i.e. tracking) standpoint.

• When a1(i, j) = ak2

2 (i, j) = 1, one has a full agreement on

the association (Ti, zj) in A1 and in Ak2

2 . his association

(Ti, zj) has however different impacts in the global rewards

values R1(Ω,A1) and R2(Ω,A
k2

2 ). To qualify the quality

5This assumption has however not been proven formally yet and its validity
is a challenging open-question left for future research works.

of this association (Ti, zj), we define the two basic belief

assignments (BBA’s) on X , (Ti, zj) and X ∪ ¬X (the

ignorance), for s = 1, 2 as follows:
{

ms(X) = as(i, j) · ω(i, j)/Rs(Ω,As),

ms(X ∪ ¬X) = 1−ms(X).
(3)

Applying the conjunctive fusion rule (here one has no con-

flicting mass), we get










m(X) = m1(X)m2(X) +m1(X)m2(X ∪ ¬X),

+m1(X ∪ ¬X)m2(X),

m(X ∪ ¬X) = m1(X ∪ ¬X)m2(X ∪ ¬X).

(4)

Applying the pignistic transformation6 [20], we get finally

BetP (X) = m(X) + 1

2
· m(X ∪ ¬X) and BetP (¬X) =

1

2
· m(X ∪ ¬X). Therefore, we choose as quality indicator

for the association (Ti, zj) the value qk2(i, j) , BetP (X) =
m(X) + 1

2
·m(X ∪ ¬X).

• When a1(i, j) = 1 and ak2

2 (i, j) = 0, one has a disagree-

ment (conflict) on the association (Ti, zj) in A1 and in

(Ti, zj2) in Ak2

2 , where j2 is the measurement index such

that a2(i, j2) = 1. To qualify the quality of this non-matching

association (Ti, zj), we define the two following basic belief

assignments (BBA’s) of the propositions X , (Ti, zj) and

Y , (Ti, zj2)
{

m1(X) = a1(i, j) · ω(i,j)

R1(Ω,A1)
,

m1(X ∪ Y ) = 1−m1(X),
(5)

and
{

m2(Y ) = a2(i, j2) · ω(i,j2)

R2(Ω,A
k2

2
)
,

m2(X ∪ Y ) = 1−m2(Y ).
(6)

Applying the conjunctive fusion rule, we get m(X∩Y = ∅) =
m1(X)m2(Y ) and











m(X) = m1(X)m2(X ∪ Y ),

m(Y ) = m1(X ∪ Y )m2(Y ),

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y ).

(7)

Because we need to work with a normalized combined BBA,

we can choose different rules of combination (say either

Dempster-Shafer’s rule, Dubois-Prade’s rule, Yager’s rule [19],

etc). In this work, we propose to use the Proportional Conflict

Redistribution rule no. 6 (PCR6) proposed originally in DSmT

framework [19] because it has been proved very efficient in

practice [28], [29]. Hence with PCR6, we get:










m(X) = m1(X)m2(X ∪ Y ) +m1(X) · m1(X)m2(Y )

m1(X)+m2(Y )
,

m(Y ) = m1(X ∪ Y )m2(Y ) +m2(X) · m1(X)m2(Y )

m1(X)+m2(Y )
,

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y ).
(8)

Applying the pignistic probability transformation, we

get finally BetP (X) = m(X) + 1

2
·m(X ∪ Y ) and

6We have chosen here BetP for its simplicity and because it is widely
known, but DSmP could be used instead for expecting better performances
[19].
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BetP (Y ) = m(Y ) + 1

2
·m(X ∪ Y ). Therefore, we choose

the quality indicators as follows: qk2(i, j) = BetP (X), and

qk2(i, j2) = BetP (Y ).
The absolute quality factor Qabs(A1) of the optimal as-

signment given in A1 conditioned by Ak2

2 , for any

k2 ∈ {1, 2, . . . , β2} is defined as

Qabs(A1,A
k2

2 ) ,

m
∑

i=1

n
∑

j=1

a1(i, j)q
k2(i, j). (9)

The absolute average quality factor Qaver(A1) per associ-

ation of the optimal assignment given in A1 conditioned by

Ak2

2 , for any k2 ∈ {1, 2, . . . , β2} is defined by

Qaver(A1,A
k2

2 ) =
1

m
·Qabs(A1,A

k2

2 ). (10)

where m is the number of “1” in the optimal DA matrix A1

(i.e. the number of targets).

To take into account the eventual multiplicities (when

β2 > 1) of the 2nd-best assignment solutions Ak2

2 ,

k2 = 1, 2, . . . , β2, we need to combine the QI(A1,A
k2

2 )
values. Several methods can be used for this, in particular we

can use either:

– A weighted averaging approach: The quality indicator

components q(i, j) of the quality matrix Q are then obtained

by averaging the qualities obtained from each comparison of

A1 with Ak2

2 . More precisely, one will take

q(i, j) ,

β2
∑

k2=1

w(Ak2

2 )qk2(i, j), (11)

where w(Ak2

2 ) is a weighting factor in [0, 1], such that
∑β2

k2=1
w(Ak2

2 ) = 1. Since all assignments Ak2

2 have the

same global reward value R2, then we suggest to take

w(Ak2

2 ) = 1/β2. A more elaborate method would consist of

using the quality indicator of Ak2

2 based on the 3rd-best

solution, which can be itself computed from the quality of

the 3rd assignment solution based on the 4th-best solution,

and so on by a similar mechanism.

– A belief-based approach: (see [18] for basics on be-

lief functions): A second method would express the qual-

ity by a belief interval [qmin(i, j), qmax(i, j)] in [0, 1] in-

stead of single real number q(i, j) in [0, 1]. More precisely,

one can compute the belief and plausibility bounds of the

quality by taking qmin(i, j) ≡ Bel(a1(i, j)) = mink2
qk2(i, j)

and qmax(i, j) ≡ Pl(a1(i, j)) = maxk2
qk2(i, j). Hence for

each possible pair (i, j), one can define a basic belief

assignment (BBA) mij(.) on the frame of discernment

Θ , {T = trustful,¬T = not trustful}, which characterizes

the quality of the pairing (i, j) in the optimal assignment

solution A1, as follows










mij(T ) = qmin(i, j),

mij(¬T ) = 1− qmax(i, j),

mij(T ∪ ¬T ) = qmax(i, j)− qmin(i, j).

(12)

Because only the optimal associations7 (i, j) such that

a1(i, j) = 1 are useful in tracking algorithms to update the

tracks, we do not need to pay attention (compute and store)

the qualities of components (i, j) such that a1(i, j) = 0. In

fact all components (i, j) such that a1(i, j) = 0 should be set

to zero by default in Q matrix.

Example 4: Let’s consider the rewards matrix

Ω =





1 11 45 30
17 8 38 27
10 14 35 20



 .

We get one 1st best (β1 = 1) and four 2nd best (β2 = 4)

DA solutions with their respective qualities as follows:

A1 =

[

0 0 1 0
0 0 0 1
0 1 0 0

]

⇒ R1(Ω,A1) = 86,

Ak2=1
2 =

[

0 0 0 1
0 0 1 0
0 1 0 0

]

⇒ R2(Ω,Ak2=1
2 ) = 82,

Q(A1,A
k2=1
2 ) ≈

[

0 0 0.59 0
0 0 0 0.41
0 0.65 0 0

]

,

Ak2=2

2 =

[

0 0 1 0
1 0 0 0
0 0 0 1

]

⇒ R2(Ω,Ak2=3

2 ) = 82,

Q(A1,A
k2=2
2 ) ≈

[

0 0 0.89 0
0 0 0 0.56
0 0.45 0 0

]

,

Ak2=3
2 =

[

0 0 1 0
0 0 0 1
1 0 0 0

]

⇒ R2(Ω,Ak2=3
2 ) = 82,

Q(A1,A
k2=3
2 ) ≈

[

0 0 0.89 0
0 0 0 0.76
0 0.52 0 0

]

,

Ak2=4
2 =

[

0 0 0 1
1 0 0 0
0 0 1 0

]

⇒ R2(Ω,Ak2=4
2 ) = 82,

Q(A1,A
k2=4
2 ) ≈

[

0 0 0.59 0
0 0 0 0.56
0 0.35 0 0

]

,

Note that the absolute quality factors are :

Qabs(A1,A
k2=1
2 ) ≈ 1.66, Qabs(A1,A

k2=2
2 ) ≈ 1.91,

Qabs(A1,A
k2=3
2 ) ≈ 2.19, Qabs(A1,A

k2=4
2 ) ≈ 1.51.

Therefore, we can see that

Qabs(A1,A
k2=3
2 ) > Qabs(A1,A

k2=2
2 )

> Qabs(A1,A
k2=1
2 ) > Qabs(A1,A

k2=4
2 ),

7found using Murty’s algorithm.
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which makes perfectly sense because A1 has more matching

pairings with Ak2=3
2 than with others 2nd-best assignments

Ak2

2 (k2 6= 3). These pairings have also the strongest impact

in the global reward value. Therefore, the quality matrix Q

differentiates the quality of each pairing in the optimal assign-

ment A1 as expected. This method provides an effective and

comprehensive solution to estimate the quality of each specific

association provided in the optimal assignment solution A1.

The averaged qualities per association are:

Qaver(A1,A
k2=1
2 ) ≈ 0.55, Qaver(A1,A

k2=2
2 ) ≈ 0.63,

Qaver(A1,A
k2=3
2 ) ≈ 0.73, Qaver(A1,A

k2=4
2 ) ≈ 0.50.

The global quality matrix is then given by (using the

averaging approach)

Q(A1,A2) =
1

β2

β2
∑

k2=1

Q(A1,A
k2

2 )

≈





0 0 0.74 0
0 0 0 0.57
0 0.49 0 0



 .

The global quality indexes Qabs(A1,A2) and

Qaver(A1,A2) are then approximately equal to 1.8 and

0.6 respectively.

One can also improve the estimation of the quality matrix by

using the absolute quality factor of each solution Q(A1,A
k2

2 ),
for k2 = 1, . . . β2 to define the normalized weighting factors

as follows:

w = [wk2
, k2 = 1, . . . β2]

′,

with wk2
,

Qabs(A1,A
k2

2
)

K
, and where the normalization factor

K is given by K =
∑β2

k2=1
Qabs(A1,A

k2

2 ). In this example,

we get the weights

w = [w1 w2 w3 w4]
′ ≈ [

1.66

7.27

1.91

7.27

2.19

7.27

1.51

7.27
]′

= [0.2283 0.2627 0.3012 0.2077]′.

The global quality matrix is then given by (using the

averaging approach)

Q(A1,A2) =

β2
∑

k2=1

wk2
Q(A1,A

k2

2 )

≈





0 0 0.76 0
0 0 0 0.58
0 0.49 0 0



 .

If we prefer to use the Belief Interval Measure (BIM)

instead of the previous averaging approach, we will get in

this example the following imprecise qualities values:

Optimal. assignments BIM

(1, 3) ≈ [0.59, 0.89]
(2, 4) ≈ [0.41, 0.76]
(3, 2) ≈ [0.35, 0.65]

Based on the comparisons of (pessimistic) lower bounds,

or (optimistic) upper bounds of BIM, we observe that we get

a consistent ordering of the qualities of the optimal solutions

(same ordering as with the averaging method).

III. SOLUTION OF THE 2ND PROBLEM (MULTI-CRITERIA)

In this section, we evaluate the global DA association

solution, with estimation of its quality, based on the

knowledge of the qualities of multiple optimal DA solutions

established separately based on distinct association criteria

Ck, k = 1, . . . ,K . More precisely, given the set of quality

matrices Qk (k = 1, . . . ,K) defined by the components

qk(i, j) according to Eq.(11), how to establish the global

optimal DA solution with its overall quality matrix Q?

Moreover, we want to take into account the importance

of each criteria (when defined) in the establishment of the

solution.

In fact this 2nd problem is linked to the previous one and

the method developed for solving our first problem will also

help to solve this second problem as it will be shown in the

following. Our solution is based on four distinct steps:

• Step 1: Estimation of the normalized weighting vector w of

the criteria: Two simple approaches are proposed to establish

the normalized criteria ranking (weighting) vector.

1) Direct method: The weightings factors can be directly

established either by an external source of information,

or by the system designer. If these weightings factors

are not available, we propose to compute them from

the qualities indicators derived by the method used to

solve the 1st problem (see the previous section). For

example, if we consider K criteria providing quality

factors Qk
abs(A1(Ck),A2(Ck)), k = 1, 2, . . . ,K , then

we compute the normalized K × 1 weighting vector

w = [w1w2...wK ]′ with the k-th component given by

wk ,
Qk

abs(A1(Ck),A2(Ck))
∑K

j=1
Qj

abs(A1(Cj),A2(Cj))
, (13)

where Qk
abs(A1(Ck),A2(Ck)) is the absolute quality

factor obtained from the quality matrix Qk(A1,A2) of

the optimal DA for the criteria Ck.

2) Saaty’s method: This method is part of Saaty’s AHP

method widely used for multi-criteria decision analysis

in operational research [22], [23], [24], and it has been

connected with information fusion and belief functions

in [25], [26], [27]. The relative importance of one

criterion over another must be expressed by the system

designer using a pairwise K × K comparison matrix

(also called knowledge matrix) M = [mpq] where

the element mpq of the matrix defines the importance

of criteria Cp with respect to the criteria Cq , with

p, q ∈ {1, 2, . . . ,K}. For example, see [25] for details,

let’s consider only K = 3 criteria, if the comparison

matrix is given by

M =





(1/1) (1/3) (4/1)
(3/1) (1/1) (5/1)
(1/4) (1/5) (1/1)



 ,
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it means that the element m13 = 4/1 indicates that the

criteria C1 is four times as important as the criteria C3

for the system designer (or decision-maker), etc. From

this pairwise matrix, Saaty demonstrated that the ranking

of the priorities of the criteria can be obtained from the

normalized eigenvector, denoted w, associated with the

principal/max eigenvalue of the matrix M, denoted λ.

In our example, one gets λ = 3.0857 and and w =
[0.2797 0.6267 0.0936]′ which shows that C2 criterion is

the most important criterion with the weight 0.6267, then

the criterion C1 is the second most important criterion

with weight 0.2797, and finally C3 criterion is the least

important criterion with weight 0.0936.

• Step 2: Combined estimation of the qualities of each target

association

Once the normalized weighting vector w of the criteria

has been obtained, we need at first to compute the com-

bined/weighted estimation of the qualities of each target

association with the n available measurements. This is done

by building the following n×K matrix

Qi , [qi(C1) . . .qi(CK)], (14)

where each column qi(Ck) of the matrix Qi corresponds to

the transpose of the i-th row of the quality matrix Qk(A1,A2).
Then following AHP approach, we multiply this n × K

matrix Qi by the normalized criteria ranking K × 1 vector

w (obtained either from the direct method of Saaty’s one) to

get the combined estimation of the qualities of each target

association. More precisely, for the i-th target, we obtain the

following n× 1 vector

qi , Qiw. (15)

• Step 3: Search for the optimal global assignment based on

combined qualities derived from the criteria.

From the set of m vectors qi (i=1,2,. . . ,m) we need to solve

now a new optimal DA association problem with the (global)

m× n rewards matrix defined by

ΩG , [q1 q2 . . .qm]′. (16)

Murty’s algorithm is then used again here to get the optimal

DA solution(s) providing the best global reward, and to

generate also all the 2nd-best solutions that are necessary to

estimate its quality in Step 4.

• Step 4: Estimation of the quality of the optimal DA solution.

We use the method described in Section 2 for solving the

problem 1 to estimate the quality of the optimal DA solution.

If several 1st-best DA solutions occur, we choose the solution

generating the highest Qabs quality index.

IV. A SIMPLE ILLUSTRATIVE EXAMPLE

For the sake of simplicity, let’s consider the following

example with m = 3 targets, n = 5 measurements, and 3

criteria C1, C2 and C3 associated with the (randomly chosen)

rewards matrices:

Ω(C1) =





100 20 33 5 27
11 80 25 37 62
38 2 24 78 46



 ,

Ω(C2) =





87 35 43 20 95
28 83 25 10 29
10 7 72 41 29



 ,

Ω(C3) =





25 78 49 60 9
30 26 79 20 49
20 20 3 47 81



 .

A. Qualities of optimal data associations

Applying the method described in section 1, we easily

obtain the following quality matrices of optimal DA solutions:

• For criterion C1, one gets β1 = 1 and β2 = 1, and the

following 1st best and 2nd best DA solutions

Ω(C1) ⇒







































A1 =







1 0 0 0 0

0 1 0 0 0

0 0 0 1 0






,

A2 =







1 0 0 0 0

0 0 0 0 1

0 0 0 1 0






,

providing the 1st and 2nd best global rewards

R(Ω(C1),A1) = 258 and R(Ω(C1),A2) = 240. Ap-

plying the method described in Section 2, we obtain the

following quality matrix related with the optimal DA

based on criterion C1:

Q1 ≈





0.82 0 0 0 0
0 0.52 0 0 0
0 0 0 0.76 0



 .

• For criterion C2, one gets β1 = 1 and β2 = 1, and the

following 1st best and 2nd best DA solutions

Ω(C2) ⇒







































A1 =







0 0 0 0 1

0 1 0 0 0

0 0 1 0 0






,

A2 =







1 0 0 0 0

0 1 0 0 0

0 0 1 0 0






,

providing the 1st and 2nd best global rewards

R(Ω(C2),A1) = 250 and R(Ω(C2),A2) = 242. Ap-

plying the method described in Section 2, we obtain the

following quality matrix related with the optimal DA

based on criterion C2:

Q2 ≈





0 0 0 0 0.51
0 0.78 0 0 0
0 0 0.74 0 0



 .

• For criterion C3, one gets β1 = 1 and β2 = 1, and the

following 1st best and 2nd best DA solutions
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Ω(C3) ⇒







































A1 =







0 1 0 0 0

0 0 1 0 0

0 0 0 0 1






,

A2 =







0 0 0 1 0

0 0 1 0 0

0 0 0 0 1






,

providing the 1st and 2nd best global rewards

R(Ω(C3),A1) = 238 and R(Ω(C3),A2) = 220. Ap-

plying the method described in Section 2, we obtain the

following quality matrix related with the optimal DA

based on criterion C3:

Q3 ≈





0 0.53 0 0 0
0 0 0.78 0 0
0 0 0 0 0.79



 .

B. Multicriteria-based DA solution with its quality

• Case 1: If we assume that all criteria have the same

weights in the search of optimal DA solution, then

we take the normalized weighting vector as w =
[1/3 1/3 1/3]′. Therefore, the weighted average ΩG =
∑K=3

k=1
wkQ

k of the quality matrices Q1, Q2 and Q3

gives us the following rewards matrix

ΩG ≈





0.27 0.17 0 0 0.17
0 0.43 0.26 0 0
0 0 0.25 0.25 0.26



 .

Now we solve the DA association problem to maximize

the global quality reward using Murty’s algorithm and we

get the following 1st best and 2nd best DA solutions:

ΩG ⇒















































A1 =







1 0 0 0 0

0 1 0 0 0

0 0 0 0 1






,

A2 =







1 0 0 0 0

0 1 0 0 0

0 0 0 1 0






,

with the 1st and 2nd best global rewards R(ΩG,A1) ≈
0.97 and R(ΩG,A2) ≈ 0.96. Applying the method

described in Section II to estimate the quality of this

optimal DA solution, we obtain the following quality

matrix:

Q ≈





0.74 0 0 0 0
0 0.84 0 0 0
0 0 0 0 0.50



 .

• Case 2: If we use the prior information given by abso-

lute quality indicators to build the normalized weighting

vector, we get

Q1
abs =

m
∑

i=1

n
∑

j=1

Q1(i, j) ≈ 2.11,

Q2
abs =

m
∑

i=1

n
∑

j=1

Q2(i, j) ≈ 2.04,

Q3
abs =

m
∑

i=1

n
∑

j=1

Q3(i, j) ≈ 2.10,

and we have Q1
abs +Q2

abs +Q3
abs = 6.2672. So that, the

normalized weights are given by

w = [w1 w2 w3]
′ = [

2.1154

6.2672

2.0426

6.2672

2.1091

6.2672
]′

≈ [0.3375 0.3260 0.3365]′.

The weighted average ΩG =
∑K=3

k=1
wkQ

k of the quality

matrices Q1, Q2 and Q3 give us now the following

rewards matrix

ΩG ≈





0.27 0.17 0 0 0.16
0 0.43 0.26 0 0
0 0 0.24 0.25 0.26



 .

Now we solve the DA association problem to maximize

the global quality reward and we get the following 1st

best and 2nd best DA solutions:

ΩG ⇒















































A1 =







1 0 0 0 0

0 1 0 0 0

0 0 0 0 1






,

A2 =







1 0 0 0 0

0 1 0 0 0

0 0 0 1 0






,

with the 1st and 2nd best global rewards R(ΩG,A1) ≈
0.97 and R(ΩG,A2) ≈ 0.96. Applying the method

described in Section 2 to estimate the quality of this

optimal DA solution, we obtain the following quality

matrix:

Q ≈





0.74 0 0 0 0
0 0.84 0 0 0
0 0 0 0 0.50



 .

Because the normalized weights based on the absolute

quality indicators, in this example, are all close to 1/3,

we obtain the result of the multicriteria-based optimal DA

and its quality close to what we get when assuming equi-

importance of the criteria in the fusion process, which is

normal.

To qualify qualitatively the quality of the pairings in the

optimal DA solution, we split the quality range [0;1] into three

subintervals as follows8

Low quality : if q(i, j) ∈ [0; 1/3],

Medium quality : if q(i, j) ∈ [1/3; 2/3],

High quality : if q(i, j) ∈ [2/3; 1].

8Of course, other repartitions could be used instead depending on the what
would prefer the system designer.
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Based on this qualitative scale, we finally get for our

example the final multicriteria-based DA solution

A1 =





1 0 0 0 0
0 1 0 0 0
0 0 0 0 1



 ,

with the qualitative quality matrix

Qqualitative =





High − − − −
− High − − −
− − − − Medium



 ,

where the notation “−” means “that the quality evaluation

does not apply”, or is interpreted (by default) as “the worst

quality”.

Remark: It is worth to note that this approach provides in

general not the same results as if one would combine (and

weight) directly the original reward matrices of each criterion.

In this example, the weighted global reward matrix Ωdirect =
∑K

k=1
wkΩ(Ck) would be equal to

Ωdirect ≈





69.07 45.39 41.75 29.31 40.85
22.93 61.43 44.46 22.79 47.44
23.13 9.98 30.78 55.75 53.53



 ,

corresponding to the quality matrix of optimal DA solution

Qdirect ≈





0.73 0 0 0 0
0 0.84 0 0 0
0 0 0 0.47 0



 .

One sees that these high quality solutions are fully consis-

tent with the high quality solutions of our method. However,

the medium quality solution (we get (3,4) pairing from the

direct optimal assignment versus (3,5) assignment obtained by

our method) mismatch. This reflects an ambiguity in the choice

of the assignment of target T3. Therefore, such assignment is

unreliable because of its low quality, and should not be used

to update the track of this target.

V. CONCLUSION

In this paper, we have proposed two methods based on belief

functions for establishing: 1) the quality of pairings given

by optimal data association (or assignment) solution using a

chosen algorithm (typically Murty’s algorithm coupled with

Auction algorithm) with respect to a given criterion, and 2)

the quality of the multicriteria-based optimal data association

solution. Our methods are independent of the choice of the

algorithm used in finding the optimal assignment solution, and,

in case of multiple optimal solutions, they provide also a way

to select the best optimal assignment solution (the one having

the highest absolute quality factor). The methods developed

in this paper are general in the sense that they can be applied

to different types of association problems corresponding to

different sets of constraints. This method can be extended to

SD-assignment problems as well. As perspectives, we would

like to extend our approach to the n-D assignment context,

and then evaluate its performances in a realistic multi-target

tracking scenario.
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Abstract—Grid map offers a useful representation of the per-
ceived world for mobile robotics navigation. It will play a major
role for the security (obstacle avoidance) of next generations of
terrestrial vehicles, as well as for future autonomous navigation
systems. In a grid map, the occupancy of each cell representing
a small piece of the surrounding area of the vehicle must
be estimated at first from sensors measurements, and then it
must also be classified into different classes in order to get a
complete and precise perception of the dynamic environment
where the vehicle moves. So far, the estimation and the grid
map updating have been done using fusion techniques based on
the probabilistic framework, or on the classical belief function
framework thanks to an inverse model of the sensors and
Dempster-Shafer rule of combination. Recently we have shown
that PCR6 rule (Proportional Conflict Redistribution rule #6)
proposed in DSmT (Dezert-Smarandache) Theory did improve
substantially the quality of grid map with respect to other
techniques, specially when the quality of available information is
low, and when the sources of information appear as conflicting. In
this paper, we go further and we analyze the performance of the
improved version of PCR6 with Zhang’s degree of intersection.
We will show through different realistic scenarios (based on a
4-layers LIDAR sensor) the benefit of using this new rule of
combination in a practical application.

Keywords: Information fusion, grid map, cell occupancy,

perception, belief functions, DSmT, PCR6, ZPCR6.

I. INTRODUCTION

Occupancy Grids (OG) are often used for intelligent vehicle

environment perception and navigation, which requires tech-

niques for data fusion, localization and obstacle avoidance. As

OGs manage a representation of the environment that does

not make any assumption on the geometrical shape of the

detected elements, they provide a general framework to deal

with complex perception conditions. In our previous works, we

did focus on the use of a multi-echo and multi-layer LIDAR

system in order to characterize the dynamic surrounding

environment of a vehicle driving in common traffic conditions.

The perception strategy involved map estimation and scan

grids [1], [2] based either on the classical bayesian framework,

or on classical evidential framework based on Dempster-Shafer

theory (DST) [3] of belief functions. The map grid acts as a

filter that accumulate information and allows to detect moving

objects. A comparative analysis of performances of these

approaches has already been published recently in [4].

In dynamic environments, it is crucial to have a good

modeling of the information flow in the data fusion process

in order to avoid adding wrong implicit prior knowledge that

will need time to be forgotten. In this context, evidential OG

are particularly interesting to make a good management of

the information since it is possible to explicitly make the

distinction between non explored and moving cells.

The idea of using the probabilistic framework to estimate the

grid occupancy has been popularized by Elfes in his pioneered

works in 1990’s [8]. Later, the idea has been extended with

the fuzzy logic theory framework by Oriolo et al. [10], and in

parallel with the belief function (evidential) framework as well

[11]–[15]. Most of the aforementioned research works dealt

only with acoustic sensors (i.e SONAR). Recently, DSmT has

also been applied for the perception of the environment with

acoustic sensors as reported in [16]–[18].

The aim of this paper is to analyze the performance of

the improved version of PCR6 taking into account Zhang’s

degree of intersection of focal elements (called ZPCR6 rule)

which has been presented in details in the companion paper

[7] in a realistic perception problem using a 4-layers LIDAR

sensor. We show how the environment perception with non

acoustic sensors can be done, and compare the performances

of different fusion rules (Bayesian, Dempster-Shafer, PCR6

and ZPCR6) in terms of accuracy of grid map estimation.

This paper is organized as follows. After a short presentation

of the basics of belief functions and rules of their combination

based on DST and DSmT in the next section, we will present

the inverse sensor models in section III with the construction of

the basic belief assignments (BBA). In section IV, we present

an illustrating scenario for environment perception including

a mobile object with a platform equipped with a LIDAR, and

we compare our new realistic simulation results with those

obtained by the probabilistic and the classical belief-based

approaches. We will show how static and mobile objects are

extracted from the occupancy grid map using digital image

processing. Finally, conclusion and outline perspectives are

given in section V.

II. BASICS OF BELIEF FUNCTIONS AND THEIR FUSION

Dempster-Shafer’s theory (DST) of evidence has been de-

veloped by Shafer in 1976 from Dempster’s works [3] . DST is

known also as the theory of belief functions and it is mainly

characterized by a frame of discernment (FoD), sources of

evidence represented by basic belief assignment (BBA), belief

Originally published as: J. Dezert, J. Moras, B. Pannetier, Environment Perception Using Grid Occupancy 
Estimation with Belief Functions, in Proc. of Fusion 2015, Washington D.C, USA, July 6–9, 2015, and 
reprinted with permission.
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(Bel) and plausibility (Pl) functions, and Dempster’s rule and

denoted DS rule in the sequel1 of combination. DST has been

modified and extended into Dezert-Smarandache theory [6]

(DSmT) to work with quantitative or qualitative BBA and to

combine the sources of evidence in a more efficient way thanks

to new proportional conflict redistribution (PCR) fusion rules –

see [19]–[22] for discussion and examples. We briefly recall in

the next subsections the basics of the theory of belief functions

A. Belief functions

Let consider a finite discrete FoD Ω = {ω1, ω2, . . . , ωn},

with n > 1, of the fusion problem under consideration and

its fusion space GΩ which can be chosen either as the power-

set 2Ω, the hyper-power set2 DΩ, or the super-power set SΩ

depending on the model that fits with the problem [6]. A

BBA associated with a given source of evidence is defined

as the mapping m(.) : GΩ → [0, 1] satisfying m(∅) = 0
and

∑

A∈GΩ m(A) = 1. The quantity m(A) is called mass of

belief of A committed by the source of evidence. Belief and

plausibility functions are defined by

Bel(A) =
∑

B⊆A

B∈GΩ

m(B) and Pl(A) =
∑

B∩A 6=∅
B∈GΩ

m(B) (1)

The degree of belief Bel(A) given to a subset A quantifies the

amount of justified specific support to be given to A, and the

degree of plausibility Pl(A) quantifies the maximum amount

of potential specific support that could be given to A. If for

some A ∈ GΩ, m(A) > 0 then A is called a focal element

of the BBA m(.). When all focal elements are singletons and

GΩ = 2Ω then the BBA m(.) is called a Bayesian BBA [3]

and its corresponding belief function Bel(.) is homogeneous

to a (possibly subjective) probability measure, and one has

Bel(A) = P (A) = Pl(A), otherwise in general one has

Bel(A) ≤ P (A) ≤ Pl(A), ∀A ∈ GΩ. The vacuous BBA

representing a totally ignorant source is defined as mv(Ω) = 1.

B. Fusion rules

Many rules have been proposed in the literature in the past

decades (see [6], Vol. 2 for a detailed list of fusion rules)

to combine efficiently several distinct sources of evidence

represented by the BBA’s m1(.), m2(.), . . . , ms(.) (s ≥ 2)

defined on same fusion space GΩ. In this paper, we focus

only on DS rule because it has been historically proposed in

DST and it is still widely used in applications, and on the PCR

rule no. 6 (i.e. PCR6) proposed in DSmT because it provides

a very interesting alternative of DS rule, even if PCR6 is more

complex to implement in general than DS rule.

In DST framework, the fusion space GΩ equals the power-

set 2Ω because Shafer’s model of the frame Ω is assumed,

which means that all elements of the FoD are exhaustive and

1DS acronym standing for Dempster-Shafer since Dempster’s rule has been
widely promoted by Shafer in the development of his mathematical theory of
evidence [3] .

2which corresponds to a Dedekind’s lattice, see [6] Vol. 1.

exclusive. The combination of the BBA’s m1(.) and m2(.), is

done by : mDS
1,2 (∅) = 0 and for all X 6= ∅ in 2Ω

mDS
1,2 (X) ,

1

1−m1,2(∅)
∑

X1,X2∈2
Ω

X1∩X2=X

2
∏

i=1

mi(Xi) (2)

where the numerator of (2) is the mass of belief on the

conjunctive consensus on X . The denominator 1−m1,2(∅) is

a normalization constant. The total degree of conflict between

the two sources of evidences is classically defined by

m1,2(∅) ,
∑

X1,X2∈2
Ω

X1∩X2=∅

2
∏

i=1

mi(Xi) (3)

According to Shafer [3], the two sources are said in total

conflict if m1,2(∅) = 1. In this case the combination of the

sources by DS rule cannot be done because of the mathe-

matical 0/0 indeterminacy. The vacuous BBA mv(Ω) = 1
is a neutral element for DS rule. This rule is commutative

and associative, and the formula (2) can be easily generalized

for the combination of s > 2 sources of evidences. DS rule

remains the milestone fusion rule of DST.

The doubts of the validity of DS rule has been discussed

by Zadeh in 1979 [28]–[30] based on a very simple example

with two highly conflicting sources of evidences. Since 1980’s,

many criticisms have been done about the behavior and the

justification of such DS rule. More recently, Dezert et al. in

[19], [20] have put in light other problematic behaviors of DS

rule even in low conflicting cases and showed serious flaws in

logical foundations of DST [21]. To overcome the limitations

and problems of DS rule of combination, a new family of PCR

rules have been developed in DSmT framework. We present

the most elaborate one, i.e. the PCR6 fusion rule, which has

been used in our perception application for grid occupancy

estimation.

In PCR rules, instead of following the DS normalization

(the division by 1−m1,2(∅)), we transfer the conflicting mass

only to the elements involved in the conflict and proportionally

to their individual masses, so that the specificity of the

information is entirely preserved. The general principle of PCR

consists: 1) to apply the conjunctive rule, 2) to calculate the

total or partial conflicting masses; 3) then redistribute the (total

or partial) conflicting mass proportionally on non-empty sets

according to the integrity constraints one has for the frame

Ω. Because the proportional transfer can be done in different

ways, there exist several versions of PCR rules of combination.

PCR6 fusion rule has been proposed by Martin and Osswald in

[6] Vol. 2, Chap. 2, as a serious alternative to PCR5 fusion rule

proposed originally by Smarandache and Dezert in [6] Vol. 2,

Chap. 1. Martin and Osswald had proposed PCR6 based on

intuitive considerations and they had shown through different

simulations that PCR6 was more stable than PCR5 in term

of decision for combining s > 2 sources of evidence. When

only two sources are combined, PCR6 and PCR5 fusion rules

coincide, but they differ as soon as more than two sources
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have to be combined altogether. Recently, it has been proved

in [22] that only PCR6 rule is consistent with the averaging

fusion rule which allows to estimate the empirical (frequentist)

probabilities involved in a discrete random experiment. For

Shafer’s model of FoD3, PCR6 fusion of two BBA’s m1(.)
and m2(.) is defined by mPCR6

1,2 (∅) = 0 and for all X 6= ∅ in

2Ω

mPCR6
1,2 (X) =

∑

X1,X2∈2
Ω

X1∩X2=X

m1(X1)m2(X2)

+
∑

Y ∈2
Ω\{X}

X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (4)

where all denominators in (4) are different from zero. If a

denominator is zero, that fraction is discarded. All proposi-

tions/sets are in a canonical form [6]. Very basic Matlab codes

of PCR rules can be found in [6], [23] and from the toolboxes

repository on the web [27]. Like the averaging fusion rule,

the PCR6 fusion rule is commutative but not associative. The

vacuous belief assignment is a neutral element for this rule.

The PCR6 rule of combination (as well as DS rule) use only

part of the whole information available (i.e. the values of the

masses of belief only), and they don’t exploit the cardinalities

of focal elements entering in the fusion process. Because the

cardinalities of focal elements are fully taken into account

in the computation of the measure of degree of intersection

between sets, we have recently proposed to improve PCR6

rules using this measure in the companion paper [7]. The basic

idea is to replace any conjunctive product by its discounted

version thanks to the measure of degree of intersection D when

the intersection of focal elements is not empty. The product

of partial (or total) conflicting masses are not discounted by

the measure of degree of intersection because the degree of

intersection between two (or more) conflicting focal elements

always equals zero, that is if X ∩ Y = ∅, then D(X,Y ) = 0.

In [7], we have shown in different examples why Zhang’s

degree of intersection [31], denoted DZ(X1, . . . , Xs), is more

interesting than classical Jaccard’s degree. DZ(X1, . . . , Xs) is

mathematically defined by

DZ(X1, . . . , Xs) ,
|X1 ∩X2 ∩ . . . ∩Xs|
|X1| · |X2| · . . . · |Xs|

(5)

where |X1 ∩ X2 ∩ . . . ∩ Xs| is the cardinality of the inter-

section of the focal elements X1, X2,. . . , Xs, and |X1|, |X2|,
. . . |Xs| their cardinalities. The improved version of PCR6 with

Zhang’s degree of intersection (called ZPCR6 rule) is easy to

get and it corresponds to the following formula4

3that is when GΩ = 2Ω, and assuming all elements exhaustive and
exclusive.

4The general ZPCR6 formula for s > 2 sources in detailed in [7].

mZPCR6
1,2 (X) =

1

KZPCR6
1,2

·
[

∑

X1,X2∈2
Ω

X1∩X2=X

DZ(X1, X2)m1(X1)m2(X2)

+
∑

Y ∈2
Ω\{X}

X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]
]

(6)

where KZPCR6
1,2 is a normalization constant such that

∑

X∈2Ω
mZPCR6

1,2 (X) = 1. As for PCR6, one has

mZPCR6
1,2 (∅) = 0 and ZPCR6 is commutative but not asso-

ciative. The advantage of ZPCR6 over PCR6 and DS rules is

its ability to respond to the inputs in a more effective way

has clearly shown in very interesting examples detailed in [7].

Due to space limitation, these examples will not be presented

and discussed here again.

C. Discounting

A discounting effect can be applied on a mass function m(.) if

a piece of information has its reliability lowered. In this case,

a new mass function mα(.) (with α ∈ [0, 1]) is computed

from m(.) and a part of the mass of each element of the FoD

is transferred to the whole FoD Ω which represents the total

ignorance.

mα (A) =

{

(1 − α) ·m (A) if A 6= Ω

(1 − α) ·m (A) + α if A = Ω
(7)

III. EVIDENTIAL OCCUPANCY GRID

The basic idea of an Occupancy Grid (OG) is to divide the

surrounding environment (the ground plane of 2D world) into

a set a cells (denoted Ci, i ∈ [0, n]) in order to estimate their

occupancy state. In a probabilistic framework, the aim is to

estimate the probabilities P
(

Oi|z1:t
)

and P
(

F i|z1:t
)

given a

set of measures z1:t from the beginning up to the current time

t. Oi (resp. F i) denotes the occupied (resp. free) state of the

cell Ci. Finally, a decision rule is applied in order to select

the most likely state for each cell.

For Evidential approach, occupancy grid represents the in-

formation using a mass function over the frame of discernment

(FoD) Ω = {F, O}. So the mass functions used in grid have

the structure

mt =
[

mt (∅) mt (F ) mt (O) mt (Ω)
]

(8)

The occupancy mass function can be used during the fu-

sion process, then the decision can be taken using pignistic

transform [26] to get a probability measure and use the same

decision rule. An interesting part of evidential occupancy grid

is that the FoD can be more complex, and as the fusion is

done cell by cell the fusion scheme will be still valid.

Occupancy grids can be classified into two categories de-

pending on the use of a forward or inverse sensor model. The

forward model relies on Bayes inference. Since this approach

takes into account the conditional dependency of the cells of
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the map, it is well adapted to a sensor that observes a large

domain of cells with only one reading measurement (e.g. an

ultrasonic sonar). However, it requires heavy processing that

can be handled by optimized approximation.

The inverse model approach is well adapted to narrow fields

of measure by sensors (e.g. LIDAR). It is composed of two

separate steps. First, a snapshot map of the sensor reading is

built using an inverse sensor model P
(

Oi|zt
)

. This model

can take into account the conditional dependency between the

sensor reading and the occupancy of the seen cells. Then, a

fusion process (denoted ⊙) is done with the previous map

P
(

Oi|z1:t−1

)

as an independent opinion poll fusion:

P
(

Oi|z1:t
)

= P
(

Oi|zt
)

⊙ P
(

Oi|z1:t−1

)

(9)

In the probabilistic framework, the usual fusion operation

between states A and B coming from independent measure-

ment, use independent opinion poll [34] :

P (A)⊙ P (B) =
P (A)P (B)

P (A)P (B) + (1− P (A))(1− P (B))
(10)

Inverse approaches have very efficient implementations (e.g.

log-odd) that make them popular in mobile robotics [8], [9],

[25]. Maps built using inverse models are usually less accurate,

since they just take into account the dependency of the cells

observed in one reading, but it is a good approximation

with accurate and high resolution sensors observing a limited

number of cells at a time. Moreover, when the sensor is multi-

echo and multi-layer, the conditional dependency of the seen

cells can be modeled in an efficient way.

A. Fusion strategy with the inverse model

When dealing with the inverse model approach, an estimate

of the pose of the robot has to be available, and a map

grid GM has to be handled. This grid is defined in a world-

referenced frame (so it does not move with the robot) and it

is updated when a new sensor reading is available. Because of

the likely evolution of the world in a dynamic environment,

the OG update has to be completed by a remanence strategy.

The fusion architecture is based on a prediction-correction

paradigm to fuse one or several sensors observations.

a) Prediction step: The prediction step computes the

predicted map grid at time t from the map grid estimated at

time t− 1. Depending on the available information, this step

can be very refined as done in [24]. Because we don’t have

specific information on the velocity of the objects (or cells), the

prediction step is done by the classical discounting technique.

The confidence in past data is controlled by a remanence factor

α ∈ [0; 1]. The prediction stage is therefore governed by

GM
t = discount

(

ĜM
t−1, α

)

(11)

b) Correction step: The correction step consists in the

combination of the previously estimated map grid with the

grid built from the current measures thanks to the inverse

model sensor (see more details in [1], [2]). This one is called

ScanGrid GS
t . As this information is referenced in the sensor

frame, a 2D warping is applied to reshape this grid into the

fusion frame. To perform this operation, the current pose qt
is estimated using a GPS sensor and the rigid homogeneous

transformation matrix Ht is computed. When GPS becomes

unavailable, the CAN (Controller Area Network) bus is used

to get the robot odometric data. The motion matrix Ht and the

extrinsic calibration matrix C are used to compute a remapping

function f(x.y) according to Eq. (12) below

f (x, y) = C ·Ht ·





x
y
1



 (12)

Finally, the ScanGrid is remapped with f and fused with the

previous map grid according to the general formula

GM
t (i, j) = ĜM

t (i, j)⊙GS
t (f (i, j)) (13)

where the grid GS
t represents the BBA produced by the

sensor model. This BBA is created in respect to sensor data

(e.g. LIDAR point here) and a sensor model to infer an

instant occupancy grid. With the probabilistic approach, it

refers to the occupancy probability PS
t (O). With the evi-

dential approach it refers to the occupancy mass function

mS
t =

[

mS
t (∅) mS

t (F ) mS
t (O) mS

t (Ω)
]

. The grid

ĜM
t refers to the previous MapGrid GM

t−1 predicted at current

time using Eq. (11). In the next parts, for each approach

considered, the fusion rule ⊙ used in Eq. (13) is different.

Bayesian approach uses Eq. (10), DS approach uses Eq. 2,

PCR6 approach uses Eq. (4), and ZPCR6 approach Eq. (6).

B. Discounting in Occupancy Grids

The main advantage of using discounting is to provide a

simple way to model the presence of dynamic object in the

scene. This model allows to make a prediction without infor-

mation on the dynamic at the cell level (or at the object level)

which is generally not directly available from sensors, and

merely difficult to estimate without greedy time-computing

algorithms [24] (especially when the evidential framework is

adopted). The main issue with the discounting effect is that

it makes impossible to build persistent static map. Indeed,

cells not viewed by the sensor will quickly converge to the

ignorance state, so this strategy cannot be used to build the

map of a building for instance. If we are interested to build

static map in presence of moving objects, the discounting

function is then not recommended. We will see why in the

next part of the paper where in this case Bayesian and DS

fusion rules will not be very efficient. To handle this case, it

is recommended to use either PCR6 or ZPCR6 rules.

IV. SIMULATION RESULTS

In this section, we present simulation results of grid oc-

cupancy estimation in a realistic scenario based on different

rules of combination (Bayesian fusion, Dempster-Shafer rule,

PCR6 and ZPCR6 fusion rules).
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A. Basic simulation

Setup: In order to present the basic behavior of the different

combination rules studied, we have realized at first some

simple 1D-simulations, where we consider a grid cell crossed

by a moving object. In this case, the state of the cell changes

from free-state to occupied-state at time t1 and from occupied-

state to free-state at time t2. The figures 1–4 show the results

of these simulations under different conditions.

On each subfigure, we show on the top raw the real state

of the cell (i.e. the ground-truth). The second raw shows the

sensor data simulated that correspond to the BBA of the state

of the cell. This mass function is built according to the state

of the cell, the level of confidence of the sensor and can be

Fig. 1. Case with discounting (α = 0.05).

Fig. 2. Case without discounting (α = 0).

eventually perturbed with additional noises. FA indicates the

rate of False Alarms and ND the rate of Non Detections. We

will consider different level of confidence for mSG(O) when

the cell is occupied and mSG(F ) when the cell if free. The

subfigures at the bottom represent the level of belief of the

cell state obtained with Bayesian fusion, Dempster-Shafer

(DS) fusion, PCR6 and ZPCR6 fusion rules.

Effect of discounting: Fig.1 shows the results of the classical

chain using a discounting factor α = 0.05 while Fig. 2 is the

same case without discounting (α = 0)). With discounting,

all the fusion rules behave similarly. Without discounting, a

lag appears with Bayesian and DS fusion rules. The lag is

seriously reduced with PCR6 and ZPCR6.

Fig. 3. Case with noise (FA=10%, ND=10%) and α = 0.

Fig. 4. Case with noise (FA=30%, ND=15%) and α = 0.
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Performances analyses: To evaluate the performance of our

method, we did perform 10000 Monte Carlo runs for each

simulation in order to estimate the false alarm and non

detection rates. In order to make the decision, the pignistic

probability has been computed and a MAP estimator has been

used. Each simulation (from No 0 to No 8) correspond to

different conditions (the discounting level, the rate of noise

impacting sensor observations) reported in Table I.

Simu N° discounting sensor noise sensor belief

α ND/FA mSG (O) /mSG (F )

0 0.05 0 0.8/0.6

1 0 0 0.8/0.6

2 0.05 10/10 0.8/0.6

3 0 10/10 0.8/0.6

4 0.05 15/30 0.8/0.69

5 0 15/30 0.8/0.68

6 0 15/30 0.6/0.4

7 0 25/50 0.6/0.4

8 0 25/50 0.4/0.2

TABLE I
PARAMETERS OF SIMULATIONS.

For each simulation presented in the Table I, we obtain the

performances (rates of FA and ND in %) shown in Table II.

Simu # Bayesian DS PCR6 ZPCR6

ND FA ND FA ND FA ND FA

0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 4.0

1 65.0 24.0 60.0 32.0 10.0 6.0 10.0 4.0

2 11.2 9.2 10.5 10.0 10.0 9.6 11.1 7.8

3 77.7 15.2 73.5 18.9 11.5 6.7 11.3 7.5

4 9.2 28.0 8.2 31.5 8.4 28.9 9.8 25.8

5 33.0 62.7 26.9 65.8 8.4 28.8 10.1 24.7

6 31.3 63.9 26.0 67.3 9.3 38.7 8.8 32.3

7 15.1 76.9 11.5 79.4 5.7 64.0 7.5 55.2

8 7.1 83.9 5.1 85.1 1.9 87.3 3.0 76.2

TABLE II
RATES OF FALSE ALARM AND NON DETECTION (IN %).

Simulations 0 and 1 illustrated by Figures 1 and 2, corre-

spond to the noise-free situation. By removing the discounting

operator, Bayesian and DS approach have a lag in the detection

of the change of state that impacts clearly their performances.

The PCR6 and ZPCR6 approach are not concerned by this

effect because of PCR of conflict. Simulations 2 and 3 (see Fig.

3) include 10% of wrong measurement caused by noises. The

fusion rules behave similarly as for simulations 0 and 1, but the

performances are a bit lower which shows the effect of noisy

measurements in the estimation process. For simulations 4, 5

and 6, the noise reaches 15% for ND and 30% for FA which

is important. As we see in Fig. 4, the Bayesian and DS fusion

rules are not able to detect the second state change, during the

simulation time. This induces the bad false alarm rates. In the

last simulations 7 and 8 the noise is very important (about 25%

of ND and 50% of FA). In these conditions, all the methods

have poor false alarm rates but the PCR6 and ZPCR6 keep

good non detection rates. Globally, we see an improvement

of the performances when using ZPCR6, specially for the

reduction of the FA rates.

B. LIDAR simulation

In this simulation, the DS and PCR6 fusion rules are

compared on a 2D occupancy grid problem close to real

application for robot perception. The simulation was realized

using the Robot Operating System (ROS) [32] environment

and the Gazebo [33] simulator is used here to simulate a

Hokuyo LIDAR and a moving object as shown on Figure 5.

The simulated sensor has a FoV (Field of View) about 270°

and a max range about 10m. The rate of the scan is 20Hz and

the ranges of the LIDAR point is corrupted with a Gaussian

noise N (0, 0.1).

Fig. 5. Gazebo simulation: the box turns around the LIDAR sensor.

Figure 6 shows a simulated scan. The beams that do not

hit obstacle within the range are considered as max range

(as done in the real Hokuyo sensor). The moving object is

a box which has a circular trajectory and moves at 6 rpm

around the LIDAR. A ground true grid is computed according

the real position of the box and its geometry at each scan

time. The grid used is a square of 10 m by 10 m with

a resolution of 0.1 m and the ScanGrid BBA are set to

mSG (O) = 0.8, mSG (Ω) = 0.2 for occupied cells and

mSG (F ) = 0.6, mSG (Ω) = 0.4 for free cells.

Fig. 6. Bird view of one LIDAR scan.

In order to quantify the results, we compute some metrics.

However, because of occlusion, only the cells located on the

edges of the box can be considered, that is why we don’t

consider global metrics. We consider here the two following

metrics: 1) the number of correct occupied cell (proportional to

recall in our case), and 2) the number of conflicting cells close

to the box. The first describes the ability of the method to add
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objects into the map, and also by analogy to remove object

from the map. The second describes the ability of the method

to detect moving objects by generating conflict, this ability is

important and is one of the improvement of the evidential grid

with respect to the classical Bayesian grid.

Figures 7 shows the result over one turn. The number of

cells detected for both metrics depends a lot on the position

around the sensor. This can be explained because, in some

place, the LIDAR sensor is able to see two edges of the box,

in other situations the LIDAR sensor detects just one edge,

and when the box is behind (on the back of) the sensor it is

out of the field of view of the LIDAR. On figure 7, we can

see that the number of occupied cell with the ZPCR6 is more

than those with PCR6 and DS fusion rules. Contrarily to the

ZPCR6 and PCR6, the DS fusion without discounting can not

handle well the quick change of states in the map. The x-axis

of Figures 7 is the time stamp of the LIDAR scans, and the

y-axis is the number of occupied cells.

Fig. 7. 2D LIDAR Simulation: Number of correct occupied cells (blue=DS
rule, green=PCR6 rule, red=ZPCR6 rule).

C. Real data processing

A real experimentation was realized using an Hokuyo

UTM-30LX sensor. This experimentation takes place in an

office in which a person was walking into. The evidential

occupancy grid fusion node was implemented within the ROS

environment. The grid has the same size and resolution as in

the previous example. The BBA used in the sensor model has

been set to mSG (O) = 0.8, mSG (Ω) = 0.2 for occupied

cells and mSG (F ) = 0.8, mSG (Ω) = 0.2 for free cells. No

discounting was applied.

Figures 8–10 present the occupancy grid estimation using

DS, PCR6 and ZPCR6 rules for a typical snapshot of the se-

quence. The color of cells denotes the state having the highest

mass value: green for F (free state), red for O (occupied state),

and black for Ω (full uncertainty). For convenience, we have

also displayed in blue all the cells that carry a conflicting mass

m(∅) > 0 before applying the normalization step of DS rule,

or before applying the proportional conflict redistribution with

PCR6, or both with ZPCR6.

Fig. 8. Snapshot 1 - with DS fusion.

Fig. 9. Snapshot 1 - with PCR6 fusion.

Fig. 10. Snapshot 1 - with ZPCR6 fusion.

Figure 8 shows the result using DS rule. The room scanned

by the sensor is correctly mapped and its bounds (mainly walls

and doors) are clearly identified by the red pixels. The free

space (green pixels) is correctly detected in the room except

near the people that is labeled as free (with conflicting cell
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shown in blue for convenience). The people moving around

the desk in the office room is only detected from conflicting

cells when he stops to walk several times. Figure 9 shows

the PCR6 result at the same time stamps. In this case, the

people is rightly detected as shown by the red pixels (occupied

cells) inside the green area (the office room). A conflict cell

is created when he starts walking in the room. The static part

of the room is also detected (as with DS fusion rule). Figure

10 shows the ZPCR6 result at the same time stamps. The

results of this rule are close to the PCR6 rule but the level

of ignorance (the mass on Ω) is higher on the cells behind

the person. This can be understood because the mass m (Ω)
is weighed by a factor 0.5 during the transition.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have presented a novel application of the

belief functions which significantly improves the map building

process for intelligent vehicles environment perception and

grid map estimation. This work shows the importance of

defining an accurate sensor model. We have considered the un-

certainties of the LIDAR measurements and used the ZPCR6

rule of DSmT to model and combine sensor information. Our

new method differs of Bayesian approach by allowing support

for more than one proposition at a time, rather than a single

hypothesis. It is a interval-based approach, as defined by the

lower and upper probability bounds [Bel, Pl] allowing the lack

of measurement to be modeled adequately. This new method

based on ZPCR6 rule differs from the classical evidential

approach based on DS rule and improves in theory the results

based PCR6, and more substantially the results of DS rule. Our

experimental results with the LIDAR confirm the improvement

of the accuracy of this new grid estimation method w.r.t

previous methods, but the improvment obtained with ZPCR6

over PCR6 is not so important because of the too simplistic

structure of the chosen frame of discernment. As research

perspectives, we will try to implement these fusion rules in

3D occupancy grid (Octomap based) and use a stereo camera

with dense disparity map computation as sensor source. Also

we would like to deal with refined frames of discernment to

ameliorate the precision of the perception and to emphasize

the advantages of ZPCR6 rule.
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Abstract—In this contribution, we propose to improve the grid
map occupancy estimation method developed so far based on
belief function modeling and the classical Dempster’s rule of com-
bination. Grid map offers a useful representation of the perceived
world for mobile robotics navigation. It will play a major role for
the security (obstacle avoidance) of next generations of terrestrial
vehicles, as well as for future autonomous navigation systems. In
a grid map, the occupancy of each cell representing a small
piece of the surrounding area of the robot must be estimated at
first from sensors measurements (typically LIDAR, or camera),
and then it must also be classified into different classes in
order to get a complete and precise perception of the dynamic
environment where the robot moves. So far, the estimation and
the grid map updating have been done using fusion techniques
based on the probabilistic framework, or on the classical belief
function framework thanks to an inverse model of the sensors.
Mainly because the latter offers an interesting management of
uncertainties when the quality of available information is low, and
when the sources of information appear as conflicting. To improve
the performances of the grid map estimation, we propose in this
paper to replace Dempster’s rule of combination by the PCR6
rule (Proportional Conflict Redistribution rule #6) proposed in
DSmT (Dezert-Smarandache) Theory. As an illustrating scenario,
we consider a platform moving in dynamic area and we compare
our new realistic simulation results (based on a LIDAR sensor)
with those obtained by the probabilistic and the classical belief-
based approaches.

Keywords: Grid map, cell occupancy, perception, belief func-
tions, DSmT, PCR6, robotics.

I. INTRODUCTION

Occupancy Grids (OG) are often used for robot environment
perception and navigation, which requires techniques for data
fusion [1], localization [2] and obstacle avoidance [3]. As OGs
manage a representation of the environment that does not make
any assumption on the geometrical shape of the detected ele-
ments, they provide a general framework to deal with complex
perception conditions. In our previous works, we did focus
on the use of a multi-echo and multi-layer LIDAR system
in order to characterize the dynamic surrounding environment
of a robot navigating in an unrestricted area. The perception
strategy involved map estimation and scan grids [4], [5] based
either on the classical Bayesian framework, or on classical
evidential framework based on Dempster-Shafer theory (DST)
[6] of belief functions. The map grid acts as a filter that
accumulate information and allows to detect moving objects.

A comparative analysis of performances of these approaches
has already been published recently in [7].

In dynamic environments, it is crucial to have a good
modeling of the information flow in the data fusion process
in order to avoid adding wrong implicit prior knowledge that
will need time to be forgotten. In this context, evidential OG
are particularly interesting to make a good management of
the information since it is possible to explicitly make the
distinction between non explored and moving cells. In this
paper, we explore the use of Dezert-Smarandache Theory [8]
(DSmT) as an alternative approach of the classical DST to
provide better accurate estimation of the grid map occupancy
for robot perception.

The idea of using the probabilistic framework to estimate the
grid occupancy has been popularized by Elfes in his pioneered
works in 1990’s [9]–[13]. Later, the idea has been extended
with the fuzzy logic theory framework by Oriolo et al. [15]–
[21], and in parallel with the belief function (evidential) frame-
work as well [22]–[29]. Most of the aforementioned research
works dealt only with acoustic sensors only (i.e SONAR).
Recently, DSmT has also been applied for the perception of
the environment with acoustic sensors as reported in [30]–[32],
[34]–[36].

Our main contribution is to propose a new method to make
the perception with non acoustic sensors, and to compare the
performances of the Proportional Conflict Redistribution rule
no. 6 (PCR6) of DSmT with respect to Dempster-Shafer’s
(DS) rule of combination in terms of accuracy of grid map
estimation. In our application, we work with a LIDAR sensor
on board on a robot moving in dynamic environment.

This paper is organized as follows. After a short presentation
of the basics of belief functions and rules of their combination
based on DST and DSmT in the next section, we will present
the inverse sensor models in section III with the construction of
the basic belief assignments (BBA). In section IV, we present
an illustrating scenario for environment perception including
a mobile object with a platform equipped with a LIDAR, and
we compare our new realistic simulation results with those
obtained by the probabilistic and the classical belief-based
approaches. We will show how static and mobile objects are
extracted from the occupancy grid map using digital image
processing. Finally, conclusion and outline perspectives are
given in section V.

Originally published as: J. Moras, J. Dezert, B. Pannetier, Grid Occupancy Estimation for Autonomous 
Vehicle Perception, SPIE defense & Security Conference, Baltimore, MD, USA, April 20–24, 2015, and 
reprinted with permission.
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II. EVIDENTIAL FRAMEWORK

Dempster-Shafer’s theory (DST) of evidence has been de-
veloped by Shafer in 1976 from Dempster’s works [6] . DST is
known also as the theory of belief functions and it is mainly
characterized by a frame of discernment (FoD), sources of
evidence represented by basic belief assignment (BBA), belief
(Bel) and plausibility (Pl) functions, and the Dempster’s rule,
denoted as DS rule of combination in the sequel1. DST has
been modified and extended into Dezert-Smarandache theory
[8] (DSmT) to work with quantitative or qualitative BBA and
to combine the sources of evidence in a more efficient way
thanks to new proportional conflict redistribution (PCR) fusion
rules – see [37]–[40] for discussion and examples. We briefly
recall in the next subsections the basics of the theory of belief
functions.

A. Belief functions

Let’s consider a finite discrete FoD Ω = {ω1, ω2, . . . , ωn},
with n > 1, of the fusion problem under consideration and
its fusion space GΩ which can be chosen either as the power-
set 2Ω, the hyper-power set2 DΩ, or the super-power set SΩ

depending on the model that fits with the problem [8]. A
BBA associated with a given source of evidence is defined
as the mapping m(.) : GΩ → [0, 1] satisfying m(∅) = 0
and

∑
A∈GΩ m(A) = 1. The quantity m(A) is called mass of

belief of A committed by the source of evidence. Belief and
plausibility functions are defined by

Bel(A) =
∑
B⊆A
B∈GΩ

m(B) and Pl(A) =
∑

B∩A6=∅
B∈GΩ

m(B) (1)

The degree of belief Bel(A) given to a subset A quantifies
the amount of justified specific support to be given to A,
and the degree of plausibility Pl(A) quantifies the maximum
amount of potential specific support that could be given
to A. If for some A ∈ GΩ, m(A) > 0 then A is called a
focal element of the BBA m(.). When all focal elements
are singletons and GΩ = 2Ω then the BBA m(.) is called
a Bayesian BBA [6] and its corresponding belief function
Bel(.) is homogeneous to a (possibly subjective) probability
measure, and one has Bel(A) = P (A) = Pl(A), otherwise
in general one has Bel(A) ≤ P (A) ≤ Pl(A), ∀A ∈ GΩ. The
vacuous BBA representing a totally ignorant source is defined
as mv(Ω) = 1.

B. Fusion rules

Many mathematical rules have been proposed in the liter-
ature over the decades (see [8], Vol. 2 for a detailed list of
fusion rules) to combine efficiently several distinct sources of
evidence represented by the BBA’s m1(.), m2(.), . . . , ms(.)
(s ≥ 2) defined on same fusion space GΩ. In this paper, we
focus only on DS rule because it has been historically proposed

1DS acronym standing for Dempster-Shafer since Dempster’s rule has been
widely promoted by Shafer in the development of his mathematical theory of
evidence [6].

2which corresponds to a Dedekind’s lattice, see [8] Vol. 1.

in DST and it is still widely used in applications, and on the
PCR rule no. 6 (i.e. PCR6) proposed in DSmT because it
provides a very interesting alternative of DS rule, even if PCR6
is more complex to implement in general than DS rule.

In DST framework, the fusion space GΩ equals the power-
set 2Ω because Shafer’s model of the frame Ω is assumed,
which means that all elements of the FoD are exhaustive and
exclusive. The combination of the BBA’s m1(.) and m2(.), is
done by : mDS

1,2 (∅) = 0 and for all X 6= ∅ in 2Ω

mDS
1,2 (X) ,

1

1−m1,2(∅)
∑

X1,X2∈2Ω

X1∩X2=X

2∏
i=1

mi(Xi) (2)

where the numerator of (2) is the mass of belief on the
conjunctive consensus on X . The denominator 1 − m1,2(∅)
is a normalization constant, where the total degree of conflict
denoted m1,2(∅) between the two sources of evidences is
defined by

m1,2(∅) ,
∑

X1,X2∈2Ω

X1∩X2=∅

2∏
i=1

mi(Xi) (3)

According to Shafer [6], the two sources are said in total
conflict if m1,2(∅) = 1. In this case the combination of the
sources by DS rule cannot be done because of the math-
ematical 0/0 indeterminacy. The vacuous BBA mv(Ω) = 1
is a neutral element for DS rule. This rule is commutative
and associative, and the formula (2) can be easily generalized
for the combination of s > 2 sources of evidences. DS rule
remains the milestone fusion rule of DST.

The doubts of the validity of DS rule has been discussed
by Zadeh in 1979 [47]–[49] based on a very simple example
with two highly conflicting sources of evidences. Since 1980’s,
many criticisms have been done about the behavior and the
justification of such DS rule. More recently, Dezert et al. in
[37], [38] have put in light other counter-intuitive behaviors
of DS rule even in low conflicting cases and showed serious
flaws in logical foundations of DST [39]. To overcome the
limitations and problems of DS rule of combination, a new
family of PCR rules have been developed in DSmT framework.
We present the most elaborate one, i.e. the PCR6 fusion rule,
which has been used in our perception application for grid
occupancy estimation.

In PCR rules, instead of following the DS normalization
(the division by 1−m1,2(∅)), we transfer the conflicting mass
only to the elements involved in the conflict and proportionally
to their individual masses, so that the specificity of the
information is entirely preserved. The general principle of PCR
consists: 1) to apply the conjunctive rule, 2) to calculate the
total or partial conflicting masses; 3) then redistribute the (total
or partial) conflicting mass proportionally on non-empty sets
according to the integrity constraints one has for the frame
Ω. Because the proportional transfer can be done in different
ways, there exist several versions of PCR rules of combination.
PCR6 fusion rule has been proposed by Martin and Osswald in
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[8] Vol. 2, Chap. 2, as a serious alternative to PCR5 fusion rule
proposed originally by Smarandache and Dezert in [8] Vol. 2,
Chap. 1. Martin and Osswald had proposed PCR6 based on
intuitive considerations and they had shown through different
simulations that PCR6 was more stable than PCR5 in term
of decision for combining s > 2 sources of evidence. When
only two sources are combined, PCR6 and PCR5 fusion rules
coincide, but they differ as soon as more than two sources
have to be combined altogether. Recently, it has been proved
in [40] that only PCR6 rule is consistent with the averaging
fusion rule which allows to estimate the empirical (frequentist)
probabilities involved in a discrete random experiment.

For Shafer’s model of FoD3, the PCR6 combination of two
BBA’s m1(.) and m2(.) is defined by mPCR6

1,2 (∅) = 0 and for
all X 6= ∅ in 2Ω

mPCR6
1,2 (X) =

∑
X1,X2∈2Ω

X1∩X2=X

m1(X1)m2(X2)

+
∑

Y ∈2Ω\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (4)

where all denominators in (4) are different from zero. If a
denominator is zero, that fraction is discarded. All proposi-
tions/sets are in a canonical form [8]. Very basic Matlab codes
of PCR rules can be found in [8], [41] and from the toolboxes
repository on the web [46]. Like the averaging fusion rule,
the PCR6 fusion rule is commutative but not associative. The
vacuous belief assignment is a neutral element for this rule.

C. Discounting
A discounting effect can be applied on a mass function m(.)

if a piece of information has its reliability lowered. In this case,
a new mass function mα(.), (with α ∈ [0, 1]) is computed
from m(.) and a part of the mass of each element of the FoD
is transferred to the whole FoD Ω which represents the total
ignorance.

mα (A) =

{
(1− α) ·m (A) ifA 6= Ω

(1− α) ·m (A) + α ifA = Ω
(5)

D. Pignistic transformation
Finally, the pignistic transformation BetP [45] allows to

compute a probability measure from a mass function by
distributing proportionally the mass of the subsets on their
focal elements:

∀A ∈ Ω, BetP (A) ,
∑
B∈2Ω

|A ∩B|
|B|

·m (B) (6)

where |A∩B| is the cardinal of the subset A∩B, and |B| is
the cardinal of subset the B.

However, this transformation is not bijective (a part of the
information is lost). So, one can find an infinity of mass
functions with the same pignistic probability. This issue is
inherent in the nature of probabilities which are not able to
distinguish randomness from (epistemic) uncertainty.

3i.e. when GΩ = 2Ω, and assuming all elements exhaustive and exclusive.

III. EVIDENTIAL OCCUPANCY GRID

The basic idea of an Occupancy Grid (OG) is to divide the
surrounding environment (the ground plane of 2D world) into
a set a cells (denoted Ci, i ∈ [0, n]) in order to estimate their
occupancy state. In a probabilistic framework, the aim is to
estimate the probabilities P

(
Oi|z1:t

)
and P

(
F i|z1:t

)
given a

set of measures z1:t from the beginning up to the current time
t. Oi (resp. F i) denotes the occupied (resp. free) state of the
cell Ci. Finally, a decision rule is applied in order to select
the most likely state for each cell.

For Evidential approach, occupancy grid represents the in-
formation using a mass function over the frame of discernment
(FoD) Ω = {F, O}. So the mass functions used in grid have
the structure

mt =
[
mt (∅) mt (F ) mt (O) mt (Ω)

]
(7)

The occupancy mass function can be used during the fusion
process, then the decision can be taken using pignistic trans-
form to get a probability measure and use the same decision
rule. An interesting part of evidential occupancy grid is that
the FoD can be more complex, and as the fusion is done cell
by cell the fusion scheme will be still valid .

Occupancy grids can be classified into two categories de-
pending on the use of a forward, or inverse, sensor model. The
forward model relies on Bayes inference. Since this approach
takes into account the conditional dependency of the cells of
the map, it is well adapted to a sensor that observes a large
domain of cells with only one reading measurement (e.g. a
ultrasonic SONAR). However, it requires heavy processing
that can be handled by optimized approximation [42] or GPU
computing [43].

The inverse model approach is well adapted to narrow fields
of measures sensors (e.g. LIDAR). It is composed of two
separate steps. First, a snapshot map of the sensor reading
is built using an inverse sensor model P

(
Oi|zt

)
. This model

can take into account the conditional dependency between the
sensor reading and the occupancy of the seen cells. Then, a
fusion process (denoted �) is done with the previous map
P
(
Oi|z1:t−1

)
as an independent opinion poll fusion:

P
(
Oi|z1:t

)
= P

(
Oi|zt

)
� P

(
Oi|z1:t−1

)
(8)

In the probabilistic framework, the usual fusion operation
between states A and B coming from independent measure-
ment, use independent opinion poll [52] :

P (A)� P (B) =
P (A) · P (B)

P (A) · P (B) + (1− P (A)) · (1− P (B))
(9)

Inverse approaches have very efficient implementations (e.g.
log-odd) that make them popular in mobile robotics [10], [14],
[44]. Maps built using inverse models are usually less accurate,
since they just take into account the dependency of the cells
observed in one reading, but it is a good approximation
with accurate and high resolution sensors observing a limited
number of cells at a time. Moreover, when the sensor is multi-
echo and multi-layer, the conditional dependency of the seen
cells can be modeled in an efficient way.
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A. Fusion strategy with the inverse model

When dealing with the inverse model approach, an estimate
of the pose of the robot has to be available and map grid
GM has to be handled. This grid is defined in a world-
referenced frame (so it does not move with the robot) and
is updated when a new sensor reading is available. Because of
the likely evolution of the world in a dynamic environment,
the OG update has to be completed by a remanence strategy.
The fusion architecture follows then a prediction-correction
paradigm and can be used to fuse one or several sensors
observations.

a) Prediction step: The prediction step computes the
predicted map grid at time t from the map grid estimated at
time t− 1. Depending on the available information, this step
can be very refined like done in [43]. As we consider here
that no specific information on the velocity of the objects (or
cells) is available, the prediction is done by discounting. The
confidence in aged data is controlled by a remanence factor
α ∈ [0; 1]. The prediction stage is therefore governed by

GMt = discount
(
ĜMt−1, α

)
(10)

b) Correction step: The correction step consists in the
combination of the previously estimated map grid with the
grid built from the current measures thanks to the inverse
model sensor (see more details in [4], [5]). This one is called
ScanGrid GSt . As this information is referenced in the sensor
frame, a 2D warping is applied to reshape this grid into the
fusion frame. To perform this operation, the current pose qt
is estimated using a GPS sensor and the rigid homogeneous
transformation matrix Ht is computed. When GPS becomes
unavailable, the CAN (Controller Area Network) bus is used
to get the robot odometric data. The motion matrix Ht and the
extrinsic calibration matrix C are used to compute a remapping
function f(x.y) according to Eq.(11) below

f (x, y) = C ·Ht ·

 x
y
1

 (11)

Finally, the ScanGrid is remapped with f and fused with the
previous map grid.

GMt (i, j) = ĜMt (i, j)�GSt (f (i, j)) (12)

The grid GSt represents the BBA produced by the sen-
sor model. This BBA is created in respect to sensor
data (e.g. LIDAR point here) and a sensor model to in-
fer an instant occupancy grid. For probabilistic approach,
it refers to the occupancy probability PSt (O), for evi-
dential approach it refers for a occupancy mass function
mS
t =

[
mS
t (∅) mS

t (F ) mS
t (O) mS

t (Ω)
]
. The grid

ĜMt refers to the previous MapGrid GMt−1 predicted at current
time using Eq.(10). In the following parts, for each approach
considered, the rule � used in Eq.(12) is different. Bayesian
approach uses Eq.(9), DS approach uses Eq.(2) and PCR6
approach uses Eq.(4).

B. Discounting in Occupancy Grids

The main advantage of using discounting is to provide a
simple way to model the presence of dynamic object in the
scene. This model allows to make a prediction without infor-
mation on the dynamic at the cell level (or at the object level)
which is generally not directly available from sensors and
merely difficult to estimate without greedy time-computing
algorithms [43] (especially when the evidential framework is
adopted). The main issue with the discounting effect is that
it makes impossible to build persistent static map. Indeed,
cells not viewed by the sensor will quickly converge to the
ignorance state. Therefore, this strategy cannot be used to
build the map of a building for instance. If we are interested to
build static map in presence of moving objects, the discounting
function is then not recommended. We will see why in the next
part of the paper where in this case Bayesian and DS fusion
rules will not be very efficient. To handle this case, we will
show why it is recommended to use the PCR6 rule.

IV. RESULTS

In this section, we present simulation results of grid oc-
cupancy estimation in a realistic scenario based on different
rules of combination (Bayesian fusion, Dempster-Shafer rule,
and PCR6 fusion rule).

A. Basic simulation

a) Setup: In order to present the basic behavior of the
different combination rules studied, we have realized at first
some simple 1D-simulations, where we consider a grid cell
crossed by a moving object. In this case, the state of the
cell changes from free-state to occupied-state at time t1 and
from occupied-state to free-state at time t2. Figure 1 shows the
results of these simulations under different conditions. On each
subfigure, we show on the top plot the real state of the cell (i.e.
the groundtruth). The second raw of each subplot shows the
sensor data simulated that corresponds to the BBA of the state
of the cell. This mass function is built according to the state
of the cell, the level of confidence of the sensor and can be
eventually perturbed with additional noises. FA indicates the
rate of False Alarms, and ND the rate of Non Detections. We
will consider different levels of confidence for mSG(O) when
the cell is occupied, and mSG(F ) when the cell if free. The
bottom plot of each subplot represents the level of belief of
the cell state obtained with Bayesian fusion, Dempster-Shafer
(DS) fusion and the PCR6 fusion rules respectively.

Effect of discounting: Figure 1a presents the results of
the classical chain using a discounting factor α = 0.05 while
figure 1b presents the same case without discounting (α =
0). If the discounting is applied, all the fusion rules behave
similarly, but if the discounting is not used, a lag appears
with Bayesian and DS fusion rules. The lag effect is seriously
reduced with PCR6 rule.

Performances analyses: The performance of our method
is summarized in Table I. For each simulation, 10000 Monte
Carlo runs have been performed, in order to estimate the
false alarm and non detection rates. In order to make the
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(a) Case with discounting (α = 0.05). (b) Case without discounting (α = 0).

(c) Case with noise (FA=10%, ND=10%) and no discounting. (d) Case with noise (FA=30%, ND=15%) and no discounting.

Figure 1: Evolution of the belief in a cell crossed by an obstacle observed by a sensor.

decision, the pignistic probability has been computed and a
MAP estimator has been used. For each simulation presented
in the Table I, we also mention the discounting level, the rate
of noise impacting sensor observations.

Simulations 0 and 1, illustrated by the figure 1a and the
figure 1b, correspond to the noise-free situation. By removing
the discounting operator, Bayesian and DS approach have a lag
in the detection of the change of state that impacts clearly their
performances. The PCR6 approach is much less concerned by
this effect because of the proportional conflict redistribution
process. Simulations 2 and 3 (see figure 1c) include 10% of
wrong measurement caused by noises. The fusion rules behave
similarly as for simulation 0 and 1, but the performances are

a bit lower which reflects the effect of noisy measurements in
the grid estimation process. For simulations 4, 5 and 6, the
noise reaches 15% for ND and 30% for FA which is quite
strong. As we see in figure 1d, the Bayesian and DS fusion
rules are not able to detect the second state change, during the
simulation time. This induces bad False alarm rates. In the last
simulations 7 and 8, the noise is about 25% of ND and 50% of
FA. In these conditions, all the methods have poor false alarm
rates but the PCR6 keeps good (low) non detection rates.

B. LIDAR simulation

In this simulation, the DS and PCR6 fusion rules are
compared on a 2D occupancy grid problem close to real
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N° discounting key time sensor noise sensor belief Bayesian DS PCR6
α t1/t2 ND/FA mSG (O) /mSG (F ) ND FA ND FA ND FA

0 0.05 20/40 0 0.8/0.6 10.0 6.0 10.0 6.0 10.0 6.0
1 0 20/40 0 0.8/0.6 65.0 24.0 60.0 32.0 10.0 0.6

2 0.05 20/40 10/10 0.8/0.6 11.2 9.2 10.5 10.0 10.0 9.6
3 0 20/40 10/10 0.8/0.6 77.7 15.2 73.5 18.9 11.5 6.7

4 0.05 20/40 15/30 0.8/0.6 9.2 28.0 8.2 31.5 8.4 28.9
5 0 20/40 15/30 0.8/0.6 33.0 62.7 26.9 65.8 8.4 28.8
6 0 20/40 15/30 0.6/0.4 31.3 63.9 26.0 67.3 9.3 38.7

7 0 20/40 25/50 0.6/0.4 15.1 76.9 11.5 79.4 5.7 64.0
8 0 20/40 25/50 0.4/0.2 7.1 83.9 5.1 85.1 1.9 87.3

Table I: Comparison of false alarm and non detection rates (%).

(a) View of the Gazebo simulation: the box
turns around the LIDAR sensor. (b) Bird view of one LIDAR scan.

Figure 2: Simulation setup.

application for robot perception. The simulation was realized
using the Robot Operating System (ROS) [50] environment
and the Gazebo [51] simulator is used here to simulate a
Hokuyo LIDAR and a moving object as shown on Figure 2a.
The simulated sensor has a FoV (Field of View) about 270°
and a max range about 10m. The rate of the scan is 20Hz and
the ranges of the LIDAR point are corrupted with a Gaussian
noise N (0, 0.1).

Figure 2b shows a simulated LIDAR scan. The beams
that do not hit obstacle within the range are considered as
max range (as done in the real Hokuyo sensor). The moving
object is a box which has a circular trajectory and moves at
6 rpm around the LIDAR. A ground true grid is computed
according the real position of the box and its geometry at
each scan time. The grid used is a square of 10 m by 10 m
with a resolution of 0.1 m, and the ScanGrid BBA are set
to mSG (O) = 0.8, mSG (Ω) = 0.2 for occupied cells and
mSG (F ) = 0.6, mSG (Ω) = 0.4 for free cells.

In order to quantify the results, we compute some metrics.
However, because of occlusion, only the cells located on the
edges of the box can be considered, that is why we don’t
consider global metrics. We consider here the two following
metrics: 1) the number of correct occupied cell (proportional
to recall in our case), and 2) the number of conflicting cells

close to the box. The first describes the ability of the method to
add objects into the map and also by analogy to remove object
from the map. The second describes the ability of the method
to detect moving objects by generating conflict. This ability
is important and is one of the improvement of evidential grid
against classical Bayesian grid estimation.

Figures 3 & 4 show the result over one turn. The number of
cells detected for both metrics depends a lot on the position
around the sensor. This can be explained because, in some
place, the LIDAR sensor is able to see two edges of the box.
In other situations, the LIDAR sensor detects just one edge,
and when the box is behind (on the back of) the sensor it is
out of the field of view of the LIDAR. On Fig. 3, we can
see that the number of occupied cells with the PCR6 fusion is
greater than with the DS fusion. Contrarily to the PCR6, the
DS fusion without discounting cannot estimate well the quick
changes of states in the map. From the motion standpoint,
Fig. 4 shows that the PCR6 approach keeps the same level
to generate conflict in presence of moving object (similar to
DS fusion). The x-axis of Figures 3 & 4 is the time stamp
of the LIDAR scans, and the y-axis is the number of cells in
different states (occupied for Fig. 3, or with conflict for Fig.
4).
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Figure 3: 2D LIDAR simulation: Number of correct occupied
cells (green=PCR6,blue=DS).

Figure 4: 2D LIDAR simulation: Number of conflicted cells
into the box shape (green=PCR6,blue=DS).

C. Real data processing

A real experimentation was realized using an Hokuyo
UTM-30LX sensor. This experimentation takes place in an
office in which a person was walking into. The evidential
occupancy grid fusion node was implemented within the ROS
environment. The grid has the same size and resolution as in
the previous example. The BBA used in the sensor model has
been set to mSG (O) = 0.8, mSG (Ω) = 0.2 for occupied
cells and mSG (F ) = 0.86, mSG (Ω) = 0.2 for free cells. No
discounting was applied.

Figure 5 presents the occupancy grid estimation using DS
and PCR6 rules of combination and for two typical snapshots
of the sequence. The color of cells denotes the state having
the highest mass value: green for F (free state), red for
O (occupied state), and black for Ω (full uncertainty). For
convenience, we have also displayed in blue all the cells
that carry a conflicting mass m(∅) > 0.1 before applying
the normalization step of DS rule, or before applying the
proportional conflict redistribution with PCR6. Figure 5a and
5c show the result using DS rule. The room scanned by the
sensor is correctly mapped and its bounds (mainly walls and
doors) are clearly identified by the red pixels. The free space
(green pixels) is correctly detected in the room except near the
people that is labeled as free (with conflicting cell shown in
blue for convenience). The people moving around the desk in
the office room is only detected from conflicting cells when

he stops to walk several times. Figure 5b and 5d show the
PCR6 result at the same time stamps. In this case, the people
is correctly detected as shown by the red pixels (occupied
cells) inside the green area (the office room). A conflict cell
is created when he starts walking in the room. The static part
of the room is also detected (as with DS fusion rule).

(a) Snapshot 1 - DS fusion. (b) Snapshot 1 - PCR6 fu-
sion.

(c) Snapshot 2 - DS fusion. (d) Snapshot 2 - PCR6 fu-
sion.

Figure 5: Result of evidential occupancy grid in real experi-
mentation.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have presented a novel application of the
belief functions which significantly improves the map build-
ing process for robots environment perception and grid map
estimation. This work shows the importance of defining an
accurate sensor model. We have considered the uncertainties
of the LIDAR measurements and used the PCR6 rule of
DSmT to model and combine sensor information. Our new
method differs of Bayesian approach by allowing support for
more than one proposition at a time, rather than a single
hypothesis. It is a interval-based approach, as defined by the
lower and upper probability bounds [Bel,Pl] allowing the lack
of measurement to be modeled adequately. This new method
differs also from the classical evidential approach because
the PCR6 rule is used instead of DS rule. Experimental
results with the LIDAR confirm the improvements of the
accuracy of this new grid estimation method with respect to
previous methods. As perspectives, we will try to implement
this fusion rule in 3D occupancy grid (Octomap based) and
use a stereo camera with dense disparity map computation
as sensor source. In future works, we will consider in this
perception context more classes into the frame of discernment
and we will also test the improved PCR6 rule of combination
including Zhang’s degree of intersection.
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Abstract—Civil engineering protection works mitigate natural
risks in mountains, such as torrents. Analysing their effectiveness
at several scales is an essential issue in the risk management.
Based on expert knowledge, used methods have been developed
under risky environment. However, decision is made under
uncertainty because of 1) the lack of information and knowledge
on natural phenomena and 2) the heterogeneity of available
information and 3) the reliability of sources. In this paper, we
propose to help decision-makers with advanced multicriteria
decision making methods (MCDMs). Combining classical MCDM
approaches, belief function, fuzzy sets and possibility theories,
they make it possible decisions based on heterogeneous, imprecise
and uncertain evaluation of criteria provided by more or less
reliable sources in an uncertain context. COWA-ER (Cautious
Ordered Weighted Averaging with Evidential Reasoning), Fuzzy-
Cautious OWA or ER-MCDA (Evidential Reasoning for Multi
Criteria Decision Analysis) are thus applied to several scales of
effectiveness assessment.

Keywords: Torrent protection, belief functions, MCDM.

I. INTRODUCTION

Mountain natural phenomena such as torrential floods put

people and buildings at risk. Protection works influence both

causes and effects of phenomena to limit induced risks. For

instance, check-dams control material volume and flow of

torrential floods. Their design allow them to reduce sediment

production (Figure 1). Defining the strategy for investment

and maintenance is an essential issue in the risk management

process. It is based on their effectiveness assessment. Deci-

sion support tools help assessing their economic efficiency

depending on their structural state and functional effects on

phenomena (stopping, braking, guiding, etc.) [1].

Cost Benefit Analysis (CBA) is the most used decision-

aid method in the natural hazard context. It helps assessing

efficiency of potential actions comparing, for several scenarii,

investment and maintenance costs with direct and indirect

losses [2]. Actually, natural risk analysis is limited to a set

of scenarii which can be discussed [3]. However, probability

knowledge (distribution or scenarii) is affected by the lack

of information on phenomena, but also by heterogeneity and

reliability of available sources (Tacnet 2009). [4].

Concepts of failure mode and effects analysis (FMEA),

already used for hydraulic dams [5], are extended to assess the

effectiveness of check-dams [6]. Those methodologies elicit

the expert reasoning process and consider structural, functional

and economic features [1]: indicators formalise information

processing to make it repeatable and reproducible [7]. Never-

theless, assessment is based on heterogeneous and imprecise

information provided by more or less reliable sources [4].

Methods to represent information imperfection are needed

to aid decisions including check-dam effectiveness assessment.

Advanced MCDMs combining classical MCDM approaches

[8], [9], belief function [10], [11], fuzzy sets [12] and possibil-

ity theories [13] have been developed to help decisions under

risk or uncertainty such as COWA [14], Fuzzy-Cautious OWA

[15] and ER-MCDA [16].

This paper first recalls the context of information imper-

fection related to check-dams. We secondly introduce the

principles of new belief function theory based evolutions of

MCDMs. We then apply them to cases related to effectiveness

of check-dams. We finally discuss remaining issues for new

decision-making methods in risky and uncertain contexts.

II. EFFECTIVENESS OF PROTECTION WORKS IN AN

UNCERTAIN ENVIRONMEN

Assessing effectiveness of existing check-dams is based

on their structural state, functional capacity and relative risk

reduction. We describe below the decision context and infor-

mation imperfection all over the decision process.

A. Formalization of decision context

1) Several system scales as alternatives: Protecting ex-

posed elements with check-dams is based on interdependent

systems. A check-dam El belongs to a device Do. Several

Originally published as: S. Carladous, J.-M. Tacnet, J. Dezert, M. Batton-Hubert, Belief Function Theory 
Based Decision Support Methods: Application to Torrent Protection Work Effectiveness and Reliability 
Assessment, in Proc. of European Safety and Reliability Conf. (ESREL 2015), Zu¨rich, Switzerland, Sept. 
7–10, 2015, and reprinted with permission.
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Figure 1. Multi-system formalization for check-dams in a torrential watershed.

devices protect exposed elements at the watershed scale (F ).

Each El is considered as an alternative belonging to a set of

m check dams Do = {E1, . . . , El, . . . , Em}. Do is a device

alternative in the set F = {D1, . . . , Do . . . , Dt}. F represents

all t devices which protect exposed elements in the watershed

(Figure 1).
2) Possible actions on systems as alternatives: For each

system scale El, Do and F , several actions ai can be proposed:

for example, no action (a1), maintenance of check-dams (a2)

or building new works (a3). El
i , Do

i and Fi represent all

possible actions on each system scale (resp. a single check-

dam, a set of check-dams, all sets in the watershed).

3) Decision objects and linked problems: A decision-

making problem consists in choosing, ranking or sorting

alternatives on the basis of quantitative or qualitative criteria

gj [9]. Effectiveness is the level of objective achievement [17].

Sorting alternatives El, Do and F in effectiveness classes

(e.g., optimal, correct, partial, deficient) is a recurrent issue.

Choosing between several alternatives ai, or ranking them, are

other practical issues.

B. Various information is needed but is imperfect

1) The states of the nature S or So: Debris flows and

torrential floods with bed-load transport are the two main

torrential processes [18]. Choosing a specific criterion of

interest for each process is needed (e.g., flow volume or

deposit depth).

The states of the nature analysis depends on its loca-

tion in the watershed. They can be represented by a fi-

nite or a continuous set according to available information.

For torrential floods, field experts define a finite set S =
{S1, . . . , Sk, . . . , Sn} for F scale and another set So =
{So

1 , . . . , S
o
k, . . . , S

o
n} for Do and El scales [1].

2) The decision-maker (DM) preferences on gj: Assessing

each alternative in a MCDM context requires three elements

from the DM about gj : 1)the list of gj , 2) weights wj :

preferences between gj , 3) gj assessment scale: preferences

between alternative evaluations through a total or a partial pre-

order [9], [19].

3) Decision-making and imperfect information: To com-

pare several alternatives, decision support tools are based on

several gj evaluations of their consequences (payoffs/gains)

under S (or So). For example, each Fi is evaluated given the

knowledge on S and the payoff matrix defined by C = [Cik]
where i = 1, . . . , q and k = 1, . . . , n (Eq. (1)). The decision

problem consists in choosing the alternative Fi∗ ∈ Fi which

maximizes the payoff to the DM. We assume that Cik assess-

ment can be based on several gj .















S1 . . . Sk . . . Sn

F1 C11 . . . C1k . . . C1n
...

...

Fi. Ci1 . . . Cik . . . Cin
...

...

Fq Cq1 . . . Cqk . . . Cqn















= C, (1)

Whatever the decision context, all decisions relate to im-

perfection of used information to assess S, Cik and gj [4]:

inconsistency (conflict between sources); imprecision (e.g.,

interval of numerical values); incompleteness (lack of in-

formation while data exist); aleatory uncertainty (aleatory

events); epistemic uncertainty (lack of knowledge).

Depending on his knowledge about S, the DM is face

on different decision-making problems [14]: under certainty

(only one Sk is known); under risk (the true S is unknown

but one knows all the probabilities pk = P (Sk)); under
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ignorance (one assumes no knowledge about the true state

but that it belongs to S); under uncertainty (the knowledge

on S is characterized by a belief structure).

III. NEW BELIEF FUNCTION THEORY BASED EVOLUTION

OF MCDMS

Comparing alternatives requires assessment of 1) DM pref-

erences on wj and gj , 2) information imperfection to evaluate

S and gj , 3) MCDM choice to aggregate several gj to define

C. In this part, we introduce the principles of methods based

on new MCDMs evolutions based on belief function theory.

A. Basics of belief functions

Shafer [10] originally proposed the basics of belief func-

tions. One starts with a finite set Θ (called the frame of

discernment of the decision problem). Each element of Θ is a

potential answer of the decision problem and they are assumed

exhaustive and exclusive. The powerset of Θ denoted 2Θ is

the set of all subsets of Θ, empty set included. A body of

evidence is a source of information that will help the DM to

identify the best element of Θ. The interest of belief functions

is their ability to model epistemic uncertainties. Each body of

evidence is characterized by basic belief assignment (bba), or

a mass of belief, which is a mapping m(.) : 2Θ → [0, 1]
that satisfies m(∅) = 0, and for all A 6= ∅ ∈ 2Θ the

condition
∑

A⊆Θ
m(A) = 1. The Belief function Bel(.) and

the plausibility function Pl(.) are defined from m(.) by :

Bel(A) =
∑

B⊆A|B∈2Θ

m(B), (2)

Pl(A) =
∑

B∩A 6=∅|B∈2Θ

m(B). (3)

Bel(A) and the plausibility function Pl(A) are often inter-

preted as lower and upper bounds of the unknown probability

of A. The vaccuous bba defined as mv(Θ) = 1 models the full

ignorant source of evidence. Shafer [10] proposed Dempster’s

rule to combine distinct sources of evidence which has been

subject to strong debates in fusion community starting from

Zadeh’s first criticism in 1979. Since the 90’s many alterna-

tives have been proposed to combine more or less efficiently

belief functions, as well as an extension of belief function

in the framework of Dezert-Smarandache Theory (DSmT) as

shown and discussed in [11].

According to the DM attitude, credibilities, plausibili-

ties, Smets’ Pignistic probability BetP [20] or Dezert-

Smarandache probability DSmPǫ=0 [11] (Vol. 3) can be

computed to compare alternatives.

B. ER-MCDA

Tacnet [4] proposed the ER-MCDA methodology. Its orig-

inality consists in the association of different theories. It

dissociates imperfect evaluations from their combination in

the fusion process considering both evaluation imperfection

and heterogeneity, reliability of sources. It uses developments

for MCDM based on the combination of Analytic Hierarchic

Process (AHP) approach developed by Saaty [8] and DSmT

[11]. AHP allows to build bbas from DM preferences on

solutions which are established with respect to several gj .

DSmT allows to aggregate efficiently the (possibly highly

conflicting) bbas based on each criterion. DSmT-AHP method

also allows to take into account the different importances of

gj and/or of the different members of the DM group.

ER-MCDA exploits the following general principles into

independent steps:

• The AHP methodology helps to analyze the decision

problem through a hierarchical structure and to define the

evaluation classes for decision through a common frame of

discernment Θ.

• The imprecise evaluation and mapping of gj: qualitative

or quantitative criteria are evaluated through possibility dis-

tributions representing both imprecision and uncertainty [13].

Possibility distribution can be derived into bbas [21]. We use

a mapping process that projects the bbas expressed on fuzzy

sets expressed on Θ [12].

• The fusion of mapped evaluations and gj: a first fusion

process is done for all evaluations of the different sources for

a same gj . Bbas can be discounted according to the reliability

level of each source. We finally get bbas for each gj whose

weights ωj have been defined according to the classical AHP

method. Those ωj are derived into importance discounting

factors. Bbas corresponding to each gj are then fused a second

time to get the final result which is called a decision profile.

This profile shows not only the decision to take but provides

also an evaluation of the distribution of knowledge on the

other levels and uncertainty. It is possible to check if all

sources agree about the decision and also to have an idea about

the uncertainty of their evaluation. The quality of information

leading to decision is linked to the decision itself. The results

can be bbas or belief, plausibility values that correspond to

pessimistic or optimistic choice of a decision level. With ER-

MCDA, one uses PCR6 (Proportional Conflict Redistribution

Rule no 6) developed in DSmT [11] (Vol. 3) to palliate

disadvantages of the classical Dempster fusion rule discussed

in [22]. The importance of criteria is a different concept than

the classical reliability concept developed and used in the

belief theory context. In order to make a difference between

importance of criteria, uncertainty related to the evaluations of

criteria and reliability of the different sources, specific methods

such as DSmT-AHP [23], [24] have extended Saaty’s AHP

method.

C. COWA-ER and Fuzzy Cautious OWA

Tacnet and Dezert [14] proposed the COWA-ER method

for decision-making under uncertainty taking into account

imperfect evaluations and unknown beliefs about groups of

the possible states of the world. COWA-ER mixes cautiously

the principle of Ordered Weighted Averaging (OWA) approach

[25] with the fusion of belief functions proposed in DSmT

[11]. Fuzzy Cautious OWA [15] is an improvement of COWA-

ER using fuzzy sets.
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1) The OWA approach: To recall it, we take into account

the decision-making problems introduced in II-B3 and Eq.

(1).

1 – under certainty: one chooses Fi∗ with

i∗ , argmaxi{Cik}.

2 – under risk: as for the CBA (cf Sec. I), for each Fi, we

compute expected payoff E[Ci] =
∑

k pk ·Cik , then we choose

Fi∗ with i∗ , argmaxi{E[Ci]}.

3 – under ignorance: Yager [25] uses the OWA operator as a

weighted average of ordered values of a variable. For each Fi

and a given criterion of interest gj , one chooses a weighting

vector Wi = [wi1, wi2, . . . win] and computes its OWA value

Vi , OWA(Ci1, Ci2, . . . , Cin) =
∑

k wik · bik where bik is

the kth largest element in the collection of payoffs Ci1,

Ci2,. . . , Cin. Then one chooses Fi∗ with i∗ , argmaxi{Vi}.

Wi depends on the decision attitude of the DM (pessimistic,

optimistic, normative/neutral, etc.).

4 – under uncertainty: one assumes that a priori knowledge

on the frame S is given by a bba m(.) : 2S → [0, 1]. This case

includes all previous cases depending on the choice of m(.).
Yager’s OWA under uncertainty is based on the derivation of a

generalized expected value Ci of payoff for each Fi as follows:

Ci =

r
∑

l=1

m(Xl)Vil, (4)

where r is the number of focal elements of the belief structure

(S,m(.)). m(Xl) is the mass of belief of Xl ∈ 2S , and Vil

is the payoff we get when we select Fi and the state of the

nature lies in Xl.

For Fi and a focal element Xl, instead of using

all payoffs Cik , we consider only the payoffs in the

set Mil = {Cik|Sk ∈ Xl} and Vl = OWA(Mil) for some

decision-making attitude chosen a priori. Once generalized

expected values Ci, i = 1, 2, . . . , q are computed, we compare

alternatives through these results.

The principle of this method is simple, but its implementa-

tion can be quite greedy in computational resources specially

if one wants to adopt a particular attitude for a given level of

optimism, specially if the dimension of the frame S is large.

2) The COWA-ER approach: Yager’s OWA approach is

based on the choice of a given attitude measured by an

optimistic index in [0, 1] to get the weighting vector Wi. What

should be done in practice if we don’t know which attitude

to adopt? An answer to this question has been proposed

in Cautious OWA with Evidential Reasoning (COWA-ER)

which exploits the results of the two extreme attitudes jointly

(pessimistic and optimistic ones) to take a decision under

uncertainty based on the imprecise valuation of alternatives.

In COWA-ER, the pessimistic and optimistic OWA are used

respectively to construct the intervals of expected payoffs

for different alternatives. For example, for q alternatives, the

expected payoffs are:

E[C] =











E[C1]
E[C2]

...

E[Cq]











⊂











[Cmin
1 , Cmax

1 ]
[Cmin

2 , Cmax
2 ]

...

[Cmin
q , Cmax

q ]











.

Therefore, one has q sources of information before using

the belief functions framework. Basically, the COWA-ER

methodology requires four steps:

• Step 1: normalization of imprecise values in [0, 1];
• Step 2: conversion of each normalized imprecise value into

elementary bba mo(.);
• Step 3: fusion of bba mi(.) with some combination rule

(typically the PCR6 rule);

• Step 4: choice of the final decision based on the resulting

combined bba.

With COWA-ER, we consider as Θ, the finite set of al-

ternatives Θ = {Z1, Z2, . . . , Zq} and the sources of belief

associated with them obtained from the normalized imprecise

expected payoff vector EImp[Ci]. The modeling for comput-

ing a bba associated to hypothesis Fi from any imprecise value

[a; b] ⊆ [0; 1] is done by:










mi(Fi) = a,

mi(F̄i) = 1− b,

mi(Fi ∪ F̄i) = mi(Θ) = b− a,

(5)

where F̄i is the Fi’s complement in Θ.

COWA-ER can help to take a decision if one wants on a

group/subset of alternatives satisfying a min of credibility (or

plausibility level) selected by the DM. It can also be extended

directly for the fusion of several sources of informations when

each source can provide a payoffs matrix. We can also discount

each source easily if needed.

3) The Fuzzy-COWA-ER approach: Unfortunately, COWA-

ER has a serious limitation because the computational time

depends on the number of alternatives. In COWA-ER, each

expected interval is used as an information source, however,

these expected intervals are jointly obtained and thus these

information sources are relatively correlated. For these rea-

sons, a modified version of COWA-ER, called Fuzzy-COWA-

ER (or FCOWA-ER for short) has been developed in [15].

With FCOWA-ER, we consider the 2 columns of the expected

payoff E[Ci] as two information sources, representing pes-

simistic and optimistic attitudes. The column-wise normalized

expected payoff is:

EFuzzy[C] =











Nmin
1 , Nmax

1

Nmin
2 , Nmax

2

...

Nmin
q , Nmax

q











,

where Nmin
i ∈ [0, 1] (i = 1, . . . , q) represents the normalized

value in the column of pessimistic attitude, and Nmax
i ∈ [0, 1]

represents the normalized value in the column of optimistic at-

titude. The vectors [Nmin
1 , . . . , Nmin

q ] and [Nmax
1 , . . . , Nmax

q ]
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can be seen as two fuzzy membership functions (FMFs)

representing the possibilities of all the alternatives F1,. . . ,Fq .

The FCOWA-ER method requires also four steps:

• Step 1: normalize each column in E[C], respectively, to

obtain EFuzzy[C];

• Step 2: conversion of two normalized columns, i.e., two

FMFs (Fuzzy Membership Functions) into two bbas mPess(.)
and mOpti(.) using the α-cut approach introduced in [26];

• Step 3: fusion of bbas mPess(.) and mOpti(.) with some

combination rule (typically the PCR6 rule);

• Step 4: choice of the final decision based on the resulting

combined bba.

In FCOWA-ER, only one combination step is needed.

Furthermore, the bba’s obtained by using α-cuts are consonant

support (nested in order).

IV. APPLICATION TO PROBLEMS OF PROTECTION WORKS

EFFECTIVENESS

A. Assessment of structural effectiveness of a single check-

dam through ER-MCDA

1) AHP methodology: The problem consists in choosing

the observed structural effectiveness level of a given El. It is

assessed through 6 criteria gj [27] (Figure 2). ωj in Table I

are defined by experts.

Figure 2. Hierarchical structure to assess observed structural effectiveness of
El.

According to DST (Dempster-Shafer Theory) framework

[10], Θ is composed of 4 exclusive elements of effectiveness

levels: HD1 = ’High’, HD2 = ’Medium’, HD3 = ’Low’ and

HD4 = ’None’.

2) Imprecise evaluation and mapping of gj: For El, we

assume evaluations of gj by two experts (sources) s1 and s2
through possibility distributions (Table I). Through expert elic-

itation, a set of fuzzy intervals L−−R links each gj evaluation

scale and Θ. Quotations used are extracted from [28] (Table

II). Using this mapping process, bbas are established in Table

III.

To take into account the reliability of each source, we

discount the input masses of Table III by applying the classical

Shafer’s discounting method [10]. We use here discounting

factors αs1 = 0.7 and αs2 = 0.5. We obtain 12 discounted

bba’s (noted m′
1 and m′

2) in Table IV.

3) Two steps of fusion: The step 1 consists in combining

the bbas m′
1(.) and m′

2(.) for each gj with PCR6 fusion rule

(Table V).

In step 2, we apply to each bba of Table V the importance

discounting method presented in [29]. We use ωj (Table I) to

get the Table VI. After combining its 6 bba with a variant

of PCR6 to take into account positive masses on ∅, noted

PCR6∅ and a normalization procedure [29], we finally get

the Table VII.

According to it, El is mainly medium effective because the

highest belief mass is m(HD2). Because m(HD3), we can

say that El effectiveness is more between low and medium,

but not high, nor none.

B. Comparing actions on Ai using (F)COWA-ER

1) Decision problem elicitation: gj is the Do effectiveness

level. In a DST framework, one assumes 7 scenarii such as

flood with bedload transport (So
3) or debris flow (So

6). One

considers 5 possible actions such as repair of all the degraded

check-dams (a3) or renewal of all check-dams (a5).
2) Cik and So evaluations.: One rates Cik with an integer

between 0 (no effective) and 10 (very high effective) [7]. As

Eq. (1), one assumes C where q = 5 and n = 7 (Eq. (6)).

C =













5 3 4 2 3 1 1
7 4 6 3 4 2 1
8 5 7 4 5 3 1
10 7 10 6 7 5 2
10 9 10 9 10 10 4













. (6)

One considers 4 Xl: X1 = So
1 ∪ So

3 ∪ So
5 , X2 = So

2 ∪
So
4 ∪ So

5 ∪ So
6 , X3 = So

7 , X4 = Θ. One gives m(X1) = 0.6,

m(X2) = 0.2, m(X3) = 0.01 and m(X4) = 0.19. Applying

the OWA pessimistic and optimistic operators, one can assess

the bounds of expected effectiveness levels for each actions

given by Eq. (7).

E[C] ⊂













[2.20; 4.56]
[3.00; 6.34]
[3.80; 7.33]
[5.60; 9.32]
[8.60; 9.94]













, (7)

EImp[C] ≈













[0.22; 0.46]
[0.30; 0.64]
[0.38; 0.74]
[0.56; 0.94]
[0.87; 1.00]













. (8)

3) Results through COWA-ER: Steps 1 and 2 make it

possible to assess bbas of the 5 actions in the Table VIII

passing by the normalized imprecise matrix EImp[C] given

in Eq. (8).

Step 3 combines the 5 bba’s altogether with choice of the

PCR6 fusion rule (Table IX).

Choosing the decision-making rule is needed to implement

the step 4. Results are compared in the Table X. One sees that

based on max of Bel, of BetP, of DSmP or of Pl, the best

action is always D5.
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Table I
CRITERIA EVALUATIONS OF El .

Expert 1 (s1) Expert 2 (s2)

Criterion gj ωj Unity E Π(E) N(E) E Π(E) N(E)

g1 0.1 Degree (d) d=0 1 1 d=0 1 1

g2 0.1 Meter (m) m=0 1 1 m=0 1 1

g3 0.3 Meter (m) 2 6 m 6 4 1 1 1 6 m 6 6 1 1

2.5 6 m 6 3.5 1 0.3 2 6 m 6 4 1 0.7

m=3 1 0.2

g4 0.1 Degree (d) d=0 1 1 15 6 m 6 20 1 1

10 6 m 6 20 1 0.55

g5 0.1 Meter (m) 0.1 6 m 6 0.5 1 1 m=0 1 1

0.2 6 m 6 0.4 1 0.5

g6 0.3 Meter (m) 0.2 6 m 6 1.2 1 1 0.2 6 m 6 0.8 1 1

0.4 6 m 6 0.8 1 0.7

0.5 6 m 6 0.7 1 0.3

Table II
MAPPING MODELS FOR EACH CRITERION.

HD1 HD2 HD3 HD4

Criterion gj Supp Noy Supp Noy Supp Noy Supp Noy

g1 0 6 d 6 5 d=0 0 6 d 6 15 5 6 d 6 10 10 6 d 6 30 15 6 d 6 25 25 6 d 30 6 d

g2 0 6 m 6 0.3 m=0 0 6 m 6 1 0.3 6 m 6 0.7 0.7 6 m 6 2 1 6 m 6 1.7 1.7 6 m 2 6 m

g3 0 6 m 6 0.5 m=0 0 6 m 6 2.5 0.5 6 m 6 2 2 6 m 6 4 2.5 6 m 6 3.5 3.5 6 m 4 6 m

g4 0 6 d 6 5 d=0 0 6 d 6 15 5 6 d 6 10 10 6 d 6 30 15 6 d 6 25 25 6 d 30 6 d

g5 0 6 m 6 0.2 m=0 0 6 m 6 0.5 0.2 6 m 6 0.3 0.3 6 m 6 1 0.5 6 m 6 0.8 0.8 6 m 1 6 m

g6 0 6 m 6 0.3 m=0 0 6 m 6 1.5 0.3 6 m 6 1.1 1.1 6 m 6 2.5 1.5 6 m 6 2.2 2.2 6 m 2.5 6 m

Table III
El BBA’S AFTER MAPPING PROCESS IN A DST FRAMEWORK.

Criterion gj g1 g2 g3 g4 g5 g6
m1(.)

HD1 1 1 0 1 0.03125 0.005

HD2 0 0 0.0875 0 0.78125 0.9912

HD3 0 0 0.825 0 0.1875 0.00037

HD4 0 0 0.0875 0 0 0

m2(.)
HD1 1 1 0 0 1 0.1875

HD2 0 0 0.1375 0.1125 0 0.8125

HD3 0 0 0.665 0.8875 0 0

HD4 0 0 0.1975 0 0 0

Table IV
SHAFER’S DISCOUNTING OF INPUT MASSES WITH RELIABILITY FACTORS

αs1 = 0.7 AND αs2 = 0.5.

Criterion gj g1 g2 g3 g4 g5 g6
m′

1
(.)

HD1 0.7 0.7 0 0.7 0.021875 0.0035

HD2 0 0 0.06125 0 0.546875 0.69384

HD3 0 0 0.57750 0 0.13125 0.00259

HD4 0 0 0.06125 0 0 0

Θ 0.3 0.3 0.3 0.3 0.3 0.3

m′

2
(.)

HD1 0.5 0.5 0 0 0.5 0.09375

HD2 0 0 0.06875 0.05625 0 0.40625

HD3 0 0 0.33250 0.44375 0 0

HD4 0 0 0.09875 0 0 0

Θ 0.5 0.5 0.5 0.5 0.5 0.5

4) Results through Fuzzy COWA-ER: Step 1 makes it

possible to get from Eq. (7) a normalized imprecise matrix

EFuzzy [C] in Eq. (9).

Table V
El BBAS AFTER THE STEP 1 OF PCR6-MCDA.

Criterion gj g1 g2 g3 g4 g5 g6
mStep1(.)

HD1 0.85 0.85 0 0.57656 0.35445 0.03820

HD2 0 0 0.0674 0.0198 0.41628 0.81046

HD3 0 0 0.69909 0.25364 0.07927 0.00131

HD4 0 0 0.08351 0 0 0

Θ 0.15 0.15 0.15 0.15 0.15 0.15003

Table VI
El BBAS AFTER IMPORTANCE DISCOUNTING.

Criterion gj g1 g2 g3 g4 g5 g6
mStep1(.) after importance discounting

∅ 0.9 0.9 0.7 0.9 0.9 0.7

HD1 0.085 0.085 0 0.05765 0.03544 0.01146

HD2 0 0 0.02022 0.00198 0.04163 0.24314

HD3 0 0 0.20973 0.02537 0.00793 0.00039

HD4 0 0 0.02505 0 0 0

Θ 0.015 0.015 0.045 0.015 0.015 0.04501

Table VII
El BBAS AFTER THE STEP 2 OF PCR6-MCDA.

Criterion gj mPCR6
∅
(.) mnormalized

PCR6
∅

(.)

∅ 0.96601 0

HD1 0.00547 0.16094

HD2 0.01560 0.45901

HD3 0.01141 0.33559

HD4 0.00017 0.00494

Θ 0.00134 0.03951

EFuzzy[C] ≈













[0.26; 0.46]
[0.35; 0.64]
[0.44; 0.74]
[0.65; 0.94]
[1.00; 1.00]













. (9)
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Table VIII
BASIC BELIEF ASSIGNEMENTS OF THE 5 ACTIONS.

Alternatives Di mi(Di) mi(D̄i) mi(Di ∪ D̄i)

D1 0.22 0.54 0.24

D2 0.30 0.36 0.34

D3 0.38 0.26 0.36

D4 0.56 0.06 0.38

D5 0.86 0 0.14

Table IX
FUSION OF THE 5 ELEMENTARY BBAS WITH PCR6.

Focal element mPCR6(.)

D1 0.02835

D2 0.04805

D3 0.07318

D4 0.15185

D5 0.39179

D1 ∪ D5 0.00019

D2 ∪ D5 0.0004

D3 ∪ D5 0.00059

D4 ∪ D5 0.00269

D1 ∪ D4 ∪ D5 0.0012

D2 ∪ D3 ∪ D5 0.00056

D2 ∪ D4 ∪ D5 0.00254

D3 ∪ D4 ∪ D5 0.00372

D1 ∪ D2 ∪ D5 0.00018

D1 ∪ D3 ∪ D5 0.00026

D1 ∪ D2 ∪ D3 ∪ D5 0.00138

D1 ∪ D2 ∪ D4 ∪ D5 0.02194

D1 ∪ D3 ∪ D4 ∪ D5 0.04123

D2 ∪ D3 ∪ D4 ∪ D5 0.09063

D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 0.13927

Table X
BEL, BETP, DSMP AND PL OF EFFECTIVENESS LEVELS OF ACTIONS ON

Di BASED ON COWA-ER.

Di Bel(Di) BetP (Di) DSmPǫ=0(Di) Pl(Di)

D1 0.028 0.073 0.037 0.234

D2 0.048 0.106 0.066 0.305

D3 0.073 0.136 0.103 0.351

D4 0.152 0.222 0.221 0.455

D5 0.392 0.463 0.572 0.699

For the step 2, by using a 5 α-cut approach, we convert

EFuzzy [C] into 2 bbas mPess(.) and mOpti(.). Step 3 com-

bines them with choice of the PCR6 fusion rule. Results are

given in the Table XI.

The Table XII shows the (approximate) values of Bel(.),
BetP (.), DSmPǫ=10−6(.) and Pl(.) based on mPCR6(.)
values of Table XI. One sees that based on max of Bel, of

BetP, of DSmP or of Pl, the best action is always D5 (similar

decision as with COWA-ER).

Table XI
THE 2 BBAS TO COMBINE AND THE RESULT OF PCR6 FUSION

Focal Element mPess(.) mOpti(.) mPCR6(.)

D5 0.35 0.06 0.3895

D4 ∪ D5 0.21 0.20 0.2847

D3 ∪ D4 ∪D5 0.09 0.10 0.1033

D2 ∪ D3 ∪D4 ∪ D5 0.09 0.18 0.1051

D1 ∪ D2 ∪D3 ∪ D4 ∪ D5 0.26 0.46 0.1174

Table XII
CREDIBILITY, BETP, DSMP AND PLAUSIBILITY OF EFFECTIVENESS

LEVELS OF Di BASED ON FCOWA-ER.

Di Bel(Di) BetP (Di) DSmP (Di) Pl(Di)

D1 0 0.023 0 0.117

D2 0 0.050 0 0.222

D3 0 0.084 0 0.326

D4 0 0.227 0 0.611

D5 0.389 0.616 1 1

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have both formalized the decision problem

and applied recent advanced MCDMs (ER-MCDA, COWA-

ER, FCOWA-ER) to assess effectiveness of torrent protective

check-dams in a context of imperfect information and more

or less reliable sources. This application, based on expert

knowledge, provides a class evaluation related to available

knowledge. Others outranking methods such as the Soft-

Electre Tri (SET) methodology [30] can also be applied to

sort protection systems in predefined effectiveness classes.

Defining uncertain states of nature and corresponding belief

mass m(.) remains challenging. Comparing belief functions

theory with Bayesian probabilities or Choquet capacities in

this actual context is a next step [31]. Effect on results of

the fusion rules and order of combinations have also to be

compared.

From an operational point of view, next steps will consist

in DM and decision problem complete elicitation, criteria,

importance, preferences on evaluation scale assessments. Af-

terwards, these methods will be combined in a global process

taking into account all the system scales related to protection

system devices.
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Abstract—The main purpose of this paper is to apply, and to
test the performance of the new method, based on belief functions,
proposed by Dezert & all to evaluate the quality of individual
association pairings provided in the optimal data association solu-
tion for improving the performances of multisensor-multitarget
tracking systems. The advantages of its implementation in an
illustrative realistic surveillance context when some of association
decisions are unreliable and doubtful and lead to potentially
critical mistakes are discussed. A comparison with the results
obtained on the base of Generalized Data Association is made.

Keywords: data association, belief functions, PCR6 fusion

rule, multitarget tracking.

I. INTRODUCTION

The problem of Data Association (DA) is a central in the

modern multi-target tracking (MTT) systems’ design [1,2]. It

relates to the process of associating uncertain measurements

(observations) to known tracks, and it is conditioned and

motivated by the most important function of each surveillance

system – to keep and to improve target tracks maintenance

performance. In the monosensor context it corresponds to

proper sensor observations partitioning (at a given scan) to

the predicted states of the targets in such a way that their

tracks’ updates to be as precise, correct, and reasonable, as

possible.

There are several approaches developed to resolve correla-

tion ambiguities and to select the best observation-track pair-

ings, based on different models. Some of them establish reward

matrix based on Kinematic only Data Association (KDA) and

on a probabilistic framework [3,4]. Some of them rely on

Belief Functions (BF) [5-9] and motivate the incorporation

of the advanced concepts for Generalized Data Association

(GDA) [6-8], allowing the introduction of target attribute

(target type, radar cross section, etc.) into the association

logic, in order to improve track maintenance performance in

complicated situations (closely spaced/crossing targets), when

kinematics data are insufficient for coherent decision making.

The main peculiarity consists in applying Dezert-Smarandache

theory (DSmT) of plausible and paradoxical reasoning [8]

to model and to process the utilized attribute data. In most

common case, when surveillance system provides kinematic

only information (such as range, azimuth, elevation), obtained

during a given scan, the most common way of dealing is

to solve the optimal DA solution and to use all solutions

(pairings) to update tracks, even if some of the parings have

poor quality. It could yields, in fact, to a bad/wrong track

updating, and, as a result, the overall tracking performance

could be degraded substantially.

The most recent method proposed by Dezert & Benameur

[10] to evaluate the Quality Assessment of Data Association

(QADA) encountered in multiple target tracking applications

in a mono-criterion context, and recently extended in [11]

for the multi-criteria context deal just with the case above.

It assumes that the rewards matrix is known and has been

obtained by a method chosen by the user. It is based on belief

functions for establishing the quality of pairings (interpreted as

a confidence score) belonging to the optimal data assignment

solution based on its consistency (stability) with respect to all

the second best solutions, provided by a chosen algorithm.

The main purpose of our paper is to serve as a preliminary

study of MTT performance evaluation based on QADA-KDA

approach, and to discuss its advantages in an illustrative

multi-target tracking scenario. We will make also comparison

between its performance and the results obtained on the base

of GDA. The paper is organized as follows. Section II de-

scribed the problem of DA in the multitarget tracking context.

Section III provides the details about the new method [10] for

quality assessment of optimal DA solution. In Section IV the

simulation scenario and results are presented and discussed.

The conclusion is given in Section V.

II. DATA ASSOCIATION PROBLEM IN MULTITARGET

TRACKING CONTEXT

Data Association is very important, and the most decisive

step in the multitarget tracking surveillance process. The DA

problem consists in finding the global optimal assignment of

the targets Ti (i = 1, ,m) to some measurements zj (j =
1, . . . , n) at a given time k by maximizing the overall gain

Originally published as: J. Dezert, A. Tchamova, P. Konstantinova, The Impact of the Quality Assessment 
of Optimal Assignment for Data Association in a Multitarget Tracking Context, Cybernetics and 
Information Technologies, Vol. 15, No. 7, pp. 88–98, Dec. 2015, and reprinted with permission.
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in such a way that no more than one target is assigned to a

measurement, and reciprocally.

The so called m × n rewards (gain/payoff) matrix

Ω = [ω(i, j)] is defined with elements ω(i, j) > 0, represent-

ing the gain of the association of target Ti with measurement

zj . These elements are usually homogeneous to the likeli-

hood ratios. In some cases ω(i, j) > 0 represent normalized

distances between measurement j and target i, and in this

case DA problem consists in finding the best assignment,

minimizing the overall cost.

The goal of the optimal assignment problem is to find m×n
binary association matrix A = [a(i, j)], where:

a(i, j) =

{

1, if measurement zj is assigned to track Ti,

0, otherwise.

(1)

The association matrix maximizes the global reward

R(Ω, A), given by:

R(Ω, A) ,

m
∑

i=1

n
∑

j=1

ω(i, j)a(i, j). (2)

The importance of the assignment problem is quite clear

and various successful solutions to its resolving already ex-

ist. Among the well known are Kuhn-Munkres algorithm

(known as Hungarian) [12,13] and its extension proposed by

Bourgeois and Lassalle in [14] to rectangular matrices. More

sophisticated Murty’s method [15] provides not only the first

best assignment, but also the m-best assignments in order of

increasing cost, as shown in examples of [10,11]. The best

optimal assignment solution is not necessarily unique, as well

the second best one. Usually in MTT algorithms the first best

assignment solution is taken as a hard decision for association.

But in some real practical cases of dense multi-target and

cluttered environment, DA problem is difficult to solve, be-

cause some of associations decisions a(i, j) are unreliable and

doubtful, so they could lead to potentially critical mistakes.

For example in case of incorrect determination of the incoming

measurements for two tracks in such a way, that they are too

close, the solution of the assignment problem, that is the core

of GNN, is impossible to be sufficiently explicit. In such a

case, it will be more cautious to not rely on all the pairings

confirmed in the first best solution, but only on some of them

which are enough trustable, according to the a priori defined

threshold level. Utilizing the already obtained and available m-

best assignments solutions, Dezert & al. [10,11] provide very

efficient method for achieving this important knowledge.

III. QUALITY ASSESSMENT OF OPTIMAL DA

The first and the second best assignments matrices A1

and A2 are used [10], in order to establish the quality of

the specific associations (pairings) satisfying the condition

a1(i, j) = 1. The main idea behind QADA method is to

compare the values a1(i, j) = 1 in A1 with the corresponding

ones a2(i, j) = 1 in A2, and to identify the change (if

any) of the optimal pairing (i, j). In our MTT context, (i, j)
means that measurement zj is associated with target Ti. A

quality indicator is established, depending on both the stability

of the pairing and its relative impact on the global reward.

The proposed method works also when the 1st- and 2nd-

best optimal assignment A1 and A2 are not unique, i.e. there

are multiplicities available. The construction of the quality

indicators is based on BF theory and Proportional Conflict

Redistribution fusion rule no.6 (PCR6), defined within DSm

theory [8]. It depends on the type of pairing matching in the

way, described below:

• In case, when a1(i, j) = a2(i, j) = 0, one has a full

agreement on “non-association” of the given pairing (i, j)
in A1 and A2. This “non-association” has no impact on

the global reward values R1(Ω, A1) and R2(Ω, A2), so

it will be useless to utilize it in DA. Hence, the quality

indicator value is set to q(i, j) = 0.

• In case, when a1(i, j) = a2(i, j) = 1, one has a full

agreement on “association” of the given pairing (i, j)
in A1 and A2. This “association” has different impacts

on the global reward values R1(Ω, A1) and R2(Ω, A2).
In order to estimate the quality of this matching as-

sociation, one establishes two basic belief assignments

(bba), ms(.) (s = 1, 2) according to the both sources of

information (A1 and A2). The frame of discernment, one

reasons on, consists of a single hypothesis X = (Ti, zj):
measurement zj belongs to track Ti , and its negation

X̄: measurement zj does not belong to track Ti. The

ignorance is modelled by the proposition X ∪ X̄ .

{

ms(X) = as(i, j)ω(i, j)/Rs(Ω, As),

ms(X ∪ X̄) = 1−ms(X).
(3)

Applying the conjunctive rule of combination denoted by

m1(.)⊕m2(.) one gets:











m12(X) = m1(X)m2(X) +m1(X)m2(X ∪ X̄)

+m1(X ∪ X̄)m2(X),

m12(X ∪ X̄) = m1(X ∪ X̄)m2(X ∪ X̄).
(4)

The pignistic transformation [15] is applied in order

to obtain the pignistic probabilities, built on the base

of fused basic belief assignments, as BetP (X) =
m12(X) + 1

2
m12(X ∪ X̄) and BetP (X̄) = m12(X̄) +

1

2
m12(X ∪ X̄). Then, one chooses the quality indicator

about the association (Ti, zj) as q(i, j) = BetP (X).

• In case, when a1(i, j) = 1 and a2(i, j) = 0, then a dis-

agreement (conflict) on the association (Ti, zj) in A1 and

A2 is detected. One could find the association (Ti, zj2)
in A2, where j2 is the measurement index, such that

a2(i, j2) = 1. In order to define the quality of such

conflicting association (Ti, zj), one establishes two basic

belief assignments (bba), ms(.) (s = 1, 2) according to

the both sources of information (A1 and A2). The frame

of discernment, one reasons on, consists of the following

two propositions: X = (Ti, zj), and Y = (Ti, zj2). The
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ignorance is modelled by the proposition X ∪ Y . Then

one obtains:
{

m1(X) = a1(i, j)ω(i, j)/R1(Ω, A1),

m1(X ∪ Y ) = 1−m1(X).
(5)

{

m2(Y ) = a2(i, j2)ω(i, j2)/R2(Ω, A2),

m2(X ∪ Y ) = 1−m2(Y ).
(6)

Different rules of combination (Dempster-Shafer’s,
Dubois-Prade’s, Yager’s [16] could be chosen to work
with a normalized combined BBA. The method [10]
recommends to use the Proportional Conflict Redistribu-
tion rule no. 6 (PCR6), proposed originally in DSmT
framework [8], because it has been proved very effi-
cient in practice. With PCR6, the following fusion result
mPCR6(.) = m1(.)⊕m2(.) is obtained:










mPCR6(X) = m1(X)m2(X ∪ Y ) +m1(X) m1(X)m2(Y )

m1(X)+m2(Y )
,

mPCR6(Y ) = m1(X ∪ Y )m2(Y ) +m2(Y ) m1(X)m2(Y )

m1(X)+m2(Y )
,

mPCR6(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y ).
(7)

The decision is taken on the base of the pignistic trans-

formation:

BetP (X) = mPCR6(X) +
1

2
mPCR6(X ∪ Y ), (8)

BetP (Y ) = mPCR6(Y ) +
1

2
mPCR6(X ∪ Y ). (9)

The quality indicators are chosen as: q(i, j) = BetP (X)
and q(i, j2) = BetP (Y ). The absolute quality factor

becomes:

Qabs(A1, A2) =

m
∑

i=1

n
∑

j=1

a1(i, j)q(i, j). (10)

IV. SIMULATION SCENARIO AND RESULTS

The noise-free multitarget tracking simulation scenario

(Fig.1) consists of three air targets moving in parallel from

West to East with constant velocity of 100 m/sec and a distance

between them 150 m. The stationary sensor is located at

the origin. The sampling period is Tscan = 5 sec, and the

measurement standard deviations are 0.5 deg and 65m for

azimuth and range respectively. The surveillance of moving

targets is performed during 15 scans. Figure 2 shows the

respective noised scenario.

The classical target tracking algorithm was run, consisting

in two basic steps: (i) data association to associate proper

measurements (distance, angle) with correct targets and (ii)

track filtering to update the targets state vectors, once the op-

timal assignment was found. In our simulation the Converted

Measurement Kalman Filter [1] is used.
In this work we will focus our attention on DA step, which

is very important, and the most decisive one in the multitarget
tracking. The Global Nearest Neighbour (GNN) [1] approach
is used in order to make a decision for data association. One
obtains the assignment matrix AMat(i, j), (i = 1, . . . ,m; j =
1, . . . , n) based on normalized distances between measurement
j and target i. In order to eliminate unlikely (kinematics-
based) observation-to-track pairings, the classical validation

Fig. 1. Noise-free MTT scenario.

Fig. 2. Noised MTT scenario.

test d2(i, j) ≤ γ is carried on the Mahalanobis distance [1,2]
d2(i, j) computed from the measurement zj(k) at a given time
moment k, and its prediction ẑi(k|k − 1) by

d2(i, j) , (zj(k)− ẑi(k|k−1))′S−1(k)(zj(k)− ẑi(k|k−1)). (11)

Assuming given measurement vector’s size M , the quantity

d2(i, j) could be interpreted as a sum of the squares of

M independent Gaussian random variables with zero means

and unit standard deviations. For that reason d2(i, j) have

χ2

M distribution with M degrees of freedom and allowable

probability of a valid observation falling outside the gate. In

our case a probability of 1% is approved, then from the table

of the chi-square distribution [2] one obtains the threshold

γ = 9.21. In fact, this value represents the biggest possible

distance’s value associated with observation-to-track pairings.

Based on this, one assumes that if j-th measurement does not

fall in the gate of target i, then the value, associated with

this pairing (i, j) in the assignment matrix could be set to be

enough big (in our case equals to 100), in order to prepare the

assignment matrix for the next step. The classical Munkres

and Katta-Murty methods [15] are used in order to obtain the

first and second best assignment solutions for measurement-

to-track associations. By minimizing the sum of the chosen

pairings’ distances, a binary association matrix A = [a(i, j)]
is obtained. Figure 3 shows the typical MTT performance,

based on classical GNN approach with Kinematic only DA

(KDA), when one does not utilize additional procedures to

improve the quality of DA.

In case of noised measurements, it is evident that at scan

number 9 tracks 2 and 3 change their directions, becoming
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Fig. 3. Typical MTT performance with KDA.

crossing, instead of following their parallel moving behavior.

It is because of incorrect determination of the incoming

measurements in such a way, that they are too close and the

solution of the assignment problem, which is the core of GNN,

is impossible to be categorical. The problem consists also in

the proximity of the targets (inter-distance of 150 m), and in

the bad sensor distance resolution of σD = 65 m. It leads to

wrong GNN association decision.

A criterion for a minimal admissible measurements’ dis-

tances is chosen here as dmin < σD/2. During scan no. 9 one

has: d23 < dmin.

In such a critical case, one needs to utilize some additional

information in order to avoid associations’ miscorrelations.

Here the method in [10] is applied. The goal is to estimate

the quality of questionable pairings (T2, z2) and (T3, z3). One

obtains the corresponding reward matrix Ω = [ω(i, j)] with

elements ω(i, j) representing the gain of the associations of

target Ti (i = 1, . . . ,m) with measurement zj (j = 1, . . . , n).

It is achieved as: ω(i, j) = 10 − AMat(i, j). The reason

for this expression relates to the already determined maximal

normalized distance γ = 9.21, according to the table of chi-

square distribution. The data association deals with finding

the global optimal assignment of the targets to some mea-

surements by maximizing the overall gain in such a way that

no more than one target is assigned to a measurement, and

reciprocally. This is an equivalent measure for optimality, as

is the global minimum of the distances.

The algorithm, based on [10] was automatically applied

during the scan no. 9, because the minimum distance between

observations no. 2 and no. 3 is under the accepted limits

d(2, 3) = 15.83m < σD/2. The quality matrix at scan no.

9, containing the quality levels associated with the chosen

pairings in the first best solution

A1 =





1 0 0
0 1 0
0 0 1



 ,

characterizing the set {(T1, z1), (T2, z2), (T3, z3)} of associa-

tions, with respect to the second best solution

A2 =





1 0 0
0 0 1
0 1 0



 ,

characterizing the set {(T1, z1), (T2, z3), (T3, z2)} of associa-

tions, is given in Table I below.

TABLE I
QUALITY MATRIX AT SCAN 9.

Obs/Track 1 2 3

1 0.773 0.000 0.000
2 0.000 0.504 0.000
3 0.000 0.000 0.498

It is obvious that according to the first best assignment

solution, one has: q(T1, z1) = 0.773, q(T2, z2) = 0.504, and

q(T3, z3) = 0.498. We accept the admissible for a correct

association quality threshold to be set to qT = 0.7.

Based on the associations quality assessment (Table I), and

the accepted quality threshold qT = 0.7, one could make the

following decision: The only pairing, among those, chosen

by Munkres algorithm in the first best assignment is (T1, z1),
because its quality level exceeds the accepted reasonable for

correct association quality threshold q(T1, z1) = 0.773 > qT .

Following the decision logic in [10], only (T1, z1) pairing will

be used in the updating process, while the second and third

tracks will keep going under prediction mode while the next

measurements will be available, because q(T2, z2) = 0.504 <
qT , and q(T3, z3) = 0.498 < qT . The performance of the MTT

algorithm, based on the QADA-KDA is shown on Fig.4. It

is obvious that the reasoned/informed decision taken at scan

no.9, based on QADA-KDA method leads to miscorrelation

conflict resolution.

Fig. 4. MTT performance with QADA-KDA.

In order to compare the obtained by QADA result, the

simulation was made by applying GDA (Fig.5), when the

target attribute (target type) is introduced into the association

logic, in order to improve track maintenance performance in

the same MTT scenario, with an additional assumption, that

targets go from West to East in a group with the following

type order {Fighter,Cargo, Fighter}.

GDA-MTT improves the process of DA by utilizing target’s

type decision (based on confusion matrix C = [cij ]) coupled
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Fig. 5. MTT performance with GDA.

with the classical kinematic measurements. The way of con-

structing the confusion matrix is based on some underlying

decision-making process based on specific attribute features

measurements. Its elements represent the probability of deci-

sions Td (T1 = Fighter, T2 = Cargo) that the target type is j
when its real type is i, more precisely

cij = P (Td = Tj| True Target Type = i).

In our simulation we have chosen the following confusion

matrix

C =

[

0.95 0.05
0.05 0.95

]

.

GDA is applied at each scan during the whole surveillance

process, in order to prevent observation-to-track miscorrela-

tions.

V. CONCLUSION

This work is a preliminary study of MTT performance

evaluation based on the new Quality Assessment of optimal

DA method, proposed by Dezert & al. It assures the stability

of MTT performance and could be applied in all cases

relating to the impossibility of DA to produce an association

decision with a high quality. It might concern cases, when only

kinematics measurements are available, as well the cases when

attribute and kinematic data are both available, because QADA

is totally independent of the applied logic to obtain the best

DA solution. The work’s perspective concerns Monte Carlo

based evaluation of different, more critical MTT scenarios in

a multi-sensor context.
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Abstract—The main objective of this paper is to present, to
apply, and to test the effectiveness of the new method, based on
belief functions, proposed by Dezert et al. in order to evaluate
the quality of the individual association pairings provided in
the classical optimal data association solution for improving
the performances of multitarget tracking systems in clutter,
when some of the association decisions given in the optimal
assignment solution are unreliable and doubtful and lead to
potentially critical mistake. This evaluation is based on a Monte
Carlo simulation for particular difficult maneuvering and non-
maneuvering MTT problems in clutter. A comparison with the
results obtained on the base of Kinematic only Data Association
and Generalized Data Association is made.

Keywords: Data association, Belief Functions, PCR6 fusion

rule, multitarget tracking.

I. INTRODUCTION

Data association (DA) is a fundamental and central problem

in up-to-date multitarget tracking (MTT) systems [1]-[2].

It entails selecting the most trustable associations between

uncertain sensor’s measurements and existing targets at a given

time. In the presence of dense MTT environment, with false

alarms and sensors detection probability less than unity, the

problem of DA becomes more complex, because it should

contend with many possibilities of pairings, some of which are

in practice very doubtful, unreliable, and could lead to critical

association mistakes in overall tracking process. To avoid such

cases, sometimes it is better to wait for a new measurements

during the next scan, instead of taking a hard DA decision,

which actually is not always unique.

Several methods have been devised over the years, in

order to resolve properly DA problem. They are originating

from different models. Some rely on the established reward

matrix based on Kinematic only Data Association (KDA)

and on a probabilistic framework [3]-[4]. Some other stud-

ies are based on Belief Functions (BF) [5]-[9], motivating

the incorporation of the advanced concepts for Generalized

Data Association (GDA) [6]-[8], where a particular target’s

attribute is introduced into the association logic in order to

compensate the complicated cluttered cases, when kinematics

data are insufficient for adequate decision making. Dezert-

Smarandache Theory (DSmT) of plausible and paradoxical

reasoning [8] is used to model and to process the utilized

attribute data. Although interesting and approved, all these

methods currently developed are limited to the following

aspect - all of them solve the optimal DA problem and use

all optimal observations-to-tracks pairings, selected in the first

best DA solution to update tracks, even if some of them have

poor quality. In consequence the overall tracking performance

could be degraded substantially. In order to deal with this case

the most recent method to evaluate the Quality Assessment

of Data Association (QADA) encountered in multiple target

tracking applications in a mono-criterion context is proposed

by Dezert and Benameur [10]. It is extended in [11] for

the multi-criteria context. This novel method assumes the

reward matrix is known, regardless of the manner in which

it is obtained by the user. It is based on BF for achieving

the quality of pairings (interpreted as a confidence score)

belonging to the optimal data assignment solution based on

its consistency (stability) with respect to all the second best

solutions, provided by a chosen algorithm.

This paper is an extension of our preliminary study on the

effect of applying QADA method in MTT presented in [17].

The main purpose of our paper is to assess the efficiency of

QADA method in a critical, conflicting MTT situation. The

evaluation is based on a Monte Carlo simulation for particular

difficult maneuvering and non-maneuvering MTT problems

in clutter. The QADA based MTT performance is compared

with the results, obtained for KDA and GDA based MTT,

concerning the same scenarios. The paper is organised as

follows. In order to achieve a good readability of the paper,

we recall in section II the data association problem within

the MTT context, and in a section III the details of the new

method, proposed by Dezert et al. [10] for quality assessment

of pairings, chosen in the optimal DA solution. In section IV

we discuss and propose the way in which Kalman filtering

could be affected in order to reflect the knowledge we have

obtained on the base of QADA method. Two simulation MTT

scenarios (with non-maneuvering and maneuvering targets) are

presented and the results, obtained on the base of QADA-,

KDA-, and GDA based MTT are discussed. Conclusions are

made in Section VI.
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II. DATA ASSOCIATION PROBLEM IN MTT CONTEXT

The DA problem consists in finding the global optimal

assignments of targets Ti, i = 1, ...,m to some measurements

zj , j = 1, ..., n at a given time k by maximizing the overall

gain in such a way, that no more than one target is assigned

to a measurement, and reciprocally.

The m × n reward (gain/painoff) matrix Ω = [ω(i, j)] is

defined by its elements ω(i, j) > 0, representing the gain of

the association of target Ti with the measurement zj . These

values are usually homogeneous to the likelihood ratios. In our

case ω(i, j) represents the normalized distances between the

measurement Zj and target Ti : d2(i, j) , (zj(k)− ẑi(k|k −
1))′S−1(k)(zj(k) − ẑi(k|k − 1)) ≤ γ computed from the

measurement zj(k) and its prediction ẑi(k|k−1) computed by

the tracker of target i (see [2] for details), and the inverse of

the covariance matrix S(k) of the innovation computed by the

tracking filter. In this case the DA problem consists in finding

the best assignment, minimizing the overall cost.

The optimal DA problem consists in finding the m × n
binary association matrix A = [a(i, j)] with a(i, j) ∈ {0, 1},

maximizing the global reward R(Ω,A), given by:

R(Ω,A) ,

m
∑

i=1

n
∑

j=1

ω(i, j)a(i, j). (1)

If a(i, j) = 1, it means that one has an association between

target Ti and measurement zj . The association indicator value

a(i, j) = 0 means that they are not associated.

a(i, j) =

{

1, if zj is associated to track Ti,

0 otherwise.
(2)

The importance of the assignment problem is quite clear

and various successful solutions to its solving already ex-

ist. Among the well known are Kuhn-Munkres algorithm

(known as Hungarian) [12]-[13], and its extension proposed by

Bourgeois and Lassalle in [14] to rectangular matrices. More

sophisticated Murty’s method [15] provides not only the first

best assignment, but also the m-best assignments in order of

increasing cost, as it was shown in the examples in [10]-[11].

The best optimal assignment solution is not necessarily unique,

as well as the second best one. Usually in MTT algorithms the

first best assignment solution is taken as a hard decision for

association. But in some real practical cases of dense multi-

target and cluttered environment, DA problem is difficult to

solve, because some of the associations decisions a(i, j) are

unreliable, so they could lead to potential mistakes.

For example, in case of incorrect determination of the

incoming measurements for two tracks in such a way, that they

are too close, the solution of the assignment problem, that is

the core of the Global Nearest Neighbour (GNN) approach,

is impossible to be sufficiently explicit. In such a case, it will

be more cautious not to rely on all the pairings confirmed in

the first best solution, no matter than only some of them are

trustable enough. Utilizing the already obtained and available

m-best assignments solutions, Dezert et al. [10], [11] provided

an appealing method for taking into account this knowledge.

III. QUALITY ASSESSMENT OF PAIRINGS IN DA

In order to establish the quality of particular associations,

associated with the optimal assignment matrix A1, and satis-

fying the condition a1(i, j) = 1, QADA method proposes to

utilize both, first and second assignment solutions A1 and A2.

For a self-containing purpose, this section recalls briefly the

principle of QADA that has been already detailed in [10], [11]

with a tracking application in [17].

The main idea behind it is to compare the values a1(i, j)
in A1 with the corresponding values a2(i, j) in A2, and to

identify if there is a change of the optimal pairing (i, j). In

our MTT context (i, j) means an association between mea-

surement zj and target Ti. One establishes a quality indicator

associated with this pairing, depending on the stability of

the pairing and also, on its relative impact in the global

reward. The proposed method works also when the 1st and

2nd optimal assignments A1 and A2 are not unique, i.e., there

are multiplicities available. The construction of the quality

indicator is based on BF theory and Proportional Conflict

Redistribution Rule no.6 (PCR6), defined within DSmT [8]. It

depends on the type of the pairing matching, as it is described

below:

• If a1(i, j) = a2(i, j) = 0, one has a full agreement on the

hypothesis ’non-association’ of the given pairing (Ti, zj)
in A1 and A2. This ’non-association’ has no impact

on the global reward values R1(Ω,A1) and R2(Ω,A2),
therefore it will be useless to utilize it in DA. Hence,

in this case, the quality indicator will be set to zero,

q(i, j) = 0.

• If a1(i, j) = a2(i, j) = 1, one has a full agreement on

the hypothesis ’association’ of the pairing (Ti, zj) in A1

and A2. This ’association’ (Ti, zj) has different impacts

on the global reward values R1(Ω,A1) and R2(Ω,A2).
In order to estimate the quality of this matching pairing,

one establishes two Basic Belief Assignments (BBAs),

ms(.), s = 1, 2, according to both sources of information

(1st and 2nd optimal assignments matrices A1 and A2).

The frame of discernment consists of a single hypothesis

X = (Ti, zj) : measurement zj belongs to the track Ti.

The ignorance is modelled by the proposition X ∪ X̄ ,

where X̄ is the negation of hypothesis X :
{

ms(X) = a1(i, j).ω(i, j)/R1(Ω,A1),

ms(X ∪ X̄) = 1−ms(X).
(3)

Applying the conjunctive rule of combination [8] (Vol.

1), one gets:










m12(X) = m1(X)m2(X) +m1(X)m2(X ∪ X̄)

+m1(X ∪ X̄)m2(X),

m12(X ∪ X̄) = m1(X ∪ X̄)m2(X ∪ X̄).
(4)

The pignistic transformation [16] is applied in order

to obtain pignistic probabilities, built on the base of

combined belief assignments, such as: BetP (X) =
m12(X) + 1

2
.m12(X ∪ X̄) and BetP (X̄) = 1

2
.m12(X ∪
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X̄). Then one chooses the quality indicator, associated

with the pairing (i, j), as q(i, j) = BetP (X).
• If a1(i, j) = 1 and a2(i, j) = 0, then a conflict is encoun-

tered on the association (Ti, zj) in A1 and A2. Then one

could find the association (Ti, zj2) in A2, where j2 is

the index, such that a2(i, j2) = 1. In order to define the

quality of such conflicting association, one establishes

two BBAs, ms(.), s = 1, 2 according to both sources

of information (A1 and A2). The frame of discernment

consists of two propositions: Θ = {X = (Ti, zj), Y =
(Ti, zj2)}, and the BBAs are defined by [10].

{

m1(X) = a1(i, j) · ω(i,j)

R1(Ω,A1)
,

m1(X ∪ Y ) = 1−m1(X),
(5)

{

m2(Y ) = a2(i, j2) · ω(i,j2)

R2(Ω,A2),

m2(X ∪ Y ) = 1−m2(Y ).
(6)

Applying PCR6 fusion rule [8] (Vol. 3), one gets:










m(X) = m1(X).m2(X ∪ Y ) +m1(X) · m1(X)m2(Y )

m1(X)+m2(Y )
,

m(Y ) = m1(X ∪ Y ).m2(Y ) +m2(Y ) · m1(X)m2(Y )

m1(X)+m2(Y )
,

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y ).
(7)

Applying again the pignistic transformation, one gets

BetP (X) = m(X) + 1

2
.m(X ∪ Y ) and BetP (Y ) =

m(Y ) + 1

2
.m(X ∪ Y ). Hence, the quality indica-

tors here are chosen as: q(i, j) = BetP (X) and

q(i, j2) = BetP (Y ). The absolute quality factor be-

comes: Qabs(A,A2) =
∑m

i=1

∑n

j=1
.a(i, j).q(i, j).

Once obtained, this quality matrix Q = [q(i, j)], i =
1, . . . ,m; j = 1, . . . , n, where the elements q(i, j) ∈
[0, 1] define the quality of particular associations, chosen

in the optimal assignment matrix A1. It will be utilized

in the next step of the classical MTT algorithm - Kalman

filtering (KF).

IV. KALMAN FILTERING INFLUENCED BY QADA METHOD

The classical target tracking algorithm was run, consisting

of two basic steps: (i) data association to associate the proper

measurements (distance, angle) with correct targets and (ii)

track filtering to update the targets state vectors, once the

optimal assignment is found. In our simulation the Global

Nearest Neighbour (GNN) [1] approach is applied in order

to make a decision for data associations. GNN approach is

a DA method that provides an assignment matrix for quality

assessment of data association.

The Converted Measurement Kalman Filter (CMKF) is used

for track filtering. We will not recall it in details, which

can be found in many standard textbooks [1]-[2], but will

make an impact on the manner, in which the obtained quality

assessment of pairings in the optimal assignment solution

influences the target’s state updating.

In order to derive KF equations, the goal is to find an

equation computing an a posteriori state estimate x̂(k+1|k+1)
at time (k+1) as a linear combination of an a priori estimate

x̂(k + 1|k), and a weighted difference between the true

measurement z(k + 1) and a measurement prediction:

x̂(k + 1|k + 1) = x̂(k + 1|k) +W(k + 1)z̃(k + 1) (8)

The difference z̃(k + 1) , z(k + 1)−Hx̂(k + 1|k), called a

measurement innovation (or residual), reflects the discrepancy

between the predicted measurement ẑ(k + 1|k) = H(k +
1)x̂(k + 1|k) and the true one z(k + 1), where H(k + 1) is

the so-called observation matrix. If z̃(k + 1) is equal to zero,

it means, that both, the true measurement and predicted one

are in full agreement, which is the perfect case. The matrix

W(k + 1) is the filter’s gain matrix obtained by minimizing

the a posteriori estimate error covariance. It is given by

the following formulae, where R is the measurement error

covariance, and P(k+1|k) is the predicted covariance matrix

of the state estimate error:

W(k + 1) = P(k + 1|k)HT (k + 1)S−1(k + 1) (9)

= P(k + 1|k)HT (k + 1)

· [H(k + 1)P(k + 1|k)HT (k + 1) +R]
−1

. (10)

From Eqs. (8) and (10) one could conclude, that the value

of measurement error covariance R influences the gain’s value

W(k+1), and respectively the state estimate in the way below:

• If the measurement error covariance R → 0, the true

measurement z(k + 1) is trusted more, and in the same

time predicted measurement Hx̂(k+1|k) is trusted less.

• If the measurement error covariance R increases, the true

measurement z(k+1) is trusted less, and in the same time

predicted measurement Hx̂(k + 1|k) is trusted more.

Let’s now recall again what kind of information one obtains,

having in hand the quality matrix, derived by QADA method

[10]. It gives us a knowledge about the confidence q(i, j) in

all pairings (Ti, zj), i = 1, ..,m; j = 1, .., n, chosen in the

first best assignment solution. The smaller quality (confidence)

of hypothesis “zj belongs to Ti” means, that the particular

measurement error covariance R was increased and one should

not trust fully in the actual (true) measurement z(k + 1).
Having this conclusion in mind, in this work we propose,

such a behaviour of the measurement error covariance to be

modelled by R = R

q(Ti,zj)
, for every pairing, chosen in the

first best assignment and on the base of corresponding quality

value obtained. Then, Kalman filter gain decreases, and as a

result, the true measurement zj(k + 1) is trusted less in the

updated state estimate x̂(k + 1|k + 1).
The MTT algorithm tested in this paper is based on the

classical one (using Kalman Filters based on kinematics mea-

surements) because we are only concerned with impact QADA

on the performances of such type of tracking filters for now.

Our aim is not to compare this QADA-MTT to other more

sophisticate MTT algorithms1, but we believe that QADA

approach could also be useful for improving performances of

more sophisticate MTT algorithms as well. This is left for

future research works.

1In fact, we will just compare QADA-MTT to KDA-MTT and GDA-MTT
based on CMKF in Section V.
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V. SIMULATION SCENARIOS AND RESULTS

Two simulation MTT scenarios - non-maneuvering and

maneuvering are presented and the results, obtained on the

base of QADA-, KDA-, and GDA based MTT are discussed.

A. Maneuvering targets simulation scenario

The simulation scenario (Fig. 1) consists of three air targets

with two classes. The stationary sensor is located at the origin.

The sampling period is Tscan = 5sec and the measurement

standard deviations are 0.4 deg and 25m for azimuth and

range respectively. The targets go from West to East with the

following type order CFC (C=Cargo, F=Fighter) with constant

velocity 100m/sec. At the beginning the targets move from

different directions. The first target moves from North-West

with heading 120 degrees from North. At scan no. = 8
the target performs a maneuver until scan no. = 15 with

transversal acceleration +1.495m/s2 and settles towards East,

moving in parallel according to X axis. The second target

moves during the whole scenario in parallel according to

X from West to East without maneuvering. The third target

at the beginning moves from South-West with heading 60
degrees from North. At scan no. = 8 the target performs a

maneuver until scan no. = 15 with transversal acceleration

−1.495m/s2 and settles towards East, moving in parallel

according to X axis. The inter-distance between the targets

during scans 15th - 18th (the parallel segment) is approxi-

mately 150m. At scan no. = 18 to scan no. = 25 the first

and the third targets make new maneuvers. The first one is

directed to North-East and the second - to South-East. The

process noise standard deviations for the two nested models

for constant velocity IMM (Interacting Multiple Models) filter

[1], [3] are 0.1m/s2 and 7m/s2 respectively. The number of

false alarms (FA) follows a Poisson distribution and FA are

uniformly distributed in the surveillance region.
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Figure 1. Noise-free maneuvering MTT Scenario.

Fig. 2 shows the respective noised scenario.

GDA-MTT [6], [7] improves DA process by utilizing

target’s type decision based on the confusion matrix C = [Cij ]
coupled with the classical kinematic measurements, where

Cij = P (Td = Tj/T rueTargetT ype = Ti) represents the

probability of decisions Td = (T1 , Fighter, T2 , Cargo),
that the target type is j when its real type is i. In our

simulation C =

[

0.95 0.05
0.05 0.95

]

.
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Figure 2. Noised maneuvering MTT Scenario.

Monte Carlo (MC) simulations for the considered MTT

scenario are made for 200 MC runs, applying KDA, QADA,

and GDA. Our goal is to evaluate, show, and to discuss

the effect of Quality Assessment of Optimal Assignment for

Data Association on the overall target tracking performance

in comparison to results, obtained for the same scenario,

by Kinematic only Data Association, and Generalized Data

Association based MTT. We use an idealized track initiation

in order to prevent uncontrolled impact of this stage on the

statistical parameters of the tracking process during Monte

Carlo tests of the new developed algorithm. The true targets

positions (known in our simulations) for the first two scans

are used for tracks initiation.

The evaluation of MTT performance is based on the criteria

of tracks’ purity, tracks’ life, and percentage of miscorrelation.

Track’s purity criteria examines the ratio between the number

of particular performed (jth observation - ith track) associ-

ations (in case of detected target) over the total number of

all possible associations during the tracking scenario. Track’s

life is evaluated as an average number of scans before track’s

deletion. In our simulations, a track is cancelled and deleted

from the list of tracked tracks, when during 3 consecutive

scans it cannot be updated with some measurement because

there is no validated measurement in the validation gate. We

call this, the “cancelling/deletion condition”. The status of the

tracked tracks is denoted “alive”.

The percentage of miscorrelation examines the relative

number of incorrect (observation-to-track) associations during

the scans.

The results for less noised case (with 0.2 FA in average in

the filter validation gate) are given in Table 1.

Table I
MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA, GDA

BASED MTT PERFORMANCES FOR FA = 0.2.

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 86.65 92.82 91.06

Average Miscorrelation [%] 7.27 3.69 3.06

Track Purity [%] 77.44 88.20 85.74

QADA-MTT exceeds KDA-MTT according to average track

life and track purity, and shows better performance concerning

the encountered average track life in comparison to GDA-

MTT. Figure 3 shows the most informative knowledge - a
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percentage of miscorrelations, encountered during the consec-

utive scans. One could see, that QADA-MTT shows almost

two times better performance in comparison to KDA-MTT,

and is close to GDA-MTT performance.
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Figure 3. Maneuvering scenario: Average miscorrelations in KDA-MTT,
QADA-MTT, GDA-MTT for noised case FA = 0.2

The respective results for the most noised case (with 0.4

FA in average in the filter validation gate) are given in Table

2 below.

Table II
MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA, GDA

BASED MTT PERFORMANCES FOR FA = 0.4

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 74.27 86.61 86.52

Average Miscorrelation [%] 10.58 7.05 4.68

Track Purity [%] 60.42 77.96 79.35

As a whole, the results for FA = 0.4 are deteriorated in

comparison to the less noised case, but still QADA-MTT

shows stably better performance with respect to KDA-MTT

performance. The average track life keeps a little bit higher

than in GDA-MTT case.

The Fig.4, showing the percentage of miscorrelations in

more difficult noised case, confirms that QADA-MTT over-

comes KDA-MTT performance.
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Figure 4. Maneuvering scenario: Average miscorrelations in KDA-MTT,
QADA-MTT, GDA-MTT for noised case FA = 0.4

The figures 5 and 6 show typical performances of QADA-

MTT and KDA-MTT systems.

Figure 5. Maneuvering scenario: Typical performance of QADA based MTT.

Figure 6. Maneuvering scenario: Typical performance of KDA based MTT.

The figures 7 and 8 show the averaged filtered errors along

X (designated by asterisk) and Y (designated by circles) axes,

and the distance error associated with the maneuvering track

1 in the considered scenario.
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Figure 7. Filtered errors along X,Y for maneuvering track 1 - KDA-MTT,
QADA-MTT, GDA-MTT.

For the maneuvering target 1, the errors, along X axis,

obtained by using QADA-MTT, are definitely smaller than

those, encountered with KDA-MTT. The errors along Y are

a little bit bigger than respective errors along X, but as a

whole the distance error, encountered by using QADA-MTT

are smaller than in KDA-MTT. MC errors are evaluated on the

base of the averaged errors associated with all “alive” tracks.

Some of the errors occurred (for example in Fig.7 and Fig.8)
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Figure 8. Maneuvering scenario: Distance errors for maneuvering track 1 -
KDA-MTT, QADA-MTT, GDA-MTT.

could be explained by the unrealized canceling of tracks at the

end of the scenario, when some tracks go toward canceling, but

cannot satisfy the canceling condition because of lack of time.

As a result they are not cancelled (and not deleted) leading

that way to the increasing error.

Figures 9 and 10 show the behaviour of the same errors,

but now associated with the near-by non-maneuvering target

2.
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Figure 9. Maneuvering scenario: Filtered errors along X,Y for non-
maneuvering track 2 - KDA-MTT, QADA-MTT, GDA-MTT.
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Figure 10. Maneuvering scenario: Distance errors for non-maneuvering track
2 - KDA-MTT, QADA-MTT, GDA-MTT.

For the non maneuvering target 2, the filtered errors

along X and Y axes, obtained by using QADA-MTT, are

smooth and definitely smaller then those, encountered with

KDA-MTT. As a consequence, the associated with QADA-

MTT distance error is smaller than in KDA- and GDA-MTT.

The errors are calculated on the base only of the “alive” tracks.

B. Non-maneuvering targets simulation scenario

The noise-free non-maneuvering targets simulation scenario

(see Fig.11) consists of three air targets moving in parallel

from West to East with the type order CFC (C=Cargo,

F=Fighter) with constant velocity of 100m/sec and a

distance between them 150m. The stationary sensor is located

at the origin. The sampling period is Tscan = 5sec, and the

measurement standard deviations are 0.5 deg and 65m for

azimuth and range respectively. The surveillance of moving

targets is performed during 15 scans. The confusion matrix,

utilized by GDA is C =

[

0.95 0.05
0.05 0.95

]

. Fig. 12 shows the

respective noised scenario.
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Figure 11. Noise-free non-maneuvering MTT Scenario.
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Figure 12. Noised non-maneuvering MTT Scenario.

As reported in Table 3, QADA-MTT shows again almost

2 times better performance, in comparison to KDA-MTT,

according to the average miscorrelations, and also better

performance regarding the average track life and track purity.

Table III
NON-MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA,

GDA BASED MTT PERFORMANCES FOR FA = 0.2.

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 89.79 94.21 97.59

Average Miscorrelation [%] 21.36 10.77 5.82

Track Purity [%] 64.46 81.72 90.15
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Fig.13 shows the percentage of miscorrelations in less

noised case (with 0.2 FA in average per gate).
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Figure 13. Non-maneuvering scenario: Average miscorrelations in KDA-
MTT, QADA-MTT, GDA-MTT.

The same QADA-MTT behaviour is valid in the more dense

cluttered environment with 0.4 FA in average per gate (see

table 4 and fig. 14).

Table IV
NON-MANEUVERING SCENARIO: COMPARISON BETWEEN KDA, QADA,

GDA BASED MTT PERFORMANCES FOR FA = 0.4.

KDA-MTT QADA-MTT GDA-MTT

Average Track Life [%] 90.72 92.18 96.77

Average Miscorrelation [%] 20.69 12.15 6.26

Track Purity [%] 65.46 77.38 88.82
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Figure 14. Non-maneuvering scenario: Average miscorrelations in KDA-
MTT, QADA-MTT, GDA-MTT.

The figures 15 and 16 show typical performances of QADA-

MTT and KDA-MTT systems.

The figures 17–20 show the encountered filtered errors along

X and Y axes and the distance errors, associated with the

intermediate track 2 for both noised cases (when the number

of FA per gate is 0.2 and 0.4).

One observes (for example in Fig.9 and Fig.17) that er-

rors associated with this simpler (non-maneuvering) scenario

sometimes appear to be greater than in the previous more

complicated (maneuvering) one. It is because the sensor’s

errors are defined deliberately greater in the non-maneuvering

scenario. It provokes a complex situations, where the impact

of QADA method is better demonstrated.

Figure 15. Non-maneuvering scenario: Typical performance of QADA based
MTT.

Figure 16. Non-maneuvering scenario: Typical performance of KDA based
MTT.
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Figure 17. Non-maneuvering scenario: Filtered errors along X,Y for track 2
- KDA-MTT, QADA-MTT, GDA-MTT.
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Figure 18. Non-maneuvering scenario: Filtered errors along X,Y for track 2
- KDA-MTT, QADA-MTT, GDA-MTT.
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Figure 19. Non-maneuvering scenario: Distance errors for non-maneuvering
track 2 - KDA-MTT, QADA-MTT, GDA-MTT.
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Figure 20. Non-maneuvering scenario: Distance errors for non-maneuvering
track 2 - KDA-MTT, QADA-MTT, GDA-MTT.

VI. CONCLUSIONS

This work assesses the efficiency of MTT performance in

cluttered conflicting situations, based on the recent QADA

method. The QADA based MTT performance is compared

with the results, obtained for KDA and GDA based MTT,

concerning two (maneuvering and non-maneuvering targets)

scenarios. Our Monte Carlo simulation results show that

QADA-MTT performs better than KDA-MTT for all measures

of performances in all scenarios under low or heavy clutter

conditions with target detection probabilities less than one,

which is the main result of this paper.

Concerning the comparison of performances of QADA-

MTT (using kinematics measurements only) with respect to

GDA-MTT, we observe that the performances of GDA-MTT

are slightly better than those of QADA-MTT. This conclu-

sion is not very surprising because GDA-MTT uses more

information (kinematics and attributes) than KDA-MTT or

QADA-MTT (which are based on kinematics measurements

only). Therefore, the ability of GDA-MTT to provide better

tracking performances is what we naturally expect. However,

we must emphasize that QADA method could also be used to

improve GDA-MTT as well in a similar manner as it has been

used to improve the performances of KDA-MTT. This possible

improvement of GDA-MTT with QADA is under investigation

and will be reported in a forthcoming publication.

Taking in mind, that MTT problems as a general do not

able to utilize additional target attribute information, (i.e. when

only kinematic measurements are available), applying QADA

instead of KDA leads to better MTT performance, because

of its ability to estimate the quality of the individual pairings

given in the optimal assignment solution. QADA is totally

independent of the applied logic to obtain the best DA solution.

Hence, it could be applied successfully in all cases when

attribute or/and kinematic data are available.
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Abstract—This paper presents a performance evaluation of two
types of multi-target tracking algorithms: 1) classical Kalman
Filter based algorithms for multi-target tracking improved with
Quality Assessment of Data Association (QADA) method using
optimal data association, and 2) the Joint Probabilistic Data
Association Filter (JPDAF). QADA technique is improved by
using new basic belief assignment (bba) modelling, and also
modified by means of the new Belief interval distance applied
for computing the quality indicator associated with the pairings
in the optimal data association solution. The evaluation is based
on Monte Carlo simulations for maneuvering multiple-target
tracking (MTT) problem in clutter.

Keywords: Data association, JPDAF, Belief Functions, PCR6
fusion rule, QADA, Multitarget Tracking.

I. INTRODUCTION

The main function of each radar surveillance system is to
keep targets tracks maintenance. It becomes a crucial and
challenging problem especially in complicated situations of
closely spaced or crossing targets. The main objective of
multiple-target tracking (MTT) is to estimate jointly, at each
observation time moment, the number of targets continuously
moving in a given region and their trajectories from the noisy
sensor data.

Data Association (DA) is a central problem in MTT sys-
tems’ design [1], [2]. It relates to the process of associating
uncertain measurements (observations) to the tracked tracks.
In the presence of a dense MTT environment, with false alarms
and sensor detection probabilities less than unity, the problem
of DA becomes more complex, because it should contend
with many possibilities of pairings, some of which are in
practice very imprecise, unreliable, and could lead to critical
association mistakes in the overall tracking process.

In order to deal with these complex associations the most
recent method to evaluate the Quality Assessment of Data
Association (QADA) encountered in multiple target tracking
applications in a mono-criterion context was proposed by Dez-
ert and Benameur [4], and extended in [5] for the multicriteria
context. It is based on belief functions (BF) for achieving the
quality of pairings belonging to the optimal data assignment
solution based on its consistency with respect to all the second
best solutions, provided by a chosen algorithm. Recently, in

[6], [19] the authors discussed and proposed the way in which
Kalman filter (KF) could be enhanced in order to reflect
the knowledge obtained based on the QADA method, called
QADA-KF method. QADA assumes that the reward matrix is
known, regardless of the manner in which it is obtained by
the user. In this paper QADA method is improved by using
new BBA modelling, and also modified by means of the new
Belief Interval distance (BId) [18] applied for computing the
quality indicator associated with the pairing in the optimal
DA solution. The results are compared with those obtained
by using Pignistic Probabilities [16]. We propose and test
the performance of two versions of QADA-KF. The first one
utilizes the assignment matrix, provided by the Global Nearest
Neighbor (GNN) method, called QADA-GNN KF approach.
The second one utilizes the assignment matrix, provided by the
Probabilistic Data Association (PDA) method, called QADA-
PDA KF method. These two QADA-KF methods are com-
pared with the well-known Joint Probabilistic Data Association
Filter (JPDAF) [7], [8], [9] which is an extension of the
Probabilistic Data Association Filter (PDAF) [1] to a fixed
and known number of targets. JPDAF uses joint association
events and joint association probabilities in order to avoid
conflicting measurement-to-track assignments by making a
soft (probabilistic) assignment of all validated measurements
to multiple targets.

The main objective of this paper is to: (1) improve QADA
method by using new bba modelling; (2) modify the improved
QADA method by means of the new Belief interval distance
for computing the quality indicator; (3) compare the perfor-
mances of: (a) classical MTT algorithms based on the GNN
approach for data association, utilizing Kinematic only Data
(KDA) based MTT; (b) QADA-GNN KF based MTT; (c)
QADA-PDA KF based MTT; (d) JPDAF based MTT.

The evaluation is based on a Monte Carlo simulation for
particular difficult maneuvering MTT problem in clutter. This
paper is organized as follows. Section II is devoted to the
improved QADA method. Section III discusses the Kalman
Filter improved by QADA. The two variants of the assignment
matrix, utilized by QADA are discussed in Section IV. In
Section V the JPDAF is described and discussed. A particular
simulation MTT scenario and results are presented for the
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KDA, QADA-GNN KF, QADA-PDA KF, and JPDAF in

Section VI. Conclusions are made in Section VII.

II. THE IMPROVED QUALITY ASSESSMENT OF OPTIMAL

DATA ASSOCIATION

A. Improvement of QADA bba modelling

DA is a decisive step in MTT systems [1], [2]. It con-

sists in finding the global optimal assignments of targets Ti,

i = 1, . . . ,m to some measurements zj , j = 1, . . . , n at a

given time k by maximizing the overall gain in such a way,

that no more than one target is assigned to a measurement,

and reciprocally. The m × n reward matrix Ω = [ω(i, j)] is

defined by its elements ω(i, j) > 0, representing the gain of

the association of target Ti with the measurement zj .

The first and the second best assignments matrices A1 and

A2 are used [4], in order to establish the quality of the specific

associations (pairings) satisfying the condition a1(i, j) = 1.

The main idea behind QADA method is to compare the values

a1(i, j) in A1 with the corresponding ones a2(i, j) in A2,

and to identify the change (if any) of the optimal pairing

(i, j). In our MTT context, (i, j) means that measurement zj
is associated with target Ti. A quality indicator is established,

depending on both the stability of the pairing and its relative

impact on the global reward. The proposed method works

also when the 1-st and 2-nd best optimal assignment A1 and

A2 and are not unique, i.e. there are multiplicities available.

The construction of the quality indicators is based on Belief

Functions (BF) theory and Proportional Conflict Redistribution

fusion rule no. 6 (PCR6), defined within DSm theory [16]. It

depends on the type of pairing matching in the way, described

below:

• In case, when a1(i, j) = a2(i, j) = 0, one has a full

agreement on “non-association” of the given pairing (i, j)
in A1 and A2. This “non-association” has no impact on

the global reward values R1(Ω,A1) and R2(Ω,A2), so

it will be useless to utilize it in DA. Hence, the quality

indicator value is set to q(i, j) = 1.

• In case, when a1(i, j) = a2(i, j) = 1, one has a full

agreement on “association” of the given pairing (i, j) in

A1 and A2. This “association” has different impacts on

the global reward values R1(Ω,A1) and R2(Ω,A2). In

order to estimate the quality of this matching association,

one establish two basic belief assignments (BBA), ms(·)
(s = 1, 2) according to the both sources of information

(A1 and A2). The Frame of Discernment (FoD), one

reasons on, consists of a single hypothesis X = (Ti, zj):
measurement zj belongs to track Ti. The ignorance is

modeled by the proposition X∪X̄ , where X̄ is a negation

of hypothesis X . The BBA ms(·) is defined by

{

ms(X) = as(i, j) · ω(i, j)/Rs(Ω,As),

ms(X ∪ X̄) = 1−ms(X).

Applying the conjunctive rule of combination of m1(X)
with m2(X) we get











m12(X) = m1(X)m2(X) +m1(X)m2(X ∪ X̄)

+m1(X ∪ X̄)m2(X),

m12(X ∪ X̄) = m1(X ∪ X̄)m2(X ∪ X̄).
(1)

In our previous works [6], [17], [19], we did propose to

use the pignistic transform BetP to establish the quality

indicator.

• In case, when a1(i, j) = 1 and a2(i, j) = 0, then a dis-

agreement (conflict) on the association (Ti, zj) in A1

and A2 is detected. One could find the association

(Ti, zj2) in A2 , where j2 is the measurement index,

such that a2(i, j2) = 1. In order to define the quality

of such conflicting association (Ti, zj), one establishes

two basic belief assignments (BBA), ms(·) (s = 1, 2)

according to the both sources of information ( A1 and

A2). The FoD, one reasons on, consists of the following

two propositions: X = (Ti, zj), and Y = (Ti, zj2). The

ignorance is modeled by the proposition X ∪ Y . In our

previous works [4], we did define the BBAs by:

{

m1(X) = a1(i, j) · ω(i, j)/R1(Ω,A1),

m1(X ∪ Y ) = 1−m1(X),
(2)

{

m2(Y ) = a2(i, j2) · ω(i, j2)/R2(Ω,A2),

m2(X ∪ Y ) = 1−m2(Y ).
(3)

This modeling in fact does not work efficiently in

some cases and that is why we need to revise it to

make the QADA approach working more efficiently.

For example, let’s consider only one target T and two

validated measurements z1 and z2 with the following

payoff matrix Ω = [100 1]. The two possible associ-

ations are represented by A1 = [1 0] providing a

reward R1(Ω,A1) = 100, and A2 = [0 1] providing a

reward R2(Ω,A2) = 1 . In this simple case, one has

Θ = {X = (T, z1), Y = (T, z2)}. In applying formulas

(2)–(4), one gets

{

m1(X) = a1(i, j) · ω(i, j)/R1(Ω,A1) = 1× 100

100
= 1

m1(X ∪ Y ) = 1−m1(X) = 0
(4)

{

m2(Y ) = a2(i, j2) · ω(i, j2)/R2(Ω,A2) = 1× 1

1
= 1,

m2(X ∪ Y ) = 1−m2(Y ).
(5)

The conjunctive combination rule gives:

m12(X) = m1(X)m2(X ∪ Y ) = 1× 0 = 0,

m12(Y ) = m1(X ∪ Y )m2(Y ) = 0× 1 = 0,

m12(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y ) = 0× 0 = 0,

m12(∅) = m1(X)m2(Y ) = 1× 1 = 1.
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Applying PCR6 fusion rule [16] (Vol.3):


















mPCR6

12 (∅) = 0,

mPCR6

12 (X) = m12(X) +m1(X) m1(X)m2(Y )

m1(X)+m2(Y )
= 1

2
,

mPCR6

12 (Y ) = m12(Y ) +m2(Y ) m1(X)m2(Y )

m1(X)+m2(Y )
= 1

2
,

mPCR6

12 (X ∪ Y ) = m12(X ∪ Y ) = 0,
(6)

which yields (using the Pignistic transformation)

BetP (X) = 0.5 and BetP (Y ) = 0.5. This result is

counter-intuitive (not realistic) because in this very simple

case one knows that (T, z1) is obviously the best data

association solution. To circumvent this serious problem,

we propose to modify the bba modeling by taking a new

model of bba construction as follows:
{

m1(X) = a1(i, j) · ω(i,j)

R1(Ω,A1)+R2(Ω,A2)
,

m1(X ∪ Y ) = 1−m1(X),
(7)

{

m2(Y ) = a2(i, j2) · ω(i,j2)

R1(Ω,A1)+R2(Ω,A2)
,

m2(X ∪ Y ) = 1−m2(Y ).
(8)

If we apply this modeling on the previous example, we
obtain
{

m1(X) = a1(i, j) ·
ω(i,j)

R1(Ω,A1)+R2(Ω,A2)
= 1× 100

101
≈ 0.99,

m1(X ∪ Y ) = 1−m1(X) = 0.01,

{

m2(Y ) = a2(i, j2) ·
ω(i,j2)

R1(Ω,A1)+R2(Ω,A2)
= 1× 1

101
≈ 0.01,

m2(X ∪ Y ) = 1−m2(Y ) = 0.99.

Hence, one gets now

m12(X) = m1(X)m2(X ∪ Y ) = 0.9801,

m12(Y ) = m1(X ∪ Y )m2(Y ) = 0.0001,

m12(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y ) = 0.0099,

m12(∅) = m1(X)m2(Y ) = 0.0099.

Applying PCR6 redistribution principle, one gets finally

mPCR6

12 (X) = 0.9801 + (0.99 × 0.0099)/1 = 0.989901,

mPCR6

12 (Y ) = 0.0001 + (0.01× 0.0099)/1 = 0.010099,

which yields BetP (X) = 0.989901 and

BetP (Y ) = 0.010099. This result fits now perfectly

with what we expect, that is X = (T, z1) is obviously

the best data association solution.

B. Improvement of quality indicator calculating by using

Belief Interval (BI) distance

In [11], [20] the Euclidean belief interval distance between

two bbas m1(·) and m2(·) is defined on the powerset of a

given Θ = {θ1, . . . , θn} as follows

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)), (9)

where Nc = 1/2|Θ|−1 is a normalization factor to

have dBI(m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X))
is the Wasserstein’s distance [22] between belief

intervals BI1(X) , [Bel1(X), P l1(X)] = [a1, b1] and

BI2(X) , [Bel2(X), P l2(X)] = [a2, b2]. More specifically,

dW ([a1, b1], [a2, b2]) =
√

[

a1 + b1
2

− a2 + b2
2

]2

+
1

3

[

b1 − a1
2

− b2 − a2
2

]2

. (10)

In [20], we have proved that dBI(x, y) is a true distance

metric because it satisfies the properties of non-negativity

(dBI(x, y) ≥ 0), non-degeneracy (dBI(x, y) = 0 ⇔ x = y),

symmetry (dBI(x, y) = dBI(y, x)), and the triangle inequality

dBI(x, y) + dBI(y, z) ≥ dBI(x, z)), for any bba x, y and z
defined on 2Θ. The choice of Wasserstein’s distance in dBI

definition is justified by the fact that Wasserstein’s distance is

a true distance metric and it fits well with our needs because

we have to compute a distance between [Bel1(X), P l1(X)]
and [Bel2(X), P l2(X)].

For notation convenience, we denote mX the categorical bba

having only X as focal element, where X 6= ∅ is an element

of the powerset of Θ. More precisely, mX is the particular

(categorical) bba defined by mX(X) = 1 and mX(Y ) = 0
for any Y 6= X . Such basic bba plays an important role in our

new decision scheme because its corresponding belief interval

reduces to the degenerate interval [1, 1] which represents the

certainty on X . The basic principle of the new decision scheme

we propose is very simple and intuitively makes sense. It

consists in selecting as the final decision (denoted by X̂) the

element of the powerset for which the belief interval distance

between the bba m(·) and mX , X ∈ 2Θ \ {∅} is the smallest

one. Therefore, take as the final decision X̂ given by

X̂ = arg min
X∈2Θ\{∅}

dBI(m,mX). (11)

where dBI(m,mX) is computed according to (9). m(·) is the

bba under test, and mX the categorical bba focused on X
defined above.

This decision scheme is very general in the sense that the

decision making can be done on any type of element of

the power-set 2Θ, and not necessarily only on the elements

(singletons) of the FoD. This method not only provides the

final decision X̂ to make, but also it evaluates how good this

decision is with respect to its alternatives if we define the

quality indicator q(X̂) as follows

q(X̂) , 1− dBI(m,m
X̂
)

∑

X∈2Θ\{∅} dBI(m,mX)
. (12)

One sees that the quality indicator q(X̂) of the decision

X̂ will become maximum (equal to one) when the distance

between the bba m(·) and m
X̂

is zero, which means that the

bba m(·) is focused in fact only on the element X . The higher

q(X̂) is, the more confident in the decision X̂ we should be.

Of course, if a decision must be made with some extra

constraint defined by a (or several) condition(s), denoted c(X),
then we must take into account c(X) in (11), that is

X̂ = arg min
X∈2Θ\{∅}| c(X) is true

dBI(m,mX).
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and also in the derivation of quality indicator by taking
∑

X∈2Θ\{∅}| c(X) is true dBI(m,mX) as denominator in (12).

Theoretically any other strict distance metric, for instance

Jousselme’s distance [23], [24], could be used instead of

dBI(., .). We have chosen dBI distance because of its ability

to provide good and reasonable behavior [20] as will be

shown. When there exists a tie between multiple decisions

{X̂j, j > 1}, then the prudent decision corresponding to their

disjunction X̂ = ∪jX̂j should be preferred (if allowed),

otherwise the final decision X̂ is made by a random selection

among the elements of {X̂j, j > 1}.

III. QADA BASED KALMAN FILTER

The aim of this paper is to compare the performance of the

JPDAF based MTT algorithm with the classical MTT algo-

rithm, using the CMKF based on kinematics measurements,

but improved by the QADA method.

In [6], the authors discuss and propose the way in which

Kalman filter (KF) could be improved in order to reflect the

knowledge obtained based on the QADA method.

Let’s briefly recall what kind of information is obtained,

having in hand the quality matrix, derived by QADA, in the

MTT context. It gives knowledge about the confidence q(i, j)
in all pairings (Ti, zj), i = 1, . . . ,m; j = 1, . . . , n, chosen

in the first best assignment solution. The smaller quality

(confidence) of hypothesis “zj belongs to Ti” means, that the

particular measurement error covariance R was increased and

the filter should not trust fully in the actual (true) measurement

z(k + 1) .

Having this conclusion in mind, the authors propose, such a

behavior of the measurement error covariance to be modeled

by R = R/q(Ti, zj), for every pairing, chosen in the first

best assignment and based on the corresponding quality value

obtained. Then, when the Kalman filter gain decreases the

true measurement zj(k + 1) is trusted less in the updated state

estimate x̂(k + 1|k + 1).

IV. BUILDING ASSIGNMENT MATRIX FOR QADA

QADA assumes the reward matrix is known, regardless

of the manner in which it is obtained by the user. In this

paper we propose two versions of QADA-KF. The first one

utilizes the assignment matrix built from the single normalized

distances, provided by the Global Nearest Neighbor method,

called QADA-GNN KF method. The second one utilizes

the assignment matrix, built from the posterior association

probabilities, provided by the Probabilistic Data Association

(PDA) method, called QADA-PDA KF method.

A. Assignment matrix based on GNN method

The GNN method finds and propagates the single most

likely hypothesis during each scan to update KF. It is a

hard (i.e., binary) decision approach, as compared to the

JPDAF which is a soft (i.e., probabilistic) decision approach

using all validated measurements with their probabilities of

association. GNN method was applied in [6] and [17] to

obtain the assignment matrix, utilized in QADA. In this case

the elements of assignment matrix ω(i, j) (i = 1, . . . ,m,

j = 1, . . . , n) represent the normalized distances d(i, j) =

[(zj(k)− ẑi(k|k − 1))′S−1(k)(zj(k)− ẑi(k|k − 1))]
1/2

be-

tween the validated measurement zj(k) and target Ti satisfying

the condition d2(i, j) < γ. The distance d(i, j) is computed

from the measurement zj(k) and its prediction ẑi(k|k − 1
(see [1] for details), and the inverse of the covariance matrix

S(k) of the innovation, computed by the tracking filter. The

threshold γ, for which the probability of given observation to

fall in the gate is 0.99, could be defined from the table of

the Chi-square distribution with M degrees of freedom and

allowable probability of a valid observation falling outside the

gate. In this case the DA problem consists in finding the best

assignment that minimizes the overall cost.

B. Assignment matrix based on PDA method

The Probabilistic Data Association (PDA) method [1] calcu-

lates the association probabilities for validated measurements

at a current time moment to the target of interest. PDA

assumes the following hypotheses according to each validated

measurement:

• Hi(k): zj is a measurement, originated from the target

Ti of interest, i = 1, . . . ,m;

• H0(k): no one of the validated measurement originated

from the target of interest.

If N observations fall within the gate of track i, N+1 hypothe-

ses will be formed. The probability of H0 is proportional to

pi0 = λN
FA(1−Pd), and the probability of Hj (j = 1, . . . , N )

is proportional to

pij =
λN−1

FA PgPd · e−
d2
ij

2

(2π)M/2 ·
√

|Sij |
. (13)

where Pg is the a priori probability that the correct measure-

ment is in the validation gate [1]; Pd is the target detection

probability; λFA is the spatial density of false alarms (FA).

The probabilities pij can be rewritten as [1]

pij =

{

b

b+
∑

N
l=1

αil
for j = 0 (no valid obs.),

αij

b+
∑

N
l=1

αil
for 1 ≤ j ≤ N,

(14)

where

b , (1− PgPd)λFA(2π)
M/2 ·

√

|Sij |, (15)

and

αij , Pd · e−
d2
ij

2 . (16)

The assignment matrix used in QADA method is established

from all pij given by (14) related with all association hypothe-

ses. This matrix will have m rows (where m is the number of

all targets of interest), and N +1 columns for the hypotheses

generated. The (N +1)-th column will include the values pi0
associated with H0(k).
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V. JOINT PROBABILISTIC DATA ASSOCIATION FILTER

The Joint Probabilistic Data Association Filter (JPDAF)

is an extension of the Probabilistic Data Association Filter

(PDAF) for tracking multiple targets in clutter [1], [2], [10],

[11], [12]. This Bayesian tracking filter uses the probabilistic

assignment of all validated measurements belonging to the

target gate to update its estimate. The preliminary version

of JPDAF was proposed by Bar-Shalom in 1974 [13], then

updated and finalized in [7], [8], [9]. The assumptions of

JPDAF are the following:

• the number NT of established targets in clutter is known;

• all the information available from the measurements Zk

up to time k is summarized by the sufficient statistic

x̂t(k) (the approximate conditional mean), and covariance

P t(k|k) for each target t, t = 1, . . . , NT ;

• the real state xt(k) of a target t at time k is modeled by

a Gaussian pdf N (xt(k); x̂t(k), P t(k|k));
• each target t follows its own dynamic model;

• each target generates at most one measurement at each

observation time and there are no merged measurements;

• each target is detected with some known detection prob-

ability P t
d;

• the false alarms (FA) are uniformly distributed in surveil-

lance area and their number follows a Poisson pmf with

FA density λFA.

In JPDAF, the measurement to target association probabil-

ities are computed jointly across the targets and only for the

latest set of measurements. This appealing theoretical approach

however can give rise to very high combinatorics complexity

if there are several persistent interferences, typically when

several targets are crossing or if they move closely during

several consecutive scans. Moreover, some track coalescence

effects may also appear which degrades substantially the

JPDAF performances as it will shown in section VI. These

limitations of JPDAF have already been reported in [14]. Let’s

consider a cluster (a cluster is a group of targets which have

some measurements in common in their validation gates, i.e.

non-empty intersections) of T ≥ 2 targets t = 1, . . . , T .

The set of mk measurements available at scan k is denoted

Z(k) = {zi(k), i = 1, . . . ,mk}. Each measurement zi(k) of

Z(k) either originates from a target or from a FA. De-

note ẑt(k|k − 1) as the predicted measurement for target t,
and all the possible innovations that could be used in the

Kalman Filter to update the target state estimate are denoted

z̃ti(k) , zi(k) − ẑt(k|k − 1). In JPDAF, instead of using a

particular innovation z̃ti(k), it uses the weighted innovation

z̃t(k) =
∑mk

i=1
βt
i (k)z̃

t
i(k), where βt

i (k) is the probability

that the measurement zi originates from target t. βt
0(k) is the

probability that none measurements originate from the target

t. The core of JPDAF is the computation of the a posteriori

association probabilities βt
i (k), (i = 0, 1, . . . ,mk) based

on all possible joint association events Θ(k) = ∩mk

i=1
Θti

i (k),
where Θti

i (k) is the event that measurement zi(k) origi-

nates from target ti (by convention and notation convenience,

ti = 0 means that the origin of measurement zi is a FA.),

0 ≤ ti ≤ NT . More precisely, one has to compute for

i = 1, . . . ,mk, βt
i (k) =

∑

Θ(k) P (Θ(k)|Zk)ω̂it(Θ(k)) and

βt
0(k) = 1−∑mk

i=1
βt
i (k), where Zk is the set of all measure-

ments available up to time k, and ω̂it(Θ(k)) are the corre-

sponding components of the association matrix characterizing

the possible joint association Θ(k).
JPDAF is well theoretically founded and it does not require

high memory. It provides pretty good results on simple MTT

scenarios (with non-persisting interferences) with moderate FA

densities. However the number of feasible joint association

matrices increases exponentially with problem dimensions

(mk and NT ) which makes the JPDAF intractable for complex

dense MTT scenarios. For more details about JPDAF, please

refer to [1], [2], [10]–[12], and [15].

VI. SIMULATION RESULTS

The Converted Measurement KF (CMKF) is used in our

MTT algorithm. We assume constant velocity target model.

The process noise covariance matrix is: Q = σ2
νQT , where

T is the sampling period, σν is the standard deviation of the

process noise, and QT is as given in [3]. Here are the results

of KDA KF, QADA-GNN KF, QADA-PDA KF, and JPDAF

for the MTT scenario with maneuvering targets.

The noise-free group of targets simulation scenario (Fig.1)

consists of four air targets moving from left to right (or from

West to East). For the clear explanation of the results, targets

are numbered starting at the beginning with 1st target that has

the greater y-coordinate and continuing to 4th target with the

smallest y-coordinate. The stationary sensor is located at the

origin with range 10000 m. The sampling period is Tscan = 5
sec, and the measurement standard deviations are 0.2 deg and

40 m for azimuth and range respectively. The targets move

with constant velocity V = 100 m/s. The first target for the

first 8 scans moves without maneuvering keeping azimuth 120

deg from North. The group of two targets in the middle i.e.

2nd and 3rd move without maneuvering keeping azimuth 90

deg from North that means, horizontally from West to East. It

is the main direction of the group movement. The 4th target

starts with azimuth 60 deg and moves towards the middle

group of rectilinearly moving targets. When it approaches the

group, it starts a turn to the right with 30 deg. Its initial

azimuth of 120 deg is decreased by the angle of turn and

becomes 90 deg, i.e. coincides with the main direction. From

15th scan, the four targets move rectilinearly in parallel. The

distance between them is 150 m. The absolute value of the

corresponding transversal acceleration for the two maneuvers

is 1.495 m/s2. The total number of scans for the simulations

is 30. The figure 2 shows the noised scenario for yielding to

0.15 FA per gate on average.

Our results are based on Monte Carlo (MC) simulations with

200 independent runs in applying KDA based KF, QADAGNN

KF, QADA-PDA KF, and JPDAF. We compare the perfor-

mance of these methods with different criteria, and we use

an idealized track initiation in order to prevent uncontrolled

impact of this stage on the statistical parameters of the tracking

process during MC simulations.
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Fig. 1. Noise-free group of targets Scenario.

Fig. 2. Noised group of targets Scenario.

The true targets positions (known in our simulations) for the

first two scans are used for track initiation. The evaluation of

MTT performance is based on the criteria of Track Purity (TP),

Track Life (TL), and percentage of miscorrelation (pMC):

1) TP criteria examines the ratio between the number of

particular performed (jth observation - ith track) associ-

ations (in case of detected target) over the total number

of all possible associations during the tracking scenario,

but TP cannot be used with JPDAF because JPDAF

is a soft assignment method. Instead of TP, we define

the Probabilistic Purity Index (PPI). It considers the

measurement that has the highest association probability

computed by the JPDAF and check, (and count) if this

measurement originated from the target or not. PPI

measures the ability of JPDAF to commit the highest

probability to the correct target measurement in the soft

assignment of all validated measurements.

2) TL is evaluated as an average number of scans before

track’s deletion. In our simulations, a track is canceled

and deleted from the list of tracked tracks, when during

3 consecutive scans it cannot be updated with some

measurement because there is no validated measurement

in the validation gate. When using JPDAF, the track

is canceled and deleted from the list of tracked tracks,

when during 3 consecutive scans its own measurement

does not fall in its gate. We call this, the “cancel-

ing/deletion condition”. The status of the tracked tracks

is denoted “alive”.

3) pMC examines the relative number of incorrect

observation-to-track associations during the scans.

The MTT performance results for KDA only KF,

QADAGNN KF, QADA-PDA KF, and JPDAF for aver-

age false alarms in gate FA = 0.15 are given in Table 1.

The MTT performance for QADA-PDA KF and QADA-

GNN KF are estimated for both: Pignistic probabilities,

and minimum Belief distance principles to compute the

quality indicator.

TABLE I
GROUP OF TARGETS SCENARIO: COMPARISON BETWEEN MTT

PERFORMANCE RESULTS FOR 0.15 FA PER GATE.

(in %) QADA-PDA QADA-GNN JPDAF KDA

BetP BId BetP BId

Average TL 88.12 89.39 84.31 89.13 78.42 70.02

Average pMC 2.67 2.45 3.28 2.39 5.92 5.71

Average TP 84.54 86.14 79.86 85.92 32.96 (PPI) 61.95

According to all criteria, QADA-PDA KF method shows the

best performance, followed by QADA-GNN KF, and JPDAF.

The KDA based KF approach, as one could expect, shows the

worst performance. It is obvious that minimum Belief distance

interval principle for computing the quality indicator leads to

improved MTT performance (compared to the results based on

Pignistic probabilities - BetP) for both QADA-PDA KF and

QADA-GNN KF. Still QADA-PDA KF outperforms QADA-

GNN KF based MTT.

In order to make a fair comparison between QADA KF

and JPDAF, we will discuss also the root mean square errors

(RMSE), associated with the filtered X and Y values, presented

in Figs. 3–6. The results for QADA-GNN KF and QADA-PDA

KF are obtained on the base of the improved QADA method

using minimal Belief Interval distance criteria and with the

new bba modeling, proposed in the paper.

Figs. 3 and 4 show the mean square X and Y error filtered,

associated with target 1, and compared for KDA KF, QADA-

GNN KF, QADA-PDA KF, and JPDAF. Figs. 5 and 6 consider

the same errors for the middle track 3. All the results are

compared to the sensor’s errors along X and Y axis.

As a whole, one could see that rms errors, associated with

QADA-PDA KF and QADA-GNN KF are a little bit less

than the sensor’s measurement errors, except around the scan
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15th, where all the targets move in parallel. We see that the

RMSE on Y filtered error for track 1 associated with KDA-

JPDAF grows extremely after scan 12. This behavior could

be explained by the fact, that from this scan on target 1 starts

moving in parallel with the rest of targets, causing that way

spatial persisting interferences and track coalescence effects

in JPDAF. These effects degrade significantly the quality of

JPDAF performance as already reported in [14]. The same

effect of track coalescence could be observed for track 3,

moving in parallel during all the scans. The RMSE on Y

filtered associated with JPDAF performance is high during

the whole tracking region.

Fig. 3. RMSE on X for track 1 with the four tracking methods.

Fig. 4. RMSE on Y for track 1 with the four tracking methods.

VII. CONCLUSIONS

This work evaluated with Monte Carlo simulations the

efficiency of MTT performance in cluttered environment of

four methods (a) classical MTT algorithm based on GNN

approach for data association, utilizing Kinematic only Data;

(b) QADA-GNN KF; (c) QADA-PDA KF; and (d) JPDAF.

Fig. 5. RMSE on X for track 3 with the four tracking methods.

Fig. 6. RMSE on Y for track 3 with the four tracking methods.

QADA technique was improved by using new BBA modelling.

It is also was modified by means of the new Belief interval

distance applied for computing the quality indicator associated

with the pairings in the optimal DA solution. The results were

compared with those obtained by using Pignistic Probabilities.

It was proved that this new approach leads to better MTT

performance. The implemented groups of targets scenario

show the advantages of applying QADA-KF. According to

all performance criteria, the QADA-PDA KF gives the best

performance, followed by QADA-GNN KF, and JPDAF. The

KDA KF approach shows the worst performance (as expected).

This scenario is particularly difficult for JPDAF because of

several closely spaced and rectilinearly moving targets in

clutter during many consecutive scans, and it leads to track

coalescence effects due to persisting interferences. As a result,

the tracking performance of JPDAF is degraded. Because the

complexity of the calculation for joint association probabilities

grows exponentially with the number of targets, JPDAF re-

quires almost 3 times more computational time in comparison

to other methods in the first (complex) scenario.
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Abstract—This paper presents a comparative analysis of per-
formances of two types of multi-target tracking algorithms: 1)
the Joint Probabilistic Data Association Filter (JPDAF), and
2) classical Kalman Filter based algorithms for multi-target
tracking improved with Quality Assessment of Data Association
(QADA) method using optimal data association. The evaluation
is based on Monte Carlo simulations for difficult maneuvering
multiple-target tracking (MTT) problems in clutter.
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I. INTRODUCTION

Multiple-target tracking (MTT) is a principle component

of surveillance systems. The main objective of MTT is to

estimate jointly, at each observation time moment, the number

of targets continuously moving in a given region and their

trajectories from the noisy sensor data. In a single-sensor case,

the multitarget tracker receives a random number of measure-

ments due to the uncertainty which results in low detection and

false alarms, arising independently of the targets of interest.

Because of the fact that detection probability is not perfect,

some targets may go undetected at some sampling intervals.

Additional complications appear, apart from the process and

measurement noises, associated with a measurement origin

uncertainty, missed detection, cancelling (death) of targets, etc.

Data association (DA) is a primary task of modern MTT sys-

tems [1]–[3]. It entails selecting the most trustable associations

between uncertain sensor’s measurements and existing targets

at a given time. In the presence of a dense MTT environment,

with false alarms and sensor detection probabilities less than

unity, the problem of DA becomes more complex, because it

should contend with many possibilities of pairings, some of

which are in practice very imprecise, unreliable, and could lead

to critical association mistakes in the overall tracking process.

In order to deal with these complex associations the most

recent method to evaluate the Quality Assessment of Data

Association (QADA) encountered in multiple target tracking

applications in a mono-criterion context was proposed by

Dezert and Benameur [4], and extended in [5] for the multi-

criteria context. It is based on belief functions (BF) for

achieving the quality of pairings belonging to the optimal data

assignment solution based on its consistency with respect to

all the second best solutions, provided by a chosen algorithm.

Most recently, in [6] the authors did discuss and propose the

way in which Kalman filter (KF) could be enhanced in order

to reflect the knowledge obtained based on the QADA method,

called QADA-KF method.

Taking into account that QADA assumes the reward matrix

is known, regardless of the manner in which it is obtained by

the user, in this paper we propose and test the performance of

two possible versions of QADA-KF. The first one utilizes the

assignment matrix, provided by the Global Nearest Neighbour

(GNN) method, called QADA-GNN KF approach. The second

one utilizes the assignment matrix, provided by the Probabilis-

tic Data Association (PDA) method, called QADA-PDA KF

method.

These two QADA-KF methods are compared with the Joint

Probabilistic Data Association Filter (JPDAF) [7]–[9] which

is an extension of the Probabilistic Data Association Filter

(PDAF) [1] to a fixed and known number of targets. JPDAF

uses joint association events and joint association probabilities

in order to avoid conflicting measurement-to-track assignments

by making a soft (probabilistic) assignment of all validated

measurements to multiple targets.

The main objective of this paper is to compare the perfor-

mances of: (i) classical MTT algorithms based on the GNN

approach for data association, utilizing Kinematic only Data

(KDA) and Converted Measurement Kalman Filter (CMKF);

(ii) QADA-GNN KF based MTT; (iii) QADA-PDA KF based

MTT; (iiii) JPDAF based MTT. The evaluation is based on

a Monte Carlo simulation for particular difficult maneuvering

MTT problems in clutter.

This paper is organised as follows. In Section II the JPDAF

is described and discussed. Section III is devoted to QADA

based KF. Data association methods, providing an assignment

matrix for QADA are discussed in Section IV. Two particular

simulation MTT scenarios and results are presented for the

KDA, QADA-GNN KF, QADA-PDA KF, and JPDAF in

Section V. Conclusions are made in Section VI.

Originally published as: J. Dezert, A. Tchamova, P. Konstantinova, E. Blasch, A Comparative Analysis of 
QADA-KF with JPDAF for Multitarget Tracking in Clutter, in Proc. of 20th Int. Conf. on Information 
Fusion (Fusion 2017), Xi’an, China, July 10–13, 2017, and reprinted with permission.
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II. JOINT PROBABILISTIC DATA ASSOCIATION FILTER

The Joint Probabilistic Data Association Filter (JPDAF)

is an extension of the Probabilistic Data Association Filter

(PDAF) for tracking multiple targets in clutter [1], [2], [10]–

[12]. This Bayesian tracking filter uses the probabilistic as-

signment of all validated measurements belonging to the target

gate to update its estimate. The preliminary version of JPDAF

was proposed by Bar-Shalom in 1974 [13], then updated

and finalized in [7]–[9]. The assumptions of JPDAF are the

following:

• the number NT of established targets in clutter is known;

• all the information available from the measurements Zk

up to time k is summarized by the sufficient statistic

x̂t(k|k) (the approximate conditional mean), and covari-

ance Pt(k|k) for each target t;
• the real state xt(k) of a target t at time k is modeled by

a Gaussian pdf N (xt(k); x̂t(k|k),Pt(k|k));
• each target t follows its own dynamic model;

• each target generates at most one measurement at each

observation time and there are no merged measurements;

• each target is detected with some known detection prob-

ability P t
d;

• the false alarms (FA) are uniformly distributed in surveil-

lance area and their number follows a Poisson pmf with

FA density λFA.

In JPDAF, the measurement to target association proba-

bilities are computed jointly across the targets and only for

the latest set of measurements. This appealing theoretical

(0-scan-back) approach however can give rise to very high

combinatorics complexity if there are several persistent inter-

ferences, typically when several targets are crossing or if they

move closely during several consecutive scans. Moreover some

track coalescence effects may also appear which degrades

substantially the JPDAF performances as it will shown in

section V. These limitations of JPDAF have already been

reported in [14]. Here we briefly recall the basics of JPDAF.

For more details, please refer to [1], [2], [10]–[12], [15].

A. JPDAF principle

Let’s consider a cluster1 of T ≥ 2 targets t = 1, . . . , T .

The set of mk measurements available at scan k is denoted

Z(k) = {zi(k), i = 1, . . . ,mk}. Each measurement zi(k) of

Z(k) either originates from a target or from a FA. Denote

ẑt(k|k − 1) as the predicted measurement for target t, and

all the possible innovations that could be used in the Kalman

Filter to update the target state estimate are denoted z̃ti(k) ,
zi(k)− ẑt(k|k−1), i = 1, . . . ,mk. In JPDAF, instead of using

a particular innovation z̃ti(k), it uses the weighted innovation

z̃t(k) =
∑mk

i=1
βt
i (k)z̃

t
i(k), where βt

i(k) is the probability that

the measurement zi(k) originates from target t. βt
0(k) is the

probability that none measurements originate from the target

t. The core of JPDAF is the computation of the a posteriori

association probabilities βt
i (k), i = 0, 1, . . . ,mk based on all

1A cluster is a group of targets which have some measurements in common
in their validation gates (i.e. non-empty intersections).

possible joint association events Θ(k) =
⋂mk

i=1
Θti

i (k), where

Θti
i (k) is the event that mesurement zi(k) originates from

target2 ti, 0 ≤ ti ≤ NT . More precisely, one has to compute

for i = 1, . . . ,mk, βt
i (k) =

∑

Θ(k) P{Θ(k)|Zk}ω̂it(Θ(k))

and βt
0(k) = 1 − ∑mk

i=1
βt
i(k), where Zk is the set of all

measurements available up to time k, and ω̂it(Θ(k)) are the

corresponding components of the association matrix charac-

terizing the possible joint association Θ(k).

B. Feasible joint association events

Validation gates are used for finding the feasible joint

events but not in the evaluation of their probabilities [12] (p.

388–389). To describe the observation situation, it uses the

validation matrix Ω = [ωit], i = 1, . . . ,mk and t = 0, . . . , NT

with elements ωit ∈ {0, 1} to indicate whether or not the

measurement zi lies in the validation gate of target t. Because

each measurement can potentially originate from a FA, all

elements of the first column of Ω corresponding to index t = 0
(meaning FA, or none of the targets) are equal to one. From

this validation matrix, all possible feasible joint association

events Ω̂(Θ(k)) = [ω̂it(Θ(k))] where ωit(Θ(k)) = 1 if

Θt
i(k) ∈ Θ(k), and zero otherwise, are realized satisfying the

following feasibility conditions:

• a measurement can have only one origin, that is for all i

NT
∑

t=0

ω̂it(Θ(k)) = 1. (1)

• at most one measurement can originate from a target

mk
∑

i=1

ω̂it(Θ(k)) ≤ 1, for t = 1, . . . , NT . (2)

The generation of all possible feasible joint association events

is computationally expensive for complicated MTT scenarios,

which is a serious limitation of JPDAF for real-world scenar-

ios. A simple Matlab™ algorithm for the generation of matrices

Ω̂(Θ(k)) is given in [15] (pp. 56–57), which is based on DFS

(Depth First Search) detailed by Zhou in [16], [17], previously

coded in FORTRAN in [18].

C. Feasible joint association probabilities

Thanks to Bayes formula, the computation of the a posteri-

ori joint association probabilities P{Θ(k)|Zk} involved in the

derivation of βt
i (k) can be expressed as (see [1], [2], [10]–[12],

[15] for full derivations)

P{Θ(k)|Zk} =
1

c
· p[Z(k)|Θ(k),mk,Z

k−1]P{Θ(k)|mk}

=
1

c
· φ(Θ(k))!

mk!
µF (φ(Θ(k)))V −φ(Θ(k))

×
mk
∏

i=1

[

fti(zi(k))
]τi(Θ(k))

×
T
∏

t=1

(P t
d)

δt(Θ(k))
(1− P t

d)
1−δt(Θ(k))

, (3)

2By convention and notation convenience, ti = 0 means that the origin of
measurement zi is a FA.
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where c is a normalization constant, V is the volume of the

surveillance region, and the indicators δt(Θ(k)) (target detec-

tion indicator), τi(Θ(k)) (measurement association indicator),

φ(Θ(k)) (FA indicator) are defined by

δt(Θ(k)) ,

mk
∑

i=1

ω̂it(Θ(k)) ≤ 1 t = 1, . . . , NT , (4)

τi(Θ(k)) ,

T
∑

t=1

ω̂it(Θ(k)), (5)

φ(Θ(k)) ,

mk
∑

i=1

[1− τi(Θ(k))]. (6)

µF (φ(Θ(k))) is the prior pmf of the number of false mea-

surements (the clutter model) and

fti(zi(k)) , N [zi(k); ẑ
ti(k|k − 1),Sti(k)], (7)

where Sti(k) is the predicted covariance matrix of innovation

zi(k)− ẑti(k|k − 1).

Two versions of JPDAF have been proposed [1], [7]–[9]:

• Parametric JPDAF: Knowing the spatial density λFA

of the false measurements, and using a Poisson pmf

µF (φ(Θ(k))) = (λFAV )
φ(k)

φ(k)!
e−λFAV , results in

P{Θ(k)|Zk} =
1

c1
·
mk
∏

i=1

[λ−1
FA · fti(zi(k))]

τi(Θ(k))

×
NT
∏

t=1

[P t
d]

δt(Θ(k))
[1− P t

d]
1−δt(Θ(k))

, (8)

where c1 is a normalization constant.

• Non parametric JPDAF: Using a diffuse prior pmf of

number of FA µF (φ(k)) = ǫ, ∀φ(k), results in

P{Θ(k)|Zk} =
φ(k)!

c2
·
mk
∏

i=1

[V fti(zi(k))]
τi(Θ)

×
NT
∏

t=1

[P t
d]

δt(Θ(k))
[1− P t

d]
1−δt(Θ(k))

, (9)

where c2 is a new normalization constant.

D. JPDAF state estimation

Once all feasible joint association events Θ(k) have been

generated and their a posteriori probabilities P{Θ(k)|Zk}
determined, all the marginal association probabilities βt

i(k) =
∑

Θ(k) P{Θ(k)|Zk}ω̂it(Θ(k)) and βt
0(k) = 1 − ∑mk

i=1
βt
i (k)

are computed. The state update and prediction are done with

PDAF equations3 given by

x̂t(k|k) =
mk
∑

i=0

βt
i (k)x̂

t
i(k|k), (10)

3for the decoupled version of JPDAF. For the coupled version of JPDAF,
see [10], [12].

with x̂t
i(k|k) given by

x̂t
i>0(k|k) = x̂t(k|k−1) +Kt(k)z̃ti(k), (11)

x̂t
i=0(k|k) = x̂t(k|k−1). (12)

Using (11) and (12) in (10), then

x̂t(k|k) = x̂t(k|k−1) +Kt(k)

mk
∑

i=1

βt
i (k)z̃

t
i(k), (13)

Pt(k|k) = βt
0(k)P

t(k|k−1) +
(

1− βt
0(k)

)

Pt
c(k) + P̃t(k),

(14)

with

Pt
c(k) = [I−Kt(k)H(k)]Pt(k|k − 1), (15)

P̃t(k) = Kt(k)
[

mk
∑

i=1

βt
i (k)z̃

t
i(k)z̃

t′

i (k)− z̃(k)z̃′(k)
]

K′(k),

(16)

and

Kt(k) , Pt(k|k−1)H′(k)St(k)
−1

, (17)

z̃ti(k) , zi(k)− ẑt(k|k−1), (18)

z̃t(k) ,

mk
∑

i=1

βt
i (k)z̃

t
i(k). (19)

It has been proved in [1] that P̃(k) is always a semi-positive

matrix. The target state prediction x̂t(k+1|k) and Pt(k+1|k)
are obtained by the classical Kalman Filter (KF) equations

[1] (assuming linear kinematic models), or by Extended KF

equations. They will not be repeated here [2], [10].

In summary, JPDAF is well theoretically founded and it

does not require high memory (0-scan-back). It provides pretty

good results on simple MTT scenarios (with non persisting in-

terferences) with moderate FA densities. However the number

of feasible joint association matrices increases exponentially

with problem dimensions (mk and NT ) which makes the

JPDAF intractable for complex dense MTT scenarios.

III. QADA BASED KALMAN FILTER

The aim of this paper is to compare the performance of the

JPDAF based MTT algorithm with the classical4 MTT algo-

rithm, using the CMKF based on kinematics measurements,

but improved by the QADA method.

The main idea behind the QADA method, proposed recently

by Dezert and Benameur [4] is to compare the values a1(i, j)
in the first optimal DA solution A1 with the corresponding

values a2(i, j) in second assignment solution A2, and to

identify if there is a change of the optimal pairing (i, j). In

the MTT context (i, j) means an association between measure-

ment zj and target Ti. QADA establishes a quality indicator

associated with this pairing, depending on the stability of

the pairing and also, on its relative impact in the global

reward. The proposed method works also when the 1st and 2nd

optimal assignments A1 and A2 are not unique, i.e., there are

4Classical MTT algorithms are those based on hard assignment of a chosen
measurement to a given target.
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multiplicities available. In such a situation, the establishment

of quality indicators could help in selecting one particular

optimal assignment solution among multiple possible choices.

The construction of the quality indicator is based on belief

functions (BF) and the Proportional Conflict Redistribution

fusion rule no.6 (PCR6), defined within Dezert-Smarandache

Theory (DSmT) [19]. It depends on the type of the pairing

matching, and it is described in detail in [4].

In [6], the authors discuss and propose the way in which

Kalman filter could be improved in order to reflect the knowl-

edge obtained based on the QADA method.

Let’s briefly recall what kind of information is obtained,

having in hand the quality matrix, derived by QADA, in the

MTT context. It gives knowledge about the confidence q(i, j)
in all pairings (Ti, zj), i = 1, ..,m; j = 1, .., n, chosen in the

first best assignment solution. The smaller quality (confidence)

of hypothesis “zj belongs to Ti” means, that the particular

measurement error covariance R was increased and the filter

should not trust fully in the actual (true) measurement z(k+1).
Having this conclusion in mind, the authors propose, such a

behaviour of the measurement error covariance to be modelled

by R = R

q(Ti,zj)
, for every pairing, chosen in the first best

assignment and based on the corresponding quality value

obtained. Then, when the Kalman filter gain decreases the

true measurement zj(k+1) is trusted less in the updated state

estimate x̂(k + 1|k + 1).

IV. BUILDING ASSIGNMENT MATRIX FOR QADA

Data Association (DA) is a central problem in the modern

MTT systems [1], [2]. It consists in finding the global optimal

assignments of targets Ti, i = 1, ...,m to some measurements

zj , j = 1, ..., n at a given time k by maximizing the overall

gain in such a way, that no more than one target is assigned to a

measurement, and reciprocally. The m×n reward (gain/payoff)

matrix Ω = [ω(i, j)] is defined by its elements ω(i, j) > 0,

representing the gain of the association of target Ti with the

measurement zj .

These values are usually homogeneous to the likelihood

ratios and could be established in different ways, described

below. They provide the assignment matrix utilized by QADA

in order to obtain the quality of pairings (interpreted as a

confidence score) belonging to the optimal data assignment

solution based on its consistency (stability) with respect to all

the second best solutions, provided for a chosen algorithm.

QADA assumes the reward matrix is known, regardless

of the manner in which it is obtained by the user. In this

paper we propose two versions of QADA-KF. The first one

utilizes the assignment matrix built from the single normalized

distances, provided by the Global Nearest Neighbour method,

called QADA-GNN KF method. The second one utilizes

the assignment matrix, built from the posterior association

probabilities, provided by the Probabilistic Data Association

(PDA) method, called QADA-PDA KF method.

A. Assignment matrix based on GNN method

The GNN method finds and propagates the single most

likely hypothesis during each scan to update KF. It is a

hard (i.e., binary) decision approach, as compared to the

JPDAF which is a soft (i.e., probabilistic) decision approach

using all validated measurements with their probabilities of

association. GNN method was applied in [6] and [20] to

obtain the assignment matrix, utilized in QADA. In this case

the elements of assignment matrix ω(i, j), i = 1, ..,m; j =
1, ..., n represent the normalized distances d(i, j) , [(zj(k)−
ẑi(k|k − 1))′S−1(k)(zj(k) − ẑi(k|k − 1))]1/2 between the

validated measurement zj and target Ti satisfying the con-

dition d2(i, j) ≤ γ. The distance d(i, j) is computed from

the measurement zj(k) and its prediction ẑi(k|k− 1) (see [1]

for details), and the inverse of the covariance matrix S(k) of

the innovation, computed by the tracking filter. The threshold

γ, for which the probability of given observation to fall in

the gate is 0.99, could be defined from the table of the Chi-

square distribution with M degrees of freedom and allowable

probability of a valid observation falling outside the gate.

In this case the DA problem consists in finding the best

assignment, that minimizes the overall cost.

B. Assignment matrix based on PDA method

The Probabilistic Data Association (PDA) method [1] calcu-

lates the association probabilities for validated measurements

at a current time moment to the target of interest. PDA

assumes the following hypotheses according to each validated

measurement:

• Hi(k): zj(k) is a measurement, originated from the target

of interest, i = 1, ...,m
• H0(k): no one of the validated measurement originated

from the target of interest

If N observations fall within the gate of track i, N + 1
hypotheses will be formed.

The probability of H0 is proportional to pi0 = λN
FA(1 −

PgPd), and the probability of Hj (j = 1, 2, .., N) is propor-

tional to

pij =
λN−1

FA PgPd · e−
d2
ij

2

(2π)M/2.
√

|Sij |
, (20)

where Pg is the a priori probability that the correct measure-

ment is in the validation gate5 [1]; Pd is the target detection

probability; λFA is the spatial density of FA. The probabilities

pij can be rewritten as [1]

pij =















b

b+
∑

N
l=1

αil
for j = 0 (no valid observ.),

αij

b+
∑

N
l=1

αil
for 1 ≤ j ≤ N,

(21)

where

b , (1 − PgPd)λFA(2π)
M/2

√

|Sij |, (22)

and

αij , Pd · e−
d2
ij

2 . (23)

5In our simulations, we use Pg = 0.99 and Pd = 0.99.
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The assignment matrix used in QADA method is established

from all pij given by (21) related with all association hypothe-

ses. This matrix will have m rows (where m is the number of

all targets of interest), and N +1 columns for the hypotheses

generated. The (N + 1)th column will include the values pi0
associated with H0(k).

V. SIMULATION SCENARIOS AND RESULTS

The Converted Measurement KF is used in our MTT

algorithm. We assume constant velocity target model. The

process noise covariance matrix is: Q = σ2
υQT , where T is the

sampling period, συ is the standard deviation of the process

noise and QT is as given in [3]. Here are the results of KDA

KF, QADA-GNN KF, QADA-PDA KF, and JPDAF for two

interesting MTT scenarios.

A. Groups of targets simulation scenario

The noise-free groups of targets simulation scenario (Fig.1)

consists of five air targets moving from North-West to South-

East. For the clear explanation of the results, targets are

numbered starting at the beginning with 1st target that has

the greater y-coordinate and continuing to 5th target with the

smallest y-coordinate. The three targets 2nd, 3rd, and 4th move

together between them6. The stationary sensor is located at the

origin with range 20000 m. The sampling period is Tscan = 5
sec and the measurement standard deviations are 0.2 deg and

35 m for azimuth and range respectively. The targets move

with constant velocity V = 100m/sec. The group of three

targets in the middle i.e. 2nd to 4th move without maneuvering

keeping azimuth 135 deg from North. It is the main direction

of the group’s movement. The first target starts with azimuth

165 deg and moves towards the middle group of rectilinearly

moving targets. When it approaches the group, it starts a turn

to the left with −30 deg. Its initial azimuth of 165 deg is

decreased by the angle of turn and becomes 135 deg, the

main direction. The fifth target makes similar maneuver but in

opposite direction - to the right. Its initial azimuth of 105 deg

is increased by the turn of 30 deg and becomes 135 deg, and

also coincides with the main direction. From 21th scan to 48th

scan all the targets move rectilinearly in parallel. The distance

between them is 150 m. From 48th scan, the first target makes

a left turn to azimuth of 105 deg, that means −30 degrees with

respect to the main direction and starts to go away from the

middle group. The fifth target makes right turn to azimuth of

165 deg that means +30 deg from the main direction and also

starts to go away. All maneuvers are with one and the same

value of the angle (angle= 30 deg by absolute value), the

same time duration and linear velocity. The absolute value of

the corresponding transversal acceleration for all maneuvers is

1.163m/s2. The total number of scans for the simulations is

65. Fig. 2 shows the noised scenario for λFA = 16 ·10−10m−2

yielding to 0.2 FA per gate on average.

Our results are based on Monte Carlo (MC) simulations with

200 independent runs in applying KDA based KF, QADA-

6Note that three targets move together in the center.

Figure 1. Noise-free groups of targets Scenario.
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Figure 2. Noised groups of targets Scenario with λFA = 16 · 10−10m−2.

GNN KF, QADA-PDA KF, and JPDAF7. We compare the

performance of these methods with different criteria, and we

use an idealized track initiation in order to prevent uncon-

trolled impact of this stage on the statistical parameters of

the tracking process during MC simulations. The true targets

positions (known in our simulations) for the first two scans are

used for track initiation. The evaluation of MTT performance

is based on the criteria of Track Purity (TP), Track Life (TL),

and percentage of miscorrelation (pMC):

1) TP criteria examines the ratio between the number of

particular performed (jth observation - ith track) associations

(in case of detected target) over the total number of all possible

associations during the tracking scenario, but TP cannot be

used with JPDAF because JPDAF is a soft assignment method.

Instead of TP, we define the Probabilistic Purity Index (PPI).

It considers the measurement that has the highest association

probability computed by the JPDAF and check, (and count) if

this measurement originated from the target or not. PPI mea-

sures the ability of JPDAF to commit the highest probability

to the correct target measurement in the soft assignment of all

validated measurements.

2) TL is evaluated as an average number of scans before track’s

deletion. In our simulations, a track is cancelled and deleted

from the list of tracked tracks, when during 3 consecutive

scans it cannot be updated with some measurement because

there is no validated measurement in the validation gate. When

using JPDAF, the track is cancelled and deleted from the

list of tracked tracks, when during 3 consecutive scans its

own measurement does not fall in its gate. We call this,

7We have used the non parametric version of JPDAF in our simulations.
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the “cancelling/deletion condition”. The status of the tracked

tracks is denoted “alive”.

3) pMC examines the relative number of incorrect observation-

to-track associations during the scans.

The MTT performance results for KDA only KF, QADA-

GNN KF, QADA-PDA KF, and JPDAF for a low-noise case

(0.2 FA per gate on average) are given in Table 1.

(in %) KDA JPDAF QADA-GNN QADA-PDA

Average TL 50.27 66.46 81.94 90.85

Average pMC 3.35 2.98 2.10 1.75

Average TP 45.61 PPI=29.14 79.32 87.61

Table I
GROUPS OF TARGETS SCENARIO: COMPARISON BETWEEN MTT

PERFORMANCE RESULTS FOR 0.2 FA PER GATE.

According to all criteria, the QADA-PDA KF method shows

the best performance, followed by QADA-GNN KF, and

JPDAF. The KDA based KF approach, as one could expect,

shows the worst performance. Performance results for a more

noisy scenario with 0.4 FA per gate on average are given in

Table 2.

(in %) KDA QADA-GNN JPDAF QADA-PDA

Average TL 43.54 70.51 70.94 84.17

Average pMC 3.90 3.33 2.71 3.11

Average TP 38.22 66.43 PPI=25.65 78.51

Table II
GROUPS OF TARGETS SCENARIO: COMPARISON BETWEEN MTT

PERFORMANCE RESULTS FOR 0.4 FA PER GATE.

As we see, the results for 0.4 FA per gate scenario are

degraded in comparison to the low-noise case. The average

miscorrelation for QADA-PDA is slightly higher than for

JPDAF, probably because QADA method is based on the

1st and 2nd best solutions only, and more information (i.e.

the 3rd best assignment solution) should be used in such

case to improve QADA performance, which is left for further

research. According to TL and TP, still QADA-PDA KF based

MTT shows stably better performance than JPDAF.

JPDAF based MTT outperforms QADA-GNN KF and KDA

KF based MTT approaches according to the considered crite-

ria. In order to make a fair comparison between QADA KF

and JPDAF, we will discuss also the root mean square errors

(RMSE), associated with the filtered X and Y values, presented

in Figs. 3–7. Figs. 3 and 4 show the mean square X and Y

error filtered, associated with target 1, and compared for KDA

KF, QADA-GNN KF, QADA-PDA KF, and JPDAF. Figs. 5

and 6 consider the same errors for the middle of track 3. All

the results are compared to the sensor’s errors along X and

Y axis. We see that the RMSE on X filtered associated with

KDA KF, QADA-GNN KF, and QADA-PDA KF are a little

bit above from the sensor’s error in the region where target

1 makes maneuvers. For scans [20, 50], target 1 is moving

in parallel to the group of other targets running rectilinearly

and then these errors are less than respective sensors’s ones.

The RMSE on X filtered associated with JPDAF performance

is three times bigger in the region between scans 20th and

30th where target 1 starts moving in parallel to the rest of

rectilinearly moving targets. The RMSE on Y filtered is high

during the whole region, where target 1 moves in parallel way.
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Figure 3. RMSE on X for track 1 with the four tracking methods.
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Figure 4. RMSE on Y for track 1 with the four tracking methods.

The RMSE on Y error filtered by JPDAF are especially crit-

ical for the middle track 3 which shows its poor performance

in state estimation on Y direction. The RMSEs are more than

5 times bigger (in the region between scans 20th and 50th,

where all five targets move in parallel) than the respective

errors obtained by KDA KF, QADA-GNN KF, QADA-PDA

KF, which are less than the sensor’s error. The RMSE on X

filtered obtained with JPDAF is under the sensor’s error, beside

KDA KF, QADA-GNN KF, QADA-PDA KF methods.
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Figure 5. RMSE on X for track 3 with the four tracking methods.

The large value of RMSE on Y using the JPDAF can be

explained by the specificity of the scenario because it has

five targets moving closely during more than 30 consecutive

scans with sensor’s measurement errors, and false alarms

density, which yields to spatial persisting interferences and

track coalescence effects in JPDAF, as shown in Fig. 7, where
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Figure 6. RMSE on Y for track 3 with the four tracking methods.

the red and green plots are the tracks estimates. These effects

degrades significantly the quality of JPDAF performance as

already reported in [14].

Figure 7. JPDAF track coalescence (one run) with λFA = 16 · 10−10m−2.

B. Crossing targets simulation scenario

The second considered (crossing targets) scenario (Fig. 8)

consists of two maneuvering targets moving with constant

velocity 38m/sec. At the beginning, both targets move from

West to East. The stationary sensor is located at the origin

with range 1200 m. The sampling period is Tscan = 1sec
and the measurement standard deviations are 0.2 deg and 25
m for azimuth and range respectively.

The first target, having at the beginning greater y-coordinate,

moves straightforward from West to East. Between the 8th and

12th scans it makes a 50 deg right turn, and then it moves

straightforward during 8 scans. From the 20th scan to the

24th scan it makes a 50 deg left turn, and then it moves in

East direction till the 41th scan. It makes a second 50 deg

left turn between 41th and 45th scans, and then it moves

straightforward during 8 scans. From 53th scan it makes a

second 50 deg right turn till the 57th scan and then it moves

in East direction. The trajectory of target 1 corresponds to the

red plot of Fig. 8.

The second target makes a mirrored trajectory correspond-

ing to the green plot of Fig. 8. From scan 1 to 8 it moves from

West to East. During 8th to 12th scans it makes a 50 deg left

turn. Then it moves straightforward during 8 scans. During

20th to 24th scans it makes a 50 deg right turn and then it

moves in East direction till the 41th scan. It makes a second

50 deg right turn between the 41th and 45th scans, and then

it moves straightforward during 8 scans. From the 53th scan

it makes a second 50 deg left turn till the 57th scan and then

it moves in East direction. The total number of scans for the

simulations is 65. Fig. 9 shows the respective noised scenario

for λFA = 4 · 10−7m−2.
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Figure 8. Noise-free Crossing targets Scenario.
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Figure 9. Noised Crossing targets Scenario with λFA = 4 · 10−7m−2.

The MTT performance results obtained on the base of KDA

only KF, QADA-GNN KF, QADA-PDA KF, and JPDAF for

less noised case corresponding to 0.2 FA per gate are given in

Table 3, and the performance results for a more noisy scenario

with 0.4 FA per gate on average are given in Table 4.

(in %) KDA QADA-GNN JPDAF QADA-PDA

Average TL 77.06 88.93 91.25 93.47

Average pMC 2.40 2.24 2.08 2.11

Average TP 72.78 85.64 PPI=86.29 87.96

Table III
CROSSING TARGETS SCENARIO: COMPARISON BETWEEN MTT

PERFORMANCE RESULTS FOR FA IN GATE = 0.2.

(in %) KDA QADA-GNN JPDAF QADA-PDA

Average TL 58.80 77.20 82.87 83.18

Average pMC 3.61 3.63 2.94 3.40

Average TP 52.90 72.01 PPI=76.94 77.15

Table IV
CROSSING TARGETS SCENARIO: COMPARISON BETWEEN MTT

PERFORMANCE RESULTS FOR FA IN GATE = 0.4.

According to all criteria, the QADA-PDA KF shows again

the best performance, but now JPDAF based MTT shows

closed to QADA-PDA KF performance in comparison to the

previous scenario, and exceeds the performance of QADA-

GNN KF. Nevertheless the performances of all methods are
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deteriorated in more noised case, when one has 0.4 FA in gate

on average, this tendency is still kept. JPDAF has better (than

in the previous scenario) performance, but still QADA-PDA

KF exceeds its performance.

Figures 10-13 show that the RMS errors associated with

X and Y filtered are below the sensor’s error. They confirm

the better performance of JPDAF in this particular scenario

with only two maneuvering targets, which is simpler than the

groups of targets scenario.
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Figure 10. RMSE on X for track 1 with the four tracking methods.
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Figure 11. RMSE on Y for track 1 with the four tracking methods.
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Figure 12. RMSE on X for track 2 with the four tracking methods.

VI. CONCLUSIONS

This work evaluated with Monte Carlo simulations the

efficiency of MTT performance in cluttered environment of

four methods (i) classical MTT algorithm based on the GNN

approach for data association, utilizing Kinematic only Data

based Kalman Filter; (ii) QADA-GNN KF; (iii) QADA-PDA
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Figure 13. RMSE on Y for track 2 with the four tracking methods.

KF; and (iiii) JPDAF. The first scenario (groups of targets)

shows the advantages of applying QADA-KF. According to

all performance criteria, the QADA-PDA KF gives the best

performance, followed by QADA-GNN KF, and JPDAF. The

KDA KF approach shows the worst performance (as expected).

This scenario is particularly difficult for JPDAF because of

several closely spaced and rectilinearly moving targets in

clutter during many consecutive scans, and it leads to track

coalescence effects due to persisting interferences. As a result,

the tracking performance of JPDAF is degraded. Because the

complexity of the calculation for joint association probabilities

grows exponentially with the number of targets, JPDAF re-

quires almost 3 times more computational time in comparison

to other methods in the first (complex) scenario. In the second

(only two crossing targets) MTT scenario, JPDAF shows better

tracking performances in comparison to QADA-GNN KF. It is

able to track more precisely these only two targets, because of

non persisting interferences. Overall, our analysis shows that

QADA-PDA KF method is the best of the four approaches to

track multiple targets in clutter with a tractable complexity.

REFERENCES

[1] Y. Bar-Shalom, T.E. Fortmann, Tracking and Data Association, Aca-
demic Press, 1988.

[2] Y. Bar-Shalom (Ed.), Multitarget-Multisensor Tracking: Advanced Ap-

plications, Artech House, Norwood, USA, 1990.
[3] S. Blackman, R. Popoli, Design and Analysis of Modern Tracking

Systems, Artech House, 1999.
[4] J. Dezert, K. Benameur, On the Quality of Optimal Assignment for Data

Association, Springer, L.N. in Compt. Sci., Vol.8764, pp. 374–382, 2014.
[5] J. Dezert et al., On the Quality Estimation of Optimal Multiple Criteria

Data Association Solutions, Proc. of Fusion 2015, July 2015.
[6] J. Dezert, et al., Multitarget Tracking Performance based on the Quality

Assessment of Data Association, Proc. of Fusion 2016, July 2016.
[7] Y. Bar-Shalom, T.E. Fortmann, M. Scheffe, JPDA for Multiple Targets

in Clutter, Proc. Conf. on Inf. Sci. and Syst., Princeton, March 1980.
[8] T.E. Fortmann et al., Multitarget Tracking using Joint Probabilistic Data

Association, in Proc. of IEEE CDC, Albuquerque, USA, Dec. 1980.
[9] T.E. Fortmann, et al., Sonar Tracking of Multiple Targets Using JPDAF,

IEEE Journal of Oceanic Eng., Vol. 8, No.3, pp. 173–184, July 1983.
[10] Y. Bar-Shalom, X.-R. Li. Multitarget-Multisensor Tracking: Principles

and Techniques, YBS Publishing, Storrs, CT, USA, 1995.
[11] Y. Bar-Shalom et al., Estimation with Applications to Tracking and

Navigation: Theory, Algorithms and Software, John Wiley & Sons, 2001.
[12] Y. Bar-Shalom et al., Tracking and Data Fusion: A Handbook of

Algorithms, YBS Publishing, Storrs, CT, USA, 2011.
[13] Y. Bar-Shalom, Extension of the PDAF to Multitarget Environments,

Proc. 5th Symp. Nonlinear Estimation, San Diego, USA, Sept. 1974.
[14] R.J. Fitzgerald, Track Biases and Coalescence with Probabilistic Data

Association, IEEE Trans. on AES, Vol. 21, No. 6, pp. 822–825, 1985.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

202



[15] J. Dezert, Introduction au pistage multi-cibles multi-senseurs, ENSTA
Course (in French), Sept. 2003.

[16] B. Zhou, Multitarget Tracking in Clutter: Algorithms for Data Associa-

tion and State Estimation, Ph.D. Thesis, Penn. State Univ., 1992.
[17] B. Zhou, N.K. Bose, Multitarget Tracking in Clutter: Fast Algorithms

for Data Association, IEEE Trans. on AES, Vol. 29, No. 2, April 1993.
[18] J. Dezert, Poursuite Multi-Cibles Mono-Senseur, ONERA Tech. Note

1988-10 (in French), France, 1988.
[19] F. Smarandache, J. Dezert (Editors), Advances and Applications of DSmT

for Information Fusion, Volumes 1, 2, 3 & 4, ARP, 2004–2015.
http://www.onera.fr/staff/jean-dezert?page=2

[20] J. Dezert et al., The Impact of the Quality Assessment of Optimal Assign-

ment for Data Association in Multitarget Tracking Context, Cybernetics
and Inf. Techn. J., Vol.15, No.7, pp. 88–98, 2015.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

203



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

204



Multi-Criteria Decision-Making

with Imprecise Scores and BF-TOPSIS

Jean Dezerta, Deqiang Hanb, Jean-Marc Tacnetc

aThe French Aerospace Lab, ONERA, Palaiseau, France.
bCIESR, Xi’an Jiaotong University, Xi’an, China.

cUGA, Irstea, UR ETGR, St-Martin-d’Hères, France.

Emails: jean.dezert@onera.fr, deqhan@xjtu.edu.cn, tacnet@irstea.fr

Abstract—In 2016 we developed a new approach for Multi-
Criteria Decision-Making (MCDM) inspired by the technique
for order preference by similarity to ideal solution (TOPSIS) and
based on belief functions (BF). Our BF-TOPSIS (Belief Function
based TOPSIS) approach assumes that the input score of each
hypothesis for each criterion was a real precise number which
is a quite restrictive assumption. In this paper we extend our
BF-TOPSIS to deal with imprecise score values (intervals of real
numbers) and we call it Imp-BF-TOPSIS. This new approach
follows main ideas of BF-TOPSIS but extends its applicability for
more realistic MCDM problems where the scores are given with a
finite precision. Imp-BF-TOPSIS is based on Interval Arithmetic
(IA), new probabilistic order relations between intervals and
belief functions. We also present results of Imp-BF-TOPSIS for
simple examples for illustrating its effectiveness.

Keywords: Information fusion, multi-criteria decision-

making, MCDM, belief functions, TOPSIS.

I. INTRODUCTION

The Multi-Criteria Decision-Making (MCDM) aims to

choose an alternative among a known set of alternatives

based on their quantitative or qualitative evaluations (scores)

obtained with respect to different criteria. MCDM can be

considered as a decision-level information fusion, and it has

been widely used in many decision-making applications. In

classical MCDM problem, all the criteria and all alternatives

are known, and the score values are usually real numbers

(precisely known). Depending on the context of the MCDM

problem, the score can be interpreted either as a cost/expense

or as a reward/benefit. In the sequel, by convention and without

loss of generality we will interpret the score as a reward

having monotonically increasing preference. Thus, the best

alternative with respect to a given criteria will be the one

providing the highest reward/benefit.The set of score values

is represented by a quantitative benefit or payoff matrix. Each

criterion can also have a relative importance weight. Many

methods have been proposed in the literature to solve the

classical MCDM [1]. When the score values are incomplete or

imprecise (quantitative or qualitative), traditional approaches

for classical MCDM problems do not work. In this paper,

we focus on these unclassical MCDM problems. We propose

to extend the BF-TOPSIS approach to deal with imprecise

score values to cover a broader spectrum of real MCDM

applications. We use the theory of belief functions and the

interval arithmetic. This extension of BF-TOPSIS method is

referred as Imp-BF-TOPSIS method in the sequel, where Imp

is an abbreviation standing for Imprecise to specify that the

BF-TOPSIS will work with imprecise score values (or more

generally with imprecise basic belief assignments (BBAs)).

The rest of this paper is organized as follows. In section II,

the formulation of classical MCDM problem is provided. In

Section III, we introduce Interval Arithmetic and propose new

(probabilistic) order relations for intervals as well as distances

between intervals. In section IV, basics of belief functions are

recalled. In section V we recall the principle of BF-TOPSIS

for classical (precise scores) MCDM. The Imp-BF-TOPSIS for

imprecise score values is presented in section VI, with simple

examples in section VII. SectionVIII concludes this paper.

II. FORMULATION OF CLASSICAL MCDM

A classical MCDM problem has a given set of alternatives

A , {A1, A2, . . . , AM} (M > 2), and a given set of

criteria C , {C1, C2, . . . , CN} (N ≥ 1). Each alternative

Ai represents a possible choice (a possible decision to make).

In a general context, each criterion is also characterized by a

relative importance weighting factor wj ∈ [0, 1], j = 1, . . . , N
which are normalized by imposing the condition

∑

j wj =
1. The set of normalized weighting factors is denoted by

w , {w1, w2, . . . , wN}. The score of each alternative Ai with

respect to each criteria Cj is expressed by a real number Sij

called the score value of Ai based on Cj . We denote S the

score M × N matrix which is defined as S , [Sij ]. The

MCDM problem aims to select the best alternative A⋆ ∈ A

given S and the weighting factors w of criteria.

III. CALCULUS WITH INTERVALS

A closed interval x is denoted by x = [x, x̄] = {x|x ≤
x ≤ x̄}. x = inf(x) is the infimum (lower endpoint) of x

and x̄ = sup(x) is the supremum (upper endpoint) of x taken

values in R. The set of intervals over R is denoted by IR.

An interval in which one endpoint is included and the other is

excluded is called a half-closed interval (or half-open interval)

and it is called an open interval if its endpoints are excluded.

Originally published as: J. Dezert, D. Han, J.-M. Tacnet, Multi-Criteria Decision-Making with Imprecise 
Scores and BF-TOPSIS, in Proc. of 20th Int. Conf. on Information Fusion (Fusion 2017), Xi’an, China, 
July 10–13, 2017, and reprinted with permission.
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Any precise number x can be expressed with imprecise num-

ber notation as the degenerate interval x = [x, x]. A non-

degenerate interval is called a proper interval. The numbers

wid(x) , x̄−x, rad(x) = wid(x)/2 and mid(x) , 1

2
(x+ x̄)

are respectively the width, the radius and the midpoint of

x. If x is a precise number (i.e. a degenerate interval),

then wid(x) = 0 and x = [mid(x),mid(x)]. The number

mag(x) , max{|x| | x ∈ x} = max{|x|, |x̄|} is the magni-

tude of x, and mig(x) , min{|x| | x ∈ x} = min{|x|, |x̄|}
is the mignitude of x. If x and y are overlapped intervals

then x ∩ y and x ∪ y are also intervals defined by x ∩ y =
[max{x, y},min{x̄, ȳ}] and x ∪ y = [min{x, y},max{x̄, ȳ}].
If x and y do not overlap, then x ∩ y is empty, and x ∪ y is

not a proper interval but the union of two disjoint1 intervals.

In this case, the interval [min{x, y},max{x̄, ȳ}] is the tightest

interval that includes x∪y and it is called the interval hull of

x and y. The interval x is a subset of y if (y ≤ x)∧ (x̄ ≤ ȳ).
The interval x is equal to y if (x = y) ∧ (x̄ = ȳ).

A. Interval Arithmetic

Interval Arithmetic (IA) is an arithmetic defined on intervals

of IR. Its modern development started with Moore’s works

[4]–[7] and yielded recently to an IEEE Standard [8]. The

INTLAB Matlab™ toolbox for IA has been developed and

proposed by Rump in [9] with a tutorial in [10]. Other tools

implementing IA are listed in [7] with more resources available

on Kreinovich’s interval computation web site [11]. The basic

operations2 on intervals are:

• Addition: x+ y = [x+ y, x̄+ ȳ]
• Subtraction: x − y = [x − ȳ, x̄ − y]. In particular, −x =
[−x̄,−x], because −x = [0, 0]− [x, x̄].
• Multiplication: x×y = [min{S×(x,y)},max{S×(x,y)}],
where S×(x,y) , {xy, xȳ, x̄y, x̄ȳ} is the set of all possible

products3 of endpoints of x and y. In particular, −x =
[−x̄,−x] because −x = [−1,−1]× [x, x̄] = [x, x̄]× [−1,−1].
• Division: x/y = [min{S÷(x,y)},max{S÷(x,y)}], if 0 /∈
y and where S÷(x,y) , {x/y, x/ȳ, x̄/y, x̄/ȳ} is the set of all

possible divisions of endpoints of x and y. If 0 ∈ y then the

division by y can be handled with more effort using extended

interval arithmetic [7], [12] not detailed in this paper.

• Inverse: if x > 0 or x̄ < 0, 1

x
= [1/x̄, 1/x].

The following algebraic properties hold for all x,y, z ∈ IR:

• Associativity: (x+y)+z = x+(y+z) and (xy)z = x(yz).
• Commutativity: (x+ y) = (y + x) and (xy) = (yx).
• Neutral elements: 0 + x = x + 0 = x where 0 , [0, 0],
0 · x = x · 0 = 0 and 1 · x = x · 1 = x where 1 , [1, 1].

Proper intervals do not have additive or multiplicative

inverses and the distributivity law does not hold for intervals.

Instead, the following sub-distributivity low (weaker version

of distributivity) holds : ∀x,y, z ∈ IR, x(y + z) ⊆ xy + xz.

Although the interval arithmetic is appealing and looks

simple for basic operations with intervals, the so-called de-

pendency problem is a major obstacle to its application when

1
x = [x, x̄] and y = [y, ȳ] are disjoint if (x̄ < y) ∨ (ȳ < x).

2For simplicity, we use operations on closed intervals.
3The product of x and y will also be denoted x · y, or xy for simplicity.

complicate expressions have to be calculated to find tightest

range enclosure. In fact, we must take care of dependencies

of variables involved in formulas before applying IA in order

to get tightest results. To reduce the dependency effect in the

result, we need to replace (if possible) the original expression

to compute by an equivalent simpler one having less (or none)

redundant variables. For example, the derivation of x/[x+y]
for 0 /∈ x must be computed with IA by 1/[1+ y/x] to get

tightest result. Also, the power 2 of x must not be computed

by [x, x̄] × [x, x̄] because the unknown precise value of x
in [x, x̄] must be exactly the same (strong dependency) in

the multiplication operation in the derivation of x2. Hence,

x2 = {x2| − 2 ≤ x ≤ 2} = [0, 4] is different of

[−2, 2]× [−2, 2] = [−4, 4].

B. Basic interval functions

Here several functions that are used in the sequel. More

interval functions can be found in [7], [13].

• Absolute value [13]:

|x| =











[|x̄|, |x|], if x̄ ≤ 0

[|x|, |x̄|], if x ≥ 0

[0,max{|x|, |x̄|}], if x < 0 and x̄ > 0

(1)

• Power [7]:

• If n > 0 is an odd number: xn = [xn, x̄n]
• If n > 0 is an even number

xn =











[xn, x̄n], if x > 0

[x̄n, xn], if x̄ < 0

[0,max{xn, x̄n|}], if 0 ∈ x.

• If z > 0 and x > 0, xz = [xz, x̄z ].

• Square root [7]:

x
1

2 =
√
x =

{

[
√
x,

√
x̄], for x > 0

[0,
√
x̄], if 0 ∈ x.

C. Order relations for intervals

The real numbers are ordered by the relation < (or >) and

comparing two real numbers is in general not a difficult task.

In the methods developed in this paper, we need to compare

imprecise numbers represented by intervals. We interpret an

interval to mean ”there is a point that lies between the bounds”

and the relation between two intervals is a relation between

the two points belonging to intervals (i.e. a possibly relation).

Comparing intervals is not obvious in the general case when

the intervals have a non-empty intersection. For this, we

propose a method for comparing intervals and we then explain

how to find the min (or max) element of a set of intervals. To

make comparisons, we assume that the unknown precise value

belonging to an imprecise number is uniformly distributed in

the interval under concern. This assumption is motived by

the principle of insufficient reason. The comparative test that

we propose does not provide a true or false answer (boolean

function), but only a probability value that the test is satisfied

or not. To implement the comparison between to intervals x
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and y of IR, we define W , wid(x)wid(y) for notation

convenience and we need to distinguish all possible situations

as follows:

• Case 1: x < x̄ < y < ȳ. In this case, x < y with

probability P (x < y) = 1.

• Case 2: y < ȳ < x < x̄. In this case, x < y with

probability P (x < y) = 0.

• Case 3: x < y < x̄ < ȳ. In this case, x < y with

P (x < y) =
1

W
[wid(a)wid(b) + wid(a)wid(c)

+ (wid(b)2/2) + wid(b)wid(c)] (2)

where a , [x, y], b , [y, x̄] and c , [x̄, ȳ].
• Case 4: x < y < ȳ < x̄. In this case, x < y with

P (x < y) =
1

W
[wid(a)wid(b) + (wid(b)2/2)] (3)

where a , [x, y] and b , [y, ȳ].
• Case 5: y < x < ȳ < x̄. In this case, x < y with

P (x < y) =
1

W
(wid(b)2/2) (4)

where b , [x, ȳ].
• Case 6: y < x < x̄ < ȳ. In this case, x < y with

P (x < y) =
1

W
[wid(b)wid(c) + (wid(b)2/2)] (5)

where b , [x, x̄] and c , [x̄, ȳ].

Formulae (2)-(5) are obtained by the probability calculus using

uniform distributions over intervals and the total probability

theorem. For case 3, one has P (x < y) = P (x < y, x ∈
a, y ∈ b) + P (x < y, x ∈ a, y ∈ c) + P (x < y, x ∈ b, y ∈
b) + P (x < y, x ∈ b, y ∈ c) with P (x < y, x ∈ a, y ∈ b) =

1 · wid(a)

wid(x)

wid(b)

wid(y)
, P (x < y, x ∈ a, y ∈ c) = 1 · wid(a)

wid(x)

wid(c)

wid(y)
,

P (x < y, x ∈ b, y ∈ b) = 1

2
· wid(b)

wid(x)

wid(b)

wid(y)
and P (x < y, x ∈

b, y ∈ c) = 1 · wid(b)

wid(x)

wid(c)

wid(y)
, which gives formula (2).

The value of P (x > y) can be computed by a similar

approach. Of course, P (x ≥ y) = 1− P (x < y) and P (x ≤
y) = 1 − P (x > y). Also, one has P (x 6= y) = P (x <
y) + P (x > y) = 1− P (x = y).

Example 1: x = [−3, 0], y = [−1, 4], then P (x < y) =
0.9667.

Because we know how to compute the probability P (x < y)
for any two imprecise numbers x and y, we are able to find

the min (or max) elements of a set of imprecise numbers

X = {x1,x2, . . . ,xM} with a given associated probability.

For instance, for finding the min element of X we proceed as

follows:

• Calculate the M ×M square matrix4:

P , [Pij = P (xi < xj)] (6)

4By construction all diagonal elements Pii equal zero.

• Calculate the likelihood λi , λ(xi) of xi to be the min
of X as the sum of Pij for j 6= i, that is

λi =
∑

j=1,...,M|j 6=i

P (xi < xj) =
∑

j 6=i

Pij (7)

• The index of the most likely min element of X is

imin = arg max
i=1,...,M

λi (8)

The most likely min element of X is given by ximin
with

the probability P (ximin
= min{X}) = λi/(M − 1).

An approach similar is applied to find the max element

of X using the likelihood λi =
∑

j 6=i P (xi > xj) and

imax = argmaxi λi. The max element of X will be given by

ximax
with the associated probability P (ximax

= max{X}) =
λi/(M − 1). Moreover and if needed, we can also sort

(probabilistically) all the elements of X by decreasing (or

increasing) order based on the likelihood values λi.

Example 2: Let’s consider the set of intervals X = {x1 =
[−2, 2],x2 = [−3, 0],x3 = [0, 5],x4 = [−1, 3], }. From

formulas of P (x < y) given for aforementioned cases 1–6,

one obtains

P , [P (xi < xj)] =









0 0.1667 0.9000 0.7188
0.8333 0 1.0000 0.9583
0.1000 0 0 0.2250
0.2812 0.0417 0.7750 0









with the likelihood values








λ1 = λ(x1)
λ2 = λ(x2)
λ3 = λ(x3)
λ4 = λ(x4)









=









1.7854
2.7917
0.3250
1.0979









The maximum likelihood is λ2 = 2.7917 and the corre-

sponding index is imin = 2. This means that x2 = [−3, 0]
is most likely the min element of X with the probability

P (x2 = min{X}) = 2.7917/3 = 0.9306. Using a similar

approach, one will find that the max of X is x3 = [0, 5] with

the probability P (x3 = max{X}) = 2.6750/3 = 0.8917.

Based on the likelihood values of the min element of X sorted

in decreasing order, we obtain x2 < x1 < x4 < x3, which

corresponds to what we intuitively expect in such example.

D. Distances between intervals

There are many ways to define strict distance metrics

between two intervals. The simplest one is the Hausdorff

distance between two intervals x and y of IR which is the

maximum distance d(x, y) of x ∈ x to its nearest point

y ∈ y, where d(x, y) is any chosen metric [14], more precisely

dH(x,y) = maxx∈x{miny∈y d(x, y)}. For simplicity, if we

choose the L1 distance metric dL1
(x, y) , |x − y|, then

Hausdorff’s distance is given by

dH(x,y) = max{|x− y|, |x̄− ȳ|}
= |mid(x)−mid(y)|+ |rad(x) − rad(y)| (9)

Another interesting distance successfully used for decision-

making under uncertainty in the belief functions framework
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[1], [15], [16], is Wassertein’s distance metric [17], [18]

dW (x,y) defined as

dW (x,y) ,

√

[mid(x)−mid(y)]2 +
1

3
[rad(x) − rad(y)]2

(10)

which corresponds to Mallows’ distance [19] between two

probability distributions when we assume that each interval

is the support of a uniform distribution.

Example 3: If x = [−3, 0] and y = [−1, 4], then dH(x,y) =
4 whereas dW (x,y) ≈ 3.0551.

IV. BASICS OF BELIEF FUNCTIONS

Belief functions have been introduced by Shafer in [20] to

model epistemic uncertainty. We assume that the answer5 of

the problem under concern belongs to a known (or given) finite

discrete frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn},

with n > 1, and where all elements of Θ are exclusive6.

The set of all subsets of Θ (including empty set ∅ and Θ) is

the power-set of Θ denoted by 2Θ. A basic belief assignment

(BBA) associated with a given source of evidence is defined

[20] as the mapping m(·) : 2Θ → [0, 1] satisfying m(∅) = 0
and

∑

A∈2Θ
m(A) = 1. The quantity m(A) is called the

mass of A committed by the source of evidence. Belief and

plausibility functions are respectively defined by

Bel(A) =
∑

B⊆A

B∈2Θ

m(B), and P l(A) = 1− Bel(Ā). (11)

If m(A) > 0, A is called a focal element of m(·). When all

focal elements are singletons then m(·) is called a Bayesian

BBA [20] and its corresponding Bel(·) function is homoge-

neous to a (subjective) probability measure. The vacuous BBA,

or VBBA for short, representing a totally ignorant source is

defined as7 mv(Θ) = 1.

Shafer [20] proposed to combine s ≥ 2 distinct sources of

evidence represented by BBAs m1(.), . . . ,ms(.) over the same

FoD with Dempster’s rule (i.e. the normalized conjunctive

rule). The justification and behavior of Dempster’s rule have

been disputed over the years from many counter-examples in-

volving high or low conflicting sources (from both theoretical

and practical standpoints) as reported in [22]–[25]. Many rules

of combination exist8, and we recommend the new interesting

rules based on the proportional conflict redistribution (PCR)

principle, see [21], Vol. 3 for details.

A true distance metric between two BBAs m1(.) and m2(.)
defined on the same FoD, has been defined in [15] as follows9

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)) (12)

5i.e. the solution, or the decision to take.
6This is so-called Shafer’s model of FoD [21].
7The complete ignorance is denoted Θ in Shafer’s book [20].
8see [21], Vol. 2 for a detailed list of fusion rules.
9Another well-known real distance metric dJ (m1, m2) had been proposed

before by Jousselme et al. in [26] which could also be used but we prefer to
work with dBI (m1,m2) distance for reasons explained in [27].

where the Belief-Intervals are defined by BI1(X) ,

[Bel1(X), P l1(X)] and BI2(X) , [Bel2(X), P l2(X)], and

where dW (BI1(X), BI2(X)) is Wassertein’s distance be-

tween intervals calculated by (10). Nc = 1/2|Θ|−1 is a

normalization factor to get dBI(m1,m2) ∈ [0, 1].
Making decision on an element of FoD from a given BF

(Bel(.), Pl(.), or m(.)) can be done in many manners. For

instance,

• in taking the argument of max of {Bel(θi), i = 1, . . . , n}.

This is a pessimistic decisional attitude.

• in taking the argument of max of {Pl(θi), i = 1, . . . , n}.

This is an optimistic decisional attitude.

• in approximating the BBA m(.) by a subjective proba-

bility measure P (.) and taking the argument of max of

{P (θi), i = 1, . . . , n}. This is a compromise decisional

attitude.

• in taking the argument of min of {dBI(m(.),mθi), i =
1, . . . , n}, where mθi is the BBA entirely focused on θi
defined by mθi(X) = 1, if X = θi and mθi(X) = 0, if

X 6= θi.

In the sequel, we will use the latter method which has been

proved very effective in [16], [27].

V. BF-TOPSIS WITH PRECISE SCORES

Four BF-TOPSIS methods have been proposed in [1] with

an increasing complexity and robustness to rank reversal

phenomenon for MDCM support. In this section we briefly

recall the main ideas of BF-TOPSIS. For further mathematical

details, please refer to [1]. All these methods start with

constructing BBAs from the precise score values of the score

matrix S as briefly explained. Only the way those BBAs are

processed differs from one BF-TOPSIS method to another one.

A. From precise scores to precise BBAs

In [1], one has proved that BBAs can be consistently built

from the precise score matrix S as follows:

Belij(Ai) ,

{

Supj(Ai)

A
j
max

if Aj
max 6= 0

0 if Aj
max = 0

(13)

Belij(Āi) ,

{

Infj(Ai)

A
j
min

if Aj
min 6= 0

0 if Aj
min = 0

(14)

where Āi is the complement of Ai in the FoD Θ ,

{A1, A2, . . . , AM} (M > 2), and

Supj(Ai) ,
∑

k∈{1,...,M}|Skj≤Sij

|Sij − Skj | (15)

Inf j(Ai) , −
∑

k∈{1,...,M}|Skj≥Sij

|Sij − Skj | (16)

The denominators involved in Eqs. (13)-(14), are defined by

Aj
max , maxiSupj(Ai) and Aj

min
, miniInf j(Ai), and

they are supposed different from zero10. Therefore, the belief

10If Aj
max = 0 then Belij(Ai) = 0, and if Aj

min = 0 then Plij(Ai) = 1,

so that Belij(Āi) = 0.
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interval of choosing hypothesis Ai considering criterion Cj is

given by:

[Belij(Ai);Plij(Ai)] , [
Supj(Ai)

Aj
max

, 1−
Inf j(Ai)

Aj
min

] (17)

From this belief interval, we deduce the BBA mij(·) which

is the triplet (mij(Ai),mij(Āi),mij(Ai ∪ Āi)) defined by:

mij(Ai) , Belij(Ai) (18)

mij(Āi) , Belij(Āi) = 1− Plij(Ai) (19)

mij(Ai ∪ Āi) , mij(Θ) = Plij(Ai)− Belij(Ai) (20)

If a numerical value Sij is missing in S, one uses mij(·) ,
(0, 0, 1), i.e. one takes the vacuous belief assignment.

Using the formulae (13)-(20), we obtain from any M ×N
precise score matrix11 S the general M × N matrix M ,

[mij(.)] of BBAs that are involved in BF-TOPSIS methods.

This construction of BBAs is very interesting for applications

because it is invariant to the bias and scaling effects of score

values [1]. Also, it allows us to model our lack of evidence (if

any) with respect to an (or several) alternative(s) when their

corresponding score values are missing for any reason.

B. BF-TOPSIS1 method

From the BBA matrix M and for each alternative Ai, one

computes distances dBI(mij ,m
best
ij ) between mij(·) and the

ideal best BBA defined by mbest
ij (Ai) , 1, and the distances

dBI(mij ,m
worst
ij ) between mij(·) and the ideal worst BBA

defined by mworst
ij (Āi) , 1. Then, one computes the weighted

average distances with relative importance weighting factor wj

of criteria Cj as follows:

dbest(Ai) ,

N
∑

j=1

wj · dBI(mij ,m
best
ij ) (21)

dworst(Ai) ,

N
∑

j=1

wj · dBI(mij ,m
worst
ij ) (22)

The relative closeness of the alternative Ai with respect to the

ideal best solution Abest defined by

C(Ai, A
best) ,

dworst(Ai)

dworst(Ai) + dbest(Ai)
(23)

is used to make the preference ordering according to

the descending order of C(Ai, A
best) ∈ [0, 1], where a

larger C(Ai, A
best) value means a better alternative (higher

preference).

11Note that each element mij(.) is in fact a 3-uple of masses given by
(18)–(20).

C. BF-TOPSIS2 method

For each criteria Cj , one computes at first the relative

closeness of each alternative Ai w.r.t. its ideal best solution

Abest by

Cj(Ai, A
best) ,

dBI(mij ,m
worst
ij )

dBI(mij ,m
worst
ij ) + dBI(mij ,mbest

ij )
(24)

The global relative closeness C(Ai, A
best) of each alternative

Ai with respect to its ideal best solution Abest used to make

the final preference ordering is then obtained by the weighted

average of Cj(Ai, A
best), that is

C(Ai, A
best) ,

N
∑

j=1

wj · Cj(Ai, A
best) (25)

D. BF-TOPSIS3 method

For each alternative Ai, one fuses the N precise BBAs

mij(·) discounted with importance factor wj (see [28]) with

PCR6 rule of combination [21] (Vol. 3) to get the precise

fused BBA mPCR6
i , from which one computes the distance

dbest(Ai) = dBI(m
PCR6
i ,mbest

i ) between mPCR6
i (·) and its

ideal best BBA mbest
i (Ai) , 1. Similarly, one computes

the distance dworst(Ai) = dBI(m
PCR6
i ,mworst

i ) between

mPCR6
i (·) and mworst

i (Āi) , 1. The relative closeness of

each Ai with respect to ideal best solution C(Ai, A
best) is

computed by (23), and is used to make the preference ordering

according to the descending order of C(Ai, A
best).

E. BF-TOPSIS4 method

This method is similar to BF-TOPSIS3 except that we use

the more complicate ZPCR6 fusion rule taking into account

Zhang’s degree of intersection of focal elements in the con-

junctive consensus operator, see [29] for details.

VI. BF-TOPSIS WITH IMPRECISE SCORES

In this section we present the extension of BF-TOPSIS

methods to deal with imprecise score values Sij = [Sij , S̄ij ],
i = 1, . . . ,M and j = 1, . . . , N . These extensions will be

referred as Imp-BF-TOPSIS in the sequel. The basic idea is

to follow principles of BF-TOPSIS using Interval Arithmetic

(IA) instead of classical arithmetic on reals.

A. From imprecise scores to imprecise BBAs

The application of formulae (13)–(20) using IA operations

does not work directly because of potential division by inter-

vals including zero, and because of comparison tests involving

boolean ≤ and ≥ functions. To circumvent these problems, we

need to avoid intervals including zero, and replace boolean ≤
and ≥ functions by their probabilistic counterpart presented

in section III-C. This is done as follows:

• Step 1 (Offset correction): To work only with positive

intervals, we apply at first an offset correction of impre-

cise score values Sij = [Sij , S̄ij ] for each column j of

imprecise score matrix S = [Sij ]. This is a preprocessing

step. We are allowed to do this because, by construction,

the BBAs based on formulae (13)–(20) are invariant to
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bias and scaling effects [1]. Therefore, we can always

replace the original imprecise score [Sij , S̄ij ] by

[S′
ij , S̄

′
ij ] = [Sij , S̄ij ] + [δj + ǫ, δj + ǫ] (26)

where ǫ > 0 is an arbitrary positive number to ensure

the strict positivity of intervals, and the offset correction

value δj is given for j = 1, . . . , N by

δj = − min
i=1,...,M

{Sij} (27)

Example 4: Let’s consider the FoD Θ ,

{A1, A2, A3, A4} with four alternatives, a criterion

C1 and the following associated imprecise scores

S11 = [−2, 2], S21 = [−3, 0], S31 = [0, 5]
and S41 = [−1, 3]. The offset correction is then

δ1 = −min{−2,−3, 0,−1} = 3. If we take, ǫ = 1 then

we will get the corrected (positive) imprecise scores

S′
11 = [−2, 2] + [3 + 1, 3 + 1] = [2, 6]

S′
21 = [−3, 0] + [3 + 1, 3 + 1] = [1, 4]

S′
31 = [0, 5] + [3 + 1, 3 + 1] = [4, 9]

S′
41 = [−1, 3] + [3 + 1, 3 + 1] = [3, 7]

• Step 2: Replace the Skj ≤ Sij and Skj ≥ Sij tests in-

volved in (15) and (16), by their probabilistic counterparts

P (Skj ≤ Sij) ≥ 0.5 and P (Skj ≥ Sij) ≥ 0.5 because

Skj and Sij are imprecise numbers (i.e. intervals), where

P (Skj ≤ Sij) and P (Skj ≥ Sij) are computed as in

section III-C.

In the sequel, we assume that the offset correction of score

as been applied (step 1 done) and for notation simplicity we

denote these (corrected) strictly positive imprecise scores Sij .

The imprecise BBAs can now be computed from the (offset-

corrected) imprecise scores values as follows12:

[Belij(Ai), Belij(Ai)] ,

{

Supj(Ai)

A
j
max

if Aj
max 6= [0, 0]

[0, 0] if Aj
max = [0, 0]

(28)

[Belij(Āi), Belij(Āi)] ,

{

Infj(Ai)

A
j
min

if Aj
min 6= [0, 0]

[0, 0] if Aj
min = [0, 0]

(29)

where

Supj(Ai) = [Sup
j
(Ai), Supj(Ai)]

,
∑

k∈{1,...,M}|P (Skj≤Sij)≥0.5

|Sij − Skj | (30)

Infj(Ai) = [Inf
j
(Ai), Inf j(Ai)]

, −
∑

k∈{1,...,M}|P (Skj≥Sij)≥0.5

|Sij − Skj | (31)

The denominators involved in Eqs. (28)-(29), are defined

by Aj
max = [Aj

max, Ā
j
max] , maxiSupj(Ai) and Aj

min
=

12Remember that operations involved in the formulas of this section are IA
operations defined in section III.

[Aj
min

, Āj
min

] , miniInf j(Ai), and they are supposed dif-

ferent from [0, 0]13. Therefore, in non-degenerate case (when

Aj
max 6= [0, 0] and Aj

min
6= [0, 0]) the belief interval of

hypothesis Ai considering criterion Cj has now imprecise

bounds given by

Belij(Ai) = [Belij(Ai), Belij(Ai)] =
Supj(Ai)

Aj
max

(32)

Plij(Ai) = [Plij(Ai), P lij(Ai)] = [1, 1]−
Inf j(Ai)

Aj
min

(33)

From these imprecise bounds, we calculate the impre-

cise BBAs mij(·) = [mij(·), m̄ij(·)] which is the triplet

of intervals (mij(Ai) = [mij(Ai), m̄ij(Ai)],mij(Āi) =
[mij(Āi), m̄ij(Āi)],mij(Ai∪ Āi) = [mij(Ai∪ Āi), m̄ij(Ai∪
Āi)]) defined by:

mij(Ai) , Belij(Ai) (34)

mij(Āi) , Belij(Āi) = [1, 1]− Plij(Ai) (35)

mij(Ai ∪ Āi) , mij(Θ) = Plij(Ai)− Belij(Ai) (36)

If a numerical (imprecise) value Sij is missing in S, one uses

mij(·) , ([0, 0], [0, 0], [1, 1]), i.e. one takes the vacuous belief

assignment expressed in its degenerate interval form.

Using the formulae (28)-(36), we obtain from any M ×N
imprecise score matrix S the general M × N matrix M ,
[

mij(.) = [mij(.), m̄ij(.)]
]

of imprecise BBAs that are

necessary in Imp-BF-TOPSIS methods.

It is worth to note that formulae (28)–(36) are fully consis-

tent with (13)–(20) when all the elements Sij of imprecise

score matrix are degenerate (are precise numbers), that is

when Sij = S̄ij . By choosing the midpoints of imprecise

score values, we can always build a precise BBA that satisfies

Shafer’s BBA definition [1]. This midpoint-based BBA is

always included in imprecise BBA bounds because of IA.

Therefore, imprecise BBAs are always admissible and they

can be combined by Dempster’s or PCR6 rules thanks to IA

operations. This has to be implemented with caution to avoid

dependency effect [7].

B. Imp-BF-TOPSIS1 and Imp-BF-TOPSIS2 methods

These methods are similar to BF-TOPSIS1 and BF-

TOPSIS2 except that we use IA operations. The distances

dBI(mij ,m
best
ij ) and dBI(mij ,m

worst
ij ) become imprecise num-

bers computed with formula (12) adapted for interval calculus,

where mbest
ij (Ai) , [1, 1] and mworst

ij (Āi) , [1, 1]. Of course,

all scalars involved in the formulae (12), (21), (22), and (25)

must be expressed in their degenerate interval form in order to

apply IA operations, for instance Nc is replaced by [Nc, Nc],
wj by [wj , wj ], etc. The final preference ordering is found

according to the descending order of imprecise C(Ai, A
best)

obtained by the method explained at the end of section II-C,

where a larger C(Ai, A
best) means a better alternative (higher

preference).

13If Aj
max = [0, 0] then Belij(Ai) = [0, 0], and if Aj

min = [0, 0] then

Plij(Ai) = [1, 1], so that Belij(Āi) = [0, 0].
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C. Imp-BF-TOPSIS3 and Imp-BF-TOPSIS4 methods

These methods are similar to BF-TOPSIS3 and BF-

TOPSIS414 but with special adaptation of PCR6 and ZPCR6

formulae to reduce dependency effects with IA operations.

For example, the expression
m2

1
(X)m2(X)

m1(X)+m2(Y )
involved in PCR6

formula [21] (Vol. 3) for the fusion of two BBAs must be

computed as [ 1

m1(X)m2(Y )
+ 1

m2

1
(X)

]−1 with IA to get the

tightest range enclosure. The implementation of conjunctive

rule must also be done with precaution when using IA to

reduce the dependency effect in the derivation.

VII. EXAMPLES

A. Example 5 (mono-criterion)

• Precise scores case [1]: Let’s consider a criterion C1

and seven alternatives Ai, (i = 1, . . . , 7) with the precise

score values S11 = 10, S21 = 20, S31 = −5, S41 = 0,

S51 = 100, S61 = −11, and S71 = 0. The direct ranking

with the preference “greater is better” yields15 A5 ≻ A2 ≻
A1 ≻ (A4 ∼ A7) ≻ A3 ≻ A6. In applying formulas

(13)–(20), we get the BBAs listed in Table I. Using BF-

TOPSIS methods16, we get the distances, and the relative

closeness measures of Table II. In sorting C(Ai, A
best) by

the descending order, we get the correct preferences order

A5 ≻ A2 ≻ A1 ≻ (A4 ∼ A7) ≻ A3 ≻ A6 which is consistent

with the direct ranking result.

Table I
BBAS CONSTRUCTED FROM PRECISE SCORE VALUES.

mij(Ai) mij(Āi) mij(Ai ∪ Āi)

A1 0.0955 0.5236 0.3809
A2 0.1809 0.4188 0.4003
A3 0.0102 0.8115 0.1783
A4 0.0273 0.6806 0.2921
A5 1.0000 0 0
A6 0 1.0000 0
A7 0.0273 0.6806 0.2921

Table II
DISTANCES AND RELATIVE CLOSENESS MEASURES.

dBI (mij ,m
best
ij ) dBI (mij ,m

worst
ij ) C(Ai, A

best)

A1 0.7380 0.0940 0.1130
A2 0.6676 0.1615 0.1948
A3 0.8112 0.0214 0.0257
A4 0.7954 0.0405 0.0485
A5 0 0.8229 1.0000
A6 0.8229 0 0
A7 0.7954 0.0405 0.0485

• Imprecise scores case: For simplicity, consider now the

imprecise score values with midpoints consistent with previous

example. For instance suppose S11 = [8, 12], S21 = [18, 22],
S31 = [−7,−3], S41 = [−1, 1], S51 = [97, 103], S61 =

14See their mathematical derivations in [1].
15where the symbol ≻ means better than (or is preferred to).
16in mono-criterion case, all BF-TOPSIS methods are equivalent because

there is no need of making fusion.

[−12,−10], and S71 = [−1, 1]. The offset factor is equal to

δ1 = 12. After offset corrections with ǫ = 1, we get the

corrected positive imprecise scores S11 = [21, 25], S21 =
[31, 35], S31 = [6, 10], S41 = [12, 14], S51 = [110, 116],
S61 = [1, 3], and S71 = [12, 14]. In applying formulas (28)–

(36), we get the imprecise BBAs listed in Table III.

Table III
IMPRECISE BBAS CONSTRUCTED FROM IMPRECISE SCORE VALUES.

mij (Ai) mij(Āi) mij(Ai ∪ Āi)

A1 [0.0701,0.1234] [0.4375,0.6264] [0.2501,0.4924]
A2 [0.1452,0.2200] [0.3606,0.4885] [0.2915,0.4942]
A3 [0.0049,0.0161] [0.6538,1.0000] [0,0.3413]
A4 [0.0179,0.0376] [0.5769,0.8046] [0.1578,0.4051]
A5 [0.9119,1.0000] [0,0] [0,0.0881]
A6 [0,0] [0.8365,1.0000] [0,0.1635]
A7 [0.0179,0.0376] [0.5769,0.8046] [0.1578,0.4051]

As we see all imprecise BBAs values of Table III include

precise BBAs values of Table I. Note that all negative bounds

encountered in derivations (if any) are set to zero, and all

bounds greater than one in derivations (if any) are set to one

because masses values must belong to [0, 1]. Each imprecise

BBA represented by a row of Table III is said admissible

because for a given hypothesis Ai one can find at least a point

(a precise mass value) in each interval mij(Ai), mij(Āi) and

mij(Ai∪Āi) such that the sum of the masses equals one. If all

imprecisions of scores reduce to zero, the results of Table III

will coincide with results of Table I. Using Imp-BF-TOPSIS

methods, we get the imprecise distances, and the imprecise

relative closeness measures listed in Table IV.

Table IV
IMPRECISE DISTANCES AND RELATIVE CLOSENESS MEASURES.

dBI (mij ,m
best
ij ) dBI (mij , m

worst
ij ) C(Ai, A

best)

A1 [0.5421,0.9338] [0.0301,0.2864] [0.0312,0.3457]
A2 [0.5034,0.8313] [0.0511,0.3253] [0.0579,0.3926]
A3 [0.5324,1.0000] [0.0006,0.2977] [0.0006,0.3586]
A4 [0.5960,0.9956] [0.0131,0.2317] [0.0130,0.2800]
A5 [0,0.1135] [0.7176,0.8591] [0.8634,1.0000]
A6 [0.6900,0.9533] [0,0.1360] [ 0,0.1647]
A7 [0.5960,0.9956] [0.0131,0.2317] [0.0130,0.2800]

For each element of C = {C(Ai, A
best), i = 1, . . . ,M}, we

compute its likelihood λi , λ(C(Ai, A
best)) to be the max of

C by the method explained in section III-C. Here, one gets

[λ1, λ2, λ3, λ4, λ5, λ6, λ7]

≈ [3.00, 3.57, 2.80, 2.29, 6.00, 1.02, 2.29]

In sorting λi by the descending order, we get A5 ≻ A2 ≻
A1 ≻ A3 ≻ A6 ≻ (A4 ∼ A7). This result is of course a bit

different of what we obtain with precise midpoints of scores

because of imprecision degree in the input scores, which is

normal. However when the imprecision degree (i.e. the width

of each score interval) of the input scores reduces to zero, we

always obtain the same result as with (precise) midpoint of
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score intervals because of the consistency of interval arithmetic

operators with arithmetic on real numbers.

B. Example 6 (Multi-criteria)

An investor wants to invest some money in a company

to get the highest profit. He considers four companies A =
{A1, A2, A3, A4} and must take a decision according to the

following two criteria: C1 is the risk analysis (the min is better)

with weight w1 = 0.6 and C2 is the growth analysis (the max

is better) with w2 = 0.4. Assume the imprecise scores are

S =









C1(in %) C2(in %)

A1 [8, 12] [8, 10]
A2 [17, 19] [15, 19]
A3 [3, 5] [8, 12]
A4 [4, 8] [5, 7]









We get the final preference orderings with:

• Imp-BF-TOPSIS1: we get A3 ≻ A4 ≻ A1 ≻ A2 because

[λ1, λ2, λ3, λ4] ≈ [1.4939, 1.0013, 1.9396, 1.5652]

• Imp-BF-TOPSIS2: we get A3 ≻ A4 ≻ A1 ≻ A2 because

[λ1, λ2, λ3, λ4] ≈ [1.4968, 0.9323, 2.0535, 1.5175]

• Imp-BF-TOPSIS3: we get A3 ≻ A4 ≻ A1 ≻ A2 because

[λ1, λ2, λ3, λ4] ≈ [1.5300, 1.3487, 1.5639, 1.5574]

• Imp-BF-TOPSIS4: we get A4 ≻ A3 ≻ A1 ≻ A2 because

[λ1, λ2, λ3, λ4] ≈ [1.5093, 1.4686, 1.5101, 1.5120]

Imp-BF-TOPSIS1–3 methods provide here the same pref-

erence order A3 ≻ A4 ≻ A2 ≻ A1, hence A3 is the

preferred choice. One sees that Imp-BF-TOPSIS3 and Imp-

BF-TOPSIS4 have difficulties to provide very distinct likeli-

hood values because unsurmountable dependency effects arise

in IA operations when applying PCR6 and ZPCR6 rules

which degrade substantially the final precision of the result.

Based on this analysis, we recommend to use either Imp-BF-

TOPSIS1or Imp-BF-TOPSIS2 because they provide tightest

enclosure results and they are much simpler to implement than

Imp-BF-TOPSIS3 and Imp-BF-TOPSIS4.

VIII. CONCLUSIONS

Four new methods (Imp-BF-TOPSIS1–Imp-BF-TOPSIS4)

for MCDM have been proposed. We have shown how to

calculate imprecise BBAs from imprecise scores, and how to

evaluate the relative imprecise closeness of each alternative to

the ideal best and worst solutions for making the preference

ordering. These methods avoid scores normalization, and they

can deal with imprecise scores, with missing scores, with the

reliability of the sources as well, and they could also work with

imprecise weightings of criteria. They are more complicate to

implement (and slower) that their precise counterparts because

of IA. They are consistent with BF-TOPSIS1–4 when the

imprecision of scores reduces to zero. However because IA

suffers of dependency effects, IA is not the universal panacea

to work with imprecise values to get best results, specially

for combining imprecise BBAs. More research efforts need to

be done to circumvent these problems (if possible) by better

implementations (or by Monte-Carlo approach) in order to

improve the performance of Imp-BF-TOPSIS3 and Imp-BF-

TOPSIS4 methods. Application of these methods for natural

risk assessment in mountains is under development and will

be reported in future publications.
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Abstract—Multimodal images encompass diverse information
that can be both complementary and redundant, thereby ad-
dressing the challenges associated with unimodal classification.
By modeling and integrating these different pieces of informa-
tion, multimodal approaches offer improved solutions. However,
despite yielding acceptable results, this classification approach
still falls short of the level achieved by the human brain’s
powerful mechanism for effortlessly classifying visually observed
scenes. To enhance the classification task within the realm of
multimodal images, we present a methodology that leverages the
Dezert-Smarandache Theory (DSmT). This approach involves
fusing spectral and dense SURF features extracted from each
modality, which are then pre-classified by the SVM classifier.
Additionally, we incorporate the visual perception model into
the fusion process. In order to demonstrate the effectiveness of
incorporating salient features into the fusion process using DSmT,
we conducted tests and validation on extensive datasets obtained
from cultural heritage wall paintings. Each dataset consists of
four imaging modalities, namely UV, IR, Visible, and fluorescence.
The results obtained from these experiments show great promise.

Keywords: Visual saliency model, fusion, DSmT, SVM,
Dense SURF features, Spectral features, Multimodal images,
Classification.

I. INTRODUCTION

Nowadays, multimodal imaging has gained increasing im-
portance in computer vision application, and significant efforts
have been put into developing methods of different tasks,
such as Registration [1]–[4], Data fusion [5], Representation
learning [6], Classification [7] and so on. In classification task,
the unimodal image presents various problems as noisy data,
incomplete information and distorted ones, etc. This often led
to a misclassification. These limitations are overcome by using
multimodal images, which are acquired from multiple sensors,
and taken for the same object or scene. Each image or modality
allows to provide different information that can sometimes
be redundant, because the same area/scene is presented in a
different sensor, and complementary for another modality, re-
garding the diversity of sensor technologies and their physical
interaction mechanism. The use of this set of images together
presents a real-world benefit to resolve a given problem with
some various available information. The fusion of these data
form a better quality classification.

However, these data are crippled with some imperfections
such as conflict, ignorance, uncertainty and so on, which must
be handled and taken into account by dedicated formalism
as long as they present an aspect of reality. To fix such
problem, several formalism exist as probability theory [8],
Fuzzy theory [9], belief function formalism [10] and Dezert-
Smarandache (DSmT) formalism [11], [12]. In this work, we
benefit from the latest theory which is the most recent one,
and it was introduced in order to deal with the high conflicted
and uncertainty data thanks to its rich modelization and the
combination operators (PCR5 and PCR6) that it integrates.

In classification task, belief function theory is widely ex-
ploited in many works [13]–[16]. Whereas DSmT or so-called
plausible and paradoxical reasoning shows its efficiency in
many applications, it was performed for multi-source remote
sensing application [17] for supervised classification purpose
by integrating contextual information obtained from ICM
classifier with constraint and temporal information in hybrid
DSmT process with adaptive decision rule, the authors also
proposed a new decision rule based on DSmP transformation
for change detection purpose [18]. In [19], the authors present
an effective use of DSmT for multi-class classification by
combining two SVM OAA (One-Against-All) implementation
using PCR6 combination rule. A new method, based on fusing
the attribute type information obtained from Ground Moving
Target Indicator and imagery sensor using DSmT for tracking
and classification, has been presented in [20]. Multidate fusion
has been proposed in [21], [22] for the short-term prediction of
the winter land cover. DSmT is also used in the medical case
retrieval by [23], the authors used DSmT to fuse heterogeneous
features of several sensors which will be included in CBR
systems.

According to our study of the state of the art, all studied
research works disregard the power of perceptual attention to
well classify any scene thanks to the high human brain capaci-
ties. We benefit from this ability in our approach by integrating
the visual perception model, using DSmT, with spectral and
dense SURF features obtained from SVM classification for
significant classification improvement.

The paper is organized as follows. After a brief presentation
of mathematical background of DSmT formalism in section
II, we present the overall system of the proposed method in

Originally published as: H. Anzid, G. Le Goic, A. Bekkari, A. Mansouri, D. Mammass, Improvement of 
Multimodal Images Classification Based on DSmT Using Visual Saliency Model Fusion with SVM, Int. 
Journal of Computers & Technology, Vol. 18, 2018, and reprinted with permission.
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section III. Data and experiments are then given in section IV
in order to evaluate the performance of our approach on real
image datasets. A conclusion is given in section V.

II. MATHEMATICAL BACKGROUND OF DSMT

Dezert-Smarandache theory was proposed jointly by Jean
Dezert and Florentin Smarandache [24], and was an attempt
to overcome belief function limitations by handling a high
uncertainty and conflicting information. This theory can be
described as follows:

We denote Θ = {θ1, θ2, . . . , θN} the discernment space of
the N class classification problem, and DΘ the hyper-power-
set [25] that is the set of subsets of Θ, with the union of
classes and also their intersection, so that if X,Y ∈ DΘ, then
X∪Y ∈ DΘ and X∩Y ∈ DΘ. Each source Si contributes its
belief mass mi to X , known by the generalized basic belief
assignment (gbba) step, and satisfying following properties:

mi(X) : DΘ → [0, 1], (1)

mi(∅) = 0, (2)

where ∅ is the null set, and∑
X∈DΘ

mi(X) = 1. (3)

The size of hyper-power-set presents a real limit in DSmT
when N > 6 (N number of classes) in Free model [26]
which corresponds to the full hyper-power-set without any
constraints, in contrary to hybrid model [26] which allows
integrating constraints that can be exclusive and refined, and
therefore minimizing DΘ size. The assigned generalist mass
obtained from different sources are then combined and a
new mass distribution is provided to DΘ elements. Com-
bination step presents the kernel of the fusion process and
each formalism proposed several combination operators. In
DSmT formalism, all combination operators can be found
in detail in [27], we quote the most used as Smets rule,
Dempster-Shafer (normalized) operator, Yager operator, Zhang
operator, DSmH rule, Dubois and Prade rule, PCR5 operator
for N = 2 and PCR6 operator for N > 2. To deal with a
large number of the sources used in this work and the high
uncertainty and conflicting information provided, we benefit
from the performance of PCR6 combination rule in handling
such problem.

The generalized belief functions Credibility noted Bel(.)
or Cr(.), Plausibility noted Pl(.), and DSmP transformation
are derived from the function of basic mass and respectively
defined for DΘ in [0, 1]:

Cr(X) =
∑
x∈DΘ

x⊆X

m(x) (4)

Pl(X) =
∑
x∈DΘ

x∩X 6=∅

m(x) (5)

DSmPε(∅) = 0, and ∀X ∈ GΘ \ {∅}

DSmPε(X) =
∑
Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )∑
Z⊆Y
C(Z)=1

m(Z) + ε · C(Y )
·m(Y )

(6)
where GΘ can present full DΘ, or reduced DΘ with constraint,
depending on the model used (free, or hybrid). ε is an
adjustment parameter, C(X ∩ Y ) and C(Y ) are respectively
the cardinality of X ∩ Y and Y .

The last step in DSmT process is making a final decision,
which presents a real challenge in many applications. In this
work, we are interested in improving classification, we have
to take a decision about pixels’ belonging to a simple class
also called Singleton class, and in this case there are two ways:
taking decision based on maximum of generalized basic belief
mass (gbba), or based on generalized belief function already
computed as follows:
• Maximum of credibility Cr(.) is widely used in many

applications [28], and it is considered as a pessimistic
decision.

• Maximum of plausibility Pl(.) which is considered as an
optimistic decision.

• Maximum of DSmP that is a compromise decision
between the above decisions which are based on us-
ing probabilistic transformation P (.) in the interval of
[Cr(.), P l(.)].

III. OVERALL SYSTEM

A. Pre-processing

Generally, the pre-processing that precedes classification
aims to eliminate imperfections that taint information by a
set of actions as filtering, gradient operations, etc. However,
in the classification based on the theories of the uncertain,
these imperfections are protected, modeled and combined to
help to make a decision.

The registration is the usually used pre-processing in the
fusion process, it aims at setting correspondence between two
or more images of a scene obtained from one or various
sensors potentially at different spatial positions and scales,
by using an optimal spatial and radiometric transformations
between the images.

In the case of multimodal images, registration is an issue
because of the significant difference between images [29],
[30]. An original methodology was proposed in a previous
work to answer the particular issue of the registration with
multimodal imaging inputs in which we exploit the SURF
scale- and rotation-invariant descriptors for the identification
and the description of the interest points and we introduce a
relevance filtering based on both SURF distance and orienta-
tion features in matching step [1].

B. Feature Extraction

Feature extraction is a pivotal step in the classification
process. It aims to underline the relevant features that are
correspondent to various classes. It is worth stating that the
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appropriate choice of extracted features improves the perfor-
mance of classification step. Spectral, Spatial and perceptual
features are extracted in this work.

1) Spectral Information: The spectral information is widely
used on large classification methods. In this work, we have
extracted the spectral values of each pixel as a vector of
attributes and then converted them to Cielab space model for
a better correlation with human color processing.

2) Dense SURF Description: Speeded up robust feature
(SURF) proposed by Herbert Bay [31] is a spatial descriptor
which consists originally of two phases, Detection and de-
scription of keypoints. We proposed in a previous work [32] to
skip the detection phase and to perform description one to each
pixel in the image. This is done, at the first by assigning to each
pixel the dominant orientation calculated by combining the
Haar wavelets results within a circular neighborhood around
each pixel, and then creating 4×4 sub regions around the pixel.
In each sub-region, a pixel wise Haar wavelets responses are
computed, which in turn are summed up to form 64-elements
descriptor.

3) Saliency Information: Based on a performed compara-
tive analysis of saliency detection in our multimodal data [33],
we extract the saliency features by using the method proposed
by Rahtu et al [ [34]. This method used local features contrast
in illuminance, color mapped to feature space F (x) that is
divided into disjoint bins. A saliency measure is calculated
by applying a sliding windows w divided into inner windows
K and border B in which a hypothesis that points in K are
salient and points in B are not, the measure can be defined
as probability conditional and computed through the Bayes
Formula as

S0(x) =
hK(x)p0

hK(x)p0 + hB(x)(1− p0)
, (7)

with 0 < p0 < 1, and hB(x) = P (F (x)|H1). A regularized
saliency measure is then introduced to make it more robust to
the noise.

The motivation of integrating saliency information in the fu-
sion process is the fact that usually visual perception succeeds
easily to classify any objet or scene.

C. SVM Pre-Classification

Support vector machine is a supervised classification
method introduced by Vapnik [35], [36], widely used in
classification applications thanks to its performance to deal
with high-dimensional data. Basically, it is designed for binary
class by finding an optimal hyperplan that separates the two
classes linearly-separated. In non-linear separable class, the
feature space is mapped to some higher dimensional feature
space where the classes are separable using a Kernel function
K that should fulfill Mercers conditions, the most kernels used
are Radial Basis Function RBF, in which the decision function
is expressed as a flow

h(x) = Sign(
N∑
i=1

αi exp{−|x− xi|2/(2 · σ2}), (8)

where αi are Lagrange multipliers, and the associated Kernel
function is

k(x, x′) = e−
|x−x′|2

2σ2 (9)

In case of multiclass problem, two main approaches were pro-
posed: One-Versus-Rest approach in which k binary classifiers
SVMk are constructed for k-class classification, and One-
versus-One in which (k(k−1))/2 binary classifiers are applied
on each pair of classes.

In order to generate the probabilities for DSmT, we have
performed a pre-classification [32] based on combining spec-
tral information (see III-B1) and Dense SURF information (see
III-B2) using SVM classifier with RBF kernel to handle non-
linear high-dimensional data in our multimodal dataset, and
One-Versus-Rest approach to deal with incomplete informa-
tion provided from diverse modalities.

D. DSmT Classification

1) Mass function estimation: Mass estimation function step
is very crucial in fusion process, because the imperfections
such as uncertainty, imprecision, paradox will be introduced.
The most generation used for these masses is the proba-
bilities from pre-classification. The SVM classification of k
images generates the matrices of the probabilities P (xS |θi)
of pixels belonging to the singleton class of the frame of
discernment Θ = {θ1, θ2, . . . , θn}, the same for k saliency
map generated using the proposed method in [34]. Each source
(modality/saliency map) noted Sbi (i = 1, . . . ,K) gives the
probability of belonging to one, or two classes, and their
complementary classes which presents the mass of the partial
ignorance. Based on [19], we denote Θ = {θ1, θ2, . . . , θn},
and the gbba mass of each source is given by:


mS(θi) = P (x|θi)

z ,∀θi ∈ Θ,

mS(θ̄i) =

P (x|∪0<j<n
j 6=i

θj)

z ,∀θj ∈ Θ,

mS(∅) = 0.

(10)

where z =
∑n
j=0 P (x|θj) is a normalization term used in

order to make sure that the sum of masses is equal to one.

2) Combination of masses and decision: The estimated
masses must be combined with appropriate rules that handles
the conflict generated from different sources Sbi . In this work,
we have used PCR6 [37] rule in combination step because it
shows a better performance compared with all combination
rules cited in the previous section and tested on our datasets.
The PCR6 is computed as follows:

Considering S independent sources, the combined
mPCR6(·) masses acquired from S > 2 sources are computed

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

215



as mPCR6(·) = 0, and ∀X ∈ DΘ \ {∅} as

mPCR6(X) = m12...S(X)

+
∑

X1,X2,...,XS∈DΘ\{∅}
X1∩X2∩...∩XS=∅

[
S∑
r=1

δXXrmr(Xr)]
m1(X1)m2(X2) . . .mS(XS)

m1(X1) +m2(X2) + . . .+mS(XS)

(11)

where

δXXr ,

{
1, if X = Xr,

0, if X 6= Xr,
(12)

and where the mass m12...S(X) corresponds to the conjunctive
consensus on X between N > 2 sources, which is given my

m12...S(X) ,
∑

X1,X2,...,XS∈DΘ\{∅}
X1∩X2∩...∩XS=X

m1(X1)m2(X2) . . .mS(XS)

Once the combination step is achieved, we calculate the
generalized belief function and we use a probabilistic trans-
formation DSmP that converts the combined masses measure
to a probability measure using (6) to make a final decision.

IV. DATA AND EXPERIMENTS

A. Data

Large sets of multimodal images acquired on wall paintings
from the Germolles palace are used to demonstrate our pro-
posed method. This palace was offered by Dukes of Burgundy
Philip to his wife Margaret Flanders in 1380, and it was
the only remaining castle of the Dukes of Burgundy so well
preserved, its wall painting was restored between 1989 and
1991. However, there were no conservation reports of the
applied restoration. In order to detect the original from restored
area, the conservator of Germolles used the multimodal images
that have the advantage of being fast and relatively inexpensive
solution for the examination of large areas of wall paintings.
This technical photography consists of recording a set of
images with a commercial digital photographic camera which
has been modified by removing the thermal filter regularly
positioned in front of the CCD. In this way it is possible
to record images of reflected visible light (Vis), reflected
infrared light (IRr), reflected ultraviolet light (UVr) and UV-
fluorescence (UVf). This set of images provides information
about the optical behaviour of the surface when reached by
the different types of light and therefore provides information
about the original portions of wall paintings from recent
repainting.

For illustration purpose, we select an area of a south wall
of the dressing room of Margaret represented in Figure 1.
This area presents a large white P (for Philip) that covers
the walls and painted in green, which is presented by four
modalities VIS, UVF, UVR and IRR. Each modality measures
3744 × 5616 pixels. IRR modality shows very well the parts
over non-original green surface. The image of the UV-induced

Figure 1. Multi-modal images of the same area.

fluorescence modality shows a relatively strong fluorescence
corresponding to remains of an old/original paint layer over
the white. The UVR image helps to identify the repainting
original over the white of the letter P.

B. Experiments

The adopted methodology can be divided into four steps as
illustrated in figure 2, which is started with the preprocessing
by aligning each image with the VIS image that is used as a
reference image.

Figure 2. A representative illustration of the workflow.

In the second step, four topics have been identified: White
original (WO), White repainted (WR), Green original (GO)
and Green repainted (GR). Then spectral and Dense-SURF
information is extracted and used jointly as the entry of the
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SVM classifier using the RBF kernel. In parallel, Saliency
information is extracted using the proposed method in [34],
the provided maps are shown in figure 3.

Figure 3. Saliency maps.

The third step is pre-classification using the SVM classifier
that is applied to the images, in order to recover the probability
matrixes of pixels belonging to classes. Each used modality
highlights the presence of one or two classes. The UV-induced
fluorescence modality shows a relatively strong fluorescence
corresponding to the remains of an old painted layer of the
white (WO) that reaches an accuracy of 92% using SVM,
also UVR modality emphasizes WO class with a classification
accuracy of 98%. Infrared light shows very well the parts
over the original and repainted surface of the green and gets
accuracy of 94% [32]. The provided maps are presented in
figure 4.

Figure 4. Multimodal SVM Classification.

The VIS modality reaches an accuracy of 98% with the
classification of the two classes GO and GR, whereas this
precision is reduced when classifying four classes because of
the increase of the conflict. The classified image is presented
in figure 5.

The last step presents the fusion process that is started with
defining the frame of discernment Θ = {WO,WR,GO,GR}.
Due to the obtained information by SVM classification and
saliency maps, there are some constraints that can be taken
into account to deal with the real situation and to reduce the
hyper power set DΘ, for example WO ∩ GR = ∅.

Figure 5. SVM classification of VIS modality.

Then the mass function that is associated with the em-
phasized class and it’s complementary in each modality are
computed using equation (10). The PCR6 combination rule
is used for combining the calculated masses basing on the
equation (11), and as a final task, the decision is taken using
maximum DsmP.

The final classified map, provided by DSmT only, is given
in figure 6, and the final classified map obtained using DSmT-
Salience is shown in figure 7.

The results have progressed with the integration of the
perceptual model in DSmT process, the visual analysis of
the classification maps shows that the result of the proposed
method much better with the ground truth over the WR and
WO classes and appears to be closer to the reality, rather
than the result obtained using DSmT only for the same
classes, while the obtained map using unimodal image present
a degraded result in terms of smoothness and connectivity
between classes.

In this work, in order to evaluate the performance of the
used methods and to compare the results, we have used the
Overall accuracy (OA) that presents a percentage of correctly
classified pixels, and Mean Error Rate (MER) that presents
the percentage of misclassified pixels. Table I summarizes the
obtained results using the different methods, from the results,
we can note that the proposed method produces a better overall
accuracy of 95.39% compared with the DSmT classification
which provides an overall accuracy of 91.46% and the SVM
classification that gives an overall accuracy of 86.43%, in
terms of the error rate, the proposed method gives the low
MER score of 4.61% compared with DSmT-Classification
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Figure 6. DSmT classification of multimodal images.

Figure 7. DSmT- Salience classification of multimodal images.

and SVM-Classification that provides a MER of 8.53% and
12.60% respectively.

In conclusion, the use of DSmT theory with PCR6 com-
bination rule provides a better result thanks to its effective-
ness in managing correctly the conflict information that is
provided from the different sources, and shows a significant

classification improvement compared with the unimodal SVM
classification. Thus, the integration of saliency information in
the fusion process presents a real benefit due to the powerful
mechanism of the human brain in classification tasks.

Methods OA MER
SVM-Classification 86.43 % 12.60 %
DSmT-Classification 91.46 % 8.53 %

DSmT-Salience-Classification 95.39 % 4.61 %
Table I

ACCURACY AND ERRORS OF CLASSIFICATION RESULTS FROM DIFFERENT
METHODS.

V. CONCLUSION

In this paper, we have proposed a new method for multi-
modal image classification. As a first step, we have extracted
spatial (Dense-SURF), spectral and saliency information. The
extracted spatial and spectral information are combined and
passing to the classifier SVM for pre-classification step. The
SVM-classification results that are obtained from each modal-
ity is then fused using DSmT theory, the use of DSmT
and SVM jointly provides better performance compared with
the unimodal SVM classification. In the second step, the
extracted saliency information is then modeled and combined
with SVM classification results using DSmT process based on
PCR6 combination rule and DSmP decision rule, the proposed
method yields the best performance in terms of accuracy
and error rate compared with DSmT-SVM classification and
unimodal SVM classification.
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(SCIGRAD’08), Brest, France, Nov. 24–25, 2008.

[22] A. Bouakache, A. Belhadj-Aissa, G. Mercier, Satellite image fusion
using Dezert-Smarandache theory, in Advances and Applications of
DSmT for Information Fusion (collected works) - Vol. 3, F. Smarandache
& J. Dezert Editors, American Research Press (ARP), 2009.

[23] G. Quellec, M. Lamard, G. Cazuguel, C. Roux, B. Cochener, Multimodal
medical case retrieval using the Dezert-Smarandache theory, in Proc.
of Int. Conf. of the IEEE Engineering in Medicine and Biology Society,
pp. 394–397, 2008.

[24] J. Dezert, Foundations for a new theory of plausible and paradoxical
reasoning, Information & Security Journal, Tzv. Semerdjiev Editor,
Bulgarian Academy of Sciences, Vol. 9, 2002.

[25] J. Dezert, F. Smarandache, On the generation of hyper-powersets for the
DSmT, in Proc. of Fusion 2003 Int. Conf, Cairns, Australia, July 2003.

[26] J. Dezert, F. Smarandache, Presentation of DSmT, Chap. 1 of Advances
and Applications of DSmT for Information Fusion (collected works) -
Vol. 1, F. Smarandache & J. Dezert Editors, American Research Press
(ARP), 2004.

[27] J. Dezert, F. Smarandache, An introduction to DSmT, in Advances and
Applications of DSmT for Information Fusion (collected works) - Vol.

3, F. Smarandache & J. Dezert Editors, pp. 3-74, American Research
Press (ARP), 2009.

[28] F. Smarandache, J. Dezert (Edirors), Advances and Applications of
DSmT for Information Fusion (Collected works) - Vol. 2, American
Research Press (ARP), Rehoboth, U.S.A, 2006.

[29] X. Shen, L. Xu, Q. Zhang, J. Jia, Multi-modal and multi-spectral
registration for natural images, in Proc. of European Conf. on Computer
Vision (CCV 2014), Part IV, Springer LNCS 8692, D. Fleet et al. (Eds.),
pp. 309–324, 2014.

[30] K. Karantzalos, A. Sotiras, N. Paragios, Efficient and automated multi-
modal satellite data registration through MRFs and linear programming,
in Proc. of the 2014 EEE Conf. on Computer Vision and Pattern
Recognition Workshops, pp. 329–336, Columbus, OH, USA, June 23–
28, 2014 .

[31] H. Bay, T. Tuytelaars, L. Van Gool, SURF: Speeded Up Robust Features,
in Proc. of 9th European Conference on Computer Vision (ECCV 2006),
pp. 7–13, Springer Lecture Notes in Computer Science book series
(LNIP, Volume 3951), 2006.

[32] H. Anzid, G. Le Goic, A. Bekkarri, A. Mansouri, D. Mammass, Multi-
modal images classification using SURF dense, Spectral information and
Support Vector Machine, in Proc. of the 2nd Int. Conf. on Intelligent
Computing in Data Sciences ICDS, 2018 (also published in Procedia
Computer Science, Vol. 148, pp. 107-115, 2019).

[33] H. Anzid, G. Le Goic, A. Bekkarri, A. Mansouri, D. Mammass,,
Benchmarking Saliency Detection Methods on Multimodal Image Data,
Springer Lecture Notes in Computer Science, Vol. 10884, pp. 11–18,
2018.

[34] E. Rahtu, J. Kannala, M. Salo, J. Heikkilä, Segmenting salient objects
from images and videos, in Proc. of European Conference on Computer
Vision, pp. 366–379, Springer Lecture Notes in Computer Science book
series (LNIP, Vol. 6315), 2010.

[35] L. Chapel, Maintenir la viabilité ou la résilience d’un système : les
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A New Probabilistic Transformation Based on
Evolutionary Algorithm for Decision Making

Abstract—The study of alternative probabilistic transformation
(PT) in DS theory has emerged recently as an interesting
topic, especially in decision making applications. These recent
studies have mainly focused on investigating various schemes for
assigning both the mass of compound focal elements to each
singleton in order to obtain Bayesian belief function for real-
world decision making problems. In this paper, work by us also
takes inspiration from both Bayesian transformation camps, with
a novel evolutionary-based probabilistic transformation (EPT) to
select the qualified Bayesian belief function with the maximum
value of probabilistic information content (PIC) benefiting from
the global optimizing capabilities of evolutionary algorithms.
Verification of EPT is carried out by testing it on a set of
numerical examples on 4D frames. On each problem instance,
comparisons are made between the novel method and those exist-
ing approaches, which illustrate the superiority of the proposed
method in this paper. Moreover, a simple constraint-handling
strategy with EPT is proposed to tackle target type tracking
(TTT) problem, simulation results of the constrained EPT on
TTT problem prove the rationality of this modification.
Keywords: Evidence Reasoning, Probabilistic Transforma-
tion, Evolutionary Algorithm, Target Type Tracking problems,
Decision Making.

I. INTRODUCTION

Since the pioneering work of Dempster and Shafer [1], [2],
which is known as Dempster-Shafer evidence theory (DST),
in the late 70’s regarding the possibility of distinguishing
“unknown” and “imprecision” and fusing different evidences
based on associative and commutative Dempster’s combination
rule, this new area of research (now known as evidence
reasoning) has grown considerably as indicated by the no-
table increment of technical papers in peer-reviewed journals,
conference and special sessions. However, the computational
complexity of reasoning with DST is one of the major points
of criticism this formalism has to face.

To overcome this difficulty, various approximating methods
have been suggested that aim at reducing the number of focal
elements in the frame of discernment (FoD) so as to maintain
the tractability of computation computation. One common
strategy is to simplify FoD by removing and/or aggregating
focal elements for approximating original belief funcion [3].
Among these methods, probability transformations (PTs) seem
particularly desirable for reducing such computation complex-
ity by means of assigning the mass of non-singleton elements
to each singleton [4], [5]. The research on this probabilistic

measure has received a lot of attentions and accordingly many
efficient PTs have been pointed out by scholars in recent
years. In them, a classical transformation, denoted as BetP
[4], which offers a good compromise between the maximum
of credibility (Bel) and the maximum of plausibility (Pl) for
decision making. Unfortunately, BetP does not provide the
highest probabilistic information content (PIC) [7]; Sudano
[8] also proposed series of alternatives and principles of
these similar to BetP, which were called PrPl, PrBel and
PrHyb; CuzzP [9], which was proposed by Cuzzolin in the
framework of DST in 2009, showed its ability of probabilistic
transformation; Another novel transformation was proposed
by Dezert and Smarandache in the framework of DSmT
(free DSm model, hybrid DSm model or Shafer’s model),
which was called DSmP [7] and comprehensive comparisons
have been made in [7] to prove the capabilities of DSmP in
probabilistic transformation.

However, most mentioned aforementioned PTs have been
always concentrated mainly on two crucial issues: (1) How to
implement this operation (or assignment)? (2) How to evaluate
the quality of this transformation? In this paper, we suggest
a novel PT method based on evolutionary algorithm, namely,
evolutionary-based probabilistic transformation (EPT), which
alleviates the above two difficulties together based on op-
timization using a reasonable criteria. A similar idea was
proposed by Han et.al [10] and the difference lies in the
optimization approaches and objective functions. In the EPT
method, the global search replaces the assigning operator used
in the classical PTs and the evaluation criteria is embedded into
EPT to provide important guidance for the searching proce-
dure. Specifically, the mass of the singletons are randomly
generated in evolutionary-based framework, which need to
satisfy the constraints of probability distributions in evidence
reasoning. Also, a selection operator is presented to assess the
best individual in all populations by a special objective func-
tion (desirable evaluation criteria). Referring to the previous
works [7], the PIC is used in this paper to select the best1

solution as an objective function in EPT. Simulation results
on 4D frames test cases show that the proposed EPT, in these
problems, is able to outperform other PTs that pay special
attention to some ratio created from the available information

1based on the highest PIC value.

Originally published as: Y. Dong, X. Li, J. Dezert, A New Probabilistic Transformation Based on 
Evolutionary Algorithm for Decision Making, in Proc. of the 20th Int. Conf. on Information Fusion 
(Fusion 2017), Xi’an, China, July 10–13, 2017, and reprinted with permission.
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(i.e. Bel or Pl). Moreover, we suggest a simple constraint-
handling strategy with EPT that suits well for two target type
tracking (TTT) problems. These first appealing results of EPT
method encourage its use for more complex and real-world
decision making problems.

The rest of this paper is organized as follows. In Section II
we briefly summarize the basis of DST and several classical
PT formulas. A novel EPT approach is presented in details
in Section III. In Section IV several cases and comprehensive
comparisons borrowed from previous papers are carried out
to demonstrate the superiority of proposed method. Also,
target type tracking problem and the pertinent analysis of
EPT in TTT are described in detail in this section. Moreover,
the limitation of EPT are also discussed in Section. V. The
conclusion is drawn in Section. VI.

II. BASIS OF BELIEF FUNCTIONS

In this section, we introduce the belief functions terminol-
ogy of DST and the notations used in the sequel of this paper.

A. DST basis

In DST [2], the elements !! (" = 1, . . . , % ) of the frame
of discernment (FoD) Θ ≜ {!1, . . . , !"} must be mutually
exhaustive and exclusive. The power set of the FoD is denoted
2Θ and a basic belief assignment (BBA), also called a mass
function, is defined by the mapping: 2Θ → [0, 1], which
satisfies &(∅) = 0 and

∑

#⊆2Θ

&(') = 1 (1)

where &(') is defined as the BBA of '. The element ' is
called a focal element of &(.) if &(') > 0. The belief and
plausibility functions, which are in one-to-one mapping with
the BBA &(.), are defined for all ' ⊆ Θ by

)*+(') =
∑

$⊆#

&()) (2)

,+(') = 1−)*+('̄) =
∑

#∩$ ∕=∅

&()), ∀' ⊆ Θ (3)

where '̄ ≜ Θ ∖ ' is the complement of ' in Θ. The belief
interval [)*+('), , +(')] represents the uncertainty committed
to ' and the bounds of this interval are usually interpreted as
lower and upper bounds of the unknown (possibly subjective)
probability of '. This interval plays an important role in the
implementation of EPT as shown in details in Section III.

B. DSmT basis

In the framework of Dezert-Smarandache Theory (DSmT)
[5], the FoD Θ is considered as a finite set of % exhaustive
elements only (without the requirement of exclusivity of the
elements). The BBA &(.) is then defined on the hyper-power
set of the FoD (i.e. the free Dedekind’s lattice -Θ), taking
eventually into account some integrity constraints (if any). The
main differences between DST and DSmT frameworks are: (1)
the model on which one works with, and (2) the combination

rule. In the sequel, we will work with BBA defined only on
the classical power-set for simplicity. Instead of distributing
equally total conflicting mass onto elements of 2Θ as within
Dempster’s rule through the normalization step, or transferring
the partial conflicts onto partial uncertainties as within DSmH
rule [4], we use the Proportional Conflict Redistribution rules
(PCRs) [5] based on the transfer of conflicting masses (total
or partial) proportionally to non-empty sets involved in the
model according to all integrity constraints. In DSmT, the most
effective rule is the PCR6 rule which is defined2 for the fusion
of two BBA’s &1(.) and &2(.) as &%&'6(∅) = 0 and ∀' ∈
2Θ ∖ {∅}

&%&'6(') = &12(')+
∑

$∈2Θ∖{#}∣#∩$=∅

[
&1(')2&2())

&1(') +&2())
+

&2(')2&1())

&2(') +&1())
]

(4)
where &12(') is the conjunctive operator, and each element
' and ) are expressed in their disjunctive normal form.

C. Classical Probabilistic Transformations

The efficiency of probabilistic transformation (PT) in the
field of decision making has been analyzed in deep by Smets
[4]. Various PTs have been proposed in the open literature and
the main transformations are briefly recalled in this section.

1) BetP: Smets in [4], [6] first proposed pignistic proba-
bility to make decision which aims to transfer the mass of
belief of each non-specific element onto the singletons. The
classical pignistic probability is defined as )*., (∅) = 0, and
∀' ∈ 2Θ ∖ {∅}:

)*., (!!) ≜
∑

#⊆2Θ,# ∕=∅

∣!! ∩'∣
∣'∣

&(')

1−&(∅) (5)

Because in Shafer’s framework &(∅) = 0, the formula (5) can
simply be rewritten for any singleton !! ∈ Θ as

)*., (!!) =
∑

$∈2Θ,)!⊆$

1

∣)∣&())

= &(!!) +
∑

$∈2Θ,)!⊂$

1

∣)∣&())
(6)

2) CuzzP: An intersection probability denoted as CuzzP
[9] was proposed using the proportional repartition of the
total non-specific mass (total non-specific mass (/%01) =∑

#∈2Θ,∣#∣ &(')) for each contribution of the non-specific
masses involved. CuzzP is defined by 2344, (∅) = 0, and for
any singleton !! ∈ Θ by

2344, (!!) ≜ &(!!) +
,+(!!)−&(!!)∑
* (,+(!!)−&(!*))

⋅ /%01 (7)

2PCR6 rule coincides with PCR5 rule when combining only two BBA’s
[5].
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3) DSmP: In 2008, Dezert and Smarandache [7] have
proposed a new generalized pignistic transformation defined
by -0&,+(∅) = 0 and for any singleton !! ∈ Θ by

-0&,+(!!) ≜ &(!!) + (&(!!) + 5)

×

⎧
⎨

⎩
∑

#∈2Θ,)"⊂#,∣#∣≥2

&(')∑
$∈2Θ,$⊂#,∣$∣=1 &()) + 5 ⋅ ∣'∣

⎫
⎬

⎭
(8)

As shown in [7], DSmP makes a remarkable improvement
compared with BetP, and CuzzP, since a more judicious
redistribution of the ignorance masses to the singletons have
been adopted by DSmP.

4) PrBP1 and PrBP2: Two novel pignistic probabilistic
transformations were proposed by Pan in [11], which assume
that the BBA is proportional to the product of )*+(!!) and
,+(!!) among each singleton element !! of ' ⊆ Θ.

,6),1(!!) =
∑

)!⊆#

(
)*+(!!),+(!!)∑

)#⊆# )*+(!*),+(!*)

)
⋅&(') (9)

Also, Pan et.al. assume that the masses are distributed propor-
tionally to some given parameters 7! = )*+(!!)/(1− ,+(!!))
or 7! = ,+(!!)/(1−)*+(!!)):

,6),2(!!) =
∑

#,)!⊆#

(
7!∑

*,)#⊆# 7*

)
⋅&(') (10)

As we can see, a Bayesian mass function which has only
singleton focal elements can be obtained by any of these PTs.

D. Probabilistic Information Content (PIC)

The PIC criterion [12] is classically adopted to evaluate
the performances of a probabilistic transformation of a BBA.
If &(.) is a Bayesian BBA defined on a discrete finite FoD
Θ = {!1, !2, . . . , !"}, its PIC value is defined as3

,92(&) ≜ 1 +
1

log2 %

"∑

!=1

&(!!) log2 &(!!) (11)

The PIC metric actually measures the information content
of a (probabilistic) source characterized by a Bayesian BBA
&(.), which the value of this metric always belong to [0; 1].
It corresponds to the (normalized) dual of Shannon’s entropy
measure. When the Bayesian BBA is uniform over the FoD Θ,
one has &(!!) = 1/% for " = 1, 2, . . . , % and the PIC metric
is minimum, i.e. ,92(&) = ,92min = 0. The PIC metric is
maximum, i.e. ,92(&) = ,92max = 1 if the Bayesian BBA
&(.) is deterministic, that is if there exists an element !! of Θ
such that &(!!) = 1. While simple, appealing and generally
adopted by the community, the PIC criteria is however not
always sufficient to evaluate the efficiency of a PT as discussed
in [14]. This point will be addressed in Section V.

3where 0 log2(0) = 0 by convention.

III. EVOLUTIONARY-BASED PROBABILISTIC

TRANSFORMATION (EPT)

The idea to approximate any BBA into a Bayesian BBA
(i.e. a subjective probability measure) using the minimization
of the Shannon entropy under compatibility constraints has
been proposed recently by Han et al. in [10], [14] using “on-
the-shelf” optimization techniques. In this paper, we present in
details a new optimization method to achieve this PT based on
a random evolutionary algorithm to acquire maximization of
the PIC value. That is why we call it the Evolutionary-based
Probabilistic Transformation (EPT) method.

Let’s assume that the FoD of the original BBA &(.) to
approximate by a Bayesian BBA is Θ ≜ {!1, !2, . . . , !"}.
The EPT method consists of the following steps:

∙ Step 0 (setting parameters): .max is the max number of
iterations; :max is the population size in each iteration;
,, is the crossover probability, and ,- is the mutation
probability.

∙ Step 1 (population generation): A set P. of ; =
1, 2, . . . , :max random probability values , *

. =
{, *(!1), . . . , , *(!" )} is generated such that the con-
straints (12)–(14) for ; = 1, 2, . . . , :max are satisfied
in order to make each random set of probabilities , *

.

compatible with the original BBA &(.)

, *(!!) ∈ [0; 1], " = 1, 2, . . . , % (12)
"∑

!=1

, *(!!) = 1 (13)

)*+(!!) ≤ , *(!!) ≤ ,+(!!), " = 1, 2, . . . , % (14)

∙ Step 2 (fitness assignment): To each probability set , *
. ,

(; = 1, 2, . . . , :max), we compute its PIC value and use it
as its fitness factor < . More precisely, one takes < (, *

. ) =
,92(, *

. ).
∙ Step 3 (best approximation of &(.)): the best set of

probability , *best
. with highest PIC value is sought,

and its associated index ;best are stored respectively in
”Best-Individual” and ”Index-of-BestIndividual”.

∙ Step 4 (selection, crossover and mutation): The tourna-
ment selection, crossover and mutation operators drawn
from evolutionary theory framework [13] are imple-
mented to create the associated offspring population
P′

. based on the parent population P.. If < (, *best
. ) ≥

< (, ′*best
. ), then the ”Best-Individual” remains unchanged;

otherwise, Best-Individual = , ′*best
. .

∙ Step 5 (Stopping EPT): The steps 1–4 illustrate the .-th
iteration of EPT method. If . ≥ .max then EPT method is
completed, otherwise another iteration must be done by
taking .+ 1 = . and going back to step 1.

The scheme of EPT method is shown in Fig.1 and its
pseudo-code is given in Algorithm 1.

IV. SIMULATION RESULTS

In this section we compare EPT’s results to other mentioned
PTs. In particular, we show the important gain of PIC we
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Figure 1: Scheme of EPT algorithm.

Algorithm 1 Evolutionary-Based PT (EPT)

1: Define Stopping Criteria, (. ≤ .max); population Size
:max for each iteration; crossover probability ,,, and
mutation probability ,-.

2: Generate an initial random population P. of consistent
probabilities , *

. with &(.).
3: For each individual , *

. in P. do
4: Calculate Fitness < (, *

. ) = ,92(, *
. ) of , *

.

5: Store the best individual , *best
.

6: End
7: Repeat:
8: Selection: Select 2 individuals based on fitness
9: Crossover: exchange parts of 2 individuals with proba-

bility ,,

10: Mutation: mutate the child individuals with probability
,-

11: After these three sub-steps, the updated population P′
.

is obtained
12: Calculate the fitness of individuals of P′

., and store the
best individual , ′*$%&'

.

13: If < (, *best
. ) ≥ < (, ′*best

. )
14: Best-Individual remains unchanged
15: else
16: Best-Individual = , ′*best

.

17: If . ≥ .max then stops, otherwise .+ 1 → . and go back
to line 7

can obtain, and the capability of EPT to improve target type
tracking.

A. Examples and comparisons

In order to compare different PTs with EPT, two cases
borrowed from [11] and [12] are considered, where PIC is
used for evaluation. In all the following cases, the parameters
.max, :max, ,, and ,- necessary to EPT method have been
set to .max = 50, :max = 1000, ,, = 0.9 and ,- = 0.1
respectively.

Example 1: Θ = {!1, !2, !3, !4}

The BBA &(.) to approximate by a Bayesian BBA (prob-
ability measure) is

&(!1) = 0.16, &(!2) = 0.14, &(!3) = 0.01, &(!4) = 0.02

&(!1 ∪ !2) = 0.20, &(!1 ∪ !3) = 0.09, &(!1 ∪ !4) = 0.04

&(!2 ∪ !3) = 0.04, &(!2 ∪ !4) = 0.02, &(!3 ∪ !4) = 0.01

&(!1 ∪ !2 ∪ !3) = 0.10, &(!1 ∪ !2 ∪ !4) = 0.03

&(!1 ∪ !3 ∪ !4) = 0.03, &(!2 ∪ !3 ∪ !4) = 0.03

&(Θ) = 0.08

The Bayesian BBA obtained by classical PT (5)–(10) and
EPT with their corresponding PIC values calculated by (11)
are given in Table I. As expected, the EPT provides the
maximum PIC .

Table I: Results of Different PTs in Example 1.

!1 !2 !3 !4 "#$
$%&&" 0.3860 0.3382 0.1607 0.1151 0.0790
'()" 0.3983 0.3433 0.1533 0.1051 0.0926

*+,"0 0.5176 0.4051 0.0303 0.0470 0.3100
*+,"0.001 0.5162 0.4043 0.0319 0.0476 0.3058
"-'"1 0.5419 0.3998 0.0243 0.0340 0.3480
"-'"2 0.5578 0.3842 0.0226 0.0354 0.3529

EPT 0.7246 0.2218 0.0266 0.0270 0.4508

Example 2: Θ = {!1, !2, !3, !4}

In this case, we randomly generate BBAs and compare EPT
with classical PTs (CuzzP, BetP, DSmP, PrBP1 and PrBP2
given by (5)–(10)). The original BBAs to approximate are
generated according to Algorithm 2 of [15].

Algorithm 2 Random generation of BBA

1: Input: Frame of Discernment Θ = {!1, !2, !3, !4}
2: %-/0 :Maximum number of focal element
3: Output : BBA-m
4: Generate =(Θ), which is the power set of Θ
5: Generate a random permutation of =(Θ) → >(Θ)
6: Generate an integer between 1 and %-/0 → +
7: For each First ? elements of >(Θ) do
8: Generate a value within [0, 1] → &!, " = 1, ⋅ ⋅ ⋅ , +
9: End

10: Normalize the vector & = [&1,&2, ⋅ ⋅ ⋅ ,&1] → &′

11: &(!!) = &′
!

In our test, we have set the cardinality of the FoD to 4
and fixed the number of focal elements to + = %-/0 = 15.
We randomly generate @ = 30 BBA’s. Six PT methods
are tested and PIC is used to evaluate the quality of their
corresponding results are shown in Fig.2. As we can see, EPT
outperforms significantly other methods based on maximum
of PIC criterion, which is normal.

B. Evaluation of EPT in Target Type Tracking problem

Target Type Tracking (TTT) problem can be briefly de-
scribed below [16]:
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Figure 2: PIC values obtained with EPTs and classical PTs.

1) Target Type Tracking Problem (TTT):
1. Considering A = 1, 2, ⋅ ⋅ ⋅ , A-/0 be the time index

and let % possible target types /B62 ∈ Θ =
{!1, !2, ⋅ ⋅ ⋅ , !"} in the surveillance area; For instance,
in the normal air target surveillance systems the FoD
could be Θ = {<"Cℎ.*6, 2B6CE}. That is, /B61 =
!1 ≜ <"Cℎ.*6, /B62 = !2 ≜ 2B6CE. Similarly, the
FoD in a ground target surveillance systems could be
Θ345678 = {/B:?, /63F?, 2B6,)37}. In this paper,
we just consider the air target surveillance systems to
prove the practicability of EPT.

2. At every time A, the true type of the target /B6 (A) ∈ Θ
is immediately observed by an attribute-sensor (here, we
assume a possible target probability).

3. A defined classifier is applied to process the attribute
measurement of the sensor which provides the probabil-
ity /B68 (A) on the type of the observed target at each
instant A.

4. The sensor is in general not totally reliable and is
characterized by a % ×% confusion matrix:

M = [1!* = , (/B68 = /B6* ∣/63*/GH* = /B6!)]
(15)

where 0 ≤ " ≤ % ; 0 ≤ ; ≤ % .
Here, we briefly summarize the main steps of TTT using

EPT.
1. Initialization. Determine the target type frame

Θ = {!1, !2, ⋅ ⋅ ⋅ , !"} and set the initial BBA
&!7!.!/1 (!1 ∪ !2 ∪ ⋅ ⋅ ⋅ ∪ !" ) = 1 since there is no
information about the first target type that will be
observed;

2. Updating BBA. An observed BBA &59:(.) on types of
unknown observed target is defined from current target
type declaration and confusion matrix M;

3. Combination. We combine the current BBA &59:(⋅)
with initial BBA &!7!.!/1(⋅) according to PCR6 com-
bination rule: &%&'6(⋅) = &59:(⋅)⊕&!7!.!/1(⋅) ;

4. Approximation. Using I,/ (⋅) to approximate
&%&'6(⋅) into a Bayesian BBA;

5. Decision Making. Taking a final decision about the type
of the target at current observation time based on the
obtained Bayesian BBA;

6. Updating BBA. Set &!7!.!/1(⋅) = &%&'6(⋅), and in-
crease time index A = A + 1 and go back to step 2.

2) Raw Dataset of TTT: We have tested our EPT-based
TTT on a very simple scenario for a 2D TTT, namely Θ =
{<"Cℎ.*6, 2B6CE} for two types of classifiers. The matrix M1

corresponds to the confusion matrix of the good classifier, and
M2 corresponds to the confusion matrix of the poor classifier.

M1 =

[
0.95 0.05
0.05 0.95

]
;M2 =

[
0.75 0.25
0.25 0.75

]
(16)

In our scenario, a true Target Type sequence over 120 scans
is generated according to Fig. 3. We can observe clearly from
Fig. 3 that Cargo (which is denoted as Type 2) appears at
first in the sequence, and then the observation of the Target
Type switches three times onto Fighter Type (Type 1) during
different time duration (namely, 20s, 10s, 5s).
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Figure 3: Raw Sequence of True Target Type.

A pathological case for TTT: Our analysis has shown that
EPT can nevertheless be in troubles for tracking two target
types as proved in this simple particular example (when 0 ≤
&(!1 ∪ !2) ≤ 0.1). Let’s consider the following BBA

&./43;.(.) = [!1, !2, !1 ∪ !2] = [0, 1, 0]

According to the compatibility constraints (12)–(14), the
population P′

. is obtained from P. through a selection pro-
cedure. Next, individual , ′*

. in P′
. which is denoted as

, ′*
. = [&′(!1),&′(!2)] is subject to initial constraint (1) and

(17):

&′(!1) ≥ ()*+(!1) = &(!1) = 0)

&′(!1) ≤ (,+(!1) = &(!1) +&(!1 ∪ !2) = 0 + 0 = 0);

&′(!2) ≥ ()*+(!2) = &(!2) = 1)

&′(!2) ≤ (,+(!2) = &(!2) +&(!2 ∪ !1) = 1 + 0 = 1);

(17)
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From the above inequalities, one sees that only one probability
measure ,<

. = [&(!1),&(!2)] = [0, 1] (where the superscript
index 0 means Single) satisfies this constraint. However
because of mechanism of EPT and real-coded generic
algorithm (RCGA), the probabilities , *

. in population P.

which are randomly generated in the interval [0, 1], will
have a very little chance to be equal to the suitable measure
[0, 1] satisfying the constraints. That is why EPT becomes
inefficient in this case which occurs with a probability of
1/:max, where :max denotes the size of population4 P..
Unfortunately, in TTT decision making problems, such case
cannot be avoided because it can really happens.

To circumvent this problem and make EPT approach
working in all circumstances, we need to modify a bit the
EPT method to generate enough individuals for making se-
lection step efficiently when the bounds of belief interval
[)*+, , +] take their min and max values ([0.9, 0.05, 0.05],
[0.05, 0.9, 0.05]). For achieving this, we propose to enlarge
the interval through a parameter J, and maintain the property
of original interval in some degree at the same time. More
precisely, the modified belief interval, denoted [)*+′, , +′], is
heuristically computed by a simple thresholding technique as
follows:
First, we assume that the original BBA we consider here for
FoD Θ = {!1, !2} is [!1, !2, !1 ∪ !2] = [B, K, F], (B+ K+ F) =
1; 0 ≤ F ≤ 0.1)

Step 1: Let &′(!1 ∪ !2) = F+ J;
Step 2: if B > K

&′(!1) = B− J;&′(!2) = K;&′(!1 ∪ !2) = F+ J;
(18)

Step 3: if B ≤ K

&′(!1) = B;&′(!2) = K− J;&′(!1 ∪ !2) = F+ J;
(19)

So the value of [)*+′(!1), , +′(!1)] and [)*+′(!2), , +′(!2)] can
be calculated based on Eq.(18),Eq.(19), which are presented
as follows:
When B > K:
{

,+′(!1) = &(!1) +&′(!1 ∪ !2) = B− J+ F+ J = B+ F;

)*+′(!1) = 1− ,+′(!̄1) = 1− (K+ F+ J) = B− J.

(20)

⎧
⎨

⎩

,+′(!2) = &(!2) +&′(!1 ∪ !2) = K+ F+ J = K+ F+ J;

)*+′(!2) = 1− ,+′(!̄2)

= 1− (B− J+ F+ J) = 1− (B+ F) = K.
(21)

When B ≤ K:
⎧
⎨

⎩

,+′(!1) = &(!1) +&′(!1 ∪ !2) = B+ F+ J;

)*+′(!1) = 1− ,+′(!̄1)

= 1− (K− J+ F+ J) = 1− (K+ F) = B.

(22)

4In our simulation, we did take .max = 1000.

{
,+′(!2) = &(!2) +&′(!1 ∪ !2) = K− J+ F+ J = K+ F;

)*+′(!2) = 1− ,+′(!̄2) = 1− (B+ F+ J) = K− J.

(23)

Explanation: Through step 1, one computes the total
singleton mass one has in the entire BBA and the threshold
value 0.9 allows to evaluate if the percentage of singleton mass
is big enough or not. Here, we not only consider the unique
extreme case &./43;.(⋅) = [!1, !2, !1 ∪ !2] = [0, 1, 0], but also
other possible cases such as &./43;.(⋅) = [!1, !2, !1 ∪ !2] =
[0.0001, 0.9998, 0.0001]. Why do we consider the concept
of percentage? Actually, the higher percentage of singleton
mass, the smaller interval for , *

. , in other words, the higher
value of & (!1 ∪ !2), the bigger interval for , *

. which can
be shown in Eq.(17); The step 2 and step 3 give the way
of calculating the updated upper bound of belief interval
[)*+′, , +′] and Eq.(20)–Eq.(23) prove that the parameter
J determines the range of the interval; Next, we give two
examples to show how the above method works:

The pathological case 1 for TTT (using modified EPT)

&./43;.(.) = [!1, !2, !1 ∪ !2] = [0.0001, 0.9998, 0.0001] .

Here, the parameter J is arbitrarily5 set to 0.4. Then
one computes in step 2 the modified plausibility bounds
)*+′(!1) = 0.0001, ,+′(!1) = 0.0001 + 0.0001 + J =
0.4002 and )*+′(!2) = 0.9998 − 0.4 = 0.5998, ,+′(!2) =
0.9999. So we get [)*+′(!1), , +′(!1)] = [0.0001, 0.4002] and
[)*+′(!2), , +′(!2)] = [0.5998, 0.9999].

Consequently, any Bayesian BBA , *
. = [&′(!1),&′(!2)]

must be generated according the (modified) compatibility
constraints

&′(!1) ∈ [)*+′(!1), , +′(!1)] = [0.0001, 0.4002]

&′(!2) ∈ [)*+′(!2), , +′(!2)] = [0.5998, 0.9999]

The pathological case 2 for TTT (using modified EPT)

&./43;.(.) = [!1, !2, !1 ∪ !2] = [0.45, 0.48, 0.07] .

Here, the parameter J is set to 0.2. Then any Bayesian
BBA , *

. = [&′(!1),&′(!2)] must be generated according the
(modified) compatibility constraints

&′(!1) ∈ [)*+′(!1), , +′(!1)] = [0.45, 0.72]

&′(!2) ∈ [)*+′(!2), , +′(!2)] = [0.28, 0.55]

In order to evaluate the influence of the parameter J,
we have reexamined all the pathological cases based on the
following procedure:

1) The value of parameter J is taken to five possible values:
0, 0.1, 0.2, 0.3, 0.4, 0.5;

2) We randomly generate initial population P. based on J,
which is also subjected to the constraints (12)–(14).

5The value of the parameter / can be chosen to any value in [0, 1] by the
designer for his/her own reason to ensure the alternative interval effectively
in modified EPT version.
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With this simulation, we can observe in Fig.4 the impact of
J value on the number of , *

. in P.. When J = 0 happens 6,
there exists no suitable , *

. for case one which demonstrates
the necessity to circumvent the pathological case problem.
Obviously, the number of , *

. increases with the increase of
J value, which efficiently proves the advantage of using the
modified EPT approach to make selection step of the evolu-
tionary algorithm more efficient. One point we need to clarify
is that the intervals i.e. [)*+′(!1), , +′(!1)], [)*+′(!2), , +′(!2)]
induced from parameter J above aims at guaranteeing enough
number of , *

. in P. in the implementation of EPT.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

100

200

300

400

500

600

X: 0
Y: 0

The relationship between paramater λ and the number of Individual

X

X: 0.1
Y: 48

X: 0.2
Y: 119

X: 0.3
Y: 235

X: 0.4
Y: 340

X: 0.5
Y: 518

Y

X: 0
Y: 117

X: 0.1
Y: 134

X: 0.2
Y: 245

X: 0.3
Y: 378

X: 0.4
Y: 418

X: 0.5
Y: 477

 

 

Case one
Case two

Figure 4: Impact of J (x-axis) on individuals in P. (y-axis).

3) Simulation Results of TTT Based on Modified EPT: Our
simulation consists in 100 Monte-Carlo runs and we show in
the sequel the averaged performances of EPT and DSmP. The
figures 5–8 illustrate the Bayesian BBA’s obtained by DSmP
[7] -(part a) and our new EPT method-(part b) based on TTT
using PCR6 fusion rule. One sees that regardless of the good
classifier M1 and poor classifier M2, EPT is able to track
properly the quick changes of target type.

V. LIMITATION OF EPT

As pointed out by Han et al. in [14], in general it is
not enough, nor comprehensive to evaluate the quality of
probabilistic transformation of a BBA from only the PIC
criterion, even if the chosen PT provides highest PIC value
by optimization. Our EPT approach, is not exempt of this
problem of course as we can see in the simple example below,
where no optimization technique provides useful (robust)
solution.

Let’s consider the FoD Θ = {!1, !2} with the BBA to
approximate chosen as follows:

&(!1) = 0.10001, &(!2) = 0.10000, &(!1 ∪ !2) = 0.79999

Based on PIC value optimization using EPT (or any other
efficient optimization techniques), we will obtain the Bayesian

6which actually the original EPT is applied
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BBA &(!1, !2) = [0.0001605, 0.9998394] with ,92 =
0.9977. This simple example shows that in the original BBA
&(!1) is almost the same as &(!2) and there is no solid
reason to get a very high probability for !2 and a small
one for !1 in the Bayesian BBA, even if a highest PIC
is reached. Exaggerated high PIC is not always preferred
(unreasonable or directly make wrong decisions), which can
be seen in Fig.6 and Fig.8, although the PIC should be as
high as possible for decision making problems. Therefore, a
reasonable compromise must be found between PIC level and
also fidelity level of the transformations to the original BBA,
which is a theoretical open challenging problem left for further
research works.

VI. CONCLUSION

An evolutionary algorithm for probabilistic transformation
(EPT) has been proposed in this paper. It uses the genetic
algorithm to obtain Bayesian belief function with highest
PIC value. The utility of EPT was verified on a set of
three probabilistic transformation cases borrowed from the
literature. On these cases, the performance of EPT has been
compared to other existing probabilistic transformations. Our
results indicate that EPT performs better than others on all
problems from PIC increasing standpoint. The shortcomings of
original EPT version have been clearly identified on two type
tracking problems, and they have been overcome thanks to a
modification of belief interval constraints. As future works, we
would like to establish more appropriate evaluation criteria and
make more comparisons between performances of this EPT
approach with other recent proposed evolutionary algorithms.
We would also make more investigations on EPT to extend it
to work with more than two targets.
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A Hierarchical Flexible Coarsening Method
to Combine BBAs in Probabilities

Abstract—In many applications involving epistemic uncertain -
ties usually modeled by belief functions , it is often necessary to
approximate general (non-Bayesian ) basic belief assignments (
BBAs ) to subjective probabilities (called Bayesian BBAs ). This
necessity occurs if one needs to embed the fusion result in a sys- tem
based on the probabilistic framework and Bayesian inference (e.g.
tracking systems), or if one wants to use classical decision theory to
make a decision . There exists already several methods (
probabilistic transforms ) to approximate any general BBA to a
Bayesian BBA . From a fusion standpoint , two approaches are
usually adopted : 1) one can approximate at first each BBA in
subjective probabilities and use Bayes fusion rule to get the final
Bayesian BBA, or 2) one can fuse all the BBAs with a fusion rule,
typically Dempster-Shafer’s, or PCR6 rules (which is very costly in
computations ), and convert the combined BBA in a subjective
probability measure . The former method is the simplest method
but it generates a high loss of information included in original
BBAs , whereas the latter is intractable for high dimension
problems . This paper presents a new method to achieve this task
based on hierarchical decomposition (coarsening ) of the frame of
discernment , which can be seen as an intermediary approach
between the two aforementioned methods . After the presentation
of this new method, we show through simulations how its performs
with respect to other methods.
Keywords: Information fusion, belief functions, DST, DSmT,
PCR6 rule, coarsening.

I. INTRODUCTION

The theory of belief functions, known as Dempster-Shafer
Theory (DST) has been developed by Shafer [1] in 1976
from Dempster’s works [2]. Belief functions allow to model
epistemic uncertainty and they have been already used in many
applications since the 1990’s [3], mainly those related to expert
systems, decision-making support and information fusion. To
palliate some limitations of DST, Dezert and Smarandache
have proposed an extended mathematical framework of belief
functions with new efficient quantitative and qualitative rules
of combinations, which is called DSmT (Dezert and Smaran-
dache Theory) in the literature [4], [5] with applications listed
in [6]. One of the major drawbacks of DST and DSmT is their
high computational complexities, as soon as the fusion space
(i.e. frame of discernment - FoD) and the number of sources
to combine are large1.

1DSmT is more complex than DST, and the Proportional Conflict Redistri-
bution rule #6 (PCR6 rule) becomes computationally intractable in the worst
case as soon as the cardinality of the Frame of Discernment (FoD) is greater
than six.

To reduce the computational cost of operations with belief
functions when the number of focal elements is very large,
several approaches have been proposed by different authors.
Basically, the existing approaches rely either on efficient
implementations of computations as proposed for instance in
[7], [8], or on approximation techniques of original Basic
Belief Assignment (BBA) to combine [9]–[12], or both. In
many applications involving epistemic uncertainties usually
modeled by belief functions, it is often necessary to approxi-
mate general (non-Bayesian) basic belief assignments (BBAs)
to subjective probabilities (called Bayesian BBAs). This neces-
sity occurs if one needs to embed the fusion result in a system
based on the probabilistic framework and Bayesian inference
(e.g. tracking systems), or if one wants to use classical decision
theory to make a decision. From a fusion standpoint, two
approaches are usually adopted: 1) one can approximate at
first each BBA in subjective probabilities and use Bayes fusion
rule to get the final Bayesian BBA, or 2) one can fuse all
the BBAs with a fusion rule, typically Dempster-Shafer’s, or
PCR6 rules (which is very costly in computations), and convert
the combined BBA in a subjective probability measure. The
former method is the simplest method but it generates a high
loss of information included in original BBAs, whereas the
latter direct method is intractable for high dimension problems.
This paper presents a new method to achieve this task based
on hierarchical decomposition (coarsening) of the frame of
discernment, which can be seen as an intermediary approach
between the two aforementioned methods.

This paper presents a new approach to fuse BBAs into a
Bayesian BBA in order to reduce computational burden and
keep the fusion tractable even for large dimension problems.
This method is based on a hierarchical decomposition (coars-
ening) framework which allows to keep as much as possible
information of original BBAs in preserving lower complexity.
The main contributions of this paper are:

1) the presentation of the FoD bintree decomposition on
which will be done the BBAs approximations;

2) the presentation of the fusion of approximate BBAs from
bintree representation.

This hierarchical structure allows to encompass bintree decom-
position and BBAs approximations on it to obtain the final
approximate fusionned Bayesian BBA.

Originally published as: Y. Dong, X. Li, J. Dezert, A Hierarchical Flexible Coarsening Method to Combine 
BBAs in Probabilities, in Proc. of the 20th Int. Conf. on Information Fusion (Fusion 2017), Xi’an, China, 
July 10–13, 2017, and reprinted with permission.
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This paper is organized as follows. In section II, we recall
some basics of DST and DSmT that are relevant to the new
method presented in this paper. More details with examples
can easily be found in [1], [5]. We will also briefly recall
our preliminary works about hierarchical coarsening of FoD.
Section III presents the novel hierarchical flexible (adaptive)
coarsening method which can be regarded as the extension of
our previous works. Two simple examples are given in section
IV to illustrate the detailed calculation steps. Simulation
experiments are presented in section V to show the rationality
of this new approach. Finally, Sect.VI concludes the paper
with future works perspectives.

II. MATHEMATICAL BACKGROUND

This section provides a brief reminder of basics of DST and
DSmT, and of original hierarchical coarsening method which
are necessary for the presentation and the understanding of
the more general flexible coarsening approximate method of
section III.

A. Basics of DST and DSmT

In DST framework, the frame of discernment2 Θ ≜

{!1, . . . , !!} ($ ≥ 2) is a set of exhaustive and exclusive
elements (hypotheses) which represent the possible solutions
of the problem under consideration and thus Shafer’s model
assumes !" ∩ !# = ∅ for % ∕= & in {1, . . . , $}. A basic
belief assignment (BBA) '(⋅) is defined by the mapping:
2Θ (→ [0, 1], verifying '(∅) = 0 and

∑
$∈2Θ '(() = 1. In

DSmT, one can abandon Shafer’s model (if Shafer’s model
doesn’t fit with the problem) and refute the principle of
the third excluded middle3. Instead of defining the BBAs
on the power set 2Θ ≜ (Θ,∪) of the FoD, the BBAs
are defined on the so-called hyper-power set (or Dedekind’s
lattice) denoted )Θ ≜ (Θ,∪,∩) whose cardinalities follows
Dedekind’s numbers sequence, see [5], Vol.1 for details and
examples. A (generalized) BBA, called a mass function, '(⋅)
is defined by the mapping: )Θ (→ [0, 1], verifying '(∅) = 0
and

∑
$∈%Θ '(() = 1. DSmT framework encompasses DST

framework because 2Θ ⊂ )Θ. In DSmT we can take into ac-
count also a set of integrity constraints on the FoD (if known),
by specifying all the pairs of elements which are really
disjoint. Stated otherwise, Shafer’s model is a specific DSm
model where all elements are known to be disjoint. ( ∈ )Θ is
called a focal element of '(.) if '(() > 0. A BBA is called
a Bayesian BBA if all of its focal elements are singletons
and Shafer’s model is assumed, otherwise it is called non-
Bayesian [1]. A full ignorance source is represented by the
vacuous BBA '&(Θ) = 1. The belief (or credibility) and
plausibility functions are respectively defined by +,-(.) ≜∑

' ∈%Θ∣'⊆( '(/ ) and 0-(.) ≜
∑

' ∈%Θ∣' ∩( ∕=∅ '(/ ).
+1(.) ≜ [+,-(.), 0 -(.)] is called the belief interval of
. . Its length 2(.) ≜ 0-(.)−+,-(.) measures the degree
of uncertainty of . .

2We use the symbol ≜ to mean equals by definition.
3The third excluded middle principle assumes the existence of the comple-

ment for any elements/propositions belonging to the power set 2Θ.

In 1976, Shafer did propose Dempster’s rule4 to combine
BBAs in DST framework. DS rule is defined by '%)(∅) = 0
and ∀( ∈ 2Θ ∖ {∅},

'%)(() =

∑
*,,∈2Θ∣*∩,=$ '1(+)'2(3)

1−
∑

*,,∈2Θ∣*∩,=∅ '1(+)'2(3)
(1)

DS rule formula is commutative and associative and can be
easily extended to the fusion of 4 > 2 BBAs. Unfortunately,
DS rule has been highly disputed during the last decades
by many authors because of its counter-intuitive behavior in
high or even low conflict situations, and that is why many
rules of combination have been proposed in the literature to
combine BBAs [13]. To palliate DS rule drawbacks, the very
interesting PCR6 (Proportional Conflict redistribution rule #6)
has been proposed in DSmT and it is usually adopted5 in
recent applications of DSmT. The fusion of two BBAs '1(.)
and '2(.) by the PCR6 rule is obtained by '-,.6(∅) = 0
and ∀( ∈ )Θ ∖ {∅}

'-,.6(() = '12(()+
∑

*∈%Θ∖{$}∣$∩*=∅

[
'1(()2'2(+)

'1(() +'2(+)
+

'2(()2'1(+)

'2(() +'1(+)
]

(2)
where '12(() =

∑
*,,∈%Θ∣*∩,=$ '1(+)'2(3) is the

conjunctive operator, and each element ( and + are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCR6 formula for combining more than two BBAs
altogether is given in [5], Vol. 3. We adopt the generic notation
'-,.6

12 (.) = 0356('1(.),'2(.)) to denote the fusion of
'1(.) and '2(.) by PCR6 rule. PCR6 is not associative
and PCR6 rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing )Θ by 2Θ in Eq. (2).

B. Hierarchical coarsening for fusion of Bayesian BBAs

Here, we briefly recall the principle of hierarchical coarsen-
ing of FoD to reduce the computational complexity of PCR6
combination of original Bayesian BBAs. The fusion of original
non-Bayesian BBAs will be presented in the next section.

This principle was called rigid grouping in our previous
works [17]–[19]. The goal of this coarsening is to replace
the original (refined) Frame of Discernment (FoD) Θ by a
set of coarsened ones to make the computation of PCR6 rule
tractable. Because we consider here only Bayesian BBA to
combine, their focal elements are only singletons of the FoD
Θ ≜ {!1, . . . , !!}, with $ ≥ 2, and we assume Shafer’s model
of the FoD Θ.

A coarsening of the FoD Θ means to replace it with another
FoD less specific of smaller dimension Ω = {61, . . . , 6/} with
7 < $ from the elements of Θ. This can be done in many
ways depending the problem under consideration. Generally,
the elements of Ω are singletons of Θ, and disjunctions of

4We use DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone book [1].

5PCR6 rule coincides with PCR5 when combining only two BBAs [5].
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elements of Θ. For example, if Θ = {!1, !2, !3, !4}, then the
possible coarsened frames built from Θ could be, for instance,
Ω = {61 = !1, 62 = !2, 63 = !3 ∪ !4}, or Ω = {91 =
!1∪!2, 62 = !3∪!4}, etc. When dealing with Bayesian BBAs,
the projection6 'Ω(.) of the original BBA 'Θ(.) is simply
obtained by taking

'Ω(6") =
∑

0!⊆1"

'Θ(!#) (3)

The hierarchical coarsening process (or rigid grouping) is
a simple dichotomous approach of coarsening obtained as
follows:

∙ If $ = ∣Θ∣ is an even number:
The disjunction of the $/2 first elements !1 to !#

2
of Θ

define the element 61 of Ω, and the last $/2 elements
!#

2
+1 to !! of Θ define the element 62 of Ω, that is

Ω ≜ {61 = !1 ∪ . . . ∪ !#
2
, 62 = !#

2
+1 ∪ . . . ∪ !!}

and based on (3), one has

'Ω(61) =
∑

#=1,...,#
2

'Θ(!#) (4)

'Ω(62) =
∑

#=#
2
+1,...,!

'Θ(!#) (5)

For example, if Θ = {!1, !2, !3, !4}, and one considers
the Bayesian BBA 'Θ(!1) = 0.1, 'Θ(!2) = 0.2,
'Θ(!3) = 0.3 and 'Θ(!4) = 0.4, then Ω = {61 =
!1 ∪ !2, 62 = !3 ∪ !4} and 'Ω(61) = 0.1 + 0.2 = 0.3
and 'Ω(62) = 0.3 + 0.4 = 0.7.

∙ If $ = ∣Θ∣ is an odd number:
In this case, the element 61 of the coarsened frame Ω is
the disjunction of the [$/2+1]7 first elements of Θ, and
the element 62 is the disjunction of other elements of Θ.
That is

Ω ≜ {61 = !1 ∪ . . . ∪ ![#
2
+1], 62 = ![#

2
+1]+1 ∪ . . . ∪ !!}

and based on (3), one has

'Ω(61) =
∑

#=1,...,[#
2
+1]

'Θ(!#) (6)

'Ω(62) =
∑

#=[#
2
+1]+1,...,!

'Θ(!#) (7)

For example, if Θ = {!1, !2, !3, !4, !5}, and one consid-
ers the Bayesian BBA 'Θ(!1) = 0.1, 'Θ(!2) = 0.2,
'Θ(!3) = 0.3, 'Θ(!4) = 0.3 and 'Θ(!5) = 0.1, then
Ω = {61 = !1 ∪ !2 ∪ !3, 62 = !4 ∪ !5} and 'Ω(61) =
0.1 + 0.2 + 0.3 = 0.6 and 'Ω(62) = 0.3 + 0.1 = 0.4.

Of course, the same coarsening applies to all original BBAs
'Θ

3 (.), ; = 1, . . . 4 of the 4 > 1 sources of evidence to work
with less specific BBAs 'Ω

3 (.), ; = 1, . . . 4. The less specific

6For clarity and convenience, we put explicitly as upper index the FoD for
which the belief mass refers.

7The notation [!] means the integer part of !.

BBAs (called coarsened BBAs by abuse of language) can then
be combined with PCR6 rule of combination according to
formula (2). This dichotomous coarsening method is repeated
iteratively - times as schematically represented by a bintree8.
The last step of this hierarchical process is to calculate the
combined (Bayesian) BBA of all focal elements according
to the connection weights of the bintree structure, where the
number of iterations (or layers) - of the tree depends on
the cardinality ∣Θ∣ of the original FoD Θ. Specifically, the
assignment of each focal element is updated according to the
connection weights of link paths from root to terminal nodes.
This principle is illustrated in details in the following example.

Example 1: Let’s consider Θ = {!1, !2, !3, !4, !5}, and the
following three Bayesian BBAs

Focal elem. 'Θ
1 (.) 'Θ

2 (.) 'Θ
3 (.)

!1 0.1 0.4 0
!2 0.2 0 0.1
!3 0.3 0.1 0.5
!4 0.3 0.1 0.4
!5 0.1 0.4 0

The hierarchical coarsening and fusion of BBAs is obtained
from the following steps:

Step 1: We define the bintree structure based on iterative
half split of FoD as shown in Fig. 1.

1 2 3 4 5

1 2 3 4 5

1 2

1 2

3 4 5

1 2

11 12 21 22

111 112

1 2

3 4 5 6

7 8

Figure 1: Fusion of Bayesian BBAs using bintree coarsening
for Example 1.

The connecting weights are denoted as <1, . . . , <8. The
elements of the frames Ω4 are defined as follows:

∙ At layer - = 1: Ω1 = {61 ≜ !1 ∪ !2 ∪ !3, 62 ≜ !4 ∪ !5}
∙ At layer - = 2:

Ω2 = {611 ≜ !1 ∪ !2, 612 ≜ !3, 621 ≜ !4, 622 = !5}

∙ At layer - = 3: Ω3 = {6111 ≜ !1, 6112 ≜ !2}

8Here we consider bintree only for simplicity, which means that the
coarsened frame Ω consists of two elements only. Of course a similar method
can be used with tri-tree, quad-tree, etc.
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Step 2: The BBAs of elements of the (sub-)frames Ω4 are
obtained as follows:

∙ At layer - = 1, we use (6)-(7) because ∣Θ∣ = 5 is an odd
number. Therefore, we get

Focal elem. 'Ω1

1 (.) 'Ω1

2 (.) 'Ω1

3 (.)
61 ≜ !1 ∪ !2 ∪ !3 0.6 0.5 0.6

62 ≜ !4 ∪ !5 0.4 0.5 0.4

∙ At layer - = 2: We work with the two subframes Ω21 ≜

{611, 612} and Ω22 ≜ {621, 622} of Ω2 with the BBAs:
Focal elem. 'Ω21

1 (.) 'Ω21

2 (.) 'Ω21

3 (.)
611 ≜ !1 ∪ !2

1
2

4
5

1
6

612 ≜ !3
1
2

1
5

5
6

Focal elem. 'Ω22

1 (.) 'Ω22

2 (.) 'Ω22

3 (.)
621 ≜ !4

3
4

1
5 1

622 ≜ !5
1
4

4
5 0

These mass values are obtained by the proportional
redistribution of the mass of each focal element with
respect to the mass of its parent focal element in the bin
tree. For example, the value 'Ω21

2 (611) = 4/5 is derived
by taking

'Ω21

2 (611) =
'Θ

2 (!1) +'Θ
2 (!2)

'Θ
2 (!1) +'Θ

2 (!2) +'Θ
2 (!3)

=
0.4

0.5
=

4

5

Other mass values are computed similarly using this
proportional redistribution method.

∙ At layer - = 3: We use again the proportional redistribu-
tion method which gives us

Focal elem. 'Ω3

1 (.) 'Ω3

2 (.) 'Ω3

3 (.)
6111 ≜ !1

1
3 1 0

6112 ≜ !2
2
3 0 1

Step 3: The connection weights <" are computed
from the assignments of coarsening elements. In each
layer -, we fuse sequentially9 the three BBAs us-
ing PCR6 formula (2). More precisely, we compute at
first '-,.6,Ω$

12 (.) = 0356('Ω$
1 (.),'Ω$

2 (.)) and then
'-,.6,Ω$

(12)3 (.) = 0356('-,.6,Ω$
12 (.),'Ω$

3 (.)). Hence, we
obtain the following connecting weights in the bintree:

∙ At layer - = 1:

<1 = '-,.6,Ω1

(12)3 (61) = 0.6297

<2 = '-,.6,Ω1

(12)3 (62) = 0.3703

∙ At layer - = 2:

<3 = '-,.6,Ω21

(12)3 (611) = 0.4137

<4 = '-,.6,Ω21

(12)3 (612) = 0.5863

<5 = '-,.6,Ω22

(12)3 (621) = 0.8121

<6 = '-,.6,Ω22

(12)3 (622) = 0.1879

9Because PCR6 fusion is not associative, we should apply the general
PCR6 formula to get best results. Here we use sequential fusion to reduce the
computational complexity even if the fusion result is approximate.

∙ At layer - = 3:

<7 = '-,.6,Ω3

(12)3 (6111) = 0.3103

<8 = '-,.6,Ω3

(12)3 (6112) = 0.6897

Step 4: The final assignment of belief mass to the elements
of original FoD Θ are calculated using the product of the
connection weights of link paths from root (top) node to
terminal nodes (leaves). We finally get the following resulting
combined and normalized Bayesian BBA

'Θ(!1) = <1 ⋅ <3 ⋅ <7 = 0.6297 ⋅ 0.4137 ⋅ 0.3103 = 0.0808

'Θ(!2) = <1 ⋅ <3 ⋅ <8 = 0.6297 ⋅ 0.4137 ⋅ 0.6897 = 0.1797

'Θ(!3) = <1 ⋅ <4 = 0.6297 ⋅ 0.5863 = 0.3692

'Θ(!4) = <2 ⋅ <5 = 0.3703 ⋅ 0.8121 = 0.3007

'Θ(!5) = <2 ⋅ <6 = 0.3703 ⋅ 0.1879 = 0.0696

III. NEW HIERARCHICAL FLEXIBLE COARSENING METHOD

Contrary to the (rigid) hierarchical coarsening method pre-
sented in section II, in our new flexible coarsening approach
the elements !", % = 1, . . . , $ in FoD Θ will not be half
split to build coarsening focal elements 6# , & = 1, . . . , 7 of
the FoD Ω4. In the hierarchical flexible (adaptive) coarsening
method, the elements !" chosen to belong to the same group
are determined using the consensus information drawn from
the BBAs provided by the sources. Specifically, the degrees
of disagreement between the provided sources on decisions
(!1, !2, ⋅ ⋅ ⋅ , !!) are first calculated using the belief-interval
based distance =*5 [16], [20] to obtain disagreement vector.
Then, the k-means algorithm is applied for clustering elements
!", % = 1, . . . , $ based on the corresponding value in consensus
vector. It is worth noting that values of disagreement reflect the
preferences of independent sources of evidence for the same
focal element. If they are small, it means that all sources have
a consistent opinion and these elements should be clustered in
the same group. Conversely, if disagreement values are large,
it means that the sources have strong disagreement on these
focal elements, and these focal elements need to be clustered
in another group.

A. Calculating the disagreement vector

Let us consider several BBAs 'Θ
3 (⋅), (; = 1, . . . , 4) defined

on same FoD Θ of cardinality ∣Θ∣ = $. The specific BBAs
'0"(.), % = 1, . . . , $ entirely focused on !" are defined by
'0"(!") = 1, and for . ∕= !" '0"(.) = 0. The disagreement
of opinions of two sources about !" is defined as the >1-
distance between the =*5 distances of the BBAs 'Θ

3 (.), ; =
1, 2 to '0"(.), which is expressed by

)12(!") ≜ ∣=*5('
Θ
1 (⋅),'0"(⋅)))− =*5('

Θ
2 (⋅),'0"(⋅))∣ (8)

The disagreement of opinions of 4 ≥ 3 sources about !", is
defined as

)1−)(!") ≜
1

2

)∑

"=1

)∑

#=1

∣=*5('
Θ
" (⋅),'0"(.))

− =*5('
Θ
# (⋅),'0"(.))∣ (9)
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where =*5 distance is defined by10 [20]

=6*5('1,'2) ≜

√√√⎷$7 ⋅
2#−1∑

"=1

[=5(+11(!"), +12(!"))]2 (10)

Here, $7 = 1/2!−1 is the normalization constant and
=5([?, @], [A, =]) is the Wasserstein’s distance defined by

=5([?, @], [A, =]) =
√
[8+9

2 − 7+:
2 ]2 + 1

3 [
9−8
2 − :−7

2 ]2. And
+1(!") = [+,-(!"), 0 -(!")].

The disagreement vector D1−) is defined by

D1−) ≜ [)1−)(!1), . . . , )1−)(!!)] (11)

B. Clustering focal elements

Once D1−) is derived, a clustering algorithm is used to
coarsen focal elements according to their corresponding values
in D1−) . In this paper, we have used the k-means algorithm11

to cluster focal elements. For each source ; = 1, . . . , 4, the
mass assignments of focal elements in two12 different clusters
are added up according to formulas (12)–(13).

'Ω
3 (61) =

∑

0"∈11

'Θ(!") (12)

'Ω
3 (62) =

∑

0!∈12

'Θ(!#) (13)

C. Combination of the BBAs

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure based on this flexible coarsening
decomposition is obtained (see example in the next section)
and the elements in FoD Θ are grouped more reasonably
in each layer of the decomposition. Once the adaptive bin-
tree structure is derived, other steps (multiplications of link
weights) can be implemented which are identical to hierarchi-
cal (rigid) coarsening method presented in section II to get the
final combined Bayesian BBA.

D. Summary of the method

The fusion method of BBAs to get a combined Bayesian
BBA based on hierarchical flexible decomposition of the FoD
consists of the four steps below illustrated in Fig. 2.

∙ Step 1 (pre-processing): At first, all input BBAs to
combine are approximated to Bayesian BBAs with DSmP
transform.

∙ Step 2 (disagreement vector): D1−S(⋅) is calculated us-
ing =*5 distances to estimate the degree of disagreement
of BBAs 'Θ

1 , . . . , 'Θ
) on potential decisions !1,. . . , !!.

∙ Step 3 (adaptive bintree): The adaptative bintree de-
composition of the FoD Θ is obtained using k-Means
algorithm to get elements of subframes Ω4.

∙ Step 4 (assignments and connection weights): For
each source 'Θ

3 (⋅) to combine, the mass assignment of

10For simplicity, we assume Shafer’s model so that ∣2Θ∣ = 2!, otherwise
the number of elements in the summation of (10) should be ∣"Θ∣ − 1 with
another normalization constant #".

11which is implemented in MatlabTM

12because we use here the bisection decomposition.

each element of subframe Ω4 is computed by (12)–(13).
The weight of links between two layers of the bintree
decomposition are obtained with PCR6 rule13.

∙ Step 5 (fusion): The final result (combined Bayesian
BBA) is computed by the product of weights of link paths
from root to terminal nodes.

PCR6 fusion

All layers 
explored?

is Bayesian?

DSmP
transform

Final Combined 
Bayesian BBA

yes

no no

Flexible grouping using 
K-Means

yes

no

Input BBAs 
1 , , Sm m

sm

2

Product of path 
link weights

yes

Figure 2: Hierarchical flexible decomposition of FoD for
fusion.

IV. TWO SIMPLE EXAMPLES

A. Example 1 (fusion of Bayesian BBAs)

Let us revisit example 1 presented in section II-B. It can be
verified in applying formula (9) that the disagreement vector
D1−3 for this example is equal to

D1−3 = [0.4085, 0.2156, 0.3753, 0.2507, 0.4086]

The derivation of )1−3(!1) is given below for convenience.

)1−3(!1) = ∣=*5('
Θ
1 (⋅),'01(!1))− =*5('

Θ
2 (⋅),'01(!1))∣

+ ∣=*5('
Θ
2 (⋅),'01(!1))− =*5('

Θ
3 (⋅),'01(!1))∣

+ ∣=*5('
Θ
1 (⋅),'01(!1))− =*5('

Θ
3 (⋅),'01(!1))∣

= 0.4085.

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure is obtained and shown in Fig. 3.
Compared to Fig. 1, the elements in FoD Θ are grouped more
reasonably. In vector D1−3, !1 and !5 lie in similar degree of
disagreement so that they are put in the same group. Similarly
for !2 and !4. However, element !3 seems weird, which is
put alone at the beginning of flexible coarsening. Once this
adaptive bintree decomposition is obtained, other steps can
be implemented which are identical to hierarchical coarsening
method of section II to get the final combined BBA.

The flexible coarsening and fusion of BBAs is obtained from
the following steps:

13general formula preferred, or applied sequentially to reduce complexity.
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Figure 3: Example 1: Flexible bintree decomposition of FoD.

Step 1: According to Fig.3, the elements of the frames Ω4

are defined as follows:
∙ At layer - = 1: Ω1 = {61 ≜ !3, 62 ≜ !1 ∪ !2 ∪ !4 ∪ !5}
∙ At layer - = 2: Ω2 = {621 ≜ !1 ∪ !5, 622 ≜ !2 ∪ !4}
∙ At layer - = 3: Ω3 = {6211 ≜ !1, 6212 ≜ !5, 6221 ≜

!2, 6222 ≜ !4}
Step 2: The BBAs of elements of the (sub-)frames Ω4 are

obtained as follows:
∙ At layer - = 1, we use (12)-(13) and we get

Focal elem. 'Ω1

1 (.) 'Ω1

2 (.) 'Ω1

3 (.)
61 ≜ !3 0.3 0.1 0.5

62 ≜ !1 ∪ !2 ∪ !4 ∪ !5 0.7 0.9 0.5
∙ At layer - = 2: We use again the proportional redistribu-

tion method which gives us:
Focal elem. 'Ω2

1 (.) 'Ω2

2 (.) 'Ω2

3 (.)
621 ≜ !1 ∪ !5

3
7

4
9

1
5

622 ≜ !2 ∪ !4
4
7

5
9

4
5

∙ At layer - = 3: We work with the two subframes Ω31 ≜

{6211, 6212} and Ω32 ≜ {6221, 6222} of Ω3 with the
BBAs

Focal elem. 'Ω31

1 (.) 'Ω31

2 (.) 'Ω31

3 (.)
6211 ≜ !1

1
2

1
2

1
2

6212 ≜ !5
1
2

1
2

1
2

Focal elem. 'Ω32

1 (.) 'Ω32

2 (.) 'Ω32

3 (.)
6221 ≜ !2

2
5 0 1

5

6222 ≜ !4
3
5 1 4

5

Step 3: The connection weights <" are computed from the
assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

∙ At layer - = 1:

<1 = 0.2226; <2 = 0.7774.

∙ At layer - = 2:

<3 = 0.2200; <4 = 0.7800.

∙ At layer - = 3:

<5 = 0.5; <6 = 0.5;<7 = 0.0669; <8 = 0.9331.

Step 4: We finally get the following resulting combined and
normalized Bayesian BBA

'Θ(⋅) = {0.0855, 0.0406, 0.2226, 0.5658, 0.0855}.

B. Example 2 (with non-Bayesian BBAs)

Example 1bis: Let’s consider Θ = {!1, !2, !3, !4, !5}, and the
following BBAs given by

Focal elem. 'Θ
1 (.) 'Θ

2 (.) 'Θ
3 (.)

!1 0.1 0.4 0
!2 0.2 0 0
!3 0.3 0.05 0
!4 0.03 0.05 0
!5 0.1 0.04 0

!1 ∪ !2 0.1 0.04 0
!2 ∪ !3 ∪ !5 0 0.02 0.1

!3 ∪ !4 0.02 0.1 0.2
!1 ∪ !5 0.1 0.3 0.2

Θ 0.05 0 0.5

Step 1 (Pre-Processing): All these three BBAs are trans-
formed into Bayesian BBAs with DSmP transform and the
generated BBAs are illustrated as

Focal elem. 'Θ
1 (.) 'Θ

2 (.) 'Θ
3 (.)

!1 0.1908 0.7127 0.2000
!2 0.2804 0 0.1334
!3 0.3387 0.1111 0.2333
!4 0.0339 0.1 0.2000
!5 0.1562 0.0761 0.2333

It can be verified in applying formula (9) that the disagree-
ment vector D1−3 for this example is equal to

D1−3 = [0.5385, 0.3632, 0.3453, 0.2305, 0.2827]

Step 2: According to the clustering algorithm, the elements
of the frames Ω4 are defined as follows:

∙ At layer - = 1: Ω1 = {61 ≜ !1, 62 ≜ !2 ∪ !3 ∪ !4 ∪ !5}
∙ At layer - = 2: Ω2 = {621 ≜ !2 ∪ !3, 622 ≜ !4 ∪ !5}
∙ At layer - = 3: Ω3 = {6211 ≜ !2, 6212 ≜ !3, 6221 ≜

!4, 6222 ≜ !5}
Step 3: The BBAs of elements of the (sub-)frames Ω4 are

obtained as follows:

∙ At layer - = 1, we use (12)-(13) and we get
Focal elem. 'Ω1

1 (.) 'Ω1

2 (.) 'Ω1

3 (.)
61 ≜ !1 0.1908 0.7127 0.2000

62 ≜ !2 ∪ !3 ∪ !4 ∪ !5 0.8092 0.2873 0.8000
∙ At layer - = 2: We use again the proportional redistribu-

tion method which gives us:
Focal elem. 'Ω2

1 (.) 'Ω2

2 (.) 'Ω2

3 (.)
621 ≜ !2 ∪ !3 0.7651 0.3867 0.4584
622 ≜ !4 ∪ !5 0.2349 0.6133 0.5416
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∙ At layer - = 3: We work with the two subframes Ω31 ≜

{6211, 6212} and Ω32 ≜ {6221, 6222} of Ω3 with the
BBAs:

Focal elem. 'Ω31

1 (.) 'Ω31

2 (.) 'Ω31

3 (.)
6211 ≜ !2 0.4529 0 0.3638
6212 ≜ !3 0.5471 1 0.6362

Focal elem. 'Ω32

1 (.) 'Ω32

2 (.) 'Ω32

3 (.)
6221 ≜ !4 0.1783 0.5679 0.4616
6222 ≜ !5 0.8217 0.4321 0.5384

Step 4: The connection weights <" are computed from the
assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

∙ At layer - = 1:

<1 = 0.2345; <2 = 0.7655.

∙ At layer - = 2:

<3 = 0.5533; <4 = 0.4467.

∙ At layer - = 3:

<5 = 0.1606; <6 = 0.8394;

<7 = 0.3349; <8 = 0.6651.

Step 5: We finally get the following resulting combined and
normalized Bayesian BBA

'Θ(⋅) = {0.2345, 0.0681, 0.3555, 0.1145, 0.2274}.

V. SIMULATION RESULTS AND PERFORMANCES

A. Flexible Grouping of Singletons

1) Similarity: 14 Assuming that Θ = {!1, !2, !3, !4, !5, !6,
!7, !8, !9, !10, !11, !12, !13, !14, !15} and first, we randomly
generate 2 BBAs, denoted as 'Θ

1 (⋅) and 'Θ
2 (⋅), which can

be seen in Table I.

Table I: BBAs for Two Sources 'Θ
1 (⋅) and 'Θ

2 (⋅)

$1 $2 $3 $4 $5

%Θ
1 (⋅) 0.1331 0.0766 0.0175 0.0448 0.0229

%Θ
2 (⋅) 0.1020 0.0497 0.1094 0.0612 0.0612

$6 $7 $8 $9 $10

%Θ
1 (⋅) 0.1142 0.0023 0.2254 0.1583 3.4959e-04

%Θ
2 (⋅) 0.0069 0.0070 0.0128 0.0833 0.0338

$11 $12 $13 $14 $15

%Θ
1 (⋅) 0.0075 0.0514 0.1121 0.0314 0.0021

%Θ
2 (⋅) 0.1180 0.1202 0.1351 0.0686 0.0309

In order to fully verify the similarity between hierarchical
flexible coarsening method and PCR6 in DSmT, a new strict

14Similarity represents the approximate degree between fusion results using
flexible coarsening and PCR6.
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Figure 4: Structure of Hierarchical Flexible Coarsening.

distance metric between two BBAs, denoted =6*5 , was recently
proposed in [20], [16] and it will be used in this paper.

In this paper, we regard =6*5 as one criteria for evaluating
the degree of similarity between the fusion results obtained
from flexible coarsening and PCR6.

Based on (8) and (10), the disagreement vector D(⋅) is
obtained:

D(⋅) = (0.0032, 0.0020, 0.0290, 0.0092, 0.0147, 0.0228,

0.0059, 0.0537, 0.0154, 0.0131, 0.0338, 0.0235,

0.0118, 0.0145, 0.0120).

Thus, bintree structure of hierarchical flexible coarsening is
illustrated in Fig. 4 and the similarity between fusion results of
hierarchical flexible coarsening and PCR6 is 0.9783. And the
similarity between hierarchical coarsening method and PCR6
is 0.9120. In particular, terminal nodes (the red small box
in Fig. 4) of flexible grouping are not in accordance with the
original order !1, !2, ⋅ ⋅ ⋅ , !15. This is quite different compared
to original hierarchical coarsening method.

From the point of view of statistics, 100 BBAs are randomly
generated to be fused with three methods: hierarchical flexible
coarsening, hierarchical coarsening and also PCR6. Compar-
isons are made in Fig. 5, which show the superiority of our
new approach proposed in this paper (Average value of new
method is 97% and the old method is 93.5%).

B. Flexible Grouping of Conflicting Focal Elements

Assuming that there are five sources of evidence
'Θ

1 (⋅),'Θ
2 (⋅),'Θ

3 (⋅),'Θ
4 (⋅),'Θ

5 (⋅), and the restricted hype-
power set )Θ = {!1, !2, !3, !4, !5, !6, !7, !8, !9, !10, !1 ∩
!2, !5 ∩ !6 ∩ !7, !1 ∩ !5 ∩ !9 ∩ !10}. And then we randomly
generate 1000 BBAs for each source to calculate the similarity
using (10). From Fig. 6, we can find that hierarchical flexible
coarsening method can also maintain high degree of similarity
which performs better than hierarchical coarsening.
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Conflicting Focal Elements).

C. Flexible Grouping of Uncertain and Hybrid Focal Elements

We can also deal with uncertain and hybrid focal el-
ements. Assuming that there are also five sources of
evidence 'Θ

1 (⋅),'Θ
2 (⋅),'Θ

3 (⋅),'Θ
4 (⋅),'Θ

5 (⋅) and )Θ
1 =

{!1, !2, !3, !4, !5, !6, !7, !8, !9, !10, !1 ∪ !2, !5 ∪ !6 ∪ !7, !1 ∪
!5∪!9∪!10}; )Θ

2 = {!1, !2, !3, !4, !5, !6, !7, !8, !9, !10, !2∩
!4 ∪ !6, !1 ∪ !3 ∩ !5 ∪ !7 ∩ !9}15. And then we respectively
and randomly generate 1000 BBAs for these two cases )Θ

1

and )Θ
2 . Finally, we calculate the average similarity degree of

HFC and HC with PCR6 in Table II, which illustrates HFC
performs better than old method. However, there exist the extra
time cost of HFC compared to HC due to the clustering steps
in coarsening process.

Table II: Similarity Comparisons

Hierarchical Flexible Coarsening Hierarchical Coarsening

"Θ
1 98% 91%

"Θ
2 97% 93%

VI. CONCLUSION AND PERSPECTIVES

A novel hierarchical flexible approximate method in DSmT
is proposed here. Compared to original hierarchical coarsen-

15In this case, "Θ
1 represents uncertain focal elements and "Θ

2 represents
hybrid focal elements.

ing, flexible strategy guarantees higher similarity with PCR6
rules in fusion process. Besides, whether focal elements in
hyper power set are singletons, conflicting focal elements,
uncertain or even hybrid focal elements, the new method
works well. In the future work, we will focus on the general
framework of hierarchical coarsening, which could generate
final non-Bayesian BBAs in order to avoid loss of informa-
tion. Furthermore, other advantages or disadvantages of our
proposed methods such as computational efficiency and time
consumption need to be further investigated.
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Abstract—In many applications involving epistemic uncertain-
ties usually modeled by belief functions, it is often necessary
to approximate general (non-Bayesian) basic belief assignments
(BBAs) to subjective probabilities (called Bayesian BBAs). This
necessity occurs if one needs to embed the fusion result in
a system based on the probabilistic framework and Bayesian
inference (e.g. tracking systems), or if one needs to make a
decision in the decision making problems. In this paper, we
present a new fast combination method, called modified rigid
coarsening (MRC), to obtain the final Bayesian BBAs based on
hierarchical decomposition (coarsening) of the frame of discern-
ment. Regarding this method, focal elements with probabilities
are coarsened efficiently to reduce computational complexity in
the process of combination by using disagreement vector and a
simple dichotomous approach. In order to prove the practicality
of our approach, this new approach is applied to combine users’
soft preferences in recommender systems (RSs). Additionally, in
order to make a comprehensive performance comparison, the
proportional conflict redistribution rule #6 (PCR6) is regarded
as a baseline in a range of experiments. According to the
results of experiments, MRC is more effective in accuracy of
recommendations compared to original Rigid Coarsening (RC)
method and comparable in computational time.

Keywords: Recommender system, DSmT, PCR6.

I. INTRODUCTION

The theory of belief functions, known as Dempster-Shafer
Theory (DST) was developed by Shafer [1] in 1976 from
Dempster’s works [2]. Belief functions allow one to model
epistemic uncertainty [3] and they have been already used in
many applications since the 1990’s [4], mainly those relevant
to expert systems, decision-making support and information
fusion. To palliate some limitations (such as high computa-
tional complexity) of DST, Dezert and Smarandache proposed
an extended mathematical framework of belief functions with
new efficient quantitative and qualitative rules of combina-
tions, which was called DSmT (Dezert and Smarandache
Theory) in literature [5], [6] with applications listed in [7].
One of the major drawbacks of DST and DSmT is their high
computational complexities, on condition that the fusion space
(i.e. frame of discernment – FoD) and the number of sources
to combine are large. DSmT is more complex than DST, and
the Proportional Conflict Redistribution rule #6 (PCR6 rule)
becomes computationally intractable in the worst case as soon

as the cardinality of the Frame of Discernment (FoD) is greater
than six.

To reduce the computational cost of operations with belief
functions when the number of focal elements is very large,
several approaches have been proposed by different authors.
Basically, the existing approaches rely either on efficient im-
plementations of computations as proposed for instance in [8],
[9], or on approximation techniques of original Basic Belief
Assignment (BBA) to combine [10]–[14], or both. From a
fusion standpoint, two approaches are usually adopted: 1) one
can approximate at first each BBA in subjective probabilities
and use Bayes fusion rule to get the final Bayesian BBA [11],
[12], or 2) one can fuse all the BBAs with a fusion rule, typi-
cally Dempster-Shafer’s, or proportional conflict redistribution
rule #6 (PCR6) rules (which is very costly in computations),
and convert the combined BBA in a subjective probability
measure [10], [14]. The former method is the simplest method
but it generates a high loss of information included in the
original BBAs, whereas the latter method is intractable for
high dimension issues.

This paper presents a new combination method, called
modified rigid coarsening (MRC), to get the final Bayesian
BBAs based on hierarchical decomposition (coarsening) of the
frame of discernment, which can be seen as an intermediary
approach between the two aforementioned methods. This hier-
archical structure allows to encompass bintree decomposition
and mass of coarsening FoD on it. To prove the practicality
of our proposed method, MRC is applied to combine users’
preferences so as to provide the suitable recommendation for
RSs. This paper is an extended version of our preliminary work
on original rigid coarsening (RC) published in [15]. In this
paper, more detailed analyses of this new combination method
are provided. More importantly, this innovative method is also
applied into the real application. These are all added values
(contributions) of this paper.

The main contributions of this paper are:

1) the presentation of the FoD bintree decomposition on
which will be done the BBAs approximations;

2) user preferences in Recommender Systems (RSs) are
modeled by DSmT-Modeling Function.

Originally published as: Y. Dong, X. Li, Y. Liu, A Fast Combination Method in DSmT and its Application 
to Recommender System, PLoS ONE, Vol. 13(1): e0189703, 2018, and reprinted with permission.
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In order to measure the efficiency and effectiveness of the
MRC, it is integrated in the RSs based on DSmT and compared
to traditional methods in the experiments. The results show
that regarding the accuracy of recommendations, MRC is
extremely close to classical PCR6; and the computational time
of MRC can be obviously superior to that of PCR6.

The remainder of this paper is organized as follows. In
section II, we review relevant prior work on DST and DSmT
first. In section III, MRC is presented. In section IV, a
recommendation system based on DSmT, that employs MRC
to combine users’ preferences, is shown. In section V, we
evaluate our proposed algorithm based on two public datasets:
Movielens and Flixster. Finally, we conclude and discuss
future work.

II. MATHEMATICAL BACKGROUND

This section provides a brief reminder of the basics of
DST and DSmT, which is necessary for the presentation and
understanding of the more general MRC of Section III.

In DST framework, the frame of discernment1 Θ
∆
=

{θ1, ..., θn} (n ≥ 2) is a set of exhaustive and exclusive
elements (hypotheses) which represents the possible solutions
of the problem under consideration and thus Shafer’s model
assumes θi ∩ θj = ∅ for i ̸= j in {1, ..., n}. A basic belief
assignment (BBA) m(·) is defined by the mapping: 2Θ %→
[0, 1], verifying m(∅) = 0 and

∑
A∈2Θ m(A) = 1. In DSmT,

one can abandon Shafer’s model (if Shafer’s model doesn’t
fit with the problem) and refute the principle of the third
excluded middle. The third excluded middle principle assumes
the existence of the complement for any elements/propositions
belonging to the power set 2Θ. Instead of defining the BBAs

on the power set 2Θ
∆
= (Θ,∪) of the FoD, the BBAs

are defined on the so-called hyper-power set (or Dedekind’s

lattice) denoted DΘ ∆
= (Θ,∪,∩) whose cardinalities follows

Dedekind’s numbers sequence, see [6], Vol.1 for details and
examples. A (generalized) BBA, called a mass function, m(·)
is defined by the mapping: DΘ %→ [0, 1], verifying m(∅) = 0
and

∑
A∈DΘ m(A) = 1. The DSmT framework encompasses

DST framework because 2Θ ⊂ DΘ. In DSmT, we can take
into account also a set of integrity constraints on the FoD
(if known), by specifying all the pairs of elements which
are really disjoint. Stated otherwise, Shafer’s model is a
specific DSm model where all elements are deemed to be
disjoint. A ∈ DΘ is called a focal element of m(·) if
m(A) > 0. A BBA is called a Bayesian BBA if all of its
focal elements are singletons and Shafer’s model is assumed,
otherwise it is called non-Bayesian [1]. A full ignorance
source is represented by the vacuous BBA mv(Θ) = 1. The
belief (or credibility) and plausibility functions are respectively

defined by Bel(X)
∆
=

∑
Y ∈DΘ|Y⊆X m(Y ) and Pl(X)

∆
=

∑
Y ∈DΘ|Y ∩X=∅m(Y ). BI(X)

∆
= [Bel(X), P l(X)] is called

the belief interval of X . Its length U(X)
∆
= Pl(X)−Bel(X)

measures the degree of uncertainty of X .

1Here, we use the symbol
∆
= to mean equals by definition.

In 1976, Shafer did propose Dempster’s rule and we use
DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone
book [1]) to combine BBAs in DST framework. DS rule is
defined by mDS(∅) = 0 and ∀A ∈ 2Θ\{∅},

mDS(A) =

∑
B,C∈2Θ|B∩C=Am1(B)m2(C)

1−
∑

B,C∈2Θ|B∩C=∅m1(B)m2(C)
. (1)

The DS rule formula is commutative and associative and
can be easily extended to the fusion of S > 2 BBAs. Un-
fortunately, DS rule has been highly disputed during the
last decades by many authors because of its counter-intuitive
behavior in high or even low conflict situations, and that is
why many rules of combination were proposed in literature to
combine BBAs [16]. To palliate DS rule drawbacks, the very
interesting PCR6 was proposed in DSmT and it is usually
adopted (PCR6 rule coincides with PCR5 when combining
only two BBAs [6]) in recent applications of DSmT. The
fusion of two BBAs m1(·) and m2(·) by the PCR6 rule is
obtained by mPCR6(∅) = 0 and ∀A ∈ DΘ\{∅}

mPCR6(A) = m12(A)

+
∑

B∈DΘ\{A}|A∩B=∅

[
m1(A)

2m2(B)

m1(A) +m2(B)
+

m2(A)
2m1(B)

m2(A) +m1(B)
].

(2)

where m12(A) =
∑

B,C∈DΘ|B∩C=Am1(B)m2(C) is the
conjunctive operator, and each element A and B are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCR6 formula for combining more than two BBAs
altogether is given in [6], Vol. 3. We adopt the generic notation
mPCR6

12 (·) = PCR6(m1(·),m2(·)) to denote the fusion of
m1(·) and m2(·) by PCR6 rule. PCR6 is not associative
and PCR6 rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing DΘ by 2Θ in (2).

III. MODIFIED RIGID COARSENING FOR FUSION OF

BAYESIAN BBAS

Here, we introduce the principle of MRC of FoD to reduce
the computational complexity of PCR6 combination of orig-
inal Bayesian BBAs. Considering the case of non-Bayesian
BBAs, it requires decoupling all non-singletons in these BBAs
in advance. The fusion of original nonBayesian BBAs needs
to be decoupled by using DSmP in advance, which will be
explained in Section IV.

A. Rigid coarsening

This proposal was initially called rigid coarsening (RC) in
our previous works [17]–[19] and currently improved in our
recent work [15]. The goal of this coarsening is to replace
the original (refined) FoD Θ by a set of coarsened ones to
make computation of the PCR6 rule tractable. Because we
consider here only Bayesian BBA to combine, their focal
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elements are only singletons of the FoD Θ
∆
= {θ1, ..., θn},

with n ≥ 2, and we assume Shafer’s model of the FoD Θ.
A coarsening of the FoD Θ means to replace it with another
FoD less specific of smaller dimension Ω = {ω1, ...,ωk} with
k < n from the elements of Θ. This can be done in many
ways depending the problem under consideration. Generally,
the elements of Ω are singletons of Θ, and disjunctions
of elements of Θ. For example, if Θ = {θ1, θ2, θ3, θ4},
then a possible coarsened frame built from Θ could
be, for instance, Ω = {ω1 = θ1,ω2 = θ2,ω3 = θ3 ∪ θ4}, or
Ω = {ω1 = θ1 ∪ θ2,ω2 = θ3 ∪ θ4}, etc.

Definition 1: When dealing with Bayesian BBAs, the pro-

jection2 mΘ(·) of the original BBA mΘ(·) is simply obtained
by taking

mΩ(ωi) =
∑

θj∈ωi

mΘ(θj). (3)

The rigid coarsening process is a simple dichotomous
approach of coarsening obtained as follows:

• If n = |Θ| is an even number:
The disjunction of the n/2 first elements θ1 to θn

2
of Θ

define the element ω1 of Ω, and the last n/2 elements
θn

2
+1 to θn of Θ define the element ω2 of Ω, that is

Ω
∆
= {ω1 = θ1 ∪ ... ∪ θn

2
,ω2 = θn

2
+1 ∪ ... ∪ θn}

and based on (3), one has

mΩ(ω1) =
∑

j=1,...,n
2

mΘ(θj), (4)

mΩ(ω2) =
∑

j= n
2
+1,...,n

mΘ(θj). (5)

For example, if Θ = {θ1, θ2, θ3, θ4}, and one
considers the Bayesian BBA mΘ(θ1) = 0.1,
mΘ(θ2) = 0.2, mΘ(θ3) = 0.3 and mΘ(θ4) = 0.4,
then Ω = {ω1 = θ1 ∪ θ2,ω2 = θ3 ∪ θ4} and
mΩ(ω1) = 0.1 + 0.2 = 0.3 and mΩ(ω2) = 0.3 + 0.4 =
0.7.

• If n = |Θ| is an odd number:
In this case, the element ω1 of the coarsened frame Ω is
the disjunction of the3 [n/2+ 1] first elements of Θ, and
the element ω2 is the disjunction of other elements of Θ.
That is

Ω
∆
= {ω1 = θ1 ∪ ... ∪ θ[n

2
+1],ω2 = θ[n

2
+1]+1 ∪ ... ∪ θn}

and based on (3), one has

mΩ(ω1) =
∑

j=1,...,[n
2
+1]

mΘ(θj), (6)

2For clarity and convenience, we put explicitly as upper index the FoD for
which the belief mass refers.

3The notation [x] means the integer part of x first elements of Θ

mΩ(ω2) =
∑

j=[ n
2
+1]+1,...,n

mΘ(θj). (7)

For example, if Θ = {θ1, θ2, θ3, θ4, θ5}, and one con-
siders the Bayesian BBA mΘ(θ1) = 0.1, mΘ(θ2) = 0.2,
mΘ(θ3) = 0.3, mΘ(θ4) = 0.3 and mΘ(θ5) = 0.1, then
Ω = {ω1 = θ1 ∪ θ2 ∪ θ3,ω2 = θ4 ∪ θ5} and mΩ(ω1) =
0.1 + 0.2 + 0.3 = 0.6 and mΩ(ω2) = 0.3 + 0.1 = 0.4.

Of course, the same coarsening strategy applies to all
original BBAs mΘ

s = (·), s = 1, ..., S of the S > 1 sources
of evidence to work with less specific BBAs mΘ

s = (·),
s = 1, ..., S. The less specific BBAs (called coarsened BBAs
by abuse of language) can then be combined with the PCR6
rule of combination according to formula (2). This dichoto-
mous coarsening method is repeated iteratively l times as
schematically represented by a bintree. Here, we consider bin-
tree only for simplicity, which means that the coarsened frame
Ω consists of two elements only. Of course a similar method
can be used with tri-tree, quad-tree, etc. The last step of this
hierarchical process is to calculate the combined (Bayesian)
BBA of all focal elements according to the connection weights
of the bintree structure, where the number of layers l of
the tree depends on the cardinality |Θ| of the original FoD
Θ. Specifically, the mass of each focal element is updated
depending on the connection weights of link paths from root
to terminal nodes. This principle is illustrated in details in the
following example.

Example 1: Let’s consider Θ = {θ1, θ2, θ3, θ4, θ5}, and the
following three Bayesian BBAs can be seen in Table I:

Table I
THREE BAYESIAN BBAS FOR EXAMPLE 1.

Focal elements mΘ
1
(·) mΘ

2
(·) mΘ

3
(·)

θ1 0.1 0.4 0
θ2 0.2 0 0.1
θ3 0.3 0.1 0.5
θ4 0.3 0.1 0.4
θ5 0.1 0.4 0

The rigid coarsening and fusion of BBAs is deduced from
the following steps:

Step 1: We define the bintree structure based on iterative
half split of FoD as shown in Fig 1.

The connecting weights are denoted as λ1, ...,λ8. The
elements of the frames Ωl are defined as follows:

• At layer l = 1 : Ω1 = {ω1
∆
= θ1 ∪ θ2 ∪ θ3,ω2

∆
= θ4 ∪ θ5}

• At layer l = 2 : Ω2 = {ω11
∆
= θ1 ∪ θ2,ω12

∆
= θ3,ω21 =

θ4,ω22 = θ5}

• At layer l = 3 : Ω3 = {ω111
∆
= θ1,ω112

∆
= θ2}

Step 2: The BBAs of elements of the (sub-) frames Ol are
obtained as follows:

• At layer l = 1, we use Eqs (6) and (7) because |Θ| = 5
is an odd number. Therefore, we get the BBAs in Table
II:

• At layer l = 2: We work with the two subframes

Ω21
∆
= {ω11,ω12} and Ω22

∆
= {ω21,ω22} of Ω2 with the
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Figure 1. Fusion of Bayesian BBAs using bintree coarsening for Example 1.

Table II
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω1 FOR EXAMPLE 1.

Focal elements mΘ
1

= (·) mΘ
2

= (·) mΘ
3

= (·)

ω1
∆
= θ1 ∪ θ2 ∪ θ3 0.6 0.6 0.6

ω2
∆
= θ4 ∪ θ5 0.4 0.5 0.4

BBAs in Tables III and IV:

Table III
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω21 FOR EXAMPLE 1.

Focal elements m
Ω21

1
(·) m

Ω21

2
(·) m

Ω21

3
(·)

ω11
∆
= θ1 ∪ θ2

1

2

4

5

1

6

ω12
∆
= θ3

1

2

1

5

5

6

Table IV
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω22 FOR EXAMPLE 1.

Focal elements m
Ω22

1
(·) m

Ω22

2
(·) m

Ω22

3
(·)

ω21
∆
= θ4

3

4

1

5
1

ω22
∆
= θ5

1

4

4

5
0

These mass values are obtained by the proportional
redistribution of the mass of each focal element with
respect to the mass of its parent focal element in the
bin tree. For example, mΩ21

2 (ω11) = 4/5 is derived by
taking

mΩ21

2 (ω11) =
mΘ

2 (θ1) +mΘ
2 (θ2)

mΘ
2 (θ1) +mΘ

2 (θ2) +mΘ
2 (θ3)

=
0.4

0.5
=

4

5

Other masses of coarsening focal elements are computed
similarly using this proportional redistribution method.

• At layer l = 3: We use again the proportional redistribu-
tion method which gives us the BBAs of the sub-frames
Ω3 in Table V:

Table V
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω3 FOR EXAMPLE 1.

Focal elements m
Ω3

1
(·) m

Ω3

2
(·) m

Ω3

3
(·)

ω111
∆
= θ1

1

3
1 0

ω112
∆
= θ2

2

3
0 1

Step 3: The connection weights λi are computed from
the assignments of coarsening ments. In each layer l, we
fuse sequentially the three BBAs using PCR6 formula (2).
Because PCR6 fusion is not associative, we should apply
the general PCR6 formula to get best results. Here we use
sequential fusion to reduce the computational complexity
even if the fusion result is approximate. More precisely, we
compute at first mPCR6,Ωl

12 (·) = PCR6(mΩl

1 (·),mΩl

2 (·)) and

mPCR6,Ωl

(12)3 (·) = PCR6(mΩl

12(·),m
Ωl

3 (·)). Hence, we obtain
the following connecting weights in the bintree:

• At layer l = 1:

λ1 = mPCR6,Ω1

(12)3 (ω1) = 0.6297

λ2 = mPCR6,Ω1

(12)3 (ω2) = 0.3703

• At layer l = 2:

λ3 = mPCR6,Ω21

(12)3 (ω11) = 0.4137

λ4 = mPCR6,Ω21

(12)3 (ω12) = 0.5863

λ5 = mPCR6,Ω22

(12)3 (ω21) = 0.8121

λ6 = mPCR6,Ω22

(12)3 (ω22) = 0.1879

• At layer l = 3:

λ7 = mPCR6,Ω3

(12)3 (ω111) = 0.3103

λ8 = mPCR6,Ω3

(12)3 (ω112) = 0.6897

Step 4: The final assignments of elements in original FoD Θ
are calculated using the product of the connection weights of
link paths from root (top) node to terminal nodes (leaves). We
eventually get the combined and normalized Bayesian BBA:

mΘ(θ1) = λ1 · λ3 · λ7 = 0.6297 · 0.4137 · 0.3103 = 0.0808

mΘ(θ2) = λ1 · λ3 · λ8 = 0.6297 · 0.4137 · 0.6897 = 0.1797

mΘ(θ3) = λ1 · λ4 = 0.6297 · 5863 = 0.3692

mΘ(θ4) = λ2 · λ5 = 0.3703 · 0.8121 = 0.3007

mΘ(θ5) = λ1 · λ6 = 0.3703 · 0.1879 = 0.0696
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B. Modified rigid coarsening

One of the issues with RC described in the previous section
is that no extra self-information of focal elements is embedded

into the coarsening process. In this paper, the elements θi
selected to belong to the same group are determined using
the consensus information drawn from the BBAs provided by
the sources. Specifically, the degrees of disagreement between
the provided sources on decisions (θ1, θ2, ..., θn) are first
calculated using the belief-interval based distance dBI [20]
to obtain disagreement vector. And then all focal elements
in FoD are sorted in an ascending order. Finally, the simple
dichotomous approach is utilized to hierarchical coarsen those
Re-sorted focal elements.

Calculating the disagreement vector. Let us consider
several BBAs mΘ

s (·),(s = 1, ..., S) defined on same FoD Θ
of cardinality |Θ| = n. The specific BBAs mθi(·), i = 1, ..., n
entirely focused on θi are defined by mθi(θi) = 1, and for
X ̸= θi mθi(X) = 0.

Definition 2: The disagreement of opinions of two sources
about θi is defined as the L1-distance between the dBI

distances of the BBAs mΘ
s (·), s = 1, 2 to mθi(·), which is

expressed by

D12(θi)
∆
= |dBI(m

Θ
1 (·),mθi(·))− dBI(m

Θ
2 (·),mθi(·))|. (8)

Definition 3: The disagreement of opinions of S ≥ 3
sources about θi, is defined as

D1−S(θi)
∆
=

1

2

S∑

i=1

S∑

j=1

|dBI(m
Θ
i (·),mθi(·))

− dBI(m
Θ
j (·),mθi(·))|. (9)

where dBI distance is defined by [20]. For simplicity,

we assume Shafer’s model so that |2Θ| = 2n, otherwise the

number of elements in the summation of (10) should be
|DΘ|− 1 with another normalization constant nc.

dEBI(m1,m2)
∆
=

√√√√nc ·
2n−1∑

i=1

[dI(BI1(θi), BI2(θi))]
2. (10)

Here, nc = 1/2n−1 is the normalization constant and
dI([a, b], [c, d]) is the Wasserstein’s distance defined by

dI([a, b], [c, d]) =
√

[a+b
2 − c+d

2 ]
2
+ 1

3 [
b−a
2 − d−c

2 ]
2
, and

BI(θi) = [Bel(θi), P l(θi)].
The disagreement vector D1−S if defined by

D1−S
∆
= [D1−S(θ1), ..., D1−S(θn)]. (11)

Modified rigid coarsening by using the disagreement vec-
tor. Once D1−S is derived, all focal elements {θ1, θ2, ..., θn}
are sorted according to their corresponding values in D1−S .

Let us revisit example 1 presented in the previous sub-
section. It can be verified in applying formula (9) that the
disagreement vector D1−3 for this example is equal to

D1−3 = [0.4085, 0.2156, 0.3753, 0.2507, 0.4086]

.
The derivation of D1−3(θ1) is given below for convenience:

D1−3 = |dBI(mΘ
1 (·),mθ1(θ1))− dBI(mΘ

2 (·),mθ1(θ1))|
+|dBI(mΘ

2 (·),mθ1(θ1))− dBI(mΘ
3 (·),mθ1(θ1))|

+|dBI(mΘ
1 (·),mθ1(θ1))− dBI(mΘ

3 (·),mθ1(θ1))|
= 0.4085.

Based on the disagreement vector, a new bintree structure
is obtained and shown in Fig 2.

Figure 2. Fusion of Bayesian BBAs using MRC for Example 1.

Compared with Fig 1, the elements in FoD Θ are grouped
more reasonably. In vector D1−3, θ1 and θ5 lie in similar
degree of disagreement so that they are put in the same group.
Similarly for θ2 and θ4. However, element θ3 seems weird,
which is put alone in the process of coarsening. Once this
new bintree decomposition is obtained, other steps can be
implemented which are identical to rigid coarsening in section
to get the final combined BBA.

Step 1: According to Fig 2, the elements of the frames Ωl

are defined as follows:

• At layer l = 1:

Ω1 = {ω1
∆
= θ2 ∪ θ4 ∪ θ3,ω2

∆
= θ1 ∪ θ5}.

• At layer l = 2:

Ω2 = {ω11
∆
= θ2 ∪ θ4,ω12

∆
= θ3,ω21

∆
= θ1,ω22

∆
= θ5}.

• At layer l = 3:

Ω3 = {ω111
∆
= θ2,ω112

∆
= θ4}.

Step 2: The BBAs of elements of the (sub-) frames Ωl are
obtained as follows:

• At layer l = 1, we use (6) and (7) and we get Table VI
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Table VI
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω1 USING MRC FOR

EXAMPLE 1.

Focal elements m
Ω1

1
(·) m

Ω1

2
(·) m

Ω1

3
(·)

ω1
∆
= θ2 ∪ θ4 ∪ θ3 0.8 0.2 1.0

ω2
∆
= θ1 ∪ θ5 0.2 0.8 0.0

• At layer l = 2, We use again the proportional redis-
tribution method which gives us Tables VII and VIII.
Here, masses of ω21,ω22 in mΩ22

3 (·) are not considered
because the mass of their parent focal element (mΩ1

3 (ω2))
in bintree is 0.

Table VII
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω21 USING MRC FOR

EXAMPLE 1.

Focal elements m
Ω21

1
(·) m

Ω21

2
(·) m

Ω21

3
(·)

ω11
∆
= θ2 ∪ θ4

5

8

1

2

1

2

ω12
∆
= θ3

3

8

1

2

1

2

Table VIII
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω22 USING MRC FOR

EXAMPLE 1.

Focal elements m
Ω22

1
(·) m

Ω22

2
(·) m

Ω22

3
(·)

ω21
∆
= θ1

1

2

1

2
-

ω22
∆
= θ5

1

2

1

2
-

• At layer l = 3, We work with the two subframes of Ω3,

that is Ω3
∆
= {ω111,ω112}, with the BBAs in Table IX.

Table IX
THE BBAS OF ELEMENTS OF THE SUB-FRAMES Ω3 USING MRC FOR

EXAMPLE 1.

Focal elements m
Ω3

1
(·) m

Ω3

2
(·) m

Ω3

3
(·)

ω111
∆
= θ2

2

5
0.0 1

5

ω112
∆
= θ4

3

5
1.0 4

5

Step 3: The connection weights λi are computed from the
assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

• At layer l = 1: λ1 = 0.8333, and λ2 = 0.1667.
• At layer l = 2: λ3 = 0.5697, λ4 = 0.4303, λ5 = 0.5000,

and λ6 = 0.5000.
• At layer l = 3: λ7 = 0.0669, and λ8 = 0.9331.

Step 4: We finally get the following combined and normal-
ized Bayesian BBA

mΘ(·) = {0.0833, 0.0318, 0.3586, 0.4430, 0.0834}.

C. Summary of the proposed method

The fusion method of BBAs to get a combined Bayesian
BBA based on hierarchical decomposition of the FoD consists
of several steps (Algorithm 1) illustrated in Fig 3.

Algorithm 1: Modified Rigid Coarsening Method

Input : All original BBAs
mΘ

1 (·), · · ·,m
Θ
s (·), s = 1, 2, · · ·, s

Output: The final combined BBA mΘ(·)
1 if Compound focal elements in

Θ : θi ∪ θj ̸= ∅ or θi ∩ θj ̸= ∅ then
2 Probabilistic transformation:

DSmP (mΘ
1 (·)), DSmP (mΘ

2 (·)), . . . , DSmP (mΘ
s (·))

3 end
4 for i ≤ n do
5 for s ≤ S do

6 Calculate D1−S(θi)
∆
=

1
2

∑S
i=1

∑S
j=1 |dBI(mΘ

i (·),mθi(·))− dBI(mΘ
j (·),mθi(·))|

7 end
8 end
9 for i ≤ n do

10 Sorting D1−S(θi) in an ascending order.
11 end
12 while |Θ| ≥ 2 do
13 if n is an even number then
14 mΩl(ω1) =

∑
j=1,...,n

2

mΘ(θj);

15 mΩl(ω2) =
∑

j= n
2
+1,...,nm

Θ(θj);

16 else
17 mΩl(ω1) =

∑
j=1,...,[n

2
+1] m

Θ(θj);

18 mΩl(ω2) =
∑

j=[n
2
+1]+1,...,nm

Θ(θj);

19 end
20 Then connection weights λ is calculated:

PCR6(mΩ(ω1),mΩ(ω2))
21 end
22 foreach focal element θi, i ∈ 1, ..., n do
23 mΘ(θi) equals to the product of path link weights

from root to terminal nodes.
24 end

Figure 3. Modified rigid coarsening of FoD for fusion.
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It is worth noting that when the given BBAs are not
Bayesian, the first step is to use the existing Probabilistic
Transformation (PT) to transform them to Bayesian BBAs.
In order to use the proposed combination method in the RSs,
modified rigid coarsening is mathematically denoted as ⊕ in
the following sections.

D. Simulation considering accuracy and computational effi-
ciency

• Accuracy:
Assuming that the FoD is

Θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11,

θ12, θ13, θ14, θ15, θ16, θ17, θ18, θ19, θ20}

then 1000 BBAs are randomly generated to be fused
with three methods: modified rigid coarsening, rigid
coarsening and also PCR6. And then distances of fusion
results are computed using dBI between two pairs: mod-
ified rigid coarsening and PCR6; rigid coarsening and
PCR6. Comparisons are made in Fig 4, which show the
superiority of our new approach proposed in this paper
(The average value of the approximation of modified
rigid coarsening is 97.5% and original rigid coarsening
is 94.5%). Here, similarity represents the approximate
degree between fusion results using hierarchical approx-
imate method (both rigid and modified rigid coarsening)
and PCR6.

Figure 4. Accuracy comparisons between MRC and PCR6 (Only Singletons).

• Computational efficiency:
As we mentioned before, another advantage of the hi-
erarchical combination method is the computational ef-
ficiency. Here, two experiments are conducted (All ex-
periments are implemented on a PC with I3 CPU, Inte-

grated graphics chipsets and 4G DDR): 1) the number
of singletons is unchanged while the number of BBAs
to be fused is increasing; 2) the number of BBAs is
unchanged while the number of singletons in FoD is
increasing. The results are illustrated in Fig 5 and 6. From
experiment 1, all these three methods (classical PCR6,
rigid coarsening and also modified rigid coarsening) cal-
culate quickly (less than 1.2s) even the number of BBAs

increases from 100 to 1000. However, such situation
deteriorates when the number of focal elements increases.
In Fig 6, when the number of focal elements increases to
500, time consumption of three combinations is: PCR6:
20.6857s; modified rigid coarsening: 7.3320s; rigid coars-
ening: 5.9748s. This phenomenon also proves that it is
reasonable to map original FoD to the coarsening FoD,
with the aim of reducing the number of focal elements at
the time of fusion. But in any case, computing efficiency
of rigid coarsening or modified rigid coarsening is still
better than PCR6. On the other hand, modified rigid
coarsening makes a significant improvement (accuracy)
at the expense of parts of the computational efficiency.

Figure 5. Efficiency comparisons between MRC, RC and PCR6 (With the
number of BBAs increasing).

Figure 6. Efficiency comparisons between MRC, RC and PCR6 (With the
number of focal elements increasing).
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IV. A RECOMMENDER SYSTEM INTEGRATING WITH

HIERARCHICAL COARSENING COMBINATION METHOD

In today’s e-commerce, online providers often recommend
proper goods or services to each consumer based on their
personal opinions or preferences [21], [22]. However, it is
a tough task to provide appropriate recommendation which
may confront several difficulties. One difficulty is that users’
preferences are usually characterized as uncertain, imprecise
or incomplete [23], [24], which cannot be used directly in
RSs. Besides, it is easy to understand that when the more
information about user preferences are, the more accurate
prediction of RSs will be [25], [26]. But, the problem is that
which method we adopt to integrate multi-source uncertain
information?

As a general framework for information fusion, DST can not
only model uncertain information, but also provide an efficient
way to combine multi-source information. These mentioned
features make this theory a wide range of applications [27]–
[29], especially in RSs [23], [25], [30]–[32]. According to
DST, users’ comments on products in RSs are described by
using mass functions and rules of combination method are
used frequently in order to provide appropriate recommenda-
tion.

As mentioned in previous sections, both the performances
of combination rules in DST or in DSmT suffer from computa-
tional complex which is obviously ignored in [23], [25]. Thus,
in this paper, modified rigid coarsening method is applicable to
combine the imprecise users’ preferences in RSs. First, we are
required to introduce the relevant knowledge of RSs. Actually,
almost all characteristics of RSs have been introduced in [23],
[25], [30]–[32].

First, we give the corresponding representation of the math-
ematical notation in RSs based on DSmT. RSs usually contain
two objects: Users, Items. A set of M users and a set containing
N items is respectively denoted by U = {U1, U2, ..., UM} and
I = {I1, I2, ..., IN}, Besides, we assume that users can give
the corresponding ratings to the items, which include L rating
levels (Θ = {θ1, θ2, ..., θL}). Here, L preference levels means
multi-level evaluation results. For example, four-levels of user
evaluation on the product are Excellent, Good, Fair, Poor..
ri,k means a rating of user Ui on item Ik and a rating matrix
R = ri,k comprises all the ratings of users on items. It should
be noted that ri,k is originally modeled as a mass function
mi,k : DΘ → [0, 1]. Additionally, let IR

i and UR
k denote the

set of items rated by user Ui and the set of users having rated
item Ik, respectively.

Contextual information can often be summarized into sev-
eral genres that significantly affect user’s rating of items. Nor-
mally, we represent contextual information by a set containing
P genres, denoted by S = {S1, S2, ..., SP }. And each genre
Sp, with 1 ≤ p ≤ P contains at most Q groups, denoted by
Sp = {gp,1, gp,2, ..., gp,q, ..., gp,Q}, 1 ≤ q ≤ Q. For a genre
Sp ∈ S, a user Ui ∈ U can be interested in several groups
and also an item Ii ∈ I can belong to one or some groups of
this genre, which can be seen in Fig 7.

Figure 7. Contextual information.

Definition 4: In order to facilitate such expression, two

functions κ(·) and ϕ(·) are defined to determine the groups in

which user Ui is interested and the groups to which item Ik
belongs, respectively:

κp : Ui %→ κp(Ui) ⊆ Sp (12)

ϕp : Ik %→ ϕp(Ik) ⊆ Sp (13)

Generally, the main steps of a recommendation system is
illustrated in Fig 8.

Figure 8. General process of recommendations.

The functional blocks of Fig. 8 are as follows:

1) DSmT-Modeling Function
Regarding the DS-partial probability models proposed in
[23], the existing ratings ri,k , of user Ui on item Ik , are
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modeled by DSmT-modeling function M(·) in order to
transform such hard ratings into the corresponding soft
ratings represented as mi,k as below:
Definition 5:

mi,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αi,k(1− σi,k), for A = θl;
1
2αi,kσi,k, for A = B;
1
2αi,kσi,k, for A = C;
1− αi,k, for A = Θ;

0, otherwise.

(14)

with

B =

⎧
⎨

⎩

θ1 ∪ θ2, if l = 1;
θL−1 ∪ θL, if l = L;

θl−1 ∪ θl ∪ θl+1, otherwise.

C =

⎧
⎨

⎩

θ1 ∪ θ2, if l = 1;
θL−1 ∪ θL, if l = L;

(θl−1 ∩ θl, θl ∩ θl+1), otherwise.

where αi,l ∈ [0, 1] and σi,k are a trust factor and a
dispersion factor, respectively [23].

Referring to the partial probability model analysis in
[23], we also give the corresponding user profiles which
can be seen in Fig 9.

Figure 9. DSmT modeling function.

Compared to [23], the difference is that we not only
consider the union n (black and gray rectangle), but
also consider the intersection (red rectangle) of the hard
ratings, which is also the distinction between DS theory
and DSmT theory.
Lemma 1: Referring to Definition 5, we can also
generate the relative refined BBA in the framework of
DS theory:

mRefined
i,k =

⎧
⎪⎪⎨

⎪⎪⎩

αi,k(1− σi,k), for A = θl;
αi,kσi,k, for A = B;
1− αi,k, for A = Θ;

0, otherwise.

(15)

with

B =

⎧
⎨

⎩

θ1 ∪ θ2, if l = 1;
θL−1 ∪ θL, if l = L;

θl−1 ∪ θl ∪ θl+1, otherwise.

where αi,k ∈ [0, 1] and σi,k are a trust factor and a
dispersion factor, respectively [23].

After soft ratings are generated, DSmP [33] is applied
to decouple non-Bayesian mi,k, since the hierarchical
fusion algorithm is currently just available for Bayesian
BBAs.

Definition 6: DSmP is a new generalized pignistic

transformation defined by DSmPε(∅) = 0 and for any

singleton θi ∈ Θ by

DSmPε(θi)
∆
= m(θi) + (m(θi) + ε)×

∑

A∈2Θ,θN⊂A,|A|≥2

m(A)∑
B∈2Θ,B⊂A,|B|=1m(B) + ε · |A|

.

(16)

As shown in [33], DSmP makes a remarkable improve-
ment compared with BetP and CuzzP, since a more
judicious redistribution of the ignorance masses to the
singletons has been adopted by DSmP. ε is a small
positive number, typically ε = 0.001.

2) Predicting unrated items:
Assuming that users who are keen on the similar groups
tend to have common preferences. In this RS, it is
necessary to predict the unrated items first. Considering
a group gp,q ∈ Sp with gp,q ∈ ϕ(Ik), every soft rating,
mi,k, of user Ui, who is keen on group gp,q, on item Ik
is regarded as a block of common preference for group
gp,q. Thus, Gmp,q,k

: DΘ → [0, 1] which represents all
users’ group preferences on item Ik regarding group
gp,q, is computed as follows

Gmp,q,k
= ⊕

{j|Ik∈IR
j ,gp,q∈κp(Uj),gp,q∈ϕp(Ik)}

mj,k. (17)

Supposing that item Ik has not been rated by user Ui,
it usually contains three steps to generate unprovided
rating ri,k of user Ui which are shown as below

• Step one: Considering a concept Sp, for each group
gp,q ∈ κp(Ui)∩ϕp(Ik), it is assumed that all users’
group preferences on item Ik k regarding group gp,q
imply common preference of Ui on Ik regarding
group gp,q . Furthermore, this group preference is
regarded as a piece of user Ui’s concept preference
on item Ik regarding concept Sp. Therefore, concept
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preference of user Ui on item Ik regarding concept
Sp, denoted by mass function Smp,q,k

: DΘ →
[0, 1], can be computed as below

Smp,q,k
= ⊕

{q|gp,q∈κp(Uj),gp,q∈ϕp(Ik)}
Gmp,q,k

. (18)

• Step two: If there exists at least one common group
in concept Sp which item Ik belongs to and also
user Ui is interested in, then Ui’s concept preference
on item Ik regarding concept Sp p is regarded as
a piece of context preference. Therefore, this user’s
contextual preference on item Ik, denoted by mass
function Smi,k

: DΘ → [0, 1], is achieved as follows

Smi,k
= ⊕

p=1,...,P
Smp,i,k

. (19)

• Step three: Context preference of Ui on item Ik is
assigned to unprovided rating mi,k as below

mi,k = Smi,k
. (20)

So far, all unprovided ratings are predicted in this
RS. Subsequently, user-user similarities are com-
puted depending on both provided and predicted
ratings in the following steps.

3) Computing user-user similarities:
Here, we use the distance measure proposed in [34] to
calculate distances between two users Ui and Uj with
i ̸= j, which is defined as below

D(Ui, Uj) =
N∑

k=1

(lnmax
θ∈Θ

mj,k(θ)

mi,k(θ)
− lnmin

θ∈Θ

mj,k(θ)

mi,k(θ)
),

(21)
where mi,k and mj,k are the soft ratings of user Ui and
user Uj on item Ik respectively. Afterwards, the degree
of similarity between Ui and Uj , denoted by si,j , is
calculated as follows

si,j = e−γ×D(Ui,Uj),where γ ∈ (0,∞). (22)

Obviously, if the value of si,j is high, it means the
user Ui and user Uj are very close, and vice versa.
Eventually, a mathematical matrix S = {si,j|Ui, Uj ∈
U , i ̸= j} is employed to represent the similarities
among all users.

4) Selecting neighbors based on user-user similarities:
Taking into account an active user Ui, for each unrated
item Ik by user Ui, a set containing K nearest neighbor-
hoods, denoted by ℜi,k, is chosen by using the method
proposed in [35]. Two simple steps of this method are
shown below

• Step one: the process of such selection depends on
two criteria: 1. Those users who rated Ik and 2. The
corresponding user-user similarities with user Ui are
equal or greater than the threshold τ . ℜi,k denotes
the selected set, which is acquired as follows:

ℜi,k = {Uj ∈ U |Ik ∈ I
R
j , si,j ≥ τ}. (23)

• Step two: all of members in ℜi,k is descending
sorted by si,j and top K members are selected as
the neighborhood set ℜi,k.

5) Estimating ratings according to neighborhoods:
Supposing that item Ik has not been rated by user Ui.
The predicted rating of Ui on item Ik is denoted as
m̂i,k. Thus, m̂i,k is calculated according to the ratings
of user Ui’s nearest users. Mathematically, m̂i,k is given
as below

m̂i,k = mi,k ⊕ m̃i,k, (24)

where m̃i,k is the mass regarding the neighborhoods’
whole preference in the set Eq (23) on item Ik . Con-
sidering user Ui ∈ ℜi,k, and supposing that si,j is
the similarity between user Ui and user Uj . We use a
discount rate 1 − si,j to discount the rating of user Uj

on item Ik.
Therefore, m̃i,k is:

m̃i,k = ⊕
{j|Uj∈ℜi,k}

ṁ
si,j
j,k , (25)

where

ṁ
si,j
j,k =

{
si,j ×mj,k(A), for A ⊂ Θ;

si,j ×mj,k(Θ) + (1− si,j), for A = Θ.

6) Generating recommendations:
In order to generate appropriate recommendations for
the candidate user Ui, predicted ratings of Ui on all un-
provided items are sorted, and then based on the sorted
list, the appropriate recommendations are generated.

V. EXPERIMENTS

To evaluate the performance of modified rigid coarsening in
precision of recommendation and computational time, original
rigid coarsening method and also classical PCR6 combination
method are selected to be regarded as baselines. Besides, we
use DS-MAE [23] to measure the precision of recommenda-
tions.

Definition 7: DS-MAE is mathematically given as follows

DS −MAE(θj) =
1

|Dj |

∑

(i,k)∈Dj ,θl∈Θ

|m̂i,k(θj)−M(θj)|,

(26)
where Dj is the testing set identifying the user-item pairs
whose true rating is θj ∈ Θ.

Those specific users’ interested information about genres is
unknown. Thus, we define a rule that if a user has rated an
item then this user is interested in all genres to which the item
belongs.

1) Experiment One:

Movielens4 is a movie recommendation dataset widely
used for benchmarking process. There are nearly
100,000 hard ratings on 19 different types of movies

4http://grouplens.org/datasets/movielens
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(Action, Comedy, and so on). The domain of such
rating given in Movielens includes 5 levels, denoted
as Θ = {1, 2, 3, 4, 5}. At the same time, each user is
required to evaluate at least 20 movies, so as to ensure
adequate rating information. The relevant parameters
used in RSs are set: γ = 10−4 and ∀(i, k){αi,k,σi,k} =
{0.9, 2/3}. However, Setting parameter τ to be a fixed
value is obviously unreasonable because the similarity
between two users is quite different when using different
combination methods. Hence, in this paper, the value
of parameter τ will not be set in advance. Instead,
it is determined based on the similarity in matrix S.
Specifically, the highest value of top 30% in S is selected
for τ .

Additionally, we adopt the robust strategy of 10-fold
cross validation to conduct experiments, which is
widely applied in experimental verification. Specific
steps are as follows: original ratings in Movielens are
first randomly divided into 10-folds and the experiments
are thus carried out 10 times: in each sub-experiment,
nine tenths of the ratings are chosen as training data and
the remaining ratings are regarded as testing data. It’s
worth noting that all results illustrated in the following
experiments are the average values of 10 times.

The figure 10 demonstrates the values of overall DS-
MAE varying with changing neighborhood size K. And
the smaller values of DS-MAE indicate the better ones.
As can be seen in Fig 10, with K ≤ 70 performances
of the three methods increase sharply as well as being
the same as each other. With K ≥ 70, performances
of both methods become stable. Especially, performance
of modified rigid coarsening method is very close to
classical PCR6 rules. However, original rigid coarsening
is slightly worse than the other two algorithms.

Figure 10. Overall DS-MAE between three combination methods. (Movie-
lens).

The figure 11 depicts the computational time varying
with changing neighborhood size K. In this figure, the
time taken by hierarchical coarsening combination meth-
ods (both rigid coarsen ing and modified rigid coarsen-
ing method) is quite faster compared to classical PCR6.
Besides, modified rigid coarsening is relatively slower
than original rigid coarsening. All these results illustrate
that modified rigid coarsening method sacrifices some of
the computational efficiency, in exchange for upgrading
the accuracy of approximation.

Figure 11. Overall computational time between three combination methods.
(Movielens).

2) Experiment Two:

Flixster5 is a classical recommendation dataset which
nearly contains 535013 hard ratings on 19 different types
of movies (Drama, Comedy, and so on). The domain of
such rating given in Flixster includes 10 levels, denoted
as Θ = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.
At the same time, each user is required to evaluate
at least 15 movies, so as to ensure adequate rating
information. The relevant parameters used in RSs are
set: γ = 10−4 and ∀(i, k){αi,k,σi,k} = {0.9, 2/3}.
However, Setting parameter τ to be a fixed value is
obviously unreasonable because the similarity between
two users is quite different when using different
combination methods. Hence, in this paper, the value
of parameter τ will not be set in advance. Instead,
it is determined based on the similarity in matrix S.
Specifically, the highest value of top 50% in S is
selected for τ .

The figure 12 demonstrates the values of overall DS-
MAE varying with changing neighborhood size K . And
the smaller values of DS-MAE indicate the better ones.
As can be seen in Fig 12 we can get a similar result
to the previous data set(Movielens). Especially, perfor-

5http://datasets.syr.edu/datasets/Flixster.html
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mance of modified rigid coarsening method is in the
middle of the comparison methods. However, original
rigid coarsening is worse than the other two algorithms.

Figure 12. Overall DS-MAE between three combination method. (Flixster).

The figure 13 depicts the computational time varying
with changing neighborhood size K . From this figure,
we can also get the same conclusion that the time taken
by hierarchical coarsening combination methods (both
rigid coarsening and modified rigid coarsening method)
is quite faster compared to classical PCR6.

Figure 13. Overall computational time between three combination methods.
(Flixster).

VI. CONCLUSION

In this paper, we propose a new combination method,
called modified rigid coarsening method. This new method
can map the original refined FoD to the new coarsening FoD
in the process of combination. Compared to traditional fusion
method PCR6 in DSmT, this approach can not only reduce
computational complexity, but also ensure high approximation
accuracy. Besides, in order to verify the practicality of our

approach, we apply this approach to fuse soft ratings in RSs.
To be specific, user preferences are first transformed by DSmT-
partial probability model to accurately represent uncertain
information. Then, information about user preferences from
different sources can be easily combined. In the future work,
more helpful information will be mined to discern focal ele-
ment in FoD so as to improve the accuracy of approximation
and more data sets will be applied.
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Abstract—To prevent disastrous consequences imputed to levee
breakage, assessment methodologies have to be improved. Geo-
physical and geotechnical investigation methods are usually used
to make such assessments. However, the effective combination
of these two specific types of data remains a challenge. We
propose the fusion of geophysical and geotechnical data by means
of Belief Functions. Here we demonstrate our approach on a
synthetic case study including geophysical (electrical resistivity)
and geotechnical (cone-bearing) data and by implementing Smets
and PCR5 normalization rules. This new data combination
approach allows the characterization of horizontal interfaces and
of a geological structure initially hidden by the effects of a highly
conductive body.

Keywords: data fusion, belief functions, geophysical data,
geotechnical data, experimental test bench, electrical resistivity
tomography.

I. INTRODUCTION

Fluvial levees are elevated partitions between channels and
floodplains [1], built for flood protection. These structures are
considered as hazardous and may fail, leading to disastrous
consequences such as human and material loss and economic
disasters. Levee assessment acknowledged methodologies usu-
ally include geotechnical and geophysical investigation meth-
ods [2]. While geotechnical investigation methods are intru-
sive, they provide quite accurate and punctual information.
Conversely, geophysical methods are non-intrusive and pro-
vide physical information on large volumes of subsoil with
high output (according to the chosen method and acquisition
mode) and potentially significant uncertainties. These associ-
ated uncertainties can particularly be attributed to the indirect
and integrating nature of the methods as well as to the non-
uniqueness of inverse problems solution. One of the important
issues when assessing levees is the combination of geotechni-
cal and geophysical data [3]. Furthermore, one should take into
consideration their respective imprecisions, uncertainties and
contrasting spatial distributions. We suggest the use of Belief
Functions (BFs) and combination rules to merge geotechnical
(cone bearing) and geophysical (electrical resistivity) data. Our
data fusion methodology is being optimized and tested on both

real and synthetic data. In this paper, we aim to demonstrate
the potential of this methodology by means of a synthetic
study that exemplifies a simplified levee case study. Indeed, we
show the ability of combined geotechnical (cone bearing) and
geophysical (electrical resistivity) data to discriminate three
type of geological materials in the presence of a conductive
anomaly, which has a significant bias effect on the geophysical
data. The reader can refer to the theoretical basis of BFs,
introduced by Shafer [4]. The use of BFs needs: (1) to select
a common frame of discernment (FoD) of the considered
problem, (2) to determine the masses of belief or Basic Belief
Assignments (BBAs) from available data (geotechnical and
geophysical), and (3) to choose a rule of combination.

II. FOD AND B BAS CONS TRUCTION

For the addressed levee assessment issue, we consider three
classes of distinct materials θ1, θ2 and θ3. Since the FoD, Θ,
must consist of a set of exclusive and exhaustive hypotheses,
we will be using a fourth class θ4 to cover the physical
characteristics of materials not included in the three first sets.
Thus we use Θ = {θ1, θ2, θ3, θ4}. The construction of the
BBAs for each data source consists in assigning each data
type (geophysical and geotechnical) to Θ.

III. CONS TRUCTION FROM GEOPHY S ICAL DATA -
EL ECTRICAL RES IS TIVITY VAL UES

Since electrical resistivity (ER) tomography is one of
the most widely used methods for levee investigation, we
propose the use of ER as geophysical data. As a frame-
work to exemplify a fluvial levee problematic we consider
two soil layers: an upper resistive layer (103 Ω.m) stand-
ing for sands [5] and a subjacent and more conductive
one (10 Ω.m) standing for a clayey layer starting at 6 m
depth. An inhomogeneity (102 Ω.m) standing for a silty
lens of about 1.3 m high and 40.5 m wide is positioned
at 7 m depth (Figure 1.a). We then associate ER classes
of specific soils (split into ranges of ER in Ω.m) to Θ
so that: θ1 = [5, 20], θ2 = [50, 2 · 102], θ3 = [5 · 102, 2 · 103]
and θ4 = [0.2, 5[∪]20, 50[∪]2 · 102, 5 · 102[∪]2 · 103, 5 · 103].
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We finally place a very small (0.5× 0.5m) and highly conduc-
tive body (10−6 Ω.m) centered at 1.35 m depth (represented
in green in Figure 1.a), that could be considered as a metallic
pipe. Even though this body is small in the XY plane, it might
have an elongated shape in the Z direction. We use Res2Dmod
free software [6] to simulate noiseless data acquisition from
the chosen resistivity model (Figure 1.a) and then use the
Res2Dinv software (ver. 3.71.118) [7] to get the inverted ER
section as one would obtain from the processing of survey
data (Figure 1.b).

The discrimination between sands and clays is obvious
while the distinction of the silty lens is not. Indeed, the
conductive local body generates resistive artefacts close to its
position and a very large and conductive artifact deeper in
the subsoil, hiding the presence of the silty lens. The image
given by the inverted ER (Figure 1.b) strongly departs from
the true model (Figure 1.a). We finally use the Res2dinv
discretization grid for the BBA m1(·) corresponding to each
event of 2Θ (each event of Θ plus their possible unions and
the empty set). The values of the masses are set using the
Wasserstein distances [8] between (a) an inverted ER value ±
its uncertainty, issued from the Res2dinv result, and (b) the
interval corresponding to each event, so as each cell of the
grid gets a normalized BBA.

IV. CONS TRUCTION FROM GEOTECHNICAL DATA -
CONE-B EARING VAL UES

We use artificial cone bearing values (expressed in MPa)
as geotechnical data. These physical values could have
been obtained from a cone penetrometer test (CPT) in-
vestigation campaign. Indeed, CPT campaigns are widely
used to investigate embankment levees [2]. We simulate
a data acquisition from four boreholes with an interspac-
ing of 20 m, drilled to 17 m depth with a vertical ac-
quisition every 50 cm (dashed lines in Figure 1.a). Two
of the boreholes happen to go through the silty lens. We
assign intervals of cone bearing values (in MPa) to Θ
so that: θ1 = [2, 8], θ2 = [20, 80], θ3 = [2 · 102, 8 · 102] and
θ4 = [0.1, 2[∪]8, 20[∪]80, 2 · 102[∪]8 · 102, 103]. These inter-
vals can be associated to specific soil types [9] such as clays
for low values, silty soils for intermediate values and sands
for higher ones. We assume a mass of belief equal to 1 in
the borehole and impose an exponential lateral decrease of
the trust in the data (following the mean horizontal scale of
fluctuation of about 50 m proposed by Phoon and Kulhawy
[10]. The geotechnical grid depends on the distance between
the boreholes and the vertical sampling. Thus, for each cell, a
second BBA m2(·) is proposed, entering in the fusion process

V. COMB INATION OF B BAS AND PREL IMINARY RES ULTS

We suggest the use of a fusion mesh containing all the
meshes from both the geophysical and geotechnical grids so
that we avoid data interpolation that might lead to unnecessary
data alteration. The data merging consists in combining m1(·)
and m2(·) assigned to each cell of the grid. While many rules
of BBA combination have been proposed, in this work we

focus on two of them: Smets’ rule [11] and the Proportional
Conflict Redistribution rule no. 5 (PCR5) [12]. Smets’ rule
(conjunctive rule under an open-world assumption) allows the
quantification of the conflict level of our two information
sources (geotechnical and geophysical sources) represented by
(Eq. 1):

m12(∅) =
∑

X1,X2⊆Θ|X1∩X2=∅
m1(X1)m2(X2) (1)

Thanks to the latter rule, we are able to point out the con-
flictual zones in the vicinity of: the horizontal interfaces, the
silty lens, the local very conductive body and the resistive and
conductive artifacts (in red, Figure 2.a). The fusion, following
Dempster-Shafer’s rule (Eq. 2) (closed world assumption) [4]
with the PCR5 normalization [12] (Figure 2.c) is fairly close
to the true model we used (Figure 1.a). This normalization
allows the spreading of the conflict masses m12(∅) to other
events of 2Θ.

mDS
12 (A) =

1

1−m12(∅)
∑

X1,X2⊆Θ|X1∩X2=A

m1(X1)m2(X2)

(2)
It exhibits a quite clear view of the interface between sands

and clays and allows the visualization of the silty lens despite
the blind zone generated by the conductive anomaly (Figure
1.b). As a decision-making support, we propose to display the
events having the highest belief masses (Figure 2.a and 2.c)
and their associated degrees of belief (Figure 2.b and 2.d).

Via our procedure, even though the highly conductive
anomaly (that can be associated to a metallic pipe) is not
clearly detected and characterized, Figure 2.a still points out
a conflictual zone around the position of that anomaly. Unfor-
tunately, we still have incorrect material type determination
on the 19 first horizontal meters and 15 last horizontal meters
about the sand/clay interface because of the wrong ER values
proposed by the inverted geophysical model (Figure 1.b). In
the future, this kind of under-determination may be minimized
by reconsidering the way to decrease the lateral trust of the
geotechnical data.

VI. CONCL US ION

The use of BFs for the fusion of geophysical and geotech-
nical investigation data is promising. Indeed, it enables to
highlight the presence of an interface between two geological
media much more precisely than the geophysical method
alone, using Res2Dinv. Furthermore, it enables the reliable
estimation of the complete extension of a lens with interme-
diate ER and cone bearing values, even though the effects of
a local and highly conductive body (that can be associated to
a transversal metallic pipe) hides the geological lens. Without
normalization, Smets’ combination rule easily spotlights the
conflicting zones. Such information could also be precious
during an investigation campaign, indicating zones where
survey has to be strengthened.
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Fig. 1. 2D section of subsoil displaying a) true ER with borehole positions in dashed lines and associated cone bearing values in white and b) inverted ER
model displayed in model data blocks with RMS error = 1.11%.

Fig. 2. Data merging with Smets (a, b) and PCR5 normalization rule (c, d). (b) and (d) represent the BBAs associated to the most plausible events respectively
presented in (a) and (c). The black lines stand for the interfaces and the inhomogeneities fixed in the model (Figure 1.a) while the dashed lines stand for the
borehole positions.
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This will be in the heart of further studies in order to be
able to propose the most pertinent positions for geotechnical
boreholes thanks to belief functions and combination rules,
therewith to improve fluvial levee assessment. This algorithm
will also be employed using real data acquired on a scale
model as well as on a levee in order to propose a 3D modelling.
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Abstract—This paper presents a study on human perception
of the heading on the base of motion and form visual cues
integration. The authors examine how human age influences this
process. Because the visual stimuli are in general uncertain, or
in some cases even conflicting, the process of combination is
estimated on the base on the well known Normalized Conjunctive
Consensus fusion rule, as well as on the base of the more
efficient Dezert-Smarandache Theory (DSmT) of plausible and
paradoxical reasoning, and more precisely on the probabilistic
Proportional Conflict Redistribution rule no.5 defined within it.
The main goal is focused on how these fusion rules succeed to
model consistent and adequate predictions about both individu-
als’ behavior, and age-contingent groups of individuals.

Keywords: vision, heading perception, form cue, motion cue,

cues combination, DSmT, probabilistic proportional redistri-

bution rule no.5, normalized conjunctive rule.

I. INTRODUCTION

Form and motion information are closely linked and

continuously interacting in the human visual system,

which takes the advantage to utilize both of these visual

characteristics (or so called cues) to make decisions about

human heading perception [1] described via the respective

rapid eye movement (so called saccades) towards the object

of interest position. The cooperation between the form

and motion cues becomes very useful and even necessary,

when: (i) each cue (motion, form) alone does not supply

sufficient information to estimate the proper and accurate

heading, or/and, (ii) the uncertainty, associated with the

utilized visual cues and the possible conflicts between them

influence negatively the process of decision making. The last

case relates closely to the effect of the age-related changes

throughout the life cycle and to deterioration in the cognitive

processes, and consequently in visual information processing

due to a variety of factors like cell death, cognitive de-

differentiation, increase of internal noise in the visual system.

As a result, the contrast sensitivity, self-motion perception,

as well as eye movement characteristics are deteriorated in

the elderly [2], [3], [4]. To overcome all these difficulties

one needs to combine and utilize in an effective way both

of cues in order to achieve inferences, more informative

and potentially more accurate than if they were obtained

by means of a single cue. Integration of information from

multiple sources (cues) in a single modality increases the

precision of perceptual performance. Such a claim recently

has been supported by a list of neurobiological studies, like

[5], [6], [7], and also neurophysiological findings exist about

neurons responding to both form and motion in some cortical

sites (including early visual areas and extrastriate areas) [8],

[9].

Inspired and based on these important biological findings of

the cue combination effectiveness, the aim of this paper is to

investigate how humans integrate motion and form information

in the process of decision making about heading direction.

The authors will focus on how the human age influences this

process, and also whether the human visual system is enable

to adapt during the life cycle in order to exploit all available

information, providing a sensible and meaningful decision

about the problem under concern. In our study we simulate

only the directional flow occurring during the forward motion

of the observer and not the changes in speed or size of

the moving objects that accompanied it. The researcher

team will compare human cue combination performance

with modelled combination performance, based on particular

fusion rules. In the presented study the authors will apply

and compare the performances of the following fusion rules:

the Normalized Conjunctive Consensus (NCC), and the very

recent probabilistic Proportional Conflict Redistribution rule

no.5 (pPCR5) defined within DSmT. The novelty of our study

consists in applying especially this novel pPCR5 fusion rule to

model the human process of form and motion cues integration.

This paper is organized as follows. In section II we briefly

present the form and motion combination process, and the

principles of the used fusion rules, applied to model the human

cue integration. Section III is devoted to the experimental

strategy, methods, procedures, stimulus, apparatus, and also

Originally published as: A. Tchamova, J. Dezert, P. Konstantinova, N. Bocheva, B. Genova, M. 
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subjects participating in the experiments. The results obtained

are described and analysed in Section IV. Conclusions are

made in Section V.

II. FUSION RULES FOR MODELLING VISUAL CUE

COMBINATION

Various fusion rules exist in the literature to deal with

uncertain or even conflicting evidence based on different

mathematical models and on different methods for transferring

the conflicting mass onto the sensible hypotheses about the

problem under consideration. The classical one is Bayesian

inference [10], [11] which deals with probabilistic information.

The main idea of Bayesian inference is to obtain the most

reliable estimate of the state of the world on the base of

independent cues combination, i.e. the estimate in which the

variance of the resulting combined cue is minimized. But being

very sensitive to the sources with the bigger means, it could

neglect part of available information, which is not adequate

and reliable behavior in cases of conflicting visual cues

combination. Bayesian inference has some difficulties to apply,

related to the requirements of measurements’ statistics and

knowledge about the a priori information. Dempster-Shafer

Theory (DST) [12], [13] was the first theory for combining

uncertain information expressed as basic belief assignments

with Dempster’s rule. Although appealing in modelling the

epistemic uncertainty this theory shows very questionable and

controversial results in cases of high (and even low) conflicting

sources of evidence [14], [15], [16], [17].

To overcome all these limitations of DST, Dezert-

Smarandache Theory of Plausible and Paradoxical Reasoning

was developed [18].

DSmT works for any model, which fits adequately with

the true nature of the fusion problem under consideration.

It is a general mathematical framework for managing and

solving problems of uncertain, highly conflicting, imprecise

knowledge representation and fusion, and decision making

procedures, based on vague, imprecise models for a wide class

of static or dynamic fusion problems.

A. Normalized Conjunctive Consensus rule

The Normalized Conjunctive Consensus (NCC) rule is used

to combine simultaneously assumed independent visual cues.

In the case considered in our paper, the information obtained

by the available form and motion cues is characterized by

Gaussian likelihood functions with given means µi, i = 1, 2, ..
and standard deviations σi, i = 1, 2, .., defining the un-

certainty encountered in data. In case of two independent

cues with one-dimensional Gaussian distributions p1(x) =
1

σ1

√
2π

exp− 1

2
(x−µ1

σ1
)2 and p2(x) = 1

σ2

√
2π

exp− 1

2
(x−µ2

σ2
)2,

the combined distribution based on NCC rule becomes:

p
NCC

(x) =
1

σ
NCC

√
2π

exp−1

2
(
x− µ

NCC

σ
NCC

)2, (1)

where σ2
NCC

=
σ2

1
σ2

2

σ2

1
+σ2

2

and µ
NCC

= σ2
NCC

(µ1

σ2

1

+ µ2

σ2

2

).

It is characterized with a mean, biased toward the function

with the bigger of the two means, similarly to Bayesian

estimator. It is optimal, i.e. minimizes the variance of the error

estimation, when the original distributions have close mean

values. When both cues are in conflict, however, (characterized

with distant distributions), NCC rule leads to neglecting part of

the available information, because the source with the bigger

mean is weighted more heavily. In this case it is reasonable to

keep the original distributions in the fused probability density

function until it is possible to make reliable decision. This has

been done by pPCR5 fusion rule defined in DSmT.

B. Probabilistic Proportional Conflict Redistribution rule no.5

The general principle of all Proportional Conflict Redis-

tribution rules [18], Vol.3 is to: 1 ) calculate the conjunc-

tive consensus between sources of evidence (different visual

cues) 2 ) calculate the total or partial conflicting masses; 3 )
redistribute the conflicting mass (total or partial) proportion-

ally on non-empty sets involved in the model according to

all integrity constraints. The recently proposed non-Bayesian

probabilistic Proportional Conflict Redistribution rule no.5

(pPCR5) [18] is based on the discrete Proportional Conflict

Redistribution rule no.5 [18], Vol.3, for combining discrete

basic belief assignments. For completeness, we will discuss

in brief the main idea behind the discrete PCR5. It comes

from the necessity to deal with both uncertain and conflicting

information, transferring partial or total conflicting masses pro-

portionally only to non-empty sets involved in the particular

conflict and proportionally to their individual masses. Basic

belief assignment (bba) represents the knowledge, provided

by particular source of information about its belief in the true

state of the problem under consideration. Given a frame of

hypotheses Θ = {θ1, ..., θn}, and the so called power set

2Θ = {∅, θ1, ..., θn, θ1∪θ2, ..., θ1∪θ2∪ ...∪θn}, on which the

combination is defined, the general basic belief assignment is

defined as a mapping ms(.) : 2Θ → [0, 1], associated with

the given source of information s, such that: ms(∅) = 0
and

∑

X∈2Θ
ms(X) = 1. The quantity ms(X) represents the

mass of belief exactly committed to X . Under Shafer’s model

assumption of the frame Θ (requiring all the hypotheses to

be exclusive and exhaustive), the PCR5 combination rule for

only two sources of information is defined as: mPCR5(∅) = 0
and ∀X ∈ 2Θ \ {∅}

mPCR5(X) = m12(X)+
∑

Y ∈2
Θ\{X}

X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]. (2)

All sets involved in the formula are in canonical form. The

quantity m12(X) corresponds to the conjunctive consensus,

i.e: m12(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2). All denomina-

tors are different from zero. If a denominator is zero, that

fraction is discarded. No matter how big or small the conflict-

ing mass is, PCR5 mathematically does a proper redistribution

of the conflicting mass. It is because PCR5 goes backwards
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on the tracks of the conjunctive rule and redistributes the

partial conflicting masses only to the sets involved in the

conflict and proportionally to their masses put in the conflict,

considering the conjunctive normal form of the partial conflict.

PCR5 is quasi-associative and preserves the neutral impact

of the vacuous belief assignment. The probabilistic PCR5

(pPCR5) is an extension of discrete PCR5 version to its

continuous probabilistic counterpart. Basic belief assignment,

involved in discrete PCR5 rule is extended to densities of

probabilities of random variables. For two independent sources

of information with given Gaussian distributions p1(x) and

p2(x), the obtained combined result becomes [18]:

ppPCR5(x) = p1(x)

∫

p1(x)p2(y)

p1(x) + p2(y)
dy+

p2(x)

∫

p2(x)p1(y)

p2(x) + p1(y)
dy. (3)

The behavior of pPCR5 fusion rule in comparison to NCC

rule (1) could be characterized by two cases below:

Case 1: both densities p1(x) and p2(x) are close (Fig.1-

case 1). The combined density acts as an amplifier of the

information by reducing the variance. Here pPCR5 acts as

NCC fusion rule.

Case 2: the densities p1(x) and p2(x) are distant (Fig.1-case

2). Then the combined density keeps both original densities

(not merging both densities into only one unimodal Gaussian

density as NCC rule does), avoiding to neglect a part of the

available information.

Figure 1. Performance of pPCR5 fusion rule vs. NCC rule.

This new (from a theoretical point of view) property is very

interesting and it presents advantages for practical applications

as it will be shown in our particular research. Application of

pPCR5 fusion rule assures robustness to the potential errors

and allows taking more reliable and adequate decisions in the

process of integration of different cues in visual perception.

III. EXPERIMENTS

A. Stimuli

The stimuli consisted of 50 dots. The dot patterns oc-

cupied an area of 15 angular degrees. The stimuli were

generated beforehand and contained 100 frames (except the

static condition). Each frame lasted 33 msec. The lifetime

of the dots was 3 frames, thus on every frame one-third of

the dots were randomly re-positioned. For the motion and the

combined condition the velocity of the dots was 4 degrees of

arc/sec. The stimuli were radial patterns with a focus (center)

positioned eccentrically to the middle of the screen. The center

of the patterns defined by the orientation of the pairs or the

trajectories of the dots could take 7 values to the left or to

the right of the midpoint of the screen: 0.67 to 4.67 degrees

of arc in steps of 0.67 degrees of arc. Ten different exemplars

of patterns for each center and condition were generated. The

dots subtended 0.2 degrees of arc.

B. Experimental conditions

Four different experimental conditions were performed:

• Static (form) condition The experimental stimuli (Fig.2)

consist of dots pairs separated by 2 degrees of arc. The

orientation of the virtual lines connecting the dots in

18 pairs intersected in a common point considered the

center of the patterns, while the rest 7 pairs had random

orientation.

• Motion condition In this experiment (Fig.3) 36 points

had trajectories that intersected at a common point, while

the rest 14 dots had random trajectories.

• Flicker condition In this condition (Fig.4) a sequence

of random static patterns was presented. As in the static

condition the orientation of 18 pairs of dots, separated

by 2 degrees of arc pointed to a common center while

the rest 7 pairs had different orientation. The sequential

presentation of the static patterns created illusory motion,

but the trajectories of the apparent motion were random.

• Combined condition In this experiment (Fig.5) 18 pairs

of dots moved along trajectories towards a common cen-

ter. The orientation of these pairs was along the motion

trajectory. The rest 7 pairs had random trajectories, but

again, the orientation defined by the pairs was along the

trajectory of motion.

The figures 2-5 correspond to a single frame from the four

experimental conditions. The four conditions of the experiment

differ by the relative contribution and the order of temporal

and spatial integration. In the static conditions the observers

needed to find the correspondence of the dots to a pair and to

globally integrate this information in order to find the focus

of the radial pattern. In the flicker condition on every frame

the observers had to integrate the spatial information from the

pairs of dots but they could benefit from temporal integration

of the sequential patterns that would be equivalent to the pres-

ence of a larger number of dot pairs. In the motion conditions

the observers had to temporally integrate the displacement

of dots in the sequential frames in order to determine their

trajectory of motion and to integrate this information in space

to determine the focus of the radial pattern. In the combined

condition the observers had redundant information as both the

trajectory of dot motion and the orientation of the dot pairs

provided similar information.
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Figure 2. Static Condition.

Figure 3. Motion Condition.

C. Experimental Procedure

The subject sat at 57 cm from the monitor screen. The

stimuli were presented on a gray screen with mean luminance

50 cd/m2. Each stimulus presentation was preceded by a

warning signal. A red fixation point with size of 0.8 degrees

of arc appeared in the center of the screen for 500 msec. The

stimuli were presented simultaneously with the disappearance

of the fixation point. The Subjects performed a single-stimulus

two-alternative force choice task. They had to continue looking

at the position where the fixation point was presented until

making a decision where the center of the pattern was (left or

right relative to the fixation point). At this moment the subject

had to move his/her eyes towards the position of the perceived

center and to press the left or the right mouse button depending

on whether the perceived center appeared to the left or to the

right from the fixation point. If the subject could not make a

decision during the 3.3 sec of the stimulus presentation (100

frames), the stimulus disappeared and the screen remained

gray until the subject made a response.

D. Method

The method of constant stimuli was used. Each condition

was presented in a separate block consisting of 10 presenta-

tions for each position of the pattern center (a total of 140

presentations, 7 positions for a center shifted to the left and

Figure 4. Flicker Condition.

Figure 5. Combined Condition.

7 positions for a center shifted to the right). The order of

stimulus presentation was random. Each Subject took part

in at least two experiments with 4 blocks for each of the

4 experimental conditions. All conditions were presented in

a random order in a single day. The duration of each block

depended on the subject performance, but the experiment did

not exceed 1 hour. The eye movements of the subjects were

registered with Jazz-novo multisensor measurement system

(Ober Consulting Sp. z o.o) [20].

E. Apparatus

The stimuli were presented on a 20.1 inch NEC MultiSync

LCD monitor with NvidiaQuadro 900XGL graphic board at

a refresh rate of 60 Hz and screen resolution 1280/1024

pixels. The experiments were controlled by a custom program

developed under Visual C++ and OpenGl.

F. Subjects

The subjects participating in the experiments are divided in

three age groups: young (aged from 20 to 34 years), middle

(aged 35 to 55 years) and elderly (aged 57 to 84 years). They

did not have a whole training session, but they were given

examples of stimuli to check whether they understood the task

and to get an idea of the stimuli in a given condition.
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IV. PERFORMANCE EVALUATION OF AGE-RELATED

OBSERVERS GROUPS

The experimental goal of our study is directed to

characterize the human heading perception influenced by:

(i) form information only (ii) motion information only

(iii) flicker information, i.e temporal integration of form

information (iv) combined form and motion information.

The question is if people rely and base their responses on

a single source of information, or on combined one, and

also which type of information utilized is more informative

in the decision process. The participants belong to three

age groups: Young, Middle aged, and Old. Hence, also

the influence of human age on the assessment of heading

perception will be evaluated. The evaluation is made on the

base of experimental psychometric functions, obtained for

all different experimental conditions and for each subject in

all age-contingent groups. The psychometric function reflects

the dependence between a given physical quantity (in this

case, the pattern shift from the middle of the screen) and the

proportion of subjectsÂ responses of a given type, in our

case Â the proportion of responses Âthe pattern center is to

the right”.

• Evaluation of heading perception in Young observers

group

The comparison of the performance in the static, mo-

tion and flicker conditions show that in Young group

only 2 out of 10 observers have best performance for

the static condition, 4 observers effectively utilized the

motion information showing best performance in this

case, and 4 out of 10 observers show best performance

in the flicker condition. For 4 out of 10 observers the

null hypothesis of equal psychometric functions for both

motion and flicker information could not be rejected,

i.e they could be considered as equivalent. These results

suggest that the young observers effectively integrate the

available information in time. The contribution of the

information available in each of these three conditions to

the performance of the combined condition differs. Only

1 out of 10 subjects relies mainly on motion, 1 - on

the information available in the flicker condition, while 7

out 10 combined effectively the independent sources of

information available in the static and motion condition.

The performance of averaged (on the base of 10 subjects

in the group) young subject is shown on Fig.6.

For the averaged young subject the psychometric curves

associated with static, motion, and flicker information

are not distant and the null hypothesis that they do not

differ could not be rejected.

• Evaluation of heading perception in Middle aged

observers group

In this age-related group only 1 out of 6 subjects shows

Figure 6. Psychometric Curves of Averaged Young Subject.

better performance in the static condition and 1 out

of 6 observers - in the flicker condition. For 1 out of

6 observers the null hypotheses of equal psychometric

functions for both motion and static information could not

be rejected. For 4 out of 6 observers the null hypothesis

for equal psychometric functions for motion and flicker

conditions could not be rejected too. As general, the

results suggest a small effect of the static information.

The results for 4 out of 6 observers show that the

results in the combined condition could be successfully

predicted based on the performance of the static and

motion conditions. The performance of averaged middle

aged subject is shown on Fig.7.

Figure 7. Psychometric Curves of Averaged Middle aged Subject.

The averaged middle aged observer does not rely mainly

on the static information. For him the combined and

flicker condition do not differ significantly.

• Evaluation of heading perception in Old observers

group

The obtained results in Old-age group show that 3 out

of 10 observers show best performance in the static, 3

out of 10 - in motion, and 4 out of 10 in the flicker

condition. The null hypothesis for equal psychometric
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functions is valid for: 1 out of 10 for motion and static

condition, and for 2 out of 10 - for motion and flicker

condition. Six out of 10 subjects utilize combined static

and motion information to make their final decision in

the combined condition. The performance of averaged

old subject is shown on Fig.8. For averaged old subject

the null hypotheses that the static and flicker cases do not

differ is valid. The averaged old observer relies more on

motion information.

Figure 8. Psychometric Curves of Averaged Old Subject.

V. PPCR5 AND NCC RULES PERFORMANCE FOR

PREDICTING HUMAN’S WAY OF FORM AND MOTION

COMBINATION

The main question here is which fusion rule - pPCR5 or

NCC used to combine available static and motion information

predicts more adequately human cue integration? In order

to answer this question we need to make a comparison be-

tween experimentally obtained and predicted (via pPCR5 and

NCC rules) psychometric functions for combined condition

(static and motion), for the three age contingent groups. This

comparison is provided on the base of goodness-of-fit test

[19], one important application of chi-squared criteria: χ2 =
∑J

j=1

(Oj−Ej)
2

Ej
where χ2 is an index of the agreement be-

tween an observed(O)/experimental and expected(E)/predicted

via particular fusion rule sample values of psychometric func-

tion. For our case J = 14 represents the number of pattern’s

shifts from the middle of the screen. The critical value of the

test for ν = J−1 = 13 degrees of freedom at assumed p = 0.1
is χ2 = 19.81 [19]. The respective results are given in Table

I - for young group, in Table II - for middle aged group, and

in Table III - for old persons’ group.

In general, the results show that the pPCR5 fusion rule

predicts more adequately than NCC rule human performance

for the three age groups.

For young and for middle aged persons (Tables I and

II) both fusion rules predict psychometric functions that do

not differ significantly from the experimental ones, but the

differences in the fits are smaller in case of pPCR5 rule than

in case of NCC rule application. The same findings are valid

for old people (Table III), but in this group NCC rule show

Table I
CHI-SQUARED VALUES FOR YOUNG SUBJECTS.

Subject (Form and Motion) pPCR5 (Form and Motion) NCC

1 0.8587 1.8482
2 0.4801 0.8456
3 0.3045 1.2690
4 0.1509 0.9716
5 0.1655 0.1458
6 0.3342 0.7013
7 0.0912 0.1810
8 0.5103 0.8381
9 0.1943 0.2090
10 0.0913 0.1494

Table II
CHI-SQUARED VALUES FOR MIDDLE AGED SUBJECTS.

Subject (Form and Motion) pPCR5 (Form and Motion) NCC

1 0.3698 0.9854
2 0.1856 0.4934
3 0.4192 0.9341
4 0.9872 1.4716
5 0.2380 1.0143
6 0.2425 0.8456

worse performance for subject no.4 (put in bold in Table III)

showing the exceeded critical value of χ2 = 19.81. The reason

for this result reflects the situations, when the experimentally

obtained psychometric functions, associated with single static

and single motion conditions are characterized with distant

underlying Gaussian distributions. In this case pPCR5 makes

prediction, which models more correctly and adequately hu-

man combination behavior. Using NCC rule however, part of

available information has been neglected, because the cue with

bigger mean was weighted more heavily than the cue with a

smaller one (as it was described in Section II).

VI. COMMON TRENDS OF AGE RELATED OBSERVER

GROUPS

The goal here is to find the common trend, concerning the

performance of the three groups. In order to achieve it, we

consider each group as a set of different sources of evidence,

associated with each person in the group. That way young

group consists of 10 (middle aged of 6, old aged of 10) sources

(subjects) of evidence, which should be combined all together

via pPCR5 and NCC fusion rules.

The combined individual behaviors in particular group are

estimated, reveling its intrinsic behavior as a whole, reducing

uncertainties associated with individual performances. All the

tested subjects in age groups are considered as independent

and equally reliable sources of information, because each

subject provides his/her own psychometric function, associated

with the static and motion condition and should be taken into

account with equal weights to derive these trends.

Our goal is to find out which combinational rule (pPCR5 or

NCC) is able to model correctly and adequately such human

age-contingent group trends in the process of decision making.

The results obtained for experimental and estimated (via the
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Table III
CHI-SQUARED VALUES FOR OLD SUBJECTS.

Subject (Form and Motion) pPCR5 (Form and Motion) NCC

1 0.3751 0.7693
2 0.2762 0.5721
3 0.3691 0.4078
4 2.9287 21.0845
5 0.5418 0.8592
6 0.1652 0.3021
7 0.2013 0.3103
8 0.3984 0.5932
9 0.6712 1.6964
10 0.7152 1.8598

fusion rules) trends, concerning the cues combination groups’

performance are presented in Figures 9, 10, and 11.

Figure 9. Trends of Young Subjects Group.

Figure 10. Trends of Middle aged Subjects Group.

In order to compare the performance of both fusion rules

in estimating common trends’ prediction the city-block errors

between the corresponding triples young/middle/old group ex-

perimental form and motion combination) - young/middle/old

group estimated (via pPCR5 and NCC) form and motion

combination are given in Table IV. Results show ultimately

that experimentally obtained and those, based on pPCR5

fusion rule are closer and for the three age-contingent groups

are more than two times less than those, obtained via NCC

Figure 11. Trends of Old Subjects Group.

fusion rule. pPCR5 fusion rule predicts more correctly the

human model of decision making, than NCC rule, utilizing all

the available information (Form and Motion), even in case of

conflict. NCC based trends are very sensitive to the sources

(different subjects’ psychometric functions) with the bigger

means, neglecting that way part of the available information

and acting as an amplifier of the information by reducing the

variances.

Table IV
CITY BLOCK ERRORS BETWEEN EXPERIMENTAL AND PREDICTED TRENDS.

PCR5 NCC

FM Young 0.03 0.10
FM Middle 0.06 0.13

FM Old 0.04 0.12

VII. CONCLUSIONS

This paper presented a study on human heading percep-

tion obtained on the base of motion and form visual cues

integration. The influence of human age on this process was

evaluated. The results obtained show age-related difference

in the performance of the subjects in estimating the heading

direction based on the combined static (form) and motion

information.

Our experimentally obtained data for young observers sug-

gest smaller effect of the static information case and provides

indirect evidence that their performance is based more on the

temporal integration of information in the motion and flicker

conditions. The experimental results for Middle-aged group

suggest less effect of the static information and an effect of

the order of temporal and spatial integration. The old subjects

used to rely more on the motion information. All age-related

groups rely on combined (motion and form) information to

take their final decisions for heading perception.

A comparison between experimentally obtained and pre-

dicted (via pPCR5 and NCC rules) psychometric functions

for combined condition (static and motion), for the three age

contingent groups was made and estimated on the base of

goodness-of-fit test, one important application of chi-squared

criteria. Results proved that pPCR5 makes prediction, which
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models more correctly and adequately human combination

behavior than NCC, especially in cases of conflicts between

the different visual cues.

The combined individual behaviors (the trends) in particular

age groups were estimated, reveling its intrinsic behavior

as a whole, reducing uncertainties associated with individual

observersÂ performance. Results show ultimately that pPCR5

fusion rule, utilizing all the available information - static

(form) and motion, even in case of conflict, predicts more

correctly the human model of decision making, than NCC rule.

That way pPCR5 fusion rule assures preserving the richness

of cues data in the process of visual stimuli combination and

assures improvement of decision accuracy. pPCR5 describes

better the characteristics of the different age groups in decision

making based on the motion and form information in heading

perception.
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Abstract—The extraction of building changes from very high
resolution satellite images is an important but challenging task
in remote sensing. Digital surface models (DSMs) generated from
stereo imagery have proved to be valuable additional data sources
for this task. In order to efficiently use the change information
from the DSMs and spectral images, belief functions have been
introduced. In this article, two-step building change detection
fusion models based on both Dempster-shafer theory (DST) and
Dezert-Smarandache Theory (DSmT) frameworks are proposed.
In the first step, basic belief assignments (BBAs) of the change
indicators from images and DSMs are calculated by using a
refined sigmoidal BBA model. Then these BBAs are employed
for the new proposed building change detection decision fusion
approach. In order to cover the miss-detections introduced by
the wrong height values of the DSMs and incomplete information
from images, disparity maps from the DSM generation procedure
and shadow maps from the multispectral channels are adopted
to generate reliability maps, which are further integrated to
the fusion models. In the last step, building change masks
are generated based on four decision-making criteria. In the
experimental part of this work, we evaluate the performance of
this new building change detection method on real satellite images
thanks to a building change reference mask representing the
ground truth. Substantial accuracy improvements are achieved
when comparing the new results with those obtained from
classical 3D change detection approaches.

Keywords: change detection, belief functions, DSmT, DST,
DSM.

I. INTRODUCTION

Efficient and accurate detection of building changes using
remote sensing data is of great importance for urban monitor-
ing and disaster monitoring. It is one of the fundamental tasks
in remote sensing and is attracting more interests due to the
high and accelerated rate of urban growing and more frequent
natural disasters with climate changes.

In the last decades, 2D change detection methods on large
scale land cover monitoring have been extensively studied
and applied on satellite images [1], [2], [3]. There are many
excellent approaches available which can extract landcover
changes from multi-temporal images [4], [5]. However, high-
lighting only building changes in urban area remains difficult
due to the mixture of other background changes, for instance
the changes introduced by different illumination conditions or

human activities. The influence of these changes is growing as
higher resolution images show more details of the landcover
objects. In addition, even with very high resolution data it is
sometimes impossible to distinguish buildings and roads using
simple spectral change.

Therefore, height information derived from Digital Sur-
face Model (DSM) is posing new possibilities for building
change detection. Benefiting from improved data quality and
advanced computer vision techniques, the accuracy of the
DSMs from satellite stereo imagery has been largely improved
and enables building change detection in a larger region and
with high frequency. However, the DSMs may exhibit some
inaccurate height values resulting from failed matching and
occlusions within the stereo and multiple views. Thus the
fusing of changes from multispectral image and DSMs would
be an effective solution for building change detection. The
comparison of DSMs can locate the changes of high-level
objects efficiently and robustly and the spectral images have
rich spectral and texture feathers which can highlight more
changes among the multi-temporal datasets. On the other hand,
as the DSMs have been generated from the multispectral
data, there is no time difference between them. The 2D and
3D information can be combined through post-refinement,
region-based approaches or decision fusion [6]. In more recent
researches, DSMs from multi-sensors and time-series data
were involved [7], [8].

Regarding to feature fusion due to the diverse building
characteristics and background information, the urban building
monitoring approaches may perform variedly for different test
regions. Thus recently some researches are trying to combine
different change features and change classification methods,
and fuse the results with a decision model. For instance, [9]
have proposed a probabilistic framework to fuse the results
from four local feature vectors for building detection. Based
on an adaptive network-based fuzzy inference system, [10]
have fused the change detection results from different feature
combinations. Besides fusing the detection result, decision
fusion can be also directly used for classification and change
detection [11]–[15].

Thus until now there is no decision fusion model that

Originally published as: J. Tian, J. Dezert, Fusion of Multispectral Imagery and DSMs for Building 
Change Detection Using Belief Functions and Reliabilities, Int. Journal of Image and Data Fusion (IJIDF), 
Vol. 10, No.1, pp. 1–27, 2019, and reprinted with permission.
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directly takes the change indices from images and height
maps for building change detection. In our previous research
works [16], belief functions have performed very well for 3D
building change detection. As aforementioned, the accuracy of
2D change detection of specific objects is limited due to the
misdetections caused by irrelevant changes. These irrelevant
changes have a larger effect on very high resolution (VHR)
images than on low and moderately high resolution images,
since in VHR images their higher details are more sensitive
to viewing and solar angle differences. DSMs generated from
satellite stereo imagery can largely help to solve this problem.
Unfortunately, the fusion model proposed in [16] is rather ba-
sic, and it is not robust in dealing with high conflict situations.
Therefore, the belief functions have been further investigated
and improved in this article. Besides Dempster-Shafer Theory
(DST) [17], [18], an extended Dezert-Smarandache Theory
(DSmT) [19] will be adopted in this article to generate the
building change detection models. One of the difficulties of
using Dempster-Shafer theory is the definition of uncertainty
and the calculation of the basic belief assignments (BBAs).
[16] used one sigmoid function to distribute the values of one
change feature to the BBAs ranging from 0 to 1. The symmetry
point which indicates a certainty of 50% was automatically
calculated with a thresholding method. However, the accuracy
and robustness of the thresholding approach will directly
influence the correctness of the obtained BBAs. Thus, as well
as the fusion models, the BBAs construction approach should
be updated to further improve the change detection result.
These problems have been well addressed in our modified
approach [20]. In addition, the uncertainty of change indicators
was measured in order to improve the accuracy of BBAs.
Due to space limitation constraint of conference paper format,
the methodology part has been only shortly described in [20]
and only small patches have been tested in the experimental
part. A better description of this methodology with more
experiments of our approach is presented in this article with
the improvement of the reliability discounting approach.

Focusing on building change detection by fusing spectral
and height information extracted from satellite stereo imagery,
this article is organised as follows. First, the belief functions
of DST and DSmT are briefly reviewed. Then, the building
change models are proposed for these theoretical frameworks.
The belief functions are used in both BBAs preparation
and change detection procedure. Two sigmoid functions are
simulated for each change feature to obtain the BBAs. In order
to further improve the BBAs values reliability discounting
techniques are presented. We use the unfilled disparity map
and shadow maps to generate the reliability map of the changes
from the height and 2D images, respectively. The reliability
maps are then used in the fusion process to refine the initial
BBAs. We generate four sets of global BBAs. With four
decision criteria the final change detection masks can be
generated. In the end, these refined fusion models are tested
on four sets of real satellite images, and a comprehensive
comparison is included to validate the new approaches.

II. BELIEF FUNCTIONS, DST AND DSMT

A. Basics of belief functions

The details of DST and DSmT have been presented by
[18], [19] and [21]. Let Θ be a frame of discernment of a
problem under consideration. Θ = {θ1, θ2, . . . , θN} consists
of a list of N exhaustive and mutually exclusive elements θi,
i = 1, 2, . . . , N . Each θi represents a possible state related to
the problem we want to solve. The assumption of exhaustivity
and mutual exclusivity of elements of Θ is classically referred
as Shafer’s model of the frame Θ. A BBA also called a
belief mass function (or just a mass for short), is a mapping
m(.) : 2Θ → [0, 1] from the power set1 of Θ (denoted 2Θ) to
[0, 1], that verifies [18]:

m(∅) = 0, and
∑
X∈2Θ

m(X) = 1. (1)

m(X) represents the mass of belief exactly committed to X .
An element X ∈ 2Θ is called a focal element if and only
if m(X) > 0. The belief and plausibility functions based on
DST theory are defined respectively as:

Bel(A) =
∑

B∈2Θ,B⊆A

m(B), (2)

Pl(A) =
∑

B∈2Θ,B∩A6=∅

m(B). (3)

In DST, the combination (fusion) of several independent
sources of evidences is done with Dempster-Shafer2 (DS) rule,
assuming that the sources are not in total conflict3. DS com-
bination of two independent BBAs m1(.) and m2(.), denoted
symbolically by DS(m1,m2), is defined by mDS(∅) = 0, and
for all X ∈ 2Θ \ {∅} by:

mDS(X) =
1

1−KDS

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2), (4)

where the total degree of conflict KDS is given by

KDS ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2). (5)

A discussion on the validity of DS rule and its incompatibil-
ity with Bayes fusion rule for combining Bayesian BBAs can
be found in the literature [21], [22], [23]. To circumvent the
problems of DS rule, Smarandache and Dezert ([19], Vol. 2,
Chap. 1), then Martin and Osswald ([19], Vol. 2, Chap. 2) have
developed in DSmT [19] two fusion rules called PCR5 and
PCR6 based on the proportional conflict redistribution (PCR)
principle which consists

1The power set is the set of all subsets of Θ, empty set included.
2Although the rule has been proposed originally by Dempster, we call it

Dempster-Shafer rule as it has been widely promoted by Shafer in DST [18].
3otherwise DS rule is mathematically not defined because of 0/0 indeter-

minacy.
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1) apply the conjunctive rule
2) calculate the total or partial conflicting masses
3) then redistribute the (total or partial) conflicting mass

proportionally on non-empty sets involved in the conflict
according to the integrity constraints one has for the
frame Θ.

This PCR principle transfers the conflicting mass only to the
elements involved in the conflict and proportionally to their
individual masses, so that the specificity of the information
is not degraded. Because the proportional transfer can be
done in different ways, this has yielded to several different
fusion rules. It has been proved by [24] that only PCR6
rule is compatible with frequentist probability estimation, and
that is why we recommend its use in the applications. PCR5
and PCR6 rules simplify greatly and their formulas coincide
for the combination of two sources. In this case, the PCR6
combination is obtained by taking mPCR6(∅) = 0, and for all
X 6= ∅ in 2Θ by

mPCR6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
], (6)

where all denominators in Eq. (6) are different from zero. If
a denominator is zero, that fraction is discarded.

If a denominator, e.g., m1(X) + m2(Y ) tends towards 0,
then also the conflicting mass m1(X)m2(Y ) that is transfer-
able tends to zero because m1(X) and m2(Y ) tend to zero
(since they are positive); therefore, the redistribution of masses
also tends to zero. That reflects the continuity of PCR6.

B. Reliability discounting

The reliability discounting has been described and discussed
in the references [25], [26]. Briefly, if an additional knowledge
about the reliability (α) of certain source of evidence is
available, it can be adopted to refine the initial BBAs. For
instance the height change and image change indicators may
not perform well under some situations. This situation can be
measured, and used as reliability factors. Each factor α would
be a value ranging from 0 to 1. And α = 1 means fully
reliable, while α = 0 means the indicator is totally unreliable.
And all the remaining discounted mass are transferred to the
full ignorance Θ. Based on Shafer’s discounting model [18],
the reliability discounting factor α is introduced to discount
any BBA m(.) defined on the power set 2Θ as follows
∀X ∈ 2Θ: {

mα(X) = α ·m(X), for X 6= Θ,

mα(Θ) = α ·m(Θ) + (1− α).
(7)

III. BUILDING CHANGE DETECTION FUSION MODEL

A. Choice of the frame of discernment

Focusing on change detection, as a data preparation step,
DSMs are calculated from satellite stereo imagery based on

semi-global matching approach [27], [28]. It follows two main
steps. First, the epipolar image pair is generated through a
pyramidal local least squares matching. Then the matching is
cast into dynamic programming to minimise the cost function.
We use census feature to measure the similarity between two
pixels [27]. The challenges and opportunities of the DSMs
assisted building change detection have been well described
in [16]. The geo-information is employed to co-register these
data, which enables a sub-pixel accuracy. Focusing on building
change detection, two change indicators, one from images
and one from DSMs are extracted. Changes from spectral
images are highlighted by using the Iteratively Reweighted
Multivariate Alteration Detection (IRMAD) [5]. Consequently,
height changes from DSMs are shown after robust height
difference [29], [16]. We suppose that new, demolished or
rebuilt buildings may exhibit both height and spectral changes.
But the spectral changes can also be introduced by seasonal
changes and other irrelevant changes. After excluding building
changes, changed pixels exclude building regions are named
here as OtherChange. Therefore, three classes are considered
to define the frame of discernment satisfying Shafer’s model
(i.e. the elements of the frame of discernment are disjoint):

Θ = {θ1 , Pixel ∈ BuildingChange,

θ2 , Pixel ∈ OtherChange,

θ3 , Pixel ∈ NoChange},
(8)

and
θ1 ∩ θ2 ∩ θ3 = ∅. (9)

In image domain, each pixel represents a single sample, thus
in Eq. (8), we have directly used the word ’Pixel’. Based on
the three exclusive classes, the set of potential focal elements
FE that enter in our application is:

FE = {θ1, θ2, θ3, θ1∪θ2, θ1∪θ3, θ2∪θ3, θ1∪θ2∪θ3}. (10)

It is worth noting that even if we work with Shafer’s model
of the frame of discernment for this application (which is the
basis of DST), we can also use PCR6 rule developed in DSmT
because PCR6 works also with Shafer’s model as shown in
[19].

The whole procedure of the proposed building change
detection model is shown in Fig. 1. After the changes from
DSMs and images are extracted, they will be reprojected using
the sigmoid function to calculate the concordance index a and
discordance index b. Then the decision fusion rules will be
performed to generate the BBAs for height change and image
change, respectively. After that, global BBAs can be calculated
by using both DST and DSmT fusion rules. Finally, change
mask can be obtained with various decision-making criteria.

B. BBAs construction for building change detection

In [30] a sigmoidal model for both concordance and dis-
cordance indexes has been briefly presented. The details and
advantages of this approach are described in [31]. The con-
cordance index measures the concordance of change indicator
and BBA in the assertion, while the discordance measures the
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Fig. 1. Workflow of the proposed method.

opposition of change indicator to the BBAs in the assertion.
In our previous works [16], the BBAs were built based on
sigmoid curves related with the concordance index only. As
explained in [16], the original sigmoid curve is defined as

f(τ,T )(x) = 0.99/(1 + e−
x−T
τ ), (11)

where x is the original value of each indicator (∆H,∆Img),
where ∆H means the change in the height and ∆Img means
the change between two spectral images at a given pixel
location. Two parameters T and τ are used to control the
symmetry point and the slope of the sigmoid function. The
symmetry point indicates a certainty of 50%. In this article,
we improve our model to construct the BBAs thanks to sig-
moidal models for both concordance and discordance indexes
following the idea proposed by [31]. The concordance index
is similar as the indicator of our previous research. The green
line in Fig. 2 shows an example of the concordance index
from height changes. A higher height change indicator leads
to a higher probability to be building change. The discordance
index is defined as an indication for the opposite argument.
The discordance index in Fig. 2 is shown in red color, which
means that a higher height change reflects a lower probability
to be not building change. The blue curve shows the conflict
between the concordance and the discordance index. Both
concordance index and discordance index are projected to the
sigmoid curve distribution characterised by parameters T and
τ .

Fig. 2. Concordance and discordance index.

In [31] these two parameters T and τ were manually se-
lected. Here, as an improvement the multi-level Otsu’s thresh-

olding method [32], [33] is used for automatically getting the
symmetry points for both concordance index and discordance
index. Otsu’s algorithm assumes that an image is composed of
objects and background. A discriminant analysis is performed
by minimising the intra-class variance. When three classes are
of interest, two thresholds T1 and T2 are expected, and Otsu’s
method can be extended to

σ2
ω(T1, T2) = ω1σ

2
1(T1, T2)

+ ω2σ
2
2(T1, T2) + ω3σ

2
3(T1, T2). (12)

The weights ωi are the probabilities obtained from the image
histogram that are separated by the thresholds T1 and T2. σi
is the standard deviation of the i-th class, for i = 1, 2, 3. T1

and T2 can be used as the symmetry points of discordance
and concordance index, respectively. Thus, using the height
change index as in the example, the BBAs for concordance
and discordance height change index are functions of values
a∆H and b∆H defined by

a∆H = fτ,T1
(∆H), and b∆H = f−τ,T2

(∆H). (13)

The discordance index can be considered as a reflection of
the concordance index along the mirror line. Therefore, they
are sharing the same τ . Here, the factor τ is calculated with a
sample value (∆H = 1, a∆H = 0.1), which means 1 m height
change indicates 10% probability to be building changes. The
BBAs for discordance and concordance image change index
are built similarly. Differences appearing in 2D images give
a concordance indication for all changes, which include the
building changes or other changes (θ1 ∪ θ2). In this article,
the changes from images are named ∆Img.

In the Tables I and II, we present the two ways of construc-
tion of the BBAs from the sources of evidence based either
on DS or on PCR6 rules of combination for the height change
indicator (i.e. the first source of evidence) and the image
change indicator (i.e. the second source of evidence). It has
to be noted that θ1 ∪ θ3 is not mentioned in the fusion model,
as they do not share similar characters within the used feature
space. In Table I, m1(.) and m′1(.) represent the concordance
and discordance BBAs from ∆H , whereas in Table II m2(.)
and m′2(.) represent the concordance and discordance BBAs
from images. K∆H is the total conflicting mass value between
m1(.) and m′1(.), and K∆Img in Table II is the total conflicting
mass value between m2(.) and m′2(.),
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TABLE I
BBA CONSTRUCTION FOR HEIGHT CHANGE INDICATOR ∆H . [CONFLICT: K∆H = a∆Hb∆H ]

Focal Elem. m1(.) m′1(.) mDS1 (.) mPCR6
1 (.)

θ1 a∆H 0 a∆H (1−b∆H )
1−K∆H

a∆H(1− b∆H) + a∆HK∆H
a∆H+b∆H

θ2 0 0 0 0

θ3 0 0 0 0

θ1 ∪ θ2 0 0 0 0

θ2 ∪ θ3 0 b∆H
(1−a∆H )b∆H

1−K∆H
(1− a∆H)b∆H + b∆HK∆H

a∆H+b∆H

θ1 ∪ θ2 ∪ θ3 1− a∆H 1− b∆H (1−a∆H )(1−b∆H )
1−K∆H

(1− a∆H)(1− b∆H)

TABLE II
BBA CONSTRUCTION FOR IMAGE CHANGE INDICATOR ∆Img. [CONFLICT: K∆Img = a∆Imgb∆Img ]

Focal Elem. m2(.) m′2(.) mDS2 (.) mPCR6
2 (.)

θ1 0 0 0 0

θ2 0 0 0 0

θ3 0 b∆Img
(1−a∆Img)b∆Img

1−K∆Img
(1− a∆Img)b∆Img +
b∆ImgK∆Img

a∆Img+b∆Img

θ1 ∪ θ2 a∆Img 0
a∆Img(1−b∆Img)

1−K∆Img
a∆Img(1− b∆Img) +
a∆ImgK∆Img

a∆Img+b∆Img

θ2 ∪ θ3 0 0 0 0

θ1 ∪ θ2 ∪ θ3 1− a∆Img 1− b∆Img
(1−a∆Img)(1−b∆Img)

1−K∆Img
(1−a∆Img)(1−b∆Img)

C. Reliability discounting

In the DSM assisted building change detection, false alarms
arise if wrong heights are presenting in the DSM for large
regions [16]. And these wrong heights are mostly introduced
not in the stereoscopic images matching procedure, but in
the gaps filling step. In the last step of the DSM generation
procedure, the height of un-matched pixels is interpolated
using the height values of neighbourhood pixels. Normally
a reliable height value can be achieved for small gaps. But
when large gaps appear in the disparity map, for example,
for a whole building roof, the height of that building can not
be correctly interpolated. Thus, the percentage of available
successfully matched pixels inside a predefined neighbourhood
region can be used to generate the height reliability. Fig. 3
shows an example of the generated reliability map. Fig. 3a
is the gap mask. The gaps region of the disparity map is
represented with black colour. Pixels with proper elevation
values are displayed with white colour. It can be observed,
based on our approach that pixels in the centre of a gap
get lower reliability factor values than pixels next to the gap
boundary (see Fig. 3b).

In the building change detection procedure, the reliability
map of two DSMs (αDSM1 and αDSM2) are calculated,
respectively. They are then fused together to generate a final
reliability map α∆H for the height change mass.

α∆H = αDSM1 · αDSM2. (14)

Shadow has played an important role when analysing very

Fig. 3. Reliability map (b) generated from the gaps mask (a).

high resolution images in urban region. Both of the changes
of shadow and coverage of shadow will bring false alarms for
change detection. Therefore, the 2D changes that are detected
in shadow regions are less reliable than in non-shadow regions.
Benefit to this character, we can adopt the shadow map as the
reliability map of BBA from the image change indicator. For
this purpose, first a shadow map is generated by calculating
the average brightness of the multi-spectral image, as normally
a dark colour indicates the existence of shadows. We take an
easy and fast shadow detection approach as shown in Eq. (15)
to highlight the shadow class. It is a pixel-based approach,
therefore, Bk in Eq. (15) represents the intensity values at
one pixel location in different multi-spectral band images.
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And n is the number of the multispectral bands. The detected
shadow map from brightness is enough for our purpose. In
this shadow map, a smaller value indicates higher probability
to be shadows; thus, the 2D changes detected in these regions
are less reliable.

Brightness =
1

n

n∑
k=1

Bk. (15)

A further process is proposed to obtain a valid reliability
map from the shadow map. First, it has been projected to a sig-
moid curve. The lower threshold value from the two-level Ostu
threshold is used as the symmetry point of the sigmoid curve.
The obtained probability map is denoted as ShadowMap. In
order to control the influence of the ShadowMap, we have
only kept the values less than 0.5.

αimg =

{
0.5 + IShadowMap, if IShadowMap < 0.5,

1, otherwise.
(16)

where IShadowMap is the pixel intensity of the shadow map
in [0, 1]. The reliability map generated from the shadow map
is then recorded as α∆Img, and it is the combination of the
shadow maps of two dates.

α∆Img = αimg1 · αimg2. (17)

D. Global BBAs

The BBAs related with the concordance and discordance
indexes are combined to get the global BBA regarding each
source of evidence. These global BBAs will then be used
as input for solving the change detection problem thanks to
their combination. From the previous step of BBAs modelling,
each pixel will get two sets of BBAs to combine results
from Table I and II. More precisely, we will have to combine
either {mDS

1 (.),mDS
2 (.)} if DS rule is preferred for the BBA

modeling, or {mPCR6
1 (.),mPCR6

2 (.)} if the PCR6 rule is
adopted. These BBAs from Table I and II are represented by
a1, a2, a3 and b1, b2, b3. In this article, the mass values a1,
a2 and a3 are further discounted by the generated reliability
map α∆H and denoted respectively as A1, A2 and A3. The
mass values from the image change indicator b1, b2 and b3 are
discounted by the vegetation and shadow indicators α∆Img

obtained in formula Eq. (17) to B1, B2 and B3.
More precisely, one computes

A1 = α∆H · a1,

A2 = α∆H · a2,

A3 = α∆H · a3 + (1− α∆H).

(18)


B1 = α∆Img · b1,
B2 = α∆Img · b2,
B3 = α∆Img · b3 + (1− α∆Img).

(19)

Table III and Table IV describe the final building change
detection models based either on DS or on PCR6 rules. Here,
the discounted height change indicator is denoted as m1α∆H

(.),

and the discounted image change indicator is denoted as
m2α∆Img

(.).

TABLE III
DS FUSION MODEL FOR BUILDING CHANGE DETECTION.

Focal Elem. m1α∆H (.) m2α∆Img (.) mDS12 (.)

θ1 A1 0 A1(B1+B3)
1−A1B2

θ2 0 0 A2B1
1−A1B2

θ3 0 B2
(A2+A3)B2

1−A1B2

θ1 ∪ θ2 0 B1
A3B1

1−A1B2

θ2 ∪ θ3 A2 0 A2B3
1−A1B2

Θ A3 B3
A3B3

1−A1B2

TABLE IV
PCR6 FUSION MODEL FOR BUILDING CHANGE DETECTION.

Foc. Elem. m1α∆H (.) m2α∆Img (.) mPCR6
12 (.)

θ1 A1 0 A1(B1 +B3) + A1A1B2
A1+B2

θ2 0 0 A2B1

θ3 0 B2 (A2 +A3)B2 + B2A1B2
A1+B2

θ1 ∪ θ2 0 B1 A3B1

θ2 ∪ θ3 A2 0 A2B3

Θ A3 B3 A3B3

m1α∆H
(.) can be obtained from the discounting of the fusion

results presented in Table I. Thus they have been denoted
respectively as mDS

1α∆H
(.) and mPCR6

1α∆H
(.). These discounted

height change indicators are fused in the second step with
the image change indicator m2α∆Img

(.) to generate the final
global BBAs. From the Tables III and IV, four sets of global
BBAs can be computed based on different BBAs and fusion
models. The flow diagram in Fig. 4 summarises the different
fusion schemes tested in our application.

As one sees, if both the BBA modelling procedure and
global BBAs are constructed based on DS fusion rule, the
generated global BBA is recorded as G1. If the global BBAs
are constructed based on PCR6 fusion rule, they are recorded
as G2. The basic BBAs can also be calculated with PCR6
fusion rule, as shown in Table II. Based on these BBAs, the
global BBAs can be also constructed using DS theory G3

and PCR6 rule G4. It has to be mentioned that these four
fusion schemes have different computational cost and G1 is
the simplest one and G4 is the most expensive one in terms
of computational burden.

E. Change mask generation

The final building change mask is our decision-making
procedure. After the second step of fusion, each pixel in the
images will get a certain degree of belief for all focal elements.
The value of global BBAs in θ1 gives a direct building change
probability map. A decision criterion is required in generating

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

268



Fig. 4. Four fusion schemes based DS and PCR6 rules.

the final building change detection masks. A change mask
can be generated after giving a threshold value [16]. However,
BBAs on the partial ignorance and full ignorance set should
also be considered in the decision-making procedure. The
building change probability map is only a part of the global
BBAs. DST and DSmT propose different approaches to make
the final decision. Several decision criteria are available. In this
article, four decision criteria are tested. They are: 1) maximum
of belief (Max Bel), 2) maximum of plausibility (Max Pl),
3) maximum of betting probabilities (Max BetP) and 4) the
maximum of DSmP (Max DSmP) [18], [19](Vol. 3, Chap. 3).

1) Maximum of Belief (Max Bel): Valid for different strate-
gies of BBA modelings and fusions according to Fig. 4.
More precisely, for a strategy G generating a combined
mass ∈ G1, G2, G3, G4, the label (decision) is obtained by
comparing the final global mass values obtained from Table.
III and IV.

Label = argmax{G(θ1), G(θ2), G(θ3)}. (20)

2) Maximum of plausibility (Max Pl): Plausibility is de-
fined in Eq. (3). Max Pl compares the plausibility of each
class.

Label = argmax{Pl(θ1), P l(θ2), P l(θ3)}. (21)

3) Maximum of betting probabilities (Max BetP): The pig-
nistic probabilities, denoted as BetP , is making decisions on
the pignistic level. In the betting probabilities, global masses of
joint focal elements are averagely redistributed to each class.

BetP (A) =
∑
B∈Θ

|A ∩B|
|B|

m(B), A ∈ Θ. (22)

Label = argmax{BetP (θ1), BetP (θ2), BetP (θ3)}. (23)

4) Maximum of DSmP (Max DSmP): DSmP probabilistic
transformation is an important alternative to the pignistic
transformation [34]. The basic idea of DSmP is to redistribute
the mass of (partial and total) ignorances proportionally to the
masses of singletons involved in the ignorances.

DSmPε(A) =
∑
B∈Θ

∑
Z⊆A∩B
|Z|=1

m(Z) + ε|A ∩B|

∑
Z⊆B
|Z|=1

m(Z) + ε|B|
m(B). (24)

where ε ≥ 0 is a small positive number (typically 0.001) that
avoids numerical indeterminacies in very degenerated cases
occurring if the mass in the denominator of Eq. (24) is zero.
More detailed information about DSmP is given in [34]–[35].

Label = argmax{DSmP (θ1), DSmP (θ2), DSmP (θ3)}.
(25)

Among the four decision-making rules, max of belief or
max of plausibility have the advantage to be very simple
to calculate but they represent respectively two extreme pes-
simistic or optimistic decisional attitudes. The choice of one
of these extreme attitudes depends on the consequence of
decision error we are ready to take which is conditioned by
the type of application under concern. Moreover, it has been
shown by [34] that the more sophisticate transformation DSmP
outperform BetP transformation at a price of much higher
computational complexity, which can be a bottleneck in some
real-time image processing applications.

IV. EXPERIMENTS

A. Datasets

The belief function-based building change detection models
have been tested on four pairs of satellite images. Each of
the first three experimental datasets consist of two pairs of
IKONOS stereo imagery captured in February 2006 and May
2011 over an industrial region in Dong-an, North Korea. These
three sub-test regions are shown in Fig. 5 and 6 and 7,
respectively. The original IKONOS stereo imagery has 1 m
pixel size in the panchromatic band and 4 m pixel size in the
multispectral bands. The fourth experimental dataset (shown
in Fig. 8) was captured over the centre of Munich, Germany,
which is a typical European urban region. The two pairs of
stereo data of this dataset were captured by IKONOS on July
15, 2005 and WorldView-2 on July 12, 2010, respectively. In
Fig. 5 to Fig. 8, the first two images are the panchromatic
images of before- and after-change. (c) and (d) are the gener-
ated DSMs. They have been generated based on the method
explained by [27]. The elevation values from low to high are
represented with the colours from dark blue to dark red as
described in the colour bar. These images are co-registered
through camera model parameter corrections before the DSM
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generation procedure with block adjustment among all datasets
[27], [36]. A sub-pixel accuracy in planimetry and 1 to 2 m
in height can be achieved. The Gram-Schmidt pan-sharpening
method which has been widely used and implemented in ENVI
software is applied to the multispectral channels of all three
test regions [37]. In the first three subsets the generated DSMs
have been re-sampled to 1 m resolution. As the IKONOS and
WorldView-2 data for the Munich test region have different
resolutions, the IKONOS images are up sampled to 0.5 m
resolution, to be equal to WorldView-2 data. Instead of down-
scale [38], an up-scale re-sampling is selected here to keep
the sharp boundaries in the WorldView-2 data. The resulting
DSMs also have a resolution of 0.5 m.

Fig. 5 and Fig. 6 show normal building change examples
with DSMs in high accuracy. The size of these two test regions
are 450×700 m2, and 1000×400 m2, respectively. In Fig. 5
some seasonal changes are visible. The generated DSMs are
displayed in Fig. 5c and 5d. The second test region (Fig. 6)
shows much larger sized buildings, and these buildings are
well separated from each other.

The third test region consists of two images with the size
of 160×340 pixels. This region is characterised by small
sized buildings (Fig. 7). It has to be mentioned, the largest
building with a dark colour roof does not have the correct
height in the first DSM, as is shown in Fig. 7c. This test
region is especially selected to prove the robustness of our
fusion models. The image size of the fourth test region
is 1600×1600 pixels, which is 640,000 m2. It has mainly
large size buildings with complex roof shapes. From 2005
to 2010, besides newly constructed buildings, there are also
rebuilt/demolished buildings. Especially, many roofs have been
renovated with another material. Without height information,
it is very difficult to separate the newly constructed buildings
from other kinds of changes.

B. Results

The proposed DS fusion model and PCR6 fusion model
have been applied to all datasets. In the first step, the four sets
of global BBAs for all three focal elements and joint elements
are generated based on various fusion rules and fusion rule
combinations. In the second step, building change masks are
generated by using four decision criteria. All three classes
including BuildingChange, OtherChange and NoChange are
generated. But this article focuses on the newly constructed
buildings, thus only the BuildingChange results are analysed
and evaluated. The proposed models have two novel proper-
ties. The first one is the improved fusion model, and the second
one is the reliability discounting. In the experimental part, the
minimal value of the reliability map generated from DSM gaps
is manually modified to 0.1 to remove too small values. In the
height change reliability map generation procedure, a window
size of 9× 9 is selected.

To prove the advantages of the proposed method, firstly the
best building change detection results are displayed together
with the original height change map. The results of all four
test regions are displayed in Fig. 9, Fig. 10, Fig. 11 and Fig.

12, respectively. In each figure, different colours represent
different height changes in Figs. 9-12(a). Figs. 9-12(b) are
the generated building change masks. To show the quality of
these building change masks, these masks have been overlaid
with the change reference data, which have been manually
extracted for all four test regions. In Figs. 9-12(b) the green
colour represents the correctly detected building changes. The
false alarms which indicate pixels that are wrongly detected
as building changes are presented with red colours. The blue
colour objects are the misdetected changed buildings, which
are named as false negatives in this article.

Generally speaking, the proposed models are able to extract
the newly constructed buildings in high accuracy. Noise effects
from the height change map have been largely reduced in the
final change results. The four selected test regions present
four different situations. In the first test region most of the
buildings are relatively low in the height and well separated
from each other. The second test region has much higher
and larger buildings, which produce large regions of shadow.
The third test region is a special case. As we observe, in the
first DSM of test region 3 the height of one big building is
not correctly extracted. Actually the same building has been
detected as false alarm and been discussed in the reference
[16]. It has been explained in [16], due to the large region size
and height change values, the false alarm can not be avoided.
The fourth test region is much more complicated than the
others, exhibiting very high building density, complex roof
shapes and various building change types.

Benefiting from the improved fusion models and the re-
liability discounting procedure, some false alarms can be
successfully avoided. Especially for the building in the left-
bottom corner in the test region 1 and that big building in
test region 3. In both situations, the first DSM is not able to
get the correct height values. Based on the traditional feature
fusion approach or our initial fusion model [16], this kind of
buildings will very possibly be detected as BuildingChange.
However, as we observe in the presented change detection
results, these buildings are correctly detected as NoChange. It
has to be noted that vegetation change is not considered in
this model. Thus, in the centre of the first region, these two
large regions of false alarms, which are newly planted trees
from visual interpretation, are not able to be avoided. Another
difficult to detect region is one building in construction. Half of
the building has been finished in the after-change data; thus,
this region has both height and spectral changes. As it can
not be called a finished building yet, we did not include it as
BuildingChange in our reference data.

Many false negatives (blue regions/pixels) in Fig. 10(b) are
visible. Most of these false negatives can be explained by the
quality of the DSMs. A subset of the gaps mask of test region
2 in date2 is displayed in Fig. 13. As it shows all of the four
missed buildings (shown in blue colour) are actually gaps in
the unfilled DSM. After gaps filling, they are not interpreted
with correct height values, as shown in Fig. 6 (d). Thus,
these four buildings only feature spectral changes, therefore
are falsely identified as OtherChange.
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Fig. 5. Datasets of the test region 1: a) panchromatic image from date1; b) panchromatic image from date2; c) DSM from date1; (d) DSM from date2.

Fig. 6. Datasets of the test region 2: a) panchromatic image from date1; b) panchromatic image from date2; c) DSM from date1; (d) DSM from date2.
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Fig. 7. Datasets of the test region 3: a) panchromatic image from date1; b) panchromatic image from date2; c) DSM from date1; (d) DSM from date2.

Fig. 8. Datasets of the test region 4: a) panchromatic image from date1; b) panchromatic image from date2; c) DSM from date1; (d) DSM from date2.
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Fig. 9. Change detection results of test region 1 (a) original height change map (b) building change result Max Pl(G4) overlaid with change reference
data.

Fig. 10. Change detection results of test region 2 (a) original height change map (b) building change result Max Pl(G4) overlaid with change reference
data.
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Fig. 11. Change detection results of test region 3 (a) original height change map (b) building change result Max DSmT (G2) overlaid with change reference
data.

Fig. 12. Change detection results of test region 4 (a) original height change map (b) building change result Max DSmT (G2) overlaid with change reference
data.

Fig. 13. DSMs gaps of part of test region 2 (black holes).
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C. Results evaluation

To further understand the quality of these results and the
advantages of the method, more evaluation and analysis are
proposed. First, the building change masks extracted from
these four global BBA sets are compared and evaluated. Each
global BBA set results four building change masks based
on the four decision criteria. The building change masks are
compared with the masks from [30]. The accuracy of these
results have been evaluated by comparing them with ground
truth images, which have been manually prepared by visually
comparing the pre- and post-event images and referring addi-
tional Google Earth history data [39]. The similarity between
the obtained result and the ground truth is measured in terms
of Kappa Accuracy (KA) [40]. The evaluation results of test
region 1, 2, 3 and 4 are shown in Table. V, VI, VII and VIII,
respectively. Limited to the available reference data, only the
BuildingChange class is evaluated.

1) Comparison of the fusion and decision rules: Table V
to VIII mainly aim to describe and compare the performance
of the DS fusion and DSmT fusion rules and the four decision
criteria. Unfortunately, the differences among these four global
BBA sets of all four test regions are indistinguishable. Our
quantitative evaluations results allow comparing the different
fusion and decision-making strategies for building change
mask construction in different types of region under analysis.
As we have observed, there is no unique best fusion and
decision strategy working for all types of regions which is
an interesting result to be aware of and the different fusion
methods (with a chosen decision strategy) perform always
better with our refined approach than the previous (original)
works which is the main contribution of this work for all type
of regions tested.

2) Validation of the reliability discounting: The global
BBAs obtained with and without reliability discounting are
listed under the name of Refined and Original in Table V to
VIII. Original refers to the approach presented by [30], in
which the reliability discounting is not involved.

In the first test region, the advantage of the reliability dis-
counting is not obvious. By using the Max Pl and Max BetP
decision rules, the refined models perform better than the
original models. However, the original models get higher KA
values when using the Max Pl and Max BetP decision rules.
This can be partly explained by the shadow detection results,
as one dark colour building roof (middle left in the test region)
get higher probability to be shadow; thus, a lower probability
to be BuildingChange.

The second test region is characterised mainly by large and
high buildings; thus, the influences of shadows are stronger
than in the first test region. The refined models with reliability
discounting get generally better accuracy than the original
fusion models. Here, we will compare the Max DSmP of G4

of this test region, as it shows the highest difference among
these four decision criteria in Table VI. Fig. 14 shows building
change masks of the top left part of the test region 2. Fig.

14 (a) and (b) display the change masks obtained from the
original model and the refined model overlaid with the change
reference mask respectively. The same as Fig. 10 (b), the
green colour represents the true detected, the red colour shows
the false alarms, while the blue colour pixels are the false
negatives. As it shows, based on the refined model, building
boundary regions of the change mask obtain less false alarms
than the results from the original fusion model.

The advantage of the improved decision fusion models has
been well proved by Table VII. The first DSM of this test
region contains a large region of pixels with incorrect height
introduced by stereo image matching failures. The improved
models can solve this problem by adopting the reliability map
of height change. Therefore, the increase of KA value of this
region is much higher than for the other two test regions.
More precisely, under all fusion rules the KAs have improved
from around 0.30 to 0.50. For better understanding of this
improvement, the global BBAs of BuildingChange without and
with reliability discounting are displayed in Fig. 15 (a) and (b),
respectively. We display here only the Prob(θ1) of G1. Both
probability maps are less noisy than the original height change
map, which are displayed in Fig. 11. By observing the original
panchromatic images in Fig. 7, it is not difficult to find out that
this building exists in the panchromatic images of both dates.
This is the same building that has been mentioned in [16],
for which only the DSM of pre-change contains the correct
height values. In Fig. 7 (c), this building can not be recognised
as a high-level object. A higher value in m1(.) leads to a
larger global BBA in the class of BuildingChange. Thus, this
building would be incorrectly detected as BuildingChange if
no reliability discounting is applied (Fig. 15(a)). Fig. 16 shows
the generated height change reliability map. As can be seen,
that building region get very low reliability values, that means
the height changes of this region cannot be trusted. Therefore,
the proposed model is able to remove this kind of errors and
correctly recognise this region as NoChange (Fig. 11).

The Munich test region has a much larger size and includes
several kinds of building changes. The proposed method is
able to fuse the spectral and height information efficiently;
thus, to identify the newly constructed buildings. The main
false negatives are produced in the rebuilt buildings and
construction sites. As shown in Fig. 17, the labelled four
buildings represent four types of changes. Building A is
labelled as a newly constructed building in our reference data.
However, half of that building has similar shape and height
as the original one, which brings false negatives to our result.
Building B, C and D are buildings in different construction
phases. By referring [39], in the reference data only D is
identified as OtherChange as it is almost completed in Fig.
17(a). In the result we are able to correctly identify B as
a newly constructed building and D as OtherChange. But
building C is falsely labeled as OtherChange due to low height
change values.
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TABLE V
CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS OF TEST REGION 1 (KA).

G1 G2 G3 G4

Original Refined Original Refined Original Refined Original Refined
Max Bel 0.7392 0.7150 0.7369 0.7138 0.7419 0.7144 0.7391 0.7130
Max Pl 0.7619 0.7648 0.7607 0.7642 0.7623 0.7652 0.7609 0.7641

Max BetP 0.7533 0.7442 0.7515 0.7423 0.7541 0.7428 0.7522 0.7412
Max DSmP 0.7468 0.7200 0.7450 0.7189 0.7490 0.7190 0.7465 0.7181

TABLE VI
CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS OF TEST REGION 2 (KA).

G1 G2 G3 G4

Original Refined Original Refined Original Refined Original Refined
Max Bel 0.7401 0.7821 0.7399 0.7816 0.7401 0.7826 0.7401 0.7821
Max Pl 0.7380 0.7800 0.7391 0.7818 0.7380 0.7812 0.7393 0.7831

Max BetP 0.7413 0.7853 0.7409 0.7853 0.7412 0.7868 0.7409 0.7867
Max DSmP 0.7402 0.7842 0.7403 0.7841 0.7405 0.7857 0.7403 0.7855

TABLE VII
CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS OF TEST REGION 3 (KA).

G1 G2 G3 G4

Original Refined Original Refined Original Refined Original Refined
Max Bel 0.3356 0.5432 0.3356 0.5418 0.3351 0.5415 0.3345 0.5419
Max Pl 0.2396 0.3689 0.2416 0.3703 0.2391 0.3694 0.2409 0.3713

Max BetP 0.2860 0.4726 0.2885 0.4756 0.2869 0.4761 0.2882 0.4786
Max DSmP 0.3043 0.5082 0.3057 0.5094 0.3008 0.5072 0.3030 0.5066

TABLE VIII
CHANGE MASKS EVALUATION FROM FOUR GLOBAL BBAS OF TEST REGION 4 (KA).

G1 G2 G3 G4

Original Refined Original Refined Original Refined Original Refined
Max Bel 0.5158 0.5217 0.5159 0.5219 0.5154 0.5193 0.5158 0.5195
Max Pl 0.5122 0.5229 0.5125 0.5232 0.5120 0.5224 0.5128 0.5232

Max BetP 0.5137 0.5268 0.5140 0.5267 0.5135 0.5258 0.5137 0.5258
Max DSmP 0.5161 0.5285 0.5163 0.5284 0.5157 0.5274 0.5162 0.5275

Fig. 14. Building change masks from the original model (a) and refined model (b) of a subset of test region 2.
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Fig. 15. Comparison of building change global BBAs Probθ1 of G1 based on the fusion models without reliability discounting (a) and with reliability
discounting (b).

Fig. 16. Reliability discounting map of the height changes of test region 3.

Fig. 17. Example of the various building change types in test region 4.
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A windowsize of 9×9 has been used to generate the α∆H . In
order to test the sensitivity of our fusion model to the window
width used, we have changed the width parameter from 3 to
13 by steps of 2. For each size, we generate the global BBA
G1. Thus four final building change masks based on the four
decision criteria can be regenerated. We provide the KA for
each mask as show in Fig. 18. As a comparison, we have also
provided the KAs without using α∆H . This test shows that
the final results benefit largely from the reliability discounting
procedure, but the KA rate did not change significantly with
various window sizes for all four test regions.

D. Comparison with existing methods

In this section, the improved belief fusion models are
compared with the directly feature fusion method [41] and
the initial fusion model that described in [16].

As a typical feature fusion approach, [41] adopted the kernel
Minimum Noise Fraction (kMNF) approach to fuse change
features from the DSMs and panchromatic images. Based on
the resulting kMNF components, a change mask was extracted
with iterated canonical discriminant analysis (ICDA). [30]
randomly selected the training data from the ground truth,
as the experiments were devoted to algorithm comparison.
However, it was not a practical procedure, because in real
situations the ground truth is unknown. Therefore, in this
article as well as using the set of random pixels from the
ground truth, another set of training data for each test region
is prepared by manually selecting changed regions. All pixels
in these regions are then used as training samples.

The results generated based on these two sets of training
data are described as kMNFrandom and kMNFmanual,
respectively, in Table IX in the term of KA and Overall
Accuracy (OA). All training data in the first three test regions
contain around 200 pixels/samples. In the fourth test region,
500 pixels are used to fit with the large image size. If the
training data are selected from the ground truth, the newly
proposed approach can deliver a slightly better result than the
approach in [41]. When using the manually selected training
data, the advantages of the newly developed approach are
obvious. As in real applications the ground truth is normally
unknown, we conclude that the proposed fusion method is
more robust for larger test regions with diverse characterised
objects.

In addition, the approach proposed by [16] is tested on the
same test data, and the results are shown in the third and fourth
columns. In that approach, after the fusion approach a shape-
based refinement was proposed to reach the final building
change mask. Thus, the resulting masks before and after the
refinement procedure are both calculated and evaluated. In the
North Korea test region, we have used Theight = 3m, Tarea =
50m2 and Tconvexity = 0.55 as thresholds. And in the Munich
test region, as the buildings have a larger size and complicated
roof shapes than North Korea, we manually modified these
threshold values to Tarea = 100m2 and Tconvexity = 0.50
to improve the results. The accuracies are recorded in the
columns [16]before and [16]after in Table IX. The refinement

is not included in this article to avoid unnecessary threshold
parameters; thus, to achieve an automatic and robust work-
flow. By comparing the KAs with Tables V, VI and VII, one
can see that the shape-based refinement can further improve
the result accuracy. But the fusion model in [16] performs
rather weakly. All obtained KAs are lower than values from
the proposed refined decision fusion approaches, especially for
test regions 2 and 3.

TABLE IX
COMPARISON WITH EXISTING METHODS.

kMNFrandom kMNFmanual [16]before [16]after
KA OA KA OA KA OA KA OA

Region1 0.7178 0.9799 0.5477 0.9803 0.5929 0.9628 0.6312 0.9683
Region2 0.6791 0.9822 0.2458 0.9688 0.6433 0.9681 0.6718 0.9718
Region3 0.2195 0.9794 0.2272 0.9799 0.3060 0.9375 0.3287 0.9447
Region4 0.2057 0.9878 0.1937 0.9876 0.4909 0.9912 0.5641 0.9941

It has to be mentioned that vegetation change is not noted
as false alarm in the improved decision fusion model. As the
vegetation change and building change can be easily separated
by using a vegetation index. [16] has adopted vegetation index
as no-building change indicators to highlight building changes.
This step is not considered in this article as not many forest
changes are available in the test regions. Moreover, if forest
changes are of interest, we can easily modify this model
using vegetation index to separate forest changes from building
changes.

V. CONCLUSIONS AND PERSPECTIVES

Building change detection is a difficult topic, to solve
uncertain change information from images and DSMs, deci-
sion fusion methods have been introduced as a new concept
and proved to be efficient and appropriate. The innovative
contribution of this article is the improvement of the decision
fusion models. DS as well as DSmT decision fusion models
are further developed to solve the building change detection
problem in this article. Another contribution lies in the BBA
calculation procedure, and the sigmoid distribution is further
improved by taking both concordance and discordance situa-
tions. As a third contribution, the reliability of each indicator
is introduced according to the change objects of interest.

The proposed building change detection models enable an
improved result by comparing to the original fusion model
and other change detection methods. A comparative analysis
of the results shows that there is not a so big difference of
performances between DS and DSmT fusion methods based
on the best decisional strategy and so we can in practise use
the simplest fusion method to reduce to computational burden
without degrading too much the performance. Of course the
most critical question is to select beforehand the decisional
strategy based on type of region under analysis, for this we
need to define efficient indicators for characterising each type
of region which then will help us to automatically select the
best criterion to use. Our future research works will address,
and hopefully help, to solve this important question.
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Fig. 18. Effect of windowsize on KA for test region 1 (a), test region 2 (b), test region 3 (c) and test region 4 (d).

REFERENCES

[1] D. Lu, et al., Change detection techniques, International Journal Remote
Sens, Vol. 25(12), pp.2365–2407, 2004.

[2] A.P. Tewkesbury, et al., A critical synthesis of remotely sensed optical
image change detection techniques, Remote Sensing of Environment,
Vol. 160, pp. 1–14. 2015.

[3] Z.-G. Liu, et al., Change detection in heterogenous remote sensing
images via homogeneous pixel transformation, IEEE Trans. on Image
Processing, Vol. 27(4), pp. 1822–1834, 2018.

[4] L. Bruzzone, D.F. Prieto, Automatic analysis of the difference image for
unsupervised change detection, IEEE Trans. on Geoscience and Remote
Sensing, Vol. 38(3), pp. 1171–1182, 2000.

[5] A.A. Nielsen, The regularized iteratively reweighted MAD method for
change detection in multi-and hyperspectral data, IEEE Trans. on Image
Processing, Vol. 16(2), pp. 463–478, 2007.

[6] R. Qin, J. Tian, P. Reinartz, 3D change detection–approaches and
applications, ISPRS Journal of Photogrammetry and Remote Sensing,
Vol. 122, pp. 41–56, 2016.

[7] W. Li, et al., A new approach to performing bundle adjustment for
time series UAV images 3D building change detection, Remote Sensing,
Vol. 9(6), 625, 2017.

[8] S. Pang, Building change detection from bi-temporal dense-matching
point clouds and aerial images, Sensors, Vol. 18(4), 966, 2018.

[9] B. Sirmacek, C. Unsalan, A probabilistic framework to detect buildings
in aerial and satellite images, IEEE Trans. on Geoscience and Remote
Sensing, Vol. 49(1), pp. 211–221, 2011.

[10] M. Janalipour, M. Taleai, Building change detection after earthquake
using multi-criteria decision analysis based on extracted information
from high spatial resolution satellite images, Int. Journal of Remote
Sensing, Vol. 38(1), pp. 82–99, 2017.
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Abstract—This paper investigates the use of the URREF
ontology to characterize and track uncertainties arising within
the modeling and formalization phases. Estimation of trust
in reported information, a real-world problem of interest to
practitioners in the field of security, was adopted for illustration
purposes. A functional model of trust was developed to describe
the analysis of reported information, and it was implemented with
belief functions. When assessing trust in reported information,
the uncertainty arises not only from the quality of sources or
information content, but also due to the inability of models
to capture the complex chain of interactions leading to the
final outcome and to constraints imposed by the representa-
tion formalism. A primary goal of this work is to separate
known approximations, imperfections and inaccuracies from
potential errors, while explicitly tracking the uncertainty from
the modeling to the formalization phases. A secondary goal is to
illustrate how criteria of the URREF ontology can offer a basis
for analyzing performances of fusion systems at early stages,
ahead of implementation. Ideally, since uncertainty analysis runs
dynamically, it can use the existence or absence of observed states
and processes inducing uncertainty to adjust the tradeoff between
precision and performance of systems on-the-fly.

Keywords: uncertainity, reported information, trust, belief

functions, information fusion, DSmT, URREF ontology.

I. INTRODUCTION

A key element when designing information fusion systems

is the way the system designer isolates and analyzes real world

phenomena. A model is abstracted into a simpler representa-

tion, in which components, modules, interactions, relationships

and data flows are easier to express. Uncertainty tracking

highlights approximations induced by model construction and

its formalization, as well as providing a checklist to ensure

that all uncertainty factors have been identified and considered

ahead of system implementation.

This paper illustrates the use of the uncertainty represen-

tation and reasoning framework (URREF) ontology [1] to

identify and assess uncertainties arising during the modeling

and formalization phases of an information fusion system

intended to estimate trust in reported information.

Trust assessment is a real-world problem grounded in many

applications relying on reported items, with different persons

observing and then reporting on objects, individuals, actions

or events. For such contexts, using inaccurate, incomplete or

distorted items can result in unfortunate consequences and

analysts need to ensure the consistency of reported information

by collecting multiple items from several sources.

From the perspective of an information analyst, trust can

be analyzed along two dimensions: the subjective evaluation

of items reported by the source itself, called self-confidence,

and the evaluation of source by the analyst, called reliability.

While self-confidence encompasses features of subjectivity,

the reliability of a source is related to the quality of previously

reported items, the competence of the source for specific

topics, and the source’s capacity for misleading intentions.

Trust estimation aims at capturing, in an aggregated value,

the combined effects of self-confidence and reliability on the

perceived quality of information. The model is represented

with belief functions, a formalism which offers a sound math-

ematical basis to implement fusion operators which estimate

trust by combining self-confidence and reliability.

The model developed for trust assessment focuses on the

global characterization of information and provides a better

understanding of how trust is to be estimated from various

dimensions. The overall process has humans as a central

element in both the production and the analysis of information.

Trust in reported information offers a good illustration for

tracking uncertainty: the phenomenon is complex, so any

model adopted is generally a simplification of the real world

interactions. Uncertainties can be made explicit not only for

static elements of the model, such as sources or items, but

also for the dynamic processes of combining items with one

another. Moreover, adopting belief functions as representation

formalism will have an impact on the way an information

system could be implemented and on the accuracy of its

results.

The contribution of this paper is twofold: first, it presents

a trust estimation model which combines the reliability of

sources and self-confidence of reported items, and, second,

the paper analyzes types of uncertainty occurring during

modeling and formalization by relating elements of the model

to uncertainty criteria defined by the URREF ontology.

The remainder of this paper is divided into 8 sections:

section II discusses related approaches for trust modeling and

uncertainty assessment. The problem tackled in this paper

in presented in section III. Section IV describes the model

developed for trust estimation, while its implementation with

Originally published as: V. Dragos, J. Dezert, K. Rein, Tracking Uncertainty Propagation from Model to 
Formalization: Illustration on Trust Assessment, Journal of Advances in Information Fusion, Vol. 13, 
No. 2, pp. 216–234, December 2018, and reprinted with permission.
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belief functions is presented in section V. The analysis of

uncertainty is discussed in VI, while examples and scenarios

for trust assessment are presented in section VII. Strengths

and limitations of belief-based formalization are discussed in

section VIII and section IX concludes this paper.

II. RELATED APPROACHES

The work presented in this paper is related to approaches for

trust modeling and assessment as well as solutions for uncer-

tainty analysis for information fusion systems. Trust modeling

is not a new research topic; it spans diverse areas such as

agent systems [2] and logical modeling and argumentation [3].

The Internet and social media offer new application contexts

for trust assessment; this topic is addressed in relation to

service provision on the Internet [4], social networks analysis

[5], and crowdsourcing applications [6]. Trust analysis is also

of interest in the military field where techniques have been

developed in order to identify clues of veracity in interview

statements [7].

The concept of trust in these communities varies in how

it is represented, computed and used. Although having an

obvious social dimension, trust is not only understood with

regard to other humans, but also towards information pieces

[6], information sources [8], Internet sites [9], algorithms for

data and knowledge fusion [10], intelligent agents [2], and

services for the Internet of things [11].

While definitions of trust vary from one domain to another,

there are some common elements. The first commonality for

all research areas cited above is to consider trust as a user-

centric notion that needs to be addressed in integrated human-

machine environments which rely heavily on information col-

lected by humans, even if further processing can be executed

automatically. Moreover, all definitions associate some degree

of uncertainty with trust, which is then captured by concepts

such as subjective certainty [12] and subjective probability

[13].

Trust goes hand in hand with the concepts veracity [14]

and deception. [15] addresses veracity along the dimensions

of truthfulness / deception, objectivity / subjectivity and

credibility / implausibility. The authors developed a verac-

ity index ranging from true/objective/credible to untrustwor-

thy/subjective/implausible to characterize texts in the context

of big data analysis. Deception is defined as a message

knowingly transmitted with the intent to foster false beliefs or

conclusions. The topic is addressed in studies from areas such

as interpersonal psychology and communication [16], [17] and

it is also considered in the field of natural language processing,

as part of a larger research direction tackling subjectivity

analysis and the identification of private states (emotions,

speculations, sentiments, beliefs). These solutions stem from

the idea that humans express various degrees of subjectivity

[18] that are marked linguistically and can be identified with

automatic procedures [19].

Contributions on trust estimation keep the distinction be-

tween analyzing the source of information, the item reported

and reasoning about trust. Approaches developed for trust

in information sources consider that trust is not a general

attribute of the source but rather related to certain properties:

competence [20], sincerity and willingness to cooperate [3].

On this basis, it becomes possible to consider the competence

of a source not in general but with respect to specific topics

[21]. Trust can be also analyzed in relation to roles, categories

or classes [22].

Research efforts on reasoning about trust analyze informa-

tion sources from past behaviors rather than directly from their

properties [23], or they infer trust from estimations already

computed for a set of properties [24]. These approaches

generally focus on building trust by using argumentation [25]

or beliefs functions [26], or investigating the joint integration

of those techniques [27]. Taking this work a step further, [28]

identified several patterns for reasoning about trust and its

provenance while the notion of conflict in handling trust is

discussed in [29].

As shown by approaches above, trust is a multifaceted con-

cept and, in practice, this complex notion can be decomposed

into two components: communication or interaction trust, and

data trust [30]. The model developed deals with data trust

and keeps the distinction between sources and items provided

by those sources, although several approaches consider these

elements as a whole [26], estimating the trust of information

sources [24], [29] rather than information items. The model

does not require statistical data to infer the behavior of

the source [23] and introduces reliability to characterize the

source. More specifically, reliability encompasses not only

competence [22], [20] and reputation [21] - two attributes

already considered by previous approaches - but also intentions

which constitute an original aspect of the model. Intention is

of important significance in the context of human-centered

systems, including open-sources, and supports the analysis of

emerging phenomena such as on-line propaganda or disinfor-

mation. Another original aspect of the model is consideration

of the characterization of items by the source itself, thus

overcoming a main limitation of the solution presented in

[31]. Our approach can be considered as partially overlapping

solutions investigating trust propagation in direct and indirect

reporting [28], [25], and the model enables a particular kind

of trust estimation, based both on more or less complete

characterizations of the source by the analyst, and more or

less accurate characterizations of the items by the source. The

model also addresses disagreement and the fusion of diverging

opinions, not in a panel of experts as described in [27],

but rather between items showing high levels of confidence

according to the source and sources having low reliability

according to the analyst. By ascribing characterizations to

both information sources and reported items, the model allows

analysts to make use of both prior experience and their own

beliefs in order to assess various degrees of trust.

From a different perspective, the evaluation of uncertainty

regarding the inputs, reasoning and outputs of the informa-

tion fusion is the goal of Evaluation Techniques for Un-
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certainty Representation Working Group1 (ETURWG). The

group developed an ontology for this purpose [1]. The URREF

ontology defines the main subjects under evaluation [32],

such as uncertainty representation and reasoning components

of fusion systems. Furthermore, the frame also introduces

criteria for secondary evaluation subjects: sources and pieces

of information, fusion methods and mathematical formalisms.

URREF criteria have generic definitions and therefore can be

instantiated for applications with coarser or finer granularity

levels. This means evaluation metrics can be defined for

data analysis [33], increased particularity for data specific

types [34] or attributes, reliability and credibility [35], self-

confidence [36] or veracity [37].

In addition to allowing a continuous analysis of uncertainty

representation, quantification and evaluation, as described in

[38], URREF criteria are detailed enough to capture model-

embedded uncertainties [39], imperfection of knowledge rep-

resentations [40], and their propagation in the context of the

decision loop [41]. The frame also offers a basis to compare

different fusion approaches [42]. URREF criteria were used for

uncertainty tracking and investigation in several applications:

vessel identification for maritime surveillance [43], activity

detection for rhino poaching [44] and imagery analysis for

large area protection [45].

Beyond developing a model for trust estimation, this paper

also fills a gap within the ETURWG community by illustrating

how uncertainty analysis tracks imperfections occurring from

problem definition to model abstraction and formalization.

III. HUMAN SOURCES AND REPORTED INFORMATION

Many applications rely on human sources which are used

to continuously supply observations, hypotheses, subjective

beliefs and opinions about what they sense or learn. In such

applications reports are often wrong, due to environment

dynamics, simple error, malicious act or intentions, [46]. From

the analyst standpoint, decisions have to be made based on

indirect reporting and trust relies upon the in-depth inves-

tigation of items and sources, thus the analysis of reported

items is a critical step. This analysis is a multilevel process,

relying on the ability of analysts to understand the content

of messages and assess their quality from additional clues.

The use cases described below highlight levels of indirection

occurring when collecting information and their with impact

on trust estimation.

A. Assertions, opinions and reported information

For illustration, let’s consider X , the analyst receiving

information provided by a human source Y .

Case 1: direct reporting X is an analyst collecting ev-

idence in order to decide whether or not an individual is

involved in terrorist activities. In particular, he takes into

account reports submitted by Y , a human source. Those

reports usually consist on a mixed set of assertions (e.g.,

descriptions of events or states observed by Y ) and opinions

1http://eturwg.c4i.gmu.edu/

(i.e., judgments, assessments, or beliefs) expressed by Y about

assertion which give the analyst an insight into how strongly

the source commits to the assertion, see fig. 1.

Fig. 1. Assertions and opinions in human messages.

In the statement contained in fig. 1, the source Y lets us

know that she does not commit her full belief to the assertion

that John is a terrorist, otherwise the reporter would have used

phrasing such as I am completely convinced or it is without

doubt or simply reported John is a terrorist as an unadorned

statement.

The information item is the sentence, which contains the

assertion John is a terrorist and the uncertainty degree to be

assigned because the analyst knows that Y is not completely

certain about her own statements. The analyst must make a

judgment about the veracity of John being a terrorist based

upon factors such as previous experience with Y ’s assessments

in the past, or, perhaps, on the fact that other sources are

relating the same information.

Case 2: indirect reporting Again, let X be an analyst

collecting evidence in order to decide whether or not an

individual is involved in terrorist activities. In this case, he

takes into account reports submitted by Y , a human source

who is herself relating information obtained from a secondary

source named Mary, see fig. 2.

Fig. 2. Hearsay, assertions and opinions in human messages.

The source Y does not report on her direct observations

or her deductions or beliefs, but conveys information received

from a second source, in this case Mary, in the statement in

fig. 2.

In this report the information item is again the sentence

containing the assertive part John is a terrorist but this use

case introduces more levels of complexity in uncertainty to

deal with. The information that the assertion comes from Mary,

who has added her own opinion, is a distancing mechanism

on the part of the source Y as (unlike in fig. 1), she is neither

claiming the opinion nor the assertion.

This case introduces yet more layers of uncertainty. How

sure can we be that the reporter Y has accurately repeated

what Mary said? For example, did Mary really say it is likely
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or did the reporter insert this (intentionally or unintentionally)

based upon the reporter’s assessment of the reliability of

Mary as a source of information? Or perhaps, subtly, Y is

expressing her own uncertainty by putting words in Mary’s

mouth. Furthermore, it is possible Mary made this statement

under circumstances which would strengthen or weaken this

statement, but those conditions have not been passed on by

the reporter.

The goal of the analyst is to take this assertion into account,

but also to encode his own belief about the quality of the

source further in the analysis. All these different attitudes

have to be evaluated by the analyst, who may have additional

background information or prior evaluation of the source that

have to be considered.

In both cases discussed above, the outcome of the analyst

is the assertive part of the information item, augmented with a

coefficient that helps to measure and track the different levels

of trust for their future exploitation. For the purpose of this

work, this quality is called trust in reported information.

B. Concepts and notions for trust assessment

This section introduces several notions that are relevant for

trust analysis.

Trustworthiness of information sources is considered, for the

purpose of this work, as confidence in the ability and intention

of an information source to deliver correct information, see

[47]. Trustworthiness is an attribute of information sources

who have the competences to report information, and who can

be relied upon to share sincerely and clearly their beliefs on

the uncertainty level of reported information. An item provided

by such a source is then trusted by analysts.

Self-confidence [36] captures the explicit uncertainty as-

signed to reported assertions by the source. Statements may

include the source’s judgments when lacking complete cer-

tainty; these judgments are generally identified through the use

of various lexical clues such as possibly, probably, might be, it

is unlikely, undoubtedly, etc., all of which signal the source’s

confidence (or lack thereof) in the veracity of the information

being conveyed. It should be noted that self-confidence, in our

usage understood as the linguistic dimension of the certainty

degree that the source assigns to reported items, is an aspect

exhibited by the source, but it will be considered from the

analyst’s standpoint during trust analysis.

Reliability of sources indicates how strongly the analyst is

willing to accept items from a given source at their face-value.

As an overall characterization, reliability is used in this work

to rate how much a source can be trusted with respect to their

reputation, competence and supposed intentions.

Reputation of sources [48] captures a commonly accepted

opinion about how the source performs when reporting infor-

mation, and is generally understood as the degree to which

prior historical reports have been consistent with fact. For

human sources, reputation is considered by the analyst for

each source based on previous interactions with the source

and on the source’s history of success and failure in delivering

accurate information. Reputation relies, to a large extent, upon

negative and positive experiences provided to the analyst by

the source in the past.

Competence of sources [20] is related to a source’s pos-

session of the skills and knowledge in reporting on various

topics: This aspect defines to what extent a human source can

understand the events they report on, whether the source has

the ability to accurately describe those events, and how capable

the source is of following the logic of processes producing the

information.

Intentions correspond to specific attitudes toward the effect

of one’s actions or conduct. Reporting information can become

more a means to manipulate others than a means to inform

them [49] and thus can be carried out with the express

purpose of inducing changes in another person’s beliefs and

understanding. Intentions are specific to human sources as

only humans have the capacity to deliberately provide false

or misleading information. Sensors may provide erroneous

data due to a number of factors such as device failure or

environmental conditions, but never due to intention.

In addition to the above facets, credibility of information

and reliability of sources are two notions introduced by the

STANAG 2511 [50], which standardizes the terminology used

in analysis of intelligence reports used by NATO Forces

with distinct focus on sources and information provided.

STANAG reliability is understood with respect to the quality

of information that has been delivered by sources in the past.

STANAG credibility relies on the intuition that a joint analysis

of items in combination with each other will likely reveal

inconsistencies, contradictions or redundancies. Reliability and

credibility are independent criteria for evaluation. Definitions

for both reliability and credibility are in natural language.

Attributes of sources and information items adopted for the

model of trust are related to the notions introduced by the

STANAG 2511 but are addressed differently: reliability of

sources is understood here in terms of source competence,

reputation and intentions, while credibility is restricted to

features of self-confidence as described above.

IV. A FUNCTIONAL MODEL OF TRUST

This section introduces the model developed to estimate

trust in reported information by taking into account the re-

liability of the source and the source’s own characterization

of reported items. The advantage of this distinction is to better

dissociate the impact of both beliefs of sources and opinions

of analysts on the source on the information provided.

Even if the primary function of a source is to provide

information, we keep the distinction between the source and

the information by considering separate dimensions for each

element. The rationale behind this is the observation that even

reliable sources can sometimes provide inaccurate or imprecise

information from one report to another, which is even more

plausible in the case of human sources.

The model, illustrated in fig. 3., is composed of a source

which provides an information item augmented with a degree

of uncertainty captured by self-confidence to an analyst. Based

upon his direct assessment of the reliability of the source,
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the analyst constructs his own estimation of trust in the item

reported.

Fig. 3. Model for trust analysis.

In the following section, the model is discussed using a

granularity that is detailed enough to describe its elements, but

still rough enough to avoid the adoption of a representation

formalism.

A. Elements of the trust model

The model is composed of two elements: an information

source and reported items from that source. The analyst is

considered to be outside the model, although she has multiple

interactions with its elements.

Definition of information source: An information source

is an agent who provides an information item along with

a characterization of its level of uncertainty. ”Source” is a

relative notion, depending on the perspective of analysis. In

general, information is propagated within a chain relating

real world information to some decision maker, and agents

along the path can be both trained observers, whose job is

to provide such reports, as well as witnesses or lay observers

who may add items, in spite of not being primarily considered

as information sources, but rather as opportunistic ones.

The notion of source is central in many information fusion

applications and numerous research efforts aimed at modeling

the properties of those applications. A general analysis of

sources is undertaken by [51], who identify three main classes:

S-Space, composed of physical sensors, H-Space for human

observers and I-Space for open and archived data on the

Internet. In [52], a unified characterization of hard and soft

sources is described, along with a detailed description of their

qualities and processing capabilities.

Processing hard sensor information is widely covered [53] in

the research community, and can be considered quite mature,

while the integration of human sources brings many new

challenges. Our model addresses human sources, and reported

items can refer to actions, events, persons or locations of

interest.

Information reported by humans is unstructured, vague,

ambiguous and subjective, and thus is often contrasted with

information coming from physical sensors, described as struc-

tured, quantitative and objective. While humans can deliber-

ately change the information or even lie, sensors are also prone

to errors and therefore hard information items are not always

accurate.

For human agents, the source is part of the real world,

(a community, a scene, an event) and can be either directly

involved in the events reported, or just serving as a witness.

Definition of reported information: Reported information

is a couple (I, χ(I)), where I is an item of information and

χ(I) the confidence level as assigned by the source. Items are

information pieces that can be extracted from natural language

sentences, although the extraction and separation from subjec-

tive content are out of the scope for the model developed. Each

item I has assertive ia and subjective is components conveying

factual and subjective contents respectively.

The analysis of reported information continues to be an

open topic as the fusion of information from soft sources

receives increasing attention in recent years. Although some

authors have developed logic-based approaches for modelling

distortions of items exchanged between agents who have both

the intention and the ability to deceive [31], there are still

more challenges arising when the information is analyzed in

its textual form.

Features of uncertainty, as expressed in natural language

statements, are analyzed in [54] while [55] provides a broader

discussion of pitfalls and challenges related to soft data

integration for information fusion.

B. Functions of the trust model

The model introduces several functions estimating features

of reliability, self-confidence and trust, as described hereafter.

Definition of a reliability function: A reliability function

is a mapping which assigns a real value to an information

source.

This real value is a quantitative characterization of the

source, inferred with respect to the source’s previous failures,

its reputation and the relevance of its skills for specific

domains. For this model, the reliability of human sources

combines three features: competence, reputation and intention.

Competence captures the intuition that the quality of informa-

tion reported by a source depends on the level of training

and expertise, which may be designated as satisfactory or not,

depending upon the task. Reputation is the overall quality of a

source, estimated by examination of the history of its previous

failures. Intentions refer to attitudes or purposes, often defined

with respect to a hidden purpose or plan to achieve.

Reliability is a complex concept and, from a practical

standpoint, it is difficult to have complete information about

the global reliability of a source. Thus, this model describes

reliability along the three attributes (competence of a source,

its reputation and its intentions) described above. In practical

applications, this solution allows for compensation for insuf-

ficient information on one or several aspects of reliability and
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to conduct, if necessary, the analysis of reliability based on

just one attribute.

Evaluation of reliability: Assessing reliability is of real

interest when opportunistic sources are considered because

the analyst has neither an indication of how the source might

behave nor the ability to monitor or control either the human

providing the information or the environment in which the

source operates. Various methods can be developed to estimate

competence, reputation and intentions of the source. For

example, competence is closely related to the level of training

of an observer or can be defined by domain knowledge. Values

can be expressed either in a linguistic form (bad, good, fair,

unknown) or by a number. Reputation is an attribute which can

be constructed not just by examining previous failures of the

source but also by considering its level of conflict with other

sources; this too can be expressed by numeric or symbolic

values.

While reputation and competence can be, at least in some

cases, estimated from prior knowledge, characterizing the

intentions of a source is subject to human perception and anal-

ysis. Judgment of human experts is needed not just because

there usually is no a priori characterization of the source with

respect to its intentions but also because it is important to

assess those aspects from the subjective point of view of an

expert in the form of binary values only.

From a practical standpoint, it is suitable to provide an

expert with a description of source competence, reputation and

intentions as assessed independently. This way, experts can

have the opportunity to develop different strategies of using

reliability: they can decide to assign different importance to

those attributes under different contexts or can use their own

hierarchy of attributes. For instance, an expert may consider

as irrelevant the information provided by a source whose

competences is lower than a specific threshold or if he suspects

the source of having malicious intentions.

Definition of a self-confidence function: A self-confidence

function is a mapping linking a real value and an information

item. The real value is a measure of the information credibility

as evaluated by the sensor itself and is of particular interest

for human sources, as often such sources provide their own

assessments of the information conveyed. Identifying features

of self-confidence requires methods related to a research task

of natural language processing: the identification of assertions

and opinions in texts. In this field, the commonly adopted

separation of those notions considers assertions as statements

that can be proven true or false, while opinions are hypotheses,

assumptions and theories based on someone’s thoughts and

feelings and cannot be proven.

Evaluation of self-confidence: The estimation of self-

confidence aims at assigning a numerical value which cap-

tures how strongly the author stands behind assertions in the

statement, on the basis of lexical clues he has included in the

utterance. More generally, markers of an author’s commitment

are in the form of hedges, modal verbs and forms of passive/

active language. A hedge is a mitigating word that modifies

the commitment to the truth of propositions, i.e., certainly,

possibly. Its impact can be magnified by a booster (highly

likely) or weakened by a downtoner (rather certain).

Modal verbs indicate if something is plausible, possible,

or certain (John could be a terrorist, you might be wrong).

Moreover, in some domains sentences making use of the pas-

sive voice are considered as an indicator of uncertainty, in the

sense that author seeks to distance himself from the assertions

in the items reported through use of passive voice. Quantifying

self-confidence is a topic of particular interest for intelligence

analysis, and it was early addressed by Kent in 1962, [56] who

created a standardized list of words of estimative probability

which were widely used by intelligence analysts. This list has

continued to be a common basis to be used by analysts to

produce uncertainty assessments. Kesselman describes in [57]

a study conducted to analyze the way the list was used by

analysts over the past, and identifies new trends to convey

estimations and proposes a new list having the verb as a

central element. Given the variety of linguistic markers for

uncertainty, the estimation of a numerical value based on

every possible combination seems unrealistic, as the same

sentence oftencontains not just one but multiple expressions

of uncertainty. Additionally, assigning numerical values to

lexical expressions is not an intuitive task, and Rein shows

that there are no universal values to be associated in a unique

manner to hedges or other uncertainty markers, see [58]. As

the author argues further, it is, however, possible to order those

expressions and use this relative ordering as a more robust way

to compare combinations of uncertainty expressions, and thus

highlight different levels of uncertainty in natural language

statements.

Using the model for trust analysis: The model proposed in

this work proposed in this work combines various attributes

of the source (discussed previously under “reliability”) with

“self-confidence” in order to capture trust of information as

conveyed by the human. The model is source-centric pre-

dominantly focused on the source’s ability to correct, alter or

qualify the information report Although the rules for ranking,

prioritizing and combining the attributes introduced by the

model can be drafted empirically, the estimation of a trust

value requires a formal representation of the model.

A possible solution for estimating a unified value for

trust is to consider reliability and self-confidence within the

framework of an uncertainty theory and to rely on the set

of combination rules the theory defines - for example, those

developed in probability theory, in possibility theory, or in

belief functions theory. All these theories provide various

operators to combine reliability and self-confidence in order

to estimate trust.

In the following the model is represented by using belief

functions and several scenarios are used to illustrate trust

estimation.
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V. TRUST FORMALIZATION WITH BELIEF FUNCTIONS

The aim of trust formalization is to provide a formal repre-

sentation of the model, combining the capability to exploit the

structure and relationship of elements of the model with the

ability to express degrees of uncertainty about those elements.

Of particular interest to this paper is the observation that the

developed model introduces a cognitive view of trust as a com-

plex structure of beliefs that are influenced by the individual’s

opinions about certain features and elements, including their

own stances. Such a structure of beliefs determines various

degrees of trust, which are based on personal choices made

by analyst, on the one hand, and the source, on the other hand.

Therefore, the formalization requires a formalism that is more

general than probability measures or fuzzy category represen-

tation, which are more suitable for applications considering

trust in the context of interactions between agents. Moreover,

the limitations of using subjective probabilities to formalize

trust from this cognitive standpoint are clearly stated in [13].

As a result, the model was represented with belief functions, a

formalism that is consistent with the cognitive perspective of

trust adopted by the model. This belief-based representation

provides the most direct correspondence with elements of the

model and their underlying uncertainty, while being able to

quantify subjective judgments.

After introducing main concepts of belief functions, this

section shows how the formalism is used to represent the trust

model.

A. Basic Belief Assignment

Belief Functions (BF) have been introduced by Shafer in

his his mathematical theory of evidence [59], also referred

to Dempster-Shafer Theory (DST), to model epistemic un-

certainty. The frame of discernment (FoD) of the decision

problem under consideration, denoted Θ, is a finite set of

exhaustive and mutually exclusive elements. The powerset of

Θ denoted 2Θ is the set of all subsets of Θ, empty set included.

A body of evidence is a source of information characterized by

a Basic Belief Assignment (BBA), or a mass function,which

is the mapping m(.) : 2Θ → [0, 1] that satisfies m(∅) = 0,

and the normalization condition
∑

A∈2Θ
m(A) = 1. The be-

lief (a.k.a credibility) Bel(.) and plausibility Pl(.) function,s

usually interpreted as lower and upper bounds of unknown

(subjective) probability measure P (.), are defined from m(.)
respectively by

Bel(A) =
∑

B⊆A|B∈2Θ

m(B), (1)

Pl(A) =
∑

B∩A 6=∅|B∈2Θ

m(B). (2)

An element A ∈ 2Θ is called a focal element of the BBA

m(.), if and only if m(A) > 0. The set of all focal elements

of m(.) is called the core of m(.) and is denoted K(m). This

formalism allows for modeling a completely ignorant source

by taking m(Θ) = 1. The Belief Interval (BI) of any element

A of 2Θ is defined by

BI(A) , [Bel(A), P l(A)]. (3)

The width of belief interval of A, denoted U(A) = Pl(A)−
Bel(A) characterizes the degree of imprecision of the un-

known probability P (A), often called the uncertainty of A.

We define the uncertainty (or imprecision) index by

U(m) ,
∑

A∈Θ

U(A), (4)

to characterize the overall imprecision of the subjective

(unknown) probabilities committed to elements of the FoD

bounded by the belief intervals computed with the BBA m(.).

Shafer proposed using Dempster’s rule of combination for

combining multiple independent sources of evidence [59]

which is the normalized conjunctive fusion rule. This rule has

been strongly disputed in the BF community after Zadeh’s

first criticism in 1979, and since the 1990s many rules have

been proposed to combine (more or less efficiently) BBAs; the

reader is advised to see discussions in [60], in particular the

proportional conflict redistribution rule number 6 (PCR6). To

combine the BBAs we use the proportional conflict redistribu-

tion (PCR) rule number 6 (denoted PCR6) proposed by Martin

and Osswald in [60] because it provides better fusion results

than Dempster’s rule in situations characterized by both high

and low conflict as explained in detail in [61], [62].

The PCR6 rule is based on the PCR principle which

transfers the conflicting mass only to the elements involved

in the conflict and proportionally to their individual masses,

so that the specificity of the information is entirely preserved.

The steps in applying the PCR6 rule are:

1) apply the conjunctive rule;

2) calculate the total or partial conflicting masses; and

3) redistribute the (total or partial) conflicting mass propor-

tionally on non-empty sets.

The general PCR6 formula for the combination of n > 2
BBAS is very complicated (see [60] Vol. 2, Chap. 2). For

convenience’s sake, we give here just the PCR6 formula for

the combination of only two BBAs. When we consider two

BBAs m1(.) and m2(.) defined on the same FoD Θ, the PCR6

fusion of these two BBAs is expressed as mPCR6(∅) = 0 and

for all X 6= ∅ in 2Θ

mPCR6(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈2
Θ\{X}

X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
], (5)

where all denominators in (5) are different from zero. If a

denominator is zero, that fraction is discarded. A very basic

(not optimized) Matlab code implementing the PCR6 rule can
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be found in [60] and [63], and also in the toolboxes repository

on the web2.

Instead of working with quantitative (numerical) BBA, it

is also possible to work with qualitative BBA expressed by

labels using the linear algebra of refined labels proposed in

Dezert-Smarandache Theory (DSmT), [60] (Vol. 2 & 3).

B. Trust formalization model

Because beliefs are well defined mathematical concepts in

the theory of belief functions, we prefer to use self-confidence

terminology to represent the confidence declared by a source

Y on its own assertion A. Let’s denote by A the assertion

given by the source, for instance A = John is a terrorist. With

respect to elements of the model, A (the assertion) corresponds

to ia, the assertive part of the item I and v(A) is a numeric

estimation of the subjective is component of I .

The valuation v(A) made by the source Y about the

assertion A can be done either quantitatively (by a probability

or a BBA) or qualitatively (by a label associated to a linguistic

form). This paper considers quantitative representation of v(A)
for simplicity3.

The basic information items provided by a source Y consists

of A (the assertion), and v(A) (its valuation). To be as general

as possible, we suppose that v(A) is a basic belief mass

assignment defined with respect to the very basic frame of

discernment ΘA , {A, Ā} where Ā denotes the complement

of A in ΘA, that is v(A) = (m(A),m(Ā),m(A ∪ Ā)). Note

that only two values of the triplet are really necessary to define

v(A) because the third one is automatically derived from the

normalization conditionm(A)+m(Ā)+m(A∪Ā) = 1. So one

could also have chosen equivalently v(A) = [Bel(A), P l(A)]
instead of the BBA. In a probabilistic context, one will take

m(A ∪ Ā) = 0 and so v(A) = P (A) because Bel(A) =
Pl(A) = P (A) in such a case.

The self-confidence of the source Y is an extra factor αY ∈
[0, 1] which characterizes the self-estimation of the quality of

the piece of information (A, v(A)) provided by the source

itself. αY = 1 means that the source Y is 100% confident in

his valuation v(A) about assertion A, and αY = 0 means that

the source Y is not at all confident in his valuation v(A). In the

theory of belief functions, this factor is often referred as the

discounting factor of the source because this factor is usually

used to discount the original piece of information (A, v(A))
into a discounted one (A, v′(A)) as follows [59]:

m′(A) = αY ·m(A), (6)

m′(Ā) = αY ·m(Ā), (7)

m′(A ∪ Ā) = αY ·m(A ∪ Ā) + (1− αY ). (8)

The idea of Shafer’s discounting technique is to diminish

the belief mass of all focal elements with the factor αY and

redistribute the missing discounted mass (1−αY ) to the whole

2http://bfaswiki.iut-lannion.fr/wiki/index.php/Main Page
3Without loss of generality one can always map a qualitative representation

to a quantitative one by a proper choice of scaling and normalization (if
necessary).

ignorance A ∪ Ā. Note that the valuation of the discounted

piece of information is always degraded because its uncertainty

index is always greater than the original one, that is, U(m′) >
U(m), which is normal.

The reliability factor r estimated by the analyst X on

the piece of information (A, v(A)) provided by the source

Y must take into account both the competence CY , the

reputation RY and the intention IY of the source Y . A simple

model to establish the reliability factor r is to consider that

CY , RY and IY factors are represented by numbers [0, 1]
associated to select subjective probabilities, that is CY =
P (Y is competent), RY = P (Y has a good reputation) and

RY = P (Y has a good intention (i.e. is fair)). If each of

these factors has equal weight, then one could use r =
CY ×RY × IY as a simple product of probabilities. However,

in practice, such simple modeling does not fit well with

what the analyst really needs to take into account epistemic

uncertainties in Competence, Reputation and Intention. In fact,

each of these factors can be viewed as a specific criterion

influencing the level of the global reliability factor r. This is

a multi-criteria valuation problem. Here we propose a method

to solve the problem.

We consider the three criteria CY , RY and IY with

their associated importance weights wC , wR, wI in [0, 1]
with wC + wR + wI = 1. We consider the frame of dis-

cernment Θr = {r, r̄} about the reliability of the source

Y , where r means that the source Y is reliable, and r̄
means that the source Y is definitely not reliable. Each

criteria provides a valuation on r expressed by a correspond-

ing BBA. Hence, for the competence criteria CY , one has

(mC(r),mC(r̄),mC(r ∪ r̄)), while for the reputation criteria

RY , one has (mR(r),mR(r̄),mR(r∪ r̄)) and for the intention

criteria IY , one has (mI(r),mI(r̄),mI(r ∪ r̄)).
To get the final valuation of the reliability r of the source

Y , one needs to efficiently fuse the three BBAs mC(.),
mR(.) andmI(.), taking into account their importance weights

wC , wR, and wI . This fusion problem can be solved by

applying the importance discounting approach combined with

PCR6 fusion rule of DSmT [63] to get the resultant valuation

v(r) = (mPCR6(r),mPCR6(r̄),mPCR6(r ∪ r̄)) from which

the decision (r, or r̄) can be drawn (using BI distance, for

instance). If a firm decision is not required, an approximate

probability P (r) can also be inferred with some lossy trans-

formations of BBA to probability measure [60]. Note that

Dempster’s rule of combination cannot be used here because it

does not respond to the importance discounting, as explained

in [63].

The trust model consists of the piece of information

(A, v(A)) and the self-confidence factor αY provided by the

source Y , as well as the reliability valuation v(r) expressed by

the BBA (m(r),m(r̄),m(r ∪ r̄)) to infer the trust valuation

about the assertion A. For this, we propose using the mass

m(r) of reliability hypothesis r of the source Y as a new

discounting factor for the BBA m′(.) reported by the source

Y , taking into account its self-confidence αY . Hence, the trust

valuation vt(A) = (mt(A),mt(Ā),mt(A ∪ Ā)) of assertion
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A for the analyst X is defined by

mt(A) = m(r) ·m′(A), (9)

mt(Ā) = m(r) ·m′(Ā), (10)

mt(A ∪ Ā) = m(r) ·m′(A ∪ Ā) + (1−m(r)), (11)

or equivalently by

mt(A) = m(r)αY ·m(A), (12)

mt(Ā) = m(r)αY ·m(Ā), (13)

mt(A ∪ Ā) = m(r)αY ·m(A ∪ Ā) + (1−m(r)αY ). (14)

The DSmT framework using the PCR6 fusion rule and

the importance discounting technique provides an interesting

solution for the fusion of attributes having different degrees

of importance while making a clear distinction between those

attributes.

The discounting method proposed in this work is directly

inspired by Shafer’s classical discounting approach [59]. In our

application, the classical discounting factor that we propose

integrates both the mass of reliability hypothesis m(r) and

the self-confidence factor αY . It is worth noting that more

sophisticated (contextual) belief discounting techniques [64]

exist and they could also have been used, in theory, to refine

the discounting but these techniques are much more compli-

cated and they require additional computations. The evaluation

of contextual belief discounting techniques for such types of

application is left for further investigations and research works.

VI. UNCERTAINTY ANALYSIS UNDER URREF CRITERIA

Tracking uncertainties from problem description to model

construction and formalization is done under criteria of the un-

certainty representation and reasoning evaluation framework.

The goal of URREF is to place the focus on the evaluation

of uncertainty representation and reasoning procedures. The

URREF ontology defines four main classes of evaluation

criteria: Data Handling, Representation, Reasoning and Data

Quality. These criteria make distinctions between the evalu-

ation of the fusion system, the evaluation of its inputs and

outputs, and the evaluation of the uncertainty representation

and reasoning aspects.

Listing all criteria is an extensive task and in this paper the

authors will provide one piece of the puzzle by considering

criteria that relate to the evaluation of uncertainty induced by

the proposed model. In the model developed in this paper,

uncertainty is due to imperfections of information gathering

and reporting as well as constraints of the representation

formalism.

Uncertainty analysis is carried out by assigning uncertainty

criteria to elements and functions of the trust model in order

to make explicit the uncertainty arising when the problem is

abstracted by the model and the model is then simplified in

order to fulfill constraints of specific formalism, fig. 6.

The URREF criteria selected are subclasses of two main

concepts: Credibility, a subconcept under DataCriteria, and

EvidenceHandling, a subconcept of RepresentationCriteria.

Fig. 4. Trust estimation from source to analyst.

To summarize, uncertainties of the model will be captured

by the following URREF criteria :

• Objectivity, subconcept of Credibility: indicates a

source providing unbiased information;

• ObservationalSensitivity, subconcept of Credibility:

characterizes the skills and competences of sources;

• SelfConfidence, subconcept of Credibility: measures the

certainty degree about the piece of information reported,

according to the source;

• Ambiguity, subconcept of EvidenceHandling: captures

if the sources provide data supporting different conclu-

sions;

• Dissonance, subconcept of EvidenceHandling: captures

the ability of formalism to represent inconsistent evi-

dence;

• Completeness, subconcept of EvidenceHandling: is a

measure of how much is known given the amount of

evidence; and

• Conclusiveness, subconcept of EvidenceHandling: indi-

cates how strong the evidence supports a conclusion;

Besides selecting uncertainty criteria relevant for trust es-

timation, the analysis also discusses the mapping of URREF

criteria to attributes of the model and sheds a light on imperfect

matchings. This mapping offers a basis for identifying the

limitations of the URREF ontology, by emphasizing those

elements whose characterizations in terms of uncertainty are

out of the ontology’s reach or beyond the ontology’s intended

scope.

A. Uncertainties from problem definition to model abstraction

Let M be the model for trust estimation, with elements

introduced in paragraph IV: the source Y , the reported item

I with its assertive ia and subjective is parts ,and χ(I) the

confidence level assigned by the source Y to I .

From an information fusion standpoint, inputs of the model

are the source and the information items, along with their

uncertainty, captured with the following URREF criteria: Ob-

jectivity, ObservationalSensitivity and SelfConfidence. These

criteria are subclasses of the concept InputCriteria.

Objectivity is an attribute of the source, related to its

ability to provide factual, unbiased items, without adding their

own points of view or opinions. For a source Y providing
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information item i, having is and ia as the subjective and

factual parts respectively, objectivity can be expressed as:

Objectivity(Y, I) = ψo(is, ia), (15)

where ψo(is, ia) represents the mathematically quantified ex-

pression of the subjective over the factual content of i.
ObservationalSensitivity is an attribute of the source which

represents the source’s ability to provide accurate reports.

In the proposed model, this criterion is an aggregation of

competence C and reputation R, two attributes of the model.

ObservationalSensitivity(Y, i) = ψos(C,R), (16)

where ψos(C,R) is a function aggregating values of compe-

tence and reputation.

Information items entering the system are described by

SelfConfidence. Again, considering is and ia as the subjective

and factual items conveyed by I , SelfConfidence can be

expressed as:

SelfConfidence(I) = ψsc(is), (17)

with ψsc(is) a function quantifying the subjective content of

item I .

Fig. 5. Mapping of model attributes to URREF criteria.

Fig. 5 shows the mapping between the elements of the

model and the set of relevant URREF uncertainty criteria. The

mapping shows a perfect match between SelfConfidence as

introduced by the model and the eponymous URREF criterion

as well as several imperfect matches described later in this

paper.

At source level, URREF criteria are not able to capture

in a distinct manner the features of competence, reputation

and intentions, the main attributes of the sources added by

the model under Reliability. To some extent, competence

and reputation can be related to ObservationalSensitivity, but

intentions clearly remains out of reach for URREF criteria.

B. Uncertainties from model to formal representation

Let F be the DST formalization of the trust estimation

model, with parameters introduced in paragraph V. The for-

malism induces two types of uncertainty related to its capacity

to handle incomplete, ambiguous or contradictory evidence.

The uncertainty of evidence handling is captured by Ambi-

guity, Dissonance, Conclusiveness and Completeness. Those

criteria are subclasses of the concept EvidenceHandling.

Ambiguity measures the extent to which the formalism can

handle data sets which support different conclusions.

Ambiguity(F ) = φa(αY , RY ), (18)

where the function φa(αY , RY ) considers the self-confidence

factor αY provided by the source Y and the reliability of

Y provided by the analyst RY to estimate the degree of

ambiguity. The measure is of particular interest in the case

where items having high values of self-confidence are provided

by unreliable sources.

Dissonance captures the ability of the formalism to rep-

resent inconsistent evidence. For BBA representations, disso-

nance can be related to the capacity of the formalism to assign

belief mass to an element and its negation, and can therefore

be assessed for every BBA representation build for the model.

For example, the dissonance for a source’s competence can be

in the form:

Dissonance(F ) = φd(mC(r),mC(r̄)), (19)

where φd(mC(r),mC(r̄)) is a function combining the belief

mass assigned to whether the source is considered to be

competent or incompetent, respectively.

Dissonance is useful for highlighting situations in which

there are significant differences in belief masses assigned at

the attribute level, such as when a source is considered to

be incompetent (low mC(r), highmC(r̄)) but has a good

reputation (high mR(r), low mR(r̄)).
Conclusiveness is a measure expressing how strongly the

evidence supports a specific conclusion or unique hypothesis:

Conc.(F ) = φcc(mt(A),mt(Ā),mt(A ∪ Ā)), (20)

where φcc(mt(A),mt(Ā),mt(A∪Ā)) is a function combining

the belief masses estimated for truthful, untruthful and un-

known qualifications of assertion A respectively. This measure

indicates to which extent the result of inferences can support

a conclusion, in this case whether the hypothesis that the

assertion under analysis is trustworthy or not. It can be used

during the inference process to show how taking into account

additional elements such as the competence of the source, its

reputation or intentions impact the partial estimations of trust.

Completeness is a measures of the range of the available

evidence, and captures the ability of formalism to take into

account how much is unknown. The measures is somewhat

similar to Dissonance, as is can be assessed for every BBA

representation build for the model. Thus, completeness of

source’s reliability is described as:

Completeness(F ) = φcp(m(r ∪ r̄)), (21)

where φcp(m(r ∪ r̄)) is a function depending on the belief

mass assigned to unknown.

The measure is used for estimation and analysis before

entering the fusion process, in order to have a picture of how

complete the evidence describing the various elements of the

model is, and to avoid performing fusion on highly incomplete

data sets. Both EvidenceHandling and KnowledgeHandling are

subclasses of RepresentationCriteria.
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Fig. 6. Mapping of formalism uncertainties to URREF criteria.

This section has analyzed the nature of uncertainties arising

when going from problem to model definition and then on to

formalization with belief functions. The next section shows

how uncertainties can be highlighted for particular scenarios

of trust estimation.

VII. UNCERTAINTY ANALYSIS FOR TRUST ESTIMATION

A. Running example and method for uncertainty tracking

As a running example, let’s consider an assertion A and its

valuation v(A) provided by the source Y as follows: m(A) =
0.7, m(Ā) = 0.1 and m(A ∪ Ā) = 0.2. Its self-confidence

factor is αY = 0.75. Hence, the discounted BBA m′(.) is

given by

m′(A) = 0.75 · 0.7 = 0.525

m′(Ā) = 0.75 · 0.1 = 0.075

m′(A ∪ Ā) = 1−m′(A)−m′(Ā) = 0.4

Let’s assume that the BBAs about the reliability of the

source based on Competence, Reputation and Intention criteria

are given as follows:

mC(r) = 0.8,mC(r̄) = 0.1,mC(r ∪ r̄) = 0.1,

mR(r) = 0.7,mR(r̄) = 0.1,mR(r ∪ r̄) = 0.2,

mI(r) = 0.6,mI(r̄) = 0.3,mI(r ∪ r̄) = 0.1,

with importance weights wI = 0.6, wR = 0.2 and wC = 0.2.

After applying the importance discounting technique pre-

sented in [63] which consists of discounting the BBAs with the

importance factor and redistributing the missing mass onto the

empty set, then combining the discounted BBAs with PCR6

fusion rule, we finally get, after normalization, the following

BBA

m(r) = 0.9335,

m(r̄) = 0.0415,

m(r ∪ r̄) = 1−m(r) −m(r̄) = 0.025.

The final trust valuation of assertion A reported by the

source Y taking into account its self-confidence αY = 0.75
and the reliability factor m(r) = is therefore given by Eqs.

(12)–(14) and obtaining

mt(A) = 0.4901,

mt(Ā) = 0.0700,

mt(A ∪ Ā) = 1−mt(A)−mt(Ā) = 0.4399.

Note that if mC(r) = mR(r) = mI(r) = 1, then we will

always get m(r) = 1 regardless of the choice of weightings

factors, which is normal. If there is a total conflict between

valuations of reliability based on Competence, Reputation and

Intention criteria, then Dempster’s rule cannot be applied to

get the global reliability factor m(r) because of 0/0 inde-

terminacy in the formula of Dempster’s rule. For instance,

if one has mC(r) = mR(r) = 1 and mI(r̄) = 1, then

m(r) is indeterminate with Dempster’s rule of combination,

whereas it corresponds to the average value m(r) = 2/3
using PCR6 fusion rule (assuming equal importance weights

wC = wR = wI = 1/3), which makes more sense.

The following subsections explore several scenarios for

trust assessment, corresponding to different situations of BBAs

distributions, and track the uncertainty according to URREF

criteria. Each scenario illustrates specific instances of the

model developed for trust estimation.

The method adopted to track uncertainty defines the follow-

ing measures to estimate URREF criteria:

SelfConfidence = αY ,
Ambiguity = |αY −m(r)|,
Objectivity = mI(r),

ObservationalSensitivity = min(mC(r),mR(r)).

As shown in previous formulas, URREF criteria are es-

timated based on features of the BBA formalization and

are assigned to the static elements of the model, i.e., the

source and the information item. While Objectivity and

ObservationalSensitivity captures imperfections of obser-

vations, SelfConfidence and Ambiguity reflect inaccura-

cies in reporting information to analysts. These criteria are

assessed before entering the fusion phase, and describe the

initial uncertainty present in the system before inferences.

In addition, Dissonance, Conclusiveness and

Completeness will be estimated at the scenario level

by adopting the following formulas:

Dissonance = 1− |mt(A)−mt(Ā)|,
Conclusiveness = |mt(A)−mt(Ā)|,

Completeness = 1−m(A ∪ Ā).
Criteria above will be assessed for elements impacted by the

fusion process: the reliability of the source, the updated BBAs

of the initial assertion and estimated trust. In the following

subsection we illustrate several scenarios for trust estimation

and the uncertainty analysis underlying each scenario.

B. Scenarios for trust assessment and uncertainty analysis

Scenarios introduced below provide examples of trust con-

struction using various operators and highlight the uncertainty

assigned to elements of the model and its propagation during

the fusion process.

Scenario 1 - Consensus: Suppose that Y provides the

assertion A, while stating that A certainly holds and that X
considers Y to be a reliable source.

In this case, the trust will be constructed on the basis of

two consensual opinions: the analyst X that considers Y as a
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reliable source, and the source’s conviction that the informa-

tion provided is certain. In this case, m(A) = 1, αY = 1 and

m(r) = 1, so that m′(A) = 1 and mt(A) = m(r)·m′(A) = 1.

The result will be in the form (A, v(A)) initially provided by

the source.

Uncertainity of inputs

2*Observation Objectivity 1
ObservationalSensitivity 1

2*Reporting SelfConfidence 1
Ambiguity 0

TABLE I
CONSENSUS: INPUT UNCERTAINTY.

Fusion uncertainty Dissonance Conclusiv. Complet.

Updated BBAs 0 1 1

Reliability 0 1 1

Trust 0 1 1

TABLE II
CONSENSUS: FUSION UNCERTAINTY.

This scenario illustrates an ideal situation for trust assess-

ment, where the source is trustworthy and well known to the

analyst, and observations are reported in perfect conditions. As

shown in table I, there is no uncertainty induced by the source,

and once fusion is performed the items impacted show high

values for conclusiveness and completeness, while dissonance

is 0 for the updates BBAs for values, source’s reliability and

estimated trust, as shown in table II.

Scenario 2 - Uncertain utterances: Y is considered by

X to be a reliable source and reports the assertion A, while

showing a low level of certainty v(A) about the veracity of A.

This example is relevant for situations where a reliable source

provides (possibly) inaccurate descriptions of events due to,

say, bad conditions for observation. This scenario corresponds

by example to the following case for inputs: αY = 0.6

m(A) = 0.8,m(Ā) = 0.1,m(A ∪ Ā) = 0.1,

mC(r) = 0.9,mC(r̄) = 0,mC(r ∪ r̄) = 0.1,

mR(r) = 0.9,mR(r̄) = 0,mR(r ∪ r̄) = 0.1,

mI(r) = 0.3,mI(r̄) = 0.3,mI(r ∪ r̄) = 0.6,

and wC = 0.5, wR = 0.5 and wI = 0.

This results in

m′(A) = 0.48,m′(Ā) = 0.06,m′(A ∪ Ā) = 0.46,

and

m(r) = 0.9846,m(r̄) = 0,m(r ∪ r̄) = 0.0154.

Therefore, one finally obtains the trust valuation

mt(A) = 0.47,mt(Ā) = 0.05,mt(A ∪ Ā) = 0.46.

This case shows that self-confidence has an important im-

pact on the values of discounted BBA, as m′(A) is decreased

from 0.8 to 0.48, and thus the remaining mass is redistributed

on m′(A ∪ Ā) .

The combination of competence, reliability and intention

are in line with the assumption of the scenario, which states

that Y is a reliable source. After normalization, values for

trust assessment clearly highlight the impact of uncertain

utterances, as the BBA shows a mass transfer from mt(A) to

mt(A∪ Ā). Still, values of trust are close to BBA integrating

the self-confidence, which confirms the intuition that when the

analyst X considers Y to be a reliable source, the assertion

A is accepted with an overall trust level almost equal to the

certainty level stated by the source.

Uncertainty of inputs

2*Observation Objectivity 0.3
ObservationalSensitivity 0.9

2*Reporting SelfConfidence 0.6
Ambiguity 0.38

TABLE III
UNCERTAIN UTTERING: INPUT UNCERTAINTY.

Fusion uncertainty Dissonance Conclusiv. Complet.

Updates BBAs 0.3 0.7 0.9

Reliability 0.02 0.98 0.98

Trust 0.59 0.41 0.54

TABLE IV
UNCERTAIN UTTERANCE: FUSION UNCERTAINTY.

This scenario illustrates uncertainty induced by observations

failures, as Objectivity, and SelfConfidence are low, see

table III.

While the quality of the source is highlighted by high

values of Conclusiveness and Completeness, showing the

analyst’s confidence in the reports analyzed, the impact of im-

perfect observation is shown in the overall estimation of trust,

through a combination of Dissonance, Conclusiveness and

Completeness which have values close to 0.5, see table IV.

Scenario 3 - Reputation: Suppose that Y provides A
and v(A) and X has no global description of Y in terms

of reliability. As the reliability of Y is not available, Y ’s

reputation will be used instead, as derived from historical data

and previous failures. This scenario corresponds by example

to the following case for inputs: αY = 1

m(A) = 0.8,m(Ā) = 0.1,m(A ∪ Ā) = 0.1,

mC(r) = 0.1,mC(r̄) = 0.1,mC(r ∪ r̄) = 0.8,

mR(r) = 0.9,mR(r̄) = 0.1,mR(r ∪ r̄) = 0,

mI(r) = 0.1,mI(r̄) = 0.1,mI(r ∪ r̄) = 0.8,

and wC = 0.1, wR = 0.8 and wI = 0.1.

Hence, one gets

m′(A) = 0.8,m′(Ā) = 0.1,m′(A ∪ Ā) = 0.1,

and

m(r) = 0.94,m(r̄) = 0.01,m(r ∪ r̄) = 0.03.
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Therefore, one finally obtains the trust valuation

mt(A) = 0.75,mt(Ā) = 0.09,mt(A ∪ Ā) = 0.14.

For this scenario, the source is confident about their own

assertions, and therefore

m(A) = 0.8,m(Ā) = 0.1,m(A ∪ Ā) = 0.1

and

m′(A) = 0.8,m′(Ā) = 0.1,m′(A ∪ Ā) = 0.1

have identical BBA distributions. The reliability of the source

is built namely on its reputation, as there are clues about the

competence and intentions of the source. Hence, the overall

BBA

m(r) = 0.9449,m(r̄) = 0.0196,m(r ∪ r̄) = 0.0355

is close to the initial reputation distribution

mR(r) = 0.9,mR(r̄) = 0.1,mR(r ∪ r̄) = 0

Values of trust show the impact of using not completely

reliable sources, which decreased the certainty level of the

initial BBA

m′(A) = 0.8,m′(Ā) = 0.1,m′(A ∪ Ā) = 0.1

to

mt(A) = 0.75,mt(Ā) = 0.09,mt(A ∪ Ā) = 0.14

They also support the intution that the trust assigned by the

analyst to A will have an upper limit equal to the reputation

of the source.

Uncertainty of inputs

2*Observation Objectivity 0.10
ObservationalSensitivity 0.10

2*Reporting SelfConfidence 1
Ambiguity 0.60

TABLE V
REPUTATION: INPUT UNCERTAINTY.

Fusion uncertainty Dissonance Conclusiv. Complet.

Updated BBAs 0.30 0.70 0.90

Reliability 0.07 0.93 0.95

Trust 0.34 0.66 0.84

TABLE VI
REPUTATION: FUSION UNCERTAINTY.

This scenario is similar the previous one as, in both cases,

there are incomplete descriptions of the source. For this

particular case, a historical recording of source’s failures offers

a basis to overcome the missing pieces and, in spite of low

values for Objectivity and ObservationalSensitivity (see

table V), the final trust evaluation is improved with respect

to the previous scenario and shows a better combination of

Dissonance, Conclusiveness and Completeness, as shown

in table VI.

Scenario 4 - Misleading report: In this case, Y provides

the assertion A, while stating that it certainly holds and X
considers Y to be a completely unreliable source. For this

case, the analyst knows that the report is somehow inaccurate,

for example, it cannot be corroborated or it contradicts, at least

in part. information from other (more reliable) sources. The

analyst suspects the source of having misleading intentions,

and can therefore assign a maximal uncertainty level to the

information reported. This scenario corresponds by example

to the following case for inputs: αY = 1

m(A) = 1,m(Ā) = 0,m(A ∪ Ā) = 0,

mC(r) = 0.1,mC(r̄) = 0.1,mC(r ∪ r̄) = 0.8,

mR(r) = 0.1,mR(r̄) = 0.1,mR(r ∪ r̄) = 0.8,

mI(r) = 0.1,mI(r̄) = 0.8,mI(r ∪ r̄) = 0.1,

and wC = 0.1, wR = 0.1 and wI = 0.8,. Hence, one gets

m′(A) = 1,m′(Ā) = 0,m′(A ∪ Ā) = 0,

and

m(r) = 0.02,m(r̄) = 0.91,m(r ∪ r̄) = 0.06.

Therefore, one finally obtains as trust valuation

mt(A) = 0.023,mt(Ā) = 0,mt(A ∪ Ā) = 0.976.

The values for this scenario reflect the high self-confidence

of the source and high accuracy of the assertion provided;

therefore, the initial BBA is unchanged after fusion with self-

confidence. Nevertheless, the impact of having misleading

intention is visible first on the mass distribution assigned to

reliability and then on the overall values of trust. With respect

to the initial values

m(A) = 1,m(Ā) = 0,m(A ∪ Ā) = 0,

and the partially fused ones

m′(A) = 1,m′(Ā) = 0,m′(A ∪ Ā) = 0,

the integration of a misleading source transfers the mass

assignation almost exclusively to mt(A ∪ Ā).
Intuitively, the assertion A will be ignored, as the reliability

of the source is dramatically decreased by a high mass

assignment on misleading intentions.

Uncertainty of inputs

2*Observation Objectivity 0.10
ObservationalSensitivity 0.10

2*Reporting SelfConfidence 1.00
Ambiguity 0.97

TABLE VII
MISLEADING REPORT: INPUT UNCERTAINTY.

This scenario illustrates the impact of misleading sources

on trust estimation. Hence, the use case has very good values

for reporting induced uncertainty, with high SelfConfidence
and low Ambiguity (see table VII)), but the overall trust
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Fusion uncertainty Dissonance Conclusiv. Complet.

Assertion 0 1 1

Source 0.11 0.89 0.93

Trust 0.76 0.23 0.03

TABLE VIII
MISLEADING: FUSION UNCERTAINTY.

characterization shows strong Dissonance, corroborated with

low Conclusiveness and near zero Completeness, as shown

in table VIII.

Scenario 5 - Ambiguous report: The source Y provides

A and v(A), the uncertainty level. Suppose that v(A) has a

low value, as the source is not very sure about the events

reported, and that X considers Y to be unreliable. This

scenario corresponds by example to the following case for

inputs: αY = 0.3

m(A) = 0.6,m(Ā) = 0.2,m(A ∪ Ā) = 0.2,

mC(r) = 0.1,mC(r̄) = 0.8,mC(r ∪ r̄) = 0.1,

mR(r) = 0.1,mR(r̄) = 0.8,mR(r ∪ r̄) = 0.1,

mI(r) = 0.1,mI(r̄) = 0.1,mI(r ∪ r̄) = 0.8,

and wC = 0.2, wR = 0.4 and wI = 0.4.

Hence, one gets

m′(A) = 0.18,m′(Ā) = 0.06,m′(A ∪ Ā) = 0.76,

and

m(r) = 0.02,m(r̄) = 0.43,m(r ∪ r̄) = 0.53.

Therefore, one finally obtains the trust valuation

mt(A) = 0.0040,mt(Ā) = 0.0013,

and

mt(A ∪ Ā) = 0.9946.

This scenario is an illustration for the worst practical case and

is relevant when the analyst receives a report provided by a

source that lacks the skills or competence to provide accurate

descriptions of events. In this case, the reports are incomplete,

ambiguous, or even irrelevant. In addition to low competence

and reliability, the source himself is also unsure about the

statement.

The first modification of BBA shows the strong impact of

self-confidence, which changes drastically the BBA of the

initial assertions, from

m(A) = 0.6,m(Ā) = 0.2,m(A ∪ Ā) = 0.2,

to

m′(A) = 0.18,m′(Ā) = 0.06,m′(A ∪ Ā) = 0.76.

Unsurprisingly, the overall reliability is low:

m(r) = 0.0223,m(r̄) = 0.4398,m(r ∪ r̄) = 0.5379,

Uncertainty of inputs

2*Observation Objectivity 0.10
ObservationalSensitivity 0.10

2*Reporting SelfConfidence 0.30
Ambiguity 0.27

TABLE IX
AMBIGUOUS REPORT: INPUT UNCERTAINTY.

Fusion uncertainty Dissonance Conclusiv. Complet.

Assertion 0.6 0.4 0.8

Source 0.583 0.417 0.47

Trust 0.973 0.027 0.006

TABLE X
AMBIGUOUS REPORT: FUSION UNCERTAINTY.

and the results of the final combination show an important

mass assigned to mt(A ∪ Ā) = 0.9946. Intuitively, the infor-

mation provided is useless, and considered as highly uncertain.

This scenario shows the combined effects of uncertain re-

porting and incomplete source description for trust estimation.

First, the outcome is affected by high values of uncertainty

induced during observation and reporting passes, table IX.

Then, fusion leads to a trust estimation having high values

of Dissonance, and very low values of Conclusiveness and

Completeness.
The same criteria estimated for reliability show the main

difference with respect to the previous case, which was also

based on unreliable sources. While in scenario 4 the source

still has important Completeness, this measure is drastically

decreased for this scenario, as shown in table X.

VIII. STRENGTHS AND LIMITATIONS OF BELIEF-BASED

FORMALIZATION FOR TRUST ASSESSMENT

This section discusses the strengths and limitations of the

belief-based perspective in trust modeling in the light of results

shown by previous scenarios. The main advantage of using

belief functions is that the formalism is consistent with the

cognitive perspective of trust adopted by the model, thanks

to the notion of belief. It also captures uncertainties both of

the analyst with respect to the source and of the source with

respect to their own statements with different mechanisms.

First, self-confidence is implemented thanks to a discounting

coefficient, as, in practice, the values of self-confidence may

rely upon linguistic clues of certainty/uncertainty that can be

translated into numerical values. Second, the formalization in-

troduces weighting factors in order to offer a flexible solution,

which allow for situations in which the analyst has more or

less complete knowledge about distinct attributes of the source,

or wishes to emphasize one particular attribute. Moreover,

the formalization is able to handle ignorance on various

aspects, including missing data. The overall fusion mechanism

performs trust estimation in several steps, which allows for

a better traceability of the outcome and the mapping at

different processing stages using URREF criteria. The results

of these scenarios are in line with their specific hypotheses,

reflecting the intuition that the fusion technique is appropriate

for estimating trust.
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As with any user-centric approach, the main limitation of

the solution discussed in this paper is the lack of guidance for

choosing the set of numerical values with which to instantiate

the model. For example, two different analysts may choose

differing mass distribution and weight coefficients with respect

to the same source, and they may also use slightly different

approaches to infer a numerical value from linguistic clues

when handling self-confidence. Thus, the outcome depends

crucially on the interventions of users and their ability to build

a model able to capture the situation under analysis. Also,

the solution requires preexisting knowledge about the source’s

reputation, competence, and intention, indeed, in practice, it

is difficult to have access to information on those aspects.

Provided that there is no other meta-data or domain knowledge

available for use, the model is likely to fail to produce an

accurate trust evaluation in some contexts due to the shortage

of knowledge on critical aspects.

As such, the belief-based formalization has limited capabil-

ities to explain the outcome. To overcome this limitation, a

mapping to URREF uncertainty criteria is used. The mapping

highlights when uncertainties are added into the system and

which partial results and affected. It facilitates the interpreta-

tion of results by adding additional information as to why

the item is to be trusted or no; for example, whereas the

fusion process outputs low values of trust for a given item,

the mapping to URREF criteria allows to underline problems

related to evidence collection or reporting, dissonance or

incompleteness during the fusion stages.

As shown in previous scenarios, using a belief-oriented

formalism and URREF criteria mapping offers a pragmatic

approach to develop a more comprehensive and easy to

interpret solution for trust estimation.

IX. CONCLUSION

This paper presents a computational model by which an

analyst is able to assess trust in reported information based

on several possible unknown attributes of the source as well

as additional characterization of the informational content by

the source itself. The paper also illustrates the use of URREF

criteria to track uncertainty affecting the results, from model

construction to its formalization with belief functions. First, a

model for trust estimation has been developed that combines

several attributes of sources and their own assessment of

the items reported. The model is implemented using belief

functions, and takes advantage of its mathematical background

to define fusion operators for trust assessment. Several scenar-

ios are presented to illustrate uncertainty analysis, illustrating

when uncertainty occurs and how it affects partial results for

different applications.

Tracking uncertainty is suitable for fusion systems in which

various human sources send observations of questionable

quality and there is a need to continuously update the trust

associated with reports to be analyzed. The set of URREF

criteria offers a unified basis to analyze inaccuracies affecting

trust estimation during different phases: observation, reporting,

and fusion. Select use cases clearly illustrated the benefits

of managing uncertainties arising during the modeling and

formalization phases, with the twofold analysis offering ad-

ditional details on results and improving their interpretation.

The general approach taken in this paper could be adapted to

investigate the general mechanisms by which fusion processes

integrate information from multiple sources. The solution is

especially useful for comparing different fusion approaches

with respect to their implications for uncertainty management.
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Abstract—In this paper, we present a deciding technique for
robotic dexterous hand configurations. This algorithm can be
used to decide on how to configure a robotic hand so it can
grasp objects in different scenarios. Receiving as input, several
sensor signals that provide information on the object’s shape, the
DSmT decision-making algorithm passes the information through
several steps before deciding what hand configuration should
be used for a certain object and task. The proposed decision-
making method for real time control will decrease the feedback
time between the command and grasped object, and can be
successfully applied on the robot dexterous hands. For this we
have used the Dezert-Smarandache theory which can provide
information even on contradictory or uncertain systems.
Keywords: neutrosophy, DSmT, decision-making algorithms,
robotic dexterous hands, grasping configurations, grasp type.

I. INTRODUCTION

The purpose of autonomous robotics is to build systems
that can fulfill all kind of tasks without human intervention,
in different environments which were not specially build for
robot interaction. A major challenge for this autonomous
robotics field comes from high uncertainty within real environ-
ments. This is because the robot designer can’t know all the
details regarding the environment. Most of the environment
parameters are unknown, the position of humans and objects
can’t be previously anticipated and the motion path might be
blocked. Beside these, the accumulated sensor information can
be uncertain and error prone. The quality of this information
is influenced by noise, visual field limitations, observation
conditions and the complexity of interpretation technique.

The artificial intelligence and the heuristic techniques were
used by many scientists in the field of robot control [1] and
motion planning. Regarding the grasping and object manipula-
tions, the main research activities were to design a mechanism
for hand [2-4] and dexterous finger motion [5], which are a
high complexity research tasks in controlling robotic hands.

Currently in the research area of robotics, it’s desired to
develop robotic systems with applications in dynamic and
unknown environments, in which human lives would be at risk,
like natural or nuclear disaster areas, and also in different fields
of work, ranging from house chores or agriculture to military
applications. In any of these research areas, the robotic system
must fulfill a series of tasks which implies object manipulation
and transportation, or using equipment and tools. From here
arises the necessity of development grasping systems [6] to
reproduce as well as possible human hand motion [7-9].

To achieve an accurate grasping system, grasp taxonomy of
human hand was analyzed by Feix (et. al) [10] who found 33
different grasp types, sorted by opposition type, virtual finger
assignments, type in terms of power, precision or intermediate
grasp, and the position of the thumb. While Alvarez [11]
(et. al) researched human grasp strategies within grasp types,
Fermuller (et. al) [12] focused on manipulation action for
human hand on different object types including hand pre-
configuration. Tsai (et. al) [13] found that classifying objects
into primitive shapes can provide a way to select the best
grasping posture, but a general approach can also be used for
hand-object geometry fitting [14]. This classification works
well for grasping problems in constrained work space using
visual data combined with force sensors [15] and also for
under-actuated grasping which uses rotational stiffness [16].
But for unknown objects, scientists found different approaches
to solve the hand grasping problem. Choi (et. al) [17] used two
different neural networks and data fusion to classify objects,
Seredynski (et. al) [18] achieved fast grasp learning with
probabilistic models, while Song (et. al) [19] used a tactile-
based blind grasping along with a discrete-time controller. The
same approach is used by Gu (et. al) [20] which proposed
a blind haptic exploration of unknown objects for grasp
planning of dexterous robotic hand. Using grasping methods,
Yamakawa (et. al) [21] developed a robotic hand for knot
manipulation, while Nacy (et. al) [22] used artificial neural
network algorithms for slip prevention and Zaidi (et. al) [23]
used a multi-fingered robot hand to grasp 3D deformable
objects, applying the method on spheres and cubes.

While other scientists developed grasping strategies for
different robotic hands [21-23], an anthropomorphic robotic
hand has the potential to grasp regular objects of different
shapes and sizes [24, 25], but selecting the grasping method
for a certain object is a difficult problem. A series of papers
have approached this problem by developing algorithms for
classifying the grasping by the contact points [26, 27]. These
algorithms are focused on finding a fix number of contact areas
without taking into consideration the hand geometry. Other
methods developed grasping systems for a certain robotic hand
architecture, scaling down the problem to finding a grasping
method with the tip of the fingers [27]. These methods are
useful in certain object manipulation, but can’t be applied for
a wide range of objects because it doesn’t provide a stable
grasping due to the face that it’s not used, the finger’s interior
surface or the palm of the hand. A method for filtering the high
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number of hand configurations is to use predefined grasping
hand configurations. Before grasping an object, humans, un-
consciously simplify the grasping action, choosing one of the
few hand positions which match the object’s shape and the
task to accomplish. In the scientific literature there are papers
which have tried to log in the positioning for grasping and
taxonomy, and one of the most known papers is [28]. Cutkosky
and Weight [29] have extended Napier’s [28] classification by
adding the required taxonomy in the production environment,
by studying the way in which the weight and geometry of the
object affects choosing the grasping positioning. Iberall [30]
has analyzed different grasping taxonomies and generalized
them by using the virtual finger concept. Stransfield [31] has
chosen a simpler classification and built a system based on
rules which provided a grasping positioning set, starting from
a simplified description of the object gained from a video
system.

The developed algorithm presented in this paper, has the
purpose to determine the grasping position according to the ob-
ject’s shape. To prove the algorithm’s efficiency we have cho-
sen 3 types of grasping: cylindrical, spherical and prismatic.
For this, we start from the hypothesis that the environment data
are captured through a stereovision system [32] and a Kinect
sensor [33]. On this data, which the two system observers
provide, we apply a template matching algorithm [34]. This
algorithm will provide a matching percentage of the object
that needs to be grasped with a template object. Thus, each
of the two sources will provide 3 matching values, for each
of the three grasping types. These values represent the input
for our detection algorithm, based of Dezert-Smarandache
Theory (DSmT) [35] for data fusion. This algorithm has as
input data from two or multiple observers and in the first
phase they are processed through a process of neutrosofication
which is similar with the fuzzification process. Then, the
neutrosophic observers’ data are passed through an algorithm
which applies the classic DSm theory [35] in order to obtain
a single data set on the system’s states, by combining the
observers’ neutrosophic values. On this obtained data set, we
apply the developed DSmT decision-making algorithm that
decides on the category from which the target object is part
of. This decision facilitates the detection-recognition-grasping
process which a robotic hand must follow, obtaining in the
end a real-time decision that doesn’t stop or delay the robot’s
task.

In recent years, using more sensors for a certain applications
and then using data fusion is becoming more common, in
the military and nonmilitary research fields. The data fusion
techniques combine the information received from different
sensors with the purpose of eliminating disturbances and to
improve precision compared to the situations when a single
sensor is used [36, 37]. This technique works on the same prin-
ciple used by humans to feel the environment. For example, a
human being can’t see over the corner or through vegetation,
but with his hearing he can detect certain surrounding dangers.
Beside the statistical advantage build from combining the
details for a certain object (through redundant observations),

using more types of sensors increases the precision with which
an object can be observed and characterized. For example, an
ultrasonic sensor can detect the distance to an object, but a
video sensor can estimate its shape, and combining these two
information sources will provide two distinct data on the same
object.

The evolution on the new sensors, the hardware’s processing
techniques and capacity improvements facilitate more and
more the real time data fusion. The latest progress were
made in the area of computational and detection systems, and
provide the ability to reproduce, in hardware and software, the
data fusion capacity of humans and animals. The data fusion
systems are used for targets tracking [38], automatic targets
identification [39] and automated reasoning applications [40].
The data fusion applications are widespread, ranging from
the military [41] applications (target recognition, autonomous
moving vehicles, distance detection, battlefield surveillance,
automatic danger detection) to civilian application (monitoring
the production processes, complex tools maintenance based
on certain conditions, robotics [42], and medical applications
[43]). The data fusion techniques undertake classic elements
like digital signal processing, statistical estimation, control
theory, artificial intelligence and numeric methods [44].

Combined data interpretation requires automated reasoning
techniques taken from the area of artificial intelligence. The
purpose of developing the recognition based systems, was to
analyze issues like the data gathering context, the relationship
between observed entities, hierarchical grouping of targets or
objects and to predict future actions of these targets or entities.
This kind of reasoning is encountered in humans, but the
automated reasoning techniques can only closely reproduce
it. Regardless of the used technique, for a knowledge based
system, 3 elements are required: one or more reasoning dia-
grams, an automated evaluation process and a control diagram.
The reasoning diagrams are techniques of facts representation,
logical relations, procedural knowledge and uncertainty. For
these techniques, uncertainty from the observed data and from
the logical relations can be represented using probabilities,
fuzzy theory [45, 46], Demspter-Shafer [47] evidence intervals
or other methods. Dezert-Smarandache theory [35] comes
to extend these methods, providing advanced techniques of
uncertainty manipulation. The automated reasoning system’s
developing purpose is to reproduce the human capability of
reasoning and decision making, by specifying rules and frames
that define the studied situation. Having at hand an information
database, it’s required an evaluation process so this informa-
tion can be used. For this there are formal diagrams developed
on the formal logic, fuzzy logic, probabilistic reasoning, tem-
plate based methods, case based reasoning and many others.
Each of these reasoning diagrams has a consistent internal
formalism which describes how to use the knowledge database
for obtaining the final conclusion. An automated reasoning
system needs a control diagram to fulfill the thinking process.
The used techniques include searching methods, systems for
maintaining the truth based on assumptions and justifications,
hierarchical decomposition, control theory, etc. Each of these
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methods has the purpose of controlling the reasoning evolution
process.

The results presented in this paper, were obtained using the
classic Dezert Smarandache Teory (DSmT) to combine inputs
from two different observers that want to classify objects
into three categories: Sphere, Parallelepiped and Cylinder.
These categories were chosen to include most of the objects
that a manipulator can grasp. The algorithm’s inputs were
transformed into belief values of certainty, falsity, uncertainty
and contradiction values. Using these four values and their
combinations according to DSmT we applied Petri net diagram
logic for taking decisions on the shape type of the analysed
objects. This type of algorithm has never been used before for
real time decision on hand grasping taxonomy. Comparing to
other algorithms [13-15] and methods [16-18],

ours has the advantage to detect high uncertainties and
contradictions which in practice has a very low encounter rate
but can have drastic effects on the decision type or robot,
because if the object’s shape is not detected properly, then
the robot might not be able to grasp it, which can lead
to serious consequences. In deciding how to grasp objects,
researchers have used different methods to choose the grasping
taxonomy using a blind haptic exploration [20] or in different
applications for tying knots [21] or grasp deformable objects
[23]. Because the proposed algorithm can detect anomalies of
contradicting and uncertain input values, we can say that the
proposed method transforms the deciding process into a less
difficult problem of grasping method [24, 25].

II. OBJECTS GRASPING AND ITS CLASSIFICATION

Mechanical hands have been developed to provide the robots
with the ability of grasping objects with different geometrical
and physical properties [48]. To make an anthropomorphic
hand seem natural, its movement and the grasping type must
match the human hand.

On this regard, grasping position taxonomy for human hands
has been long studied and applied for robotic hands. Seventeen
different categories of human hands grasping positions were
studied. But first we must consider two important things. The
first one is that these categories are derived from human hand
studies, which proved that they are more flexible and able
to perform a multitude of movements than any other robotic
hand, so that the grasping taxonomy for robot hands can be
only a simple subset of the human hand. Secondly, the human
behavior studies of real object grasping, have shown some
differences between the real observations and the classified
properties [49].

In conclusion, any proposed taxonomy is only a reference
point which the robot hand must attain. Below are described
the most used grasping positions (extracted from [50]), which
should be considered when developing an able robotic hand:

1) Power grasping. The contact with the objects is made
on large surfaces of the hand, including hand phalanges
and the palm of the hand. For this kind of grasping high
forces can be exerted on the object.
• Spherical grasping: used to grasp spherical objects;

• Cylindrical grasping: used to grasp long objects
which can’t be completely surrounded by the hand;

• Lateral grasping: the thumb exert a force towards
the lateral side of the index finger.

2) Precision grasping: the contact is made only with the tip
of the fingers.
• Prismatic grasping (pinch): used to grasp long ob-

jects (with small diameter) or very small. Can be
achieved with two to five fingers.

• Circular grasping (tripod): used in grasping circular
or round objects. Can be achieved with three, four
or five fingers.

3) No grasping:
• Hook: the hand forms a hook on the object and

the hand force is exerted against an external force,
usually gravity.

• Button pressing or pointing
• Pushing with open hand.

In the table I, are shown manipulation activities that the
robotic hand can achieve, correlated with the required activity
grasping positions [51].

III. OBJECT DETECTION USING STEREO-VISION AND
KINECT SENSOR

Object recognition in artificial sight represents the task of
searching a certain object in a picture or a video sequence.
This problem can be approached as a learning problem. At
first, the system is trained with sample images which belong to
the target group, the system being taught to spot these among
other pictures. Thus, when the system receives new images, it
can ‘feel’ the presence of the searched object/sample/template.

Template matching is a techniques used to sort objects in
an image. A model is an image region, and the goal is to
find instances of this model in a larger picture. The template
matching techniques represent a classic approach for local-
ization problems and object recognition in a picture. These
methods are used in applications like object tracking, image
compression, stereograms, image segmentation [52], and other
specific problems of artificial vision [53]. Object recognition
is very important for a robot that must fulfill a certain task.
To complete its task, the robot must avoid obstacles, to obtain
the size of the object, to manipulate it, etc. For the case of
detected object manipulation, the robot must detect the object’s
shape, size and position in the environment. The main methods
for achieving the depth information use stereoscopic cameras,
laser scanners and depth cameras. To achieve the proposed
decision-making algorithm, we assumed that the environment
information is captured with a stereoscopic system and a
Kinect sensor.

Stereovision systems [32] represents a passive technique of
achieving a virtual 3D image of the environment in which the
robot moves, by matching the common features of an image
set of the same scene. Because this method works with images,
it needs a high computational power. The depth information
can be noisy in certain cases, because the method depends

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

301



TABLE I: Grasping position for certain tasks.
Object Activity Grasping position

Bottles, cups and mugs Transport Force: Cylindrical grasping
Pouring/ filling (from the side or the top)

Cups (using handles) Pouring/filling Force: Lateral grasping
Precision: Prismatic grasping

Plates/trays Transport Power: Lateral grasping
Receiving from humans Precision: Prismatic grasping

No grasp: pushing (open hand)
Pens, cutlery Transport Precision: Prismatic grasping
Door handle Open/Close Force: Cylindrical grasping

No grasp: Hook
Small objects Transport Power: Spherical grasping

Precision: Circular grasping (tripod)
Switches, buttons Pushing No grasp: Button pressing

Round switches, bottle caps Rotation Force: Lateral grasping
Precision: Circular grasping (tripod)

on the texture of the environment objects and on the ambient
light.

Kinect [33] is a fairly easy to obtain platform, which makes
it widespread. It uses a depth sensor based on structured light.
By using an ASIC board, the Kinect sensor generates a depth
map on 11 bits with a resolution of 640× 480 pixels, at 30Hz.
Given the price of the device, the information quality is pretty
good, but it has both advantages and disadvantages, meaning
that the depth images contain areas where the depth reading
couldn’t be achieved. This problem appears from the fact that
some materials don’t reflex infrared light. When the device is
moved really fast, like any other camera, it records blurry
pictures, which also lead to missing information from the
acquired picture.

IV. NEUTROSOPHIC LOGIC AND DSM THEORY

A. Neutrosophic Logic

The neutrosophic triplet (truth, falsity and uncertainty) idea
appeared in 1764 when J.H. Lambert investigates a witness
credibility which was affected by the testimony of another
person. He generalized Hooper’s rule of sample combination
(1680), which was a Non-Bayesian approach for finding a
probabilistic model. Koopman in 1940 introduces the low and
high probability, followed by Good and Dempster (1967) who
gave a combination rule of two arguments. Shafer (1976)
extended this rule to Dempster-Shafer Theory for Trust Func-
tions by defining the Trust and Plausibility functions and
using the inference rules of Dempster for combining two
samples from two different sources. The trust function is
a connection between the fuzzy reasoning and probability.
Dempster-Shafer theory for Trust functions is a generalization
of Bayesian Probability (Bayes 1760, Laplace 1780). It uses
the mathematical probability in a more general way and it is
based on the probabilistic combination of artificial intelligence
samples. Lambert one said that “there is a chance p that the
witness can be trustworthy and fair, a chance q that he will be
deceiving and a chance 1− p− q that he will be indifferent”.
This idea was taken by Shafer in 1986 and later, used by
Smarandache to further develop the neutrosophic logic [54,
55].

1) Neutrosophic Logic Definition: A logic in which each
proposition has its percentage of truth in a subset T, its
percentage of uncertainty in a subset I and its percentage
of falsity in a subset F is called neutrosophic logic [54,55].
This paper extends the general structure of the Neutrosophic
Robot Control (RNC), known as the Vlădăreanu–Smarandache
method [55]–[57] for the robot hybrid force-position control in
a virtual platform [58,59], which applies neutrosophic science
to robotics using the neutrosophic logic and set operators.
Thus, using two observers, a stereovision system and a Kinect
sensor, will provide 3 matching values for DSmT decision-
making algorithms. A subset of truth, uncertainty and falsity
is used instead of a single number because in many cases one
cannot know with precision the percentage of truth or falsity.
But these can be approximated. For example, a supposition
can be 30% to 40% true and 60% to 70% false [60].

2) Neutrosophic components definition: Let T , I , F be
three standard or non-standard subsets of ]−0, 1+[ with

sup T = tsup inf T = tinf ,

sup I = isup inf I = iinf ,

sup F = fsup inf F = finf ,

and

nsup = tsup + isup + fsup

ninf = tinf + iinf + finf

The T , I , F sets are not always intervals, but can be subsets:
discrete or continuum; with a single element; finite or infinite
(the elements are countable or uncountable); subsets union
or intersection. Also, these subsets can overlap, and the real
subsets represent the relative errors in finding the t, i, f values
(when the T , I , F subsets are reduced to single points).
T , I , F are called the neutrosophic components and repre-

sents the truth, uncertainty and falsity values, when referring
to neutrosophy, neutrosophic logic, neutrosophic sets, neutro-
sophic probability or neutrosophic statistics. This representa-
tion is closer to the human reasoning and defines knowledge
imprecision or linguistic inaccuracy received from different
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observers (this is why T , I , F are subsets and can be more that
a set of points), the uncertainty given by incomplete knowledge
or data acquisition errors (for this we have the set I) and the
vagueness caused by missing edges or limits.

After defining the sets, we need to specify their superior
(xsup) and inferior (xinf ) limits because in most of the cases
they will be needed [61,62].

3) Dezert-Smarandache Theory (DSmT): To develop artifi-
cial cognitive systems a good management of sensor informa-
tion is required. When the input data are gathered by different
sensors, according to the environment certain situations may
appear when one of the sensors cannot give correct information
or the information is contradictory between sensors. To resolve
this issue a strong mathematical model is required, especially
when the information is inaccurate or uncertain.

The Dezert-Smarandache Theory (DSmT) [53,54,60] can
be considered an extension of Dempster-Shafer theory (DST)
[46]. DSmT allows information combining, gathered from
different and independent sources as trust functions. DSmT
can be used for solving information fusion on static or
dynamic complex problems, especially when the information
differences between the observers are very high.

DSmT starts by defining the notion of DSm free model,
denoted by Mf (Θ) and says that Θ is a set of exhaustive
elements θi, i = 1, . . . , n which cannot overlap. This model is
free because there are no other suppositions over the hypothe-
sis. As long as the DSm free model is fulfilled, we can apply
the associative and commutative DSm rule of combination.

DSm theory [62] is based on defining the Dedekind lattice,
known as the hyper power set of frame Θ. In DSmT, Θ
is considered a set {θ1, . . . , θn} of n exhaustive elements,
without adding other constraints. DSmT can tackle information
samples, gathered from different information sources which
don’t allow the same interpretation of the set Θ elements. Let
Θ = {θ1, θ2} be the simple case, made of two assumptions,
then [54]:
• the probability theory works (assuming exclusivity and

completeness assumptions) with basic probability assign-
ments (bpa) m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) = 1

• the Dempster-Shafer theory works, (assuming exclusivity
and completeness assumptions) with basic belief assign-
ments (bba) m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

• the DSm theory works (assuming exclusivity and com-
pleteness assumptions) with basic belief assignment (bba)
m(.) ∈ [0, 1] such that

m(θ1) +m(θ2) +m(θ1 ∪ θ2) +m(θ1 ∩ θ2) = 1

The DΘ hyperpower set notion

One of the base elements of DSm theory is the notion of
hyper power set. Let Θ = {θ1, . . . , θn} be a finite set (called

frame) with n exhaustive elements. The Dedekind lattice,
called hyper power set D within DSmT frame, is defined as
the set of all built statements from the elements of set Θ with
the ∪ and ∩ operators such that:

1) ∅, θ1, . . . , θn ∈ DΘ;
2) If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ;
3) No other element is included in DΘ with the exception

of those mentioned at 1 and 2.
DΘ dual’s (obtained by changing within expressions the op-

erator ∩ with the operator ∪) is DΘ. In DΘ there are elements
that are dual with themselves. The cardinality of DΘ increases
with 2n when the cardinality of Θ is n. Generating the DΘ

hyper power set is close connected with the Dedekind [54,55]
known problem of isotone Boolean function set. Because for
any finite set θ, |DΘ| ≥ |2Θ|, DΘ is called the hyper power
set of Θ.

The θi , i = 1, . . . , n elements from Θ form the finite set
of suppositions/concepts that characterize the fusion problem.
DΘ represents the free model of DSm Mf (Θ) and allows
working with fuzzy concepts that describe the intrinsic and
relative character. This kind of concepts cannot be accurately
distinguished within an absolute interpretation because of the
unapproachable universal truth.

With all of this, there are certain particular fusion prob-
lems that imply discrete concepts, where the θielements are
exclusively true. In this case, all the exclusivity constraints
of θ

i
, i = 1, . . . , n must be included in the previous model,

to properly characterize the truthiness character of the fusion
problem and to match reality. For this, the hyper power set DΘ

is decreased to the classic power set 2Θ forming the smallest
hybrid DSm model, noted with M0(Θ), and coincide with
Shafer’s model.

Besides the problem types that correspond with the Shaffer’s
model M0(Θ) and those that correspond with the DSm
free model Mf (Θ), there is an extensive class of fusion
problems that include in Θ states, continuous fuzzy concepts
and discrete hypothesis. In this case we must take into consid-
eration certain exclusivity constraints and some non-existential
constraints. Each fusion hybrid problem is described by
a DSm hybrid model M(Θ) with M(Θ) 6=Mf (Θ) and
M(Θ) 6=M0(Θ).

The generalized belief functions

Starting from a general frame Θ, we define a DΘ → [0, 1]
transformation associated with an information source B like
[54]:

m(∅) = 0, and
∑

A∈DΘ

m(A) = 1. (1)

The m(A) value is called generalized basic belief assign-
ment of A.

The generalized trust and plausibility are defined in the same
way as in Dempster-Shafer theory [47]:

Bel(A) =
∑
BA

B∈DΘ

m(B), (2)
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Pl(A) =
∑

B∩A6=∅
B∈DΘ

m(B). (3)

These definitions are compatible with the classic trust function
definition from the Dempster-Shafer theory when DΘ is
reduced to 2Θ for fusion problems where the Shafer model
M0(Θ) can be applied. We’re still having for all A ∈ DΘ,
Bel(A) ≤ Pl(A). To notice that when we work with the
free DSm Mf (Θ) model, we will always have Pl(A) = 1,
∀A 6= ∅ ∈ DΘ, which is normal [54].

The DSm classic rule of combination

When the DSm free model Mf (Θ) can be applied, the
combination rule mMf (Θ) ≡ m(·) , [m1 ⊗ m2](·) of two
independent sources B1 and B2 that provide information on
the same frame Θ with the belief functions Bel1(·) and
Bel2(·) associated to gbba m1(·) and m2(·) correspond to
the conjunctive consensus of sources. Data combinations are
done by using the formula [54]:

∀C ∈ DΘ,mMf (Θ)(C) = m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B).

(4)
Because DΘ is closed under ∩ and ∪ operators, this new com-
bination rule guarantees that m(·) is a generalized trust value,
meaning that m(.) : DΘ → [0, 1]. This rule of combination
is commutative and associative and can be used all the time
for sources fusion which implies fuzzy concepts. This rule
can be extended with ease for combining k > 2 independent
information sources [55,56].

Because of the high number of elements in DΘ, when the
cardinality of Θ increases, the need of computational resources
also increases for processing the DSm combination rule. This
observation is true only if the core (the set of generalized
basic belief assignment for the needed elements) K1(m1) and
K2(m2) coincide with DΘ, meaning that when m1(A) > 0
and m2(A) > 0 for any A 6= ∅ ∈ DΘ. For the most practical
applications, the K1(m1) andK2(m2) dimensions are much
smaller than |DΘ| because the information sources provide
most of the time the generalized basic belief assignment for
only one subset of hyper power set. This facilitates the DSm
classic rule implementation.

Figure 1 presents the DSm combination rule architecture.
The first layer is formed by all the generalized basic belief
assignment values of the needed elements Ai, i = 1, . . . , n of
m1(·). The second layer is made out of all the generalized
basic belief assignment values Bj , j = 1, . . . , k of m2(·).
Each node from the first layer is connected with each node of
the second layer. The output layer is created by combining the
generalized basic belief assignment values of all the possible
intersections Ai ∩ Bj , i = 1, . . . , n and j = 1 . . . , k. If we
would have a third source to provide generalized basic belief
assignment values m3(·), this would have been combined by
placing it between the output layer and the second one that
provides the generalized basic belief assignment values m2(·).
Due to the commutative and associative properties of DSm

classic rule of combination, in developing the DSm network,
a particular order of layers is not required [54].

Fig. 1: Graphical representation of DSm classic rule of com-
bination for Mf (Θ) [35].

V. DECISION-MAKING ALGORITHM

As observed in this paper, according to the object shape
and assigned task, grasping is divided into 8 categories [63]:
spherical grasping, cylindrical grasping, lateral grasp, pris-
matic grasp, circular grasping, hook grasping, button pressing
and pushing. From these grasping types, the most used ones
are cylindrical and prismatic grasping (see table I). These
can be used in almost any situation and we can say that
spherical grasping is a particular grasping of these two. The
spherical grasp is used for power grasping, when the contact
with the object is achieved with all the fingers’ phalanges and
the hand’s palm. This is why a requirement for classification
by the shape of the object is needed. Due to the fact that
these types are more often encountered, they were taken into
consideration for the studied fusion problems.

The fusion problem aims to achieve a classification, by
shape of objects to grasp, so that these can match with
the other three types of grasping studied. The target objects
are classified into three categories: sphere, parallelepiped and
cylinder. For each category, a grasping type is assigned [56].

Following the presented theory in section IV, the informa-
tion is provided by two independent sources (observers): a
stereovision system and a Kinect sensor. The observers are
presented in section III, and are used to scan the robot’s
work environment. By using the information provided by the
two observers, a 3D virtual image of the environment is
achieved, from which the human operator choses the object
to be grasped, thus defining the grasping task that must be
achieved by the robot. The 3D image of the object, isolated
from the scene, is compared with three templates, formed by
similar methods, which represents a sphere, a parallelepiped
and a cylinder. Afterwards, a template matching algorithm is
applied to place the object in one of the three categories,
with a certain matching percentage. This percentage can vary
according to the conditions in which the images are obtained
(weak light, object from which the light is reflected, etc.).
The data taken from each sensor are then individual processed
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with a neutrosophication algorithm, with the purpose of ob-
taining the generalized basic belief assignment values for each
hypothesis that can characterize the system. In the next step,
having the basic belief assignment values, we combine the data
provided by the two observers by using the classic DSm rule of
combination. The next step is to apply a de-neutrosophication
algorithm on the obtained values, to achieve the decision on
the shape of the object by placing it into the three categories
mentioned above. The entire process is graphical represented
in figure 2.

Fig. 2: Diagram of the proposed algorithm.

A. Data neutrosophication

Each observer provides a truth percentage for each system’s
state. The state set Θ = θ1, θ2, θ3} that characterizes the fusion
problem is:

Θ = {Sp, Pa,Cy}, (5)

where Sp = Sphere, Pa = Parallelepiped and Cy = Cylinder.
To compute the belief values for the hyper power set DΘ

elements we developed an algorithm based on the neutrosophic
logic. The hyper power set DΘ is formed by using the method
presented in the paragraph devoted to the DΘ hyperpower set
notion, and has the form:

DΘ = {∅, Sp, Pa,Cy, Sp ∪ Pa, Sp ∪ Cy,Cy ∪ Pa,
Sp ∩ Pa, Sp ∩ Cy,Cy ∩ Pa, Sp ∩ (Cy ∪ Pa),

Cy ∩ (Sp ∪ Pa), Pa ∩ (Cy ∪ Sp),
Sp ∪ Cy ∪ Pa, Sp ∩ Cy ∩ Pa}. (6)

The statements of each observer are handled in ways of
truth (T ), uncertainty (I) and falsity (F ), specific to the
neutrosophic logic. Due to the fact that F = 1 − T − I , the
statements of falsity are not taken into consideration.

The neutrosophic algorithm has as input the certainty proba-
bilities (truth) provided by the observers on the system’s states.
These probabilities are then processed using the described
rules in figure 3. If the difference between the certainties prob-
abilities used at a certain point by the processing algorithm
is larger than a certain threshold found by trial and error,
then we’ll consider that the uncertainty percentage between
the compared states is null, and the probability that one of
the states is true increases. In the case where this difference
is not a set threshold, we compute the uncertainty probability
by using the formula

m(A ∪B) = 1− m(A)−m(B)

const
, (7)

where A,B ∈ Θ, and “const” depends of the chosen
threshold. While the point determined by the two probabilities
approaches the main diagonal, the uncertainty approaches the
maximum probability value.

Fig. 3: Data neutrosophication rule for the observer’s data.

From the hyper power set DΘ, we can determine the belief
masses only for the values Obsi(DΘ) (information obtained
after observer’s data interpretation) presented below, because
the intersection operation ∩ represents contradiction in DSm
theory and we cannot compute the contradiction values for a
single observer using:

Obsi(D
Θ) = {Sp, Pa,Cy, Sp ∪ Pa, Sp ∪ Cy,

Cy ∪ Pa, Sp ∪ Cy ∪ Pa}. (8)

The neutrosophic probabilities are detailed in Table II.

B. Information fusion

Having known the trust values of the hyper power set
elements Obsi(DΘ), presented in table II, we apply the fusion
algorithm, using the classic DSm combination rule described
previously.
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TABLE II: Grasping position for certain tasks.
Mathematical representation Description

Sp Certainty that the target object is a ‘sphere’
Pa Certainty that the target object is a ‘parallelepiped’
Cy Certainty that the target object is a ‘cylinder’

Sp ∪ Pa Uncertainty that the target object is a ‘sphere’ or ‘parallelepiped’
Sp ∪ Cy Uncertainty that the target object is a ‘sphere’ or ‘cylinder’
Cy ∪ Pa Uncertainty that the target object is a ‘cylinder’ or ‘parallelepiped’

Sp ∪ Cy ∪ Pa Uncertainty that the target object is a ‘sphere’, ‘cylinder’ or ‘parallelepiped’

TABLE III: Contradictions that may appear between the neutrosophic probabilities.
Mathematical representation Description

Sp ∩ Pa Contradiction between the certainties that the target object is a ‘sphere’ and ‘parallelepiped’
Sp ∩ Cy Contradiction between the certainties that the target object is a ‘sphere’ and ‘cylinder’
Cy ∩ Pa Contradiction between the certainties that the target object is a ‘cylinder’ and ‘parallelepiped’

Sp ∩ (Cy ∪ Pa) Contradiction between the certainty that the target object is a ‘sphere’
and the uncertainty that the target object is a ‘cylinder’ or ‘parallelepiped’

Pa ∩ (Sp ∪ Cy) Contradiction between the certainty that the target object is a ‘parallelepiped’
and the uncertainty that the target object is a ‘sphere’ or ‘cylinder’

Cy ∩ (Pa ∪ Sp) Contradiction between the certainty that the target object is a ‘cylinder’
and the uncertainty that the target object is a ‘parallelepiped’ or ‘sphere’

Sp ∩ Cy ∩ Pa Contradiction between the certainties that the target object is a’ sphere’ and ‘cylinder’, and ‘parallelepiped’

Applying equation (4), we get the following formulas for
the combination values:

m(Sp) = m1(Sp)m2(Sp) +m1(Sp)m2(Sp ∪ Pa)

+m1(Sp ∪ Pa)m2(Sp) +m1(Sp)m2(Sp ∪ Cy)

+m1(Sp ∪ Cy)m2(Sp)

+m1(Sp)m2(Sp ∪ Cy ∪ Pa) (9)
+m1(Sp ∪ Cy ∪ Pa)m2(Sp)

+m1(Sp ∪ Pa)m2(Sp ∪ Cy)

+m1(Sp ∪ Cy)m2(Sp ∪ Pa),

m(Pa) = m1(Pa)m2(Pa) +m1(Pa)m2(Sp ∪ Pa)

+m1(Sp ∪ Pa)m2(Pa) +m1(Pa)m2(Cy ∪ Pa)

+m1(Cy ∪ Pa)m2(Sp)

+m1(Pa)m2(Sp ∪ Cy ∪ Pa) (10)
+m1(Sp ∪ Cy ∪ Pa)m2(Pa)

+m1(Sp ∪ Pa)m2(Cy ∪ Pa)

+m1(Cy ∪ Pa)m2(Sp ∪ Pa),

m(Cy) = m1(Cy)m2(Cy)) +m1(Cy)m2(Cy ∪ Pa))

+m1(Cy ∪ Pa)m2(Cy)) +m1(Cy)m2(Sp ∪ Cy))

+m1(Sp ∪ Cy)m2(Cy)

+m1(Cy)m2(Sp ∪ Cy ∪ Pa)) (11)
+m1(Sp ∪ Cy ∪ Pa)m2(Cy))

+m1(Sp ∪ Cy)m2(Cy ∪ Pa))

+m1(Cy ∪ Pa)m2(Sp ∪ Cy))

m(Sp ∪ Pa) = m1(Sp ∪ Pa)m2(Sp ∪ Pa)

+m1(Sp ∪ Pa)m2(Sp ∪ Cy ∪ Pa) (12)
+m1(Sp ∪ Cy ∪ Pa)m2(Sp ∪ Pa)

m(Sp ∪ Cy) = m1(Sp ∪ Cy)m2(Sp ∪ Cy)

+m1(Sp ∪ Cy)m2(Sp ∪ Cy ∪ Pa) (13)
+m1(Sp ∪ Cy ∪ Pa)m2(Sp ∪ Cy)

m(Cy ∪ Pa) = m1(Cy ∪ Pa)m2(Cy ∪ Pa)

+m1(Cy ∪ Pa)m2(Sp ∪ Cy ∪ Pa)) (14)
+m1(Sp ∪ Cy ∪ Pa)m2(Cy ∪ Pa)

m(Sp ∪ Cy ∪ Pa) = m1(Sp ∪ Cy ∪ Pa)m2(Sp ∪ Cy ∪ Pa)
(15)

During the fusion process, between the information pro-
vided by the two observers contradiction situations may ap-
pear. These are included in the hyper power set DΘ and are
described in table III.

Fusion values for contradiction are determined as following:

m(Sp ∩ Pa) = m1(Sp)m2(Pa) +m1(Pa)m2(Sp) (16)

m(Sp ∩ Cy) = m1(Sp)m2(Cy) +m1(Cy)m2(Sp) (17)

m(Cy ∩ Pa) = m1(Cy)m2(Pa) +m1(Pa)m2(Cy) (18)

m(Sp ∩ (Cy ∪ Pa)) = m1(Sp)m2(Cy ∪ Pa)

+m1(Cy ∪ Pa)m2(Sp) (19)

m(Pa ∩ (Sp ∪ Cy)) = m1(Pa)m2(Sp ∪ Cy)

+m1(Sp ∪ Cy)m2(Pa) (20)

m(Cy ∩ (Sp ∪ Pa)) = m1(Cy)m2(Sp ∪ Pa)

+m1(Sp ∪ Pa)m2(Cy) (21)
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C. Data de-neutrosophication and decision-making
The combination values found in the previous section are

de-neutrosophicated using the logic diagram presented in
figure 4. For the decision-making algorithm we opted to use
Petri nets [64], for it’s easier to notice the system’s states
transitions.

Fig. 4: Petri diagram for decision-making algorithm.

The decision-making diagram proved to have a certain
difficulty level, which required adding three sub diagrams:

1) sub p1 (figure 5) – this sub diagram deals with the
contradiction between:
• the certainty probability that the target object is a

‘sphere’ and the uncertainty probability that the tar-
get object is either a ‘parallelepiped’ or a ‘cylinder’;

• the certainty probability that the target object is a ‘cu
parallelepiped be’ and the uncertainty probability
that the target object is either a ‘sphere’ or a
‘cylinder’;

• the certainty probability that the target object is
a ‘cylinder’ and the uncertainty probability that
the target object is either a ‘parallelepiped’ or a
‘sphere’.

2) sub p2 (figure 6) – this sub diagram deals with the
contradiction between:
• The certainty probability that the target object is a

‘sphere’ and a ‘parallelepiped’;
• The certainty probability that the target object is a

‘sphere’ and a ‘cylinder’;

Fig. 5: Petri net for sub p1.

• The certainty probability that the target object is a
‘cylinder’ and a ‘parallelepiped’.

Fig. 6: Petri net for sub p2.

3) sub p3 (figure 7) – this sub diagram deals with the
uncertainty that the target object is:
• a ‘sphere’ or a ‘parallelepiped’;
• a ‘sphere’ or a ‘cylinder’;
• a ‘cylinder’ or a ‘parallelepiped’.

Fig. 7: Petri net for sub p3.
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To not overload figures 4–7 we have used the following
notations:

A = {m(Sp ∩ (Cy ∪ Pa)),m(Pa(SpCy)),m(Cy ∩ (Pa ∪ Sp))},
B = {m(Sp ∩ Pa),m(Sp ∩ Cy),m(Cy ∩ Pa)},
C = {m(Sp ∪ Pa),m(Sp ∪ Cy),m(Cy ∪ Pa)},
D = {m(Sp),m(Pa),m(Cy)},
a = m(Sp ∪ Cy),

b = m(Pa ∪ Sp),
c = m(Cy ∪ Pa).

With the help of the Petri diagram (figure 4), we take
the decision of sorting the target object in one of the three
categories, as follows:

1) Determine

mmax , max(m(Sp ∩ (CyPa)),m(Pa ∩ (SpCy)),

m(Cy ∩ (PaSp))).

• If mmax = m(Sp ∩ (Cy ∪ Pa)), the contradiction
between the certainty value that the target object
is ‘sphere’ and the uncertainty value that the target
object is ‘cylinder’ or ‘parallelepiped’ is compared
with a threshold determined through an experimen-
tal trial-error process. If this is higher or equal with
the chosen threshold, the target object is a ‘sphere’.

• If mmax = m(Pa ∩ (Sp ∪ Cy)), the contradiction
between the certainty value that the target object is
‘parallelepiped’ and the uncertainty value that the
target object is ‘sphere’ or ‘cylinder’ is compared
with the threshold mentioned above. If this is higher
or equal with the chosen threshold, the target object
is a ‘parallelepiped’.

• If mmax = m(Cy ∩ (Pa ∪ Sp)), the contradiction
between the certainty value that the target object is
‘cylinder’ and the uncertainty value that the target
object is ‘parallelepiped’ or ‘sphere’ is compared
with the threshold mentioned above. If this is higher
or equal with the chosen threshold, the target object
is a ‘cylinder’.

If none of the three conditions are met, we proceed to
the next step:

2) Determine

mmax , max(m(Sp∩Pa),m(Sp∩Cy),m(Cy∩Pa)).

• If mmax = m(Sp∩Pa), the contradiction between
the certainty values that the target object is ‘sphere’
and ‘parallelepiped’ is compared with a threshold
determined through an experimental trial-error pro-
cess. If this is higher or equal with the chosen
threshold, we check if m(Sp) + m(Sp ∪ Cy) >
m(Pa) +m(Cy∪Pa). If this condition if fulfilled,
then the target objects is ‘sphere’. Otherwise, the
target object is ‘parallelepiped’.

• If mmax = m(Sp∩Cy), the contradiction between
the certainty values that the target object is ‘sphere’
and ‘cylinder’ is compared with the threshold men-
tioned above. If this is higher or equal with the
chosen threshold, we check if (Sp)+m(Sp∪Pa) >
m(Cy) +m(Cy∪Pa). If this condition if fulfilled,
then the target objects is ‘sphere’. Otherwise, the
target object is ‘cylinder’.

• If mmax = m(Cy ∩ Pa), the contradiction be-
tween the certainty values that the target object
is ‘cylinder’ and ‘parallelepiped’ is compared with
the threshold mentioned above. If this is higher
or equal with the chosen threshold, we check if
m(Cy) + m(Sp ∪ Cy) > m(Pa) + m(Sp ∪ Pa).
If this condition if fulfilled, then the target objects
is ‘cylinder’. Otherwise, the target object is ‘paral-
lelepiped’.

If in none of the situations, the contradiction is not larger
that the chosen threshold, we go to the next step:

3) Determine

mmax , max(m(Sp∪Pa),m(Sp∪Cy),m(Cy∪Pa)).

• If mmax = m(Sp∪Pa), the uncertainty probability
that the target object is ‘sphere’ or ‘parallelepiped’
is larger than a threshold determined through an ex-
perimental trial-error process, we check if m(Sp) >
m(Pa). If the condition is fulfilled, the target object
is ‘sphere’. Otherwise, the target object is ‘paral-
lelepiped’.

• If mmax = m(Sp∪Cy), the uncertainty probability
that the target object is ‘sphere’ or ‘cylinder’ is
larger than the threshold mentioned above, we check
if m(Sp) > m(Cy). If the condition is fulfilled, the
target object is ‘sphere’. Otherwise, the target object
is ‘cylinder’.

• If mmax = m(Cy∪Pa), the uncertainty probability
that the target object is ‘cylinder’ or ‘parallelepiped’
is larger than the threshold mentioned above, we
check if m(Cy) > m(Pa). If the condition is
fulfilled, the target object is ‘cylinder’. Otherwise,
the target object is ‘parallelepiped’.

If none of the hypotheses mentioned above are not
fulfilled, we go to the next step:

4) Determine

mmax , max(m(Sp),m(Pa),m(Cy)).

• If mmax = m(Sp), the target object is a ‘sphere’.
• If mmax = m(Pa), the target object is a ‘paral-

lelepiped’.
• If mmax = m(Cy), the target object is a ‘cylinder’.
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VI. DISCUSSION

As mentioned in the introduction chapter, the main goal
of this paper is to find a way to grasp objects according to
their shape. This is done by classifying the target objects
into three main classes: sphere, parallelepiped and cylinder.
To determine the shape of the target objects, the robot work
environment was scanned with a stereovision system and a
Kinect sensor, with the purpose of creating a 3D image of
the surrounding space in which the robot must fulfill its task.
From the two created images, the target object is selected
and then it is compared with 3 templates, which represents
a sphere, a cube and a cylinder. With a template matching
algorithm the matching percentage is determined for each of
the templates. These percentages (figure 8), represents the
data gathered from the observers, for the fusion problem.
Because we wanted to test and verify the decision-making
algorithm for as many cases as possible, the observers’ values
were simulated using sine signals with different frequency
and amplitude of 1 (figure 8). This amplitude represents the
maximum probability percentage that a certain type of object
is found by the template matching algorithm.

Fig. 8: Simulation of the information provided by the two sen-
sors/observers: (a) first observer detection; (b) second observer
detection.

On these input data we then apply a neutrosophication
algorithm with the purpose of obtaining the generalized belief
assignment values for each of the statements an observer is
doing:
• The certainty probability that the object is a ‘sphere’

(figure 9.a, h)
• The certainty probability that the object is a ‘paral-

lelepiped’ (figure 9.b, i)
• The certainty probability that the object is a ‘cylinder’

(figure 9.c, j)
• The uncertainty probability that the object is a ‘sphere’

or a ‘parallelepiped’ (figure 9.d, k)
• The uncertainty probability that the object is a ‘sphere’

or a ‘cylinder’ (figure 9.e, l)
• The uncertainty probability that the object is a ‘cylinder’

or a ‘parallelepiped’ (figure 9.f, m)
• The uncertainty probability that the object is a ‘sphere’

or a ‘cylinder’ or a ‘parallelepiped’ (figure 9g, n)
After the belief values were computed for each statements

of the observers, we go to the data fusion step (figure 10).

Fig. 9: Generalized trust values. From a to g correspond to
observer 1 and from h to n for observer 2 as follows: (a)
m1(Sp); (b) m1(Pa); (c) m1(Cy); (d) m1(Sp ∪ Pa); (e)
m1(Sp ∪ Cy); (f) m1(Pa ∪ Cy); (g) m1(Sp ∪ Pa ∪ Cy);
(h) m2(Sp); (i) m2(Pa); (j) m2(Cy); (k) m2(Sp ∪ Pa); (l)
m2(Sp ∪ Cy); (m) m2(Pa ∪ Cy); (n) m2(Sp ∪ Pa ∪ Cy).

With the help of belief values presented in figure 10 and
computed using the neutrosophication algorithm described in
section V-A, we find the fusion values, presented in figure 11.
As one can see in figure 11, the fusion values for certainty, un-
certainty and contradiction are minimum. The only exception
is the fusion value for the uncertainty that the target object is
‘sphere’ or ‘parallelepiped’ or ‘cylinder’, m(Sp ∪ Cy ∪ Pa),
when the data received from the observers are identical and
not contradicting, the uncertainty is maximum. This means:

Obs1: 33.33% sphere, 33.33% parallelepiped, 33.33% cylinder,

and

Obs2: 33.33% sphere, 33.33% parallelepiped, 33.33% cylinder.

Therefore, the system cannot decide on a single state. This
is why the robotic hand will maintain its starting position
until the system will decide the target object’s category. This
indecision period of time takes about 0.07 seconds. When the
sensors values about the target object are changed from the
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Fig. 10: Data fusion: (a) Observer 1 vs. Observer 2 for Sphere
objects; (b) Observer 1 vs. Observer 2 for Parallelepiped
objects; (c) Observer 1 vs. Observer 2 for Cylinder objects.

equal values presented above, the algorithm is able to provide
a solution.

The indecision also reaches high values at the time 3.14s,
6.28s and 9.42s of the simulation, in the conditions that
the observer’s statements are close in value with the already
presented case from above,

Obs1: 33.35% sphere, 33.46% parallelepiped, 33.19% cylinder

Obs2: 33.21% sphere, 33.10% parallelepiped, 33.69% cylinder

for the moment 3.14s,

Obs1: 33.44% sphere, 33.23% parallelepiped, 33.33% cylinder

Obs2: 33.44% sphere, 33.23% parallelepiped, 33.33% cylinder

for the moment 6.28s and

Obs1: 33.39% sphere, 33.70% parallelepiped, 32.91% cylinder

Obs2: 32.96% sphere, 32.64% parallelepiped, 34.40% cylinder

for the moment 9.42s.
In tables IV, V, and VI we present the percentage of the

states’ occurrence, the general belief assignment values, the
fusion values, and the decision made by the algorithm for the
situations previously mentioned.

TABLE IV: Percentages of states’ occurrence for each source
at different time steps.

Obs1 Obs2 Obs1 Obs2 Obs1 Obs2

state\time 3.14s 3.14s 6.28s 6.28s 9.42s 9.42s
Sp 33.35% 33.21% 33.44% 33.44% 33.39% 32.96%
Pa 33.46% 33.10% 33.23% 33.23% 33.70% 32.64%
Cy 33.19% 33.69% 33.33% 33.33% 32.91% 34.40%

Fig. 11: Fusion values: (a) Fusion values of m(Sp), m(Pa)
and m(Cy); (b) Fusion values of m(Sp∪ Pa), m(Sp∪Cy),
m(Pa ∪ Cy); (c) Fusion value of m(Sp ∪ Pa ∪ Cy); (d)
Fusion values of m(Sp∩Pa), m(Sp∩Cy), m(Pa∩Cy); (e)
Fusion values of m(Sp ∪ (Pa ∩ Cy)), m(Pa ∪ (Sp ∩ Cy)),
m(Cy ∪ (Sp ∩ Pa)).

In all three cases, the uncertainty is quite large, and the
algorithm ask for restarting the decision process and keeps
the decision taken in previous decision process. In our case
the decision was that the object is a ‘cylinder’, ‘sphere’ and
‘cylinder’ for the three analyzed points.

Analyzing figure 11(a), at the time of 4.08 seconds the
object is decided to be a ‘cylinder’ because the probability
that the target object is a cylinder is very high, but m(Cy) =
0.7777.

For the time interval of 4.3–4.9 seconds, where in figure
11(d) the contradiction between the target object being a
‘sphere’ or a ‘parallelepiped’ is larger than that the target
object is a ‘sphere’ or a ‘cylinder’ respectively a ‘cylinder’ or
a ‘parallelepiped’, the object is decided to be a ‘parallelepiped’
at first because the probability for it being a ‘parallelepiped
is larger than the probability of it being a ‘sphere’ or a
‘cylinder’. This situation is changed starting with second 5
of the simulation, when the probability that the target object
is a ‘sphere’ increase, the probability that the same object is
a ‘cylinder’ remains low and the probability that the target

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

310



TABLE V: Generalized belief assignment values.
Observations Obs1 Obs2 Obs1 Obs2 Obs1 Obs2

at time 3.14s 3.14s 6.28s 6.28s 9.42s 9.42s
mObsi (Sp) 0.0001 0.0001 0.0001 0.0001 0.0005 0.0007
mObsi (Pa) 0.0001 0 0 0 0.0011 0.0067
mObsi (Cy) 0 0.0008 0 0 0 0

mObsi (Sp ∪ Pa) 0.0106 0.0234 0.0085 0.0085 0.0317 0.0692
mObsi (Sp ∪ Cy) 0.0106 0.0231 0.0085 0.0085 0.0315 0.0669
mObsi (Cy ∪ Pa) 0.0106 0.0231 0.0085 0.0085 0.0312 0.0662

mObsi (Sp ∪ Cy ∪ Pa) 0.9680 0.9295 0.9744 0.9744 0.9040 0.7903

TABLE VI: Fusion values and decision at different time steps.
Fusion mObs1

⊗mObs2
mObs1

⊗mObs2
mObs1

⊗mObs2

at time 3.14s at time 6.28s at time 9.42s
m(Sp) 0.0006 0.0001 0.0054
m(Pa) 0.0006 0.0003 0.0053
m(Cy) 0.0012 0.0002 0.0106

m(Sp ∪ Pa) 0.0328 0.0166 0.0898
m(Sp ∪ Cy) 0.0325 0.0166 0.0875
m(Cy ∪ Pa) 0.0324 0.0166 0.0866

m(Sp ∪ Cy ∪ Pa) 0.8999 0.9495 0.7145
m(Sp ∩ Pa) 0 0 0
m(Sp ∩ Cy) 0 0 0
m(Cy ∩ Pa) 0 0 0

m(Sp ∩ (Cy ∪ Pa)) 0 0 0.0001
m(Pa ∩ (Sp ∪ Cy)) 0 0 0.0001
m(Cy ∩ (Sp ∪ Pa)) 0 0 0.0002

Decision Cylinder Sphere Cylinder

object is a ‘parallelepiped’ decrease below the value of the
sphere probability.

Using the fusion values and the decision-making diagram
(figure 4), from section V-B, we can sort the desired object
into the three categories: sphere, parallelepiped and cylinder.
The obtained results are presented in figure 12.

Fig. 12: Object category decision, obtained from the proposed
algorithm. Value 1 represents decision for Sphere, value 2
represents decision for Parallelepiped and value 3 represents
decision for Cylinder.

VII. CONCLUSIONS

Any robot, no mater of its purpose, has a task to fulfill.
That task can be either of grasping and manipulation or just
a transport task. To successfully complete its task, the robot
must be equipped with a number of sensors that will provide

enough information about the work environment in which the
work is being done.

In this paper we studied the situation in which the robot
is equipped with a stereovision system and a Kinect sensor,
to detect the environment. The robot’s job was to grab and
manipulate certain objects. With the help of two different
systems, two 3D images of the environment can be created,
each one for the two sensor type. In these images, we isolated
the target object and it’s compared with three template images,
obtained through similar methods as the environment images.
The three template images represent the 3D virtual model of
a sphere, a parallelepiped and a cylinder. The comparison is
achieved with a template matching method, and following that
we obtain a matching percentage for each template tested
against the desired image. Because we wanted to develop
the decision-making algorithm based on information received
from certain template matching methods, we considered as
known the information that these algorithms can provide.
Moreover, to test different cases, we selected as input for
our decision-making algorithm and output for the template
matching methods, several sine signals that can provide all
the different cases that can occur in practice.

The goal of this paper is in part a data fusion problem with
the purpose of classifying the objects in visual range of a
humanoid robot, so it can fulfill his grasping and manipulation
task. We also wanted to label the target object in one of three
categories mentioned above, so that during the approach phase
on the target object, the robotic hand can prepare for grasping
the object, lowering the time needed to complete the task.

The stereovision system and the Kinect sensor presented in
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section III, represent the information sources, called in this
paper, the observers, name taken from the neutrosophic logic.
These observers specify the state in which the system is. One
observer can specify 7 states for the searched object.

With the help of neutrosophic logic, we determine the gen-
eralized belief values for each of the 7 states. The neutrosophic
algorithm is applied to information gathered from both of the
sensors. We have chosen the neutrosophic logic, because it
extends fuzzy logic, providing instruments for approaching
also the uncertainty situations besides the truth and falsity
ones.

Using these belief values, we compute the fusion values on
which we apply the classic DSm combination rule, and build
the decision-making algorithm presented in section V. To help
develop this decision-making algorithm we used a Petri net
which provided us a clear method of switching through system
states under certain conditions.

The decision-making algorithm analyzes the probability of
completing all the possible tasks that may appear in sensor
data fusion and tackles these possibilities so that for every
input the system will have an output.

The presented method can be used successfully in real time
applications, because it provides a decision in all the cases in
a very short time (table VII). The algorithm can be extended
so that it can use information received from multiple sources
or provide a decision starting from a high number of system
states. The number of observer/data sources is not limited
nor is the system’s states. But while increasing the number
of observers and system’s states, the data to be processed
is increased and the decision-making algorithm design is
becoming a highly difficult task to achieve.

TABLE VII: Average execution time of the presented algo-
rithm.

Method Execution time (s)
Data neutrosophication for Obs. 1 0.0026
Data neutrosophication for Obs. 2 0.0026

Data fusion using DSmT 0.0002
Data de-neutrosophication/decision-making 0.0092

Total time 0.0146

In the case of autonomous robots, these must be taught what
to do and how to complete their tasks. From this the necessity
of developing new intelligent and reasoning system arises. The
developed algorithm in this paper can be used successfully
for target identification applications, object sorting, image
labeling, motion tracking, obstacle avoidance, edge detection,
etc.
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Abstract—The identification of the subsoil constitutive ma-
terials, as well as the detection of possible interfaces and
anomalies, are crucial for many site characterization applications.
During investigation campaigns, complementary geophysical and
geotechnical methods are usually used. These two sets of methods
yield data with very different spatial scales and different levels
of incompleteness, uncertainty and inaccuracy. In this work,
a mathematical combination of geophysical and geotechnical
information is proposed in order to produce a better subsoil
characterization. It is shown that belief functions can be used
for such a fusion process. A specific methodology is developed
in order to manage conflictual information and different levels
of uncertainties and inaccuracies from different investigation
methods. In order to test and validate this methodology, we
focus on the use of two selected methods, Electrical Resistivity
Tomography (ERT) and Cone Penetration Test. First, a synthetic
model with artificial data is considered, taking advantage of
the results obtained to conduct a comparative study (effect of
parameters and noise level). Then, an experimental test bench
is considered, in which a two-layered model is placed (plaster
and saturated sands) and geophysical and geotechnical data
are generated, using a mini-ERT device and insertion depth
values. This work also aims at providing a better graphical
representation of a subsoil section with associated degrees of
belief. The results highlight the ability of this fusion methodology
to correctly characterize the considered materials as well as
to specify the positions of the interfaces (both vertical and
horizontal) and the associated levels of confidence.

Keywords: data fusion, belief functions, geophysical data,

geotechnical data, experimental test bench, electrical resistivity

tomography.

I. INTRODUCTION

For subsoils characterization, investigation campaigns are

set up, usually consisting of geophysical and geotechnical

methods. These two families of methods are complementary

and are used for various issues such as the characterization

of slope stability [1-4] the characterization of potentially

dangerous sites [5], the characterization of sites at construction

[6] or the characterization of river embankments [7].

On the one hand, geophysical methods are non-intrusive

and provide physical information on large volumes of soils but

with significant potential uncertainties. These uncertainties are

due in particular to the integrative and indirect aspects of the

methods as well as to the resolution of the inverse problems.

On the other hand, the geotechnical investigation methods are

intrusive and provide more punctual information but also more

accurate. An important issue for the assessment of subsoils is

to be able to combine acquired geophysical and geotechnical

data, while taking into account their respective uncertainties,

inaccuracies and spatial distributions [8]. The complementarity

of these two sets of methods is often underused since the

uncertainty and inaccuracy associated with each method are

rarely considered. Furthermore, the results are usually only

graphically superimposed [9] instead of being mathematically

merged.

To characterize a section of subsoil and its potentially risky

areas, it is essential to distinguish the different materials

in place. The horizontal and vertical interfaces, as well as

possible anomalies, have to be located. For levee embankment,

as an example, it is in these locations that internal erosion is

likely to develop, which may lead to the complete rupture of

the levee [10]. Such a section characterization, with associ-

ated confidence indexes, could be included in failure hazard

models.

The use of belief functions [11-12] and different information

combination rules to combine geotechnical and geophysical

data is proposed. This makes it possible to take into ac-

count at the same time the uncertainties, inaccuracies and

incompleteness of data related to each method. In the field

of geosciences, belief functions have already been used and

provide interesting results for slope instability mapping [13-

14], detection of precious metal [15], groundwater [16] or

flood susceptibility mapping [17]. To our best knowledge,

no work has been proposed, considering the combination of

two sources of information with different spatial distribution

(spatialized and punctual) and for an investigation campaign

in the vertical section.

Here, an innovative method of information fusion to com-

bine electrical resistivity tomography results and cone pen-

etrometer test data is proposed. First, work on data obtained

from synthetic models is displayed. The obtained results allow

Originally published as: T. Dezert, S. Palma Lopes, Y. Fargier, P. Cote, Combination of Geophysical and 
Geotechnical Data Using Belief Functions: Assessment with Numerical and Laboratory Data, Journal of 
Applied Geophysics, Vol. 170, November 2019, and reprinted with permission.
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to conduct a comparative study, evaluating the effect of differ-

ent parameters (like the data noise level) on the fusion result.

The fusion methodology is then tested from data acquired on

a test bench. In this work, the potential of such a methodology

is shown by using insertion depth data, acquired by a labora-

tory penetration cone, and electrical resistivity data acquired

by a mini Electrical Resistivity Tomography (ERT) device.

The depth of penetration data corresponds to geotechnical

information while the electrical resistivity data correspond to

geophysical information. The main concern is to highlight the

ability of this information fusion algorithm to characterize the

interfaces between materials and to discriminate three different

types of materials with variation in thickness of one of them,

and to present the variation of the results according to the

number and position of the simulated boreholes.

The main contributions of this work are as follows. First,

this new methodology makes it possible to take into account

the uncertainties, inaccuracies and incompleteness associated

with the different methods of investigation used, proposing a

modeling of the Basic Belief Assignments (BBAs) specifically

adapted to the problematic. Then, the proposed graphic rep-

resentation is innovative since it allows both to present the

different geological sets that would be present in the subsoil

and their layout, while presenting the confidence associated

with these results. This methodology is particularly suitable

for the characterization of interfaces and anomalous zones,

which may correspond to areas where the risk of instability is

potentially the greatest. This work also allows the implementa-

tion of a small physical model to validate the fusion approach

with real data.

This article is organized as follows. In section II a presen-

tation of the approach of fusion used in the methodology is

given, which introduces the use of the evidence theory and

the combination methods used here. In section III, a synthetic

study will then present the fusion approach from artificial

data. It will also present the comparative results associated

to two parametric studies. Then, in section IV, a presentation

of the investigation methods used in the introduced experiment

(laboratory penetration cone and mini ERT device) is given.

Finally, the test bench fusion results are presented in section

V and discussed in section VI, in order to understand the

interests, limitations and perspectives of such a methodology.

II. FUSION METHODOLOGY

A. Belief functions and combination rules

The belief functions have been introduced by Shafer [11]

in 1976 in the development of his mathematical theory of ev-

idence inspired by previous works of Dempster [12]. Shafer’s

theory is also referred as Dempster-Shafer theory (DST) in

the literature. This theory (proposes a method to) calculate(s)

the belief and the plausibility of an event (here a soil material

class) from distinct source of evidence (measured data). The

practical advantage of using such a theory lies in its ability

to manage information from different sources, associated with

variable uncertainties and inaccuracies. In this work, only two

sources of information will be considered: geotechnical and

geophysical. Another advantage of this theory is its ability to

assess the degree of conflict between sources (ex: contradictory

information between data obtained from large scale geophysi-

cal campaign and from punctual geotechnical investigation).

Uncertainties correspond to degrees of confidence that are

given to a value, whereas inaccuracies correspond to intervals

of values that can be directly associated with measurement

errors related to the method. For example, the uncertainty

of measuring a geotechnical parameter identical to the one

measured in a borehole increases with the distance to that

point. The inaccuracy can for its part, be associated with the

error bar of the result. The belief functions allow to take into

account the ignorance and incompleteness of the information.

It is indeed possible to grant credit on all the possible results

in order to quantify the ignorance. For the reader eager to learn

more, the theory is detailed in [18].

A Bayesian approach as part of a subjective probability

approach [19] could have been considered for geophysical and

geotechnical data combination. However, the main limitation

of such an approach is that probabilities essentially represent

uncertainty and only very poorly the level of inaccuracy.

Moreover, in the probabilistic modeling stage, the different

decisions (events) are only represented on singletons (i.e.

single events) and are necessarily considered exhaustive and

exclusive. The exclusivity is implied by the assumption of

the additivity of probabilities. However, this hypothesis may

be too strong and limit the representation of the knowledge.

Furthermore, with a Bayesian approach, it is difficult to model

the lack of knowledge or the knowledge that is not expressed

in probability distributions.

In order to define and to use the belief functions, it is

necessary (i) to set a frame of discernment, (ii) to assign

belief mass values to the events of this framework (Basic

Belief Assignments - BBAs), (iii) to choose a fusion rule for

combining information; and (iv) to represent the combined

information.

The Frame of Discernment (FoD) Θ is made of all the

possible events about the problem under concern, the elements

of the FoD are exclusive and exhaustive, so that for n events:

Θ = {θ1, θ2, . . . , θn}. (1)

In the considered problematic, the possible events of the

FoD correspond to intervals of values of geophysical and

geotechnical parameters that can be associated with classes

of geological materials (for example, θ1=clays, θ2=sands, . . . ).

The space of belief mass functions, the set of all subsets of Θ,

written 2Θ, is fixed by all the disjunctions and by the possible

conflict between the sources of information (written ∅) such

that:

2Θ = {∅, θ1, θ2, θ1 ∪ θ2, θ3, θ1 ∪ θ3, θ2 ∪ θ3,

θ1 ∪ θ2 ∪ θ3, . . . , θ1 ∪ θ2 ∪ θ2 ∪ . . . ∪ θn}. (2)

As in the probability theory, the belief mass function mj is

defined, for a source of evidence Sj (for j = 1, 2), attributed
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to A (defined on 2Θ) in [0, 1] such that the more m(A) tends

to 1 and the more the confidence in A is important :
∑

A∈2Θ

m(A) = 1. (3)

The difference with the probability theory lies in the fact

that A can represent the union of several events (for example,

either θ1 OR θ2). It is therefore possible to model uncertainty

and lack of knowledge. For instance, when no information

is available about the achievement of an event member of

Θ, one can set mj(Θ) = 1, avoiding the uniform distribution

that would have been considered in a probabilistic scheme.

Combination rules, as part of the belief functions theory,

can thus take different levels of uncertainty and imprecisions

into account according to the source of information. If only

defined on singletons, the belief mass function is similar to a

probability distribution.

Smets fusion approach developed in his Transferable Belief

Model (TBM) [20] (i.e. conjunctive fusion) allows the attri-

bution of a mass of belief to the conflict, outside the FoD, so

that (open-world assumption):

m12(∅) > 0. (4)

Where m12() denotes the combined BBA resulting from

the combination of information of sources 1 and 2. The belief

mass resulting from the fusion of information from source 1

and 2 is written:

m12(A) =
∑

X,Y ⊆Θ| X∩Y=A

m1(X)m2(Y ). (5)

And the level of conflict between the two considered sources

of information can therefore be quantified by:

m12(∅) =
∑

X,Y⊆Θ| X∩Y=∅
m1(X)m2(Y ), (6)

with m1(X) and m2(Y ) the belief masses respectively at-

tributed to events X and Y by sources 1 and 2.

According to Shafer’s approach and unlike Smets’ rule,

Dempster-Shafer’s rule (DS) does not allow the attribution of

a mass of belief to the conflict (closed-world assumption):

mDS
12 (∅) = 0. (7)

The conflict is there reallocated through a classical normal-

ization factor. The mass of belief in A, mDS
12 (A), resulting

from the fusion of information from sources 1 and 2 is written:

mDS
12 (A) =

1

1−m12(∅)
∑

X,Y⊆Θ| X∩Y=A

m1(X)m2(Y ). (8)

The disadvantage of this method is that the conflict between

the sources is no longer represented and it is possible to obtain

counterintuitive results if the conflict is important because of

this normalization. Even more problematic, even if the distinct

sources are both informative whatever the level of conflict

is, Dempster-Shafer’s fusion process can even not take into

account the second source of information [21].

The disadvantage of this method is that the conflict between

the sources is no longer represented and it is possible to obtain

counterintuitive results if the conflict is important because of

this normalization. Even more problematic, even if the distinct

sources are both informative whatever the level of conflict

is, Dempster-Shafer’s fusion process can even not take into

account the second source of information [21].

mPCR6
12 (A) = m12(A)

+
∑

Y ∈2
Θ

A∩Y=∅

[ m1(A)
2m2(Y )

m1(A) +m2(Y )
+

m2(A)
2m1(Y )

m2(A) +m1(Y )

]

. (9)

B. Construction of BBAs from geophysical and geotechnical

data

Belief masses have to be assigned to each considered event

of the FoD, for both sources of information. The combination

of the belief masses can only be initiated after this stage.

In the following, the geophysical source of information will

be identified as source 1 and the geotechnical source of

information as source 2. A 2D model assumption will be

made, corresponding to the x and z spatial axes, since vertical

sections of subsoil are considered.

Geophysical data

The discretization of the considered subsoil section, as well

as the depth of investigation and the resolution, depend on

the acquisition method used [24]. It is the user who sets,

using the inversion tool used, the shape and dimensions of

the discretization grid used. It is about starting from this

discretization and being able to associate for each cell, masses

of beliefs for each event of the FoD.

The constitutive classes of the FoD are also fixed at the end

of the inversion process by the geophysicist, with the help

of a representation of the distribution of the set of inverted

geophysical values, in the form of modal classes (Figure 1.a).

The representation in this form makes it possible to highlight

the centers, minima and maxima of the events considered in

order to be able to fix the bounds of the intervals associated

with the events of the FoD. The number of cells of the subsoil

section are represented according to the geophysical parameter

values. The infima and suprema must be fixed so that the

intervals are of the same width in order to avoid the appearance

of a bias when calculating Wasserstein distances (detailed

under). To associate the belief masses with the FoD events, the

intervals of inverted values of the physical parameter (in red,

Figure 1.b) are considered. For some geophysical methods,

these intervals can correspond to the value obtained at the end

of the inversion with its associated inaccuracy.

It is then necessary to associate belief mass values m1(.)
corresponding to each element of 2Θ, for each cell of the

inverted section. The masses are obtained from the calculation

of Wasserstein distances [25], considering two geophysical

intervals A = [a1, a2] and B = [b1, b2] with A and B
belonging to R, A being the interval corresponding to an event
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Fig. 1. a) Model classes’ distribution of the geophysical parameter values from the considered subsoil section, allowing the selection of the geophysical classes
in b). The red interval corresponds to an interval of inverted values, from one cell of a 2D section of subsoil, used for Wasserstein distances’ calculation.

of the FoD and B being an interval of inverted values (Figure

1.b), Eq. (10):

d2Wass(A,B) =
[a1 + a2

2
− b1 + b2

2

]

2

+
1

3

[a2 − a1
2

− b2 − b1
2

]

2

(10)

This calculation estimates the distance between two inter-

vals according to their size and the distance between them.

The Wasserstein distances are calculated (using a logarithmic

scale if the geophysical parameter requires it) between the

inverted values with estimated inaccuracies, and the intervals

associated with each event, chosen by the geophysicist. Each

cell is finally associated with a standardized BBA respecting

Eq. (3). This way, the more the distance of a geophysical

interval resulting from the inversion is “close” to one event of

the FoD, the more the mass of belief associated is important,

and reciprocally.

Geotechnical data

For the geotechnical part, the information proposed during

an investigation campaign is spatially punctual (in the x-z

plane) and often contained in vertical soundings made from

the surface. It is about associating masses of belief with the

different events of the FoD for each cell of the considered

vertical soundings. For this, the values proposed at each depth

are considered with the associated inaccuracy, corresponding

to the measurement error that could be attributed to the

measuring device (Figure 2.a). Thus, as for the geophysical

part, intervals of values are obtained.

The geotechnical mesh consisting of as many cells in depth

as the number of geotechnical values (Figure 2.b) is generated.

A mass of belief m2(.) = 1 is assigned, in the drilling points,

to the events corresponding to the measured geotechnical

parameter. A value of 1 is set since we are very confident

in the information inside the boreholes unlike the spatialized

geophysical information. A new mesh is then constructed

(Figure 2.c), according to the size and depth of the boreholes.

In order to characterize the entire section of the model, as does

the geophysical method, and to associate mass values to each

new cell (BBA), an exponential lateral decay of the belief mass

is imposed, from the drilling point to the nearest borehole so

that the decay rate is a function of the values proposed by the

nearby borehole. So that, for a specific depth, Eq. (11):

BBA(x) = e−kCvxBBA(0), (11)

with x being the distance from the considered cell to the

reference borehole (x = 0 in the borehole), k a decay factor

fixed by the user to adjust the lateral decay rate, BBA(x)
the belief mass values assigned to each event of the FoD

for a position x, with BBA(0) = 1. Cv corresponds to the

coefficient of variation expressed in Eq. (12), such as used in

[26]:

Cv =

√

1

nmesh−1

∑nmesh

i=1
(Q−Qi)2

Q
, (12)

where Q is the geotechnical value of the reference cell in

the considered borehole and Qi the geotechnical value in

the nearby borehole. For Figure 2.b, nmesh = 3 has been

considered. If nmesh = 5 or 7, the computation of the Cv

will take into account 5 or 7 cells in the nearby borehole.

Indeed, for two consecutive boreholes with similar values,

at similar depth, the decay of the confidence is slower than

for two consecutive boreholes presenting radically different
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values. This decay of belief mass is carried out to the left and

to the right, from each drilling.

Fig. 2. Construction of a geotechnical discretization mesh from two vertical
boreholes acquisition (SD1 and SD2). a) Representation of the geotechnical
values for SD1 and SD2 according to the depth. b) The boreholes are divided
in cells associated with belief mass equal to 1 for the considered event. c)
Construction of a new mesh according to the size and depth of the boreholes.

If, between two boreholes, the mass of belief associated with

a hypothesis A is less than 1 (m2(A) < 1), then the remainder

of mass to be allocated to satisfy Eq. (3), is reported on the

proposition “any type of material” represented by the union

of all events, such as Eq. (13):

m2(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 1−m2(A). (13)

C. Dimensioning of the mesh prior to the fusion

Each source of information imposes its own mesh but in

order to combine the belief masses from the geophysical

information source (source 1) and the geotechnical source

(source 2), it is necessary to have a common mesh containing,

for each cell, the geophysical and geotechnical BBAs. In order

to not alter the quality of the information, no interpolation

is carried out. It is decided to superimpose the geophysical

discretization grid resulting from the 2D inversion to the

geotechnical division, depending on the number and the bore-

hole positions. Thus, an irregular mesh is obtained but without

any approximation (Figure 3).

Fig. 3. Example of a geophysical mesh (in black) and a geotechnical mesh
(in red) superimposed to propose a new irregular mesh to carry out the
combination calculations and present the fusion results.

III. SYNTHETIC STUDY

Below, a synthetic study based on artificial data is proposed

in order to test this new proposed methodology. It is the

opportunity to show the impact of different levels of noise

on the geophysical information as well as the influence of

the lateral decay factor k (Eq.11) on the results of the fusion

in order to be able to choose a value for the use of such a

methodology from real data.

A. Considered methods

For this study, the electrical resistivity tomography (ERT)

method stands for the geophysical information source and the

Cone Penetrometer Test (CPT) method for the geotechnical

information source.

The basic principle of DC-resistivity methods consist in

injecting an electric current of known intensity [A] by means

of two “current” electrodes and measuring a voltage [V] be-

tween two “potential” electrodes. Depending on the electrode

layout, the topography, the properties of the materials and their

distribution, apparent resistivity values can be computed. The

depth of investigation depends on the spacing of the electrodes,

the configuration of the electrodes and the nature of the soil

[27]. By generalizing this principle, a two dimensional (2D)

ERT consists in aligning a series of electrodes and acquiring

a large number of measurements based on four electrodes

configuration. The apparent resistivity data acquired are then

inverted using an inversion code or software to reconstruct a

complete 2D-section of electrical resistivity [Ω·m]. Here the

Res2Dinv software (ver 3.71.118) [27] has been used.

In order to obtain an artificial resistivity section of subsoil,

a two steps procedure is followed. First, resistivity data are

simulated using the Res2Dmod software [28], on the section

that we want to consider. Second, apparent electrical resistivity

values are inverted with Res2Dinv, considering a L1 norm [29]

and an extended model discretization, to obtain the synthetic

inverted section of electrical resistivity.

The CPT method consists in pushing rods into the soil, at

a constant speed, with a conical tip at the end [30]. This test

is often used for the determination of the soils mechanical

resistance properties. The two measured parameters are the tip

resistance qc [MPa] and sleeve friction fs [MPa]. Although the

method uses two parameters, only qc will be considered as the

study parameter.

B. FoD and considered model

For this synthetic study, a two-layer model is considered,

composed of materials that can be likened to silts for the upper

layer and clays for the underlying layer. The FoD therefore

contains three material class hypotheses, such as:

Θ = {θ1, θ2, θ3}, (14)

with θ1 the event corresponding to the clayey material, θ2 to

the silty material and θ3 to unknown materials. The latter is

associated with the union of the geophysical and geotechnical

value ranges that do not correspond to those associated with θ1
and θ2. This event θ3 allows us in a certain way, to quantify
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the lack of knowledge of the environment since it does not

include the two first sets. The construction of the BBAs then

consists in associating the data of the two considered sources

to the events of the FoD. Figure 4 shows the two-layer model

based on events from the FoD, used for this synthetic study.

Fig. 4. Representation of the events of the FoD in the imposed model of
subsoil of the synthetic study.

C. Construction of BBAs from geophysical and geotechnical

data

Geophysical data

The electrical acquisition is simulated with a Wenner ac-

quisition mode and with 96 electrodes interspaced from one

meter. An electrical resistivity of 100 Ω·m is considered for the

upper material and a resistivity of 30 Ω·m for the underlying

one [31] (Figure 4). Electrical acquisitions are simulated with

different noise levels (5, 10 and 15%). The results of this

inversion (with 10% noise, figure 5.a) allow to highlight the

presence of two layers but the interface between these two

layers is not perfectly identified. A variation of thickness

in the center of the model is visible. The interface is not

straightforward and anomalies are present on the surface even

though they are not part of the initial model.

From these inversion results, it is possible to define the

ranges of electrical resistivities that will be associated with the

different events considered for the fusion process. A distribu-

tion in modal classes is used to visualize the number of cells,

in the discretized section of the 2D inversion, associated with

specific range of resistivities (Figure 5.b). This distribution

allows to highlight the two large material classes of the model.

Thanks to it, the bounds of the considered events can thus be

defined (in Ω·m), so that the intervals have the same length

(in logarithmic scale):

θ1 = [25; 45],

θ2 = [83; 149.4], (15)

θ3 = [13.89; 25[∪]45; 83[∪]149.4; 268.92].
As explained in II.B., it is possible to associate belief masses

with each cell of the mesh thanks to the values resulting

from the inversion. As part of the construction of geophysical

BBAs, the values presented Figure 6 are obtained. This figure

highlights the association of the values of Figure 5.a with

the events of the FoD, Eq. (15). The presence of a top layer

(θ2) and a base layer (θ1) can be detected (Figure 6.a). It

appears that there is a variation in the thickness of the layers

in the center of the model, but the interface is not well

characterized. Moreover, the intermediate values of electrical

resistivity resulting from the inversion (Figure 5.a) between

θ2 and θ1 layers induce the representation of a third material

(θ3) which has no reality in the model that has been fixed.

The belief masses are maximum when the resistivity values

correspond to the center of the resistivity classes set for each

event (Eq. (15)).

Geotechnical data

Concerning the source of geotechnical information, the

simulation of four vertical CPT soundings inter spaced from 19

meters is proposed (Figure 7). 20 cm wide and up to 15 m deep

boreholes are considered, and a value of qc is recorded every

50 cm from the surface. An inaccuracy of 10−2 MPa on the

measurements is considered. For a fixed normalized friction

ratio of 3%, a value of qc of 20 MPa is considered for the

upper silty material and a value of 0.2 MPa for the underlying

clay material, as proposed in the Robertson diagram [32].

In order not to have uniform values of qc for the materials

and to try to represent the noisy reality of an acquisition in

the field, values are drawn following a normal distribution

defined for each event. Mean qc values of 0.2 and 20 MPa

are respectively used to define the normal distributions of the

material classes. Standard deviation values equal to 10% of the

mean values are associated, echoing the 10% noise used for

the geophysical data. Keeping the minimum and maximum

values, these random draws, make it possible to define the

limits, in MPa, of the intervals associated with the elements

(i.e. material classes) of the FoD:

θ1 = [0.14; 0.27],

θ2 = [13.5; 23.5], (16)

θ3 = [0.1; 0.14[∪]0.27; 13.5[∪]23.5; 100].

The minimum and maximum values are fixed at 0.1 and

100 respectively because they are the minimum and maximum

values in Robertson’s diagram [32].

There are two types of sounding results according to

their position (Figure 8). Once the values associated with

the meshes of the sounding are obtained, it is possible to

associate masses of belief to the whole section by extending

the geotechnical information, as explained in II.B. In the

framework of the construction of geotechnical BBAs and for

k = 0.1 (Eq.11), the obtained values are proposed in Figure 9.

This figure highlights the fact that the confidence is maximum

in the soundings. This method allows us to characterize the

material θ2 on the first 5 meters of the model and the material

θ1 from 10 to 15 meters deep.

The greater thickness of the material θ2 in the center of

the model is also well characterized. On the other hand, a

great doubt appears in yellow (Figure 9.a) in certain areas, not

allowing the determination of a specific material (θ1∪θ2∪θ3).

For the model base area, this can be explained by the fact that

the soundings stop at 15 meters depth. Regarding the areas

between 5 and 10 meters to the right and left of the first and

last sounding, this is related to the fact that for these two

soundings, the closest soundings propose different values at

the same depths, the confidence attributed to the presence of
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Fig. 5. a) Subsoil section displaying inverted electrical resistivity values from 10% noise data acquisition and b) model classes’ distribution of the cells
presented in a), according to the electrical resistivity values (Ω·m).

Fig. 6. a) Representation of the event having the highest belief mass according to the BBA construction from geophysical data and b) the associated belief
mass values, considering a 10% noise. The black lines represent the position of the interface.

Fig. 7. 2D section of subsoil displaying true ER distribution with boreholes positions in black and associated tip resistance vertical profiles in white.

θ1 therefore decreases very quickly laterally. This decay is also high towards the edges of the model because no other
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Fig. 8. Examples of the two types of simulated soundings with tip resistance values according to the investigation depth. a) corresponds to borehole # 1 and
4 on figure 7 while b) corresponds to borehole # 2 and 3 on figure 7.

Fig. 9. a) Representation of the events having the highest belief mass according to the BBA construction from geotechnical data and b) the associated belief
mass values. The borehole positions are in dashed lines while the black lines represent the position of the interface.

sounding is present at the ends to constrain the information.

D. Effect of lateral decay factor and noise level on the fusion

results

We examine in this part the results of the fusion of belief

masses established for the proposed synthetic model by vary-

ing the noise level of the geophysical information, as well as

the value of the lateral decay factor k (Eq.11) influencing the

lateral decay rate of geotechnical information.

Figure 10 shows the fusion results with different values of

k (10−2, 5.10−2, 10−1, 5.10−1 and 1) for a simulated noise

of 10% on the acquired geophysical information. Noise was

set at 10% since the electrical resistivity classes of the FoD

were defined from the modal classes of the inverted 10%

noise image, Figure 5.b. For each value of k, Figures 10.a and

10.b represent the results obtained by Smets fusion whereas

Figures 10.c and 10.d represent the results obtained by PCR6

fusion. While Figures 10.a and 10.c show the material classes

having the greatest mass of belief at the end of the fusion

process, Figures 10.b and 10.d correspond to the values of

these respective belief masses, between 0 and 1. These figures,

display the events (materials) potentially present within the

section, as well as their attached level of confidence.

The higher the value of k is, the higher the rate of confidence

in geotechnical information is. This can be seen, for example,

from the last borehole to the right end of the section (Figures

10.b) or between the 2nd and 3rd boreholes (Fig 10.d). The

increase of k implies that for two soundings offering similar

values at the same depth, the confidence associated with the

corresponding type of material will tend to decrease. On the

other hand, for two soundings proposing different values at

the same depth, the increase of k will hardly have any impact

on the belief masses associated with the selected events (e.g.
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Fig. 10. Representation of the events having the highest belief mass in a) and c) and their associated mass values in b) and d), considering a 10% noise. In
i) k = 0.01, ii) k = 0.05, iii) k = 0.1, iv) k = 0.5 and v) k = 1. Figures on the left side are results for Smets fusion while figures on the right side are
results for PCR6 fusion. The sounding positions are in dashed lines while the black lines represent the position of the interface.

between 5 and 10 m of depth between the boreholes 1 and 2,

Figures 10.d).

With regard to the material classes identified after the fusion

process, the more k increases, the more the quantity of conflict

decreases (in red, Figures 10.a). This is explained by the fact

that when there is little trust in the geotechnical data, there

is little conflict with the geophysical data. In the meantime,

an increase in the proportion of θ3 is observed (Figures 10.c)

close to the interface. This observation is explained by a larger

mass attributed to the union of events and by geophysical data

which propose intermediate values at the interface level.

In the following of this work, an intermediate value of k will

be retained, equal to 0.1. With such parameter value, a good

confidence in information repeating between two successive

soundings is obtained, but it also leaves room for doubt by

having enough unknown material (θ3) at the interfaces. The

obtained fusion results with different noise levels added to the

geophysical information (5, 10 and 15%) are shown in Figures

10.iii and 11 with k = 0.1.

The greater the amount of noise is, the less clear the

interfaces proposed by the inversion are (Figures 5.a, 11.i.a,

11.ii.a). A greater number of anomalies are also present when

the noise level increases. The noise level finally impacts the

level of inaccuracy associated with the geophysical data used

in the fusion process. Larger data inaccuracies induce wider

value ranges considered for calculating Wasserstein distances,
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Fig. 11. a) Subsoil section displaying inverted electrical resistivity values from i) 5% noise and ii) 15% noise data acquisition. Representation of the events
having the highest belief mass in b) and d) and their associated mass values in c) and e). Figures on the left side are results for Smets fusion while figures
on the right side are results for PCR6 fusion. The sounding positions are in dashed lines while the black lines represent the position of the interface.

which in turn can bring to consider belief masses on more

events of the FoD.

Since the classes associated with FoD elements were fixed

from the values with 10% noise (section III.C and Figure

4.b), it is “reasonable” to have a higher confidence (higher

belief masses) on these results than on the results with 5%

and 15% noise (Figures 11.c, 11.e, 10.iii.b, 10.iii.d). The

fusion process allows to override the noise effects, whether

the noise level is 5 or 15%. This can be imputed to the

computation of Wasserstein distances, taking into account the

data inaccuracies and considering all geophysical classes.

IV. SETTING UP A TEST BENCH FOR REAL GEOTECHNICAL

AND GEOPHYSICAL ACQUISITIONS

A. Materials

In order to be able to assess the validity of the developed

fusion methodology, two methods of data acquisition were

retained: (i) a mini-ERT device acting as the geophysical

source of information and (ii) a laboratory penetration cone

acting as the geotechnical source of information. Before setting

up the test bench, it was necessary to select the materials

that could be put in place in a tank in order to carry out

the study. This selection implies that the materials used meet

several conditions in order to validate the methodology: they

must have (i) distinct electrical resistivity ranges, (ii) distinct

penetration depths and (iii) a certain homogeneity in the space

to limit uncontrolled anomalous values.

1) Mini ERT device: Expressly for the purposes of this

study, a mini ERT device (Figure 12) has been set up. This

device consists of 48 electrodes of 6 mm length, positioned at

regular intervals of one centimeter. It can be moved along the

test bench to make multiple acquisitions and to cover a longer

section.

2) Laboratory penetration cone: The laboratory penetration

cone method is described in the French standard NF P 94-052-

1 [33]. It consists in measuring a penetration depth of a cone,

in millimeters, subjected to its own weight (Figure 13). The

materials are tested individually, repeatedly, to determine an

average value and a standard deviation of penetration depth

for each material. These values can be used later in the study

to simulate different drilling positions within the test bench.

This method can be likened to the CPT method which is one

of the most popular in situ geotechnical tests.

3) Test bench and used materials: For the validation of

the methodology, we wanted to build a test bench that could

be easily set up and controlled, with two or three layers and
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Fig. 12. Mini ERT device with 48 electrodes spaced 1 cm, adjustable height,
used for electrical acquisitions in the test bench.

Fig. 13. Laboratory penetration cone.

variation of the interface positions. Fast-hardening natural fine-

grained plaster as well as Hostun fine sand [34] are the retained

constituents. These two materials meet the three conditions

listed above. They were placed in a transparent PVC tank of

100× 30× 17 cm3 as shown in Figure 14 with an underlying

layer of 5 cm of plaster (setting time = 69 h) overlaid by a

layer of 2.5 cm of water saturated sand.

Fig. 14. Transparency view of the test bench.

A formwork was made during the placement of the plaster

so that a 20 cm long anomaly could be inserted in. Saturated

sand of 7.5 cm thickness is present instead of plaster. The

contact between the materials and the bottom of the tank is

at the origin of an interface that will be interesting to detect

with the help of the methodology. 16 kg of plaster were mixed

with 8 kg of water to obtain the material finally put in place.

The electrical resistivity of the plaster was measured before

and after the placement of the saturated sand to verify that

the presence of water had a negligible impact on the electrical

properties of the plaster.

TABLE I
VALUES OF ELECTRICAL RESISTIVITY AND DEPTH OF PENETRATION OF

THE MATERIALS SET UP WITHIN THE TEST BENCH.

Plaster before pluviation Saturated Hostun sands

Electrical resistivity (Ω·m)

Mean 31.28 78.15

Standard deviation 3.23 11.18

Number of measures 12 52

Penetration depth (mm)

Mean 0.11 17.31

Standard deviation 0.04 1.61

Number of measures 8 10

For the Hostun sand, 15.82 kg were pluviated in 5.8 kg of

water, above the plaster to reach saturation. Trials had been

carried out in advance to determine the proportions of water

and sand required to achieve such a state as well as to validate

the repeatability of such installation by pluviation. The values

of electrical resistivities and penetration depths are displayed

in Table I.

B. FoD and BBA modeling

1) FoD and target model: A FoD consisting of four ele-

ments (material classes) is considered so that:

Θ = {θ1, θ2, θ3, θ4}, (17)

with θ1 the element corresponding to the plaster material;

θ2 corresponding to saturated sand; θ3 corresponding to the

hard and electrically insulating bottom of tank simulating a

substrate and θ4 corresponding to unknown materials, being

the union of the ranges of values not corresponding to those

associated with the 3 previously described materials. Figure 15

presents the target model in the form of events constituting the

FoD, following the disposition of the materials within the test

bench. Although the tank used is 1 m long, the ERT acquisition

only covered a 83 cm long section, on the central line of the

model, and allowed us to image up to 18 cm of depth.

2) Construction of BBAs from geophysical and geotechnical

data: The electrical acquisition was carried out on 83 cm long,

on the central line of the model, with a first acquisition on 47

cm, and three next acquisitions done after respective displace-

ments of 12 cm (roll along method). The results obtained from

the inversion of the acquired data are displayed in Figure 16.a.

These results make it possible to highlight the existence of

three distinct sets, at depths relatively close to the target model
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Fig. 15. Scheme of the idealized section model (with vertical exaggeration),
including the FoD constituent events associated with the materials of the test
bench.

(Figure 15) but presenting vertically slightly shifted interfaces,

gradual rather than sharp. In addition, the variation in saturated

sand thickness is poorly evaluated. Indeed, the anomalous zone

is recognized but associated here, in its lower part, with values

of electrical resistivities much larger than what they really are.

The proposed values, although in the same order of magni-

tude, do not exactly match the ranges of values measured on

the materials independently (Table I). In order to characterize

the events (materials) of the FoD, a distribution in modal

classes (Figure 16.b) is used to visualize the number of cells

of the discretized section for the 2D inversion, associated with

their corresponding ranges of resistivities. This distribution

makes it possible to highlight the three large sets of materials

in the model. Thanks to it, the bounds of the events considered

can thus be defined, in Ω·m, so that the intervals are the same

length, as presented Eq. (18):

θ1 = [10; 35],

θ2 = [40; 140], (18)

θ3 = [9500; 33250],

θ4 = [2.85; 10[∪]35; 40[∪]140; 9500[∪]33250; 116375].

In contrast to information from the geophysical source,

geotechnical data were obtained beforehand by laboratory

penetration cone testing, and then numerically simulated prior

to fusion. Several simulations proposing various positions of

survey points were carried out. In order to simulate drilling

points, the associated mean depth values (mm) and associated

standard deviations (Table I) were used to draw values, follow-

ing a normal distribution defined for each event. An average

penetration depth value of 0 mm is used for θ3 (bottom of tank)

and an associated standard deviation of 0.01 mm, meaning that

negative values may be drawn. These random draws, make it

possible to define the limits, in mm, of the intervals associated

with the events of the FoD as presented Eq. (19):

θ1 = [0.04; 0.19],

θ2 = [13; 21], (19)

θ3 = [−0.02; 0.02],

θ4 = [−0.05;−0.02[∪]0.02; 0.04[∪]0.19; 13[∪]21; 100].

Thus, 2 mm wide boreholes are simulated, down to 15 cm

and acquiring every 5 mm with an associated inaccuracy of

0.01 mm. The values of penetration depth obtained can then

be associated with the different materials of the model.

V. TEST BENCH DATA FUSION RESULTS

The results of the geophysical and geotechnical information

fusion, are proposed in Figure 17. The simulations were

carried out according to four distinct vertical drill positioning

configurations, represented in dashed lines in the figures and at

regular intervals: i) 8 holes inter-spaced of 10 cm (Figure 17.i)

(x = 10; 20; 30; 40; 50; 60; 70; 80 cm), ii) 5 holes inter-spaced

of 18 cm (Figure 17.ii) (x = 4, 22, 40, 58, 76 cm), iii) 3 holes

inter-spaced of 25 cm (Figure 17.iii) (x = 15, 40, 65 cm) ),

iv) 2 holes inter-spaced of 50 cm (Figure 17.iv) (x = 15, 65
cm). The fusion results carried out are presented, respecting

i) the hypothesis of Smets (Figures 17.a and 17.b), ii) the

hypothesis of a closed-world (section II.1) with PCR6 rule

(Figures 17.c and 17.d). Figures 17.b and 17.d represent the

belief mass values associated with events having the largest

mass, represented respectively in Figures 17.a and 17.c. The

fusion results are analyzed and discussed in the next section.

VI. FUSION RESULTS ANALYSIS AND DISCUSSION

Different rules of combinations

Let us discuss and compare the results obtained by the 2

different combination rules used in an 8-boreholes simulation

(Figure 17.i). In the framework of a model as rich in

geotechnical information, the section proposed by the PCR6

method (Figure 17.i.c) is very close to the target model set

up (Figure 15). The three sets are well characterized and

the interfaces at 2.5 cm deep (sands-plaster) and at 7.5 cm

deep (plaster-PVC tank and sand-PVC tank) are much better

defined than by ERT alone (Figure 16.a). Moreover, thanks

to this geotechnical information, the sand thickness anomaly

could be correctly characterized as saturated sands (2) and

not as a more resistive anomaly, in continuity with the

insulating material from below, as suggested by the results

of the inversion. The lateral extension of this anomaly is,

moreover, well estimated (20 cm). The combination of Smets

highlights the significant conflict existing between the two

considered sources of information (Figure 17.i.a) concerning

the two first layers.

Whatever method is used, the presence of a hypothesis 4 is

found at the vertical and horizontal interfaces (Figures 17.i.a,

i.c). This hypothesis does not correspond to any material set

up in the test bench. The belief masses attributed to such

a hypothesis, highlight the transition zones not conform to

reality, proposed by the inversion of the electrical resistivity

data (Figure 16.a). In comparison to the belief masses as-

sociated with the other hypotheses of the model, the belief

masses associated with 4 are the lowest (Figures 17.i.b, i.d),

showing that the confidence granted to such a material remains

quite relative. An overall confidence drop is also observed

from 15 cm depth. This corresponds to the maximum depth

reached by the simulated boreholes. As confidence is extended

laterally, the belief masses are constrained only by geophysical

information to such a depth and therefore rely only on one

source of information.
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Fig. 16. a) inverse model resistivity section obtained by roll along acquisitions in the central line of the model and b) model classes’ distribution of the cells
presented in a), according to the electrical resistivity values (Ω·m).

Influence of the number of boreholes and positions

The first intuition would be to assume that the more the

number of boreholes decreases, the more the method should

be put in difficulty to properly characterize the section of the

set up test bench. Although this is partly true, the quality of

the results is not based as much on the number as on the

positions of the drillings. Indeed, the anomaly of saturated

sands contained between the two banks of plaster (Figure

15) is as well characterized in terms of lateral extension with

three or five soundings (Figures 17.ii.c, iii.c). It also has an

equivalent associated trust (Figures 17.ii.d, iii.d). It turns out

that the belief masses associated with the event 1 (plaster) are

even smaller for a fusion including three soundings (Figures

17.iii.d) than for a simulation of only two (Figures 17.iv.d).

The explanation of such results lies in the fact that being in

the presence of consecutive boreholes, informing about the oc-

currence of different materials, at an equivalent depth, induces

a rapid decrease in the confidence attributed to the boreholes.

Therefore, more credibility is given to the geophysical infor-

mation source, explaining the greater presence of 4, which

reflects the gradual transitions in electrical resistivities. The

masses associated with this event, however, remain relatively

small. On the other hand, if two consecutive boreholes have the

same geotechnical values, for a specific depth, the lateral decay

rate will be low and no priority can be given to a different

material existing between these two boreholes. That is why

the sand anomaly in the center of the model does not appear

in the results fusion with two soundings (Figures 17.iv.c) : no

borehole pass through the anomaly and the geophysical source

is unable to characterize this material as saturated sand. The

strength of these results is that they suggest the presence of

4 in this location, suggesting that the survey campaign should

be reinforced (with a new borehole position for example).

The conflict presented by Smets combination (results in

Figures 17.i.a, ii.a, iii.a and iv.a) is neither a function of the

number of geotechnical soundings. In this study, the cases of

fusion bringing the highest amount of conflict are in fact the

ones with eight and two soundings. Nor is it to be confused

with a lack of knowledge of the subsoil. Conflict zones

highlight contradictory information between the two sources.

These zones are generally between two consecutive boreholes

providing the same information, but going against the avail-

able geophysical information. These are therefore potentially

anomalous zones where the geophysical information must be

considered carefully, in particular if the belief mass associated

with the event retained after normalization is too low.

Important considerations and potential in the application

It is important to consider that the effectiveness of this

fusion methodology has been assessed by comparing the

fusion results with a target model (Figure 15). However, this

remains an idealized representation of the test bench set up and

could be, in some places, quite far from reality (real interfaces

not perfectly horizontal or vertical, materials not perfectly

homogeneous, 3D effects neglected, ...). The approach is dif-

ferent from the one of the synthetic study (Figure 4) where the
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Fig. 17. Representation of the events having the highest belief mass in a) and c) and their associated mass values in b) and d). For i) 8 boreholes, ii) 5
boreholes, iii) 3 boreholes, iv) 2 boreholes are considered. For each case, (a,b) figures are results of Smets fusion, while (c,d) figures are results of PCR6
fusion. The borehole positions are in dashed lines.

model shown corresponds to the true model. In order to control

the effectiveness of the fusion methodology, it was envisaged

to carry out ex post verifications of the constituent materials.

Unfortunately, for practical reasons, this could not be done

(reworking of materials modifying their physical properties,

interaction with water, delicate cutting and extraction, ...).

Regarding the fusion methodology developed, two aspects

are debatable. First, the choice to set a mass of belief

equal to 1 on the geotechnical information in the boreholes.

Second, the effect of different random draw results on the

fusion results. The choice of a maximum punctual confidence

(m = 1) in boreholes is defended in order to give a full and

local confidence to geotechnical information as it is currently

done during investigation campaigns. Excessive risks are not

taken since the test bench is relatively well known and the

synthetic model is perfectly well known. Thus, it is sure

that simulated borehole values refer to the right materials.

Furthermore, a value of m = 0.99 instead of m = 1, for

instance, does not significantly change the results and does

not change the interpretation and the resulting discussion.

Regarding the effect of random draws, these draws were done

following a normal distribution, the variations from one draw

to another are minimal and the results of fusion differ little.

Such an information fusion algorithm, dedicated to the com-

bination of data from geophysical and geotechnical sources,

should prove useful for processing of data acquired during

investigation campaigns for many different kinds of issues. It is

possible to envisage its use with a larger number of materials,

but also, and especially, with a larger number of data types

from geophysical methods (seismics, ground penetrating radar)

and geotechnical testing methods (penetration cone, core sam-

pling with laboratory identification, permeability tests, ...)

associated.

In the framework of a recognition campaign, the conflict

zones, or zones with a low associated confidence, would make

it possible to specify the locations where the investigation must

be reinforced. The ultimate goal is to obtain a more robust

and cost-effective diagnosis of the investigated structure, more
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targeted for geotechnical investigation. This methodology has

particularly shown its ability to correctly characterize inter-

faces, which corresponds to areas where the risk of instability

is potentially the greatest. For a levee embankment issue, for

example, the results from such a methodology could come to

feed into models of breakage risks (ex: CARDigues [35]).

VII. CONCLUSION

In this work, a new methodology has been presented, based

on belief functions to take benefit and to combine two different

and complementary kinds of information: geophysical and

geotechnical. Each one having its own spatial distribution and

related uncertainties and inaccuracies. A new representation of

the information has been proposed, taking into consideration

two different investigation methods, associated with degrees

of belief. This representation is more informative than data

superposition of different physical parameters.

In the first place, this new approach has been validated

with a synthetic study, simulating data acquired by ERT and

a CPT method, considering a 2D model with two layers and

thickness variation. The results were obtained with different

noise ratios applied to the geophysical data and different values

of lateral decay coefficient for the geotechnical information.

The most appropriate value to pick up for the coefficient has

been pointed out and it has been showed that this approach was

able to manage the noise ratio, thanks to the use of Wasserstein

distances.

In order to address the problem of combining information

acquired by geophysical and geotechnical methods during in-

vestigation campaigns, and to acquire values from real devices,

a test bench composed of plaster and saturated sands was set

up. The methods used to characterize such a physical model

were the ERT method (geophysical) and the laboratory pene-

tration cone method (geotechnical). While the data has been

acquired by a dedicated small scale ERT device, on the surface

and on the central line of the complete model, borehole were

simulated respecting the penetration depth ranges previously

established.

Fusion results were proposed following 2 combination rules

(Smets and PCR6) as well as for four different simulations of

number and positions of boreholes. The results highlighted

the ability of this fusion approach to correctly characterize

the test bench materials as well as to specify the positions of

the interfaces (vertical and horizontal) between the materials.

Moreover, for each result, thanks to a graphical representation,

the associated confidence is proposed.

Further research should include cases of material mix-

tures and cases of different materials sharing common ranges

of physical properties in order to test the ability of this

methodology to differentiate them. We also wish to test

this new methodology in real investigation campaigns in

order to improve the available knowledge and strengthen the

characterization. The level of confidence associated with the

proposed results may be very relevant for decision support (eg

models of failure hazards). The results of such a methodology

should make it possible to propose the most relevant borehole

positions (that are a function of conflictual and anomalous

areas), in order to make the quality of the information more

cost-effective.
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Abstract—In this paper, a dual iris authentication using Dezert-
Smarandache theory is presented. The proposed method consists
of three main steps: In the first one, the iris images are segmented
in order to extract only half iris disc that contains relevant
information and is less affected by noise. For that, a Hough
transform is used. The segmented images are normalized by
Daugman rubber sheet model. In the second step, the normalized
images are analyzed by a bench of two 1D Log-Gabor filters to
extract the texture characteristics. The encoding is realized with
a phase of quantization developed by J. Daugman to generate
the binary iris template. For the authentication and the similarity
measurement between both binary irises templates, the hamming
distances are used with a previously calculated threshold. The
score fusion is applied using DSmC combination rule. The
proposed method has been tested on a subset of iris database
CASIA-IrisV3-Interval. The obtained results give a satisfactory
performance with accuracy of 99.96%, FAR of 0%, FRR of
3.89%, EER of 2% and processing time for one iris image of
12.36 s.

Keywords: Biometric, Iris, Authentication, Dezert-

Smarandache theory.

I. INTRODUCTION

When individuals log onto computers, or access an ATM,

or pass through airport security, they have to reveal their

identities. For this, individuals use passwords, ATM cards, and

passports to prove their identities. However, passwords can be

forgotten, and ATM cards or passports can be lost or stolen.

In contrary, the biometric modalities (Fingerprint, face, iris,

â¦etc) speak to what and they also allow to prove our identity.

However, the unimodal biometric systems using one

biometric modality for recognition cannot guarantee at

present an excellent recognition rate. Furthermore, these

systems suffer from limitations such as sensitivity to noise,

data quality, non-universality, and spoof attacks. To overcome

these problems, Multimodal biometric systems, which

combine multiple biometric modalities, have been developed

on purpose to achieve a better recognition rate.

The popular fusion method of the biometric traits can be

done at tow stages of recognition system:

A. Fusion at feature extraction level

The data is acquired from each sensor is utilized to generate

a feature vector. Then, the features are fused to form one

feature vector.

B. Fusion at matching score level

The matching score of each system is combined and com-

pared with the stored template.

We use as a modality for recognition of individuals: iris,

since their texture is

- Stable throughout the life of a person, unlike the finger-

print.

- Unique for each person, unlike a facial feature in identical

twins.

- Unfalsifiable contrary to the characteristics of the voice.

- Iris is an internal organ well protected from the external

environment, but nevertheless measurable, in a rather

little invasive way, by simple image acquisition.

Daugman’s algorithm [1] is one of the best iris algorithm

known in biometrics. The algorithm consists of segment iris

using Integro-Differential Operator and iris normalization is

implemented using Daugman’s polar representation. Then,

iris encoding is applied using 2D Gabor filters to extract

a binary code of 256 bytes. The Matching is processed by

computing similarity between two iris codes using Hamming

distance. The more Hamming distance is small, the more both

codes are similar. A distance of 0 corresponds to a perfect

match between both iris images, while two iris images of

different person will have a Hamming distance close to 0.50.

In 1997, Wildes [2] proposed a novel iris recognition system

compared to Daugman algorithm [1]. The acquisition of iris

is done by a CCD Camera in low luminosity. Then, the iris

is segmented using Circular and Elliptic Hough transform and

is normalized using a transformation function of pixels. After

that, the iris is filtered by Laplacian of Gaussian filters with

four different resolution levels. A normalized correlation is

calculated for every resolution levels. The median of the values

of correlations is computed for the filtered image. The fusion

of four values is applied using Fisher’s linear discriminant.

In 1998, W. Boles and B. Boashash [3], presented a new

algorithm for recognition of individuals from iris images. The

algorithm is insensitive to variation in the lighting conditions

and noise levels. A Median filter is used for preprocessing.

The advantage of this technique is to extract a features vector

from 1D signals rather than 2D images analyzed in [1], [2]

using zero-crossings of the dyadic wavelet transform at various

resolution levels. Only a few selected intermediate resolutions

Originally published as: K.G. Ghalem, F. Hendel, Dual Iris Authentication System Using Dezert-
Smarandache Theory, International Journal of Electrical and Computer Engineering (IJECE) Vol. 9, No. 
6, pp. 4703–4712, December 2019, and reprinted with permission.
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are used for matching. The matching is applied using different

dissimilarity functions. Thus, make the algorithm faster and

less sensitive to noise and quantification error.

In 2004, Ma et al. [4] presented an efficient algorithm for

iris recognition. The iris is segmented by Canny filter and

Hough transform. Then, the iris is normalized by histogram

equalization. After that, A 1D Wavelet Transform is used to

represent resulting 1D intensity signals. The position of local

sharp variation points is registered as features. The matching

is effectuated using the similarity function (exclusive or oper-

ation). This algorithm is efficient and faster than Daugman’s

algorithm [1].

In [5], the researchers proposed a modified Masek approach

and a comparative study of the performance of the following

methods: radial segmentation, Masek segmentation approach,

modified Masek approach. The proposed method tested on

Casia Iris Database V3 showed a good performance in terms

of accuracy and processing time.

R. Biswas [6] has introduced an iris recognition system that

includes different steps: segmentation, normalization, feature

extraction, and classification. The segmentation of the pupil

is performed by the Hough transform. Experimental results

showed a recognition rate of 92%.

In [7], the authors proposed an iris recognition system based

on “Fractal dimension of the box-counting method”. First, the

iris is segmented by Hough transform and is normalized by

Daugman’s rubber sheet model. Then, the feature extraction

is processed by box counting. Finally, the matching is es-

tablished using K-nearest Neighbor and Euclidean distance.

Experiments tested on Casia Interval V4 database showed a

good recognition rate equal to 92.63%.

D. Bobeldyk and A. Ross [8] have developed a method for

predicting eye color from NIR iris images. Researchers have

shown that a texture based approach based on the BSIF is more

efficient than the intensity based approach based on raw pixel

values. Experiments tested on the BioCOP database showed a

good recognition rate of 90%. The BSIF distinguished “light

color iris” and “dark color irides” using the SVM classifier.

The authors [9] presented a new method of classifying

faked iris images of different patterns such as printed irises,

contact lenses. The new classification method learns different

characteristics of faked iris images by CNN and identifies

legitimate and faked iris images using “Hierarchical Multi-

Class”. The tests carried out on the different databases: ND-

contact, Casia-Iris-Interval and Casia-Iris-Syn, LivDet-Iris-

2017-Warsaw showed a recognition rate equal to 100% and

FAR = 0%, FRR = 0%.

H.G. Daway et al. [10] presented a new method for detecting

the pupil. The method involves several steps, the most impor-

tant of which depends on the difference in color and intensity

between the pupil and its neighborhood. These characteristics

are very important to locate and extract the pupil. Thus, the

pupil is a region of very high intensity (color) compared to its

neighborhood. The experimental results showed a recognition

rate equal to 100%.

In purpose to improve overall performance in terms of

recognition rate and mitigate errors, the researchers have used

more than one biometric trait, and thus, the multibiometric

systems have emerged. Numerous multi-biometric systems

have been developed, which fusion is made at Matching score.

In [11], the researchers proposed a new approach for

recognition using both irises. The iris is segmented using

the Canny filter and Hough transform, then the segmented

iris is normalized by J. Daugman’s rubber sheet model. The

iris feature extraction is carried out using convolution of the

normalized iris with 1D Log-Gabor filters then the phase of

filtered iris is quantized in order to generate a binary code.

The Hamming distance is used for Matching. The Matching

operation consists in comparing the two iris feature vectors

of a person with the others; if the Hamming Distances are

less than the threshold then the person is identified. The

experimental results showed a good recognition rate equal to

99.92% with an FRR = 9.96%, while for unimodal systems

(left iris and right iris) the recognition rate is equal to 99.87%

with an FRR = 14.62% and FPR = 15.68%.

In [12], the authors presented the framework for multi-

modal biometric fusion based on the uncertainty concept of

Dempster-Shafer theory. A combination of quality measures

and the accuracy of classifiers (equal error rate) are proposed

to encode the uncertainty concept to improve the fusion. The

proposed method revealed a good performance with an EER

equal to 1%.

R. Dwivedi and S. Dey [13] proposed a cancelable multi-

biometric system using score level fusion. The fusion of scores

was applied by MC weighting at first level and RA weighting

at the second level. The comparative analysis shows that the

proposed fusion method outperforms the existing weighting

approaches.

In this works, we extract only the interior half of the

iris disc rather than the whole iris disc, which contains the

most relevant information and it is less affected by noise. In

addition, we combined two sources of information (left iris

and right iris) with a high degree of conflict using Dezert-

Smarandache Theory, which solves the problem of highly re-

distributed masses conflicts arising under the Dempster Shafer

theory.

The reminder paper is organized as follows: the research

method is described in section II, Results and Analysis are

presented in section III, conclusions are provided in section

IV.

II. RESEARCH METHOD

The key idea of our work is to extract only the dis-

criminant information from iris texture and proposes Dezert-

Smarandache Theory (DSmT) at score level fusion to operate

under uncertainty in goal to achieve a good performance.

The proposed method is composed of four main stages:

preprocessing, feature extraction, fusion, and matching.

A. Preprocessing stage

First, the iris images require going through the preprocess-

ing phase including segmentation and normalization.
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1) Iris segmentation: The segmentation of iris is realized

by commonly Edge detector method: Hough transform.

- HOUGH TRANSFORM ALGORITHM

- Generate edge map using the Canny filter.

- Canny parameters: the standard deviation of Gaussian

smoothing filter: σ = 2; weighting for vertical gradients

= 0; weighting for horizontal gradients=1.

- Increase contrast in dark iris region. image gamma value:

enhance the contrast of bright regions: γ = 1.9.

- Detect pixel corresponding to the local maxima Distance

in pixel units to be looked at on each side of each pixel

when determining, whether it is a local maximum or not:

d = 1.5.

- Binarize iris image using Hysteresis thresholding. Low

threshold T1 = 0.19. High threshold T2 = 0.20.

Figure 1. Different step of Hough Transform.

Then, a Circular HoughTransform detects at first the

iris/sclera boundary and the iris/pupil boundary. The eyelashes

are detected by global thresholding (T = 100).

In this work, the objective is to extract only relevant

information from iris, which is represented by the structural

variation of the iris texture (high gradient areas), only the

internal half of the iris disc is exploited rather than whole,

because it contains the most relevant information [14] and it

is less affected by the noise as shown in Figure 2. Indeed,

the proposed technique decreases the complexity and the

computation load without losing information (as shown in

Table I).

rhalf of iris disc = rpupil + (riris − rpupil)/2 (1)

Figure 2. Delimitation of only the internal half of iris disc.

Table I
COMPARISON: TOTAL IRIS DISC VS HALF IRIS DISC.

Accuracy Processing time for one iris image
(%) (s)

Total iris disc 99.87 22.88
Half iris disc 99.96 12.36

From Table I, we denote that treatment using only half

iris disc is more efficient with an accuracy of 99.96% and

processing time for one iris image of 12.36 s than the treatment

using a whole iris disc with accuracy 99.87% of and processing

time of 22.88 s.

2) Iris normalization: The iris disc does not always have

the same dimension, even for eye images of the same person;

this is due to various problems as follows:

a) Different acquisition conditions of the eye images. Di-

lation and contraction of the pupil due to the variation

of the illumination level.

b) The circles of iris and pupil are not concentric.

In order to overcome these problems, a stage of normaliza-

tion is applied. It consists of transforming the region of the iris

disc to rectify the dimensions of all the iris discs, by using the

homogenous rubber sheet model proposed by Daugman [1]. It

transforms each point in the iris area to the polar coordinates

(r, θ), where r is on the interval [0, 1], and θ is an angle in

[0, 2π], as illustrated in Figure 3.

Figure 3. Daugman rubber sheet model [1].

In our system, (20 × 240) points were used, but only

(10× 240) points corresponding to the internal half of the iris

disc that contains the most relevant information and which is

less affected by noise, are retained for the next steps of the

processing, as shown in Figure 4.

Figure 4. Normalization of the segmented iris.

B. Feature extraction stage

After that, the feature extraction stage is applied in purpose

to extract the most discrimination information present in the

iris region. For this reason, a bench of two 1 D Log-Gabor

filter is used.
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1) 1D Log-Gabor filter:

- The Fast Fourier Transform is applied for each line of

the normalized matrix image (FFT to 1D signals).

- Then, the Inverse Fast Fourier Transform IFFT is applied

on the multiplication FFT (1D signals) by a 1D Log-

Gabor Filter.

- The frequency response of a 1D Log-Gabor filter is given

by:

G(f) = exp
(

− log(f/f0)
2

2× log(σ/f0)2

)

(2)

Parameter setting:

• A bench of two 1D Log-Gabor filters is used.

• The standard deviation of the 1D Log-Gabor wavelet is

given by σ = 2.

• The center frequency of the 1D Log-Gabor wavelet is

given by f0 = 0.05.

Indeed, the phase of a filtered image was quantized using

four-quadrants of Daugman [1], when going from one quadrant

to an adjacent quadrant, one bit is changed as shown in Figure

5.

Figure 5. Quantization Phase [1].

The encoding process produces a bitwise template contain-

ing a number of information bits (as shown in Figure 6), the

total number of bits in the template (9600 bits) will be the

angular resolution (240) times the radial resolution (10), times

2, times the number of filters used (2).

Figure 6. Quantization Phase [1].

C. Matching stage

The matching score comes before Fusion stage. It consists

in comparing two iris code using Hamming distance. The

Hamming Distance (HD) is defined by:

HD =

N
∑

j=1

Xj ⊕ Yj (3)

where Xj and Yj are the two bitwise iris code, N is the

number of bits in each iris code, and ⊕ is xor operation.

Literally, the Hamming distance calculates the number of

different and valid bits for the two iris code between Xj and

Yj .

The number of translation bits that compensates the rotation

of the iris needs to be fixed. We applied a translation of the

iris code in an interval [-3,+3] bits. We take into consideration

the minimum Hamming distance.

D. Fusion stage

In this stage, score level fusion using Dezert-Smarandache

theory (DSmT) was applied on a goal to improve the perfor-

mance of the dual iris system.

1) Score level fusion: Matching score level fusion combines

the scores generated by multiple classifiers relating to the left

and right iris to affirm the veracity of the claimed identity.

The Dezert-Smarandache theory operates under hyperpower

set DΘ. Thus, DSmT is able to function properly not only

with the unions but also with intersections. DSm Classic has

combination rule [15],[16] and [17]:

m(C) =
∑

A∩B=C

m1(A)m2(B);A,B ∈ DΘ, ∀C ∈ DΘ (4)

Example

Θ = {Sleft, Sright},

Θ = {∅, Sleft, Sright, Sleft ∪ Sright, Sleft ∩ Sright},

where

∅: Empty set;

Sleft: Hypothesis assuming that two individuals have same

left iris;

Sright: Hypothesis assuming that two individuals have a

same right iris;

Sleft ∪ Sright: Hypothesis assuming that two individuals

have the same iris;

Sleft ∩ Sright: Hypothesis assuming that two individuals

have different iris.

E. Decision

The decision is made by fixing a threshold. The two irises

compared will be considered as belonging to the same person

if the calculated score is inferior to a threshold.

III. RESULTS AND ANALYSIS

A. Simulation environment

The proposed method has been tested on a subset of iris

database CASIA-IrisV3-Interval [18] in order to evaluate its

performance in authentication mode. The subset contains 1180

eye images of 118 individuals (classes), and each individual

has five iris samples for the left eye and five iris samples for

the right eye.
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B. Performance metrics

- False Reject Rate (FRR): also known as Type I error, is

the measure of the probability that the biometric security

system will incorrectly reject an access attempt by an

authorized user;

- False Accept Rate (FAR): also known as Type II error, is

the measure of the probability that the biometric security

system will incorrectly accept an access attempt by an

unauthorized user;

- EER (Equal Error Rate): The EER is the operating point

for which the False Reject Rate (FRR) is equal to the

False Accept Rate (FPR).

C. Decidability

Decidability [1] is the best metric which indeed takes into

account the mean and standard deviation of the intra-class and

inter-class distributions:

d′ =
|µS − µd|
√

σ2
s
+σ2

d

2

(5)

Decidability d′ is a distance in standard deviations calcu-

lated using (7), which is a function of the magnitude of the

difference between the mean of the intra-class distribution µs,

and the mean of the inter-class distribution µd, the standard

deviation of the intra-class and inter-class distributions, σs,

and σd respectively.

Table II
DECIDABILITY TABLE FOR VARIOUS NUMBERS OF BIT-SHIFTS.

Numbers of shifts µs σs µd σd d′

0 0.3300 0.0723 0.4914 0.0284 3.4314
1 0.3137 0.0697 0.4860 0.0279 3.8149
2 0.3072 0.0668 0.4812 0.0269 4.0264
3 0.3044 0.0653 0.4772 0.0258 4.0742
4 0.3032 0.0646 0.4738 0.0247 4.0431
5 0.3028 0.0642 0.4709 0.0238 3.9907
6 0.3025 0.0639 0.4684 0.0230 3.9362
7 0.0637 0.0642 0.0223 0.0216 3.8862
8 0.3023 0.0635 0.4645 0.0216 3.8303
9 0.3022 0.0634 0.4629 0.0211 3.7999

10 0.2758 0.0639 0.4643 0.0201 4.3960

Figure 7. Decidability curve for various numbers of bit-shifts.

Using Equation (7), several different decidabilities are found

out using 0-bit shift to 10-bit shift towards both left and right

iris templates.

The higher decidability is equal to 4.3960 at 10 bit shift

(as shown in Table II and Figure 7) that guarantees good

separation of intra-class and inter-class distributions, which

allows for more accurate recognition.

D. Score level fusion

In fact, we calculated the fusion score Sf using Hamming

distances obtained by comparing the individuals from their iris

- HDL: Hamming distance obtained by comparing the

individuals from their left iris;

- SL: Score obtained by comparing the individuals from

their left iris;

- HDR: Hamming distance obtained by comparing the

individuals from their right iris;

- SR: Score obtained by comparing the individuals from

their right iris.

Algorithm

for each individual indv

for each different iris, j :

% such as i,j belongs to iris set of indv

Calculate the score S_L (i,j)=1-HD_(L ) (i,j)

Calculate the score S_R (i,j)=1-HD_R (i,j)

Calculate the fusion of score

S_f (i,j)=S_L (i,j)*S_R (i,j)

k=1

for s=0:0.05:1

if S_f(i,j)< s then

FN(k)=FN(k)+1 % false negative counter

k=k+1

end if

end

end

end

for each different individual indvi, indvj

for each different iris (i,j)

% such as i belong to iris set of indvi

% and j belong to iris set of indvj

Calculate the score S_L(i,j)=1-HD_L (i,j)

Calculate the score S_R(i,j)=1-HD_R(i,j)

Calculate the fusion of score

S_f (i,j)=S_L (i,j)*S_R (i,j)

k=1

for s=0:0.05:1

if S_f (i,j) >= s then

FP(k)=FP(k)+1 % false positive counter

k=k+1

end if

end

end

end

maxindv= number of individuals
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nbtr=number of iris images per individual

nbinter=maxindv*(nbtrx(nbtr-1)/2)

nbintra=maxindv*(nbtrx(nbtr-1)/2)

TN=nbinter-FP % True Negative

TP=nbintra-FN % True Positive

TPR=100*(TP/nbintra) % True Positive Rate

TNR=100*(TN/nbinter) % True Negative Rate

FAR=100*(FP/nbinter) % False Accept Rate

FRR=100*(FN/nbintra) % False Reject Rate

Accuracy=100*((TP+TN)/(nbintra+nbinter))

where ⋆ is the product operator of two numbers.

The dual iris system using DSmC at score level fusion

reaches an accuracy rate of 99.96% and FAR of 0%, FRR

of 3.89%, EER of 2% as shown in Figure 8 and Figure 9.

Figure 8. The accuracy of the dual iris system.

Figure 9. FRR and FAR of the dual iris system.

We conclude from Figure 10 that the ROC (Receiver Oper-

ating Characteristic) of dual iris system using DSmC at score

level fusion fit the origin, which proves the performance of

our method.

Figure 10. ROC of the dual iris system.

E. Comparison of various approaches

We denote from Table III, that the proposed dual iris

authentication system gives a competitive performance with an

accuracy of 99.96%, FAR of 0%, FRR of 3.89%, EER of 2% in

comparison with other approaches. The problem of Dempster

Shafer theory used in DST approach [12] (EER of 1%) that

consists of combining two sources of information with a high

degree of conflict is resolved. The proposed method is based

on Dezert-Smarandache Classic rule (DsmC) that solves this

problem. Iftakhar and al [11] used the fusion method based on

the AND rule that gives an accuracy of 99.92%, FAR of 0%,

FRR of 9.96%, which is more drastic and leads to improve

the FAR. R. Dwindi and S. Dey obtained less performance

in term of accuracy equal to 98.89%, EER of 0.69%, which

used a score fusion methods likes MC weighting and RA

weighting. These two methods using for optimization gives

a little improvement to the performance of the system.

IV. CONCLUSION

The purpose of this work was to find out a dual iris

authentication system that guarantees good performance and

to make sure that there is no false acceptance rate, which

promises useful security applications. The proposed method

consists in segmenting, to normalizing, characterizing and

encoding the iris. For the segmentation part, the detection

of the iris/pupil circles was performed by Hough circular

transform. Only the interior half of the iris disc containing

the most relevant information and less affected by noise, which

reduces time complexity was extracted. Iris normalization part

was performed by the Daugman rubber sheet model with a

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

336



Table III
DECIDABILITY TABLE FOR VARIOUS NUMBERS OF BIT-SHIFTS.

Iris Reco. System Accuracy (%) FAR (%) FRR (%) EER (%)

Iftakhar & Ashraful approach [11] 99.92 0 9.96 -
DST [12] - - - 1

Dwivedi & Dey approach [13] 98.89 - - 0.69
Proposed dual iris authentification system 99.96 0 3.89 2

resolution of 10×240. This stage was analyzed by the bench of

two 1D Log-Gabor filters to extract the texture characteristics

and the encoding was realized with a phase of quantization

developed by J.Daugman to generate the binary iris template.

For the authentication and the similarity measurement between

both binary irises templates, the hamming distances are used

with a previously calculated threshold. The score fusion is

applied using Dezert-Smarandache Classic (DSmC) rule. The

experiment tested on Casia-iris v3-interval shows that the

proposed system gives a good performance compared to others

approaches with an accuracy of 99.96%, FAR of 0%, FRR of

3.89%, EER of 2% and processing time for one iris image of

12.37 s.
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Abstract—This paper describes an original method of global
machine condition assessment for infrared condition monitoring
and diagnostics systems. This method integrates two approaches:
the first is processing and analysis of infrared images in frequency
domain by the use of 2D Fourier transform and a set of F-
image features, the second uses fusion of classification results
obtained independently for F-image features. To find the best
condition assessment solution the two different types of classifiers,
k-nearest neighbours and support vector machine (SVM), as well
as data fusion method based on Desert Smarandache theory have
been investigated. This method has been verified using infrared
images recorded during experiments performed on laboratory
model of rotating machinery. The results obtained during the
research confirm that the method could be successfully used for
identification of operational conditions that are difficult to be
recognized.

Keywords: classification, decision fusion, PCR6, infrared
image analysis, Fourier Analysis, infrared thermography, con-
dition base monitoring.

I. INTRODUCTION

Infrared thermography is a modern and popular technique
for thermal condition monitoring of machinery, apparatus and
industrial processes [1].

Infrared cameras can be used in continuous condition mon-
itoring systems for contactless detection and identification of
object faults at its early stage, which is useful for planing
object maintenance and overhauls.

Continuous condition monitoring system based on infrared
device should include infrared image processing and recogni-
tion to classify the current operation condition of the object.
Research connected with the application and development of
infrared image processing and analysis, as well as artificial
intelligence methods, to continuous thermographic objects
monitoring and diagnostics has been carried out in several
different academic and research centres [2], [3] and also by
the authors [4]. In this article an original method of object
condition identification, which can be used in continuous con-
dition monitoring and diagnostics systems, has been proposed.

The method can be generalised to any diagnostic data
acquired during continuous monitoring of different objects or
industrial processes.

II. METHOD

It has been assumed that the assessment of the general
condition of an object could be determined on the basis of
the analysis of infrared images that are acquired continuously
by monitoring system during an object operation.

For a clear description of the method, let us assume that
diagnosed object is a complex machinery containing several
sub-assemblies (e.g. motor, couplings, journal bearing, pomp,
etc.).

Having acquired an infrared image of machinery in any
moment of its operation, it is possible to define regions of
interests (ROIs) containing only important parts of the diag-
nosed object. In such a way, the rest of the image content could
be treated as an unwanted background that is not considered
during the diagnostic process.

In the proposed method, whose brief algorithm is presented
in (Fig. 1), each defined region of interest contained a sub-

Figure 1: Idea of the method of identification of object
conditions based on infrared images.

Originally published as: M. Fidali, W. Jamrozik, Method of Classification of Global Machine Conditions 
Based on Spectral Features of Infrared Images and Classifiers Fusion, Quantitative InfraRed 
Thermography Journal, Vol. 16(1), pp. 129–145, 2019, and reprinted with permission.
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assembly of the machinery that could be treated as a kind of
sub-image. Each sub-assembly in a different way reflects the
machine’s conditions, thus analysis of the sub-images of sub-
assemblies allows us to acquire partial diagnostic information
about global conditions of an object. Process of analysis
of each sub-image gives sets of features that represent the
condition of each machine sub-assembly at the moment of
its operation corresponding to the time of infrared image
acquisition. The local conditions of the sub-assemblies are
related to the machine’s global condition.

Having determined the feature vectors for infrared images
acquired during machine operation in different conditions
(including faults), it is possible to design a set of local
classifiers that allow us to identify conditions of the machinery.
At this stage, the classifiers could be treated as local experts.

Local diagnostic information provided by each classifier can
be joined together to get information about global (overall)
machinery condition. In the elaborated method, to aggregate
diagnostic decisions and maximize final classification perfor-
mance, application of decision fusion methods were used.

A. Processing and analysis of infrared images

The versatile nature of developed method allows us to
apply different image processing and analysis methods to
obtain a features set. For method verification purposes, the
authors decided to use spectral representation of infrared
images. Spectral representation of infrared images is obtained
by use of the two-dimensional Fourier transform. One of the
reasons of application of the 2D Fourier transform is a shift
invariant property [5], which makes the method less sensitive
to deviation in location of imagining device while observing
an object. Spectral representation of infrared image could also
emphasises diagnostic information that could be hidden in the
real image.

The result of Fourier transform of an infrared image is a
two-dimensional spectrum, which could be represented by
two images of magnitude and phase called also F-images.
Frequency components on the F-images are distributed
symmetrically and in many cases of the analysis it is enough
to consider one quarter of the magnitudegrams and/or two
adjacent quarters of the phasegrams. In most considered
cases, the entire F-image is shown and analysed [4], [5].
This approach is most convenient for F-image interpretation
purposes because frequency components generates specific
symmetrically distributed patterns (similar to stars) (c.f. Fig.
2), whose shapes and locations depend on a content of the
original infrared image.

To analyse the F-images, the three following features are
defined:

HFP Horizontal F-image Parameter,
V FP Vertical F-image Parameter,
CFP Circular F-image Parameter.

(a) Infrared image

(b) F-image of magnitude

(c) F-image of phase

Figure 2: An exemplary infrared image (a) and its F-images
of magnitude (b) and phase (c) obtained on the basis of 2D
Fourier analysis.
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The features are mean values of F-images frequency com-
ponents calculated over rectangular and circular areas, placed
in the centers of the F-images in the way presented in Fig.
3. The dimensions of areas that were used to calculation of
feature values were set experimentally (c.f. III-A)

(a) HFP

(b) VFP

(c) CPF

Figure 3: Graphical illustration of considered features of F-
images.

B. Classification of the machine’s conditions

To classify machine operation conditions, a number of
possible approaches could be chosen [6]. In practice, the
choice of a classifier is a difficult problem and it is often based
on a data specificity, as well as a researcher’s experience.

The authors decided to apply two classifiers: a simple k-
Nearest Neighbour (k-NN) classifier [7] and Support Vector
Machine (SVM) [8], which is recognised as a very effective
classification solution.

The author’s intention was to show how to use the method
and how the different classifiers behave.

To obtain a reliable and certain classification efficiency,
the leave-one-out cross-validation (LOOCV) algorithm [9] has
been applied.

The LOOCV validation method has a high variance but
estimates of generalization error are comparable with other
partitioning schemes used for classification efficiency evalua-
tion [10].

The classifier accuracy measure that we used was the
relative number of misclassification, which is calculated as
follows:

err = Ne/N, (1)

where N was the number of considered samples and Ne was
the number of misclassified samples. On the basis of the
err measure, the classifier efficiency was calculated in the
following way:

eff = (1− err) · 100 %. (2)

C. Decision fusion

In the elaborated method, joining of the classification results
is proposed. There are some methods which allow treatment
of the data jointly [11]. One of the interesting approaches is
a decision fusion.

Decision fusion, which is also called classifier fusion, is the
method that combines results of classification obtained from
different classifiers trained over different types of data gathered
from the same object. In this approach, classifiers are treated
as “local experts”, who make decision about the machine’s
condition.

The use of classifiers in technical diagnostic is connected
with the uncertainty of the data on which those classifiers
are trained. The sources of uncertainty could take the fol-
lowing form, for example, [12]: random events, measurement
deviations, incompleteness of the set of considered diagnostic
parameters and lack of knowledge about diagnosed object or
process.

In general, most types of uncertainty could be characterised
by the use of classical probability theory based on the Bayesian
theorem [13], [14].

An alternative to the Bayesian methods is the Dempster-
Shafer Theory (DST), also called the mathematical theory of
evidence. The DST can deal with imprecise or incomplete
data. In addition, DST can be interpreted as a generalisation of
probability theory where probabilities are assigned to multiple
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possible events (e.g. sets of events) as opposed to mutually
exclusive singletons [15], [16].

The DST theory offers very important mechanisms of
information aggregation coming from multiple sources by the
use of rules for combining evidences. A lot of rules have been
developed since establishing the DST.

Several interesting examples, including a detailed analysis
of validity of Dempster’s combination rule in different con-
texts, can be found in [17]–[19].

A generalisation and in some points an extension of the
Dempster-Shafer evidence theory is The Dezert-Smarandache
Theory (DSmT) [20] of plausible and paradoxical reasoning.
DSmT overcomes some limitations of DST [20], [21] because
it allows us to formally combine any kind of information.
DSmT bases itself on similar terms as DST. The DSmT intro-
duces the generalised frame of discernment Θ, which contains
n exhaustive elements (θ1, . . . , θn). In the classification case,
elements of Θ are all considered classes (class labels).

On the basis of the generalised frame of discernment, hyper-
power set DΘ can be created of all single class labels but also
of allowed class labels logical combinations. This means that
classification can not only be made for single classes but the
tested sample can also be assigned simultaneously to several
classes (θi ∩ θk 6= ∅) or there can be some uncertainty in the
reasoning process and the same test sample can be member of
one or other class (θi∪θk 6= ∅). Each of these combinations is
called focal element. For each element of DΘ, a Generalized
Basic Belief Assignment (GBBA) is possible. In other words,
as the result of classification some belief is assigned for test
sample x that is a member of certain classes, several classes or
there is some doubt to which class it should be assigned. From
the formal site: m (.) : DΘ → [0, 1] so GBBA can take values
from 0 to 1, and if mx (A) = 1 there is 100% belief that test
element x belongs to class A. In contrast, for empty set - e.g..
unknown class m (∅) = 0. Belief assigned to all elements of
DΘ should sum up to 1:

∑
A∈DΘ m (A) = 1. This means that

in the frame of discernment, DΘ tested elements are for sure
member of one of classes or class combinations defined by
DΘ; so, no other unknown classes are allowed.

Similarly to DST, the DSmT also allows to aggregate
information with the use of combination rules. For this pur-
pose, many combination rules have been elaborated [20], [22].
During the research, a PCR6 rule was used. The key idea of
the PCR6 rule is to transfer the partial conflicting Basic Belief
Assignment BBA proportionally to the individual BBA of non-
empty elements involved in the conflict [23].

D. GBBA calculation

The calculation of evidence is crucial for classifier fusion
based on the methods demanding the BBA or the GBBA for
each class [24], [25].

A simple method, which is ideal for research at the prelim-
inary stage, has been developed for the evidence calculation
from k-NN classifiers [26]. To obtain the output for a given
sample, a set of distance measures to a number of known
samples is calculated and it can be regarded as a class

distribution. Identification of k nearest neighbours of a element
x irrespective of class label is made. Then, the number of
neighbours ki supporting assignment of element x to class Ci

is calculated. Accordingly, the GBBA function of class Ci is
calculated as follows [26]:

m ({Ci}) = ki/k (3)

In case of SVM classifier, which unfortunately gives only
class labels, the probabilities of class distribution were ob-
tained applying extension introduced by Wu [27]. In the
presented research, we deal with only one occurring condition
at the time, therefore probabilities are very useful. It can be
assumed that SVM classifier outputs are degrees of support for
each class representing identified machine conditions. These
outputs can be directly transformed into mass assignments:
pi → m(i), where pi is the probability of condition i occur-
rence and m(i) is the belief that condition i occurred provided
by single SVM classifier on the basis of available evidence (in
a form of feature space).

III. METHOD VERIFICATION

Our method verification considers several different aspects
of the method’s application. First of all, verification should
confirm that method can be useful in condition monitoring
of machinery. The second important task of verification was
to indicate what kind of classifier should be used and what
is the best way to perform data fusion. To do this, we
use two earlier described classifiers and compare results of
classification obtained by use of single classifiers with results
of classifier fusion, as well as results of classification obtained
for multidimensional space of features. Investigation helps us
to find the best solution to an answer the question: is fusion
of simple classifiers a better solution than application of the
classifier to single or multidimensional space of features?

The method was verified on the basis of digital infrared
images taken during diagnostic experiments. All of our com-
putations were performed using Matlab 2007b software.

A. Considered experimental data

The experiments have been performed using a laboratory
stand that consists of a laboratory model of rotating machinery
and an infrared imagining system (Fig. 4).

During the experiment, a sequence of 840 infrared images
of resolution 320× 480 pixels has been recorded. The thermo-
graphic images have been taken every 30 s. The images have
represented the machine operating in the conditions presented
in the table I.

For reference, condition S1 decided to record two times
more images to make it easier to recognise by classifiers.
It should be pointed out that conditions S2, S3 and S4 are
difficult to distinguish and have been simulated intentionally
to check whether it was possible to notice a small change in
operational condition. Such small changes were also desirable
for testing the ability of the classifiers to recognise nearly
indistinguishable changes in the machine’s condition.
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Table I: Description of conditions simulated during the experiment.

Condition Id Description of fault No of acquired images
S1 machine without faults 240
S2 50% throttling of air pump 120
S3 90% throttling of air pump 120
S4 90% throttling of air pump and clearance of second bearing mounting 120
S5 load of disk brake 120
S6 faulty bearing no 2 120

Figure 4: Visualisation of the laboratory stand. 1-frame, 2-
motor (1.5 kW, 2500 rpm), 3-coupling, 4-bearings set no
1, 5-shaft, 6-bearings set no 2, 7-break set, 8-air pump, 9-
throttle valve, 10-infrared camera connected to PC, 11-motor
controller.

The infrared images acquired during the experiment have
been pre-processed. The first step of the pre-processing was
the selection of two Regions of Interest of size 20× 30 pixels
(ROI1 and ROI2) (Fig. 5). These ROIs represented the bearing
housings. It was expected that changes in the machine’s
condition would affect changes of bearing temperature and
should be revealed in the infrared images.

Figure 5: Infrared image of the operating laboratory stand,
with marked ROIs of the first (left, ROI1) and the second
(right, ROI2) bearings.

According to the proposed method (c.f. II), sub-images
corresponding to regions of interest (ROI1 and ROI2) were
transformed to frequency domain using Fast Fourier Transform
(FFT) algorithm. F-images (magnitude and phase) obtained
after transformation was analysed and image features were

calculated. Each infrared image was represented by 12 fea-
tures, whose names were coded in the following way:

EstimatorId FImageType ROIId

e.g. HFP P R1 means that the value of the feature HFP was
calculated for F-image of phase determined in ROI1.

It is obvious that values of presented F-image features
depend on dimensions and content of the region of interest
(ROI), as well as type of F-image (magnitude and phase). To
consider a variety in content of each type of F-images, each
of the proposed feature could be fitted to the image content
by setting a value of the feature parameter W , H , and D.

To find the optimal values of F-image feature parameters
W , H , and D an exhaustive search of feature space based on
criterion of the maximum machine conditions classifier per-
formance has been performed. Features have been calculated
for each acceptable value of the feature parameters (from 1 to
the maximal value Hmax = 30, Wmax = 20, and Dmax = 20).
Constrains followed from the size (20× 30 pixels) of the
considered F-images.

For optimisation purposes, a k-Nearest Neighbour (k-NN)
classifier was used. A number of nearest neighbours parameter
was set to k = 10 according to recommendations presented in
[28]. Classification efficiency was calculated in the way pre-
sented in the theoretical background (c.f. II-B) and leave-one-
out cross-validation (LOOCV) algorithm was used. Optimal
values of feature parameters are presented in Tab. II.

Table II: Optimal values of feature parameters and basic
statistics of classification efficiencies.

feat. feat. estimator estimator mean
num. name parameter parameter eff

name value [%]
1 ROI1 VFP A H 20 59.6
2 ROI2 VFP A H 18 80.6
3 ROI1 VFP P H 2 23.9
4 ROI2 VFP P H 7 25.2
5 ROI1 HFP A W 29 56.9
6 ROI2 HFP A W 26 80.8
7 ROI1 HFP P W 9 28.3
8 ROI2 HFP P W 9 24.3
9 ROI1 CFP A D 14 62.3
10 ROI2 CFP A D 20 75.6
11 ROI1 CFP P D 6 37.1
12 ROI2 CFP P D 6 43.4

The feature values, calculated using determined optimal
parameters of F-image features, were data source for clas-
sification of machine conditions.
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B. Classification results for one and multidimensional feature
space

The first step of the method verification was assessment
of application of one and multidimensional F-images feature
space for purposes of classification of machine condition. As
mentioned earlier, k-NN and SVM classifiers were applied. In
case of k-NN classifier, a k = 10 neighbours was used. The
Euclidean distance function was used as a distance metric
in k-NN classifier. In case of SVM classifier, one-against-
all strategy is implemented for multi-class classification. A
Gaussian kernel was applied. Mean classifier efficiencies of
considered machine conditions as a function of feature space
dimension were shown in Fig. 6. As one can expect, classi-
fication efficiency increase with size of feature space and for
almost all conditions reach efficiency above 80% for size of
feature space equal to 4 and more.

A detailed analysis of maximal classifier efficiencies is
presented in Table III. The results show that in case of
conditions S1, S3, S4, S5 and S6 maximum efficiencies could
be achieved for one dimensional space of feature vales for both
types of applied classifiers. Values of maximal classification
efficiencies are given in bold. The highest classification effi-

ciency values have been obtained on the basis of CFP feature,
which indicates its usefulness in analysing the F-images.
The greatest number of maximum classification efficiency
(100%) was obtained using the SVM classifier. SVM gave
the best results for features of F-images of phase whereas
k-NN gave good results for F-images of magnitude within
the region of interest ROI2. Region ROI2 covered more load
bearing support, which affected its highest temperature and
thus intensive infrared radiation.

A plot of classification efficiencies for condition S2 pre-
sented in Fig. 6 and values in Table III clearly show that
condition S2 is poor recognizable. Analysis of classification
efficiencies for condition S2 shows that application of one
dimensional feature space allowed to obtain maximal effi-
ciency equals 58.3% with application of k-NN classifier. The
SVM classifier was unable to correctly recognize condition
S2, where SVM allowed to obtain maximal efficiency equal
8.3%.

Looking at feature values distribution for condition S2
presented in Figure 7, it is clear that SVM was unable to
find proper global decision boundaries. Exemplary decision
boundary for condition S2 vs all other conditions can be

Figure 6: Evolution of the belief in a cell crossed by an obstacle observed by a sensor.
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Table III: Classification efficiencies obtained for individual F-
image features

Feature space Simulated machine conditions
S1 S2 S3 S4 S5 S6

kNN(HFP A R1) 62.5 16.7 91.7 33.3 91.7 91.7
SVM(HFP A R1) 87.5 0.0 100.0 0.0 83.3 91.7
kNN(HFP P R1) 54.2 16.7 8.3 25.0 25.0 16.7
SVM(HFP P R1) 87.5 0.0 100.0 0.0 83.3 91.7
kNN(HFP A R2) 91.7 58.3 41.7 83.3 100.0 91.7
SVM(HFP A R2) 83.3 8.3 100.0 83.3 100.0 83.3
kNN(HFP P R2) 50.0 16.7 8.3 8.3 16.7 8.3
SVM(HFP P R2) 100.0 0.0 0.0 0.0 0.0 0.0
kNN(VFP A R1) 58.3 8.3 100.0 58.3 91.7 91.7
SVM(VFP A R1) 79.2 0.0 100.0 16.7 75.0 91.7
kNN(VFP P R1) 50.0 0.0 0.0 8.3 16.7 16.7
SVM(VFP P R1) 100.0 0.0 0.0 0.0 0.0 0.0
kNN(VFP A R2) 91.7 58.3 25.0 83.3 100.0 91.7
SVM(VFP A R2) 83.3 8.3 100.0 83.3 100.0 83.3
kNN(VFP P R2) 62.5 0.0 16.7 25.0 8.3 16.7
SVM(VFP P R2) 95.8 0.0 0.0 0.0 25.0 16.7
kNN(CFP A R1) 87.5 16.7 91.7 0.0 91.7 83.3
SVM(CFP A R1) 100.0 8.3 100.0 25.0 75.0 83.3
kNN(CFP P R1) 62.5 0.0 0.0 8.3 25.0 16.7
SVM(CFP P R1) 100.0 0.0 100.0 75.0 0.0 100.0
kNN(CFP A R2) 91.7 58.3 75.0 91.7 100.0 91.7
SVM(CFP A R2) 83.3 0.0 100.0 91.7 91.7 83.3
kNN(CFP P R2) 62.5 50.0 16.7 33.3 8.3 41.7
SVM(CFP P R2) 100.0 0.0 16.7 100.0 0.0 58.3

seen in Fig. 7. Taking into consideration the distribution of
feature values for condition S2, the strategy of classification
using SVM classifier with linear boundaries is insufficient
to distinguish between S2 and other classes. Application
of feature spaces dimensionality of 3-8 increase maximal
classification performance of condition S2 which was,
respectively, 83% for k-NN and 75% for SVM classifiers.
Minimal space giving maximal classification performance
with use of k-NN classifier was constructed with use of the
following two sets of features:
V FP P R2, HFP A R2, HFP P R2 and
V FP A R1, HFP P R2, CFP A R1

Figure 7: Distribution of CFP A R2 feature for condition S2.

To assess which classes are most similar a confusion matrix
was prepared (Fig. 8). In each column there is percentage
fraction of each class that was assigned to various predicted
classes. Taking into consideration only single kNN classifiers,
that were trained over 1D data set it can be seen, that condi-
tions S2 and S3 are most difficult to distingush. It is connected

with the way in which those conditions were simulated, when
only degree throttling of air pump was changed.

Figure 8: Normalized confusion matrix for single kNN clas-
sifier.

IV. CLASSIFIER FUSION RESULTS

Results of the classification of machine conditions shown
in Section II-B, (Tab. III) indicate that the proposed features
of the F-images are useful for assessing machine conditions.
For the majority of concerned machine conditions, it was
possible to obtain the maximum classification efficiency on the
basis of selected individual features of F-images. However, for
condition S2, reliable condition assessment was not possible.
To increase classification efficiency, fusion of classifiers was
applied. We carried out an exhaustive computation considered
all combinations of two, three and four k-NN and SVM
classifiers of all considered F-image features.

Mean classification efficiencies after classifier fusion as a
function of number of fused classifier for all considered con-
ditions are presented in Fig. 9. Table IV presents the highest
classification efficiencies obtained for all condition after fusion
of two, three and four combinations of different individual k-
NN and SVM classifiers. Our results show that fusion of two
classifiers is sufficient to obtain maximal classification almost
for all conditions. Classifier fusion also allowed us to raise the
highest classification efficiency for condition S2 by the 8.3%
(from 58.3% to 66.7%) in comparison to the results obtained
for the individual classifiers. The maximum efficiency of the
classification was obtained as a result of the fusion of k-NN
classifiers only. Fusion of the SVM classifiers does not ensure
an increase of the classification efficiency for this class.

The most interesting observation made after the analysis
of classification performances is the lack of an increase of
the efficiency for the condition S2 according to the number
of fused single classifiers. This is caused by the presence
of the classifiers that assign the high degree of belief to the
wrong states. Fusing more than two classifiers did not cause
an increase of the relative number of classifier combinations
giving maximal performance. These results find confirmation
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Table IV: Comparison of maximal classification efficiencies
for all conditions after fusion different numbers of single kNN
and SVM classifiers using PCR6 rule.

Fuzz. Class. # Class. Type Simulated machine conditions
S1 S2 S3 S4 S5 S6

2
kNN(.) 100 66.7 100 100 100 100
SVM(.) 100 8.3 100 100 100 100

3
kNN(.) 100 66.7 100 100 100 100
SVM(.) 100 8.3 100 100 100 100

4
kNN(.) 100 66.7 100 100 100 100
SVM(.) 100 8.3 100 100 100 100

in [29], which showed that adding additional experts at some
point leads to obtaining totally conflicted and useless classifier
combinations. Analysis of classifiers combinations giving the
highest performances indicates that they are composed from
complementary rather than individually best performing clas-
sifiers. Taking into account the obtained results, it can be con-
cluded that the fusion of two selected classifiers is sufficient.
In case of the considered data, a pair of classifiers assuring
highest efficiency 66.7% was HFP A R2, CFP A R1.

Taking into consideration the very good results of

classification obtained for multidimensional feature spaces
decided to perform fusion of kNN classifiers calculated for
two dimensional feature spaces. As could have been expected,
the results were very good (Table V). Maximal classification
efficiency for condition S2 was increased to 83.3% for four
following combination of classifiers and feature spaces:
PCR6{kNN{VFP A R2,CFP A R2},
kNN{HFP P R2,CFP A R1}},
PCR6{kNN{HFP P R2,CFP A R1},
kNN{HFP P R2,CFP A R2}},
PCR6{kNN{HFP P R2,CFP A R1},
kNN{HFP P R2,CFP P R2}},
PCR6{kNN{HFP P R1,CFP P R1},
kNN{HFP P R2,CFP A R1}}.
Its worth mentioning that maximal classification efficiency
using single k-NN classifier for condition S2 with the use
of three and four dimensional (3D and 4D) space of feature
was also 83.3%. The presented results confirm the ability of
decision fusion algorithms to identify machinery conditions
which are difficult to be recognised. In contrast, the SVM
classifier results for the 2D feature space was maximally

Figure 9: Plots of mean classification efficiencies as a function of different number of fused classifiers for considered machine
conditions.
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62.5%. Accordingly, the increase of classification performance
in comparison to single feature space is visible and in this
the kNN classifier was proven to be better than the SVM
classifier.

Table V: Comparison of maximal classification efficiencies for
all conditions fusion of 2 classifiers trained over 2D feature
space.

Fuzz. Class. # Class. Type Simulated machine conditions
S1 S2 S3 S4 S5 S6

2
kNN(.) 100 83.3 100 100 100 100
SVM(.) 100 62.5 100 100 100 100

V. CONCLUSIONS

In this paper, the method of object condition assessment
using multiple classifiers fusion approach based on the gener-
alised evidence theory is proposed. Fused classifiers have been
trained over the data represented by three parametric spectral
features of F-images. The F-images were the result of the 2D
Fourier transform of infrared images acquired during object
observation. During the research, optimal parameters of the
features were evaluated and F-image features were computed.
Based on the spectral features of the infrared images the
classification process was performed. For comparison purposes
k-NN and SVM classifiers were used. The results of the
classification have shown that the proposed features of an F-
image of thermograms could be useful for the evaluation of a
machine’s condition. Circular Fourier Power (CFP) seemed to
be suitable enough for the estimation of magnitude, as well as
phase F-images.

The proposed approach of classifier fusion is suitable for
the assessment of machine global condition on the basis of
pre-selected features of spectral infrared images. Classification
efficiencies obtained using classifier fusion are higher than
those calculated taking into consideration a single classifier.
It must be mentioned that features chosen for the member
classifiers in fusion process should be heterogeneous to assure
high classification efficiency. Moreover, the increase of the
number of considered ROIs should entail a reduction of the
uncertainty of the information, which is used in the decision
making about the machine’s global condition. Although the
connection between diversity of features and the classification
performance is not always straightforward, the analysis of the
obtained results leads to the statement that in the considered
case, the influence of feature heterogeneity degree on the
fusion results is quite noticeable.

The problem of high homogeneity of data could be resolved
by classification of multidimensional space of homogeneous
feature values and the next application of the fusion of such
a classifier. This strategy was verified during the presented
research and the obtained results confirmed the ability of clas-
sifier fusion to increase classification efficiency of condition
S2, which was difficult to recognise.

It can be expected that conclusions made from the research
could be generalised to data represented by other infrared
image features and diagnostic signals. However, it needs
further investigation.
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Abstract—In this paper we present an application of a new Be-
lief Function-based Inter-Criteria Analysis (BF-ICrA) approach
for Global Positioning System (GPS) Surveying Problems (GSP).
GPS surveying is an NP-hard problem. For designing Global
Positioning System surveying network, a given set of earth points
must be observed consecutively. The survey cost is the sum of
the distances to go from one point to another one. This kind
of problems is hard to be solved with traditional numerical
methods. In this paper we use BF- ICrA to analyze an Ant Colony
Optimization (ACO) algorithm developed to provide near-optimal
solutions for Global Positioning System surveying problem.

Keywords: Inter-Criteria Analysis, BF-ICrA, GPS surveying,

PCR6, belief functions.

I. INTRODUCTION

In our previous work [1] we did apply classical Atanassov’s

Inter-Criteria Analysis (ICrA) to examine some relations be-

tween considered GSP’s and ACO algorithm performance. In

this paper we consider a recent improved version of ICrA

based on belief functions [2] and show how to apply it in same

GSP problematic to revise and refine our previous analysis.

After a short presentation of GSP problematic and ACO

in the next section, and brief basics of BF in section III, we

recall the classical Atanassov’s ICrA method in section IV and

we present the new ICrA method based on Belief Functions,

called BF-ICrA, in section V. In section VI, we show how to

apply BF-ICrA for GSP problematic. Concluding remarks are

given in Section VII.

II. PRESENTATION OF ACO AND GSP PROBLEMATIC

A. GPS surveying problem description

GPS satellites continuously transmit radio signals to the

Earth while orbiting it. A receiver, with unknown position on

Earth, has to detect and convert the signals received from all of

the satellites into useful measurements. These measurements

would allow a user to compute a three-dimensional coordinate

position: location of the receiver. Any GPS observation is

proven to have biases, hence, in order to survey an appro-

priate combination of measurement processing strategies must

be used to minimize their effect on the positioning results.

Differencing data collected simultaneously from two or more

GPS receivers to several GPS satellites allows to eliminate

or significantly reduce most of the biases. The GPS network

can be defined as set of stations (a1, a2, . . . an), which are

co-ordinated by placing receivers (X1, X2, . . . ) on them to

determine sessions (a1a2, a1a3, a2a3, . . . ) among them. The

problem is to search for the best order in which these sessions

can be organized to give the best schedule. Thus, the schedule

can be defined as a sequence of sessions to be observed

consecutively. The solution is represented by linear graph

with weighted edges. The nodes represent the stations and

the edges represent the moving cost. The objective function

of the problem is the cost of the solution which is the sum

of the costs (time) to move from one point to another one,

C(V ) =
∑

C(ai, aj), where aiaj is a session in solution V .

For example if the number of points (stations) is 4, a possible

solution is V = (a1, a3, a2, a4) and it can be represented by

linear graph a1 → a3 → a2 → a4. The moving costs are

as follows: C(a1, a3), C(a3, a2), C(a2, a4). Thus the cost of

the solution is C(V ) = C(a1, a3)+C(a3, a2)+C(a2, a4). In

practice, determining how each GPS receiver should be moved

between stations to be surveyed in an efficient manner taking

into account some important factors such as time, cost etc. The

problem is to search for the best order, with respect to the time,

in which these sessions can be observed to give the cheapest

schedule or to minimize C(V ). The initial data is a cost matrix,

which represents the cost (time, or distance) of moving a

receiver from one point to another. Solving such problems -

GSPs - to optimality requires a very high computational time.

Therefore, meta-heuristic methods are used to provide near-

optimal solutions for large networks within acceptable amount

of computational effort. In this paper, we consider the Max-

Min Ant System (MMAS) meta-heuristic [3] and we present

it briefly in the next subsection.

B. Ant colony optimization for GPS surveying problem

Real ants foraging for food lay down quantities of

pheromone (chemical cues) marking the path that they follow.

An isolated ant moves essentially at random but an ant

encountering a previously laid pheromone will detect it and

decide to follow it with high probability and thereby reinforce

it with a further quantity of pheromone. The repetition of the

above mechanism represents the auto-catalytic behavior of real

ant colony where the more the ants follow a trail, the more

attractive that trail becomes.

Originally published as: S. Fidanova, J. Dezert, A. Tchamova, Inter-Criteria Analysis Based on Belief 
Functions for GPS Surveying Problems, in Proc. of INISTA 2019, Sofia, Bulgaria, July 3–5, 2019 (Best 
Paper Awards), and reprinted with permission.
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The ACO algorithm uses a colony of artificial ants that

behave as cooperative agents in a mathematics space were

they are allowed to search and reinforce pathways (solutions)

in order to find the optimal ones. The problem is represented

by graph and the ants walk on the graph to construct solu-

tions. The solution is represented by path in the graph. After

initialization of the pheromone trails, ants construct feasible

solutions, starting from random nodes, then the pheromone

trails are updated. At each step ants compute a set of feasible

moves and select the best one (according to some probabilistic

rules) to carry out the rest of the tour. The transition probability

pij , to chose the node j when the current node is i, is based

on the heuristic information ηij and pheromone trail level τij
of the move, where i, j = 1, . . . . , n.

pij =
ταijη

β
ij

∑

k∈Unused τ
α
ikη

β
ik

. (1)

The higher value of the pheromone and the heuristic infor-

mation, the more profitable is to select this move and resume

the search. In the beginning, the initial pheromone level is set

to a small positive constant value τ0 and then ants update this

value after completing the construction stage. ACO algorithms

adopt different criteria to update the pheromone level.

In our implementation we use MAX-MIN Ant System

(MMAS) [3], [4], which is ones of the best ant approaches. In

MMAS the main is using fixed upper bound τmax and lower

bound τmin of the pheromone trails. Thus accumulation of big

amount of pheromone by part of the possible movements and

repetition of same solutions is partially prevented. The main

features of MMAS are:

The aim of using only one solution is to make solution

elements, which frequently occur in the best found solutions,

get large reinforcement. Pheromone trail update is given by:

τij ← ρτij +∆τij , (2)

where

∆τij =







1/C(Vbest) if (i, j) ∈ best solution,

0 otherwise,

and Vbest is the iteration best solution and i, j = 1, . . . , n.

To avoid stagnation of the search, the range of possible

pheromone value on each movement is limited to an interval

[τmin, τmax]. τmax is an asymptotic maximum of τij and

τmax = 1/(1 − ρ)C(V ∗), while τmin = 0.087τmax. Where

V ∗ is the optimal solution, but it is unknown, therefore we

use Vbest instead of V ∗.

When all ants have completed their solutions, the

pheromone level is updated by applying the global update

rule. Only the pheromone corresponding to the best found

solution is increased by the similar to the MMAS way. The

global update rule is intended to provide a greater amount of

pheromone on the paths of the best solution. It is a kind of

intensification of the search around the best found solution.

We use heuristic information equals to one over the cost of

the session.

III. BASICS OF THE THEORY OF BELIEF FUNCTIONS

Let consider a finite discrete frame of discernement (FoD)

Θ = {θ1, θ2, . . . , θn}, with n > 1, and where θi ∩ θj = ∅ for

i 6= j. The power-set of Θ (i;e. the set of all subsets of Θ)

is denoted 2Θ. A basic belief assignment (BBA) associated

with a given source of evidence is defined [5] as the mapping

m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and
∑

A∈2Θ
m(A) =

1. The quantity m(A) is called the mass of A committed by

the source of evidence. Belief and plausibility functions are

usually interpreted respectively as lower and upper bounds of

unknown (possibly subjective) probability measure [6]. They

are defined by1

Bel(A) ,
∑

B⊆A,B∈2Θ

m(B), and P l(A) , 1− Bel(Ā). (3)

If m(A) > 0, A is called a focal element of m(·). When all

focal elements are singletons then m(·) is called a Bayesian

BBA and its corresponding Bel(·) function is homogeneous to

a probability measure. Historically the combination of BBAs is

accomplished by Dempster’s rule in Dempster-Shafer Theory

(DST) [5]. Because of serious problems of Dempster’s rule2,

we recommend the Proportional Conflict Redistribution rule

no. 6 (PCR6) proposed by Martin and Osswald in [10] (Vol.

3) which remains the most appealing alternative rule for BBA

combination so far.

IV. ATANASSOV’S INTER-CRITERIA ANALYSIS (ICRA)

Based on Intuitionistic Fuzzy Sets (IFS) [11], the Inter-

Criteria Analysis (ICrA) has been introduced in 2014 by

Atanassov et al. in [12], and then improved in [13], [15].

ICrA aims to identify the possible links between the criteria

involved in a process of evaluation of multiple objects against

multiple criteria. The aim of ICrA is to discover any existing

correlations between the criteria themselves. Such analysis

can permit (when possible) to reduce the complexity of

large multiple criteria decision-making (MCDM) problems [2].

Until now the classical3 ICrA has been applied in different

fields: medicine [16], [17], optimization [18]–[21], workforce

planning [22], competitiveness analysis [23], radar detection

[24], ranking [25]–[27], etc. In this section we just recall the

basic principles of classical ICrA.

Let consider a set of alternatives (or objects) A ,

{A1, A2, . . . , AM} (M > 2), and a set of criteria C ,

{C1, C2, . . . , CN} (N ≥ 1). The available information is

expressed by a M × N score matrix4
S , [Sij = Cj(Ai)],

and (eventually) the importance factor wj ∈ [0, 1] of each

criterion Cj with
∑N

j=1
wj = 1. The ICrA method consists to

build an N × N Inter-Criteria (IC) matrix K from the score

matrix S. The elements of the IC matrix K consist of all In-

tuitionistic Fuzzy (IF) pairs (µjj′ , νjj′ ) ∈ [0, 1]× [0, 1] whose

1In the notations, the symbol , means equal by definition.
2that is: 1) insensitivity to the level of conflict between sources in some

cases and dictatorial behavior [7], [8], and 2) inconsistency of Shafer’s belief
conditioning [9] with bounds of conditional probabilities.

3We refer Atanassov’s ICrA as the classical approach in the sequel.
4also called benefit or payoff matrix in Multi-Criteria Decision-Making

framework.
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components express respectively the degree of agreement and

the degree of disagreement between criteria Cj and Cj′ for

j, j′ ∈ {1, 2, . . . , N}. For a given column j (i.e. criterion Cj ),

it is always possible to compare with >, < and = operators

all the scores Sij for i = 1, 2, . . .M because the scores of

each column are expressed in same unit. The construction

of IC matrix K can be used to search relations between

the criteria because the method compares homogeneous data

relatively to a same column. Atanassov in [14] prescribes5 the

normalization of the element Sij of score matrix S by taking

Snorm
ij = (Sij − Smin

j )/(Smax
j − Smin

j ) ∈ [0, 1], (4)

where
{

Smin
j = min{S1j, . . . , SMj},

Smax
j = max{S1j , . . . , SMj}.

(5)

The construction of the N × N IC matrix K is based on

the pairwise comparisons between every two criteria along all

evaluated alternatives. More precisely in [14] the degree of

agreement between criteria Cj and Cj′ µjj′ , and their degree

of disagreement νjj′ are calculated by

µjj′ ,
2Kµ

jj′

M(M − 1)
, and νjj′ ,

2Kν
jj′

M(M − 1)
, (6)

where Kµ
jj′ be the number of cases in which the inequalities

Sij > Si′j and Sij′ > Si′j′ hold simultaneously, and Kν
jj′ be

the number of cases in which the inequalities Sij > Si′j and

Sij′ < Si′j′ hold simultaneously.

By construction the IC matrix K is always a symmetric

matrix. Atanassov provides explicit formulas in [14] for Kµ
jj′

and Kν
jj′ which depend on a particular choice of the signum

function. Because of this the results of Kµ
jj′ and Kν

jj′ are

disputable and that is why some authors [22], [28] propose

other methods to calculate Kµ
jj′ and Kν

jj′ values for making

the Inter-Criteria Analysis.

Once the IC matrix K = [Kjj′ ] of intuitionistic fuzzy pairs

is calculated one needs to analyze it to decide which criteria

Cj and Cj′ are in strong agreement (or positive consonance)

reflecting the correlation between Cj and Cj′ , in strong dis-

agreement (or negative consonance) reflecting non correlation

between Cj and Cj′ , or in dissonance reflecting the uncertainty

situation where nothing can be said about the non correlation

or the correlation between Cj and Cj′ .

At the beginning of ICrA development it was not very clear

how these intuitionistic fuzzy (IF) pairs (µjj′ , νjj′ ) had to

be used and that is why Atanassova [29], [30] proposed to

handle both components of the IF pair. For this, she interpreted

pairs (µjj′ , νjj′ ) as points located in the elementary TFU
triangle, where the point T of coordinate (1, 0) represents the

maximal positive consonance (i.e. the true consonance), the

point F with coordinate (0, 1) represents the maximal negative

consonance (i.e. the falsity), and the point U with coordinates

(0, 0) represents the maximal dissonance (i.e. the uncertainty).

From this interpretation it becomes quite easy to identify the

5Although this normalization is not very necessary in fact for ICrA making.

top of consonant IF pairs (µjj′ , νjj′ ) that fall in bottom right

corner of (TFU) triangle limited by vertical line from x-axis

x = α, and horizontal line from y-axis y = β, where α and β
are two ad-hoc threshold values in [0, 1]. The set of consonant

IF pairs are then ranked according to their (Euclidean) distance

dTCjCj′
with respect to T point of coordinate (1, 0) defined by

dTCjCj′
= d((1, 0), (µjj′ , νjj′ )) =

√

(1− µjj′ )2 + ν2jj′ . (7)

It is worth noting that µjj′ and νjj′ values are in fact linked

with belief function through the following formulas

Beljj′ (θ) = µjj′ (8)

Pljj′ (θ) = 1− νjj′ , (9)

Ujj′ (θ) = Pljj′ (θ)−Beljj′ (θ) = 1− νjj′ − µjj′ , (10)

where θ means: the criteria Cj and Cj′ are totally positively

consonant (i.e. totally correlated), whereas θ̄ means: the crite-

ria Cj and Cj′ are totally negatively consonant (uncorrelated).

The FoD is defined as Θ , {θ, θ̄}. Ujj′ (θ) represents

the dissonance (the uncertainty about the correlation) of the

criteria Cj and Cj′ . From this, one can easily define any BBA

mjj′ (θ), mjj′ (θ̄) and mjj′ (θ ∪ θ̄) of 2Θ by taking

mjj′ (θ) = µjj′ , (11)

mjj′ (θ̄) = νjj′ , (12)

mjj′ (θ ∪ θ̄) = 1− µjj′ − νjj′ . (13)

Remark 1: The construction of the Inter-Criteria Matrix K

is not unique and depends on the choice of algorithm of

construction of µjj′ and νjj′ (and the choice of the signum

function) as reported in [28]. This can yield different ICrA

results in general.

Remark 2: The construction of µjj′ and νjj′ appears to be

only a crude approximation of true values because they are

only based on counting the valid ”>” or ”<” inequalities. In

fact, their calculations do not exploit how bigger and how

smaller the scores values are in each comparison done. So it

yields a lack of precision on estimation of µjj′ and νjj′ values.

ICrA can be very useful for verification of algorithm

correctness. When the optimization problem have a lot of

constraints with ICrA we can find if some of the constrain

is subconstrain of some other and to exclude it. With the help

of ICrA we can divide constraints to two or more groups, more

sensitive and less sensitive and to solve problem first according

more sensitive constraints and later to less sensitive ones.

To circumvent the aforementioned drawbacks, we present

succinctly in the next section a new ICrA approach based

on belief functions which is presented in more details with

examples in [2].

V. A NEW ICRA METHOD BASED ON BELIEF FUNCTIONS

The new Belief Function based ICrA method, called BF-

ICrA for short, presented in this section improves Atanassov’s

ICrA. It provides a more precise construction of µjj′ and νjj′

values because it exploits all available information included in

the score matrix.
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BF-ICrA starts with the construction of an M × N BBA

matrix M = [mij(·)] from the score matrix S = [Sij ]. The

elements mij of the BBA matrix M are obtained as follows

- see [31] for details and justification.

mij(Ai) = Belij(Ai), (14)

mij(Āi) = Belij(Āi) = 1− Plij(Ai), (15)

mij(Ai ∪ Āi) = Plij(Ai)−Belij(Ai), (16)

where6

Belij(Ai) , Supj(Ai)/A
j
max, (17)

Belij(Āi) , Infj(Ai)/A
j
min

, (18)

with

Supj(Ai) ,
∑

k∈{1,...M}|Skj≤Sij

|Sij − Skj |, (19)

Infj(Ai) , −
∑

k∈{1,...M}|Skj≥Sij

|Sij − Skj |, (20)

and

Aj
max , max

i
Supj(Ai), (21)

Aj
min

, min
i

Infj(Ai). (22)

For another criterion Cj′ and the j′-th column of the score

matrix we will obtain another set of BBA values mij′ (·).
Applying this method for each column of the score matrix we

are able to compute the BBA matrix M = [mij(·)] whose each

component is in fact a triplet (mij(Ai),mij(Āi),mij(Ai ∪
Āi)) of BBA values in [0, 1] such that mij(Ai) +mij(Āi) +
mij(Ai ∪ Āi)) = 1 for all i = 1, . . . ,M and j = 1, . . . , N .

The next step of BF-ICrA approach is the construction of

the N × N Inter-Criteria Matrix K = [Kjj′ ] from M × N
BBA matrix M = [mij(·)] where elements Kjj′ corresponds

to the BBA (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄)) about positive

consonance θ, negative consonance θ̄ and uncertainty between

criteria Cj and Cj′ respectively. The construction of the triplet

Kjj′ = (mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪ θ̄)) is based on two steps:

• Step 1 (BBA construction): Getting mi
jj′ (.).

For each alternative Ai for i = 1, . . . ,M , we

first compute the BBA (mi
jj′ (θ),m

i
jj′ (θ̄),m

i
jj′ (θ ∪

θ̄)) for any two criteria j, j′ ∈ {1, 2, . . . , N}. For

this, we consider two sources of evidences (SoE) in-

dexed by j and j′ providing the BBA mij and mij′

defined on the simple FoD {Ai, Āi} and denoted

mij = [mij(Ai),mij(Āi),mij(Ai ∪ Āi)] and mij′ =
[mij′ (Ai),mij′ (Āi),mij′ (Ai∪Āi)]. We also denote Θ =
{θ, θ̄} the FoD about the relative state of the two SoE,

where θ means that the two SoE agree, θ̄ means that they

disagree and θ ∪ θ̄ means that we don’t know. Hence,

two SoE are in total agreement if both commit their

maximum belief mass to the same element Ai or to

6assuming that Aj
max 6= 0 and Aj

min
6= 0. If Aj

max = 0 then

Belij(Ai) = 0, and if Aj
min

= 0 then P lij(Ai) = 1.

the same element Āi. Similarly, two SoE are in total

disagreement if each one commits its maximum mass

of belief to one element and the other to its opposite,

that is if one has mij(Ai) = 1 and mij′ (Āi) = 1, or

if mij(Āi) = 1 and mij′(Ai) = 1. Based on this very

simple and natural principle, one can now compute the

belief masses as follows:

mi
jj′ (θ) = mij(Ai)mij′ (Ai) +mij(Ā)mij′ (Ā), (23)

mi
jj′ (θ̄) = mij(Ai)mij′ (Āi) +mij(Āi)mij′ (Ai), (24)

mi
jj′ (θ ∪ θ̄) = 1−mi

jj′ (θ)−mi
jj′ (θ̄). (25)

mi
jj′ (θ) represents the degree of agreement between the

BBA mij(·) and mij′(·) for the alternative Ai, m
i
jj′ (θ̄)

represents the degree of disagreement of the two BBAs

and mi
jj′ (θ ∪ θ̄) the level of uncertainty (i.e. how much

we don’t know if they agree or disagree). By construction

mi
jj′ (·) = mi

j′j(·), mi
jj′ (θ),m

i
jj′ (θ̄),m

i
jj′ (θ ∪ θ̄) ∈ [0, 1]

and mi
jj′ (θ) + mi

jj′ (θ̄) + mi
jj′ (θ ∪ θ̄) = 1. This BBA

modeling permits to build a set of M symmetrical

Inter-Criteria Belief Matrices (ICBM) K
i = [Ki

jj′ ] of

dimension N ×N relative to each alternative Ai whose

components Ki
jj′ correspond to the triplet of BBA values

mi
jj′ = (mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ ∪ θ̄)) modeling the

belief of agreement and of disagreement between Cj and

Cj′ based on Ai.

• Step 2 (fusion): Getting mjj′(.).

In this step, one needs to combine the BBAs m
i
jj′(.) for

i = 1, . . . ,M altogether to get the component Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪θ̄)) of the Inter-Criteria Belief

matrix (ICBM) K = [Kjj′ ]. For this, we recommend to

use the PCR6 fusion rule [10] (Vol. 3) because of known

deficiencies of Dempster’s rule. Because of computational

complexity of PCR6 fusion rule when M becomes large,

one may prefer to approximate the fusion result by

using the simple averaging rule. Simple Matlab™code

for PCR6 rule can be found in [32] for convenience.

The computational complexity of BF-ICrA is of course

higher than the complexity of ICrA because it makes a more

precise evaluation of local and global inter-criteria belief

matrices with respect to IF inter-criteria matrices of ICrA. The

overall reduction of the computational burden of the original

MCDM problem thanks to BF-ICrA depends highly on the

problem under concern, the complexity and cost to evaluate

each criteria involved in it, as well as the number of redundant

criteria identified by BF-ICrA method.

Once the global Inter-Criteria Belief Matrix (ICBM) K =
[Kjj′ = (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄))] is calculated, we

can identify the criteria that are in strong agreement, in

strong disagreement, and those on which we are uncertain.

For identifying the criteria that are in strong agreement, we

evaluate the distance of each component of Kjj′ with the

BBA representing the best agreement state and characterized
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by the specific BBA7 mT (θ) = 1. From a similar approach

we can also identify, if we want, the criteria that are in

very strong disagreement using the distance of mjj′ (·) with

respect to the BBA representing the best disagreement state

characterized by the specific BBA mF (θ̄) = 1. We use the

dBI(., .) distance presented in [33] for measuring the distance

d(m1,m2) between the two BBAs8 m1(·) and m2(·) over the

same FoD. It is defined by

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)), (26)

where the Belief-Intervals are defined by BI1(X) ,

[Bel1(X), P l1(X)] and BI2(X) , [Bel2(X), P l2(X)] and

computed from m1(.) and m2(.) thanks to formula (3).

dW (BI1(X), BI2(X)) is Wassertein’s distance between in-

tervals calculated by

dW ([a1, b1], [a2, b2]) =
√

[

a1 + b1
2

− a2 + b2
2

]2

+
1

3

[

b1 − a1
2

− b2 − a2
2

]2

,

and Nc = 1/2|Θ|−1 is a normalization factor to get

dBI(m1,m2) ∈ [0, 1].

VI. APPLICATION OF BF-ICRA TO GSP

In this section, we analyze the experimental results obtained

using MMAS algorithm described in the previous section. For

this, we use real data from Malta and Seychelles GPS networks

composed of 38 sessions and 71 sessions respectively denoted

GSP1 and GSP2. We use also 6 larger test problems range

from 100 to 443 sessions denoted GSP3,. . . , GSP8. The results

are obtained by performing 30 independent runs, for every

experiment. The details of our MMAS implementation are

given in [1]. So in our GSP example we consider 8 GSP

criteria Ci = GSPi, i = 1, . . . , 8 and six average costs as

results A1, . . . , A6, where A1 is the cost average for the first

5 runs, A2 the cost average for the first 10 runs, A3 for the

first 15 runs), . . . and finally C6 for all the 30 runs. Table I

shows the values of averaged costs obtained for this problem.

It corresponds to the transpose of the score matrix S.

A1 A2 A3 A4 A5 A6

C1 = GSP1 899.00 898.00 898.33 898.50 899.40 899.50

C2 = GSP2 916.40 915.60 922.47 924.80 924.72 922.07

C3 = GSP3 41336.40 41052.40 40991.93 40935.90 40832.20 40910.60

C4 = GSP4 3244.80 3303.30 3327.00 3344.55 3345.60 3341.93

C5 = GSP5 1656.20 1660.80 1663.93 1664.95 1666.96 1665.90

C6 = GSP6 1673.60 1683.50 1690.73 1688.75 1690.24 1692.67

C7 = GSP7 3420.00 3430.70 3433.13 3426.85 3429.44 3428.57

C8 = GSP8 3758.20 3755.70 3758.73 3760.50 3760.80 3765.80

Table I
TRANSPOSE OF THE SCORE MATRIX S = [Sij ] OF GSP PROBLEM.

7We use the index T in the notation mT (·) to refer that the agreement is
true, and F in mF (·) to specify that the agreement is false.

8Here we will take m1(·) = mjj′ (.) and m2(·) = mT (·), or m2(·) =
mF (·)

Hence in this problem M = 6 and N = 8, and S = [Sij ] is
a 6 × 8 score matrix. Based on classical ICrA approach, one
gets the following IC matrices9

K
µ

=























C1 C2 C3 C4 C5 C6 C7 C8

C1 1 0.60 0.27 0.67 0.73 0.67 0.33 0.87

C2 0.60 1 0.27 0.80 0.73 0.53 0.47 0.73

C3 0.27 0.27 1 0.07 0 0.20 0.40 0.13

C4 0.67 0.80 0.07 1 0.93 0.73 0.53 0.80

C5 0.73 0.73 0 0.93 1 0.80 0.60 0.87

C6 0.67 0.53 0.20 0.73 0.80 1 0.67 0.80

C7 0.33 0.47 0.40 0.53 0.60 0.67 1 0.47

C8 0.87 0.73 0.13 0.80 0.87 0.80 0.47 1























K
ν

=























C1 C2 C3 C4 C5 C6 C7 C8

C1 0 0.40 0.73 0.33 0.27 0.33 0.67 0.13

C2 0.40 0 0.73 0.20 0.27 0.47 0.53 0.27

C3 0.73 0.73 0 0.93 1 0.80 0.60 0.87

C4 0.33 0.20 0.93 0 0.07 0.27 0.47 0.20

C5 0.27 0.27 1 0.07 0 0.20 0.40 0.13

C6 0.33 0.47 0.80 0.27 0.20 0 0.33 0.20

C7 0.67 0.53 0.60 0.47 0.40 0.33 0 0.53

C8 0.13 0.27 0.87 0.20 0.13 0.20 0.53 0























The element Kµ
jj′ of matrix K

µ expresses the degree of

agreement between criteria Cj = GSPj and Cj′ = GSPj′ ,

whereas the element Kν
jj′ of matrix K

ν expresses the degree

of disagreement between Cj = GSPj and Cj′ = GSPj′ .

Based on these results, one sees that ACO algorithm performs

similarly for GSP2, GSP4 GSP5 and GSP8 because they are

all in high agreement. Indeed µjj′ values for j, j′ ∈ {2, 4, 5, 8}
are quite high (greater than 70%). They are GPS networks with

different numbers of sessions, but may have a similar structure,

therefore, the value of agreement is high. For other networks,

we can conclude that they have very different structure. What

is worth noting is that there appears also a strong agreement

of GSP1 with GSP8 because µ18 = 0.87. But because GSP8

is also in strong agreement with GSP2, GSP4, GSP5 and with

GSP1 it is logically expected that GSP1 should be also in

agreement with GSP2, GSP4, GSP5, which is unfortunately

not the case based on this classical ICrA. This example points

out some inconsistency of ICrA result because of the too

crude method of estimation of the degree of agreement and

disagreement between criteria based on IFS.

Now if we consider the same example with the same score

matrix S (built from Table I), we obtain the following IC Belief

matrices10

K(θ) =























C1 C2 C3 C4 C5 C6 C7 C8

C1 0.9098 0.6732 0.1791 0.5968 0.6106 0.5620 0.1659 0.7789

C2 0.6732 0.9546 0.0364 0.8983 0.8783 0.8341 0.5532 0.7016

C3 0.1791 0.0364 0.8722 0.0172 0.0154 0.0178 0.0366 0.1137

C4 0.5968 0.8983 0.0172 0.9552 0.9146 0.9163 0.7395 0.6092

C5 0.6106 0.8783 0.0154 0.9146 0.8917 0.8778 0.6922 0.6315

C6 0.5620 0.8341 0.0178 0.9163 0.8778 0.9060 0.7630 0.6441

C7 0.1659 0.5532 0.0366 0.7395 0.6922 0.7630 0.8587 0.2484

C8 0.7789 0.7016 0.1137 0.6092 0.6315 0.6441 0.2484 0.8508























K(θ̄) =























C1 C2 C3 C4 C5 C6 C7 C8

C1 0.0207 0.1941 0.5385 0.2578 0.1757 0.2117 0.5335 0.0399

C2 0.1941 0.0166 0.8323 0.0486 0.0298 0.0513 0.1808 0.0682

C3 0.5385 0.8323 0.0117 0.9002 0.8754 0.8548 0.7062 0.5486

C4 0.2578 0.0486 0.9002 0.0187 0.0216 0.0204 0.0606 0.1193

C5 0.1757 0.0298 0.8754 0.0216 0.0170 0.0201 0.0558 0.0832

C6 0.2117 0.0513 0.8548 0.0204 0.0201 0.0154 0.0390 0.0726

C7 0.5335 0.1808 0.7062 0.0606 0.0558 0.0390 0.0110 0.3495

C8 0.0399 0.0682 0.5486 0.1193 0.0832 0.0726 0.3495 0.0100























From ICBM K(θ) and K(θ̄) we compute the matrix D(θ)
of distance of mjj′ (.) to the full agreement state with BBA

9For presentation convenience and due to typesetting column width, we
decompose et present the IC matrix K = [Kjj′ = (Kµ

jj′
,Kν

jj′
)] into two

distinct matrices K
µ = [Kµ

jj′
] and K

ν = [Kν
jj′

].
10For presentation convenience, the ICBM K = [Kjj′ =

(mjj′ (θ), mjj′ (θ̄), mjj′ (θ∪θ̄))] is decomposed into three matrices K(θ) =

[Kθ
jj′

= mjj′ (θ)], K(θ̄) = [K θ̄
jj′

= mjj′ (θ̄)] and K(θ ∪ θ̄) = [Kθ∪θ̄
jj′

=

1−mjj′ (θ) −mjj′ (θ̄)].
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mF (θ) = 1 based on dBI(.) distance. We get the following
distances to full agreement

D(θ) = [D
jj′

= dBI (m
jj′

,mT )]

=







































C1 C2 C3 C4 C5 C6 C7 C8

C1 0.0590 0.2633 0.6845 0.3331 0.2892 0.3314 0.6893 0.1406

C2 0.2633 0.0321 0.8987 0.0767 0.0803 0.1135 0.3230 0.1950

C3 0.6845 0.8987 0.0774 0.9418 0.9306 0.9192 0.8381 0.7241

C4 0.3331 0.0767 0.9418 0.0326 0.0566 0.0552 0.1706 0.2668

C5 0.2892 0.0803 0.9306 0.0566 0.0679 0.0770 0.1958 0.2404

C6 0.3314 0.1135 0.9192 0.0552 0.0770 0.0592 0.1494 0.2293

C7 0.6893 0.3230 0.8381 0.1706 0.1958 0.1494 0.0849 0.5626

C8 0.1406 0.1950 0.7241 0.2668 0.2404 0.2293 0.5626 0.0892







































The element Djj′ represents the agreement distance be-

tween Cj and Cj′ , the lower the better. From the values of

elements of D(θ) matrix one sees clearly that ACO performs

similarly for GSP2, GSP4 and GSP5 because distances D24,

D25, and D45 are very small. Also we see that GSP6 is also

in good agreement with GSP4 and GSP5 but is relatively less

in agreement with GSP2 because D26 = 0.1135. As we see

there is no inconsistency in this new BF-ICrA method with

respect to what provides classical ICrA because with BF-ICrA

we have a much better and precise estimation of degrees of

agreement and disagreement between criteria for making the

analysis thanks to a proper belief functions modeling.

VII. CONCLUSION

The GPS surveying problem and a new InterCriteria Ana-

lysis based on belief functions were addressed in this paper to

overcome the potential inconsistencies of the results generated

by the classical ICrA method. This technique proposes a

more precise and refined method for estimating the degree of

agreement and disagreement between criteria which use the

whole information available in the data. Instances containing

from 38 to 443 sessions have been solved using MMAS

algorithm and we did compare the performance of ACO

algorithms applied to eight GPS networks. Our results shows

that ACO can provide fast near-optimal solution for observing

GPS networks, and could help to improve the services based

on GPS networks. From this new Inter-Criteria Analysis we

are able to identify some relations and dependences between

the considered eight GSPs and MMAS algorithm performance.
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Abstract—In this paper we propose a new Belief Function-
based Inter-Criteria Analysis (BF-ICrA) for the assessment of
the degree of redundancy of criteria involved in a multicriteria
decision making (MCDM) problem. This BF-ICrA method allows
to simplify the original MCDM problem by withdrawing all
redundant criteria and thus diminish the complexity of MCDM
problem. This is of prime importance for solving large MCDM
problems whose solution requires the fusion of many belief
functions. We provide simple examples to show how this new
BF-ICrA works.

Keywords: Inter-Criteria Analysis, ICrA-BF, MultiCriteria
Decision Making, MCDM, belief functions, information fu-
sion.

I. INTRODUCTION

In a Multi-Criteria Decision-Making (MCDM) problem
we consider a set of alternatives (or objects) A ,

{A1, A2, . . . , AM} (M > 2), and a set of criteria C ,

{C1, C2, . . . , CN} (N ≥ 1). We search for the best alternative
A⋆ given the available information expressed by a M × N
score matrix (also called benefit or payoff matrix) S , [Sij =
Cj(Ai)], and (eventually) the importance factor wj ∈ [0, 1] of
each criterion Cj with

∑N
j=1

wj = 1. The set of normalized
weighting factors is denoted by w , {w1, w2, . . . , wN}.
Depending on the context of the MCDM problem, the score
Sij of each alternative Ai with respect to each criteria Cj

can be interpreted either as a cost (i.e. an expense), or as
a reward (i.e. a benefit). By convention and without loss of
generality1 we will always interpret the score as a reward
having monotonically increasing preference. Thus, the best
alternative A⋆

j for a given criteria Cj will be the one providing
the highest reward/benefit.

The MCDM problem is not easy to solve because the
scores are usually expressed in different (physical) units and
different scales. This necessitates a choice of score/data nor-
malization yielding rank reversal problems [1], [2]. Usually
there is no same best alternative choice A⋆ for all criteria,
so a compromise must be established to provide a reasonable

1because it suffices to multiply the scores values by −1 to reverse the
preference ordering.

and acceptable solution of the MCDM problem for decision-
making support.

Many MCDM methods exist, see references in [3]. Most
popular methods are AHP2 [4], ELECTRE3 [5], TOPSIS4 [6],
[7]. In 2016 and 2017, we did develop BF-TOPSIS methods
[3], [8] based on Belief Functions (BF) to improve the original
TOPSIS approach to avoid data normalization and to deal
also with imprecise score values as well. It appears however
that the complexity of these new BF-TOPSIS methods can
become a bottleneck for their use in large MCDM problems
because of the fusion step of basic belief assignments required
for the implementation of the BF-TOPSIS. That is why a
simplification of the MCDM problem (if possible) is very
welcome in order to save computational time and resources.
This is the motivation of the present work.

For this aim we propose a new Inter-Criteria Analysis
(ICrA) based on belief functions for identifying and estimating
the possible degree of agreement (i.e. redundancy) between
some criteria driven from the data (score values). This permits
to remove all redundant criteria of the original MCDM prob-
lem and thus solving a simplified (almost) equivalent MCDM
problem faster and at lower computational cost. ICrA has
been developed originally by Atanassov et al. [9]–[11] based
on Intuitionistic Fuzzy Sets [12], and it has been applied in
different fields like medicine [13]–[15], optimization [16]–
[20], workforce planning [21], competitiveness analysis [22],
radar detection [23], ranking [24]–[27], etc. In this paper we
improve ICrA approach thanks to belief functions introduced
by Shafer in [28] from original Dempster’s works [29]. We
will refer it as BF-ICrA method in the sequel.

After a short presentation of basics of belief functions in
section II, we present Atanassov’s ICrA method in section
III and discuss its limitations. In Section IV we present the
new BF-ICrA approach based on a new construction of Basic
Belief Assignment (BBA) matrix from the score matrix and
a new establishment of Inter-Criteria belief matrix. In section

2Analytic Hierarchy Process
3ELimination Et Choix Taduisant la REalité
4Technique for Order Preference by Similarity to Ideal Solution

Originally published as: J. Dezert, A. Tchamova, D. Han, J.-M. Tacnet, Simplification of Multi-Criteria 
Decision-Making Using Inter-Criteria Analysis and Belief Functions, in Proc. of Fusion 2019 Int. Conf., 
Ottawa, Canada, July 2–5, 2019, and reprinted with permission.
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V a method of simplification of MCDM using BF-ICrA is
proposed. Examples are given in VI with concluding remarks
in Section VII.

II. BAS ICS OF THE THEORY OF B EL IEF FUNCTIONS

To follow classical notations of the theory of belief func-
tions, also called Dempster-Shafer Theory (DST) [28], we
assume that the answer (i.e. the solution, or the decision to
take) of the problem under concern belongs to a known finite
discrete frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn},
with n > 1, and where all elements of Θ are exclusive. The
set of all subsets of Θ (including empty set ∅ and Θ) is the
power-set of Θ denoted by 2Θ. A BBA (or mass function)
associated with a given source of evidence is defined [28] as
the mapping m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The quantity m(A) is called the mass of

A committed by the source of evidence. Belief and plausibility
functions are usually interpreted respectively as lower and
upper bounds of unknown (possibly subjective) probability
measure [29]. They are defined by5

Bel(A) ,
∑

B⊆A,B∈2Θ

m(B), and P l(A) , 1− Bel(Ā). (1)

If m(A) > 0, A is called a focal element of m(·). When all fo-
cal elements are singletons then m(·) is called a Bayesian BBA

[28] and its corresponding Bel(·) function is homogeneous to
a probability measure. The vacuous BBA, or VBBA for short,
representing a totally ignorant source is defined as mv(Θ) = 1.
The main challenge of the decision-maker consists to combine
efficiently the possible multiple BBAs ms(·) given by s > 1
distinct sources of evidence to obtain a global (combined)
BBA, and to make a final decision from it. Historically the
combination of BBAs is accomplished by Dempster’s rule
proposed by Shafer in DST. Because Dempster’s rule presents
several serious problems (insensitivity to the level of conflict
between sources in some cases, inconsistency with bounds of
conditional probabilities when used for belief conditioning,
dictatorial behavior, counter-intuitive results), many fusion
rules have been proposed in the literature as alternative to
Dempster’s rule, see [30], Vol. 2 for a detailed list of fusion
rules. We will not detail here all the possible combination rules
but just mention that the Proportional Conflict Redistribution
rule no. 6 (PCR6) proposed by Martin and Osswald in [30]
(Vol. 3) is one of the most serious alternative rule for BBA
combination available so far.

III. ATANAS S OV’ S INTER-CRITERIA ANALY S IS (ICRA)
Atanassov’s Inter-Criteria Analysis (ICrA) approach is

based on a M × N score matrix6
S , [Sij = Cj(Ai), i =

1, . . . ,M, j = 1, . . . , N ], and intuitionistic fuzzy pairs [12]
including two membership functions µ(·) and ν(·). Mathe-
matically, an intuitionistic fuzzy set (IFS) A is denoted by
A , {(x, µA(x), νA(x))|x ∈ E}, where E is the set of
possible values of x, µA(x) ∈ [0, 1] defines the membership of

5where the symbol , means equal by definition.
6called index matrix by Atanassov in [31].

x to the set A, and νA(x) ∈ [0, 1] defines the non-membership
of x to the set A, with the restriction 0 ≤ µA(x)+νA(x) ≤ 1.
The ICrA method consists to build an N×N Inter-Criteria (IC)
matrix from the score matrix S. The elements of the IC matrix
consist of all intuitionistic fuzzy pairs (µjj′ , νjj′ ) whose
components express respectively the degree of agreement and
the degree of disagreement between criteria Cj and Cj′ for
j, j′ ∈ {1, 2, . . . , N}. For a given column j (i.e. criterion Cj),
it is always possible to compare with >, < and = operators
all the scores Sij for i = 1, 2, . . . ,M because the scores of
each column are expressed in same unit. The construction of
IC matrix can be used to search relations between the criteria
because the method compares homogeneous data relatively to
a same column. In [32] Atanassov prescribes to normalize the
score matrix before applying ICrA as follows

Snorm
ij = (Sij − Smin

j )/(Smax
j − Smin

j ), (2)

if one wants to apply it in the dual manner for the search of
InterObjects analysis (IObA).

Because we focus on ICrA only, we don’ t need to apply a
score matrix normalization because each column of the score
matrix represents the values of a same criterion for different
alternatives, and the criterion values are expressed with the
same unit (e.g. m, m2, sec, Kg, or e, etc).

A. Construction of Inter-Criteria matrix

The construction of the N ×N IC matrix, denoted7
K, is

based on the pairwise comparisons between every two criteria
along all evaluated alternatives. Let Kµ

jj′ be the number of
cases in which the inequalities Sij > Si′j and Sij′ > Si′j′

hold simultaneously, and let Kν
jj′ be the number of cases

in which the inequalities Sij > Si′j and Sij′ < Si′j′ hold
simultaneously. Because the total number of comparisons
between the alternatives is M(M − 1)/2 then one always has
necessarily

0 ≤ Kµ
jj′ +Kν

jj′ ≤
M(M − 1)

2
, (3)

or equivalently after the division by M(M−1)

2
> 0

0 ≤
2Kµ

jj′

M(M − 1)
+

2Kν
jj′

M(M − 1)
≤ 1. (4)

This inequality permits to define the elements of N × N IC
matrix K = [Kjj′ ] as intuitionistic fuzzy (IF) pairs Kjj′ =
(µjj′ , νjj′ ) where

µjj′ ,
2Kµ

jj′

M(M − 1)
, and νjj′ ,

2Kν
jj′

M(M − 1)
. (5)

µjj′ measures the degree of agreement between criteria Cj

and Cj′ , and νjj′ measures their degree of disagreement. By
construction the IC matrix K is always a symmetric matrix.

7We use K because it corresponds to the first letter of word Kriterium,
meaning criteria in German. The letter C is being already in use.
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The computation of Kµ
jj′ and Kν

jj′ can be done explicitly
thanks to Atanassov’s formulas [32]

Kµ
jj′ =

M−1
∑

i=1

M
∑

i′=i+1

[sgn(Sij − Si′j)sgn(Sij′ − Si′j′)

+ sgn(Si′j − Sij)sgn(Si′j′ − Sij′ )], (6)

and

Kν
jj′ =

M−1
∑

i=1

M
∑

i′=i+1

[sgn(Sij − Si′j)sgn(Si′j′ − Sij′ )

+ sgn(Si′j − Sij)sgn(Sij′ − Si′j′)], (7)

where the signum function sgn(.) used by Atanassov is
defined as follows

sgn(x) =

{

1, if x > 0,

0, if x ≤ 0.
(8)

Actually the values of Kµ
jj′ and Kν

jj′ depend on the choice
of sgn(x) function8. That is why in [21], [33], the authors
propose different algorithms implemented under Java in an
ICrA software yielding different Kµ

jj′ and Kν
jj′ values for

making the analysis and to reduce the dimension (complexity)
of the original MCDM problem.

B. Inter-criteria analysis

Once the Inter-Criteria matrix K = [Kjj′ ] of intuitionistic
fuzzy pairs is calculated one needs to analyze it to decide
which criteria Cj and Cj′ are in strong agreement (or positive
consonance) reflecting the correlation between Cj and Cj′ , in
strong disagreement (or negative consonance) reflecting non
correlation between Cj and Cj′ , or in dissonance reflecting the
uncertainty situation where nothing can be said about the non
correlation or the correlation between Cj and Cj′ . If one wants
to identify the set of criteria Cj′ for j′ 6= j that are strongly
correlated with Cj then we can sort µjj′ values is descending
order to identify those in strong positive consonance with
Cj . In [25], [26], the authors propose a qualitative scale
to refine the levels of consonance and dissonance and for
helping the decision making procedure. A dual approach based
on νjj′ values can be made to determine the set of criteria
that are not correlated with Cj . An other approach [10],
[27] proposes to define two thresholds α, β ∈ [0; 1] for the
positive and negative consonance respectively against which
the components µjj′ and νjj′ of Kjj′ = (µjj′ , νjj′ ) will be
compared. The correlations between the criteria Cj and Cj′

are called “positive consonance”, “negative consonance” or
“dissonance” depending on their µjj′ and νjj′ values with
respect to chosen thresholds α and β, see [22] for details.
More precisely, Cj and Cj′ are in

• (α, β) positive consonance (i.e. correlated):
If µjj′ > α and νjj′ < β.

• (α, β) negative consonance (i.e. no correlated):

8 for instance if we use sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0,
we will obtain, in general, other Kµ

jj′
and Kν

jj′
values.

If µjj′ < β and νjj′ > α.
• (α, β) dissonance (i.e. full uncertainty): Otherwise.

At the beginning of ICrA development it was not very clear
how these intuitionistic fuzzy (IF) pairs (µjj′ , νjj′ ) had to
be used and that is why Atanassova [34], [35] proposed to
handle both components of the IF pair. For this, she interpreted
pairs (µjj′ , νjj′ ) as points located in the elementary TFU
triangle, where the point T of coordinate (1, 0) represents the
maximal positive consonance (i.e. the true consonance), the
point F with coordinate (0, 1) represents the maximal negative
consonance (i.e. the falsity), and the point U with coordinates
(0, 0) represents the maximal dissonance (i.e. the uncertainty).
From this interpretation it becomes easy to identify the top of
consonant IF pairs (µjj′ , νjj′ ) that fall in bottom right corner
of (TFU) triangle limited by vertical line from x-axis x = α,
and horizontal line from y-axis y = β. The set of consonant
IF pairs are then ranked according to their Euclidean distance
dTCjCj′

with respect to T point of coordinate (1, 0) defined by

dTCjCj′
= d((1, 0), (µjj′ , νjj′ )) =

√

(1− µjj′ )2 + ν2jj′ . (9)

In the MCDM context only the criteria that are negatively
consonant (or uncorrelated) must be kept for solving MCDM
and saving computational resources because they have no (or
only very low) dependency with each other, so that each
uncorrelated criterion provides useful information. The set
of criteria that are positively consonant (if any), called the
consonant set, indicates somehow a redundancy of information
between the criteria belonging to it in term of decisional
behavior. Therefore all these positively consonant criteria must
be represented by only one representative criterion that will
be kept in the MCDM analysis to simplify MCDM problem.
Also all the criteria that are deemed strongly dissonant (if any)
could be taken out of the original MCDM problem because
they only introduce uncertainty in the decision-making.

C. General comments on ICrA

Although appealing at the first glance, the classical ICrA
approach induces the following comments:

1) The IF values µjj′ and νjj′ can be easily interpreted
in the belief function framework. Indeed, the belief and
plausibility of (positive) consonance between criteria Cj

and Cj′ can be directly linked to the values µjj′ and νjj′

by taking Beljj′ (θ) = µjj′ and Pljj′ (θ) = 1 − νjj′ .
Moreover Ujj′ (θ) = Pljj′ (θ)−Beljj′ (θ) = 1− νjj′ −
µjj′ represents the dissonance (the uncertainty about
the correlation) of the criteria Cj and Cj′ . Here the
proposition θ means: the criteria Cj and Cj′ are totally
positively consonant (i.e. totally correlated) and the
frame of discernment is defined as Θ , {θ, θ̄}, where
θ̄ means: the criteria Cj and Cj′ are totally negatively
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consonant (uncorrelated). From this, one can define any
BBA mjj′ (θ), mjj′ (θ̄) and mjj′ (θ ∪ θ̄) of 2Θ by

mjj′ (θ) = µjj′ , (10)
mjj′ (θ̄) = νjj′ , (11)
mjj′ (θ ∪ θ̄) = 1− µjj′ − νjj′ . (12)

2) The construction of µjj′ and νjj′ proposed in the
classical ICrA is disputable because it is only based on
counting the valid ”>” or ”<” inequalities but it doesn’ t
exploit how bigger and how smaller the scores values
are in each comparison done in the construction of the
Inter-Criteria Matrix K. Therefore the construction of
µjj′ and νjj′ is actually only a very crude method to
estimate IF pairs.

3) The construction of the Inter-Criteria Matrix K is in fact
not unique as reported in [33]. This will yield different
results in general.

4) The exploitation of the ICrA method depends on the
choice of α and β thresholds that will impact the final
result.

5) The classical ICrA method cannot deal directly with
imprecise or missing score values.

IV. A NEW ICRA METHOD BAS ED ON B EL IEF FUNCTIONS

In this paper we propose a new ICrA method, called BF-
ICrA for short, based on belief functions that circumvents most
of the aforementioned drawbacks of classical ICrA. Here we
show how to get more precisely the Inter-Criteria Belief Matrix
and how to exploit it for MCDM simplification.

A. Construction of BBA matrix from the score matrix

From any non-zero score matrix S = [Sij ], we can construct
the M ×N BBA matrix M = [mij(·)] as follows

mij(Ai) = Belij(Ai), (13)
mij(Āi) = Belij(Āi) = 1− Plij(Ai), (14)

mij(Ai ∪ Āi) = Plij(Ai)−Belij(Ai). (15)

Assuming Aj
max 6= 0 and Aj

min 6= 0, we take9

Belij(Ai) , Supj(Ai)/A
j
max, (16)

Belij(Āi) , Infj(Ai)/A
j
min

, (17)

where Aj
max , maxi Supj(Ai) and Aj

min
, mini Infj(Ai)

and with

Supj(Ai) ,
∑

k∈{1,...M}|Skj≤Sij

|Sij − Skj |, (18)

Infj(Ai) , −
∑

k∈{1,...M}|Skj≥Sij

|Sij − Skj |. (19)

The entire justification of these formulas can be found in our
previous works [3]. For example, consider the j-th column
corresponding to a criterion Cj of a score matrix S = [Sij ]
with seven rows given by sj = [10, 20,−5, 0, 100,−11, 0]T ,

where T denotes the transpose. Then based on above formula
we get the BBA values listed in Table I.

For another criterion Cj′ and the j′-th column of the
score matrix we will obtain another set of BBA values
mij′ (·). Applying this method for each column of the
score matrix we are able to compute the BBA matrix
M = [mij(·)] whose each component is in fact a triplet
(mij(Ai),mij(Āi),mij(Ai ∪ Āi)) of BBA values in [0, 1]
such that mij(Ai) +mij(Āi) +mij(Ai ∪ Āi)) = 1 for all
i = 1, . . . ,M and j = 1, . . . , N .

B. Construction of Inter-Criteria Matrix from BBA matrix

The next step of BF-ICrA approach is the construction of
the N × N Inter-Criteria Matrix K = [Kjj′ ] from M × N
BBA matrix M = [mij(·)] where elements Kjj′ corresponds
to the BBA (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄)) about positive
consonance θ, negative consonance θ̄ and uncertainty between
criteria Cj and Cj′ respectively. The principle of construction
of the triplet Kjj′ = (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄)) is based
on two steps that will be detailed in the sequel:

• Step 1: For each alternative Ai, we first compute the BBA
(mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ∪θ̄)) for any two criteria j, j′ ∈

{1, 2, . . . , N}.
• Step 2: The BBA (mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪ θ̄)) is then

obtained by the combinations of the M BBA mi
jj′ (.).

Construction of BBA m
i
jj′(.)

The mass of belief mi
jj′ (θ) represents the degree of agree-

ment between the BBA mij(·) and mij′ (·) for the alternative
Ai, and mi

jj′ (θ̄) represents the degree of disagreement be-
tween mij(·) and mij′ (·). The mass mi

jj′ (θ∪ θ̄) is the degree
of uncertainty about the agreement (or disagreement) between
mij(·) and mij′ (·) for the alternative Ai. The calculation of
mi

jj′ (θ) could be envisaged in several manners.
The first manner would consist to consider the degree of

conflict [28] kijj′ ,
∑

X,Y⊆Θ|X∩Y=∅ mij(X)mij′ (Y ) and
consider the Bayesian BBA mi

jj′ (θ) = 1 − kijj′ , mi
jj′ (θ̄) =

kijj′ and mjj′ (θ ∪ θ̄) = 0. Instead of using Shafer’s conflict,
the second manner would consist to use a normalized distance
dijj′ = d(mij ,mij′ ) to measure the closeness between mij(·)
and mij′ (·), and then consider the Bayesian BBA modeling de-
fined by mi

jj′ (θ) = 1−dijj′ , mi
jj′ (θ̄) = dijj′ and mjj′ (θ∪θ̄) =

0. These two manners however are not very satisfying because
they always set to zero the degree of uncertainty between the

9If Aj
max = 0 then Belij(Ai) = 0, and if Aj

min = 0 then P lij(Ai) = 1.

Table I
B BAS CONS TRUCTED FROM S CORE VAL UES .

mij(Ai) mij(Āi) mij(Ai ∪ Āi)

A1 0.0955 0.5236 0.3809
A2 0.1809 0.4188 0.4003
A3 0.0102 0.8115 0.1783
A4 0.0273 0.6806 0.2921
A5 1.0000 0 0
A6 0 1.0000 0
A7 0.0273 0.6806 0.2921
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agreement and disagreement of the BBA, and the second man-
ner depends also on the choice of the distance metric. So, we
propose a more appealing third manner of the BBA modeling
of mi

jj′ (θ), mi
jj′ (θ̄), and mi

jj′ (θ ∪ θ̄). For this, we consider
two sources of evidences (SoE) indexed by j and j′ providing
the BBA mij and mij′ defined on the simple FoD {Ai, Āi}
and denoted mij = [mij(Ai),mij(Āi),mij(Ai ∪ Āi)] and
mij′ = [mij′ (Ai),mij′ (Āi),mij′ (Ai ∪ Āi)]. We also denote
Θ = {θ, θ̄} the FoD about the relative state of the two SoE,
where θ means that the two SoE agree, θ̄ means that they
disagree and θ ∪ θ̄ means that we don’ t know. Then the BBA
modeling is based on the important remarks

• Two SoE are in total agreement if both commit their
maximum belief mass to the element Ai or to element
Āi. So they perfectly agree if mij(Ai) = mij′ (Ai) = 1,
or if mij(Āi) = mij′ (Āi) = 1. Therefore the pure degree
of agreement10 between two sources is modeled by

mi
jj′ (θ) = mij(Ai)mij′ (Ai) +mij(Ā)mij′ (Ā). (20)

• Two SoE are in total disagreement if each one commits
its maximum mass of belief to one element and the other
to its opposite, that is if one has mij(Ai) = 1 and
mij′ (Āi) = 1, or if mij(Āi) = 1 and mij′ (Ai) = 1.
Hence the pure degree of disagreement11 between two
sources is modeled by

mi
jj′ (θ̄) = mij(Ai)mij′ (Āi) +mij(Āi)mij′ (Ai). (21)

• All possible remaining products between components of
mij and mij′ reflect the part of uncertainty we have about
the SoE (i.e. we don’ t know if they agree or disagree).
Hence the degree of uncertainty between the two sources
is modeled by

mi
jj′(θ∪θ̄) = mij(Ai)mij′(Ai∪Āi)+mij(Āi)mij′(Ai∪Āi)

+mij(Ai ∪ Āi)mij′(Ai) +mij(Ai ∪ Āi)mij′(Āi)

+mij(Ai ∪ Āi)mij′(Ai ∪ Āi). (22)

By construction mi
jj′ (·) = mi

j′j(·), hence this BBA modeling
permits to build a set of M symmetrical Inter-Criteria Belief
Matrices (ICBM) K

i = [Ki
jj′ ] of dimension N × N relative

to each alternative Ai whose components Ki
jj′ correspond to

the triplet of BBA values mi
jj′ = (mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ∪

θ̄)) modeling the belief of agreement and of disagree-
ment between Cj and Cj′ based on Ai. One has also12

mi
jj′ (θ),m

i
jj′ (θ̄),m

i
jj′ (θ∪θ̄) ∈ [0, 1] and mi

jj′ (θ)+mi
jj′ (θ̄)+

mi
jj′ (θ∪θ̄) = 1. This BBA construction can be easily extended

10or positive consonance according Atanassov’s terminology.
11or negative consonance according Atanassov’s terminology.
12because (mij(Ai)+mij(Āi)+mij(Ai∪Āi))(mij′ (Ai)+mij′ (Āi)+

mij′ (Ai ∪ Āi)) = 1 · 1 = 1.

for modeling the agreement, disagreement and uncertainty of
n > 2 criteria Cj1 , . . . , Cjn altogether if needed by taking

mi
j1...jn

(θ) =

n
∏

k=1

mijk(Ai) +

n
∏

k=1

mijk(Āi),

mi
j1...jn

(θ̄) =
∑

Xj1
,...,Xjn∈{Ai,Āi}

Xj1
∩...∩Xjn=∅

n
∏

k=1

mijk(Xjk),

mi
j1...jn

(θ ∪ θ̄) = 1−mi
j1...jn

(θ)−mi
j1...jn

(θ̄).

Construction of BBA mjj′(.)

Once all the BBAs mi
jj′ (.) (i = 1, . . . ,M ) are calcu-

lated one combines them to get the component Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄)) of the Inter-Criteria Belief
matrix (ICBM) K = [Kjj′ ]. This fusion step can be done
in many ways depending on the combination rule chosen by
the user. If the number of alternatives M is not too large we
recommend to combine the BBAs mi

jj′ (.) with PCR6 fusion
rule [30] (Vol. 3) because of known deficiencies of Dempster’s
rule. If M is too large to prevent PCR6 working on computer,
we can just use the simple averaging rule of combination in
these high dimensional MCDM problems.

V. S IMPL IFICATION OF ORIGINAL MCDM

Once the global Inter-Criteria Belief Matrix K = [Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄))] is calculated, we need to
identify and cluster the criteria that are in strong agreement, in
strong disagreement, and those on which we are uncertain. For
identifying the criteria that are in very strong agreement, we
evaluate the distance of each component of Kjj′ with the BBA
representing the best agreement state and characterized by the
specific BBA13 mT (θ) = 1. From a similar approach we can
also identify, if we want, the criteria that are in very strong
disagreement using the distance of mjj′ (·) with respect to the
BBA representing the best disagreement state characterized by
the specific BBA mF (θ̄) = 1. As alternative of Jousselme’s
distance [37], we use the dBI(., .) distance based on belief
interval [36] because it is a good method for measuring the
distance d(m1,m2) between the two BBAs14 m1(·) and m1(·)
over the same FoD. It is defined by

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)), (23)

where the Belief-Intervals are defined by BI1(X) ,

[Bel1(X), P l1(X)] and BI2(X) , [Bel2(X), P l2(X)] and
computed from m1(.) and m2(.) thanks to formula (1).

13We use the index T in the notation mT (·) to refer that the agreement is
true, and F in mF (·) to specify that the agreement is false.

14Here m1(·) = mjj′ (.), and m2(·) = mT (·) or m2(·) = mF (·)
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dW (BI1(X), BI2(X)) is Wassertein’s distance between in-
tervals calculated by

dW ([a1, b1], [a2, b2]) =
√

[

a1 + b1
2

− a2 + b2
2

]2

+
1

3

[

b1 − a1
2

− b2 − a2
2

]2

,

and Nc = 1/2|Θ|−1 is a factor to get dBI(m1,m2) ∈ [0, 1].

Because all criteria that are in strong agreement somehow
contain redundant (correlated) information and behave simi-
larly from decision-making standpoint, we propose to simplify
the original MCDM problem by keeping in the MCDM only
criteria that are non redundant The remaining criteria can be
eventually weighted by their degree of importance reflecting
the number of different criteria that are in agreement through
this BF-ICrA approach.

For instance, if one has a seven criteria MCDM problem
and if criteria C1, C2 and C3 are in strong agreement we
will only select one remaining criterion among {C1, C2, C3}
and we give it a weight of w1 + w2 + w3. Moreover if C4

and C5 are in strong agreement also we will only select one
remaining criterion among {C4, C5} and we give it a weight
of w4 + w5, and we will use the weight w6 for C6, and w7

for C7. Hence the original MCDM problem will reduce to
a four simplified MCDM problem that can be solved using
BF-TOPSIS method already presented in details in [3] and in
[8], or with AHP [4] if one prefers, or with any other chosen
method that the system-designer may prefer.

The strategy for selecting the most representative criterion
among a set of redundant criteria is not unique and depends
mainly on the cost necessary (i.e. human efforts, data mining,
computational resources, etc) for getting the values of the
score matrix of the problem under concern. The least costly
criteria may be a good option of selection. In the next section
we provide simple examples for BF-ICrA and, for simplicity,
we will select the representative criterion as being the one
with smallest index. So in the aforementioned example the
simplified MCDM problem will reduce to a M × 4 MCDM
problem involving only four criteria C1, C4, C6 and C7.

The BF-ICrA method proposed in this work allows also, in
principle, to make a refined analysis (if necessary) based on
IC matrices K

i
jj′ about the origin of disagreement between

criteria with respect to each alternative Ai in order to identify
the potential inconsistencies in original MCDM problem. This
aspect is not developed in this paper and has been left for
future investigations. It is worth mentioning that the analysis
of the number of redundant criteria versus time improvements
that could be proposed as an effective measure of performance
of this approach depends highly of the application under
consideration and the difficulty (and cost) to get the value
of each criteria. For convenience the Figure 1 shows the
flow chart of BF-ICrA to help the reader to have a better
understanding of this new proposed method.

Figure 1. Flow chart of BF-ICrA method.

VI. EX AMPL ES

A. Example 1 (Comparison of K matrices)

Here we compare the construction of the global IC matrix
K based on Atanassov ICrA and our new BF-ICrA approach.
For this, we use the 5×4 MCDM example given in [33] based
on the following score matrix (called sample data matrix in
[33]). Each row of S corresponds to an alternative, and each
column to a criterion. In [33], the authors use rows for criteria
and columns for alternatives so they work with S

T .

S = [Sij ] =













6 7 4 4
5 7 3 5
3 8 5 6
7 1 9 7
6 3 1 8













.

Based on Atanassov’s ICrA method (using unbiased algo-
rithm presented in details in [33]) we will get the following
4× 4 global Inter-Criteria K

µ and K
ν matrices

K
µ = [Kµ

jj′
] =







0.9 0 0.5 0.5
0 0.9 0.5 0.3
0.5 0.5 1 0.5
0.5 0.3 0.5 1






,
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K
ν = [Kν

jj′ ] =







0 0.8 0.4 0.4
0.8 0 0.4 0.6
0.4 0.4 0 0.5
0.4 0.6 0.5 0






.

Regrouping these two matrices into one matrix K = [Kjj′ ]
with components Kjj′ = (Kµ

jj′ ,K
ν
jj′ , 1 −Kµ

jj′ − Kν
jj′), one

gets the following global Inter-Criteria matrix K

K =





(0.9, 0, 0.1) (0, 0.8, 0.2) (0.5, 0.4, 0.1) (0.5, 0.4, 0.1)
(0, 0.8, 0.2) (0.9, 0, 0.1) (0.5, 0.4, 0.1) (0.3, 0.6, 0.1)
(0.5, 0.4, 0.1) (0.5, 0.4, 0.1) (1, 0, 0) (0.5, 0.5, 0)
(0.5, 0.4, 0.1) (0.3, 0.6, 0.1) (0.5, 0.5, 0) (1, 0, 0)



 .

According to this K matrix it appears intuitively that none of
the criterion is in strong agreement with others. We observe
that criteria C1 and C2 are in relatively strong disagreement
because Kν

12 = Kν
21 = 0.8 which is quite close to one.

Criteria C2 and C4 are in relatively medium disagreement
because Kν

24 = Kν
42 = 0.6. In this example no MCDM

simplification is prescribed based on Atanassov’s ICrA. To
get a more precise evaluation of degree of agreement between
criteria based on Atanassov’s ICrA we apply formula (23) to
get the D

θ
BI distance matrix from each component of K to the

total agreement state mT = [m(θ),m(θ̄),m(θ∪ θ̄)] = [1, 0, 0].
Hence we get

D
θ
BI =









0.0577 0.9018 0.4509 0.4509
0.9018 0.0577 0.4509 0.6506
0.4509 0.4509 0 0.5000
0.4509 0.6506 0.5000 0









.

As we see from this D
θ
BI matrix, the distance of the inter-

criteria BBA for C1 and C2 with respect to the total agreement
state mT (θ) = 1 is very large (i.e. 0.9018) which means that
C1 and C2 strongly disagree in this example as we expect
from a more intuitive reasoning based on Kν

12 = 0.8 value.
Similar analyses can be done for all (non diagonal) elements
of Dθ

BI to identify which criteria are in strong agreement, or
not (if any).

Based on our new BF-ICrA method we first compute the
5 × 4 BBA matrix M = [mij(·)] from the score matrix S

based on formulas (13)-(15). We get (all the values of results
have been rounded at their second digit)

M ≈
[

(0.5, 0.08, 0.42) (0.71, 0.05, 0.24) (0.18, 0.35, 0.47) (0, 1, 0)

(0.25, 0.33, 0.42) (0.71, 0.05, 0.24) (0.09, 0.53, 0.38) (0.1, 0.6, 0.3)

(0, 1, 0) (1, 0, 0) (0.30, 0.24, 0.46) (0.3, 0.3, 0.4)

(1, 0, 0) (0, 1, 0) (1, 0, 0) (0.6, 0.1, 0.3)

(0.5, 0.09, 0.41) (0.14, 0.62, 0.24) (0, 1, 0) (1, 0, 0)

]

.

The construction of Inter-Criteria Matrices Ki = [Ki
jj′ ] (for

i = 1, . . . , 5) from the BBA matrix M based on formulas (20)-

(22) yields the following five matrices

K
1 ≈

[

(0.26, 0.08, 0.66) (0.36, 0.08, 0.56) (0.12, 0.19, 0.69) (0.08, 0.5, 0.42)

(0.36, 0.08, 0.56) (0.51, 0.07, 0.42) (0.14, 0.26, 0.6) (0.05, 0.71, 0.24)

(0.12, 0.19, 0.69) (0.14, 0.26, 0.6) (0.15, 0.13, 0.72) (0.35, 0.18, 0.47)

(0.08, 0.5, 0.42) (0.05, 0.71, 0.24) (0.35, 0.18, 0.47) (1, 0, 0)

]

K
2 ≈

[

(0.17, 0.17, 0.66) (0.19, 0.25, 0.56) (0.20, 0.16, 0.64) (0.23, 0.18, 0.59)

(0.19, 0.25, 0.56) (0.51, 0.07, 0.42) (0.09, 0.38, 0.53) (0.10, 0.43, 0.47)

(0.20, 0.16, 0.64) (0.09, 0.38, 0.53) (0.29, 0.09, 0.62) (0.33, 0.10, 0.57)

(0.23, 0.18, 0.59) (0.10, 0.43, 0.47) (0.33, 0.10, 0.57) (0.37, 0.12, 0.51)

]

K
3 ≈

[

(1, 0, 0) (0, 1, 0) (0.24, 0.3, 0.46) (0.3, 0.3, 0.4)

(0, 1, 0) (1, 0, 0) (0.30, 0.24, 0.46) (0.3, 0.3, 0.4)

(0.24, 0.3, 0.46) (0.30, 0.24, 0.46) (0.15, 0.14, 0.71) (0.16, 0.16, 0.68)

(0.3, 0.3, 0.4) (0.3, 0.3, 0.4) (0.16, 0.16, 0.68) (0.18, 0.18, 0.64)

]

K
4 ≈

[

(1, 0, 0) (0, 1, 0) (1, 0, 0) (0.6, 0.1, 0.3)

(0, 1, 0) (1, 0, 0) (0, 1, 0) (0.1, 0.6, 0.3)

(1, 0, 0) (0, 1, 0) (1, 0, 0) (0.6, 0.1, 0.3)

(0.6, 0.1, 0.3) (0.1, 0.6, 0.3) (0.6, 0.1, 0.3) (0.370.12, 0.51)

]

K
5 ≈

[

(0.26, 0.08, 0.66) (0.12, 0.32, 0.56) (0.08, 0.5, 0.42) (0.5, 0.08, 0.42)

(0.12, 0.32, 0.56) (0.40, 0.18, 0.42) (0.62, 0.14, 0.24) (0.14, 0.62, 0.24)

(0.08, 0.5, 0.42) (0.62, 0.14, 0.24) (1, 0, 0) (0, 1, 0)

(0.5, 0.08, 0.42) (0.14, 0.62, 0.24) (0, 1, 0) (1, 0, 0)

]

The componentwise PCR6 fusion of all five K
i matrices

provides the following global Inter-Criteria matrix KPCR6

KPCR6 ≈
[

(0.90, 0.02, 0.08) (0.06, 0.83, 0.11) (0.55, 0.15, 0.30) (0.49, 0.25, 0.26)

(0.06, 0.83, 0.11) (0.95, 0.01, 0.04) (0.18, 0.58, 0.24) (0.08, 0.80, 0.12)

(0.55, 0.15, 0.30) (0.18, 0.58, 0.24) (0.89, 0.02, 0.09) (0.22, 0.48, 0.30)

(0.49, 0.25, 0.26) (0.08, 0.80, 0.12) (0.22, 0.48, 0.30) (0.90, 0.02, 0.08)

]

Applying formula (23) we get the following D
θ
BI distance

matrix from each component of KPCR6 to the total agreement
state mT = [m(θ),m(θ̄),m(θ ∪ θ̄)] = [1, 0, 0]

D
θ
BI =









0.0601 0.8845 0.3124 0.3909
0.8845 0.0327 0.7037 0.8618
0.3124 0.7037 0.0668 0.6355
0.3909 0.8618 0.6355 0.0622









. (24)

We see that K and KPCR6 are different specially K23 =
K32 = (0.5, 0.4, 0.1) with respect to KPCR6

23 = KPCR6
32 =

(0.18, 0.58, 0.24). Based on D
θ
BI matrix (24) it is obvious that

no criteria strongly agree in this example so that no judicious
MCDM simplification is recommended according to BF-ICrA.

B. Example 2 (MCDM simplification)

Here we consider a more interesting example showing how
an MCDM simplification is possible. We consider a 6 × 5
MCDM problem with the following score matrix.

S = [Sij ] =











7.5914 18.1828 18.3221 95.6739 4.5674
8.7753 20.5506 20.8240 48.0229 −0.1977
−1.3492 0.3017 0.7804 79.8283 2.9828
8.8739 20.7478 21.2302 13.3305 −3.6669
5.2207 13.4413 13.5201 41.5979 −0.8402
−1.7320 −0.4639 0.0213 91.4893 4.1489











.

It is not very obvious to identify the closeness of these crite-
ria (if any) to know if there is some underlying relationship be-
tween them. For the analysis, we apply the BF-ICrA approach
proposed in this work. After applying all derivations (similarly
to those presented in Example 1), we finally get the following
D

θ
BI distance matrix from each component of KPCR6 to the

total agreement state mT = [m(θ),m(θ̄),m(θ∪ θ̄)] = [1, 0, 0]

D
θ
BI =













0.0239 0.0239 0.0250 0.7512 0.7512
0.0239 0.0239 0.0250 0.7512 0.7512
0.0250 0.0250 0.0262 0.7595 0.7595
0.7512 0.7512 0.7595 0.0568 0.0568
0.7512 0.7512 0.7595 0.0568 0.0568













.
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From the analysis of upper off-diagonal components of D
θ
BI

(put in boldface for convenience) it is clear that criteria C1, C2

and C3 are in almost total agreement because their distance
is close to zero. Also we can observe from D

θ
BI that criteria

C4 and C5 are also very close. So the original 6× 5 MCDM
problem in this example can be simplified into a 6×2 MCDM
problem considering only the simplified score matrix involving
only C1 and C4 because C2 and C3 behave similarly to C1

for decision-making, and C5 behaves similarly to C4. Then
the simplified MCDM will have to be solved by any preferred
technique.

Does the BF-ICrA make sense in this example? The answer
is positive because it suffices to remark that the columns of
the score matrix are not totally independent because C2(Ai) =
2 · C1(Ai) + 3, C3(Ai) = C2(Ai) + ǫ (ǫ being a small
contamination noise), and C5(Ai) = 0.1 · C4(Ai)− 5. Hence
the decision based either on C1, C2 or C3 will be very close, as
well as the decision based on C4 or C5. Therefore the result
of BF-ICrA makes sense and the expected simplification of
MCDM is well obtained from BF-ICrA. If we apply AHP,
which is nothing but the weighted arithmetic average and we
use the normalized score matrix based on (2), or BF-TOPSIS
methods to solve original MCDM (assuming equal importance
of criteria), or if we apply simplified MCDM based on BF-
ICrA, we will get same preference order A1 ≻ A2 ≻ A4 ≻
A5 ≻ A6 ≻ A3. So, the best decision to make is A1 in this
example.

VII. CONCL US ION

In this paper we have proposed a new method called BF-
ICrA to simplify (when it is possible) Multi-Criteria Decision-
Making problems based on inter-criteria analysis and belief
functions. This method is in the spirit of Atanassov’s method
but proposes a better construction of Inter-Criteria Matrix that
fully exploits all information of the score matrix, and the
closeness measure of agreement between criteria based on
belief interval distance. This BF-ICrA approach for simpli-
fying MCDM could deal also with imprecise or missing score
values using the technique presented in [8]. An application
of BF-ICrA for GPS surveying problem is presented in [38],
and applications of BF-ICrA for simplifying and solving
real MCDM problems for the prevention of natural risks in
mountains will be the object of forthcoming investigations.
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Abstract—The decision-making trial and evaluation laboratory
(DEMATEL) method employs expert assessments expressed by
crisp values to construct a group initial direct-relation (IDR)
matrix. However, it tends to be a low-precision expression,
especially in complex practical problems. Although significant
efforts have been made to improve the DEMATEL method,
these improvements tend to neglect individual characteristics
and group consensus, resulting in unconvincing decision results.
This study provides a Dezert-Smarandache theory (DSmT)-based
group DEMATEL method with reaching consensus. In order to
reasonably determine the group IDR matrix, basic belief assign-
ment (BBA) function is employed to extract expert assessments
and the proportional conflict redistribution rule no.5 (PCR5) of
DSmT is employed to make fusion to derive the temporary group
IDR matrix. Moreover, the consensus measures at both expert
level and pair-factors level are calculated to determine whether
the acceptable consensus level has been reached or not. If the
required consensus level is not reached, a feedback mechanism
will be activated to help experts reach a consensus. A consensus
group IDR matrix for the group DEMATEL can be obtained with
the help of feedback mechanism, based on which an algorithm is
summarized for the proposed method to identify major factors in
a complex system. Finally, numerical comparison and discussion
are introduced to verify the effectiveness and applicability of the
proposed method and algorithm.

Keywords: DEMATEL, group decision making; Dez-
ertâSmarandache theory (DSmT), consensus reaching, evi-
dence distance, expert weight.

I. INTRODUCTION

Between 1972 and 1976, the Science and Human Affairs
Program of Battelle Memorial Institute of Geneva developed
the decision-making trial and evaluation laboratory (DEMA-
TEL) method. This method aimed to describe the basic con-
cept of contextual relations and identify causeâeffect chain
factors for a complex decision problem in an understandable
manner by addressing the influence relations among factors
given by experts [1], [2]. It was considered to be a credible
decision-making method.

The DEMATEL method has been extensively used to solve
complex decision problems because of its simplicity and
effectiveness, including problems pertaining to hospital service
quality [3], decision making [4], sustainable supply chain

management [5], [6], etc. In special, in order to determine
the weights of factors by considering their relations, the
DEMATEL method is also extended into decision making
fields, such as analytic hierarchy process (AHP) [7], [8],
analytic network process (ANP) [9]–[14], and technique for
order preference by similarity to ideal solution (TOPSIS)
[15], [16]. In the DEMATEL method, the initial decision
information is always subjectively given by experts in the form
of crisp values and calculated to obtain an individual or group
initial direct-relation (IDR) matrix by simple operations (e.g.,
weighted sum). However, such descriptions and operations are
considered to hardly reflect the vagueness of the real world
[17]. Therefore, scholars have carried out some research to
improve the DEMATEL combined with fuzzy theory [18].
Several fuzzy DEMATEL methods have been introduced. For
examples, Abdullah [19] introduced interval-valued intuition-
istic fuzzy numbers to improve the judgement of DEMATEL
in a group decision-making (GDM) environment. Addae [20]
used a two-step fuzzy DEMATEL method to solve a practical
problem. Asan [21] proposed a new interval-valued hesitant
fuzzy approach to DEMATEL to explicitly deal with hesitation
in expert assessments and offered a better representation of
uncertainty, etc [22]–[25].

Obviously, all these extensions have made great contribu-
tions to the DEMATEL method, and its ability of dealing
with complex problems can be strengthened to some extent.
As currently defined, instead of one expert, a panel gives the
assessments on the influence relations of factors, and multiple
experts arrive at an acceptable result [26]. This process makes
it necessary to extend the traditional DEMATEL method to a
group DEMATEL method, which belongs to GDM problems.
Although some literature considers the DEMATEL from the
perspective of GDM, we believe that these group DEMATEL
methods have a lot of room for further improvement in both
expert assessment extraction and group IDR matrix construc-
tion.

Firstly, the expert assessment extraction of group DEMA-
TEL method should be improved to obtain accurate decision
information in accordance with experts’ cognitive competence.
As introduced earlier, DEMATEL is a GDM method totally
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based on expert assessments to conduct later computation
and analyzation. Considering the complexity of reality and
individual characteristics of experts, there is no doubt that not
every expert is proficient in all areas. In other words, experts
may give incomplete or uncertain assessments to the influence
relations among factors for a specific complex practical prob-
lem. However, all of the existing group DEMATEL methods
default that each expert can give a definite assessment for every
pair of factors by means of crisp values or fuzzy numbers, and
neglect the problem that the assessments given by experts may
be incomplete in practice. If experts who cannot give definite
assessments with crisp values or fuzzy numbers are required
to give the assessments in those forms, the final decision of
DEMATEL resulted from the ineffective assessments may be
erroneous. Therefore, understanding how to depict and fuse
incomplete information from experts is of great importance
to improve the properties of the group DEMATEL method.
Fortunately, the basic belief assignment (BBA) function, as a
key concept in the DezertâSmarandache theory (DSmT) of ev-
idence [27], can directly express the uncertainty by assigning
probability to the subsets of a set composed of multiple objects
rather than to each individual object [28]. The BBA functions
generated from different evidence sources (experts) could be
well fused by the proportional conflict redistribution rule no.
5 (PCR5). All these features exactly meet the requirements
of the group DEMATEL method. Accordingly, DSmT is used
to extract and fuse expert assessments to derive the group
IDR matrix in this paper. Moreover, the differences in experts’
knowledge backgrounds and cognitive abilities on a particular
problem are reflected by expert weights [29]. Expert weights
are reflected as discounting parameters to reflect one’s relative
importance in a group during fusion process. In this paper,
expert weights are calculated based on similarity functions of
expert assessments.

Secondly, the group IDR matrix construction of group DE-
MATEL method should be improved to obtain the acceptable
decision results in accordance with experts’ satisfaction. In
the GDM, “group” refers to not only the number of experts
merely, but also the experts who have common interests
in reaching a consensus for the ultimate satisfactory results
despite individual differences. This principle helps to reduce
biased evaluations and inherent partiality in GDM processes
[30]. Unfortunately, the group IDR matrix in the existing group
DEMATEL methods is frequently constructed by making
arithmetic average values for individual IDR matrices, while
whether experts agree with the group results is scarcely con-
cerned. The group IDR matrix plays a fundamental role in the
entire DEMATEL processes and it has a significant influence
on the effectiveness of final results. If strong inconsistency
and conflict exist among experts, the group IDR matrix may
not be able to precisely describe the real influence relations
of factors. Therefore, it is particularly important to construct a
group IDR matrix according to the consensus rules, that is, to
construct a group consensus IDR matrix by reaching general
or widespread agreement among the experts involved in the
GDM processes [31]. Fortunately, Herrera-Viedma proposed

a rational consensus model in GDM composed of a selection
process and a consensus-reaching process (CRP), which had
become a hot issue in the recent GDM area. The CRP has
been successfully introduced to make GDM with different
situations, such as hesitant fuzzy preference relations, Delphi
processes, multi-attribute large-scale GDM, sentiment anal-
ysis, and virtual reality industry [3]–[6], [32]. Traditionally,
unanimous agreement of all experts in CRP is required.
However, the desired result can hardly be achieved because
of the diversity of opinions, knowledge, and experiences of
experts. Therefore, the concept of “soft consensus” has been
provided, in which, “soft” means better reflecting all possible
levels of agreement by setting an acceptable consensus level
(CL) threshold value (such as 0.8 rather than 1) and guiding
the CRP until a high-level agreement is achieved among the
individuals. Soft consensus can be reached through an iterative
dynamic process with several collection and adjustment rounds
[33], [34]. Hence, in this paper, we consider a soft CRP in
the group IDR matrix construction, and transform the original
static group DEMATEL problems into dynamic ones.

The motivation of this paper is to improve group DEMATEL
method according to the following three aspects. Firstly, the
BBA function is used to extract expert assessments to accu-
rately express uncertainty and incompleteness, thus reducing
the loss of accuracy. Secondly, the initial assessments are
discounted with expert weights by using Shafer’s discounting
method. Moreover, the PCR5 of DSmT is used to fuse
the discounted assessments to overcome the defects in the
intuitional paradox of Dempster’s combination rule. Thirdly,
we apply a soft CRP to help reach an acceptable CL in the
construction of group IDR matrix to ensure the consistency
and satisfaction among experts. This paper is organized as
follows. Section II briefly introduces the basic knowledge of
DEMATEL and DSmT. In Section III, the DSmT-based group
DEMATEL method with reaching consensus is proposed, and
the corresponding algorithm is summarized. In Section IV,
the numerical comparison and discussion are provided to
demonstrate the performances of the proposed method and
algorithm. In Section V, the conclusion is drawn and the future
research directions are briefly discussed.

II. PRELIMINARIES

In order to facilitate the later formulation, some basic
concepts of DEMATEL and the Dezert-Smarandache theory
(DSmT) are given in this section.

A. DEMATEL method

The DEMATEL method is an effective way to analyze
the influence relations among factors of a system. Through
an analysis of the total influence relation of factors by the
DEMATEL method, we can obtain a better understanding of
structural relations and an ideal way to solve complicated sys-
tem problems. Consider that a group of experts are invited to
assess the influence relations for a set of factors F = {f1, , fL}
with a set of grade levels {0, 1, 2}, where the expert set is
E = {e1, . . . , eK} , and the degree of influence to which he
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or she believes factor fi has an effect on factor fj (denoted by
fi → fj) is assessed by expert ek and denoted as gkij , ∀i, j, k.
The meaning of each element in the set of grade levels is that
0 denotes “no influence”, 1 denotes a “low influence” and 2
denotes a “very high influence”. The central concepts in the
DEMATEL are defined as follows.

Definition 1 [35]. Suppose a pairwise comparison of influence
degree from the i-th to the j-th factor given by the k-
th expert ek is denoted as gkij with 0–2 grade levels, and
the grade levels given by each expert form a L × L non-
negative answer matrix Gk = [gkij ]L×L , k = 1, . . . ,K.
The group IDR matrix, which represents the initial direct
relation between each pair of factors derived from experts,
is obtained by calculating the average values of all experts’
answer matrices as G = [gij ]L×L, where gij =

∑k
k=1 g

k
ij/K,

for i, j = 1, . . . , L.
In Definition 1, the 0, 1, 2 grade levels mean “no influence”,

“medium influence”, and “high influence”, respectively. Note
that, the diagonal elements of each answer matrix Gk are all
set to zero, which means that the factors do not influence
themselves.

Definition 2 [35]. The maximal row-wise and
column-wise sum of matrix G is calculated by
g′ = max(max1≤i≤L

∑L
j=1 gij ,max1≤j≤L

∑L
i=1 gij); then

the normalized IDR matrix D = [dij ]L×L can be computed
according to (1).

D = G/g′. (1)

Definition 3 [35]. Suppose the direct and indirect relations
among several factors are represented by the total relation
matrix, and it is defined as in (2).

A = lim
N→∞

(D +D2 + . . .+DN ) = D(I −D)−1. (2)

Some kinds of extensions are further discussed to strengthen
the original DEMATEL. One kind of extensions is used to
overcome the drawback that raising the normalized IDR
matrix to the power of infinity may not converge to zero, and
hence, the total relation matrix may not converge (see (2)). A
very small positive number µ (e.g.,µ = 10−5) is introduced in
the maximal row-wise and column-wise sum of matrix G as
g′′ = max(max1≤i≤L

∑L
j=1 gij , µ+ max1≤j≤L

∑L
i=1 gij).

Other steps remained unchanged as in the original DEMATEL.
The revised DEMATEL guarantees that the normalized IDR
matrix to infinite power will converge to zero and that the
total relation matrix can be obtained smoothly [36].

Definition 4 [35]. Suppose r and c represent the sum of
rows and the sum of columns of the total relation matrix A.
According to A = [aij ]L×L, r and c can be defined as follows:

r = [ri]L×1 =
( L∑
j=1

aij

)
L×1

,

c = [ci]
′
1×L =

( L∑
j=1

aji

)
1×L

.

(3)

where ri shows the total influence, both direct and indirect,
given by the factor fi to other factors; ci shows the total
influence, both direct and indirect, received by the factor fi
from other factors; ri + ci is defined as the prominence,
showing the degree of the important role that the factor fi
plays in the complex system; and ri − ci shows the net
influence that the factor fi contributes to the complex system.
Note that, if ri − ci is positive, the factor fi is a net causer;
if ri − ci is negative, the factor fi is a net receiver.

B. Dezert-Smarandache theory
DSmT, jointly proposed by Dezert and Smarandache [37],

can be used to obtain more accurate fusion results of BBA
functions especially in high conflicting information cases. It
has a series of proportional conflict redistribution rules to make
fusion for evidences [38], among which, PCR5 is the most
widely used one with the advantages in dealing with conflict
belief functions. For example, it provides the appropriate
redistribution of conflict beliefs and can produce a reasonable
fusion result even in highly conflicting cases. These attractive
features motivate the use of DSmT in GDM problems, such
as map reconstruction of robot [39], decision making support
[40], [41], target type tracking [42], image processing [43],
data classification [44]–[48], clustering [47], [49], [50], and
so on.

In DSmT framework, the frame Θ = {θ1, . . . , θY } is a
finite set of Y exhaustive propositions that are not necessarily
mutually exclusive. The hyper-power set DΘ is defined as the
set of all composite propositions built from elements of Θ with
∪ and ∩ operators, such that [51]:
(i) ∅, θ1, . . . , θY ∈ DΘ;

(ii) if θy, θy′ ∈ DΘ, then θy ∪ θy′ ∈ DΘ and θy ∩ θy′ ∈ DΘ;
(iii) No other elements belong to DΘ, except those obtained

by using rules (i) or (ii).
Definition 5 [37]. Suppose Θ = {θ1, . . . , θY } is a set of
exhaustive propositions; then the basic belief assignment is
defined over the hyper-power set DΘ. If the mapping function
m : DΘ → [0, 1] could fulfill the following:

m(∅) = 0,
∑
θ∈DΘ

m(θ) = 1, (4)

then m(·) is called the BBA function. If m(θ) > 0, θâ is
called a focal element.

In DSmT framework, PCR5 for making fusion for two
pieces of evidence is introduced as follows.

Definition 6 [37]. Suppose the BBA functions of two pieces
of evidence are m1 and m2 on DΘ; then, PCR5 to fuse m1

and m2 can be defined as follows for all θ ∈ DΘ:

mPCR5(θ) =



0, if θ = ∅,∑
θ′∩θ′′=θ
θ′,θ′′⊆DΘ

m1(θ′)m2(θ′′)

+
∑

θ′′′∈DΘ

θ∩θ′′′=∅
[ m1(θ)2m2(θ′′′)
m1(θ)2+m2(θ′′′)

+ m2(θ)2m1(θ′′′)
m2(θ)2+m1(θ′′′) ], if θ 6= ∅.

(5)
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III. THE PROPOSED METHOD

In the proposed method, we construct the group IDR matrix
in the DEMATEL by following two steps. Firstly, we develop
an expert assessments extraction and fusion mechanism with
DSmT to obtain a temporary group IDR matrix (see III-A).
Secondly, we activate the soft CRP based on the current
individual and group IDR matrices to reach a soft consensus
among experts (see III-B).

A. Expert Assessment Extraction and Fusion

In traditional DEMATEL, experts are advised to give
their assessments of the influence relations among factors by
means of crisp values to construct the group IDR matrix
G = [gij ]L×L (see Definition 1), which is a rough extrac-
tion method with low precision. When restricted by expert
experiences and knowledge, the assessments given by experts
may be ignorant and partially credible. Taking the influence
degree for fi → fj and expert ek as an example, the expert
may well know this problem and he or she can give a definite
result by using one of the given grade levels {0, 1, 2}. On the
contrary, the expert may not know this problem at all, in which
case he or she cannot give any assessment information about
the influence degree. In most instances, the expert knows this
problem to a certain extent and he or she may point out that
the influence degree belongs to several grade levels but may
not be sure which is the best one. Obviously, experts cannot
give their assessments by means of crisp values in the latter
two situations–that is, the original extraction method is not
practical and does not consider experts’ personality. Thus, we
employed the BBA function to extract expert assessments in
this paper as shown in Fig. 1.

As shown in Fig. 1, the expert assessment extraction and
fusion mechanism includes three major steps. (1) Extracting
expert assessments with BBA function; (2) Discounting these
assessments with Shafer’s discounting method; (3) Fusing the
discounted assessments with PCR5. Next, we will give a
detailed definition and explanation of the procedures involved
in the above processes.

Let the frame of discernment be Θ = {θ1, θ2, θ2} =
{0, 1, 2}, which can be seen as the discernment frame of
DSmT. Expert ek is asked to assess the influence degree for
fi → fj and his/her assessment is allowed to be expressed by
the BBA function as given in Definition 5 and shown in (6).

bkij = {(θ, bkij(θ))|
∑
θ⊆Θ

bkij(θ) = 1;

bkij(θ) ≥ 0, θ ⊆ Θ,∀i, j, k}. (6)

All of the BBA functions make up the individual IDR matrix
for expert ek, denoted as Bk = [bkij ]L×L, with i, j = 1, . . . , L
and k = 1, . . . ,K. Note that the basic beliefs in bkij can
be assigned not only to singleton grade levels but also to
any subsets of Θ, thereby it is allowed such an assessment
(also called a piece of evidence) to be profiled by a BBA
defined on the hyper-power set DΘ. It is capable of reflecting
ignorance in expert assessments, and the basic beliefs in bkij

can be given to Θ (global ignorance) or to θ ⊂ Θ (local
ignorance) according to the unknown and partial assessments
[52]. Expert assessments could be expressed precisely through
BBA functions as discussed, laying a great foundation for later
DEMATEL procedures.

Example 1. Assume expert e1 points out the influence degree
for fi → fj has 30% probabilities belonging to θ1 and 70%
probabilities belonging to θ2. Thus, his or her assessment is
described as b1ij(θ) = {(θ1, 0.30), (θ2, 0.70)}. Expert e2 points
out the influence degree has 20% probabilities belonging to
θ1 and has 80% probabilities belonging to θ2 ∪ θ3 but is not
sure which is the best one. Therefore, his or her assessment
is described as b2ij(θ) = {(θ1, 0.20), (θ2 ∪ θ3, 0.80)}. Expert
e3 points out the influence degree for fi → fj has 100%
probabilities belonging to θ2∩θ3. Thus, his or her assessment
is described as b3ij(θ) = {(θ2 ∩ θ3, 1.00)}. Expert e4 cannot
give any information about the influence degree. Therefore,
his or her assessment is described as b4ij(θ) = {(Θ, 1.00)}.

Normally, expert weight is subjective and relative to reflect
the importance of one’s assessments in a group, and it is
usually denoted by w in [0, 1], with 0 and 1 respectively
standing for not important at all and the most important [53],
[54]. It is obvious to find that the expert weight can be
determined by AHP [55], ANP [56] or Delphi [57], and it can
also be determined subjectively according to the requirements
of actual issues [58]. As discussed, expert weight is used to
account for one’s relative importance among all experts–that
is, the closer one’s assessments are to others’ assessments,
the more important the expert is likely to be [40]. Hence,
in our opinion, expert weight could be calculated indirectly
based on the similarity between one expert and other experts–
that is, the higher the similarity of assessments between the
expert and others, the larger the weight of the expert. Expert
weight is directly proportional to the similarity between expert
assessments and othersâ assessments. Thus, we use evidential
distance to depict the similarity of expert assessments, based
on which we could calculate expert weight in simple ways.
The Euclidean evidential distance and Euclidean evidential
similarity, which have little computation complexity and fast
convergence speed, are defined as follows.
Definition 7 [59]. Suppose m1 and m2 are two BBA functions
for the same frame of discernment Θ, θn is the n-th element of
DΘ, and |DΘ| is the cardinality of DΘ. The distance between
m1 and m2 is defined as follows.

DistE(m1,m2) =
1√
2

√√√√|DΘ|∑
n=1

[m1(θn)−m2(θn)]
2
. (7)

Definition 8 [59].Suppose m1 and m2 are two BBA functions
for the same frame of discernment Θ, θn is the n-th element
of DΘ, and |DΘ| is the cardinality of DΘ. The Euclidean
similarity function SimE(m1,m2) is defined based on the
Euclidean evidential distance as follows.

SimE(m1,m2) = 1− 1√
2

√√√√|DΘ|∑
n=1

[m1(θn)−m2(θn)]
2
. (8)
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Figure 1. Expert assessments extraction and fusion mechanism.

Example 2. Assume two pieces of evidence, b1 = {(θ2, 1)}
and b2 = {(θ1, 0.4), (θ2, 0.6)}, and that the distance be-
tween them could be computed by (7): DistE(m1,m2) =
1√
2

√
(0− 0.4)2 + (1− 0.6)2 = 0.4. The similarity between

them is computed by (8): SimE(m1,m2) = 1− 0.4 = 0.6.
On the basis of the previous definitions, the similarity

between experts can be directly calculated. Thus, we define
the following expert weight calculation method.

Definition 9 [60]. Suppose the individual IDR matrix consist-
ing of all influence relations among factors given by expert ek
is Bk = [bkij ]L×L, with i, j = 1, . . . , L and k = 1, . . . ,K. The
similarity between experts ek and ek′ on each pair of factors
fi → fj is SimE(bkij , b

k′

ij ), and the similarity between any two
experts is computed as skk

′
=
∑L
i,j=1,i6=j SimE(bkij , b

k′

ij )/L2,
where L2 denotes the quantity of factor pairs, making up the
similarity matrix as follows.

S = [skk
′
]K×K =



1 . . . s1k . . . s1K

...
. . .

...
. . .

...
sk1 . . . 1 . . . skK

...
. . .

...
. . .

...
sK1 . . . sKk . . . 1

 . (9)

The support of ek can be obtained by adding all of the
elements in the similarity matrix S that are related to expert
ek except for self-similarity, i.e., Sup(ek) =

∑K
k′=1,k′ 6=k s

kk′ ,
k = 1, . . . ,K where Sup(ek) represents the support degree
of expert ek received from other experts. By normalizing
them, we could obtain the expert credibility Crd(ek) which
is generally regarded as expert weight wk as follows.

wk = Crd(ek) = Sup(ek)/

K∑
k=1

Sup(ek), k = 1, . . . ,K.

(10)

Example 3. Assume experts e1, e2, e3 give their assessments
for the influence relations among factor set F = {F1, F2, F3},
respectively, as follows:

B1 =

 {(θ1, 1)} {(θ2, 1)} {(θ3, 1)}
{(θ2, 0.7), (θ3, 0.3)} {(θ1, 1)} {(θ1, 0.4), (θ3, 0.6)}

{(θ1, 1)} {(θ2, 1)} {(θ1, 1)}

 ,

B2 =

 {(θ1, 1)} {(θ2, 1)} {(θ3, 1)}
{(θ1, 0.8), (θ2, 0.2)} {(θ1, 1)} {(θ1, 1)}

{(θ1, 1)} {(θ1, 0.5), (θ2, 0.5)} {(θ1, 1)}

 ,

B3 =

 {(θ1, 1)} {(θ2, 1)} {(θ1, 0.2), (θ2 ∪ θ3, 0.8)}
{(θ2 ∪ θ3, 1)} {(θ1, 1)} {(θ1, 1)}

{(θ1, 1)} {(θ1, 1)} {(θ1, 1)}

 .
The similarity matrix can be calculated by Definition 9 as

follows:

S =

1.00 0.47 0.29
0.47 1.00 0.41
0.29 0.41 1.00

 .
We calculate the support degree of experts as Sup(e1) =

0.47 + 0.29 = 0.76, Sup(e2) = 0.47 + 0.41 = 0.88,
Sup(e3) = 0.29 + 0.41 = 0.70. Then we compute the expert
weight as w1 = Crd(e1) = 0.76/(0.76 + 0.88 + 0.70) ≈
{(θ1, P

1
ij), (θ2, P

2
ij), (θ3, P

3
ij)}, w2 = 0.87/2.34 ≈ 0.37,

w3 = 0.70/2.34 ≈ 0.30.
As mentioned above, expert weight should be considered

through Shafer’s discounting method, which multiplies the
masses of focal elements by the expert weight and transfers
all of the remaining discounted mass to the full ignorance Θ.
Mathematically, Shaferâs discounting method can be given as
in Definition 10.
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Definition 10 [61]. Suppose the BBA function is b as in (4),
and w is a parameter to discount the evidence, 0 ≤ w ≤ 1.
Then, Shafer’s discounting method is defined as follows:

m(θ) =


0, θ = ∅,
w · b(θ), θ ⊂ Θ θ 6= ∅,
w · b(θ) + 1− w, θ = Θ.

(11)

If the sum of weights is equal to 1, then the discounting
parameter is usually derived by standardizing the weights as
w̄k = wk/max(wk|k = 1, . . . ,K). The discounted expert
assessments could be described as follows.

mk
ij = {(θ,mk

ij(θ))|
∑
θ⊆Θ

mk
ij(θ) = 1;

mk
ij(θ) ≥ 0, θ ⊆ Θ,∀i, j, k}. (12)

The discounted individual IDR matrix is denoted as Mk =
[mk

ij ]L×L, with i, j = 1, . . . , L and k = 1, . . . ,K.

Example 4. Assume expert weight is W = {w1 = 0.40, w2 =
0.20, w3 = 0.20, w4 = 0.20}.The assessments given by
four experts are the same as in Example 1. The discount-
ing parameters for the four experts can be standardized
as w̄1 = w1/max(w1, . . . , w4) = 0.40/0.40 = 1.00,
and similarly we get w̄2 = w̄3 = w̄4 = 0.20/0.40 =
0.50. Taking them into (11), the discounted assessments are
as follows: m1

ij(θ) = {(θ1, 0.30), (âθ2, 0.70)}, m2
ij(θ) =

{(θ1, 0.10), (θ2 ∪ θ3, 0.70), (Θ, 0.50)}, m3
ij(θ) = {(θ2 ∩

θ3, 0.50), (Θ, 0.50)}, and m4
ij(θ) = {(Θ, 1.00)}.

The DSmT framework with PCR5 rule can be used to make
fusion for individual discounted assessments as in (12) and the
fusion result can be described as follows:

mij = {(θ,mij(θ))|
∑
θ⊆Θ

mij(θ) = 1;

mij(θ) ≥ 0, θ ⊆ Θ,∀i, j}. (13)

Example 5. Assume two pieces of evidence are:
m1
ij(θ) = {(θ1, 0.20), (θ2, 0.30), (Θ, 0.50)}, and m2

ij(θ) =
{(θ2, 0.70), (Θ, 0.30)}. Taking them into (5), the fusion results
are obtained as mij(θ) = {(θ1, 0.09), (θ2, 0.76), (Θ, 0.15)}.

B. The Soft CRP for Group DEMATEL

Soft CRP can be designed with the aim of supporting
experts until a group consensus is reached by following several
discussion and adjustment rounds. As discussed in Section
I, situations in which all of the experts agree with each
other unanimously are rare or not desirable in the decision
making process. Since the “unanimous consensus” of conflict
tolerance, which has the ability to satisfy all pairs of BBA
functions, rarely exists, the choice of a “soft consensus” is
largely subjective and application oriented [62]. That is, setting
an acceptable CL threshold value (suppose that the value is 0.8
there) to guide the whole process to reach group consensus.
Basically, this process relies on making assumptions about
expertsâ willingness to change their opinion or preferences

[63], [64]. Initially, consensus measures are computed based
on individual and group IDR matrices to determine whether an
acceptable CL has been reached or not. If so (CL ≥ 0.8), the
soft CRP is finished and a consensus group IDR matrix can
be obtained. Otherwise (CL < 0.8), the feedback mechanism
will be activated, and the experts who are not contributing to
the consensus are identified and the advice about how to alter
their assessments is generated [65].

This consensus measure can indicate the current consensus
situation throughout the soft CRP. According to the char-
acteristics of group DEMATEL, the consensus measure is
categorized into two levels, i.e., pair-factors level and expert
level. The pair-factors level is the most basic level and reflects
the original conflict degree. At this level, experts make some
adjustments to increase consistency among the group. The
expert level is the highest level, which reflects the conflict
degree between a specific expert and the group as a whole
for the collected results on all pairs of factors [66]. We
employ these two levels of consensus measures to identify
inconsistencies between experts and group.

The calculation methods for consensus measures can be
derived based on the similarities between these assessments.
At the pair-factors level, the consensus measure values can
be calculated based on the Euclidean similarity function as
in Definition 11. At the expert level, the consensus measure
values can be calculated by adding the consensus measure
values on all of pair-factors for an expert as in Definition
12. Obviously, the order for calculating the two levels of
consensus measure is pair-factors level at first and then expert
level. When determining the inconsistency assessments that
need to be modified, the order is the highest level at first and
then the most basic level. Experts only adjust the conflicting
assessments based on the recommendations at the pair-factors
level.

Definition 11. In the t-th round, suppose the assessments
of the pair of factors fi → fj given/calculated by expert ek
and group are bk,tij and mt

ij . Then, the consensus measure
values can be calculated by the Euclidean similarity function
as follows.

ck,tij = 1− 1√
2

√√√√|DΘ|∑
n=1

[bk,tij (θn)−mt
ij(θn)]

2
. (14)

Definition 12. In the t-th round, suppose the consensus
measure value of expert ek for fi → fj at pair-factors level is
ck,tij , ∀i, j, k, then the consensus measure value of expert ek at
expert level in this round can be calculated as follows.

ck,t =
L∑

i,j=1,i6=j

ck,tij /L
2, (15)

where L2 denotes the quantity of factor pairs.
The closer the value ck,t is to 0, the greater the conflict

degree; the closer the value is to 1, the smaller the conflict.
Obviously, ck,t = 0 indicates complete conflict between expert
ek and group, and ck,t = 1 indicates no conflict between them.
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If each expert’s consensus measure ck,t is larger than the
acceptable CL threshold value, indicating that existing conflict
degree can be accepted by all experts and group consensus is
reached, then the soft CRP is finished and the current collected
group IDR matrix M t = [mt

ij ]L×L is taken as a consensus
result. Otherwise, if one’s consensus measure ck,t is lower
than the acceptable CL threshold value, indicating that strong
conflict degree among experts, then the feedback mechanism
is carried out to help the inconsistent experts adjust their
assessments to enhance group consensus, and a new round
(t+ 1) of group IDR matrix construction should be initiated.

Note that, expert weights may be not fixed during several
of the rounds for the reason that expert assessments may
be changed in the context of not reaching the acceptable
CL. Thus, in each new round, we need to recalculate expert
weights based on the latest assessments. In order to prevent the
collective assessments from failing to converge after several
discussion rounds, we incorporate a maximum number of
rounds (tMAX ) in the soft CRP to develop. It can be ensured
that the feedback mechanism will not be carried out when and
the current collected group IDR matrix will be taken as the
final result even if the acceptable CL has not been reached
yet.

Suppose the acceptable CL threshold values at expert level
and pair-factors level are εe and εf . Then the processes of
feedback mechanism can be divided into the following two
steps.
• Step 1: Experts whose consensus measure values at expert

level are lower than the threshold value εe in the t-th
round are identified as follows.

Ẽt = {k|ck,t ≤ εe}. (16)

• Step 2: For the identified experts in step 1, their assess-
ments for such pairs of factors that the consensus measure
values are lower than the threshold value are identified
as follows.

F̃t = {k, i→ j|ck,tij ≤ εf ∧ k ∈ Ẽt}. (17)

When Ẽt and F̃t have been identified, personal advices
for experts will be generated to reduce the conflict caused
by the moderator. Since pair-factors level is the most basic
level and contains the original assessments of experts, only
the experts whose consensus measure values ck,t are lower
than the threshold value εe may obtain the adjusted advices.
After the identified experts all finish their adjustments, a new
round of group IDR matrix construction will be carried out
to determine the consensus situation. It is obvious to find that
the above procedure is very similar to the Delphi method.

C. DSmT-Based Group DEMATEL Method and Algorithm

The construction of a group IDR matrix includes two main
processes. The first is collection process, which focuses on
expert assessment extraction and fusion; and the second is
soft consensus reaching process, which aims at reaching an
acceptable CL among experts. After the above two processes,

the final group IDR matrix M can be constructed. Obviously,
M is different from the original IDR matrix G as given in
Definition 1 for two reasons. (1) M is a consensus group IDR
matrix that satisfies all experts, while G does not consider con-
sensus and satisfaction of experts. (2) M is made up of BBA
functions that is capable of reflecting local or global ignorance
in experts’ mind, while G is made up of crisp values. Note that,
the IDR matrix included in the DEMATEL is required to be
exact influence degrees rather than BBA functions. Therefore,
we apply the generalized pignistic probability as in Definition
13, which is an extension of the original pignistic probability
[67], to reassign the local and global ignorance in the BBA
functions to singleton grade levels. Then, we calculate the
expected value to derive the exact influence degrees.

Definition 13 [68]. Suppose the frame of discernment in the
DSmT framework is Θ = {θ1, . . . , θY }, then the generalized
pignistic probability for all A ∈ DΘ can be calculated by (18).

P (A) =
∑
X∈DΘ

|X ∩A|
|X|

m(X). (18)

where |X| denotes the cardinal of proposition X .
Taking mij in the final group IDR matrix M into (18),

the transformation results can be obtained and recorded as
{(θ1, P

1
ij), . . . , (θY , P

Y
ij )}, where P yij denotes the probability

of influence degree θy , y = 1, . . . , Y . The subscript Y is equal
to 3 for the reason that the frame of discernment is defined
as Θ = {θ1, θ2, θ3} = {0, 1, 2} in this paper. Which influence
grade level or influence degree is attached to the relationship
of fi → fj? We follow two kinds of principles to solve this
problem: (1) Highest probability principle. The grade level
with the highest probability g̃ij = θ∗ is chosen as the final
influence grade level, where {θ∗|P ∗ij = max(P 1

ij , . . . , P
Y
ij )};

(2) Expected value principle. The expected value g̃ij =∑Y
y=1 θy×P

y
ij , ∀i, j is calculated as the final influence degree.

According to the real situation, we obtain the final influence
degree for fi → fj by using one of the two principles, and then
the final group IDR matrix G̃ = [g̃ij ]L×L can be constructed.

The process of DSmT-based group DEMATEL is illustrated
as in Fig. 2. As shown in Fig.2, the complete steps of DSmT-
based group DEMATEL can be summarized as follows.
• Step 1: Define group DEMATEL problem and soft

CRP parameters. Suppose the set of factors is F =
{f1, . . . , fL}, the set of experts is E = {e1, . . . , eK},
the set of grade levels is Θ = {0, 1, 2}, and the threshold
value to filter out major factors is η. Then, the acceptable
CL threshold values at expert level and pair-factors level
are εe and εf , the round counter is t (t is set to one at
first), and the maximum number of rounds is tMAX . A
moderator is invited to participate in the group decision
making process and responsible for managing the whole
process such as consensus measure value calculation,
inconsistent expert identification, the maximum number
of round judgement.

• Step 2: Expert assessments extraction and fusion. Experts
are advised to indicate the influence degree to which he or
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Figure 2. The process of proposed method.

she believes factor fi has an effect on factor fj (denoted
by fi → fj) under the framework of DSmT. The BBA
functions assessed for each pair of factors fi → fj by
expert ek are described as bkij (as in (6)), and make up an
individual IDR matrix Bk = [bkij ]L×L. On the basis of
expert assessments, expert weights W = [w1, . . . , wK ]
are calculated by Definition 8. Initial assessments bkij are
discounted by Shafer’s discounting method with expert
weight as in Definition 10 to obtain the discounted
assessments mk

ij . Then PCR5 is applied to fuse those
BBA functions to obtain group assessments mij , making
up group IDR matrix M = [mij ]L×L.

• Step 3: Soft consensus reaching process. The moderator
calculates the consensus measure values ck,tij and cij by
means of expert and group IDR matrices to identify
whether an acceptable CL is reached in the current round.
If so, the soft CRP is finished and a consensus group
IDR matrix M has been obtained. Generalized pignistic
probability is introduced to deal with global ignorance
and local ignorance as in (18) and the influence degree for
fi → fj (∀i, j) is determined by one of the two principles
as mentioned above to construct G̃ = [g̃ij ]L×L, and
proceeding to step 4. Otherwise, let t = t+ 1 and carry
out the feedback mechanism. The moderator identifies
the experts who differed strongly from the group by (16)
and provides advices for them by (17). Then, return to
step 2 and follow the same two processes. Note that the
moderator also should detect whether the maximum num-
ber of rounds (means by t = tMAX ) has been reached
before carrying out the feedback mechanism. If so, the
mechanism will be ceased, taking the current group IDR
matrix M as the final result and applying the generalized

pignistic probability to obtain G̃ = [g̃ij ]L×L. Then
proceed to step 4.

• Step 4: Calculate the normalized IDR matrix. To
guarantee that the normalized IDR matrix to in-
finite power will converge to zero and that the
total relation matrix can be smoothly obtained,

g̃′′ij = max( max
1≤i≤L

L∑
j=1

g̃ij , µ+ max
1≤j≤L

L∑
i=1

g̃ij) is intro-

duced as shown in (1) to calculate the normalized IDR
matrix D = [dij ]L×L, where dij = g̃ij/q̃

′′
ij , ∀i, j.

• Step 5: Compute total relation matrix. The total relation
matrix is calculated by A = D(I −D)−1. The influenc-
ing degree of fi is computed by ri =

∑L
j=1 aij , the

influenced degree of fi is computed by ci =
∑L
j=1 aji,

the prominence degree of fi is computed by ri + ci, and
the net influence degree of fi is computed by ri − ci.

• Step 6: Obtain the major factors with the threshold
value. To simplify the complexity of a system to a
manageable level, negligible factors should be filtered
out. Only those factors whose prominence degrees are
greater than the threshold value (ri + ci ≥ η) should be
chosen and considered in the complex system. Generally,
the cause-effect relation diagram can be made for the
major factors based on their prominence degrees and net
influence degrees.

Through the analysis of total relation of the factors by DE-
MATEL, a better understanding of the structural relation and
an ideal way to solve complicate system problems can be
obtained. The algorithm can be summarized to help moderator
manage the whole processes.
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Table I
ASSESSMENTS OF EXPERT e1 IN THE FIRST ROUND.

f1 → f2 f1 → f3 f1 → f4 f1 → f5 f2 → f3 f2 → f4 f3 → f4 f4 → f5 f5 → f2 f5 → f3
θ1 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00
θ2 0.00 0.50 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00
θ1 ∪ θ2 0.30 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.80 0.80
θ3 0.70 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
θ1 ∪ θ3 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00
θ2 ∪ θ3 0.00 0.00 0.00 0.20 0.50 0.20 0.00 0.00 0.00 0.00
θ1 ∪ θ2 ∪ θ3 0.00 0.00 1.00 0.80 0.00 0.60 0.00 1.00 0.20 0.20

IV. NUMERICAL COMPARISON AND DISCUSSION

In this section, we apply the proposed method and the fuzzy
DEMATEL method to conduct a numerical simulation case, in
which the key factors will be selected by two methods respec-
tively. Afterwards, the results are compared and discussed.

A. The Proposed Method

• Step 1: Define DEMATEL problem and soft CRP param-
eters.
Similar to the examples in the literatures about DSmT
[69], here the group IDR matrix construction of the given
example works on the classical power set 2Θ, not on the
hyper-power set DΘ. In the numerical simulation case,
suppose the set of factors is F = {f1, f2, f3, f4, f5}, the
set of experts is E = {f1, e2, e3, e4, e5}, the set of grade
levels is Θ = {θ1, θ2, θ3} = {0, 1, 2}, the threshold value
is η = 0.35 , and the acceptable CL threshold values at
expert level is εe = 0.55, and at pair-factors level is εf =
0.50, the round counter is t, and the maximum number
of rounds is tMAX = 5.

• Step 2: Expert assessments extraction and fusion.
Experts are advised to indicate the influence degree to
which he or she believes factor fi has an effect on factor
fj (denoted by fi → fj) under the framework of DSmT.
As an example, the BBA functions on each pair of factors
fi → fj from expert ek are shown in Table I. Due to
limited space, other experts’ assessments are not given in
this paper.
On the basis of the experts’ assessments, we calculate the
similarity matrix by the Euclidean similarity function as
given in Definition 8 and shown in (19).

S =


1.00 0.20 0.16 0.13 0.18
0.20 1.00 0.15 0.17 0.19
0.16 0.15 1.00 0.14 0.18
0.13 0.17 0.14 1.00 0.18
0.18 0.19 0.18 0.18 1.00

 . (19)

Hence, Sup(e1)1 = 0.20 + 0.16 + 0.13 + 0.18 = 0.68,
Sup(e2)1 = 0.72, Sup(e3)1 = 0.64, Sup(e4)1 = 0.62,
and Sup(e5)1 = 0.73; the expert weight is computed as
w1,1 = Sup(e1)1/

∑5
k=1 Sup(ek)1 = 0.68/3.40 = 0.20,

w2,1 = 0.21, w3,1 = 0.19, w4,1 = 0.18, and w5,1 = 0.22;
the discounting parameters are derived by w̄1,1 =
w1,1/max{wk,1|k = 1, . . . , 5} = 0.20/0.22 = 0.93,
w̄2,1 = 0.98, w̄3,1 = 0.87, w̄4,1 = 0.82, and w̄5,1 = 1.00.

Taking bk,1ij and w̄k,1 into Shafer’s discounting method
(as in (11)), we derive the discounted assessments mk,1

ij ,
i, j = 1, . . . , 5, and k = 1, 2, 3, 4, 5. With the help of the
MATLAB code for PCR5, we fuse the BBA functions
and derive a holism result for the influence degrees
between any two factors, as shown in Table II.

• Step 3: Soft consensus reaching process.
The moderator calculates the consensus measure values
ck,1ik and ck,1 by means of bk,1ik and m1

ik to identify
whether an acceptable CL has been reached. Taking
expert and fusion assessment BBA functions into (13) and
(14), we calculate the consensus measure values at two
levels, as shown in Tables III and IV. The bold values of
data in Table III indicate the pair of factors that do not
reach the set consensus level. The bold values of data
in Table IV indicate the experts that do not reach the
set consensus level. According to the selected threshold
value εe = 0.55 and (16), we find that the acceptable
CL is not reached in this round for F̃t 6= ∅. Then,
the moderator lets t = 1 + 1 = 2, which is lower than
tMAX , and carries out the feedback mechanism. The
order from expert level to pair-factors level should be
followed to determine the inconsistent experts and the
pairs of factors that need to be modified (for those values
less than εf = 0.50). Tables III and IV show that expert
e3 greatly differs from the group results on the pairs of
factors f1 → f4, f2 → f4, and f4 → f5, and e4 greatly
differs from the group results on the pairs of factors
f1 → f2, f2 → f3, f2 → f4, and f4 → f5 (see those
underlined data in Tables III and IV). Experts e3 and e4

need to modify those assessments on the mentioned pairs
of factors. V and VI.
Because some of the expert assessments are changed. In
the second round, expert weights are recalculated to be
w1,2 = 0.19, w2,2 = 0.20, w3,2 = 0.20, w4,2 = 0.21,
and w5,2 = 0.21, and the corresponding discounting
parameters are standardized as w̄1,2 = 0.89,2,2 = 0.93,
w̄3,2 = 0.96, w̄4,2 = 1.00, and w̄5,2 = 1.00. Taking bk,2ik
and w̄k,2 into (11), we obtain the discounted assessments
mk,2
ij , (∀i, j) and fuse these results by PCR5 to construct

the group IDR matrix in the second round. The moderator
calculates the new consensus measure values at two
levels. Fusion results and consensus measures at expert
level in the second round are shown in Tables VII and
VIII.
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Table II
FUSION RESULTS OF EXPERTS’ ASSESSMENTS IN THE FIRST ROUND.

f1 → f2 f1 → f3 f1 → f4 f1 → f5 f2 → f3 f2 → f4 f3 → f4 f4 → f5 f5 → f2 f5 → f3
θ1 0.00 0.22 0.00 0.13 0.00 0.05 0.44 0.00 0.07 0.05
θ2 0.00 0.21 0.38 0.26 0.34 0.19 0.17 0.15 0.25 0.05
θ1 ∪ θ2 0.08 0.16 0.00 0.00 0.03 0.05 0.08 0.00 0.29 0.32
θ3 0.66 0.22 0.19 0.27 0.20 0.56 0.12 0.56 0.22 0.42
θ1 ∪ θ3 0.02 0.06 0.00 0.00 0.00 0.05 0.16 0.06 0.01 0.06
θ2 ∪ θ3 0.02 0.00 0.17 0.07 0.20 0.04 0.00 0.05 0.07 0.04
θ1 ∪ θ2 ∪ θ3 0.22 0.13 0.26 0.27 0.23 0.06 0.03 0.18 0.09 0.06

Table III
THE CONSENSUS MEASURE VALUES AT PAIR-FACTORS LEVEL IN THE FIRST ROUND.

f1 → f2 f1 → f3 f1 → f4 f1 → f5 f2 → f3 f2 → f4 f3 → f4 f4 → f5 f5 → f2 f5 → f3
e1 0.78 0.65 0.38 0.53 0.58 0.40 0.80 0.29 0.56 0.53
e2 0.74 0.61 0.50 0.53 0.35 0.42 0.78 0.79 0.56 0.79
e3 0.78 0.68 0.32 0.57 0.57 0.20 0.56 0.45 0.52 0.55
e4 0.27 0.57 0.53 0.68 0.37 0.35 0.80 0.38 0.66 0.70
e5 0.78 0.67 0.44 0.57 0.49 0.67 0.57 0.77 0.66 0.60

Table IV
THE CONSENSUS MEASURE VALUES AT EXPERT LEVEL IN THE FIRST ROUND.

e1 e2 e3 e4 e5
ck,1 0.55 0.61 0.52 0.53 0.62

Table V
ADJUSTED ASSESSMENTS OF EXPERT e3 IN THE SECOND ROUND.

f1 → f2 f1 → f3 f1 → f4 f1 → f5 f2 → f3 f2 → f4 f3 → f4 f4 → f5 f5 → f2 f5 → f3
θ1 0.00 0.00 0.00 0.50 0.00 0.04 0.00 0.00 0.00 0.00
θ2 0.00 0.00 0.22 0.50 0.80 0.16 0.00 0.28 0.00 0.00
θ1 ∪ θ2 0.30 0.30 0.00 0.00 0.20 0.04 0.20 0.00 0.00 0.70
θ3 0.70 0.30 0.37 0.00 0.00 0.45 0.40 0.28 0.00 0.00
θ1 ∪ θ3 0.00 0.00 0.00 0.00 0.00 0.04 0.40 0.07 0.20 0.30
θ2 ∪ θ3 0.00 0.00 0.07 0.00 0.00 0.03 0.00 0.07 0.50 0.00
θ1 ∪ θ2 ∪ θ3 0.00 0.40 0.34 0.00 0.00 0.24 0.00 0.30 0.30 0.00

Table VI
ADJUSTED ASSESSMENTS OF EXPERT e4 IN THE SECOND ROUND.

f1 → f2 f1 → f3 f1 → f4 f1 → f5 f2 → f3 f2 → f4 f3 → f4 f4 → f5 f5 → f2 f5 → f3
θ1 0.00 0.00 0.00 0.00 0.00 0.03 0.50 0.00 0.00 0.00
θ2 0.00 0.00 0.00 0.50 0.22 0.14 0.30 0.08 0.00 0.00
θ1 ∪ θ2 0.06 0.30 0.00 0.00 0.02 0.02 0.20 0.00 0.40 0.00
θ3 0.47 0.70 0.50 0.50 0.13 0.38 0.00 0.36 0.60 0.60
θ1 ∪ θ3 0.02 0.00 0.00 0.00 0.00 0.05 0.00 0.14 0.00 0.20
θ2 ∪ θ3 0.02 0.00 0.50 0.00 0.13 0.12 0.00 0.12 0.00 0.20
θ1 ∪ θ2 ∪ θ3 0.43 0.00 0.00 0.00 0.50 0.26 0.00 0.30 0.00 0.00

Table VII
FUSION RESULTS OF EXPERTS’ ASSESSMENTS IN THE SECOND ROUND.

f1 → f2 f1 → f3 f1 → f4 f1 → f5 f2 → f3 f2 → f4 f3 → f4 f4 → f5 f5 → f2 f5 → f3
θ1 0.00 0.20 0.00 0.12 0.00 0.02 0.43 0.00 0.06 0.06
θ2 0.00 0.20 0.47 0.26 0.41 0.10 0.17 0.06 0.22 0.05
θ1 ∪ θ2 0.16 0.17 0.00 0.00 0.05 0.11 0.08 0.00 0.26 0.29
θ3 0.69 0.26 0.13 0.23 0.20 0.51 0.14 0.74 0.27 0.42
θ1 ∪ θ3 0.04 0.06 0.00 0.00 0.00 0.05 0.17 0.04 0.02 0.07
θ2 ∪ θ3 0.04 0.00 0.16 0.06 0.26 0.08 0.00 0.02 0.08 0.05
θ1 ∪ θ2 ∪ θ3 0.07 0.11 0.24 0.33 0.08 0.13 0.01 0.15 0.09 0.06

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

375



Table VIII
THE CONSENSUS MEASURE VALUES AT EXPERT LEVEL IN THE SECOND ROUND.

e1 e2 e3 e4 e5
ck,2 0.55 0.63 0.66 0.68 0.62

As shown in Table VIII, the acceptable CL has been
reached in the second round, which means that the current
group IDR matrix is a consensus result and can be
applied to the group DEMATEL method. Then we derive
pignistic probability transformation for each element in
final BBA-formed group IDR matrix M2 = [m2

ij ]5×5.
Take the pair of factors f1 → f2 as an example,
m12(θ1) = m(θ1)+ 1

2m(θ1∪θ2)+ 1
2m(θ1∪θ3)+ 1

3m(θ1∪
θ2 ∪ θ3) = 0.12, m12(θ2) = 0.12, m12(θ3) = 0.76, and
g̃12 = 0 × 0.12 + 1 × 0.12 + 2 × 0.76 = 1.64. After
pignistic probability transformation, the final group IDR
matrix is constructed as in (20).

G̃ =


0.00 1.64 0.99 1.22 1.13
0.00 0.00 1.33 1.53 0.00
0.00 0.00 0.00 0.67 0.00
0.00 0.00 0.00 0.00 1.76
0.00 1.12 1.25 0.00 0.00

 . (20)

• Step 4: Calculate the normalized IDR matrix.
Let consider µ = 0.00001.We obtain

g̃′′ij = max( max
1≤i≤L

L∑
j=1

g̃ij , µ+ max
1≤j≤L

L∑
i=1

g̃ij) ≈ 4.98,

and the normalized IDR matrix can be calculated by (1).
The result is shown as in (21).

D =


0.00 0.33 0.20 0.24 0.23
0.00 0.00 0.27 0.31 0.00
0.00 0.00 0.00 0.13 0.00
0.00 0.00 0.00 0.00 0.35
0.00 0.22 0.25 0.00 0.00

 . (21)

• Step 5: Compute the total relation matrix.
The total relation matrix can be calculated by (2). The
result is shown as

A =


0.00 0.14 0.08 0.10 0.09
0.00 0.00 0.08 0.11 0.00
0.00 0.00 0.00 0.02 0.00
0.00 0.00 0.00 0.00 0.13
0.00 0.05 0.08 0.00 0.00

 . (22)

According to A = [aij ]5×5 and (3), we derive the
following parameters: the total influence ri =

∑5
j=1 aij

given by the factor fi to other factors, the total influence
ci =

∑5
j=1 aji received by the factor fi from other

factors, the degree of the important role ri + ci, and the
net influence ri−ci. These parameters are listed in Table
IX. Additionally, we construct the cause-effect relation
diagram of factors with the horizontal axis r + c and
the vertical axis r − c, as shown in Fig. 3. According
to Definition 4 and Fig. 3, f1 is known as net causer,

Table IX
THE ATTRIBUTE PARAMETERS OF FACTORS.

r c r + c r − c
f1 0.41 0.00 0.41 0.41
f2 0.19 0.19 0.38 0.00
f3 0.02 0.24 0.26 -0.22
f4 0.13 0.23 0.36 -0.10
f5 0.13 0.22 0.35 -0.09

Figure 3. The cause-effect relation diagram derived by the proposed method.

whereas f3, f4 and f5 are net receivers. Because r−c = 0
for f2, f2 is neither net causer, or net receiver.

• Step 6: Obtain major factors with the threshold value.
Because of the threshold value η = 0.35, we select the
factors whose degrees of the important role are greater
than the threshold (ri + ci ≥ η) as major factors. As a
result, the major factors in the complex system are F̂ =
{f1, f2, f4, f5}.

We find that the Algorithm 1 can be programmed easily.
Thus, the proposed method in this study is valid and applicable
for solving group DEMATEL problems.

B. The Fuzzy DEMATEL Method

The fuzzy DEMATEL method proposed by Wu and Lee
[18] is a vital and significant improvement of DEMATEL.
Since the fuzzy DEMATEL method is not only a major
extension of DEMATEL but also extracts information with
fuzzy linguistic terms, here we employ it to make a com-
parison with the proposed method. To ensure the results of
two kinds of methods can be compared with each other,
the set of factors F = {f1, f2, f3, f4, f5}, the set of experts
E = {e1, e2, e3, e4, e5} and the threshold value is η = 0.35
are all the same as in Subsection IV-A. Besides, the inputs
of fuzzy DEMATEL method should be generated from the
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initial assessments given by experts in the proposed method
to ensure its comparability. According to the procedure of
fuzzy DEMATEL method, its computation processes can be
summarized as follows.

• Step 1: Define DEMATEL problem and fuzzy linguistic
scale.
The DEMATEL problem is defined as the same as in
Subsection IV-A and the fuzzy linguistic scale is defined
as in Table X, where {No,L,H} are equal to {θ1, θ2, θ3}
as defined in this paper.

Table X
THE FUZZY LINGUISTIC SCALE.

Linguistic terms Triangular fuzzy numbers
High influence (H) (0.75,1.00,1.00)
Low influence (L) (0.25,0.50,0.75)
No influence (No) (0.00,0.00,0.25)

• Step 2: Exact and fuse expert assessments..
In order to ensure the comparability, the inputs of fuzzy
DEMATEL method should be generated from the initial
assessments given by experts in the proposed method.
Because the assessments given by experts in Subsection
4.1 are in the form of BBA functions, how to make
a transformation from the BBA functions to the inputs
of fuzzy DEMATEL method is quite important. It is
reasonable and logical to choose the grade level with
the highest probability as expert assessments in the fuzzy
DEMATEL method. Following this thought, the inputs
of fuzzy DEMATEL method are transformed from the
experts’ assessments in Subsection IV-A. For example,
the transformed assessments of expert are shown in Table
XI. As introduced in fuzzy DEMATEL, the Converting

Table XI
THE TRANSFORMED ASSESSMENTS OF EXPERT e1 .

f1 f2 f3 f4 f5
f1 No H L No No
f2 No No H H No
f3 No No No L No
f4 No No No No H
f5 No No L No No

Fuzzy data into Crisp Scores (CFCS) defuzzification
method is applied to aggregate these assessments by five
experts. Due to limited space, the detailed CFCS steps
can be referred to [18] and are not repeated here. The
IDR matrix G′ = [g′ij ]5×5 is produced as in (23).

G′ =


0.04 0.19 0.87 0.19 0.50
0.19 0.04 0.96 0.96 0.04
0.04 0.04 0.04 0.41 0.19
0.04 0.04 0.04 0.04 0.87
0.04 0.50 0.59 0.04 0.04

 . (23)

• Step 3: Calculate the normalized IDR matrix.
The normalizing method for IDR matrix in fuzzy DE-
MATEL is the same as in traditional DEMATEL. The

normalized IDR matrix is calculated by taking (23) into
(1) and it is shown as in (24).

D′ =


0.02 0.08 0.35 0.08 0.20
0.08 0.02 0.38 0.38 0.02
0.02 0.02 0.02 0.16 0.08
0.02 0.02 0.02 0.02 0.35
0.02 0.20 0.24 0.02 0.02

 . (24)

• Step 4: Compute the total relation matrix.
The computing method for total-relation matrix in fuzzy
DEMATEL is also the same as in traditional DEMATEL.
The total-relation IDR matrix is calculated by taking (24)
into (2) and it is shown as in (25).

A′ =


0.02 0.01 0.18 0.02 0.07
0.01 0.02 0.21 0.20 0.00
0.00 0.00 0.02 0.03 0.01
0.00 0.00 0.00 0.02 0.14
0.00 0.05 0.09 0.00 0.02

 . (25)

According to (3), we derive the following parameters as
shown in Table XII and the cause-effect relation diagram
as shown in Fig. 4. According to Definition 4 and Fig. 4,
it is obvious to find that f1 and f2 are net causers, while
f3, f4 and f5 are net receivers.

Table XII
THE FACTORS’ ATTRIBUTES PARAMETERS.

r′ c′ r′ + c′ r′ − c′
f1 0.30 0.03 0.33 0.27
f2 0.44 0.08 0.52 0.36
f3 0.07 0.50 0.57 -0.43
f4 0.17 0.28 0.44 -0.11
f5 0.16 0.25 0.41 -0.09

Figure 4. The cause-effect relation diagram derived by fuzzy DEMATEL
method.

• Step 5: Set a threshold value and obtain the major factors.
Because of the threshold value η = 0.35, only the factors
with r′ + c′ ≥ η should be chosen as the major factors.
As a result, the major factors in the complex system are
F̂ ′ = {f2, f3, f4, f5}.
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C. Discussion

It is obvious to find that the major factors in the
complex system determined by the proposed method are
F̂ = {f1, f2, f4, f5}, while those determined by the fuzzy
DEMATEL method are F̂ ′ = {f2, f3, f4, f5}. The results of
two kinds of methods are different from each other. Which
one is more reasonable? Now we make discussions from the
following three aspects.

(1) Expert assessment extraction mechanism. The assess-
ments of experts are used as the fundamental inputs of
DEMATEL whether in the proposed method or in the fuzzy
DEMATEL method. The proposed method allows experts
to give assessments with BBA functions, while the fuzzy
DEMATEL method employs the fuzzy linguistic scale to
express their assessments. The local or global ignorance in
experts’ minds can be well reflected in the proposed method
(e.g., b1,112 = {((θ1, θ2), 0.30), (θ3, 0.70)}), but it is unfortunate
to find that such the ignorance cannot included in the fuzzy
DEMATEL method (it seems that only the grade level/fuzzy
linguistic scale with the highest probability may be allowed to
express assessments, e.g., b1,112 = {L} = {θ3}). Consequently,
it is believed that the proposed method is more feasible
than the fuzzy DEMATEL method in the aspect of expert
assessment extraction mechanism.

(2) The importance roles of experts. As discussed in sub-
section III-A, the importance roles of experts are reflected by
expert weights that are calculated based on expert assessments
information, hence, the weight parameters could effectively
express the relative importance of experts in the group and they
have a significant impact on the group DEMATEL decision
results. If the importance roles of experts are neglected in
the process of decision making, the decision results may
lose effectiveness. The proposed method calculates expert
weights based on expert assessments with the aid of evidence
distance and employs Shafer’s discounting method to modify
the subjective assessments. Unfortunately, the importance roles
of experts are unconsidered in the whole processes of fuzzy
DEMATEL method. Consequently, it is believed that the
proposed method is more accurate than the fuzzy DEMATEL
method in the aspect of reflecting the importance roles of
experts.

(3) Group consensus reaching. Group consensus reaching is
a key problem in the GDM field. Only when the assessments
given by experts reach an acceptable CL, the GDM results are
seen to be valuable and credible. In other worlds, the GDM
results that lack of consensus may be ineffective and have
few reference value for decision-making. From subsection
IV-B, we know that the fuzzy DEMATEL method is a static
method without taking the group consensus reaching into
consideration. In the proposed method, we apply the soft
CRP into the construction of group IDR matrix to help the
experts group reach a high CL, among which the feedback and
modification mechanism are introduced. Consequently, it is
believed that the proposed method is more reasonable than the
fuzzy DEMATEL in the aspect of reaching group consensus.

V. CONCLUSIONS

In the present study, the DSmT is used to extract and
fuse expert assessments, and a soft CRP is introduced to
construct the group IDR matrix for the DEMATEL. The
DSmT-based group DEMATEL method and the corresponding
algorithm are proposed. Moreover, a numerical comparison is
performed to discuss the applicability of the proposed method
and algorithm. The main contributions of the present study
can be summarized into three aspects.

Firstly, an expert assessment extraction and fusion mecha-
nism is established on the basis of DSmT. Expert assessments
on the influence relations among factors are extracted by BBA
functions, which can help experts to express uncertainty and
incompleteness assessments. The PCR5 of DSmT, which can
overcome the defects of intuitional paradox in Dempster’s
combination rule, is employed to make fusion for the in-
dividual BBA functions discounted by Shafter’s discounting
method. Secondly, expert weights are defined and introduced
to reflect importance roles of experts in a group. Following
the principle of pairwise comparisons, expert weights are
calculated by the Euclidean similarity function to reflect
experts’ relative importance in the group. Expert weights are
not fixed during the whole processes of group IDR matrix
construction and they may vary dynamically with different
expert assessments in each round. Shafer’s discounting method
is used to discount expert assessments in each round so
as to reflect the importance roles of experts in the group
dynamically. The above processes are beneficial to obtain an
accurate group IDR matrix for the DEMATEL.

Thirdly, a soft CRP is established to construct the group IDR
matrix with consensus and an algorithm is summarized for the
group DSmT-based DEMATEL. The consensus measures at
expert and pair-factors levels are defined to help establish the
feedback/modification mechanism, based on which a soft CRP
is established for the construction of consensus group IDR
matrix, so that experts can reach a high CL. An algorithm
for DSmT-based group DEMATEL method with reaching
consensus is proposed to identify major factors in a complex
system. The proposed algorithm can be programmed easily and
is valid and applicable for solving group DEMATEL problems.

The proposed method forms an expert assessment extraction
mechanism on the basis of the BBA function. However, the
belief degrees or probabilities in BBA functions given by
experts may hardly be assessed with exact values in more
complex situations. Therefore, investigating how to deal with
the group DEMATEL with the interval BBA function may be
a good direction for future research.
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Abstract—Belief function theory manages uncertain informa-
tion and offers useful combination rules for multi-sensor fusion.
However, when sensor readings are in conflict or even unreliable,
the quality of the fusion result is significantly affected. Recently,
many discounting approaches have been proposed to combine
unreliable sensor readings. The discounting factors involved in
these methods are often determined based on a single criterion
which is not sufficient in general to obtain a precise assessment
of the reliability degrees of the sources to combine. In this
work, that is why we propose a novel discounting combination
approach, in which the reliability factors are obtained by using
the multi-criteria strategy. Our discounting combination method
includes two main steps. The first step to assess the sensorâs
reliability is based on belief function-based technique for order
preference by similarity to ideal solution (BF-TOPSIS). The
second step is to discount and global combine all involved sensor
readings according to their degree of reliability with proportional
conflict redistribution no. 6 (PCR6) rule. Several simulations and
comprehensive comparisons with classical approaches are given
to show the efficiency of our proposed method.

Keywords: Belief function theory, multi-sensor fusion, con-
flict measure, multi-criteria, sensor reliability.

I. INTRODUCTION

In order to achieve the accurate and complete description
of an environment, multi-sensor fusion technology is applied
to combine data from multi-sources. In view of their good
applicability, multi-sensor systems play an essential role in
real-world applications which include wireless sensor net-
works [1], [2], image processing [3], [4], target tracking [5],
health-related areas [6], environmental monitoring [7] and so
on [8], [9]. Nevertheless, depending on environmental and
working conditions, like sensor failure, deterioration of energy
supply, adverse weather conditions etc., the corresponding
sensor readings can be incorrect, imprecise, conflicting or even
unreliable so that it may yield a wrong decision. Thus, in
order to avoid a degradation of the multi-sensor fusion system
performances [10], the reliability degree of sensor reading
needs to be estimated in the process of combination.

Before evaluating the reliability degrees of sensors, the
imprecision or uncertain information of sensor readings should
be mathematically described. Many methods can be used to
handle uncertainty information, such as maximum entropy

[11], [12], Bayesian theory [13]–[15] and Belief Functions
(BF) theory [16]–[18]. BF allows to model uncertainty and
fuse sensors’ measurements [19], and in this paper we focus
our discussions on BF theory. Several classical combination
rules are provided by BF theory to fuse the pieces of sensor
readings. Among all available combination rules, Dempster’s
rule proposed by Shafer in [20] is the most well-known
rule still used in many application even if it remains very
controversial. Indeed, if there exists the high or even low
conflict between sensor readings during the combination, a
counter-intuitive result may occur. To circumvent the problem
of Dempster’s rule, usually the system designer discounts
original sensor readings before applying the combination [21]–
[24].

In the discounting approach, the primary challenge is to
accurately estimate the reliability degrees of the sensors.
Several researchers in [22], [23], [25] estimated the reliability
degree of each sensor reading according to the single criterion.
However, classical methods based on mono-criterion strategies
are not good enough to assess the reliability factor. Recently,
Frikha [26], [27] presented two multi-criteria strategies to
compute the discounting factors. In [26], authors proposed a
novel method to evaluate the degree of imprecision of sensor
readings and conflict between pieces of evidence according
to six criteria by using PROMETHEE II. Similarly, Frikha
[27] suggested another way to estimate the reliability of the
sensors based on Analytical Hierarchy Process (AHP). Based
on Frikha’s works, Sarabi-Jamab in [28] also followed the
multi-criteria line and proposed a new selective multi-criteria
method based on AHP. Different from the mentioned methods
in [26] and [27], all involved criteria are further evaluated
and the most discriminative criteria are selected. Some
appealing findings have been revealed in [26], [27] and [28]
when compared to those mono-criterion approaches currently
available in the literature. However, all the multi-criteria
methods used in the aforementioned references require a data
normalization step, which affects the process of the precise
evaluation how much better or worse to some extent a sensor
is with respect to the others.

Originally published as: Y. Dong, X. Li, J. Dezert, S.S. Ge, A Novel Multi-Criteria Discounting 
Combination Approach for Multi-Sensor Fusion, IEEE Sensors Journal, Vol. 19(20), pp. 9411–9421, 
October 2019, and reprinted with permission.
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In this paper, a novel multi-criteria discounting combination
method is proposed. The discounting factors associated with
sensor readings are evaluated by using Belief Function based
Technique for order preference by Similarity to Ideal Solution
(BF-TOPSIS) [29]. We take two classes of criteria into account
in the process of calculating the weights of sensor readings.
The first class is the conflict between the sensors. The second
class is the imprecision of the information provided by each
sensor. Once all the weights are calculated, the involved
sensor readings are discounted and global combined with
Proportional Conflict Redistribution no. 6 (PCR6) rule. The
main contributions of this paper are summarized as follows:

• A novel multi-criteria discounting combination approach
is given. In our method, the recent proposed BF-TOPSIS
is first applied to evaluate the reliability of the involved
sensors. We also propose a new method to calculate
weights of criteria involved in BF-TOPSIS. Moreover, the
comprehensive comparisons between classical discount-
ing combination methods are also illustrated in detail;

• The global fusion with PCR6 rule in Dezert-Smarandache
Theory (DSmT) is applied for combining sensor readings.
Dislike the conventional discounting combination ap-
proaches [26], [27] and [28], which combine all evidences
with Dempster’s rule, we herein use PCR6 to combine all
discounted sensor readings. The advantage of this new
approach is that it yields reasonable results particularly
when the sensor readings are in high conflict.

This paper is organized as follows: we introduce the basic
concepts of BF theory in section II. The Section III describes
the discounting strategies in BF theory and the involved criteria
applied in our proposed method. In section IV, our proposed
discounting combination rule based on the BF-TOPSIS is de-
scribed in detail. Then, the simulation results and discussions
are given in section V. Finally, we conclude and give some
perspectives in section VI.

II. BASICS OF BELIEF FUNCTIONS

Belief function assigns mass of belief to the subsets of
Frame of Discernment (FoD). In general, a mass function m(·)
is a mapping defined as follows [20] and for X ✓ 2

⇥:

m : 2

⇥ ! [0, 1],

X

X✓2

⇥

m(X) = 1, (1)

m(;) = 0,m(X) > 0. (2)

where ⇥ represents FoD which includes a set of p hypotheses.
m(·) is a mapping function and this function is also called Ba-
sic Belief Assignment (BBA). When m(X) > 0, the element
X is called Focal Element (FE) of m. The set of focal elements
of a BBA m(·) is denoted F (m).

In BF theory, the combination of two independent Body of
Evidences (BoEs) by Dempster’s rule is denoted m

1

�m

2

.
For 8X ✓ 2

⇥

, X 6= ;, the belief of X is given by [20]:

(m

1

�m

2

)(X) =

1

1�K

·
X

Y,Z✓2

⇥

,Y \Z=X

m

1

(Y )m

2

(Z). (3)

where K represents the degree of conflict between m

1

and
m

2

as:
K =

X

Y,Z✓2

⇥

,Y \Z=;

m

1

(Y )m

2

(Z). (4)

To palliate the drawbacks of Demspter’s rule, Martin and
Osswald [30] proposed a very interesting combination rule:
PCR6. Due to its good performance, it is widely applied in
recent applications. The combination of two BBAs m

1

(·) and
m

2

(·) by the PCR6 rule is given as follows: for m
PCR6

(;) =
0 and 8X 2 2

⇥

m

PCR6

(X) = m

12

(X)

+

X

Y 22

⇥\{X}|X\Y=;

[

m

1

(X)

2

m

2

(Y )

m

1

(X) +m

2

(Y )

+

m

2

(X)

2

m

1

(Y )

m

2

(X) +m

1

(Y )

].

(5)

where m

12

(X) =

P
Y,Z22

⇥|Y \Z=X

m

1

(Y )m

2

(Z) is the
conjunctive operator, and each element X and Y are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded.

We recall that the PCR6 formula for the combination of two
BBAs coincides with PCR5 formula originally developed by
Smarandache and Dezert in [31]. The combination of more
than two BBAs altogether with PCR5 and with PCR6 fusion
rule provides in general different results. The choice of PCR6
with respect to PCR5 has been justified at first by Martin
and Osswald in [30] from on a specific application, and then
theoretically by Smarandache and Dezert in [32]. The general
formula of PCR6 for combining more than two BBAs is given
in details in [30] with examples.

To make a final decision in BF from a BBA m(·), Smets
[20] suggests to transform m(·) into pignistic probability by
using function BetP in pignistic level. For 8X ✓ ⇥, Bet P (·)
is defined as:

Bet P (X) =

X

Y✓2

⇥

|X \ Y |
|Y | ·m(Y ). (6)

where |Y | refers to the cardinality of a subset Y .

III. DISCOUNTING PROCEDURE AND ASSESSMENT
CRITERIA

A. Discounting Procedure
The discounting operations are frequently conducted by

using the discounting factor ! with each sensor reading.
Firstly introduced by Shafer [20], this factor ! is evaluated
and regarded as the reliability of the sensor reading. In this
paper, the discounting factors are determined by multi-criteria
strategy: BF-TOPSIS. In general, the parameter ! varies in an
interval: [0,1]: that is to say, if the value of ! is closer to 1,
the greater the reliability of sensor reading is. The discounting
steps are given as follows and for 8X 2 2

⇥\{⇥}:
(
m

!

(X) = ! ·m(X),

m

!

(⇥) = ! ·m(⇥) + (1� !).

(7)

where X refers to the FE of m(·) and ! 2 [0, 1].
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B. Assessment Criteria

1) Imprecision: The degree of non-specificity of a sensor
reading is also regarded as a degree of imprecision. With the
belief function, the imperfection of BoE is mainly caused by
two factors: the first one is contradiction (strife: C

1

) proposed
by Vejnarová and Klir [33] and imprecision (non-specificity:
C

2

) proposed by Dubois and Prade [34]. The measure of
contradiction (i.e. the strife C

1

) is defined as:

C

1

(m) = St(m)

= �
X

X2F (m)

m(X) log

2

(

X

Y 2F (m)

|X \ Y |
|X| m(Y )),

(8)

where |X \ Y | and |X| refers to the cardinality of the subset
|X \ Y | and X .

Also, the measure of non-specificity C

2

is defined as:

C

2

(m) = I(m)

=

X

X2F (m)

m(X) · log
2

(|X|), (9)

where |X| refers to the cardinality of a subset X .

2) Conflict Between the BoEs: The second class of evalua-
tion criteria relates to conflicting information, which is usually
represented by m�(;) and distance measures. Two conflict
measures are used in this paper: Shafer’s weight of conflict
(C

3

), and the interval distance between evidences (C
4

):

C

3

(m) = Conf(m)

=

1

M

MX

i=1

[� log

2

(1�K(m,m

i

))], (10)

where K is the conflict between two BoEs m(·) and m

i

(·)
calculated by Eq.(4) and M is the number of sensor readings.

The criterion C

4

is based on the interval distance d

BI

, see
[35], [36], that is:

C

4

(m) = d

E

BI

(m) =

1

M

MX

i=1

d

BI

(m,m

i

)

=

1

M

MX

i=1

[

s
n

c

·
X

X2F (m)

[d

I

(BI(X), BI

i

(X))]

2

]

(11)

where, n
c

= 1/2

(p�1), M is the number of sensor readings,
and p is the number of FEs in ⇥, BI(X) , [Bel(X), P l(X)],
and BI

i

(X) , [Bel

i

(X), P l

i

(X)], and

d
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([a, b], [a

0
, b

0
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+
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0

2

⇤2i 1

2

IV. NEW COMBINATION APPROACH BASED ON BF-TOPSIS
A. Construction of Scoring Matrix

At first, there exists A

i

, i = 1, . . . ,M sensors, and each
sensor gives a corresponding reading m

i

, i = 1, · · ·, ✓
p

according to eq. (12)
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where X 2 2

⇥.
Then, one calculates the evaluation of all sensors from

the perspective of imprecision (C
1

and C

2

) and conflict (C
3

and C

4

), and then constructs the following scoring matrix S

defined by eq. (13)

2

664
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Without loss of generality, we just use the general mathe-
matical symbol C

j

, j = 1, . . . , N (in this paper, N = 4) to
represent one of the mentioned four criteria for convenience
in the following sections. That is: j = 1, C

1

, St(·); j = 2,
C

2

, I(·); j = 3, C
3

, Conf(·); j = 4, C
4

, d

E

BI

(·).
B. Construction of BBAs for Multi-Criteria Decision Making
(MCDM) Problems

In traditional mono-criterion problems, the weights of sen-
sors A

i

, i = 1, . . . ,M are calculated according to a single
criterion. However, in MCDM problems, the direct weights
associated with different criteria can be very different. There-
fore, efficient fusion techniques must be developed in order
to provide the global evaluating solution to solve the MCDM
problem. For this aim, original BF-TOPSIS is used to Estimate
the Ranking Vector (ERV) from all evidences that support or
refute each sensor thanks to BBAs. First, the FoD is the set
of sensors, that is A , {A

1

, A

2

, . . . , A

M

}. The construction
of BBAs is based on the method of construction presented in
[29]

m
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where m

j

(A

i

) means the support belief in favor of A
i

accord-
ing to criterion C

j

, m
j

(

¯
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) means the support belief against
A

i

according to C

j

and m
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) means the uncertainty
degree whether support or against A
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based on C
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.
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) in Eqs.(15) and (16) are
defined as follows:
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C. Calculation of Criteria Weights

In original BF-TOPSIS [29], the weights of criteria are
often chosen subjectively which limits the applications of
this new multi-criteria strategy in practice. In this paper, we
automatically determine the importance of each criterion from
the scoring matrix without manual intervention.

1) Normalized Scoring Matrix According to the Max-Min
Scaling: Here, we first transform all values of S

j

(A

j

) in S
(Eq.(13)) into the same measurement scale based on Max-Min
scaling.

Definition 1: The normalized scoring matrix is defined by
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0
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, (22)

where i 2 {1, . . . ,M}, j 2 {1, . . . , N} and A

j�S

max

and
A

j�S

min

refer to the maximum value and minimum value in
[S

j

(A

1

), S

j

(A

2

), · · ·, S
j

(A

M

)].
The aim of this Max-Min scaling is to transform the original

scoring linearly so that all the values of elements in scoring
matrix are within the interval [0, 1].

2) Pairwise Comparison Matrix for All Criteria: Based on
Eq.(22), we can calculate the pairwise comparison results for
all criteria according to the following definition:

Definition 2: The pairwise comparison matrix is defined by

pc
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P
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, (23)

where h

0 2 {1, . . . , N}, and h 2 {1, . . . , N}. In this paper,
the value of parameter N is 4, which represents the number
of the involved criteria.

Obviously, Eq.(23) is consistent because all pairs of criteria
satisfy pc
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End Proof.

3) Weights Determination for All Criteria: Next, we can
calculate the weight of each criterion �(C

j

) based on the
following expressions:
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j

) =

P
N

h=1

pc

0
jh

M

, (24)
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0
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l=1
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, (25)

where j = 1, . . . , N and N = 4 in this paper; M is the number
of sensor readings.

D. Steps of BF-TOPSIS Algorithm

• Step 1: From the scoring matrix S, compute
BBAs m

j

(A

i

), m

j

(

¯

A

i

) and m

j

(A

i

[ ¯

A

i

)

using Eqs. (15)–(16), and then construct
vec

j

(A

i

) , [m

j

(A

i

),m

j

(

¯

A

i

),m

j

(A

i

[ ¯

A

i

)] for
each sensor A

i

according to the criterion C

j

;
• Step 2: For each sensor A

i

, also construct th best
ideal BBA vec

best

j

(A

i

) , [m

best

j

(A

i

), 0, 0] , [1, 0, 0]

and the worst ideal BBA vec

worst

j

(A

i

) ,
[0,m

worst

j

(

¯

A

i

), 0] , [0, 1, 0]; Then compute the belief
interval distance [35], [36] d

BI

(vec

j

(A

i

), vec

best

j

(A

i

))

and d

BI

(vec

j

(A

i

), vec

worst

j

(A

i

));
• Step 3: Compute the weighted average of

distance d

BI

(vec

j

(A

i

), vec

best

j

(A

i

)) and distance
d

BI

(vec

j

(A

i

), vec

worst

j

(A

i

)) with the relative
importance weighting factor v(C

j

) of each criterion C

j

,
that is

dis

best

(A

i

) ,
NX

j=1

v(C

j

) · d
BI

(vec

j

(A

i

), vec

best

j

(A

i

)),

(26)

dis

worst

(A

i

) ,
NX

j=1

v(C

j

) · d
BI

(vec

j

(A

i

), vec

worst

j

(A

i

)),

(27)
where vec

j

(A

i

) , [m

j

(A

i

),m

j

(

¯

A

i

),m

j

(A

i

[ ¯

A

i

)],

vec

best

j

(A

i

) , [1, 0, 0] and vec

worst

j

(A

i

) , [0, 1, 0].
• Step 4: The final weights ! of the sensor A

i

with respect
to ideal best solution A

b

est is then defined by

!(A

i

) , dis

worst

(A

i

)

dis

worst

(A

i

) + dis

best

(A

i

)

(28)
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Figure 1. The framework of our proposed multi-criteria discounting combination method.

E. Discounting sensor readings and PCR6 combination

• All the weights of the involved sensors are construct-
ing a weight vector, which is denoted as Weight =

{!(A
1

),!(A

2

), · · ·,!(A
M

)} based on Eq.(28) and then
discount all involved BBAs with Eq.(7).

• PCR6 Combination Rule: According to the sensor read-
ing of A

i

, i 2 {1, · · ·,M} and PCR6 combination
rule, we can globally combine all the involved sensor
readings with their corresponding weights: m

fusion

=

PCR6(m

!(A

1

)

1

(·),m!(A

2

)

1

(·), · · ·,m!(A

M

)

1

(·)).

F. A Proposed Combination Method and Fusion Process

Because the unreliable sensors often provide conflicting and
imprecision information which may lead to counter-intuitive
results in traditional combination methods, the novel multi-
criteria discounting combination method is used. Here, we
would like to emphasize that the involved criteria mentioned
in this paper can be modified to any criteria according to
the actual demand in the process of the objective weight
estimation.

The process of our multi-criteria discounting combination
method is illustrated in Fig.1 and in order to help the readers
to reproduce this new combination method proposed in this
paper, pseudo code is given in Algorithm 1.

V. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this part, we make comprehensive comparisons between
the proposed combination procedure and other classical com-
bination rules. Also, several tests and comparative analysis
are illustrated in details. Independent random runs of Monte
Carlo simulations are generated to observe the appealing be-
haviors of the proposed approach. All simulations results were
obtained with MATLAB R2018a running with a hardware of
Intel Core i7-5600U CPU at 2.60GHz and with 8G RAM.

A. Target Recognition Context

In this case, six sensors give their corresponding readings
which consider the class of the same target in Table I. The
common FoD of these sensors is ⇥ = {✓

1

, target 1, ✓
2

,
target 2, ✓

3

, target 3}. Among the given BBAs in Table I, we
can notice that four of these sensors (1, 2, 4 and 5) give the
maximum belief to ✓

1

. On the contrary, sensor 3 assigns most

Algorithm 1: The Proposed Multi-Criteria Discount-
ing Combination Method
Input : Sensor Readings:

A

1

: m

1

(·), A
2

: m

2

(·), · · ·, A
M

: m

M

(·).
Output: The Fused Final BBA m

fusion

(·).
1 for j = 1, · · ·, N do
2 for i = 1, · · ·,M do
3 S

j

(A

i

) = C

j

(m

i

(·));
4 end
5 end
6 for j = 1, · · ·, N do
7 for i = 1, · · ·,M do
8 S

0
j

(A

i

) =

S

j

(A

i

)�A

j�S

min

A

j�S

max

�A

j�S

min

;

9 end
10 end
11 for j = 1, · · ·, N do
12 for i = 1, · · ·,M do
13 Sup

j

(A

i

) ,P
k2{1,···,M}|S

j

(A

k

)S

j

(A

i

)

|S
j

(A

i

)� S

j

(A

k

)|;
14 Inf

j

(A

i

) ,
�
P

k2{1,···,M}|S
j

(A

k

)>S

j

(A

i

)

|S
j

(A

i

)� S

j

(A

k

)|;
15 end
16 end
17 for j = 1, · · ·, N do
18 for i = 1, · · ·,M do
19 m

j

(A

i

) , Bel

j

(A

i

);

20 m

j

(

¯

A

i

) , Bel

j

(

¯

A

i

) = 1� Pl

j

(A

i

);

21 m

j

(A

i

[ ¯

A

i

) , Pl

j

(A

i

)�Bel

j

(A

i

);

22 end
23 end
24 for j = 1, · · ·, N do
25 v(C

j

) =

P
N

h=1

(

pc

jhP
N

l=1

pc

lh

)/M ;

26 end
27 for i = 1, · · ·,M do
28 !(A

i

) =

dis

worst

(A

i

)

dis

worst

(A

i

)+dis

best

(A

i

)

;

29 end
30 Discounting Step: Using Eq.(7) Based on Weight;
31 Fusion Step: m

Fusion

= PCR6(m

1

(·), · · ·,m
M

(·));
32 return The Fused BBA m

Fusion

(·)
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Table I
SENSOR’S CORRESPONDING BBAS m

i

(·).

m1 m2 m3 m4 m5 m6

✓1 0.75 0.4 0 0.35 0.5 0.05
✓2 0.1 0.2 0.9 0.15 0.1 0.1
✓3 0.05 0.1 0.1 0.25 0 0

{✓1, ✓2} 0 0.3 0 0.2 0 0.3
{✓1, ✓3} 0 0 0 0 0 0.2
{✓2, ✓3} 0 0 0 0 0.15 0.1

{✓1, ✓2, ✓3} 0.1 0 0 0.05 0.25 0.25

of its belief to ✓

2

. Accordingly, sensor 3 is highly conflicting
with the mentioned four sensors (1, 2, 4 and 5).

According to Eq.(13), we can evaluate each sensor reading
m

i

by calculating S

j

(m

i

), for all i = 1, · · ·, 6 and j = 1, · · ·, 4.
All results of S

j

(m

i

) are listed in the scoring matrix (Table
II).

Table II
SCORING MATRIX S

j

(m
i

).

S

j

(m
i

) m1 m2 m3 m4 m5 m6

St(·) 0.6771 0.9591 0.4690 1.1508 0.6959 0.4721
I(·) 0.1585 0.3000 0 0.2792 0.5462 0.9962

Conf(·) 0.8813 0.6374 1.2641 0.7562 0.5317 0.3225
d

E

B

I(·) 0.3785 0.2586 0.6115 0.2682 0.2622 0.3127

As we can see in Table II, the sorted rankings with the
involved criteria are quite different:

St(·) : m
3

� m

6

� m

1

� m

5

� m

2

� m

4

,

I(·) : m
3

� m

1

� m

4

� m

2

� m

5

� m

6

,

Conf(·) : m
6

� m

5

� m

2

� m

4

� m

1

� m

3

,

d

E

BI

(·) : m
2

� m

5

� m

4

� m

6

� m

1

� m

3

.

This phenomenon indicates that it is not appropriate to evaluate
the involved BBAs based on single criterion and a robust
multi-criteria strategy is necessary. For this, we first calculate
the positive and negative evidence supports of all sensor
readings which are illustrated in Table III and Table IV.

Table III
EVIDENTIAL SUPPORTS Sup

j

(m
i

).

Sup

j

(m
i

) St(·) I(·) Conf(·) d

E

B

I(·)
m1 0.7746 1.4877 0.3828 0.2330
m2 0.1917 0.9425 0.9893 0.5404
m3 1.6101 2.2802 0 0
m4 0 1.0047 0.6330 0.4980
m5 0.7180 0.4500 1.4123 0.5221
m6 1.5944 0 2.4581 0.3646

In Table III Sup

j

(m

i

) is called the positive support of m

i

according to criterion C

j

. Because the four involved criteria
we mentioned before are such that the smaller the value, the
better the BoE. Thus, if the value of the BoE m

i

in Table II is
small according to C

j

(such as m

3

in St(·), the support value
Sup

1

(m

3

) will be the largest according to St(·) in Table III.

Table IV
EVIDENTIAL SUPPORTS Inf

j

(m
i

).

Inf

j

(m
i

) St(·) I(·) Conf(·) d

E

B

I(·)
m1 -0.4131 -0.1585 -1.2774 -0.4123
m2 -1.5223 -0.4623 -0.4206 0
m3 0 0 -3.1914 -1.5773
m4 -2.4897 -0.4000 -0.7769 -0.0157
m5 -0.4696 -1.4472 -0.2092 0.0036
m6 -0.0031 -3.6972 0 -0.1492

According to Eq.(15)-Eq.(16), the specific supporting BBAs
m

s

(·) of all involved sensors are given in Fig. 2.
In Fig. 2 (a) and (b), we can find that m

3

(orange plot) re-
ceives the fully support belief (because m

s

(m

3

) = 1) from the
perspective of the imprecision criteria (St(·) and I(·))). This is
because m

3

is the only Bayesian BBAs. On the contrary, since
m

3

is highly conflicting with other BBAs, the support against
m

3

in Fig. 2 (c) and (d) is largest (because m

s

(m̄

3

) = 1)
according to the conflict measures (Conf(·) and d

E

BI

(·)). The
supporting degrees of m

3

under different criteria are totally
inconsistent, which directly indicates that it is difficult to
evaluate the reliability of sensor readings comprehensively
depending on a single criterion. In our proposed discounting
combination method, the reliability factors are given by multi-
criteria based on BF-TOPSIS.

According to Eqs. (22)–(25), the corresponding weights of
all involved criteria are:

v(St) = 0.2581,

v(I) = 0.1519,

v(Conf) = 0.2581,

v(d

E

BI

) = 0.1519.

Then, all weights of the involved six sensor readings are
given in Table V based on Eq. (28).

Table V
WEIGHTS OF ALL SENSOR READINGS !(m

i

).

dis

best(m
i

) dis

worst(m
i

) !(m
i

)
m1 2.8450 3.8938 0.5778
m2 2.6323 4.0353 0.6838
m3 2.8284 2.8284 0.5000
m4 3.1726 3.3888 0.5165
m5 2.2802 4.2988 0.6534
m6 1.8371 3.9732 0.6052

As we can see in Table V, m
2

receives the highest degree
of reliability and the highly conflicting BBA m

3

gets the
lowest reliability degree. It is worth mentioning that the four
weighting values of the involved criteria are automatically
calculated based on the input sensor readings. To make a direct
comparison between manual adjustment of criteria weights
(subjective) and objective weighting used in BF-TOPSIS, we
first set the weights of St(·) and I(·) to 1 and set the weights
of Conf(·) and d

E

BI

(·) to 0 and we can observe that in
this case the weight of m

3

increases to 1 in Fig.3 (a) and
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Figure 2. Construction of BBAs based on four distinct criteria. (a) FEs in supporting BBA. (b) FEs in supporting BBA. (c) FEs in supporting BBA. (d) FEs
in supporting BBA.

Figure 3. Comparison of subjective and objective weights of criteria for BF-TOPSIS.
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accordingly, the mass of ✓

2

becomes the largest in Fig.3 (b).
When we modify subjectively the corresponding weights of
different criteria, the corresponding weights of all BoEs and
the masses of all FEs will also change. Thus, the more criteria
are considered, the more weights need to be set, which makes
subjective determination of criteria weighting factors more
difficult in BF-TOPSIS. In this new method, we do not set
the weights of all involved criteria in advance and we can see
in Fig.3 (a) that the weight of m

3

is calculated appropriately
(red plot) and the final decision is ✓

1

. Based on the obtained
weights calculated by this new method, we can use PCR6 rule
to fuse all discounted sensor readings. Fig. 3 (b) illustrates the
corresponding belief mass of the considered FE.

B. Fusion of High Conflicting Sensor Readings
Here we show that our multi-criteria discounting combi-

nation method can fuse high conflicting sensor readings and
give reasonable belief mass distribution. We herein consider
two independent BBAs m

1

and m

2

which are defined over the
identical FoD ⇥ = ✓

1

, ✓

2

, ✓

3

. And we also assume that these
two BBAs are in highly conflict which are given as follows:

(
m

1

({✓
1

}) = 0.99,m

1

({✓
3

}) = 0.01,

m

2

({✓
2

}) = 0.9,m

2

({✓
3

}) = 0.1.

(29)

In order to be able to see whether our approach can handle
highly conflicting problems and how it differs from other
classical approaches, we summarize the combination results
in Table VI.

We can note that the Dempster’s rule directly leads to
counter-intuitive results because ✓

3

receives the total mass
of belief by using this classical rule. Martin’s approach and
Jiang’s approach assign most values of belief to FE {✓

1

, ✓

2

, ✓

3

}
and after probabilitic transformation (BetP (·)), these two
methods can give the final decision: ✓

1

. Frikha’s approaches in
[26], [27] and our approach can directly draw the conclusion
that ✓

1

is the final decision based on the principle of maximum
probability. In addition, we also give a comparison of the
computational time of each mentioned approach. Because the
multi-criteria methods need to process more fusion steps, it
takes more time than the classical method (Dempster’s rule,
Martin’s method and Jiang’s method). However, in this paper,
those methods with lower computational complexity (such
as Dempster’s rule) are not the optimal choice because the
criterion for judging the pros and cons of the fusion algorithms
here is to give reasonable and correct decision results in face
of highly conflicting fusion problems.

C. Combination of Conflict and Imperfect BBAs
Assume that three sensors 1, 2 and 3 providing three BBAs

m

1

,m

2

and m

3

defined over the same FoD ⇥ = {✓
1

, ✓

2

, ✓

3

}
in Table VII.

As we can see, the most supported element is ✓

1

by sensor
1. Contrary to sensor 1, it is ✓

2

in sensors 2 and 3.
From Table VIII, we can find that the weight of sensor 1 is

the lowest (!(m
1

) = 0.3109 and !(m

2

) = 0.6834, !(m
3

) =

0.6578) which means that m
1

(·) is the most imprecision and

also in conflict with m

2

and m

3

. This result is in some degree
consistent with Frinkha’s method [26], which also agrees that
sensor m

1

is much more less important than m

2

and m

3

. So,
based on the results of the obtained weights in Table VIII,
we can say that sensor 1 should not play an important rule
in the combination result which means that m

1

needs to be
discounted.

From the given three BBAs, we can find that m

1

gives
the most mass of belief to FE ✓

1

. At the same time, m

2

and m

3

considerably support ✓

2

. However, m

2

and m

3

are
not in conflict with m

1

because these two BBAs also assign
appropriate masses to ✓

1

. When we combine these three BBAs
with Dempster’s rule, Jiangâs approach or Martin’s approach,
we can see that the final combination results of these methods
are almost the same in Table IX (the final decision is ✓

1

).
This is because that only one conflict criterion is applied
for weight calculation in Martin’s method or Jiang’s method.
As we can see in Table VIII, conflict measure could not
capture the difference between m

1

and m

2

, m
3

which leads
to almost same weights of these three BBAs. However, in
our proposed method based on BF-TOPSIS, multi-criteria
(imprecision and conflict measure) are both cooperated into
the weight calculation which can give more comprehensive
evaluations. In Table VIII, m

1

receive the lowest weight
compared to m

2

and m

3

which means that m
2

and m

3

have
the most important effect on the final combination result. In
Table IX, we can see that our proposed method supports ✓

2

as the final decision and this conclusion is consistent with the
other multi-criteria approaches (PROMETHEE II and AHP).

D. Random Runs Generated by Monte Carlo Simulations
In this part, we make 50 Monte Carlo simulations and in

each simulation, we generate 25 random BBAs over the identi-
cal FoD ⇥ = {✓

1

, ✓

2

, ✓

3

}. The first six sensors are in favour of
{✓

1

}, the next eight ones are in favour of {✓
3

}, whereas the last
eleven sensors are again in favour of {✓

1

}. A mass function
focused on {✓

1

} has four focal elements: {✓
1

}, {✓
2

}, {✓
3

} and
{✓

1

}, {✓
2

} with m({✓
1

}) = 0.45 + x; m({✓
2

}) = 0.15 � y;

m({✓
3

}) = 0.15 � x; and m({✓
1

}, {✓
2

}) = 0.25 + y. The
values x and y are randomly generated in the intervals of [0.01,
0.15] and [0.01, 0.10] according the uniform distribution,
respectively. Besides, the average values of the weights ! of
the involved sensors and the pignistic probability BetP (✓) are
generated in the 50 Monte Carlo simulations.

Due to the fact that the weight of one BoE is independent of
the other BoEs according to the class of imperfection criteria,
in this case, the evolution of the weight of each sensor when
we sequentially add BBAs is definitely affected by conflict
criteria.

Figures 4–6 indicate the average of reliability degrees for
each group of BoEs (first six BoEs, next eight BoEs, the last 11
BoEs). In each step, one BoE is added, and the discounting
factors are calculated for all BoEs. The discounting factors
are obtained by averaging the 50 Monte-Carlo simulations.
In Fig.4, we can observe that the weights of sensors (1-6)
decrease as soon as the next eight BoEs are added. This
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Table VI
COMBINATION OF HIGHLY CONFLICTING BBAS.

{✓1} {✓2} {✓3} {✓1, ✓2} {✓1, ✓3} {✓2, ✓3} {✓1, ✓2, ✓3} Decision Computational time
Dempster’s rule 0 0 1.0000 0 0 0 0 ✓3 35.972ms

Martin’s method [25] 0.239 0.217 0.027 0 0 0 0.517 ✓1 49.421ms
Jiang’s method [37] 0.049 0.044 0.005 0 0 0 0.902 ✓1 49.728ms

Frikhas’s approach [26] 0.984 0 0.016 0 0 0 0 ✓1 81.139ms
Frikhas’s approach [27] 0.9262 0.0738 0 0 0 0 0 ✓1 73.233ms
Our proposed method 0.5365 0.2089 0.0186 0 0 0 0.2360 ✓1 72.23ms

Table VII
SENSOR’S CORRESPONDING BBA’S m

i

(·).

m1 m2 m3

✓1 0.38 0.3 0.28
✓2 0.15 0.4 0.42
✓3 0.15 0 0

{✓1, ✓2} 0.15 0.3 0.3
{✓1, ✓3} 0.03 0 0
{✓2, ✓3} 0.03 0 0

{✓1, ✓2, ✓3} 0.03 0 0

Table VIII
RELIABILITY DEGREES.

! {m1} {m2} {m3}
Martin’s method [25] 0.961 0.989 0.988
Jiang’s method [37] 0.822 0.854 0.848

Frikhas’s approach [26] 0.643 1.0000 0.989
Frikhas’s approach [27] 0.8019 0.9428 0.9407
Our proposed method 0.3109 0.6834 0.6578

Table IX
COMBINATION OF m1 , m2 AND m3 .

m(·) {✓1} {✓2} {✓3} {✓1, ✓2} {✓1, ✓3} {✓2, ✓3} {✓1, ✓2, ✓3} Decision Computational time
Dempster’s rule 0.5028 0.4582 0 0.0400 0 0 0 ✓1 48.471ms

Martin’s method [25] 0.491 0.462 0 0.047 0 0 0 ✓1 56.251ms
Jiang’s method [37] 0.452 0.438 0.005 0.092 0.002 0.002 0.009 ✓1 56.274ms

Frikhas’s approach [26] 0.418 0.5000 0 0.082 0 0 0 ✓2 87.380ms
Frikhas’s approach [27] 0.3938 0.4923 0.0039 0.1090 0 0 0 ✓2 75.563ms
Our proposed method 0.2285 0.3090 0.0081 0.2060 0.0012 0.0012 0.2460 ✓2 73.832ms

phenomenon is mainly due to that these eight sensors (sensor
7-14) are in conflict with the initial sensor readings. In Fig.5,
at the beginning stage, there are no BoEs which are in
conflict with the first six sensors, the weights of sensors 7-14
are relatively low. After that, their corresponding reliability
degrees tend to increase because of the increment of those
sensors which support ✓

3

. Finally, these weights of the 7-
14 sensors decrease because the remaining BoEs (Sensors
17-25) support ✓

1

. It can be seen that the proposed method
in this paper can give the corresponding weights of each
sensor reading effectively when conflicts occur. This feature
is extremely important in complex dynamic fusion problems.

We also show the evolution of BetP (✓

i

) for all i = 1, 2, 3

using our proposed approach and other mentioned methods
(especially the two multi-criteria methods) in Figures 7–9. As
shown in Fig. 7, at the beginning, our method supports: ✓

1

,
then, with the increment of the number of conflicting BoEs,

our approach reacts slowly. However, when receiving many
conflicting BoEs which support: ✓

3

, the value of BetP (✓

1

) can
decrease rapidly and then the mass of belief of ✓

3

increases
when the second group is added in Fig. 9. Besides, we can
notice that the related reaction of our method when the second
groups of BoEs are added in Fig. 8. Compared to our proposed
method, the value of BetP (✓

3

) obtained by Dempster’s rule
n Fig. 9 is always zero which proves that Dempster’s rule
cannot be applied to fuse efficiently highly conflicting BoEs;
The changing trends of the mentioned multi-criteria methods
(Frikha’s two methods in [26] and [27]) can prove that they can
deal with the conflicting fusion problem to a certain extent, but
it is not sensitive enough compared with our proposed method
in this paper. For example, in Fig. 9, with the increment of
the number of BoEs supporting ✓

3

, BetP (✓

3

) obtained by our
method is much larger than the values of BetP (✓

3

) derived
from these two methods [26] and [27];
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Figure 4. Evolution of the average reliability degrees (sensor 1–sensor 6).

Figure 5. Evolution of the average reliability degrees (sensor 7–sensor 14).

Figure 6. Evolution of the average reliability degrees (sensor 15–sensor 25).

Figure 7. BetP (✓1) using the different methods.

Figure 8. BetP (✓2) using the different methods.

Figure 9. BetP (✓3) using the different methods.
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As shown in Fig. 7, the convergence speed of BetP (✓

1

)

in our method is also significantly faster (when the BBAs
increase from 15th to 25th fusion step). It can be seen from
the Monte Carlo simulations that the proposed method can
adapt to the dynamic changes of the environment and give the
correct decisions.

VI. CONCLUSION

In this work, a novel multi-criteria discounting combination
rule has been proposed and presented. The BF-TOPSIS ap-
proach with an original objective criteria weighting method
has been used to evaluate the reliability of the involved sensor
readings. The procedure of assessing the reliability degree is
based on two categories of criteria. The first class is the degree
of imprecision (contradiction and imprecision) and the second
class is the conflict degree between sensor readings (conflict
and interval distance). After discounting the original sensor
reading, all involved BBAs are combined with PCR6 fusion
rule for decision-making support.

In order to prove the efficiency of our proposed approach,
several simulations have been provided to illustrate the ap-
plicability and efficiency of our method. Also, meaningful
comparisons were made with other classical approaches. Our
results and the analysis of the performance obtained show
that our approach is effective in dealing with conflict issues
because of multi-criteria strategy adopted. Consequently, this
approach can help to reduce counter-intuitive behaviors and
biased readings.

In future work, we will focus on the impact of each criterion
in the combination results and more criteria will be taken into
account. Also, more investigations will be done to explore the
difference of performances between global fusion with PCR6
in this paper and sequential fusion with PCR6. We plan to
analyze the performance of this new approach for real-world
sceneries using real data sets.
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Abstract—Image registration is a crucial and fundamental
problem in image processing and computer vision, which aims
to align two or more images of the same scene acquired from
different views or at different times. In image registration,
since different keypoints (e.g., corners) or similarity measures
might lead to different registration results, the selection of
keypoint detection algorithms or similarity measures would bring
uncertainty. These different keypoint detectors or similarity
measures have their own pros and cons and can be jointly used to
expect a better registration result. In this paper, the uncertainty
caused by the selection of keypoint detector or similarity measure
is addressed using the theory of belief functions, and image
information at different levels are jointly used to achieve a more
accurate image registration. Experimental results and related
analyses show that our proposed algorithm can achieve more
precise image registration results compared to several prevailing
algorithms.

Keywords: image registration, evidential reasoning, belief

functions, uncertainty.

I. INTRODUCTION

Image registration is a fundamental problem encountered

in image processing, e.g., image fusion [1] and image change

detection [2]. It refers to the alignment of two or more images

of the same scene taken at different time, from different

sensors, or from different viewpoints. Image registration plays

an increasingly important role in applications of surveillance

[3], remote-sensing [4] and medical imaging [5].

For a collection of images to be registered, one is chosen

as the reference image and the others are selected as sensed

images. Image registration align each sensed image to the ref-

erence image by finding the correspondence between all pixels

in the image pair and estimating the spatial transformation

from the sensed image to the reference image. In this paper, we

just consider the image registration between two images, i.e.,

there is only one sensed image together with a given reference

image.

Current image registration techniques that based on image

domain can be generally divided into two categories [6]: the

sparse methods and dense methods. There are also some meth-

ods based on transform domain, like Fourier-Mellin transfor-

mation method [7]. The transform domain based methods are

often used for image registration with similarity transformation

model. In this paper, we focus on the image domain based

methods.

The sparse methods [8] extracts and matches salient features

from the reference image and sensed image and then estimates

the spatial transformation between the two images based on

these matched features. Line features (e.g., edges) and point

features (corners, line intersections and gravities of regions)

all can be used for image registration. Corner features are

the mostly used features and can be manually selected or

automatically detected by Harris [9], FAST (Features from

Accelerated Segment Test) [10], SIFT (Scale-Invariant Feature

Transform) [11], SURF (Speeded-Up Robust Features) [12],

DAISY [13], ORB (Oriented FAST and Rotated BRIEF) [14],

KAZE [15], etc.

In contrast to the sparse methods, the dense methods [16]

do not detect features from the image pair but search the

optimal spatial transformation directly that can best match all

the pixels in the image pair. Similarity (resp. dissimilarity)

measures are defined to quantify the independency (resp.

dependency) between the pair of images. Various similarity

and dissimilarity measures have been proposed [17] such

as RMSE (Root-Mean-Squared Error), PSNR (Peak Signal

to Noise Ratio), Spearman’s Rho [18], NCC (Normalized

Cross-correlation Coefficient) and MI (Mutual Information). It

should be noted that dense methods based on RMSE or PSNR

cannot handle the cases with illumination variation since these

two similarity/dissimilarity measures are very sensitive to

illumination changes.

Both the sparse methods and dense methods involve uncer-

tainty problems. For the sparse methods, keypoints obtained

from different keypoint detectors describe different corner

features of the image. Therefore, image registrations based

on different keypoint detectors would obtain different spatial

transformations. For the dense methods, different similarity

(dissimilarity) measures quantify the difference between the

pair of images from different aspects so that image regis-

trations based on different similarity (dissimilarity) measures

would obtain different spatial transformations. These different

spatial transformations obtained have their own pros and cons,

and the selection of the spatial transformation (the selection of

Originally published as: Z. Zhang, D. Han, J. Dezert, Y. Yang, A New Image Registration Algorithm 
Based on Evidential Reasoning, Sensors 2019, 19, 1091, 2019, and reprinted with permission.
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the feature detector or similarity measure indeed) would bring

uncertainty.

To deal with the uncertainty caused by the particular selec-

tion of feature detector or similarity (dissimilarity) measure,

one feasible way is to combine these registration transfor-

mations obtained from different feature detection methods or

similarity measures to obtain a better registration result. The

belief functions introduced in Dempster–Shafer Theory (DST)

[19] of evidence offer a powerful theoretical tool for uncer-

tainty modeling and reasoning; therefore, we propose a fusion

based image registration method using belief functions. In

this paper, the spatial transformations obtained from different

feature detection algorithms or similarity measures compose

the frame of discernment (FOD) and their uncertainties are

modeled using belief functions. In uncertainty modeling, im-

age information at different levels, i.e., image’s intensities,

edges and phase angles, are jointly used to evaluate the beliefs

about image transformations. Then, these uncertainties are

further handled through the evidence combination of the above

multiple information. The final registration result is obtained

according to the combined evidence.

This paper is an extension of our previous work in [20]

where the basic idea is briefly presented. The main added

values with respect to [20] are as follows. First, the transforma-

tion model between the reference image and sensed image is

more comprehensive. We use similarity transformation model

in [20] but use projective transformation model in this paper,

which is more general since all similarity transformations are

examples of projective transformations. Second, the keypoints

used in the sparse approach in [20] are manually selected. To

reduce the subjective influence to the registration result, in this

paper, the keypoints are generated from detection algorithms.

Accordingly, feature matching and mismatching removal are

added after the keypoint detection. Third, when modeling

uncertainties, one more information source, i.e., image’s phase

angle information, is considered in this work. Fourth, more

experiments and analyses are provided for performance eval-

uation and analysis.

The rest of this paper is organized as follows. The basics of

image registration are introduced in Section II. The basics of

evidence theory are introduced in Section III. The proposed

image registration method is introduced in Section IV with

emphasis of uncertainty modeling and handling. Evaluation

method is introduced in Section V. Experiment results of the

proposed method and other registration methods are presented

and compared in Section VI. Concluding remarks are given in

Section VII.

II. BASICS OF IMAGE REGISTRATION

For two (or more) images of the same scene taken at differ-

ent time, from different sensors, or from different viewpoints,

one is chosen as the reference image (R) and the other one

is chosen as the sensed image (S). In this paper, we focus

on the projective transformation model between the reference

image and sensed image, which is a commonly used model

in image registration [16]. Denote pixel coordinates in the

reference image R as (v, w) and their mapping counterparts

in the sensed image S as (g, h). The projective transformation

from R to S can be expressed based on the homogeneous

coordinates (Homogeneous coordinates can easily express

the translation transformation as matrix multiplications while

Cartesian coordinates cannot) as

[g h 1] = [v w 1]T = [v w 1]





t11 t12 t13
t21 t22 t23
t31 t32 t33



 (1)

The similarity transformation and affine transformation are

important specializations of the projective transformation, as

illustrated in Table I.

Table I
PROJECTIVE TRANSFORMATION AND ITS TWO SPECIALIZATIONS.

The purpose of image registration is to estimate the trans-

formation T to align the sensed image S with the reference

image R by

[v′ w′ 1] = [g h 1]T−1, (2)

where (v′, w′) and (g, h) denote pixel coordinates in registered

sensed image S′ and sensed image S, respectively. Current im-

age registration techniques can be divided into two categories

[6] in general, including the sparse method and dense method.

Basics of these two methods are introduced below.

A. Sparse Image Registration and Its Uncertainty

The feature detection and feature matching are two critical

steps in the sparse methods. The flow chart of the sparse

approach is illustrated in Figure 1, where each functional block

is detailed in the sequel.

1) Feature Detection: Corner features are the mostly used

features in image registration due to their invariance to imag-

ing geometry [6]. Some early keypoint detectors, like Harris

and FAST, are very sensitive to image scale changes so

that have poor performance when the sensed images have

different scales with the reference image. The most well-

known SIFT detector shows good robustness to illumination,

orientation and scale changes. Most scale invariant detectors,

like SIFT, SURF, ORB and BRISK, detect and describe

features at different scale levels by building or approximating

the Gaussian scale space of the image. In a different way,

KAZE detects features in a nonlinear scale space built using
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Figure 1. Flow chart of sparse approach.

Figure 2. Different keypoint pairs detected by different keypoint detectors. (a) BRISK, (b) KAZE, (c) SURF.

efficient additive operator splitting techniques and variable

conductance diffusion.

2) Feature Matching: To align the sensed image and the

reference image, the detected keypoints in the two images are

matched first by comparing their local feature characterized

by descriptors. Generally, if the two keypoints’ descriptors

are similar, the two keypoints are likely to be a matched

pair. Given a keypoint t in the reference image, there might

be a set of candidates in the sensed image having similar

descriptor with t. Among these candidates, t’s real counterpart

should have the closest distance with t, and at the same time

its distance should be much closer than other candidates’

distances.

The accuracy of the keypoints’ matching affects the ac-

curacy of the transformation’s estimation. The mismatched

keypoint pairs should be further removed before estimating

the transformation. RANSAC (RANdom SAmple Consensus)

[21] and MSAC (M-estimator SAmple and Consensus) [22]

are often used to deal with this problem. A recent RANRESAC

(RANdom RESAmple Consensus) [23] algorithm has been

proposed to remove mismatched keypoint pairs for noisy

image registration. Besides the accuracy of the keypoints’

matching, the distribution of matched pairs over the image

space is another key factor to obtain a high-quality estimation

of transformation.

3) Transformation Estimation: With all the matched key-

point pairs, the transformation matrix T can be estimated using

Eq. (1). Since T has eight degrees of freedom, four point

correspondences (with no three collinear) are needed to obtain

the unique solution of T according to Cramer’s rule.

Normally, the amount of the matched keypoint pairs is more

than four and T can be estimated using the least squares (LS)

fitting technique [6] by searching the minimum sum of the

Euclidean distances between all the matched keypoints:

T̂ = argmin
∑

i

d(corRi , cor
S′

i ), (3)

where corRi = (vi, wi) represents the coordinate of the i-th
matched keypoint in the reference image and corS

′

i = (v′i, w
′
i)

represents the coordinate of the i-th matched keypoint in the

registered sensed image transformed from the sensed image

using Eq. (2).

4) Uncertainty Encountered in Sparse Approach: Since

different keypoint detection algorithms detect different kinds

of corner features, the detected keypoints are usually different,

as shown in Figure 2.

Image registrations based on different matched keypoint

pairs would in general yield different spatial transformations

to align two images. Different transformations obtained have

their own pros and cons. Therefore, the selection of keypoint

detection algorithms would bring uncertainty problem to the

registration results.
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Figure 3. Flow chart of dense approach.

B. Dense Image Registration and Its Uncertainty

The dense image registration estimates the optimal transfor-

mation T by searching the largest similarity (or the smallest

dissimilarity) between the reference image R and the regis-

tered sensed image S′ = T (S):

T̂ = argminSim(R, T (S)), (4)

where Sim is a chosen similarity measure.

The flow chart of the dense approach is illustrated in Figure

3, where each functional block is detailed in the sequel.

1) Similarity Measure: Various similarity (or dissimilarity)

measures have been proposed. Here we briefly introduce the

commonly used MI, NCC and PSNR measures.

1) MI (Mutual Information) measure:

The MI measure between images A and B is defined by

MI(A,B) =

255
∑

a=0

255
∑

b=0

pAB(a, b) log
pAB(a, b)

pA(a)pB(b)
, (5)

where pAB is the joint probability distribution function

(PDF) of images A and B, and pA and pB are the

marginal PDFs of A and B, respectively. MI(A,B) is

larger when A and B are more similar.

2) NCC (Normalized Cross-Correlation) measure:

For given images A and B with size of M ×N , NCC

measure between them is

NCC(A,B) =

M
∑

x=1

N
∑

y=1

(A(x, y) − µA)(B(x, y) − µB)

σAσB

,

(6)

where A(x, y) and B(x, y) are the pixels’ intensities in

images A and B at (x, y), respectively; µA and µB are

the mean intensities of A and B, respectively; σA and

σB are the standard deviation intensities of A and B,

respectively. NCC(A,B) is larger when A and B are

more similar.

3) PSNR (Peak Signal-to-Noise Ratio) measure:

PSNR measure between images A and B is defined by

PSNR(A,B) = 10× log10
( 2552

MSE(A,B)

)

, (7)

where MSE(A,B) = 1

M×N

∑

M

x=1

∑

N

y=1
[A(x, y) − B(x, y)]2.

PSNR(A,B) is larger when A and B are more similar.

Since PSNR measure is very sensitive to illumination

changes, it cannot be used for image registration when

there are illumination variations between image pairs.

2) Transformation Estimation: The estimation for transfor-

mation T , i.e., Eq. (4), is always a non-convex problem and is

not so easy to obtain the global maximum [24]. Therefore, ad-

vanced optimization methods [25], or intelligent optimization

approaches (like genetic, or particle swarm algorithms, etc.)

are often used to estimate the optimal transformation T .

3) Uncertainty Encountered in Dense Approach: Since dif-

ferent similarity (dissimilarity) measures compare two images

from different aspects, their calculated similarities (dissimilar-

ities) between the reference image and registered sensed image

are different. Image registration based on different measures

would obtain different spatial transformations to align two

images and they have their own pros and cons. Therefore,

the selection of similarity (dissimilarity) measure would bring

uncertainty problem to the registration results.

To deal with the uncertainty caused by the selection

of feature detection algorithms or similarity measures, one

feasible way is to combine the registration transformations

(T1, T2, . . . , TQ) obtained from different feature detection al-

gorithms (or different similarity measures) to expect a better

registration result. We propose an evidential reasoning [19]

based image registration algorithm to generate a combined

transformation from T1, T2, . . . , TQ thanks to the ability

of belief functions for uncertainty modeling and reasoning.

Basics of the theory of belief functions are recalled first below.

III. BASICS OF DEMPSTER-SHAFER EVIDENCE THEORY

Dempster–Shafer evidence theory (DST) [19] is a the-

oretical framework for uncertainty modeling and reason-

ing. In DST, elements in the frame of discernment (FOD)

Θ = {θ1, θ2, . . . , θQ} are mutually exclusive and exhaustive.

The power set of Θ, i.e., 2Θ, is the set of all subsets of Θ.

For example, if Θ = {θ1, θ2, θ3}, then

2Θ = {{∅}, {θ1}, {θ2}, {θ3}, {θ1, θ2},
{θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3}}.

The basic belief assignment (BBA, also called mass function)

is defined by a function m : 2Θ 7→ [0, 1], satisfying

m(∅) = 0, and
∑

A⊆Θ

m(A) = 1, (8)

where m(A) depicts the evidence support to the proposition

A. A is called a focal element when m(A) > 0. If there

is only one element in A, like {θ1} and {θ2}, A is called

the singleton element; if there are more than one element in

A, e.g., {θ1, θ2} and {θ1, θ2, θ3}, A is called the compound
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element. The belief assigned to a compound element represents

the degree of ambiguity for the multiple elements.

The plausibility function (Pl) and belief function (Bel) are

defined as follows:

Pl(A) =
∑

A∩B 6=∅
m(B), (9)

Bel(A) =
∑

B⊆A

m(B). (10)

Dempster’s combination rule [19] for combining two dis-

tinct pieces of evidence is defined as

(m1⊕m2)(A) =











0, if A = ∅,
1

1−K

∑

B∩C=A

m1(B)m2(C) if A 6= ∅.

(11)

Here, K =
∑

B∩C=∅ m1(B)m2(C) denotes the total con-

flict or contradictory mass assignments.

An alternative fusion rule PCR6 [26] for the combination

of two sources is defined as

mPCR6
12 (A) =mConj

12 (A)

+
∑

A∩Y=∅
[
m1(A)

2m2(Y )

m1(A) +m2(Y )
+

m2(A)
2m1(Y )

m2(A) +m1(Y )
],

(12)

where mConj
12 (A) is the conjunctive rule defined as

mConj
12 (A) =

∑

B∩C=A

m1(B)m2(C). (13)

General PCR6 formula for the combination of more than two

sources is given in [26].

For a probabilistic decision-making, Smets defined the pig-

nistic probability transformation [27] to obtain the probability

measure BetP from a BBA

BetP (θi) =
∑

A⊆Θ|θi∈A

m(A)

|A| . (14)

where |A| is the cardinality of A. The decision can be made

by choosing the element in FOD whose BetP value is the

highest one and higher than a preset threshold. Other types of

probability transformation methods can be found in [26,28].

IV. IMAGE REGISTRATION BASED ON EVIDENTIAL

REASONING

To deal with the uncertainty caused by the choice of

keypoint detectors in the sparse approach or the choice of

similarity measure in the dense approach, we propose an image

registration method based on evidential reasoning. Suppose

that the spatial transformation between the reference image

and sensed image is projective. Our purpose is to estimate

the transformation matrix to align two images. Unlike the

prevailing methods estimating the transformation matrix from

single method of keypoint detection or similarity (dissimilar-

ity) measure, we estimate the transformation matrix by jointly

utilizing different keypoint detection methods or similarity

measures.

To use belief functions for image registration, one should

define the frame of discernment (FOD) first. The FOD

Θ = {θ1, θ2, . . . , θQ}, where Q is the amount of transforma-

tions obtained from different single feature detection algo-

rithms or different single similarity measures. We first model

the beliefs for every proposition A ⊆ Θ using BBAs. A can

be single transformation in FOD or a set of transformations

in FOD. One BBA depicts the support to each proposition

A from one evidence source. The BBA allocations from

different evidence sources describes the uncertainty of the

transformations in FOD. Next, the BBAs are combined to

generate the combined BBA mc depicting the fused support to

each proposition A. Then, the combined transformation Tc is

generated from the combined BBA mc. Finally, the registered

sensed image S′
c is transformed from the sensed image using

Eq. (2). During this process, the resampling [29] is needed to

determine the intensity of each pixel in S′
c. Figure 4 illustrates

the flow chart of this new proposed method. It should be noted

that the classical interpretation of BFT assumes that the final

estimation should be in the FOD. In this work, we relax this

assumption and the final transformation is a combination result

of those in the FOD.

A. Uncertainty Modeling

If the similarity between the reference image R and regis-

tered sensed image S′
i is large, the corresponding transforma-

tion Ti is quite accurate and should be allocated large support

(S′
i is transformed from sensed image S by T−1). Here we

use NCC (other similarity or dissimilarity measures, e.g., MI,

are also appropriate to quantify the similarity here) to measure

the similarity between R and S′
i:

NCCi =

M
∑

x=1

N
∑

y=1

(R(x, y)− µR)(S
′
i(x, y)− µS′

i
)

σRσS′

i

, (15)

where µR and µS′

i
are the mean intensities of R and S′

i,

respectively; σR and σS′

i
are the standard deviation intensities

of R and S′
i, respectively.

Since multi-source information can help to reduce the uncer-

tainty through evidence combination, we use different levels

of image information to quantify the similarity between R and

S′
i. The similarity can be calculated from the gray images, edge

feature images or reconstructed images using phase angle as

shown in Figure 5. Their corresponding NCCi are denoted

as NCCi(G), NCCi(E) and NCCi(P ), respectively. The edge

detection method used in Figure 5-b is the Canny detector [30].

More details of the image reconstruction from phase angle

information can be found in [29].

The value range of NCCi(·) is [−1, 1]. According to our

experiments, most values of NCCi(·) are larger than 0. Before

allocating BBAs, we first enlarge the differences of NCCi(·)
within [0, 1] using function y = ex−1, as illustrated in Figure

6. Each level of image information (gray images (G), edge
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Figure 4. Flow chart of the proposed image registration.

Figure 5. Image information at different levels. (a) Gray image. (b) Edge feature image. (c) Reconstructed image using phase angle.

Figure 6. The curve of function ex−1.

feature images (E) and reconstructed images using phase

angle (P )) can be viewed as one evidence source and their

corresponding y = eNCCi(·)−1 can be used to assign beliefs

for transformation Ti:



















mG(Ti) =
eNCCi(G)−1

∑

Q

j=1
e

NCCj(G)−1

mE(Ti) =
eNCCi(E)−1

∑

Q

j=1
e

NCCj(E)−1

mP (Ti) =
eNCCi(P )−1

∑

Q

j=1
e

NCCj(P )−1

(16)

B. Fusion-Based Registration

After obtaining BBAs mG, mE and mP , we generate

the combined BBA mc using a combination rule denoted

symbolically with ⊕:

mc(·) = [mG ⊕mE ⊕mP ](·). (17)

mc(Ti) describes the combined evidence support to Ti (a

3 × 3 matrix with 6 unknown parameters). The combined

transformation Tc is computed by

Tc
−1 =

Q
∑

i=1

mc(Ti)Ti
−1. (18)

Finally, the registered sensed image S′
c can be obtained

using Eq. (2) following the resampling.

V. EVALUATION OF IMAGE REGISTRATION

Since the purpose of image registration is to align the

reference image R and sensed image S to a single coordinate

frame, one popular evaluation method for the registration result

is to quantify the difference (usually quantified by Root-Mean-

Squared Error (RMSE)) between R and the registered sensed

image S′
c [31,32]. However, since S′

c is transformed from

the sensed image S, which may have less information than

R (S may be part of R or have lower resolution than R
since R and S can be taken from different views or taken

by different cameras), the difference between R and S′
c could

be large even when the estimated transformation Tc equals to

the true transformation Ttrue from the reference image R to the

sensed image S, as shown in Figure 7. Therefore, this kind of

evaluation method is not accurate enough.
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Figure 7. Relationship among R, S, R′

c, and S
′

c.

Another popular evaluation method is to quantify the differ-

ence between the reference image R and image R′
c, which is

transformed from R by the transformation matrix TtrueTc
−1

[16,33], as shown in Figure 7. The mapping relationship

between pixel at (v, w) in image R and pixel at (v′, w′) in

image R′
c satisfies

[v′ w′ 1] = [v w 1]TtrueTc
−1, (19)

when the registration is absolutely accurate, Tc = Ttrue and

R′
c = R.

In this paper, we evaluate the registration performance by

quantifying the difference between the reference image R and

image R′
c using AAID (average absolute intensity difference)

[16]:

AAID(R,R′
c) =

1

M ×N

M
∑

x=1

N
∑

y=1

|R(x, y)−R′
c(x, y)|. (20)

AAID(R,R′
c) is smaller when the registration result is better.

VI. EXPERIMENTS

To verify the performance of our new proposed image

registration method, we provide experiments on noise-free

images and noisy images, respectively. Image registration

under the noisy condition is difficult since the noise pixels

bring difficulties for keypoints’ detection and matching and

reduce the accuracy for similarity measure. For the sparse

method, experiment results based on BRISK [34], KAZE [15]

and SURF [12] feature detection algorithms are provided for

comparison. For the dense method, experiment results based

on MI, PSNR and NCC similarity measures are provided for

comparison. For the noisy image registration, the experiment

result of RANRESAC (a recently proposed method for noisy

image registration) [23] is also provided for comparison.

A. Sparse Image Registration Results

We first do experiments on actual data to illustrate the

effectiveness of the proposed method. The reference image and

sensed image are taken from different cameras with different

views, as shown in Figure 8. BRISK, KAZE and SURF feature

detections are used for generating transformations T1, T2 and

T3, respectively. When deriving combined BBAs in Eq. (17),

an alternative fusion rule PCR6, which is more robust than

Dempster’s rule [26], is also used for comparison.

The registered results of the proposed method are illustrated

in Figure 9. From Figure 9, the proposed method can success-

fully align the sensed image to the reference image illustrating

that the proposed method is effective for actual data.
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Figure 8. Fence image pair. (a) Reference image. (b) Sensed image.

Figure 9. Registered results of the proposed methods for Fence image. (a) Dempster’s rule. (b) PCR6.

Figure 10. Boats image pair and Foosball image pair. (a) Boats reference image. (b) Boats sensed image. (c) Foosball reference image. (d) Foosball sensed
image.
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Figure 11. AAID evaluations of registration results for Boats image pair and Foosball image pair. (a) Boats. (b) Foosball.

Figure 12. Spatial partition of the AAID evaluation for Boats image. (a) Partition method. (b) BRISK. (c) KAZE. (d) SURF. (e) Proposed (Demp). (f)
Proposed (PCR6).

Figure 13. Spatial partition of the AAID evaluation for Foosball image. (a) BRISK. (b) KAZE. (c) SURF. (d) Proposed (Demp). (e) Proposed (PCR6).
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To quantify the accuracy of the registration results, the

actual transformation between the reference image and sensed

image is needed and we do experiments on simulated images.

We first do experiments on Boats image (The reference image

can be found at https://imagej.nih.gov/ij/images/boats.gif.) and

Foosball image (sample image from the MATLAB), as shown

in Figure 10.

The AAID evaluations of these registration results for Boats

image and Foosball image are compared in Figure 11, where

Demp represents the Dempster’s combination rule. According

to Figure 11, the proposed fusion-based method achieves much

better registration result (smaller AAID) than algorithms based

on BRISK, KAZE or SURF feature detections, respectively.

Furthermore, we also analyzed the spatial partition of the

AAID evaluation for each result by evenly dividing the ref-

erence image into 5× 5 parts (as shown in Figure 12a) and

calculating the AAID between the reference image and the

registration result in each part. The AAID spatial partition

results for Boats image and Foosball image are illustrated in

Figures 12 and 13, respectively. For Boats image, the AAID

of BRISK and KAZE results varies significantly for different

parts while the SURF result is relatively uniform; the proposed

methods have low and similar AAID in most parts while the

rightmost parts (parts 5, 10, 15, 20 and 25) have significant

larger AAID. For Foosball image, the AAID spatial partition

of all these results are uneven.

Then, we consider the noisy image registration and do

experiments on West Concord image pair (sample image from

the MATLAB) with zero-mean Gaussian noise (variance is

0.01), as shown in Figure 14. The AAID evaluations for

these registration results are compared in Figure 15, where

the proposed fusion-based methods achieve better performance

(smaller AAID) than RANTESAC and methods based on

BRISK, KAZE and SURF feature detections, respectively. The

spatial partition of the AAID evaluation for each result is

illustrated in Figure 16, where the KAZE result is the most

uneven one.

B. Dense Image Registration Results

Since the optimization of dense registration is intractable

when the solution space has high dimensions, we simplify

the transformation model to rigid transformation here. The

solution space for rigid model only has three dimensions: one

for rotation and two for translations in horizontal and vertical

directions, respectively. We first provide experiments on Con-

cord image and Hestain image (sample images from the MAT-

LAB) as shown in Figure 17, where the sensed image is trans-

formed from the reference image through the rotation (θ = 10◦

in anti-clockwise) and translation ((tv, th) = (−10, 5)) succes-

sively.

In the proposed dense approach, MI, PSNR and NCC

similarity measures are used for generating transformations

T1, T2 and T3, respectively. The AAID evaluations of these

registration results for the Concord image and Hestain image

are compared in Figure 18, where the proposed fusion-based

Figure 14. West Concord image pair. (a) Reference image. (b) Sensed image.

Figure 15. AAID evaluations of registration results for West Concord image
pair.

methods achieve much better registration results (smaller

AAID) than algorithms based on MI, PSNR or NCC simi-

larities, respectively. The AAID spatial partition results for

Concord image and Hestain image are illustrated in Figures 19

and 20, respectively. For these two images, the AAID results

of the proposed methods are smaller in the downside parts

compared with those in upside parts.
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Figure 16. Spatial partition of the AAID evaluation for West Concord image. (a) BRISK. (b) KAZE. (c) SURF. (d) RANRESAC. (e) Proposed (Demp). (f)
Proposed (PCR6).

Figure 17. Concord image pair and Hestain image pair. (a) Concord reference image. (b) Concord sensed image. (c) Hestain reference image. (d) Hestain
sensed image.

Figure 18. AAID evaluations of registration results for Concord image pair and Hestain image pair. (a) Concord. (b) Hestain.

Then, we consider the noisy image condition and implement

experiments on Lifting Body image pair (sample image from

the MATLAB) with zero-mean Gaussian noise (variance is

0.01), as shown in Figure 21. The sensed image is transformed

from the reference image through the rotation (θ = −10◦) and

translation ((tv, th) = (−10, 5)), successively.

The spatial partition of the AAID evaluation for each result

is illustrated in Figure 22, and the AAID evaluations for

these registration results are compared in Figure 23. From

these two figures, the proposed fusion-based methods achieve

better performance and the rightmost parts (parts 5, 10, 15,

20 and 25) have larger AAID than other parts.

According to all the experiments, the proposed fusion-

based methods achieve better registration results than those

prevailing ones (BRISK, KAZE, SURF, MI, PSNR and NCC).

For noisy image registration, the proposed methods also obtain

better performance than RANRESAC. This indicates that the

theory of belief function can well deal with the uncertainty

brought by the selection of keypoint detection algorithms

or similarity measures, and the jointly use of the different

keypoint detections or similarity measures is effective. Fur-

thermore, from the above provided experiments one sees that

the choice of combination rule does not affect the registration

performance that much.
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Figure 19. Spatial partition of the AAID evaluation for Concord image. (a) MI. (b) PSNR. (c) NCC. (d) Proposed (Demp). (e) Proposed (PCR6).

Figure 20. Spatial partition of the AAID evaluation for Hestain image. (a) MI. (b) PSNR. (c) NCC. (d) Proposed (Demp). (e) Proposed (PCR6).

Figure 21. Lifting Body image pair. (a) Reference image. (b) Sensed image.

C. Computational Cost

The computational cost is an important criterion to evaluate

an algorithm. We counted the computational costs of the above

sparse algorithms and dense algorithms for Cameraman image

(Figure 5-a) on a Windows 10 Enterprise system equipped

with Intel Core i7-7700HQ CPU at 2.80 GHz and 16.00

GB RAM. The platform is MATLAB R2018a. The average

execution time comparisons for the sparse algorithms and

dense algorithms are provided in Tables II and III, respectively.

Each average execution time is calculated from 100 runs of

experiments.

Table II
AVERAGE EXECUTION TIME (IN s) COMPARISON FOR SPARSE

ALGORITHMS.

Method Noise-Free Images Noisy Images

BRISK 0.2847 0.2832
KAZE 0.1348 0.1304
SURF 0.0431 0.0437

RANRESAC − 6.2648
Proposed (Demp) 0.3934 0.3933
Proposed (PCR6) 0.3938 0.3989
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Figure 22. Spatial partition of the AAID evaluation for Lifting Body image. (a) MI. (b) PSNR. (c) NCC. (d) RANRESAC. (e) Proposed (Demp). (f) Proposed
(PCR6).

Figure 23. AAID evaluations of registration results for Lifting Body image
pair.

Table III
AVERAGE EXECUTION TIME (IN s) COMPARISON FOR DENSE

ALGORITHMS.

Method Noise-Free Images Noisy Images

MI 16.7622 16.4789
PSNR 12.8583 13.4214
NCC 14.7187 15.1050

Proposed (Demp) 17.0734 16.7945
Proposed (PCR6) 17.0812 16.8729

From Tables II and III, the dense algorithms need more exe-

cution time than the sparse algorithms. Furthermore, since the

proposed fusion-based method combines the registration trans-

formations generated from the three sparse methods (BRISK,

KAZE and SURF) or the three dense methods (PSNR, MI and

NCC) and these three methods can be executed in parallel,

and the execution time of the proposed fusion-based method

is longer than the most time-consuming one among the three

methods.

D. Discussion of BBA Generation

The BBA generated in Eq. (16) is Bayesian BBA, where all

its focal elements are singletons. People in the community of

belief function theory may prefer to use the compound focal

elements, which usually seems better than only using single-

tons in Bayesian BBAs. We have also designed experiments

of generating non-Bayesian BBAs for image registration using

FCOWA-ER (Fuzzy-Cautious Ordered Weighted Averaging

with Evidential Reasoning) [35] method. In detail, when

multiple image information (image’s intensities, edges and

phase angle) are simultaneously considered, image registration

can be viewed as a multi-criteria decision making problem.

FCOWA-ER (Fuzzy-Cautious Ordered Weighted Averaging

with Evidential Reasoning) [35] is a decision making approach

under multi-criteria with uncertainty and it generates non-

Bayesian BBAs using α-cut method (The α-cut method used

in FCOWA-ER boils down to the Dubois and Prade allocation

[36] in this case) when modeling uncertainties. According

to the experimental results, non-Bayesian BBAs obtain simi-

lar registration results with Bayesian BBAs. Since Bayesian

BBAs are easier to generate than non-Bayesian BBAs, we

recommend Bayesian BBAs for image registration and do not

provide the non-Bayesian BBA based method in this work.

VII. CONCLUSION

In this paper, we proposed a new image registration al-

gorithm based on evidential reasoning. The uncertainty en-

countered in image registration is taken into account and

modeled by belief functions. Image information at different

levels are jointly used to achieve a more effective registration.

Experimental results show that the proposed algorithm can

improve the precision of image registration.

The generation of BBA is crucial in evidential reasoning

and most methods are proposed based on applications. In

this paper, we generate BBAs from three different image

information, i.e., intensity, edge and phase angle. In future

work, other image information, such as texture feature and

gradient feature, will also be considered and jointly used in

image registration. Furthermore, we will attempt to apply

the proposed method to color image registration. Different

color channels of the color image provide different image

information and can be jointly used in image registration.

We will also focus on the comparison with the state-of-the-art

approaches based on convolutional neural networks (CNN).
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[8] E. Ask, O. Enqvist, L. Svärm, F. Kahl, G. Lippolis, Tractable and

reliable registration of 2D point sets, in Proc. of the 13th European
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Abstract—In this paper we present two applications of a
new Belief Function-based Inter-Criteria Analysis (BF-ICrA) ap-
proach for the assessment of the degree of redundancy of criteria
involved in multi-criteria decision-making (MCDM) problems.
This BF-ICrA method allows to simplify the original MCDM
problem by suppressing redundant criteria (if any) and thus
diminish the complexity of MCDM problem. This approach is
appealing for solving large MCDM problems whose solution
requires the fusion of many belief functions. We show how this
approach can be used in two distinct fields of applications: The
GPS Surveying Problem, and the car selection problem.

Keywords: Inter-Criteria Analysis, ICrA-BF, MultiCriteria
Decision Making, MCDM, belief functions.

I. INTRODUCTION

In a Multi-Criteria Decision-Making (MCDM) problem
we consider a set of alternatives (or objects) A ,

{A1, A2, . . . , AM} (M > 2), and a set of criteria C ,

{C1, C2, . . . , CN} (N ≥ 1). We search for the best alternative
A⋆ given the available information expressed by a M × N
score matrix (also called benefit or payoff matrix) S , [Sij =
Cj(Ai)], and (eventually) the importance factor wj ∈ [0, 1] of
each criterion Cj with

∑N

j=1
wj = 1. The set of normalized

weighting factors is denoted by w , {w1, w2, . . . , wN}.
Depending on the context of the MCDM problem, the score
Sij of each alternative Ai with respect to each criteria Cj

can be interpreted either as a cost (i.e. an expense), or as
a reward (i.e. a benefit). By convention and without loss of
generality1 we will always interpret the score as a reward
having monotonically increasing preference. Thus, the best
alternative A⋆

j for a given criteria Cj will be the one providing
the highest reward/benefit.

The MCDM problem is not easy to solve because the
scores are usually expressed in different (physical) units and
different scales. This necessitates a choice of score/data nor-
malization yielding rank reversal problems [1], [2]. Usually
there is no same best alternative choice A⋆ for all criteria,
so a compromise must be established to provide a reasonable

1because it suffices to multiply the scores values by −1 to reverse the
preference ordering.

and acceptable solution of the MCDM problem for decision-
making support.

Many MCDM methods exist, see references in [3]. Most
popular methods are AHP2 [4], ELECTRE3 [5], TOPSIS4 [6],
[7]. In 2016 and 2017, we did develop BF-TOPSIS methods
[3], [8] based on Belief Functions (BF) to improve the original
TOPSIS approach to avoid data normalization and to deal
also with imprecise score values as well. It appears however
that the complexity of these new BF-TOPSIS methods can
become a bottleneck for their use in large MCDM problems
because of the fusion step of basic belief assignments required
for the implementation of the BF-TOPSIS. That is why a
simplification of the MCDM problem (if possible) is very
welcome in order to save computational time and resources.
This is the motivation of the present work.

For this aim we propose a new Inter-Criteria Analysis
(ICrA) based on belief functions for identifying and estimating
the possible degree of agreement (i.e. redundancy) between
some criteria driven from the data (score values). This permits
to remove all redundant criteria of the original MCDM prob-
lem and thus solving a simplified (almost) equivalent MCDM
problem faster and at lower computational cost. ICrA has
been developed originally by Atanassov et al. [9]–[11] based
on Intuitionistic Fuzzy Sets [12], and it has been applied in
different fields like medicine [13]–[15], optimization [16]–
[20], workforce planning [21], competitiveness analysis [22],
radar detection [23], ranking [24]–[27], etc. In this paper we
improve ICrA approach thanks to belief functions introduced
by Shafer in [28] from original Dempster’s works [29]. We
will refer it as BF-ICrA method in the sequel.

After a short presentation of basics of belief functions in
section II, we present Atanassov’s ICrA method in section
III and discuss its limitations. In Section IV we present the
new BF-ICrA approach based on a new construction of Basic
Belief Assignment (BBA) matrix from the score matrix and
a new establishment of Inter-Criteria belief matrix. In section

2Analytic Hierarchy Process
3ELimination Et Choix Taduisant la REalité
4Technique for Order Preference by Similarity to Ideal Solution

Originally published as: J. Dezert, A. Tchamova, S. Fidanova, D. Han, Two Applications of Inter-Criteria 
Analysis with Belief Functions, in a special issue of Cybernetics and Information Technologies Journal, 
Bugarian Academy of Sciences Editor, Vol. 20, No. 5, pp. 38–59, 2020, and reprinted with permission.
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V a method of simplification of MCDM using BF-ICrA is
proposed. Two distinct applications of BF-ICrA are presented
in VI with concluding remarks in Section VII.

II. BAS ICS OF THE THEORY OF B EL IEF FUNCTIONS

To follow classical notations of the theory of belief func-
tions, also called Dempster-Shafer Theory (DST) [28], we
assume that the answer (i.e. the solution, or the decision to
take) of the problem under concern belongs to a known finite
discrete frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn},
with n > 1, and where all elements of Θ are exclusive. The
set of all subsets of Θ (including empty set ∅ and Θ) is the
power-set of Θ denoted by 2Θ. A BBA (or mass function)
associated with a given source of evidence is defined [28] as
the mapping m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The quantity m(A) is called the mass of

A committed by the source of evidence. Belief and plausibility
functions are usually interpreted respectively as lower and
upper bounds of unknown (possibly subjective) probability
measure [29]. They are defined by5

Bel(A) ,
∑

B⊆A,B∈2Θ

m(B), and P l(A) , 1− Bel(Ā). (1)

If m(A) > 0, A is called a focal element of m(·). When all fo-
cal elements are singletons then m(·) is called a Bayesian BBA

[28] and its corresponding Bel(·) function is homogeneous to
a probability measure. The vacuous BBA, or VBBA for short,
representing a totally ignorant source is defined as mv(Θ) = 1.
The main challenge of the decision-maker consists to combine
efficiently the possible multiple BBAs ms(·) given by s > 1
distinct sources of evidence to obtain a global (combined)
BBA, and to make a final decision from it. Historically the
combination of BBAs is accomplished by Dempster’s rule
proposed by Shafer in DST. Because Dempster’s rule presents
several serious problems (insensitivity to the level of conflict
between sources in some cases, inconsistency with bounds of
conditional probabilities when used for belief conditioning,
dictatorial behavior, counter-intuitive results), many fusion
rules have been proposed in the literature as alternative to
Dempster’s rule, see [30], Vol. 2 for a detailed list of fusion
rules. We will not detail here all the possible combination rules
but just mention that the Proportional Conflict Redistribution
rule no. 6 (PCR6) proposed by Martin and Osswald in [30]
(Vol. 3) is one of the most serious alternative rule for BBA
combination available so far.

III. ATANAS S OV’ S INTER-CRITERIA ANALY S IS (ICRA)
Atanassov’s Inter-Criteria Analysis (ICrA) approach is

based on a M × N score matrix6
S , [Sij = Cj(Ai), i =

1, . . . ,M, j = 1, . . . , N ], and intuitionistic fuzzy pairs [12]
including two membership functions µ(·) and ν(·). Mathe-
matically, an intuitionistic fuzzy set (IFS) A is denoted by
A , {(x, µA(x), νA(x))|x ∈ E}, where E is the set of
possible values of x, µA(x) ∈ [0, 1] defines the membership of

5where the symbol , means equal by definition.
6called index matrix by Atanassov in [31].

x to the set A, and νA(x) ∈ [0, 1] defines the non-membership
of x to the set A, with the restriction 0 ≤ µA(x)+νA(x) ≤ 1.
The ICrA method consists to build an N×N Inter-Criteria (IC)
matrix from the score matrix S. The elements of the IC matrix
consist of all intuitionistic fuzzy pairs (µjj′ , νjj′ ) whose
components express respectively the degree of agreement and
the degree of disagreement between criteria Cj and Cj′ for
j, j′ ∈ {1, 2, . . . , N}. For a given column j (i.e. criterion Cj),
it is always possible to compare with >, < and = operators
all the scores Sij for i = 1, 2, . . . ,M because the scores of
each column are expressed in same unit. The construction of
IC matrix can be used to search relations between the criteria
because the method compares homogeneous data relatively to
a same column. In [32] Atanassov prescribes to normalize the
score matrix before applying ICrA as follows

Snorm
ij = (Sij − Smin

j )/(Smax
j − Smin

j ), (2)

if one wants to apply it in the dual manner for the search of
InterObjects analysis (IObA).

Because we focus on ICrA only, we don’ t need to apply a
score matrix normalization because each column of the score
matrix represents the values of a same criterion for different
alternatives, and the criterion values are expressed with the
same unit (e.g. m, m2, sec, Kg, or e, etc).

A. Construction of Inter-Criteria matrix

The construction of the N ×N IC matrix, denoted7
K, is

based on the pairwise comparisons between every two criteria
along all evaluated alternatives. Let Kµ

jj′ be the number of
cases in which the inequalities Sij > Si′j and Sij′ > Si′j′

hold simultaneously, and let Kν
jj′ be the number of cases

in which the inequalities Sij > Si′j and Sij′ < Si′j′ hold
simultaneously. Because the total number of comparisons
between the alternatives is M(M − 1)/2 then one always has
necessarily

0 ≤ Kµ
jj′ +Kν

jj′ ≤
M(M − 1)

2
, (3)

or equivalently after the division by M(M−1)

2
> 0

0 ≤
2Kµ

jj′

M(M − 1)
+

2Kν
jj′

M(M − 1)
≤ 1. (4)

This inequality permits to define the elements of N × N IC
matrix K = [Kjj′ ] as intuitionistic fuzzy (IF) pairs Kjj′ =
(µjj′ , νjj′ ) where

µjj′ ,
2Kµ

jj′

M(M − 1)
, and νjj′ ,

2Kν
jj′

M(M − 1)
. (5)

µjj′ measures the degree of agreement between criteria Cj

and Cj′ , and νjj′ measures their degree of disagreement. By
construction the IC matrix K is always a symmetric matrix.

7We use K because it corresponds to the first letter of word Kriterium,
meaning criteria in German. The letter C is being already in use.
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The computation of Kµ
jj′ and Kν

jj′ can be done explicitly
thanks to Atanassov’s formulas [32]

Kµ
jj′ =

M−1
∑

i=1

M
∑

i′=i+1

[sgn(Sij − Si′j)sgn(Sij′ − Si′j′)

+ sgn(Si′j − Sij)sgn(Si′j′ − Sij′ )], (6)

and

Kν
jj′ =

M−1
∑

i=1

M
∑

i′=i+1

[sgn(Sij − Si′j)sgn(Si′j′ − Sij′ )

+ sgn(Si′j − Sij)sgn(Sij′ − Si′j′)], (7)

where the signum function sgn(.) used by Atanassov is
defined as follows

sgn(x) =

{

1, if x > 0,

0, if x ≤ 0.
(8)

Actually the values of Kµ
jj′ and Kν

jj′ depend on the choice
of sgn(x) function8. That is why in [21], [33], the authors
propose different algorithms implemented under Java in an
ICrA software yielding different Kµ

jj′ and Kν
jj′ values for

making the analysis and to reduce the dimension (complexity)
of the original MCDM problem.

B. Inter-criteria analysis

Once the Inter-Criteria matrix K = [Kjj′ ] of intuitionistic
fuzzy pairs is calculated one needs to analyze it to decide
which criteria Cj and Cj′ are in strong agreement (or positive
consonance) reflecting the correlation between Cj and Cj′ , in
strong disagreement (or negative consonance) reflecting non
correlation between Cj and Cj′ , or in dissonance reflecting the
uncertainty situation where nothing can be said about the non
correlation or the correlation between Cj and Cj′ . If one wants
to identify the set of criteria Cj′ for j′ 6= j that are strongly
correlated with Cj then we can sort µjj′ values is descending
order to identify those in strong positive consonance with
Cj . In [25], [26], the authors propose a qualitative scale
to refine the levels of consonance and dissonance and for
helping the decision making procedure. A dual approach based
on νjj′ values can be made to determine the set of criteria
that are not correlated with Cj . An other approach [10],
[27] proposes to define two thresholds α, β ∈ [0; 1] for the
positive and negative consonance respectively against which
the components µjj′ and νjj′ of Kjj′ = (µjj′ , νjj′ ) will be
compared. The correlations between the criteria Cj and Cj′

are called “positive consonance”, “negative consonance” or
“dissonance” depending on their µjj′ and νjj′ values with
respect to chosen thresholds α and β, see [22] for details.
More precisely, Cj and Cj′ are in

• (α, β) positive consonance (i.e. correlated):
If µjj′ > α and νjj′ < β.

• (α, β) negative consonance (i.e. no correlated):

8 for instance if we use sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0,
we will obtain, in general, other Kµ

jj′
and Kν

jj′
values.

If µjj′ < β and νjj′ > α.
• (α, β) dissonance (i.e. full uncertainty): Otherwise.

At the beginning of ICrA development it was not very clear
how these intuitionistic fuzzy (IF) pairs (µjj′ , νjj′ ) had to
be used and that is why Atanassova [34], [35] proposed to
handle both components of the IF pair. For this, she interpreted
pairs (µjj′ , νjj′ ) as points located in the elementary TFU
triangle, where the point T of coordinate (1, 0) represents the
maximal positive consonance (i.e. the true consonance), the
point F with coordinate (0, 1) represents the maximal negative
consonance (i.e. the falsity), and the point U with coordinates
(0, 0) represents the maximal dissonance (i.e. the uncertainty).
From this interpretation it becomes easy to identify the top of
consonant IF pairs (µjj′ , νjj′ ) that fall in bottom right corner
of (TFU) triangle limited by vertical line from x-axis x = α,
and horizontal line from y-axis y = β. The set of consonant
IF pairs are then ranked according to their Euclidean distance
dTCjCj′

with respect to T point of coordinate (1, 0) defined by

dTCjCj′
= d((1, 0), (µjj′ , νjj′ )) =

√

(1− µjj′ )2 + ν2jj′ . (9)

In the MCDM context only the criteria that are negatively
consonant (or uncorrelated) must be kept for solving MCDM
and saving computational resources because they have no (or
only very low) dependency with each other, so that each
uncorrelated criterion provides useful information. The set
of criteria that are positively consonant (if any), called the
consonant set, indicates somehow a redundancy of information
between the criteria belonging to it in term of decisional
behavior. Therefore all these positively consonant criteria must
be represented by only one representative criterion that will
be kept in the MCDM analysis to simplify MCDM problem.
Also all the criteria that are deemed strongly dissonant (if any)
could be taken out of the original MCDM problem because
they only introduce uncertainty in the decision-making.

C. General comments on ICrA

Although appealing at the first glance, the classical ICrA
approach induces the following comments:

1) The IF values µjj′ and νjj′ can be easily interpreted
in the belief function framework. Indeed, the belief and
plausibility of (positive) consonance between criteria Cj

and Cj′ can be directly linked to the values µjj′ and νjj′

by taking Beljj′ (θ) = µjj′ and Pljj′ (θ) = 1 − νjj′ .
Moreover Ujj′ (θ) = Pljj′ (θ)−Beljj′ (θ) = 1− νjj′ −
µjj′ represents the dissonance (the uncertainty about
the correlation) of the criteria Cj and Cj′ . Here the
proposition θ means: the criteria Cj and Cj′ are totally
positively consonant (i.e. totally correlated) and the
frame of discernment is defined as Θ , {θ, θ̄}, where
θ̄ means: the criteria Cj and Cj′ are totally negatively
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consonant (uncorrelated). From this, one can define any
BBA mjj′ (θ), mjj′ (θ̄) and mjj′ (θ ∪ θ̄) of 2Θ by

mjj′ (θ) = µjj′ , (10)
mjj′ (θ̄) = νjj′ , (11)
mjj′ (θ ∪ θ̄) = 1− µjj′ − νjj′ . (12)

2) The construction of µjj′ and νjj′ proposed in the
classical ICrA is disputable because it is only based on
counting the valid “>” or “<” inequalities but it does
not exploit how bigger and how smaller the scores values
are in each comparison done in the construction of the
Inter-Criteria Matrix K. Therefore the construction of
µjj′ and νjj′ is actually only a very crude method to
estimate IF pairs.

3) The construction of the Inter-Criteria Matrix K is in fact
not unique as reported in [33]. This will yield different
results in general.

4) The exploitation of the ICrA method depends on the
choice of α and β thresholds that will impact the final
result.

5) The classical ICrA method cannot deal directly with
imprecise or missing score values.

IV. A NEW ICRA METHOD BAS ED ON B EL IEF FUNCTIONS

We present in this section a new ICrA method, called BF-
ICrA for short, based on belief functions that circumvents most
of the aforementioned drawbacks of classical ICrA. Here we
show how to get more precisely the Inter-Criteria Belief Matrix
and how to exploit it for MCDM simplification.

A. Construction of BBA matrix from the score matrix

From any non-zero score matrix S = [Sij ], we can construct
the M ×N BBA matrix M = [mij(·)] as follows

mij(Ai) = Belij(Ai), (13)
mij(Āi) = Belij(Āi) = 1− Plij(Ai), (14)

mij(Ai ∪ Āi) = Plij(Ai)−Belij(Ai). (15)

Assuming Aj
max 6= 0 and Aj

min
6= 0, we take9

Belij(Ai) , Supj(Ai)/A
j
max, (16)

Belij(Āi) , Infj(Ai)/A
j
min

, (17)

where Aj
max , maxi Supj(Ai) and Aj

min
, mini Infj(Ai)

and with

Supj(Ai) ,
∑

k∈{1,...M}|Skj≤Sij

|Sij − Skj |, (18)

Infj(Ai) , −
∑

k∈{1,...M}|Skj≥Sij

|Sij − Skj |. (19)

The entire justification of these formulas can be found in our
previous works [3]. For another criterion Cj′ and the j′-th
column of the score matrix we will obtain another set of
BBA values mij′ (·). Applying this method for each column

9If Aj
max = 0 then Belij(Ai) = 0, and if Aj

min
= 0 then P lij(Ai) = 1.

of the score matrix we are able to compute the BBA matrix
M = [mij(·)] whose each component is in fact a triplet
(mij(Ai),mij(Āi),mij(Ai ∪ Āi)) of BBA values in [0, 1]
such that mij(Ai) + mij(Āi) + mij(Ai ∪ Āi)) = 1 for all
i = 1, . . . ,M and j = 1, . . . , N .

B. Construction of Inter-Criteria Matrix from BBA matrix

The next step of BF-ICrA approach is the construction of
the N × N Inter-Criteria Matrix K = [Kjj′ ] from M × N
BBA matrix M = [mij(·)] where elements Kjj′ corresponds
to the BBA (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄)) about positive
consonance θ, negative consonance θ̄ and uncertainty between
criteria Cj and Cj′ respectively. The principle of construction
of the triplet Kjj′ = (mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄)) is based
on two steps that will be detailed in the sequel:

• Step 1: For each alternative Ai, we first compute the BBA
(mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ∪θ̄)) for any two criteria j, j′ ∈

{1, 2, . . . , N}.
• Step 2: The BBA (mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪ θ̄)) is then

obtained by the combinations of the M BBA mi
jj′ (.).

We present the details of each step of BF-ICrA method.

Step 1: Construction of BBA m
i
jj′(.)

The mass of belief mi
jj′ (θ) represents the degree of agree-

ment between the BBA mij(·) and mij′ (·) for the alternative
Ai, and mi

jj′ (θ̄) represents the degree of disagreement be-
tween mij(·) and mij′ (·). The mass mi

jj′ (θ∪ θ̄) is the degree
of uncertainty about the agreement (or disagreement) between
mij(·) and mij′ (·) for the alternative Ai. The calculation of
mi

jj′ (θ) could be envisaged in several manners.
The first manner would consist to consider the degree of

conflict [28] kijj′ ,
∑

X,Y⊆Θ|X∩Y=∅ mij(X)mij′ (Y ) and
consider the Bayesian BBA mi

jj′ (θ) = 1 − kijj′ , mi
jj′ (θ̄) =

kijj′ and mjj′ (θ ∪ θ̄) = 0. Instead of using Shafer’s conflict,
the second manner would consist to use a normalized distance
dijj′ = d(mij ,mij′ ) to measure the closeness between mij(·)
and mij′ (·), and then consider the Bayesian BBA modeling de-
fined by mi

jj′ (θ) = 1−dijj′ , mi
jj′ (θ̄) = dijj′ and mjj′ (θ∪θ̄) =

0. These two manners however are not very satisfying because
they always set to zero the degree of uncertainty between the
agreement and disagreement of the BBA, and the second man-
ner depends also on the choice of the distance metric. So, we
propose a more appealing third manner of the BBA modeling
of mi

jj′ (θ), mi
jj′ (θ̄), and mi

jj′ (θ ∪ θ̄). For this, we consider
two sources of evidences (SoE) indexed by j and j′ providing
the BBA mij and mij′ defined on the simple FoD {Ai, Āi}
and denoted mij = [mij(Ai),mij(Āi),mij(Ai ∪ Āi)] and
mij′ = [mij′ (Ai),mij′ (Āi),mij′ (Ai ∪ Āi)]. We also denote
Θ = {θ, θ̄} the FoD about the relative state of the two SoE,
where θ means that the two SoE agree, θ̄ means that they
disagree and θ ∪ θ̄ means that we don’ t know. Then the BBA
modeling is based on the important remarks

• Two SoE are in total agreement if both commit their
maximum belief mass to the element Ai or to element
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Āi. So they perfectly agree if mij(Ai) = mij′ (Ai) = 1,
or if mij(Āi) = mij′ (Āi) = 1. Therefore the pure degree
of agreement10 between two sources is modeled by

mi
jj′ (θ) = mij(Ai)mij′ (Ai) +mij(Ā)mij′ (Ā). (20)

• Two SoE are in total disagreement if each one commits
its maximum mass of belief to one element and the other
to its opposite, that is if one has mij(Ai) = 1 and
mij′ (Āi) = 1, or if mij(Āi) = 1 and mij′ (Ai) = 1.
Hence the pure degree of disagreement11 between two
sources is modeled by

mi
jj′ (θ̄) = mij(Ai)mij′ (Āi) +mij(Āi)mij′ (Ai). (21)

• All possible remaining products between components of
mij and mij′ reflect the part of uncertainty we have about
the SoE (i.e. we don’ t know if they agree or disagree).
Hence the degree of uncertainty between the two sources
is modeled by

mi
jj′(θ ∪ θ̄) = mij(Ai)mij′(Ai ∪ Āi)

+mij(Āi)mij′(Ai ∪ Āi)

+mij(Ai ∪ Āi)mij′(Ai)

+mij(Ai ∪ Āi)mij′(Āi)

+mij(Ai ∪ Āi)mij′(Ai ∪ Āi). (22)

By construction mi
jj′ (·) = mi

j′j(·), hence this BBA modeling
permits to build a set of M symmetrical Inter-Criteria Belief
Matrices (ICBM) K

i = [Ki
jj′ ] of dimension N × N relative

to each alternative Ai whose components Ki
jj′ correspond to

the triplet of BBA values mi
jj′ = (mi

jj′ (θ),m
i
jj′ (θ̄),m

i
jj′ (θ∪

θ̄)) modeling the belief of agreement and of disagree-
ment between Cj and Cj′ based on Ai. One has also12

mi
jj′ (θ),m

i
jj′ (θ̄),m

i
jj′ (θ∪θ̄) ∈ [0, 1] and mi

jj′ (θ)+mi
jj′ (θ̄)+

mi
jj′ (θ∪θ̄) = 1. This BBA construction can be easily extended

for modeling the agreement, disagreement and uncertainty of
n > 2 criteria Cj1 , . . . , Cjn altogether if needed by taking

mi
j1...jn

(θ) =

n
∏

k=1

mijk (Ai) +

n
∏

k=1

mijk(Āi),

mi
j1...jn

(θ̄) =
∑

Xj1
,...,Xjn∈{Ai,Āi}

Xj1
∩...∩Xjn=∅

n
∏

k=1

mijk(Xjk),

mi
j1...jn

(θ ∪ θ̄) = 1−mi
j1...jn

(θ) −mi
j1...jn

(θ̄).

Step 2: Construction of BBA mjj′(.) (fusion step)

Once all the BBAs mi
jj′ (.) (i = 1, . . . ,M ) are calcu-

lated one combines them to get the component Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ∪θ̄)) of the Inter-Criteria Belief ma-
trix (ICBM) K = [Kjj′ ]. This fusion step can be done in many
ways depending on the combination rule chosen by the user. If
the number of alternatives M is not too large we recommend

10or positive consonance according Atanassov’s terminology.
11or negative consonance according Atanassov’s terminology.
12because (mij(Ai)+mij(Āi)+mij(Ai∪Āi))(mij′ (Ai)+mij′ (Āi)+

mij′ (Ai ∪ Āi)) = 1 · 1 = 1.

to combine the BBAs mi
jj′ (.) with PCR6 fusion rule [30]

(Vol. 3) because of known deficiencies of Dempster’s rule. If
M is too large to prevent PCR6 working on computer, we
can just use the simple averaging rule of combination in these
high dimensional MCDM problems.Simple Matlab™ code for
PCR6 rule can be found in [42] for convenience.

The computational complexity of BF-ICrA is of course
higher than the complexity of ICrA because it makes a more
precise evaluation of local and global inter-criteria belief ma-
trices with respect to Intuitionistic Fuzzy inter-criteria matrices
of ICrA. The overall reduction of the computational burden
of the original MCDM problem thanks to BF-ICrA depends
highly on the problem under concern, the complexity and cost
to evaluate each criteria involved in it, as well as the number
of redundant criteria identified by BF-ICrA method.

V. S IMPL IFICATION OF ORIGINAL MCDM THANKS TO
B F-ICRA

Once the global Inter-Criteria Belief Matrix K = [Kjj′ =
(mjj′ (θ),mjj′ (θ̄),mjj′ (θ ∪ θ̄))] is calculated, we need to
identify and cluster the criteria that are in strong agreement, in
strong disagreement, and those on which we are uncertain. For
identifying the criteria that are in very strong agreement, we
evaluate the distance of each component of Kjj′ with the BBA
representing the best agreement state and characterized by the
specific BBA13 mT (θ) = 1. From a similar approach we can
also identify, if we want, the criteria that are in very strong
disagreement using the distance of mjj′ (·) with respect to the
BBA representing the best disagreement state characterized by
the specific BBA mF (θ̄) = 1. As alternative of Jousselme’s
distance [37], we use the dBI(., .) distance based on belief
interval [36] because it is a good method for measuring the
distance d(m1,m2) between the two BBAs14 m1(·) and m1(·)
over the same FoD. It is defined by

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)), (23)

where the Belief-Intervals are defined by BI1(X) ,

[Bel1(X), P l1(X)] and BI2(X) , [Bel2(X), P l2(X)] and
computed from m1(.) and m2(.) thanks to formula (1).
dW (BI1(X), BI2(X)) is Wassertein’s distance between in-
tervals calculated by

dW ([a1, b1], [a2, b2]) =
√

[

a1 + b1
2

− a2 + b2
2

]2

+
1

3

[

b1 − a1
2

− b2 − a2
2

]2

, (24)

and Nc = 1/2|Θ|−1 is a factor to get dBI(m1,m2) ∈ [0, 1].

Because all criteria that are in strong agreement somehow
contain redundant (correlated) information and behave simi-
larly from decision-making standpoint, we propose to simplify

13We use the index T in the notation mT (·) to refer that the agreement is
true, and F in mF (·) to specify that the agreement is false.

14Here m1(·) = mjj′ (.), and m2(·) = mT (·) or m2(·) = mF (·).
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the original MCDM problem by keeping in the MCDM only
criteria that are non redundant The remaining criteria can be
eventually weighted by their degree of importance reflecting
the number of different criteria that are in agreement through
this BF-ICrA approach.

For instance, if one has a seven criteria MCDM problem
and if criteria C1, C2 and C3 are in strong agreement we
will only select one remaining criterion among {C1, C2, C3}
and we give it a weight of w1 + w2 + w3. Moreover if C4

and C5 are in strong agreement also we will only select one
remaining criterion among {C4, C5} and we give it a weight
of w4 + w5, and we will use the weight w6 for C6, and w7

for C7. Hence the original MCDM problem will reduce to
a four simplified MCDM problem that can be solved using
BF-TOPSIS method already presented in details in [3] and in
[8], or with AHP [4] if one prefers, or with any other chosen
method that the system-designer may prefer.

The strategy for selecting the most representative criterion
among a set of redundant criteria is not unique and depends
mainly on the cost necessary (i.e. human efforts, data mining,
computational resources, etc) for getting the values of the score
matrix of the problem under concern. The least costly criteria
may be a good option of selection.

In [38], we provided simple detailed examples for BF-ICrA
where we selected the representative criterion as being the one
with smallest index. So in the aforementioned example the
simplified MCDM problem will reduce to a M × 4 MCDM
problem involving only four criteria C1, C4, C6 and C7.

The BF-ICrA method proposed in this work allows also, in
principle, to make a refined analysis (if necessary) based on
IC matrices K

i
jj′ about the origin of disagreement between

criteria with respect to each alternative Ai in order to identify
the potential inconsistencies in original MCDM problem. This
aspect is not developed in this paper and has been left for
future investigations. It is worth mentioning that the analysis
of the number of redundant criteria versus time improvements
that could be proposed as an effective measure of performance
of this approach depends highly of the application under
consideration and the difficulty (and cost) to get the value
of each criteria.

VI. TWO APPL ICATIONS OF B F-ICRA

In this section we present two applications of the BF-ICrA
approach. The first one is for Global Positioning System (GPS)
Surveying Problems (GSP) presented in [39], and the second
one is for the car selection problem.

A. Application of BF-ICrA for the GPS surveying problem

GPS surveying is an NP-hard problem. For designing Global
Positioning System surveying network, a given set of earth
points must be observed consecutively. The survey cost is the
sum of the distances to go from one point to another one.
This kind of problems is hard to be solved with traditional
numerical methods. Here we use BF- ICrA to analyze an Ant
Colony Optimization (ACO) algorithm developed to provide

near-optimal solutions for Global Positioning System survey-
ing problem.

GPS satellites continuously transmit radio signals to the
Earth while orbiting it. A receiver, with unknown position on
Earth, has to detect and convert the signals received from all of
the satellites into useful measurements. These measurements
would allow a user to compute a three-dimensional coordinate
position: location of the receiver. Any GPS observation is
proven to have biases, hence, in order to survey an appro-
priate combination of measurement processing strategies must
be used to minimize their effect on the positioning results.
Differencing data collected simultaneously from two or more
GPS receivers to several GPS satellites allows to eliminate
or significantly reduce most of the biases. The GPS network
can be defined as set of stations (a1, a2, . . . an), which are
co-ordinated by placing receivers (X1, X2, . . . ) on them to
determine sessions (a1a2, a1a3, a2a3, . . . ) among them. The
problem is to search for the best order in which these sessions
can be organized to give the best schedule. Thus, the schedule
can be defined as a sequence of sessions to be observed
consecutively. The solution is represented by linear graph
with weighted edges. The nodes represent the stations and
the edges represent the moving cost. The objective function
of the problem is the cost of the solution which is the sum
of the costs (time) to move from one point to another one,
C(V ) =

∑

C(ai, aj), where aiaj is a session in solution V .
For example if the number of points (stations) is 4, a possible
solution is V = (a1, a3, a2, a4) and it can be represented by
linear graph a1 → a3 → a2 → a4. The moving costs are
as follows: C(a1, a3), C(a3, a2), C(a2, a4). Thus the cost of
the solution is C(V ) = C(a1, a3)+C(a3, a2)+C(a2, a4). In
practice, determining how each GPS receiver should be moved
between stations to be surveyed in an efficient manner taking
into account some important factors such as time, cost etc. The
problem is to search for the best order, with respect to the time,
in which these sessions can be observed to give the cheapest
schedule or to minimize C(V ). The initial data is a cost matrix,
which represents the cost (time, or distance) of moving a
receiver from one point to another. Solving such problems -
GSPs - to optimality requires a very high computational time.
Therefore, meta-heuristic methods are used to provide near-
optimal solutions for large networks within acceptable amount
of computational effort. In this paper, we consider the Max-
Min Ant System (MMAS) meta-heuristic [40] and we present
it briefly in the next subsection.

Real ants foraging for food lay down quantities of
pheromone (chemical cues) marking the path that they follow.
An isolated ant moves essentially at random but an ant
encountering a previously laid pheromone will detect it and
decide to follow it with high probability and thereby reinforce
it with a further quantity of pheromone. The repetition of the
above mechanism represents the auto-catalytic behavior of real
ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The ACO algorithm uses a colony of artificial ants that
behave as cooperative agents in a mathematics space were

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

412



they are allowed to search and reinforce pathways (solutions)
in order to find the optimal ones. The problem is represented
by graph and the ants walk on the graph to construct solu-
tions. The solution is represented by path in the graph. After
initialization of the pheromone trails, ants construct feasible
solutions, starting from random nodes, then the pheromone
trails are updated. At each step ants compute a set of feasible
moves and select the best one (according to some probabilistic
rules) to carry out the rest of the tour. The transition probability
pij , to chose the node j when the current node is i, is based
on the heuristic information ηij and pheromone trail level τij
of the move, where i, j = 1, . . . . , n.

pij =
ταijη

β
ij

∑

k∈Unused τ
α
ikη

β
ik

. (25)

The higher value of the pheromone and the heuristic infor-
mation, the more profitable is to select this move and resume
the search. In the beginning, the initial pheromone level is set
to a small positive constant value τ0 and then ants update this
value after completing the construction stage. ACO algorithms
adopt different criteria to update the pheromone level.

In our implementation we use MAX-MIN Ant System
(MMAS) [40], [41], which is ones of the best ant approaches.
In MMAS the main is using fixed upper bound τmax and lower
bound τmin of the pheromone trails. Thus accumulation of big
amount of pheromone by part of the possible movements and
repetition of same solutions is partially prevented. The main
features of MMAS are:

The aim of using only one solution is to make solution
elements, which frequently occur in the best found solutions,
get large reinforcement. Pheromone trail update is given by:

τij ← ρτij +∆τij , (26)

where

∆τij =

{

1/C(Vbest) if (i, j) ∈ best solution,
0 otherwise,

and Vbest is the iteration best solution and i, j = 1, . . . , n.
To avoid stagnation of the search, the range of possible

pheromone value on each movement is limited to an interval
[τmin, τmax]. τmax is an asymptotic maximum of τij and
τmax = 1/(1 − ρ)C(V ∗), while τmin = 0.087τmax. Where
V ∗ is the optimal solution, but it is unknown, therefore we
use Vbest instead of V ∗.

When all ants have completed their solutions, the
pheromone level is updated by applying the global update
rule. Only the pheromone corresponding to the best found
solution is increased by the similar to the MMAS way. The
global update rule is intended to provide a greater amount of
pheromone on the paths of the best solution. It is a kind of
intensification of the search around the best found solution.
We use heuristic information equals to one over the cost of
the session.

Here, we analyze the experimental results obtained using
MMAS algorithm. For this, we use real data from Malta and

Seychelles GPS networks composed of 38 sessions and 71
sessions respectively denoted GSP1 and GSP2. We use also 6
larger test problems range from 100 to 443 sessions denoted
GSP3,. . . , GSP8. The results are obtained by performing 30
independent runs, for every experiment. The details of our
MMAS implementation are given in [43]. So in our GSP
example we consider 8 GSP criteria Ci = GSPi, i = 1, . . . , 8
and six average costs as results A1, . . . , A6, where A1 is the
cost average for the first 5 runs, A2 the cost average for the
first 10 runs, A3 for the first 15 runs), . . . and finally C6 for
all the 30 runs. Table I shows the values of averaged costs
obtained for this problem. It corresponds to the transpose of
the score matrix S.

Hence in this problem M = 6 and N = 8, and S = [Sij ] is
a 6 × 8 score matrix. Based on classical ICrA approach, one
gets the following IC matrices15

K
µ and K

ν matrices given
in (27) and (28).

The element Kµ
jj′ of matrix K

µ expresses the degree of

agreement between criteria Cj = GSPj and Cj′ = GSPj′ ,
whereas the element Kν

jj′ of matrix K
ν expresses the degree

of disagreement between Cj = GSPj and Cj′ = GSPj′ .
Based on these results, one sees that ACO algorithm per-

forms similarly for GSP2, GSP4 GSP5 and GSP8 because
they are all in high agreement. Indeed µjj′ values for j, j′ ∈
{2, 4, 5, 8} are quite high (greater than 70%). They are GPS
networks with different numbers of sessions, but may have a
similar structure, therefore, the value of agreement is high. For
other networks, we can conclude that they have very different
structure.

What is worth noting is that there appears also a strong
agreement of GSP1 with GSP8 because µ18 = 0.87. But
because GSP8 is also in strong agreement with GSP2, GSP4,
GSP5 and with GSP1 it is logically expected that GSP1
should be also in agreement with GSP2, GSP4, GSP5, which
is unfortunately not the case based on this classical ICrA.
This example points out some inconsistency of ICrA result
because of the too crude method of estimation of the degree
of agreement and disagreement between criteria based on IFS.

Now if we consider the same example with the same score
matrix S (built from Table I), we obtain the following IC
Belief matrices16

K(θ) and K(θ̄) given by (29) and (30).
From ICBM K(θ) and K(θ̄) we compute the matrix D(θ)
of distance of mjj′ (.) to the full agreement state with BBA
mF (θ) = 1 based on dBI(.) distance. We get the following
distances to full agreement D(θ) given in (31).

The element Djj′ represents the agreement distance be-
tween Cj and Cj′ , the lower the better. From the values of
elements of D(θ) matrix one sees clearly that ACO performs
similarly for GSP2, GSP4 and GSP5 because distances D24,

15For presentation convenience and due to typesetting column width, we
decompose et present the IC matrix K = [Kjj′ = (Kµ

jj′
,Kν

jj′
)] into two

distinct matrices K
µ = [Kµ

jj′
] and K

ν = [Kν
jj′

].
16For presentation convenience, the ICBM K = [Kjj′ =

(mjj′ (θ), mjj′ (θ̄), mjj′ (θ∪θ̄))] is decomposed into three matrices K(θ) =

[Kθ
jj′

= mjj′ (θ)], K(θ̄) = [K θ̄
jj′

= mjj′ (θ̄)] and K(θ ∪ θ̄) = [Kθ∪θ̄
jj′

=

1−mjj′ (θ) −mjj′ (θ̄)].
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A1 A2 A3 A4 A5 A6

C1 = GSP1 899.00 898.00 898.33 898.50 899.40 899.50
C2 = GSP2 916.40 915.60 922.47 924.80 924.72 922.07
C3 = GSP3 41336.40 41052.40 40991.93 40935.90 40832.20 40910.60
C4 = GSP4 3244.80 3303.30 3327.00 3344.55 3345.60 3341.93
C5 = GSP5 1656.20 1660.80 1663.93 1664.95 1666.96 1665.90
C6 = GSP6 1673.60 1683.50 1690.73 1688.75 1690.24 1692.67
C7 = GSP7 3420.00 3430.70 3433.13 3426.85 3429.44 3428.57
C8 = GSP8 3758.20 3755.70 3758.73 3760.50 3760.80 3765.80

Table I
TRANS POS E OF THE S CORE MATRIX S = [Sij ] OF GS P PROB L EM.

K
µ =





















C1 C2 C3 C4 C5 C6 C7 C8

C1 1 0.60 0.27 0.67 0.73 0.67 0.33 0.87
C2 0.60 1 0.27 0.80 0.73 0.53 0.47 0.73
C3 0.27 0.27 1 0.07 0 0.20 0.40 0.13
C4 0.67 0.80 0.07 1 0.93 0.73 0.53 0.80
C5 0.73 0.73 0 0.93 1 0.80 0.60 0.87
C6 0.67 0.53 0.20 0.73 0.80 1 0.67 0.80
C7 0.33 0.47 0.40 0.53 0.60 0.67 1 0.47
C8 0.87 0.73 0.13 0.80 0.87 0.80 0.47 1





















(27)

K
ν =





















C1 C2 C3 C4 C5 C6 C7 C8

C1 0 0.40 0.73 0.33 0.27 0.33 0.67 0.13
C2 0.40 0 0.73 0.20 0.27 0.47 0.53 0.27
C3 0.73 0.73 0 0.93 1 0.80 0.60 0.87
C4 0.33 0.20 0.93 0 0.07 0.27 0.47 0.20
C5 0.27 0.27 1 0.07 0 0.20 0.40 0.13
C6 0.33 0.47 0.80 0.27 0.20 0 0.33 0.20
C7 0.67 0.53 0.60 0.47 0.40 0.33 0 0.53
C8 0.13 0.27 0.87 0.20 0.13 0.20 0.53 0





















(28)

K(θ) =





















C1 C2 C3 C4 C5 C6 C7 C8

C1 0.9098 0.6732 0.1791 0.5968 0.6106 0.5620 0.1659 0.7789
C2 0.6732 0.9546 0.0364 0.8983 0.8783 0.8341 0.5532 0.7016
C3 0.1791 0.0364 0.8722 0.0172 0.0154 0.0178 0.0366 0.1137
C4 0.5968 0.8983 0.0172 0.9552 0.9146 0.9163 0.7395 0.6092
C5 0.6106 0.8783 0.0154 0.9146 0.8917 0.8778 0.6922 0.6315
C6 0.5620 0.8341 0.0178 0.9163 0.8778 0.9060 0.7630 0.6441
C7 0.1659 0.5532 0.0366 0.7395 0.6922 0.7630 0.8587 0.2484
C8 0.7789 0.7016 0.1137 0.6092 0.6315 0.6441 0.2484 0.8508





















(29)

K(θ̄) =





















C1 C2 C3 C4 C5 C6 C7 C8

C1 0.0207 0.1941 0.5385 0.2578 0.1757 0.2117 0.5335 0.0399
C2 0.1941 0.0166 0.8323 0.0486 0.0298 0.0513 0.1808 0.0682
C3 0.5385 0.8323 0.0117 0.9002 0.8754 0.8548 0.7062 0.5486
C4 0.2578 0.0486 0.9002 0.0187 0.0216 0.0204 0.0606 0.1193
C5 0.1757 0.0298 0.8754 0.0216 0.0170 0.0201 0.0558 0.0832
C6 0.2117 0.0513 0.8548 0.0204 0.0201 0.0154 0.0390 0.0726
C7 0.5335 0.1808 0.7062 0.0606 0.0558 0.0390 0.0110 0.3495
C8 0.0399 0.0682 0.5486 0.1193 0.0832 0.0726 0.3495 0.0100





















(30)

D(θ) = [Djj′ = dBI (mjj′ , mT )] =





















C1 C2 C3 C4 C5 C6 C7 C8

C1 0.0590 0.2633 0.6845 0.3331 0.2892 0.3314 0.6893 0.1406
C2 0.2633 0.0321 0.8987 0.0767 0.0803 0.1135 0.3230 0.1950
C3 0.6845 0.8987 0.0774 0.9418 0.9306 0.9192 0.8381 0.7241
C4 0.3331 0.0767 0.9418 0.0326 0.0566 0.0552 0.1706 0.2668
C5 0.2892 0.0803 0.9306 0.0566 0.0679 0.0770 0.1958 0.2404
C6 0.3314 0.1135 0.9192 0.0552 0.0770 0.0592 0.1494 0.2293
C7 0.6893 0.3230 0.8381 0.1706 0.1958 0.1494 0.0849 0.5626
C8 0.1406 0.1950 0.7241 0.2668 0.2404 0.2293 0.5626 0.0892





















(31)
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D25, and D45 are very small. Also we see that GSP6 is also
in good agreement with GSP4 and GSP5 but is relatively less
in agreement with GSP2 because D26 = 0.1135.

As we see there is no inconsistency in this new BF-ICrA
method with respect to what provides classical ICrA because
with BF-ICrA we have a much better and precise estimation
of degrees of agreement and disagreement between criteria
for making the analysis thanks to a proper belief functions
modeling.

B. Application of BF-ICrA for the car selection problem

Let’s consider another concrete problem related to car
selection. Suppose one has a limited budget of 12000e and
one wants to buy a new car based on multiple criteria. A set of
potential cars under 12Ke that present interest with respect
to some criteria is obtained initially from a search on the web.
How to apply BF-ICrA to simplify the selection process, and
how to make the final choice of the car to buy?

Here we consider a set of ten small urban cars
{A1, A2, . . . , A10} as follows:

• A1 = DACIA SANDERO SCe 75;
• A2 = RENAULT CLIO TCe 75;
• A3 = SUZUKI CELERIO 1.0 VVT Avantage;
• A4 = FORD KA+ Ka+ 1.2 70 ch S&S Essential;
• A5 = MITSUBISHI SPACE STAR 1.0 MIVEC 71;
• A6 = KIA PICANTO 1.0 essence MPi 67 ch BVM5;
• A7 = HYUNDAI I10 1.0 66 BVM5 Initia;
• A8 = CITROEN C1 VTi 72 S&S Live;
• A9 = TOYOTA AYGO 1.0 VVT-i x;
• A10 = PEUGEOT 108 VTi 72ch S&S BVM5 Like;
We consider the following seventy criteria related to price,

dimensions, engine and consumption of the car for making the
choice of the best car to buy:

• C1 is the price (e);
• C2 is the length (mm);
• C3 is the height (mm);
• C4 is the width without mirror (mm);
• C5 is the wheelbase (mm);
• C6 is the max loading volume (L);
• C7 is the tank capacity (L);
• C8 is the unloaded weight (Kg);
• C9 is the cylinder volume(cm3);
• C10 is the acceleration 0-100 Km/h (s);
• C11 is the max speed (Km/h);
• C12 is the power (Kw);
• C13 is the horse power (hp);
• C14 is the mixed consumption (L/100Km);
• C15 is the extra-urban consumption (L/100Km);
• C16 is the urban consumption (L/100Km);
• C17 is the CO2 emission level (g/Km)
The score matrix S = [Sij ] is built from information

extracted from car-makers technical characteristics available
on the world wide web17site. For the chosen cars, the corre-
sponding original score matrix is given by (32).

17https://automobile.choisir.com/comparateur/voitures-neuves

For criteria C1, C4, C8, and C14 to C17 we consider that
smaller is better. For other criteria larger is better. To make
the preference order homogeneous in the score matrix, we
multiply values of columns C1, C4, C8, and C14 to C17 by -1
so that our MCDM problem is described by a modified score
matrix with homogeneous preference order (“larger is better”)
for each column before applying the BF-ICrA method.

After applying BF-ICrA method (with PCR6 fusion rule in
step 2) we obtain the following IC Belief matrices K(θ̄) =
[mjj′ (θ)], K(θ̄) = [mjj′ (θ̄)] and K(θ ∪ θ̄)18 given by (33)
and (34).

From ICBM K(θ) and K(θ̄) we compute the matrix
D(θ) = [Djj′ = dBI(mjj′ ,mT )] of distance of the BBA
mjj′ (.) with respect to the full agreement state having BBA
mF (θ) = 1 based on dBI(.) distance. We get the distances to
full agreement given in (35).

The element Djj′ represents the agreement distance be-
tween Cj and Cj′ , the lower the better.

From the analysis of elements of Djj′ one sees clearly that
criteria C14, C15, C16 and C17 are in very strong agreement
and will behave very similarly for the preference ordering
which is not very surprising because they are all related
with energy consumption. Hence only one criteria among
of these four criteria be used to simplify the MCDM car
selection problem. We decide to keep only criteria C16 (urban
consumption) in simplified MCD because urban displacements
will be the main use of the car. One sees clearly that C2,
C5 and C7 are also in very strong agreement and so they
will behave very similarly for the preference ordering. One
decides to keep only the criterion C7 (tank capacity) which we
consider more important than criteria C2 and C5 because it is
linked to autonomy of the car. From BF-ICrA, one sees that
tank capacity is linked with the dimensions of the car (mainly
its length and wheelbase), which makes perfectly sense. Also
we can note that criteria C12 and C13 are not too far since
their distance is only 0.1403 and we can simplify a bit more
the MCDM problem by taking only criterion C12 (the power)
instead of keeping C12 and C13.

Thanks to BF-ICrA, we can simplify the original MCDM
car selection problem by removing redundant criteria and
keeping only those which bring useful information. So our
simplified MCDM car selection problem is characterized by
the 10× 11 score matrix given in (36).

From this reduced score matrix, we can apply classical
MCDM techniques to find the final preference order for
making final decision and selectioning the car to buy. For
this, one needs to define the importance imp(Cj) of each
criteria Cj involved in the score matrix above. For simplicity,
the importance of each criteria Cj is expressed as a value
in {1, 2, 3, 4, 5}, where 1 means the least important, and 5
means the most important. In this car selection example we
take imp(C1) = imp(C16) = 5, imp(C6) = imp(C7) = 4,
imp(C10) = imp(C11) = imp(C12) = 3, imp(C8) =

18The ICBM K(θ∪ θ̄) is obtained from K(θ) and K(θ̄) by taking K(θ∪
θ̄) = [Kθ∪θ̄

jj′
= 1−mjj′ (θ) −mjj′ (θ̄)].
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

A1 7990 4069 1523 1733 2589 1200 50 969 998 14.2 158 55 75 5.2 4.5 6.5 117
A2 10990 4063 1448 1732 2589 1146 45 1138 898 12.3 178 56 75 5 4.2 6.3 113
A3 9790 3600 1530 1600 2425 1053 35 815 998 13.9 155 50 68 3.9 3.6 4.5 89
A4 10350 3941 1524 1774 2490 1029 42 1063 1198 14.6 164 51 70 5.1 4.4 6.3 117
A5 10990 3795 1505 1665 2450 910 35 865 999 16.7 172 52 71 4.6 4.1 5.3 105
A6 11000 3595 1485 1595 2400 1010 35 860 998 14.3 161 49 67 4.4 3.7 5.6 106
A7 11050 3665 1500 1660 2385 1046 40 1008 998 14.7 156 49 66 5.1 4.3 6.5 117
A8 11550 3466 1465 1615 2340 780 35 840 998 14 160 53 72 3.7 3.4 4.3 85
A9 11590 3465 1460 1615 2340 812 35 915 998 13.8 160 51 69 4.1 3.6 4.9 93
A10 11950 3475 1460 1615 2340 780 35 840 998 12.6 160 53 72 3.7 3.4 4.3 85
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K(θ) =


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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 0.7610 0.6456 0.6005 0.0722 0.6689 0.6518 0.6988 0.1152 0.3728 0.3624 0.1885 0.3273 0.3528 0.0836 0.0593 0.0981 0.1024

C2 0.6456 0.8905 0.4994 0.0281 0.8716 0.7718 0.8635 0.0579 0.1022 0.2123 0.5406 0.6069 0.6062 0.0572 0.0411 0.0746 0.0760

C3 0.6005 0.4994 0.8352 0.2913 0.4792 0.5196 0.4764 0.4315 0.5934 0.5300 0.1100 0.1676 0.2137 0.2570 0.1837 0.3016 0.2678

C4 0.0722 0.0281 0.2913 0.8523 0.0403 0.0899 0.0402 0.7553 0.0688 0.1874 0.0941 0.1048 0.1066 0.7690 0.7849 0.7521 0.7520

C5 0.6689 0.8716 0.4792 0.0403 0.8730 0.7741 0.8602 0.0684 0.0588 0.1916 0.5275 0.6167 0.6093 0.0889 0.0650 0.1098 0.1148

C6 0.6518 0.7718 0.5196 0.0899 0.7741 0.8063 0.7533 0.0863 0.1126 0.2059 0.3050 0.3777 0.4096 0.0528 0.0493 0.0528 0.0572

C7 0.6988 0.8635 0.4764 0.0402 0.8602 0.7533 0.9492 0.0455 0.1989 0.1959 0.5019 0.6660 0.6169 0.0964 0.0783 0.1028 0.1371

C8 0.1152 0.0579 0.4315 0.7553 0.0684 0.0863 0.0455 0.8060 0.2495 0.3144 0.0877 0.1262 0.1472 0.7398 0.7042 0.7632 0.7424

C9 0.3728 0.1022 0.5934 0.0688 0.0588 0.1126 0.1989 0.2495 0.8901 0.6005 0.0252 0.0187 0.0211 0.1409 0.1061 0.1684 0.1092

C10 0.3624 0.2123 0.5300 0.1874 0.1916 0.2059 0.1959 0.3144 0.6005 0.7484 0.1268 0.0447 0.0500 0.1628 0.1087 0.2057 0.1720

C11 0.1885 0.5406 0.1100 0.0941 0.5275 0.3050 0.5019 0.0877 0.0252 0.1268 0.7809 0.5442 0.4851 0.2404 0.2154 0.2709 0.2783

C12 0.3273 0.6069 0.1676 0.1048 0.6167 0.3777 0.6660 0.1262 0.0187 0.0447 0.5442 0.7845 0.7665 0.2940 0.2388 0.3387 0.3693

C13 0.3528 0.6062 0.2137 0.1066 0.6093 0.4096 0.6169 0.1472 0.0211 0.0500 0.4851 0.7665 0.7765 0.2708 0.2234 0.3128 0.3303

C14 0.0836 0.0572 0.2570 0.7690 0.0889 0.0528 0.0964 0.7398 0.1409 0.1628 0.2404 0.2940 0.2708 0.8921 0.8678 0.8986 0.9066

C15 0.0593 0.0411 0.1837 0.7849 0.0650 0.0493 0.0783 0.7042 0.1061 0.1087 0.2154 0.2388 0.2234 0.8678 0.8628 0.8634 0.8735

C16 0.0981 0.0746 0.3016 0.7521 0.1098 0.0528 0.1028 0.7632 0.1684 0.2057 0.2709 0.3387 0.3128 0.8986 0.8634 0.9141 0.9168

C17 0.1024 0.0760 0.2678 0.7520 0.1148 0.0572 0.1371 0.7424 0.1092 0.1720 0.2783 0.3693 0.3303 0.9066 0.8735 0.9168 0.9263
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K(θ̄) =


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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 0.0073 0.0559 0.0413 0.5165 0.0452 0.0334 0.0503 0.3839 0.1473 0.0725 0.2356 0.1333 0.1205 0.5677 0.6001 0.5615 0.5636

C2 0.0559 0.0232 0.2781 0.8331 0.0262 0.0469 0.0527 0.7364 0.2368 0.2329 0.1259 0.1136 0.1168 0.8256 0.8285 0.8187 0.8251

C3 0.0413 0.2781 0.0199 0.4166 0.2692 0.1566 0.3470 0.2421 0.0132 0.0353 0.5231 0.4722 0.4097 0.5242 0.5658 0.5041 0.5527

C4 0.5165 0.8331 0.4166 0.0164 0.7815 0.6067 0.8499 0.0324 0.3318 0.2199 0.5259 0.5691 0.5472 0.0623 0.0396 0.0880 0.0972

C5 0.0452 0.0262 0.2692 0.7815 0.0222 0.0407 0.0434 0.6918 0.3119 0.2453 0.1233 0.0963 0.1065 0.7609 0.7695 0.7530 0.7560

C6 0.0334 0.0469 0.1566 0.6067 0.0407 0.0153 0.0724 0.5777 0.3117 0.2007 0.2177 0.1845 0.1727 0.7491 0.7309 0.7676 0.7671

C7 0.0503 0.0527 0.3470 0.8499 0.0434 0.0724 0.0175 0.8074 0.1993 0.2931 0.1976 0.1074 0.1416 0.8036 0.8032 0.8152 0.7871

C8 0.3839 0.7364 0.2421 0.0324 0.6918 0.5777 0.8074 0.0166 0.0819 0.1206 0.5366 0.4927 0.4454 0.0566 0.0559 0.0569 0.0753

C9 0.1473 0.2368 0.0132 0.3318 0.3119 0.3117 0.1993 0.0819 0.0004 0.0085 0.4128 0.4864 0.4643 0.2182 0.2972 0.1824 0.2371

C10 0.0725 0.2329 0.0353 0.2199 0.2453 0.2007 0.2931 0.1206 0.0085 0.0045 0.2490 0.4253 0.4127 0.2898 0.3474 0.2535 0.3006

C11 0.2356 0.1259 0.5231 0.5259 0.1233 0.2177 0.1976 0.5366 0.4128 0.2490 0.0096 0.0790 0.1087 0.4037 0.3761 0.4053 0.4043

C12 0.1333 0.1136 0.4722 0.5691 0.0963 0.1845 0.1074 0.4927 0.4864 0.4253 0.0790 0.0157 0.0179 0.3934 0.4018 0.3820 0.3633

C13 0.1205 0.1168 0.4097 0.5472 0.1065 0.1727 0.1416 0.4454 0.4643 0.4127 0.1087 0.0179 0.0163 0.4209 0.4233 0.4092 0.4013

C14 0.5677 0.8256 0.5242 0.0623 0.7609 0.7491 0.8036 0.0566 0.2182 0.2898 0.4037 0.3934 0.4209 0.0247 0.0244 0.0282 0.0271

C15 0.6001 0.8285 0.5658 0.0396 0.7695 0.7309 0.8032 0.0559 0.2972 0.3474 0.3761 0.4018 0.4233 0.0244 0.0181 0.0339 0.0332

C16 0.5615 0.8187 0.5041 0.0880 0.7530 0.7676 0.8152 0.0569 0.1824 0.2535 0.4053 0.3820 0.4092 0.0282 0.0339 0.0257 0.0272

C17 0.5636 0.8251 0.5527 0.0972 0.7560 0.7671 0.7871 0.0753 0.2371 0.3006 0.4043 0.3633 0.4013 0.0271 0.0332 0.0272 0.0240
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D(θ) =
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 0.1401 0.2225 0.2434 0.7318 0.2054 0.2114 0.1901 0.6506 0.4113 0.3907 0.5493 0.4320 0.4128 0.7489 0.7766 0.7383 0.7369

C2 0.2225 0.0709 0.3946 0.9034 0.0827 0.1471 0.0977 0.8414 0.5985 0.5349 0.3081 0.2659 0.2675 0.8848 0.8945 0.8726 0.8750

C3 0.2434 0.3946 0.1014 0.5689 0.4016 0.3319 0.4383 0.4161 0.2387 0.2821 0.7145 0.6605 0.6078 0.6368 0.6948 0.6039 0.6445

C4 0.7318 0.9034 0.5689 0.0904 0.8721 0.7634 0.9054 0.1515 0.6548 0.5438 0.7242 0.7382 0.7272 0.1545 0.1370 0.1742 0.1780

C5 0.2054 0.0827 0.4016 0.8721 0.0805 0.1436 0.0958 0.8146 0.6524 0.5514 0.3145 0.2537 0.2618 0.8372 0.8536 0.8225 0.8214

C6 0.2114 0.1471 0.3319 0.7634 0.1436 0.1165 0.1673 0.7520 0.6222 0.5261 0.4767 0.4227 0.4001 0.8501 0.8432 0.8589 0.8565

C7 0.1901 0.0977 0.4383 0.9054 0.0958 0.1673 0.0355 0.8820 0.5295 0.5681 0.3585 0.2302 0.2715 0.8541 0.8632 0.8565 0.8253

C8 0.6506 0.8414 0.4161 0.1515 0.8146 0.7520 0.8820 0.1171 0.4588 0.4349 0.7325 0.6920 0.6597 0.1689 0.1890 0.1558 0.1746

C9 0.4113 0.5985 0.2387 0.6548 0.6524 0.6222 0.5295 0.4588 0.0636 0.2331 0.7125 0.7476 0.7367 0.5695 0.6200 0.5405 0.5947

C10 0.3907 0.5349 0.2821 0.5438 0.5514 0.5261 0.5681 0.4349 0.2331 0.1466 0.5893 0.7070 0.6988 0.5852 0.6389 0.5466 0.5845

C11 0.5493 0.3081 0.7145 0.7242 0.3145 0.4767 0.3585 0.7325 0.7125 0.5893 0.1294 0.2887 0.3331 0.5907 0.5922 0.5748 0.5704

C12 0.4320 0.2659 0.6605 0.7382 0.2537 0.4227 0.2302 0.6920 0.7476 0.7070 0.2887 0.1292 0.1403 0.5571 0.5907 0.5278 0.5030

C13 0.4128 0.2675 0.6078 0.7272 0.2618 0.4001 0.2715 0.6597 0.7367 0.6988 0.3331 0.1403 0.1340 0.5819 0.6086 0.5541 0.5411

C14 0.7489 0.8848 0.6368 0.1545 0.8372 0.8501 0.8541 0.1689 0.5695 0.5852 0.5907 0.5571 0.5819 0.0705 0.0842 0.0682 0.0632

C15 0.7766 0.8945 0.6948 0.1370 0.8536 0.8432 0.8632 0.1890 0.6200 0.6389 0.5922 0.5907 0.6086 0.0842 0.0849 0.0902 0.0842

C16 0.7383 0.8726 0.6039 0.1742 0.8225 0.8589 0.8565 0.1558 0.5405 0.5466 0.5748 0.5278 0.5541 0.0682 0.0902 0.0584 0.0575

C17 0.7369 0.8750 0.6445 0.1780 0.8214 0.8565 0.8253 0.1746 0.5947 0.5845 0.5704 0.5030 0.5411 0.0632 0.0842 0.0575 0.0509
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C1 C3 C4 C6 C7 C8 C9 C10 C11 C12 C16

A1 7990 1523 1733 1200 50 969 998 14.2 158 55 6.5
A2 10990 1448 1732 1146 45 1138 898 12.3 178 56 6.3
A3 9790 1530 1600 1053 35 815 998 13.9 155 50 4.5
A4 10350 1524 1774 1029 42 1063 1198 14.6 164 51 6.3
A5 10990 1505 1665 910 35 865 999 16.7 172 52 5.3
A6 11000 1485 1595 1010 35 860 998 14.3 161 49 5.6
A7 11050 1500 1660 1046 40 1008 998 14.7 156 49 6.5
A8 11550 1465 1615 780 35 840 998 14 160 53 4.3
A9 11590 1460 1615 812 35 915 998 13.8 160 51 4.9
A10 11950 1460 1615 780 35 840 998 12.6 160 53 4.3
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imp(C9) = 2 and imp(C3) = imp(C4) = 1, which means
that the price of the car and its urban consumption are the most
important criteria for us, and its height and its width are the
least important ones. From these importance values and after
normalization, we get the following vector of relative weights
of criteria

w = [
5

33

1

33

1

33

4

33

4

33

2

33

2

33

3

33

3

33

3

33

5

33
]

When using different BF-TOPSIS methods [3], [8], we will
obtain the following preference orders

• with BF-TOPSIS1 method: A2 ≻ A1 ≻ A4 ≻ A7 ≻
A5 ≻ A6 ≻ A10 ≻ A9 ≻ A8 ≻ A3

• with BF-TOPSIS2 method: A2 ≻ A1 ≻ A4 ≻ A7 ≻
A5 ≻ A6 ≻ A10 ≻ A9 ≻ A8 ≻ A3

• with BF-TOPSIS3 method: A2 ≻ A1 ≻ A4 ≻ A7 ≻
A5 ≻ A10 ≻ A9 ≻ A6 ≻ A8 ≻ A3

• with BF-TOPSIS4 method: A2 ≻ A1 ≻ A4 ≻ A7 ≻
A5 ≻ A10 ≻ A9 ≻ A6 ≻ A8 ≻ A3

When using classical AHP method [4], we obtain the following
preference order19.

A2 ≻ A1 ≻ A4 ≻ A7 ≻ A5 ≻ A6 ≻ A9 ≻ A8 ≻ A3 ≻ A10

From the results of the BF-TOPSIS methods and AHP
(with double normalization of score matrix), one sees that
A2 car (RENAULT CLIO TCe 75) will be the best car to
buy, and the car A1 (DACIA SANDERO SCe 75) will be
the second best car to buy, whereas A3 (SUZUKI CELERIO
1.0 VVT Avantage) will be the worst one according to BF-
TOPSIS or A10 according to AHP. Because the AHP and BF-
TOPSIS methods are based on very different principles it is
not surprising that preference order can change in the results
of the methods, but what is most important from decision-
making standpoint is the stability of the order of first best
solutions. In this example, the car A2 is always the best car
selection to make with BF-TOPSIS or with AHP method based
on the chosen criteria involved in this MCDM problem and
their importance weights.

VII. CONCL US ION

In this paper we have presented a new method called BF-
ICrA which helps to simplify (when it is possible) Multi-
Criteria Decision-Making problems based on inter-criteria
analysis and belief functions. This method is in the spirit
of Atanassov’s method but proposes a better construction
of Inter-Criteria Matrix that fully exploits all information of
the score matrix, and the closeness measure of agreement
between criteria based on belief interval distance. In fact,
BF-ICrA proposes a more precise and refined method for
estimating the degree of agreement and disagreement between
criteria which use the whole information available in the

19Here we did apply a two steps normalization of the score matrix. At
first we normalize S according to (2) and in a second step each column
is renormalized by dividing each element of the column by the sum of its
elements. If we apply only first normalization step we obtain with AHP the
preference order A2 ≻ A4 ≻ A1 ≻ A7 ≻ A5 ≻ A6 ≻ A9 ≻ A8 ≻
A10 ≻ A3.

data. This BF-ICrA approach could, in theory, also deal
with imprecise or missing score values using the technique
presented in [8]. We have shown two concrete applications
of BF-ICrA method. The first one related with the GPS
surveying problem has been addressed in order to overcome
the potential inconsistencies of the results generated by the
classical ICrA method. Instances containing from 38 to 443
sessions have been solved using MMAS algorithm and we did
compare the performance of ACO algorithms applied to eight
GPS networks. Our results shows that ACO can provide fast
near-optimal solution for observing GPS networks, and could
help to improve the services based on GPS networks. From
this new Inter-Criteria Analysis we are able to identify some
relations and dependences between the considered eight GSPs
and MMAS algorithm performance. In our second application,
we have shown how a typical (no so simple) multi-criteria car
selection problem can be addressed and solved by this BF-
ICrA method coupled with BF-TOPSIS methods. This shows
the usefulness and potential of this new technique to solve
MCDM problems.
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Abstract—Multi-sensor fusion strategies have been widely
applied in Human Activity Recognition (HAR) in Body Sensor
Networks (BSNs). However, the sensory data collected by BSNs
systems are often uncertain or even incomplete. Thus, designing a
robust and intelligent sensor fusion strategy is necessary for high-
quality activity recognition. In this paper, Dezert-Smarandache
Theory (DSmT) is used to develop a novel sensor fusion strategy
for HAR in BSNs, which can effectively improve the accuracy
of recognition. Specifically, in the training stage, the Kernel
Density Estimation (KDE) based models are first built and
then precisely selected for each specific activity according to
the proposed discriminative functions. After that, a structure
of Basic Belief Assignment (BBA) can be constructed, using the
relationship between the test data of unknown class and the
selected KDE models of all considered types of activities. In order
to deal with the conflict between the obtained BBAs, Proportional
Conflict Redistribution-6 (PCR6) is applied to fuse the acquired
BBAs. Moreover, the missing data of the involved sensors are
addressed as ignorance in the framework of the DSmT without
manual interpolation or intervention. Experimental studies on
two real-world activity recognition datasets (The OPPORTU-
NITY dataset; Daily and Sports Activity Dataset (DSAD)) were
conducted, and the results showed the superiority of our proposed
method over some state-of-the-art approaches proposed in the
literature.

Keywords: HAR, Multi-sensor fusion, Belief function theory,
KDE, DSmT.

I. INTRODUCTION

Human Activity Recognition (HAR) has spawned intense
researches in the past decades and continues to be an active
research area [1], [2], [3], [4]. These HAR systems have en-
abled several practical applications, such as health monitoring
[5], physical activity [6] and gesture detection. Recently, multi-
sensor fusion for activity recognition is playing an increasing
role in HAR field and many strategies have been proposed
(see [7] for more references). Generally speaking, multi-sensor
fusion strategies can be mainly categorized into three level
categories depending on the abstraction level used for data

processing: data-fusion level [8], feature-fusion level [9] and
decision-level fusion [10]. Among all these three fusion levels,
decision-level fusion output is a unique decision obtained from
local decision of multiple (homogeneous or heterogeneous)
sensors. The fusion in this level has many advantages: com-
munication bandwidth saving, allowing the combination of
the heterogeneous sensors. In this paper, the main topic thus
focus on decision-level fusion area. Two most common used
approaches for this level of fusion are majority voting [11] and
naive bayes [12]. However, complex sensory data, especially
when these data are uncertain or even incomplete, make these
two methods unsuitable for HAR. Two classical scenarios are
described as follows:

(a) Uncertain Data Collected by 
Right Knee Sensor in OPPORTUNITY Dataset.

(b) Percentage of Missing data Collected 
by Right Knee Sensor in OPPORTUNITY Dataset.

Figure 1. Uncertain and incomplete sensory data in OPPORTUNITY dataset.

1) Uncertain sensory data in HAR problem. In order
to intuitively discuss the uncertainty of sensory data,
one of the involved sensor in UCI OPPORTUNITY
dataset [13], [14] was randomly selected and parts of the
original data of three activities derived from the chosen
sensor were drawn in Fig.1(a). As we can see from
Fig.1(a), some objects that are very close can sometimes
truly originate from different classes. Such objects are

Originally published as: Y. Dong, X. Li, J. Dezert, M.O. Khyam, Md. Noor-A-Rahim, S. Ge, Dezert-
Smarandache Theory-Based Fusion for Human Activity Recognition in Body Sensor Networks, IEEE 
Trans. on Industrial Informatics, Vol. 16(11), pp. 7138–7149, November 2020, and reprinted with 
permission.
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really difficult to classify correctly into a particular class
using the given information. In this case, we call this
data uncertain when it can belong to different specific
classes with probability mass assignments to estimate;

2) Incomplete sensory data in HAR problem. Miss-
ing data frequently occur during the measurement of
wearable-based activity recognition. As we can see in
Fig.1(b), sensory data with incomplete pattern occupy an
important proportion which cannot be easily neglected
in OPPORTUNITY dataset. The traditional ways to cope
with these feature vectors, which include missing data,
are to interpolate or delete the whole vector. However,
interpolation or deletion is not the wise choice which
may bring noise and information loss to the recognition
system.

The aforementioned discussions motivate our study, where
HAR in Body Sensor Networks (BSNs) is implemented based
on belief function theory [15]. Belief function allows to model
uncertainty and to fuse Basic Belief Assignments (BBAs) built
from sensors’ measurements. Within this theory, information
fusion relies on the use of a combination rule allowing the
pieces of evidences (drawn from sensor readings) expressed
in a common frame of discernment to be combined. Among
all available combination rules, Dempster’s rule proposed by
Shafer in Dempster-Shafer theory [15] is the most well-known
rule still used in many applications even if it remains very
controversial. Recently, Chen et al. [16] proposed a new
method based on Dempster-Shafer theory to improve human
action recognition by using the fusion of depth camera and
inertial sensors. Although the recognition results mentioned
in [16] is good, two key issues are ignored by authors: 1)
In Dempster-Shafer theory, there exists an assumption that
hypotheses considered should be exclusive. However, in HAR,
activities to be identified often fail to satisfy the characteristics
of mutual exclusion. For example, the intersection between
“Walking” and “Running” can be defined as “Standing” or
intermediate transition state “Walking to Running” [17]; 2)
Dempster’s rule cannot solve high conflict issues and even
very low conflict issues in specific cases, which have been
widely discussed in [18], [19].

To solve those mentioned drawbacks in Dempster-
Shafer theory, Dezert and Smarandache proposed Dezert-
Smarandache Theory (DSmT) [18] to solve multi-sensor fu-
sion problems, with more reasonable assumptions and better
combination rules, which is more appropriate to handle HAR
problems. In this paper, a new use of DSmT is proposed
to solve HAR issues thanks to a novel decision-level fusion
strategy based on DSmT. Such DSmT-based HAR can be used
for online activity recognition system because of its higher
recognition accuracy and lower recognition delay, which can
meet the required response speed in real-time recognition sys-
tems (less than 200ms) [2]. Specifically, the main contributions
of this work are summarized as follows:

• A novel DSmT-based fusion strategy for HAR in BSNs
is proposed;

• Kernel Density Estimation (KDE) models are constructed
based on the sensor readings, and those selected KDE
models of all considered classes are applied to calculate
BBAs in DSmT;

• The missing data in original sensor readings are also
modeled by vacuous BBA (i.e. the total ignorance source
of evidence) in DSmT without any manual interpolation;

• The efficiency of our fusion system with two activities
recognition open datasets is demonstrated.

This paper is organized as follows: Section II provides an
inventory of the basic concepts of DSmT. Section III provides
a description of the new proposed fusion method. Section IV
includes the experimental results and discussions. The final
section V contains a brief conclusion.

II. BASICS OF DSMT

In DSmT framework, the BBAs are defined on the so-
called hyper-power set (or Dedekind’s lattice) denoted DΘ !

(Θ,∪,∩) whose cardinalities follows Dedekind’s numbers
sequence, see [18], Vol.1 for details and examples. A (gen-
eralized) BBA, called a mass function, m(·) is defined by
the mapping: DΘ #→ [0, 1], verifying m(∅) = 0 and∑

A∈DΘ m(A) = 1.
To palliate the drawbacks of Demspter’s rule, Martin et.al

[20] proposed a very interesting combination rule: PCR6. Due
to its good performance, it is widely applied in recent applica-
tions. We recall that the PCR6 formula for the combination of
two BBAs coincides with PCR5 formula originally developed
by Smarandache and Dezert in [18]. The combination of two
BBAs m1(.) and m2(.) by the PCR5 rule is given as follows:
for mPCR5(∅) = 0 and ∀A ∈ DΘ

mPCR6(A) = mPCR5(A) = m12(A)+
∑

B∈DΘ\{A}|A∩B=∅

[
m1(A)2m2(B)

m1(A) +m2(B)
+

m2(A)2m1(B)

m2(A) +m1(B)
],

(1)
where m12(A) =

∑
B,C∈DΘ|B∩C=Am1(B)m2(C).

The combinations of more than two BBAs altogether with
PCR5 and with PCR6 fusion rule in general provide different
results. The choice of PCR6 with respect to PCR5 was
justified at first by Martin and Osswald in [20] from a specific
application, and then theoretically by Smarandache and Dezert
in [21]. The general formula of PCR6 for combining more than
two BBAs was given in details in [20] with examples.

III. DSMT-BASED FUSION STRATEGY FOR HAR IN BSNS

A. The Flow Chart of Our Proposed Method

Before entering in the detailed presentation of our DSmT-
based fusion strategy, we briefly introduce it through the
flowchart of Fig.2 for convenience. Specifically, in the training
stage, multiple KDE models are derived from the raw sensor
readings so as to build the model pool. Then, the represen-
tative model is selected for a particular activity based on our
proposed discriminative functions. After that, when the test
sample comes, the corresponding BBA is calculated through
each activity representative model. Finally, these BBAs are
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Figure 2. DSmT-Based Fusion Strategy for HAR in BSNs.

combined with PCR6 rule, from which we make the final
decisions.

B. Mathematical Definitions of Daily Activities in DSmT

The goal of our work is to recognize human daily activities
thanks to DSmT-based framework. Thus, the basic mathemat-
ical definitions of the interested activities need to be given.
We assume that the finite frame of discernment considered in
our activity recognition problem is Θ = {θ1, θ2, · · · , θn}. The
corresponding hyper-power set of Θ is denoted DΘ. Singletons
in DΘ are used to represent the simple daily activity such
as θ1 ! Standing, θ2 ! Sitting, θ3 ! Lying and so on.
Disjunctive focal elements in DΘ represent the coarse-grained
activities. For example, θ1 ∪ θ2 ∪ θ3 ! Static Activity.
Also, if θ4 ! Walking, θ5 ! Running, then θ4 ∪ θ5
is regarded as Dynamic Activity. Following the definition
line of disjunctive focal elements, θ1 ∪ θ2 · · · ∪ θn represents
the whole unknown activity. Besides, the conjunctive focal
elements in DΘ can be used to stand for the transition
activity like θ1 ∩ θ2 ! Standing to Sitting or θ1 ∩ θ2 !

Sitting to Standing because θ1 ∩ θ2 = θ2 ∩ θ1 and
θ2 ∩ θ3 ! Sitting to Lying or Lying to Sitting. In this
paper, we only consider a restricted hyper-power set, which is
denoted as DΘ

restricted = {θ1, θ2, · · · , θn, θ1 ∪ θ2 · · ·∪ θn}. In
DΘ

restricted, only two types of focal elements exist: one is the
singleton, which represents the simple activity and another is
θ1 ∪ θ2 · · ·∪ θn, which represents the unknown activity. More
complicated situations involving less restricted hyper-power
sets will be discussed in our future work.

C. Training Model Stage

In the training stage, the KDE model is employed to fit the
sensor readings. The most suitable KDE model to distinguish
a certain activity is then selected to be regarded as the
specific activity representative model. Among the process of
this training stage, two main steps are involved:

1) Construction of KDE Models: We assume that there are
M kinds of activities that need to be classified and the original
dataset collected from the wearable sensors are denoted as
xij , i = 1, · · · ,M and j = 1, · · · , N . Here, M represents
the types of activities to be classified and N is the number
of sensors. Thus, based on the Eq.(2), the KDE model of the
specific activity is derived from the sensor readings by

fij(xij) =
1

Q
·

Q∑

q=1

Kh(x−xij
q ) =

1

Qh
·

Q∑

q=1

K(
x− xij

q

h
). (2)

where f(xij) is the KDE model of xij which represents the
model of the j sensor for the i activity; K(·) is the kernel
function which can be ’normal’, ’epanechnikov’, ’box’ and
’triangle’; h is the smoothing parameter (the bandwidth) of
the KDE model. In this paper, the value of h is the adaptative
bandwidth selected by the method presented in [22]; The
parameter Q is the dimension of xij .

2) Selection of the Best Discriminative KDE Model for

the Specific Activity: As we can see from Eq.(2), each
activity can have N KDE models and we need to select
the most discriminative KDE model in order to reduce the
computational complexity and the interference model. Once
the unique KDE model for each activity is selected, one can
easily determine a specific sensor to identify activity because
there is one-to-one correspondence between the KDE models
and the wearable sensors. We propose two novel discriminant
evaluation functions as follows:

For the specific activity θs, s ∈ {1, · · · ,M}, the value of
Sum of Statistical Difference (SSD) of the j, j = 1, · · · , N
the KDE model is calculated as follows:

SSDθs(j) = [Ψ(fθsj)−Ψ(f1j)] + · · ·+ [Ψ(fθsj)−Ψ(fθM j)]

= (M − 1) ·Ψ(fθsj)−
M∑

i=1,i̸=s

Ψ(fθij). (3)
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(b) KDE models of g2 sensor for three activities θ1, θ2 and θ3.

Figure 3. Selection of the KDE Model for the Specific Activity Based on the Principle of SSD Function.

In Eq.(3), θs is one of the specific activity among the M
considered activities; j is the sensor readings of the j sensor;
Ψ(·) calculates the statistical characteristic value of the derived
distribution of the KDE model fθsj . In this paper, Ψ(·) =
Mean(·), that is the average value of sensor readings.

The principle of selecting KDE model based on SSD is
quite simple: for the specific activity θs, if the SSD value
of the j, j = 1, · · · , N sensor is large, it means that
this j KDE model of θs has a better discriminative ability.
Here, a simple illustrative example was extracted from the
OPPORTUNITY dataset experiment in Section IV to show
the principle of SSD. As we can see in Fig.3, for the specific
activity θ1, the value of SSDθ1(g1) = (Mean(fθ1g1) −
Mean(fθ2g1)) + (Mean(fθ1g1) −Mean(fθ3g1))(Fig.3(a)) is
larger that SSDθ1(g2) = (Mean(fθ1g2) − Mean(fθ2g2)) +
(Mean(fθ1g2) − Mean(fθ3g2))(Fig.3(b)). Here, g1 and g2
represent the g1 sensor and the g2 sensor. It can be clearly seen
in Fig.3 that KDE model (fθ1g1 ) has the higher discriminative
ability than KDE model (fθ1g2 ) for activity θ1.

In order to measure the distances between probability den-
sity functions of each pair of KDEs models, another well-
known choice for such measurement is Kullback-Leibler (KL)
divergence defined by, see [23]:

DivKL(fp1
||fp2

) =
∑

i

fp1
(i)log

fp1
(i)

fp2
(i)

. (4)

Here fp1
and fp2

are two discrete probability density func-
tions. Similar to DivKL, another well-known divergence is
Jensen-Shannon (JS) divergence defined by:

DivJS(fp1
||fp2

) =
1

2
[DivKL(fp1

||fp2
) +DivKL(fp2

||fp1
)].

(5)
Based on Eq.(4) and Eq.(5), another discriminative evalua-
tion function is given to measure the discriminative ability
between different KDE models, which is named as Sum
of Divergence Difference (SDD): For the specific activity

θs, s ∈ {1, · · · ,M}, the value of SDD of the j, j = 1, · · · , N
KDE model is calculated as follows:

SDDθs(j) =
M−1∑

i,i̸=s

Υ(fθsj , fθij). (6)

In Eq.(6), θs is the specific class of daily activity; Υ(·) repre-
sents the divergence function. In this paper, Υ(·) is defined as
KL (Eq.(4)) or JS (Eq.(5)). It is worth noting that in order
to make the statements more clear in the following sections,
we will directly use the Mean(·) to represent that SSD
criterion is applied for selecting KDE models in the process of
activity recognition. Similarity, DivKL(·) or DivJS(·) mean
that SDD is applied and DivKL(fp1

||fp2
) or DivJS(fp1

||fp2
)

is used in SDD criterion to measure the difference between
two distributions. For each activity θ1, θ2, · · · , θM , the best
discriminative M KDE models fθi , i = 1, · · · ,M can be
selected and denoted as follows:

⎡

⎢⎢⎢⎣

fθ1g1 fθ2g1 · · · fθMg1

fθ1g2 fθ2g2 · · · fθMg2
...

...
. . .

...
fθ1gM fθ2gM · · · fθMgM

⎤

⎥⎥⎥⎦
(7)

and g1, g2, · · · , gM ∈ [1, N ]. Each of gi, i ∈ {1, · · · ,M}
represents the selected wearable sensor number.

D. Testing Stage

When the test sample becomes available, the corresponding
BBA is caluclated through each KDE model of each activity.
Finally, we combine all related BBAs with PCR6 rule and we
make the final decisions from the combined BBAs.

1) BBAs Calculation: In this paper, the considered frame of
discernment is Θ = {θ1, θ2, · · · , θM}. Each focal element in
Θ represents one kind of activity and here we just consider a
simplified DΘ

restricted = {θ1, θ2, · · · , θM , θ1 ∪ θ2 ∪ · · ·∪ θM}.
We consider a testing vector x with unknown class and we
want to identify the label of x corresponding to the activity it
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belongs to. Next, we use the following equations to calculate
the BBAs (m1(·),m2(·), · · · ,mM (·)):

m1(θ1) =fθ1g1(x(g1)), · · · ,m1(θM ) = fθMg1(x(g1));

m2(θ1) =fθ1g2(x(g2)), · · · ,m2(θM ) = fθMg2(x(g2));

...

mM (θ1) =fθ1gM (x(gM )), · · · ,mM (θM ) = fθMgM (x(gM )).

It is worth noting that when the value of one feature is
missing, we directly assign ”1” to m(θ1 ∪ θ2 ∪ · · · ∪ θM )
which means in this case, we cannot obtain the valuable
decision information. Besides, in order to make sure that
the derived BBAs satisfy the normalization condition, the
following normalization applies:

• If mi(θ1)+ · · ·+mi(θM ) ≤ 1, then mi(θ1∪ · · ·∪θM ) =
1− (mi(θ1) + · · ·+mi(θM ));

• If mi(θ1) + · · · + mi(θM ) > 1, then mi(θk) =
mi(θk)∑

k=j,...,M mi(θj)
for k = 1, . . . ,M , and mi(θ1 ∪ · · · ∪

θM ) = 0.

2) Global Fusion with PCR6 and Decision Making: After
obtaining the M BBAs, the PCR6 fusion rule is used to fuse
all these BBAs which is denoted symbolically by

mfusion = PCR6(m1,m2, · · · ,mM ). (8)

Then the final decision of the predicted class of x can be made
as θ∗i = argmaxθimfusion(θi), where θi is a focal element
of the DΘ

restricted based on the max of belief mass.

The DSmT-Based Activity Recognition technique is de-
scribed in Algorithm 1 for convenience.

IV. PERFORMANCE EVALUATION

A. Datasets

The performance of the proposed DSmT-Based HAR was
evaluated on the following two open HAR datasets. The first
one is UCI OPPORTUNITY dataset [13], [14]. The details
of this dataset can be found in OPPORTUNITY UCI dataset1.
Three basic activities were classified: Walking, Sitting and
Lying; The other one is UCI DSAD2. The details of the
DSAD can be found in [24]. In this dataset, five common
daily activities including Sitting, Standing, Lying, Walking
and Running were classified to prove the effectiveness of our
proposed method.

B. Measures of Performance

As measures of the performance of our activity recognition
system, the classical Accuracy, Precision, Recall, and F1-score
[7] have been used. They are defined by

Accuracy =
1

n

n∑

k=1

TPk + TNk

TPk + TNk + FPk + FNk
, (9)

1http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition.
2http://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities.

Algorithm 1: DSmT-Based HAR

Input: Sequential original data
xij , i = 1, · · · ,M, j = 1, · · · , N , K =′ Normal′.

Output: The Predicted Class of Unknown data x
∗.

1 Initialize: Cross Validation (xij)→ xtraining,xtesting;
2 Training Stage:
3 for i = 1, · · · ,M do
4 for j = 1, · · · , N do

5 fij(xij) = 1

Qh
·
∑Q

q=1
K(

x−xij
q

h
);

6 end
7 end
8 for i = 1, · · · ,M do
9 for j = 1, · · · , N do

10 SSDθs (j) = (M − 1) ·Ψ(fθsj)−
∑M

i=1,i̸=s Ψ(fij);
11 or
12 SDDθs (j) =

∑M−1

i,i̸=s Υ(fθsj , fθij);
13 end
14 gi = max(SSDθi) or gi = max(SDDθi);
15 end
16 fmatrix =

fθ1g1 , · · · , fθMg1 ; fθ1g2 , · · · , fθMg2 ; · · · ; fθ1gM , · · · , fθMgM ;

17 Testing Stage:
18 DΘ

restricted = {θ1, θ2, · · · , θM , θ1 ∪ θ2 ∪ · · · ∪ θM};
19 for i = 1, · · · ,M do
20 mi(θ1) = fθ1gi(x

∗(gi)), · · · , mi(θM ) =
fθM gi(x

∗(gi));
21 end
22 if mi(θ1) + · · ·+mi(θM ) ≤ 1 then
23 mi(θ1 ∪ θ2 ∪ · · ·∪ θM ) = 1− (mi(θ1)+ · · ·+mi(θM ));
24 end
25 else if mi(θ1) + · · ·+mi(θM ) > 1 then
26 Normalization of BBAs mi(θ1), · · · ,mi(θM );
27 end
28 Fusion Step: mFusion = PCR6(m1(·), · · · ,mM (·));
29 Decision Step: Take as decision the maximum of belief

mass of focal elements θ∗i = argmaxθimfusion(θi);
30 final ;
31 return Predicted Class of x

∗;

Precision =
1

n

n∑

k=1

TPk

TPk + FPk
, (10)

Recall =
1

n

n∑

k=1

TPk

TPk + FNk
, (11)

F1− Score =
1

n

n∑

k=1

(2 ·
precisionk · recallk
precisionk + recallk

), (12)

where k denotes class index and n is the number of classes.
True Negatives (TPk): the number of correctly recognized
class examples; True Negatives (TNk): the number of cor-
rectly recognized examples that do not belong to the class;
False Positives (FPk): examples that were either incorrectly
assigned to the class; False Negatives (FNk): not recognized
as class examples.

C. Results on UCI OPPORTUNITY dataset

1) Effectiveness of the Selection of Ψ(·) and Υ(·) in Eq.(3)

and Eq.(6): The selections of Ψ(·) in SSD and Υ(·) in SDD
were quite crucial to the representative KDE models for all
involved activities. Thus, the relevant comparisons about the

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

423



Table I
THE SELECTED SENSORS IN OPPORTUNITY DATASET BASED ON Mean(·), DivKL(·),DivJS(·).

2*Subject SSD : Ψ(·) = Mean(·) SDD : Υ1(·) = DivKL(·) SDD : Υ2(·) = DivJS(·)

(lr)2-4 (lr)5-7 (lr)8-10 Walking Sitting Lying Walking Sitting Lying Walking Sitting Lying

Subject 1 LLA-accX RLA-accX Back-magX LLA-magX RKN-accZ Back-magZ LWR-accY RKN-accZ LShoe-accZ

Subject 2 LLA-accX RLA-accX LShoe-accZ LLA-magX HIP-accY Back-magZ RKN-accY RKN-accZ Back-magX

Subject 3 RH-accY LLA-magX RShoe-accZ Back-magX Back-magZ Back-accZ RKN-accY Back-magZ RShoe-accY

Subject 4 LWR-accY RH-accY Back-magX Back-magZ LUA-accY Back-accZ LUA-accY LUA-accY Back-accX
*According to [25], each triaxial (x,y,z) sensor unit has 3-degree of freedom. And in this Table, all the meanings of the involved sensors are: Left Lower Arm

(LLA);Right Lower Arm (RLA);Right Knee (RKN);Left Wrist (LWR);Left Shone (LShone);Hips (HIP);Right Hand (RH);Right Shoe (RShoe);Left Upper
Arm (LUA);Accelerator x axis (accX);Magnetic Z-axis (magZ). More details about OPPORTUNITY Dataset can be referred to [25].

recognition rates were given in Fig.4 when Ψ(·) and Υ(·)
were set to (1) Ψ(·) = Mean(·), (2) Υ1(·) = DivKL(·), (3)
Υ2(·) = DivJS(·), respectively. As we can see in Fig.4, our
proposed method based on these three discriminative func-
tions3 distinguished three mentioned activities in Opportunity
dataset (four subjects) very well, which indirectly proved
the effectiveness of Mean(·), DivKL, DivJS in measuring
the difference between the distributions of activities. Besides,
all the three generated models had the highest recognition
accuracy on Subject 1. However, the sensors selected by
each function were quite different, and the corresponding
involved sensors were listed in Table I. It can be found that
the sensitivity of sensors to different daily activities varied,
and was influenced by their locations of deployment. Sensors
located on the arm such as left lower arm, right hand, left wrist
were more likely to identify “Walking” but sensors located on
the Back or shoes had higher recognition rates of ”Lying” than
other sensors. This directly indicates that it is not feasible or
wise to rely on a single sensor deployed in a single location
to identify various kinds of activities [26]. This is also our
motivation to use multi-sensor fusion strategy based on DSmT
to solve activity recognition problems.

2) Recognition Rate versus Training Percentage: In this
experiment, we did modify the percentage of training set and
investigated the relationship between the training percentage
and the classification accuracy of our proposed method on
OPPORTUNITY dataset. It is worth mentioning that the
discriminative function chosen here was SSD (Eq.(3)) and
Ψ(·) = Mean(·). Since our experiments were conducted
based on ten-fold cross validation method, it is convenient for
us to test the relationship between recognition rate and training
percentage. According to the principle of ten-fold cross valida-
tion, the original datasets were first randomly divided into ten
equal parts. And then, in the first experiment, we first treated
10% data as training dataset and the remaining 90% data
were used as testing dataset; And in the second experiment,
20% datasets were used for training and the remaining 80%
for testing, and so on, until the last experiment which we
used 90% datasets for training and the last 10% datasets for

3As we introduced in Definition 1 and Definition 2, Ψ(·) means that SSD
(Eq.(3)) is used to choose the best KDE models and Υ1(·),Υ2(·) means that
SDD (Eq.(6)) is applied in our activity recognition model.
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Figure 4. Effectiveness of the selection of SSD(Ψ(·)) and SDD(Υ(·)) in
OPPORTUNITY dataset.
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Figure 5. Classification accuracy vs. training percentage for the OPPORTU-
NITY dataset.

testing. Besides, in order to further observe the performance
of the proposed method, we divided the original data into
100 equal parts on the basis of one hundred cross-validation.
And then one of the equal parts was randomly selected as the
training datasets (1%) and the remaining (99%) were regarded
as testing datasets. The average accuracy rates of all these ten
experiments was shown in Fig.5, which showed that even if
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(a) Subject 1 (b) Subject 2 (c) Subject 3 (d) Subject 4

Figure 6. Comparisons Between Base Classifiers and Fused Classifiers in OPPORTUNITY dataset.
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Figure 7. Confusion matrices of Four Subjects in OPPORTUNITY dataset.

there were few training samples, the model proposed in this
paper still gave higher recognition accuracy.

3) Comparison Between Base Classifiers and Fused Clas-
sifiers in OPPORTUNITY dataset: In order to deeply analyze
the relationship between base classifiers and fused classi-
fier in our proposed model, the detailed comparisons were
given in Fig.6. Based on the results presented in Fig.4,
the discriminative function chosen here was SSD (Eq.(3))
and Ψ(·) = Mean(·). In Fig.6, the x-axis represents the
KDE model corresponding to the selected sensor, the y-axis
represents the number of correctly classified test samples,
the value above each histogram represents the classification
recognition rate corresponding to each KDE model, and the
solid line at the top of the histogram represents the total
number of test samples. As we can see from Fig.6: (1) the
recognition accuracy of the fused model was significantly
improved compared with that of the base classifier; (2) the
performance of based classifiers were obviously different.
Among these mentioned base classifiers, RH-accY in subject 4
had the lowest rate: 56.9885% and LWR-accY also in subject
4 had the highest rate: 88.7390%. The main reason for the
performance difference of the based classifiers is that we
looked for the relative best KDE model for the specific activity
based on our proposed SSD or SDD, not the absolute best

KDE model for all activities. More concretely, in subject 1,
the specific KDE model corresponding to LLA-accX had the
best classification only for Walking; the specific KDE model
corresponding to RLA-accX had the best classification only for
Sitting and the specific KDE model corresponding to Back-
magX had the best classification only for Lying. In this way,
we could effectively guarantee the degree of diversity among

base classifiers, which is really important for ensemble fusion
[11].

4) Comparisons with State-of-the-art Approaches Based on
Monte-Carlo Simulation: In this part, we further gave the con-
fusion matrix (Fig.7) of the four subjects in OPPORTUNITY
dataset based on our proposed method. It is worth noting that
in the confusion matrix of subject 2-4, there existed a spe-
cial label “UNKNOWN” which was quite different from the
three mentioned activities: Walking, Sitting and Lying. This
“UNKNOWN” label occurred in our DSmT-Based method
because of the missing value in original sensor readings. When
the current sensor reading was NULL or missing value, the
maximum belief mass (’1’) was assigned to the focal element
(Θ) which meant at current time, we really did not know
the actual class. Modeling missing or NULL information is
the feature of our proposed method in this paper, which is
quite different from the traditional supplementation of NULL
or missing information by interpolation. In this way, our
proposed method can reduce the risk of misjudgment without
guaranteeing any changes to the original data. Besides, we
repeated 50 experiments and recorded the recognition rates of
all four subjects in Table II. Among the mentioned classical
approaches, the performance of k-Nearest Neighbours and
Nearest Centroid Classifier were heavily affected by the num-
ber of ’k’-closest samples and the centroid of each class. These
two principles of classification were difficult to work very well
when there existed uncertain data in HAR problem. Linear dis-
criminative analysis and quadratic discriminant analysis based
on the assumption that the features are normally distributed
are obviously unsuitable in HAR problems. Extreme learning
machine has been successfully applied for the task of HAR.
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Table II
COMPARISON WITH STATE-OF-THE-ART RESULTS ON UCI OPPORTUNITY DATASET.

2*Reported Methods Accuracy

(lr)2-5 Subject1 Subject2 Subject3 Subject4 1*Average Computational Cost

Extreme Learning Machine [27] 0.7056±0.1123 0.7126±0.0687 0.6587±0.0295 0.7154±0.1414 13.6175 ms

Linear Discriminant Analysis [28] 0.7859±0.0246 0.8147±0.0274 0.7346±0.0318 0.7913±0.0419 11.0537 ms

Nearest Centroid Classifier [14] 0.8305±0.0312 0.8718±0.0289 0.7647±0.0185 0.8185±0.0152 10.3426 ms

K-Nearest Neighbours (k = 5) [14] 0.8995±0.0015 0.8516±0.0101 0.8383±0.0291 0.8516±0.0091 11.6340 ms

Quadratic Discriminant Analysis [14] 0.9143±0.0076 0.8517±0.0078 0.8562±0.0218 0.8216±0.0214 13.5754 ms

Naive Bayes [12] 0.8742±0.0015 0.8401±0.0053 0.8210±0.0315 0.8517±0.0091 15.7027 ms

Ensemble-Extreme Learning Machine(Majority Voting) [11] 0.9142±0.0098 0.8843± 0.0144 0.8714±0.0156 0.8830±0.0144 29.5384 ms

New Method (HAR DSmT-based) 0.9714±0.0014 0.8869±0.0026 0.8439±0.0199 0.9262±0.0025 -

Computational Testing Time For Each Individual Sample 8.6545 ms 14.2733 ms 7.5581 ms 7.6887 ms 9.5436 ms

Table III
THE SELECTED SENSORS IN DSAD BASED ON DivJS(·).

2*Subject SDD : Υ2(·) = DivJS(·)

(lr)2-6 Sitting Standing Lying Walking Running

Person 1 RAzgyro LAzmag LAzacc LAzmag RAxacc

Person 2 RLzacc RAymag RLyacc LAxmag Txgyro

Person 3 Tyacc Txmag RAyacc RAxmag LAymag

Person 4 LLzacc RLxacc RAyacc RAxmag LAxmag

Person 5 LLxmag LLzmag RLyacc LAxmag LAzmag

Person 6 RLxmag RLxacc Tygyro RAxacc Tzmag

Person 7 RLyacc LLxacc Tzmag RAzmag Txacc

Person 8 RLzacc LAxacc LAzacc Txmag LAymag

And for extreme learning machine, sigmoid activation function
was utilized and the number of hidden nodes was set to 100.
However, due to the randomness of the algorithm, the results
of extreme learning machine were unstable and had a wide
variability. As we can observe in Table II, our method gave
the highest activity recognition accuracy in subject-1, subject-
2 and subject-4, and Ensemble-Extreme Learning Machine
(Majority Voting) gave the highest recognition accuracy in
subject 3. In addition to the comparison of classification
accuracy, we also showed the testing time for each individual
sample of our proposed method in Table II. Our method was
running in MATLAB R2018b with a hardware of Intel Quad
Core i5-4670 CPU at 3.4GHz and 16G RAM. As shown in
Table II, our proposed method was significantly more efficient
than other general listed methods. The low recognition delay
of our method was mainly because in the testing phase, only
the data of selected sensors in the testing sample participates in
the BBA calculation. The low-recognition delay also showed
its potential for the application in online activity recognition
systems, because such real-time activity recognition often
requires the predictions are updated 1-5 times/s [2].
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Figure 8. Effectiveness of the selection of SSD(Ψ(·)) and SDD(Υ(·)) in
DSAD.

D. Results on UCI DSAD

1) Effectiveness of the Selection of Ψ(·) and Υ(·) in Eq.(3)

and Eq.(6): Similar to the discussions in OPPORTUNITY
dataset, we also gave the performance comparisons between
the selections of Ψ(·) and Υ(·) in DSAD. First, the com-
parisons of recognition accuracy with different evaluation
criterion was shown in Fig.8 when Ψ(·) and Υ(·) were set
to (1) Ψ(·) = Mean(·), (2) Υ1(·) = DivKL(·), (3) Υ2(·) =
DivJS(·), respectively. Different from the phenomenon in
Fig.4, our proposed method based on DivKL(·) and DivJS(·)
could give higher recognition accuracy in DSAD. Due to
the robust performance of our proposed method based on
Υ(·) = DivJS(·) in DSAD, in the following experiments, the
discriminative function DivJS was applied in Eq.(6). Besides,
the sensors selected by DivJS were also listed in Table III.
It can be found that the sensitivity of sensors to different
daily activities varied, and was influenced by their locations of
deployment and the types of sensors. In Table III, T : Torso;
RA : Right Arm; LA : Left Arm; RL : Right Leg; LL :
Left Leg; x, y, zacc : x, y, z acclerometers; x, y, zmag :

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

426



x, y, z magnetometers; x, y, zgyro : x, y, z gyroscopes.
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Figure 9. Classification accuracy vs. training percentage for DSAD.

2) Recognition Rate versus Training Percentage: In this
part, we also varied the percentage of training set and inves-
tigated the relationship between the training percentage and
the classification accuracy of our proposed method on DSAD.
Similar to the experiments in OPPORTUNITY dataset, here
we also conducted ten independent experiments. The average
accuracy rates of all ten experiments can be seen in Fig.9.
From these results, we could also draw the same conclusion
as from the proposed method, i.e. classification accuracies for
DSAD could reach a high level, without a large amount of
training samples.

3) Comparison Between Base Classifiers and Fused Clas-

sifiers in DSAD: Similar to the experiments in OPPORTU-
NITY dataset, we also analyzed the relationship between base
classifier and fused classifier in DSAD, which was shown in
Fig.10. As we can see from Fig.10: (1) when the classifica-
tion difference between base classifiers were quite obvious,
the final performance of fused model could be substantially
improved. For example, in person 4, the range of classification
accuracy of all base classifiers was [RA-yacc: 74.0080%,
LL-zacc:93.6386%] and the final rate of fused model was
98.6185%; (2) On the contrary, when the performances be-
tween base classifiers were close, the performance of final
fused model was not substantially improved. For example, in
person 7, all five base classifiers had similar recognition rates:
86.6024%, 91.9036%, 87.2459%, 91.9036%, 91.9036% and
the performance of the final fused model was 92.4498%. These
two groups of phenomena further verified the rationality of the
modeling strategy proposed in this paper: base KDE model
was only selected for the specific activity, which did guaranty
the diversities between base models.

4) Comparison with State-of-the-art Approaches Based on
Monte-Carlo Simulation: In this part, we further gave the
confusion matrix (Fig.11) of the eight persons in DSAD
based on our proposed method. As we can see in Fig.11,
our method had a higher recognition rate in identifying the
activities of all mentioned persons. Besides, we further re-
peated 50 experiments and compared DSmT-based method

Table IV
COMPARISON WITH STATE-OF-THE-ART RESULTS ON UCI DSAD.

Reported Methods Accuracy Computational Cost

Artificial Neural Networks [24] 0.743 23.2442 ms

Bayesian Decision Making [24] 0.758 27.4170 ms

K-Nearest Neighbours [24] 0.860 20.2664 ms

Support Vector Machines [24] 0.876 25.9724 ms

differential Recurrent Neural Networks [29] 0.8956 50.9993 ms

pFTA-Learn + K-Nearest Neighbors [30] 0.9018 19.4653 ms

New Method (HAR DSmT-based) 0.9515 17.0964 ms

with the other traditional method in references in Table IV. All
parameters involved in the mentioned state-of-the-art models
were consistent with those mentioned in the literature, which
were not listed in detail here. For k-Nearest Neighbours, the
performance of this method changed for different values of k.
A value of k = 5 gave the best results, therefore the accuracy
of the k-Nearest Neighbours algorithm was provided for k = 5
in Table IV. For support vector machine, following the one-
versus-the-rest method, each type of activity was assumed as
the first class and the remaining 4 activity types were grouped
into the second class. The overall accuracy rate of support
vector machine was calculated as 87.6%. Besides, we also
conducted performance comparison between our technique
and differential Recurrent Neural Networks (the related source
codes for dRNN could be downloaded from [29]). As shown
in Table IV, our proposed method with DSmT-based fusion
strategy could achieve even higher accuracy than traditional
approaches. Although SVM and dRNN were powerful models
for classification and they were not able to properly combine
the characteristics of multiple sensors; conversely, DSmT-
based approach was especially designed to effectively fuse
these information from multi-sensor readings, which proved to
be very effective for HAR in BSNs. Besides, we also showed
the testing time for each individual sample of our proposed
method in Table IV. Results showed that DSmT-based HAR
takes shorter time than other classical methods.

V. CONCLUSION

In this paper, we addressed the challenge of HAR problem
in BSNs from the perspective of multi-sensor fusion strategy
and exploited the unique DSmT-Based fusion strategy. In this
novel fusion strategy, there were two points worth mentioning:
1) unlike traditional fusion strategy, not all sensor readings
were used for modeling and fusing, only the selected rep-
resentative sensors were finally fused; 2) BBA of each test
sample was constructed according to KDE models. Besides,
the vacuous BBA was directly given when test sample had
incomplete pattern. Extensive performance evaluations on two
wearable sensor-based HAR datasets (OPPORTUNITY dataset
and DSAD) demonstrated that the proposed approach out-
performed start-of-the-art methods in accuracy. In our future
work, we will explore the performance of the proposed method
in complex activity recognition. In this work, our proposed
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(a) Person 1 (b) Person 2 (c) Person 3 (d) Person 4

(e) Person 5 (f) Person 6 (h) Person 8(g) Person 7

Figure 10. Comparisons Between Base Classifiers and Fused Classifiers in DSAD.
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Figure 11. Confusion matrices of 8 Persons in DSAD.

DSmT-based model was currently trained and tested offline.
In our future research works, we will investigate and test
how such new model can be applied to an online activity
recognition system in real-time.
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Abstract—The paper presents a study on the human learning
process during the classification of stimuli, defined by motion
and color visual cues and their combination. Because the classi-
fication dimension and the features that define each category are
uncertain, we modeled the learning curves using Bayesian infer-
ence and more precisely the Normalized Conjunctive Consensus
rule, and also on the base of the more efficient probabilistic
Proportional Conflict Redistribution rule no.5 (pPCR5 ) defined
within Dezert-Smarandache Theory (DSmT) of plausible and
paradoxical reasoning. Our goal is to study how these rules
succeed to model consistently both: human individual and group
behaviour during the learning of the associations between the
stimuli and the responses in categorization tasks varying by the
amount of relevant stimulus information. The effect of age on
this process is also evaluated.

Keywords: Vision, Human Perception, Classification, Color

cue, Motion cue, Cues Combination, DSmT, probabilistic

Proportional Redistribution rule no.5 (pPCR5), Normalized

Conjunctive Consensus (NCC) rule.

I. INTRODUCTION

In everyday activities, humans often have to classify objects

and events in different categories. The process of classification

requires the acquisition of the common characteristics of the

members of a category. Depending on the category structure,

three different ways are assumed to be employed in classifi-

cation [1]: rule-based, incremental learning, or memorization

of all exemplars. Rule-based classification is supposed to

involve sequential hypothesis testing to uncover the rule of

categorization. The incremental learning is supposed to be

related to finding the category boundaries in cases when the

stimulus categories are defined by more than one feature

and no simple rule describes the category membership. It

involves forming associations between a set of features and

the responses. The third way to find the category assignments

is by memorizing the associations the responses for each

combination of stimulus features.

When the stimuli for categorization are multidimensional

and not all features are relevant for their classification, an

important question is how humans find out the proper stim-

ulus characteristics for category membership. To answer this

question, [2] tested whether a normative strategy based on

probabilistic inference could describe the process of category

learning. Their modeling data imply that the decision making

based on Bayesian inference is computationally too demanding

and that humans use suboptimal strategies in the process of

categorization.

In the present study, we used multidimensional visual

stimuli that were divided into categories by rules of different

complexity. The change in the rule of classifications changes

in the amount of irrelevant information. We will compare hu-

man cue combination performance in arbitrary (unstructured)

classification task with modeled combination performance,

based on particular fusion rules. In the presented study we

will apply and compare the performances of the following

fusion rules: the Normalized Conjunctive Consensus (NCC),

and the probabilistic Proportional Conflict Redistribution rule

no.5 (pPCR5) defined within DSmT to model the human

process of cue integration. We will focus on how the human

age influences the process of classification as the experimental

evidence implies that various brain structures and processes are

involved in the different categorization tasks [3] and they do

change differently with ageing [4].

This paper is organized as follows. In section II we present

briefly the principles of the used fusion rules, applied to model

the human cue integration in a classification task. Section III

is devoted to the experimental strategy, methods, procedures,

stimulus, and subjects participating in the experiments. The

results obtained are described and analysed in Section IV. In

section V fusion rules performance is presented and in section

VI the trends are illustrated. Conclusions are made in Section

VII.

Originally published as: A. Tchamova, J. Dezert, N. Bocheva, P. Konstantinova, B. Genova, M. Stefanova, 
A Study on Human Learning Ability During Classification of Motion and Colour Visual Cues and Their 
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reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

431



II. FUSION RULES FOR MODELLING VISUAL CUE

COMBINATION

Various fusion rules exist in the literature to deal with

uncertain data. They are based on different mathematical

models and on different methods for transferring the conflict-

ing mass onto the meaningful hypotheses about the problem

under consideration. In this paper, we use the Normalized

Conjunctive Consensus (NCC) rule and the Probabilistic Pro-

portional Conflict Redistribution rule no.5 (pPCR5), defined

within Dezert-Smarandache Theory (DSmT) of Plausible and

Paradoxical Reasoning [5]. Both these rules are described in

detail in [6].

III. EXPERIMENTS

Three experiments were performed.

A. Stimuli

The stimuli were dynamic patterns that differed by the

motion direction, the spatial distribution, shape, and the color

of the moving elements. The moving elements were either

spheres or cubes. Two conditions were simulated – in one

of them the elements were positioned on a plane, in the other

they were randomly positioned in depth. The simulated motion

could have 4 different directions: to the left, to the right,

forward, or backward. As a result, eight different moving

patterns were generated: a movement to the left among a cloud

of elements, movement to the right among a cloud of elements,

movement forward among a cloud of elements, movement

backward among a cloud of elements, horizontal translation to

the left, horizontal translation to the right, movement forward

towards a plane, and movement backward from a plane. The

moving elements â spheres or cubes, could have one of 4

colors: red, blue, green, or yellow. Of all possible combinations

of movements, shape, and color of elements (64 in total: 8

movements × 4 colors × 2 shapes of moving elements) we

randomly selected 16 combinations. The characteristics of the

chosen stimuli are given in Table I.

Table I
CHARACTERISTICS OF THE STIMULI USED IN THE STUDY.

Number of Disposition Motion Color Shape of
stimuli of elements direction elements

1 cloud forward green cube
2 cloud backward yellow sphere
3 cloud backward green cube
4 cloud backward red cube
5 cloud right green sphere
6 cloud right yellow cube
7 cloud left blue cube
8 cloud left green cube
9 wall forward red sphere
10 wall forward yellow cube
11 wall forward blue sphere
12 wall backward blue sphere
13 wall right red sphere
14 wall right blue sphere
15 wall left yellow sphere
16 wall left red cube

B. Experimental conditions

Three experiments were performed. They differed by the

classification rule used to separate the stimuli into two cat-

egories. In Experiment 1 the stimuli were divided arbitrarily

by the movement type that resulted from the disposition of

the elements and the direction of motion, whereas the shape

and the color of the elements were irrelevant. In Experiment

2, the stimuli were divided randomly into two categories

based on their color, whereas the elements’ spatial disposition,

motion direction, and the shape of elements were irrelevant.

In Experiment 3, the stimuli were randomly divided into two

groups based on the combination of the motion direction,

elementsâ disposition, and color. As in Experiments 1 and

2, the shape of the elements was irrelevant. Table II presents

the separation of the elements in two categories for the three

experiments.

Table II
CHARACTERISTICS OF THE STIMULI USED FOR DIVIDING THE STIMULI IN

CATEGORIES IN EXPERIMENTS 1-3.

Exper. 1 Exper. 2 Experiment 3

Cat.1 Cat.2 Cat.1 Cat.2 Cat.1 Cat.2

cloud, cloud, red blue cloud, cloud,
right left right, left,

green blue

cloud, cloud, yellow green wall, cloud,
backward forward left, left,

red green

wall, wall, wall, cloud,
right left left, right,

yellow yellow

wall, wall, wall, cloud,
backward forward right, forward,

red green

wall, cloud,
right, backward,
blue red

wall, cloud,
forward, backward,

red green

wall, cloud,
forward, backward,

blue yellow

wall, wall,
forward, backward,
yellow blue

As is evident, the classification of the stimuli in Experiment

3 could be done either by trying to find the combination of

the stimulus characteristics, or as a rule-with-exception as all

cloud stimuli except 1 are in Category 2, and all wall stimuli

except one are in Category 1.

C. Experimental Procedure

Before each experiment, the calibration of an eye-movement

recording device was performed. In addition to the standard

calibration, each experimental session started with a sequential

presentation of a dot at different positions (center, left, left

corner, up, right corner, right, down) 10 degrees from the

screen center. The dot changed position after 1.5 sec.

Each experiment started with the sequential presentation of

all stimuli. At the end of the stimulus sequence, all stimuli
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were presented again in a different order and the Subject has

to describe the stimulus characteristics â shape and color of

elements, the direction of motion, and disposition of elements.

This preliminary session aims to acquaint the subjects with the

stimulus set and the stimulus characteristics. The experimental

session consisted of 128 stimuli – 8 repetitions of each

stimulus in random order.

Before the presentation of each stimulus, a warning signal

is given. The stimulus duration was 1 sec. During stimulus

presentation, a fixation dot with a diameter of 0.5 deg. of

arc was shown in the middle of the screen during stimulus

presentation. Five hundred milliseconds after stimulus disap-

pearance, two figures â a triangle and a star (with a size of

approximately 4× 4 deg. of arc) appeared at 10 degrees to

the left or right from the fixation point. On every trial, the

position of these figures was randomly selected. The Subjectâs

task was to select to which stimuli corresponds the star, and

to which â the triangle. They were required to keep fixation at

the fixation point during stimulus presentation and to make a

saccade to the selected figure. They had to press the left mouse

button if the selected figure is to the left of the fixation point,

and the right mouse button â if the selected figure was to the

right. In the case of correct choice, a high tone was played,

whereas in case of incorrect choice a low tone was played.

The subjects were told that at the beginning they could only

guess, but during the progression of the experiment, by trial-

and-error, they would be able to find the proper classification

of the stimuli in categories.

D. Method

The order of the experiments was contra-balanced between

the subjects. The number of the experimental sessions de-

pended on the Subjectâs performance – if the number of

correct responses was low, the participants started a new

session after a short break. However, even if the performance

of a subject was still not good, no subject participated in

more than three experimental sessions. The experiments were

separated by 3 to 7 days to avoid inference from previously

learned categorization.

E. Apparatus

The stimuli were presented on a black background with a

custom program written in Python with OpenGl. They were

presented on the computer screen operated in refresh rate

60 Hz and resolution 1280× 1024 pixels, 21â Dell Trinitron

with Nvidia Quadro 900XGL graphic board. The stimulus

observation was binocular from a distance of 57 cm.

The eye movements of the participants were recorded by

Jazz novo eye tracking system (Ober Consulting Sp. Z o.o.)

[7].

F. Subjects

17 young subjects, aged 18–38 years (median = 22 years)

and 17 elderly subjects, aged 63–75 years (median = 67 years)

took part in the study.

IV. PERFORMANCE EVALUATION OF AGE-RELATED

OBSERVERS GROUPS

The experimental goal of our study is directed to character-

ize human decision making in a classification task influenced

by:

• motion information only,

• color information only,

• combined motion and color information.

As the stimuli were randomly assigned to different cate-

gories based on their visual characteristics, the test Subjects

have to find the correct association between the stimuli and

the outcome by trial-and-error. While in the classification

of objects or events in categories a generalization of their

characteristics is needed, in arbitrary categorization a specific

representation of the stimuli is required. As the stimuli in all

experiments were the same, one possibility is that irrespective

of the categorization rule, the participants will represent them

in working memory by all cues. In this case, their performance

will be similar in all conditions and the memory load will

be equivalent. Also, if unstructured categorization is based

on procedural memory [8], the number of features used

to categorize the stimuli would be irrelevant. However, the

experiments in our study could be also characterized as rule-

based with rules of varying complexity that change the amount

of irrelevant information. A more efficient way to classify

the stimuli is to represent them in memory only by the cues

determined by the categorization rule ignoring the irrelevant

stimulus characteristics.

An example of the performance from the experiments of

an occasional test person is shown in figure 1. It represents

the proportion of correct responses in blocks of 16 trials.

This information is processed and analyzed to get conclusions

about the characteristics used for classification in different

categories.

Figure 1. Observations from an occasional test person.

The question is whether the people rely and base their

responses on a single source of information, or on a combined

one, and also which type of information utilized is more

informative in the decision process and corresponds best to

the rule used for separating the stimuli in categories. The
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participants belong to two age groups: Young and Old. Hence,

also the influence of human age on the assessment of the

decision will be evaluated. The evaluation is made on the base

of experimental learning curves, obtained for all different ex-

perimental categories and for each subject in all age-contingent

groups. The learning curve represents the change in the correct

responses with some measure of the experience gained i.e. the

number of trials.

Figure 2. Raw observations (blue), averaged over subjects (red).

Figure 3. Experimental learning curves for the 3 categorization rules.

Figure 2 presents the learning curves of all young subjects

in the case when the stimuli were divided arbitrarily into two

groups based on the combination of the color and motion of

the stimulus elements. The figure clearly shows the large in-

dividual differences in task performance. It also demonstrates

that with the increase of blocks, the performance of the group

improves. Figure 3 represents the averaged learning curves for

all subjects in the young group. It implies that the performance

gradually increases and the rate of increase is different for the

different categorization rules.

A. Evaluation of the perception in Young observers group

The comparison of the performance in the motion and

color conditions show that in the Young group only 6 out

of 17 observers have the best performance for the motion

condition, 9 observers effectively utilized the color information

showing the best performance in this case, and only 1 observer

shows best performance in the combined condition (for two

other observers the performance in the combined condition

is equivalent to that in a single-cue case). For one observer

the learning performance is equivalent to both single-cue

conditions. The cumulative curve representing the distribution

of the average correct responses (on the base of 17 subjects

in the group) of the young subjects is shown in Fig. 4.

Figure 4. Learning curves of the averaged young subject.

B. Evaluation of the perception in Old observers group

The comparison of the performance in the motion and color

conditions shows that in the Old group 9 out of 17 observers

have the best performance for the motion condition, 6 ob-

servers show better performance using the color information.

For 2 out of 17 observers the learning curves for both motion

and color information could be considered as equivalent. The

performance of averaged Old test person on the base of 17

subjects in the group is shown in Fig. 5. Here again, the best

performance of the single-cue category is confirmed though

the difference between the three conditions is not significant.

It can be summarized that the participants in each group

learn best the association between the stimuli and the response

when the categorization rule is based on a single cue. This

implies that the memory representation of the stimulus char-

acteristics is determined by the categorization rule and the

participants are able to ignore the stimulus features irrelevant

to the category membership.

It is interesting to compare young and old test persons for

the same conditions. We put together the learning curves of

young and old subjects in figure 6 for the categories Motion

and Color, and category Combined in figure 7.
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Figure 5. Learning curves of an averaged old subject.

Figure 6. Learning curves of Young and Old for Color and Motion categories.

Figure 7. Learning curves of Young and Old for Combined category.

V. PPCR5 AND NCC RULES PERFORMANCE FOR

PREDICTING HUMAN’S WAY OF MOTION AND COLOR

COMBINATION IN DECISION MAKING

The main question here is which fusion rule - pPCR5 or

NCC used to combine available motion and color information

predicts more adequately human cue integration in deciding

the stimulus category?

Figure 8. Learning curves for experimental categories and mathematically
obtained NCC result for the averaged young subject.

Figure 9. Learning curves for experimental categories and mathematically
obtained NCC result for the averaged old subject.

In order to answer this question, we need to make a

comparison between experimentally obtained and predicted

(via pPCR5 and NCC rules) learning curves for combined

categories (motion and color), for the two age groups.

In Figures 8 and 9, the results of mathematical modeling by

NCC is shown, and on figures 10 and 11 results of applying

pPCR5 are presented.

In Figures 12 and 13 the comparison of the empirical and

both mathematical methods are given.

The results of the mathematical modeling based on both

rules predict better performance than observed in the experi-

mental data. This conclusion concerns the averaged learning

curves for the two groups. However, due to the large individual

differences in each group, the average learning curve might

not be representative of group performance. In section VI we

present a different approach to describe the learning in the two

groups and apply the same mathematical modeling to it.
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Figure 10. Learning curves for experimental categories and mathematically
obtained PCR5 for result for the averaged young subject

Figure 11. Learning curves for experimental categories and mathematically
obtained PCR5 result for the averaged old subject.

Figure 12. Learning curves for empirical and mathematically modelled cases
for young.

Another comparison between the methods is provided on

the base of the goodness-of-fit test [9], that is an important

Figure 13. Learning curves for empirical and mathematically modelled cases
for old.

application of chi-squared criteria:

χ2 =

J
∑

j=1

(Oj − Ej)
2

Ej

where χ2 is an index of the agreement between an

observed(O)/experimental and expected(E)/predicted via par-

ticular fusion rule sample values of the learning curve. For our

case, J = 24 represents the number of independent observa-

tions. The critical value of the test for ν = J − 1 = 23 degrees

of freedom at the assumed probability p = 0.1 is χ2 = 32.0
[9].

The respective results are given in Table III - for the young

group, in Table IV - for the old persons’ group.

In general, the results show that both fusion rules - NCC

and pPCR5 succeed to predict adequately human performance

for the two age groups. Only for one subject from table IV,

the NCC modeling is not adequate – because its NCC error

is bigger than the defined critical value χ2 = 32.0. Thus,

contrary to the case of the average learning curves where the

NCC and pPCR5 predict better performance than obtained

experimentally, both rules can describe well the individual

learning curves in both age groups.

The results for young and old test-persons are presented in

Tables III and IV respectively1.

VI. COMMON TRENDS OF AGE-RELATED OBSERVER

GROUPS

The goal here is to find the common trend, concerning the

performance of the two groups. For this purpose, we consider

each group as a set of different sources of evidence, associated

with each person in the group. That way the young group

consists of 17 (young subjects) sources of evidence, which

should be combined all together via pPCR5 and NCC fusion

rules.

1***** means missing information from the test person.
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Table III
CHI-SQUARED VALUES FOR YOUNG SUBJECTS.

Subject (Motion and Color) pPCR5 (Motion and Color) NCC

1 25.4366 0.4469
2 0.0747 0.5870
3 0.8255 6.4822
4 0.5054 1.2087
5 28.2272 1.0270
6 1.2497 3.6587
7 23.9470 1.4417
8 0.3935 0.3370
9 8.5851 0.3969

10 0.5281 3.1269
11 16.0195 3.7373
12 14.5225 9.4381
13 1.0158 0.0756
14 11.4884 0.3826
15 22.0764 0.3815
16 17.7547 1.1310
17 28.0757 0.2587

Table IV
CHI-SQUARED VALUES FOR OLD SUBJECTS.

Subject (Motion and Color) pPCR5 (Motion and Color) NCC

1 0.3587 1.7369
2 ***** *****
3 0.7524 0.9697
4 13.1982 14.2576
5 6.2634 11.0246
6 8.0005 11.0022
7 0.9172 3.3941
8 0.0441 0.0923
9 10.0382 9.8545

10 0.0471 0.2213
11 11.3722 15.2725
12 2.3003 38.7541

13 2.4354 31.1429
14 24.7161 9.5761
15 ***** *****
16 0.8704 9.2390
17 6.5457 21.1361

The combined individual behaviours in a particular group

are estimated, revealing its intrinsic behaviour as a whole, re-

ducing uncertainties associated with individual performances.

All the tested subjects in age groups are considered as indepen-

dent and equally reliable sources of information because each

subject provides his/her learning curve, associated with the

motion and color condition and should be taken into account

with equal weights to derive these trends. Our goal is to find

out which combinational rule (pPCR5 or NCC) is able to

model correctly and adequately such human age-contingent

group trends in the process of decision making. The results

obtained for experimental and estimated (via the fusion rules)

trends, concerning the cues combination groupsâ performance,

are presented in Figures 14 and 15. It can be seen that the

learning curves obtained by the pPCR5 fusion rule in the two

figures – for young and old test persons, are more close to the

experimentally defined target curve.

pPCR5 fusion rule predicts more correctly the human model

of decision making, than the NCC rule, utilizing all the

Figure 14. Trends for Young Subjects Group.

Figure 15. Trends for Old Subjects Group.

available information (Motion and Color), even in case of

conflict. NCC based trends are very sensitive to the sources

(different subjectsâ learning curves) with the bigger means,

neglecting that way part of the available information and acting

as an amplifier of the information by reducing the variances

VII. DISCUSSION

This paper presented a study on the human classification

of stimuli defined by motion and color visual cues and their

combination. The influence of human age on this process was

evaluated. The results obtained show age-related differences

in the performance of the subjects in estimating the human

classification based on both single- and multi-cue classification

rules.

Our experimentally obtained data for young observers sug-

gest a smaller effect of the motion information, while for

the older observers the color information has less effect.

Hence, the learning performance differs depending on the

categorization rule and the age of the participants. All age-

related groups have difficulties to divide the stimuli in groups

based on combined (motion and color) information. This
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finding implies that this condition presents a greater memory

load to all observers than the single cue conditions.

In the classification task of multi-cue stimuli, there is

uncertainty about which dimension and which feature along

this dimension determine the correct response. Hence, the

observers have to determine not only the classification rule

that specifies the categorization dimension, but also which

exemplars that differ by this dimension fall in one or the other

category. In contrast to the previous studies [2, 10, 11] testing

Bayesian inference in classification studies and learning, we

do not model the explicit performance of each subject or group

based on the available cues. Instead, our approach reminds the

analysis of cue combination in perception studies where the

proportion of correct responses is related to stimulus strength.

Thus, in our analyses, the experience gained during the task

performance is regarded similarly to stimulus characteristics

in detection or discrimination perceptual tasks. We performed

a comparison between experimentally obtained and predicted

(via pPCR5 and NCC rules) learning curves for combined

condition (motion and color), for the two age groups and

applied the goodness-of-fit test, one important application of

chi-squared criteria, to evaluate the correspondence of the

experimental and the model data. The results suggest that the

predictions of the models outperform human performance for

both age groups. This finding differs from our previous results

[6] on cue combination in evaluating the heading direction

from texture and motion cues. However, it coincides with the

conclusion in [2] that human subjects perform suboptimally

in categorization tasks.

Both the NCC and the pPCR5 rules predict well the indi-

vidual learning curves with a slight advantage of the pPCR5

rule as it fits well all the learning curves. This finding provides

evidence for the relevance of our approach for analysis of the

learning curves.

We evaluated the common trend in the performance of the

two age groups by considering each group member as an

independent source of information. The obtained trends are

better described by the pPCR5 rule than by the NCC rule.

The best fit of the group behavior by the PCR5 rule is due to

its properties to utilize all the available information even in a

case of conflict between the individual learning curves. It is

an appropriate characteristic of the group data as it preserves

the idiosyncrasies in the performance of each individual and

hence, represents effectively the process of decision making

in classification tasks for different age groups.
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Abstract—Levee security assessment is a complex expert assess-
ment process based on several heterogeneous data. In our previ-
ous research works, we applied information fusion techniques to
characterize flood protection levees. We used the proportional
conflict redistribution rule no.6 (PCR6) proposed in DSmT
(Dezert Smarandache Theory) framework to combine data from
geotechnical and geophysical investigation methods. However,
in some cases, this rule can generate non satisfactory results.
Indeed, the uncertainty between several hypotheses (lithological
materials) is overestimated after the fusion process, which is
detrimental to decision making in the end. This result occurs
because the PCR6 rule does not preserve the neutrality of the
vacuous belief assignment, which can be judged as being a
counter-intuitive behavior. To overcome this problem we present
an improved rule that preserves the neutrality of vacuous belief
assignments in the fusion process. Hence, the redistribution of the
partial conflict masses using this new rule does not overestimate
the masses associated with partial uncertainties. To illustrate
the use of this new fusion rule in a levee characterization
problematic, we simulate data acquisition. Two geophysical inves-
tigation campaigns (electrical resistivity tomography and multi-
channel analysis of surface waves methods) and a geotechnical
acquisition campaign (core drillings with particle size analysis)
are numerically simulated on an earthen structure. The objective
is to compare and discuss the fusion results obtained using this
new rule with respect to the methodology based on the original
PCR6 rule as well as to demonstrate the enhancement of the
levee characterization.

Keywords: belief functions, levee, cross-disciplinary ap-

proach, natural hazards, fusion rules, risk management, pro-

portional conflict redistribution rule.

I. INTRODUCTION

This work is part of a problematic of levee characterization

for flood protection. Indeed, these hydraulic works are mostly

old and heterogeneous and their rupture can lead to disastrous

consequences such as human, economic and environmental

losses. Since many different materials and construction meth-

ods exist, each flood protection embankment is unique, and the

nature of its structure goes hand in hand with its environment

[1]. The structures are more or less subject to breakage in weak

areas under specific loads. Reducing the risk of levee rupture

requires an improvement of their diagnosis and therefore to

enhance their characterization. First, it relies on technical

surveys able to determine if specific pathologies that could

lead to failure mechanisms are present in the levee structure.

Methodologies for the evaluation of these structures usually

include geotechnical and geophysical investigation methods.

Geophysical methods are mainly non-intrusive and provide

physical information on large volumes of subsoil but with

potential significant uncertainties. Geotechnical investigation

methods, on the other hand, are intrusive and provide more

punctual information spatially, but also more precise. These

two sets of methods are complementary. Information fusion is

a helpful technique to combine geotechnical and geophysical

data in a complex processing for the levee security assessment

based on several heterogeneous data. The processing of the

data from geophysical and geotechnical investigation methods

and their fusion, taking into account their imperfections and

associated spatial distributions, is an essential issue for the

evaluation of earthen levees. A cross-disciplinary fusion ap-

proach for the characterization of lithological materials within

the structures has recently been proposed in the mathematical

framework of belief functions [2].

In this paper, we present a flawed behavior of PCR6

combination rule attributed to the non neutrality of the vacuous

BBA (Basic Belief Assignment), and we propose an improve-

ment to this rule (PCR6+) in order to ensure the neutrality

property of the vacuous BBA. This improvement helps in

reducing the level of uncertainty in fusion results by discarding

ignorant sources for each partial conflict. To demonstrate the

pertinence and advantages of PCR6+ over PCR6, we compare

the obtained results for i) a simple numerical example and for

ii) the fusion of simulated geophysical and geotechnical data

on an earthen levee.

II. BELIEF FUNCTIONS

Based on preliminary works done in [3], [4], Shafer has

introduced the belief functions (BF) in [5] to model epistemic

uncertainty, to reason about uncertainty and to combine uncer-

tain information. The theory of belief functions is also known

as Dempster-Shafer Theory (DST) in the literature. We assume

that the answer1 of the problem under concern belongs to a

known (or given) finite discrete frame of discernement (FoD)

Θ = {θ1, θ2, . . . , θn}, with n > 1, and where all elements of

Θ are exhaustive and exclusive2. The set of all subsets of Θ

1i.e. the solution, or the decision to take.
2This is so-called Shafer’s model of FoD [6].

Originally published as: T. Dezert, J. Dezert, Improvement of Proportional Conflict Redistribution Fusion 
Rules for Levee Characterization, in Proc. of ESREL 2021 Int. Conference, Angers, France, September 
19–23, 2021, and reprinted with permission.
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(including empty set ∅, and Θ) is the power-set of Θ denoted

by 2Θ. The number of elements (i.e. the cardinality) of 2Θ is

2|Θ|. In this section we recall the main definitions related with

BF and introduce briefly the conjunctive and Dempster-Shafer

rules of combinations.

A. Main Definitions

A (normal) basic belief assignment (BBA) associated with

a given source of evidence is a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑

A∈2Θ
m(A) = 1. The real number

m(A) is called the mass of A committed by the source of

evidence. The subset A ∈ 2Θ is called a focal element (FE)

of the BBA m(·) if and only if m(A) > 0. The set of all

the focal elements of a BBA m(·) is denoted FΘ(m) = {X ∈
2Θ|m(X) > 0}. The set FΘ(m) has at least one focal element,

and at most 2|Θ| − 1 focal elements because one has always

m(∅) = 0 by the definition of a normal BBA - see [5]. Belief

and plausibility functions are respectively defined from m(·)
by

Bel(A) =
∑

X∈2Θ|X⊆A

m(X), (1)

Pl(A) =
∑

X∈2Θ|A∩X 6=∅
m(X), (2)

where Ā represents the complement of A in Θ, that is Ā , Θ−
{A} = {X |X ∈ Θ and X /∈ A}. The symbol , means equal

by definition and the minus symbol denotes the set difference

operator - see [7], [8].

Bel(A) and Pl(A) are usually interpreted respectively as

lower and upper bounds of an unknown (subjective) probabil-

ity measure P (A). The width Pl(A) − Bel(A) of the belief

interval [Bel(A), P l(A)] is usually called the uncertainty on

A but it represents in fact the imprecision on the probability

of A granted by the source of evidence. When all the focal

elements of a BBA m(·) are singletons this BBA is called

a Bayesian BBA and its corresponding Bel(·) function is

equal to Pl(·) and they are homogeneous to a (subjective)

probability measure P (·). The vacuous BBA (VBBA for short)

representing a totally ignorant source is defined as mv(Θ) = 1.

B. Conjunctive Combination Rule

We consider S ≥ 2 distinct reliable sources of evidence
characterized by their BBA ms(·) (s = 1, . . . , S) defined on
the same frame of discernment Θ3. Their conjunctive fusion,
denoted Conj(m1,m2, . . . ,mS), corresponds to a (non proper)
BBA defined for all A ∈ 2Θ by

mConj

1,2,...,S(A) =
∑

Xj∈F(m1,...,mS)
Xj1

∩...∩XjS
=A

S
∏

i=1

mi(Xji), (3)

where Xj , (Xj1 , Xj2 , . . . , XjS ) is a possible S-uple of
focal elements, where j1 ∈ {1, . . . ,F1}, j2 ∈ {1, . . . ,F2},
. . . , and jS ∈ {1, . . . ,FS}. The element Xji is the focal

3For notation simplicity, we omit Θ lower index in the notations of sets
of focal elements FΘ(m1), . . . , FΘ(mS ), and their cardinalities are simply
written as F1, . . . , and FS .

element of the BBA mi(·) that makes the i-th component of
the j-th S-uple Xj . The set F(m1, . . . ,mS) is the set of all
possible S-uples. The cardinality of the set F(m1, . . . ,mS) is
noted F for convenience. The total conflicting mass, denoted

m
Conj

1,2,...,S(∅), is given by

mConj

1,2,...,S(∅) =
∑

Xj∈F(m1,...,mS)

Xj1
∩...∩XjS

=∅

S
∏

i=1

mi(Xji). (4)

This fusion rule is commutative and associative, and

the vacuous BBA mv has a neutral impact, that is

Conj(m1,m2, . . . ,mS ,mv) = Conj(m1,m2, . . . ,mS). Its

main drawback is that it does not generate a proper BBA

because mConj

1,2,...,S(∅) > 0 in general. Because the empty set ∅
is the absorbing element for the conjunctive operation, this rule

generates mConj

1,2,...,S(∅) that quickly tends to one after only few

steps of a sequential fusion processing of the sources which is

not very useful for decision-making support. The main interest

of this rule is its ability to identify the partial conflicts, and

to provide a measure of the total level of conflict mConj
1,2,...,S(∅)

between the sources which can be used to manage (select or

discard) the sources in the fusion process if one prefers, see

[2] for instance.

C. Dempster-Shafer Combination Rule

Dempster-Shafer (DS) rule of combination is the emblem-
atic rule of combination proposed by Shafer in his Mathemati-
cal Theory of Evidence (see [5]) which is based on Dempster’s
early works (see [3], [4]). DS rule is nothing but the normal-
ized version of the conjunctive rule. Hence, DS combination
of S > 1 BBAs ms(·) (s = 1, . . . , S) defined on the same
frame of discernment Θ, denoted as DS(m1,m2, . . . ,mS),
is a proper BBA defined by mDS

1,2,...,S(∅) = 0, and for all

A ∈ 2Θ \ {∅} by

mDS
1,2,...,S(A) =

mConj

1,2,...,S(A)

1−mConj

1,2,...,S(∅)
. (5)

DS fusion rule is commutative and associative, and the

vacuous BBA mv has also a neutral impact for this rule, but

its justification and behavior have been disputed over the years

from many counter-examples involving high or low conflicting

sources (from both theoretical and practical standpoints) as

reported in [9], [10], [11]. In our applications that are related

with risk assessment and safety, we do not prefer to use DS

rule because of its very serious problems. Actually, many

alternative rules of combination exist4, and among them we

focus on the new interesting rule based on the proportional

conflict redistribution no. 6 (PCR6) principle (see [6], Vol. 3

for details) which is presented in the next section.

III. PCR6 COMBINATION RULE

A. PCR6 General Formula

The PCR6 rule of combination has been proposed in [12],

[13] as an interesting alternative of original PCR rule of

4see [6], Vol. 2 for a detailed list of many fusion rules.
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combination no. 5 (PCR5) proposed in [14], [15]. The PCR6

rule coincides with the PCR5 rule when one combines only

two sources (i.e. two BBAs defined on the same FoD). The

difference between PCR5 and PCR6 rules lies in the way the

proportional conflict redistribution is done as soon as three

(or more) sources are involved in the fusion. For notation

convenience, we define

πj(Xj1 ∩Xj2 ∩ . . . ∩XjS ) ,

S
∏

i=1

mi(Xji). (6)

If Xj1 ∩Xj2 ∩ . . . ∩XjS = ∅, then we use the more concise

notation πj(∅) instead of πj(Xj1 ∩Xj2 ∩. . .∩XjS ), and πj(∅)
is called a conflicting mass product.

The PCR6 fusion of S > 2 BBAs is obtained by

mPCR6
1,2,...,S(∅) = 0, and for all A ∈ 2Θ \ {∅} by

mPCR6
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

[

(

∑

i∈{1,...,S}|Xji
=A

mi(Xji)
)

· πj(∅)
∑

X∈Xj

(
∑

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

, (7)

where ∧ is the logical conjunction5.

We use this general PCR6 formula because it is more easy

to implement and to improve than the original formula given

in [12] and in [13]. The PCR6 rule is quasi-associative and it

offers a more refined conflict redistribution than DS rule but

it is more complex, and it does not preserve the neutrality of

the vacuous BBA. PCR6 is simpler to implement than PCR5.

When S > 2, PCR6 is better than PCR5 for decision-making

as shown in [12]. MatlabTM codes of PCR5 and PCR6 fusion

rules can be found in [6], [16], and also from the BFAS6

repository. The PCR5 formula can be obtained from the PCR6

formula by just replacing the two summation operators on

i ∈ {1, . . . , S}|Xji = A appearing in (7) by the two product

operators on i ∈ {1, . . . , S}|Xji = A, that is
∑

i∈{1,...,S}|Xji
=A

→
∏

i∈{1,...,S}|Xji
=A

.

B. Drawback of PCR6 Rule

The PCR6 (resp. PCR5) rule of combination is not asso-

ciative which means that the fusion of the BBAs must be

done using general formula (7) if one has more than two

BBAs to combine, which is not very convenient. Therefore,

the sequential PCR6 (resp. PCR5) combination of S > 2
BBAs are not in general equal to the global PCR6 (resp.

PCR5) fusion of the S BBAs altogether because the order of

the combination of the sources does matter in the sequential

combination. Moreover, the PCR6 rule (resp. PCR5) can

become computationally intractable for combining a large

number of sources and for working with large FoD. This is a

5i.e. x ∧ y means that conditions x and y are both true.
6Belief Functions and Applications Society, see https://www.bfasociety.org/.

well-known limitation of this rule, but this is the price to pay

to get better results than with DS rule. Aside the complexity of

this rule, it is worth to mention that the neutral impact property

of the vacuous BBA mv is lost in general when considering

the PCR6 (or PCR5) combination of S > 2 BBAs altogether

because of the proportional conflict redistribution principles

used in PCR6 (resp. PCR5) rule. The non neutral impact of

the vacuous BBA is clearly a drawback because it is naturally

expected that the vacuous BBA must not impact the fusion

result in the fusion process because the vacuous BBA brings no

useful information to exploit. Also a BBA that is close to the

vacuous BBA should not have a strong impact on the fusion

result because it brings only a very little valuable information.

This can be seen as a flaw of the behavior of PCR6 (resp.

PCR5) rule of combination. To emphasize clearly this flaw,

we give in the example 1 a case where the mass committed

to some partial uncertainties can increase more than necessary

with PCR6 rule if we have a BBA which is close (or equal)

to the vacuous BBA, which is detrimental for the quality of

the fusion result and for decision-making (because the result is

more incertain than it should be, and consequently the decision

is more difficult to make).

Example 1: consider Θ = {A,B,C,D,E} and the three

BBAs listed in Table I.

TABLE I
THE THREE BBAS TO COMBINE.

Focal Elements m1(·) m2(·) m3(·)

B 0.05 0.05 0
A ∪ B 0.65 0.05 0
C ∪D 0.05 0.50 0
A ∪ B ∪ C ∪D 0.15 0.05 0
E 0.10 0.35 0.01
Θ 0 0 0.99

Here m3(·) is not equal to the vacuous BBA but it is

very close to the vacuous BBA because m3(Θ) is close to

one. The results7 of the fusion PCR6(m1,m2), and the fusion

PCR6(m1,m2,m3) are given in Table II.

TABLE II
mPCR6

1,2 (·) AND mPCR6
1,2,3(·) RESULTS.

Focal Elements mPCR6
1,2 (·) mPCR6

1,2,3(·)

B 0.054877 0.048939
A ∪ B 0.406987 0.247656
C ∪D 0.312886 0.204005
A ∪ B ∪ C ∪D 0.024917 0.013439
E 0.200333 0.101731
Θ 0 0.384230

7The numerical values have been rounded to their sixth digit.
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One sees that combining the BBAs m1, m2 with the BBA

m3 (where m3 is close to vacuous BBA, and therefore m3

is almost non-informative) generates a big increase of the

belief of the uncertainty in the resulting BBA. This behavior

is clearly counter-intuitive because if the source is almost vac-

uous, only a small degradation of the uncertainty is expected

and in the limit case when m3 is the vacuous BBA no impact

of m3 on the fusion result should occur. Because of this flawed

behavior, we propose in the next section an improvement of

PCR6 rule (called PCR6+ fusion rule) in order to preserve the

neutrality of the vacuous BBA.

IV. IMPROVEMENT OF PCR6 RULE

The very simple and basic idea to improve the PCR6

conflict redistribution principle is to discard the elements that

contain the other elements implied in the conflict mass product

πj(∅) calculation. Indeed, the elements discarded are regarded

as non informative and not useful for making the conflict

redistribution. To illustrate clearly this point, let’s consider

again Example 1 and the conflicting product

π16(∅) = m1(A ∪B)m2(C ∪D)m3(Θ).

With PCR6, the redistribution of π16(∅) follows

x16(A ∪B)

m1(A ∪B)
=

x16(C ∪D)

m2(C ∪D)
=

x16(Θ)

m3(Θ)

=
π16(∅)

m1(A ∪B) +m2(C ∪D) +m3(Θ)
,

which is not very efficient because Θ is not the source of

conflict in this case since A ∪ B ⊆ Θ and C ∪ D ⊆ Θ.

The conflict exists only because (A ∪ B) ∩ (C ∪ D) = ∅.

In the improved version of PCR6 rule, denoted PCR6+, the

conflicting product π16(∅) will be redistributed only to A∪B
and to C ∪D but not to Θ. With PCR6+ rule we will make

the new (simpler) redistribution of π16(∅) according to

x16(A ∪B)

m1(A ∪B)
=

x16(C ∪D)

m2(C ∪D)
==

π16(∅)
m1(A ∪B) +m2(C ∪D)

.

A. PCR6+ general formula

The general expression of PCR6+ (and also PCR5+) is

presented in details, with many examples and MatlabTM codes

in [17]. Here, due to space limitation, we just recall its

expression for convenience. Actually, PCR6+ fusion rule is the

proper modification of PCR6 formula (7) taking into account

the selection of focal elements on which the proportional

redistribution must apply thanks to the value of their keeping-

index. More precisely, the PCR6+ fusion of S > 2 BBAs is

obtained by mPCR6+

1,2,...,S(∅) = 0, and for all A ∈ 2Θ \ {∅} by

mPCR6+

1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)
[

(

κj(A)
∑

i∈{1,...,S}|Xji
=A

mi(Xji)
)

·

πj(∅)
∑

X∈Xj

(

κj(X)
∑

i∈{1,...,S}|Xji
=X

mi(Xji)
)

]

, (8)

where κj(A) and κj(X) are respectively the keeping indexes

of elements A and X involved in the conflicting product πj(∅),
that are calculated by the formula

κj(Xji) , 1−
∏

Xl′ ,Xl∈Xj|Xl′ 6=Xl

|Xji
|≤|Xl|

|Xl′ |≤|Xl|

δj(Xl′ , Xl). (9)

Xj = {X1, . . . , Xsj , sj ≤ S} is the set of all distinct com-

ponents of the S-uple Xj related with the conflicting product

πj(∅). The term δj(Xl′ , Xl) is the binary containing indicator

of Xl with respect to Xl′ ∈ Xj that characterizes if Xl

contains (includes) Xl′ in wide sense, or not. More precisely,

δj(Xl′ , Xl) is defined by

δj(Xl′ , Xl) ,

{

1 if Xl′ ⊆ Xl,

0 if Xl′ * Xl.
(10)

The value κj(Xji) = 1 stipulates that the focal element

Xji ∈ Xj must receive some proportional redistribution from

the conflicting mass πj(∅), and κj(Xji) = 0 indicates that

Xji ∈ Xj will not be involved in the proportional redistri-

bution of πj(∅).
Note that κj(Θ) = 0 if Θ ∈ Xj because Θ always includes

all other focal elements of Xj and Θ has the highest cardinal-

ity. For a given FoD and a given number of BBAs to combine,

it is always possible to calculate off-line the values of the

keeping-indexes of focal elements for all combinations leading

to conflicting products πj(∅) > 0. We can verify that formula

(8) is consistent with PCR6 formula (7) when all keeping

indexes are equal to one. The fusion rule (8) is commutative

and non associative, and the vacuous BBA mv has a neutral

impact in PCR6+ rule - see proof in [17].

B. Example 1 revisited with PCR6+

Consider the example 1 with the three BBAs given in

table I. If we combine the BBAs m1 and m2, we have

PCR6+(m1,m2) = PCR6(m1,m2) because these rules co-

incide when combining two BBAs. If we make the PCR6+

fusion of the three BBAs altogether we obtain different results

which is normal, because for S > 2 one has in general

PCR6+(m1, . . . ,mS) 6= PCR6(m1, . . . ,mS). For this exam-

ple we get results shown in Table III.
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We can verify that the result obtained by PCR6+ fusion

rule is more judicious than with PCR6 rule because the fusion

of the almost vacuous BBA m3(·) has a very little impact

in the fusion result as we intuitively expect. This is because

the PCR6+ combination rule discards the ignorant (or almost

ignorant) information. With mPCR6+

1,2,3 (·), the largest mass is

allocated to A ∪ B as with8 mPCR6+

1,2 (·), and contrariwise to

mPCR6
1,2,3(·) when using the PCR6 fusion rule - see results in

Table II.

TABLE III
mPCR6+

1,2 (·) AND mPCR6+

1,2,3 (·) RESULTS.

Focal Elements mPCR6+

1,2 (·) mPCR6+

1,2,3 (·)

B 0.054877 0.054485
A ∪ B 0.406987 0.407174
C ∪D 0.312886 0.312660
A ∪ B ∪ C ∪D 0.024917 0.025232
E 0.200333 0.200449
Θ 0 0

V. APPLICATION TO LEVEE CHARACTERIZATION

We now present the advantages of the new PCR6+ rule for

an application on a numerical case study representing a levee

section. To do so, we use the geophysical and geotechnical

information fusion methodology introduced in [2].

A. Model and Information Sources

The figure 1 displays the structure of the levee, the location

of the different layers and the representation of the study levee

section.

Fig. 1. a) Levee with position of investigation methods and b) materials in
the section of interest.

The area is a lengthwise (parallel to the river) vertical

section composed of two lithological materials: i) compact

clays (C hypothesis) and ii) soft sands (S hypothesis). The

8We recall that one always has mPCR6+

1,2 (·) = mPCR6
1,2 (·).

sands are present over 6 meters thick on the first 125 meters

of the section and over 10 meters thick after. Clayey materials

are positioned below. A small electrically conductive anomaly

is located near the surface in the center of the model. Thus,

the FoD is defined such that Θ = {C, S,O}. As required by

the fusion method, O is an additional hypothesis standing for

any other material different from the other two known. For this

case study, two geophysical methods are used: the Electrical

Resistivity Tomography (ERT) and the Multi-channel Analy-

sis of Surface Waves (MASW). Two geotechnical boreholes

providing information on the lithology are also considered in

this study.

B. BBA Distribution for Each Source

1) Electrical Resistivity Tomography: The basic principle

of DC-resistivity methods consists in injecting an electric

current of known intensity [A] by means of two "current"

electrodes and measuring a voltage [V] between two "poten-

tial" electrodes. Such measurements are acquired for several

positions of the current and the potential electrodes. Appar-

ent resistivity values can then be computed and inverted to

reconstruct a complete section of electrical resistivity [Ω.m].

From these electrical resistivity data, the fusion methodology

[2] enables the BBA distribution depicted in Figure 2. The

ERT characterization is disturbed by the conductive electrical

artifact. Thus, clays are locally characterized in the center of

the section while we know that sands are actually present.

Also, the interface between clays and sands are not correctly

defined.

Fig. 2. a) Material with highest mass (from electrical resistivity data) and b)
their mass values.

2) Multichannel Analysis of Surface Waves: The MASW

method consists in studying the surface wave’s dispersion

(waveform deformation) to determine the shear wave’s veloc-

ity [m.s−1]. A seismic source is generated at various locations

and geophones are aligned on the ground surface to record the

seismic waves arrival times. The use of this method comprises

three stages: (i) the data acquisition, (ii) the determination of

the Rayleigh dispersion curve, and (iii) the inversion process
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with the determination of the shear velocities. In this work, the

seismic acquisition is carried out from x = 212 m to x = 428
m. From the shear wave velocity data, the associated BBA

distribution is displayed in Figure 3. The MASW character-

ization is not disturbed by the electrical artifact. Thus, the

method characterizes correctly the two lithological materials

as well as the lithological interface position. However, Θ is

characterized in most part of the section (in black, Figure 3.a),

where no data is available.

Fig. 3. a) Material with highest mass (from shear wave velocity data) and b)
their mass values.

3) Core Drillings: Two core drillings with particle size

analysis are simulated at x = 80 m and x = 350 m from

the surface to 20 m depth. From the simulated geotechnical

data, the associated BBA distribution is displayed in Figure

4. The lithological materials are correctly characterized but an

important area of uncertainty remains between 6 and 10 m

depth. Indeed, since two different materials are identified in

both boreholes at such depths, the section is poorly defined

between them [2].

Fig. 4. a) Material with highest mass (from two borehole data) and b) their
mass values.

C. PCR6 and PCR6+ Fusion Results

The fusion results using PCR6 and PCR6+ rules are re-

spectively depicted in Figures 5.a-b and Figures 5.c-d. These

results highlight the lack of characterization at the center of the

model using PCR6 rule (in the red boxes, Figure 5.a). Indeed,

Θ is characterized while PCR6+ rule enables to correctly

characterize sands. For PCR6, this area is difficult to define

since the ERT suggests the presence of clays, the MASW

suggests the presence of sands and the geotechnical source

of information is ignorant. However, PCR6+ rule manages to

allocate the conflictual masses on the individual hypothesis

instead of Θ. Furthermore, the global belief mass values are

greater with PCR6+ rule (Figure 5.d) than with PCR6 (Figure

5.c). This improvement in the results could be valuable in

the context of an investigation campaign on a real earthen

structure. Indeed, knowing the nature of the materials as well

as their location is crucial to achieve a good diagnosis and

limit the risk of breakage. Since many investigation methods

can be ignorant or partially ignorant in the context of levee

characterization, this new combination rule would be of great

operational interest to give credit to the most informative

source and to avoid uncharacterized areas inside the earthen

structure.

Fig. 5. Material with highest mass (from ERT, MASW and core drillings),
using PCR6 (a) and PCR6+ (c) rules, with area of interest in red box. b) and
d) mass values associated with the hypothesis depicted in a) and c).

VI. CONCLUSIONS

In this work, after having introduced the belief functions as

well as conjunctive, DS and PCR6 rules of combination, we

presented the flawed behavior of PCR6 rule. We then described

improvements to correct these behaviors, introducing a new

PCR6+ rule. The computation of a keeping index, making

it possible to discard ignorant information sources for the

calculation of each partial conflict, was detailed. This keeping

index has been integrated into the original formulation of

PCR6 in order to ensure the neutrality property of the vacuous

BBA. The interest of such combination rule has finally been

demonstrated for an application on a numerical levee section
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with simulated geophysical and geotechnical acquisitions. As

a following perspective, we wish to apply this new PCR6+

rule to risk analysis issues with data fusion acquired from real

investigation campaigns.
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Abstract—The objective of this paper is to present a general
methodology for storm risk assessment and prediction based on
several physical criteria thanks to the belief functions framework
to deal with conflicting meteorological information. For this, we
adapt the Soft ELECTRE TRI (SET) approach to this storm
context and we show how to use it on outputs of atmospheric
forecast model, given an estimate of the state of the atmosphere
in a future time. This work could also serve as a benchmark
for other methods dealing with multi-criteria decision-making
(MCDM) support and conflicting information fusion.
Keywords: storm risk assessment, information fusion, belief
functions, decision-making, Soft ELECTRE TRI.

I. INTRODUCTION

In the context of storm prediction, many sources of obser-
vations of the atmosphere may be used. The aim of storm
risk assessment is to exploit as best as possible some of
these available data to evaluate the risk of thunderstorm at
a given location in the surveillance area under concern in
a close future. Each type of data is associated to a given
source of information called a criterion in our context. In the
present paper, the data used are coming from a numerical
weather prediction model. These kinds of models allow to
simulate the evolution of the state of the atmosphere by solving
dynamical and thermodynamical equations, by including data
assimilation of observations of the atmosphere (from satellite,
rawinsonde or buoys, for instance) and by adding physical
parametrization for unresolved processes as convection. The
outputs of the Global Forecast System (GFS), developed by
the Centers for Environmental Prediction (NCEP) have been
used for our study [1]. The estimation of storm risk level is of
prime importance for many applications (aeronautical safety,
air traffic management, ...). In this work we present a general
methodology showing how to use belief functions [2] coupled
with the Soft ELECTRE TRI (SET) outranking method [3] to
manage efficiently the conflicting sources of information in a
multi-criteria decision-making context.

This paper is organized as follows. After a short presentation
of the Soft ELECTRE TRI outranking method in Section
II for Multi-Criteria Decision-Making (MCDM) support we
introduce the storm risk assessment problematic in Section
III, and we show how it can fit well with the Soft ELECTRE
TRI framework. We also provide an example of our storm
assessment methodology based on data set coming from the
atmospheric forecast supplied by GFS, and we show the

performances of SET approach with respect to “ground truth”
obtained by the World Wide Lightning Location Network
(WWLLN) [4]. Conclusions are given in section IV with some
perspectives.

II. SOFT ELECTRE TRI FOR MCDM

A. A short presentation of SET

The Soft ELECTRE TRI method (SET) proposed in [3] is
an evolution of the ELECTRE TRI (ET)1 method proposed
by Roy in [5] for making the outranking of alternatives with
respect to profiles of categories. The SET method is based on
belief functions calculus [2] (see appendix) and improves the
classical ET method because it does not require an arbitrary
choice of λ-cut strategy for making the outranking of alter-
natives with respect to profiles of categories, nor an ad-hoc
choice of decisional attitude for making the final assignment.
Actually, the SET method solves the assignment problem in
a soft manner. The Fig. 1 shows the general MCDM problem
that can be addressed by the SET method. More precisely,
SET solves an assignment problem in complex situations
where a (or several) given alternative has to be assigned to
predetermined categories based on multiple criteria values.
Each criterion Gj (j = 1, . . . , nG) is evaluated quantitatively.
Each profile is defined by the green points limiting the bounds
of each category with respect to each criterion. The red chain
represents a “multi-criteria value” (i.e. an alternative a) that
one wants to assign to a predefined category.

Figure 1: How to assign a category to an alternative?

1The acronym ELECTRE stands for “ÉLimination Et Choix Traduisant la
RÉalité” (Elimination and Choice Expressing the Reality) [7], [8].

Originally published as: J. Dezert, A. Bouchard, M. Buguet, Multi-Criteria Information Fusion for Storm 
Prediction Based on Belief Functions, in Proc. of Int. Conf. on Information Fusion (Fusion 2021), South 
Africa, November 2021, and reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

447



In the context of our storm risk assessment application each
category Ch corresponds to a level of risk (low, moderate,
strong, very strong, or extreme), and it is defined by its profile
lower and upper bounds denoted respectively by bh−1 and
bh (see vertical green plots in Fig. 1). The profiles bounds
define ad-hoc categories for the values of each criterion Gj

corresponding to a meteorological parameter which is either a
direct measure of a meteorological parameter, or an estimation
of the parameter resulting from a sophisticate meteorological
forecast model. These meteorological parameters (i.e. criteria)
will be described in details in section III. Any alternative
corresponds to a multi-criteria value a = (a1, . . . , aj , . . . anG

)
whose component aj is nothing but the instance of the param-
eter (i.e. criterion) Gj for this alternative a. Each alternative
a is associated with a (2D) cell of the area of interest on the
surface of the Earth.

The SET method allows to take into account the weight of
importance of each criterion entering this assignment problem
and to give a soft (i.e. probabilistic) assignment solution
to commit any multi-criteria value a to a category. More
precisely, SET calculates the probability that a chosen alter-
native a belongs to a predetermined category Ch based on all
information available (the criteria values, the importances of
the criteria, and the bounds of each predetermined category).

B. SET principle

We present briefly the principle and the steps of the Soft
ELECTRE TRI (SET) outranking method developed originally
in [3]. SET makes a soft assignment of na ≥ 1 alternatives
ai in predefined ordered categories Ch (h = 1, . . . , nh)
according to criteria2 measure gj(.), j ∈ J = {1, . . . , nG}.
Each category Ch is delimited by the set of its lower and
upper limits bjh−1 and bjh with respect to each criterion Gj

measured by gj(·). By convention, bj0 ≤ bj1 . . . ≤ bjnh
.

b0 = (b10, . . . , b
j
0, . . . , b

nG
0 ) is the lower (minimal) profile

bound and bnh
= (b1nh

, . . . , bjnh
, . . . , bnG

nh
) is the upper (max-

imal) profile bound. The overall profile bh is defined by
(g1(bh), g2(bh), . . . , gnG

(bh)), and it is represented by the
vertical plot joining the green dots in Fig. 1.

The outranking relations used in SET are based on the cal-
culation of partial concordance and discordance indices from
which global concordance and credibility indices are derived
based on Basic Belief Assignment (BBA) modeling [2], and on
an advanced fusion technique based on Proportional Conflict
Redistribution rule no. 6 (PCR6) [9]–[11]. A soft assignment
of each alternative ai in a predetermined category is obtained
by the calculation of the probabilized outranking relations,
from which a final hard assignment can be drawn (if needed)
for some action. In the storm risk assessment context, an action
for instance could be the broadcast of an alert message to the
air traffic management organisms or airports.

The Soft ELECTRE TRI method requires the following four
steps:

2In our context, a criteria is a meteorological parameter.

SET-Step 1: Calculation of partial (local) concordance indices
cj(ai,bh), partial discordances indices dj(ai,bh), and also
partial uncertainty indices uj(ai,bh) between an alternative ai
and a profile bh thanks to a smooth sigmoidal model [12]. The
partial indices are encapsulated in BBAs mj

ih(.) for alternative
ai versus profile bh (i.e. ai vs. bh) as follows:





cj(ai,bh) , mj
ih(c) (local concordance)

dj(ai,bh) , mj
ih(c̄) (local discordance)

uj(ai,bh) , mj
ih(c ∪ c̄) (local uncertainty).

(1)

where mj
ih(·) is a Basic Belief Assignment (BBA) defined on

the frame of discernement Θ , {c, c̄}, where c means that the
alternative ai is concordant (i.e. it agrees) with the assertion
‘ai is at least as good as profile bh”, and c̄ means that the
alternative ai is opposed to this assertion (i.e. it is discordant,
or it disagrees with this assertion). For each criterion Gj ,
a BBA mj

ih defined on the power-set of Θ is obtained by
the fusion of two simple BBAs mj

1(.) and mj
2(.) based on

the following sigmoid models, see [12] for justification and
details. Similarly, we compute also partial (local) concordance
indices cj(bh,ai), partial discordances indices dj(bh,ai), and
partial uncertainty indices uj(bh,ai) between a profile bh and
an alternative ai. This partial indices are encapsulated in BBAs
mj

hi(.) for profile bh versus alternative ai (i.e. bh vs. ai).

SET-Step 2: Calculation of the global (overall) concordance
indices c(ai,bh), c(bh,ai), discordance indices d(ai,bh),
d(bh,ai), and uncertainty indices u(ai,bh), u(bh,ai) by the
fusion of local indices. More precisely, one must calculate

{
mih(.) = [m1

ih ⊕m2
ih ⊕ . . .⊕m

ng

ih ](.)

mhi(.) = [m1
hi ⊕m2

hi ⊕ . . .⊕m
ng

hi ](.)
(2)

where ⊕ denotes symbolically a chosen fusion operator.
To take into account the weight of importance wj ∈ [0, 1]

of each criterion Gj , we propose two fusion methods:
1) Fusion method 1: we use the weighting averaging (WA)

fusion rule because it is a very simple rule, and it can
be processed very quickly. This is of prime importance
in our storm risk assessment context because one can
have millions of cells (depending the resolution cell we
want to work with) in a wide surveillance areas.

2) Fusion method 2: we use a more sophisticate PCR6
fusion rule adapted with importance discounting pre-
sented in details in [13] if more computational power
is available3.

Once the BBAs mih(.) and mhi(.) are obtained, the global
indices are defined by





c(ai,bh) , mih(c)α(ai,bh)

d(ai,bh) , mih(c̄)β(ai,bh)

u(ai,bh) , 1− c(ai,bh)− d(ai,bh).

(3)

3Due to the complexity of this fusion rule and computational burden, only
problems of relatively small dimensions, say for nG ≤ 6 , can be addressed
by this second method.
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The discounting factors α(ai,bh) and β(ai,bh) in (3) are
defined in [3]. They are not given here due to space limitation
restraints. c(bh,ai), d(bh,ai) and u(bh,ai) are similarly
computed using the dual formula of (3).

The belief and plausibility of the outranking propositions
X = “ai > bh” (ai outranks bh), and Y = “bh > ai” (bh

outranks ai) are then given by

Bel(X) = c(ai,bh) and Bel(Y ) = c(bh,ai) (4)

Pl(X) = 1− d(ai,bh) and Pl(Y ) = 1− d(bh,ai) (5)

SET-Step 3: Calculation of the probabilized outranking rela-
tions. In SET-Step 2 we have characterized the outrankings
X = “ai > bh” and Y = “bh > ai” by their im-
precise probabilities P (X) ∈ [Bel(X); Pl(X)] and P (Y ) ∈
[Bel(Y ); Pl(Y )]. Solving the outranking problem consists in
choosing (deciding) if finally X dominates Y (in such case
we must decide X as being the valid outranking), or if
Y dominates X (in such case we decide Y as being the
valid outranking). This hard assignment problem is difficult
in general because P (X) in [Bel(X); Pl(X)] and P (Y ) in
[Bel(Y ); Pl(Y )] and these belief intervals can partially over-
lap. Fortunately, a soft (probabilized) outranking solution is
possible by computing the probability that X dominates Y
(or that Y dominates X) by assuming uniform distribution of
unknown probabilities between their lower and upper bounds.
To get the probabilized outrankings, we have to calculate
PX>Y , P (P (X) > P (Y )) and PY >X , P (P (Y ) >
P (X)) which are given by the ratio of two polygonal areas, or
can be estimated using sampling techniques, as explained and
illustrated in [3]. The probabilities of outrankings are denoted
Pih , PX>Y where X , “ai > bh” and Y , “bh > ai”.
Reciprocally, we denote Phi , PY >X = 1 − Pih. This
probabilization of outrankings is directly obtained by this Step
3 of SET, and thus eliminates the arbitrary λ-cut strategy used
in classical ELECTRE TRI method.

SET-Step 4: Final soft assignment of ai into a category
Ch. From the probabilized outrankings obtained in SET-Step
3, we can make directly the soft assignment of alternatives
ai to categories Ch defined by their profiles bh. This is
easily obtained by the combinatorics of all possible sequences
of outrankings taking into account their probabilities Pih

to calculate all the assignment probabilities P (ai → Ch).
Moreover, this soft assignment mechanism provides also the
probability δi , P (ai → ∅) reflecting the impossibility to
make a coherent outranking. This soft assignment procedure
of the SET method does not require an arbitrary choice of
decisional attitude unlike to what is proposed in the classical
ET method. A simple detailed example of this SET-Step 4 is
given in [3] for convenience.

III. APPLICATION OF SET TO STORM RISK ASSESSMENT

A. Surveillance zone and data set

We apply the SET method briefly presented in the previous
section to storm risk assessment problematic. For this, we con-
sider in this study five meteorological parameters (i.e. criteria)

drawn from GFS (Global Forecast System) open data available
on the web [1]. We have used GFS data for the 9th May 2016
at 3h UTC. The GFS data used in this study are available
in [22]. The wide surveillance area covers Atlantic ocean
from [−1, 70.5] degrees in latitude, and [−100, 10.5] degrees
in longitude. We have 21592 cells of size 0.5 × 0.5 deg2

to evaluate. Each cell corresponds to an alternative ai that
must be assigned to a storm risk category Ch by the SET
method. The table I shows the five (nG = 5) meteorological
parameters (i.e. criteria) used in our study, their units, their
preference ordering, and their qualitative importance chosen
for this problematic.

Criteria Units Preference ordering Importance weight
G1 = PConv kg/m2 increasing very high
G2 = LI ◦K decreasing very high
G3 = CAPE J/kg increasing high
G4 = DivB s−1 decreasing low
G5 = DivS s−1 increasing low

Table I: Criteria used for SET method.

where
• PConv is the 3-h accumulated precipitation induced by

convective process (in kg/m2) [24];
• LI is the lifted index which characterizes the instability

of the atmosphere (in ◦K). This parameter, developed
by Galway [25], is the gap between the environmental
temperature and the temperature of a parcel lifted dry-
adiabatically to saturation then moist-adiabatically to 500
hPa;

• CAPE is the convective available potential energy (in
J/kg). This parameter is the potential energy available to
the parcel to lift up beyond the level of free convection.
As the lifted index, this parameter relies on the difference
between the environmental temperature and the tempera-
ture of a parcel lifts adiabatically [26];

• DivB is the low-level wind divergence if there is convec-
tive clouds in the cell (in s−1). This parameter is derived
from horizontal wind component and the pressure level
of the bottom of convective cloud [27];

• DivS is the divergence of the wind above the top of
the convective clouds (in s−1). Indeed, isolated storm
cloud is associated with low-level wind convergence and
divergence near the top of the cloud [27];

PConv has an increasing preference order which means that
bigger the PConv value is, higher is the storm risk. LI has a
decreasing preference order meaning that lower the LI value is,
higher is the storm risk. To work with quantitative importance
weights, we need to transform qualitative labels (low, high,
very high) into numerical values. For this we use the following
mapping: Low importance 7→ 1, Moderate importance 7→ 2,
High importance 7→ 3 and Very high importance 7→ 4. This
mapping is quite ad-hoc, and could be changed/adapted for
reflecting a better subjective interpretation of the importance
level expressed by the expert who provides these qualitative
importance factors. This mapping is specific of the fusion
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system design. After the normalization of the numerical im-
portance factors, we get the following normalized weights
of importance of each criterion4: w1 = 4/12, w2 = 4/12,
w3 = 2/12, w4 = 1/12, and w5 = 1/12.

In our study, we consider five (nh = 5) levels of risk
defined qualitatively as: Low, Moderate, Strong, Very strong
and Extreme which respectively correspond quantitatively to
the levels 1, 2, 3, 4 and 5 that will be shown in on the
followings figures. The profile bounds for each category of
risk and each criterion are given in Table II.

Criteria\Bounds of categories b1 b2 b3 b4
G1 = PConv 0 1.5 7 10
G2 = LI 0 -2 -6 -10
G3 = CAPE 0 1000 2000 4000
G4 = DivB 0 -0.1 -0.5 -1
G5 = DivS 0 0.1 0.5 1

Table II: Bounds of categories of risk.

For convenience, the figure 2 presents the flow chart of the
proposed method related to our storm application.
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Figure 2: Flow chart of the method related to the application.

The bounds for LI and CAPE criteria are those defined
by Wesoleck in [23]. The bounds for PConv criteria have
been deduced from the different thresholds used to distinguish
light, moderate and heavy rainfall [28] and adapted to our
geographical area. Heavy rain, correspondings to accumulated
precipitation above 10-30 mm/h, is associated to severe storm

4In this work and for simplicity, the importance factor wj of each criteria
Gj used to make the importance discounting of BBAs in the SET method is
chosen independently of the profile bound values.

risk [29]. The bounds for low-level convergence wind and
high-level divergence wind have been chosen larger than usual
threshold [30], because the most important information is the
sign of the divergence merge with the presence of convective
cloud in the cell. Hence, if the PConv value for the cell under
analysis is greater than bj=1

4 = 20, then the storm risk for
this cell is considered as extreme (risk=5). If the PConv value
belongs to (bj=1

3 , bj=1
4 ] = (10, 20] then the storm risk for this

cell is considered as very high (risk=4), etc. If the LI value
is lower than bj=3

4 = −10 then the storm risk for this cell is
considered as extreme (risk=5), but if the LI value is between
bj=3
4 = −10 and bj=3

3 = −6 the storm risk for this cell is
considered only as very high (risk=4).

The figures 3–7 show the risk levels (1, 2, 3, 4 and 5)
corresponding to each criterion for the 21592 cells covering
the Atlantic ocean surveillance area for each criterion consid-
ered separately. The Dark blue cells with values -1 correspond
to ground cells which are not taken into account in this
study. One clearly sees the difference of risks drawn from the
five meteorological parameters and the conflicting information
between these five maps of risks of storm that illustrate the
input data we have to process by the SET method to get the
global risk assessment.
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Figure 3: Storm risk levels based on PConv criterion. 0 means
no risk; 1, low level of risk; 2, moderate level of risk; 3, strong
level of risk; 4, very strong level of risk and 5, extreme risk.
Risk are not calculated over earth, fixed to -1 value (dark blue).
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Figure 4: Storm risk levels based on LI criterion.
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Figure 5: Storm risk levels based on CAPE criterion.
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Figure 6: Storm risk levels based on DivB criterion.
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Figure 7: Storm risk levels based on DivS criterion.

To estimate the variability (randomness) of GFS data in each
cell, we estimate for each category Ch of risk the probability
P (Ch) by counting the number of criteria associated with Ch

divided by nG = 5. This level of randomness is characterized
by Shannon’s entropy. Hence, for the cell #i, if we have the
probability measure pi = (p1, p2, . . . , pnh

), the normalized
Shannon entropy5 is given by

H(pi) = − 1

log2 nh
·

nh∑

h=1

ph log2 ph (6)

5One takes ph log2 ph = 0 if ph = 0.

H(pi) = 0 when all meteorological parameters agree with
the same storm risk category, and H(pi) is maximum if pi

is the uniform pmf. One defines the mean entropy H̄ of the
GFS data by averaging the entropy values of the N = 21592
cells of the surveillance area by

H̄ =
1

N

N∑

i=1

H(pi) (7)

Figure 8 shows the normalized entropies of the meteorolog-
ical GFS data we have used in this study. The mean entropy of
these GFS data is H̄ = 0.2989, and only 32% of the data are
totally in agreement on the same risk level (shown in green
color on Fig 8). As we observe on this figure most of the data
are conflicting because the entropies values are much bigger
than zero. The high level of randomness of these data justifies
a sophisticate MCDM method able to deal efficiently with
conflicting sources of information. This motivates the use of
SET approach proposed in this work.
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Figure 8: Normalized Shannon entropy of GFS data.

B. Results based on the weighted averaging rule

The figure 9 shows the storm risk levels based on the
weighted average6 of risk levels shown figures 3–7, with the
weights of importance w1 = 4/12, w2 = 4/12, w3 = 2/12,
w4 = 1/12, and w5 = 1/12.
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Figure 9: Storm risk levels based on weighted average of risks.

6For representation convenience and comparison with SET results, the risk
values of Fig. 9 have been rounded to their closest integer value.
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Based on this simple fusion rule one observes that the
strong (and higher) risks of thunderstorms are located mainly
in the intertropical convergence zone (around the equatorial
line), on the Caribbean Sea, and aside the Portugal coast.
However the method of fusion does not provide a measure
of the trustfulness (confidence) of this result, and it does not
manage precisely the level of conflict between the different
sets of data.

C. Results based on the SET approach

The figure 10 shows the map of storm risk levels based on
weighted averaging fusion rule used in SET-step 2, whereas
the figure 11 shows the result when the PCR6 fusion rule7 is
used in SET-step 2. These two resulting maps of risk levels
can be interpreted as the SET-combination of maps shown in
figures taking into account the importance and contradiction
of the five meteorological criteria.
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Figure 10: Storm risk levels based on SET (averaging rule).
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Figure 11: Storm risk levels based on SET (PCR6 rule).

The confidence in the resulting storm risk maps of figures
10 and 11 are shown in figures 12 and 13 respectively.

D. Performances analysis

To measure the performance of our method of storm risk
assessment we need to compare our SET results with some
ground truth. For this, we consider as ground truth the

7with importance discounting of BBAs, as explained in [13].
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Figure 12: Confidence in decision (SET with averaging rule).
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Figure 13: Confidence in decision (SET with PCR6 rule).

information of location of strokes supplied by the World
Wide Lightning Location Network (WWLLN) [4]. WWLLN
archival data are copyrighted by the University of Washington
and are available to the public at nominal cost. For a given
date, at a time T, all cells where strokes impacts have been
detected by WWLLN network, in the time interval [T +/-
1h30], have been tagged. These data consist of the NL = 223
locations of all the detected lightnings on May 9th, 2016 in
the time interval [1h30 - 4h30 UTC] which are shown as red
dots in Fig 14.

Figure 14: WWLLN lightning detections.

The performance of the method are evaluated by the esti-
mation of the detection probability P̂d = P (Ĉ > C1|dW = 1)
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of lightnings, and the false alarm probability P̂fa = P (Ĉ >
C1|dW = 0), where Ĉ denotes the decision (i.e. the category
of the risk) taken for a chosen confidence threshold, dW = 1
indicates that a lightning flash has been detected by the
WWLLN for the cell under analysis, and dW = 0 indicates
no detection. These probabilities are empirically estimated by

P̂d = P (Ĉ > C1|dW = 1) ≈ n(Ĉ > C1, dW = 1)

n(dW = 1)
(8)

P̂fa = P (Ĉ > C1|dW = 0) ≈ n(Ĉ > C1, dW = 0)

n(dW = 0)
(9)

where n(Ĉ > C1, dW = 1) is the number of cells for which
the joint event Ĉ > C1 and dW = 1 has occurred, and
n(dW = 1) is the number of cells for which one has got
a WWLLN detection dW = 1. Similarly, n(Ĉ > C1, dW = 0)
is the number of cells where events Ĉ > C1 and dW = 0
have occurred, and n(dW = 0) is the number of cells having
no WWLLN detection (i.e. dW = 0).

The tables III indicates the estimations of the detection
probability P̂d of lightnings, and of the false alarm probability
P̂fa obtained by the three methods tested based on WWLLN
set of detections.

Methods P̂d P̂fa
Weighted Averaging Rule 0.9775 0.3601
SET with averaging rule 0.9462 0.2945
SET with PCR6 rule 0.9507 0.2954

Table III: P̂d and P̂fa performances.

Our results show that SET approach (with averaging rule, or
with PCR6 rule) provides interesting results because it allows
to identify and predict the areas with high risk of storm that are
coherent with the real location of lightnings detected by the
WWLLN. One sees that the direct weighted averaging fusion
of the risk maps of the five criteria shown in Fig. 9 produces
notably more false alarms than with SET method, and only
a little increase detection probability. In this work there is
no clear advantage of using the PCR6 rule with respect the
weighted averaging rule in step 2 of SET method because
the performances in term of probability of detection and false
alarms are very close. In terms of computational time, the
direct weighted averaging fusion of the risk maps is the fastest
method which takes few seconds8 with MatLab (R2108a
version) running with a MacBookPro laptop computer (2.8
GHz Intel Core i7), then the second fastest method is the
SET method using weighted averaging rule taking 1mn12sec,
and the slowest (and most complicate) method is the SET
method based on PCR6 rule which takes approximately 26mn
to produce the results. One important avantage of the SET
method (aside its aforementioned performances) is its ability
to provide the confidence map of the solutions obtained by
SET (i.e. the predicted risk levels) as shown in Fig. 12 and
13. These confidence maps are useful to identify areas of risks

8Once the five maps of risks have been computed.

where the confidences are low and thus very uncertain if some
important decision but be taken based on these solutions (for
instance the diverting of the flight of an aircraft, etc). Such
type of useful confidence map cannot be drawn form the direct
weighted averaging fusion of the risk maps. Due to space
restraint, we did not include the decision inconsistency maps9

(i.e. the map of the probabilities) P (ai → ∅) reflecting the
impossibility to make a coherent outranking (see SET step 4),
but these maps obtained by SET (with weighted averaging or
with PCR6 rule) reveal actually only very few cells located
mainly at the west of Panama. This very small number of
cells yielding decision inconsistency indicates that SET has
provided solutions in good decision-making conditions in
general.

IV. CONCLUSIONS

In this paper we have presented an application of belief
functions for storm prediction based on multi-criteria analysis
and the Soft Electre Tri (SET) methodology. We have shown
that SET allows to reduce notably the false alarms rate with
respect to a simple weighted averaging fusion method without
sacrificing much the detection of lightnings, and to provide the
confidence map of the solutions obtained. The SET method
based on PCR6 rule of combination performs well but it
has a high computational burden which prevent it to use it
for quasi-real time applications, and for working with multi-
criteria problems involving many more criteria. This work, we
hope, could serve as a benchmark problem for testing many
MCDM methods in future. More investigations are currently
done to apply this type of new methodology using more
meteorological criteria on other type of real data sets, and more
refined parameter settings that will be reported if possible in
a forthcoming publication.
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APPENDIX

Basic definitions of belief functions

In this appendix we provide basics of belief functions (BF)
introduced by Shafer [2] to model epistemic uncertainty to
reason about uncertainty. We assume that the answer of the
problem under concern belongs to a known finite discrete
frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn}, with
n > 1, and where all elements of Θ are exhaustive and
exclusive. The set of all subsets of Θ (including empty set ∅,
and Θ) is the power-set of Θ denoted by 2Θ. The number of
elements (i.e. the cardinality) of 2Θ is 2|Θ|. A (normal) basic

9They have been included with the data set files in [22] for convenience.
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belief assignment (BBA) associated with a given source of
evidence is a mapping m(·) : 2Θ → [0, 1] satisfying m(∅) = 0
and

∑
A∈2Θ m(A) = 1. The number m(A) is called the mass

of A committed by the source of evidence. The subset A ∈ 2Θ

is called a focal element (FE) of the BBA m(·) if and only if
m(A) > 0. The set of all the focal elements of the BBA m(·)
is noted by FΘ(m) = {X ∈ 2Θ|m(X) > 0}. The belief of A
denoted Bel(A) and the plausibility of A denoted Pl(A) are
usually interpreted respectively as lower and upper bounds of
an unknown (subjective) probability measure P (A). They are
respectively defined for any A ∈ 2Θ from the BBA m(·) by

Bel(A) =
∑

X∈2Θ|X⊆A

m(X) (10)

and

Pl(A) =
∑

X∈2Θ|A∩X 6=∅

m(X) = 1− Bel(Ā). (11)

where Ā represents the complement of A in Θ, that is Ā , Θ−
{A} = {X|X ∈ Θ and X /∈ A}. The symbol , means equal
by definition, and the minus symbol denotes the set difference
operator. The vacuous BBA (VBBA for short) representing a
totally ignorant source is defined as mv(Θ) = 1.

PCR6 rule of combination

The PCR6 rule proposed in [10], [11] is an interesting
alternative of original PCR rule of combination no. 5 (PCR5)
proposed in [9], [19]. PCR6 and PCR5 rules coincide if we
combine only two BBAs defined on the same FoD. The PCR6
fusion of S > 2 BBAs is obtained by mPCR6

1,2,...,S(∅) = 0, and
for all A ∈ 2Θ \ {∅} by

mPCR6
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)[( ∑
i∈{1,...,S}|Xji

=A

mi(Xji)
)

· πj(∅)∑
X∈Xj

( ∑
i∈{1,...,S}|Xji

=X

mi(Xji)
)] (12)

where mConj
1,2,...,S(A) =

∑
Xj∈F(m1,...,mS)
Xj1∩...∩XjS

=A

∏S
i=1mi(Xji) is

the conjunctive fusion rule, and where πj(Xj1 ∩Xj2 ∩ . . . ∩
XjS ) ,

∏S
i=1mi(Xji), and πj(∅) in (12) is the concise

notation of πj(Xj1 ∩Xj2 ∩ . . .∩XjS ) when Xj1 ∩Xj2 ∩ . . .∩
XjS = ∅. The x∧y is the logical conjunction operator meaning
that conditions x and y must be satisfied. PCR6 rule is quasi-
associative and it offers a more precise conflict redistribution
than DS rule but it requires a higher computational burden.
PCR6 does not preserve the neutrality of the vacuous BBA
however. PCR6 is simpler to implement than PCR5. Very
basic MatlabTM codes of PCR5 and PCR6 rules can be found
in [13], [20], and also from the BFAS (Belief Functions and
Applications Society) repository [21].
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Abstract—Data association has become pertinent task to in-
terpret the perceived environment for mobile robots such as
autonomous vehicles. It consists in assigning the sensor detections
to the known objects in order to update the obstacles map
surrounding the vehicle. Dezert-Smarandache Theory (DSmT)
provides a mathematical framework for reasoning with imperfect
data like sensor’s detections. In DSmT, data are quantified by
belief functions and combined by the Proportional Conflict Redis-
tribution (PCR6) rule in order to obtain the fusion of evidences
to make a decision. However, this combination rule has an
exponential complexity and that is why DSmT is rarely used for
real-time applications. This paper proposes a new evidential data
association based on DSmT techniques. The proposed approach
focuses on the significant pieces of information when combining
and removes unreliable and useless information. Consequently,
the complexity is reduced without degrading substantially the
decision-making. The paper proposes also a new simple decision-
making algorithm based on a global optimization procedure. Ex-
perimental results obtained on a well-known KITTI dataset show
that this new approach reduces significantly the computation time
while preserving the association accuracy. Consequently, the new
proposed approach makes DSmT framework applicable for real-
time applications for autonomous vehicle perception.

Keywords: Data Association, Belief Functions, Dezert-

Smarandache Theory, Proportional Conflict Redistribution 6,

Dezert-Smarandache Probability.

I. INTRODUCTION

Multi-Target Tracking (MTT) is a fundamental system to

interpret the perceived environment of mobile robots such

as autonomous vehicles [1], [2]. These cars require precise

knowledge of their surrounding environment in order to ensure

safe and comfortable driving [3]–[5]. The MTT system esti-

mates the status of detected objects surrounding the vehicle at

different times by single or multiple sensors. Data Association

is a central problem in MTT which assigns targets to the

predicted tracks in order to update their status. Targets refer

to the detected objects at the current time and tracks refer

to the known objects in the scene. A dynamic environment,

like the road environment, makes the object association more

difficult because of the appearance/disappearance of objects in

the perceived scene.

Usually, the assignment problem is resolved by the proba-

bility theory. Several methods have been proposed as the well-

known Global Nearest Neighbour (GNN) method and the Joint

Probability Data Association Filter (JPDAF) [6]–[8]. GNN

provides the optimal pairing by minimizing the global distance

between detections and known objects. JPDAF is based on a

weighted linear combination of all detections to estimate status

of known objects. More details about these methods can be

found in [8]–[10].

Recently, the belief function theory has also been used to

cope with the association problem [4], [11]. This theory, also

called Dempster-Shafer Theory (DST) [12], [13] allows to

reason about uncertainty thanks to the belief functions that are

often interpreted as lower and upper bound of unknown prob-

ability measures. In fact, sensor’s detections can be inaccurate

and incomplete. However, the DST models these imperfect

information through a distribution of belief masses which

quantify the confidence granted. Thereafter, these masses are

combined by Dempster’s rule to make decisions. Because

Dempster’s rule has been used and promoted by Shafer in

his mathematical theory of evidence, it is also often denoted

as DS rule in the literature.

Rombaut in [14] formalizes the association problem by DST

to reconstruct the environment of intelligent vehicles. This ap-

proach measures the confidence of the association hypotheses

between perceived and known obstacles by combining belief

masses using DS rule. This approach is extended in [11], [15]

to track vehicles where the association process is based on

the Transferable Belief Model (TBM) [16]. This latter is a

subjective and non-probabilistic interpretation of the Belief

theory. In TBM, the decision-making is based on the pig-

nistic probabilities derived from the belief quantities. Several

alternative probabilistic transformations have been proposed

in the literature. Our previous work [17] evaluates some of

them on real-data in the context of the DST framework.

In [11], the decision is performed by maximizing the joint

pignistic probability. However, this probability is computed

for all possible associations which grows the computation time

exponentially with the objects number. To tackle this problem,

the decision is made by selecting associations corresponding

to local maxima of pignistic probabilities [4], [18]. More

recently, Denœux et al. [19] express DS rule in terms of

contour functions and plausibility functions which reduces the

complexity and makes this approach applicable for real-time

applications.

Originally published as: M. Boumediene, H. Zebiri, J. Dezert, Evidential Data Association Based on 
Dezert-Smarandache Theory, Int. Journal of Intelligent Robotics and Applications, Vol. 7, pp. 91–102, 
2023, and reprinted with permission.
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All those aforementioned approaches use Dempster’s rule

which provides a counter-intuitive behavior specially in high

and low conflicting situations [20], [21]. In fact, DS rule

redistributes the conflicting mass on all elements which can

cause the lost of the information specificity and then generates

unacceptable results. In addition, serious mistakes have been

shown in logical fundamentals of the DST framework [22]–

[24]. To overcome those drawbacks, a more sophisticate rule

has been proposed and defined in the framework of Dezert-

Smarandache Theory (DSmT) [21]. Based on the Proportional

Conflict Redistribution (PCR) process, PCR6 rule preserves

the information specificity by transferring the conflicting mass

only to the elements involved in the conflict and proportionally

to their individual masses. However, PCR6 has an exponential

complexity and that is why it is rarely used for real-time

applications.

In this paper, we propose a new evidential data association

based on the DSmT framework. The first contribution is

to reduce the complexity of the combination step based on

PCR6 rule developed originally in the framework of Dezert-

Smarandache Theory. The proposed approach focuses on

the significant pieces of information when combining and

removes unreliable and useless information. Consequently,

the complexity is reduced without degrading substantially

the decision-making. The second contribution is to propose

a new simple decision-making algorithm based on a global

optimization. Experimental results obtained on a well-known

intelligent transportation systems dataset show the benefits of

this new approach in terms of computation time reduction and

association accuracy.

The rest of this paper is organized as follows. In section II,

few basics of the DSmT are presented. SectionIII details the

new proposed evidential data association approach and its

experimental validation is presented in Section IV. Finally,

Section V concludes this paper.

II. FUNDAMENTALS OF DSMT

In the Belief theory context, a problem is modelled by

a finite set of hypotheses Hi likely to be the solutions,

called Frame of Discernment (FoD). In the general DSmT

framework, the elements of the FoD do not need to be mutually

exhaustive as in the DST framework, but in the particular

context of our application presented in this paper, we work

with Shafer’s model of the FoD where all elements of the

FoD are mutually exclusive and exhaustive, that is:

Θ =
⋃k

i=1
{Hi} with Hi ∩Hj = ∅ (1)

where Hi are denoted as singletons, the lowest piece of

discernible knowledge in the FoD.

A. Basic Belief Assignment

A basic belief assignment (bba) or mass function associated

to a given source is defined as a function m : 2Θ → [0, 1]
satisfying:

∑

A∈2Θ

m(A) = 1 (2)

Figure 1. Illustration of the refinement function ρ [11].

where m(A) is the mass of belief that supports A. The source

is totally ignorant if m(Θ) = 1 and so the bba is considered

as vacuous function. Whether m(A) > 0, A is called a focal

element of the bba m(.). Thus F(m) = {A ∈ 2Θ/m(A) > 0}
defines the set of focal elements.

B. Vacuous Extension

Some sources of information can express on different FoDs

but related. However, in order to combine them, it is necessary

to work with the same common frame. For that, it can be

defined a finer FoD [13]. Let Ω a finer frame of Θ where

every element of Θ is mapped into one or more elements of

Ω (Cf. Fig. 1). Therefore, the refinement function ρ matches

proposition A from 2Θ to 2Ω according to:
{

{ρ({θ}), θ ∈ Θ} is a partition of Ω
∀A ⊆ Θ, ρ(A) =

⋃

θ∈A ρ({θ}). (3)

The vacuous extension mΘ↑Ω defines the bba on Ω from

the bba mΘ defined on Θ and the refinement ρ:

mΘ↑Ω(ρ(A)) =

{

mΘ(A), ∀A ⊆ Θ
0, otherwise.

(4)

C. Belief Combination

The belief combination consists in merging the measures

of evidence mΘ
i of M distinct sources Si, defined on the

same frame Θ, to a new distribution of evidence. For that,

the Proportional Conflict Redistribution rule 6 (PCR6) have

been proposed in [25] and theoretically justified in [21]. In

fact, PCR6 rule overcomes the drawbacks of the Dempster

rule [13] by redistributing proportionally the partial conflict

only on elements involved in this conflict. The formula of

PCR6 is defined by mPCR6(∅) = 0 and ∀A ∈ 2Θ\{∅} by [26],

[27]:

mPCR6(A) = mConj(A)

+
∑

j∈{1,...,F}|A∈Aj∧πj(∅)
[

(

∑

i∈{1,...,M}|Aji
=A

mΘ
i (Aji )

)

· πj(∅)
∑

A∈Aj

(
∑

i∈{1,...,M}|Aji
=A

mΘ
i (Aji )

)

]

, (5)

where ∧ is the logical conjunction1 and Aj is a pos-

sible M -uple of focal elements with Aji ∈ F(mΘ
i ), that

1i.e. x ∧ y means that conditions x and y are both true.
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is Aj , (Aj1 , Aj2 , · · · , AjM ). F is the cardinality of

F(mΘ
1 ,m

Θ
2 , . . . ,m

Θ
M ) which is the set of all possible M -uple.

And where πj(Aj1 ∩ Aj2 ∩ · · · ∩ AjM ) ,
M
∏

i=1

mΘ
i (Aji), and

πj(∅) = πj(Aj1 ∩ Aj2 ∩ · · · ∩ AjM ) defines the conflicting

mass product of Aj if Aj1 ∩ Aj2 ∩ . . . ∩ AjM = ∅ and the

conjunctive rule mConj is given by:

mConj(A) =
∑

Aj1
∩...∩AjM

=A

M
∏

i=1

mΘ
i (Aji ). (6)

D. Probabilistic Transformation

Decision-making consists of selecting a solution among

all possible hypotheses. Usually, the decision must be made

among elements of the frame. However, the belief combination

also generates masses for disjunctive propositions. Therefore,

it is necessary to redistribute the masses of these unions

on elements of Θ in order to make a decision. For that,

Dezert-Smarandache Probability (DSmP) transformation is

defined [28] where DSmP (∅) = 0 and ∀A ∈ 2Θ\{∅}:

DSmPǫ(A) =
∑

Y ∈2Θ

∑

Z⊆A∩Y

C(Z)=1

m(Z) + ǫ· C(A ∩ Y )

∑

Z⊆Y

C(Z)=1

m(Z) + ǫ· C(Y )
(7)

Where ǫ ≥ 0 is used to adjust the effect of element’s

cardinality (C(.)) in the proportional redistribution. In addition,

ǫ permits to compute DSmP when encountering zero masses.

Typically, ǫ = 0.001 because with a smaller ǫ the Probabilistic

Information Content (PIC) [29] is higher. The PIC indicates

the level of the available knowledge to make a correct decision.

PIC = 0 indicates that no knowledge exists to make a correct

decision.

III. DATA ASSOCIATION USING DSMT

Four steps are needed to solve the data association problem:

modeling, estimation, combining, and decision-making. How-

ever, PCR6 rule combination has an exponential complexity

which makes it not appealing for real-time applications. This

is why in this paper, only k-significant sources are combined

(with k lesser than the original number or sources available).

Thereafter, a simple global optimization is used to make

association decisions.

A. Data Modelling

Let us consider n detected objects at time t and m known

objects at previous time t−1. In this context, data association

aims at matching the n detected objects Xi to the m known

ones Yj under certain conditions:

• multiple associations are not accepted, a detected object

is associated with only one known object at most and

vice versa,

• multiple new objects can appear,

• multiple known objects can disappear.

The distances between the attributes of objects (position,

velocity, etc.) are considered as pieces of evidence. For a given

distance, its belief will be expressed on the elementary FoD

θi,j = {yes(i,j), no(i,j)} which models the relevance of the

association between Xi and Yj . Therefore, three bba masses

are constructed for each pairwise objects (Xi, Yj):

• mθi,j (yes(i,j)) : degree of belief that Xi is associated

with Yj ,

• mθi,j (no(i,j)) : degree of belief that Xi is not associated

with Yj ,

• mθi,j (θi,j) : represents the ignorance.

B. Belief Estimation

The estimation of belief masses is related to the considered

application. The most suitable model for data association

applications [30] is the non-antagonist model [14], [15] defined

by:

m
Θi,.

j (Y(i,j)) =

{

0 , Ii,j ∈ [0, τ ]
Φ1(Ii,j) , Ii,j ∈ [τ, 1]

(8)

m
Θi,.

j (Ȳ(i,j)) =

{

Φ2(Ii,j) , Ii,j ∈ [0, τ ]
0 , Ii,j ∈ [τ, 1]

(9)

m
Θi,.

j (Θi,.) =

{

1−m
Θi,.

j (Ȳ(i,j)) , Ii,j ∈ [0, τ ]

1−m
Θi,.

j (Y(i,j)) , Ii,j ∈ [τ, 1] ,
(10)

where Ii,j ∈ [0, 1] is an index of similarity between Xi and Yj .

Φ1(.) and Φ2(.) are two cosine functions defined as follows:






Φ1(Ii,j) =
α
2

[

1− cos(π
Ii,j−τ

τ
)
]

Φ2(Ii,j) =
α
2

[

1 + cos(π
Ii,j
τ
)
] (11)

where 0 < α < 1 is the reliability factor of the data source

and 0 < τ < 1 represents the impartiality of the association

process.

C. k-Significant sources combination

Before decision-making, sources should be combined which

is possible only if they express on the same FoD. Hence, to

determine who is associated to the detected object Xi, a new

FoD is defined Θi,. (12). This new frame is composed of

the m possible Xi-to-Yj associations denoted Y(i,j) and the

appearance hypothesis of object Xi denoted by Y(i,∗):

Θi,. =
{

Y(i,1), Y(i,2), ..., Y(i,m), Y(i,∗)
}

. (12)

Therefore, Θi,. is a refinement frame of the previous FoDs

θi,j in which the belief is initially expressed (Cf. Fig. 2). Based

on a vacuous extension (3), initial belief functions mθi,j are

expressed on Θi,. as follows:










m
Θi,.

j (Y(i,j)) = mθi,j (yes(i,j))

m
Θi,.

j (Ȳ(i,j)) = mθi,j (no(i,j))

m
Θi,.

j (Θi,.) = mθi,j(θi,j)

(13)

where Ȳ(i,j) represents the hypothesis ”Xi is not as-

sociated to Yj” which corresponds to the union of all

association hypotheses expect the Y(i,j), i.e. Ȳ(i,j) =
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Figure 2. The refinement frames of θi,j : Θi,..

{Y(i,1), . . . , Y(i,j−1), Y(i,j+1), . . . , Y(i,m), , Y(i,∗)}. It should be

noted that no information is initially considered on Y(i,∗). This

information appears during combination step.

Once the sources are expressed on the same frame, the

bbas are combined with the PCR6 rule. However, combining

all sources increases the time-consuming and can be reach

an exponential complexity when the number of sources is

important. To overcome this drawback, this paper proposes

a new method to reduce the combination complexity without

sacrificing too much the decision quality.

The proposed approach selects only information having

belief in top k highest masses. Formally, for each Xi object,

initial masses on association hypotheses are sorted:
{

b1 ≥ b2 ≥ . . . ≥ bz ≥ . . . ≥ bm
bz = mθi,j (yes(i,j)), and z, j ∈ {1, . . . ,m} (14)

where b1 is highest mass of belief, so the source that generated

it is the most significant for matching Xi. On other hand, the

least important source is that which generates the lowest belief

bm.

Now, only k most significant sources are selected for

their combination. Therefore, for each Xi assignment, Θi,.

is defined as follows:

Θi,. =
{

Y(i,z)/bz ≥ bk, Y(i,∗)
}

(15)

with z ∈ {1, . . . ,m} and k < m. Consequently, Θi,.

contains only the most relevant hypotheses and ignores others

(bz < bk). By this simple selection procedure one reduces the

computation complexity of the combination process.

If bk = 0, bk−1 is used to select significant sources. In

the case where no bk > 0, the object Xi is considered as

an appearance and is associated directly to Y(i,∗). Thereafter,

initial mass functions mθi,j (.) is hence transferred to Θi,.

by the refinement defined in (13) and the PCR6 rule of

combination (5) is applied.

D. Decision-Making

The assignment decision is based on the DSmPi,. matrix

which is the probabilistic approximation of the combined

masses. Table I presents the DSmPi,. of the detected-to-

known objects association. Each line defines the association

probabilities of the detected object Xi with all known ones

Yj . DSmPi,.(Y(i,∗)) defines the appearance probability of Xi.

It is useful to note that multiple objects can appear/disappear.

Different decision-making strategies have been proposed

according to the desired objectives [11], [18]. There are two

Figure 3. Scenario showing 5 detected objects (triangle) and 4 known objects
(circle).

approaches depending on the type of optimization: global

or local. The first approach selects the “best” associations

optimizing a global cost function [31], [32]. The Joint Pignistic

Probability (JPP) BetP∏

n
i=1

is defined as the cost function

in [11]:

BetP∏

n
i=1

= BetP1,.(Y(1,j1))× . . .×BetPn,.(Y(n,jn)) (16)

with ji ∈ {1, 2, . . . ,m, ∗}. Among all possible solutions for

the detected-to-known association, the best is that maximizing

BetP∏

n
i=1

. However, when the number of possible associa-

tions is important, this optimization generates a high compu-

tational complexity. To cope with this inconvenience, another

approach consists of resolving the assignment problem by a

local optimization. The Local Pignistic Probability (LPP) [18]

makes the association decisions according to local maxima

of the pignistic matrix (BetPi,.). The LPP method performs

a successive selection of n local maxima while respecting

the association constrains (Cf. Section III-A). However, local

optimization is considered as a sub-optimal solution.

In this paper, a new simple global optimization is ap-

plied/proposed. Firstly, the last column (Y(i,∗)) of the DSmP
matrix is removed in order to select ”best” associations by

using the well-known Munkres algorithm [33]. The com-

plexity of this algorithm is only O(n3) [33]. Secondly,

for each selected association Y(i,j), if DSmPi,.(Y(i,j)) <
DSmPi,.(Y(i,∗)) the association Y(i,j) is removed and the

object Xi is considered to be a new object (Y(i,∗)).

IV. ILLUSTRATIVE EXAMPLE

Let us consider the simulated example presented in Fig. 3.

The scenario shows 5 detected objects and 4 known objects.

By observing the corresponding initial bba presented in Ta-

ble II, one can already assume some associations. For instance,

with mΘ3,.(yes(3,1)) = 0.85 and mΘ2,.(yes(2,4)) = 0.75, X3

and X2 are most likely to be associated respectively to Y1

and Y4. As for the detected object X5, no source supports its

association with a known objects, so it can be an appearance.

Therefore, it is possible to make decisions by combining

only some information? To answer, the proposed method is
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Table I
DSmP PROBABILITIES OF DETECTED-TO-KNOWN OBJECT ASSOCIATIONS.

Θi,. Y(i,1) . . . Y(i,m) Y(i,∗)

DSmP1,.(.) DSmP1,.(Y(1,1)) . . . DSmP1,.(Y(1,m)) DSmP1,.(Y(1,∗))
DSmP2,.(.) DSmP2,.(Y(2,1)) . . . DSmP2,.(Y(2,m)) DSmP2,.(Y(2,∗))

.

.

.
.
.
.

.

.

.
.
.
.

DSmPn,.(.) DSmPn,.(Y(n,1)) . . . DSmPn,.(Y(n,m)) DSmPn,.(Y(n,∗))

Table II
INITIAL MASS FUNCTIONS FOR THE SCENARIO IN FIG. 3.

S1,1











mθ1,1 (yes(1,1))) = 0.45

mθ1,1 (no(1,1)) = 0.35

mθ1,1 (θ1,1) = 0.20

S1,2











mθ1,2 (yes(1,2)) = 0.48

mθ1,2 (no(1,2)) = 0.32

mθ1,2 (θ1,2) = 0.20

S1,3











mθ1,3 (yes(1,3)) = 0.00

mθ1,3 (no(1,3)) = 0.95

mθ1,3 (θ1,3) = 0.05

S1,4











mθ1,4 (yes(1,4)) = 0.00

mθ1,4 (no(1,4)) = 0.99

mθ1,4 (θ1,4) = 0.01

S2,1











mθ2,1 (yes(2,1)) = 0.00

mθ2,1 (no(2,1)) = 0.99

mθ2,1 (θ2,1) = 0.01

S2,2











mθ2,2 (yes(2,2)) = 0.32

mθ2,2 (no(2,2)) = 0.58

mθ2,2 (θ2,2) = 0.10

S2,3











mθ2,3 (yes(2,3)) = 0.47

mθ2,3 (no(2,3)) = 0.43

mθ2,3 (θ2,3) = 0.10

S2,4











mθ2,4 (yes(2,4)) = 0.75

mθ2,4 (no(2,4)) = 0.15

mθ2,4 (θ2,4) = 0.10

S3,1











mθ3,1 (yes(3,1)) = 0.85

mθ3,1 (no(3,1)) = 0.05

mθ3,1 (θ3,1) = 0.10

S3,2











mθ3,2 (yes(3,2)) = 0.00

mθ3,2 (no(3,2)) = 0.90

mθ3,2 (θ3,2) = 0.10

S3,3











mθ3,3 (yes(3,3)) = 0.00

mθ3,3 (no(3,3)) = 0.90

mθ3,3 (θ3,3) = 0.10

S3,4











mθ3,4 (yes(3,4)) = 0.00

mθ3,4 (no(3,4)) = 0.99

mθ3,4 (θ3,4) = 0.01

S4,1











mθ4,1 (yes(4,1)) = 0.00

mθ4,1 (no(4,1)) = 0.99

mθ4,1 (θ4,1) = 0.01

S4,2











mθ4,2 (yes(4,2)) = 0.00

mθ4,2 (no(4,2)) = 0.90

mθ4,2 (θ4,2) = 0.10

S4,3











mθ4,3 (yes(4,3)) = 0.50

mθ4,3 (no(4,3)) = 0.40

mθ4,3 (θ4,3) = 0.10

S4,4











mθ4,4 (yes(4,4)) = 0.00

mθ4,4 (no(4,4)) = 0.99

mθ4,4 (θ4,4) = 0.01

S5,1











mθ5,1 (yes(5,1)) = 0.00

mθ5,1 (no(5,1)) = 0.90

mθ5,1 (θ5,1) = 0.10

S5,2











mθ5,2 (yes(5,2)) = 0.00

mθ5,2 (no(5,2)) = 0.85

mθ5,2 (θ5,2) = 0.15

S5,3











mθ5,3 (yes(5,3)) = 0.00

mθ5,3 (no(5,3)) = 0.90

mθ5,3 (θ5,3) = 0.10

S5,4











mθ5,4 (yes(5,4)) = 0.00

mθ5,4 (no(5,4)) = 0.90

mθ5,4 (θ5,4) = 0.10

applied with k = 2. The selected information for the detected-

to-known association are represented by (17):






















Θ1,. =
{

Y(1,1), Y(1,2), Y(1,∗)
}

Θ2,. =
{

Y(2,3), Y(2,4), Y(2,∗)
}

Θ3,. =
{

Y(3,1), Y(3,∗)
}

Θ4,. =
{

Y(4,3), Y(4,∗)
}

direct decision: X5 appears.

(17)

Regarding the association of X1, the two highest be-

lief masses (0.48 and 0.45) are respectively related to

the Y(1,2) and Y(1,1) hypotheses which makes them rele-

vant for decision-making. Thus, we work with the frame

Θ1,. = {Y(1,1), Y(1,2), Y(1,∗)} instead the set of all hy-

potheses {Y(1,1), Y(1,2), Y(1,3), Y(1,4), Y(1,∗)} which decreases

the complexity of combination. In the same way, Θ2,. =
{Y(2,3), Y(2,4), Y(2,∗)} because the highest beliefs (0.75 and

0.47) are related to the Y(2,4) and Y(2,3) hypotheses. In this

case, Y(2,1) and Y(2,2) are ignored because their beliefs are

less significant than those of Y(2,3) and Y(2,4) (0.75 > 0.47 >
0.32 > 0.00). For X3 and X4, there is only one piece

of information with a non-null belief for their association.

Therefore, Θ3,. = {Y(3,1), Y(3,∗)} and Θ4,. = {Y(4,3), Y(4,∗)}.

Concerning X5, no source believes on its association, so X5

is a new detected object which means an appearance Y(5,∗). In

this case, the decision is directly made without combination.

Consequently, the cardinality of each Θi,. (17) is reduced

which means less computation time when combining.

To make decision, the selected information are combined

by (5) and transformed to DSmP probabilities by (7). Ta-

ble III represents DSmPi,.(.) based on the two most signifi-

cant mass functions. The dimension of each DSmPi,. vector

is smaller than usual (Cf. Table IV) and corresponds to the

number of relevant associations. In this context, the complexity

of decision-making can be reduced too. In addition, it can be

observed that the proposed approach preserves the relevant

association probabilities. Therefore, the same decisions (18)

are made through Tables III and IV.

Table III
BetPi,. BASED ON 2-SIGNIFICANT MASS FUNCTIONS.

Θi,. Y(i,1) Y(i,2) Y(i,3) Y(i,4) Y(i,∗)

DSmP1,. 0.40 0.45 - - 0.15
DSmP2,. - - 0.27 0.66 0.07
DSmP3,. 0.94 - - - 0.06
DSmP4,. - - 0.56 - 0.44

Table IV
BetPi,. BASED ON ALL MASS FUNCTIONS.

Θi,. Y(i,1) Y(i,2) Y(i,3) Y(i,4) Y(i,∗)

DSmP1,. 0.39 0.43 0.00 0.00 0.18
DSmP2,. 0.00 0.11 0.22 0.61 0.06

DSmP3,. 0.95 0.00 0.00 0.00 0.05

DSmP4,. 0.00 0.00 0.56 0.00 0.44

DSmP5,. 0.00 0.00 0.00 0.00 1.00
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Table V
KITTI IMAGE SEQUENCE CHARACTERISTICS.

Seq. 2 Seq. 4 Seq. 6 Seq. 7 Seq. 8 Seq. 13 Seq. 14 Seq. 16 Seq. 18 Seq. 19 Seq. 20

Number of frames 233 314 270 800 390 340 106 209 339 1059 837
Number of associations 668 545 474 2083 492 617 744 1872 1130 4968 4673
Max vehicle speed (km/h) 43 56 33 34 62 26 35 0 55 21 54
Min vehicle speed (km/h) 0 20 0 1 38 8 1 0 0 0 0
Speed < 30 km/h (%) 66 15 93 75 0 100 87 100 66 100 51
Speed > 30 km/h (%) 34 85 7 25 100 0 13 0 34 0 49























X1 → Y2

X2 → Y4

X3 → Y1

X4 → Y3

X5 appears.

(18)

V. EXPERIMENTAL RESULTS

This section evaluates the proposed approach on real data

coming from the well-known KITTI dataset [34]. First, the

dataset description is presented, followed by the experimental

setting. Secondly, the obtained results are analyzed and com-

mented. It is noted that this evaluation focuses only on data

association, so no tracking is done.

A. Datasets

The KITTI vision dataset provides data recorded from

different sensors mounted on a moving vehicle on urban

roads [34]. It contains camera images, laser scans, and

GPS/IMU data. The dataset also includes object labels classi-

fied in 8 categories. For this evaluation, only image data have

been used where detections are defined by 2D bounding box

tracklets. Four object classes have been considered: pedestrian,

cyclist, car, and van. Table V presents a part of these sequences

according to their different road context and the number of

detections. On some sequences, the vehicle mainly moving at a

speed less than 30 km/h which is common in urban areas, e.g.

sequences 6, 13, 14, and 19. Sequence 16 was recorded when

the vehicle stopped at a crosswalk, i.e. speed = 0 km/h. On

other sequences, the vehicle was moving at a speed sometimes

exceeding 50 km/h, e.g. sequences 4 and 8. Fig. 4 illustrates

the number of objects per image and their proportion on

each of the sequences where more than 30000 associations

have been evaluated. To the best of our knowledge, no study

has been evaluated on so many real data. These latter cover

different road scenarii containing various objects as shown in

Fig. 5.

B. Experimental Setting

The matching process is based on the distance between

objects attributes. In this work, only 2D position in the image

plane is considered as pieces of evidence. Thus, the distance

di,j is defined as follows:

di,j = 0.5× (d left
i,j + d right

i,j ) (19)

Table VI
COMPUTATION TIME (ms) OF THE COMBINATION STEP FOR 24 FRAMES

CONTAINING (n,m) OBJECTS.

(n,m) All Sources 4−Sig. Src. 3−Sig. Src. 2−Sig. Src.

(4, 4) 1.33 1.49 0.60 0.39
(7, 7) > 0.1s 2.27 0.92 0.59

(10, 10) > 5s 3.54 1.35 0.89
(13, 13) ≃ 4min 5.28 2.20 1.33

where d left
i,j (d right

i,j ) is the Euclidean distance between top-

left (bottom-right) points of the bounding boxes of objects Xi

and Yj as illustrated in Fig. 6.

The critical parameters to estimate belief masses are: α =
0.9, τ = 0.5 and ǫ = 0.001 for DSmP transformation. The

proposed approach is written in C++ and runs on Intel core

i7 2.20 GHz with 8 GB RAM.

C. Results and Analysis

The performance of the k-significant sources combination

refers to its capacity to reduce complexity while maintaining

a high decision quality. Therefore, the evaluation focuses on

the Computation Time (CT ) and the recall which are defined

as follows:
{

CT =
∑

t ETt

recall =
∑

t TAt
∑

t GTt

(20)

where ETt is the execution time of the frame t, TAt and

GTt are the numbers of true associations and ground truth

associations respectively.

Table. VI compares the running time of the combination step

using two approaches according to the number of objects. The

first is to combine all the sources and the second combines the

k-significant sources where k ∈ [2, 4]. To show the real-time

aspect of the proposed approach, the association process is

applied for 24 frames. The results confirm that the proposed

approach needs low computation time than combining all

sources. The smaller the number of combined sources, the

shorter the computation time. With n = m = 13, the proposed

approach (k = 2) needs 1.33ms on 24 frames while combin-

ing all sources takes ≃ 4 minutes which is not acceptable

for real-time applications. In addition, combining all sources

grows exponentially the computation cost with (n,m) while

the time complexity of the proposed approach is polynomial

which makes it well-suited for real-time applications (Cf.

Fig. 7).
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Figure 4. The number of objects per frame vs. percentage of frames.

Table VII
COMPUTATION TIME (ms) OF THE DECISION-MAKING

STEP FOR 24 FRAMES CONTAINING (n,m) OBJECTS.

(n,m) JPP Our method Comp. time gain

(2, 2) 0.21 0.16 23.91%
(3, 3) 1.2 0.16 86.66%
(4, 4) 9 0.21 97.66%
(5, 5) 104 0.27 99.74%
(6, 6) > 9s 0.33 99.99%
(7, 7) > 46min 0.90 99.99%

Table. VII compares the complexity of the proposed

decision-making algorithm with the JPP method according

to the number of objects. Both of these methods are based

on a global optimization. The results show that the proposed

algorithm needs low computation time than JPP to make

association decisions. With more than 4 perceived/detected

objects, the complexity is reduced by more than 97%. For

instance, with n = m = 7, our proposed algorithm needs

less than 1ms to assign perceived objects on 24 frames while

JPP takes too large time, more than ≃ 46 minutes. Fig. 8

confirms that our algorithm is characterized by a polynomial

complexity while JPP has a high exponential complexity which

makes impossible its application on the KITTI sequences. For

this reason, the rest of the results presented in this section are

obtained by our simple decision-making algorithm.

To measure the gain on complexity, the variation in the

computation time of a system without (CT i
w) and with the

k-significant sources combination (CT i
k) is computed for each

sequence (i) (21). The higher gain, the better complexity

reduction we get. In the same manner, the recall gain is

computed (22). The higher Gaini
recall, the better decision-

quality we get. A higher Gaini
recall preserves well the

decision-quality.

Gaini
CT =

(CT i
w − CT i

k)

CT i
w

100. (21)

Gaini
recall =

(recallik − recalliw)

recalliw
100. (22)

The weighted average of gain based on all sequences is

given by:







Gainavg
CT =

∑20

i=0
wiGaini

CT

Gainavg
recall =

∑20

i=0
wiGaini

recall

(23)

where the weight wi is wi = ni/
∑20

i=0
ni and ni being the

number of associations of the i-th sequence.

Fig. 9 presents the weighted average of the computation

time gain versus k. These results are obtained by varying the

number of significant sources selected, i.e. k. For all dataset,

more than 30000 associations, the gain exceeds 99.90% which

is well-suited for real-time applications. This gain is explained

by the fact that our approach has a polynomial complexity

while combining all sources is characterized by an exponential

complexity (Cf. Fig. 7). In addition, the obtained results show

that the computation time reduction is inversely proportional

to the k parameter as shown in Table. VI. Indeed, by reducing

the number of significant sources, the combination complexity

decreases which allows a more important gain. Although if the

gain, which is expressed as a percentage, seems small between

the different values of k ∈ [2, 7], it remains important for real-

time constrain.
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Figure 5. Examples of images provided by KITTI [30].

The gain depends also on the number of perceived ob-

jects. In fact, contrary to our approach, combining all

sources increases exponentially the computation time with

perceived/detected objects (n,m). Therefore, the more objects

in the scene, the greater the gain will be (Cf. Fig. 10). That

is why for sequences 3, 6, 8, 10, and 12 where the number of

detections is mostly less than 4, the gain is less than 40%
while for other sequences is more than 80%. Therefore, the

obtained results lead to conclude that the more complex is the

sequence, the larger is the computation time reduction.

Now, how about the decision quality? Combine just the sig-

nificant sources, affects the decisions or not? Fig. 11 presents

the weighted average of the recall gain versus k. it is clear

that the gain is insignificant, −0.1% < Gain recall < 0.05%.

This result proves that focusing only on significant information

does not necessary affect the decision quality. Furthermore,

the obtained results also show that ignoring the useless in-

formation can improve slightly the quality of decisions. For

instance, on sequences 11, 17, and 18 the association decisions

are improved by more than 4% (Cf. Fig. 12). Therefore, the

Figure 6. The illustration of the distance between a detected and a known
object [30].
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Figure 7. Computation time of the combination step as a function of the
number of objects.

solution proposed provides good performances by reducing

significantly the computation time while preserving the asso-

ciation decisions.

The choice of parameter k depends on the application

context and on the desired performances. For the object

association in road environment and based on our tests, k = 3
appears to be a good setting threshold parameter.

VI. CONCLUSION

This paper presented a new evidential data association based

on significant sources combination and a simple decision-

making algorithm. The main objective of the proposed ap-

proach is to reduce the complexity and time consumption of
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data fusion based on DSmT techniques (PCR6 and DSmP).

This approach focuses only on information having belief in top

k highest masses and removes useless information. Therefore,

only k-significant sources are combined to deal with the

association problem.

Applied to intelligent vehicles perception, the experimental

results show the effectiveness of the proposed approach in

the reduction of the complexity by more than 99% in dense

scenes. Besides, experimental results show that the proposed

solution preserves well the decision-quality. It can be noted

that the k-significant sources combination is not intended only

for road environment perception. It can be applied to any data

association process based on these DSmT techniques.

Future work should combine heterogeneous sensor data to

enhance the object association. Also, we plan to evaluate if an

improvement of PCR6 rule of combination would be helpful

for the data association problems.
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Abstract—Due to the lack of knowledge concerning their
construction and their history (breaks and repairs, extensions...),
fluvial levees are often badly characterized. Breaks of work
are likely to lead to disastrous consequences such as loss of
lives and economic disasters. In order to prevent the risk
of breakage, special supervision of the protection levee is re-
quired. Recognized methodologies for the assessment of hydraulic
structures include complementary geotechnical and geophysical
reconnaissance methods. This work presents a new way of math-
ematically combining data from these two types of information
sources, taking into account the specificities of each kind of
method (level of imperfection associated with the data, spatial
distribution of the information). This new methodology considers
the framework fixed by the theory of belief masses and improves
the characterization of lithological sets within levees. It provides
information on the level of conflict between information sources
while proposing a confidence index associated with the results.
The methodology is implemented through a subsoil section
characterized by a real earthen levee investigation campaign.
This campaign involves electrical resistivity tomography as well
as particle size distribution from laboratory testing and on-site
cone penetrometer test. The results highlight the ability of this
fusion methodology to characterize the considered materials as
well as to specify the positions of the interfaces and the associated
levels of confidence.

Keywords: geophysics, geotechnics, protection levee, belief

functions.

I. INTRODUCTION

Fluvial levees are elevated manmade structures, built up

for flood protection, between channels and floodplains [1].

Unfortunately, some hydraulic earthworks cannot ensure their

role in flood episode, and are likely to break, leading to

catastrophic events (human, material or economic damages).

There is therefore a real need to prevent the risks of rupture by

characterizing these complex human structures. To answer this

need, investigation campaigns are set up for subsoils character-

ization and weak zone identification. These campaigns usually

involve the use of geophysical and geotechnical methods [2]

to make a diagnosis and assess the levee stability.

Geophysical investigation methods are non-intrusive and

provide physical information over a large volume of subsoil.

This information, however, is potentially tainted with impor-

tant uncertainties, notably due to the indirect and integrating

aspects of the methods as well as to the limited resolution of

the inverse problems. In a complementary way, geotechnical

methods are intrusive but provide spatially more punctual

and more precise information, being directly in contact with

the material to be identified. An important outcome for the

characterization of the investigation campaigns is to be able

to combine the information acquired by these two sets of

methods, while taking advantage of their specificities and their

respective uncertainties, inaccuracies and spatial distributions

[3]. The complementarity of these methods is rarely used to

its full potential and the results are often simply graphically

superimposed instead of being mathematically merged [4].

To characterize a levee and its possible weak areas, it is

necessary to distinguish the different geological materials in

place. The positions of interfaces must also be located, as

well as the presence of any anomalies (low-density zone,

presence of pipe,...). It is at these interfaces or anomalies

that the internal erosion is likely to be initiated, eventually

leading to the rupture of the structure [5]. A characterization of

these geological sets and interfaces with associated confidence

indexes could be of great help if they were included in failure

hazard models.

In this work, we propose a novel methodology for the

fusion of information based on the use of belief functions [6],

[7]. We compare two different combination rules to merge

geophysical and geotechnical data while taking into account

the specificities of each method (spatial distribution, inaccu-

racy, uncertainty and incompleteness). We use belief functions

(BFs) theory since it does not require learning periods or

having very large data sets as the use of artificial neural

networks would require [8]. The theory of the BFs makes

it possible to quantify the conflict between the sources of

information and to quantify uncertainty where the probabilistic

theory only considers equiprobabilities. Finally, the strong

point of the BFs theory with respect to Zadeh’s theory of

possibilities [9] is that it is possible to merge disjoint intervals.

In the field of geosciences, some works use the BFs to

provide results for slope instability [10], [11], ground water

[12] or flood susceptibility mapping [13]. To our knowledge,

no work has been published on the merging of geophysical

Originally published as: T. Dezert, S. Palma Lopes, Y. Fargier, L. Saussaye, P. Cote, Data Fusion of In 
Situ Geophysical and Geotechnical Information for Levee Characterization, Bulletin of Engineering 
Geology and the Environment, Vol. 80, pp. 5181–5197, 2021 (with correction in Vol. 80, p.5199), and 
reprinted with permission.
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and geotechnical data for an investigation campaign of a river

embankment levee.

Our fusion methodology has already been tested and val-

idated considering two sources of information, as part of

numerical simulations [14], [15] and of a laboratory test

bench experiment [16]. In this work, we present the results

of our approach applied to data acquired by three sources of

information, on a real levee of the Loire River, located in Saint-

Clément-des-Levées (France). It is the first in-situ validation of

this merging process. The geotechnical methods used are the

cone penetration test (CPT) and the particle size distribution

from laboratory testing, after on-site drilling. The considered

geophysical method is the electrical resistivity tomography

(ERT). The objective of this study is to highlight the ability

of our methodology to distinguish the major geological sets

constitutive of the levee by suggesting their distribution and

proposing the location of the interfaces. The presented results

are associated with confidence indexes.

This article is organized as follows: in section II, we give a

presentation of the Investigated site and of the three investiga-

tion methods, both geophysical and geotechnical, used in this

campaign. In section III, we describe the fusion methodology

by first introducing the BFs concept and the considered

combination rules. We then show how the geophysical and

geotechnical data are respectively processed, and we propose

two brief parametric studies on different belief mass allocation

methods. We finally present the final fusion results in section

IV and discuss them in section V to highlight the interests,

drawbacks and perspectives of such a fusion methodology.

II. INVESTIGATED LEVEE AND INVESTIGATION METHODS

A. Saint-Clément-des-Levées fluvial levee

The studied structure is a fluvial levee located in Saint-

Clément-des-Levées near Saumur (France) along the River

Loire in the Val d’Authion area (Fig. 1-b). It is a clayous-sandy

embankment with Turonian bedrock overlaid by alluvial mate-

rials (Fig. 1-a). This levee has been the subject of many studies

presenting both geophysical (ERT, radio-magnetotelluric, Slin-

gram, ground penetrating radar) and geotechnical (laboratory

tests on collected samples: particle size distribution, clay

content, moisture content, density) investigation campaigns to

detect possible water circulation within the structure [17], [18],

[19]. The investigation campaigns were carried out during

the day between June 26 and July 5, 2018. On this earthen

hydraulic structure, we carried out a geophysical campaign

using the ERT method and a geotechnical campaign with

coring and CPT tests carried out on the levee crest. The

positions of the tests and the electrode line are displayed in

Fig. 1-c.

B. Electrical resistivity tomography (ERT)

The basic principle of DC-resistivity methods consist in

injecting an electric current of known intensity (A) by means

of two “current” electrodes and measuring a voltage (V )

between two “potential” electrodes. Such measurements are

acquired for several stations (positions of the current and the

potential electrodes). Depending on some parameters such as

electrode layout and topography, apparent resistivity values

can be computed. A two dimensional (2D) ERT, such as the

one considered in this study, consists in aligning a series

of electrodes and acquiring a large number of measurements

based on four-electrode configuration. The apparent resistivity

data acquired are then inverted using an inversion software

to reconstruct a complete 2D-section of electrical resistivity

(Ω · m). In this work, we used the Res2Dinv procedure (ver

3.71.118) [20].

In 2008, as part of the French ERINOH Project [21], the

levee was instrumented using two electrode lines. Each line is

composed of 48 electrodes with an inter-electrode spacing of 2

meters and buried at 1.10 meters deep below the roadway. The

embedded electrode lines are borehole resistivity cables that

had been laid horizontally in the levee subsoil at installation

time. Each take-out on these cables is a molded stainless

steel cylinder with a length of 60 mm and a diameter of 12

mm. These molded take-outs are directly in contact with the

soil and act as electrodes without using any rods or so. In

this study, we used the electrode profile located on the land

side of the crest (Fig. 1-c). The acquisition was carried out

in a Wenner-Schlumberger array configuration and three data

points (standard deviation greater than 5%) were removed. The

acquisition system is a Syscal Pro Switch 96 (Iris Instruments)

multi-channel resistivity meter. The current transmission signal

is a regular step function. A step duration (half-period) of 250

ms was used, and each received potential measurement was

stacked 6 times (except very few that were stacked 9 times)

which yielded relative standard deviation values of less than

2% for most of the 1591 data points (and up to about 10-

15% for only a couple of data points). All ground to electrode

contact resistances are smaller than about 2 kΩ·m, enabling

sufficient current transmission and high quality potential mea-

surement. Indeed, received potential drops range from 12 mV

to 1100 mV, which allows the implemented resistivity meter

to deliver data with high signal to noise ratios. Since the ERT

method is an integrative method and the electrodes are buried,

we considered a 1.10 meters thick layer above the electrode

line in the inversion process, with an associated resistivity of

about 65 Ω·m. This value was determined after a first inversion

process, considering the average resistivity value over the

first 50 centimeters of the subsoil. The proposed section of

the inversion results, which will be used for the rest of our

study, is displayed in Figure 2. We do not display inverted

resistivity values below 12m since they cannot be merged with

geotechnical data due to limited borehole depth. The inversion

was carried out on 4 iterations, since the change in RMS error

is below 0.3 % between iteration 3 and 4, considering a L1

norm regularization [22]. It corresponds to a robust inversion

allowing to emphasize the contrast of resistivities between the

geological sets but also to limit the effects of too noisy data.

In a geoelectrical acquisition, the electrical current flowing

in the extra-trapezium zones is a minority compared to the

intra-trapezium zones. Even though, we use an extended model

discretization. This choice is made because the geometry of a
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Fig. 1. (a) Saint-Clément-des-Levées’ levee cross section displaying the geological materials and the installed monitoring devices [18]. Only electrode line
A was used for our study. (b) Map of France.

rectangular section makes it possible to simplify the processing

of the data as well as their fusion. It enables to work with cells

of identical surface at a fixed depth. In addition, this avoids

having to work with large extra-trapezium meshes having very

important sensitivity values. However, to take into account the

difference in reliability of the results between intra and extra-

trapezium cells, the resistivity imprecision values resulting

from the inversion are taken into account during the belief

masses attribution stage. To go further, in future works, it could

be pertinent to integrate sensitivity values.

Looking at the results, a more resistive upper part of about

3 meters thick stands out. The underlying part seems more

conductive with an area that seems even more conductive from

horizontal position x = 46 m to x = 70 m and from vertical

position z = 3.86 m to z = 10.7 m.

C. Drilling cores and Particle size distribution

Drilling cores were carried out on the levee crest, in four

locations, displayed in Fig. 1-c. These drilling were made

down to 7.40 meters deep, using a Texoma machine producing

10 cm diameter cores. Once returned to the laboratory, the

cores were visually identified in order to delineate sections of

material that could be considered as belonging to the same

particle size class. Some samples were collected to perform

particle size distribution analysis following the NF P94-056

French standard [23]. The results show the existence of two

major particle size classes according to the NF P11 300 [24]

soil classification. The two major classes characterized are the

fine materials (designated as “A materials”) and the sandy

to gravelly materials with presence of fines (designated as

“B materials”). In this study, Dmax value [23] is always

lower than 50 mm, thus we take into account the value of

the cumulative sieve under 80 µm to characterize A from B

materials. When this value is greater than 35%, the geological

material is considered to belong to A class, otherwise it is

considered to belong to B class. The results of the particle size

distribution tests with the associated material classes are shown

in Figure 3, with the depth 0 m corresponding to the position

of the buried electrodes. The horizontal black lines stand for

the delimitation of the materials made by the visual inspection.

These results point out that B materials seem present in the

upper part of the section (from 0 to 3.40 m deep for borehole

2 and 3) while finer materials A tend to be located below.

D. Cone penetrometer test (CPT)

The CPT method consists of pushing rods into the soil with

a conical tip at the end at a controlled rate in order to record

tip resistance, qc [MPa], and friction sleeve, fs [MPa], values.

Four tests were carried out at the same locations as the drilling

tests (Fig. 1-c) using a Gouda machine with a tip of 3.6 cm

diameter and with an acquisition rate of 10 cm, following

the French standard NF P94-113 [25]. The tests were carried

out on a vertical length of 8.80 m. Using the two measured

parameters, it is possible to determine ISBT, the Soil Behavior

Type Index proposed by Robertson [26] and presented Eq. (1):

ISBT =

√

(3.47− log(
qc
Pa

))2 + (1.22− log(
fs

qc · 102
))2 (1)

With Pa = 0.1 MPa. The ISBT index provides information

on the nature of the soil in terms of particle size class. The

results obtained are shown in Figure 4, with the depth 0 m

corresponding to the position of the buried electrodes. Most

of the materials appear to be sand mixtures thanks to the

computation of the ISBT, which appears to be in contradiction

with the particle size distribution below 3.40 m depth (Figure

3).
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Fig. 2. Levee modeled resistivity longitudinal section obtained by inverting Wenner-Schlumberger apparent resistivity data acquired with electrode line A
shown in Fig. 1-a. The depth 0 m corresponds to the position of the electrodes.

Fig. 3. Photograph of extracted material from BH1 and results of the particle size distribution analysis with the associated soil classes (A and B) in the four
drilling cores, locations specified in Fig. 1-c. Arrows symbolize the vertical extension of the information thanks to the visual characterization of a technician.

Fig. 4. ISBT vertical profiles for each CPT test and associated soil classes.

III. FUSION METHODOLOGY

A. Belief functions and combination rules

Shafer [7] introduced the BFs by developing the math-

ematical theory of evidence inspired by earlier works of

Dempster [6]. Hence, Shafer’s theory is often referred to as

the Dempster-Shafer theory (DST). This theory allows the

computation of the belief and the plausibility of a hypothesis

(corresponding to soil material classes in this work) from

distinct sources of information (measured data). The practical
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benefit of using BFs lies in its ability to manage information

from different sources, associated with their respective levels

of uncertainties and inaccuracies. In this work, we will be

considering three sources of information: two geotechnical

(CPT and particle size distribution) and one geophysical

(ERT). Another feature of the BFs theory is its ability to assess

the level of conflict (∅) between sources, i.e. when the infor-

mation given by one source is contradictory to the information

given by another one. Following Smets [27], we consider

that uncertainties correspond to degrees of confidence that are

given to a value, whereas inaccuracies correspond to intervals

of values that can be directly associated with measurement

errors related to the investigation method. For example, the

uncertainty on measuring the value of a geotechnical parameter

identical to the one measured in a borehole increases with the

distance to that borehole. The inaccuracy can for its part be

associated with the error bar of the corresponding measured

datum. In addition, the BFs allow taking into consideration the

ignorance and incompleteness of the information. It is indeed

possible to grant credit on all the possible results in order to

quantify our ignorance, whereas the probabilistic theory would

simply assign an equiprobability to each single hypothesis. For

the reader eager to learn more, more details concerning the

theory can be found in [28].

To define and to use the BFs, it is required (i) to set a Frame

of Discernment (FoD), (ii) to assign belief mass values to the

hypothesis of this set and for each source of information, (iii)

to implement a fusion rule for merging the information; and

(iv) to provide a representation of the combined information.

The FoD Θ consists of all the possible hypothesis within

the problem under concern. The elements of the FoD are

exhaustive and exclusive, such as for n hypothesis:

Θ = {θ1, θ2, . . . , θn}. (2)

In our problematic, the possible hypothesis of the FoD

correspond to classes of geological materials that can be asso-

ciated with intervals of values of geophysical and geotechnical

parameters. Here, we consider that θ1 stands for fine-grained

materials and θ2 stands for coarser-grained materials. We also

consider a third hypothesis θ3 that will be associated with

intervals of values of geophysical and geotechnical parameters

that are not included in the two first sets. Thus, we can qualify

θ3 as being “another” material and we have:

Θ = {θ1, θ2, θ3}. (3)

The set of all subsets of Θ (including the conflict hypothesis,

∅), is named as “powerset” and written 2Θ. In our case, we

get:

2Θ = {∅, θ1, θ2, θ1∪ θ2, θ3, θ1∪ θ3, θ2∪ θ3, θ1∪ θ2 ∪ θ3}.
(4)

The belief mass function mj is defined for a source of

information Sj (for j = 1, 2 or 3 in our study) and is attributed

to a subset X (defined on 2Θ) in [0, 1] such that, as in the

probability theory, the more m(X) tends to 1 and the more

the confidence in X is important :

∑

X∈2Θ

m(X) = 1. (5)

The main difference with the probability theory is that X
can represent the union of many hypotheses. For example if

belief mass is attributed to θ1 ∪ θ2, it means that either θ1 OR

θ2 are possible. Thus, it is possible to model uncertainty and

lack of knowledge. Belief and plausibility functions, Bel and

Pl respectively, are considered as upper and lower bounds of

an unknown probability P such that for any 2Θ, Bel(X) ≤
P (X) ≤ Pl(X). Belief and plausibility functions are in one-

to-one relation with the belief mass, m(·), and defined by:

Bel(X) =
∑

Z∈2Θ|Z⊆X

m(Z) (6)

Pl(X) =
∑

Z∈2Θ|Z∩X 6=∅
m(Z) (7)

In our study, we only use belief mass functions since

fusion rules are set directly from the allocated belief masses

from each information source. The approach developed by

Smets [29] in his Transferable Belief Model (TBM) (i.e.

conjunctive fusion, so called “open-world assumption”) allows

the assignment of a belief mass to the conflict represented by

the empty set, so that one considers:

m1,2,...,S(∅) > 0, (8)

where m1,2,...,S(·) denotes the merged belief mass result-

ing from the combination of information from the different

sources. The belief mass m1,2,...,S(X) resulting from the

conjunctive fusion of information from all sources (from j = 1
to s) is written:

m1,2,...,S(X) =
∑

X1,X2,...,XS∈2
Θ

X1∩X2∩...∩XS=X

S
∏

j=1

mj(Xj), (9)

with mj(Xj) the belief mass respectively attributed to hypoth-

esis Xj by information source j.

The conflict level between the s considered sources of

information can therefore be written as:

m1,2,...,S(∅) =
∑

X1,X2,...,XS∈2
Θ

X1∩X2∩...∩XS=∅

S
∏

j=1

mj(Xj). (10)

According to Shafer’s approach and unlike Smets’ rule,

DS rule does not allow the attribution of a belief mass to

the conflict. Thus, in DST (which uses the “closed-world

assumption”), one has by definition:

mDS
1,2,...,S(∅) = 0. (11)
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The conflict mass is then reallocated through a normaliza-

tion factor. The mass of belief in X , mDS
1,2,...,S(X), resulting

from the fusion of information from S sources is written:

mDS
1,2,...,S(X) =

1

1−mDS
1,2,...,S(∅)

∑

X1,X2,...,XS∈2
Θ

X1∩X2∩...∩XS=X

S
∏

j=1

mj(Xj).

(12)

The drawback of this combination rule is that the conflict

between the sources is no longer displayed. Furthermore, it

is possible to obtain counterintuitive results when the conflict

level is important. However, the PCR6 (Proportional Conflict

Redistribution No. 6) combination rule [30] allows the redistri-

bution of all partial conflicts, in proportion to the masses of the

subset concerned by these conflicts, such as mPCR6
1,2,...,s(∅) = 0

and ∀X ∈ 2Θ \ {∅}:

mPCR6

1,2,...,S(X) = m1,2,...,S(X)

+
S−1
∑

k

∑

Xi1
,Xi2

,...,Xik
∈2

Θ
\{X}

(∩
k
j=1

Xij
)∩X=∅

∑

(i1,i2,...,ik)∈PS

[mi1(X) +mi2(X) + . . .+mik (X)]

·

∏k

l=1
mil(X)

∏S

l=k+1
mil(Xil )

∑k

l=1
mil(X) +

∑S

l=k+1
mil(Xil )

(13)

where PS is the set of all permutations of the elements

{1, 2, . . . , S}. It should be emphasized that Xi1 , Xi2 , . . . , Xis

may be different from each other, equal, or some equal and

some different, etc. In this paper, for the sake of conciseness

and since PCR6 and DS rules provide quite similar results, we

will only be displaying fusion results using Smets and PCR6

rules of combination.

B. Attribution of belief masses from geophysical data

To attribute belief masses from electrical resistivity data, it

is first necessary to define the limits of the resistivity intervals

corresponding to the hypothesis of the FoD. To do so, we use

a representation in modal classes of the number of cells of the

2D section resulting from the inversion (Figure 2) according

to the resistivity values represented in log scale. The accuracy,

to two decimal places, of the classes’ values shown in Figure

5 make little difference in the characterization methodology

of the boundaries we use. We are aware that this precision

is superfluous for a geophysical interpretation. What matters

is the general trend of the values’ distribution. It enables to

highlight the large sets of materials constitutive of the subsoil

section. This subjective division of classes (abscissa axis,

Figure 5) comes from the computation of the upper and lower

bound values, considering the following geometric sequence:

bn+1 = 1.1bn, (14)

with bn the lower bound of the interval n, bn+1 the upper

bound and b0 = 2 Ω·m.

The representation implemented as modal classes (Figure 5),

associated with the reading of Figure 2, suggests the presence

of two materials of different kinds: i) a material of lower

resistivity (in blue, Figure 5) that can be associated with θ1
hypothesis of a fine-grained material and ii) a material with

higher resistivity (in orange, Figure 5) that can be associated

with the hypothesis of a coarser-grained material (θ2).

The delimitation between these two classes, however, is

not straightforward. We propose to associate the intermediate

values of resistivities with the hypothesis θ1 ∪ θ2, suggesting

that these resistivity values can be related to the hypothesis

“θ1 or θ2”. Thus the bounds of the electrical resistivity classes

(Ω·m) are fixed such that:

[16.28, 31.73] is associated with θ1,

[51.10, 99.57] is associated with θ2,

]31.73, 51.10[ is associated with θ1 ∪ θ2,

[5.10, 16.28[∪]99.57, 312.45] is associated with θ3.

(15)

To limit the possible biases imputed to computation of

the distance between intervals (approach detailed below), we

consider the intervals associated with the hypothesis θ3 (i.e.

[5.10; 16.28[ and ]99.57; 312.45]) of same width in log scale

(i.e. same ratio between upper and lower bound values) to the

intervals associated with θ1 and θ2. Once the DC-resistivity

intervals are defined, it is required to associate masses of

belief to each of the considered hypothesis. This belief masses

attribution process has to be carried out for each cell of

the section mesh resulting from the inversion (Figure 2). We

propose three alternative approaches for the attribution of the

belief masses.

The first one, referred as Dg, consists in considering a

Gaussian probability distribution Eq. (16) centered on the

inverted resistivity value:

f(x) =
1

σ
√
2π

e−
(x−µ)

2

2σ2 (16)

with µ the value of inverted resistivity in the considered cell,

σ the inaccuracy provided by the inversion process resulting

from the computation of the covariance matrix. Given that the

area under the Gaussian distribution is equal to 1, the mass

is assigned to the hypotheses according to the proportion of

the area intersecting the defined resistivity intervals. This can

only be done in accordance with Eq. (5), so that each cell is

associated with a standardized belief mass distribution. The

results of this approach are presented in Figure 6. Figure 6-a

highlights the hypotheses having the highest belief mass for

each cell section while Figure 6-b displays their associated

belief mass values. We find that the belief masses associated

with this approach (Dg) are very large (often close to 1),

suggesting that the ERT method is completely reliable and able

to characterize the subsoil materials. Such level of confidence

may seem exaggerated. Thus, we propose a second belief

masses assignment method.

This other approach, referred as Dw, relies on the cal-

culation of Wasserstein’s distances [31] as previously used
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Fig. 5. Model classes’ distribution of the cells displayed in Figure 2, according to the inverted electrical resistivity values (Ω·m) and intervals associated to
the soil classes.

Fig. 6. a) Representation of the hypotheses having the highest belief mass according to the masses attribution from electrical resistivity data considering a
Gaussian probability distribution centered on the inverted resistivity value, and b) the associated belief mass values.

in [14], [15]. To associate the belief masses with the FoD

hypotheses, we consider the intervals of inverted resistivity

values with their associated inaccuracies (example in red in

Figure 7). The belief masses are issued from the computa-

tion of the Wasserstein distances, considering two resistivity

intervals A = [a1, a2] and B = [b1, b2], A being the interval

corresponding to a defined hypothesis Eq. (15) and B being

an interval of inverted values. We take into consideration the

imprecision level resulting from the inversion for each cell of

the mesh, such that b1 = µ− σ and b2 = µ+ σ:

DWass =
[

[ log(a1a2)

2
− log(b1b2)

2

]2

+
1

3

[( log(a2/a1)

2

)2
+
( log(b2/b1)

2

)2]
]1/2

(17)

This computation gives the Wasserstein distance between

two intervals taking their size and the distance between

them into account. The Wasserstein distances are computed

between the inverted values with estimated inaccuracies, and

the intervals associated with each hypothesis Eq. (15). In the

example illustrated in Figure 7, the Wasserstein distance would

be computed between [b1, b2] and each of the other intervals

[a0, a1], [a1, a2], [a2, a3], [a3, a4] and [a4, a5].

Each cell is then associated with a standardized belief

mass distribution in accordance with Eq. (5) and inversely

proportional to the distance value. This way, the more the

distance of an electrical resistivity interval resulting from the

inversion is “small” to one hypothesis of the FoD, the more the

mass of belief associated is large, and reciprocally. The results

of this belief mass assignment approach, Dw, are displayed

in Figure 8. The belief masses derived from this approach
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Fig. 7. Diagram displaying the classes described in Eq. (15) with the red interval [b1; b2] corresponding to an interval of inverted electrical resistivity values
from one cell of the 2D section of subsoil, used for Wasserstein distances’ computation.

(Dw) are lower than those displayed in Figure 6 (Dg) and

more θ1 ∪ θ2 emerges. This approach (Dw) is therefore more

cautious.

We finally propose the use of a third approach, referred

as Dwg, combining the first two previously described. This

approach (Dwg) is similar to the previous one (Dw) in that it

considers the distribution of a mass on the defined hypotheses,

using Wasserstein distances. However, the allocated mass is

here equal to m = 1/2 instead of 1 as previously defined.

The remaining mass (m = 1/2) is allocated proportionally to

the area under the Gaussian distribution, on the hypotheses

associated with the implied resistivity intervals, as described

above for the first approach, Dg . The results are displayed in

Figure 9 and are intermediate to the results of the first two

methods displayed in Figures 6 and 8.

C. Attribution of belief masses from geotechnical data

For the two geotechnical information sources, belief masses

must be associated with the different hypotheses of the FoD for

each cell of the vertical boreholes. To do so, we consider the

geotechnical parameter values available at each depth (Figure

10-a) with their respective associated inaccuracies. Thus, we

obtain intervals of values as for the attribution of belief masses

from geophysical data. We generate a mesh for each geotech-

nical source (particle size distribution and CPT) consisting

of as many cells in depth as the number of geotechnical

measurements in each borehole (Figure 10-b). The cells are of

same dimensions. At each borehole position a belief mass of

a given value (see details below) is assigned, in the borehole

points, to the hypothesis corresponding to the geotechnical

parameter value. We then construct a new mesh (Figure 10-

c), covering the full section of the subsoil, according to the

depth of the boreholes. In order to characterize the entire

section of the model, as does the ERT method, and to associate

belief mass values to each newly generated cell, we impose an

exponential lateral decay of the belief mass from the borehole

point to the nearby one so that the decay rate is a function of

the values proposed by the nearby borehole. Thus, we get for

a specific depth:

M(x) = M(0) · e−Cvx, (18)

with x being the horizontal distance from the considered cell

to the reference borehole in meters (x = 0 in the borehole),

M(x) the belief mass values assigned to each hypothesis in

the FoD for a position x, with M(0) the belief mass value

assigned in the borehole. Cv corresponds to the coefficient of

variation expressed in Eq. (19), such as used in Phoon and

Kulhawy [32]:

Cv =
1

Q

√

√

√

√

1

nmesh − 1

nmesh
∑

i=1

(Q−Qi)2, (19)

where Q is the geotechnical parameter value of the considered

cell in the borehole and Qi the geotechnical parameter values

in the nearby borehole centered on the same depth. For Figure

10-b, and more broadly in this study, we considered nmesh = 3,

so that the computation of Cv takes into account 3 cells in

the nearby borehole. Indeed, for two consecutive boreholes

with similar values at fixed depth, we consider the soil to

be less variable laterally and the decay of the confidence

to be slower than for two consecutive boreholes displaying

drastically different values. This decrease of belief mass is

carried out to the left and to the right, from each borehole

point. If the belief mass associated with a hypothesis X is

less than 1 (m(X) < 1), then the remainder of belief mass to

be allocated to satisfy Eq. (5), is reallocated on the hypothesis

“any type of geological material” symbolized by the union of

all hypotheses, such as:

m(θ1 ∪ θ2 ∪ θ3) = 1−m(X). (20)

In each cell of the section, the information on the belief

masses coming from the borehole on the left is merged with

the information coming from the borehole on the right, using

the DS rule, in respect with Eq. (12). Considering the 4

boreholes of this study, from 1 to 4 from left to right: borehole

1 cannot be compared to any borehole to its left neither can

borehole 4 be compared to any borehole to its right. Indeed,

for a given depth, we consider an equal Cv for left and right

directions for boreholes located at the beginning and at the

end of the section. In our case, the sections to the left of the

first borehole and to the right of the last borehole are of little

interest since they are not covered by the ERT investigation.

The chosen hypotheses (geological material) at the borehole

positions for each geotechnical method are displayed in Figure

11 and detailed below.
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Fig. 8. a) Representation of the hypotheses having the highest belief mass according to the masses attribution based on Wasserstein distances applied to the
inverted resistivity data (Figure 2), and b) the corresponding belief mass values.

Fig. 9. a) Representation of the hypotheses having the highest belief mass according to the masses attribution based on Wasserstein distances and considering
a Gaussian probability distribution applied to the inverted resistivity data (Figure 2) and b) the corresponding belief mass values.

Fig. 10. Construction of a geotechnical discretization mesh from two vertical borehole acquisitions (BH1 and BH2). a) Representation of the geotechnical
parameter values for BH1 and BH2 with depth. b) The boreholes are split in cells of same thickness associated with belief mass equal to a given value for
the considered hypothesis. c) Construction of a full section mesh according to the depth of the boreholes.

D. Attribution of belief masses from particle size distribution

For the particle size distribution, materials described as

,quoteA materials in Section II are considered as belonging

to θ1 and B materials as belonging to θ2. The inaccuracies

taken into account correspond to 0.1% of the weighed value as

indicated in the French standard NF P94-056 [23]. If the value

of the cumulated sieve under 80 µm cannot be characterized

as being greater or less than 35%, taking into account the

inaccuracies, then the selected hypothesis is considered to be

θ1∪θ2. This points out our inability to choose. Where materials

have not been collected from the core for analysis (black

areas in Figure 3), we consider that we have no information.

Therefore, the belief mass is attributed to the union of all

hypotheses: θ1∪θ2∪θ3, which represents the highest possible

uncertainty (lowest knowledge level).
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Fig. 11. 2D representation of the levee section displaying borehole positions in dashed lines and associated ISBT (white dotted line) and particle size distribution
(white solid line) corresponding classes.

In the boreholes, we consider a belief mass m(·) = 0.99 on

the characterized hypothesis, at the depths for which the soil

samples were analyzed and a belief mass of m(·) = 0.01
on the union of all other hypotheses, in accordance with

Eq.(5). A mass of M(0) = 0.99 was chosen because the

established hypotheses are soil particle size distribution classes

by definition. Thus, we consider that particle size information

is the most appropriate kind of information that one can obtain.

However, a mass of M(0) = 1, has not been set in order to

avoid any total conflict that may arise in the fusion process.

For depths at which the materials have not been analyzed, but

still belonging to the same geological set (limits established

by a geotechnical engineer and displayed in Figure 3) as the

analyzed materials, we consider a vertical extension of the

information.

A vertical decrease of the confidence level associated with

the hypothesis θi is carried out from the limit depth (p = 0
m) of the collected sample, up to the limit between the

two geological sets established visually by the geotechnical

engineer (to p = 1 m in the example, Figure 12). The distance

between these two depths is d. The vertical decay of the belief

mass on the considered hypothesis θii is expressed as follows:

m(θi; p) = 0.99(1− e(p−d)). (21)

So that m(θi; p) = 0 at the boundary between the two

lithological sets characterized. The complementary belief mass

is allocated to θ1 ∪ θ2 ∪ θ3 in accordance with Eq. (5).

Figure 12 shows the results of the particle size distribution

tests carried out on Borehole 2 (Figure 3). The colored areas

correspond to the depths at which the collected samples

have been analyzed while the arrows symbolize the vertical

extension of the information where the materials have not

been analyzed. On this example, the values of p and d apply

to the vertical extension of the information from the lower

bound of the analyzed sample, at a depth of 2.40 m, to the

boundary between the two materials, established visually by

the technician, at a depth of 3.40 m.

Fig. 12. Representation of the vertical extension of particle size distribution
information. Example of results from particle size distribution carried out on
extracted materials from BH2.

Then, the information is extended laterally, as detailed

above, and the 2D section is cut so that it corresponds to

the dimensions and coordinates of the ERT section (Figure

2). The results are displayed in Figure 13, with Figure 13-

a highlighting the hypotheses having the highest belief mass

for each cell section while Figure 13-b is displaying their

associated belief mass values.

E. Attribution of belief masses from CPT

For the characterization of geological materials by the CPT

method, we consider them to be fine-grained materials and
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Fig. 13. a) Representation of the hypotheses having the highest belief mass according to the belief masses attribution from particle size distribution data
considering M(0) = 0.99 in the borehole points and b) the associated belief mass values.

Fig. 14. Considering i) M(0) = 0.25, ii) M(0) = 0.5, iii) M(0) = 0.75 and iv) M(0) = 0.99, a) representation of the hypotheses having the highest belief
mass according to the belief masses attribution from CPT data in the borehole points and b) the associated belief mass values.

belonging to θ1 when ISBT > 2.6. When ISBT < 2.6, the ma-

terials are deemed to be coarser-grained and therefore belong

to θ2. As recommended in the NF P94-113 French standard

[25], we consider a maximum inaccuracy on the computation

of ISBT, the maximum tolerated inaccuracy being the smallest

of the following values:

• 5% of the measured value (for qc and fs),

• 1% of the maximum value of the measuring range (for

qc and fs).

If the value of ISBT cannot be characterized as greater or

less than 2.6, then the selected hypothesis is considered to

be the hypothesis 1 ∪ θ2, highlighting our disability to select

a geological material. The attribution of a belief mass of

M(0) = 0.99 at the borehole positions, used for the particle

size distribution, is questionable for the use of the ISBT index.

Indeed, the characterization of geological sets in terms of

particle size distribution is less reliable by the use of such an

index. The reliability is decreased by the fact that the value

of ISBT is obtained following a computation involving the

two recorded parameters and also by the fact that no sample

is extracted. Therefore, we propose a brief parametric study

with the results of the attribution of the belief masses for the

CPT method, using a value of M(0) = 0.25 (Figure 14-i),

M(0) = 0.5 (Figure 14-ii), M(0) = 0.75 (Figure 14-iii) and

M(0) = 0.99 (Figure 14-iv) on the hypothesis concerned at

the borehole positions. As in the case of the particle size

distribution, after horizontal extension of the information and

cutting the 2D section in accordance with the dimensions and

coordinates of the ERT section (Figure 2), we obtain the results

shown in Figure 14.

F. Dimensioning of the mesh prior to the fusion

Each investigation method has its specific mesh. In order

to merge the belief masses from the geophysical information

source (ERT) and the two geotechnical sources (particle size

distribution and CPT), it is necessary to have a common

mesh containing the belief masses from the three sources
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for each cell. We chose to consider a superimposition of the

three discretization grids. In order to avoid alteration of the

quality of the information, no interpolation nor extrapolation is

carried out. We thus obtain an irregular mesh but without any

approximation of the cells and associated values (Figure 15).

The bounds of the x-axis (right/left) and z-axis are imposed

by the ERT section even though the data of boreholes 1

and 4 (out of the electrode line) were taken into account

in the attribution of belief masses from geotechnical data (as

displayed in section III-C).

Fig. 15. Example of a geophysical mesh (in blue) and two geotechnical
meshes (in red and in green) superimposed to provide a new irregular mesh
used for the fusion computation and the fusion result representation.

IV. DATA FUSION RESULTS

The results issued from the merging of the data of the three

considered information sources are displayed in Figures 16

and 17. First, let us compare the results obtained using the

two different rules of combination. Unlike the PCR6 method

for which a normalization process was carried out (Figures 16-

c and 17-c), the Smets rule of combination makes it possible

to highlight the conflict zones (Figures 16-a and 17-a). Thus,

it appears that the conflict is greater close to the boreholes,

from the interface between θ1 and θ2, that seems present at

3.40 m depth, down to the maximum depth of geotechnical

investigation for all M(0) values and for both belief masses

attribution approach (Dw and Dwg). This is due to the fact that

the ISBT index essentially considers a coarse-grained material

in the levee (Figure 14) where the particle size distribution

(Figure 13) and the ERT (Figures 8 and 9) consider fine-

grained materials (from about 3.40 m depth). The conflict

level decreases when deviating from the borehole positions

since the confidence level on the geotechnical information

decreases with the distance to these geotechnical testing points.

Comparatively, the influence of the geophysical information is

gradually becoming more important. The geotechnical infor-

mation made it possible to characterize the θ1/θ2 interface

at 3.40 m depth, unlike the 2.5 m interface proposed by

the ERT (Figures 8 and 9). This interface is also defined

more precisely. The geotechnical information also allowed

the discrimination between θ1 and θ2 materials where the

geophysics brought out the doubt between θ1 and θ2 (i.e.

θ1 ∪ θ2). Some doubts about the nature of the material,

however, remain present between x = 0 m to x = 7 m. The

areas with the highest associated confidence level are those

close to the borehole points and between boreholes BH2 and

BH3 between z = 3.5 m and z = 5.5 m. This is explained

by the concordance between geophysical information (Figures

8 and 9) and particle size information (Figure 13). Indeed,

Figure 13 indicates a significant belief mass on θ1 because

the particle size distribution values at such depths are quite

similar between boreholes BH2 and BH3.

Now let us compare the results obtained with two different

approaches of belief masses attribution for the geophysical

source of information, Dw and Dwg (Figure 16). The belief

masses associated with the selected hypotheses, using Dwg

approach, are more significant since this approach grants

more mass initially (Figures 16-ii.b and ii.d). The horizontal

interface between θ1 and θ2 is well characterized and the

doubt lies on the left part of the subsoil section. Using

Smets rule of combination, there is no significant difference

concerning the distribution of the conflict for Dw and Dwg

approaches (Figures 16-i.a and ii.a). In comparison with Dwg

approach, using Dw approach, a noticeable difference lies

in the appearance of sets of coarser-grained materials for

PCR6. This material is identified close to the borehole points

between z = 6 m and z = 9 m (Figure 16-i.c). This is due in

particular to the results of the CPT (Figure 14) and to the lower

confidence level brought by the geophysical information at

these locations (Figure 8-b). When geophysical belief masses

increase using the Dwg belief masses attribution approach, θ1
material becomes dominant again and erases the presence of

θ2 material. In contrast, Figure 16-ii.d displays that these areas

remain areas of lesser confidence.

Keeping the Dwg approach of geophysical belief masses

attribution, let us compare the variation of M(0) values

for CPT characterization. It appears that the conflict level

increases along with the value of M(0). Indeed, for a low value

of M(0) = 0.25 (Figure 17-i.a), there is almost no conflict

while conflict covers nearly a third of the subsoil section for a

high value of M(0) = 0.99 (Figure 17-iii.a). Using PCR6 rule

of combination, the presence of θ2 increases along with M(0)
value (Figures 17-i.c, 16-ii.c, 17-.ii.c, 17-iii.c) below 5 m depth

and the associated levels of confidence decrease (Figures 17-

i.d, 16-ii.d, 17-ii.d, 17-iii.d). This can be explained by the

fact that the CPT characterization goes against the ERT and

the particle size distribution characterizations. Thus, putting

more confidence in the CPT characterization by increasing

M(0) value can only increase the conflict level and potentially

change the proposed characterization after normalization of

the conflictual masses (PCR6 rule). However, these areas

characterized as coarse-grained materials between 6 and 9 m

depth close to boreholes BH2 and BH3 (Figures 17-ii.c and

iii.c) are associated with low belief mass values (Figures 17-

ii.d and iii.d).
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Fig. 16. Hypotheses having the highest belief mass in a) and c) and their associated mass values in b) and d). i) Belief mass attribution from electrical resistivity
data considering only the computation of Wasserstein distance and ii) belief mass attribution from electrical resistivity data considering the computation of
Wasserstein distance and also a Gaussian probability distribution centered on the inverted resistivity value. (a,b) figures are results of Smets rule of combination,
(c,d) figures are results of PCR6. The boreholes positions are in dashed lines with M(0) = 0.5.

Fig. 17. Hypotheses having the highest belief mass in a) and c) and their associated mass values in b) and d), considering i) M(0) = 0.25, ii) M(0) = 0.75
and iii) M(0) = 0.99. We consider a belief mass attribution from electrical resistivity data considering the computation of Wasserstein distance and also a
Gaussian probability distribution centered on the inverted resistivity value. (a,b) figures are results of Smets rule of combination, (c,d) figures are results of
PCR6. The boreholes positions are in dashed lines.
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V. DISCUSSION

The results of our fusion methodology suggest the presence

of two material layers. First, a coarse-grained material layer

about 3.5 m thick, and then, a fine-grained material layer be-

low. It is possible to associate the first layer to the embankment

(levee) and the second layer to alluvium. These results are in

agreement with the internal representation of the levee that

was proposed before the investigation campaign (Figure 1-a)

[18]. The drawback of conducting an investigation campaign

on a real levee is that there is no “true” model to which we

can compare our results.

Most of the conflict present in the results is related to the

characterization made by the ISBT index from CPT data. This

characterization essentially considers a coarse-grained material

in almost the whole levee section, contrary to the ERT and

the particle size analysis that dissociate quite clearly two sets

of materials. It appears that the characterization of materials

by the ISBT index is not ideal in this case. This is why we

consider that a mass of M(0) = 0.5 should be retained in

the CPT boreholes, contrary to a mass of M(0) = 0.99 for

granulometric analyzes. In the future, it could be relevant to

find a more appropriate index for particle size characterization

of materials from the parameters measured with the CPT.

We proposed a brief parametric study bringing to light the

results associated with four belief mass attribution values in the

sampling boreholes (M(0)). This parametric study highlights

the fact that increasing the value of M(0) extends the lateral

extension of the selected hypothesis. It seems that a large

value of M(0) cannot be equally attributed to both the values

of ISBT and particle size distribution results when these two

sources of information seem contradictory in many locations

(Figure 11). We believe that for a real investigation campaign,

the value associated with each geotechnical method and at

each borehole point could be adjusted by a well-informed

geotechnical engineer, relying on an elicitation process [33]

and based on the ability of the method to provide information

on the nature of the investigated material.

In this study, the water table height and its time variations

were ignored. However, we believe that this choice has no

significant impact on the proposed results. First, water level

variations are very low on the dates of the investigation

campaign [18], so there should be no problem in considering

the data as if they had been acquired at the same time.

Secondly, the water table height is more than 8 m below

the surface, where fine-grained materials are deemed to be

present (low resistivities). The hydraulic conductivity of these

soils (alluvium) is probably very low and their hydric state is

potentially quite insensitive to seasonal changes of the water

table.

However, for other cases, it may be relevant to take into

account the water table level and its variations (especially for a

long-term monitoring of the levee and for winter investigation

campaigns). To do this, it would be interesting to consider

more hypotheses within the FoD Θ. For example, the hypoth-

esis θ1 could be associated to a fine material in the dry state

and the hypothesis θ2 to this same material in a saturated state.

The number of hypotheses constitutive of Θ is not limited

and does not require any modification of our methodology.

However, the computational cost could vary significantly.

Recently, many equipment to use ERT for long-term mon-

itoring have been developed [34], [35]). Thus, it would be

interesting to combine such use of ERT with this fusion

methodology. As soon as the fusion parameters are fixed, the

use of the methodology could be automated in order to propose

a daily update of a levee section for a long-term monitoring

system. It would then be a matter of integrating data from time-

domain reflectometry moisture sensor as well as piezometric

surveys, making it possible to monitor the fluctuation of the

water table as a function of rainfalls and periods of irrigation. It

is possible to draw inspiration from works such as [36] which

focus on the effects of environmental perturbations (variations

in water table heights, temperatures and rainfalls) and propose

calibration curves from ERT data for a specific investigation

site.

For this study, we considered data from three investigation

methods, usually used for levee characterization [37], [38],

[39], each one having its own belief mass attribution method.

A limitation of our methodology is our ability to define the

values of the upper and lower bounds of the physical parame-

ters characterizing the constitutive hypotheses of the FoD for

each investigation method. We currently rely on bibliographic

references [26], standards [24] or visual distribution of the

data (Figure 5). Our ability to define these interval values

is a function of the type of investigation method. If these

intervals are poorly defined, the fusion results may not be able

to display any coherent solution. Automating the procedure

of characterization of the intervals of the FoD would be a

great contribution to this methodology (e.g., by means of data

mining [40]).

VI. CONCLUSION

In this work, we present a novel fusion methodology based

on the use of belief functions to optimize the combination of

data from three different sources of information composed of

a geophysical method (ERT) and two geotechnical methods

(CPT and particle size distribution) applied to levee character-

ization. These sources of information are considered comple-

mentary, each one having its own spatial distribution and as-

sociated level of uncertainties and inaccuracies. This method-

ology was tested on real datasets acquired on an earthen

fluvial levee located in St-Clément-des-Levées (France) and

has proved to be efficient. We compared the results obtained

with different geophysical belief mass attribution approaches

(Wasserstein distance computation and Gaussian probability

distribution centered on the inverted resistivity value), as well

as for different belief mass values in the boreholes for CPT

investigations and different combination rules (Smets and

PCR6).

A representation of the merged information associated with

degrees of belief was proposed. We advocate that this rep-

resentation is more relevant and informative than a simple
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superposition of the different physical parameters recorded.

The ability of our methodology to distinguish two geological

sets of different nature in terms of particle size distribution

(fine-grained material and coarser-grained material) as well

as its ability to accurately characterize a horizontal interface

(at about 3.40 m depth below the electrode line) was demon-

strated. A coarser-grained geological material was identified at

the top of the structure and a fine-grained material is present

underneath. The characterization seems more reliable between

boreholes 2 and 3 and the results highlight a doubt about

the nature of the material at the left part of the section. Two

zones of lesser confidence are also located in the lower part of

the section (below 7.5 m depth) near the geotechnical points

intersecting the ERT section.

Finally, in the proposed results (Figures 16 and 17), the

areas of lesser confidence level indicate where the investigation

could be strengthened. Moreover, the conflict zones inform

us where at least two sources of information disagree. These

two types of outcome are believed to be precious for a real

investigation campaign. The level of confidence would also

be important for decision support (e.g., models of failure

hazards).

This methodology would be perfectly transferable to other

applications (landslide, pedology, pollutant tracking, mining...)

when at least two sources of information (geotechnical and

geophysical) are involved [41].
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Abstract—A reliable lithological characterization of earthen
dikes constitutes an important asset by virtue of enhancing a
good diagnosis, which is of immense value in preventing dike
breakage. Ruptures of hydraulic works can lead to disastrous
consequences (loss of life, severe environmental and economic
impacts). Recognized methodologies for characterizing earthen
dikes include complementary geophysical and geotechnical in-
vestigation methods. This article explores a fusion methodology
to combine data from these two types of information sources
in considering actual datasets from a canal dike investigation
campaign. This campaign involves electrical resistivity tomogra-
phy as well as a multi-channel analysis of surface waves and a
particle size analysis derived from laboratory testing. Our fusion
methodology is based on the use of belief masses to enhance
the characterization of lithological sets within earthen structures.
While taking into consideration the particularities of each method
(spatial distribution, data imperfection), this approach provides
information on the conflict level between information sources
and moreover displays a confidence index associated with the
results. This work contributes several improvements to the
fusion methodology (including the fusion of two distinct geo-
physical datasets and the implementation of K-means clustering
algorithms) in addition to new application possibilities (larger
area of investigation, more complex structure and lithological
variability). It also offers fusion results and dike characterization
whether considering zero, four or seven boreholes. Fusion results
highlight the ability of this enhanced methodology to identify the
position of lithological sets (fine and coarse fill materials with
limestone breccia, marls and limestones) as well as specify the
interface positions and associated levels of confidence, ensuring
consistency with available knowledge on the geological setting and
presence of a fault. These results also display good consistency
between the geoelectrical and seismic characterizations for this
specific investigation site despite the inability to characterize each
material individually.

Keywords: Canal dike, Belief functions, Data fusion, Electri-

cal Resistivity Tomography, Multi-channel analysis of surface

waves, Particle size analysis.

I. INTRODUCTION

Hydraulic works such as river and canal dikes are built to

maintain a given flow of water. To prevent eventual breakage

of these works, which could lead to catastrophic events (i.e.

casualties, property damage, economic impacts), an effective

characterization of these complex structures is required. For

this purpose, investigation campaigns involving geophysical

and geotechnical methods [1] are typically employed for dike

characterization and weak zone identification. The objective

of these campaigns is to generate a hazard assessment.

Whereas geophysical methods are non-intrusive and pro-

vide information on a large volume of subsoil, geotechnical

methods are intrusive and yield detailed spatial information. In

addition, the quality of the information derived from the two

methods differs. The uncertainties associated with geophysical

information are significant, especially owing to the integrative

and indirect aspects of the method as well as to the resolution

step for inverse problems [2]. On the other hand, the informa-

tion acquired by geotechnical methods is much more reliable

due to a direct contact with the material. It is therefore implied

that these two types of techniques are mutually beneficial.

Unfortunately, too few of the methodologies available actually

consider a mathematical combination of the acquired data,

opting instead for a simple graphic superposition of the results

[3], [4], [5].

In order to facilitate the diagnosis of hydraulic embank-

ments, it is important to identify the lithological materials

present within the structure and distinguish them. The inter-

faces as well as the presence of any anomalies must also be

located. This information is in fact likely to provide indications

on the subsequent development of internal erosion zones or

areas of physical instability [6]. Such a characterization, asso-

ciated with confidence indices, would be useful in producing

failure hazard models.

An information fusion methodology based on the use of

belief functions [7], [8] was developed and proposed to merge

data from geophysical and geotechnical information sources

in [9]. Furthermore, bibliographic research on earthen dike

properties and failure modes are available in [10], and para-

metric studies on several parameters involved in the fusion

methodology are available in [11], [12], [13]. Conclusive

studies were also carried out for numerical models as well

as on an experimental test bench in [14] and then on an actual

fluvial earthen dike in [15]. This methodology is unique by

Originally published as: T. Dezert, Y. Fargier, S. Palma Lopes, V. Guihard, Canal Dike Characterization 
by Means of Electrical Resistivity, Shear Wave Velocity and Particle Size Data Fusion, Journal of Applied 
Geophysics, Vol. 204, September 2022, and reprinted with permission.
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virtue of taking into account the various types of imperfec-

tions associated with information (uncertainty, imprecision,

incompleteness), as well as the respective spatial expressions

of information and representations of the inconsistency be-

tween information sources (investigation methods). It could

be applied well beyond dike characterization (e.g. liquefaction

risk, landslide, pedology, pollutant tracking, mining) when at

least two sources are involved [16]. In the field of geosciences,

some research works have applied the use of belief functions

to propose results for: slope instability [17], [18], groundwater

[19], and flood susceptibility mapping [20]. Also, many works

on joint inversion [21], [22], [23], [24] have proposed utiliz-

ing large amounts of geophysical information through joint

inversion in order to avoid some of the ambiguity inherent in

the methods when applied individually. However, these works

differ from our approach, which considers the information

sources to be mutually independent.

We are proposing herein the application of this belief

function-based methodology to a new type of structure, namely

a canal dike owned by the French EDF electric utility com-

pany. This structure includes the presence of two distinct sub-

stratum materials, two fill materials and a fault. In comparison

with earlier research, this study features numerous advances.

First, the research area is substantially larger than previously:

around 1,800 meters long by 24 meters high, as compared

to 100 meters long by 12 meters high in the Dezert et al.

study [15]. The structure under investigation is also more

complicated, offering more lithological variation. In addition

to the ERT (Electrical Resistivity Tomography) approach, the

MASW (Multi-channel Analysis of Surface Waves) method

is employed as a second source of geophysical information.

Also taken into account are the sensitivities associated with

resistivity values, thus indicating the extent to which a change

in resistivity will influence the potential measured by the array.

Moreover, the possibility of associating physical parameter

values with lithological materials has been integrated through

use of the K-means clustering method. The purpose here is to

automate a procedure that had previously been conducted by

means of simple expert opinion.

This article is organized as follows. First, the studied

canal dike and geology will be introduced along with the

three investigation methods considered (ERT, MASW, core

drillings). Then, the fusion methodology will be described

by use of the two combination rules (Smets and Proportional

Conflict Redistribution Rule No. 6), with an analysis of the

data acquired for each method. This section will also present

clustering and the belief masses computation. In the next

section, the belief mass results for each individual information

source as well as the overall fusion results will be dis-

played. The fusion process is operated by initially considering

only the geophysical information sources and then adding

the geotechnical information source in two situations: one

including the information from four boreholes, and the other

composed of seven boreholes. Lastly, the results of this work

will be discussed in terms of their advantages, limitations and

perspectives.

II. INVESTIGATED DIKE AND INVESTIGATION METHODS

A. Hydraulic embankment and geological context

The studied hydraulic embankment is a canal dike owned

by the EDF electric utility company and located in the

south of France. Since for reasons of confidentiality it is

not authorized to disclose the precise geographic location of

this canal dike, the Kilometric Point (KP) notation is being

used to identify the geophysical and geotechnical investigation

positions. These KPs (denoted in kilometers) correspond to the

dike length, along the crest moving from the upstream part

to the downstream part. The stretch selected for our study

is located on the right bank and extends from KP 10.35 to

KP 12.13. Five geological formations have been identified

throughout the whole structure. For the present study, this

particular section has the benefit of intersecting two distinct

geological formations, with the presence of a fault oriented

NE-SW that lowers the western compartment. Up to KP 10.80

approximately, the canal is essentially rock-based on more

or less marly limestone terrain from the Lower Cretaceous

(shown in yellow, Figure 1). Beyond that point, the substratum

is generally formed of more or less clayey and indurated marls

from the Oligocene (purple, Figure 1). Between KP 11.50

and KP 12.13, the presence of more cohesive materials, most

likely corresponding to Cretaceous limestones, is suspected.

The respective positions of the three distinct investigation

methods implemented (two geophysical and one geotechnical)

are displayed in Figure 1.

B. Electrical Resistivity Tomography

The basic principle behind DC-resistivity methods consists

of transmitting direct electrical current (DC) of known inten-

sity [A] by means of two “current” electrodes and then measur-

ing the voltage drop [V] between two “potential” electrodes.

Depending on parameters such as electrode layout and acqui-

sition array, apparent resistivity values can be computed. Such

a measurement yields indirect information though due to the

integrative aspect of this geophysical method. Some available

forward modeling software can integrate the electrode layout

(inter-electrode spacing) and topography in order to simulate

a measurement (e.g. COMSOL Multiphysics, BERT, CESAR-

LCPC). Marescot [25] recalled that apparent resistivity is the

measured transfer resistance divided by the simulated transfer

resistance of a model (with topography), at a resistivity of 1

Ω·m. A two-dimensional (2D) ERT, like the one considered

in this work, consists of an alignment of electrodes and an

inversion of a large number of measurements based on a four-

electrode configuration (two current electrodes for electrical

current injection and two potential electrodes to measure an

electric potential drop).

A geoelectric campaign was performed in 2014 on the dike

crest. The array consisted of 48 electrodes with an inter-

electrode spacing of 5 meters and a dipole-dipole configuration

array set up with an ABEM Terrameter LS resistivity meter.

Cables were rolled so that the information covered the entire

stretch of dike with a constant theoretical depth of inves-

tigation and without any blind areas. All measured contact
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Fig. 1. Locations of the geotechnical borings and geophysical profiles on the crest of the studied dike section. The depths of contact between fill materials
and substratum at each borehole are displayed on top.

resistances were below 5 kΩ. This electrode layout extended

from KP 10.35 to KP 12.13 (blue profile, Figure 1).

The apparent resistivity data acquired (Figure 2a) were then

inverted, in considering an L1 norm regularization on both the

data and the model [26] and using an inversion software [27]

to reconstruct a complete 2D-section of electrical resistivity

[Ω·m] compatible with the data. This step corresponded to a

robust inversion that allowed accentuating resistivity contrast

between lithological formations, in addition to limiting the

effects of overly noisy data. This work uses the Res2Dinv

software (version 3.71.118) [28].

For the inversion process, a flat topography is considered

since the elevation variation is negligible all along the dike

crest (only 11 cm). To simplify the processing of data as

well as their fusion, the extended model option in Res2Dinv

has been used. This option extends the model cells’ vertical

division to the edges of the survey line. However, to account

for the difference in reliability of the resistivity values between

meshes located at the center, bottom or sides, the resistivity

imprecision values [28] resulting from the inversion are taken

into account during the belief mass attribution stage. Moreover,

in this new work, sensitivity values [28] are considered in

the procedure. The sensitivity function indicates the extent to

which a change in resistivity of a section of the subsurface

influences the potential measured by the array. The higher the

value of the sensitivity function, the greater the influence of

the subsurface region on the measurement. Mathematically, the

sensitivity function is given by the Fréchet derivatives [29], as

detailed in [28].

C. Multi-channel Analysis of Surface Waves

The MASW method consists of studying the dispersion of

seismic surface waves (waveform deformation) in order to

determine the shear wave velocity. As described in [30], use

of this method comprises three stages: (i) data acquisition, (ii)

determination of the Rayleigh dispersion curve, and (iii) the

inversion process with a determination of shear wave veloci-

ties. The seismic campaign using MASW was carried out in

2017. A device with towed streamers shooting every 24 m was

activated, and the acquisition was performed with a Geode

device from Geometric, allowing for the characterization of

three sections within the considered dike area (Figure 1).

These three sections (yellow lines, Figure 1) extend respec-

tively from KP 10.74 to KP 10.9, KP 11.1 to KP 11.3 and

KP 11.5 to KP 11.7, with a geophone spacing of 2 meters.

The MASW method assumes a laterally invariant medium.

This assumption is verified by comparing the dispersion curves

obtained for the recordings of the direct and reverse shots,

as well as for the recordings of ambient vibrations. A non-

horizontally layered medium will generally produce different

dispersion curves on both the forward and reverse shots.

Velocity profiles are computed by means of: i) selecting one

dispersion curve per section, and ii) carrying out an inversion

to obtain a Vs profile that correctly explains the data using the

Surfseis 5.0 software from the Kansas Geological Survey [31].

Unlike the electrical resistivity data, no imprecision values

associated with the shear wave velocities are found after the

inversion. This issue remains complex and one that has yet to

reach a consensus opinion in the community [32], [33].

D. Core drillings with particle size analysis testing

This work considers the geotechnical information from

seven core drillings carried out on the crest of the studied

area in 2016, five of which being located on the ERT profile

(shown in red, Figure 1). These core drillings feature variable

investigation depths (from 13 to 24 m), unlike those considered

in [15]. The vertical resolution of information contained in

the core is very fine (0.1 m). Particle size analysis tests

were conducted in the laboratory on a large portion of the

extracted samples; moreover, the classification outlined in

French standard AFNOR NF P 11-300 [34] has been applied.

The cohesive materials unable to undergo particle size analysis

have been identified thanks to technician observations. Taking

these lithological basements into account constitutes an inno-

vation in the methodology and was not previously introduced

in [15].
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III. DATA ANALYSIS AND PROCESSING

A. Acquired and processed data

1) Electrical Resistivity Tomography: The inverse model

resistivity section, which will be used throughout this paper,

is displayed in Figure 2c, and both the measured and calculated

apparent resistivity (a) pseudo-sections are shown respectively

in Figures 2a and 2b. The inversion was carried out over 4 iter-

ations, yielding a final RMS error of 5.3%. A greater number

of iterations tend to overstructure, geologically speaking, our

imaging result, as explained by Descloitre et al. [35]. Figure 3

highlights the strong correlation existing in our study between

measured and calculated apparent resistivity values.

The resistivity values (Figure 2c) suggest the local presence

of resistive materials: from 8 to 16 m deep between KP 10.4

and KP 10.52; near the crest surface from KP 10.55 to KP

10.7; from 8 to 24 m deep between KP 10.8 and KP 10.95; and

from 6 to 14 m deep at KP 12 to KP 12.1. Lower resistivities

are observed over an area extending more than 500 meters in

length from KP 11.1 to KP 11.65. The exact positions of the

interfaces between the lithological sets cannot be accurately

determined.

Fig. 2. Resistivities of the longitudinal dike section displayed in Figure 1:
a) measured apparent resistivities, b) calculated apparent resistivities and c)
model resistivity section by inverting dipole-dipole apparent resistivity data.

Fig. 3. Measured apparent resistivity vs. calculated apparent resistivity from
data acquired on the ERT profile displayed in Figure 1.

2) Multi-channel Analysis of Surface Waves: From the

data acquisition, the Rayleigh dispersion curves can be used

to plot the phase velocities vs. frequency. The maximum

amplitude values are then picked from such a plot (Figure

4). After verifying the laterally invariant medium assumption,

20 seismic velocity profiles (Vs in m ·s−1) were obtained after

an inversion process from the picked values of the dispersion

curve. Each profile was representative of a 24-m long section

with variable depths and a vertical discretization of 0.1 m.

These velocity profiles are displayed in Figure 5; they all

indicate lower velocities near the surface and increasing values

at depths below 10 meters for the first (KP 10.74 to KP 10.9)

and third (KP 11.5 to KP 11.7) sections. The second section

(KP 11.1 to KP 11.3) primarily involves low Vs values.

Fig. 4. Example of a Rayleigh dispersion curve with the maximum extracted
amplitude values. This curve corresponds to data acquired on the profile
extending from KP 11.572 to KP 11.596, with an offset from the source
equal to 54 m.

Fig. 5. The 20 Vs profiles acquired by applying the MASW method within
the studied dike area.

3) Core drillings with particle size analysis testing: The

core drillings provide information on the presence of both fill

materials (fine or coarse-grained) and the basement (marls or

limestones). Figure 6 shows the presence of fine fill materials

near the surface from boreholes B3 to B7 as well as marls

below for the B4 and B5 drillings. Limestone is identified

below the fill materials in boreholes B1, B2 and B6. The

lithological basement seems particularly high in B2. Let’s note

that the B3, B4 and B6 core drillings are located in MASW

investigation areas.

B. Belief functions and combination rules

Belief functions (BFs) were introduced by Shafer [7] in

the mathematical theory of evidence inspired by the works
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Fig. 6. Representative diagram of the studied dike section, with the positions
of the seven core drillings and the identified lithological materials.

of Dempster [8], which is why belief function theory is

often referred to as the Dempster-Shafer theory (DST). It

serves to compute the belief and plausibility of a hypothesis

(corresponding, in this article, to lithological materials) from

various sources of information (ERT, MASW, core drillings).

The main advantage of BFs is their ability to manage

information from various sources, in association with their

respective imperfections (uncertainties and imprecisions). BF

theory is also able to assess the level of conflict between

sources, i.e. when information given by one source is incon-

sistent with that given by another source. According to the

definition offered by Smets [36], it can be considered that

uncertainties correspond to degrees of confidence related to

a physical value, whereas imprecisions correspond to value

intervals directly associated with measurement errors related

to the investigation method. For example, the uncertainty of

measuring a geotechnical parameter value identical to the one

measured in a borehole increases with the distance to that bore-

hole. However, imprecision may be associated with the error

bar of the measured datum. In our methodology, given that

uncertainties correspond to the belief masses associated with

the various defined hypotheses, the imprecisions associated

with each type of data will be detailed in the corresponding

sections.

Furthermore, BFs can take into account ignorance and

the incompleteness of information. It is possible to grant a

credit on all possible results (all possible types of lithological

materials) in order to quantify our ignorance, while probability

theory would simply assign an equiprobability to each single

hypothesis. Martin et al. [?] provided a detailed explanation

of BF theory for the interested reader.

The implementation of BFs has been divided into four

stages, namely: (i) define a Frame of Discernment (FoD),

denoted Θ; (ii) assign belief mass values to the hypotheses

of this FoD for each information source; (iii) select and use

a combination rule for the information fusion step; and (iv)

provide a representation of the merged information. Θ consists

of all possible hypotheses within the problem under concern.

The elements of the FoD are exhaustive and exclusive, e.g. for

n hypotheses:

Θ = {θ1, θ2, . . . , θn}. (1)

For the problem under consideration in this article, the possible

hypotheses of the FoD correspond to lithological materials

potentially found in the studied dike section. In light of

available knowledge, let’s set an FoD of five hypotheses,

common for all sources, such that:

Θ = {θ1, θ2, θ3, θ4, θ5}, (2)

where

• θ1 corresponds to fine fill materials,

• θ2 corresponds to marls,

• θ3 corresponds to coarse fill materials with limestone

breccia,

• θ4 corresponds to limestones,

• θ5 corresponds to any material different from the four

listed above.

Now, let’s introduce an additional hypothesis (θ5 here) repre-

senting one or more unexpected materials, in order to cover the

entire field of possibilities. The space of belief mass functions

is the set of all subsets of Θ, written 2Θ. It is determined by all

the disjunctions and the conflict between information sources

(denoted ∅), yielding in the present case:

2Θ = {∅, θ1, θ2, θ1 ∪ θ2, θ3, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3,

θ4, θ1 ∪ θ4, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ4, θ3 ∪ θ4,

θ1 ∪ θ3 ∪ θ4, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4,

θ5, θ1 ∪ θ5, θ2 ∪ θ5, θ1 ∪ θ2 ∪ θ5, θ3 ∪ θ5,

θ1 ∪ θ3 ∪ θ5, θ2 ∪ θ3 ∪ θ5, θ1 ∪ θ2 ∪ θ3 ∪ θ5,

θ4 ∪ θ5, θ1 ∪ θ4 ∪ θ5, θ2 ∪ θ4 ∪ θ5, θ1 ∪ θ2 ∪ θ4 ∪ θ5,

θ3 ∪ θ4 ∪ θ5, θ1 ∪ θ3 ∪ θ4 ∪ θ5, θ2 ∪ θ3 ∪ θ4 ∪ θ5,

θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5}. (3)

The belief mass function mj in [0, 1] is defined for each

information source Sj (with j = 1, 2 or 3 in this study) and

attributed to a subset X (defined on 2Θ). Like in probability

theory, the more mj(X) tends to 1 the higher the confidence

in X . Furthermore, the definition of a belief mass function

implies that the sum of the masses (over all subsets) of a

given source of information equals 1:

∑

X∈2Θ

mj(X) = 1. (4)

The essential difference with probability theory is that X can

represent the union of two or more hypotheses. For example,

if a belief mass is allocated to θ1∪θ2, this means that either θ1
OR θ2 is a possible solution, thus making it possible to model

uncertainty and lack of knowledge. Belief and plausibility

functions, Bel and Pl respectively, are considered as upper

and lower bounds of an unknown probability P such that

for any X ∈ 2Θ, Bel(X) ≤ P (X) ≤ Pl(X). Belief and

plausibility functions are in a one-to-one relationship with the

belief mass function, m(·), and defined by:

Bel(X) =
∑

Z⊆X

Z∈2
Θ

m(Z), (5)
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Pl(X) =
∑

Z∩X=∅
Z∈2

Θ

m(Z). (6)

However, in our methodology, only belief mass functions

have been used since the combination rules are set directly

from the allocated belief masses for each information source.

Two combination rules have been applied herein. First, Smets

[38], in the Transferable Belief Model, enables the assignment

of a belief mass to the conflict, ∅, such that:

m1,2,...,S(∅) > 0, (7)

where m1,2,...,S(·) denotes the combined belief mass resulting

from the merging of information stemming from S different

sources. The belief mass m1,2,...,S(X) resulting from the

conjunctive fusion of information from all sources (from j = 1
to S) is written:

m1,2,...,S(X) =
∑

X1,...,XS∈2
Θ

X1∩...∩XS=X

S
∏

j=1

mj(Xj). (8)

The level of inconsistency between the S information

sources is then expressed as:

m1,2,...,S(∅) =
∑

X1,...,XS∈2
Θ

X1∩...∩XS=∅

S
∏

j=1

mj(Xj). (9)

mj(Xj) stands for the belief mass assigned to hypothesis

Xj by information source j. The second combination rule to

be applied is the Proportional Conflict Redistribution Rule No.

6 (PCR6) [39]. According to Shafer’s approach and unlike

Smets’ rule, the PCR6 rule does not allow assigning any belief

mass to the conflict. Thus, in PCR6, one has by definition:

mPCR6
1,2,...,S(∅) = 0 (10)

Hence, PCR6 allows for the reallocation of all partial
conflicts, in proportion to the masses of the subset concerned
by these conflicts, so that the specificity of the information
is fully preserved during the fusion process. The belief mass
in X , mPCR6

1,2,...,S(X), resulting from the fusion of information
from s sources, is:

mPCR6

1,2,...,S(X) = m1,2,...,S(X) +

S−1
∑

k=1

∑

Xi1
,Xi2

,. . . ,Xik
∈2

Θ
\{X}

∩
k
j=1

Xij
=∅

∑

(i1,i2,...,ik)∈PS({1,...,2})

[mi1(X) + . . .+mik (X)]

·

mi1(X) . . .mik (X)mik+1
(Xik+1

) . . .miS (XS)

mi1(X) + . . .+mik (X) +mik+1
(Xik+1

) + . . .+miS (XS)
(11)

where PS({1, . . . , 2}) is the set of all permutations of ele-

ments {1, 2, . . . , S}. It should be emphasized that Xi1 , Xi2 ,

. . . , XiS may be different from each other, equal, or some

equal and some different, etc.

For example, let’s consider two hypotheses A and B,

with 2Θ = {∅, A,B,A ∪ B} and two information sources,

such that m1(A) = 0.6 and m2(B) = 0.3. With PCR6, the

partial conflicting mass m1(A)m2(B) = 0.6 · 0.3 = 0.18 is

redistributed to A and B only with respect to the following

proportions: xA = 0.12 and xB = 0.06 because:

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) +m2(B)
=

0.18

0.9
= 0.2

More numerical examples along these lines can be found in

[39].

C. Geophysical definition of the FoD using the K-means

clustering classification

Once the geophysical data have been acquired, the next step

is to determine the belief mass distributions associated with the

various hypotheses of the FoD Θ. These sets of belief masses

are specific to each information source and associated with

each grid cell representative of the dike section. Before the

fusion stage, the methodology indeed requires all information

sources to have sets of belief masses defined on the same

section and on a common mesh. The dimensions of this section

are to be fixed by the source covering the largest area, which

here would be the ERT method.

The hypotheses of the FoD (Eq. 2) must be associated with

physical values (electrical resistivity, shear wave velocity).

Previously, in Dezert et al. [14], [15], a representation of

the distribution of geophysical values, in the form of modal

classes, was employed. Such a representation enables high-

lighting the minima and maxima, under expert interpretation,

that would be used to set the bounds of the intervals associated

with the FoD hypotheses. Obviously, the general trend in the

value distribution serves to identify the lithological material

groups making up the studied section.

A new procedure is being proposed herein to determine

the geophysical parameter intervals associated with the FoD

hypotheses, based on K-means clustering [40]. This clustering

method allows classifying the geophysical parameter values

(electrical resistivity and shear wave velocity, respectively)

into K clusters, as derived following the resolution of a

combinatorial optimization problem. The K-means clustering

algorithm is an iterative minimization of the sum of distances

between each data point and a fixed centroid (initialization).

This algorithm modifies the affiliation of the points of each

cluster until the sum of the distances can no longer decrease

(least squares method), resulting in a set of compact and

delimited clusters. The use of this type of clustering algorithm

rather than another seems relevant for our problem set-up since

our data do not display clearly delimited sets; however, it

remains easily possible for the user to indicate the desired

number of clusters.

Even though clustering methods are typically performed on

multi-variate parameters [41], K-means clustering cannot be

run on co-located resistivity and seismic velocity data in our

methodology since the information sources are assumed to be

independent in belief function theory and unable to interact

with each other. Such use of K-means clustering would belie

that definition. Therefore, the geophysical methods are to be
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considered individually, with clustering applied on individual

parameters.

The number of clusters is a subjective choice that relies

on an interpretation of the geophysical acquisitions (Figures 2

and 5) and modal class distribution of the physical parameters

(Figures 7 and 8). A more objective manner would be to

use existing indices, such as the Davies-Bouldin index, to

fix the number of clusters K . However, such an index would

require a large number of clusters that may prove impossible

to associate with specific hypotheses. Our opinion is that

a reading and interpretation of the results from geophysical

acquisitions is still valuable to fixing the number of clusters

to be associated with the FoD hypotheses. This K-means

clustering classification then serves as an aid in selecting

precise values for the physical intervals.
1) Electrical Resistivity Tomography: From an observation

of Figure 2c, as previously described, three sets of resistivities

emerge. It has been decided to associate low resistivity values

with materials θ1∪θ2 (more conductive materials: fine-grained

fill or marl basement) and then high resistivity values with

materials θ3 ∪ θ4 (more resistive materials: coarse-grained fill

or limestone basement). Since the intermediate values do not

provide information on the exact nature of the lithological

material, they will be associated with the union of the four

hypotheses, θ1 ∪ θ2 ∪ θ3 ∪ θ4.The creation of three clusters by

means of the K-means clustering classification technique will

therefore be considered.

A modal class representation of the number of cells of the

2D-ERT section (Figure 2c), with respect to the resistivity

values depicted in log scale, is displayed in Figure 7. This

figure highlights the clustering proposed by the K-means

algorithm for the three defined clusters. The intervals of values

associated with the FoD hypothesis for the ERT method are

thus defined in Ω·m for the characterization as:

• [2.5, 75] associated with θ1 ∪ θ2 (fine-grained fill or

marl),

• [354, 104] associated with θ3 ∪ θ4 (coarse-grained fill

with breccia or limestone),

• ]75, 354[ associated with θ1 ∪ θ2 ∪ θ3 ∪ θ4 (one of the

four materials described),

• [0.1, 2.5[∪]104, 3 · 105] associated with θ5 (none of the

previously described materials).

By definition, the intervals associated with the θ5 hypothesis

(other lithological materials) do not contain any resistivity

value present in the section. However, the association of a

resistivity interval with this hypothesis is needed in order

to provide it with a “physical reality” in terms of resistivity

and compute the associated belief masses to θ5. As described

hereafter, the computation of belief masses associated with

each hypothesis does require the computation of distances

between physical intervals of values.
2) Multi-channel Analysis of Surface Waves: On the seis-

mic velocity profiles available (Figure 5), like for the ERT

method, three sets emerge: low, intermediate, and high shear

wave velocities. Low velocities are associated with finer

materials θ1 ∪ θ2 and high velocities with coarser materials

θ3 ∪ θ4. Since the intermediate values of Vs do not provide

information on the exact nature of the lithological material,

they can be associated with the union of the four hypotheses

θ1 ∪ θ2 ∪ θ3 ∪ θ4. Low speeds are initially associated with less

cohesive materials (fine and coarse fill) and higher speeds

with more cohesive materials (marl and limestone). However,

this characterization of FoD generated a significant conflict

between the source of seismic information and other infor-

mation sources. The FoD characterization used herein agrees

more closely with both the ERT characterization and particle

size analysis. The high velocities associated with θ3 could be

attributed to the numerous cohesive limestone breccia present

in the coarse-grained fill materials.

Figure 8 displays the same type of representation as that

proposed in Figure 7; it highlights the clustering proposed

for the three defined clusters. The velocity value intervals

associated with the FoD hypothesis for the MASW method

are therefore defined in m · s−1 as:

• [180, 450] associated with θ1 ∪ θ2 (fine-grained fill or

marl),

• [670, 1.3 · 103] associated with θ3 ∪ θ4 (coarse-grained

fill with breccia or limestone),

• ]450, 670[ associated with θ1 ∪ θ2 ∪ θ3 ∪ θ4 (one of the

four materials described),

• [1, 180[∪]1.3 · 103, 2 · 103] associated with θ5 (none of

the previously described materials).

Fig. 7. Modal class distribution of electrical resistivities in the form of three
clusters using the K-means clustering classification and the positions of the
respective centroids.

Fig. 8. Modal class distribution of shear wave velocities divided into three
clusters using the K-means clustering classification and the positions of the
respective centroids.
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D. Belief mass computations from single sources of informa-

tion

1) Electrical Resistivity Tomography: Once the FoD, Θ,

has been characterized with resistivity values, belief masses

need to be assigned to each hypothesis of 2Θ, for each

of the common meshes. It is therefore necessary, from the

standpoint of a resistivity value, to assign a distribution of

belief masses on all hypotheses. This step entails taking into

account the imprecision on the inverted resistivities, stemming

from inaccuracies and sensitivities provided by the inversion

process. More specifically, the imprecision on resistivity values

equals the ratio of the inaccuracy to the sensitivity, expressed

as a percent. Thus, instead of considering a simple resistivity

value, it is possible to consider an interval of resistivities

with a lower bound (resistivity value minus its associated

imprecision) and an upper bound (calculated resistivity plus

its associated imprecision), whose central value is the inverted

resistivity value. Thus, the greater the imprecision, the wider

the interval obtained.

Once the interval has been determined, the ascribed belief

mass is calculated as a function of the “distance” between this

interval and the intervals associated with the FoD hypothesis.

These distances are computed by considering “Wasserstein dis-

tances” [42], whereby the shorter the distance of a resistivity

interval to an FoD hypothesis, the greater the belief mass and

vice-versa. This procedure is explained in detail in [9] as well

as in [15].

Belief masses are assigned on all hypotheses with defined

resistivity intervals (here θ1 ∪ θ2, θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4
and θ5), as the other masses are set to 0. In accordance with the

definition of a belief mass function, the sum of these masses

equals 1 (Eq. 4). Each mesh is thus associated with normalized

belief mass functions.
2) Multi-channel Analysis of Surface Waves: Like for the

ERT method, once the FoD, Θ, has been characterized with

Vs values, belief masses must be assigned to each hypothesis

of 2Θ, for each cell (sized 24 × 0.1 m2). It is therefore

necessary, from the standpoint of a shear wave velocity value

associated with a cell, to assign a belief mass distribution on

all hypotheses. The process is identical to that introduced for

the ERT. However, unlike the ERT method, imprecision values

associated with the available shear wave velocities are not

available. Hence, imprecision values are randomly simulated

[43] according to a normal distribution (for a mean imprecision

value of 10% and associated standard deviation of 5%).

Belief masses are thus assigned to all hypotheses with

defined shear wave velocity intervals (here θ1 ∪ θ2, θ3 ∪ θ4,

θ1 ∪ θ2 ∪ θ3 ∪ θ4 and θ5), with the other masses being set to

0. As mentioned above, by virtue of the definition of a belief

mass function, the sum of these masses equals 1 (Eq. 4).

The dike section covered by the ERT method is larger

than that covered by the MASW method. However, the ERT

section dimensions serve as a reference in our methodology.

As such, belief mass distributions need to be proposed for the

second source of geophysical information (i.e. MASW), where

no seismic velocity information is available. For this step, a

belief mass of m2(θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5) = 1 is chosen. This

mass represents the “complete” uncertainty, in recognition of

the absence of information in those areas not covered by the

MASW campaign.

3) Core analysis: Like for the two geophysical methods

previously discussed, it is necessary, for each mesh of the

section, to associate the results of particle size analyses or

other geotechnical observations with the FoD hypothesis, Θ.

Unlike the ERT and MASW methods, the materials extracted

by coring serve to discriminate the four hypotheses θ1, θ2, θ3
and θ4. Imprecisions associated with weighing of the materials

are taken into account in the procedure but do not alter our

ability to discriminate the hypotheses.

As mentioned above, the classification of French standard

AFNOR NF P 11-300 [34] is used to distinguish fine-grained

from coarse-grained fill materials. Moreover, this standard

allows associating fine-grained fill materials with hypothesis

θ1 and coarse-grained fill materials with hypothesis θ3. The

cohesive materials, i.e. marly and limestone basements, that

have not undergone particle size analysis are respectively

associated with hypothesis θ2 (marl) and θ4 (limestone) thanks

to the visual characterization carried out by the technicians.

A belief mass close to 1, i.e. m3(·) = 0.99, associated with

the characterized hypothesis is fixed at the sampling points.

In a complementary manner, a mass of m3(·) = 0.01 is then

attributed to the union of all hypotheses (θ1∪θ2∪θ3∪θ4∪θ5),

in agreement with the definition of the belief mass function,

which requires that the sum of the belief masses assigned by

an information source equal 1 (Eq. 4). The other belief masses

are all set to 0.

This mass value of 0.99 can theoretically be modified

depending on the ability of the geotechnical method to char-

acterize the lithological material under investigation. Given

our belief that core extraction and observation along with

particle analysis constitute the best means for characterizing

the lithology of a material, the high level of confidence in

boreholes finds its justification. If the information provided

by the geotechnical observation is missing or incomplete

and no particle size analysis has been carried out, then the

entire belief mass is allocated to the absolute uncertainty such

that m3(θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5) = 1 (e.g. B6 borehole depth

between 13 and 15 m, Figure 6).

Core drillings provide spatially specific information com-

pared to the output of the ERT and MASW methods, both of

which cover larger areas. Since the dimensions of the ERT

section serve as a geometrical reference in our methodology,

belief masses must be assigned to the geotechnical source of

information where no core drilling is carried out. A discretiza-

tion of the whole section is thus performed to cover the entire

inter-borehole space.

An exponential decrease of the belief masses is imposed

laterally from each borehole point to the adjacent borehole, to

both the left and right. The rate of decrease is a function of

two parameters: i) the lateral decay coefficient k, and ii) the

coefficient of variation of particle size values Cv . As a result,
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for a given depth, we obtain:

M(x) = 0.99 · e−kCvx, (12)

with x being the horizontal distance from the considered

mesh to the reference borehole, in meters (with x = 0 in

the borehole), M(x) the belief mass values assigned to each

hypothesis in the FoD for a position x, with 0.99 as the belief

mass value assigned to the hypothesis identified in borehole

(M(0)).
The coefficient k is set by the user of the methodology and

depends on the lateral variability of the investigated medium.

The value of k should increase with subsoil variability. A para-

metric study on the influence of this lateral decay coefficient

has been proposed in [14], in suggesting a value of k = 0.1.

The coefficient of variation of particle size Cv is computed for

a considered borehole, at a fixed depth, by using values from

the borehole as well as from the adjacent borehole. As such,

for two consecutive boreholes displaying similar particle size

values at the same depth, the decrease in confidence is smaller

than for two consecutive boreholes with radically different

values. The expression of Cv is shown in Eq. 13.

Cv =

√

1

nmesh

∑

i=1

nmesh(Q −Qi)2, (13)

where Q is the geotechnical parameter value of the considered

cell in the borehole (cumulative sieve less than 80 µm), and Qi

the value in the adjacent borehole centered at the same depth.

This study considers nmesh = 7, so that the computation of Cv

takes into account 7 cells in the adjacent borehole (i.e. 70 cm

thick when assuming a vertical resolution of 10 cm).

Consequently, in our studied section, boreholes B1 and B7

are of interest, even though they are absent from the ERT

profile (Figure 2c). These two boreholes make it possible to

compute the coefficients of variation and therefore the decrease

rate of B2 belief masses to the left and the decrease rate

of B6 belief masses to the right. For a given cell, when

the belief mass associated with a hypothesis is less than 1,

the remainder of the mass to be allocated is assigned to the

“any material” hypothesis (θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5). Beyond

the maximum depth of geotechnical investigation, since no

information is available, m3(θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5) = 1.

When the materials are characterized visually by a techni-

cian but not analyzed in the laboratory, the Cv value cannot

be computed due to the absence of particle size data. In this

case, two Cv values are set by the user of the methodology,

i.e.: i) a low value making it possible to extend the information

widely when two identical materials are present at the same

depth for adjacent boreholes (e.g. between 10 and 12 m deep,

to the right of borehole B4, Figure 6); and ii) a high value

serving to limit the extension of information locally when

two different materials are present at the same depths for two

adjacent boreholes (e.g. between 10 and 12 m deep to the left

of borehole B4, Figure 6).

The geotechnical information being extended from a bore-

hole to adjacent boreholes implies double information at the

level of the inter-borehole meshes (information originating

from both the left and right). In order to have just one

distribution of geotechnical belief masses in each cell, this

double information is processed into a single one. For this

step, the information originating from the left is considered as

an initial source while that from the right as a second source.

A preliminary fusion process is then conducted between these

two belief mass distributions using the PCR6 rule (Eq. 11), in

each cell of the section.

IV. RESULTS

Before displaying the fusion results, since belief mass

distributions have been computed for all individual sources,

they will first be displayed in Figures 9 to 12. It is essential

to mention that this fusion process can take place between all

information sources or else by considering them in pairs. This

work thus presents the results for the fusion of information

acquired solely by the geophysical ERT and MASW methods

(Figure 13) and then by all three methods (ERT, MASW

and core drillings) in considering respectively four boreholes

(Figure 14) and seven boreholes (Figure 15).

A. Belief mass distributions for individual information sources

1) Electrical Resistivity Tomography: Let’s start by a dis-

play consisting of two complementary figures (9a and 9b)

that highlight two distinct types of information. Figure 9a

shows, for each cell of the ERT section, the hypotheses of

Θ having the greatest belief mass, while the associated mass

values are provided in Figure 9b. The presentation of these

results serves to highlight the ability of our methodology to

represent the uncertainty (union of hypotheses with associated

confidence indices) while taking imprecision into account. The

materials most plausibly present in the dike section according

to the ERT method are thus depicted in Figure 9a, with the

associated confidence index in Figure 9b. The four areas of

high resistivities described in Figure 2c appear in green in

Figure 9a.

Fig. 9. a) lithological section of the dike based on the hypotheses having the
highest belief mass according to the mass attribution from electrical resistivity
data, with an FoD characterization by means of clustering; b) dike section of
the mass values associated with the hypotheses shown in a).

The high uncertainty (low belief masses) is due to a lack of

real measured data in the extended ERT model, as well as to
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the resolution of ERT data intrinsically decreasing with depth.

This decrease in confidence with depth could not be demon-

strated in previous works [14], [15] since sensitivity values

had not been taken into consideration. Figure 9 indicates that

the characterization of the section using the ERT method fails

to discriminate the four hypotheses (fine fill, coarse fill, marly

basement, limestone) featuring common resistivity values.

2) Multi-channel Analysis of Surface Waves: The litholog-

ical materials most plausibly present in the subsoil according

to the MASW method are displayed in Figure 10a, along with

the associated confidence index in Figure 10b. It appears that

these results are in close agreement with the characterization

proposed by the ERT method in Figure 9, in particular with

both the characterization of θ1 ∪ θ2 at shallow depth for the

three sections covered and the characterization of θ3 ∪ θ4
beyond a depth of 10 m for the first section, i.e. around KP

10.8.

Fig. 10. a) representation of the hypotheses having the highest belief mass
according to the mass attribution from shear wave velocity data, with an FoD
characterization by clustering; b) representation of the mass values associated
with the hypothesis presented in a).

3) Core analysis: The lithological materials most plausibly

present in the subsoil according to the core drilling method

are displayed in Figures 11a and 12a, with the associated

confidence indices in Figures 11b and 12b. Figure 11 shows

the results when considering four boreholes (B1, B2, B5 and

B7), while the results in Figure 12 consider all available

boreholes (B1 through B7).

As expected, these two figures highlight the strong confi-

dence (belief masses close to 1) near the borehole locations

(Figures 11b and 12b) as well as their variable lateral decrease

depending on the materials encountered in adjacent boreholes.

For example, when looking at borehole B4 (Figure 12),

while the confidence associated with the hypothesis θ1 (fine

fill materials) extends widely to the right over the first 8

meters because B5 characterizes the same material at similar

depths, the extent of confidence in this hypothesis is much

more restricted between z = 8 and z = 10 m, since θ2 is

characterized in B5 at these depths. As for the MASW method,

these figures substantiate the ability of the methodology to

represent the lack of information (incompleteness). Note that

the complete uncertainty (θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5) is displayed

in black in Figures 11a and 12a.

Fig. 11. a) representation of the hypothesis with the highest belief mass
according to the mass attribution from four core drilling data; b) representation
of the mass values associated with the hypothesis presented in a).

Fig. 12. a) representation of the hypothesis with the highest belief mass ac-
cording to the mass attribution from seven core drilling data; b) representation
of the mass values associated with the hypothesis presented in a).

B. ERT and MASW fusion results

The fusion results of ERT and MASW presented in Figures

13a and 13c do not allow characterizing the lithological

materials individually given the inability of either method

(see Figures 9 and 10). Figures 13b and 13d reveal that

the confidence level is enhanced when the same materials

are characterized by the two geophysical methods, especially

near the dike crest in the case of fine materials. Two conflict

zones appear, with the larger one being located below the 3rd

section of MASW (KP 11.5-11.7) 15 meters deep. The MASW

method characterizes the θ3 ∪ θ4 hypothesis (Figure 10a)

while the ERT method characterizes the θ1 ∪ θ2 hypothesis

(9a). On the whole, the results proposed here are very close

to the characterization produced by ERT alone (Figure 9) since

information is provided on a much larger area than the MASW

method. A large part of the dike section is characterized with

m2(θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5) = 1 for the MASW method (in

black, Figure 10a), which yields zero information. Also, the
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masses associated with the PCR6 rule are higher and closer to

1 (Figure 13d) than those associated with Smets’ rule (13b).

This outcome stems from the fact that the conflict mass m(∅)
in Smets’ rule is reallocated on the other FoD hypotheses with

the PCR6 rule, as described in Eq. (11), hence mPCR6(∅) = 0.

Fig. 13. a,c) representations of the hypotheses with the highest belief mass
according to the mass attribution from ERT and MASW fusion using Smets’
and PCR6 rules; b,d) representation of the mass values associated with the
hypotheses presented in a) and c) respectively.

C. ERT, MASW and core drillings fusion results

In comparison with the results displayed above, the contri-

bution of core drillings is helpful, as they allow dissociating

the lithological materials individually and proposing precise

interface positions, as opposed to the smooth ones shown

in Figure 2. It can be observed in Figures 14b, 14d, 15b

and 15d that the conflict level decreases when deviating

from the borehole positions since the confidence level on

the geotechnical information decreases with distance to these

borehole positions. Comparatively speaking, the influence of

the geophysical information becomes more significant.

Fig. 14. a,c) representation of the hypotheses with the highest belief mass
according to the mass attribution from the fusion of ERT, MASW and core
drillings (four boreholes), using the Smets’ and PCR6 rules respectively; b,d)
representation of the mass values associated with the hypotheses presented in
a) and c) respectively.

Overall, the belief masses of the characterized hypothesis

seem to be lower with three sources of information (Figures

14b, 14d, 15b and 15d) than with two (13b and 13d). However,

this finding does not imply that the results are of lower

quality. Indeed, it is necessary to state that the materials

characterized are individual hypotheses (Figures 14a, 14c, 15a

and 15c), while a union of hypothesis was depicted in Figure

13. Therefore, the characterization using three sources of

information is more precise than that proposed by considering

just the ERT and MASW methods.

It is interesting to compare the fusion results considering

four (Figure 14) and seven boreholes (Figure 15) by examining

the contribution of the three additional core drillings (B3, B4,

B6). Overall, confidence is higher with seven geotechnical

investigation boreholes (Figures 15b and 15d) than with four

(14b and 14d). Some conflict zones present with four bore-

holes are reduced when integrating the three additional ones

(e.g. on the first 10 meters, KP 10.8), yet new conflict zones

can also appear when the particle size information contradicts

the geophysical characterization (e.g. B3, 10 meters deep). As

for the fusion of two information sources, the PCR6 results

indicate higher belief masses and remove the conflict displayed

by results using Smets’ rule. On the other hand, they also show

that the zones where conflict is present with Smets’ rule exhibit

low confidence with PCR6 (e.g. KP 10.8 - 11 at 10 meters in

depth, conflict represented in Figure 15a, and associated low

masses following use of the PCR6 rule in Figure 15d).

Fig. 15. a,c) representation of the hypotheses with the highest belief mass
according to the mass attribution from the fusion of ERT, MASW and core
drillings (seven boreholes in white, with the black lines indicating major
contact between cohesive and non-cohesive materials), using the Smets’ and
PCR6 rules respectively; b,d) representation of the mass values associated
with the hypotheses presented in a) and c) respectively.

V. DISCUSSION

A. Lithological characterization of the dike section

The results obtained by our fusion methodology are con-

sistent with the geological description of the dike section

established in the beginning of this article. Figure 15c reveals

the presence of a limestone basement up to KP 10.6, with

coarse fill materials above. Then, between KP 10.6 and KP

10.8, the NE-SW fault is most likely being detected, lowering

the western compartment. This finding explains why coarse fill

materials are characterized at such depths at KP 10.8, whereas

they are much closer to the surface at KP 10.55. This fault zone

between KPs 10.55 and 10.8 is poorly characterized (union of

hypotheses displayed in Figure 15c, and low associated belief

masses in Figure 15d), which suggests the possibility of a dis-

placed region. Moreover, fine fill materials are located up to a

depth of about 10 m, with the presence of an underlying marly

basement. From KP 11.6, the characterization is less obvious

with certainly the alternation of finer and coarser fill materials.

The uncertainty associated with geophysical information and
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the lack of geotechnical information (with boreholes B6 and

B7 being very far apart) leaves this area beyond 10 m deep

poorly characterized. The available knowledge suggests that

Cretaceous Limestone-type materials could be present between

KP 11.5 and KP 12.13; this characterization thus appears to

be consistent with our fusion results.

These fusion results allow proposing more precise litholog-

ical interface positions thanks to the geotechnical characteri-

zation. In addition to being able to individually characterize

lithological materials, it is very helpful to have areas with

no doubt existing between two or even four materials. This

information is valuable in order to determine where it would be

pertinent to strengthen the geotechnical investigations. The dis-

played results highlight the ability to take advantage of com-

plementary information from geophysical and geotechnical

methods. While the ERT and MASW methods did not serve to

distinguish the four described materials in Figure 13, the core

drilling results did clarify the section by both distinguishing

the materials and specifying the interface locations. This step

is performed, for example, at the level of borehole B3 (around

11.5 m deep) between fine and coarse fill materials. While

the ERT and MASW methods suggested a higher interface

(Figure 13c), the information contained in the core drillings

makes it possible to readjust this position and express this

contradiction between sources thanks to Smets’ combination

rule, with a representation of the conflict (in red, Figure 15a).

This notion of conflict is valuable to understanding both the

data and results; furthermore, it seems that no other existing

work exposes this type of information.

Since the conflict is not a solution in itself, the PCR6 rule

is also essential in order to expose the material most likely

present despite this high level of conflict. It is also required

to observe closely and simultaneously the fusion results and

associated belief masses. Although these mass values should

not be considered as values serving as absolute indicators for a

hazard study, they do provide a great deal of information when

compared in relative terms. Thus, in Figure 15c, the presence

of fine fill materials is observed over the first 8 meters of

thickness, from KP 10.8 to the end of the section. However,

Figure 15d makes it possible to qualify this characterization

with a drastic drop in confidence to the left of borehole

B3, as well as a gradual decrease in confidence to the right

of borehole B6. The characterization of θ1 is therefore less

reliable at KP 12 than at KP 11.3.

At some positions of the section, the union of two hypothe-

ses is represented after the fusion process (e.g. θ1 ∪ θ2 below

a depth of 15 m at KP 11.2). As such, it seems impossible

to characterize a single material, yet an expert’s observation

should be sufficient to propose the most plausible solution. In

this example, although borehole B4 does not extend deeper

than 15 m, it seems rational that the materials present beyond

are also marls and not fine fill materials. Thus, according

to the positioning of the union of characterized hypotheses

and thanks to expert observation, even if the geotechnical

investigation does not extend to the base of the section, it

is still possible to make reasonable suggestions as to the

materials present beyond the geotechnical investigation depths.

The fusion results presented for four (Figure 14) and

seven core drillings (Figure 15) underscore how the section

characterization differs depending on the number and position

of geotechnical investigations. It may be relevant to use this

fusion methodology during geotechnical acquisitions in order

to ascertain where to strengthen the investigation campaign

and where it would be valuable to acquire information. Specif-

ically, the campaign should be reinforced as a priority where

no material is precisely characterized (in gray, Figures 14a,

14c, 15a and 15c) and where the confidence level associated

with the hypotheses is low (in blue, Figures 14b, 14d, 15b and

15d).

B. Methodology improvements, limitations and outlook

Compared to the previous works of Dezert et al. [14], [15],

several improvements have been introduced in this article.

First, the bounds of the intervals associated with the FoD

hypotheses were previously fixed by the user under expert

interpretation. Here, the K-means clustering method makes

it possible to objectify these bound values. It appears that

the results obtained are consistent with the interpretation an

expert could issue of the geoelectrical and seismic model

inversion results (Figures 2 and 5). It also seems that the

choices of bound values are not aberrant when placed into

perspective with the distributions of physical values in the form

of modal classes (Figures 7 and 8). However, it is important

to keep in mind that an expert’s interpretation is still essential

to determine the number of desired clusters. In this study,

three clusters have been set for both the ERT and MASW

methods, but other studies may require a different number of

clusters depending on the methods used. It is also the expert’s

responsibility to know which FoD hypotheses to associate with

each cluster, based on their knowledge.

The second improvement of this work consists of having

integrated data acquired by the MASW method. Although

the integration of this geophysical method into the fusion

methodology was made feasible, the information provided

by the method for this case study is not extremely valuable

compared to the characterization produced by the ERT method.

On the one hand, the area covered by the seismic investigation

is much smaller than that covered by the ERT (approx. 20%

of the section covered), while on the other, poor complemen-

tarity exists between these two geophysical methods when

it comes to discriminating various hypotheses. This finding

is certainly due to the presence of limestone blocks in the

coarse fill materials, associating high seismic velocities in

these materials like in the limestones from the Cretaceous. One

point of discussion regarding the MASW method concerns

the imprecisions associated with the calculated shear wave

velocities. The use of random values has been proposed in this

study, yet it would be relevant to quantify these imprecisions

in an alternative manner. To this point however, no research

works have seemingly reached a consensus [32], [33].

Another improvement pertains to the inclusion of litholog-

ical materials extracted, yet their cohesion does not allow for
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laboratory analysis (marl and limestone). This consideration

is valuable since it allows the geotechnical information to be

considered more in depth than the case of focusing solely on

fill materials. Without this consideration, several areas after

the fusion process would still be poorly characterized, e.g.

θ1 ∪ θ2 or θ3 ∪ θ4. The final improvement of this paper is

the inclusion of ERT sensitivities into the mass assignment

process, thus displaying a less confident characterization at

the bottom and sides of the section. It would be worthwhile to

integrate information of such a nature in the future for other

geophysical sources (e.g. the MASW method).

Finally, since this study focuses on a hydraulic work,

transversal topography and the presence of water on one side

of the studied object may have an impact on the resistivity

values. However, these effects are not majority and relatively

homogeneous all along the acquisition profile [44]. We are

aware that softwares such as BERT or pyGIMLi could provide

an advantage to investigate 3D structures. Though, in this

work, we focused on the fusion of data classically available

for the project manager (longitudinal ERT inverted in 2D).

Also, for the seismic characterization, the MASW data are

1D (almost 2D because of a longitudinal distribution). Since

the objective of this work is to look for a 2D model of the dike,

the inversion of ERT data in 3D would not appear consistent

with the complete approach.

VI. CONCLUSION

This paper has presented several improvements to the fusion

methodology, based on the use of belief functions first pro-

posed by Dezert et al. [14], [15], along with a detailed appli-

cation of the methodology to a section of canal dike with large

dimensions and complex lithology using two combination

rules (Smets and PCR6). This methodology serves to take into

consideration the various forms of imperfections associated

with information (uncertainty, imprecision, incompleteness),

as well as the spatial expressions specific to each informa-

tion source. The level of contradiction (conflict) between the

information sources has also been quantified. In terms of

methodological improvements, in addition to integrating data

from the MASW method, the sensitivity values associated

with electrical resistivities have now been taken into account.

An automated procedure for associating physical values with

lithological materials using the K-means clustering method

has been proposed; moreover, materials extracted but not

analyzed in the laboratory are included in the characterization

of the studied dike section.

The results obtained thanks to this fusion process make it

possible to highlight the significant variability in lithology as

well as the location of the fault between KP 10.6 and KP

10.8. They also provide information on the position of fine

and coarse fill materials, marls and limestones. The presence

of a limestone substratum up to KP 10.6 with coarse fill

materials above has been successfully characterized. The fine

fill materials then appear to be present from the top to a

depth of approximately 10 m, i.e. from KP 10.8 to the end of

the section. Below 10 m of depth, while coarse fill materials

are located at KP 10.83, the marl substratum is present in

the center of the studied section. Below the fine fill material

layer and beyond KP 11.6, an alternation of finer and coarser

fill materials seems to be the most plausible characterization.

The results displayed in the figures herein help locate areas

of: high confidence level (high belief masses), doubt between

two (union of two characterized hypotheses) or four materials

(union of four characterized hypotheses), and conflict between

the information sources (high belief masses associated with ∅).

The fine fill materials close to the surface are characterized

with a strong confidence level, while the area where the fault

is assumed to be present has not been well constrained. These

results also highlight consistency between the characterization

made by the ERT and the MASW methods at this specific

investigation site with a very low level of conflict.

Areas of a lower confidence level could indicate where

investigation should be strengthened in the future and might

also be valuable for decision support in failure hazards models.
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Abstract—This paper presents a method of fusion of identifi-
cation (attribute) information provided by two types of sensors:
combined primary and secondary (IFF) surveillance radars and
ESM (Electronic Support Measures). In the first section, the basic
taxonomy of attribute identification is adopted in accordance with
the standards of STANAG 1241 ed. 5 and STANAG 1241 ed. 6
(draft). These standards provide the following basic values of
the attribute identifications: FRIEND, HOSTILE, NEUTRAL,
UNKNOWN and additional values: ASSUMED FRIEND and
SUSPECT. The basis of theoretical considerations is Dezert-
Smarandache theory (DSmT) of inference. The paper presents
and practically uses for combining identification information
from different ESM sensors and radars six information fusion
rules proposed by DSmT - the Proportional Conflict Redistri-
bution rules (PCR1, PCR2, PCR3, PCR4, PCR5 and PCR6).
In the paper, rules of determining attribute information by
ESM sensor equipped with the data base of radar emitters are
presented. It was proposed that each signal vector sent by the
ESM sensor contained an extension specifying a randomized
identification declaration (hypothesis). This declaration specifies
the reliability of the identification information - basic belief
assignment (BBA) for the identification information set. The
paper also presents a model for determining the basic belief
assignment for a combined primary and secondary radar. Each
sensor report sent to the fusion information center contains a
vector of belief mass of attribute identification.Results of the PCR
rules of sensor information combining for different scenarios of
radio-electronic situation (deterministic and Monte Carlo) are
presented in the final part of the paper. At the end of the paper
conclusions are given. They confirm the legitimacy of the use of
Dezert-Smarandache theory into information fusion for primary
radars, secondary radars and ESM sensors.

Keywords: information fusion, Dezert-Smarandache theory

(DSmT) of inference, conflict redistribution rules, radar emit-

ters recognition, electronic support measures (ESM), primary

and secondary radars.

I. INTRODUCTION

The paper is devoted to the fusion of identification informa-

tion from ESM sensors and combined primary and secondary

radar (IFF) using the rules of Dezert-Smarandache theory

(DSmT) called proportional conflict redistribution rules. The

first part of the paper presents the applied interpretation of

attribute identification in accordance with the NATO STANAG

1241 standard. It should be noted that this is one of the

possible interpretations of the adopted definitions. It leads to

the Bayesian model of the basic belief assignment.

The identification classification method depends on the

organization that operates the ESM sensors. In the paper,

one assumes that the sensor identification classification is

consistent with the NATO STANAG 1241 standard [1], [2]. In

addition, one assumes that five identification classes are used

- three primary and two secondary ones. Sensors can transmit

identification information in the form of a hard decision,

sometimes determined as non-randomized, or a soft decision,

sometimes determined as a randomized decision. In the paper,

one assumes that the sensors send identification information

to the system in a randomized form, i.e. in the form of basic

belief assignment on the set of identification classes. This

assignment determines the sensor’s belief that the detected

emitter belongs to separate identification classes.

The next part of the paper presents the mathematical form

of the DSmT conflict proportional redistribution rules PCR1,

PCR2, PCR3, PCR4, PCR5 and PCR6 [3], [4] for two sensor

inputs and PCR5 and PCR6 for three sensor inputs, assuming

the Bayesian model of the basic belief assignment of hypoth-

esis. The next two sections show how to determine the basic

belief assignment for combined primary and secondary (IFF)

radar and ESM sensors.

Combined primary and secondary (IFF) radars are the main

source of identification information about air and maritime

objects. A primary radar allows only to detect an object in a

supervised area. The detection of the object is the precondition

for sending a request to the object by the secondary radar (in-

terrogator). Interpretation of the object response is dependent

on the type of request. The so-called civilian modes allow

only to determine whether the detected object replies to an

interrogation or not. The paper presents a method for deter-

mining the basic belief assignment of airborne targets moving

in observation space of combined primary and secondary (IFF)

radars sensor.

ESM (electronic intelligence - electronic support measures)

electronic surveillance sensors consist of passive receivers and

direction-finders, which allows them to capture emitter signals

coming from certain directions. In this way, the electronic

recognition system can receive, among others, information

on radar emitters mounted on air or maritime platforms.

Reports sent from the ESM sensors include, among others, the

characteristics of the intercepted signal, the emitter’s azimuth
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and the so-called identification information. The paper also

assumes that sensors are equipped with specialized databases

called the databases of emitter signal patterns, in which

information about previously captured, processed, analyzed,

recognized and described radar emitter signals is stored along

with additional information about the type and mode of the

emitter work, the platform on which these emitters can be

installed, and the national or organizational affiliation of these

platforms. The detected signals are the subject of an analysis

procedure, which allows to determine the so-called distinctive

features of the signal and then assigning this information to

a specific electronic entity (already existing or created ad

hoc) [5]. The basis for assigning distinctive information to an

electronic entity is the azimuth angle of the incoming signal.

In the case of a high density of targets, identification

information may fluctuate due to incorrect assignment of

signal information to the electronic entity [6]. The impact of

this negative phenomenon can be significantly reduced by an

efficient estimation of the emitter positions [7]. Assuming that

sensors send all reports on the tracked electronic entities to the

superior operation center in the electronic recognition system,

such a center (in the paper called the information fusion center

(IFC) can perform the fusion function of the identification in-

formation. The fusion of identification information ensures the

greater stability of this information - resistance to accidental

changes in sensor decisions. Each sensor report sent to the

fusion information center contains a vector of belief mass for

all attribute identification values. Results of the Proportional

Conflict Redistribution sensor information combining rules for

selected deterministic and Monte Carlo scenarios are presented

in the final part of the paper. The identification information

fusion can be realized based on three basic theories - Bayesian

theory of inference, Dempster-Shafer theory - called the theory

of evidence and Dezert-Smarandache theory. The methods

of Dezert-Smarandache information fusion are used in this

paper. In addition, their effectiveness is compared with the

Dempster’s rule of inference.

At the end of the paper conclusions are given. They confirm

the legitimacy of the use of Dezert-Smarandache theory into

information fusion for primary radars, secondary radars and

ESM sensors.

II. INTERPRETATION OF ATTRIBUTE IDENTIFICATION

ACCORDING TO STANAG 1241

The set of possible values of attribute identifications used

by sensors can be adopted based on standardization documents

of organizations that exploit these sensors [1], [2], [8]–[10].

This paper assumes a basic taxonomy of identification in

accordance with the draft of STANAG 1241 ed. 6 [2]. To other

similar documents one may include the following standards:

STANAG 4420 and STANAG 1241 ed. 5, which provide the

following basic values of the attribute identifications:

- FRIEND (F),

- HOSTILE (H),

- NEUTRAL (N),

- UNKNOWN (U).

Each of these documents contain their own definitions of the

declarations.

The following definitions of these basic values of the

attribute identification are used in the paper (in accordance

with [2]):

- FRIEND - an allied/coalition military track, object or

entity; a track, object or entity, supporting friendly forces

and belonging to an allied/coalition nation or a declared

or recognized friendly faction or group,

- HOSTILE - a track, object or entity whose characteristics,

behavior or origin indicate that it belongs to opposing

forces or poses a threat to friendly forces or their mission,

- NEUTRAL - a military or civilian track, object or entity,

neither belonging to allied/coalition military forces nor to

opposing military forces, whose characteristics, behavior,

origin or nationality indicates that it is neither supporting

nor opposing friendly forces or their mission,

- UNKNOWN - an evaluated track, object or entity, which

does not meet the criteria for any other standard identity.

These standards bring additional values of the attribute

identification:

- ASSUMED FRIEND,

- SUSPECT.

One should pay attention on these two recent identities

contained in [1] as well as their definitions [2]:

- ASSUMED FRIEND - a track, object or entity which is

assumed to be friend or neutral because of its character-

istics, behavior or origin,

- SUSPECT - a track, object or entity whose characteris-

tics, behavior or origin indicate that it potentially belongs

to opposing forces or potentially poses a threat to friendly

forces or their mission.

The identification definitions in [1], [2] can lead to differ-

ent interpretations. This paper adopts the interpretation, the

graphical form of which is shown in Figure 1.

Figure 1. The interpretation of STANAG 1241 using the Venn diagram.
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III. FUSION OF INFORMATION FROM ESM SENSORS AND

RADARS IN THE INFORMATION FUSION CENTER (IFC)

A. Diagram of the process of information fusion for two

sensors in the information fusion center

In this work, it is assumed that ESM sensors send messages

asynchronously to the information fusion center. These reports

contain sensor decisions regarding the identification of objects

emitting detected signals. The set of possible identifications is

following:

Θ = {θi, i = 1, . . . , 6} (1)

wherein the following interpretation is used:

θ1 - FRIEND (F),

θ2 - HOSTILE (H),

θ3 - NEUTRAL (N),

θ4 - ASSUMED FRIEND (AF),

θ5 - SUSPECT (S),

θ6 - UNKNOWN (U).

According to Figure 1, the hypotheses are mutually exclu-

sive, i.e.

θi ∩ θj =

{

θi, if i = j,

∅, if i 6= j.
(2)

Each sensor with the number i (i ∈ N) sends its decisions

as so-called soft decisions, i.e. as BBA measure vectors (BBA

- basic belief assignment)

mi = [mi(θ1), . . . ,mi(θ6)]. (3)

One should also introduce a vector of generalized BBA

measures for the information fusion center

mF = [mF (θ1), . . . ,mF (θ6)]. (4)

The paper adopts the Bayesian BBA model due to the fact

that this model has been adopted as valid in the STANAG 4162

standard [9]. This means that equation (5) applies in addition

to (1) and (2).

6
∑

i=1

mF (θi) =

6
∑

i=1

mi(θi) = 1. (5)

The first case will be considered when two sensors send,

asynchronously in one cycle, one report each containing deci-

sions regarding the BBA related to the target. The IFC system,

after receiving the report from the sensor, fuses the information

contained in the two vectors: in the current generalized BBA

vector mF = [mF (θ1), . . . ,mF (θ6)], and in the BBA vector

m1 from sensor 1 or in the BBA vector m2 from sensor 2.

The information fusion procedure performed in the IFC is

carried out in accordance with the following formula:

m
′
F = RF (mF ,mi), (i = 1, or i = 2) (6)

wherein m
′
F is a vector of the generalized BBA measure

determined by the RF rule based on the previous generalized

BBA measure vector mF and the new BBA measure vector

mi sent by the i-th sensor. The diagram of the identification

Figure 2. The diagram of the information fusion process in the information
fusion center IFC for two sensors. Explanations: mi - BBA measure vector
of i-th sensor, mF - generalized BBA measure vector that is a part of the
electronic entity record in IFC, EER - electronic entity record in IFC database.

information fusion from the ESM sensors is shown in Figure

2.

The second case will be considered when two sensors

send, asynchronously in one cycle, one report each containing

decisions regarding the BBA related to the target. The IFC

system waits for reports from both sensors in one cycle,

using registers. Only when both registers are full, the IFC

system performs a fusion of the information contained in

three vectors: BBA vector mF = [mF (θ1), . . . ,mF (θ6)], and

BBA vector m1 from sensor 1, and BBA vector m2 from

sensor 2. It should be noted that this method has a drawback

- the information stored in registers are losing credibility.

In this case, the information fusion procedure performed

in the IFC is carried out in accordance with the following

formula:

m
′
F = RF (mF ,m1,m2) (7)

wherein m
′
F is a vector of the generalized BBA measure deter-

mined by the RF rule based on the previous generalized BBA

measure vector mF and the new BBA measure vectors m1

and m2 sent by both sensors. The diagram of the identification

information fusion from the ESM sensors is shown in Figure

3.

In the further part of the paper, the combination rules of

the BBA vector from the i-th sensor and the generalized BBA

vector in the CFI are described.

B. The rules of combination of BBA measures vectors

This section presents formulas defining various combination

rules for calculating basic belief assignments for the system

shown in Figure 2 and Figure 3. The general forms are

described in details in [4], [11], [12]. The information fusion

rules of the DSmT are presented below with the following

constraints:

- the properties of a set of hypotheses are described by the

formulas (1) and (2),

- for the first scheme (Figure 2), the information fusion

procedure handles two information inputs: on one input,
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Figure 3. The diagram of the information fusion process in the information
fusion center IFC for two sensors and electronic entity record from IFC
database. Explanations: mi - BBA measure vector of i-th sensor, mF -
generalized BBA measure vector that is a part of the electronic entity record
in IFC, EER - electronic entity record in IFC database.

reports from two ESM sensors appear alternately, on the

second input, electronic entity records from IFC database

appear,

- for the second scheme (Figure 3), the information fusion

procedure handles three information inputs: on the first

input, reports from a combined primary and secondary

surveillance radar appear, on the second input, reports

from an ESM sensor appear, on the third input, electronic

entity records from IFC database appear.

Dempster’s rule

Dempster’s rule [13], [14] of the BBA measure vector mi

sent by the i-th sensor and the generalized BBA measure

vector mF in IFC is described for each θi ∈ Θ by the

following formula:

m′
F (θj) = mD(θj)

=

∑

k=1,...,6
l=1,...,6
θk∩θl=θj

mF (θk)mi(θl)

1−∑

k=1,...,6
l=1,...,6
θk∩θl=∅

mF (θk)mi(θl)

=
mF (θj)mi(θj)

1−∑

6

k=1

∑

6

l=1
l 6=k

mF (θk)mi(θl)

=
mFi(θj)

1− kFi

(8)

wherein the kFi degree of conflict is defined by the formula:

kFi =
∑

k=1,...,6
l=1,...,6
θk∩θl=∅

mF (θk)mi(θl) =

6
∑

k=1

6
∑

l=1
l6=k

mF (θk)mi(θl), (9)

while

mFi(θj) = mF (θj)mi(θj). (10)

One could notice that

6
∑

k=1

6
∑

l=1

mF (θk)mi(θl) = 1. (11)

∑

k=1,...,6
l=1,...,6
θk∩θl=∅

mF (θk)mi(θl) +
∑

k=1,...,6
l=1,...,6
θk∩θl 6=∅

mF (θk)mi(θl) =

6
∑

k=1

6
∑

l=1
l6=k

mF (θk)mi(θl) +

6
∑

k=1

6
∑

l=1
l=k

mF (θk)mi(θl) =

6
∑

k=1

6
∑

l=1
l6=k

mF (θk)mi(θl) +

6
∑

k=1

mF (θk)mi(θk) = 1 (12)

From (12) it follows that if

6
∑

k=1

mF (θk)mi(θk) = 1, i.e.

6
∑

k=1

6
∑

l=1
l6=k

mF (θk)mi(θl) = 0

(13)

then the degree of conflict is full.

If

6
∑

k=1

mF (θk)mi(θk) = 0, i.e.

6
∑

k=1

6
∑

l=1
l6=k

mF (θk)mi(θl) = 1

(14)

then there is no conflict.

mD(.) is Dempster-Shafer fusion result if and only if the

denominator of the expression (8) is non-zero, i.e. the degree

of conflict kFi is less than 1.

The Proportional Conflict Redistribution rule PCR1

PCR1 rule is the simplest and the easiest version of

proportional conflict redistribution rule. The concept of the

PCR1 rule assumes the calculation of the total conflicting

mass (not worrying about the partial conflicting masses). The

total conflicting mass is redistributed to all non-empty sets of

hypotheses proportionally with respect to their corresponding

non-empty column sum of the associated mass matrix. The

PCR1 rule is defined for every non-empty hypothesis in the

following way:

m′
F (θj) = mPCR1(θj)

= [
∑

k=1,...,6
l=1,...,6
θk∩θl=θj

mF (θk)mi(θl)] +
cFi(θj)

dFi

· kFi

= mF (θj)mi(θj) +
cFi(θj)

dFi

· kFi

= mFi(θj) +
cFi(θj)

dFi

· kFi (15)

where cFi(θj) is the non-zero sum of the column correspond-

ing to the hypotheses θj in the mass matrix

M =

[

mF

mi

]

(16)
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specified by the formula

cFi(θj) = mF (θj) +mi(θj) (17)

where:

- mi (i = 1, 2) is a row vector of the basic belief assign-

ments masses of the i-th sensor’s hypotheses θj ,

- mF is a row vector of the basic belief assignments masses

of the IFC system’s hypotheses,

- kFi is the degree of mass conflict specified by the formula

kFi =
∑

k=1,...,6
l=1,...,6
θk∩θl=∅

mF (θk)mi(θl) =

6
∑

k=1

6
∑

l=1
l6=k

mF (θk)mi(θl),

(18)

- dFi is the sum of all non-zero column sums of all non-

empty sets

dFi =
6

∑

j=1

[mF (θj) +mi(θj)] =
6

∑

j=1

cFi(θl). (19)

In our case dFi = 2 because

6
∑

j=1

mF (θj) =

6
∑

j=1

mi(θj) = 1. (20)

In addition

mFi(θj) = mF (θj)mi(θj). (21)

The Proportional Conflict Redistribution rule PCR2

In PCR2 rule, the total conflicting mass kFi is distributed

only to the non-empty sets involved in the conflict (not to all

non-empty sets) and taken proportionally with respect to their

corresponding non-empty column sum.

A non-empty set θk ∈ Θ is considered involved in the

conflict if there exists another set θl ∈ Θ which is neither

included in θk nor includes θk such that θk ∩ θl = ∅ and

mFi(θk ∩ θl) > 0. The PCR2 rule is defined for every non-

empty hypothesis θj ∈ Θ in the following way:

m′
F (θj) = mPCR2(θj)

= [
∑

k=1,...,6
l=1,...,6
θk∩θl=θj

mF (θk)mi(θl)] + C(θj)
cFi(θj)

eFi

· kFi

= mF (θj)mi(θj) + C(θj)
cFi(θj)

dFi

· kFi

= mFi(θj) + C(θj)
cFi(θj)

dFi

· kFi (22)

where

C(θj) =

{

1, if θj is involved in the conflict,

0, otherwise.
(23)

Formula (23) can be written differently in the form (25),

taking into account the definition of involvement in a conflict

and formula (24) [12]:

mFi(θj ∩ θk) = mF (θj) ·mi(θk) +mF (θk) ·mi(θj) (24)

C(θj) =

{

1, if ∃θk ∈ Θ, k 6= j such that mFi(θj ∩ θk) > 0,

0, otherwise.

(25)

cFi(θj) is the non-zero sum of the column corresponding to

the hypotheses θj in the mass matrix M (16) specified by the

formula

cFi(θj) = mF (θj) +mi(θj), (26)

where:

- mi (i = 1, 2) is a row vector of the basic belief assign-

ments masses of the i-th sensor’s hypotheses θj ,

- mF is a row vector of the basic belief assignments masses

of the IFC system’s hypotheses,

- kFi is the degree of mass conflict specified by (18),

- eFi is the sum of all non-zero column sums of all non-

empty sets only involved in the conflict

eFi =
∑

j∈CF

[mF (θj) +mi(θj)] =

6
∑

j=1

∑

j∈CF

cFi(θj)

=

6
∑

j=1

C(θj)[mF (θj) +mi(θj)] =

6
∑

j=1

C(θj)cFi(θj)

(27)

where

CF = {j = 1, . . . , 6 : ∀θk ∈ Θ|mFi(θj ∩ θk) > 0} (28)

and mFi(θj ∩ θk) is defined by (24).

In addition

mFi(θj) = mF (θj)mi(θj) (29)

It will be shown below that in the case of data used in

numerical experiments (section VI) eFi = 2, this means that

the PCR2 rule is equivalent to the PCR1 rule. The BBA vectors

used there contain values less than 1, which means that

∀j = 1, . . . , 6 : mF (θj) < 1 ∧mi(θj) < 1 (30)

It follows that each BBA vector contains at least two non-

zero components, that is ∀j = 1, . . . , 6, ∃k = 1, . . . , 6 with

k 6= j such that

0 < mF (θj) < 1 ∧ 0 < mF (θk) < 1, (31)

0 < mi(θj) < 1 ∧ 0 < mi(θk) < 1. (32)

From (31) and (32) it follows that if mF (θj) > 0, then there

exists at least one value k 6= j such that mi(θk) > 0, which

can be written in the following form

∀j = 1, . . . , 6 : 0 < mF (θj) < 1

⇒ ∃k = 1, . . . , 6, k 6= j : 0 < mi(θk) < 1. (33)
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From (33) it follows that

∀j = 1, . . . , 6 : 0 < mF (θj) < 1

⇒ ∃k = 1, . . . , 6, k 6= j : mF (θj)mi(θk) > 0. (34)

The same applies:

∀j = 1, . . . , 6 : 0 < mi(θj) < 1

⇒ ∃k = 1, . . . , 6, k 6= j : mi(θj)mF (θk) > 0. (35)

Taking into account (34), (35) and (25) one can obtain

∀j = 1, . . . , 6 : 0 < mF (θj) < 1 ⇒ ∃k = 1, . . . , 6, k 6= j

such that mF (θj)mi(θk) +mi(θj)mF (θk) > 0, (36)

∀j = 1, . . . , 6 : 0 < mi(θj) < 1 ⇒ ∃k = 1, . . . , 6, k 6= j

such that mi(θj)mF (θk) +mF (θj)mi(θk) > 0. (37)

From (36) and (37) it follows that

∀j = 1, . . . , 6 : 0 < mF (θj) < 1 ⇒ C(θj) = 1, (38)

∀j = 1, . . . , 6 : 0 < mi(θj) < 1 ⇒ C(θj) = 1. (39)

This means that any hypothesis with a non-zero BBA value

for any of the two sensors is involved in a conflict. From (27)

it follows that

eFi =

6
∑

j=1

C(θj)[mF (θj) +mi(θj)]

=

6
∑

j=1

C(θj)mF (θj) +

6
∑

j=1

C(θj)mi(θj). (40)

Using (36), (37) and (40), the value eFi will be determined.

Because, one has

6
∑

j=1

C(θj)mF (θj) = 1, (41)

6
∑

j=1

C(θj)mi(θj) = 1, (42)

we get

eFi =

6
∑

j=1

C(θj)mF (θj) +

6
∑

j=1

C(θj)mi(θj) = 2. (43)

Considering (43), it can be said that in this case the PCR2

rule is equivalent to the PCR1 rule. For this reason, the

results of the PCR2 rule are not presented in section VI,

as they would be identical to the results of the PCR1 rule

because we work only with Bayesian BBAs in this application.

The Proportional Conflict Redistribution rule PCR3

In PCR3 rule, one distributes the partial conflicting masses,

instead of the total conflicting mass kFi, to the non-empty sets

involved in the partial conflict. If an intersection is empty,

for instance θk ∩ θl = ∅, then the mass m(θk ∩ θl) of the

partial conflict is transferred to the non-empty sets θk and

θl proportionally with respect to the non-zero sum of masses

assigned to θk and respectively to θl by the BBAs mF (.) and

mi(.). The PCR3 rule works if at least one set between θk
and θl is non-empty and its column sum is non-zero.

The PCR3 rule is defined for every non-empty hypothesis

θj ∈ Θ in the following way:

m′
F (θj) = mPCR3(θj)

= [
∑

k=1,...,6
l=1,...,6
θk∩θl=θj

mF (θk)mi(θl)]

+ [cFi(θj)
∑

k=1,...,6
θk∩θl=∅

SPCR3
Fi (θj , θk)]

= mFi(θj) + [cFi(θj)
∑

k=1,...,6
k 6=j

SPCR3
Fi (θj , θk)] (44)

where

SPCR3
Fi (θj , θk) =

{

0, for cFi(θj) + cFi(θk) = 0,
mF (θk)mi(θj)+mF (θj)mi(θk)

cFi(θj)+cFi(θk)
, otherwise.

(45)

cFi(θj) is the non-zero sum of the column corresponding

to the hypotheses θj in the mass matrix M (16) specified by

the formula

cFi(θj) = mF (θj) +mi(θj), (46)

The Proportional Conflict Redistribution rule PCR4

The PCR4 rule redistributes the partial conflicting masses

only to the sets involved in the partial conflict in proportion

to the non-zero mass sum assigned to θk and θl by the

conjunction rule according to the following formula:

m′
F (θj) = mPCR4(θj)

= mFi(θj) + [mFi(θj) ·
∑

k=1,...,6
θk∩θj=∅

SPCR4
Fi (θj , θk)]

= mFi(θj) + [mFi(θj) ·
∑

k=1,...,6
k 6=j

SPCR4
Fi (θj , θk)],

(47)

where

SPCR4
Fi (θj , θk) =











0, for c1 = 0,
mFi(θj∩θk)

mFi(θj)+mFi(θk)
, for c1 6= 0, and c2 6= 0,

mFi(θj∩θk)

cFi(θj)+cFi(θk)
, for c1 6= 0, and c2 = 0,

(48)

where c1 , cFi(θj) + cFi(θk) and c2 , mFi(θj)mFi(θk),
and wherein

mFi(θj ∩ θk) = mF (θk)mi(θj) +mF (θj)mi(θk) (49)

mFi(θj) = mF (θj)mi(θj) (50)

cFi(θj) = mF (θj) +mi(θj) (51)
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If at least one of BBAs mF (.) or mi(.) is zero, the fraction

is discarded and the mass mFi(θj ∩ θk) is transferred to θj
and θk proportionally with respect to their non-zero column

sum of masses cFi(θj).

The Proportional Conflict Redistribution rule PCR5 for

two BBAs (two sources)

Similarly to PCR2–PCR4 rules, PCR5 redistributes the

partial conflicting mass to the hypothesis involved in the partial

conflict. PCR5 provides the most mathematically precise [4],

[11], [12] redistribution of conflicting mass to non-empty sets

in accordance with the logic of the conjunctive rule. However,

it is more difficult to implementation. The PCR5 rule is defined

for every non-empty hypothesis θj ∈ Θ in the following way:

m′
F (θj) = mPCR5(θj)

= mFi(θj) +
∑

k=1,...,6
θk∩θj=∅

SPCR5
Fi (θj , θk)

= mFi(θj) +
∑

k=1,...,6
k 6=j

SPCR5
Fi (θj , θk), (52)

where

SPCR5
Fi (θj , θk) =

{

0, for c3 = 0 or c4 = 0,
mF (θj)

2mi(θk)

mF (θj)+mi(θk)
, for c3 6= 0 and c4 6= 0,

(53)

where c3 , mF (θj) + mi(θk) and c4 , mi(θj) + mF (θk),
and wherein

mFi(θj) = mF (θj)mi(θj). (54)

In the formula (52), the component SPCR5
Fi is equal to zero

if both denominators are equal to zero. In the formula (53),

if a denominator is zero, then component is discarded.

The Proportional Conflict Redistribution rules PCR5 and

PCR6 for three BBAs (three sources)

In [4] improved proportional conflict redistribution rules of

combination of basic belief assignments PCR6, PCR5+ and

PCR6+ are presented. The authors point out that these rules

should be applied if and only if we are to combine more than

two BBAs. If we have only two BBAs to combine (s = 2) we

always get mPCR5 = mPCR5+ = mPCR6 = mPCR6+ because in

this case the PCR5, PCR5+, PCR6, and PCR6+ rules coincide.

Below are the formulas that define the PCR5 and PCR6 rules

for 3 BBAs.

m′
F (θj) = mPCR5(θj) =

m′′(θj)
∑

6

i=1
m′′θi)

(55)

wherein

m′′(θj) = mF12(θj)

+
∑

k=1,...,6
l=1,...,6

.θk∩θl∩θj=∅

SPCR5
F12 (θj , θk, θl)

+
∑

k=1,...,6
θk∩θj=∅

S1PCR5
F12 (θj , θk) +

∑

k=1,...,6
θk∩θj=∅

S2PCR5
F12 (θj , θk)

= mF12(θj)

+
∑

k=1,...,6
k 6=j

∑

l=1,...,6
l6=j∧l6=k

SPCR5
F12

(θj , θk, θl)

+
∑

k=1,...,6
k 6=j

S1PCR5
F12 (θj , θk) +

∑

k=1,...,6
k 6=j

S2PCR5
F12 (θj , θk)

= mF12(θj)

+
∑

k=1,...,6
k 6=j

[

∑

l=1,...,6
l6=j∧l6=k

SPCR5
F12

(θj , θk, θl)

+ S1PCR5
F12

(θj , θk) + S2PCR5
F12

(θj , θk)
]

, (56)

with

SPCR5
F12

(θj , θk, θl) =
mF (θj)

2m1(θk)m2(θl)

mF (θj) +m1(θk) +m2(θl)

+
mF (θl)m1(θj)

2m2(θk)

mF (θl) +m1(θj) +m2(θk)

+
mF (θk)m1(θl)m2(θj)

2

mF (θk) +m1(θl) +m2(θj)
, (57)

S1PCR5
F12 (θj , θk) =

mF (θj)
2m1(θk)m2(θk)

mF (θj) +m1(θk) +m2(θk)

+
mF (θk)m1(θj)

2m2(θk)

mF (θk) +m1(θj) +m2(θk)

+
mF (θk)m1(θk)m2(θj)

2

mF (θk) +m1(θk) +m2(θj)
, (58)

S2PCR5
F12

(θj , θk) =
mF (θj)

2m1(θj)
2m2(θl)

mF (θj) +m1(θj) +m2(θk)

+
mF (θk)m1(θj)

2m2(θj)
2

mF (θk) +m1(θj) +m2(θj)

+
mF (θj)

2m1(θk)m2(θj)
2

mF (θj) +m1(θk) +m2(θj)
, (59)

and

mF12(θj) = mF (θj)m1(θj)m2(θj). (60)

In the formulas (57)–(59), if a denominator is zero, then

component is discarded.

The quotient in the formula (55) ensures the normalization

of the BBA vector m′
F , which ensures that

6
∑

j=1

m′
F (θj) =

6
∑

j=1

mPCR5(θj) = 1.
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The PCR6 rule for three BBAs (three sources) is defined

for every non-empty hypothesis θj ∈ Θ in the following way:

m′
F (θj) = mPCR6(θj) =

m′′(θj)
∑6

i=1
m′′θi)

(61)

wherein

m′′(θj) = mF12(θj)

+
∑

k=1,...,6
l=1,...,6

.θk∩θl∩θj=∅

SPCR6
F12 (θj , θk, θl)

+
∑

k=1,...,6
θk∩θj=∅

S1PCR6
F12

(θj , θk)

+
∑

k=1,...,6
θk∩θj=∅

S2PCR6
F12

(θj , θk)

= mF12(θj)

+
∑

k=1,...,6
k 6=j

∑

l=1,...,6
l6=j∧l6=k

SPCR6
F12 (θj , θk, θl)

+
∑

k=1,...,6
k 6=j

S1PCR6
F12

(θj , θk)

+
∑

k=1,...,6
k 6=j

S2PCR6
F12 (θj , θk)

= mF12(θj)

+
∑

k=1,...,6
k 6=j

[

∑

l=1,...,6
l6=j∧l6=k

SPCR6
F12

(θj , θk, θl)

+ S1PCR6
F12

(θj , θk) + S2PCR6
F12

(θj , θk)
]

, (62)

with

SPCR6
F12 (θj , θk, θl) =

mF (θj)
2m1(θk)m2(θl)

mF (θj) +m1(θk) +m2(θl)

+
mF (θl)m1(θj)

2m2(θk)

mF (θl) +m1(θj) +m2(θk)

+
mF (θk)m1(θl)m2(θj)

2

mF (θk) +m1(θl) +m2(θj)
, (63)

S1PCR6
F12 (θj , θk) =

mF (θj)
2m1(θk)m2(θk)

mF (θj) +m1(θk) +m2(θk)

+
mF (θk)m1(θj)

2m2(θk)

mF (θk) +m1(θj) +m2(θk)

+
mF (θk)m1(θk)m2(θj)

2

mF (θk) +m1(θk) +m2(θj)
, (64)

S2PCR6
F12

(θj , θk) =
mF (θj)

2m1(θj)m2(θk)

mF (θj) +m1(θj) +m2(θk)

+
mF (θj)m1(θj)

2m2(θk)

mF (θj) +m1(θj) +m2(θk)

+
mF (θk)m1(θj)

2m2(θj)

mF (θk) +m1(θj) +m2(θj)

+
mF (θk)m1(θj)m2(θj)

2

mF (θk) +m1(θj) +m2(θj)

+
mF (θj)

2m1(θk)m2(θj)

mF (θj) +m1(θk) +m2(θj)
,

+
mF (θj)m1(θk)m2(θj)

2

mF (θj) +m1(θk) +m2(θj)
, (65)

and

mF12(θj) = mF (θj)m1(θj)m2(θj). (66)

In the formulas (63)–(65), if a denominator is zero, then

component is discarded. The quotient in the formula (61)

ensures the normalization of the BBA vector m
′
F , which

ensures that

6
∑

j=1

m′
F (θj) =

6
∑

j=1

mPCR6(θj) = 1.

Comparing the two fusion schemes (Figures 2 and 3), it

should be noted that sequential and global information fusion

generally produces different results [4], i.e.

PCR5(mF ,m1,m2) 6= PCR5(PCR5(mF ,m1),m2)

6= PCR5(PCR5(mF ,m2),m1). (67)

In addition, the article experimentally verified the theorem

on the inequality of the results of both PCR5 and PCR6 rules

for three BBAs (three sources) presented in [4]:

PCR5(mF ,m1,m2) 6= PCR6(mF ,m1,m2). (68)

IV. BASIC BELIEF ASSIGNMENT FOR COMBINED PRIMARY

AND SECONDARY SURVEILLANCE RADARS

The paper assumes that the analyzed radar sensor consists of

two radars: primary and secondary. Therefore, the probability

of correct detection and correct identification of a target is

expressed by the following formula:

Ppi = PdPIFF . (69)

where Pd is the probability of correct detection of target

by a primary radar, and PIFF is the probability of correct

reply for interrogation. If a target has been detected by the

primary radar and there is a lack of proper identification by

the secondary radar one can assume that the target has a value

of attribute identification of UNKNOWN - U. So, one can

write the following relation:

m(U) = Pd(1− PIFF ), (70)

where m(U) is the mass of probability for a value of UN-

KNOWN identification attribute.
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A method of calculating the probabilities Pd and PIFF is

presented in [5], [15], [16].

The way of allocation of the remaining mass of probability

(1 − m(U)) will be described in this section. One assumes

there that every simulated target should have a base value of

attribute identification from the set

ZBI = {NB, FB , HB}, (71)

- NB – base NEUTRAL identity,

- FB – base FRIEND identity,

- HB – base HOSTILE identity.

STANAG 1241 introduces in addition to the basic set

of attribute identification values also secondary (additional)

attribute identification values: SUSPECT (S) and ASSUMED

FRIEND (AF). According to Fig. 1 one can introduce a table

of possible attribute values transitions between set (71) and

the set of secondary attribute identification values:

ZSI = {NS , FS , HS , AF, S}, (72)

Belief mass values contained in the Table I determine how

the mass of the base belief assignment has been transformed

into the mass of the secondary belief assignment. They can be

estimated as empirical frequencies based on recorded archive

events.

Table I
TRANSFORMATION OF THE BASE BELIEF ASSIGNMENT MASS INTO THE

SECONDARY BELIEF ASSIGNMENT MASS

Base identification → FB NB HB

FS m(FS |FB) 0 0

NS 0 m(NS |NB) 0

HS 0 0 m(HS |HB)
AF m(AF |FB) m(AF |NB) 0

S 0 m(S|NB) m(S|HB)

Of course, have the normalization conditions satisfied:
∑

x∈ZSI
m(x|FB) = 1,

∑

x∈ZSI
m(x|NB) = 1, and

∑

x∈ZSI
m(x|HB) = 1.

The final values of the belief mass of secondary attribute

identification values are calculated according to the formulas:

1) For a target with the FRIEND base value of an attribute

identification

m(U) = Pd(1 − PIFF ),

m(AF ) = m(AF |FB)(1−m(U)),

m(FS) = m(FS |FB)(1 −m(U)).

2) For a target with the NEUTRAL base value of an

attribute identification

m(U) = Pd(1 − PIFF ),

m(AF ) = m(AF |NB)(1 −m(U)),

m(S) = m(S|NB)(1 −m(U)),

m(NS) = (1 −m(AF |NB)−m(S|NB))(1 −m(U)).

3) For a target with the HOSTILE base value of an attribute

identification

m(U) = Pd(1 − PIFF ),

m(HS) = m(HS |HB)(1 −m(U)),

m(S) = m(S|HB)(1 −m(U)).

Other final values of the belief mass of secondary attribute

identification values are equal zero.

V. BASIC BELIEF ASSIGNMENT FOR ESM SENSORS

An ESM sensor is a passive sensor that captures incoming

electromagnetic signals generated first of all by radar emitters

mounted on air or maritime platforms. This sensor recognizes

radar signals determining values of their distinctive features.

In this paper we will not deal with methods of radar signals

recognizing in details. However, we will use information about

these methods to identify platforms generating the signals ac-

cording to STANAG 1241 - NATO Standardization Agreement

and Dezert-Smarandache theory. As previously it was stated,

we are interested in three basic values of identification: friend,

hostile and neutral, and two secondary values: suspicious and

assumed friendly. In addition, we will assume that in some

situations it is not possible to determine the identity of the

emitter carrier platform. To clarify this issue, we should briefly

describe the method of determining the identification of the

emitter carrier platform that generated the captured signal. The

sensor recognition system is equipped with a database that

can be divided into three components: a platform database,

an emitter list and a geopolitical list [10]. The platform

database (PDB) contains information about platforms that can

be met in the area of interest along with their equipment with

emitters. The emitter name list (ENL) includes all emitters

corresponding to each platform of the PDB and contains the

values of the signal distinctive features for each emitter. The

values of distinctive features are the basis for the procedure

of recognizing a captured signal. The geopolitical list (GPL)

provides the allegiance of various countries and platforms and

allows to identify them in accordance with STANAG 1241.

The algorithm of signal recognition is realized in two stages:

1) Verification at the level of signal quality features. The

second stage is executed after a positive assessment of

the conformity of quality features.

2) The signal recognition procedure determines the dis-

tances between the distinctive features of the recognized

signal and the distinctive features of all pattern signals

stored within the emitter list.

Let us introduce the following notation:

xs - vector of distinctive features of the recognized signal,

xi - vector of distinctive features of i-th pattern signal (i
– the number of the pattern signal, i ∈ {1, . . . ,M}),

ds,i = d(xs,xi) - the distance between the distinctive

features vector of the recognized signal and the distinctive

features vector of i-th pattern signal; the distance ds,i
is the Mahalanobis distance taking into account the

correlations of the distinctive features.
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The signal recognition classifier compares the distance

d(xs,xi) with the acceptable positive distance of the classifi-

cation δ. The distance δ is the limit that we will interpret as a

boundary of emitter pattern recognition. We will divide the set

of pattern signals into two subsets: the patterns satisfying the

positive classification condition in relation to the recognized

signal s – D
+
s and the patterns that do not satisfy the positive

classification condition – D
−
s . The formal definition is as

follows:

D
+

s = {i ∈ {1, . . . ,M}|ds,i ≤ δ} (73)

D
−
s = {i ∈ {1, . . . ,M}|ds,i > δ} (74)

In the paper we propose the following method of determin-

ing the basic belief assignment on a set of pattern signals,

which is related to the distance between a signal and a pattern

in the distinctive features space:

ms(i) = e−d(xs,xi) (75)

As one can see from the formula (75) if d(xs,xi) = 0 then

ms(i) = 1, whereas if d(xs,xi) > 0 then 0 < ms(i) < 1 .

The above measure is not normalized, hence we will normalize

it

m̃s(i) = ms(i)/

M
∑

i=1

ms(i) (76)

The sum of the measures assigned to all the emitters, whose

distinctive features lie outside the limit δ, will be treated as a

measure assigned to the base hypothesis “unknown” (U)

m̃s(U) =
∑

i∈D
−
s

m̃s(i) (77)

To determine the belief measure of other base hypotheses

(H,F,N) and secondary hypotheses (AF and S), we should

introduce formal definitions of sets contained in the sensor

database and used for recognition of captured signals. As it

was mentioned above the set of all the necessary data for

platform identification can be divided into three sets: PDB –

a platform database, ENL – an emitter name list and GPL –

a geopolitical list:

- PDB – the platform database contains information about

all platforms observed in the area of interest, including

information on all emitters mounted on each platform;

we assume that one platform can have many emitters

and the same type of emitters can be installed on many

platforms; the PDB contains also information on the

national affiliation of each platform,

- ENL – the emitter name list is a set of information

about all recognized emitters in the area of interest; this

set contains the mean values of the distinctive features

of emitter signals (so-called signal patterns) and their

standard deviations,

- GPL – the geopolitical list contains base values of

identification attributes (H,F,N) assigned to the various

countries.

We will also introduce additional notations used in this

paper:

- PDBL – the list of platform numbers that are stored in

the PDB,

- PL(i) – the set of numbers of platforms which have the

emitter with number “i”,

- IPL(j) – the base identification attribute of the platform

with number “j” determined on the basis of the informa-

tion contained in PDB and ENL (IPL(j) ∈ {F,H,N}).

The set of signal patterns satisfying the positive classifica-

tion condition in relation to the recognized signal s denoted as

D
+

s can be divided into disjunctive subsets according to the

values of the carrier platform identification features:

D
+

s = D
+F
s ≥ D

+H
s ≥ D

+N
s ≥ D

+AF
s ≥ D

+S
s , (78)

D
+k
s ∩D

+l
s = ∅, k 6= l, k, l ∈ {F,H,N,AF, S}. (79)

Each subset of the set D
+
s for the base identification is

defined as follows:

D
+F
s = {i ∈ D

+

s |∀j ∈ PL(i), IPL(j) = F}, (80)

D
+H
s = {i ∈ D

+

s |∀j ∈ PL(i), IPL(j) = H}, (81)

D
+N
s = {i ∈ D

+

s |∀j ∈ PL(i), IPL(j) = N}. (82)

In a similar way, one can define subsets of the set D+

s for

the secondary identification (AF, S):

D
+AF
s = {i ∈ D

+

s |∃j ∈ PL(i), IPL(j) = F

∧ ∃j ∈ PL(i), IPL(j) = N}, (83)

D
+S
s = {i ∈ D

+

s |∃j ∈ PL(i), IPL(j) = H

∧ ∃j ∈ PL(i), IPL(j) = N}. (84)

One can notice we assume in this paper that no emitter type

can be installed simultaneously on platforms with identifica-

tions F and H :

{i ∈ D
+

s |∃j ∈ PL(i), IPL(j) = F

∧ ∃j ∈ PL(i), IPL(j) = H} = ∅. (85)

It should be emphasized that the method presented here is

different than in [6], [17]. These papers assume that ESM

sensors can only generate basic declarations with attribute

values FRIEND, HOSTILE and NEUTRAL but in this paper,

we assume, that ESM sensors can generate declarations from

an extended set of attribute values (additionally ASSUME

FRIEND, SUSPECT and UNKNOWN).

VI. NUMERICAL EXPERIMENTS OF FUSION OF

IDENTIFICATION IN INFORMATION FROM ESM SENSORS

A. Simulation scenarios

The paper [6] presents a typical simulation scenario for

testing the identification information fusion. The authors for-

mulated several requirements that should be met by such a

scenario. It should:

1) adequately represent the known ground truth of the

emitter identification,
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2) include sufficient numbers of incorrect associations to

be realistic and to test the robustness of the rules to

temporary incorrect sensor decisions,

3) provide only partial knowledge about the ESM sensor

declarations, and thus contain uncertainty,

4) allow to show stability in case of countermeasures,

5) allow to switch identification when the ground truth

changes.

The authors [6] propose the following parameters of the

scenario:

1) ground truth of identification is FRIEND (F ) for the first

50 iterations of the scenario and HOSTILE (H) for the

last 50 iterations,

2) the number of correct associations is 80% of all iter-

ations, the number of incorrect associations caused by

countermeasures is 20% of all iterations in a randomly

selected moments of time,

3) ESM sensor declarations have a mass of 0.7 for the most

credible identification and 0.3 for the identification of

UNKNOWN (U ).

The assumption 5) is not considered in this paper, assuming

that the real object does not change its real identity while

performing the mission. Therefore, assumption 1) regarding

scenario parameters becomes obsolete. The following assump-

tions concerning the parameters of the scenario are made in

this paper:

1) the real value of identification is constant in each sce-

nario and is equal to FRIEND (F ) - in the scenarios 1,

2 & 5, and HOSTILE (H) - in the scenarios 3, 4 & 6;

2) the above declarations are transmitted by sensor number

1 with the real identification mass equal to 0.7 and

the mass of complementary identification (UNKNOWN)

equal to 0.3;

3) the second sensor shall transmit its declarations in ac-

cordance with the tables II and III for the scenarios 1

and 2 and with the tables IV and V for the scenarios 3

and 4.

Table II
BELIEF MASSES FOR THE SECOND SENSOR FOR THE SCENARIOS 1 AND 5.

Type of identification F N H AF S U

Correct identif. (80% of events) 0.6 0.1 0 0.2 0 0.1

Incorrect identif. (20% of events) 0 0.1 0.6 0 0.2 0.1

Table III
BELIEF MASSES FOR THE SECOND SENSOR FOR THE SCENARIO 2.

Type of identification F N H AF S U

Correct identif. (80% of events) 0.7 0.1 0 0.1 0 0.1

Incorrect identif. (20% of events) 0 0.1 0.7 0 0.1 0.1

One should note that scenario 2 differs from scenario 1

with a greater belief mass assigned to incorrect identification

Table IV
BELIEF MASSES FOR THE SECOND SENSOR FOR THE SCENARIO 3.

Type of identification F N H AF S U

Correct identif. (80% of events) 0 0.1 0.6 0 0.2 0.1

Incorrect identif. (20% of events) 0.6 0.1 0 0.2 0 0.1

Table V
BELIEF MASSES FOR THE SECOND SENSOR FOR THE SCENARIOS 4 AND 6.

Type of identification F N H AF S U

Correct identif. (80% of events) 0 0.1 0.7 0 0.1 0.1

Incorrect identif. (20% of events) 0.7 0.1 0 0.1 0 0.1

of the recognized emitter. The scenarios 3 and 4 are similarly

different.

Scenarios 1–6 for the sensor 1 have been presented in

Figures 4 and 5.

Figure 4. The course of scenarios number 1, 2 and 5 for sensor 1.

Figure 5. The course of scenarios number 3, 4 and 6 for sensor 1.
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All deterministic scenarios for the sensor 2 have been

presented in Figures 6–9.

Figure 6. The course of scenarios number 1 for sensor 2.

Figure 7. The course of scenarios number 2 for sensor 2.

Figure 8. The course of scenarios number 3 for sensor 2.

The Monte Carlo method of generating the scenario

for the sensor 2 is also used in this paper. Moments in

which incorrect identifications occurred are generated by

Figure 9. The course of scenarios number 4 for sensor 2.

the pseudo-random integer number generator from the range

[0, 100]. Examples of scenarios are shown in Figures 10 and

11.

Figure 10. The course of Monte Carlo scenarios number 5 for sensor 2.

Figure 11. The course of Monte Carlo scenario number 6 for sensor 2.
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B. Calculation results for deterministic scenarios

Dempster’s rule

Dempster’s rule is not resistant to a situation when the

degree of conflict kFi = 1. This means the total conflict

between the mass vector sent by the sensor and the mass vector

of the information fusion center, which occurs when each non-

zero belief mass value sent by the sensor corresponds to zero

belief mass value of the vector determined by the information

fusion center and vice versa.

The simulation results of the identification information

fusion using Dempster’s rule have been presented for the

deterministic scenarios 1 and 3 in Figures 12 and 13.

Figure 12. The values of the resulting belief mass for scenario 1 and
Dempster’s rule.

Figure 13. The values of the resulting belief mass for scenario 3 and
Dempster’s rule.

The PCR1 rule

The simulation results of the identification information

fusion using the PCR1 rule for the deterministic scenarios 1,

2, 3 and 4 are presented in Figures 14–17.

Figure 14. The values of the resulting belief mass for scenario 1 and the
PCR1 rule.

Figure 15. The values of the resulting belief mass for scenario 2 and the
PCR1 rule.

Figure 16. The values of the resulting belief mass for scenario 3 and the
PCR1 rule.
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Figure 17. The values of the resulting belief mass for scenario 4 and the
PCR1 rule.

The PCR3 rule

The simulation results of the identification information

fusion using the PCR3 rule for the deterministic scenarios 1,

2, 3 and 4 are presented in Figures 18–21.

Figure 18. The values of the resulting belief mass for scenario 1 and the
PCR3 rule.

Figure 19. The values of the resulting belief mass for scenario 2 and the
PCR3 rule.

Figure 20. The values of the resulting belief mass for scenario 3 and the
PCR3 rule.

Figure 21. The values of the resulting belief mass for scenario 4 and the
PCR3 rule.

The PCR4 rule

The simulation results of the identification information

fusion using the PCR4 rule for the deterministic scenarios 1,

2, 3 and 4 are presented in Figures 22–25.

Figure 22. The values of the resulting belief mass for scenario 1 and the
PCR4 rule.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

508



Figure 23. The values of the resulting belief mass for scenario 2 and the
PCR4 rule.

Figure 24. The values of the resulting belief mass for scenario 3 and the
PCR4 rule.

Figure 25. The values of the resulting belief mass for scenario 4 and the
PCR4 rule.

The PCR5 rule for 2 BBAs

The simulation results of the identification information

fusion using the PCR5 rule for the deterministic scenarios 1,

2, 3 and 4 are presented in Figures 26–29.

Figure 26. The values of the resulting belief mass for scenario 1 and the
PCR5 rule for 2 BBAs.

Figure 27. The values of the resulting belief mass for scenario 2 and the
PCR5 rule for 2 BBAs.

Figure 28. The values of the resulting belief mass for scenario 2a and the
PCR5 rule for 2 BBAs.
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Figure 29. The values of the resulting belief mass for scenario 2b and the
PCR5 rule for 2 BBAs.

The PCR5 rule for 3 BBAs

The simulation results of the identification information

fusion using the PCR5 rule for 3 BBAs for the deterministic

scenarios 1, 2, 3 and 4 are presented in Figures 30–33.

Figure 30. The values of the resulting belief mass for scenario 1 and the
PCR5 rule for 3 BBAs.

Figure 31. The values of the resulting belief mass for scenario 2 and the
PCR5 rule for 3 BBAs.

Figure 32. The values of the resulting belief mass for scenario 3 and the
PCR5 rule for 3 BBAs.

Figure 33. The values of the resulting belief mass for scenario 4 and the
PCR5 rule for 3 BBAs.

The PCR6 rule for 3 BBAs

The simulation results of the identification information

fusion using the PCR6 rule for the deterministic scenarios 1,

2, 3 and 4 are presented in Figures 34–37.

Figure 34. The values of the resulting belief mass for scenario 1 and the
PCR6 rule for 3 BBAs.
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Figure 35. The values of the resulting belief mass for scenario 2 and the
PCR6 rule for 3 BBAs.

Figure 36. The values of the resulting belief mass for scenario 3 and the
PCR6 rule for 3 BBAs.

Figure 37. The values of the resulting belief mass for scenario 4 and the
PCR6 rule for 3 BBAs.

The presented results (Figures 12-37) allow us to conclude

that the applied methods of managing conflicts in the infor-

mation fusion allow to draw correct conclusions about the real

identification of the recognized object.

The application of the decision threshold for the belief mass

at the level mα = 0.37 for the PCR1 rule and mα = 0.45 for

the PCR3, PCR4 and PCR5 rules for scenarios 1 and 3 allows

us to properly evaluate the identification of the recognized ob-

ject: for scenario 1 – FRIEND and for scenario 3 – HOSTILE.

For scenarios 2 and 4, the optimal thresholds are mα = 0.4
for the PCR1 rule and mα = 0.45 for the PCR3, PCR4 and

PCR5 rules respectively. When assessing the interval between

the minimum resultant mass for correct identification and

the maximum resultant mass for misidentification, the worst

results are reached by the PCR1 rule and the rules of PCR3,

PCR4 and PCR5 behave similarly and are better than the rule

PCR1.

The research carried out for deterministic scenarios shows

that the PCR5 rule for 3 BBAs and the PCR6 rule for 3 BBAs

behave very similarly. They restore the correct identification

after the occurrence of temporary misidentification much faster

than the rules PCR1 – PCR5 for 2 BBAs.

C. Calculation results for Monte Carlo scenarios

Dempster’s rule

In the Monte Carlo scenario, Dempster’s rule behaves

similarly to a deterministic scenario. It is not resistant to a

situation when the degree of conflict kFi = 1. This means

the total conflict between the mass vector sent by the sensor

and the mass vector of the information fusion center which

occurs when each non-zero belief mass value sent by the

sensor corresponds to zero belief mass value of the vector

determined by the information fusion center and vice versa.

The simulation results of the identification information

fusion using Dempster’s rule are presented for the Monte Carlo

scenarios 5 and 6 in Figures 38 and 39.

Figure 38. The values of the resulting belief mass for Monte Carlo scenario
5 and Dempster’s rule.
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Figure 39. The values of the resulting belief mass for Monte Carlo scenario
6 and Dempster’s rule.

The PCR1 rule

The simulation results of the identification information

fusion using the PCR1 rule for the Monte Carlo scenarios

5 and 6 are presented in Figures 40 and 41.

Figure 40. The values of the resulting belief mass for Monte Carlo scenario
5 and the PCR1 rule.

Figure 41. The values of the resulting belief mass for Monte Carlo scenario
6 and the PCR1 rule.

The PCR3 rule

The simulation results of the identification information

fusion using the PCR3 rule for the Monte Carlo scenarios

5 and 6 are presented in Figures 42 and 43.

Figure 42. The values of the resulting belief mass for Monte Carlo scenario
5 and the PCR3 rule.

Figure 43. The values of the resulting belief mass for Monte Carlo scenario
6 and the PCR3 rule.

The PCR4 rule

The simulation results of the identification information

fusion using the PCR4 rule for the Monte Carlo scenarios

5 and 6 are presented in Figures 44 and 45.
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Figure 44. The values of the resulting belief mass for Monte Carlo scenario
5 and the PCR4 rule.

Figure 45. The values of the resulting belief mass for Monte Carlo scenario
6 and the PCR4 rule.

The PCR5 rule for 2 BBAs

The simulation results of the identification information

fusion using the PCR5 rule for 2 BBAs for the Monte Carlo

scenarios 5 and 6 are presented in Figures 46 and 47.

The PCR5 rule for 3 BBAs

The simulation results of the identification information

fusion using the PCR5 rule for 3 BBAs for the Monte Carlo

scenarios 5 and 6 are presented in Figures 48 and 49.

The PCR6 rule for 3 BBAs

The simulation results of the identification information

fusion using the PCR6 rule for 3 BBAs for the Monte Carlo

scenarios 5 and 6 are presented in Figures 50 and 51.

The presented results show that due to the high intensity

of sending reports with incorrect identifications in the middle

part of the scenarios, the information fusion rules (apart from

Figure 46. The values of the resulting belief mass for Monte Carlo scenario
5 and the PCR5 rule for 2 BBAs.

Figure 47. The values of the resulting belief mass for Monte Carlo scenario
6 and the PCR5 rule for 2 BBAs.

Figure 48. The values of the resulting belief mass for Monte Carlo scenario
5 and the PCR5 rule for 3 BBAs.

the PCR4, PCR 5 and PCR6 rules) determine the maximum

resulting mass for incorrect identification. The PCR5 for 3

BBAs and PCR6 for 3 BBAs rules are the fastest to restore the

correct identification after receiving several incorrect reports.
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Figure 49. The values of the resulting belief mass for Monte Carlo scenario
6 and the PCR5 rule for 3 BBAs.

Figure 50. The values of the resulting belief mass for Monte Carlo scenario
5 and the PCR6 rule for 3 BBAs.

Figure 51. The values of the resulting belief mass for Monte Carlo scenario
6 and the PCR6 rule for 3 BBAs.

VII. NUMERICAL EXPERIMENTS OF FUSION OF

IDENTIFICATION IN INFORMATION FROM ESM SENSORS

AND RADARS

A. Numerical experiments scenarios

We assume that we will combine attribute information from

2 sensors: a combined primary and secondary surveillance

radar and an ESM sensor. These sensors work asynchronously.

Upon receipt of the sensor’s declaration in the form of a

vector of masses, we fuse this vector with the vector of

the actual values of the declaration masses for the fuser’s

frame of discernment. The frequency of transmission of sensor

declarations depends on the rules of the data exchange network

and on the technical characteristics of the sensors. Various

combination methods are presented in [13], [14]. In this paper,

two of the methods of proportional redistribution conflict

(PRC5 and PCR6 [4], [11]) has been used. The numerical

model of combined primary and secondary surveillance radars

was taken from [5], [15].

Numerical experiments have been performed for the follow-

ing data:

- for combined primary and secondary surveillance radars

sensor: Pfa = 10−6, R∗
max

= 100 km, P ∗
d = 0.7, σ∗

c =
2 m2, PIFF = 0.962 and the following table of masses

(compare Table I):

Table VI
TRANSFORMATION OF THE BASE BELIEF ASSIGNMENT MASS INTO THE

SECONDARY BELIEF ASSIGNMENT MASS FOR COMBINED PRIMARY AND

SECONDARY SURVEILLANCE RADAR.

(Scenario #,Base identification)→ (1, FB) (2, NB) (3, HB)
FS 0.8 0 0

NS 0 0.5 0

HS 0 0 0.7

AF = N ∩ F 0.2 0.3 0

S = N ∩H 0 0.2 0.3

The flight path of air object was 30 km away from the

sensor (in the horizontal plane), flight altitude was 1 km

and radar cross-section was 1 sq. m.

- for EMS sensor:

1) the real value of identification is constant in each

scenario and is equal to FRIEND (F ) – in the

first scenario and HOSTILE (H) – in the second

scenario;

2) the above declarations are transmitted by sensor

number 1 with the real identification mass equal to

0.7 and the mass of complementary identification

(UNKNOWN) equal to 0.3;

3) the second sensor shall transmit its declarations in

accordance with the tables I and II for the scenarios

1 and 2 and with the tables III and IV for the

scenarios 3 and 4.

In the Tables VII–XII the mass values for all possible

declarations for six scenarios for ESM sensor are presented

Table VII
BELIEF MASSES FOR THE SENSOR 2 (ESM) FOR THE SCENARIO 1.

Type of identification F N H AF S U

Correct identif. (80% of events) 0.6 0.1 0 0.2 0 0.1

Incorrect identif. (20% of events) 0.7 0.1 0 0.1 0 0.1

Scenarios 1–6 for the sensor 1 have been presented in

Figures 52, 53 and 54.
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Table VIII
BELIEF MASSES FOR THE SENSOR 2 (ESM) FOR THE SCENARIO 2.

Type of identification F N H AF S U

Correct identif. (80% of events) 0 0.5 0.3 0 0.2 0

Incorrect identif. (20% of events) 0 0.4 0.2 0 0.3 0.1

Table IX
BELIEF MASSES FOR THE SENSOR 2 (ESM) FOR THE SCENARIO 3.

Type of identification F N H AF S U

Correct identif. (80% of events) 0 0.1 0.7 0 0.1 0.1

Incorrect identif. (20% of events) 0 0.1 0.6 0 0.2 0.1

Table X
BELIEF MASSES FOR THE SENSOR 2 (ESM) FOR THE SCENARIO 4.

Type of identification F N H AF S U

Correct identif. (80% of events) 0.1 0.7 0.1 0 0 0.1

Incorrect identif. (20% of events) 0 0.1 0.6 0 0.2 0.1

Table XI
BELIEF MASSES FOR THE SENSOR 2 (ESM) FOR THE SCENARIO 5.

Type of identification F N H AF S U

Correct identif. (80% of events) 0.6 0.1 0 0.2 0 0.1

Incorrect identif. (20% of events) 0 0.1 0.6 0 0.2 0.1

Table XII
BELIEF MASSES FOR THE SENSOR 2 (ESM) FOR THE SCENARIO 6.

Type of identification F N H AF S U

Correct identif. (80% of events) 0.1 0.7 0.1 0 0 0.1

Incorrect identif. (20% of events) 0.6 0.1 0 0.2 0 0.1

Figure 52. The course of scenarios number 1and 4 for sensor 1.

All deterministic scenarios for the sensor 2 have been

presented in Figures 55-60.

Scenarios 1–3 assume relatively small changes in the mass

of all declarations Scenarios 1–3 assume significant changes

in the credibility mass of all declarations (small errors).

Figure 53. The course of scenarios number 2 and 5 for sensor 1.

Figure 54. The course of scenarios number 3 and 6 for sensor 1.

Figure 55. The course of scenarios number 1 for sensor 2.

Scenarios 4–6 assume significant changes in the mass of all

declarations (large errors).

B. Calculation results for four proportional conflict redistri-

bution rules

The PCR5 rule for 2 BBAs
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Figure 56. The course of scenarios number 2 for sensor 2.

Figure 57. The course of scenarios number 3 for sensor 2.

Figure 58. The course of scenarios number 4 for sensor 2.

The simulation results of the identification information

fusion using the PCR5 rule for 2 BBAs for the deterministic

scenarios 1-6 are presented in Figures 61–66.

For the PCR5 rule for 2 BBAs, the application of the

decision thresholds at the belief mass level mα = 0.43 for

Figure 59. The course of scenarios number 5 for sensor 2.

Figure 60. The course of scenarios number 6 for sensor 2.

Figure 61. The values of the resulting belief mass for scenario 1 and the
PCR5 rule for 2 BBAs.

scenario 4, mα = 0.35 for scenario 5, and mα = 0.5 for

scenario 6 allows us to properly evaluate the identification

of the recognized object for most time moments.
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Figure 62. The values of the resulting belief mass for scenario 2 and the
PCR5 rule for 2 BBAs.

Figure 63. The values of the resulting belief mass for scenario 3 and the
PCR5 rule for 2 BBAs.

Figure 64. The values of the resulting belief mass for scenario 4 and the
PCR5 rule for 2 BBAs.

The PCR5 rule for 3 BBAs

The simulation results of the identification information

fusion using the PCR5 rule for 3 BBAs for the deterministic

scenarios 1–6 are presented in Figures 67–72.

Figure 65. The values of the resulting belief mass for scenario 5 and the
PCR5 rule for 2 BBAs.

Figure 66. The values of the resulting belief mass for scenario 6 and the
PCR5 rule for 2 BBAs.

Figure 67. The values of the resulting belief mass for scenario 1 and the
PCR5 rule for 3 BBAs.

For the PCR5 rule for 3 BBAs, the application of the

decision thresholds at the belief mass level mα = 0.42 for

scenario 4 allows us to properly evaluate the identification
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Figure 68. The values of the resulting belief mass for scenario 2 and the
PCR5 rule for 3 BBAs.

Figure 69. The values of the resulting belief mass for scenario 3 and the
PCR5 rule for 3 BBAs.

Figure 70. The values of the resulting belief mass for scenario 4 and the
PCR5 rule for 3 BBAs.

of the recognized object. For the PCR5 rule for 3 BBAs,

the application of the decision thresholds at the belief mass

level mα = 0.37 for scenarios 5 and 6 allows us to properly

evaluate the identification of the recognized object for most

Figure 71. The values of the resulting belief mass for scenario 5 and the
PCR5 rule for 3 BBAs.

Figure 72. The values of the resulting belief mass for scenario 6 and the
PCR5 rule for 3 BBAs.

time moments.

The PCR6 rule for 3 BBAs

The simulation results of the identification information

fusion using the PCR6 rule for 3 BBAs for the deterministic

scenarios 1–6 are presented in Figures 73–78.

For the PCR6 rule for 3 BBAs, the application of the

decision thresholds at the belief mass level mα = 0.45 for

scenario 4 allows us to properly evaluate the identification of

the recognized object. For the PCR6 rule for 3 BBAs, the

application of the decision thresholds at the belief mass level

mα = 0.37 for scenario 5 and mα = 0.4 for scenario 6 allows

us to properly evaluate the identification of the recognized

object for most time moments. Comparing Figures 64–66

with Figures 70–72 and 76–78, one can conclude that the

PCR5 for 3 BBAs and PCR6 for 3 BBAs rules provide more

stable results of combined belief masses (smaller amplitude of

changes). Due to the large dispersion of belief mass changes

for scenarios 5 and 6, it is not possible to correctly evaluate the

identification of the recognized object for all time moments.
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Figure 73. The values of the resulting belief mass for scenario 1 and the
PCR6 rule for 3 BBAs.

Figure 74. The values of the resulting belief mass for scenario 2 and the
PCR6 rule for 3 BBAs.

Figure 75. The values of the resulting belief mass for scenario 3 and the
PCR6 rule for 3 BBAs.

The presented results (Figures 61-78) allow us to conclude

that the applied methods of removing conflicts in the informa-

tion fusion allow to draw correct conclusions about the real

identification of the recognized object.

Figure 76. The values of the resulting belief mass for scenario 4 and the
PCR6 rule for 3 BBAs.

Figure 77. The values of the resulting belief mass for scenario 5 and the
PCR6 rule for 3 BBAs.

Figure 78. The values of the resulting belief mass for scenario 6 and the
PCR6 rule for 3 BBAs.
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VIII. CONCLUSION

The proposed basic belief assignment model for ELINT-

ESM sensors and radars can be used to build identification

information fusion systems. Practical meaning have, first of all,

models conformable to STANAG 1241. Due to the assumption

of conflicts between the ELINT-ESM sensor declarations in

this work, Dezert-Smarandache theory is used to determine the

basic belief assignment of declarations being the product of the

process of fusion of identification information sent by these

sensors. Supplementing standard reports on detected signals

with random identification declarations allows the use of

methods of identification information fusion in the information

fusion center. The test results confirm the full usefulness

of conflict redistribution rules in reports from ELINT-ESM

sensors developed as a part of Dezert-Smarandache theory,

with the best results presented in the PCR5 and PCR 6 rule.

The basic belief assignment model for ESM sensors and

for combined primary and secondary (IFF) surveillance radars

[15] can be applied to build models of different identification

data fusion systems. The practical significance has first of all

models compatible with STANAG 1241. It contains definitions

corresponding to intersections of basic identification declara-

tions. Therefore, the paper uses Dezert-Smarandache theory

for calculation the basic belief assignment.

The conducted research showed that the best results ob-

tained for the PCR6 rule when reports from three sources

(from two sensors and the fusion system database) were

processed simultaneously. This corresponds to synchronous

processing of reports and involves delayed processing of a

report from one of the sources. The research confirmed a slight

advantage of the PCR6 rule over the PCR5 rule. This was

mainly the case when the sensors sent information with a high

degree of conflict.
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Abstract—Infrared image recognition by means of FLIR cam-
eras (forward-looking infrared) is one of the elements of the
recognition of the maritime situation and it supports in many
situations the creation of so-called maritime picture. This work
presents results of two FLIR image classifiers research. The work
presents the use of SVM (Support Vector Machine) to classify
images of maritime objects. The SVM network uses to perform
the multi-class classification the one-against-all method. Both
classifiers use the pre-processed FLIR images as input data in
the form of the brightness of all image pixels and a histogram
of oriented gradients (for training and testing). All FLIR color
images have been transformed into grayscale images, segmented
using the Otsu algorithm with a possible manual correction,
rescaled, centered and leveled. In the further part of the work
a method of determining the basic belief assignment is proposed
for SVM classifiers. In the final part of the work test results
of the both classification methods and their fusion by Dezert-
Smarandache PCR5 rule for a set of maritime objects FLIR
images registered in the Baltic Sea are presented.

Keywords: FLIR images recognition, image classifiers, SVM

networks, time series comparison, basic belief assignment, the

Dezert-Smarandache rule of information fusion, proportional

conflict redistribution.

I. INTRODUCTION

FLIR (forwared looking infra-red) passive infrared sensors

are used for short- to medium-ranged recognition from 2

to 20 nautical miles depending on the size of the object

being recognized and the conditions of observation. They are

mounted on maritime and air platforms in the armed forces

and border guards of many countries. FLIR cameras create

a monochrome image in which the luminance of each pixel

is proportional to the temperature of the observed point [1].

These cameras often artificially color the image to present

it to the operator. The method of assigning the color to the

temperature is usually shown on the image. The natural way is

to assign higher temperatures to yellow colors, and the lowest

temperatures to blue and purple colors. From the point of view

of image recognition, these colors are artificial and should be

removed from the image and converted into shades of gray.

Recognition of maritime objects based on FLIR images

should first answer the question whether the registered object

is a maritime object. If one gets a positive answer, one expects

an answer to the next question, whether the object being

recognized belongs to one of the classes from the training set

(previously recorded and classified images), or possibly state

the inability to recognize the type.

FLIR images can be distorted due to specific atmospheric

conditions (fog or rain) and solar lighting containing infrared

radiation as well as due to physical processes taking place

in the camera. The geometry of the silhouettes of maritime

objects can be changed as a result of changing camera settings,

different distance of the object from the camera and different

object observation angles (so-called aspect angles). The above-

mentioned factors make the process of recognizing maritime

objects based on FLIR images a multi-stage process.

The process of comparing and recognizing objects takes into

account their specific features called distinctive features. The

choice of features is related to the specifics of the recognized

objects, the method of recording images, and the methods

and recognition algorithms used. In the case of recognition of

maritime object images, the basic element of the image being

analyzed is the silhouette of this object. It can be characterized

by various sets of distinctive features. The principal component

analysis (PCA) method or methods using deep neural networks

take into account the luminance of all these silhouette pixels.

In this work, the descriptor of a grayscale image of a

maritime object without compression is stored as a horizontal

vector of original image rows concatenation. It is given the

name of the linear image descriptor. The second type of

descriptor is the histogram of oriented HOG gradients [2,3].

This descriptor compresses the image by determining the

brightness gradients of the image in evenly spaced image

sections (cells). Gradient vectors describe the shape of the

objects contained in the image.

The work uses the method of classifying the silhouettes

of marine objects based on multi-class classification using

the SVM (Support Vector Machine) network [4,5,6,7,8]. This

method is based on SVM classifiers, which in the literature

are also called SVM networks because of their similarity to

neural networks. These classifiers are, by their very nature,

two-class classifiers, and thus they allow finding the answer

to the question whether the recognized object belongs to one

of two classes. In real problems, the set of patterns is usually

multi-class, hence methods for using two-class classifiers for

multi-class classification have been developed. One of such
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methods called “one against all” is used in the work. It has

been modified for the fusion of SVM networks in such a way

that it is possible to determine the basic belief assignment over

the set of pattern types.

Another problem to be addressed was the assessment of

the linear separability of the training set histograms. It is

related to the possible transformation of the original space

of distinctive features into a space with a much larger number

of dimensions and the use of the appropriate kernel function

of the transformation. In this work, a hint contained in [6] is

used. It allows the use of a linear kernel when the number of

patterns in the training set is much smaller than the number

of distinctive features of the patterns.

The SVM classifiers require FLIR images to be previously

processed, preparing a histogram of the vertical brightness

projection. The purpose of this process is, among other things,

to eliminate unnecessary information about the background

of the object and interference, as well as to normalize the

silhouette of the object. The image pre-processing process

may include segmentation, brightness normalization, silhouette

scaling, silhouette centering, silhouette leveling and extraction

of distinctive features. Some problems of information pre-

processing have been presented in [4].

One of the important objectives of our work was to evaluate

the effectiveness of information fusion methods [9,10] applied

to the results of SVM classifiers. In papers [9,10,11], methods

for determining the basic belief assignment on a set of possible

decisions of SVM classifiers were proposed.

In the final part of the work, the results of tests of SVM

classifiers with two different image descriptors and the results

of the fusion of these classifiers using the Dezert-Smarandache

PCR5 rule [9,11] are presented.

II. HISTOGRAM OF ORIENTED GRADIENTS AS A VECTOR

OF DISTINCTIVE FEATURES OF A MARITIME OBJECT IMAGE

As mentioned in section I of this work, it was assumed that

the histogram of oriented gradients HOG is created on the

basis of the image formed in the process of pre-processing,

segmentation and secondary processing of the primary image.

Histograms of oriented gradients (HOG) are image descrip-

tors that describe the shapes of objects within the image.

The idea of their operation is based on counting gradients

occurring in the same spatial orientation (at a specific angle),

in a certain precisely defined fragment of the image. These

gradients are counted in evenly distributed portions of the

image. To improve the efficiency of object detection, local

contrast normalization is applied in overlapping regions [2,3].

HOG descriptors are created by dividing the image into

fragments, called cells. Gradients are then calculated for each

fragment. The distribution of these gradients is represented by

the so-called edge orientation histogram. Cells are grouped

into blocks to perform contrast normalization. This operation

is aimed at increasing resistance to shadows, differences in

lighting [2,3]. The histograms computed in all blocks form

a vector. This vector is called the HOG. An example of the

HOG implementation is shown in Figure 1.

Figure 1. Example implementation of HOG: a) input image, b) gradients for
the input image with cells 16×16, c) gradients for the input image with cells
8× 8.

III. LINEAR DESCRIPTOR AS A VECTOR OF DISTINCTIVE

FEATURES OF A MARITIME OBJECT IMAGE

In this work, the descriptor of a grayscale image of a

maritime object without compression is stored as a horizontal

vector of original image rows concatenation. It is given the

name of the linear image descriptor. If A denotes an array

containing a grayscale image of size m × n, then the linear

discriminant of this image can be represented as (in MATLAB

notation):

[A(1, :) A(2, :) . . . A(m, :)]. (1)

IV. CHARACTERISTICS OF SVM CLASSIFIER

A. Introduction

Support Vector Machine SVM is a useful technique for data

classification [5,6,7,8,12,13,14,15,16]. The SVM machine in

the Polish literature on the subject is most often called the

SVM network due to its simple interpretation using neural

networks. First, basic information explaining the principles of

data classification using SVM in the case of binary (two-class)

classification will be presented. This technique will then be

extended to the problem of multi-class classification.

B. Binary classification

The SVM classifier belongs to the set of classifiers that

maximize the separation margin [5,6,7,8] The SVM classifier

belongs to the set of classifiers that maximize the separation

margin. These classifiers recognize patterns belonging to

two classes by specifying a decision surface that provides

maximum distance to the nearest points in the training set

called support vectors.

The distance of any point x from the hyperplane (3) is

d(x) =
|wT

x+ b|
||w|| (2)
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Let us assume that a set of training pairs is given (xi, yi) for

i = 1, . . . , p, wherein each point xi ∈ R
N belongs to one of

two classes of patterns identified by labels yi = +1 (class 1)

or yi = −1 (class 2). Assuming a linear separability of classes,

the equation of the separating hyperplane can be written using

the formula

f(x) = w
T
x+ b = 0, (3)

where w = [w1, w2, . . . , wN ]T is an N -dimensional weight

vector, and x = [x1, x2, . . . , xN ]T is a vector of the distinctive

features values of the object. The b value specifies the hyper-

plane offset relative to the origin of the coordinate system.

Decision equations of classification take the following form:
{

w
T
xi + b > 0, for yi = 1,

w
T
xi + b < 0, for yi = −1.

(4)

Intuitively, one can say that the greater the distance (2) of

point x from the hyperplane (3), the greater the reliability of

the classification.

Because the assumption of the linear separability of the

training data has been made, so no training data satisfies

the equation w
T
xi + b = 0. It follows that the width of

the separation margin is greater than zero, what means that

inequalities (4) after their normalization can be written in the

following form
{

w
T
xi + b ≥ 1, for yi = +1,

w
T
xi + b ≤ −1, for yi = −1.

(5)

One can write these two inequalities in one formula

yi(w
T
xi + b) ≥ 1. (6)

If a pair (xi, yi) satisfies in (6) equality, then the vector xi

is called a support vector SV.

Assuming a linear separability of training data, these vectors

only decide on the location of the optimal separation hyper-

plane and the width of the separation margin, which has a

value

d(x) =
2

||w|| (7)

Optimal separating hyperplane (3) and separating margin in

SVM in a two-dimensional space are presented in Figure 2.

The task of optimal separation margin design is to find

such a margin, which has a maximum width. The problem

of optimal selection of the separation hyperplane and the

separation margin width comes down to solving the quadratic

programming task in the following form

min
w,b

1

2
w

T
w, (8)

with constraints

yi(w
T
xi + b) ≥ 1. (9)

This is a quadratic programming task with constraints

that can be solved by the Lagrange multipliers method with

α = [α1 α2 . . . αN ]T multipliers using Karush-Kuhn-Tucker

conditions [17]. The Lagrange function is as follows

Figure 2. Optimal separating hyperplane and separating margin in SVM in
a two-dimensional space.

L(w, b, α) =
1

2
w

T
w−

N
∑

i=1

αiyi(w
T
xi + b) +

N
∑

i=1

αi (10)

The solution to this optimization task is as follows

[2,3,4,5,6]

w =

N
∑

i=1

αiyixi, (11)

wherein non-zero Lagrange multipliers correspond only to

support vectors.

To determine the constant value b, one can use the fact that,

according to Karush-Kuhn-Tucker conditions at the saddle

point of the Lagrange function, the product of the multiplier

by the constraint associated with the support vector xsv is

zero [17] αsv(w
T
xsv + b ± 1) = 0, αsv > 0. From here one

can receive

b = −w
T
xsv ± 1. (12)

The equation of the optimal separation hyperplane is as

follows
N
∑

i=1

αiyix
T
i x+ b = 0, (13)

while the decision function is as follows
{

f(x) =
∑N

i=1 αiyix
T
i x+ b ≥ 1, → y = 1,

f(x) =
∑N

i=1 αiyix
T
i x+ b ≤ −1, → y = −1.

(14)

More complex models of SVM linear networks include the

possibility of incompletely linearly separable training data.

Suitable formulas can be found in [5,6,7,8].

In the above considerations, a linear separability of training

data was assumed. The linear inseparability of training data

does not mean a lack of their separability at all. A common
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solution is the non-linear projection of original data into

another functional space in which transformed patterns are

linearly separable or the probability of their separability is very

high. The condition is the use of non-linear transformation

with a sufficiently high dimension K >> N of the feature

space. The above-mentioned construction of the separation

hyperplane and decision rule can be applied in a new space

that is specified by the projection function Φ. The key property

of the projection function Φ is that the scalar product of

vectors Φ(xi)
TΦ(x) in the result space can be represented as

a certain kernel function K(xi,x). The basic kernel functions

are following:

- linear kernel: K(xi,x) = x
T
i x,

- polynomial kernel: K(xi,x) = (αxT
i x+ r)d, α > 0,

- Gaussian kernel (RBF – radial basis function):

K(xi,x) = exp(−β||xi − x||2), β > 0,

- sigmoid kernel: K(xi,x) = tanh(γxT
i x+ r).

The values of α, β, γ, r and d are the parameters of the

kernels.

In [6] there are some guidelines regarding situations in

which a linear kernel can be used and in which an RBF radial

kernel can be used. If the number of patterns in the training

set is much smaller than the number of distinctive features of

the patterns, a linear kernel can be used. In this work, a linear

kernel was used, because the number of training patterns was

340, and the length of the distinctive features vectors was 4800

or 1368.

The equation of the separating hyperplane after applying

the transformation of the primary space of distinctive features

by means of the kernel function is as follows

N
∑

i=1

αiyiK(xi,x) + b = 0, (15)

while the decision function is as follows while the decision

function is as follows
{

f(x) =
∑N

i=1 αiyiK(xi,x) + b ≥ 1, → y = 1,

f(x) =
∑N

i=1 αiyiK(xi,x) + b ≤ −1, → y = −1.
(16)

C. Multiclass classification

SVM networks divide data into two classes. Unlike classic

neural networks, where we can have multiple outputs (each

output is associated with one class), recognition of multiple

classes requires the implementation of multiple classification

tasks using multiple SVM networks. The best-known strategies

for solving the problem of multi-class classification are “one-

against-one” and “one-against-all” methods [5,15,18]. Suppose

the training base has M types of patterns.

In the case of the “one-against-one” method, M(M − 1)/2
SVM classifiers are constructed. They distinguish sequentially

two classes from the training set. One can receive a decision

function for each pair of classes i and j

fij(x) = w
T
ijΦ(x) + bij , i, j ∈ M = {1, . . . ,M}, i 6= j.

(17)

After training all SVM networks, you can proceed to

classify objects from the test set. If sgn(fij(x)) indicates the

i-th class, one should increase by 1 the counter of this class

indications, in the opposite case it should be increased by 1 the

counter of the j-th class. Finally, we choose the class whose

counter has reached the highest value.

In the case of the “one-against-all” method, M SVM

classifiers are constructed, each network being trained on a

different training set. Suppose we train the m-th SVM two-

class network. Class 1 includes m-th type patterns, while class

2 includes other types. Finally, we receive a decision function

for each network

fm(x) = w
T
mΦ(x) + bm, m ∈ M = {1, . . . ,M}. (18)

After training all SVM networks, one can proceed to classify

objects from the test set. If sgn(fij(x)) indicates the m-th

class, one should increase the number of indications in this

class by 1, and in the opposite case one should increase the

number of indications by 1 for all classes in the combined

class. Finally, we choose the class whose counter achieved

the highest value of wins. The authors [18] prefer the “one-

against-all” method because of the linear dependence of the

number of SVM networks on the number of pattern types in

the training set.

The possibility of another extended interpretation of the

results obtained by the “one-against-all” method is presented

in [15]. According to [18], the higher the value of the function

fm(x) (18), the more reliable the classification result is. In the

case of a linear kernel, such a criterion of reliability may be the

distance of the recognized object from the separation plane,

which is equal

fm(x) = w
T
mx+ bm, m ∈ M = {1, . . . ,M}. (19)

In point V-C of the work, the value of the fm(x) decision

function was used to construct the basic belief assignment on

the results of the SVM multi-class classification.

In SVM multi-class classification, each m-th classifier deter-

mines the value of its decision function fm(x). Considering

the classification results as a whole, one of three situations

may occur:

1) Only one fm(x) has a positive value, and all the

others are negative. In this case, the number of positive

classifier specifies the pattern type number.

2) More than one of the fm(x) are positive. If we assume

that the higher the value of the decision function, the

more reliable the classification result is, then the number

of the classifier corresponding to the highest value of the

function fm(x) determines the number of the pattern

type, what can be written as follows

m∗ = arg max
m∈M={1,...,M},fm(x)>0

fm(x), (20)

where id is the number of the recognized type.

3) None of the fm(x) values is positive. That should be

regarded as the new image belongs to a maritime object

which type is not included in the training set (unknown

object).
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V. FUSION OF INFORMATION FROM TWO SVM

CLASSIFIERS

A. The process of fusion of information from two classifiers

Each classifier used in the work transfers to the fusion

module a vector of measures of basic belief assignment on

a set of types of objects in the training set. In this work, it

was assumed that both classifiers have the same training set.

The set of possible hypotheses related to individual types of

objects (the frame of discernment) is as follows

Θ = {θi, i = 1, . . . ,M}, (21)

wherein the index i numbers the type of the maritime object

whose images are stored in a training set. M is the number

of pattern types.

The hypotheses are exhaustive (21) and mutually exclusive,

i.e.

θi ∩ θj =

{

θi, if i = j,

0, if i 6= j.
(22)

Each classifier sends its decisions in the form of a BBA

measure vector (BBA - basic belief assignment).

mi = [mi(θ1), . . . ,mi(θM )], (23)

wherein the index i = 1 determines the BBA measure vector

calculated by the SVM classifier of linear descriptor vectors

and the index i = 2 determines the BBA measure vector

calculated by the SVM classifier of HOG feature vectors.

The information fusion procedure is described by the fol-

lowing formula:

mF = RF (m1,m2), (24)

wherein mF is a vector of the vector of BBA masses deter-

mined by the RF information fusion rule based on the vectors

m1 and m2 of BBA masses.

B. The proportional conflict redistribution rule PCR5 for two

bbas (two sources)

m′
F (θi) = mPCR5(θi)

= m12(θi) +
∑

j=1,...,M
θi∩θj=∅

SPCR5
12 (θi, θj)

= m12(θi) +
∑

j=1,...,M
j 6=i

SPCR5
12 (θi, θj), (25)

where

SPCR5
12 (θi, θj) =











0, for c1 = 0 or c2 = 0,
m1(θi)

2m2(θj)
m1(θi)+m2(θj)

+
m2(θi)

2m1(θj)
m2(θi)+m1(θj)

,

for c1 6= 0 ∧ c2 6= 0,

(26)

where c1 , m1(θi)+m2(θj) and c2 , m2(θi)+m1(θj), and

wherein

m12(θi) = m1(θi)m2(θi). (27)

In the formula (25), the component SPCR5
12 (θi, θj) is equal

to zero if both denominators are equal to zero. In the formula

(26), if a denominator is zero, then component is discarded.

C. The method of determining the BBA for the SVM classifiers

The procedure of image recognition by means of the SVM

method “one-against-all” in accordance with the content of

point IV-C and [15,18] allows to determine the basic belief

assignment BBA on a set of pattern types. Each k-th pattern

type is associated with one SVM and the identification process

determines the value of the decision function

fk(x) =

Nk
∑

i=1

αk
i y

k
i K(xk

i ,x) + bk. (28)

The value of this function can be used to determine the

value of the degree of belief that the recognized (tested) object

belongs to the class with the number k (k = 1, . . . ,M ). In

[8] it was proposed to use the logistic regression function in

accordance with the following formula

m(x, k) =
efk(x)

1 + efk(x)
. (29)

In the formula (29) k numbers SVMs. . As one can

see 0 < m(x, k) < 1. The above measure is not normalized,

therefore we normalize it by

m̃(x, k) =
m(x, k)

∑M

i=1 m(x, i)
. (30)

One should note that the above method of mass determina-

tion is simplified, because it does not take into account the lack

of the type of image pattern corresponding to the recognized

(tested) image.

Each SVM network in the “one-against-all” method calcu-

lates the value of the decision function fk(x) used to calculate

the k-th component of the BBA vector using (29) and (30).

The construction of the “one-against-all” method justifies the

form of the frame of discernment (21). In this method, there

are as many SVM networks as there are training image classes

in the training set. The way of calculating the BBA vector (29)

and (30) ensures that for each test image, its specific type will

be determined. It follows from these considerations that the

basic belief assignment is a Bayesian assignment regardless of

how the vector of image features (linear descriptor or HOG)

is determined. Formulas (21) and (22) are supplemented by

the following formula:

M
∑

i=1

m1(θi) =

M
∑

i=1

m2(θi) = 1. (31)

VI. RESULTS OF MARITIME OBJECT RECOGNITION USING

SVM CLASSIFIER WITH LINEAR IMAGE DESCRIPTORS AND

HOG IMAGE DESCRIPTORS AND THE FUSION OF THESE

CLASSIFIERS

The study had a limited number of images of maritime

objects of nine classes. The size of the training set is presented

in the Table I.
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Table I
THE SIZE OF THE TRAINING SET.

Maritime object class Size of the training set

1 56
2 38
3 54
4 22
5 56
6 38
7 22
8 30
9 24

Two training sets were created for each class. In one of

the sets, the images were represented by linear descriptor

vectors, while in the other, the images were represented by

HOG feature vectors.

The next step was to train two types of SVM models. Thus,

a total of 18 models were created (two models for each of the

nine classes). The linear activation function of the kernel was

used in this work according to the guidelines given in [6].

A. Results of maritime objects recognition for SVM classifier

with linear descriptor vectors

Due to the small number of available original images from

FLIR cameras, it was decided to extend the test sets with

images on which Gaussian noise and salt and pepper noise

were applied. Finally, the recognition of maritime objects was

carried out on the basis of test sets, which included 130 images

of objects belonging to each class. Nine training classes were

used, so a total of 1170 images were tested. As part of the

work, the achieved accuracy of classification was examined,

and the results were presented in the form of tables in the

following subsections.

The results of recognition of maritime object images using

the SVM classifier with linear descriptor vectors are presented

in the Table II. The right column of Table II corresponds to the

mean value of correctly recognized maritime object (CRMO).

Table II
THE RESULTS OF RECOGNITION OF MARITIME OBJECT IMAGES USING THE

SVM CLASSIFIER WITH LINEAR DESCRIPTOR VECTORS.

Object # of # of correct # of incorrect Mean value
type tested images recognitions recognitions of CRMO

1 130 130 0 100%
2 130 130 0 100%
3 130 130 0 100%
4 130 130 0 100%
5 130 130 0 100%
6 130 124 6 95.38%
7 130 130 0 100%
8 130 130 0 100%
9 130 130 6 100%

Total 1170 1164 6 99.48%

Only 6 out of 1170 images were not recognized correctly.

The accuracy was 100% for all classes except class 6,

despite the image noise. The average value of correctly

recognized objects in all classes was 99.48%. Such high

accuracy may be due to the ability of the SVM network to

generalize knowledge. This network is also characterized by

low sensitivity to the number of used training data. Therefore,

even achieving high accuracy is possible even with a small

database [5]. In addition, the correctness of the classification

can be positively influenced by the preprocessing of images,

as well as a well-chosen kernel function. In this case, a linear

function was used, which works well with input data of

sufficiently many dimensions [8].

The Table III contains the measured execution times of

the classification task by SVM models using linear image

descriptors.

Table III
RECOGNITION TIMES FROM THE TEST SET BY THE SVM CLASSIFIER

USING LINEAR IMAGE DESCRIPTORS.

Maritime object class Classification time of images
from the test set (in s)

1 0.010306
2 0.011566
3 0.010264
4 0.011591
5 0.011203
6 0.010379
7 0.009611
8 0.011033
9 0.111119

B. Results of maritime objects recognition for the SVM clas-

sifier using the histogram of oriented gradients

The results obtained by testing an SVM network using a

histogram of oriented gradients (HOG) are presented in the

Table IV.

Table IV
RESULTS OF MARITIME OBJECT IMAGE RECOGNITION WITH THE SVM

CLASSIFIER USING THE HISTOGRAM OF ORIENTED GRADIENTS.

Object # of # of correct # of incorrect Mean value
type tested images recognitions recognitions of CRMO

1 130 130 0 100%
2 130 130 0 100%
3 130 130 0 100%
4 130 130 0 100%
5 130 130 0 100%
6 130 129 1 99.23%
7 130 130 0 100%
8 130 130 0 100%
9 130 128 2 98.46%

Total 1170 1167 3 99.74%

The use of HOG allowed to achieve an even greater number

of correctly recognized maritime objects. The average value of

correctly recognized objects belonging to all classes was thus

99.74%. Therefore, it can be concluded that the use of SVM

network learning data in the form of histograms of gradients

allows to increase the accuracy of classification, compared to

the use of full image information (brightness of all pixels).
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The Table V contains the measured execution times of the

classification task by SVM models using the histogram of

oriented gradients.

Table V
RECOGNITION TIMES FROM THE TEST SET BY THE SVM CLASSIFIER

USING THE HISTOGRAM OF ORIENTED GRADIENTS.

Maritime object class Classification time of images
from the test set (in s)

1 0.002925
2 0.002263
3 0.002203
4 0.002268
5 0.002443
6 0.002189
7 0.002088
8 0.002155
9 0.002172

The time required to recognize objects from the test set

by SVM classifiers whose learning data was in the form of

HOG was an order of magnitude less than the time required

by classifiers operating on the brightness of all image pixels.

This is due to the reduced dimensionality of the problem, as

the input vectors were characterized by a length of 4800 bytes

for the whole image, while in the case of HOG their length

was only 1368 bytes.

C. Information fusion results from SVM classifiers obtained

using the PCR5 rule

The Table VI shows the classification results obtained by

using a fusion of SVM classifiers based on training sets

containing the brightness of all image pixels histograms of

oriented gradients.

Table VI
INFORMATION FUSION RESULTS FROM BOTH TYPES OF SVM CLASSIFIERS

OBTAINED USING THE PCR5 RULE.

Object # of # of correct # of incorrect Mean value
type tested images recognitions recognitions of CRMO

1 130 130 0 100%
2 130 130 0 100%
3 130 130 0 100%
4 130 130 0 100%
5 130 130 0 100%
6 130 129 1 99.23%
7 130 130 0 100%
8 130 130 0 100%
9 130 129 1 99.23%

Total 1170 1168 2 99.83%

The use of information fusion from both types of SVM

classifiers allowed to obtain the largest number of correctly

recognized objects. Only 2 objects out of 1170 were not

assigned to the appropriate class. In this case, the average ac-

curacy of classification of images belonging to all classes was

99.83%. This is the largest value compared to the previously

described recognition methods.

It can therefore be concluded that fusion of information

from different sources is reasonable and improves the quality

of classification.

VII. CONCLUSIONS

The Table VII compares the effectiveness of maritime object

recognition based on two SVM classifiers with linear image

descriptor and HOG descriptor, and the classifier with infor-

mation fusion according to the PCR5 rule. This comparison

allows to positively assess the purposefulness of using the

classifier fusion.

Table VII
INFORMATION FUSION RESULTS FROM BOTH TYPES OF SVM CLASSIFIERS

OBTAINED USING THE PCR5 RULE.

Object # of Effectiv. Effectiv. Effectiveness
type tested images of SVM of SVM of PCR5 rule

(linear descript.) (HOG) for SVM fusion

1 130 100% 100% 100%
2 130 100% 100% 100%
3 130 100% 100% 100%
4 130 100% 100% 100%
5 130 100% 100% 100%
6 130 95.38% 99.23% 99.23%
7 130 100% 100% 100%
8 130 100% 100% 100%
9 130 100% 98.46% 99.23%

Total 1170 99.48% 99.74% 99.83%

The results obtained are consistent with the information

contained in publications on SVM networks. They allow to

achieve very high efficiency, even when images are noisy. In

addition, the support vector technique is not time-consuming,

despite the use of data of significant volume, it shows low

sensitivity to smaller training sets [5,13]. Both tested classi-

fiers showed high efficiency in recognizing marine objects,

however, the use of the histogram of oriented gradients allows

for slightly higher accuracy than the use of training data in the

form of a vector containing the brightness of all image pixels.

The best results, however, were obtained using a fusion of both

of these classifiers. The fusion was performed using one of

the most accurate rules for proportional conflict redistribution

- PCR5. The use of fusion helped to improve efficiency, so

it can be considered reasonable to combine information from

different classifiers when conflicts arise.

REFERENCES

[1] [Ch. Dong, J. Liu, F. Xu, Ship Detection in Optical Remote Sensing

Images Based on Saliency and a Rotation-Invariant Descriptor, Beijing,
2018.

[2] T.R. Chandrashekar, A.K. Gautam, Face Recognition based on His-

togram of Oriented Gradients, Local Binary Pattern and SVM/HMM

Classifiers, IJESRT, International Journal of Engineering Sciences &
Research Technology, Chandrashekhar, 3(8), August, 2014.

[3] N. Dalal, B. Triggs, Histograms of oriented gradients for human

detection, 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), Vol. 1, pp. 886–893, San Diego,
CA, USA, 2005.

[4] T. Pietkiewicz, Application of fusion of two classifiers based on principal

component analysis method and time series comparison to recognize

maritime objects upon FLIR images, Proceedings of SPIE 11055,
XII Conference on Reconnaissance and Electronic Warfare Systems,
110550Z, 2019.

[5] S. Osowski, Neural networks for information processing, Oficyna
Wydawnicza Politechniki Warszawskiej, Warszawa, 2020 (in Polish).

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

527



[6] C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector

classification, 19 May 2016, https://www.csie.ntu.edu.tw/∼cjlin/papers/
guide/guide.pdf (10 December 2019).

[7] V. Vapnik, Statistical learning theory, Wiley, New York, 1998.
[8] V. Vapnik, The Nature of Statistical Learning Theory, 2nd Edition,

Springer, New York, 2000.
[9] F. Smarandache, J. Dezert, Applications and Advances of DSmT for

Information Fusion (Collected works), Volume 1, American Research
Press (ARP), Rehoboth, 2004.

[10] P. Djiknavorian, D. Grenier, P. Valin, Analysis of information fusion com-

bining rules under the DSm theory using ESM input, 10th International
Conference on Information Fusion (FUSION 2007), Québec, Canada,
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Abstract—In recent years, wearable sensor-based human ac-
tivity recognition (HAR) is becoming more and more attractive,
especially in health monitoring and sports management. However,
in order to obtain high-quality HAR, it is often necessary to
get sufficient labeled activity data, which is very difficult, time-
consuming and costly in a natural environment. To tackle this
problem, multi-source domain adaptation is a promising method
that aims to learn enough multi-source prior knowledge from
labeled activity data, and then transfer this learned knowledge
to the target unlabeled dataset. Thus, this paper presents a
novel multi-source weighted domain adaptation with evidential
reasoning (w-MSDAER) for HAR, which can effectively utilize
complementary knowledge between multiple sources. Specifically,
we first use the strategy of distribution alignment to learn local
domain-invariant classifiers based on multi-source domains. And
then, the reliabilities of these derived classifiers are compre-
hensively evaluated according to the belief function based the
technique for order preference by similarity to ideal solution
(BF-TOPSIS). Finally, the discounting fusion method is used to
fuse the local classification results. Comprehensive experiments
are conducted on two open-source datasets, and the results show
that the proposed w-MSDAER significantly outperforms other
state-of-art methods.

Keywords: human activity recognition, multi-source domain
adaptation, evidential reasoning, reliability assessment.

I. INTRODUCTION

A. Background and Research Motivation

In recent years, wearable sensor-based human activity
recognition (HAR) usually uses the raw signals collected by
wearable sensors to identify human activities, and to help the
patients to deal with chronic injuries or provide personalized
medical advice. Given its good application prospect, sensor-
based HAR has been comprehensively discussed in recent
surveys [1], [2] and has also been widely used in many
real-life scenarios such as health-care, ubiquitous computing,
and human-computer interaction [3]–[8]. Generally speaking,
high-precision activity recognition relies on good generalized
recognition models, which means that sufficient and labeled
data is always acquired to train reliable models in advance.

However, one typical and common scenario is that labeled
data collected from specific positions or individuals are often
limited. Still, we hope that the recognition models learned
from such labeled data can identify the unknown activities
of many other positions or people [9]. For example, the pre-
trained HAR model built in the smartwatches needs to identify
each user’s activities. However, it is impossible to label all
consumers’ personal data in the manufacturing process of
smart watches. Many recent cross-domain references [10]–
[12] pointed out that the recognition model learned on some
positions or specific people can not be well generalized
to other positions and people. To directly demonstrate the
negative effects of domain differences, the cross-location and
cross-person activity recognition experiments were conducted
on the mHealth1 dataset based on previous works [3], [13]: 1)
for the same subject, the Long-Short Term Memory (LSTM)
was first trained by data collected from the accelerometer
installed on the chest, and then this well-trained LSTM model
was applied to identify the unknown activities based on the
data collected by those sensors located on the chest, left-
ankle and right-lower-arm, respectively; 2) the LSTM model
trained for Subject1 (St1) was used to recognize the unknown
activities of St1, Subject2 (St2), Subject3 (St3) and Subject4
(St4), respectively. As shown in Fig.1, the average accura-
cies of self-activity recognitions are 88.65% for Chest →
Chest and 83.61% for St1 → St1, while the accuracies of
cross-position and cross-person recognition were only 14.84%
(Chest→Left Ankle), 5.64% (Chest→Right Lower Arm) and
32.84% (St1→St2), 34.34% (St1→St3), 35.6% (St1→St4).
This result fully shows that the domain difference affects the
classifiers’ performances.

To reduce the negative impacts of domain differences, many
recent works have successfully applied domain adaptation
(DA) approaches to deal with cross-domain recognition prob-
lems. The classical single-domain adaptations often rely on the

1http://archive.ics.uci.edu/ml/datasets/mhealth+dataset.
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Figure 1. Classification Accuracy in Cross-Domain Activity Recognition.

domain-invariant feature extractions [11], or domain mapping
strategies [12]. For example, the Joint Distribution Adaptation
(JDA) method was proposed by Long et al. [14] to adapt
both the marginal and conditional distributions simultaneously.
Since deep neural networks have the capability of powerful
feature extraction, many deep feature transformation methods
have also been presented to adapt the distribution. Ghifary et
al. [15] proposed a domain adaptive neural network (DaNN)
to reduce the distribution mismatch between the source and
target domains. However, those aforementioned methods only
consider the situation of single source domain. In practical
applications, there may be multiple source domains, and how
to effectively utilize the complementary knowledge between
different source domains has been a serious concern issue [16],
[17]. Currently, many sophisticated techniques have been pro-
posed to take advantage of differences among source domains
or the relationship between sources and targets. Zhao et al. [18]
proposed a separate domain classifier for each source domain
and computed a loss based on the lowest domain error among
these classifiers. Liu et al. [19] presented a novel evidential
framework for combining multi-source domain adaptations.
In [19], the reliabilities of source domains were directly
evaluated and the multiple classification results derived from
multi-source were fused with a novel decision-level cautious
combination rule. Moreover, Liu et al. [20] also proposed a
new method called distribution adaptation based on evidence
theory to improve the classification accuracy by combining the
complementary information derived from both the source and
target domains.

As we discussed earlier in Fig.1, traditional sensor-based
action recognition models have difficulties in solving cross-
domain HAR problems. To tackle these problems, Hong et
al. [21] proposed a novel single-source DA method based
on semi-population strategy; Wang et al. [22] presented a
novel deep network coupled with transfer learning for cross-
position HAR (TNNAR); An extreme learning machine based
kernel fusion was proposed by Wang et al. [23] to deal with

domain alignment in HAR. Besides, Garrett Wilson et al.
[24] presented a convolutional deep domain adaptation model
for time series data (CoDATS) from multiple source domains
to improve the accuracy over prior single-source methods.
However, the mentioned TNNAR or CoDATS did not fully
consider the reliabilities/weights of source domains in their
multi-source domain adaptations, which in some degree affects
the final classification results. Inspired by the weighted com-
bination strategy for multi-source domain adaptation proposed
in [19], we propose a new multi-source weighted domain
adaptation with evidential reasoning (w-MSDAER) for the
human activity recognition problem. The difference in weight
calculation between w-MSDAER and Liu’s method in [19]
is mainly reflected in the stage of reliability evaluation for
source domains: Liu’s method in [19] can be regarded as the
pre-weight calculation strategy before basic belief assignments
(BBAs) generation. In [19], each reliability of the source
domain is directly evaluated by using the domain distance
before and after distribution matching steps; In our proposed
w-MSDAER, the reliabilities of source domains are indirectly
evaluated based on the multi-criteria strategy after BBA gen-
eration. These BBAs are obtained from the outputs of local
domain-invariant classifiers trained by the source domains
and comprehensively evaluated from two aspects: the distance
degrees between BBAs and the imprecision degree inside each
BBA. Thus, w-MSDAER can be regarded as the post indirect
weight evaluation method compared to Liu’s method in [19].

B. Challenges

It is essential to fuse the complementary multi-domain
knowledge effectively. However, two main issues need to be
addressed:

• How to comprehensively evaluate the reliability of dif-
ferent source domains? Since the classifiers using data
from multi-source domains may have distinct abilities to
classify activities in the unknown domain, it is necessary
to analyze the reliabilities of multi-source domains in the
process of domain adaptation;

• How to fuse the outputs of local domain-invariant classi-
fiers learned from different source domains? Considering
that conflicts may exist between the classification results
from different source domains, our fusion rules are re-
quired to effectively solve the highly conflicting fusion
problem.

C. Main Contributions

To solve these two aforementioned problems, we first use
the manifold embedded distribution alignment (MEDA) to
learn local domain-invariant classifiers based on source do-
mains. And then, the outputs of these classifiers are trans-
formed into the BBAs and evaluated by the multi-criteria
evaluation strategy: BF-TOPSIS2.

The main contributions of this work are summarized as
follows:

2BF-TOPSIS is an extension of the technique for order preference by
similarity to ideal solution (TOPSIS) [25] based on belief functions (BF).
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• The novel fusion framework of weighted multi-source
domain adaptation based on evidential reasoning (w-
MSDAER) is presented. Here, w-MSDAER can combine
the complementary knowledge among different source
domains;

• In w-MSDAER, the reliabilities of local domain-invariant
classifiers learned from multi-source domains are com-
prehensively assessed according to the BF-TOPSIS strat-
egy. In BF-TOPSIS, two well-selected criteria are chosen:
distances between BBAs and the self-imprecision degree
inside the BBA;

• Through comprehensive experiments on two public activ-
ity recognition data sets, the superiority of w-MSDAER
is shown.

The rest of this paper is organized as follows. In section
II, the basics of evidential reasoning is presented. Section III
describes the proposed w-MSDAER. The experimental results
are given in details in Section IV. Finally, the article concludes
and gives several future research directions in the last section.

II. BASICS OF EVIDENTIAL REASONING

This section briefly introduces the basic knowledge of
evidence reasoning, also known as Dempster-Shafer Theory
(DST), which is necessary for presenting the proposed w-
MSDAER.

In DST, the concept of Frame of Discernment (FoD) rep-
resents a set of exhaustive and exclusive elements which is
denoted as Θ ! {θ1, . . . , θn} (n ≥ 2). The power set of Θ,
which is the set of all subsets of Θ (including the empty set ∅,
and Θ itself), is denoted 2Θ because its cardinality is exactly
equal to 2|Θ|. A BBA m(·) is defined by the mapping: 2Θ $→
[0, 1], verifying m(∅) = 0 and

∑
θ∈2Θ m(θ) = 1. Bel(θ) !∑

θ′∈2Θ|θ′⊆θ m(θ′) and Pl(θ) !
∑

θ′∈2Θ|θ′∩θ ̸=∅m(θ′) define
the belief and plausibility function, respectively. The interval
BI(θ) ! [Bel(θ), P l(θ)] is called the belief interval of θ,
which is usually interpreted as the interval where the value of
unknown probability of θ must belong.

In order to combine two distinct sources of evidence, the
classical Dempster Shafer rule (DS) in [26] was proposed and
defined by mDS(∅) = 0 and ∀θ ∈ 2Θ \ {∅ }:

mDS(θ) =

∑
θ′,θ′′∈2Θ|θ′∩θ′′=θ m1(θ′)m2(θ′′)

1−
∑

θ′,θ′′∈2Θ|θ′∩θ′′=∅ m1(θ′)m2(θ′′)
. (1)

To palliate DS rule drawbacks (see discussions in [27]), in
Dezert-Smarandache Theory (DSmT) [28], the very interesting
Proportional Conflict Redistribution-5 (PCR5) was defined by:
mPCR5(∅) = 0 and ∀θ ∈ 2Θ \ {∅ }:

mPCR5(θ) = m12(θ)+
∑

θ′∈2Θ\{θ}|θ∩θ′=∅

[
m1(θ)2m2(θ′)

m1(θ) +m2(θ′)
+

m2(θ)2m1(θ′)

m2(θ) +m1(θ′)
], (2)

where m1(.),m2(.) are two independent BBAs and m12(θ) =∑
θ′,θ′′∈2Θ|θ′∩θ′′=θ m1(θ′)m2(θ′′).

III. MULTI-SOURCE WEIGHTED DOMAIN ADAPTATION

WITH EVIDENTIAL REASONING FOR HAR

In this part, we first raise the issue of cross-domain HAR
and then briefly present the specific steps of local domain-
invariant classifier learned from MEDA and the multi-criteria
assessment of these derived classifiers’ reliabilities by using
BF-TOPSIS [25]. At last, we present how to fuse all outputs
of local classifiers based on the discounting combination rule
and make the final decision.

A. Problem Definition

Assuming that there exists M labeled source domains:
Ds1 ,Ds2 , · · · ,DsM and an unlabeled target domain Dt in
the multi-source DA problem. The source domains Ds =
{(xDs

u , yDs
u )}Ns

u=1 contains Ns labeled samples and x
Ds
u

follows the domain distribution proDs(x, y) and yDs
u ∈

{1, 2, · · · , n}(n represents the number of categories) is its
related label for samples in the source domain. Similarly, Dt =
{xDt

v }Nt
v=1 is the target domain, which includes Nt unlabeled

samples, and x
Dt
v follows the target distribution proDt(x, y).

In our problems discussed in this paper, Ds and Dt share
the consistent feature spaces and the same label spaces:
XDs = XDt and YDs = YDt . However, Ds and Dt belong
to different distributions: proDs(x, y) ̸= proDt(x, y). With
the help of the multi-source domains Ds1 ,Ds2 , · · · ,DsM , the
goal of our task is to obtain the label yDt for the unlabeled
samples in target domain. Here, we use a simple cross-position
activity recognition problem to give more clear and specific
descriptions of relevant terms discussed above. Assuming that
there exists two source domains: Ds1 = {(xDs1 , yDs1 )} and
Ds2 = {(xDs2 , yDs2 )}, where Ds1 and Ds2 represent the
source domains derived from accelerators located on the chest
and left arm, respectively. Besides, xDs1 and x

Ds2 are the raw
signals collected by accelerators and the mathematical symbols
yDs1 and yDs2 represent the categories of activities, such as
standing, walking, running. Our main task is to classify those
unlabeled samples x

Dt in the target domain Dt = {xDt},
which are collected from the accelerator located on the right
ankle.

B. Local domain-invariant classifier based on manifold em-

bedded distribution alignment

As mentioned in [19], our goal is to use the classifier
f : xDt $→ yDt learned from multi-source domains to realize
the classification of those unlabeled samples in the target
domain. Here, we use the MEDA strategy proposed by Wang
et al. [29] to learn the local domain-invariant classifier before
combination. More detailed discussions about MEDA are
given in [29].

Specifically, according to the structural risk minimization
(SRM) [30], the domain-invariant learned classifier f(·) can
be represented as

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

531



f = argmin
f∈HK

Ns∑

u=1

(yu − f (zu))
2 + η ∥f∥2K

+λDf (Ds,Dt) + ρRf (Ds,Dt) , (3)

where zu = g(xu) is the transformed manifold features;
Considering the characteristics of computational efficiency,
Geodesic Flow Kernel (GFK) [31] is applied to learn g(·);
The squared norm of f is denoted as ∥f∥2K ; The dynamic
distribution alignment is represented by Df ; Besides, Rf is
the Laplacian regularization [29]; Based on kernel function
K(·, ·), the Hilbert space HK can be derived; η, λ,ρ are
regularization parameters accordingly.

To obtain the local domain-invariant classifier f , the details
of each term in (3) are reformulated as follows:

1) Local classifier learned by SRM: According to the
representer theorem [32], f can be expressed by

f (z) =
Ns+Nt∑

u=1

βuK (zu, z), (4)

where the coefficient vector is denoted by β =(
β1, β2, · · · , βu, · · · , β(Ns+Nt),

)T
∈ R(Ns+Nt)×1; K(·, ·) is

a kernel function. Afterwards, we can use the SRM strategy
for Ds:

Ns∑

u=1

(yu − f (zu))
2 + η ∥f∥2K =

Ns+Nt∑

u=1

Auu(yu − f (zu))
2 + η ∥f∥2K

=
∥∥(Y − βTK

)
A
∥∥2
F

+ ηtr
(
βTKβ

)
,

(5)

where K ∈ R(Ns+Nt)×(Ns+Nt) represents the kernel matrix
with Kuv = K(zu, zv); The Frobenious norm and trace
operators are denoted by ∥·∥F , tr(.), respectively; A ∈
R(Ns+Nt)×(Ns+Nt) is a binary diagonal domain indicator
matrix with Auu = 1 if u ∈ Ds, Auu = 0 otherwise.
Y = [y1, · · · , yNs+Nt] is the label matrix from source and
the target domains.

2) Distribution alignment: Here, the distribution alignment
is defined by:

Df (Ds,Dt) = tr
(
βT

KMKβ
)
, (6)

where M = (1 − µ)M0 + µ
∑n

h=1 Mh represents the MMD
matrix, and the elements inside can be computed [29] by

(M0)uv =

⎧
⎪⎨

⎪⎩

1
Ns2 , zu, zv ∈ Ds;
1

Nt2 , zu, zv ∈ Ds;

− 1
Ns·Nt , otherwise.

(7)

(Mh)uv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
Ns2

h

, zu, zv ∈ D
(h)
s ;

1
Nt2

h

, zu, zv ∈ D
(h)
t ;

− 1
Nth·Nsh

,

{
zu ∈ D

(h)
s , zv ∈ D

(h)
t ;

zu ∈ D
(h)
t , zv ∈ D

(h)
s ;

0, otherwise.

(8)

where Nsh =
∣∣∣D(h)

s

∣∣∣ and Nth =
∣∣∣D(h)

t

∣∣∣; h ∈ {1, 2, · · · , n} is

the number of categories.

3) Laplacian regularization: The regularization can be ex-
pressed [29] by

Rf (Ds,Dt) =
Ns+Nt∑

u,v=1

Wuv(f (zu)− f (zv))
2

=
Ns+Nt∑

u,v=1

f (zu)Luvf (zv)

= tr
(
βT

KLKβ
)
. (9)

where

Wuv =

{
sim (zu, zv) , zu ∈ Np (zu) or zv ∈ Np (zv)

0, otherwise

To measure the similarity between two points, we here use
sim(·, ·) (for example, cosine distance); The set of p−nearest
neighbors to zu is denoted by Np(zu); Laplacian matrix L =
D−W with the diagonal matrix Duu =

∑Ns+Nt
v=1 Wuv.

4) Overall Reformulation: Using the formulas (5), (6) and
(9), f in (3) can be expressed as

f = argmin
f∈HK

∥∥(
Y − βT

K

)
A

∥∥2
F
+ ηtr

(
βT

Kβ
)

+tr
(
βT

K (λM + ρL)Kβ
)
.

(10)

By setting the derivative ∂f
∂β = 0, we get the corresponding

solution:

β∗ = ((A+ λM+ ρL)K+ ηI)−1
AY

T . (11)

C. Reliability assessment of BBAs generated from local
domain-invariant classifiers based on BF-TOPSIS

As discussed earlier, M local domain-invariant classifiers
learned from source domains (Ds1 ,Ds2 , · · · ,DsM ) provide M
BBAs mi (i = 1, · · · ,M) (12):

⎛

⎜⎜⎜
⎝

θ1 θ2 θ3 . . . θ
2|Θ|

Ds1 m1(θ1) m1(θ2) m1(θ3) . . . m1(θ2|Θ| )
Ds2 m2(θ1) m2(θ2) m2(θ3) . . . m2(θ2|Θ| )

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

DsM mM (θ1) mM (θ2) mM (θ3) . . . mM (θ
2|Θ| )

⎞

⎟⎟⎟
⎠
, (12)

where θ ∈ 2Θ. Considering the possible conflicts and infor-
mation redundancy among the evidence sources provided by
multiple source domains, we need to evaluate the reliability of
the evidence sources before processing them through a fusion
step.

1) Evaluation criteria: Two widely used criteria are applied
in our work which are described as follows:
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a) Distance degree: The average distance between Dsi

and other involved source domains Dsj are defined as follows:

daver(Dsi) =
1

M − 1
·
M−1∑

k=1

dBI(mDsi
(·),mDsk

(·)), (13)

where the interval distance dBI was proposed by Han [33],
and

• dBI(m1,m2) =
√

Nf ·
∑2n−1

ii=1 [dI(BI1(θii), BI2(θii))]2

• Nf is the normalization factor: Nf = 1/2(n−1),
• BI1(θii) : [Bel1(θii), P l1(θii)],
• BI2(θii) : [Bel2(θii), P l2(θii)],

• dI([a, b], [c, e]) =
√

[a+b
2 − c+e

2 ]2 + 1
3 [

b−a
2 − e−c

2 ]2.

For the interval distance degree (daver(Dsi)), it mainly
measures the difference between the specific domain Dsi itself
and other involved domains Dsi′ , i

′ ∈ {1, · · · ,M}, i′ ̸= i.
If this distance value is large, it means that this domain
is quite different from other domains, so the reliability of
this specific source domain is low and vice versa; Because
we consider “the lower is better” preference ordering for
daver(Dsi ), we multiply its values by -1 and we take as first
criterion Cr1 = −daver(Dsi ) to apply BF-TOPSIS formulas of
[25] that are established for “the greater is better” preference
ordering.

b) Imprecision degree: Within evidential reasoning, the
strife [34] is often used to determine the imperfection degree
within a BBA. The measure of strife is defined as:

St(m) = −
∑

θ∈F(m)

m(θ)log2[
∑

θ
′
∈F(m)

|θ ∩ θ
′

|

|θ|
m(θ

′

)], (14)

where |θ ∩ θ
′

| and |θ| refers to the cardinality of the subset
θ ∩ θ

′

and θ.

As the formula (14) defines, St(m) does not describe the
relationship between domains. It mainly measures the impre-
cision degree within the BBA and the value is determined
by the belief masses of the focal elements in the BBA:
if the output of local domain (Ds1 ) classifier is denoted
as m1(θ1) = m1(θ2) = · · · = m1(θ2|Θ|) = 1/(2|Θ|),
the value of St(m1) is largest which means that this BBA
cannot give help to make the final decision; On the contrary,
m1(θ1) = 1,m1(θ2) = m1(θ3) = · · · = m1(θ2|Θ|) = 0, the
value of St(m1) is smallest because we can make the final
decision (θ1) easily according to the principle of maximum
probability. Because we also consider “the lower is better”
preference ordering for the strife measure, we multiply its
values by -1 and consider as 2nd criterion Cr2 = −St(m)
in order to apply BF-TOPSIS formulas [25].

2) Evaluation of source domains’ reliabilities:

a) Scoring matrix: We first compute the reliabilities of
multi-source domains according to each criterion Crj , j =

1, · · · , Nc (in this paper, Nc = 2) and then scoring matrix S

can be generated as follows:

⎛

⎜⎜⎜
⎝

Ds1 Ds2 Ds3 . . . DsM

Cr1 S1(Ds1 ) S1(Ds2 ) S1(Ds3 ) . . . S1(DsM )
Cr2 S2(Ds1 ) S2(Ds2 ) S2(Ds3 ) . . . S2(DsM )

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

CrNc SNc(Ds1 ) SNc(Ds2 ) SNc(Ds3 ) . . . SNc(DsM )

⎞

⎟⎟⎟
⎠
, (15)

b) Construction of local BBA for source domain Dsi :

mj(Dsi) ! Belj(Dsi); (16)

mj(D̄si) ! Belj(D̄si) = 1− Plj(D̄si); (17)

mj(Dsi ∪ D̄si) ! Plj(Dsi)−Belj(Dsi ). (18)

Here, if we treat all involved source domains Ds1 , Ds2 ,
. . . , DsM in (15) as the abstract focal elements in a special
FoD: ΘD = {Ds1 ,Ds2 , · · · ,DsM }. D̄si is defined as the
complement of Dsi in ΘD. Besides, Belj(Dsi), Plj(Dsi) and
Belj(D̄si) in (18) are defined as follows [25]:

Belj(Dsi) !
Supj(Dsi

)

Dj
max

=

∑
k∈{1,··· ,M}|Sj(Dsk

)≤Sj(Dsi
)
|Sj(Dsi

)−Sj(Dsk
)|

maxiSupj(Dsi
) ,

(19)

Belj(D̄si) !
Infj(Dsi

)

Dj
min

=
−

∑
k∈{1,··· ,M}|Sj(Dsk

)≥Sj(Dsi
)
|Sj(Dsi

)−Sj(Dsk
)|

miniInfj(Dsi
) ,

(20)

Plj(Dsi) ! 1−Belj(D̄si),

where the Belj(Dsi) is the belief of Dsi as the evidential
support of hypothesis: “Dsi is better than its competitors D̄si”
and the definition of Belj(D̄si ) is similar to Belj(Dsi).

c) BF-TOPSIS method [25]:

• Step 1: From the score matrix S, compute BBAs
mij(Dsi), mij(D̄si) and mij(Dsi ∪ D̄si) using (18);

• Step 2: Calculate dBI(mij ,mbest
ij ) and

dBI(mij ,mworst
ij ), where mbest

ij (Dsi) ! 1 and

mworst
ij (D̄si) ! 1 represent the best and worst ideal

BBAs, respectively;
• Step 3: Calculate dBI(mij ,mbest

ij ) and
dBI(mij ,mworst

ij ):

dbest(Dsi) !
Nc∑

j=1

wj · dBI(mij ,m
best
ij ); (21)

dworst(Dsi) !
Nc∑

j=1

wj · dBI(mij ,m
worst
ij ). (22)

• Step 4: Calculate the closeness degree:

Closeness(Dsi ,D
best
s ) !

dworst(Dsi)
dworst(Dsi) + dbest(Dsi)

. (23)

• Step 5: Compute the weights of each source domain based
on Closeness(Dsi ,D

best
s ) ∈ [0, 1] using (24):

ω(Dsi) !
Closeness(Dsi ,D

best
s )

∑M
i=1 Closeness(Dsi ,Dbest

s )
. (24)
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D. Final combination with discounting and PCR5 rule

Once the weights of all local-invariant classifiers learned
from source domains are derived, we just discount the final
classification results which have been represented by BBAs.
And the specific discounting rule is presented as follows for
i = 1, . . . ,M :

{
m̃i(θ) = ωi ·mDsi

(θ) , θ ∈ 2Ω, θ ̸= Ω

m̃i(Ω) = 1− ωi + ωi ·mi (Ω)
. (25)

One can see that the mass assigned to each focal element is
proportionally transferred to Θ by the given weighting factor
ωi. Thus, the small weighting factor will cause a big increase
of mass of belief committed to ignorance. These M discounted
classification results can be combined sequentially using the
PCR5 fusion rule as (2) by

mfusion = ((m̃1 ⊗ m̃2)⊗ m̃3) · · · ⊗ m̃M . (26)

where ⊗ symbol denotes the fusion rule.
To reduce the computational complexity of fusion rules,

we consider the reduced power set (i.e., 2Θreduced =
{θ1, θ2, · · · , θn,Θ}), which only includes singletons and Θ in
the following activity recognition problem. Finally, according
to the combination of multiple classification results provided
by different source domains, a classification decision is made
on the unlabeled samples in the target domain. In this paper,
the final decision of the predicted class can be made as
θ∗ = arg Â ± maxθm(θ) where θ is a singleton of the 2Θ

based on the max of belief mass. And the brief framework
of w-MSDAER is given in Fig.2, and the pseudo-code is
described in Algorithm 1.

Figure 2. Framework of Our Proposed Method for Cross-Domain Activity
Recognition.

IV. EXPERIMENTAL EVALUATION

In this part, our proposed w-MSDAER has been compre-
hensively evaluated on two open source datasets: the daily
and physical activity dataset (DSADS)3 [35] and the physical
activity monitoring dataset (PAMAP2)4 [36]. Our experiments
mainly focus on two types: 1) cross-position HAR; 2) cross-
person HAR. In the following subsections, we first introduce
the experimental setting in detail. And then, the related recog-
nition results and the analysis of parameter sensitivity are

3https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities.
4https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring.

Algorithm 1: w-MSDAER for HAR

Input: M labeled source domains: Ds1 ,Ds2 , · · · ,DsM ; Source

domain Dsi = {(xDsi
u , y

Dsi
u )}Ns

u=1
and target domain

Dt = {xDt
v }Nt

v=1
.

Output: Prediction of the labels of target domain yDt .
1 Initialize: manifold subspace dimension d; regularization parameter

η, λ,ρ and #neighbor p; Iteration;
2 Training of Local Domain-Invariant Classifiers:
3 for i = 1, · · · ,M do
4 Learn the transformed mainfold feature using GFK:

ziu = g(xi
u);

5 Train a basic classifier using Dsi and predict on Dt to get its
labels ŷDt ;

6 Construct kernel Ki using ziu, z
i
v ;

7 Repeat:
8 Compute (M0)uv and (Mh)uv using (7) and (8);
9 Calculate β∗ using (11) and obtain fDsi

via the representer
theorem in (4);

10 Update the soft label of Dt, ŷDt = fDsi
(zu);

11 Until Convergence;
12 Output: classifier fDsi

;
13 end
14 Calculation of Discounting Factors:
15 Construct the BBAs matrix (15) and compute the scoring matrix S

using two criteria (13) and (14);
16 Calculate the weights of all involved BBAs using (24);
17 Update the BBAs based on the discounting rule (25);
18 Fusion Step: mfusion = ((m̃1 ⊗ m̃2)⊗ m̃3) · · · ⊗ m̃M ;
19 Decision Step: Take as decision the maximum of belief mass of

singleton focal elements θ∗ = arg Â±maxθmfusion(θ);
20 final ;
21 return Prediction of labels of target domain yDt .

briefly presented. Similar to [9], [19], it is worth noting that
different domains here refer to different sensor positions or
different persons in cross-position HAR or cross-person HAR
problems.

A. Data Set Description

In the HAR field, the mentioned two datasets: DSADS and
PAMAP2 have been widely used. The DSADS dataset mainly
includes nineteen activities, which were repeated by eight
subjects. Those raw data collections mostly come from five
IMUs located on the torso (T), right arm (RA), left arm (LA),
right leg (RL), and left leg (LL). To facilitate the discussion,
in this article, we only consider four subjects (Subject 1 to
4) and ten everyday activities in daily life (sitting, standing,
lying on back and right side, ascending and descending stairs,
standing in an elevator still, moving around in an elevator,
walking in a parking lot and walking on a treadmill with a
speed of 4 km/h). For the PAMAP2 dataset, due to lack of
data, we only selected a subset of three people (Subject1-3)
and four activities (lying, sitting, standing, and walking) for
our following discussions about cross-domain HAR. And in
PAMAP2, those involved wearable IMUs were installed on
three different body positions: arm, chest, and leg.

B. Experimental Setup

Similar to [22], [37], we do not use the original time series
data. Instead, we classify those unlabeled activity data based
on the artificial features. Specifically, we use z-score [22], [37]
to standardize the data, and combine the data from the three
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axes of one sensor by using the simple averaging method given
by [22], [37]. Then, we segment the data using a 5s-window-
size and 3s-step-length moving window. Afterwards, 27 time
and frequency features are extracted for a single sensor, and
more details about feature representation can be referred to
[37]. Finally, the values of extracted features are normalized
into the interval [-1,1]. In this paper, we directly use these
processed activity data after feature extraction and normaliza-
tion, which can be downloaded from the link5. In the com-
parison experiments, we compare our proposed w-MSDAER
with those baseline methods to illustrate the effectiveness of
our proposed algorithm. Those discussed baseline methods
include 1-nearest neighbor (1-NN), support vector machine
(SVM), random forest (RF), extreme value learning machine
(ELM); single-source domain adaptation methods, namely
hierarchical transfer learning (STL), It performs marginal
distribution within a group, joint distribution adaptation (JDA),
balanced distribution adaptation (BDA), TNNAR and DaNN;
multi-source domain adaptation methods, namely CoDATS,
ELM+DS, ELM+PCR5, BDA+DS, BDA+PCR5, JDA+DS,
JDA+PCR5, JDA+WDS. Here, these seven mentioned multi-
source domain adaptations are manually generated according
to the very simple principle: for each domain, we first use
the baseline models such as ELM, BDA, JDA to learn the
basic classifier, and then the outputs of these basic models
are combined by using the classical DS rule (1), PCR5 rule
(2) and weighted dempster rule (WDS) in the decision-level
fusion. Besides, the hyperparameters in classical domain adap-
tation approaches were all determined in the same manner as
previous references [11], [37]. For our proposed w-MSDAER,
we set the main feature dimension d = 30, the number
of iterations is set to 10, and the regularization parameters:
η = 0.1, λ = 10, ρ = 1.0 and p = 10.

C. Measure of Performances

In this paper, we use Accuracy to measure the performance
of w-MSDAER, which is defined by [38]

Accuracy =
1

n

n∑

h=1

TPh + TNh

TPh + TNh + FPh + FNh
, (27)

where h denotes class index and n is the number of classes.
TPh, TNh, FPh and FNh are respectively True Positives: TP,
True Negatives: TN, False Positives: FP and False Negatives:
FN.

D. Results and discussions

For cross-position and cross-person HAR tasks, Tables I and
II show the classification results of the proposed w-MSDAER
compared to the classical single-source domain adaptation
methods. In these two Tables, for convenience, we simply
use “source domain→target domain” to name the specific
cross-domain HAR tasks. For example, “RA→LA” means that
the source domain is the data from the right arm and the

5https://github.com/jindongwang/activityrecognition.

target domain is the data collected from the left arm in cross-
position HAR; “St1→St2” means that the source domain is
from subject1 and the target domain is from subject2 in cross-
person HAR task. Table I shows that in the cross-position HAR
experiments, w-MSDAER is superior to other methods in most
cases. In particular, compared with traditional models (such as
1-NN, SVM, RF, and ELM), w-MSDAER can achieve higher
classification accuracy in most cases, which indicates that w-
MSDAER can guarantee a stable positive transfer in the cross-
domain HAR task. In comparison with other transfer learning
methods, especially JDA and TNNAR, the accuracy of w-
MSDAER is improved by more than 10% and 2% respectively.
This phenomenon further shows that the multi-source weighted
domain adaptation method with evidential reasoning is an
effective strategy to solve the cross-location HAR problem.
Table II also shows a similar comparative phenomenon on
the cross-person HAR. Another interesting observation is that
the performances of most methods on cross-position HAR are
relatively lower than those on the cross-person HAR. This is
mainly because less involved sensor data are used in the cross-
position HAR. However, these classical domain adaptations
methods only consider one source domain to solve the transfer
learning tasks. Differently, w-MSDAER performs multi-source
fused domain adaptation. Compared with the single source
domain, w-MSDAER reduces the uncertainty at the final
decision layer and gives more accurate predictions. These
characteristics lead to the best performance among compared
single source domain-based DA methods.

In addition, we have also compared our method with the
multi-source domain adaptive methods in multi-source cross-
position and cross-person tasks, and the results are shown in
Table III and Table IV. For convenience, we also simply use
“multi-source domains→target domain” to name the specific
multi-source cross-domain HAR tasks. For example, “T, RA,
RL→LA” means that the source domains are the data from
the right arm, right leg, torso and the target domain is the
data collected from the left arm in cross-position HAR. “St1,
St3→St2” means that the source domains are collected from
subject1, subject3 and the target domain is from subject2 in
cross-person HAR task. Overall, deep multi-source domain
adaptation methods (CoDATS and CoDATS+WS) are bet-
ter than the classical shallow multi-source domain adaptive
methods. It is mainly because the deep multi-source domain
adaptive methods can extract the depth features based on the
depth network to complete the distribution matching of the tar-
get domain. However, our proposed w-MSDAER outperforms
the CoDATS and CoDATS-WS. The main reason is that the
traditional multi-source domain adaptation (both shallow and
deep ones) does not evaluate the reliabilities of source domains
from multiple perspectives. This is the main innovation of
this paper, which has been clearly pointed out as our main
contribution.

In order to clearly show the difference between w-MSDAER
and Liu’s method in [19], we also use Liu’s method [19] to
obtain the reliabilities of the involved domains for the final
discounting steps in cross-position and cross-person tasks. In
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Table I
ACCURACY (%) COMPARISONS BETWEEN SINGLE-DOMAIN ADAPTATIONS AND W-MSDAER ON CROSS-POSITION HAR.

Method 1NN SVM RF ELM STL JDA BDA TNNAR DaNN w-MSDAER
Dataset Task
12*DSADS T→LA 54.5 40.17 37 45.90 42.67 66.17 53.67 54.76 55.86

RA→LA 76.17 68.33 49.17 74.80 68.33 76 68.33 73.02 70.07 80.67
RL→LA 42.33 30.17 37.5 44.82 38 65.5 48.67 48.84 49.82
RA→T 63 66.5 47.83 58.67 67.17 61.17 65 66.25 64.74
LA→T 57.17 50.17 38.83 49.17 51.33 59.83 58.17 66.34 54.54 69.33
RL→T 40.17 42.83 41.83 40.17 50.67 45.67 47.67 53.79 55.53
T→RA 56 52.33 43.5 59.83 54.33 70.67 57.5 70.92 79.91
LA→RA 72.5 71.5 66.67 73.17 72.5 69.5 69.33 85.31 59.91 91.67
RL→RA 47.17 38.33 47 45.83 53.67 66.83 49.5 62.24 60.48
T→RL 51.5 47.17 51.83 24.83 47.67 57.83 53.33 65.09 61.77
RA→RL 56.83 59.33 46.17 51.33 56.5 66 59.17 63.67 62.24 62.33
LA→RL 55.67 50.83 56.83 42.33 51.83 51.67 55.17 62.78 65.35

6*PAMAP2 Chest→Arm 46.25 9.58 39.44 31.19 40.56 55.28 59.74 57.02 54.84
Leg→Arm 38.75 31.81 27.36 37.13 37.08 43.56 53.14 53.20 55.67 61.94
Arm→Chest 34.03 26.53 29.44 39.27 36.11 51.16 51.82 54.13 54.43
Leg→Chest 28.89 21.67 32.5 32.84 30.83 32.84 26.07 57.16 57.71 65.00
Arm→Leg 41.39 24.71 33.19 43.23 33.47 47.69 49.67 54.15 58.83
Chest→Leg 35.42 22.92 35.83 34.82 35.28 47.19 39.6 51.28 50.74 71.39

Average 49.87 41.93 42.32 46.07 48.22 57.47 53.64 61.10 59.64 71.76

Table II
ACCURACY (%) COMPARISONS BETWEEN SINGLE-DOMAIN ADAPTATIONS AND W-MSDAER ON CROSS-PERSON HAR.

Method 1NN SVM RF ELM STL JDA BDA TNNAR DaNN w-MSDAER
Dataset Task
12*DSADS St2→St1 57.17 48.5 54.33 66.33 52.83 57.33 74.17 76.23 69.02

St3→St1 51.67 50.67 38 40 50.17 47.33 51.83 65.21 60.48 78.50
St4→St1 40.67 49.33 45.33 43.33 49 39.67 66.5 82.35 71.25
St1→St2 58 56.67 47.83 59.67 56.5 59.5 70.33 80.44 79.91
St3→St2 70.5 71.5 73.33 63.5 76.67 69.67 65.62 85.61 80.29 88.67
St4→St2 57.5 53.83 53.83 58.5 61.17 57 67 68.79 63.23
St1→St3 50 47.67 43.33 48.5 48.83 41 54.17 60.37 55.42
St2→St3 67.33 71.33 84.67 69.67 83.33 69 74.5 82.47 80.58 80.00
St4→St3 63.33 64.5 69.5 57 71 67.83 62.5 78.86 77.49
St1→St4 46.17 47.83 48.17 42.33 49.83 37.33 47.17 69.02 69.13
St2→St4 68.33 64.33 73.33 57.67 71 62 69.83 73.45 71.28 71.50
St3→St4 63 61.17 57.83 61 65 66 63.67 68.74 68.13

6*PAMAP2 St2→St1 59.72 50.28 51.11 50.5 51.11 64.44 61.39 66.44 62.15
St3→St1 58.61 51.11 51.11 50 51.11 60.28 58.89 62.91 65.42 65.28
St1→St2 61.01 52.41 51.65 50.63 52.66 70.38 64.81 70.39 65.27
St3→St2 51.9 82.03 93.67 73.92 83.04 66.33 65.57 85.49 80.24 78.99
St1→St3 57.18 50.65 50.13 39.43 50.65 59.27 58.49 66.34 62.17
St2→St3 65.01 77.81 79.63 77.81 78.07 68.41 72.32 77.49 76.23 68.41

Average 58.17 58.40 59.27 56.10 61.22 59.04 63.82 73.16 69.87 75.91

Table III
ACCURACY (%) COMPARISONS BETWEEN MULTI-DOMAIN ADAPTATIONS AND W-MSDAER ON CROSS-POSITION HAR.

Method ELM+DSELM+PCR5BDA+DSBDA+PCR5JDA+DSJDA+PCR5JDA+WDSCoDATSCoDATS-WSw-MSDAER
Dataset Task
4*DSADS T, RA, RL→LA 73.33 65.33 50.83 65.50 70.33 74.67 77.83 75.27 82.42 80.67

RA, LA, RL→T 60.00 58.50 36.67 56.67 65.17 67.54 66.89 64.58 62.01 69.33
T, LA, RL→RA 82.67 79.83 49.67 68.17 65.18 72.67 73.41 85.55 84.38 91.67
T, RA, LA→RL 50.17 47.00 48.83 65.00 52.83 59.50 62.82 56.12 62.00 62.33

3*PAMAP2Chest,Leg→Arm 71.11 72.22 61.11 65.28 69.17 69.44 69.80 54.74 58.29 61.94
Arm,Leg→Chest 53.89 61.94 53.96 56.94 55.56 55.83 60.78 60.31 64.93 65.00
Arm,Chest→Leg 50.82 44.72 56.67 56.94 67.22 67.78 65.88 68.16 69.60 71.39

Average 63.14 61.36 51.11 62.07 63.64 66.78 68.20 66.39 69.09 71.76
Win/Total 0/7 1/7 0/7 1/7 0/7 0/7 0/7 0/7 1/7 4/7
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Table IV
ACCURACY (%) COMPARISONS BETWEEN MULTI-DOMAIN ADAPTATIONS AND W-MSDAER ON CROSS-PERSON HAR.

Method ELM+DS ELM+PCR5 BDA+DS BDA+PCR5 JDA+DS JDA+PCR5 JDA+WDS CoDATS CoDATS-WS w-MSDAER
Dataset Task
4*DSADS St2, St3, St4→St1 40.67 34.83 31.50 52.87 53.33 54.83 60.29 76.58 76.77 78.50

St1, St3, St4→St2 65.67 59.00 49.00 73.83 52.50 79.00 79.86 82.24 87.11 88.67
St1, St2, St4→St3 55.33 56.50 45.30 67.00 53.67 77.00 78.49 72.78 75.41 80.00
St1, St2, St3→St4 58.50 48.67 42.00 64.83 37.83 63.67 66.28 64.75 64.49 71.50

3*PAMAP2 St2, St3→St1 47.50 45.83 56.67 59.44 61.67 63.33 62.30 66.43 68.16 65.28
St1, St3→St2 54.18 58.73 65.06 70.38 72.15 72.66 75.39 71.63 74.18 78.99
St1, St2→St3 49.87 49.35 57.44 66.32 68.15 71.02 71.48 60.39 71.61 68.41

Average 53.10 50.41 49.56 64.95 57.01 68.78 70.58 70.68 73.96 75.91
Win/Total 0/7 0/7 0/7 0/7 0/7 0/7 0/7 0/7 2/7 4/7

Table V
COMPARISONS BETWEEN WEIGHT CALCULATION ON [19] AND W-MSDAER ON CROSS-POSITION (T,RA,RL→LA; RA,LA,RL→T) AND

CROSS-PERSON (ST2,ST3,ST4→ST1; ST1,ST3,ST4→ST2) FOR DSADS DATASET.

T,RA,RL→LA RA,LA,RL→T
Cross-Position Tasks Weights of Source Domains Accuracy(%) Weights of Source Domains Accuracy(%)

T RA RL LA RA LA RL T
Weight Calculation in [19] 0.3294 0.3407 0.3299 80.5 0.3333 0.3321 0.3346 66.83

Distance 0.2902±0.28830.3743±0.26020.3355±0.2773 79.67 0.3516±0.26980.3681±0.28600.2803±0.1815 68.5
Imprecision 0.2914±0.18110.5230±0.15840.1856±0.0413 77.67 0.4826±0.26170.3442±0.27550.1732±0.0469 68.33

Our ApproachMulti-Criteria 0.2914±0.20450.4407±0.12070.2669±0.2018 80.67 0.4132±0.14850.3562±0.18420.2306±0.1978 69.33

St2,St3,St4→St1 St1,St3,St4→St2
Cross-Person Tasks Weights of Source Domains Accuracy(%) Weights of Source Domains Accuracy(%)

Subject 2 Subject 3 Subject 4 Subject 1 Subject 1 Subject 3 Subject 4 Subject 2
Weight Calculation in [19] 0.3336 0.3332 0.3332 78 0.3316 0.334 0.3344 78.33

Distance 0.4635±0.22350.3017±0.26260.2349±0.1600 78.17 0.3674±0.27060.3951±0.27120.2376±0.1695 90
Imprecision 0.3121±0.26440.4786±0.30000.2093±0.1760 72.17 0.3136±0.29660.3732±0.29510.3131±0.3068 83.33

Our Approach Multi-Criteria 0.4012±0.16010.3753±0.16760.2234±0.1974 78.5 0.3407±0.19050.3861±0.17470.2732±0.2000 88.67

Table VI
COMPARISONS BETWEEN WEIGHT CALCULATION IN [19] AND W-MSDAER ON CROSS-POSITION (T,LA,RL→RA; T,RA,LA→RL) AND

CROSS-PERSON (ST1,ST2,ST4→ST3; ST1,ST2,ST3→ST4) FOR DSADS DATASET.

T,LA,RL→RA T,RA,LA→RL
Cross-Position Tasks Weights of Source Domains Accuracy(%) Weights of Source Domains Accuracy(%)

T LA RL RA T RA LA RL
Weight Calculation in [19] 0.3298 0.3398 0.3304 92.67 0.3342 0.3336 0.3322 60.33

Distance 0.2950±0.2773 0.4171±0.2642 0.2879±0.2729 89 0.2462±0.1674 0.3399±0.2636 0.4138±0.2632 61.5
Imprecision 0.3552±0.2864 0.4566±0.2683 0.1882±0.0684 84 0.2693±0.1101 0.3918±0.1786 0.3390±0.1856 61

Our ApproachMulti-Criteria 0.3261±0.1937 0.4317±0.14270.2422 ±0.1951 91.67 0.3261±0.1937 0.3261±0.1937 0.3261±0.1937 62.33

St1,St2,St4→St3 St1,St2,St3→St4
Cross-Person Tasks Weights of Source Domains Accuracy(%) Weights of Source Domains Accuracy(%)

Subject 1 Subject 2 Subject 4 Subject 3 Subject 1 Subject 2 Subject 3 Subject 4
Weight Calculation in [19] 0.3314 0.3342 0.3344 73.83 0.3313 0.3345 0.3342 68.5

Distance 0.3034±0.2784 0.3608±0.2687 0.3358±0.2832 78.83 0.2032±0.1613 0.4576±0.2489 0.3391±0.2603 70.83
Imprecision 0.3034±0.2784 0.3608±0.2687 0.3358±0.2832 76.60 0.2439±0.0931 0.3777±0.28500.3784±0.2901 71

Our Approach Multi-Criteria 0.2924±0.2019 0.3879±0.1843 0.3197±0.1974 80 0.2298±0.1852 0.3637±0.27980.4065±0.2884 71.5

order to realize the weight calculation of Liu’s method in [19],
we follow the specific steps given in [19] to use the A-distance
[39] to measure the distribution differences between source
and target domains before and after distribution matching.
Then, the derived distances are applied to calculate the weights
of source domains for the final discounting steps. In addition,
we also discuss the performance of w-MSDAER by using
one single index and multi-criteria indexes. In Table V and
VI, Distance means that we only use the single distance
degree (13) to evaluate the weights of BBAs in w-MSDAER;
Imprecision means that only the single imprecision degree (14)
is applied in w-MSDAER; Multi-Criteria means that both the
mentioned two indexes (13) and (14) are used in our method.

The results have been given in TableV and VI. In general,
w-MSDAER with the multi-criteria strategy performs best
except the two sub-tasks (St1,St3,St4→St2; T,LA,RL→RA).
The main reason is that for each test sample, w-MSDAER aims
to use the multi-criteria strategy (BF-TOPSIS) to evaluate the
reliabilities/weights of the corresponding BBAs derived from
classifiers trained by source domains.

To analyze the performance of w-MSDAER further, we
present the confusion matrix in Fig.3. This figure shows the
confusion matrix of RA, LA, RL→T tasks on the DSADS
dataset (subject 1). We can find that w-MSDAER can achieve
an accuracy more than 90% for those dynamic activities such
as ascending and descending stairs, standing in an elevator
still, moving around in an elevator, walking in a parking lot
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Figure 3. Confusion matrix of w-MSDAER on RA,LA,RL → T tasks on
the Cross-Position DSADS dataset.

Figure 4. Ablation Study for Cross-Position and Cross-Person Tasks in
DSADS Dataset.

and walking on a treadmill. However, there is some high
misclassification between those static activities which includes
sitting, standing, lying on back and right side. This can be
explained by the fact that signals collected from sensors
located on RA, LA, RL often have the similar features for
the static activities.

E. Ablation Studies for Cross-Position and Cross-Person Tasks

Our proposed method w-MSDAER mainly includes two
important parts: local domain-invariant learned classifier and
decision-level weighted fusion strategy based on BF-TOPSIS.
To further verify the effectiveness of our method, we design
ablation experiments to evaluate the performance of various
variant w-MSDAER from multiple perspectives. On the one
hand, we ensure that the final fusion rules remain unchanged
and adjust the local adaptive model. That is, we adjust MEDA
in w-MSDAER to ELM, BDA, and JDA, respectively. From
Table III and IV, original w-MSDAER performs better than
other variants. On the other hand, we keep MEDA as the base
model without adjustment. And we aim to adjust the fusion

strategy in the decision level and the evaluation criteria in BF-
TOPSIS. In this case, four variants are considered: MEDA +
AverageFusion, w-MSDAER (distance), w-MSDAER (impre-
cision), and original w-MSDAER. MEDA + AverageFusion
means that we first obtain several classifiers from multi-
source domains based on MEDA, and then the results of these
classifiers are combined by the average fusion; w-MSDAER
(distance) and w-MSDAER (imprecision) means that we just
use one criterion (daver (13) or St(.) (14)) to evaluate the
weights of source domains. The comparison results are shown
in Fig.4. As we can see in this study, our proposed w-
MSDAER outperforms all variants, which demonstrates the
effectiveness of our method.

F. Parameter analysis

Similar to other state-of-the-art transfer learning methods
[9], [22], we did also conduct a sensitivity analysis on the key
parameters of w-MSDAER.

1) Subspace dimension d and neighbor p: In this part,
the sensitivity of d and p have been investigated through
experiments with a wide range of d ∈ {5, 10, · · · , 45} and
p ∈ {10, 20, · · · , 100}. These related parameters were selected
for two experiments: DSADS cross-position HAR (Fig.5 (a)
and (b)) and PAMAP2 cross-person HAR (Fig.6 (a) and (b)).
It can be observed that w-MSDAER was robust with regard
to different values of d and p. Besides, for the cross-position
HAR task, the accuracy of the sub-task: T, LA, RL → RA
performed better than others, and for cross-person HAR, St1,
St3 → S2 showed its best performance. The difference of
transferring effect between different positions and persons
further shows that it is difficult to achieve high-precision
activity recognition by relying on a single source domain. And
in the process of domain adaptation, it is necessary to evaluate
the reliabilities of all involved source domains.

2) Regularization parameter λ and iteration: We also
ran w-MSDAER, where the regularization parameters λ
and iteration have a wide range of values, respectively.
Specifically, the choices of these two important parame-
ters are: λ ∈ [0.1, 0.5, 1, 10, 100, 1000] and Iteration ∈
[1, 5, 10, 15, 20, 25, 30]. Similarly, we observed that w-
MSDAER could achieve robust performance over a wide range
of parameter values in Fig.5 (c) and (d), Fig.6 (c) and (d).
Besides, for the cross-position HAR task, the worst accuracy
of the w-MSDAER algorithm is only 1.41% worse than its best
accuracy. As the number of iterations increases, the accuracy
does not decrease or increase. These results indicate that w-
MSDAER is not very sensitive to the size of the iteration.

3) Time complexity: To evaluate the time complexity of
w-MSDAER, on the DSADS and PAMAP2 datasets, we
compared the running time of our method with classical
domain adaptation methods on cross-position and cross-person
HAR tasks. The running platform is MatlabTM on a personal
laptop, using Intel Core i7-6810HQ CPU@3.40 GHz and
32.00 GB RAM. The running time is shown in Table VII. In
comparison, the time complexity of BDA and w-MSDAER
is significantly higher than other mentioned methods. This
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(a) Subspace Dimension d (b) # Neighbor p (c) Regularization Parameter (d) Convergence

Figure 5. Classification Accuracy for DSADS Cross-Position HAR w.r.t. d, p, and λ, respectively. (d) Convergence Analysis.

(a) Subspace Dimension d (b) # Neighbor p (c) Regularization Parameter (d) Convergence

Figure 6. Classification Accuracy for PAMAP2 Cross-Person HAR w.r.t. d, p, and λ, respectively. (d) Convergence Analysis.

Table VII
TIME COMPLEXITY COMPARISON (S)

Method STL JDA BDA w-MSDAER
Dataset Task
2*DSADS Cross Position 6.0650 12.3572 27.8737 57.3987

Cross Person 5.9608 16.0091 30.1911 62.1064
2*PAMAP2 Cross Position 4.1261 1.7503 4.3576 5.5263

Cross Person 4.7962 2.5645 5.4725 5.0670

is mainly because w-MSDAER involves reliability evaluation
and integrated fusion process. To reduce the time complexity
of w-MSDAER, our future work will focus on the use of
faster fusion rules and simpler domain reliability evaluation
strategies.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel multi-source weighted
domain adaptation with evidential reasoning (w-MSDAER)
approach for cross-domain activity recognition. Compared to
existing works, w-MSDAER first learns the domain-invariant
classifiers from multi-source domains. Then, these classifiers
have been evaluated by BF-TOPSIS and then fused with
the discounting PCR5 rule. Finally, we conducted extensive
experiments on two publicly available activity classification
datasets. The results show that the w-MSDAER algorithm is
superior to other advanced traditional and domain adaptation
algorithms. In future works, we will focus on researching
more robust evaluation methods for the reliability of source-
domain. Besides, we will attempt more cautious decision-
making strategies [19] based on belief functions to assign an
unknown activity to the set of the classes, and if possible,

we will also evaluate the improved versions of PCR rules of
combinations that are currently under development.
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Abstract—This paper presents a generic a flexible user-oriented
rusted toolbox for information fusion. This framework imple-
ments common belief or belief-derived functions. It implements
combination rules in a generic way by means of rule definitions
based on referee functions. It implements two logical frameworks,
powersets and taxonomies, to define beliefs. The framework
is based on a multithreaded and asynchronous architecture,
which also makes it possible to deploy the software on multiple
machines. The architecture is highly modular and adaptive,
allowing simple definition and layout of the software using
editable configuration files. One of the objectives is to modularize
and compare both computation engines and user interfaces. The
rust programming language is used to implement the framework
because of its speed, security and efficiency in maintaining the
library code.
Keywords: rust, toolbox, belief functions, decision-making,
distance between BBAs.

I. INTRODUCTION

The page of the Belief Functions and Applications Society1,
lists some software and toolboxes dedicated to the computation
of belief functions and combination of belief functions. These
toolboxes are generally implemented in R, python or Matlab
languages. Toolbox ibelief [1], implemented in the R language,
especially offers a variety of possible rules and decision cri-
teria. Considering these already existing libraries, we need to
clarify our motivation for offering this new FURTIF2 toolbox.
Our motivation is fourfold.
(a) Use the full power of a system programming language.

The performance of languages such as MatLab, Python
or R is significantly lower than that of a system lan-
guage such as C, Rust (both of which are official Linux
kernel languages [2]) or C++. The reasons for this are
manifold and depend on the languages involved (typing
strategy, use of garbage collection, interpreted versus
compiled code). Often, optimized language components
are based on fast system language implementations. Typ-
ically, vectorization can offer better performance with
languages like R, MatLab and Python, but this limits
programming to vector data modeling. For our part, we
would like to have libraries that allow full freedom in the
implementation of data and methods. For this reason, we
need high-performance general-purpose languages such

1https://bfasociety.org
2FURTIF being the acronym of Flexible User-oriented Rusted Toolbox for

Information Fusion.

as system programming languages. In this environment,
we propose two types of lattice on which to represent
belief information. The first is obviously the powerset,
which provides a general Boolean algebra representation
based on bit vectors. The second is the taxonomy, which
is a lattice without negation operators or operator distribu-
tivity properties. The results of the combination rules are
significantly different for these two types of lattice. From
a propositional point of view, Boolean algebra allows a
finer representation of information than taxonomy, which
constrains knowledge to taxa. However, the use of a tax-
onomy allows real control of the combinatorial explosion,
and makes more sense from the point of view of the
human operator. A vector representation of the taxonomy,
although we are approaching it, is not necessarily the
most efficient. For this reason, we need to be able to
implement dedicated structures while maintaining a very
high level of performance.

(b) Easy-to-implement parallelization capabilities. The con-
cern for parallelism is, of course, a consequence of
the need for performance. There are many aspects to
managing parallelism, not least synchronism or asynchro-
nism, and secure data sharing. We need a programming
language that facilitates this. In addition, we are looking
for an agnostic approach to setting up exchange channels
between processes. In particular, this agnosticism presents
a certain difficulty in reconciling single-machine and
multi-machine modes of operation.

(c) Easily expand the toolbox. One of our objectives is
to enable users to easily adapt and extend the scope
of the toolbox. In this perspective, the possibility of
creating and testing new rules guides our approach. We
should mention our work presented in [3], in which we
described referee functions, a generic and semantically
meaningful way of defining rules for combining belief
functions; based on this work, we proposed a (now
obsolete) java library enabling these functionalities. This
kind of definition indeed can be combined with various
generic engines for effective fusion computation, enabling
the rule designer to limit his development efforts to rule
definition alone. Furthermore, as part of future perspec-
tives, we aim to make the software framework easily
extensible, typically with the possibility of including new
processing codes, new human-machine interfaces, and the
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possibility of interacting with other information process-
ing paradigms. All of this, again, with the intention of
being user-oriented. Here again, asynchronous parallelism
capabilities are an interesting prospect for this objective.

(d) Maintainability. From our point of view, it is essential
that our toolbox is easy to maintain. With this in mind,
we need the tools of a modern programming language,
and its environment, to facilitate and automate this task.
These tools can be grammatical, based on high-level
language expressivity, or managerial, based on the well
organization of internal or imported packages.

In fact, there are very few system programming languages
that have the qualities of a high-level language, with mecha-
nisms for securing access to data, particularly with a view to
parallelism or asynchronism. Rust language3, is among them.
For this reason, we have chosen the Rust language for our
toolbox project.

In the following sections, we proceed to:
• a brief overview of belief functions and referee fusion

approaches,
• a brief introduction to the Rust language, mentioning

some of its qualities and components,
• details of the framework we have developed. In particular,

we will detail our approach to implementing taxonomies
as lattices. We will present the FURTIF toolbox in its
global context, then focus on the particular aspects related
to belief functions, and finally present future develop-
ments of our work.

II. BELIEF FUNCTIONS

We begin this section of the paper with a quick introduction
to belief functions [4]–[6]. To begin with, we introduce the
notion of bounded lattice, which is a fairly general logical
support for the description of belief functions. Next, we
introduce the notion of belief mass, and then some belief and
other functions that can be derived from it. We then present
various rules for combining beliefs. Finally, we introduce the
notion of referee functions, which is a general formalism that
allows combination rules to be defined independently of the
implementation of rule computation processes.

A. Bounded lattices

A bounded lattice is a partially ordered set (L,≺,⊥,>)
with lower and upper bounds ⊥ and > in which any pair
of elements X,Y ⊂ L has a greater minorant X ∧ Y and
a lesser majorant X ∨ Y . It therefore follows that the lattice
induces two operators, ∧ and ∨, which have interesting logical
properties for representing the conjunction or disjunction of
two propositions respectively. In a general bounded lattice, the
operators ∧ and ∨ are associative and commutative. Bounded
lattices verify the absorption property X∧(X∨Y ) = X = X∨
(X∧Y ) and it is possible to retrieve the order relation X ≺ Y
from operators using the properties X ≺ Y ⇐⇒ X∧Y = X
or X ≺ Y ⇐⇒ X∨Y = Y . On the other hand, the operators

3www.rust-lang.org

∧ and ∨ are not necessarily distributive, and a bounded lattice
does not have a negation operator in all generality.

1) Powerset: Powersets are well-known examples of
bounded lattices, and are used in the vast majority of belief
function literature, as well as in the libraries mentioned in
the introduction. We define a frame of discernment (FoD) Θ,
which is the (finite) set of elementary propositions character-
izing the knowledge frame. The powerset 2Θ , {X ⊂ Θ}
is the set of subsets of Θ. The powerset is a bounded lattice
whose order relation is the ensemblistic inclusion ⊂ and whose
smallest and largest elements are respectively the empty set ∅
and the total set Θ. The conjunction and disjunction operators
are the set intersection and union ∩ and ∪ respectively. A pow-
erset is also a Boolean algebra, i.e. it is a distributive bounded
lattice (the operators ∩ and ∪ are distributive) which has a
negation operator ¬X , Θ \ X , i.e. verifying X ∩ ¬X = ∅
and X ∪ ¬X = Θ.

2) Taxonomy: In our (simplified) definition, a taxonomy is
a tree in which each node or leaf is characterized by a symbol
representing a proposition (a taxon). To this tree, we add as a
descendant of each leaf the impossible taxon ⊥ representing
a contradiction.

A

AA AAA

AAAA

AAAB

AB

ABA

ABB

ABBA

ABBB

ABC


⊥

Figure 1. Example of taxonomy (taxon names are unimportant, except for
the sake of presentation).

Figure 1 shows an example of taxonomy, where the set of
taxa is:

L = {A,AA,AAA,AAAA,AAAB,AB,
ABA,ABB,ABBA,ABBB,ABC,⊥}

The greatest taxon of this taxonomy is > = A while the
smallest taxon is ⊥. The disjunction between two taxa is the
closest common ancestor of both (or one of the taxa, if it is
an ancestor of the other). For example, we have the following
results:

ABA∨ABBA = AB ; AB∨⊥ = AB ; AB∨ABBA = AB

The conjunction between two taxa is the closest descendant
common to both (or one of the taxa, if it is a descendant of
the other). For example, we have the following results:

ABA∧ABBA = ⊥ ; AB∧⊥ = ⊥ ; AB∧ABBA = ABBA

In practice, the conjunction of two non-impossible taxa is ⊥
unless one of the taxa is a descendant of the other.
Considering these elements, it follows that a taxonomy is a
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bounded lattice. On the other hand, taxonomy has no negation
operator and is not associative, since:

(ABA ∧ABC) ∨ (ABB ∧ABC) = ⊥ ∨⊥ = ⊥ ,

while:

(ABA ∨ABB) ∧ABC = AB ∧ABC = ABC .

3) Motivation for using taxonomies instead of powersets:
The size of a powerset is exponential with respect to the size
of the discernment frame. In contrast, the size of a taxonomy
remains reasonable and controlled. This is particularly useful
for avoiding the combinatorial explosion in the calculation of
combination rules presented below. Another motivation is less
technical: a taxonomy has an immediate operational meaning
that a powerset does not.

B. Belief mass

A belief mass on the bounded lattice (L,≺,⊥,>) is defined
as a function:

m : L→ R+,

which verifies: ∑
X∈L

m(X) = 1 . (1)

We will not discuss here the possibility and interpretation
of having a non-zero mass put on the contradiction, that is
m(⊥) > 0. Our library allows for this situation, but does not
interpret it. But it is the user’s usage that will give m(⊥) its
semantics. In addition, certain belief functions derived from
masses and combination rules can assign a specific role to ⊥
or >.

C. Belief functions

Certain belief functions of particular interest can be derived
from belief masses, and this is implemented in the FURTIF
toolbox we propose. We briefly present their definitions with-
out going into further detail.

1) Implicability, credibility, commonality, plausibility: Let a
belief mass m be defined on the bounded lattice (L,≺,⊥,>).
Implicability of X ∈ L is defined as follows [7]:

b(X) =
∑

Y :Y≺X
m(Y ) .

Credibility of X ∈ L is defined as follows:

Bel(X) =
∑

Y :⊥6=Y≺X

m(Y ) .

The transformation of implicability into credibility, and vice
versa, is immediate.
Commonality of X ∈ L is defined as follows:

Q(X) =
∑

Y :X≺Y
m(Y ) .

Plausibility of X ∈ L is defined as follows:

Pl(X) =
∑

Y :Y ∧X 6=⊥

m(Y ) .

If the bounded lattice is a Boolean algebra of negation operator
¬, it is well known that plausibility and implicability are dual
by relation:

If L is a Boolean algebra, then Pl(X) = 1− b(¬X) . (2)

Under the assumption m(⊥) = 0, we obtain that b = Bel and
we find the well-known property, Pl(X) = 1 − Bel(¬X),
valid under this hypothesis.
The property (2) is irrelevant for a general bounded lattice.

2) Equivalence: On the lattice (L,≺,⊥,>), it is possible
to compute any of the functions m, b, Bel, Q, Pl from any
of the functions m, b, Bel, Q, see [7] for details.
If the bounded lattice is a Boolean algebra, then it is possible
to compute any of the functions m, b, Bel, Q from function
Pl thanks to duality (2). This property is false for general
bounded lattice.

3) Pignistic probability: Given a mass function m defined
on a powerset 2Θ, the pignistic probability on Θ is computed
from m by a cardinality ratio:

BetP ({θ}) =
∑

X:θ∈X

m(X)

|X|
.

In the FURTIF toolbox, a similar definition of pignistic
probability is proposed for taxonomies, based on a predefined
weight on each leaf. Note, however, that this kind of general-
ization is not suitable for all bounded lattices [9].

D. Combination rules

Let (L,≺,⊥,>) be a bounded lattice. We assume several
belief masses, m1, . . . ,mN , defined on L and obtained from
several sources of information. A key problem is to deduce
a fused belief mass from the various sources. The reference
combination rule is the Dempster-Shafer rule:

m1 ⊕ · · · ⊕mN (X) =
1

1− Z
∑

(Y1:N )∈LN
Y1∧···∧YN 6=⊥

∏
k=1:N

mk(Yk) .

The normalization term 1−Z fulfills condition (1). The value
Z is a measure of conflict between sources.

The conflict resulting from the combination of belief masses
is a problem that has led to a multiplication of viewpoints.
As a result, numerous rules have been proposed to deal with
the conflict differently. We will not go into them all, but
we will mention the following rule in particular, since we’ve
implemented them in our toolbox: conjunctive rule, disjunctive
rule, Dubois & Prade rule [11], PCR6 rule [10], which is an
example of proportional conflict redistribution rule [12].

E. Referee functions and combination rules

The Referee function was introduced in the DSmT book
3 in 2009 [12], but it followed some work on a probabilistic
version of PCR5 [13]. A presentation of the notion can also be
found in [3], as well as some more advanced thoughts in [8].
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1) General: Let’s assume a bounded lattice (L,≺,⊥,>)
and a sequence of belief masses m1:N defined on this lattice.
Let Y1:N be a sequence of propositions of L. Then the
conditional function X 7→ F (X|Y1:N ,m1:N ) defined for any
proposition X ∈ L is a referee function if it verifies:

F (·|Y1:N ,m1:N ) ≥ 0 and
∑
X∈L

F (X|Y1:N ,m1:N ) ∈ [0, 1] .

(3)
Given a referee function, it is then possible to define a
combination rule, where the merged belief mass takes the
form:

⊕ [m1:N |F ](X) =

1

1− Z
∑

Y1:N∈LN
F (X|Y1:N ,m1:N )

N∏
k=1

mk(Yk) . (4)

The normalization term 1−Z fulfills condition (1). The value
Z is a measure of conflict between sources for rule ⊕[·|F ].
We showed in [3], [8] that referee functions can be used to
define a large number of common rules and facilitate the
design of new custom rules. From an implementation point
of view, this formulation also makes it possible to distinguish:
• rule definition, which, for example, is left to the user if

he wishes to test customized rules. This is formalized by
F (X|Y1:N ,m1:N ) in (4),

• from the generic implementation of the
computation of this rule, which is formalized by∑
Y1:N∈LN · · ·

∏N
k=1mk(Yk) in (4).

Of course, the computation of the combination rule is the
generic part that must be handled by the toolbox.

2) Rules definitions: Given the logical proposition P , we
define [P ], the Iverson bracket [14] on P , by:

[P ] =

{
0 if P is false,
1 if P is true.

See also the appendix A for a note on this notation.

The toolbox implements the referee functions of the follow-
ing rules as standard:

a) Conjunctive rule:

F∧(X|Y1:N ,m1:N ) =

[
X =

∧
k=1:N

Yi

]
.

The rule produces no conflict, i.e. Z = 0, but can produce
non-zero mass on ⊥.

b) Disjunctive rule:

F∨(X|Y1:N ,m1:N ) =

[
X =

∨
k=1:N

Yi

]
.

The rule produces no conflict.
c) Dempster Shafer rule:

FDS(X|Y1:N ,m1:N ) =

[ ∧
k=1:N

Yi 6= ⊥

][
X =

∧
k=1:N

Yi

]
.

The rule produces conflict.

d) Dubois & Prade rule:

FDP (X|Y1:2,m1:2) = [Y1 ∧ Y2 6= ⊥] [X = Y1 ∧ Y2]

+ [Y1 ∧ Y2 = ⊥] [X = Y1 ∨ Y2] .

The rule produces no conflict.
e) PCR6 rule:

FPCR6(X|Y1:N ,m1:N ) =

[ ∧
k=1:N

Yi 6= ⊥

][
X =

∧
k=1:N

Yi

]

+

[ ∧
k=1:N

Yi = ⊥

] ∑
k=1:N mi(Yi) [X = Yi]∑

k=1:N mi(Yi)
.

The rule produces no conflict.
f) PCR# rule: Referee function of PCR# rule is al-

gorithmically defined in [3], [8]. This rule proportionally
redistributes the conflict over the largest possible consensuses
(a k-consensus is the non-empty intersection of k propositions
Yi). In comparison, PCR6 only redistributes on consensuses
of size 1 (single Yi). The rule produces no conflict.

III. RUST PROGRAMMING LANGUAGE

We feel it is important to outline the features of the Rust
language that can help us achieve the four objectives we set
out in the introduction. The aim here is not to give a formal,
detailed description of the language, and we shall restrict
ourselves to providing qualitative insights. Language learning
resources are available at [17].

A. System programming

To begin with, Rust is indeed a system language, insofar
as Rust is one of the 2 official languages, along with C, of
the Linux kernel [2], Microsoft has decided to use Rust code
to secure certain parts of the windows operating system (OS)
[15], and there is an OS, Redox, in the advanced development
phase, essentially based on the Rust language [16]. The Rust
language has thus won the support of major players in the
field of critical code development. From a practical point of
view, the motivations reported by these language users are
of several kinds. In particular, the language is recognized as
fast and optimized: it can be compiled as native code or as
web assembly code; it is based on direct memory management
and not on a garbage collector; it is based on a strong but
simple typing system; certain pointer characteristics enable
specific compiler optimizations. The language is recognized as
safe: pointers are characterized by pointer borrowing semantics
that greatly consolidate memory management and prevent
memory usage violations. This memory security also makes
this language ideal for parallel and asynchronous applications.

These features are of interest to us, as they offer the
prospect of fast, massive computational tools. The possibility
of parallelization also allows us to consider an increase in
computing power. But it also makes it easier to build a set of
modular tools that can be used to create complex applications
that can be deployed on several processes or machines.
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B. Secure memory and resources management with Rust

Rust’s secure use of memory is not based on a garbage
collector, but on direct access to memory through pointers,
constrained by borrowing semantics and data lifetime seman-
tics. This enables the compiler to ensure that memory and
resources are used legally and securely at compile time.
Borrowing semantics allow us to distinguish three states of
data:
• the process may have ownership of the data,
• the process may have a non-mutable pointer to the data,
• the process may have a mutable pointer to the data.

The semantics then guarantee either that there can only be a
single mutable access to the data, or that there are one or more
non-mutable accesses to the data. This ensures that processes
do not use memory in a conflicting way.

Data lifetime semantics enable the compiler to trace
throughout the code that the use of a data item is valid given its
lifetime. Of course, this contributes to the automatic allocation
and deallocation of memory, but it also makes it possible to
condition memory usage in parallelized contexts.

C. Type and trait

The multiparadigm of Rust and all its libraries, including
standard ones, is based on two hierarchies: a data hierarchy
(Type) and a functional hierarchy (Trait).

1) Type hierarchy: The type hierarchy is the result of the
type construction mechanism:
• primitive types such as integers, reals, characters, . . .
• structures made up of several sub-type fields and

pointers,
1 struct MyStructure { // type contains three subfields:
2 field_1: u128, // field is a 128-bits unsigned int
3 field_2: Type2, // field is of type Type2
4 field_3: Type3, // field is of type Type3
5 }

• labeled unions (Rust’s enum), which enable several data
types to be used in the same memory field,

• other constructors such as arrays and tuples.
There are no classes in the object programming sense, so
data structures remain simple. In contrast, Rust features an
elaborate pattern matching system for data types.
it is in data types that we concretely implement the
components of our toolbox. For example: the lattices,
Powerset and Taxonomy; the referee functions,
Disjunctive, Conjunctive, DempsterShafer,
DuboisPrade, Pcr6, PcrSharp; the engine for
computing combination rules.

2) Traits hierarchy: A trait in the Rust programming
language is a collection of methods corresponding to a group
of functionalities and properties. Some of the methods in
a trait can be defined by default, while others are simply
declared and must then be defined by any type implementing
that trait. A trait is not a class or an abstract class in that it is
not associated with any data. A trait can inherit another trait.
As an example, in the toolbox we define the Lattice

and ComplementedLattice traits, whose incomplete an
simplified definitions are shown below:

1 trait Lattice {
2 // encoding type for the elements of the lattice
3 type Item;
4 // hash code of the lattice
5 fn lattice_hash(&self)-> u128;
6 // least element of the lattice
7 fn bottom(&self) -> Self::Item;
8 // greatest element of the lattice
9 fn top(&self) -> Self::Item;

10 // greatest lower bound
11 fn meet(&self, left: Self::Item, right: Self::Item)
12 -> Self::Item;
13 // least upper bound
14 fn join(&self, left: Self::Item, right: Self::Item)
15 -> Self::Item;
16 // test if left and right are disjoint
17 fn disjoint(&self, left: Self::Item, right: Self::Item)
18 -> bool {
19 self.meet(left,right) == self.bottom()
20 }
21 // test if left implies (i.e. is contained by) right
22 fn implies(&self, left: Self::Item, right: Self::Item)
23 -> bool {
24 self.join(left,right) == right
25 }
26 ...
27 }

1 trait ComplementedLattice: Lattice {
2 // Negation operator
3 fn neg(&self, element: Self::Item) -> Self::Item;
4 ...
5 }

The Lattice trait describes the features and qualities of a
bounded lattice. This feature declares the meet and join
methods, which correspond to the ∧ and ∨ operators. It also
declares the bottom and top methods, which respectively
produce the minimum ⊥ and maximum > elements of the
lattice. In addition, this trait provides a default implementation
of the implies and disjoint methods, which correspond
respectively to the lattice’s order relation and to a disjunction
test of two lattice elements.
The ComplementedLattice trait describes the
features and qualities of a Boolean algebra (distributive
bounded lattice with negation operator). We see that
ComplementedLattice inherits Lattice’s features,
through the declaration ComplementedLattice:
Lattice, to which it adds the declaration of the neg
method.

As such, a trait represents only a set of features, but remains
an abstraction that conveys no intrinsic data. A trait is useful
for implementing certain functionalities in a generic way.
The resulting code can be reused by future developers, for
example, by implementing the trait on their own data types:
only declarations not implemented by the trait need be
implemented by the data type. In fact, to actually use a trait,
you need to do so through a data type that implements the
trait.

Let us go on with this toolbox-inspired example. A data type
for powesets can be defined by (the actual definition is a little
more complex):

1 struct Powerset {
2 hash: u128, // a hash code for this powerset
3 card_theta: u8, // size of the FoD (8-bit integer)
4 }
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This simplified definition of Powerset contains two
fields. The hash field is a quasi-unique code that almost
certainly certifies the identity of the lattice. This field is used
by the toolbox to check data consistency. The card_data
field gives the value of |Θ|, the cardinality of Θ. The
Lattice and ComplementedLattice traits are then
implemented by the Powerset type as follows:

1 impl Lattice for Powerset {
2 type Item = u128;
3 fn lattice_hash(&self)-> u128 { self.hash }
4 fn bottom(&self) -> Self::Item { 0 }
5 fn top(&self) -> Self::Item {
6 1 << self.card_theta - 1
7 }
8 fn meet(&self, left: Self::Item, right: Self::Item)
9 -> Self::Item {

10 left & right
11 }
12 fn join(&self, left: Self::Item, right: Self::Item)
13 -> Self::Item {
14 left | right
15 }
16 }

1 impl ComplementedLattice for Powerset {
2 fn neg(&self, element: Self::Item) -> Self::Item {
3 self.top() & !element
4 }
5 }

In this implementation, powerset elements are encoded by
the type Item = u128, i.e. an unsigned 128-bit integer.
In this implementation, each bit of the integer represents an
element of Θ. It is therefore possible to manage a frame of
discernment containing up to 128 elements.
The operators ∧ and ∨ derive directly from the bitwise
Boolean operators & and | on integers. As expected, ⊥
and > are respectively defined as 0 and 2|Θ| − 1 in this
binary representation. The negation operator is defined by
self.top() & !element, i.e. a bitwise-not of the 128-
bit integer combined with a conjunction with >.

The definition of type Taxonomy is more complex, and
we will not go into it in this section. However, we can
say that taxonomy elements are also encoded by a primitive
type u128, but the encoding of both taxa and operators is
different. The Taxonomy type implements Lattice, but not
the ComplementedLattice.

D. Rust and code maintainability

Previously, we presented the basic and fundamental con-
cepts of traits and types in the Rust language. These concepts
are combined with other language features and tools to facil-
itate library development and maintenance.

1) Conditional implementation: The grammar of the Rust
language allows sophisticated designs in terms of generic
programming. We will not go into this in detail, but we will
nevertheless present an important consequence: Rust allows
conditional implementations. More precisely, the designer of
a library can have a set of traits automatically implemented
by a user-defined type if certain conditions are met.

Let us illustrate this with an example.

We have defined two further traits, which are
IterableLattice and BeliefTransform. Trait

IterableLattice takes into account the lattice’s graph
structure when exploring its elements. For example, this
trait provides methods for iterating lattice elements with
monotonicity properties with respect to the partial lattice
order. Its incomplete and simplified definition takes the form:

1 trait IterableLattice: Lattice {
2 type IntoIterUp: Iterator<Item = Self::Item>;
3 type IntoIterDown: Iterator<Item = Self::Item>;
4 // lattice iterator, non decreasing with inference
5 fn bottom_to_top(&self) -> Self::IntoIterUp;
6 // lattice iterator, non increasing with inference
7 fn top_to_bottom(&self) -> Self::IntoIterDown;
8 ...
9 }

Trait IterableLattice contains type and method
declarations that must be defined by the types implementing
the trait. Types Powerset and Taxonomy thus implement
IterableLattice.
Trait BeliefTransform provides methods for the
transformation and inverse transformation of belief masses
or belief functions. Mass and belief function data are
carried by the generic type Assignment<Self::Item>,
which depends on the type parameter Self::Item. The
incomplete and simplified definition of BeliefTransform
takes the form:

1 trait BeliefTransform where Self: IterableLattice {
2 // mass to credibility transform
3 fn mass_to_credibility(
4 &self, mass: Assignment<Self::Item>
5 ) -> Assignment<Self::Item> {
6 // some codes
7 ...
8 }
9 // credibility to mass transform

10 fn mass_from_credibility(
11 &self, credibility: Assignment<Self::Item>
12 ) -> Assignment<Self::Item> {
13 // some codes
14 ...
15 }
16 ...
17 }

Methods of BeliefTransform are all implemented, and
it should be noted that this trait requires that the types
implementing it (symbolized by Self) also implement
IterableLattice. Actually, BeliefTransform uses methods
of IterableLattice to explore the lattice.
The definition of BeliefTransform is followed by the
following piece of code:

1 impl<L> BeliefTransform for L where L: IterableLattice { }

This code means that any type L, which implements the trait
IterableLattice, will automatically implement the trait
BeliefTransform. This is an example of conditional
implementation.

2) Macros: Basically, macros are used to modify program
code according to different contexts during the compilation
process. Rust has a double macro system [18]. In both cases,
Rust macros work at the level of the program’s abstract
syntax tree. This is done in an advanced phase of code
text analysis, but before the compiled code is generated (in
comparison, C/C++ macros work at an early stage). In this
respect, Rust macros are a powerful metaprogramming tool,
enabling elaborate manipulation of the generated code. The

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

546



two Rust macro systems are:

• declarative macros, simpler to use but less powerful. The
metacode of these macros is integrated directly into the
program’s source code. It is mostly based on pattern
matching for its expansion.

• procedural macros, more complex but very powerful,
require the development and execution of a Rust sub-
program to analyze and modify the abstract syntax tree
of the main program.

While the design of macros is highly technical, the use of a
macro by a third-party developer is relatively straightforward,
making it a powerful tool for defining and maintaining
libraries.

To illustrate this, we give an example of a macro from our
toolbox. As our toolbox can be implemented on several
processes or machines, we need to control the consistency of
data types exchanged between several processes. To this end,
we have defined the HashedTypeDef trait, which must be
implemented by all data types that can be exchanged between
processes. The simplified definition of this trait is as follows:

1 trait HashedTypeDef {
2 // hash code for type Self
3 const TYPE_HASH: u128;
4 }

We can see here that any type implementing
HashedTypeDef will be associated with the hash code
TYPE_HASH. TYPE_HASH must be almost unique for all
types defined with this trait. For this reason, this feature
must be implemented by a dedicated macro, which builds the
hash code at compile time in such a way as to ensure this
quasi-uniqueness property.
There is little point in presenting the implementation details
of the macro in itself. However, it is interesting to see how
it can be deployed by the designer of a data type. Let us
consider type Assignment mentioned earlier. This data type
must be exchanged between processes, and must therefore
implement HashedTypeDef. To do this, all we need to do
is mention the use of the macro when defining the structure:

1 #[derive(HashedTypeDef)]
2 // simplified definition of assignment
3 pub struct Assignment<X> {
4 assignment: HashMap<X,f64>,
5 lattice_hash: u128,
6 }

It follows that Assignment::<X>::TYPE_HASH will
then contain the constant value of the hash code of
type Assignment<X>. On the other hand, the fields
assignment and lattice_hash are not constant and
respectively represent the content of a belief mass or function
and the hash code of the lattice on which this mass or
function is defined.

3) Package management: cargo is Rust’s package man-
ager. It tracks all the packages needed to compile an executable
or library, along with their version constraints and options. It
uses the rustc compiler for the various compilation phases
and interacts with the crates.io package repository. In fact,

the majority of Rust libraries of interest are available from
crates.io. The crates.io repository also offers rather efficient
package search facilities.
To use cargo, the project and its dependencies must be
described in cargo.toml files. These descriptive files are
relatively user-friendly.

E. Paradigms

Rust combines several programming paradigms:
• functional programming, with mutability control, rich

pattern matching and iterators,
• imperative and structured programming,
• object-oriented programming using traits; there is no

notion of classes in Rust,
• generic programming. Rust’s generic programming and

metaprogramming capabilities are rich,
• parallel and concurrent programming, whose implementa-

tion is greatly secured by the language’s memory security
capabilities. In particular, Rust handles asynchronous
programming very well.

F. Multithread and asynchronism

We need to be able to operate concurrently to give the tool-
box real flexibility in its interaction with external software and
environments. Fortunately, Rust supports different parallelism
paradigms.

The standard library offers tools to facilitate multithreaded
programming, including different communication channels be-
tween threads, and precise management of thread-safe types
and data sharing (thread-safe reference counting pointer, mutex
and atomic types). In addition, a number of leading libraries
are available on crates.io to facilitate the implementation of
multithreaded parallelism.

Rust supports asynchronous programming using futures.
The language itself incorporates the keywords async and
await, which facilitate asynchronous programming using
futures. The tokio library4 [19], among others, offers various
extensions and the availability of an asynchronous runtime
environment.

IV. DESCRIPTION OF THE TOOLBOX AND PERSPECTIVES

In this section, we present the architecture and components
already available for the toolbox, the components in the
near future, and the prospects that are foreseeable but not
yet planned. In addition, we present a simple example of
implementation in the distributed and concurrent framework
enabled by the tools.

A. Global context of the toolbox

The toolbox is implemented around the Silx middleware we
developed. The belief function components can nevertheless be
used independently of Silx as libraries used by other programs.
However, the role of the Silx middleware is to link the belief
function components to other components, enabling the belief

4https://crates.io/crates/tokio
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Figure 2. FURTIF toolbox: global context.

function tools to be used without compilation, or to potentially
interact with other tools and software.

Figure 2 shows the overall architecture of the toolbox. We
can see that the Silx middleware (blue cylinder) integrates
hard-coded components, which comprise all the functionalities
embraced by the considered distribution of the toolbox (light
red arrow shape on the left). These components alone do not
constitute an application as such, but need to be arranged in a
computing network. To this end, Silx takes configuration files
as parameters, which are used to define the computation net-
work (green rectangle on the right). With Silx, the component
codes and the configuration files, the toolbox enables or will
enable the implementation and interaction of the following
functional components:

• belief function computation components,
• input/output components,
• command-line interface components,
• components defining domain-specific languages for belief

functions (currently being defined),
• future unplanned components.

We will now describe some of the middleware’s features. To
begin with, Silx is based on the tokio library [19], a refer-
ence Rust library for asynchronous concurrent programming
offering facilities for networked application design. Based on
the tokio infrastructure, we have built an environment which,
based on user-friendly and editable descriptive parameter files,
launches asynchronous components and establishes communi-
cation channels between these components. The communica-

tion channels are also asynchronous and of different types.
In particular, they can be used to broadcast massages to a
set of recipients, or to obtain from a recipient a reply to
a request. These channels can operate on a single machine
or be established on several machines using network sockets.
The interface of these channels remains essentially the same
whether the context is single-machine or multi-machine. Last
but not least, Silx uses a common binary serialization format
for both communication contexts.

The serialization library we use is called rkyv [20], and
is a zero-copy deserialization framework. This means that
it is possible to directly access the fields of a serialized
structure without having to deserialize it: the result is an
almost negligible performance penalty, even when running
on a single machine. In addition, we have opted for endian
agnostic digital formats (i.e. the order in which the bytes of a
number are encoded remains the same, whatever the type of
microprocessor).

B. Belief functions components
Figure 3 describes all the components implemented or

planned for the manipulation and fusion of belief functions.
• Transformations between belief masses, implicabilities,

credibilities, plausibilities and commonalities are im-
plemented if lattice properties allow (dashed arrows if
implementation is constrained by lattice type).

• Several combination rules are implemented by means
of referee functions (Conjunctive, Disjunctive, Dempster-
Shafer, Dubois & Prade, PCR6, PCR#) and an exact but
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Figure 3. FURTIF toolbox: belief functions components.

discounted combination engine (the number of proposi-
tions with a non-zero mass is limited). A Monte Carlo
combination rule is planned, as well as a generic arbi-
tration function that can be designed by the user. For
the user-designed referee function, reflection on domain-
specific languages is planned.

• Implementations of Dezert entropy, divergence and dis-
tance [21], [22] are also planned.

C. Taxonomy and Lattice implementation

There are several possible approaches to encoding a taxon-
omy element. One approach is to build two dictionaries that
map each pair (X,Y ) of elements of the taxonomy to X ∧ Y
and X ∨ Y respectively. The use of a dictionary based on a
hash function (HashMap) makes it possible to compute the
operators in constant time. However, the quadratic size of the
structures may be prohibitive for a large taxonomy.

Figures 4 and 5 describe a more efficient approach to
encoding the taxonomy and calculating the ∧ and ∨ operators.
In fact, there is a direct encoding based on binary calculus of
taxa and operators when the taxonomy is in the form of a
binary tree. An example of this encoding is shown in figure 5.
The situation is a little more complex when the taxonomy
is in non-binary form, and requires a prior transformation of
the taxonomy tree into a binary tree (figure taxo:to:binary).
We will see that this transformation subsequently induces the
necessary use of a dictionary of the same order of magnitude
as the taxonomy, in order to finalize the calculation of the
∨ operator. This is perfectly fine in practice. Now let us get
down to the details:

• As shown in Figure 4, the taxonomy is rendered binary by
introducing fake taxa (taxa named ∗) at nodes containing
more than two childs.

• Based on resulting binary taxonomy tree, the encoding
is done by means of a pair of values (d, c), respectively
depth and code, which are constructed as follows (see
figure taxo:coding):
– d is simply the depth of the node within the tree. For

example, 0 for root >, 1 for its children, and so on.
– c is set to maximal possible value for root >.
– c is obtained from the code of the parent node by

changing the d-th bit from the left (so there are only
2 possibilities, 0 and 1).

– d is set to maximal possible value for ⊥ and c is set
to 0.

In practice, (d, c) is encoded on the same integer (a
128-bit integer in our implementation, a 8-bits integer
in figure 5). If the integer is encoded on 2λ bits, then
we encode d on λ bits and c on 2λ − λ bits. Thus, the
maximum value for d is d⊥ = 2λ − 1 and the maximum
value for c is c> = 22λ−λ − 1. In figure 5, this gives
λ = 3, d⊥ = 7 and c> = 0b11111.

The operators are then computed by means of simple binary
operations (match these results with figure 5):

Computation of ∧ : The operator is symmetric and:
• If d = d′ and c 6= c′, then (d, c) ∧ (d′, c′) = ⊥.
• If d < d′ and the first d bits of c and c′ are identical,

then (d, c) ∧ (d′, c′) = (d′, c′).
• If d < d′ and the first d bits of c and c′ are not identical,

then (d, c) ∧ (d′, c′) = ⊥.
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Figure 4. Turning taxonomy into a binary taxonomy: add fake nodes.

A : (0, 0b11111)

AA : (1, 0b01111) AAA : (2, 0b00111)

AAAA : (3, 0b00011)

AAAB : (3, 0b00111)

AB : (1, 0b11111)

ABA : (2, 0b10111)

∗ : (2, 0b11111)

ABB : (3, 0b11011)

ABBA : (4, 0b11001)

ABBB : (4, 0b11011)

ABC : (3, 0b11111)

Jump for ∨ post-processing


⊥ : (7, 0b00000)

Figure 5. Encoding binary taxonomy on 8 bits; 3 = log2(8) bits for depth; 5 = 8− 3 bits for code.

Computation of ∨ : Consider the prefix common to c and
c′. Note d′′ the length of this prefix and c′′ this prefix
completed with 1’s. Then (d, c) ∨ (d′, c′) = (d′′, c′′).

Case of ⊥: Taxon ⊥ is managed specifically.
At this stage, there is still the problem of fake taxa in regards
to operator ∨. The ∨ operation could very well result in a code
corresponding to a fake taxon. In Figure 5, for example, we
see that (4, 0b11011) ∨ (3, 0b11111) = (2, 0b11111), which
is equivalent to writing ABBB ∨ ABC = ∗. Of course, this
result is inadequate, and you have to go up the tree until you
get a real taxon; in our example, this gives (1, 0b11111), i.e.
AB. To this end, our library uses a hash-code dictionary.

D. A simple distributed and concurrent example
Our long-term goal is to use the Silx middleware to make

the library of belief functions interact with a command-
line console or graphical user interfaces in association with
domain-specific languages. Only then will our toolbox be truly
user-oriented. We still have some work to do to achieve this
goal. In particular, we need to develop a large part of the user
interaction components.
Although we cannot demonstrate the functionality of the
toolbox in its entirety, we can illustrate its flexibility by show-
ing how the components integrate with the Silx middleware
through a toy example.

1) Toy example: We propose a multi-machine processing
architecture composed of the following processing nodes:
• a single-machine processing node, machine 0, consisting

of the following elementary processes:
– the lattice component that defines the lattice be-

ing worked on. They transmit the lattice definition

through dedicated channels to the fuser, writer
and reader_i components.

– the fuser component that performs the fusion com-
putations. This component receives the lattice defini-
tion from component lattice, and vectors of belief
masses from sources reader_1, reader_2 and
reader_3. The component produces a result vector,
which it sends to the writer component.

– the writer component, which receives the fusion
results from the fuser component and saves them,
serialized, on the local disk,

– the shutdown_0 component, which manages the
shutdown of the computing node,

• three single-machine processing nodes, running on ma-
chines i ∈ {1, 2, 3}, each with the following elementary
processes respectively:
– the reader_i component, which reads and deserial-

izes a vector of belief functions from the local disk
of machine i and sends it to the fuser component.
This component obtains the lattice definition from
component lattice.

– the shutdown_i component, which manages the
shutdown of the processing node.

The multi-machine processing architecture is illustrated in
figure 6. This example thus includes 10 asynchronous pro-
cesses and 12 communication channels between processes.
Of course, this is an excessively rich implementation for
such a simple problem, but the aim here is to be illustrative.
These various communication channels can be intra-machine
or cross-machine (via network sockets). In this figure, these
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Figure 6. Example: processing graph.

communication channels are grouped by color: in blue, the 4
channels carrying the lattice definition; in green, the 3 channels
carrying the data to be fused; in black, the channel carrying the
fusion result; in red, the 4 channels triggering the shutdown
of the processing networks.
In the medium term, computing networks will be set up using
graphical user interfaces. At present, the network is entirely
defined using yaml configuration files [23]. There are four sets
of configuration files:
• startup files: these files are defined for each machine (or

IP address) implemented.
• local processing network builders: these builders are

defined for each machine (or IP address) used.
• builders of processing components: these constructors

define all component parameters, including input/output
channels.

• communication channel definitions.
All these files are located in appropriate, well-organized di-
rectories.

a) Startup files: Startup files are defined differently de-
pending on whether you are on the master machine or one
of the slave machines. For a slave machine, the startup file
indicates that the starter must listen to the master machine.
The master’s IP address and port are labelled main, while
those of the slave machine are labelled this, as shown in
figure 7. On the other hand, the master machine’s start-up file
contains all the information needed to set up the processing
networks of the master and slave machines, i.e.: the list of
configuration files of the local network builders, and the list of
communication channels (their names and configuration files).
In this way, the master machine’s starter builds a complete plan

! L i s t e n e r
main : 1 2 7 . 0 . 0 . 1 : 8 1 8 0
t h i s : 1 2 7 . 0 . 0 . 1 : 8 1 8 1

Figure 7. Slave 1 startup file: slave_reader1.yaml.

of the processing networks, which it transmits to the slave
machines, so that each machine then deploys the processing
networks according to the plans. Figure 8 shows one such
master configuration file.

b) Local processing network builders: The parameter
files of local processing network builders simply list all the
processing components that make them up, i.e. the list of
their names associated with their respective configuration files.
Figure 9 shows the configuration file for the master processing
network. Figure 10 shows the configuration file for machine
2’s slave processing network: for this application, the slave
configuration files are essentially identical, apart from the
indices.

The communication channels do not appear in this list, but
the way in which they connect to the processing components
is specified in the configuration files for these components.
Please note that, for reasons of simplicity, we have sometimes
given the same name to the component and to one of its
incoming or outgoing channels. Nevertheless, channel names
are capitalized – e.g. Writer, Reader_i, Shutdown_i
– whereas component names are lower-case – e.g. writer,
reader_i, shutdown_i.

c) Component builders: Processing components are pa-
rameterizable structures that implement computations specific
to their nature, and a glue that enables them to interact with

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

551



! Main
b u i l d e r s :

1 2 7 . 0 . 0 . 1 : 8180 : ! u n l o a d e d
p a t h : dsmtbook / b u i l d e r s / m a i n b u i l d e r . yaml

1 2 7 . 0 . 0 . 1 : 8181 : ! u n l o a d e d
p a t h : dsmtbook / b u i l d e r s / s l a v e r e a d e r 1 b u i l d e r . yaml

1 2 7 . 0 . 0 . 1 : 8182 : ! u n l o a d e d
p a t h : dsmtbook / b u i l d e r s / s l a v e r e a d e r 2 b u i l d e r . yaml

1 2 7 . 0 . 0 . 1 : 8183 : ! u n l o a d e d
p a t h : dsmtbook / b u i l d e r s / s l a v e r e a d e r 3 b u i l d e r . yaml

f low :
L a t t i c e 0 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l l a t t i c e 0 . yaml
L a t t i c e 1 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l l a t t i c e 1 . yaml
L a t t i c e 2 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l l a t t i c e 2 . yaml
L a t t i c e 3 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l l a t t i c e 3 . yaml
Reader 1 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l r e a d e r 1 . yaml
Reader 2 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l r e a d e r 2 . yaml
Reader 3 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l r e a d e r 3 . yaml
Shutdown 0 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / channe l shu tdown0 . yaml
Shutdown 1 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / channe l shu tdown1 . yaml
Shutdown 2 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / channe l shu tdown2 . yaml
Shutdown 3 : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / channe l shu tdown3 . yaml
W r i t e r : ! u n l o a d e d

p a t h : dsmtbook / c h a n n e l s / c h a n n e l w r i t e r . yaml
main : 1 2 7 . 0 . 0 . 1 : 8 1 8 0

Figure 8. Master startup file: main.yaml.

n e t s i z e : 16
n ame d s e rva n t :

f u s e r : ! u n l o a d e d
p a t h : dsmtbook / s e r v a n t s / s e r v a n t f u s e r . yaml

l a t t i c e : ! u n l o a d e d
p a t h : dsmtbook / s e r v a n t s / s e r v a n t l a t t i c e . yaml

shutdown 0 : ! u n l o a d e d
p a t h : dsmtbook / s e r v a n t s / s e r v a n t s h u t d o w n 0 . yaml

w r i t e r : ! u n l o a d e d
p a t h : dsmtbook / s e r v a n t s / s e r v a n t w r i t e r . yaml

c t r l c h c a p a c i t y : 16

Figure 9. Master network builder: main_builder.yaml.

n e t s i z e : 16
n ame d s e rva n t :

r e a d e r 2 : ! u n l o a d e d
p a t h : dsmtbook / s e r v a n t s / s e r v a n t r e a d e r 2 . yaml

shutdown 2 : ! u n l o a d e d
p a t h : dsmtbook / s e r v a n t s / s e r v a n t s h u t d o w n 2 . yaml

c t r l c h c a p a c i t y : 16

Figure 10. Slave 2 network builder: slave_reader2_builder.yaml.

the Silx middleware. Implementing this glue is facilitated by
Silx macros, which will not be detailed here. The design
of such components is the responsibility of the programmer
using our library. However, the parameterization of these
components is the responsibility of the library user. In practice,
the component parameter file is derived from the serialization
(in yaml language) of its respective parameterizable structure.

Let us now take a closer look at the features of each of the
components presented here:
• Figure 11 describes the setup file, which determines

the computation of the fusing component, fuser.
The internal structure providing this definition is
DsmtbookFuserBuilder.

s e r v a n t : D smtbookFuse r Bu i lde r
r e f e r e e : Pcr6
c h a n n e l l a t t i c e : L a t t i c e 0
c h a n n e l s r e a d e r :
− Reader 1
− Reader 2
− Reader 3
c h a n n e l w r i t e r : W r i t e r
c h a n n e l s s h u t d o w n :
− Shutdown 0
− Shutdown 1
− Shutdown 2
− Shutdown 3

Figure 11. Component builder: servant_fuser.yaml.

The referee: Pcr6 field specifies that the fusion will
use the PCR6 rule.
The channel_lattice: Lattice_0 field specifies
that the Lattice_0 channel is used to receive the lattice
definition (from the lattice component).
The channel_writer: Writer field specifies that
the Writer channel will be used to transmit the result
of the calculation (to the writer component).
The field prefixed by channels_reader: lists the
channels – i.e. Reader_1, Reader_2 and Reader_3
– that the component listens to in order to receive
input data to be fused from components reader_1,
reader_2 and reader_3 respectively.
The field prefixed with channels_shutdown: lists
the channels to which to send the network shutdown
signal, once the fusion calculation is complete.

• Figure 12 shows the configuration of the lattice
component.
This component contains the taxonomy definition shown
in figure 13.
This taxonomy is sent to components fuser, writer,
reader_1, reader_2 and reader_3 through chan-
nels Lattice_0, Lattice_1, Lattice_2 and
Lattice_3.

• Figures 14 and 15 show the parameters of components
reader_1 and reader_3 respectively.
The reader_1 component reads input data to be fused
from the input_1.json file, deserializing it from the
json format. The reader_3 component reads input data
to be fused from the input_3.yaml file, deserializing
it from the yaml format.
Components reader_1 and reader_3 receive tax-
onomy information through channels Lattice_1
and Lattice_3 respectively. The reader_1 and
reader_3 components send their input data to
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s e r v a n t : D s m t b o o k L a t t i c e B u i l d e r
c h a n n e l s l a t t i c e :
− L a t t i c e 0
− L a t t i c e 1
− L a t t i c e 2
− L a t t i c e 3
l a t t i c e : ! Taxonomy

taxonomy : ! Node
name : O b j e c t
c h i l d r e n :
− ! Node

name : Ai r
c h i l d r e n :
− ! Leaf

name : A i r p l a n e
w e i g h t : 0 . 1

− ! Leaf
name : UAV
w e i g h t : 0 . 1

− ! Node
name : Amphibian
c h i l d r e n :
− ! Leaf

name : H o v e r c r a f t
w e i g h t : 0 . 0 5

− ! Node
name : Ground
c h i l d r e n :
− ! Leaf

name : Bike
w e i g h t : 0 . 1 5

− ! Leaf
name : Car
w e i g h t : 0 . 2

− ! Leaf
name : Truck
w e i g h t : 0 . 1 5

− ! Node
name : Water
c h i l d r e n :
− ! Leaf

name : Boat
w e i g h t : 0 . 1 5

− ! Leaf
name : Ship
w e i g h t : 0 . 1

Figure 12. Component builder: servant_lattice.yaml.

the fuser component through the Reader_1 and
Reader_3 channels respectively.
The reader_2 component, not shown, is parameterized
in a similar way to the reader_3 component.

• Figure 16 shows the parameters of the writer compo-
nent.
The writer component receives taxonomy information
through the Lattice_0 channel, and receives fused
data from the fuser component through the Writer
channel.
The writer component writes the fused data to the
output.yaml file, serializing it in yaml format.
d) Channel definitions: Figures 17, 18 and 19 show the

configuration files for channels Lattice_0, Lattice_1
and Shutdown_3 respectively. The various configuration
files have a common structure. First, the file begins with
a label that defines the channel type: here !Broadcast
and !NetBroadcast, which characterize a data broadcast
within a single machine or between two machines (or IP

Object

Air

Airplane

UAV

Amphibian Hovercraft

Ground

Bike

Car

Truck

Water

Boat

Ship



⊥

Figure 13. Taxonomy encoded in servant_lattice.yaml.

s e r v a n t : DsmtbookReaderBui lde r
c h a n n e l r e a d e r : Reader 1
c h a n n e l l a t t i c e : L a t t i c e 1
s e r i a l i z e r : J son
f i l e : dsmtbook / d a t a / i n p u t 1 . j s o n

Figure 14. Component builder: servant_reader1.yaml.

s e r v a n t : DsmtbookReaderBui lde r
c h a n n e l r e a d e r : Reader 3
c h a n n e l l a t t i c e : L a t t i c e 3
s e r i a l i z e r : Yaml
f i l e : dsmtbook / d a t a / i n p u t 3 . yaml

Figure 15. Component builder: servant_reader3.yaml.

s e r v a n t : D s m t b o o k W r i t e r B u i l d e r
c h a n n e l w r i t e r : W r i t e r
c h a n n e l l a t t i c e : L a t t i c e 0
s e r i a l i z e r : Yaml
f i l e : dsmtbook / d a t a / o u t p u t . yaml

Figure 16. Component builder: servant_writer.yaml.

! B r o a d c a s t
c l u s t e r : 1 2 7 . 0 . 0 . 1 : 8 1 8 0
max ping :

s e c s : 0
nanos : 50000000

d a t a t y p e : 59 f5b fc8 −6116 −0 b9c −149b −50 c0e4f645cb
s i z e : 16
i n p u t :
− l a t t i c e
o u t p u t :
− f u s e r
− w r i t e r

Figure 17. Channel: channel_lattice0.yaml.

addresses). Next, the field preceded by data_type: contains
a quasi-unique code for the type of data carried by the channel.
This code is used as a security check when generating the
processing networks. Typically, this code is the same for
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! N e t B r o a d c a s t
max ping :

s e c s : 0
nanos : 50000000

d a t a t y p e : 59 f5b fc8 −6116 −0 b9c −149b −50 c0e4f645cb
s i z e : 16
i n p u t :
− 1 2 7 . 0 . 0 . 1 : 8 1 8 0
− − l a t t i c e
o u t p u t :
− 1 2 7 . 0 . 0 . 1 : 8 1 8 1
− − r e a d e r 1

Figure 18. Channel: channel_lattice1.yaml.

! N e t B r o a d c a s t
max ping :

s e c s : 0
nanos : 50000000

d a t a t y p e : 223 a70f4 −30a0 −ee42 −21a3 − c2365df732c8
s i z e : 16
i n p u t :
− 1 2 7 . 0 . 0 . 1 : 8 1 8 0
− − f u s e r
o u t p u t :
− 1 2 7 . 0 . 0 . 1 : 8 1 8 3
− − shutdown 3

Figure 19. Channel: channel_shutdown3.yaml.

channels Lattice_0 and Lattice_1, as they transmit the
same type of data. However, the code is different for channels
Lattice_1 and Shutdown_3, as the shutdown signal is of
a different type than the lattice definition. The fields preceded
by input: and output: respectively list the components
transmitting or listening on the channel. Note the difference
between !Broadcast and !NetBroadcast channels. For
the !Broadcast channel, the IP address within which the
channel is transmitting is indicated in the field preceded by
cluster:. For the !NetBroadcast channel, there is a
transmit IP address placed after input: and a receive address
placed after output:.

2) Processing results: In this presentation, we have limited
the input and output data to sequences of two belief masses.
We denote [mi,m

′
i] the input data produced by the reader_i

component and [m⊕,m
′
⊕] the fused data produced (row by

row) by the fuser component. In our example, the input
data is defined by:

m1(Object) = 0.2 m1(Air) = 0.3 m1(Truck) = 0.5
m′1(Object) = 0.3 m′1(Ground) = 0.4 m′1(Hovercraft) = 0.3

m2(Object) = 0.1 m2(UAV ) = 0.5 m2(Amphibian) = 0.4
m′2(Object) = 0.4 m′2(Car) = 0.2 m′2(Water) = 0.3

m3(Object) = 0.2 m3(Ground) = 0.2 m3(Bike) = 0.6
m′3(Object) = 0.4 m′3(Air) = 0.4 m′3(Ship) = 0.2

We obtain the following fused data, by PCR6 rule as indicated
in figure 11:

m⊕(Object) = 0.06 m⊕(Air) = 0.07 m⊕(Ground) = 0.04
m⊕(Truck) = 0.20 m⊕(UAV ) = 0.22 m⊕(Amphibian) = 0.14
m⊕(Bike) = 0.27

m′⊕(Object) = 0.20 m′⊕(Air) = 0.19 m′⊕(Ground) = 0.18
m′⊕(Water) = 0.12 m′⊕(Car) = 0.10 m′⊕(Hovercraft) = 0.13
m′⊕(Ship) = 0.08

Figures 20 and 21 illustrate the contents of the seri-
alized data of [m1,m

′
1] and [m2,m

′
2] as stored in the

files input_1.json and input_2.yaml with json
and yaml formats respectively. Files input_3.yaml
and output.yaml are formed in a similar way to
input_2.yaml.

[
[

[ ” O b j e c t ” , 0 . 2 ] ,
[ ” Ai r ” , 0 . 3 ] ,
[ ” Truck ” , 0 . 5 ]

] ,
[

[ ” O b j e c t ” , 0 . 3 ] ,
[ ” Ground ” , 0 . 4 ] ,
[ ” H o v e r c r a f t ” , 0 . 3 ]

]
]

Figure 20. [m1,m′
1]: input_1.json.

− − − O b j e c t
− 0 . 1

− − Amphibian
− 0 . 4

− − UAV
− 0 . 5

− − − O b j e c t
− 0 . 4

− − Car
− 0 . 2

− − Water
− 0 . 3

Figure 21. [m2,m′
2]: input_2.yaml.

E. Perspectives

Our toolbox is designed to be extended. Of course, global
extensions can be envisaged, such as the addition of a
graphical user interface, or interaction with other applications
connected to the middleware. On the other hand, the belief
function components are by no means exhaustive, and numer-
ous completions are foreseeable, though not yet planned.

V. CONCLUSION

In this work, we presented the FURTIF toolbox for belief
function fusion. This toolbox is implemented in Rust, both
for performance reasons and to open up the possibility of
integrating it into a distributed, multithreaded and concurrent
environment. To this end, we have developed the middleware
Silx in which FURTIF is integrated. It should be noted,
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however, that the library’s components can be used indepen-
dently of the middleware. At present, the toolbox is almost
complete, but lacks a few components that were planned but
are still under development (e.g. domain-specific language;
generic referee function; Monte Carlo for computing combi-
nation rules; entropy, divergence and distance). Although not
currently planned, the implementation of a graphical user in-
terface, both for using the fusion library as well as for building
and deploying computational networks, is a future goal of
interest. More generally, we intend to use Silx middleware
to support mixed implementations combining FURTIF with
other information processing paradigms.

The FURTIF toolbox will be available in open source at
[24] and [25]. Also, updated information about this toolbox
will be regularly posted on [26] for convenience.

It is worth mentioning that it is possible to compile and link
one or more rust source files written with the Matlab™ Data
API for RUST into a binary MEX5 file if necessary6. This
possibility has not yet been tested for interfacing the FURTIF
toolbox with Matlab™.

APPENDIX

A. Iverson bracket

Although the Iverson bracket [14] is an elegant and concise
notation, it is not ambiguous. The point to remember is that
the context of Iverson’s bracket is propositional on the inside
and numerical on the outside, as in [false] + 1, which has the
value 0 + 1. Take the following example:

[[1 + 3]× 5, [[x = 3] ∧ [x < 0]] + 1]

We understand unambiguously that we have defined the row
vector [20, 1]. Indeed:
Purely numerical context: [1 + 3] × 5 is another way of

writing (1 + 3)× 5 = 20,
Purely propositional context: [x = 3] ∧ [x < 0] is another

way of writing (x = 3) ∧ (x < 0), which is false,
Propositional context inside & numerical context outside:

[[x = 3] ∧ [x < 0]] + 1 is [false] + 1, that is 1,
Matrix context: [[1+3]×5, [[x = 3]∧ [x < 0]]+1] is [20, 1].
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Abstract—Ship classification, as an important problem in the
field of computer vision, has been the focus of research for various
algorithms over the past few decades. In particular, convolutional
neural networks (CNN) have become one of the most popular
models for ship classification tasks, especially in deep learning
methods. Currently, several classical methods have used single-
scale features to tackle ship classification, without paying much
attentions to the impact of multi-scale feature. Therefore, this
paper proposes a multi-scale feature fusion ship classification
method based on evidence theory. In this method, multiple scales
of features are utilized to fuse feature maps of three different
sizes (40x40x256, 20x20x512, 10x10x1024), which are used to
perform ship classification tasks separately. Finally, the multi-
scales-based classification results are treated as pieces of evidence
and fused at the decision level using evidence theory to obtain
the final classification result. Experimental results demonstrate
that compared to classical classification networks, this method
can effectively improve classification accuracy.

Keywords: ship classification, multi-scale, evidence theory,
feature fusion, deep learning.

I. INTRODUCTION

Image classification, as an important problem in the field of
computer vision, aims to assign input images to predefined
categories. Over the past few decades, significant progress
has been made in image classification, especially with deep
learning-based methods. CNN can automatically extract rich
feature representations from input images and perform classi-
fication using fully connected layers. Compared to traditional
machine learning methods, deep learning approaches can learn
more discriminative features automatically from data, leading
to higher classification accuracy. Practical applications of
image classification techniques have become relatively mature
and have been widely used in various domains, such as
visual recognition [1], medical image analysis [2], industrial
quality inspection [3], agriculture [4]–[6], surveillance [7], and
autonomous driving [8].

However, due to the complex and diverse characteristics of
image data and the variety of practical application scenarios,
improving the accuracy of image classification further remains
a challenging task. For instance, challenges persist in satellite
remote sensing image classification [9]–[12] and fine-grained
image classification [13], [14].

For example, ship satellite remote sensing images present
specific challenges compared to traditional natural images in
the image classification task [15]–[17]:

1) Variations in ship size and shape: The appearance and
shape of ships in satellite remote sensing images can be
influenced by various factors such as distance, lighting
conditions, and viewing angles. Therefore, ships of the
same type may exhibit different sizes and shapes in
different satellite remote-sensing images, making image
classification difficult.

2) Complexity of the background: Ship satellite remote
sensing images often include complex backgrounds such
as waves, clouds, and ports. These backgrounds can
introduce interference in the classification of ships.

3) Similarity: ship satellite remote sensing images encom-
pass various types of ships, including different ship types
and purposes such as cargo ships, passenger ships, and
fishing boats. However, apart from some specific ship
types, most ship outlines exhibit an elongated shape
with axis symmetry and a pointed bow, which can pose
challenges for classification algorithms.

4) Resolution: ship satellite remote sensing images typ-
ically have lower resolution compared to traditional
natural images. This can impact the extraction of fine-
grained ship details and features, thus affecting the
performance of classification algorithms.

5) Data quality: Ship satellite remote sensing images are
susceptible to natural factors such as lighting, weather
conditions, and cloud cover, which can result in lower
image quality. Issues like blurring, distortion, and occlu-
sion can arise, affecting the accuracy of ship classifica-
tion.

Currently, most existing improvement methods for ship
classification, which rely on CNN to automatically extract
abstract features, mainly focus on modifying network
structures, optimizing training strategies, or redesigning loss
functions in an iterative manner. However, they overlook
further processing of the classification results.

Originally published as: Y. Dong, K. Xu, C.Zhu, E. Guan, Y. Liu, E-FPN: Evidential Feature Pyramid 
Network for Ship Classification, Remote Sensing 2023, 15, 3916, 2023, and reprinted with permission..
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In the case of fine-grained image classification, which
is different from general ship classification tasks, the main
challenge lies in categorizing objects from closely related
subcategories. These objects often exhibit subtle category
differences, and the crucial information containing these dif-
ferences is typically localized in small regions of the image.
When extracting features using deep neural networks, smaller-
sized features in the images may get diluted as the network
deepens, thereby affecting the classification results [18]. Uti-
lizing multi-scale feature fusion methods allows deep networks
to learn small-sized features that may have been diluted
due to network depth, thereby enhancing the accuracy of
classification. Therefore, solely focusing on network structure
or loss function improvements may pose challenges in further
enhancing classification performance.

In the CNN-based methods, initially, researchers focused
on deepening the network structure to improve classification
performance and address issues arising from deeper networks
in order to enhance the classification network. Later, attention
shifted towards better feature propagation or utilizing detailed
features to strengthen classification performance. For example,
attention mechanisms were introduced to emphasize more
discriminative features [19], or multiple feature extraction net-
works were used in combination with extracted feature maps to
complement missing features [20]. Knowledge distillation was
also employed to transfer detailed image features to smaller
primary networks, resulting in improved performance for the
classification network [21]. However, the approaches above
added additional complexity to the network structures in order
to better extract features.

This paper proposes a multi-scale ship classification net-
work that applies evidence theory to decision-level fusion to
break free from the improvement loop mentioned earlier and
enhance classification accuracy from a different perspective.
Three main modules are utilized in this method to ensure
better classification accuracy: (1) Multi-scale output module
of the feature extraction network; (2) Pyramid feature fusion
module; (3) Decision-level fusion module based on evidence
theory. The first two parts focus on improving accuracy using
network structures, while the final part emphasizes optimizing
classification performance using the final probability distribu-
tion information.

To validate the feasibility of this method, experiments were
conducted on a traditional natural image dataset and a remote-
sensing image dataset for fine-grained ship classification.
Several comparisons were made with classical classification
methods. The experimental results demonstrate that the pro-
posed method: E-FPN achieves better classification accuracy
and consistency compared to classical classification methods.
The main contributions of this paper are as follows:

1) To address the issue of information loss during the fea-
ture extraction process, feature-level fusion is performed
by selecting feature maps of different depths from the
backbone feature extraction network. This fusion aims
to supplement the lost information.

2) The classification results from multiple scales are further
fused at the decision level using fusion rules based
on evidence theory. The different classification results
are treated as pieces of evidence, and the differences
in probability distributions are utilized to optimize the
classification results.

The remaining sections of this paper are composed as
follows. Section II provides a review of related works. Section
III introduces the relevant background knowledge. Section
IV presents the overall network structure of the E-FPN.
Section V provides detailed explanations of the experimental
setup, including parameter settings, experimental procedures,
and parameter discussions. Finally, in Section VI, the paper
concludes with a summary and discusses future research
directions.

II. RELATED WORK

At the algorithmic level, deep learning-based image classi-
fication methods can be divided into two categories based on
different feature extractors. The first category is CNN-based
image classification methods, which have achieved remarkable
breakthroughs in the past decade based on modern deep learn-
ing techniques. Krizhevsky et al. introduced rectified linear
units (ReLU) in convolutional neural networks to achieve
nonlinearity and used the Dropout technique to mitigate over-
fitting and learn more complex objects [22]. Karen Simonyan
and Andrew Zisserman improved upon AlexNet by stacking
3×3 convolutions and deepening the network structure to
enhance classification accuracy [23]. However, as the networks
became deeper, issues such as network degradation, vanishing
gradients, and exploding gradients emerged. To address these
problems, Kaiming He et al. introduced Batch Normalization
(BN) to replace Dropout and solve the issues of vanishing
and exploding gradients. They also introduced residual con-
nections to address network degradation [24]. SainingXie et al.
introduced Inception on top of ResNet, transforming single-
path convolutions into multi-path convolutions with multiple
branches [25]. Gao Huang et al. proposed DenseNet in 2017,
which connects each layer with all previous layers in a feed-
forward fashion to alleviate the vanishing gradient problem
and enhance feature propagation [26]. Tsung-Yu Lin et al. used
two feature extractors to extract features from input images
and combined them using a bilinear pooling function before
performing classification to compensate for the features lost
by a single feature extractor (B-CNN) [27]. To fully exploit
the small features that can differentiate different categories,
Jianlong Fu et al. proposed RA-CNN, which focuses the
classification operation on regions with differentiating features
using a recurrent attention projection mechanism [28].

To enhance the classification accuracy of CNN-based classi-
fication networks on satellite remote sensing images, Linqing
Huang et al. proposed a classification method that converts
images in the dataset into different color spaces and trains
separate CNNs on each color space. Finally, the output results
of each classifier are fused using evidence theory [29]. Yue
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Chen et al. presented a method called Destruction and Con-
struction Learning (DCL), which disrupts and shuffles input
images to emphasize local detailed features. They employ a
region alignment network to restore the image layout and learn
semantic information from local regions, thereby strengthening
the connections between neighboring regions [30]. Heliang
Zheng et al. introduced a technique that extracts precise atten-
tion maps to highlight target regions with rich detailed features
at a high resolution. They also employ knowledge distillation
to transfer image detail features to the main network for image
classification [31].

The second approach is based on the visual transformer
method [32]. Similar to CNN, transformers have dominated the
field of Natural Language Processing (NLP) in the past decade.
Initially, when transformers were introduced to computer vi-
sion, they were primarily used to extract global contextual
information from images, but their performance was not satis-
factory. In the past two years, there have been breakthroughs
in using large-scale pretraining on transformer-based CNN
classification networks, which have surpassed the dominance
of CNNs in traditional image domains. Examples of such
networks include Vision Transformer (ViT) [33] and Shifted
Window Transformer (SWIN-Transformer) [34].

In recent years, advancements in ship classification al-
gorithms have involved various improvement approaches in
academic research. For instance, Chen et al. employed a
contrastive learning method to replace classical classification
techniques. They designed a loss function to separate different
categories and bring together similar ones [35]. Zhang et al.
adopted a combination of traditional feature extraction meth-
ods and modern abstract feature extraction methods to enhance
the representation capability of ship features [18]. Guo et al.
utilized shape-aware feature extraction techniques, allowing
the feature extraction process to better align with the distinc-
tive spindle-shaped appearance of ships [36]. Building upon
the bilinear pooling method, Zhang et al. made improvements
to make it more suitable for ship classification tasks [37].
Additionally, Jahan et al. employed knowledge distillation and
class balancing methods to achieve ship classification in SAR
ship image [38].

III. PRELIMINARIES

A. Cross Stage Partial Darknet(CSPDarkNet)

CSPDarkNet [39] can be divided into five main parts: Focus,
Dark2, Dark3, Dark4, and Dark5, in sequential order. The
Focus module focuses on aggregating the width and height
information of the image into the channel information by
subsampling the image’s pixel values. The structures of Dark2
to Dark4 are well demonstrated in Figure 1, where each
Dark part consists of a BaseConv layer and a CSPLayer.
Each BaseConv layer consists of a convolutional layer, a
BatchNorm2d layer, and an activation function. The entire
CSPLayer can be viewed as a residual module, where one
side of the residual branch passes through the BaseConv layer
once, while the other side goes through n Bottleneck units
after the BaseConv layer. The two parts are then concatenated

and subjected to another BaseConv operation. The structure
of the Bottleneck unit, as shown in Figure 1, involves a 1x1
and a 3x3 convolution for the main branch, while the residual
branch remains unchanged, and the two parts are finally added
together. The Dark5 part is slightly different from the previous
three parts. It introduces a Spatial Pyramid Pooling (SPP-
bottleneck) module between the BaseConv and CSPLayer,
which utilizes max pooling with three different kernel sizes
to extract features and then combines them to increase the
network’s receptive field. Its structure is depicted in Figure 2.

Figure 1. CSPDarkNet network structure.

Figure 2. SPP-Bottleneck network structure.

B. Feature Pyramid Networks (FPN)

In convolutional networks, deep layers are more responsive
to semantic features, while shallow layers are more responsive
to image details. In image classification tasks, it has been
validated by Karen Simonyan and others that deeper networks
have a positive impact on image classification. However,
deep convolutional layers tend to lose fine-grained details.
Therefore, the FPN [40] model can be used to fuse features
from shallow and deep layers, allowing the deep layers to
complement the information lost during multiple convolutional
operations, which is beneficial for subsequent classification
tasks. The FPN structure is illustrated in Figure 3.

C. Evidence Theory

The evidence theory, established by Dempster and Shafer,
represents propositions using mathematical sets [41]. Unlike
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Figure 3. FPN network structure.

probability theory, which considers only single elements, ev-
idence theory allows for multiple elements within a set. This
theory is characterized by its ambiguity and the ability to
perform imprecise reasoning at different levels of abstraction.
It can differentiate between ignorance and equiprobability,
enabling better representation of uncertain propositions. Ev-
idence theory simulates the normal human thinking process,
where one observes and collects information before synthe-
sizing it from various aspects to make judgments and obtain
results for a given problem.

In the Dempster-Shafer (DS) evidence theory, the sample
space composed of all propositions is defined as a discernment
framework, denoted as Θ. It is a set comprising a group of
mutually exclusive and collectively exhaustive propositions
representing all possible answers to a given question. Let’s
assume another discernment framework defined as Θ =
{θ1, θ2, · · ·, θn}, where θ1, θ2, · · ·, θn represents a set of basic
hypotheses, and θi ∩ θj = ∅, i 6= j i, j = 1, 2, ..., n are subsets
of it. The power set of Θ is the set of all its subsets and is
denoted as 2Θ.

Basic Probability Assignment (BPA) refers to the process of
calculating the basic probabilities for each piece of evidence in
the discernment framework Θ. This process is accomplished
using the basic probability assignment function, denoted as
the mass function m(x), which reflects the degree of belief or
confidence in a proposition. The mass function satisfies the
following properties:

m : 2Θ → [0, 1], (1)

m(∅) = 0,
∑

A⊆Θ
m(A) = 1. (2)

In evidence theory, the uncertainty of evidence can be
quantified using the belief function Bel(A) and the plausibility

function Pl(A). The definitions and the relationship between
the belief and plausibility functions are as follows:

Bel(A) =
∑
B⊆A

m(B), (3)

Pl(A) =
∑

B∩A6=∅
m(B), (4)

= 1−Bel(A). (5)

Dempster-Shafer fusion rule of two BPAs is given by

m(A) = [m1 ⊕m2](A)

=

{
0, A = ∅,∑

B∩C=A m1(B)m2(C)

1−K , A 6= ∅
, (6)

with
K =

∑
B∩C=∅

m1(B)m2(C) < 1. (7)

K represents the conflict coefficient, which can describe
the magnitude of conflict between items of evidence, a higher
value of K indicates a greater degree of conflict between
the evidence. 1

1−K serves as a normalization factor. For the
combination of multiple items of evidence, the calculation
follows a similar approach. Multiple belief functions can
be combined using orthogonal sum to generate a new mass
function, denoted as m1 ⊕ m2 ⊕ m3 ⊕ · · · ⊕ mn. If this
combination exists, the order of calculation does not affect the
result, satisfying the commutative and associative properties.

Suppose there are n sets of evidence E1, E2, ..., En,
with their corresponding basic belief assignment functions
m1,m2, ...,mn, and focal elements A1, A2, ..., An, within
the given recognition framework. The classical Dempster’s
combination rule for these sets can be defined as follows:

m(A) =


∑

∩Ai=A

∏
1≤i≤n

mi(Ai)

1−K , A 6= ∅
0, A = ∅

, (8)

K =
∑
∩Ai=∅

∏
1≤i≤n

mi(Ai). (9)

The classical Dempster’s combination rule is susceptible
to paradoxes [42], and there are several classic paradoxical
situations:

1) Conflict of evidence: When the basic belief assignment
functions of multiple evidence sources exhibit strong
conflicts, the fusion process may lead to highly unrea-
sonable results and even fail to generate a consistent
synthesis (complete conflict, i.e., K = 1).

2) One-vote veto: If there is a piece of evidence for
which the basic belief assignment function for a
specific proposition is 0, the fusion result will be
0 regardless of the values of other evidence’s be-
lief assignment functions. This reflects the limita-
tion of the DS fusion rule in allocating conflict
properly. For example, assuming there is evidence
E1: m1(a) = 0.999, m1(b) = 0.001, m1(c) = 0; E2:
m2(a) = 0, m2(b) = 0.001, m2(c) = 0.999. Using the
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formula, calculate the results as m(a) = m(c) = 0, and
m(b) = 1. Clearly, the results are unreasonable.

3) Poor Robustness: Although the changes in the basic
belief assignment values of the focal elements in the
evidence are minimal, the synthesized results can be
completely different. For example, modifying the evi-
dence E1 in the previous example to: m1(a) = 0.998,
m1(b) = 0.001, m1(c) = 0.001, the synthesized result
shows m(b) = 0.001, contrary to the previous result.

The Dezert-Smarandache Theory (DSmT) has made im-
provements to address the aforementioned issues. One of these
improvements is the Proportional Conflict Redistribution rules
no.5 (PCR5) [43], which reduces the generation of unreason-
able results caused by significant conflicts between items of
evidence compared to the DS fusion method. Additionally,
weights can be assigned to the outputs of the FPN before
performing the fusion operation to mitigate conflicts. In the
PCR5 fusion rule, the conflicting degrees are proportionally
allocated to each focal element, enabling a more reasonable
fusion of two sources of evidence with high conflicts. The
PCR5 fusion method for two BPAs is described as follows:

mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑

X∈2Θ

X∩A=∅

[
m1(A)

2
m2(X)

m1(A) +m2(X)

+
m2(A)

2
m1(X)

m2(A) +m1(X)
], (10)

where
mConj

1,2 (A) =
∑

A∩B=A

m1(A)m2(B). (11)

Among them, m1, and m2 represent the two items of
evidence; A and B denote the focal elements contained in the
evidence; mConj

1,2 (A) represents the non-conflicting product,
and the latter part of the sum represents the allocation of all
conflicting products containing A on A.

The weighting calculation method used in the experiment
referred to the approach proposed by Zhunga Liu et al. [44],
which adds a weight to the prefused data by calculating the
difference between two BPA. The mass values corresponding
to the two classifiers indicate the likelihood of the correspond-
ing class being true, with higher values suggesting a higher
probability. The collection of all classes judged as true can be
represented as follows:

Φi = {A| mi(A)

max
B∈Ω

mi(B)
> λ}. (12)

Among them, Φi represents the set of true classes. λ denotes
a threshold set between 0 and 1. When the ratio of the
mass value corresponding to a class to the maximum mass
value in that BPA exceeds the threshold, it is considered
that the class may also be true. This approach increases
tolerance for differences between the two classification results
while retaining information that is beneficial for the final

classification result. The calculation method for the difference
between the two BPAs is as follows:

K =


0, if Φ1 ∩ Φ2 6= ∅,√

(max
A∈Ω

m1(A) )(max
B∈Ω

m2(B)), if Φ1 ∩ Φ2 = ∅. (13)

The weight can be represented as follows:

ω = 1−K. (14)

The weights are used to discount the two BPAs using
Shafer’s discounting operation, aiming to reduce conflicts
between the two classifiers:{

mi(A) = ω ·mi(A),∀A ∈ Ω,

mi(Ω) = 1− ω.
(15)

By employing the operation of adding weights, it is possible
to reduce the negative impact of the classifier with lower
classification ability on the final fusion results when there is
significant conflict between the two classifiers. This, in turn,
enhances the accuracy of the ultimate fusion outcome.

IV. METHODOLGY

Most existing CNN-based models only utilize features or
scales from the final stage as the ultimate classification fea-
tures, making them single-scale classification models. How-
ever, shallow-level features of the network contain more de-
tailed information. Neglecting shallow-level features without
considering them can lead to decreased classification accuracy
for similar or small objects during the classification process.
Particularly when the image resolution is low, shallow-level
features can retain more information and reduce the risk of
feature loss. To better utilize the features of shallow-level
networks, this paper proposes a method that uses multi-scale
features and employs the Feature Pyramid Network (FPN) to
fuse features from different scales. The fusion of multiple
classification results is achieved using the fusion rules of
evidence theory. This approach enables the model to learn
abstract features at different levels of abstraction on different
scales, thereby improving the model’s classification accuracy
and enhancing decision-making capabilities. Consequently, the
E-FPN consists of three main components: the feature extrac-
tion network, the FPN feature fusion part, and the decision-
level fusion based on evidence theory. Specifically, the feature
extraction part is responsible for extracting abstract features
from images, the FPN feature fusion part combines features
from different scales, and the decision-level fusion part, based
on evidence theory, integrates the classification results from
multiple scales into the final classification result. Figure 4
illustrates the overall network structure of the proposed method
in this paper. The feature extraction part utilizes the backbone
network structure of YOLOX, using Darknet53 as the main
network for extracting image features. Darknet53 combines the
characteristics of ResNet and uses a residual network to ensure
that the gradient problem caused by excessively deep networks
is avoided during feature representation. From Figure 4, it
can be observed that the Dark3, Dark4, and Dark5 parts
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of the Darknet53 feature extraction network output feature
maps of three different dimensionalities. These feature maps
contain features of the objects to be classified at three different
scales, and all three scales of feature maps are involved
in the final classification decision step. In other words, by
utilizing feature maps from different depths of the network
for multi-scale feature fusion, better feature representation
capability is ensured. For this feature extraction network, the
chosen image input size is set to 320×320. As the network
layers increase, the input image dimension transitions from
320×320 to 40×40 for Dark3, 20×20 for Dark4, and 10×10
for Dark5. Considering the depth of the feature extraction
network, choosing larger or smaller image input sizes would
result in insufficient feature extraction or feature loss, which
is not conducive to classification decision-making. In fact,
selecting an appropriate input size is also consistent with
mature CNN models, such as VGG and ResNet.

By extracting features at different stages of the feature ex-
traction network, different scales of feature maps are obtained,
capturing information at three different scales. However, di-
rectly performing classification operations on these feature
maps is not sufficient. Although the shallow-level feature
information can propagate to deeper layers in the network,
it may get diluted during convolutional operations, leading
to the neglect of detailed information in the resulting deep-
level features and a decrease in classification accuracy. From
Figure 4, it can be observed that feature maps from different
stages or scales participate in the object classification task.
Therefore, the classification results obtained from feature maps
at different scales will affect the final classification accuracy.
It is necessary to enhance the classification accuracy of feature
maps at different scales involved in the classification task as
much as possible. To address this issue, this paper introduces
a multi-scale feature fusion method. This method allows the
deep-level network to learn detailed feature information from
the shallow-level network, while the shallow-level network can
learn abstract feature information from the deep-level network,
thus improving the feature representation capability. With this
approach, each scale of the feature map can learn richer
information, leading to better classification accuracy in the
subsequent classification process and ultimately improving the
final classification accuracy. Subsequent experiments demon-
strate that using the multi-scale feature fusion method can
improve the accuracy of object classification. It achieves better
classification results compared to using single-scale feature-
based classification methods.

In light of the above, this paper employs Feature Pyramid
Network (FPN) to perform feature-level fusion of the three
feature maps obtained from the backbone network, aiming to
complement the diluted detailed features during the feature
extraction process. By obtaining three feature maps with the
same input dimension, classification operations are separately
performed on two of the feature maps, resulting in two sets
of classification results. In this paper, the evidence theory is
used to fuse the classification results from different scales. The
evidence theory can handle uncertainty and incomplete infor-

mation by combining multiple pieces of evidence to improve
classification accuracy. The multi-scale output classification
results are treated as distinct sources of evidence, which are
fused at the decision level using evidence theory to obtain
the final classification result. Specifically, the classification
results obtained from feature maps of different scales can be
regarded as different sources of evidence, and the obtained
classification results can be seen as probability distributions
where each element represents the probability value of a cor-
responding class. Therefore, the maximum probability value
in the obtained probability distribution cannot solely represent
the current target class, as other higher probability values may
correspond to the correct class as well. Hence, the obtained
multiple probability distributions can serve as references from
different aspects, rather than being definitive classification
results. The use of the evidence theory enables the integration
of the probability distributions obtained from different scales
as different pieces of evidence, and through analyzing the
differences between these pieces of evidence, a new proba-
bility distribution is derived as the classification result. This
classification method resembles the decision-making process
of human experts, who analyze and study information from
multiple sources to make an informed judgment, resulting
in a relatively accurate answer. Subsequent experiments have
demonstrated that fusing the multi-scale classification results
using the evidence theory can further improve the accuracy of
ship classification, validating the effectiveness and applicabil-
ity of the evidence theory in ship classification.

In this paper, the input images to the network are set
to a size of 320×320 in order to retain detailed features
in the images. Various image augmentation techniques, such
as random horizontal flipping, occlusion, and cropping, are
applied to augment the dataset and enhance the network’s
performance. The input network used is CSPDarkNet, where
the images are processed through the Focus module to extract
a value for every other pixel, resulting in four feature maps
that are then combined together. This process reduces the
width and height information of the image while increasing the
number of channels. This reduces the number of parameters
and improves the network’s performance while minimizing the
loss of original information.

I = concat(X[..., :: 2, :: 2], X[..., 1 :: 2, :: 2],
X[..., :: 2, 1 :: 2], X[..., 1 :: 2, 1 :: 2]

. (16)

Among them, the input image X undergoes a slicing
operation denoted as X[·], where every pixel value is extracted
to obtain four feature maps. The concatenation operation
concat() is then applied to combine these four feature
maps. After the Focus operation, the size of the resulting
feature maps becomes 160×160×12.

After the Focus module, the feature extraction stage follows,
consisting of Dark2, Dark3, Dark4, and Dark5. The Dark5
part includes the SPPbottleneck module, which applies pooling
layers with different kernel sizes to the image to increase
the network’s receptive field and extract more features. In
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Figure 4. E-FPN network structure.

this study, the SPP-Bottleneck module utilizes pooling kernels
of sizes 5×5, 9×9, and 13×13. The feature maps obtained
from Dark3, Dark4, and Dark5, denoted as I3, I4, and I5, are
chosen as the outputs of the feature extraction network. The
sizes of these feature maps are 40×40×256, 20×20×512, and
(10×10×1024, respectively. Subsequently, these three feature
maps are fed into the FPN network for feature-level fusion.
In the fusion stage, the FPN layer takes the three feature
maps with different dimensions and performs upsampling
and downsampling operations to integrate the features from
multiple scales, enriching the information within the feature
maps at different scales.

I ′j = concat(f(Ij), g(Ij)), (17)

f(Ij) = WIj , (18)

g(Ij) = DownSampling(UpSampling(f(Ij))). (19)

In the provided formula, f(Ij) represents a convolutional
operation applied to the feature map, while g(Ij) indicates the
process of upsampling the feature map, followed by fusion
with a shallow-level feature map, and then downsampling.
Finally, the resulting feature map is concatenated with the
feature map processed through the f(Ij) operations to ob-
tain the final feature map used for classification. During the
upsampling and downsampling process, the combined feature
map is further integrated using the CSPLayer. This results
in three feature maps (I’3,I’4,I’5) with the same dimensions
as the input. Among these, the feature maps corresponding
to the Dark4 and Dark5 dimensions (I’4,I’5) are selected
for the classification process. The classification component
consists of a BaseConv, two convolutional layers, and three
linear layers. In the linear layers, the flattened feature maps
are sequentially reduced to dimensions of 256, 64, and 10,
where the parameter 10 represents the number of classes for
classification. The softmax() activation function is applied

to obtain the probability distributions (m1 and m2) for the
output feature maps corresponding to the Dark4 and Dark5
scales. These probability distributions from the two scales are
considered as evidence sources for decision-level fusion.

softmax(zi) =
ezi∑C
c=1 e

zc
, (20)

where ezi represents the i-th value, and C represents the
number of outputs, which is the number of classes.

Although the feature maps between different dimensions
complement each other with feature information through the
FPN operation, the probability distribution results obtained
from different-sized feature maps still exhibit variations after
classification. Hence, the differences in information between
these two probability distributions can be utilized to optimize
the classification results. Treating these two probability distri-
butions as two sources of evidence, denoted as m1 and m2,
the DS fusion rule is employed to merge them. Initially, the
conflict coefficient K, which represents the degree of dissim-
ilarity between the two pieces of evidence, is computed using
Equation (7) based on m1 and m2. Subsequently, Equation
(10) is applied to fuse the probability values of each class in
m1 and m2, resulting in a unique classification result. During
the fusion process, the probability values corresponding to
classes with relatively higher degrees of credibility in the
probability distribution are accentuated, while the probability
values corresponding to other classes are attenuated. If a
scenario arises where two probability values in the distribution
are similar, indicating hesitation between two classes, this
method can leverage the differential information from other
probability distributions to make decisions, thereby enhancing
the reliability of the final classification result. Consequently,
the final classification result is obtained. This approach pro-
vides a more reliable classification outcome compared to the
individual fused results. The pseudocode for the E-FPN is
outlined in Algorithm 1.
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Algorithm 1: The method processing of an image.
Input: A ship image X
begin
Do abstract feature extraction
I1 = X ⊗ Focus
I2 = I1 ⊗Darknet2
I3 = I2 ⊗Darknet3
I4 = I3 ⊗Darknet4
I5 = I4 ⊗Darknet5
End
Do FPN feature fusion
I
′
4, I
′
5 = fFPN (I3, I4, I5)

End
Do Classification

I
′′
4 = flatten(I

′)
4

I
′′
5 = flatten(I

′)
5

m1 = softmax{FC(I
′′
4 )}

m2 = softmax{FC(I
′′
5 )}

End
Do Decision fusion
result = PCR5(m1,m2)
End
Output: Classification tensor result.

In this case, I1, I2, I3, I4, I5 represent the outputs of each
stage in the backbone network, DarknetN , and N ∈ 2, 3, 4, 5
represents different parts of the backbone network, fFPN (·)
refers to the feature fusion operation, K represents the conflict
coefficient between evidence. flatten(·) denotes the oper-
ation of flattening the feature map, FC(·) represents the
classification operation, and softmax{·} maps the obtained
classification results to the range [0,1].

V. EXPERIMENTAL

A. Dataset

In this section, to validate the effectiveness of the E-FPN
and compare it with other image classification algorithms, two
datasets, CIFAR-10 and FGSCR10, were used.

CIFAR-10 is a small-scale dataset used for general object
recognition. It consists of 10 classes of RGB images, with
6,000 images per class. The dataset is divided into a training
set of 50,000 images and a test set of 10,000 images. The
images have a size of 32×32 pixels. This dataset is used to
evaluate the classification performance of traditional natural
images.

The FGSCR-42 dataset is a publicly available dataset for
fine-grained ship classification in remote sensing images. It
contains 42 classes with a total of 9,320 images, and the
images have varying resolutions. For the experiments in this
section, we selected 10 classes with a larger number of
image samples, resulting in a total of 5,220 images. This
dataset is used to evaluate the classification performance in
the context of remote sensing images and fine-grained object
classification. The composition and sample images are shown
in Table I and Figure 5, respectively.

B. Experimental Parameter Settings

In this study, we will compare classic classification algo-
rithms, namely ResNet50, ResNeXt50, VGG19, and VGG16,

Table I
SHIP IMAGE CATEGORY.

Category Train Test
Arleigh Burke-class destroyer 290 290

Cargo ship 189 189
Civil yacht 389 388

Container ship 228 227
Medical ship 161 161

Nimitz-class aircraft carrier 277 276
San Antonio-class transport dock 160 159

Ticonderoga-class cruiser 304 303
Towing vessel 389 389

Wasp-class assault ship 227 226

along with the fine-grained image classification algorithms
B-CNN and DCL, against E-FPN to evaluate its effective-
ness. For the classic classification algorithms, the image
size was uniformly adjusted to 224×224. Data augmentation
techniques, including random horizontal flipping, random oc-
clusion, and random cropping, were applied to the dataset
images. The initial learning rate was set to 0.0001, and the
training batch size, weight decay, and decay epoch were set
to 64, 0.1, and 50, respectively. The Adam optimizer was
selected, and the cross entropy loss function was employed
for calculating the loss. In the proposed method, to preserve
more image feature information, the dataset images were
uniformly resized to 320×320 while keeping the remaining
parameters consistent with the aforementioned settings. This
was done to evaluate the effectiveness of E-FPN in terms of
classification performance, by comparing it with the baseline
models. Further details regarding the metrics and evaluation
will be presented in the following sections. The experiments
were conducted using the GPU resource A5000-24G.

C. Evaluation Indices
In this experiment, overall accuracy (OA) and the Kappa

statistic were employed as evaluation metrics to assess the
classification performance of the models. The details are as
follows:

1) OA: Overall Accuracy is defined as the ratio of correctly
classified samples to the total number of samples. The
calculation method is as follows:

OA =
1

N

N∑
i

f(i), (21)

where N represents the total number of image samples
in the dataset. f(i) represents whether the classification
of the i-th sample is correct. If the classification is
correct, the value of f(i) is 1; otherwise, it is 0.

2) The Kappa coefficient is used for consistency testing
and can also be used to measure classification accuracy.
Its calculation is based on the confusion matrix. The
calculation method is as follows:

k =
p0 − pe
1− pe

, (22)

where p0 represents the ratio of the sum of correctly
classified samples in each class to the total number
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Figure 5. FGSCR-10 Image Examples.

of samples, which corresponds to the overall accuracy.
Assuming the true number of samples in each class
is denoted as a1, a2, . . . , ac, the predicted number of
samples in each class is denoted as b1, b2, . . . , bc, and
the total number of samples is n, then the equation can
be expressed as follows:

pe =
a1 × b1 + a2 × b2 + ...+ ac × bc

n× n
. (23)

The calculation result of Kappa falls between[−1, 1], but it
typically ranges [0, 1]. It can be categorized into five levels
to represent different levels of agreement: [0.0, 0.20] slight
agreement, [0.21, 0.40] fair agreement, [0.41, 0.60] moderate
agreement, [0.61, 0.80] substantial agreement, and [0.81, 1]
almost perfect agreement.

D. Performance Evaluation

In this section, the effectiveness of the proposed method is
evaluated by comparing it with classical image classification
networks on the CIFAR-10 and FGSCR-10 datasets. The
validation results are shown in Table II and Table III. Where
bold typeface represents the best while underlining represents
the second-best.

Table II
COMPARED WITH CLASSICAL NETWORK OA.

Method FGSCR-10 CIFAR-10
Resnet50 0.9677 0.9320
Resnext50 0.9631 0.9319
VGG16 0.9685 0.9330
VGG19 0.9405 0.9451
B-CNN 0.9663 0.9242
DCL 0.9731 0.9504
E-FPN 0.9804 0.9478

In Tables II and III, two metrics are used to evaluate the clas-
sification performance, compare four classical classification

Table III
COMPARED WITH CLASSICAL NETWORK KAPPA.

Method FGSCR-10 CIFAR-10
Resnet50 0.9638 0.9220
Resnext50 0.9681 0.9327
VGG16 0.9573 0.9424
VGG19 0.9336 0.9390
B-CNN 0.9621 0.9157
DCL 0.9693 0.9449
E-FPN 0.9776 0.9450

networks and two fine-grained image classification networks
with E-FPN. The proposed method is evaluated on the CIFAR-
10 dataset using two metrics, OA and Kappa. The results
indicate that E-FPN achieved excellent performance in both
metrics, with an OA of 94.78% and a Kappa value of 0.945,
obtaining the second-best and best scores, respectively. This
demonstrates the effectiveness of the E-FPN in the traditional
natural image dataset.

In the FGSCR-10 dataset, the proposed method achieved
an OA of 98.04% and a Kappa value of 0.9776. Compared
to the other four classical methods, the E-FPN showed an
improvement in OA ranging from 1.15% to 3.95% and an
improvement in the Kappa metric ranging from 0.0095 to
0.044. When compared with the other two fine-grained im-
age classification algorithms, E-FPN also achieved excellent
results, with the highest OA and Kappa values.

Through the experiments on the two datasets, it can be
observed that all algorithms showed similar performance on
the CIFAR-10 dataset, and in some cases, B-CNN even
exhibited lower accuracy compared to the baseline model. This
could be attributed to the low resolution of the images in this
dataset, as certain algorithmic improvements may not perform
as effectively under such conditions.

In the FGSCR-10 dataset, the performance of the proposed
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method surpassed that of the other four baseline models. This
may be due to the fact that the FGSCR-10 dataset involves
fine-grained classification targets. After feature extraction by
the backbone network, the E-FPN utilizes the FPN method to
fuse features at different scales, which allows for complemen-
tary details among the three-dimensional feature maps. Finally,
the classification results of different feature maps are fused
using the evidence theory-based decision-level fusion method,
further correcting the classification results. For example, when
an image is misclassified, its correct classification has a
probability value that is close to the probability value of
the current misclassification. When another set of probability
distributions is fused, the probability value corresponding
to the correct classification is also large. After fusion, the
probability value of the correct classification may become the
largest, resulting in the final correct result. As a result, the
proposed method demonstrates an advantage over the other
methods in the FGSCR-10 dataset. Compared to the other two
fine-grained image classification algorithms, our proposed E-
FPN outperforms B-CNN and DCL. This may be attributed to
the effective extraction of object’s fine-grained features using
our multi-scale approach, and the decision-level fusion enables
comprehensive analysis of classification results from different
perspectives.

In terms of the Kappa metric, all classification methods
achieved a performance exceeding 90% on both datasets,
indicating a level of consistency considered ”almost perfect.”
Compared to the other four baseline models, E-FPN exhib-
ited further improvement in this metric, signifying enhanced
classification accuracy for each class and its general ap-
plicability. Additionally, when compared to the fine-grained
image recognition algorithms (B-CNN and DCL), E-FPN also
shows improvement in terms of Kappa. Furthermore, Figure 6
provides a detailed visualization of the classification results for
each class, demonstrating the proposed method’s performance
in terms of confusion matrices on both the CIFAR-10 and
FGSCR-10 datasets. There are very few dark areas outside
the diagonal, indicating a reduced number of misclassifica-
tions. This visual representation intuitively demonstrates the
effectiveness of E-FPN.

Table IV presents the number of parameters, FLOPs
(floating-point operations), and inference time for the seven
models.

Table IV
COMPARISON OF THE NUMBER OF PARAMETERS AND FLOPS.

Method Params(M) FLOPs(G) Inference time(ms)
Resnet50 23.53 4.13 35.854
Resnext50 23 3.82 35.418
VGG16 134.33 15.52 33.658
VGG19 139.62 19.96 34.574
B-CNN 17.34 61.93 49.243
DCL 23.57 16.53 48.165
E-FPN 79.22 3.58 45.224

It can be observed that VGG16 and VGG19 have signif-
icantly higher numbers of parameters and FLOPs compared

to the other baseline models. This is likely due to their
deeper network architectures and the utilization of numer-
ous convolutional layers. On the other hand, ResNet50 and
ResNeXt50 have smaller numbers of parameters and FLOPs.
This reduction can be attributed to the utilization of residual
structures, which help reduce network depth and complex-
ity. Among the five methods, E-FPN has a higher number
of parameters compared to ResNet50 and ResNeXt50 but
lower than VGG16 and VGG19. However, its FLOPs are
the lowest among the five methods, indicating relatively low
computational cost when performing the classification task.
This is because the proposed method introduces an additional
FPN network while the backbone network adopts the residual
approach to reduce its depth. Comparing the fine-grained
image classification models, E-FPN has the highest number of
parameters, suggesting higher storage requirements. However,
its FLOPs remain the lowest, indicating that, compared to
the other six models, E-FPN requires fewer computational
resources during the inference phase, making it suitable for
deployment on mobile and edge devices. This observation is
evident from the inference speed, where all three fine-grained
image recognition models, including E-FPN, require higher
inference time than the four baseline models. However, in
fine-grained image recognition models, the inference time of
the E-FPN model is lower than the other two (B-CNN and
DCL). This demonstrates the advantage of E-FPN in terms of
inference speed.

Additionally, the DS fusion method used in the E-FPN
incurs minimal additional computational cost for the network.
As a result, the increase in network parameters is relatively
small, and the FLOPs are the lowest among the all models.

By comparing the experimental results from the two afore-
mentioned tables, it can be concluded that the E-FPN is
effective on both traditional natural image datasets and fine-
grained remote sensing image datasets. In the description of
the FPN network structure, it was mentioned that three feature
maps of different dimensions were utilized, but during the
final decision-level fusion, only the results from the deeper
two scales of feature maps were selected for fusion. In the
following, we will discuss the impact of choosing different
dimension feature maps for decision-level fusion on the final
results. The results of these experiments are presented1 in
Table V and Table VI.

Table V
FUSION OF RESULTS FROM DIFFERENT SCALES IN CIFAR-10 DATASET.

Dataset Dark3 Dark4 Dark5 OA Kappa
X × × 0.9374 0.9304
× X × 0.9438 0.9375
× × X 0.9516 0.9462

CIFAR-10 X X × 0.9431 0.9367
× X X 0.9492 0.945
X × X 0.948 0.9422
X X X 0.9478 0.942

1The symbol “X” indicates the usage of feature maps at that scale, while
“×” indicates their exclusion.
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Figure 6. The confusion matrices of E-FPN on CIFAR-10 and FGSCR-10 are presented. (a) shows the confusion matrix obtained on the CIFAR-10 dataset,
while (b) shows the confusion matrix obtained on the FGSCR-10 dataset.

Table VI
FUSION OF RESULTS FROM DIFFERENT SCALES IN FGSCR-10 DATASET.

Dataset Dark3 Dark4 Dark5 OA Kappa
X × × 0.9773 0.9746
× X × 0.9773 0.9746
× × X 0.9773 0.9746

FGSCR-10 X X × 0.978 0.975
× X X 0.9804 0.978
X × X 0.9804 0.9478
X X X 0.9804 0.978

In this experiment, different combinations of feature maps
were fused for each dataset, and the impact of pairwise fusion
of different feature maps on the final results was compared.
The last line represents the results obtained by fusing all three
feature maps together. Dark3, Dark4, and Dark5 represent the
probability distributions of the classification results from the
FPN fused outputs of the backbone network. In Table V,
the CIFAR-10 dataset was used. It can be observed that
before decision-level fusion, the OA gradually improves as
the network layers deepen. However, after fusion, the OA is
lower than the OA of the Dark5 output result. Among the fused
results, the fusion of Dark4 and Dark5 achieves the highest OA
of 94.92%. Furthermore, its Kappa value is superior to the
other three results, being 0.945. Preliminary analysis suggests
that this may be due to significant conflicts in the probability
values among certain categories before fusion, resulting in an
unreasonable probability distribution after fusion, thus leading
to incorrect fusion results. Further investigation of this issue
will be discussed in subsequent sections.

Table VI displays the results obtained from the FGSCR-10
dataset, Dark3, Dark4, and Dark5 have the same classification
OA of 97.73%. However, the OA improves after fusion. The
fusion of Dark3 and Dark4 achieves an OA of 97.8%, while
the fusions of Dark4 and Dark5, Dark3 and Dark5, and all
three (Dark3, Dark4, and Dark5) have an OA of 98.04%. The
performance of the Kappa index is consistent with the OA,
with the fusion of Dark3 and Dark4 resulting in a Kappa
value of 0.975, while the other three fusions all have a Kappa
value of 0.978. By comparing the results before and after
fusion, it can be observed that the samples correctly classified
by Dark3, Dark4, and Dark5 are not entirely the same, and
in the probability distributions of misclassified samples, the
probability values for the correct class are close to those of the
misclassified class. Therefore, after fusion, some misclassified
samples are corrected, resulting in an improvement in the final
OA of the results.

According to Table VI, it can be observed that the highest
OA results after fusion are obtained by combining Dark5
with other parts, and these results are superior to the results
obtained by fusing Dark3 and Dark4. It can be seen that
the results obtained from the deeper parts of the network
have a more reliable probability distribution. However, the
results obtained by fusing all three parts together show a slight
decrease compared to the fusion of Dark4 and Dark5. This
may be due to the fact that during fusion, the probability
values of the correct class and the misclassified class for all
three inputs are very close, and since Dark3 has classification
errors, the final result was not corrected to the correct class
during fusion, resulting in a decrease in OA. Therefore, in the
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experiment, this study chooses to fuse Dark4 and Dark5 for
the fusion process.

The E-FPN in this paper consists of three parts: the feature
extraction network, the FPN network, and the decision fusion
part. During the training process, the crossentropy loss values
of the three outputs from FPN are summed to calculate the
overall loss value. Specifically, the obtained loss values in the
network are referred to as loss 0, loss 1, and loss 2. However,
for the final decision, only the output results from Dark4 and
Dark5 are selected for fusion. Therefore, the next step is to
explore the impact of the loss 0 value obtained from Dark2
on the classification performance and the effect of using FPN
for fusion at the feature level.

According to the experimental results in Table VII, on the
CIFAR-10 dataset, the removal of loss 0 slightly improves the
OA to 95.13%. This may be because FPN has multiple output
classification results, and adding loss 0 during the training
process may lead to oscillation and decision risk. Additionally,
the OA gap between Dark4 and Dark5 is very small, and their
Kappa values are similar. Without using FPN for feature-level
fusion, the OA is lower in both cases, and the fused OA and
Kappa values are also lower compared to the two cases with
FPN. This indicates that the classification results of the shallow
layers may have a negative impact on decision-making and
fusion in datasets with clear image features.

Table VII
THE ABLATION EXPERIMENTS OF E-FPN ON THE CIFAR-10

DATASET.(DARK3, DARK4, AND DARK5 REPRESENT THE CLASSIFICATION
OA ON THREE DIFFERENT SCALES.)

CIFAR-10 DarkNet DarkNet DarkNet
+FPN+loss 0 +FPN +loss 0

Dark3 0.9374 0.8865
Dark4 0.9438 0.9401 0.9344
Dark5 0.9516 0.9511 0.9428
E-FPN OA 0.9492 0.9513 0.944
E-FPN Kappa 0.945 0.945 0.9377

However, the positive impact of the shallow layers in
the feature-level fusion should not be ignored, as shown in
Table VIII.

Table VIII
THE ABLATION EXPERIMENTS OF E-FPN ON THE FGSCR-10

DATASET.(DARK3, DARK4, AND DARK5 REPRESENT THE CLASSIFICATION
OA ON THREE DIFFERENT SCALES.)

FGSCR-10 DarkNet DarkNet DarkNet
+FPN+loss 0 +FPN +loss 0

Dark3 0.9773 0.9605
Dark4 0.9773 0.9743 0.972
Dark5 0.9773 0.9754 0.9735
E-FPN OA 0.9804 0.975 0.9781
E-FPN Kappa 0.978 0.972 0.9754

When conducting experiments on the FGSCR-10 dataset,
it was found that adding loss 0 and using FPN for feature-
level fusion resulted in higher OA and Kappa values compared
to not using FPN or not adding loss 0, achieving 98.04%

and 0.978, respectively. This indicates that the classification
performance for each class object in the dataset is excellent.
Under the conditions of removing FPN and removing loss 0,
the OA gap between Dark4, Dark5, and the fused result
is small. However, it can be observed that the OA of the
fused result is better than the individual results. As mentioned
earlier, although the outputs of the shallow network can have a
negative impact on the final decision-level fusion, the features
learned by the shallow network still have a positive influence
on the classification results in the feature-level fusion process.

Based on the experiments and discussions, it can be con-
cluded that using the FPN structure and training the shallow
network for classification improves the classification perfor-
mance on the fine-grained remote sensing image dataset.
The FPN structure complements the detailed features lost
in the deep network. Since the FPN structure used in the
paper involves the fusion of information from three layers,
adding loss 0 for classification training in the top layer of
the network can facilitate the learning of more useful feature
information, further enhancing the feature fusion effect. The
results in Table VIII indicate that employing the feature-level
fusion method helps improve the classification performance of
fine-grained remote sensing image classification and further
enhances the classification performance after decision-level
fusion.

The experimental parameter section in this paper mentions
that, unlike the four other classification methods used in the
comparative experiments, the image input size for the E-FPN
in this paper is 320×320, while the four classical classification
methods use an image input size of 224×224. The purpose
of this choice is to preserve more image feature information.
However, it should be noted that a larger input image size
does not necessarily guarantee better performance. Tables IX
and X present a comparison of the impact of different input
image sizes on the classification performance.

Table IX
INPUT IMAGES OF DIFFERENT SIZES IN CIFAR-10.(DARK3, DARK4, AND

DARK5 REPRESENT THE CLASSIFICATION OA ON THREE DIFFERENT
SCALES.)

CIFAR-10 640×640 320×320 224×224 160×160
Dark3 0.9161 0.9374 0.9171 0.9012
Dark4 0.9164 0.9438 0.9277 0.9123
Dark5 0.9242 0.9516 0.9341 0.9169
E-FPN OA 0.9248 0.9492 0.9348 0.9174
E-FPN Kappa 0.9164 0.945 0.9275 0.9082

In the experiments comparing the impact of different input
image sizes on classification performance, the image size of
224×224, which is the same as the other four classical algo-
rithms, was selected. Additionally, scaled versions of 640×640
and 160×160 were used. Based on the data in Tables IX and X,
it was found that the input image size of 320x320 achieved
the best performance in terms of classification OA and Kappa
value. Furthermore, in both tables, as the input image size
decreased from large to small, the classification OA initially
increased and then decreased. Therefore, it is not necessarily
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Table X
INPUT IMAGES OF DIFFERENT SIZES IN FGSCR-10.(DARK3, DARK4, AND

DARK5 REPRESENT THE CLASSIFICATION OA ON THREE DIFFERENT
SCALES.)

FGSCR-10 640×640 320×320 224×224 160×160
Dark3 0.9758 0.9773 0.9551 0.9677
Dark4 0.9746 0.9773 0.9605 0.9674
Dark5 0.9654 0.9773 0.9635 0.9616
E-FPN OA 0.9693 0.9804 0.9628 0.9658
E-FPN Kappa 0.9655 0.978 0.9582 0.9616

true that a larger input image size leads to better performance,
and the appropriate size should be chosen based on the specific
circumstances.

Table IX presents the influence of different input image sizes
on classification performance, revealing that the classification
OA for each size increases with the depth of the network.
Except for the 320×320 size group, all other size groups
exhibit an increase in classification OA after decision-level
fusion. However, the final accuracy remains lower than that
of the 320×320 size group. Regarding the Kappa index, the
320×320 size group still performs the best. These data indicate
that for traditional natural image datasets, which have easily
discernible image features, adequate feature extraction enables
effective classification, necessitating only the selection of an
appropriate input image size.

Table X demonstrates the impact of different input image
sizes on classification performance in the FGSCR-10 dataset.
In contrast to Table IX, Table X does not observe an increase
in classification OA with network depth. In the 640×640
and 160×160 size groups, a decline in classification OA is
observed as network depth increases. This may be due to
excessively large or small feature maps that fail to effectively
propagate relevant features in FPN feature fusion. For the
160×160 size group, the small image size may lead to the loss
of crucial detail features, resulting in reduced classification
OA. This could also result in significant conflicts between
the generated probability distributions, making it difficult
to correct misclassifications during decision-level fusion and
ultimately decreasing the OA of the fused results. In the
320×320 size group, Dark3, Dark4, and Dark5 exhibit higher
classification OA than the other groups. Although these three
groups have the same classification accuracy, decision-level
fusion further enhances their OA. These data demonstrate
that the proposed classification method, when applied to fine-
grained remote sensing image datasets, benefits from using
appropriately sized input images. This enables the extraction
of abstract features while retaining some detailed features,
facilitating subsequent image classification operations.

In the previous sections, we discussed the network archi-
tecture and input image data. In Section II, the limitations of
the DS fusion method were mentioned, specifically, the issue
of unreasonable fusion results when significant conflicts exist
between two input evidence. To overcome this problem, this
paper adopts the PCR5 fusion method and utilizes the Shafer
discounting method to weigh the evidence, reducing conflicts

between input evidence. The obtained results are compared
with those of the DS fusion method.

Table XI and Table XII present the OA and Kappa values
obtained using three different fusion rules on the CIFAR-10
dataset. The DS fusion rule is the fusion rule adopted in this
paper, PCR5 is the proportional conflict redistribution method
mentioned in Section II of this paper, and wPCR5 refers to the
addition of weights to the probability distributions before using
PCR5 fusion rule, applying the Shafer discounting method
to discount the evidence and reduce conflicts between input
data. From Table XI, it can be observed that the OA of
Dark3×Dark4, Dark3×Dark5, and Dark4×Dark5 combina-
tions under the DS fusion rule and PCR5 fusion rule is almost
indistinguishable. However, for the Dark4*Dark5 combination,
the OA decreases when using the PCR5 rule compared to
the DS rule. After applying the wPCR5 fusion rule, the OA
improves compared to both the DS rule and the PCR5 rule for
all three combinations. This improvement may be attributed to
the already high classification OA before fusion, indicating a
relatively small conflict between the probability distributions
of the two input data. The PCR5 fusion rule primarily aims to
mitigate the impact of conflicts on fusion results and prevent
the generation of unreasonable output values. By adding
weights and employing the PCR5 rule, conflicts between the
two inputs can be further effectively reduced, leading to better
results. The Kappa values generally exhibit a similar pattern to
the OA results. The wPCR5 rule yields slightly better results
compared to the DS and PCR5 rules, but the improvement is
marginal, while there is little difference between the DS rule
and the PCR5 rule.

Table XI
PRECISION COMPARISON OF DIFFERENT DECISION - LEVEL FUSION

METHODS IN CIFAR-10.

CIFAR-10 OA Dark3×Dark4 Dark3×Dark5 Dark4×Dark5
E-FPN with DS 0.9431 0.948 0.9492
E-FPN with PCR5 0.9432 0.9479 0.9489
E-FPN with wPCR5 0.9442 0.9508 0.9509

Table XII
KAPPA COMPARISON OF DIFFERENT DECISION - LEVEL FUSION METHODS

IN CIFAR-10.

CIFAR-10 Kappa Dark3×Dark4 Dark3×Dark5 Dark4×Dark5
E-FPN with DS 0.9367 0.9422 0.945
E-FPN with PCR5 0.9368 0.9421 0.9432
E-FPN with wPCR5 0.938 0.945 0.945

Table XIII and Table XIV compare the OA and Kappa
values on the FGSCR-10 dataset. Similar to the results ob-
tained on the CIFAR-10 dataset, the DS fusion rule and
the PCR5 fusion rule yield nearly identical results. However,
for the Dark3×Dark5 combination with higher conflicts, the
PCR5 rule slightly outperforms the DS rule. When using
the wPCR5 rule, the performance is slightly worse than
the previous two rules. The same trend is observed in the
Kappa values. However, in the case of fine-grained remote
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sensing image datasets, the probability values of each class
in the classification distributions are close, making it difficult
to compute favorable weights, as mentioned in Section II.
Consequently, the weighting approach weakens the confidence
of certain correctly classified classes during discounting op-
erations, resulting in suboptimal final results. Regarding the
Kappa values, there is little difference among the three fusion
methods.

Table XIII
PRECISION COMPARISON OF DIFFERENT DECISION - LEVEL FUSION

METHODS IN FGSCR-10.

FGSCR-10 OA Dark3×Dark4 Dark3×Dark5 Dark4×Dark5
E-FPN with DS 0.978 0.9804 0.9804
E-FPN with PCR5 0.978 0.9812 0.9804
E-FPN with wPCR5 0.977 0.9796 0.98

Table XIV
KAPPA COMPARISON OF DIFFERENT DECISION - LEVEL FUSION METHODS

IN FGSCR-10.

FGSCR-10 Kappa Dark3×Dark4 Dark3×Dark5 Dark4×Dark5
E-FPN with DS 0.975 0.978 0.978
E-FPN with PCR5 0.976 0.978 0.978
E-FPN with wPCR5 0.975 0.977 0.9776

Based on the analysis above, it can be observed that the DS
fusion rule and the PCR5 fusion rule yield almost identical
results on both datasets. The wPCR5 method performs slightly
better than the previous two methods on traditional natural
image datasets but slightly worse on fine-grained remote sens-
ing image datasets. Additionally, the computation complexity
of PCR5 and wPCR5 is higher than that of the DS rule,
and the complexity increases more noticeably with a larger
number of classes to be classified. Therefore, when there is no
significant conflict between the two probability distributions,
the DS fusion rule is chosen in this paper.

In the previous experiments, it was mentioned that in the
fine-grained remote sensing image dataset, the method of
adding weights to reduce conflicts between evidence actually
weakened the credibility of some correctly classified results.
In the process of calculating the weights, a threshold was
set for the ratio between the mass values of each class and
the maximum mass value to preserve the differences between
the two classification results. In the previous experiments, a
threshold of 0.5 was set. The impact of the threshold value on
the OA and Kappa value after fusion can be seen in Table XV
and Table XVI, where the value λ represents the threshold
chosen for calculating weights.

The Tables XV and XVI demonstrates the influence of
threshold values ranging from 0.1 to 0.9 on the classifica-
tion OA and consistency in two datasets. In the CIFAR-10
dataset, as the threshold value increases from 0.1 to 0.9, the
classification OA gradually rises to 95.17%. Compared to the
threshold value of 0.1, there is an improvement of 0.24%. The
Kappa value increases from 0.9436 to 0.9463. In this dataset,
when the threshold value increases, it filters out categories

Table XV
COMPARISON OF DIFFERENT THRESHOLDS UNDER CIFAR-10.

λ OA Kappa
0.1 0.9493 0.9436
0.2 0.9497 0.9441
0.3 0.95 0.9444
0.4 0.9501 0.9445
0.5 0.9509 0.945
0.6 0.9516 0.9462
0.7 0.9516 0.9462
0.8 0.9517 0.9463
0.9 0.9517 0.9463

Table XVI
COMPARISON OF DIFFERENT THRESHOLDS UNDER FGSCR-10.

λ OA Kappa
0.1 0.98 0.9776
0.2 0.9796 0.9771
0.3 0.9796 0.9771
0.4 0.9796 0.9771
0.5 0.98 0.9776
0.6 0.98 0.9776
0.7 0.98 0.9776
0.8 0.98 0.9776
0.9 0.9796 0.9771

with lower probability values in the probability distributions,
retaining other potential options for correct classification. This
preserves some differences between classifiers as complemen-
tary information, which benefits subsequent fusion operations.

In the FGSCR-10 dataset, changing the threshold value from
0.1 to 0.9 has almost no impact on the classification OA and
Kappa values. This indicates that the threshold value has little
effect on the fusion results in this dataset. Table XVII displays
partial probability distributions generated by Dark5. It can be
observed that the reason for this phenomenon is that one class
in the probability distribution before fusion has a significantly
high probability value, and the ratios of other probabilities to
it might be lower than 0.1. Consequently, the variation of the
threshold value does not affect the final result.

Based on the experiments, it can be concluded that the
threshold value has almost no impact on the classification of
OA in the FGSCR-10 dataset. In the CIFAR-10 dataset used in
this experiment, setting a higher threshold value allows for the
rational utilization of differences between different classifiers,
obtaining complementary information and thereby improving
the OA of the classification results.

VI. CONCLUSIONS

This study proposes a feature fusion and decision fusion
method that combines FPN with evidence theory to improve
classification accuracy. The effectiveness of this method is
validated on both traditional natural image datasets and fine-
grained remote sensing image classification datasets. For the
fine-grained remote sensing image dataset, FPN is utilized
for feature-level fusion to capture the lost detailed features
in shallow networks. Simultaneously, evidence theory is ap-
plied to modify the generated probability distributions. In the
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Table XVII
PARTIAL PROBABILITY DISTRIBUTION UNDER THE FGSCR-10

WITH E-FPN.

Category m1 m2 m3

Arleigh Burke-class destroyer 0.98235 1 0
Cargo ship 0.00001 0 0
Civil yacht 0 0 0

Container ship 0 0 0
Medical ship 0 0 0

Nimitz-class aircraft carrier 0 0 0
San Antonio-class transport dock 0 0 0

Ticonderoga-class cruiser 0.01764 0 1
Towing vessel 0 0 0

Wasp-class assault ship 0 0 0

experimental section, the network architecture and parameters
of this method are discussed, and the impact of different fusion
rules on the final classification accuracy is compared. The
experimental results demonstrate that selecting appropriate
sizes of input images and using both feature-level fusion
and decision-level fusion can effectively improve classification
accuracy. Additionally, reducing conflicts between different
classifier results through the addition of weights contributes
to the enhancement of classification results in certain cases.

The proposed E-FPN method still has some issues that need
to be optimized. For instance, as demonstrated in Tables II, III,
and IV in Section V-D of the paper, currently, E-FPN did not
achieve significant improvement compared to the other three
fine-grained image classification algorithms in the ship fine-
grained classification task. Furthermore, when compared to the
baseline models on the CIFAR-10 dataset, the improvement
of our proposed method was not significant. We believe this
is due to the small image resolution in this dataset, where
the utilization of multi-scale features might not effectively
extract and fuse large-scale and small-scale features, leading
to the incomplete exploitation of the advantages of multi-
scale features. Additionally, E-FPN has a higher number of
parameters than other algorithms, which demands significant
storage resources when deployed, and this limitation requires
optimization in future work.

Moreover, the current usage of E-FPN involves the classi-
fication of single, complete images, which poses significant
challenges when encountering scenarios with multiple objects
or complex background environments in the image.

Future work should focus on applying this method to
different feature extraction networks and exploring its general-
izability. Additionally, further research should explore detail-
oriented feature extraction and fusion methods to replace the
fusion of entire feature maps, aiming to reduce the complexity
and number of parameters of the method. Simultaneously, it
is important to explore methods that prioritize the object’s
location in the image to mitigate interference caused by
background objects in the classification process.
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Abstract—In this paper, we propose a real experiment for
building and realizing the physical combination of basic belief
assignments associated with two independent, informative, and
equi-reliable sources of information, according to the famous
Zadeh’s example. This experiment is based on a particular
electronic circuit box, called Z-box, enabling to observe and to
check the fusion result experimentally. Our experimental results
clearly invalidate the fusion result obtained by Dempster-Shafer’s
rule of combination and show that it is physically possible to
consider in a natural fusion process two independent and equi-
reliable sources of evidences at same time, even if they appear
as highly conflicting in Shafer’s sense.

Keywords: belief function, Zadeh’s example, Z-box experi-

ment, information fusion, Dempster’s rule.

I. INTRODUCTION

Dempster-Shafer Theory (DST), introduced by Shafer in

1976 [1] offers an elegant theoretical framework for modeling

epistemic uncertainty and for combining distinct bodies of

evidence collected from different sources. In DST, the com-

bination (fusion) of several distinct sources of evidences is

done with Dempster-Shafer (DS)1 rule of combination, which

corresponds to the normalized conjunctive consensus operator

[1], assuming that the sources are not in total conflict2. Since

1976, DST has been used in many fields of applications,

including information fusion, pattern recognition, decision

making, etc, but it also has been seriously criticized by some

authors [2]– [12].

In spite of it, starting from Zadeh’s criticism [2]–[4], many

questions have arisen about the validity and the consistency

of this theory when combining uncertain and conflicting evi-

dences expressed as basic belief assignments (BBAs). Zadeh’s

“paradox” [2] is the first example where DS rule gives

an apparently counter-intuitive result in highly conflicting

case. Another very interesting example showing the counter-

intuitive behavior of DS rule in some very low conflicting

cases has been discovered recently and discussed by the

authors in [11].

1Although the rule has been proposed originally by Dempster, we call it
Dempster-Shafer rule because it has been widely promoted by Shafer in DST.

2otherwise DS rule is mathematically not defined because of 0/0 indeter-
minacy.

Since the publication of Zadeh’s example, many researchers

and engineers [5]–[9], [14] working in applications with belief

functions have observed and admitted that DS rule is problem-

atic for evidence combination, especially when the sources

of evidence are highly conflicting. A most recent detailed

discussion on the validity of DS rule can be found in [10]–[12].

It is worth noting that the discussion of the choice of semantics

for the justification of a rule of combination is not the purpose

of this paper. We just want to revisit and discuss here the

most well-known Zadeh’s emblematic example only from a

physical-based standpoint because we are very concerned with

fusion in real applications, especially for defense and security.

This paper was inspired by our curiosity to revisit Zadeh’s

example on the base of a real experiment, in order to become

aware of the authentic physical fusion process (validated

by the Nature’s physical laws) and to understand the way

how this emblematic example is “resolved” in actual fact by

the Nature. In this paper, we propose a real experiment for

generating BBAs from physical quantities that are consistent

with BBAs inputs given in Zadeh’s example, and that can

be fused automatically by a pure natural phenomenon. Our

paper shows that in this Z-box experiment, Dempster’s rule

of combination is inconsistent with physical (fusion) law of

Nature and thus it cannot be used to predict the experimental

results. Our experiment can be reproduced and verified by any

reader who wants to check by him/herself the validity of our

results. In this experiment, we have considered and generated

two independent Bayesian BBAs that are equi-reliable and fit

with Zadeh’s BBAs inputs and let the Nature combine them

physically, and we just observe what happens. Even if the

two Zadeh’s Bayesian BBAs appear as highly conflicting (in

Shafer’s sense), we have shown that it is however possible to

make a physical experiment in which each source provides a

BBA as chosen by Zadeh. This is possible because each source

has only a partial knowledge of the state of the world.

In this work, we have just designed a simple physical

experiment in which the fusion procedure is just governed

by the physical law of Nature. All the fusion rules aim to

obtain good and reasonable fusion results. We do think that

to use such a physical experiment for testing DS rule (a type

of fusion rule) makes sense and is rational, and our results

indicate that DS rule does not agree with the physical (natural)

Originally published as: J. Dezert, A. Tchamova, D. Han, A Real Z-box Experiment for Testing Zadeh’s 
Example, in Proc. of Fusion 2015 Int. Conf. on Information Fusion, Washington D.C, USA, July 6–9, 
2015, and reprinted with permission.
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fusion process. To certify that DS fusion rule is undoubtedly

valid and really useful in practical applications, it should be

proved valid through an undisputed experimental protocol and

tested on real experiments, and not claimed valid from specific

justifications conditioned by particular choices of semantics

that have been disputed since more than four decades in the

scientific community. The choice of a semantic interpretation

of fusion, although interesting, is not our major concern here.

So far, and to authors knowledge, there is no undisputed

experimental protocol proving that Dempster’s rule is valid,

even if Shafer proposed an interpretation based on a random-

code interpretation of belief functions (BF) in [13]. It is also

worth recalling that DS rule is not a generalization of Bayesian

inference because even when BBAs are Bayesian, DS and

Bayes rules become incompatible as soon as the a priori is

truly informative (i.e. it is not vacuous, nor uniform) – as it

is in the vast majority of practical cases in fact, see [12] and

references inside for justifications with examples. That is why,

it is vain (in our opinion) to search for a real valid and general

physical experiment validating DS rule in the general context

of belief functions.

After a brief recall of the basics of DST and Zadeh’s

example, we will present in details our Z-box experiment and

discuss its results in the next sections.

II. BASICS OF DST

Let Θ = {θ1, θ2, . . . , θn} be a frame of discernment of a

problem under consideration containing n distinct exclusive

and exhaustive elements θi, i = 1, . . . , n. A basic belief

assignment3 (BBA), m(.) : 2Θ → [0, 1] is a mapping from

the power set of Θ (i.e. the set of subsets of Θ), denoted

2Θ, to [0, 1], that must satisfy the following conditions: 1)

m(∅) = 0, i.e. the mass of empty set (impossible event)

is zero; 2)
∑

X∈2Θ
m(X) = 1, i.e. the mass of belief is

normalized to one. The quantity m(X) represents the mass

of belief exactly committed to X . An element X ∈ 2Θ is

called a focal element if and only if m(X) > 0. The set

F(m) , {X ∈ 2Θ|m(X) > 0} of all focal elements of a BBA

m(.) is called the core of the BBA. The vacuous BBA char-

acterizing the full ignorance is defined by mv(.) : 2
Θ → [0; 1]

such that mv(X) = 0 if X 6= Θ, and mv(Θ) = 1.

From any BBA m(.), the belief function Bel(.) and the

plausibility function Pl(.) are defined for ∀X ∈ 2Θ as:

Bel(X) =
∑

Y |Y⊆X m(Y ) and Pl(X) =
∑

Y |X∩Y 6=∅ m(Y ).
Bel(X) and Pl(X) are classically interpreted as lower and

upper bounds of an unknown subjective probability P (.) and

one has the following inequality satisfied Bel(X) ≤ P (X) ≤
Pl(X), ∀X ∈ 2Θ. In DST, the combination (fusion) of

several distinct sources of evidences is done with DS rule of

combination, which corresponds to the normalized conjunctive

consensus operator [1], assuming that the sources are not in

total conflict4. DS combination of two independent BBAs

3also called a belief mass function (BMF) by some authors, or a basic
probability assignment (BPA) by Shafer.

4otherwise DS rule is mathematically not defined because of 0/0 indeter-
minacy.

m1
Θ(.) and m2

Θ(.) is defined by mΘ(∅) = 0, and for all

X ∈ 2Θ \ {∅} by

mΘ(X) =
1

1−K12

×
∑

X1,X2∈2
Θ

X1∩X2=X

m1
Θ(X1)m

2
Θ(X2), (1)

where

K12 ,
∑

X1,X2∈2
Θ

X1∩X2=∅

m1
Θ(X1)m

2
Θ(X2), (2)

defines the so-called conflict between the two sources of

evidence characterized by the BBAs m1
Θ(.) and m2

Θ(.).

III. ZADEH’S EXAMPLE

The famous Zadeh’s example considers two doctors ex-

amining a patient who suffers from either meningitis (A),

concussion (B) or brain tumor (C). The frame of discernment

is chosen as Θ = {A,B,C} and it is assumed as exhaustive

and exclusive. Both doctors agree in their low expectation of a

tumor, but disagree in likely cause and provide the following

diagnosis, described by the following BBAs m1(.) and m2(.)
satisfying

m1(A) = 0.90, m1(B) = 0.00, m1(C) = 0.10, (3)

m2(A) = 0.00, m2(B) = 0.90, m2(C) = 0.10. (4)

If one combines the two BBAs using DS rule of combination,

the following counter-intuitive final conclusion is obtained

mDS(A) = 0.0, mDS(B) = 0.0, mDS(C) = 1.0. (5)

The conclusion made on the base of DS rule is that the patient

has for sure a brain tumor because it is the only diagnose that

both doctors agree on even if the two experts (doctors) agree

that tumor is unlikely but are in almost full contradiction for

the other causes of the disease. What is even more questionable

is that the same conclusion (the brain tumor is unlikely) would

be obtained regardless of the probabilities associated with

the other possible diagnoses. This very simple but interesting

example shows the limitations of practical use of the DST

for automated reasoning and has widely been discussed in the

literature [2]–[12].

A more emblematic and interesting example, involving

possibly low conflicting sources, has been discovered recently

and discussed in [10]–[12]. It corresponds to the case where

the two equi-reliable doctors’ reports concern the following

BBAs satisfying m1(A) = a, m1(A ∪ B) = 1 − a and

m2(A∪B) = b1, m2(C) = 1− b1− b2, m2(A∪B∪C) = b2,

with parameters 0 < a, b1, b2, < 1. It is easy to verify that

the conflict given by (2) is equal to K12 = m1(A)m2(C) +
m1(A ∪ B)m2(C) = 1 − b1 − b2. Surprisingly, this conflict

does not impact (it can be very high, or very low) the DS

fusion result because one always has in this new example

mDS(.) = m1(.). This result is also abnormal and counter-

intuitive because the second source m2(.) (the 2nd doctor

diagnosis) does not count at all in DS fusion process, even if

m2(.) is not vacuous (it is informative) and truly conflicting

with the first doctor’s diagnosis m1(.).
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IV. A REAL Z-BOX EXPERIMENT

In this section, we propose an electronic circuit (called Z-

box scheme) as shown in Fig. 1 to generate BBAs according

to Zadeh’s example and to test experimentally the physical

fusion of these BBAs.

Figure 1. Z-box Scheme.

It is clear that this scheme can be easily extended to build

and combine more than three Bayesian sources of evidence

as well, which is out of the scope of this paper. This scheme

utilizes a simple battery of 6 Volts as an only circuit’s power

supply. The switches SW1 and SW5 are used to obtain two

independent sub-circuits, in order to realize two independent

sources of information for the purpose of our task. Three

simple linear potentiometers (P1, P2, P3) and three switches

(SW2, SW3, and SW4) are used to establish the first source

(sub-circuit 1), respectively three potentiometers (P4, P5,

P6) and three switches (SW6, SW7, and SW8) for the

second source (sub-circuit 2). Each of these two sources

of information provides its relative truth, established on

its own knowledge only, by setting the special tuning of

corresponding sets of potentiometers. Three white Light

Emitting Diodes (LED’s - LEDA, LEDB , and LEDC )

are put to be utilized as light indicators. The light intensity

is proportional to the current values through the LED’s.

We are concerned with the answer of the question: which

LED emits the light with strongest intensity? Our frame is

Θ = {A , LEDA, B , LEDB, C , LEDC}. The Z-box

experiment consists in three main steps: 1) tuning the source

no. 1 (Sub-circuit 1) to generate BBA m1(.); 2) tuning the

source no. 2 (Sub-circuit 2) to generate BBA m2(.); and 3)

the physical fusion of the two BBAs. The descriptions of

these steps are given in the sequel and are illustrated in the

figures 2-4.

Step 1: Tuning the first source (Sub-circuit 1) according to

Fig.2. Only the upper branch of the circuit is active with the

following settings:

• Switch SW1 is closed and switch SW5 is open.

• Switches SW2 and SW4 are closed. Switch SW3 is

left open, providing a zero-current through LEDB:

I1(LEDB) = 0.0 mA.

• The potentiometers (P1, P3) are tuned to provide the fol-

lowing current values through the LED’s: I1(LEDA) ≈
32.5 mA, I1(LEDB) = 0.0 mA and I1(LEDC) ≈ 3.6
mA, where the index {1} is used to denote the 1st source

of information.

Figure 2. Step 1 of the experiment : setting the BBA m1(.).

Step 2: Tuning the second source (Sub-circuit 2) according to

Fig. 3. Only the lower branch of the circuit is active with the

following settings:

• Switch SW1 is open and switch SW5 is closed.

• Switches SW7 and SW8 are closed. Switch SW6 is

left open, providing a zero-current through LEDA as

I2(LEDA) = 0.0 mA.

• The potentiometers (P5, P6) are tuned to provide the

following current values through the LED’s: I2(.) =
{I2(LEDA) = 0.0 mA, I2(LEDB) ≈ 32.5 mA, and

I2(LEDC) ≈ 3.6 mA, where the index {2} is used to

denote the 2nd source of information.

Figure 3. Step 2 of the experiment : setting the BBA m2(.).
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Step 3: Both branches of the circuit are active at the same

time for making the physical fusion. More precisely, we set

the switches SW2, SW3 and SW4 and tune the potentiometers

P1, P2 and P3 according to Step 1, and we set the switches

SW6, SW7 and SW8 and tune the potentiometers P4, P5 and

P6 according to Step 2. The switches SW1 and SW5 are closed

to implement the fusion of the sources as shown in Fig. 4.

Figure 4. Step 3 of the experiment : the (physical) fusion of BBAs.

At this step, one gets:











I1(LEDA) ≈ 32.5 mA,

I1(LEDB) = 0.00 mA,

I1(LEDC) ≈ 3.6 mA.

(6)

and










I2(LEDA) = 0.00 mA,

I2(LEDB) ≈ 32.5 mA,

I2(LEDC) ≈ 3.6 mA.

(7)

The total current intensities are respectively equal to

{

I1,total =
∑

i∈{A,B,C} I1(LEDi) ≈ 36.1 mA,

I2,total =
∑

i∈{A,B,C} I2(LEDi) ≈ 36.1 mA.

Fig. 5 shows the different LED’s current values obtained

in each step during the experiment’s time duration of 5 sec.

In the left subplots of Fig. 5 (result of step 1), one sees that

the current through LEDA is 9 times higher than the current

through LEDC , while the current through LEDB is almost

zero, whereas in the middle subplots of Fig. 5 (result of step

2), one sees that the current through LEDB is 9 times higher

than the current through LEDC , while the current through

LEDA is almost zero. The observed results make perfect

sense. Because the light intensity is proportional to current

values through the LEDs, the same proportions are valid for

the intensity of the light emitted from the LEDs. One sees

that these settings fit with the input BBAs of Zadeh’s example

because after the normalization of current values one has the

following masses of belief in the origin of the strongest light

emission:














m1(A) ,
I1(LEDA)

I1,total
≈ 0.9,

m1(B) , I1(LEDB)

I1,total
= 0.0,

m1(C) , I1(LEDC)

I1,total
≈ 0.1,

(8)

and














m2(A) ,
I2(LEDA)

I2,total
= 0,

m2(B) , I2(LEDB)

I2,total
≈ 0.9,

m2(C) , I2(LEDC)

I2,total
≈ 0.1.

(9)

The results of steps 1 and 2 show that both of the

sources (corresponding to 1st and 2nd sub-circuits), taken

independently, are able to make a correct physical assessment

of the real physical situation. The right subplots of Fig.

5 (result of step 3) show the real physical fusion results

simulated from MicroSim DesignLab 8 [18], as shown through

the screen copy given in Fig. 6. Here we use the index

{12} to denote that both sources (sub-circuits) are active.

The observed current intensities are I12(LEDA) ≈ 32.5
mA, I12(LEDB) ≈ 32.5 mA, and I12(LEDC) ≈ 6.9
mA. After the normalization of I12(.), we get finally the

combined BBA m12(.) over the frame of discernment Θ ,

{A,B,C} that is given by m12(A) , I12(LEDA)/I12,total ≈
0.45, m12(B) , I12(LEDB)/I12,total ≈ 0.45, and

m12(C) , I12(LEDC)/I12,total ≈ 0.10, where I12,total =
I12(LEDA) + I12(LEDB) + I12(LEDC) ≈ 71.9 mA.

Clearly, the observed fact is that after the real physical

fusion, the current through LEDA is just equal to the current

through LEDB , and both are approximately 5 times higher

than the current through LEDC . The experimental fusion

result does not fit with the predicted result based on DS rule

(5), nevertheless in this experiment both BBA inputs match the

medical experts’ opinions as in Zadeh’s example, and they are

considered to be in high “conflict” according to the classical

interpretation in DST. This result brings to light the fact that

DS rule result (5) is not consistent in this experiment with

what the physical fusion system provides. This real Z-box

experiment supports Zadeh’s intuition about the non-adequate

behavior of DS rule, and the counter-intuitive decisions that

can be drawn from it. Stated otherwise, the natural physical

fusion does not follow DS rule of combination. In fact, the

notion of “conflict”, which plays an important role when

manipulating belief functions, is questionable, since it appears

quite artificial in physics (in natural phenomenon). The conflict

plays however a main role in decision-making in human

reasoning. The way in which the total or partial conflicts are

managed by Shafer’s evidential reasoning is incompatible with

this simple physical experiment.

It is worth noting that the physical fusion of sources of

Zadeh’s example is consistent with the simple averaging rule,

and (relatively) consistent with PCR6 fusion rule [17] (Vol.

2) which will provide in this example mPCR6(A) = 0.486,

mPCR6(B) = 0.486, and mPCR6(C) = 0.028. Contrarily

to DS rule, PCR6 is fully consistent with the averaging
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Figure 5. LEDs current values for source 1, source 2, both sources (by physical fusion).

Figure 6. Screen copies of MicroSim schematics and its physical fusion result.
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rule for estimating frequentist probabilities in binary random

experiments, see [19] for details with examples.

V. CONCLUSIONS

In this paper a real experimental method for building basic

belief assignments associated with two independent, informa-

tive, and equireliable sources of information, following the

emblematic Zadeh’s example has been presented. It is based

on a particular electronic circuit box (called Z-box), enabling

to observe and to check the fusion result experimentally.

Zadeh’s intuition about the non-adequate behavior of DS

rule and the counter-intuitive decisions obtained on its base

is perfectly defended by Nature through this experiment. A

similar experiment, called Z-aquarium experiment can also be

done with fluids (with a container filled of water) instead of

an electronic circuit, but it is more complex to set up and it

has not been reported in this paper. Our conclusion is that

Dempster-Shafer Theory does not agree with the physical

fusion process at least for a situation that fits with Zadeh’s

example. The more general question on the validity of DST

(especially, when subjective beliefs are considered) was not

the purpose of this paper because this question has already

been addressed in details in our previous research works put

in references.
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Two Novel Methods for BBA Approximation

Based on Focal Element Redundancy

Abstract—The theory of belief functions is a very appealing
theory for uncertainty modeling and reasoning which has been
widely used in information fusion. However, when the cardinality
of the frame of discernment and the number of the focal elements
are large the fusion of belief functions requires in general a
high computational complexity. To circumvent this difficulty,
many methods were proposed to implement more efficiently the
combination rules and to approximate basic belief assignments
(BBA’s) into simplest ones to reduce the number of focal elements
involved in the fusion process. In this paper, we present a
novel principle for approximating a BBA by withdrawing more
redundant focal elements of the original BBA. Two methods
based on this principle are presented (using batch and recursive
implementations). Numerical examples, simulations and related
analyses are provided to illustrate and evaluate the performances
of this new BBA approximation method.

Index Terms—Evidence theory; belief functions; basic belief
assignment; approximation.

I. INTRODUCTION

The original theory of belief functions, also known as

Dempster-Shafer Theory (DST) [1] has been widely used in

information fusion, pattern recognition and decision making

due to its advantages in representing uncertain information and

partial knowledge. However, the computational complexity is

one of its drawbacks [2], specially for combining sources of

evidences expressing their BBA’s with respect to large frames

of discernment (FoD). The computational complexity of the

evidence combination is strongly affected by the cardinality

of the FoD and the number of focal elements of the BBA of

the sources to combine.

To reduce the computational complexity of evidence com-

bination, various approaches have been proposed, which gen-

erally fit within the following two categories:

a) Efficient implementation for performing exact computa-

tions of the chosen rule of combination. For example,

an optimal algorithm for Dempster’s rule of combination

was proposed by Kennes [3]. Barnett [4], Shafer and

Logan’s [5] works are also representatives of this aspect.

b) Approximation of simplification of BBA’s. For example,

k − l− x approach [6], summarization approach [7], the

D1 approximation [8], inner and outer approximations

[9], Monte-Carlo based approximation [10], etc., remove

focal elements and redistribute the corresponding mass

assignments. In our previous works, we also had proposed

hierarchical proportional redistribution approach [11],

and the optimization-based BBA approximations [12].

The work presented in this paper focuses on the reduction

of evidence combination’s computational cost thanks to BBA

approximations. In the aforementioned works of category b),

the different methods propose to remove some focal elements

according to some criteria, typically based either on their mass

values or on their cardinalities. We think that only mass values

or focal element cardinality are not enough for selecting the

focal elements to remove for making good BBA approxima-

tion. We propose a novel approach using the notion of focal

element redundancy. Those relatively redundant focal elements

should be removed and those relatively non-redundant ones

should be remained. To quantify this notion of redundancy, we

use the average distance between a given focal element and

all the other focal elements. Smaller average distance means

that the given focal element carries similar information when

compared with others, i.e., it is more redundant and should

be removed at first. User can preset the desired number of

remaining focal elements (also the number of removed focal

elements). Two removing procedures (including a batch mode

and a iterative mode) are proposed in the sequel, followed

by the re-normalization or redistribution. Numerical examples,

simulations and related analyses are provided to show the

rationality and interest of these novel BBA approximation

approaches.

II. BASICS OF BELIEF FUNCTIONS

The theory of belief functions has been developed by

Shafer [1] in 1976 from early works of Dempster. In DST,

the elements in frame of discernment (FoD) Θ are mutually

exclusive and exhaustive. A basic belief assignment (BBA),

also called a mass function, is a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑

A∈2Θ

m(A) = 1 (1)

If m(A) > 0, A is called a focal element of the BBA m(·).
In DST, the combination of two distinct bodies of evidence

Originally published as: D. Han, J. Dezert, Y. Yang, Two Novel Methods for BBA Approximation Based 
on Focal Element Redundancy, in Proc. of Fusion 2015 Int. Conf. on Information Fusion, Washington 
D.C, USA, July 6–9, 2015, and reprinted with permission.
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(BOEs) m1(·) and m2(·) is done using Dempster’s rule as

follows. ∀A ∈ 2Θ :

m(A) =

{

0, if A = ∅
1

1−K

∑

Ai∩Bj=A m1(Ai)m2(Bj), if A 6= ∅
(2)

where K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj) is the total conflicting

mass assignments, which is discarded by normalization in

Dempster’s rule. It can be found from Eq. (2) that Dempster’s

rule is both commutative and associative. Dempster’s rule

has been seriously criticized for its counter-intuitive behaviors

both in high conflicting and low conflicting situations [13],

and other rules of combination have been developed in the

literature – see [14] for details. These modified or refined

combination rules focus on suppressing the counter-intuitive

behaviors of Dempster’s rule. However, like Dempster’s rule,

they all have to face the problem of high computational

complexity with the increase of the FoD’s cardinality and the

quantity of the focal elements.

To reduce the computational cost of combination of BBA’s

and make the fusion process tractable, we can as a first strategy

switch to more simple rules of combination or try to develop

efficient implementations of sophisticate rules, or as a second

strategy simplify (approximate) original BBA to combine by

simplest BBA with less focal elements of smaller cardinalities,

or we can mix both strategies as well. In this paper, we focus

on the second strategy devoted to BBA approximation, which

is more intuitive for human to catch the meaning [15].

III. EXISTING BBA APPROXIMATION APPROACHES

Some existing BBA approximation approaches are briefly

recalled in this section for the purpose of comparisons with

the novel methods proposed in this paper.

1) k− l−x method [6]: This approach has been proposed

by Tessem in 1993. The simplified BBA is obtained by

• keeping no less than k focal elements;

• keeping no more than l focal elements;

• by deleting the masses which are no greater than x.

In k − l − x, all original focal elements are sorted according

to their mass values in a decreasing order. Then, the first p
focal elements are chosen such that k ≤ p ≤ l and such

that the sum of the mass assignments of these first p focal

elements is no less than 1 − x. The removed mass values

are redistributed to remaining focal elements by a classical

normalization procedure.
2) Summarization method [7]: This method is similar to

the k − l− x and it also keeps focal elements having highest

mass values. The mass values of focal elements to remove are

accumulated and assigned to the their union set. Suppose k
is the desired number of focal elements in the approximated

BBA mS(·) of a given BBA m(·). Let M be the set of k− 1
focal elements with the highest mass values in m(·). Then

mS(·) is obtained from m(·) by

mS(A) =











m(A), if A ∈ M
∑

A′⊆A,A′ /∈M m(A′), if A = A0

0, otherwise

(3)

where A0 is determined by

A0 ,
⋃

A′ /∈M,m(A′)>0

A′ (4)

3) D1 method [8]: Let m(·) be the original BBA to

approximate. mS(·) denotes the approximated BBA and the

desired number of focal elements is k. Let M be the set of

k−1 focal elements with the highest mass values in m(·) and

M− be the set including all the other focal elements of m(·).
The basic idea of the D1 method is to keep all the members

of M as the focal elements of mS(·) and to assign the mass

values of the focal elements in M− among the focal elements

in M according to the following procedure.

Given a focal element A ∈ M−, in M , find all the supersets

of A to form the collection MA. If MA is not empty, the mass

value of A is uniformly assigned among the focal elements

with smallest cardinality in MA. When MA is empty, then

construct M ′
A as

M ′
A = {B ∈ M | |B| ≥ |A| , B ∩ A 6= ∅} (5)

Then, if M ′
A is not empty, m(A) is assigned among the focal

elements with smallest cardinality in M ′
A. The value assigned

to a focal element B depends on the value of |B ∩ A|. Such

a procedure is executed iteratively until all m(A) have been

assigned to the focal elements in M .

If M ′
A is empty, there are two possible cases:

1) If the total set Θ ∈ M , the sum of mass values of the

focal elements in M− will be added to Θ;

2) If Θ /∈ M , then set Θ as a focal element of mS(·) and

assign the sum of mass values of the focal elements in

M− to mS(Θ).

More details on D1 method with examples can be found in [8].

The basic principle of these three previous approaches of

BBA approximation is to remove the focal elements having

smaller mass values because they are deemed as unimportant.

Besides theses methods, there exist other works on BBA

approximations. For example, Denœux inner and outer ap-

proximations [9], Grabisch’s k-additive BBA approximation

[16], and our previous works based on hierarchical propor-

tional distribution (HPR) [11] and optimization-based BBA

approximations [12]. In these methods, the aim is to remove

the focal elements with larger cardinalities because they bring

more computational cost in the fusion process in general (see

related references for details).

IV. NEW BBA APPROXIMATIONS USING THE PRINCIPLE

OF FOCAL ELEMENT REDUNDANCY

As briefly shown in the previous section, the existing

BBA approximation approaches propose to remove some focal

elements by eliminating those with smaller mass values, or

with larger cardinalities. Although these methods have some

rational justification, only mass values or cardinalities are not

enough in our opinion for judging which focal elements should

be removed for making BBA approximation. We consider that
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it is quite hazardous (risky) to deem focal elements having

small mass values as unimportant. It may also be dangerous

to remove the focal elements with large cardinality justified

only by the possible high computational cost they may cause in

the fusion process. So, we should be cautious when adopting a

BBA approximation technique. We agree with the fact that fo-

cal elements that are considered unimportant must be removed

at first in an approximation method. However, focal elements’

mass values are not enough for judging their importance.

A more solid index (criterion) should be found to estimate

the importance of a focal element to keep. Because the very

redundant focal elements can reasonably be considered as

unimportant and the relatively non-redundant focal elements

can reasonably be considered as important, we define the

degree of non-redundancy for a focal element at first. From

this degree of non-redundancy, we can then develop new BBA

approximation methods as it will be shown.

A. Degree of non-redundancy of focal elements

Suppose a BBA m(·) has l focal elements. A distance

between focal elements Ai and Aj proposed by Denœux [9]

is defined as

δ∩ (Ai, Aj) = m (Ai) · |Ai|+m (Aj) · |Aj |
− [m (Ai) +m (Aj)] · |Ai ∩ Aj |

(6)

If a focal element Ai has the smallest average distance with

other focal elements Aj ⊆ Θ, j 6= i, then Ai shares most

common information with other focal elements, i.e., Ai is the

most redundant. Therefore, we can define the degree of non-

redundancy based on the average distance between a focal

elements and others. First, we calculate the distance matrix

for all the focal elements of m(·) as

MatFE ,











δ∩ (A1, A1) δ∩ (A1, A2) · · · δ∩ (A1, Al)
δ∩ (A2, A1) δ∩ (A2, A2) · · · δ∩ (A2, Al)

...
...

. . .
...

δ∩ (Al, A1) δ∩ (Al, A2) · · · δ∩ (Al, Al)











It should be noted that δ∩ (Ai, Ai) = 0 and δ∩ (Ai, Aj) =
δ∩ (Aj , Ai) where i = 1, ..., l. Hence, it is not necessary to

calculate all the elements in MatFE because the matrix is

symmetric.

We define the degree of non-redundancy of the focal ele-

ment Ai by

nRd (Ai) ,
1

l − 1

l−1
∑

j=1

δ∩ (Ai, Aj) (7)

The larger nRd(Ai) value, the larger non-redundancy (less

redundancy) for Ai. The less nRd(Ai) value, the less non-

redundancy (larger redundancy) for Ai.

Based on the focal element redundancy, i.e., to use the

degree of non-redundancy in (7), we propose two new BBA

approximation methods described in the next subsections,

where the more non-redundant focal elements will be remained

and the more redundant ones will be removed.

B. Batch approximation method

Let m(·) denote the original BBA to approximate with l
focal elements. In the approximation, we want to keep k < l
focal elements. First, we propose a BBA approximation with

a batch processing, which means that the number of focal

elements is reduced from l to k in one processing cycle as

follows.

• Step 1: Calculate MatFE at first, and for each Ai, i =
1, ..., l compute its non-redundancy value nRd(Ai);

• Step 2: Sort all the elements in descending order accord-

ing to the values of nRd(Ai);
• Step 3: Remove the l− k bottom focal elements;

• Setp 4: Normalize the mass values of the remaining

k focal elements and output the approximated BBA

mBRd
S (·).

C. Iterative approximation method

In this method, we remove iteratively one most redundant

focal element (with the least nRd value) in each cycle until

k focal elements are remained. This method consists of the

following steps:

• Step 1: Calculate MatFE and nRd for each Ai, i =
1, ..., l;

• Step 2: Sort all the elements in descending order accord-

ing to their values of nRd(Ai);
• Step 3: Remove the bottom focal element Ar;

• Setp 4: If the number of remaining focal element is larger

than k, recalculate nRd(Ai) for i = 1, ..., l, i 6= r and go

to Step 3. Otherwise, go to Step 5 ;

• Setp 5: Normalize the mass values of the remaining

k focal elements and output the approximated BBA

mIRd
S (·).

For this iterative method, the degrees of non-redundancy are

recalculated in each cycle after removing a focal element in

the previous cycle. That is to say, in each cycle, only the

non-redundancy of the current remaining focal elements are

concerned.

D. Illustrative examples

Here we provide a simple numerical example to illustrate

the implementation procedures of some available BBA

approximation approaches with respect to our two new

methods.

Example 1: Let consider the BBA m(·) defined over the FoD

Θ = {θ1, θ2, θ3, θ4, θ5} listed in Table I.

TABLE I
FOCAL ELEMENTS AND MASS VALUES OF m(·)

Focal Elements Mass values

A1 = {θ1, θ2} 0.50

A2 = {θ1, θ3, θ4} 0.30

A3 = {θ3} 0.10

A4 = {θ3, θ4} 0.05

A5 = {θ4, θ5} 0.05
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1) Using k − l − x method [6]: Here k and l are set to

3. x is set to 0.1. The focal elements A4 = {θ3, θ4} and

A5 = {θ4, θ5} are removed without violating the constraints

in k − l − x. The remaining total mass value is 1 − 0.05 −
0.05 = 0.9. Then, all the remaining focal elements’ mass

values are divided by 0.9 to accomplish the normalization. The

approximated BBA mklx
S (·) obtained by k − l − x method is

listed in Table II, where A′
i, i = 1, 2, 3 are the focal elements

of mklx
S (·).

TABLE II
mklx

S
(·) OBTAINED USING k − l − x

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.5556

A′

2
= {θ1, θ3, θ4} 0.3333

A′

3
= {θ3} 0.1111

2) Using summarization method [7]: Here k is set to 3.

According to the summarization method, the focal elements

A3 = {θ3}, A4 = {θ3, θ4} and A5 = {θ4, θ5} are removed,

and their union {θ3, θ4, θ5} is generated as a new focal element

with mass value m({θ3})+m({θ3, θ4})+m({θ4, θ5}) = 0.2.

The approximated BBA mSum
S is listed in Table III below.

TABLE III
mSum

S
(·) OBTAINED USING SUMMARIZATION

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.50

A′

2
= {θ1, θ3, θ4} 0.30

A′

3
= {θ3, θ4, θ5} 0.20

3) Using D1 method [8]: Here k is still 3. It can be

obtained that A1, A2 belong to M , and A3, A4, A5 belong to

M−. The focal element A1 = {θ1, θ2} has empty intersection

with the focal elements in M−, therefore its value will be

unchanged. In M , A2 is the unique superset of A3 and A4,

therefore, m(A3) + m(A4) = 0.10 + 0.05 is added to its

original mass value. A2 also covers half of A5, therefore,

m(A5)/2 = 0.025 is further added to the mass of A2.

Finally, the rest mass value is assigned to the total set Θ.

The approximated BBA mD1
S is listed in Table IV.

TABLE IV
mD1

S
(·) OBTAINED USING SUMMARIZATION

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.50

A′

2
= {θ1, θ3, θ4} 0.475

A′

3
= Θ 0.025

4) Using Denœux inner approximation [9]: Because this

method uses the focal element distance in Eq. (6), we also

apply it in this exampe for comparison. With the inner

approximation method, the focal elements pair with smallest

distance are removed, and then their intersection is set as

the supplemented focal element whose mass value is the

sum of the removed two focal elements’ mass values. Such

a procedure is repeated until the desired number of focal

elements is reached. The results at each step are listed in Table

V.

TABLE V
BBA’S OBTAINED USING INNER APPROXIMATION

Step 1 Step 2

Focal elements Mass values Focal elements Mass values

A′

1
= {θ1, θ2} 0.5 A′

1
= {θ1, θ2} 0.5

A′

2
= {θ1, θ3, θ4} 0.3 A′

2
= {θ1, θ3, θ4} 0.3

A′

3
= {θ3} 0.15 A′

3
= ∅ 0.2

A′

4
= {θ4, θ5} 0.05

As we can see in Table V, it generates the empty set as a

focal element, which is not allowed in the classical Dempster-

Shafer evidence theory under close-world assumption.

5) Using the redundancy-based batch approximation

method: The desired remaining focal element is set to k = 3.

We first calculate the distance matrix MatFE and we get

MatFE =

A1

A2

A3

A4

A5













0 1.10 1.10 1.10 1.10
1.10 0 0.60 0.30 0.65
1.10 0.60 0 0.05 0.20
1.10 0.30 0.05 0 0.10
1.10 0.65 0.20 0.10 0













A1 A2 A3 A4 A5

Based on this matrix, the degree of non-redundancy for each

focal elements of m(·) can be obtained. It is listed in Table

VI.

TABLE VI
NON-REDUNDANCY FOR DIFFERENT FOCAL ELEMENTS

Focal Elements Mass values nRd(Ai)
A1 = {θ1, θ2} 0.50 1.10

A2 = {θ1, θ3, θ4} 0.30 0.6625

A3 = {θ3} 0.10 0.4875

A4 = {θ3, θ4} 0.05 0.3875

A5 = {θ4, θ5} 0.05 0.5125

Since A3 and A4 at the bottom have the two least nRd

values, they correspond the two focal elements with the lowest

non-redundancy, i.e., the highest redundancy. Therefore, they

are removed and their mass values are redistributed thanks

to the classical normalization step. The approximated BBA

mBRd
S is listed in Table VII.

TABLE VII
mBRd

S
(·) OBTAINED USING THE BATCH APPROXIMATION BASED ON

REDUNDANCY

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.5882

A′

2
= {θ1, θ3, θ4} 0.3530

A′

3
= {θ4, θ5} 0.0588
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6) Using the redundancy-based iterative approximation

method: The number of remaining focal elements is still set

to k = 3, so that two focal elements have to be removed. In

the iterative mode, only one focal element is removed in each

cycle, thus two cycles are needed.

In cycle I, the degree of non-redundancy is the same as

listed in Table V. Then, the focal element A4 is removed in

first cycle.

In cycle II, recalculate nRd for Ai, i = 1, ..., 5, i 6= 4
according to nRd(Ai) =

∑5

j=1,j 6=4,j 6=i δ(Ai, Aj). The results

are
nRd(A1) = 1.1000, nRd(A2) = 0.7833,
nRd(A3) = 0.6333, nRd(A5) = 0.6500

Then, A3 is removed in this cycle due to its the lowest nRd

value (the highest redundancy among the remaining focal

elements). The approximated BBA obtained using iterative

way is the same as the one listed in Table VII. It should

be noted that the batch approximation and the iterative

approximation will not always output the same results as

shown in the next example.

Example 2: Suppose that FoD is Θ = {θ1, θ2, θ3}. The BBA

to approximate is listed in Table VIII, and the desired number

of remaining focal elements is k = 3.

TABLE VIII
FOCAL ELEMENTS AND MASS VALUES OF m(·)

Focal Elements Mass values

A1 = {θ1, θ2} 0.1780

A2 = {θ2, θ3} 0.2477

A3 = {θ2} 0.2322

A4 = {θ3} 0.1758

A5 = Θ 0.1662

The distance matrix MatFE is

A1

A2

A3

A4

A5













0 0.4258 0.1780 0.5319 0.1662
0.4258 0 0.2477 0.2477 0.1662
0.1780 0.2477 0 0.4080 0.3325
0.5319 0.2477 0.4080 0 0.3325
0.1662 0.1662 0.3325 0.3325 0













A1 A2 A3 A4 A5

The degree of non-redundancy of focal elements are

nRd(A1) = 0.3255, nRd(A2) = 0.2719,
nRd(A3) = 0.2916, nRd(A4) = 0.3800, nRd(A5) = 0.2494

With the batch approximation, the focal elements A2 and A5

are removed. After normalization, we get the approximated

BBA listed in Table IX.

With the iterative approximation method, the degree of non-

redundancy obtained at Cycle I are also

nRdI(A1) = 0.3255, nRdI(A2) = 0.2719,
nRdI(A3) = 0.2916, nRdI(A4) = 0.3800,

nRdI(A5) = 0.2494

TABLE IX
mBRd

S
(·) OBTAINED USING THE BATCH APPROXIMATION BASED ON

REDUNDANCY

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.3038

A′

2
= {θ2} 0.3962

A′

3
= {θ3} 0.3000

The iterative approximation first removes the focal element

A5 because it has the least nRd value. Then we recalculate

the nRd values for A1, A2, A3, and A4 which gives us

nRdII(A1) = 0.3786, nRdII(A2) = 0.3071,
nRdII(A3) = 0.2779, nRdII(A4) = 0.3959

At Cycle II, the focal element A3 having the least nRd value is

removed. After normalization, we get the approximated BBA

mSRd
S (·) using iterative approximation as listed in Table X.

TABLE X
mSRd

S
(·) OBTAINED USING THE BATCH APPROXIMATION BASED ON

REDUNDANCY

Focal Elements Mass values

A′

1
= {θ1, θ2} 0.2960

A′

2
= {θ2, θ3} 0.4118

A′

3
= {θ3} 0.2922

which is different of the result of Table IX using the batch

approximation.

V. COMPARATIVE ANALYSIS

In this section, we present simulation results to compare

the different BBA approximation approaches in terms of the

computational cost and the closeness to the original one in

average meaning. A BBA transformation with less compu-

tational cost and more closeness is preferred. To measure

the closeness or the dissimilarity between different BBAs, a

distance measure between BBA is used. In this work, we use

Jousselme’s distance [17] because it remains one of the most

widely used distance of evidence. This distance is defined as

dJ (m1,m2) ,

√

1

2
· (m1 −m2)

T
Jac (m1 −m2) (8)

where Jac is the so-called Jaccard’s weighting matrix whose

elements Jij = Jac(Ai, Bj) are defined by

Jac(Ai, Bj) =
|Ai ∩Bj |
|Ai ∪Bj |

(9)

A BBA m(·) here can be considered as a column vector

according to the geometric interpretation of the theory of

belief functions [18]. There are also other types of distance

of evidence [18]. We choose to use Jousselme’s distance of

evidence in this paper, because it has been proved to be a

strict distance metric [19].

Our comparative analysis is based on a Monte Carlo

simulation using M = 200 random runs. In j-th simulation
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run, the BBA to approximate mj(·) is randomly generated

and the different approximation results {mj
Si
(·)} are obtained

using the different approximation approaches, where i
denotes the i-th BBA approximation approach. We calculate

the computational time of the original evidence combination

of mj(·) ⊕mj(·) with Dempster’s rule, and the computation

time of Dempster’s combination of each approximated BBA

mj
Si
(·) ⊕ mj

Si
(·). As stated before, there are many available

BBA approximation approaches. Here we only compare our

proposed approaches with k − l − x method, D1 method,

Summarization method because with these methods the

number of the remaining focal elements and the empty set

is never considered as a valid focal element (contrarily to

inner approximation method which will bring troubles for

making the comparisons because Jousselme distance cannot

be computed if one allows to put mass on empty set because

|∅| = 0).

In our simulations, the cardinality of the FoDΘ is chosen to

3. In each random generation, there are 7 focal elements in the

original BBA to approximate. The remaining number of focal

elements for all the approaches used here are set to 6, 5, 4, 3,

and 2. Random generation of BBA is based on Algorithm 1

[18] below.

TABLE XI
ALGORITHM 1: RANDOM GENERATION OF BBA.

Input: Θ: Frame of discernment;
Nmax: Maximum number of focal elements
Output: Output: m: BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → R(Θ);
Generate an integer between 1 and Nmax → l;
FOReach First k elements of R(Θ) do
Generate a value within [0, 1] → mi, i = 1, ..., l;
END
Normalize the vector m = [m1, ...,ml] → m′;
m(Ai) = m′

i
;

The average distance values over 200 runs between the

original BBA and the approximated BBA’s obtained using

different approaches given different remaining focal elements’

numbers are shown in Fig. 1. The average (over all runs and

all numbers of remaining focal elements) computation time

and distance are shown in Table XII.

TABLE XII
COMPARISONS BETWEEN DIFFERENT BBA APPROXIMATIONS IN TERMS

OF TIME AND CLOSENESS

Approaches Distance Time (ms)

Batch-redundancy 0.1162 0.1026

Iterative-redundancy 0.1147 0.1059

k − l− x 0.1181 0.1073

D1 0.1718 0.1039

Summarization 0.1624 0.1034
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Fig. 1. Comparisons between different approximations in terms of the distance
of evidence.

As we can see in Fig. 1 and in Table XII, all the method have

the average computation time around 0.1 ms, which is reduced

when compared with the original average computation time

which is 0.2011 ms. It means that all the methods can well

reduce the computational cost. Our new BBA approximation

approaches based on focal element redundancy outputs BBA’s

which are closer to the original one when compared with

other approaches. This means that our proposed approximation

approaches output BBA’s which are most faithful and with

the least loss of information when compared with other

approaches. So based on this comprehensive evaluation using

two criteria including computation time and the closeness to

the original BBA, our comparative analysis shows that our

new methods perform better. The iterative version (having

the smallest average distance) performs better than the batch

version.

VI. CONCLUSION

The degree of non-redundancy of focal elements is defined,

based on which, two novel BBA approximation methods have

been proposed in this paper including a batch version and

an iterative version. Our Monte Carlo simulation results show

that these new methods can well reduce the computational

cost when compared with other available approaches; at the

same time, the approximated BBA’s obtained using our new

approaches are closer the original BBA in average, which

represents the less loss of information in the approximation

procedure.

In our future work, further theoretical analyses on the

definition of the focal element non-redundancy or redundancy

are needed, based on which, we will also attempt to design

some new types of the focal element redundancy and to make

additional comparison with the one used in this paper. Besides

the computation time and the distance of evidence used in this

paper, we will explore more comprehensive evaluation criteria

of the BBA approximation approaches, and test other distance
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measures of evidence [20] in our proposed approaches. This

is crucial for the design of more effective approximations.
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Abstract—The transformation of belief function into probabil-
ity is one of the most important and common ways for decision-
making under the framework of evidence theory. In this paper,
we focus on the evaluation of such probability transformations,
which are crucial for their proper applications and the design of
new ones. Shannon entropy or probabilistic information content
(PIC) measure is traditionally used in evaluating probability
transformations. The transformation having the lowest entropy
or highest PIC is considered as the best one. This standpoint is
questioned in this paper by comparing a probability transfor-
mation based on uncertainty minimization with other available
probability transformations. It shows experimentally that entropy
or PIC is not comprehensive to evaluate a probability transforma-
tion. To make a comprehensive evaluation, some new approaches
are proposed by the joint use of PIC and the distance of evidence
according to the value based and the rank based fusion. A
pattern classification application oriented evaluation approach
for probability transformations is also proposed. Some desired
properties for probability transformations are also discussed.
Experimental results and related analysis are provided to show
the rationality of the new evaluation approaches.

Index Terms—Evidence theory, Probability transformation,
Probabilistic information content, Entropy, Decision-making.

I. INTRODUCTION

Dempster-Shafer theory (DST), also known as the theory

of belief functions [1], [2], provides a way to reason with

imprecise, uncertain and incomplete information. DST can

distinguish “unknown” and “imprecision” and provides a

method to fuse different evidences by using the commutative

and associative Dempster’s rule of combination. That is why

the DST is widely used in information fusion. There are,

however, some drawbacks [3], [4] of the DST, e.g., counter-

intuitive combination results, high computational cost, and

lack of evaluation criteria. So some modified models were

proposed, e.g., the transferable belief model (TBM) [3] and

Dezert-Smarandache theory (DSmT) [4].

The final goal of uncertainty reasoning is usually decision-

making. To make decision easier, the mass assignment for a

compound focal element is usually assigned to each singleton

by a probability transformation. The probability transformation

aims to approximate a basic belief assignment (BBA) by

a probabilistic measure. The pursuit of efficient probability

transformations has attracted great attention in recent years

and many probability transformations have been proposed [4]–

[13].

The most well-known probability transformation is the pig-

nistic probability transformation (PPT) [4] in TBM. PPT maps

a belief defined on subsets to a probability measure defined

on singletons, based on which a classical decision under

probabilistic framework can be readily applied. PPT uses equal

weights when splitting mass assignments of the compound

focal elements and redistributing them to singletons included

in them. Other modified probability transformations were also

proposed [5]–[13], which assign the mass assignments of

compound focal elements to singletons according to some ratio

constructed from the available information (e.g. the belief and

the plausibility). Typical examples include Sudano’s probabili-

ties [8] and Cuzzolin’s intersection probability [12], etc. Under

the DSmT framework, other probability transformations called

DSmP [9] and HDSmP [13] were proposed. DSmP takes into

account both the masses and the cardinality of focal elements

in the proportional redistribution process and HDSmP is a

hierarchical version of DSmP. They can also be used in the

DST framework.

To compare all the available transformations for the purpose

of appropriate application and design of new transforma-

tions, evaluation is required. In almost all the existing works

on probability transformations, Shannon entropy or its dual,

Probabilistic Information Content (PIC) criterion, is used to

evaluate them. Definitely, less uncertainty should be preferred

for decision-making. However, is the probability measure

generated from a belief function with less uncertainty always

rational or beneficial for decision-making? To answer this,

i.e., to illustrate the irrationality of the over-emphasis of PIC

or entropy, another probability transformation based on a

constrained entropy minimization [14] is used and analyzed

through examples. When using entropy or PIC for evaluation,

the probability measure with the least uncertainty seems the

best one. Unfortunately, some risky and unexpected results

may be also obtained. [14] shows that either entropy or PIC

is not a comprehensive measure.

Comprehensive evaluation of probability transformation is

desired and motivates this paper. PIC only emphasizes the

clarity of the transformed probability, which is only from the

Originally published as: D. Han, J. Dezert, Z. Duan, Evaluation of Probability Transformations of Belief 
Functions for Decision-Making, IEEE Trans. on SMC, Vol. 46(1), pp. 93–108, January 2016, and 
reprinted with permission.
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aspect of the clarity of decision-making. On the other hand, the

transformed probability should be consistent with the original

belief function in some sense meaning that comprehensive

evaluation should also consider the fidelity of the transformed

probability to the original BBA. Higher degree of fidelity

means the less loss of information caused by probability

transformation. Our comprehensive evaluation aims to make

a balance between clarity and fidelity, i.e., a probability

with higher clarity and bigger fidelity should be preferred.

Then, how to quantify the degree of fidelity? The distance of

evidence [15] is used to measure the dissimilarity between two

BBAs. Since the probability can be considered as a particular

BBA, we can simply use the distance of evidence [15] between

the original BBA and the transformed probability to quantify

the degree of fidelity (smaller distance means higher degree

of fidelity). So, in this paper we evaluate the probability

transformations jointly by PIC and the distance of evidence.

This joint use of the two criteria is implemented by using value

based fusion (via the values of PIC and distance) and rank

based fusion (via the ranks of the values of PIC and distance).

We also propose an application-oriented evaluation approach

for probability transformations, such as the application of

pattern classification. Besides the evaluation criteria, some

desired properties (qualitative evaluations) of probability trans-

formations are also helpful. In [16], some desired properties

of probability transformations were proposed and analyzed

including upper and lower bound consistency and combination

consistency. In this paper, some new desired properties of

a probability transformation are also proposed. This paper

extends our previous ideas briefly introduced in [14], where

we preliminarily pointed out that entropy or PIC is not enough

to evaluate a probability transformation. However, in [14],

comprehensive evaluation was not proposed, which are the

main contribution of this paper.

The rest of this paper is organized as follows. In Sec-

tion II, evidence theory is briefly introduced. The decision-

making methods in evidence theory including belief based

approaches and probability transformations are briefly sum-

marized in Section III. The definitions and pertinent analysis

of the commonly used probability transformations are given

in Section IV. In Section V, the evaluation of the probability

transformation is discussed. The irrationality of using entropy

alone as an evaluation criterion is clearly shown by simple

examples. In Section VI, we propose to evaluate a probability

transformation based on two criteria (PIC and distance). The

joint use of them is implemented either directly at their values,

or at their ranks. Some supporting examples are provided in

Section VII. In Section VIII, an application-oriented evaluation

approach is proposed. In Section IX, some desired properties

of probability transformations are proposed and analyzed.

Conclusions are drawn in Section X.

II. BASICS OF EVIDENCE THEORY

In Dempster-Shafer theory [2], the elements in the frame

of discernment (FOD) Θ, which is a discrete finite set, are

mutually exclusive and exhaustive. Let 2Θ be the power set

of the FOD. The function m : 2Θ → [0, 1] defines a basic

belief assignment (BBA), also called a mass function, which

satisfies:
∑

A⊆Θ
m(A) = 1, and m(∅) = 0. (1)

Then, the belief function and the plausibility function are

defined as in (2) and (3), respectively, ∀A ∈ 2Θ:

Bel(A) =
∑

B⊆A
m(B), (2)

Pl(A) =
∑

A∩B 6=∅
m(B), (3)

where Bel(A) and Pl(A) can be interpreted as the lower and

the upper bounds of the probability P (A).
Dempster’s rule of combination, which is used to fuse n

distinct1 bodies of evidence (BOEs), is:

m(A) =











0, ∀ A = ∅,
∑

∩Ai=A

∏

1≤i≤n

mi(Ai)

∑

∩Ai 6=∅

∏

1≤i≤n

mi(Ai)
, ∀A 6= ∅, (4)

where m1,m2, ...,mn are n BBAs.

Distances of evidence [15], [17] measures the dissimilarity

between BOEs. One of the most commonly used distance of

evidence is the Jousselme’s distance dJ(·, ·) [15]:

dJ (m1,m2) =

√

1

2
(m1 −m2)

T
Jac (m1 −m2), (5)

where the element Jij = Jac(Ai, Bj) of Jaccard’s weighting

matrix Jac is defined as:

Jac(Ai, Bj) =
|Ai ∩Bj |
|Ai ∪Bj |

. (6)

For example, two BBAs are defined over the FOD Θ =
{θ1, θ2}:

m1(A1) = 0.2, m1(A2) = 0.8,
m2(B1) = 0.5, m2(B2) = 0.5.

where

A1 = {θ1}, A2 = {θ1, θ2},

B1 = {θ2}, B2 = {θ1, θ2}.

We have

Jac(A1, B1) = |∅|/|{θ1, θ2}| = 0;

Jac(A2, B1) = |{θ2}|/|{θ1, θ2}| = 0.5;

Jac(A1, B2) = |{θ1}|/|{θ1, θ2}| = 0.5;

Jac(A2, B2) = |{θ1, θ2}|/|{θ1, θ2}| = 1.

Although there are other distance definitions for belief

functions, they either have some limitations or are not strict

distance metrics [18]. Jousselme’s distance has been proved to

be a strict distance metric [19].

The aim of the evidential reasoning is for decision-making.

Several decision-making approaches in evidence theory are

briefly reviewed next.

III. DECISION-MAKING IN EVIDENCE THEORY

There are two major types of decision-making approaches

under the evidence theory framework: directly using belief

functions [20], [21] and using probability transformations of

belief functions [22].

1i.e., cognitively independent.
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A. Decision-making using belief functions

There exist three main decision-making rules using Bel and

Pl.
1) Max Bel: One chooses the proposition A with the

maximum Bel(A). Bel(·) describes the lowest trust degree of

a given proposition. So it is also called pessimistic decision-

making in DST [20].

2) Max Pl: One chooses the proposition A with the maxi-

mum Pl(A). Pl(·) describes the highest trust degree of a given

proposition. So it is also called optimistic decision-making in

DST [20].

3) Joint use of Bel and Pl: Bel and Pl measure the degree

of trust of a given proposition from two points of view. So it

is not comprehensive to make a decision based on only one of

them. An extension is the “final belief” defined below [21].

FB(A) = Bel(A) + α(Pl(A) −Bel(A)), (7)

where α = Bel(A)/(Bel(A) +Bel(Ā)). The proposition A
with the maximum FB(A) is preferred.

Note that the proposition A can be either a singleton or a

compound proposition (containing more than one singleton).

B. Decision-making using probability transformations

Probability-based decision rules are the main stream of

decision-making based on evidence theory [21], because the

two-level reasoning and decision structure (i.e., the credal

and pignistic levels) proposed by Smets in his TBM is quite

appealing. In this type of decision-making approach, the belief

function (or BBA, plausibility function) is transformed into a

probability measure P first and then the decision can be made

as θ∗i = argmax
θi

P (θi), where θi is a singleton of the FOD.

As we will see next, the probability transformation is crucial

for this type of decision-making.

IV. PROBABILITY TRANSFORMATIONS

A probability transformation is a mapping PT : BelΘ →
PrΘ. BelΘ is a belief function defined on Θ and PrΘ is

a probability measure (in fact a probability mass function,

pmf) defined on Θ. Major probability transformations (PTs)

are summarized below.

1) Pignistic transformation: The classical pignistic proba-

bility was proposed in TBM framework [3], which is a subjec-

tive and non-probabilistic interpretation of evidence theory. At

the credal level of TBM, beliefs are entertained [3], combined

and updated. While at the pignistic level, decisions are made

by applying the pignistic probability transformation (PPT).

Suppose that FOD is Θ = {θ1, θ2, ..., θn} in the sequel. The

PPT [3] for singletons is defined as:

BetP(θi) =
∑

θi∈B, B∈2Θ

m(B)

|B| . (8)

PPT is designed according to an idea similar to uncertainty

maximization [14]. In PPT, masses are assigned uniformly to

different singletons involved.

2) Sudano’s probabilities: Sudano [5]–[7] proposed prob-

ability transformation proportional to plausibilities (PrPl) [5],

probability transformation proportional to beliefs (PrBel) [5],

probability transformation proportional to all plausibilities

(PraPl) [5], hybrid probability transformation (PrHyb) [6], and

an iterative version of probability transformation (PrScP) [5].

They are defined by different types of mappings as follows:

PrPl(θi) = Pl({θi}) ·
∑

Y ∈2Θ,θi∈Y

m(Y )
∑

∪jθj=Y

Pl({θj})
, (9)

PrBel(θi) = Bel({θi}) ·
∑

Y ∈2Θ,θi∈Y

m(Y )
∑

∪jθj=Y

Bel({θj})
, (10)

PraPl(θi) = Bel({θi})+
1−∑j Bel({θj})
∑

j Pl({θj})
·Pl({θi}), (11)

PrHyb(θi) = PraPl(θi)·
∑

Y ∈2Θ,θi∈Y

m(Y )
∑

∪jθj=Y

PraPl(θj)
, (12)

PrScP(θi) =
∑

θi∈Y

(

PrScP(θi)
∑

j PrScP(θj)

)

·m(Y ). (13)

Note that the iterative PrScP should be initiated by some other

transformation.

3) Cobb-Shenoy’s normalization of plausibility: This prob-

ability transformation is defined as the normalized plausibility

function of singletons [8].

PnPl(θi) =
Pl({θi})

∑

j Pl({θj})
. (14)

4) Cuzzolin’s intersection probability: From a geometric

interpretation of evidence theory, an intersection probability

measure [12] was proposed using the proportional repartition

of the total nonspecific mass (TNSM =
∑

A∈2Θ,|A|>1
m(A))

for each contribution of the nonspecific masses involved.

CuzzP(θi) = m({θi})+
Pl({θi})−m({θi})

∑

j (Pl({θj})−m({θj}))
·TNSM.

(15)

5) DSmP: The DSmPε(θi) [9] can be directly obtained by:

DSmPε(θi) =m({θi}) + (m({θi}) + ε)

· (
∑

X∈2
Θ

θi⊂X,|X|≥2

m(X)
∑

Y ∈2
Θ

Y⊂X,|Y |=1

m(Y ) + ε · |X |).

(16)

In DSmP, both the mass assignments and the cardinality of fo-

cal elements are used in the proportional redistribution. DSmP

makes an improvement compared with Sudano’s, Cuzzolin’s

and BetP, in that DSmP makes a more judicious redistribution

of the ignorance masses to the singletons involved. DSmP

works for both DST and DSmT.
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6) HDSmP: HDSmP is a hierarchical version of DSmP

(See [13] for details). When the mass for the focal elements

with the same cardinality are zero, HDSmP0 can not be com-

puted due to its hierarchical nature. Therefore, the parameter

ǫ is necessary to improve the applicability of HDSmP [13].

7) PrBP1: The proportional transformation hypothesis used

in PrBP1 [11] assumes that the masses are distributed propor-

tionally to the product of Bel(θi) and Pl(θi) among each

singleton element of θi ∈ Y with Y ⊆ Θ.

PrBP1(θi) =
∑

Y,θi∈Y

(

Bel(θi)Pl(θi)
∑

j,θj∈Y Bel(θj)Pl(θj)

)

·m(Y ).

(17)

8) PrBP2: The PrBP2 [11] assumes that the masses are

distributed proportionally to some given parameters si =
Bel(θi)

1−Pl(θi)
or si =

Pl(θi)

1−Bel(θi)
.

PrBP2(θi) =
∑

Y,θi∈Y

(

si
∑

j,θj∈Y sj

)

·m(Y ). (18)

A probability transformation outputs a Bayesian BBA (having

only singleton focal elements) corresponding to a given (non-

Bayesian) BBA. That is why the probability transformation is

also called the Bayesian transformation. A Bayesian BBA is

not a probability measure, but if m(.) is a Bayesian BBA, then

its corresponding Bel(.) and Pl(.) coincide with a probability

measure, i.e., Bel(.) = Pl(.) = P (.). Due to the tradition, it

is still called the “probability transformation” in this paper.

V. QUESTIONING OF TRADITIONAL EVALUATION OF

PROBABILITY TRANSFORMATION

The evaluation of different probability transformations is

important for analysis and their applications. It is also impor-

tant for the design of new transformations. In this section,

we will provide some comments on traditional evaluation

approaches for probability transformations.

A. Traditional Evaluation approaches for probability transfor-

mation

Qualitative evaluation approaches were proposed. In [13],

three desired properties of a probability transformation are

introduced, including:

1) p-consistency: A probability transformation PT is p-

consistent (probability consistent) if PT (m) = m for any

Bayesian BBA m.

2) ULB-consistency: A probability transformation is ULB-

consistent (upper and lower bound consistent) if its resulting

transformed probability P = PT (m) satisfies Bel(X) ≤
P (X) ≤ Pl(X).

3) Combination-consistency: The combination-consistency

means that we will obtain the same result either, if we combine

two BBAs m1 and m2 using the combination rule first and

perform probability transformation thereafter, or perform prob-

ability transformation to both input BBAs m1 and m2 first and

combine them thereafter. It is defined through commutation

property of combination rule and probability transformation.

It is difficult to be satisfied, and PnPl [8] is the only one known

to the authors that can satisfy it when using Dempster’s rule

of combination.

There also exist some quantitative metrics measuring the

strength of a critical decision based on a probability measure:

1) Normalized Shannon Entropy: Suppose that P (θ) is a

pmf, where θ ∈ Θ, |Θ| = N . An evaluation criterion for the

pmf transformed is as follows [11]:

EH =

− ∑

θ∈Θ

P (θ) log2(P (θ))

log2 N
, (19)

i.e., the ratio of Shannon entropy [23] and the maximum Shan-

non entropy. Clearly EH is normalized. The larger (smaller)

EH gets, the larger (smaller) the degree of uncertainty gets.

When EH= 0, one singleton proposition will have probability 1

and the others will have zero probabilities. Therefore, the agent

or system can make decision without error if the probability

P (·) corresponds to the real probability of the events. When

EH= 1, it is unlikely to make a correct decision, because P (θ)
are equal, for all θ ∈ Θ, i.e., one has a uniform pmf.

2) Probabilistic Information Content: The Probabilistic

Information Content (PIC) criterion [5] is the dual of the

normalized Shannon entropy. The PIC value of a pmf obtained

from a probability transformation indicates the total knowledge

to make a correct decision:

PIC(P ) = 1 +
1

log2 N
·
∑

θ∈Θ

P (θ) log2(P (θ)). (20)

Obviously, PIC = 1−EH. A PIC value of zero indicates that

the knowledge to make a correct decision is not informative

enough (all propositions have equal probabilities, i.e., one has

the maximal entropy).

Less uncertainty means that the corresponding probability

transformation result is more helpful in making a decision.

According to such an idea, the probability transformation

should attempt to enlarge the belief differences among all

the propositions and thus to achieve a clearer decision result.

Is this rational? Is uncertainty degree always judicious at all

to evaluate a probability transformation for decision-making

purpose? If this is true, a probability transformation approach

based on direct uncertainty minimization should be the best

choice. Is that true? In the next section, we examine the

legitimacy of using uncertainty degree as a criterion to evaluate

a probability transformation.

B. Probability transformation based on uncertainty minimiza-

tion

As mentioned above, the “best” probability transformation

can be obtained by directly minimizing EH (or equivalently

maximizing PIC) as follows.

min
{P (θ)|θ∈Θ}

{

− ∑

θ∈Θ

P (θ) log2(P (θ))

}

,

s.t.







Bel(B) ≤∑θ∈B P (θ) ≤ Pl(B),
0 ≤ P (θ) ≤ 1, ∀θ ∈ Θ
∑

θ∈Θ
P (θ) = 1.

(21)
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where the objective function is the Shannon entropy and

the constraints are the ulb-consistency and the property of

probability. Given a belief function, the solution of (21) is

guaranteed to have the least uncertainty and is thus seemingly

more preferable in decision-making. This so called the “best”

transformation is denoted by Unmin.

Clearly, the problem of finding a minimum-entropy pmf

does not have a unique solution in general. We use the Quasi-

Newton method followed by a global optimization algorithm

[24] to solve (21) to alleviate the effect of the local extremum

problem. Other optimization algorithms [25], [26] can also

be used, e.g., Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO).

C. Analysis of probability transformation based on uncer-

tainty minimization

To compare different probability transformations, the follow-

ing two examples drawn from [6] and [11] are considered,

where PIC is used for evaluation.

Example 1: For FOD Θ = {θ1, θ2, θ3, θ4}, the correspond-

ing BBA is as follows:

m({θ1}) = 0.16, m({θ2}) = 0.14, m({θ3}) = 0.01,
m({θ4}) = 0.02,m({θ1, θ2}) = 0.20,
m({θ1, θ3}) = 0.09,m({θ1, θ4}) = 0.04,
m({θ2, θ3}) = 0.04,m({θ2, θ4}) = 0.02,
m({θ3, θ4}) = 0.01,m({θ1, θ2, θ3}) = 0.10,
m({θ1, θ2, θ4}) = 0.03,m({θ1, θ3, θ4}) = 0.03,
m({θ2, θ3, θ4}) = 0.03,m(Θ) = 0.08.

TABLE I
PROBABILITY TRANSFORMATION RESULTS FOR EXAMPLE 1.

θ1 θ2 θ3 θ4 PIC

PnPl 0.3614 0.3168 0.1931 0.1287 0.0526

CuzzP 0.3860 0.3382 0.1607 0.1151 0.0790

BetP 0.3983 0.3433 0.1533 0.1050 0.0926

PraPl 0.4021 0.3523 0.1394 0.1062 0.1007

PrPl 0.4544 0.3609 0.1176 0.0671 0.1638

PrHyb 0.4749 0.3749 0.0904 0.0598 0.2014

PrBel 0.5176 0.4051 0.0303 0.0470 0.3100

DSmP0 0.5176 0.4051 0.0303 0.0470 0.3100

DSmP0.001 0.5162 0.4043 0.0319 0.0477 0.3058

HDSmP0 0.5293 0.3960 0.0310 0.0437 0.3161

HDSmP0.001 0.5258 0.3943 0.0344 0.0455 0.3064

PrScP 0.5420 0.3870 0.0324 0.0386 0.3247

PrBP1 0.5419 0.3998 0.0243 0.0340 0.3480

PrBP2 0.5578 0.3842 0.0226 0.0353 0.3529

Unmin 0.7300 0.2300 0.0100 0.0300 0.4813

Based on the probability transformations defined in (8)–

(18) and (21), respectively, the BBA can be transformed

into different probabilities as illustrated in Table I. Their

corresponding PIC’s can be calculated using (20), which are

also listed in Table I. The Unmin provides the maximum PIC

as expected.

Example 2: For FOD Θ = {θ1, θ2, θ3, θ4}, the correspond-

ing BBA is as follows:

m({θ1}) = 0.05, m({θ2}) = 0.00, m({θ3}) = 0.00,
m({θ4}) = 0.00,m({θ1, θ2}) = 0.39,
m({θ1, θ3}) = 0.19, m({θ1, θ4}) = 0.18,
m({θ2, θ3}) = 0.04,m({θ2, θ4}) = 0.02,
m({θ3, θ4}) = 0.01,m({θ1, θ2, θ3}) = 0.04,
m({θ1, θ2, θ4}) = 0.02,m({θ1, θ3, θ4}) = 0.03,
m({θ2, θ3, θ4}) = 0.03,m(Θ) = 0.00.

By using the probability transformations defined in (8) – (18)

and (21), respectively, we can transform the BBA into different

probabilities as illustrated in Table II. Their corresponding

PIC’s can be calculated using (20), which are also listed in

Table II. In this example, the masses for some singletons are

zero, so some probability transformations can not be applied

as shown in Table II, where N/A means ”Not available”.

The notation DSmP0, DSmP0.001, HDSmP0 and HDSmP0.001

mean that the values of the parameter ε in DSmP and HDSmP

transformations are chosen to 0 and 0.001.

From the experimental results in Tables I and II, the pmf

obtained from the proposed Unmin approach has the least

uncertainty (and thus the greatest PIC) when compared with

the others. That is, the difference among all propositions of the

existing probability transformation approaches can be further

enlarged, which is seemingly helpful for more consolidated

and clearer decision-making.

TABLE II
PROBABILITY TRANSFORMATION RESULTS FOR EXAMPLE 2.

θ1 θ2 θ3 θ4 PIC

PrBel N/A due to 0 value of singletons

PrScP N/A due to 0 value of singletons

PrBP1 N/A due to 0 value of singletons

DSmP0 N/A due to 0 value of singletons

HDSmP0 N/A due to 0 value of singletons

PnPl 0.4348 0.2609 0.1643 0.1401 0.0733

CuzzP 0.4498 0.2540 0.1599 0.1364 0.0822

PraPl 0.4630 0.2478 0.1561 0.1331 0.0907

BetP 0.4600 0.2550 0.1533 0.1317 0.0910

PrPl 0.6161 0.2160 0.0960 0.0719 0.2471

PrBP2 0.6255 0.2109 0.0936 0.0700 0.2572

PrHyb 0.6368 0.2047 0.0909 0.0677 0.2698

DSmP0.001 0.8820 0.0486 0.0400 0.0294 0.6464

HDSmP0.001 0.8646 0.0604 0.0454 0.0296 0.6106

Unmin 0.9000 0.0900 0.0000 0.0100 0.7420

Remark: However, there exist serious deficiencies associ-

ated with Unmin, as shown in the following example.

Example 3: The BBA defined on FOD Θ = {θ1, θ2} is:

m({θ1}) = 0.3, m({θ2}) = 0.1, m({θ1, θ2}) = 0.6.

The experimental results of different approaches are listed

in Table III. Is the probability transformation based on PIC

maximization (i.e., entropy minimization) rational?
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TABLE III
PROBABILITY TRANSFORMATION RESULTS FOR EXAMPLE 3.

θ1 θ2 PIC

PnPl 0.5625 0.4375 0.0113

CuzzP 0.6000 0.4000 0.0291

BetP 0.6000 0.4000 0.0291

PrPl 0.6375 0.3625 0.0553

PraPl 0.6375 0.3625 0.0553

PrHyb 0.6825 0.3175 0.0984

DSmP0 0.7500 0.2500 0.1887

DSmP0.001 0.7493 0.2507 0.1875

HDSmP0 0.7500 0.2500 0.1887

HDSmP0.001 0.7485 0.2515 0.1864

PrBel 0.7500 0.2500 0.1887

PrScP 0.7500 0.2500 0.1887

PrBP1 0.7765 0.2235 0.2334

PrBP2 0.8400 0.1600 0.3657

Unmin 0.9000 0.1000 0.5310

In this simple example, all of the mass 0.6 committed to

{θ1, θ2} is only redistributed to the singleton {θ1} when the

Unmin transformation is used in order to achieve the maximum

PIC.

It can be also shown that for the Unmin, the mass assign-

ments m({θ1, θ2}) > 0 is always completely redistributed to

{θ1} as long as m({θ1}) > m({θ2}) in order to achieve the

maximum PIC.

This is also true in the situations where the difference

between masses of singletons is very small as demonstrated

by the following BBA defined on FOD Θ = {θ1, θ2}:

m({θ1}) = 0.1000001, m({θ2}) = 0.1, m({θ1, θ2}) =
0.7999999.

Such a case shows that m({θ1}) is almost the same as

m({θ2}) and there is no specific reason to obtain a very

high probability for θ1 and a small one for θ2. Therefore,

the decision based on the result from Unmin transformation

appears to be very risky or dogmatic. In some applications,

a decision has to be made and we cannot avoid to make one

(good or bad). However, when the time to make a decision is

not too limited or rejection decision is permitted, it is better to

collect more observations (information) or to make a rejection

rather than to take high risk to make an erroneous decision. So

the criterion of uncertainty minimization, which can bring such

risky results, is not always judicious to evaluate a probabil-

ity transformation for decision-making purpose. Furthermore,

when we use Unmin, there are also some other problems. See

the next example for details.

Example 4: The BBA defined on the FOD Θ = {θ1, θ2, θ3}
is:

m({θ1, θ2}) = m({θ2, θ3}) = m({θ1, θ3}) = 1/3.

Using Unmin, we can obtain six different pmf’s yielding

the same minimal entropy, which are listed as follows:

P ({θ1}) = 1/3, P ({θ2}) = 2/3, P ({θ3}) = 0;
P ({θ1}) = 1/3, P ({θ2}) = 0, P ({θ3}) = 2/3;
P ({θ1}) = 0, P ({θ2}) = 1/3, P ({θ3}) = 2/3;
P ({θ1}) = 0, P ({θ2}) = 2/3, P ({θ3}) = 1/3;
P ({θ1}) = 2/3, P ({θ2}) = 1/3, P ({θ3}) = 0;
P ({θ1}) = 2/3, P ({θ2}) = 0, P ({θ3}) = 1/3.

It is clear that the problem of finding a pmf with the minimal

entropy does not have a unique solution in general. Then how

to choose a unique one? In this example, different admissible

pmf yields different decision result. This is a serious problem

for decision-making.

From all the above examples, we conclude that the max-

imization of PIC (or minimization of Shannon entropy) is

not satisfactory for evaluation. Therefore, more comprehen-

sive evaluation methods are needed, which is an open and

challenging problem.

VI. A NEW BI-CRITERIA SOLUTION FOR PROBABILITY

TRANSFORMATION EVALUATION

To design a single criterion for the comprehensive evalua-

tion of probability transformations is always difficult. Jointly

using multiple criteria is one option meaning that besides

entropy or PIC, another measure, which describes some other

aspects of a probability transformation, may be incorporated

for evaluation.

The level of PIC characterizes the clarity of a given pmf.

Indeed, higher PIC (lower entropy) means that the pmf tends

to concentrate on a specific hypothesis of the FOD, which

makes the decision easier for the decider. Also, the pmf

is transformed from a given BBA representing the original

information source. If the obtained pmf is in some sense closer

to the original BBA, it will be preferred. This is because such

a pmf has high degree of fidelity to the original BBA (i.e.,

with less loss of information in the transformation). The clarity

and fidelity can always be balanced. So by adding one more

criterion representing the degree of fidelity to the evaluation

measure, it will be more comprehensive. How to characterize

the closeness between the obtained pmf and the original BBA?

The answer is to use the distance (or dissimilarity) of evidence

[15]. In summary, we attempt to propose bi-criteria evaluation

approaches by jointly using the distance of evidence and PIC.

By treating the pmf obtained from some probability trans-

formation as a special BBA (not strict), a distance of evidence

can be used to describe the dissimilarity between the pmf and

the original BBA. We use the distance of evidence together

with PIC (or entropy) as the elements of a two-tuple:

〈PIC(P ), dJ (P,m)〉 , or 〈Entropy(P ), dJ (P,m)〉 , (22)

where P is the transformed probability (i.e., pmf) and m is

the original BBA.

A two-tuple can provide more comprehensive information;

however, how to jointly use them to evaluate a probability

transformation? Larger PIC represents greater clarity and

smaller dJ represents greater fidelity. Over-emphasizing on
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any single criterion is not preferred. As aforementioned, if we

want to choose a better probability transformation approach,

there should be a tradeoff between the two criteria. Here, we

propose two approaches to jointly use the two criteria. The first

one is directly based on the arithmetic operations over PIC and

dJ . The second one first sorts probability transformations to

be evaluated according to PIC and dJ , respectively, to obtain

two corresponding ranks. And then, the two ranks are fused

through some rank fusion rule to obtain a comprehensive rank

for evaluation.

A. Comprehensive evaluation with value based fusion

Suppose that there are N pmf’s denoted by P1, P2, ..., PN ,

which are obtained from N different probability transforma-

tions. Their entropies are En1, En2, ..., EnN and their dJ ’s

(between each pmf and the original BBA) are d1, d2, ..., dN . To

jointly use these two criteria, we calculate the comprehensive

scores for different probability transformations as follows.

Cjoint(Pi) = α · Ent′(i) + (1 − α) · d′(i), (23)

where i = 1, ..., N and α denotes a weight representing the

degree of preference on entropy. Distances (and entropies)

usually take different values depending on the probability

transformation. Therefore, to be consistent, we need to first

normalize them by their ranges as:
{

Ent′ (i) = Ent(i)−min(Ent)

max(Ent)−min(Ent)
;

d′ (i) = d(i)−min(d)

max(d)−min(d)
.

(24)

where the vector d = [d(1), d(2), . . . , d(N)] and the vec-

tor Ent = [Ent(1), Ent(2), . . . , Ent(N)] are the vectors

of distances and entropies corresponding to the probability

transformations P1, P2, ..., PN .

Smaller entropy (larger PIC, i.e., bigger clarity) and smaller

distance (bigger fidelity) are desired. Then, by sorting the

values of Cjoint(Pi) in ascending order, we can obtain the

rank as:

ΛC = (rC(P1), rC(P2), ..., rC(PN )). (25)

The probability transformations with the best rank, i.e., those

having the smallest rank value, are preferred.

B. Comprehensive evaluation with rank based fusion

Let us consider N pmf’s denoted by P1, P2, ..., PN , which

are obtained from N different probability transformations.

A comprehensive rank can then be obtained from the rank

based fusion (rank fusion for short) [27], [28] implemented in

following steps.

• Step 1: Obtain the PIC-based rank

Sort the pmf’s in descending order according to their PICs

(this is because higher PIC value is desired). Then the

rank of all the pmf’s is:

ΛPIC = (rPIC(P1), rPIC(P2), ..., rPIC(PN )). (26)

• Step 2: Obtain the distance-based rank

Sort the pmf’s in ascending order according to the

Jousselme distances (dJ ) (this is because smaller dJ is

desired), then the rank for all the pmf’s can be obtained

as:

Λd = (rd(P1), rd(P2), ..., rd(PN )). (27)

• Step 3: Obtain the global rank by a rank fusion

To find the joint (or comprehensive) rank of ΛPIC and

Λd, a rank fusion is applied as:

Λf = f(ΛPIC ,Λd), (28)

where f is a rank fusion rule and Λf is:

Λf = (rj(P1), rj(P2), ..., rj(PN )). (29)

The probability transformations with the best rank, i.e.,

those having the smallest rank, are preferred.

The selection of rank fusion rule is crucial, which is

discussed below.

1) Min rule:

rj(Pk) = min(rPIC(Pk), rd(Pk)), ∀k = 1, ..., N ; (30)

2) Max rule:

rj(Pk) = max(rPIC(Pk), rd(Pk)), ∀k = 1, ..., N ; (31)

3) Arithmetic averaging rule:

rj(Pk) = w1 · rPIC(Pk) + w2 · rd(Pk), ∀k = 1, ..., N, (32)

where w1, w2 are weights for the two different ranks to be

fused.

4) Optimization rule: The optimization based rank fusion

rule is:

Λ∗ = argmin
Λ

1

L

L
∑

j=1

dr(Λ,Λj), (33)

where Λ1, ...,ΛL are the L different ranks to fuse and dr(·, ·)
is a distance between two ranks that will be presented in the

sequel.

Here we have two ranks ΛPIC and Λd. The above equation

could be rewritten as:

Λf = argmin
Λ

1

2
[dr(Λ,ΛPIC) + dr(Λ,Λd)] . (34)

dr(·, ·) could be any rank distance including the footrule

distance [29], the Kendall distance [30], [31] and the Spearman

distance [32] as introduced below.

Suppose that Λ1, Λ2 are two ranks. Let X =
{x1, x2, ..., xN} be a set of items to be ranked. Λj(i) is

the rank associated with the item xi, where j = 1, 2 and

i = 1, 2, ..., N .

1) Footrule distance:

F (Λ1,Λ2) =

N
∑

i=1

|Λ1(i)− Λ2(i)|. (35)
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2) Kendall distance:

K(Λ1,Λ2) =
∑

{i,j}∈P

K∗
i,j(Λ1,Λ2), (36)

where P is the set of the unordered pairs of distinct items in

X and

K∗
i,j(Λ1,Λ2) =























0, if xi and xj are in the

same order in Λ1 and Λ2,

1, if xi and xj are in the

reverse order in Λ1 and Λ2.

3) Spearman distance:

ρ(Λ1,Λ2) = 1− 6 ·∑N
i=1

(Λ1(i)− Λ2(i))
2

N(N2 − 1)
. (37)

Clearly, ρ ∈ [−1, 1]. ρ = 1 means a total positive correlation

between the ranks and ρ = −1 means a total negative one.

Here Λ1 and Λ2 could be ΛPIC and Λd, respectively.

C. An illustrative example of rank fusion

Suppose that X = {x1, x2, x3, x4} corresponds to a set

of possible choices in a decision-making problem. Λ1 =
[1, 2, 3, 4] and Λ2 = [1, 3, 4, 2] are two ranks provided by two

experts for X .

When using different rank fusion rules, the results (denoted

by Λf ) are as follows.

1) Min rule:

Λf = [min(1, 1),min(2, 3),min(3, 4),min(4, 2)]

= [1, 2, 3, 2].

This rule has a tie.

2) Max rule:

Λf = [max(1, 1),max(2, 3),max(3, 4),max(4, 2)]

= [1, 3, 4, 4].

This rule also has a tie.

3) Arithmetic averaging rule:

Λf = [0.5 · 1 + 0.5 · 1, 0.5 · 3 + 0.5 · 2, 0.5 · 3
+ 0.5 · 4, 0.5 · 4 + 0.5 · 2]
= [1, 2.5, 3.5, 3].

As we can see that both weights are equal to 0.5.

We encounter the non-integer rank value. This doesn’t

matter. What we care is only the relative value of a rank.

Therefore, we obtain the final result as [1, 2, 4, 3], which is the

rank obtained by ordering [1, 2.5, 3.5, 3] in ascending order.

4) Optimization rule: Here we use footrule distance. Sup-

pose that Λf = [rf (1), rf (2), rf (3), rf (4)]. We try to find a

Λf which minimizes

F (Λf ,Λ1) + F (Λf ,Λ2) = |rf (1)− 1|+ |rf (2)− 2|
+ |rf (3)− 3|+ |rf (4)− 4|
+ |rf (1)− 1|+ |rf (2)− 3|
+ |rf (3)− 4|+ |rf (4)− 2| .

By using the optimization rank fusion rule in (33), one gets

Λ∗
f = [1, 2, 4, 3].

VII. EXPERIMENTS FOR THE BI-CRITERIA EVALUATION

APPROACH

In this section, we examine the previous Examples 1–3

using the new bi-criteria evaluation approach.

A. Example 1 revisited

Table IV shows the evaluation results of different probability

transformations (the initial pmf for PrScP used here is BetP),

their distances and PIC’s, their ranks obtained using two

criteria (ΛPIC and Λd), and the joint rank using value based

fusion (ΛV alue). Table IV also provides the evaluation results

using rank fusion, where Λmin denotes the fused rank using

min rule; Λmax denotes the fused rank using max rule; Λave

denotes the fused rank using arithmetic averaging rule; Λopt

denotes the fused rank using optimization. The weight for

value based fusion is α = 0.5 while the weights for arithmetic

averaging rank fusion are w1 = w2 = 0.5. In optimization-

based rank fusion, the distance used is the Spearman distance

in (37) due to its quadric form, which is mathematically more

tractable for optimization. The comparisons among evaluation

results of different criteria are also shown in Fig. 1. Note that

in all experiments here, smaller value of rank represents higher

rank.

In Table IV there exist cases of tie. Our strategy for the

tie is as follows. When a tie happens, the alternatives in the

tie will be assigned the same rank. The rank of the closest

following alternative of the tie will be increased by the number

of alternatives in the tie. For example, in Table IV, the PIC’s of

PrBel and DSmP0 are the same, so their ranks are both 6. The

PIC value of HDSmP0.001 is the closest following alternative,

so its rank becomes 8. That is, there is no rank 7 here because

rank 6 appeared twice.

From Table IV, although the pmf obtained from Unmin has

the maximum PIC (thus it seems to be the best choice), it

also has the maximum dJ . Therefore, it is not the best choice

according to dJ . The joint evaluation results show that Unmin

is not preferred. The bi-criteria evaluation appears more natural

and helpful than PIC alone.

Also, PnPl has the minimum dJ . Thus according to Λd, it

is the best. But PnPl has the lowest PIC which is not good

for making a clear or solid decision. From this angle, it is the

worst. As we can see, the evaluation based on PIC or dJ alone

is not satisfactory. In Table IV, PnPl has obtained the worst

score based our proposed bi-criteria evaluation approach. This

new evaluation approach can assure a “good” score for both

elements of the two-tuple and meanwhile it can also counteract

the exaggeration of a single factor.

It can be seen from the experimental results listed in

Table IV and Fig. 1, although there are some differences

among different evaluation approaches, BetP, PraPl, DSmP and

HDSmP all perform pretty well in this example, which make

a good balance between PIC and dJ , i.e., the clarity and the

fidelity.
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TABLE IV
EVALUATIONS OF PROBABILITY TRANSFORMATION RESULTS OF BBA IN EXAMPLE 1 USING DIFFERENT CRITERIA.

PIC dJ ΛPIC Λd ΛV alue Λmin Λmax Λave Λopt

PnPl 0.0526 0.2504 15 4 15 7 4 15 15

CuzzP 0.0790 0.24651 14 3 14 5 12 14 14

BetP 0.0926 0.2462 13 1 13 1 10 1 1

PraPl 0.1007 0.24647 12 2 12 3 8 1 2

PrPl 0.1638 0.2524 11 5 11 9 6 15 13

PrHyb 0.2014 0.2589 10 6 10 11 5 5 7

PrBel 0.3100 0.28084 6 9 6 11 2 3 3

DSmP0 0.3100 0.28084 6 9 6 11 2 3 3

DSmP0.001 0.3058 0.2801 9 7 8 14 2 5 5

HDSmP0 0.3161 0.2827 5 11 5 9 6 5 8

HDSmP0.001 0.3064 0.28082 8 8 9 15 1 5 6

PrScP 0.3247 0.2853 4 12 4 7 8 5 9

PrBP1 0.3480 0.2887 3 13 1 5 10 5 12

PrBP2 0.3529 0.2917 2 14 2 3 12 5 10

Unmin 0.4813 0.3676 1 15 3 1 4 5 10
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Fig. 1. Evaluation results for Example 1 using different criteria.

B. Example 2 revisited

The parameters are the same as in revisited Example 1. The

results are shown in Table V and Fig. 2.

In this experiment, we can see that four probability transfor-

mations (PrBel, PrBP1, HDSmP0 and DSmP0) cannot provide

results due to the zero value for singletons. This shows that

they are not robust and have more requirements for the original

BBA. DSmP and HDSmP have the parameter which can

counteract this negative effect.

From the comparisons among the remaining eleven proba-

bility transformations in Table V, we see that although there

are some differences among different evaluation approaches,

those exaggerated transformations e.g., PnPl and Unmin, over-

emphasizing only one criterion, do not perform that well. The

bi-criteria evaluation appears more natural and helpful than

using PIC alone.

C. Example 3 revisited

The results are shown in Table VI and Fig. 3.

In this experiment, those transformations (PrPl, PrHyb,

PraPl, DSmP0.001, HDSmP0.001) making a good balance be-

tween clarity and fidelity always perform well using different

evaluation approaches.

The above results show that DSmP and HDSmP can always

generate a probability measure with less uncertainty. At the

same time, this is not too risky, i.e., they can achieve a better

tradeoff between PIC and risk in decision-making.

We prefer the evaluation approaches using rank fusion when

compared with that using value based fusion. This is because

in the evaluation approaches using rank fusion, the values are

not that important. The rank fusion is not sensitive to the

ranges of different criteria. In this sense, it is relatively more

robust. Although in the evaluation approaches using value

based fusion, we added the step of normalization to counteract

the sensitivity to the value ranges, it cannot be avoided but

suppressed to some extent.

Among all the evaluation approaches using rank fusion, we

prefer the arithmetic averaging and the optimization based

ones. This is because they are moderate, i.e., neither too
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pessimistic (like min rule) nor too optimistic (like max rule).

VIII. APPLICATION-ORIENTED EVALUATION OF

PROBABILITY TRANSFORMATIONS

The performance evaluation approaches for decision-

making applications such as classification, are available.

Therefore, we can use the evaluation of decision-making

under the evidence theory framework to indirectly evaluate

probability transformations, which is illustrated in Example 5.

Example 5: In this example, a pattern classification ap-

plication is considered. We consider only three classes of

samples in this example, which are illustrated in Fig. 4. The

2D-dataset is artificially generated. Samples of each class are

uniformly distributed around three different centers. Abscissa

and ordinate in Fig. 5 represent two feature dimensions of

each sample.

The classifier used in this example is the K-nearest neighbor

(K-NN) [33]. For each test sample, the output of the classifier

is represented by a BBA. The corresponding BBA for each test

sample is generated as follows.

a) The class space is C = {1, 2, 3}. For a test sample, find

its K nearest neighbors. In the K nearest neighbors, calculate

the ratio of the samples belonging to each class as follows:

P (i) =
k(i)
3
∑

j=1

k(j)

, (38)

where P (i) represents the ratio of class i and k(i) represents

the number of samples belonging to class i in the K nearest

neighbors, i = 1, 2, 3.. Obviously, K =
∑3

j=1
k(j).

b) For the two classes s and t (s, t ∈ 1, 2, 3, s 6= t) with

the top two values of k(i), i = 1, 2, 3, the corresponding mass

assignments are generated according to [34]:

m({i}) = P (i), ∀i = s, t. (39)

The remaining mass is assigned to the total set Θ:

m(Θ) = 1−m({s})−m({t}). (40)

For example, for a test sample xq , among its 7 nearest

neighbors, 4 belong to class 1, 2 belong to class 2, and one

belongs to class 3. The class distribution is then P (1) =
4/7, P (2) = 2/7, P (3) = 1/7. The dominant class is class

1 and class 2 is at the second place. The corresponding BBA

is m({1}) = 4/7, m({2}) = 2/7 and m({1, 2, 3}) = 1/7.

There are 200 samples for each one class with a total of 600

samples. In each experiment cycle, the samples are randomly

selected from each class with 100 samples for training (300

training samples in total) and the remaining samples are used

for testing (300 test samples in total).

For a probability transformation PT , the decision result will

be class i1 if

i1 = argmax
j

PT (j), i2 = arg max
j,j 6=i1

PT (j), (41)

PT (i1)− PT (i2) ≥ τ, (42)

where τ is the threshold for decision-making. If (42) is not

satisfied, i1 will be rejected. The threshold τ is selected from

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0}.

For each of these tested thresholds, the above experiment

procedure is repeated 100 times to calculate the average perfor-

mance of different probability transformations2. Based on the

simulation results, the average rejection rates (average over all

threshold values) of different probability transformations are

shown in Fig. 5.

As we can see from Fig. 5, the rejection rate of Unmin is

the minimum one. This is because Unmin emphasizes on the

clarity. Therefore, the difference between different alternatives

is relatively large. We propose to use “rejection-error” curve

as shown in Fig. 6 to evaluate probability transformations.

The abscissas and ordinates of the points on rejection-error

curves are respectively the average rejection rate values and the

average error rate values for different probability transforma-

tions at each threshold τ . For any probability transformation at

each threshold value, the average rejection rate and the average

error rate are the mean of the repeated 100 times simulations.

The deviations of the rejection rate and error rate of each

probability transformation at different thresholds are listed in

Tables VII and VIII, respectively.

From the results in Fig. 6, it can be seen that given the

same rejection rate, the classification error rate of Unmin is

always the highest. The decision results based on Unmin are

the worst. Although Unmin has the least uncertainty degree

and the minimum rejection rate, it is not the winner. The

smaller rejection rate is at the price of higher classification

error rate. The rejection-error curves can be used as a compre-

hensive and indirect application-oriented evaluation approach

for probability transformations.

The performance of other probability transformations (ex-

cept for Unmin) is similar when using application-oriented

performance evaluation (rejection-error curves).

IX. DESIRED PROPERTIES OF PROBABILITY

TRANSFORMATIONS

In this section, we discuss some desired properties of

probability transformations.

A. Order preservation

It is preferred that a probability transformation can maintain

some order before and after the transformation, e.g., the order

of the uncertainty degree. Given N BBAs: m1, ...,mN , we can

obtain the rank or order of their uncertainty degree according

2The probability transformations HDSmP0, PrBP1, PrBP2 are not included
in our simulation because they cannot be computed when zero masses occur.
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TABLE V
EVALUATIONS OF PROBABILITY TRANSFORMATION RESULTS OF BBA IN EXAMPLE 2 USING DIFFERENT CRITERIA.

PIC dJ ΛPIC Λd ΛV alue Λmin Λmax Λave Λopt

PrBel N/A due to 0 value of singletons

DSmP0 N/A due to 0 value of singletons

HDSmP0 N/A due to 0 value of singletons

PrBP1 N/A due to 0 value of singletons

PnPl 0.0733 0.3128 11 4 9 7 10 11 11

CuzzP 0.0822 0.3123 10 3 7 5 8 10 10

BetP 0.0910 0.3121 8 1 5 1 4 1 1

PraPl 0.907 0.3122 9 2 6 3 6 2 2

PrPl 0.2471 0.3373 7 5 1 9 2 3 3

PrHyb 0.2698 0.3440 5 7 3 9 2 3 3

DSmP0.001 0.6464 0.4684 2 10 11 3 8 3 3

HDSmP0.001 0.6094 0.4572 3 9 10 5 6 3 3

PrScP 0.5987 0.4309 4 8 4 7 4 3 3

PrBP2 0.2572 0.3402 6 6 2 11 1 3 3

Unmin 0.7421 0.4764 1 11 8 1 10 3 3
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Fig. 2. Evaluation results for Example 2 using different criteria.

TABLE VI
EVALUATION OF PROBABILITY TRANSFORMATION RESULTS OF BBA IN EXAMPLE 3 USING DIFFERENT CRITERIA.

PIC dJ ΛPIC Λd ΛV alue Λmin Λmax Λave Λopt

PnPl 0.0113 0.3023 15 3 15 5 14 15 15

CuzzP 0.0290 0.3000 13 1 11 1 10 1 1

BetP 0.0290 0.3000 13 1 11 1 10 1 1

PraPl 0.0553 0.3023 11 3 2 5 8 1 3

PrPl 0.0553 0.3023 11 3 2 5 8 1 3

PrHyb 0.0984 0.3111 10 6 1 13 3 9 14

PraBel 0.1887 0.3354 5 10 7 9 3 5 5

DSmP0 0.1887 0.3354 5 10 7 9 3 5 5

DSmP0.001 0.1875 0.3351 8 8 5 15 1 9 9

HDSmP0 0.1887 0.3354 5 10 7 9 3 5 5

HDSmP0.001 0.0553 0.3023 9 7 4 14 2 9 10

PrScP 0.1887 0.3354 5 10 7 9 3 5 5

PrBP1 0.2334 0.3481 3 13 10 5 10 9 11

PrBP2 0.3657 0.3842 2 14 13 4 13 9 12

Unmin 0.5310 0.4243 1 15 14 1 14 9 12
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Fig. 3. Evaluation results for Example 3 using different criteria.

TABLE VII
DEVIATIONS OF THE REJECTION RATE OF EACH PROBABILITY TRANSFORMATION AT DIFFERENT τ .

τ BetP Unmin DSmP0.001 PnPl DSmP0 PrPl PrBel PraPl HybPl CuzzP HDSmP0.001

0 0 0 0 0 0 0 0 0 0 0 0

0.1 0.0406 0.0130 0.0382 0.0434 0.0360 0.0406 0.0360 0.0406 0.0382 0.0406 0.0406

0.2 0.0401 0.0332 0.0421 0.0356 0.0421 0.0412 0.0421 0.0412 0.0421 0.0401 0.0412

0.3 0.0374 0.0496 0.0418 0.0312 0.0418 0.0411 0.0418 0.0411 0.0418 0.0374 0.0387

0.4 0.0284 0.0453 0.0309 0.0238 0.0330 0.0309 0.0330 0.0309 0.0309 0.0276 0.0298

0.5 0.0265 0.0320 0.0282 0.0267 0.0284 0.0274 0.0284 0.0274 0.0282 0.0265 0.0274

0.6 0.0209 0.0247 0.0214 0.0199 0.0214 0.0209 0.0214 0.0209 0.0214 0.0209 0.0209

0.7 0.0208 0.0213 0.0213 0.0206 0.0213 0.0213 0.0213 0.0213 0.0213 0.0208 0.0208

0.8 0.0185 0.0192 0.0192 0.0185 0.0192 0.0192 0.0192 0.0192 0.0192 0.0195 0.0195

0.9 0.0165 0.0167 0.0167 0.0165 0.0167 0.0167 0.0167 0.0167 0.0167 0.0165 0.0165

1.0 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131

TABLE VIII
DEVIATIONS OF THE ERROR RATE OF EACH PROBABILITY TRANSFORMATION AT DIFFERENT τ .

τ BetP Unmin DSmP0.001 PnPl DSmP0 PrPl PrBel PraPl HybPl CuzzP HDSmP0.001

0 0.0204 0.0204 0.0204 0.0204 0.0204 0.0204 0.0204 0.0204 0.0204 0.0204 0.0199

0.1 0.0318 0.0182 0.0308 0.0319 0.0300 0.0318 0.0300 0.0318 0.0308 0.0318 0.0318

0.2 0.0283 0.0238 0.0322 0.0233 0.0322 0.0311 0.0322 0.0311 0.0322 0.0283 0.0311

0.3 0.0191 0.0268 0.0228 0.0127 0.0228 0.0214 0.0228 0.0214 0.0228 0.0191 0.0197

0.4 0.0099 0.0236 0.0118 0.0071 0.0144 0.0118 0.0144 0.0118 0.0118 0.0094 0.0108

0.5 0.0059 0.0140 0.0080 0.0057 0.0085 0.0070 0.0085 0.0070 0.0080 0.0059 0.0070

0.6 0.0036 0.0075 0.0039 0.0027 0.0039 0.0039 0.0039 0.0039 0.0039 0.0036 0.0036

0.7 0.0005 0.0008 0.0008 0.0005 0.0008 0.0008 0.0008 0.0008 0.0008 0.0005 0.0005

0.8 3e-17 0.0005 0.0005 3e-17 0.0005 0.0005 0.0005 0.0005 0.0005 3e-17 3e-17

0.9 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17

1.0 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17 3e-17
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to some uncertainty measure in evidence theory as introduced

in the sequel:

Rankm = [rm(1), ..., rm(N)].

After applying the probability transformations, the rank of

P1, ..., PN in terms of uncertainty degree in probability theory3

is:

RankP = [rP (1), ..., rP (N)].

It is very hard to completely maintain the order after

the transformation. However, the degree of accordance or

consistency between Rankm and RankP , i.e., the degree of

order-preserving, can be used to evaluate different probability

transformations. Such a degree of order-preservation can be

defined using the distance between ranks as introduced before.

Less degree of order-preserving represents more twist or loss

of information in the procedure of probability transformations.

When calculating the degree of order-preservation, we need

to specify an uncertainty measure of belief functions. Some

uncertainty measures in evidence theory are as follows.

1) Non-specificity: Non-specificity [35] is defined as:

N(m) =
∑

A⊆Θ

m(A) log2 |A|. (43)

2) Confusion: Confusion [36] is defined using the BBA m
and the Bel in the spirit of entropy as:

Conf(m) = −
∑

A∈Θ

m(A)log2(Bel(A)). (44)

3) Dissonance: Dissonance [37] is defined using the BBA

m and the Pl in the spirit of entropy as:

Diss(m) = −
∑

A∈Θ

m(A)log2(Pl(A)). (45)

3Here we only consider Shannon’s entropy as the ranking criterion for
convenience.

4) Aggregate Uncertainty measure (AU): Let Bel be a

belief measure on the FOD Θ. The AU [38] associated with

Bel is measured by:

AU(Bel) = max
PBel

[−
∑

θ∈Θ

pθ log2 pθ], (46)

where the maximum is taken over all probability distributions

that are consistent with the given belief function. PBel consists

of all probability distributions 〈pθ|θ ∈ Θ〉 satisfying:






pθ ∈ [0, 1], ∀θ ∈ Θ,
∑

θ∈Θ
pθ = 1

Bel(A) ≤∑θ∈A pθ ≤ 1−Bel(Ā), ∀A ⊆ Θ.
(47)

AU is an aggregated total uncertainty (ATU) measure.

AU satisfies all the requirements of uncertainty measure [39]

including probability consistency, set consistency, value range,

sub-additivity and additivity for the joint BPA in Cartesian

space. AU also has the drawbacks [3] of high computing

complexity, high insensitivity to the changes of evidence, etc.

5) Ambiguity Measure (AM): Let m be a BBA defined over

the FOD Θ = {θ1, θ2, . . . , θn}. AM (ambiguity measure) [40]

is defined as:

AM(m) = −
∑

θ∈Θ

BetPm(θ) log2(BetPm(θ)), (48)

where BetPm(θ) =
∑

θ∈B,B⊆Θ
m(B)/ |B| is the pignistic

probability. Jousselme et al [40] declared that the AM satisfies

the requirements of uncertainty measure and at the same time

it overcomes the defects of AU, but in fact AM does not satisfy

the sub-additivity [41]. Moreover in [39], AM has been proved

to be logically non-monotonic under some conditions.

6) Contradiction Measure (CM): The contradiction mea-

sure [42] is defined as:

CM(m) =

√

2n

n− 1
·
∑

X∈X
m(X) · dJ (m,mX), (49)

where X denotes the set of all focal elements of m and dJ is

Jousselme’s distance. There exists CM ∈ [0, 1].

B. Simulation of degree of order-preservation

Our simulation consists of the following steps:

• Step 1: Randomly generate 10 BBAs and calculate the

degree of uncertainty in each BBA to generate Rankm;

• Step 2: Apply the transformation using N types of PTs.

We can obtain various Rankip, i = 1, ..., N ;

• Step 3: Calculate the distance (dp(i)) between Rankm
and each Rankip, i = 1, ..., N ;

• Step 4: Repeat Step 1 - 3 a hundred times. Calculate

the average distance and the corresponding standard

deviation as follows:

dpm(i) =
1

100

100
∑

j=1

djp(i), (50)

dp−std(i) =

√

√

√

√

1

100− 1

100
∑

j=1

(djp(i)− dpm(i))2. (51)
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The PTs with smaller dpm(i) and dp−std(i) are preferred.

TABLE IX
Algorithm 1. RANDOM GENERATION OF BBA.

Input: Θ: Frame of discernment;
Nmax: Maximum number of focal elements
Output: Output: m: BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → R(Θ);
Generate an integer between 1 and Nmax → l;
FOReach First k elements of R(Θ) do
Generate a value within [0, 1] → mi, i = 1, ..., l;
END

Normalize the vector m = [m1, ...,ml] → m′;
m(Ai) = m′

i;

In Step 1, BBAs are generated using Algorithm 1 [17] in

Table IX. All six types of uncertainty measures introduced

above are used in the simulations. The distance between

Rankm and Rankp used is the Kendall distance in (36). The

evaluation results are shown in Tables X, XI and Fig. 7.

From Tables X, XI, and Fig. 7, Unmin provides the worst

(with the lowest degree of order preservation). Although all the

degree of order change based on different uncertainty measures

are all listed in Tables X, XI, and Fig. 7, we prefer to use the

ones based on AU. The reasons are as follows. First, in all

the uncertainty measures used here, only AU is a strict total

uncertainty measure, which can describe both the discord and

non-specificity in a body of evidence. Second, as we can see

from the subfigure using AM, BetP’s degree of order change

is zero. However, this does not make sense, because AM is

defined based on BetP. Therefore, it is partial (or non-neutral)

when BetP is also included for evaluation. AU is relative more

appropriate to be used here. According to the subfigure based

on AU, Unmin is the worst. HDSmP and DSmP are also not

that good in terms of order preservation. Other probability

transformations perform similar to each other in terms of order

preservation.

Even AU is still not absolutely impartial (or neutral),

because AU is designed also based on some probability

transformation (maximization of entropy). If such an en-

tropy maximization-based probability transformation is also

included for evaluation, it will be partial (or non-neutral). So

some new uncertainty measure for BBA not related to prob-

ability transformation is needed for an impartial evaluation.

We think that the contradiction measure in (49) is a good

attempt. It is an uncertainty measure which is not based on a

probability transformation, although its strictness (satisfying

the requirements of the uncertainty measure) still deserves

further research.

X. CONCLUSIONS

In this paper, we focus on the evaluations of probability

transformations of a belief function. The existing transforma-

tions are briefly reviewed and compared. Our experimental

results and analysis show that PIC criterion alone is insufficient

to truly measure the quality of a probability transformation.

A compromise between fidelity and clarity is achieved by

the joint use of PIC and the distance of evidence. We have

also proposed an application-oriented evaluation approach for
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TABLE X
EVALUATION OF DEGREE OF ORDER CHANGE (AVERAGE VALUE).

Prob Trans PnPl CuzzP BetP PraPl PrPl PrHyb DSmP0.001 HDSmP0.001 Unmin

Nonspecificity 0.4140 0.3958 0.4100 0.3640 0.4411 0.4240 0.4760 0.4476 0.4671

Contradiction 0.3567 0.3756 0.3618 0.4111 0.3320 0.3502 0.3551 0.3767 0.5022

AM 0.1282 0.0476 0 0.0989 0.0622 0.0589 0.2571 0.2284 0.4560

AU 0.0416 0.0304 0.0311 0.0324 0.0489 0.0507 0.1151 0.1082 0.2029

Confusion 0.5896 0.6009 0.6004 0.6084 0.6064 0.6071 0.6213 0.6076 0.5302

Dissonance 0.4882 0.4998 0.4836 0.5389 0.4511 0.4696 0.4453 0.4673 0.5247

TABLE XI
EVALUATION OF DEGREE OF ORDER CHANGE (STANDARD DEVIATION).

Prob Trans PnPl CuzzP BetP PraPl PrPl PrHyb DSmP0.001 HDSmP0.001 Unmin

Nonspecificity 0.1278 0.1183 0.1207 0.1177 0.1237 0.1177 0.1335 0.1263 0.1271

Contradiction 0.1289 0.1193 0.1170 0.1249 0.1176 0.1127 0.1317 0.1302 0.1387

AM 0.0711 0.0378 0 0.0567 0.0417 0.0372 0.1127 0.0915 0.1119

AU 0.0545 0.0404 0.0400 0.0432 0.0542 0.0579 0.1033 0.0945 0.1282

Confusion 0.1297 0.1206 0.1192 0.1200 0.1187 0.1188 0.1175 0.1282 0.1131

Dissonance 0.1380 0.1309 0.1308 0.1294 0.1317 0.1296 0.1409 0.1296 0.1309
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probability transformations. Furthermore, we have evaluated

probability transformations by their robustness to preserve the

uncertainty order of the original BBAs. The simulation results

show that our proposed evaluation approaches are able to make

rational comparison of different probability transformations.

Future work includes the development of general and direct

measures of uncertainty of a BBA, which do not depend on

the choice of probability transformations. This is important for

the property of uncertainty order preservation.

Note that the evaluations for the issues in evidence theory

(like the probability transformations, the evidence combina-

tion, the determination of BBA, etc) lack solid theoretical

foundation so far. In the future, we will attempt to propose

more rational and useful criteria for probability transforma-

tions and try to establish more theoretically sound evaluation

approaches for probability transformations, which are impor-

tant and challenging problems.
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Abstract—In this paper we propose a new general method for
decision-making under uncertainty based on the belief interval
distance. We show through several simple illustrative examples
how this method works and its ability to provide reasonable
results.

Keywords: belief functions, decision-making, distance be-

tween BBAs.

I. INTRODUCTION

Dempster-Shafer Theory (DST), also known as the Math-

ematical Theory of Evidence or the Theory of Belief Func-

tions (BF), was introduced by Shafer in 1976 [1] based on

Dempster’s previous works [2]. This theory offers an elegant

theoretical framework for modeling uncertainty, and provides

a method for combining distinct bodies of evidence collected

from different sources. In the past more than three decades,

DST has been used in many applications, in fields including

information fusion, pattern recognition, and decision making

[3]. Although belief functions are very appealing for model-

ing epistemic uncertainty, the two main important questions

related to them remain still open:

1) How to combine efficiently several independent belief

functions?

This open question is out of the scope of this paper and

it has been widely disputed by many experts [4]–[14]. In

this short paper, we focus on the second question below.

2) How to take a final decision from a belief function?

This second question is also very crucial in many

problems involving epistemic uncertainty where the final

step (after beliefs elicitation, and beliefs combination) is

to make a decision.

In the sequel, we assume that the reader is familiar with

Demspter-Shafer Theory of belief functions [1] and its no-

tations. Due to space restriction, we will not recall the def-

initions of basic belief assignment m(·), belief Bel(·) (also

called credibility by some authors), and plausibility functions

Pl(·) functions defined over a given finite discrete frame of

discernment (FoD) Θ. For any focal element X of the powerset

of Θ, denoted by 2Θ, the interval BI(X) , [Bel(X), P l(X)]

is called the belief interval of X . Its length Pl(X)−BeI(X)
characterizes the uncertainty on X (also called ambiguity in

[15]). This paper is organized as follows. In section 2, we

recall the common decision-making techniques used so far to

make a decision from belief functions. In section 3 we recall

the new distance measure based on Belief interval, and we

present a new general method for decision-making with belief

functions. Finally, examples of this new approach are given in

section 4, with concluding remarks in section 5.

II. CLASSICAL DECISION-MAKING USING BF

We assume a given FoD Θ = {θ1, . . . , θn} and a given BBA

m(·) defined on 2Θ. We want to make a decision from m(·). It

consists in choosing a particular element of the FoD that solves

the problem under consideration, which is represented by the

set of potential solutions (choices) θi, i = 1, . . . , n. How to

do this in an effective manner is the fundamental question of

decision-making under epistemic uncertainty. Many decision-

making criteria have been proposed in the literature. Some

advanced techniques developed in the 1990s [15]–[19] have

not been widely used so far in the BF community, probably

because of their complexity of implementation. In this section,

we only present briefly the simplest ones frequently used.

1) Decision based on maximum of credibility:

This decision-making scheme is the so-called prudent

(or pessimistic) scheme. It consists in choosing the ele-

ment of the FoD Θ that has the maximum of credibility.

In other terms, one will decide θ̂ = θi⋆ with1

θi⋆ = argmax
i

Bel(θi). (1)

2) Decision based on maximum of plausibility:

On the contrary, if we prefer to adopt a more optimistic

decision-making (less prudent) attitude, one will choose

1The notation with hat indicates the decision taken. Here θ̂ specifies that
the decision taken is only a singleton of Θ.

Originally published as: J. Dezert, D. Han, J.-M. Tacnet, S. Carladous, Y. Yang, Decision-Making with 
Belief Interval Distance, in Proc. of Belief 2016 Int. Conf., Prague, CZ, September 21–23, 2016, and 
reprinted with permission.
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the element of the FoD Θ that has the maximum of

plausibility. In other terms, one will decide θ̂ = θi⋆ with

θi⋆ = argmax
i

Pl(θi). (2)

3) Decision based on maximum of probability:

Usually decision-makers prefer to adopt a more balanced

decisional attitude making a compromise between the

aforementioned pessimistic and optimistic attitudes. For

this, the BBA m(·) is transformed into a subjective

probability measure P (·) compatible with the belief

interval [Bel(·), P l(·)], and one will choose the element

of the FoD Θ that has the maximum of probability. In

other terms, one will decide θ̂ = θi⋆ with

θi⋆ = argmax
i

P (θi). (3)

In practice, many probabilistic transformations are avail-

able to approximate (or transform) a BBA m(·) in a

probability measure P (·). By example, the pignistic

transformation [20], the plausibility transformation [21],

the DSmP transformation and other ones presented in

[22], etc.

Of course, in case of multiple maximum values, no decision

can be clearly drawn. Usually if only one decision must be

made, a random sample between elements θi generating the

maximal decision-making criterion value is used to make a

unique final decision θ̂. Another more prudent decision scheme

is to use the disjunction of all elements generating the maximal

decision-making criterion value, to provide a less specific final

decision (if it is allowed for the problem under concern).

Our main criticism about using these decision-making

schemes is that they do not use the whole information con-

tained in the original BBA, which is in fact expressed by the

whole belief interval. The pessimistic attitude uses only the

credibility values, whereas the optimistic attitude uses only the

plausibility values. The prudent attitude based on the criteria

(3) requires a particular choice of probabilistic transformation

which is often disputed by users. Making a decision from the

P (.) measure is theoretically not satisfactory at all because

the transformation is lossy since we cannot retrieve m(·) from

P (·) when some focal elements of m(·) are not singletons. In

the next section, we propose a better justified decision scheme

based on the belief interval distance [23], [24].

III. DECISION-MAKING USING BELIEF INTERVAL

DISTANCE

In our previous works [23], [24], we have defined a Eu-

clidean belief interval distance between two BBAs m1(·)
and m2(·) defined on the powerset of a given FoD Θ =
{θ1, . . . , θn} as follows

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)), (4)

where Nc = 1/2n−1 is a normalization factor to

have dBI(m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X))

is the Wassertein’s distance [25] between belief

intervals BI1(X) , [Bel1(X), P l1(X)] = [a1, b1] and

BI2(X) , [Bel2(X), P l2(X)] = [a2, b2]. More specifically,

dW ([a1, b1], [a2, b2]) ,
[

[

a1 + b1
2

− a2 + b2
2

]2

+
1

3

[

b1 − a1
2

− b2 − a2
2

]2
]

1

2

. (5)

In [23], we have proved that dBI(x, y) is a true distance

metric because it satisfies the properties of non-negativity

(d(x, y) ≥ 0), non-degeneracy (d(x, y) = 0 ⇔ x = y),

symmetry (d(x, y) = d(y, x)), and the triangle inequality

(d(x, y) + d(y, z) ≥ d(x, z), for any BBAs x, y and z defined

on 2Θ. The choice of Wasserstein’s distance in dBI definition

is justified by the fact that Wasserstein’s distance is a true

distance metric and it fits well with our needs because we

have to compute a distance between [Bel1(X), P l1(X)] and

[Bel2(X), P l2(X)].

For notation convenience, we denote mX the categorical

BBA having only X as focal element, where X 6= ∅ is

an element of the powerset of Θ. More precisely, mX is

the particular (categorical) BBA defined by mX(X) = 1
and mX(Y ) = 0 for any Y 6= X . Such basic BBA plays

an important role in our new decision scheme because its

corresponding belief interval reduces to the degenerate interval

[1, 1] which represents the certainty on X . The basic principle

of the new decision scheme we propose is very simple and

intuitively makes sense. It consists in selecting as the final

decision (denoted by X̂) the element of the powerset for which

the belief interval distance between the BBA m(·) and mX ,

X ∈ 2Θ \{∅} is the smallest one1. Therefore, take as the final

decision X̂ given by

X̂ = arg min
X∈2Θ\{∅}

dBI(m,mX), (6)

where dBI(m,mX) is computed according to (4). m(·) is the

BBA under test and mX(.) the categorical BBA focused on

X defined above.

This decision scheme is very general in the sense that the

decision making can be done on any type of element2 of

the power-set 2Θ, and not necessarily only on the elements

(singletons) of the FoD (see examples in the next section).

This method not only provides the final decision X̂ to make,

but also it evaluates how good this decision is with respect

to its alternatives if we define the quality indicator q(X̂) as

follows

q(X̂) , 1− dBI(m,m
X̂
)

∑

X∈2Θ\{∅} dBI(m,mX)
. (7)

One sees that the quality indicator q(X̂) of the decision X̂
made will become maximum (equal to one) when the distance

1This simple principle has also been proposed by Essaid et al. [26] using
Jousselme’s distance.

2empty set excluded.
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between the BBA m(·) and m
X̂

is zero, which means that the

BBA m(·) is focused in fact only on the element X̂ . The higher

q(X̂) is, the more confident in the decision X̂ we should be.

Of course, if a decision must be made with some

extra constraint3 defined by a (or several) condition(s),

denoted c(X), then we must take into account c(X) in Eq.

(6), that is X̂ = argminX∈2Θ\{∅} s.t. c(X) dBI(m,mX),
and also in the derivation of quality indicator by taking
∑

X∈2Θ\{∅} s.t. c(X)
dBI(m,mX) as denominator in (7).

Theoretically any other strict distance metric, for instance

Jousselme’s distance [27]–[29], could be used instead of

dBI(·, ·). We have chosen dBI distance because of its ability

to provide good and reasonable behavior [23] as will be

shown. When there exists a tie between multiple decisions

{X̂j, j > 1}, then the prudent decision corresponding to

their disjunction X̂ = ∪jX̂j should be preferred (if allowed),

otherwise the final decision X̂ is made by a random selection

of elements X̂j .

IV. EXAMPLES AND COMPARISONS

In this section we present several examples when the

cardinality of the FoD |Θ| is only 2 and 3 because it is easier

to see whether the decision-making results make sense or not.

We compare and discuss decisions only made with the belief

interval distance dBI and Jousselme’s distance dJ because the

other lossy decision schemes do not exploit both credibility

and plausibility values. The examples corresponding to cases

where the BBA m(·) is focused on a single element X of

2Θ are not presented because one trivially gets X̂ = X using

either dBI or dJ distances.

The next tables present several BBAs from which a de-

cision has to be made. By convention, and since we work

with normal BBAs satisfying m(∅) = 0, the empty set

is not included in the tables. The rows for dmin
BI (mi,mX)

and for dmin
J (mi,mX) list the minimal values obtained for

dBI(mi,mX) and dJ(mi,mX). The rows for X̂dBI and for

X̂dJ list the decision(s) X̂ made when using dBI(mi,mX)
and dJ (mi,mX) respectively. The rows for q(X̂dBI ) and

q(X̂dJ ) list the quality indicators of decision(s) made using

dBI(mi,mX) and dJ (mi,mX) respectively. Depending on

the BBA, it is possible to have multiple decisions {X̂j} in

case of a tie. If a tie occurs either a random sampling of {X̂j}
must be drawn, or (if allowed) the disjunction of decisions X̂j

is preferred. In the next subsections, we present results in free-

constraint case (i.e. c(X) = ∅), as well as when the decisions

are restricted to be singletons (i.e. c(X) ≡ “|X | = 1”).

A. Examples with Θ = {A,B}
Table I shows the decisions made when there is no constraint

on the cardinality of the decision X̂ .

One sees that methods based on min of dBI(m,mX) and

on min of dJ (m,mX) yield the same reasonable decisions

3for instance, making a choice only among the singletons of 2Θ.

in almost all cases. With m2, one has multiple decisions

X̂dJ = {A,B,A ∪B} with quality 0.6667 when using dJ ,

which is a bit surprising in our opinion because there is a real

tie between A and B. Consequently, the decision A∪B should

be preferred when there is no constraint on the cardinality

of decisions. For this m2 case, one gets a unique decision

X̂dBI = A ∪B with a better quality 0.776 which seems more

reasonable. We see also that all minimal distance values

obtained with dBI are less (or equal in case m1) to the minimal

values obtained with dJ . In fact, when the mass function is

distributed symmetrically, it is naturally expected that no real

decision can be easily taken (as illustrated for BBA’s m2(·) and

m5(·) in Table I). Here, the decision A ∪B for BBA’s m2(·)
and m5(·) can be interpreted as a no proper decision, in the

sense that A ∪B is the whole universe of discourse, hence we

are merely selecting anything (and discarding nothing). Such

kind of no proper decision may however be very helpful in

some fusion systems because it warns that input information

is not rich enough, and that one needs more information to

take a proper decision (by including more sensors or more

experts reports in the system for instance). For symmetrical

mass function, the decision drawn from the new proposed

decision rule is consistent with what we can reasonably get

because. To make a proper decision we will always need to

introduce some possibly arbitrary additional constraints.

Table II shows the decisions made for same examples when

we force the decision to be a singleton, that is when the

constraint is c(X) ≡ “|X | = 1”. One sees that the decisions

restricted to the set of singletons using dBI(m,mX) or

dJ(m,mX) are the same but the quality indicators are a bit

better when using dBI(m,mX) with respect to dJ (m,mX).
The values of the quality indicators in Table II are different to

those of Table I which is normal because we use the constraint

c(X) in the denominator of the formula (7).

B. Examples with Θ = {A,B,C}
Table III shows the decisions made when there is no

constraint on the cardinality of the decision X̂ , whereas Table

IV shows the results for the same examples when the decisions

made are restricted to singletons. As shown in the tables

all minimal distance values obtained with dBI are less (or

equal) to the minimal values obtained with dJ and the quality

indicator decisions is better when computed with dBI (except

in case m1 of Table III). The decisions results obtained with

dJ are mostly consistent with those obtained with dBI (except

in case m2 and m3 of Table III) where a larger set of decisions

(tie) is obtained using dJ .

If the decisions are restricted to singletons (see Table IV),

then the decision-making based on dBI and on dJ provides

the same results with a better quality of decisions using dBI .
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Table I
EXAMPLES OF SEVERAL BBA’S AND DECISIONS MADE (NO CONSTRAINT CASE).

X ∈ 2
Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)

A 0.9 0.5 0.8 0.1 0.4 0.9 0.1

B 0.1 0.5 0.1 0.1 0.4 0 0

A ∪B 0 0 0.1 0.8 0.2 0.1 0.9

dmin

BI (mi,mX ) 0.1000 0.2887 0.1528 0.0577 0.2309 0.0577 0.0577

q(X̂dBI ) 0.9330 0.7760 0.8939 0.9502 0.8134 0.9622 0.9513

X̂dBI A A ∪B A A ∪ B A ∪ B A A ∪ B

dmin

J (mi,mX ) 0.1000 0.5000 0.1581 0.1000 0.4000 0.0707 0.0707

q(X̂dJ ) 0.9390 0.6667 0.8999 0.9276 0.6409 0.9574 0.9501

X̂dJ A A,B,A ∪ B A A ∪ B A ∪ B A A ∪ B

Table II
EXAMPLES OF SEVERAL BBA’S AND DECISIONS MADE (RESTRICTED TO SINGLETONS).

X ∈ 2
Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)

A 0.9 0.5 0.8 0.1 0.4 0.9 0.1

B 0.1 0.5 0.1 0.1 0.4 0 0

A ∪ B 0 0 0.1 0.8 0.2 0.1 0.9

dmin

BI (mi,mX) 0.1000 0.5000 0.1528 0.5508 0.5033 0.0577 0.5196

q(X̂dBI ) 0.9000 0.5000 0.8477 0.5000 0.5000 0.9427 0.5393

X̂dBI A A,B A A,B A,B A A

dmin

J (mi,mX) 0.1000 0.5000 0.1581 0.6403 0.5099 0.0707 0.6364

q(X̂dJ ) 0.9000 0.5000 0.8434 0.5000 0.5000 0.9308 0.5276

X̂dJ A A,B A A,B A,B A A

Table III
EXAMPLES OF SEVERAL BBA’S AND DECISIONS MADE (NO CONSTRAINT CASE).

X ∈ 2
Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·) m8(·)

A 0.9 0.5 1/3 0.5 0 0 0 0.2

B 0.1 0.5 1/3 0 0 0 0 0.1

A ∪B 0 0 0 0.5 0.5 2/3 1/3 0.05

C 0 0 1/3 0 0 0 0 0.05

A ∪ C 0 0 0 0 0 0 1/3 0.1

B ∪ C 0 0 0 0 0.5 1/3 1/3 0.2

A ∪ B ∪ C 0 0 0 0 0 0 0 0.3

dmin

BI (mi,mX ) 0.1000 0.2887 0.4082 0.2887 0.2887 0.1925 0.2357 0.2227

q(X̂dBI ) 0.9776 0.9242 0.8787 0.9271 0.9120 0.9421 0.9241 0.9280

X̂dBI A A ∪ B 2
Θ \ {∅, A,B,C} A, A ∪ B,

A ∪ B A ∪ B ∪ C A ∪ B ∪ C
A ∪ B B ∪ C,Θ

dmin

J (mi,mX ) 0.1000 0.5000 0.5774 0.3536 0.4082 0.2722 0.3333 0.3149

q(X̂dJ ) 0.9798 0.8870 0.8571 0.9225 0.8989 0.9337 0.9111 0.9152

X̂dJ A
A,B,

2
Θ \ {∅} A, A ∪ B,

A ∪ B A ∪ B ∪ C A ∪ B ∪ C
A ∪ B A ∪ B B ∪ C,Θ

Table IV
EXAMPLES OF SEVERAL BBA’S AND DECISIONS MADE (RESTRICTED TO SINGLETONS).

X ∈ 2
Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·) m8(·)

A 0.9 0.5 1/3 0.5 0 0 0 0.2

B 0.1 0.5 1/3 0 0 0 0 0.1

A ∪ B 0 0 0 0.5 0.5 2/3 1/3 0.05

C 0 0 1/3 0 0 0 0 0.05

A ∪ C 0 0 0 0 0 0 1/3 0.1

B ∪ C 0 0 0 0 0.5 1/3 1/3 0.2

A ∪B ∪ C 0 0 0 0 0 0 0 0.3

dmin

BI (mi,mX) 0.1000 0.5000 0.5774 0.2887 0.5000 0.5092 0.6236 0.5770

q(X̂dBI ) 0.9488 0.7321 0.6667 0.8531 0.7388 0.7364 0.6667 0.6855

X̂dBI A A,B A,B,C A B B A,B,C A

dmin

J (mi,mX) 0.1000 0.5000 0.5774 0.3536 0.5774 0.5932 0.6667 0.6117

q(X̂dJ ) 0.9488 0.7321 0.6667 0.8300 0.7257 0.7229 0.6667 0.6836

X̂dJ A A,B A,B,C A B B A,B,C A
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V. CONCLUSIONS

We have presented a new method for decision-making with

belief functions which truly exploits the belief interval value

of each focal element of a BBA. It is easy to implement and

can be applied with any strict distance metric between two

BBAs. We have considered and compared the well-known

Jousselme’s distance and the recent belief interval distance.

This method is general because the decision can be made not

only on singletons, but also on any other compound focal

elements (if needed and allowed). It also provides a quality

indicator of the decision made.
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Abstract—In this paper we show how the Belief-Function
based Technique for Order Preference by Similarity to Ideal
Solution (BF-TOPSIS) approach can be used for solving non-
classical multi-criteria decision-making (MCDM) problems. We
give simple examples to illustrate our presentation.

Keywords: multi-criteria decision-making, belief functions,

TOPSIS, BF-TOPSIS.

I. INTRODUCTION

Classical Multi-Criteria Decision-Making (MCDM) consists

in choosing an alternative among a known set of alternatives

based on their quantitative evaluations (numerical scores)

obtained with respect to different criteria. A typical example

could be the selection of a car to buy among a given set of

cars based on different criteria (cost, engine robustness, fuel

economy, CO2 emission, etc). The classical MCDM problem,

although easily formulated, have no solution at all in general

due to the fact that no alternative exists that optimizes all cri-

teria jointly. Thus MCDM problems are generally not solved,

but a decision is found by means of ranking, compromises

etc. The difficulty of MCDM problems is also because the

scores are usually expressed in different (physical) units with

different scales which generally necessitates an ad-hoc choice

of a normalization step that may lead to rank reversal.

Many MCDM methods have been developed, like AHP1

[1] and its extensions [2]–[6], ELECTRE2 [7], TOPSIS3 [8],

[9] which are widely used in applications. They have already

been extended in the belief function framework in our previous

works [2], [10], [11] to take into account epistemic uncertainty,

missing scores’ values as well as conflicting information

between sources4. In this work, we show how the BF-TOPSIS

methods proposed recently in [11] (with application in [12]),

can be directly used for solving also non-classical multicriteria

decision-making problems where not only alternatives are

scored (with possibly missing values), but also any element

of the power set of alternatives.

1Analytic hierarchy process.
2Elimination and choice translating reality.
3Technique for order preference by similarity to ideal solution.
4In the MCDM context, a source of information consists in the list of scores

values of alternatives related to a given criterion.

In the sequel, we assume the reader to be familiar with the

theory of belief functions [13] and its definitions and notations,

mainly the basic belief assignment (BBA) m(·), the belief

function Bel(·) and the plausibility function Pl(·) defined with

respect to a discrete finite frame of discernment (FoD).

II. NON-CLASSICAL MCDM PROBLEM FORMULATION

We consider a given set of alternatives denoted by

A , {A1, A2, . . . , AM} (M > 2) representing the FoD of our

problem under consideration, and we denote by 2A the power

set5 of A. In our approach, we work with Shafer’s classical

model of FoD and we do not allow the empty set to be a

focal element6 because in our opinion it does not make sense

to compare an alternative with respect to the empty set from

the decision-making standpoint. The cardinality of the (non

empty) elements of the power set varies from 1 to 2M − 1.

We also consider a given set of criteria C , {C1, C2, . . . , CN}
(N ≥ 1), where each criterion Cj is characterized by a relative

importance weighting factor wj ∈ [0, 1], j = 1, . . . , N such

that
∑N

j=1
wj = 1. The set of normalized weighting factors

is denoted by w = {w1, w2, . . . , wN}. The score7 value is

a number Sij = Sj(Xi) related to the evaluation of an

element Xi ∈ 2A \ {∅} from a given criterion Cj . If the

score value Sj(Xi) is not available (or missing), we denote

it by the “varnothing” symbol ∅. The non-classical MCDM

problem can be formulated as follows in the worst case

(i.e. when scores apply to all elements of 2A): given the

(2M − 1)×N score matrix S = [Sj(Xi)] whose elements

take either a numerical value or a ∅ value (if the value is not

available) and knowing the set w of the relative importance

weights of criteria, how to rank the elements of 2A \ {∅} to

make the final decision?

5The power set 2A is the set of all subsets of A, empty set ∅ and A
included.

6as proposed in Smets Transferable Belief Model for instance.
7Depending on the context, the score can be interpreted either as a

cost/expense or as a reward/benefit. In the sequel, by convention and without
loss of generality, we will interpret the score as a reward having monotonically
increasing preference. Thus, the best alternative with respect to a given
criterion will be the one providing the highest reward/benefit.

Originally published as: J. Dezert, D. Han, J.-M. Tacnet, S. Carladous, H. Yin, The BF-TOPSIS Approach 
for Solving Non-Classical MCDM Problems, in Proc. of Belief 2016 Int. Conf., Prague, CZ, September 
21–23, 2016, and reprinted with permission.
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Example: Let us consider the ranking of five students A1,

A2, A3, A4, and A5 based on two criteria C1 and C2. The

criterion C1 is their long jump performance (in meters), and

the criteria C2 is a realization of a small project to collect funds

(in euros) to help a bigger nature protection project. Highest

scores values mean better results in this particular context. Let

us assume that students were allowed to realize their project

in joint collaboration (no more than three students are allowed

in a group), or alone. At the end term of the project, suppose

that one has the two following evaluations (scoring)

SC1
=









C1

A1 3.7m
A3 3.6m
A4 3.8m
A5 3.7m









and SC2
=





C2

A5 640e
A1 ∪ A2 600e
A3 ∪ A4 650e





(1)

The scores’ values listed in SC1
indicate in fact that the

student A2 has not been able to pass the long jump test for

some reason (medical, familial or whatever), so his score is

missing. The scores’ values listed in SC2
indicate that A5

did choose to realize his project alone with a pretty good

performance, and the project realized by the collaboration

of students A3 with A4 has obtained the best performance

(the highest amount of collected funds). In this very simple

example, one sees that the score evaluation can be done not

only on single alternatives (as for criterion C1) but also on a

subset of elements of 2A (as for criterion C2). All the elements

having a score are called scoring focal elements. In general,

these focal elements can differ from one criterion Cj to another

criterion Ck for k 6= j and the score matrix cannot be built

by a simple (horizontal) stacking of scoring lists. In general,

one must identify all focal elements of each scoring list to

determine the minimum number of rows necessary to define

the scoring matrix. As mentioned, we use the symbol ∅ to

identify all values that are missing in the scoring matrix. Note

that we do not set missing values to zero number (or any

other chosen number) to make explicit distinction between the

known precise numerical value zero and a missing value. In

this example, the scoring matrix will be defined as

S =

















C1 C2

A1 3.7m ∅
A3 3.6m ∅
A4 3.8m ∅
A5 3.7m 640e
A1 ∪ A2 ∅ 600e
A3 ∪ A4 ∅ 650e

















(2)

The question we want to address is how to rank the

students based on such a kind of scoring information including

disjunctions of alternatives and missing values, taking into

account the relative importance weight of each criterion. Is it

possible to solve such type of non-classical MCDM problems,

and how?

III. THE BF-TOPSIS APPROACH

The BF-TOPSIS approach has been proposed recently in

[11] in a classical MCDM context where the focal elements

of the scoring function Sj(·) (j = 1, . . . , N ) are only the

singletons Ai (i = 1, . . . ,M ) of the frame of discernment

A. BF-TOPSIS is initially based on belief functions for

MCDM support which exploits only the M ×N score matrix

S = [Sj(Ai)] and the relative importance weighting factors of

criteria. The first main step of BF-TOPSIS is the construction

of an M×N BBA matrix M = [mij(·)] from the score matrix

S, and then the combination of components of M to make a

final decision thanks to the Euclidean belief interval distance,

denoted by dBI , defined in [14], [15].

In fact, the BF-TOPSIS approach can also be directly

applied to solve the non-classical MCDM problems because

the belief interval [Belij(Xi), P lij(Xi)] of each proposition

(i.e. each focal element which is not necessarily a singleton)

Xi based on a criteria Cj can be established in a consistent

manner8 from the score matrix S = [Sj(Xi)] as follows

[Belij(Xi);Plij(Xi)] , [
Supj(Xi)

Xj
max

; 1− Infj(Xi)

Xj
min

] (3)

where the Supj(Xi) and Infj(Xi) are computed from the

score matrix S by

Supj(Xi) ,
∑

Y ∈2A|Sj(Y )≤Sj(Xi)

|Sj(Xi)− Sj(Y )| (4)

Infj(Xi) , −
∑

Y ∈2A|Sj(Y )≥Sj(Xi)

|Sj(Xi)− Sj(Y )| (5)

Supj(Xi) is called the “positive support” of Xi because

it measures how much Xi is better than other propositions

according to criterion Cj , and Infj(Xi) is called the “negative

support” of Xi because it measures how much Xi is worse

than other propositions according to criterion Cj . The length

of interval [0, Supj(Xi)] measures the support in favor of Xi

as being the best proposition with respect to all other ones,

and the length of [Infj(Xi), 0] measures the support against

Xi based on the criterion Cj .

The denominators involved in (3), are defined by Xj
max ,

maxi Supj(Xi) and Xj
min

, mini Infj(Xi), and they

are supposed different from zero9. From the belief interval

[Belij(Xi);Plij(Xi)], we obtain the BBA mij(·) defined by

mij(Xi) , Belij(Xi) (6)

mij(X̄i) , Belij(X̄i) = 1− Plij(Xi) (7)

mij(Xi ∪ X̄i) , Plij(Xi)−Belij(Xi) (8)

If a numerical value Sj(Xi) is missing in the score matrix S

(it is equal to ∅), one chooses mij(·) equals (0, 0, 1), i.e., one

takes a vacuous belief assignment. In [11], we have proposed

four methods (called BF-TOPSIS1, . . . , BFTOPSIS4) to make

a decision from the BBA matrix M = [mij(·)]. Due to space

8Indeed, Belij(Xi) and Belij(X̄i) (where X̄i is the complement of Xi

in the FoD A) belong to [0, 1]. They are consistent because the equality
P lij(Xi) = 1− Belij(X̄i) holds. The proof is similar to the one in [11].
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restriction constraint, we just recall the principle of the BF-

TOPSIS1 method because it is the simplest one. Applications

of BFTOPSIS2–BFTOPSIS4 methods to non-classical MCDM

problems is also possible without difficulty. The proposed

transformation of score values to BBAs and basis of BF-

TOPSIS method are theoretically justified in [11].

Before presenting succinctly the BF-TOPSIS1 method, we

need to recall the definition of Belief Interval-based Euclidean

distances dBI(m1,m2) introduced in [14] between two BBAs

m1(·) and m2(·) defined on a same FoD Θ. Mathematically,

dBI(m1,m2) is a true distance defined by [14]

dBI(m1,m2) ,

√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)) (9)

where Nc = 1/2|Θ|−1 is a normalization factor to

have dBI(m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X))
is the Wassertein distance [16] between belief intervals

BI1(X) , [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) ,

[Bel2(X), P l2(X)] = [a2, b2]. More specifically,

dW ([a1, b1], [a2, b2]) ,
(

[

a1 + b1
2

− a2 + b2
2

]2

+
1

3

[

b1 − a1
2

− b2 − a2
2

]2
)1/2

(10)

Principle of BF-TOPSIS1: From the BBA matrix M and for

each proposition (focal element) Xi, one computes the Belief

Interval-based Euclidean distances dBI(mij ,m
best
ij ) defined in

(9) between the BBA mij(·) and the ideal best BBA defined

by mbest
ij (Xi) = 1, and the distance dBI(mij ,m

worst
ij ) between

mij(·) and the ideal worst BBA defined by mworst
ij (X̄i) = 1.

Then, one computes the weighted average of

dBI(mij ,m
best
ij ) values with relative importance weighting

factor wj of criteria Cj . Similarly, one computes the weighted

average of dBI(mij ,m
worst
ij ) values. More specifically, one

computes

dbest(Xi) ,

N
∑

j=1

wj · dBI(mij ,m
best
ij ) (11)

dworst(Xi) ,

N
∑

j=1

wj · dBI(mij ,m
worst
ij ) (12)

The relative closeness of the proposition Xi with respect to

ideal best solution Xbest defined by

C(Xi, X
best) ,

dworst(Xi)

dworst(Xi) + dbest(Xi)
(13)

is used to make the preference ordering according to the

descending order of C(Xi, X
best) ∈ [0, 1], where a larger

C(Xi, X
best) value means a better proposition Xi.

Note that once the BBA matrix is computed from Eqs.

(6)–(8), we can also apply (if we prefer) BF-TOPSIS2, BF-

TOPSIS3 or BFTOPSIS4 methods to make the final decision.

Their presentation is out of the scope of this paper.

IV. BF-TOPSIS APPLIED TO A NON-CLASSICAL MCDM

We present the results of the BF-TOPSIS1 method for two

simple non-classical MCDM problems.

Example 1: This example is given by the score matrix of Eq.
(2). We consider the relative importance weights w1 = 1/3
and w2 = 2/3 of criteria C1 and C2 respectively. Applying
BBA construction formulas (6)–(8) for this example9, we get
the BBA matrix M = [(mij(Xi),mij(X̄i),mij(Xi ∪ X̄i))]
with

M =















C1 C2

A1 (0.25, 0.25, 0.50) (0, 0, 1)
A3 (0, 1, 0) (0, 0, 1)
A4 (1, 0, 0) (0, 0, 1)
A5 (0.25, 0.25, 0.50) (0.6667, 0.1111, 0.2222)
A1 ∪ A2 (0, 0, 1) (0, 1, 0)
A3 ∪ A4 (0, 0, 1) (1, 0, 0)















(14)

From this matrix M, we compute the distances dBI(., .) with

respect to ideal best and worst solutions shown in Table I.

Table II provides dbest(Xi), d
worst(Xi) and C(Xi, X

best) values

computed from the formulas (11)–(13). Based on C(Xi, X
best)

values sorted in descending order, we finally get the preference

order (A3 ∪ A4) ≻ A5 ≻ A4 ≻ A1 ≻ (A1 ∪ A2) ≻ A3.

If we restrict the preference order to only singletons, we

will get A5 ≻ A4 ≻ A1 ≻ A3 (i.e. student A5 is the

best one). Note that student A2 alone cannot be ranked with

respect to the other students, which is normal based on the

non-specific input (scoring) information one has for him. Of

course ad-hoc ranking solutions to rank all five students can

always be developed10, but without necessarily preserving the

compatibility with the rank obtained previously.

Example 2: In mountains, protecting housing areas against

torrential floods is based on a lot of alternatives at the water-

shed scale such as check dams’ series, sediment traps, dikes,

and individual protections [12]. Moreover, alternatives can be

the maintenance of existing structures or the construction of

new ones to increase the protection level. Final propositions

generally involve several of previous individual alternatives.

We propose here a simplified case of application. Within a

given watershed, a check-dams’ series already exists. Older

than one century years old, its maintenance (alternative A1) is

questioned. Some experts propose to abandon it and to build

a sediment trap upstream the alluvial fan (alternative A2) or

to limit damage on buildings through individual protections

(alternative A3). The Decision-Maker (DM), here the local

municipality, must decide the best proposition taking into ac-

count several criteria: the investment cost (C1 in e, in negative

values), the risk reduction in 50 years between the current

situation and the expected situation after each proposition

implementation (C2 in e), the impact on environment (C3

is a grade from 1 to 10), and the land-use areas needed in

privates (C4 in m2, in negative values). For each criterion, the

higher is the score, the better is the proposition. The DM gives

9When a score value is missing for some proposition Xi (i.e. if
Sj(Xi) = ∅), then we take the vacuous BBA mij(Xi ∪ X̄i) = 1.

10for instance by normalizing the C(Xi, X
best) values (the most right

column of Table II) and interpret it as a BBA, and then apply a decision
method described in [15].
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Focal elem. Xi dBI(mi1,m
best) dBI(mi1,m

worst) dBI(mi2,m
best) dBI(mi2,m

worst)

A1 0.6016 0.2652 0.7906 0.2041
A3 0.8416 0 0.7906 0.2041
A4 0 0.8416 0.7906 0.2041
A5 0.6016 0.2652 0.2674 0.5791

A1 ∪A2 0.5401 0.3536 0.6770 0
A3 ∪A4 0.5401 0.3536 0 0.6770

Table I
DISTANCES TO IDEAL BEST AND WORST SOLUTIONS.

Focal elem. Xi dbest(Xi) dworst(Xi) C(Xi, X
best) Ranking

A1 0.7276 0.2245 0.2358 4
A3 0.8076 0.1361 0.1442 6
A4 0.5270 0.4166 0.4415 3
A5 0.3788 0.4745 0.5561 2

A1 ∪A2 0.6314 0.1179 0.1573 5
A3 ∪A4 0.1800 0.5692 0.7597 1

Table II
AVERAGE DISTANCES AND RELATIVE CLOSENESS INDICATORS.

the same importance weight to C1 and C2 (w1 = w2 = 0.33),

but they are more important than C3 (w3 = 0.20) which is

more important than C4 (w4 = 0.14). The score matrix is

given in Eq. (15). In this case, the problem is not to have no

knowledge on some scores but is that they are not cumulative

in the same way for each criterion. For C1 and C4, the score

of the disjunction of two alternatives is the sum of individual

scores whereas it is not the case for C2 and C3.

S =



















C1 C2 C3 C4

A1 −150000 100000 10 0

A2 −500000 200000 2 −20000

A3 −550000 250000 10 −5000

A1 ∪A2 −650000 230000 2 −20000

A1 ∪A3 −700000 250000 10 −5000

A2 ∪A3 −1050000 250000 2 −25000

A1 ∪A2 ∪ A3 −1200000 250000 2 −25000



















(15)

The BBA matrix based on S using (3)-(8) (rounded to 2

decimal points) is

M =



















C1 C2 C3 C4

(1, 0, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0)

(0.44, 0.10, 0.46) (0.45, 0.28, 0.27) (0, 1, 0) (0.10, 0.67, 0.23)

(0.37, 0.13, 0.50) (1, 0, 0) (1, 0, 0) (0.70, 0.07, 0.23)

(0.27, 0.21, 0.52) (0.73, 0.10, 0.17) (0, 1, 0) (0.10, 0.67, 0.23)

(0.23, 0.26, 0.51) (1, 0, 0) (1, 0, 0) (0.70, 0.07, 0.23)

(0.04, 0.75, 0.21) (1, 0, 0) (0, 1, 0) (0, 1, 0)

(0, 1, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0)



















The weighted distances to the ideal best and worst solutions

and the relative closeness indicator are listed in Table III.

Based on relative closeness indicator sorted in descending

order, the final preference order is (A1 ∪ A3) ≻ A3 ≻ A1 ≻
(A1 ∪A2) ≻ (A2 ∪A3) ≻ A2 ≻ (A1 ∪A2 ∪A3): maintaining

the existing check dams’ series and implementing individual

protections is the best option. If the preferences are restricted

to single alternatives, one will get as final preference order

A3 ≻ A1 ≻ A2, i.e. option A3 (only individual protections)

should be preferred by the DM.

V. CONCLUSIONS

In this paper, we have shown how the BF-TOPSIS approach

can be exploited to solve non-classical MCDM problems.

This method is relatively easy to use. It does not require the

normalization of data and offers a consistent construction of

basic belief assignments from the available scoring values. It

can also deal with missing scoring values and different criteria

weights as well. In this paper only the BF-TOPSIS1 method

has been presented, but other more sophisticate BF-TOPSIS

methods could be also used to solve non-classical problems,

but at the price of a higher complexity. The application of

this new BF-TOPSIS approach to solve non-classical MCDM

problems for natural risk prevention is currently under evalu-

ation, and it will be reported in a forthcoming publication.
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Abstract—In this short note, we present two classes of examples
showing that Dempster’s rule of combination is insensitive to
the conflict level between the sources of evidence. This behavior
is intuitively not satisfying because the amount of dissonance
between sources should have an impact in the fusion result
when the basic belief assignments (BBA) to combine are truly
informative (not vacuous).

Keywords: Dempster’s rule, Information fusion, belief func-

tions.

I. INTRODUCTION

In this short note, we discuss the behavior of Dempster’s

rule of combination used in Dempster-Shafer Theory (DST)

[1], [2] to combine basic belief assignments provided by

distinct sources of evidences. After a brief introduction of

belief functions in Section II and a recall of Dempster’s rule

of combination in section III, we provide in section IV two

classes of examples showing the counter-intuitive behavior of

Dempster’s rule. These new classes of examples generalize

examples presented in [3]. The conclusion is made in section

V.

II. BELIEF FUNCTIONS IN SHORT

Belief functions have been introduced by Shafer in [1] to

model epistemic uncertainty. We assume that the answer1 of

the problem under concern belongs to a known (or given) finite

discrete frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn},

with n > 1, and where all elements of Θ are exclusive2.

The set of all subsets of Θ (including empty set ∅ and Θ) is

the power-set of Θ denoted by 2Θ. A basic belief assignment

(BBA) associated with a given source of evidence is defined

[1] as the mapping m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The quantity m(A) is called the mass of

A committed by the source of evidence. Belief and plausibility

functions are respectively defined by

Bel(A) =
∑

B⊆A

B∈2
Θ

m(B), and P l(A) = 1− Bel(Ā). (1)

1i.e. the solution, or the decision to take.
2This is so-called Shafer’s model of FoD [2].

If m(A) > 0, A is called a focal element of m(·). The set of

focal elements of a BBA m is denoted F(m). When all focal

elements are singletons then m(·) is called a Bayesian BBA

[1] and its corresponding Bel(·) function is homogeneous to a

(subjective) probability measure. The vacuous BBA, or VBBA

for short, representing a totally ignorant source is defined as3

m(Θ) = 1.

Shafer [1] proposed to combine s ≥ 2 distinct sources of

evidence represented by BBAs m1(.), . . . ,ms(.) over the same

FoD with Dempster’s rule. The justification and behavior of

Dempster’s rule have been disputed over the years from many

counter-examples involving high or low conflicting sources

(from both theoretical and practical standpoints) as reported in

[4]–[7]. After a brief recall of Dempster’s rule of combination

in section II, we present new interesting examples showing the

counter-intuitive behavior of this rule in section IV.

III. DEMPSTER’S RULE OF COMBINATION

Dempster’s rule of combination can be seen as a normalized

version of the conjunctive rule. So, let’s recall at first what is

the conjunctive rule (CR) of combination. Mathematically, CR

of s ≥ 2 BBAs mi(·), i = 1, . . . , s defined with respect to

same FoD Θ is defined for any X ∈ 2Θ by

mCR
12...s(X) ,

∑

X1,...,Xs∈2
Θ

X1∩X2∩...∩Xs=X

s
∏

i=1

mi(Xi). (2)

The conjunction (intersection) of two (or more) sources of

evidence only keeps the items of information asserted by both

(all) sources. This rule has been justified by Dempster [8] in

statistical terms on the basis of the independence of the sources

which provide mi with F(mi), i = 1, . . . , s. The set of focal

elements of mCR
12...s(·) is given by

F(mCR
12...s) = {X1 ∩ . . . ∩Xs|Xi ∈ F(mi), i = 1, . . . , s}.

The term mCR
12...s(∅) reflects the amount of dissonance

between the sources [9] (also called the level or degree of

conflict between the sources of evidence). Its management

3The complete ignorance is denoted Θ in Shafer’s book [1].
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gives rise to many debates on the choice of possible rules

to combine distinct and reliable sources of evidence. In DST,

Shafer proposed Dempster’s rule4 in which the positive value

mCR
12...s(∅) (if any) committed to the empty set (impossible

event) is removed through a simple normalization technique.

Mathematically Dempster’s rule of combination of s ≥ 2 basic

belief assignments is defined by mDS
12...s(∅) = 0, and for any

X 6= ∅ ∈ 2Θ

mDS
12...s(X) = [m1 ⊕ . . .⊕ms](X) ,

mCR
12...s(X)

1−mCR
12...s(∅)

. (3)

Dempster’s rule is commutative and associative and preserves

the neutrality of vacuous BBA in the fusion process, which

makes Dempster’s rule an appealing method to fuse BBAs

from implementation standpoint, even if the validity of its

result has been highly disputed since its first criticism made

by Zadeh in [10] over last decades in case of high conflicting

situations, and more recently in [4]–[7] for the case of low

conflicting situations.

In the next section we present two classes of examples

where Dempster’s rule is insensitive to the conflict level.

IV. NEW CLASSES OF EXAMPLES

A. First class of examples

Let’s consider a finite frame of discernment Θ and two

BBAs m1(·) and m2(·) with focal elements in 2Θ given by

F(m1) = {A1, A2, . . . , An},

F(m2) = {A,B1, . . . , Bm},

where Ai ⊆ A for 1 ≤ i ≤ n, and Ai ∩Bj = ∅ for 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

The mass of each focal element is denoted by its corre-

sponding lowercase letter, that is m1(Ai) = ai for 1 ≤ i ≤ n,

and m2(A) = a and m2(Bj) = bj for 1 ≤ j ≤ m. Because

m1(·) and m2(·) are normalized BBAs, one has
∑n

i=1
ai = 1

and a+
∑m

j=1
bj = 1.

In applying the conjunctive rule of combination of m1(·)
with m2(·), we get

mCR
12 (Ai) = a · ai for 1 ≤ i ≤ n,

and

mCR
12 (∅) =

n
∑

i=1

m
∑

j=1

aibj.

Obviously mCR
12 (∅) + ∑n

i=1
mCR

12 (Ai) = 1, which means

that the following equality holds

mCR
12 (∅) = 1−

n
∑

i=1

a · ai = 1− a

n
∑

i=1

ai = 1− a, (4)

because
∑n

i=1
ai = 1.

4This rule has been introduced by Dempster in [8]. It has been denoted
and popularized with the operator symbol ⊕ by Shafer in [1].

To get Dempster’s rule result, we need to normalize the

BBA mCR
12 (·) by dividing the masses mCR

12 (Ai) by 1 −
mCR

12 (∅), or equivalently just by dividing mCR
12 (Ai) by the

value a because from (4) one always has 1 − mCR
12 (∅) =

1− (1− a) = a.

After the normalization by division of masses mCR
12 (Ai) by

a, one gets as Dempster-Shafer fusion result

mDS
12 (Ai) = [m1 ⊕m2](Ai) = m1(Ai) = ai. (5)

Therefore, it is clear in such class of examples that the BBA

m2(.) has absolutely no impact in Dempster-Shafer fusion

result even if m2(·) is truly informative (not vacuous) and

conflicting with the BBA m1(·).
The conflict level mCR

12 (∅) =
∑n

i=1

∑m

j=1
aibj can be as

high (close to one) or as low (close to zero) as we want,

Dempster’s rule provides in this class of examples always

the same result mDS
12 (·) = m1(·), which is a counter-intuitive

behavior not very recommended for fusion applications.

B. Second class of examples

This second class of example is a bit more general than the

previous one. We consider a finite frame of discernment Θ
and two BBAs m1(·) and m2(·) with focal elements in 2Θ

given by

F(m1) = {A1, A2, . . . , An, B},

F(m2) = {B,C1, . . . , Cm},

such that

• Ai ⊆ B for 1 ≤ i ≤ n,

• B ∩ Cj = ∅ for 1 ≤ j ≤ m, and

• Ai ∩ Cj = ∅ for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The mass of each focal element is denoted by its cor-

responding lowercase letter for all elements Ai, that is

m1(Ai) = ai for 1 ≤ i ≤ n and by m1(B) = b1. Similarly

m2(Cj) = cj for 1 ≤ j ≤ m and m2(B) = b2. Because m1(·)
and m2(·) are normalized BBAs, one has b1 +

∑n

i=1
ai = 1

and b2 +
∑m

j=1
cj = 1.

In applying the conjunctive rule of combination of m1(·)
with m2(·), we get

mCR
12 (Ai) = b2ai for 1 ≤ i ≤ n

mCR
12 (B) = b1b2

and

mCR
12 (∅) =

n
∑

i=1

m
∑

j=1

aicj +

m
∑

j=1

b1cj .
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Obviously mCR
12 (∅) + ∑n

i=1
mCR

12 (Ai) + mCR
12 (B) = 1,

which means that the following equality holds

mCR
12 (∅) = 1−

n
∑

i=1

mCR
12 (Ai)−mCR

12 (B)

= 1−
n
∑

i=1

b2 · ai − b1b2

= 1− b2(b1 +
n
∑

i=1

ai)

= 1− b2,

because b1 +
∑n

i=1
ai = 1.

To get Dempster’s rule result, we need to normalize the

BBA mCR
12 (·) by dividing the masses mCR

12 (Ai) and mCR
12 (B)

by 1−mCR
12 (∅) = 1− (1− b2) = b2.

After the normalization by division of masses mCR
12 (Ai)

and mCR
12 (B) by b2 6= 0, one gets the Dempster-Shafer fusion

result for i = 1, . . . , n

mDS
12 (Ai) = [m1 ⊕m2](Ai) = m1(Ai) = ai, (6)

and

mDS
12 (B) = [m1 ⊕m2](B) = m1(B) = b1. (7)

Therefore, it is clear in such second class of examples that

the BBA m2(.) has also absolutely no impact in Dempster-

Shafer fusion result even if m2(·) is truly informative (not

vacuous) and conflicting with the BBA m1(·).
The conflict level mCR

12 (∅) =
∑n

i=1

∑m

j=1
aicj +

∑m

j=1
b1cj = 1 − b2 can be as high (close to one) or as

low (close to zero) as we want. Dempster’s rule provides

in this second class of examples always the same result

mDS
12 (·) = m1(·), which is a counter-intuitive behavior not

recommended for fusion applications.

V. CONCLUSIONS

We have given two classes of counter-examples to Demp-

ster’s Rule, where this rule is insensitive to the fusion, in the

sense that combining two different conflicting sources of in-

formation characterized by the basic belief assignments m1(·)
and m2(·), the fusion result is equal to m1(·). Therefore m2(·)
has no impact in the fusion, although m2(·) is different from

the uninformative source characterized by the vacuous basic

belief assignment m(Θ) = 1. Numerical counter-examples to

Dempster’s Rule can also be found in [11].
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Determination of Basic Belief Assignment
Using Fuzzy Numbers

Abstract—Dempster-Shafer evidence theory (DST) is a theo-
retical framework for uncertainty modeling and reasoning. The
determination of basic belief assignment (BBA) is crucial in
DST, however, there is no general theoretical method for BBA
determination. In this paper, a method of generating BBA using
fuzzy numbers is proposed. First, the training data are modeled
as fuzzy numbers. Then, the dissimilarities between each test
sample and the training data are measured by the distance
between fuzzy numbers. In the final, the BBAs are generated from
the normalized dissimilarities. The effectiveness of this method
is demonstrated by an application of classification problem.
Experimental results show that the proposed method is robust
to outliers.

Keywords—Evidence theory, basic belief assignment (BBA),
fuzzy numbers, outliers.

I. INTRODUCTION

The theory of belief functions also called Dempster-Shafer
evidence theory (DST) [1], [2], is a theoretical framework
for uncertainty modeling and reasoning. The expression of
uncertainty, i.e., the determination of basic belief assignment
(BBA) is one of the most crucial problems to deal with. BBA
is a kind of random set in nature and its determination is
actually the problem of modeling the distribution of random
set, which is still unsolved in mathematics [3]. Therefore, the
determination of BBA is a challenging problem in DST and
has aroused widespread concerns.

One category for generating BBA is the application-based
empirical approach. Shafer [1] generates BBA based on statis-
tic evidence. Selzer [12] generates BBA according to the class
number and the neighborhood of the target for automatic target
classification. Bi [13] proposed focal element triplet for text
categorization. Valente [4] proposed several BBA determina-
tion methods for speech recognition based on the membership.
Zhang [5] generates BBA based on evidential Markov random
field for image segmentation. Salzenstein [14] proposed an
iterative estimation method to generate BBA based on the
Gaussian model for multisensor image segmentation. Dezert
[6] generates BBA to describe the uncertainty of threshold
choosing in edge detection. Han [7] generates BBA based on
the intervals of the expected payoffs for different alternatives
to deal with multi-criteria decision making problems.

The another category for generating BBA is the application-
free approach. Boudraa [8] proposed a method based on fuzzy
membership functions. Deng [9] generates BBA based on the
similarity measure described by the radius of gyration. Han
[10] proposed a method based on uncertain optimization. Kang
[11] proposed a method based on interval numbers.

In Kang’s method [11], the training data are modeled as
interval numbers determined by their lower and upper bound
values. Since the interval number is a special case of the fuzzy
number and only keeps minimum and maximum values, other
important information, such as mean value and median, are
lost when modeling the data. To deal with this, other types
of fuzzy numbers are used to model the training data in this
paper, i.e., the mean value and median are also kept to describe
the training data. Then the BBAs are generated from the
dissimilarities between the test sample and the training data
using the distance between fuzzy numbers. Compared with
the distance between interval numbers in Kang’s method, the
distance between fuzzy numbers is more robust when there
exist outliers in training data. To verify the effectiveness of
the proposed BBA determination method, we consider its ap-
plication on the classification problem. The experiment results
show that the proposed method can achieve high classification
accuracies.

II. BASIS OF EVIDENCE THEORY

Dempster-Shafer evidence theory (DST) [1], [2] is a theo-
retical framework for uncertainty modeling and reasoning. In
DST, the frame of discernment (FOD) Θ contains l mutually
exclusive and exhaustive elements: Θ = {θ1, θ2, . . . , θl}. The
power set of Θ (the set of all subsets of Θ) is denoted by
2Θ. The basic belief assignment (BBA, also called a mass
function) m is defined from 2Θ to [0, 1] satisfying∑

A⊆Θ
m(A) = 1 , m(∅) = 0 (1)

m(A) represents the evidence support to the proposition A. If
m(A) > 0, A is called a focal element.

The plausibility function (Pl) and belief function (Bel) are
defined respectively as:

Pl(A) =
∑

A∩B ̸=∅
m(B) (2)

Originally published as: Z. Zhang, D. Han, J. Dezert, Y. Yang, Determination of Basic Belief Assignment 
Using Fuzzy Numbers, in Proc. of 20th Int. Conf. on Information Fusion (Fusion 2017), Xi’an, China, 
July 10–13, 2017, and reprinted with permission.
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Bel(A) =
∑

B⊆A
m(B) (3)

Dempster’s rule of combination [1], used for combining two
distinct sources of evidence in the DST framework, is defined
as

m1⊕m2(A) =

{
0, A = ∅

1
1−K

∑
B∩C=A

m1(B)m2(C), A ̸= ∅ (4)

where K =
∑

B∩C=∅ m1(B)m2(C) represents the total
conflict or contradictory mass assignments.

For a probabilistic decision-making based on the BBA,
Smets defined the pignistic probability transformation [15] to
transform a BBA into a probability measure BetP :

BetP (θi)
∆
=

∑
θi∈A

m(A)

|A|
∀θi ∈ Θ (5)

where |A| denotes the cardinality of A. The final decision is
often made by choosing the element in FOD which has the
highest BetP value.

III. THE DETERMINATION OF BBA BASED ON INTERVAL
NUMBERS

In DST, the expression of uncertainty is the process of
generating BBA. Therefore, the determination of BBA is the
first step and crucial in the applications of DST. However, BBA
is a kind of random set and its determination is actually the
problem of modeling the distribution of random set, which is
still unsolved in mathematics [3]. Kang [11] proposed a BBA
determination method based on interval numbers (IN). The
basis of interval numbers is briefly introduced first.

A. Basis of interval numbers

An interval number ã in R is a set of real numbers that lie
between two real numbers, i.e., ã = [a1, a2] = {x|a1 ≤ x ≤
a2}, a1, a2 ∈ R and a1 ≤ a2.

The dissimilarity between two interval numbers ã = [a1, a2]
and b̃ = [b1, b2] can be measured by the distance between them
[16]:

D2(ã, b̃) =

∫ 1/2

−1/2

∫ 1/2

−1/2

{[(
a1 + a2

2

)
+ x(a2 − a1)

]
−
[(

b1 + b2
2

)
+ y(b2 − b1)

]}
dxdy

=

[(
a1 + a2

2

)
−

(
b1 + b2

2

)]2
+

1

3

[(
a2 − a1

2

)2

+

(
b2 − b1

2

)2
]

(6)

The larger D(ã, b̃) is, the larger dissimilarity between ã and
b̃ is.

B. IN-based method

In IN-based method, the training data belonging to the same
focal element A ⊆ Θ are modeled as an interval number
ã = [a1, a2], where a1 and a2 are the minimum and maximum
values of the training data respectively. For a single test
sample, it is also modeled as a degenerate interval number
t̃ = [t, t], where t is its value. If the test sample t̃ is similar
to the training data ã, the corresponding proposition (the test
sample belongs to A) should be assigned a large belief.

The similarity between ã and t̃ is defined as:

S(ã, t̃) =
1

1 + αD(ã, t̃)
(7)

where α > 0 is a parameter to control the degree of dispersion
of the normalized similarities and D(ã, t̃) is the distance
between the interval numbers ã and t̃. Finally, the BBA can
be generated from the normalized similarities.

In IN-based method, when modeling the training data, only
the minimum and maximum values are kept and used to
calculate similarities. However, when the distribution of the
data is not uniform, the extreme values are insufficient to well
describe the data. Actually, any interval number is a special
case of a fuzzy number. Other types of fuzzy numbers, such as
triangular fuzzy number (TFN) and trapezoidal fuzzy number
(TrFN), can keep more useful information of the data, such as
the mean value and median. Thus, TFN and TrFN are used to
model the data in this paper.

IV. BBA CONSTRUCTION FROM FUZZY NUMBERS

A. Basis of fuzzy numbers

The generalized left right fuzzy number (GLRFN) b̃ =
[b1, b2, b3, b4] is a special case of a convex, normalized fuzzy
set of the real line when its membership function is defined
by [17]:

µ(x) =


L
(

b2−x
b2−b1

)
for b1 ≤ x ≤ b2

1 for b2 ≤ x ≤ b3

R
(

x−b3
b4−b3

)
for b3 ≤ x ≤ b4

0 else

(8)

where L and R are strictly decreasing functions defined on
[0, 1] and satisfy the conditions:

L(x) = R(x) = 1 if x ≤ 0,
L(x) = R(x) = 0 if x ≥ 1.

(9)

The interval number is a special case of GLRFN with
b1 = b2 and b3 = b4. The triangular fuzzy number (TFN)
and trapezoidal fuzzy number (TrFN) [16] are two of the most
common fuzzy numbers encountered in applications involving
fuzzy numbers.
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For TrFN, L(x) = R(x) = 1−x. The distance between two
TrFNs ã = [a1, a2, a3, a4] and b̃ = [b1, b2, b3, b4] is defined as:

D2(ã, b̃)

= 1
4 [(a2 + a3)− (b2 + b3)]

2

+ 1
4 [(a2 + a3)− (b2 + b3)]

× (a4 − a3 − a2 + a1 − b4 + b3 + b2 − b1)

+ 1
12 (a3 − a2)

2 + 1
12 (b3 − b2)

2

+ 1
12 (a3 − a2)[a4 − a3 + a2 − a1]

+ 1
12 (b3 − b2)[b4 − b3 + b2 − b1]

+ 1
9

[
(a4 − a3)

2 + (a2 − a1)
2
]

+ 1
9

[
(b4 − b3)

2 + (b2 − b1)
2
]

− 1
9 [(a2 − a1)(a4 − a3) + (b2 − b1)(b4 − b3)]

+ 1
6 [(a4 − a3)(b2 − b1) + (a2 − a1)(b4 − b3)]

− 1
6 [(a4 − a3)(b4 − b3) + (a2 − a1)(b2 − b1)]

(10)

The larger D(ã, b̃) is, the larger dissimilarity between ã and
b̃ is.

For TFN, L(x) = R(x) = 1− x and b2 = b3. The distance
between two TFNs ã = [a1, a2, a3] and b̃ = [b1, b2, b3] is
defined as:

D2(ã, b̃)

= (a2 − b2)
2 + 1

2 (a2 − b2) [(a3 + a1)− (b3 + b1)]

+ 1
9

[
(a3 − a2)

2
+ (a2 − a1)

2
]

+ 1
9

[
(b3 − b2)

2
+ (b2 − b1)

2
]

− 1
9 [(a2 − a1)(a3 − a2) + (b2 − b1)(b3 − b2)]

+ 1
6 (2a2 − a1 − a3)(2b2 − b1 − b3)

(11)

The larger D(ã, b̃) is, the larger dissimilarity between ã and
b̃ is.

B. Fuzzy-number-based methods

1) Data modeling: To generate BBAs, the fuzzy numbers
are used to model the training data and test samples in this
paper. For the training data belonging to A ⊆ Θ and the test
sample t, we can use three different kinds of fuzzy numbers
to model them:
(1) TFNmean: the training data are modeled as a triangular

fuzzy number ã = [a1, a2, a3], where a1 and a3 are
the minimum and maximum values of the training data
respectively and a2 is the mean value. The test sample is
modeled as t̃ = [t, t, t].

(2) TFNmed: the training data are modeled as a triangular
fuzzy number b̃ = [b1, b2, b3], where b1 and b3 are
the minimum and maximum values of the training data
respectively and b2 is the median. The test sample is
modeled as t̃ = [t, t, t].

(3) TrFN: the training data are modeled as a trapezoidal
fuzzy number c̃ = [c1, c2, c3, c4], where c1 and c4 are
the minimum and maximum values of the training data
respectively, c2 is either the mean value or median,

whichever is smaller and c3 is either the mean value or
median, whichever is larger. The test sample is modeled
as t̃ = [t, t, t, t].

In these ways, besides the maximum and minimum values,
the mean value and (or) median can be also kept to describe
the training data.

2) Calculate the similarities: Similar to the IN-based
method, the similarity between the training data and test
sample are measured from the distance between them (Eq.
(11) for TFN or Eq. (10) for TrFN) using Eq. (7). Actually,
other normalization functions can be used here.

3) Generate the BBAs: The BBAs are generated from the
normalized similarities. If the test sample t̃ is similar to the
training data ã, the corresponding proposition (t̃ belongs to the
same focal element with ã) should be assigned with a large
belief.

In the next section, we consider the classification problem
to verify the effectiveness of our proposed BBA determination
method.

V. CLASSIFICATION EXAMPLE BASED ILLUSTRATION OF
THE PROPOSED BBA DETERMINATION METHOD

We give a classification example on a set of artificial data
to illustrate the process of our BBA determination method and
verify its effectiveness.

A. Artificial training data

Suppose there are three classes in a set of artificial data:
Θ = {θ1, θ2, θ3}. Each sample has three features, f1, f2 and
f3, and each feature is correspondent to a normal distribution.
The deviation parameters for each class are 0.25, 1 and 0.25
respectively and the mean parameters for each feature of each
class are given in Table I.

TABLE I
THE MEAN PARAMETERS FOR EACH FEATURE OF EACH CLASS

Class f1 f2 f3

θ1 9 5 10
θ2 10 9 5
θ3 5 10 9

We generate 60 training data for each class. Among the 60
samples belonging to class θ1, there is an outlier whose value
of feature f1 is much larger than others belonging to class θ1.
The generated training data are shown in Fig. 1.

In this case, each class can be distinguished easily from
other classes using one feature (when its mean parameter is
5), but are difficult distinguished from other classes using other
features.

B. The process of classification

For a given test sample, the process of labeling its class can
be outlined below:
Step 1 Generate three mass functions m1, m2 and m3 accord-

ing to the corresponding features of the training data
respectively.
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TABLE II
MODELING THE TRAINING DATA ON FEATURE f1

Focal element IN TFNmean TFNmed TrFN

{θ1} [8.1, 12.6] [8.1, 9.1, 12.6] [8.1, 9.0, 12.6] [8.1, 9.0, 9.1, 12.6]

{θ2} [7.6, 13.1] [7.6, 10.0, 13.1] [7.6, 10.0, 13.1] [7.6, 10.0, 10.0, 13.1]

{θ3} [4.1, 5.7] [4.1, 5.0, 5.7] [4.1, 4.8, 5.7] [4.1, 4.8, 5.0, 5.7]

{θ2, θ3} [8.1, 12.6] [8.1, 9.6, 12.6] [8.1, 9.3, 12.6] [8.1, 9.3, 9.6, 12.6]

(a) Values of the training data for feature f1.

(b) Values of the training data for feature f2.

(c) Values of the training data for feature f3.

Fig.1. Values of the training data.

Step 2 Combine m1, m2 and m3 using Eq. (4) to obtain the
combined mass function m.

Step 3 Transform m into the probability measure BetP using
Eq. (5).

Step 4 The class of the test sample is labeled as class θi ∈ Θ
which has the highest BetP value.

We take a test sample t = (t1, t2, t3) = (11.8, 9.8, 3.9)
(whose class is θ2) as an example to explain how to generate
m1 based on fuzzy numbers in Step 1 in detail. The result of
interval-number-based method is also given for comparison.

1) Data modeling: For feature f1, the training data belong-
ing to each focal element A ∈ Θ can be modeled as an interval
number (IN) or a fuzzy number (TFNmean, TFNmed or
TrFN), as shown in Table II. The test sample can be modeled
as t̃1 = [11.8, 11.8] (IN), t̃1 = [11.8, 11.8, 11.8] (TFNmean or
TFNmed) or t̃1 = [11.8, 11.8, 11.8, 11.8] (TrFN).

In this case, the training data from class θ1 has an over-
lapped region with the data from θ2. For a test sample

belonging to this region, it is difficult to distinguish whether
class θ1 or θ2 it should be labeled as and its belief assigned to
focal element {θ1, θ2} (m1{θ1, θ2}) should also be considered.
Thus, the training data belonging to the overlapped region are
also modeled.

2) Calculate the distance between fuzzy numbers: The
distances between the test sample t̃1 and the training data from
different focal elements are calculated using Eq. (6) (for IN),
Eq. (11) (for TFNmean and TFNmed) or Eq. (10) (for TrFN),
as given in Table III.

TABLE III
THE DISTANCE BETWEEN THE TEST SAMPLE AND TRAINING DATA

Focal element IN TFNmean TFNmed TrFN

{θ1} 1.928 3.439 3.541 2.217
{θ2} 2.134 2.552 2.529 1.838
{θ3} 6.875 9.660 9.738 6.862
{θ1, θ2} 1.928 2.977 3.265 2.040

In Table III, according to the IN-based method, the test
sample is closer to {θ1} than {θ2}. However, without the
outlier, the actual range of the training data from {θ1} is
[8.1, 10.4] and the test sample 11.8 should be assigned a
smaller distance to {θ2}, whose range is [7.6, 13.1]. By only
considering the minimum and maximum values, the IN-based
method can easily get counterintuitive distances, especially
when there are outliers. However, the mean value and median
are relatively insensitive to outliers, so that the fuzzy-number-
based methods can obtain more reasonable distances. In this
case, the fuzzy-number-based methods assign the test sample
a smaller distance to {θ2} than {θ1}.

3) Calculate the similarities: The similarities between the
test sample t̃1 and the training data from different focal
elements are calculated from the above distances using Eq.
(7), where α is taken as 5, as shown in Table IV.

TABLE IV
THE SIMILARITIES BETWEEN THE TEST SAMPLE AND TRAINING DATA

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.094 0.055 0.054 0.083
{θ2} 0.086 0.073 0.073 0.098
{θ3} 0.028 0.020 0.020 0.028
{θ1, θ2} 0.094 0.063 0.058 0.089

4) Generate m1: m1 is generated from the normalized
similarities, as shown in Table V. Our fuzzy-number-based
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methods assign the largest mass of belief to {θ2} rather than
{θ1} or {θ1, θ2}, which is more reasonable compared with the
IN-based method.

TABLE V
THE GENERATED m1

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.311 0.261 0.261 0.277
{θ2} 0.284 0.345 0.358 0.329
{θ3} 0.094 0.096 0.099 0.095
{θ1, θ2} 0.311 0.298 0.282 0.299

In the same way, m2 and m3 can be generated from feature
f2 and f3 repectively, as shown in Table VI and Table VII.

TABLE VI
THE GENERATED m2

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.062 0.038 0.039 0.047
{θ2} 0.177 0.173 0.176 0.184
{θ3} 0.380 0.378 0.375 0.378
{θ2, θ3} 0.381 0.411 0.410 0.391

TABLE VII
THE GENERATED m3

Focal element IN TFNmean TFNmed TrFN

{θ1} 0.160 0.138 0.141 0.147
{θ2} 0.484 0.547 0.537 0.522
{θ3} 0.183 0.162 0.167 0.171
{θ1, θ3} 0.173 0.153 0.155 0.160

After generating m1, m2 and m3, the combined mass
function m can be obtained by using the Dempster’s rule of
combination (Eq. (4)) and then the probability measure BetP
can be obtained using Eq. (5), as given in Table VIII.

TABLE VIII
THE GENERATED BetP

Class IN TFNmean TFNmed TrFN

θ1 0.065 0.026 0.027 0.038
θ2 0.808 0.873 0.866 0.853
θ3 0.127 0.101 0.107 0.109

Finally, the test sample t = (11.8, 9.8, 3.9) is labeled as
class θ2 since it has the highest BetP value.

VI. EXPERIMENTS

To further compare the effectiveness of the proposed BBA
determination methods with the IN-based method, we did the
classification experiments on three UCI data sets (Iris, Wine
and Wdbc).

In each experiment, the amounts of the samples from
different classes are equal. Among the samples from the same
class, 60% samples are used as the training data and the rest

40% samples are used as the test samples. We generate BBAs
from all the features (one BBA generated from one feature)
and the final classification result is obtained from the combined
mass function. The value of α in Eq. (7) is set as 5. The
accuracy of each classification is calculated from 100 runs of
the Monte-Carlo experiments. The classification accuracies1

are given in Table IX.

TABLE IX
THE ACCURACIES OF THE CLASSIFICATIONS (%)

Data set IN TFNmean TFNmed TrFN

Iris 92.67 93.83 93.85 93.92
Wine 91.48 93.29 94.23 92.79
Wdbc 67.71 86.91 88.32 81.27

From Table IX we can see, the proposed fuzzy-number-
based methods can achieve higher accuracies than IN-based
method.

Furthermore, we compared the robustness of our proposed
method with IN-based method. We add one outlier to the
training data for each class, whose values on each feature are
set as:

O(fi) = max(fi) + 0.2× (max(fi)−min(fi)) (12)

where max(fi) and min(fi) are the maximum and minimum
values of the training data respectively on feature fi. The
accuracies are given in Table X.

TABLE X
THE ACCURACIES OF THE CLASSIFICATIONS WITH OUTLIERS (%)

Data set IN TFNmean TFNmed TrFN

Iris 88.72 93.08 93.07 92.13
Wine 80.89 91.75 92.53 90.06
Wdbc 61.80 82.87 84.28 73.69

From Table IX and Table X we can see, the accuracies
of IN-based method drop significantly when the outliers are
added while the accuracies of our fuzzy-number-based meth-
ods drop slightly. Therefore, the proposed fuzzy-number-based
methods are more robust for outliers than IN-based method.

VII. CONCLUSION

In this paper we have proposed new methods for gener-
ating BBA based on fuzzy numbers. The experiments on its
application of classification show that our proposed method
is effective and robust for outliers and can achieve higher
accuracies than the IN-based method.

In future work, we will focus on the distance between fuzzy
numbers. More types of distance will be used and compared to
describe the dissimilarity between the test sample and training
data. Other normalization functions to establish similarities
will be evaluated, as well as other possible decision-making
strategies. Also, other evidence combination rules will be
tested to make comparisons.

1The accuracy is defined as the percentage of correct classifications.
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Comparative Study on BBA Determination Using
Different Distances of Interval Numbers

Abstract—Dempster-Shafer theory (DST) is an important the-
ory for information fusion. However, in DST how to determinate
the basic belief assignment (BBA) is still an open issue. The
interval number based BBA determination method is simple and
effective, where the features of different classes’ samples are
modeled using the interval numbers, i.e., an interval number
model is constructed for each focal element. Then, the distances
of interval numbers are used for measuring the similarity degrees
between the testing sample and each focal element, and the
similarity degrees are used for determinating the BBA. The
definition of interval numbers’ distance is crucial for the effective-
ness of the interval number based BBA determination methods.
In this paper, we use different interval numbers’ distances for
determinating BBAs. By using the artificial data set and the Iris
date set of open UCI data base, respectively, we compare and
analyze the determination of BBAs with different distances.

Index Terms—Dempster-Shafer theory, basic belief assignment,
distance of interval numbers, information fusion, classification.

I. INTRODUCTION

Dempster-Shafer theory (DST) [1] was proposed by Demp-
ster in 1960s, and was developed by Shafer [2]. In DST, the
basic beliefs are assigned to the power set of the frame of
discernment (FOD), which is used to describe the uncertain-
ty of sources of evidence. The evidences (i.e., basic belief
assignments, BBAs) originated from different sources can be
fused using the Dempster’s combination rule [1]. DST has
been widely used in the information fusion fields [3]–[5].

Using DST, the first step is to determinate the BBAs, which
is still an open issue. The determination of BBAs can mainly
categorized into two branches [6]: (1) The experts give the
BBAs directly according to their personal experiences; (2)
The BBAs are determinated based on the samples using some
special determination rules. In the first branch, the determi-
nation of BBAs relies on the experts’ subjective points of
view. In this paper, we focus on the second branch approaches,
i.e., the BBAs are determinated based on available samples.
Researchers have proposed many approaches in this branch.
Selzer et al. [3] determinated the BBAs based on the number
of classes and the environmental weighting coefficient. Shafer
[2] proposed a BBA determination method based on statistical
evidences. Bi et al. [7] designed a kind of triple focal elements
BBA in dealing with the text classification problem. Szlzen-
stein et al. [8] used the Gaussian model getting the BBAs

through iterative estimation. Deng et al. [9] defined a similarity
measure based on radius of gravity, and then the similarity
measure is used for determinating the BBAs. Boudraa et al.
[10] and Florea et al. [11] determinates the BBAs based on
the membership functions. Han et al. [12] proposed a method
for the transformation of fuzzy membership function into
BBAs by solving a constrained maximization or minimization
optimization problem. Recently, Kang et al. [6] designed a
BBA determination method using the interval numbers.

Kang’s interval number based BBA determination method
is simple and effective. Kang’s method first constructs the
interval number [14] models for each focal element (including
the singleton focal elements with single class and the com-
pound focal elements with multiple classes) based on the set of
training samples. In Kang’s method, the Tran and Duckstein’s
[14], [16] interval number distance (TD-IND) is used for mea-
suring the similarity degree of the testing samples compared
with different focal elements’ interval number models. In the
final, the similarities are normalized to get the values of BBA.
The definitions of the interval numbers’ distances (INDs) are
crucial for the performance of the interval number based
BBA determination method. There exist many possible choices
for INDs, e.g., the Gowda and Ravi’s distance [15] (GR-
IND), the Tran and Duckstein’s distance [16] (TD-IND), the
Hausdorff distance [17] (H-IND) and the De Carvalho’s norm-
q distance [18] (Nq-IND). In this paper, we implement the
Kang’s interval number based method using different INDs.
We analyze the differences of the BBAs determinated using
different INDs based on numerical examples. Furthermore, we
use Monte-Carlo experiments for comparing the performances
of interval number based methods with different INDs by
classifying an artificial set and the iris set1.

II. BASIC OF DEMPSTER-SHAFER THEORY

Dempster-Shafer theory (DST) (also known as the Evidence
Theory) is an appealing mathematical framework which can
effectively describe the uncertainty information for the state
of nature. In DST, the frame of discernment (FOD) is denoted
by Θ = {θ1, θ2, · · · , θn}. The elements in Θ are mutually

1http://archive.ics.uci.edu/ml/datasets/Iris

Originally published as: J. Ding, D. Han, J. Dezert, Y. Yang, Comparative Study on BBA Determination 
Using Different Distances of Interval Numbers, in Proc. of 20th Int. Conf. on Information Fusion (Fusion 
2017), Xi’an, China, July 10–13, 2017, and reprinted with permission.
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and exhaustive. The basic belief assignment (BBA) function
assigns basic beliefs on the power set of Θ, i.e., 2Θ. The BBA
is also called the mass function which satifies:∑

A⊆Θ

m (A) = 1,m (∅) = 0 (1)

If A ⊆ Θ,m (A) > 0, A is called a focal element.
The Belief (Bel) and Plausibility (Pl) of A are defined as:

Bel (A) =
∑
B⊆A

m (B) (2)

Pl (A) =
∑

B∩A=∅

m (B) = 1−Bel
(
A
)

(3)

The interval [Bel (A) , P l (A)] is call the belief interval, which
represents the uncertainty of the support degree of A.

Different information sources can provide different evi-
dences, i.e., the BBAs. In DST, two BBAs associated with
two distinct sources of evidence can be combined according
to the Dempster’s rule, as in Eq. (4).

m (A) =


∑

B∩C=A m1 (B)m2 (C)

1−K
A ̸= ∅

0 A = ∅
(4)

where K =
∑

B∩C=A m (B)m (C) denotes the conflicting
coefficient. Dempster’s combination rule is both commutative
and associative.

To make a probabilistic decision, the fused BBA can be
transformed into the probability using the Pignistic probability
transformation:

Betp (θi) =
∑

θi∈A, A⊆Θ

m (A)

|A|
, ∀θi ∈ Θ (5)

where |A| denotes the cardinality of A.

III. KANG’S BBA DETERMINATION METHOD BASED ON
THE INTERVAL NUMBERS’ DISTANCES

Using the DST, the determination of the BBAs is the first
step, which is an still a challenging task. Interval number,
which can describe the uncertainty or insufficient information,
is useful for determinating the BBAs. The definition of interval
numbers is as follows: An interval number ã in R is a
set of real numbers that lie between two real numbers, i.e.,
ã = [a−, a+] = {x|a− ≤ x ≤ a+} , a−, a+ ∈ R and a− ≤
a+. Kang et al. [6] proposed a BBA determination method
based on the interval number models, where the basic beliefs
assigned to different focal elements are determinated based
on the interval numbers’ distances between the testing sample
and the interval number models of focal elements. Here, we
recall the Kang’s interval number based BBA determination
method first.

Kang’s method determinates BBAs on different single fea-
tures respectively. In a single feature, Kang’s method models
different focal elements (including the focal elements with
single class and the focal elements with multiple classes)
using interval numbers, and the testing sample is treated as

a degenerate interval (a precise number) with a zero length.
Kang’ method measures the distances between the testing
sample and different interval number models of the focal
elements. The testing sample should have a higher similarity
degree with the focal element when the distance is small, and
the corresponding focal element is assigned a higher basic
belief. The steps of Kang’s method are described as follows:

1) The interval number models of the focal elements with
single class are constructed by finding the minimum
and the maximum of the corresponding classes’ training
samples. Then, the interval number models of the focal
elements with mixture classes are obtained by finding
the overlapping region of the corresponding single class-
es’ interval number models. The interval number models
of different focal elements are denoted by b̃f , f ∈ 2Θ.

2) Calculate the distances between the testing sample (de-
noted by ã) and different focal elements’ interval number
models, i.e., D

(
ã, b̃f

)
, ∀f ∈ 2Θ. Note that the length

of ã is 0, i.e., a+ = a−.
3) Calculate the similarity degree based on the distances

according to Eq. (6).

S
(
ã, b̃f

)
=

1

1 + αD
(
ã, b̃f

) (6)

where α > 0 is the support coefficient. Empirically, it
is proper to set α = 5 [6].

4) The BBA is determinated by normalizing the similarity
degrees of all the focal elements.

Kang’s method define the similarity degrees using interval
numbers’ distance, and the BBAs are obtained by normalizing
the similarity degrees. Thus, the definition of the IND (i.e., the
D

(
ã, b̃f

)
) is crucial for this method. The differences of the

BBAs determinated by Kang’s method using different INDs
are compared in the next section.

IV. COMPARISONS OF INTERVAL NUMBER BASED BBA
DETERMINATION METHOD USING DIFFERENT INDS

As aforementioned, the definition of the IND is crucial for
the interval number based BBA determination methods. Many
INDs have been proposed. Here, we introduce four widely
used INDs.

A. Introduction of the interval number’s distances

Suppose ã = [a−, a+] and b̃ = [b−, b+] are two interval
numbers. Then [13], [14], c̃ = ã ⊕ b̃ = [c−, c+], where
c− = min (a−, b−) and c+ = max (a+, b+). The length (or
width) of the interval number ã is µ (ã) = a+ − a−. Dd

is the length of the domain [14] of the interval numbers. To
measure the difference between two interval numbers, many
interval numbers’ distances (INDs) have been proposed. Here,
we introduce four widely used INDs, which are introduced as
follows:
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Gowda and Ravi (1995) [15]: In 1995 Gowda and Ravi
proposed a metric (denoted by GR-IND) combining a position
and a size component, as follows

DGR

(
ã, b̃

)
= Dp

(
ã, b̃

)
+Ds

(
ã, b̃

)
(7)

where the position component is defined as,

Dp

(
ã, b̃

)
= cos

[(
1− |a− − b−|

µ (Dd)

)
× π

2

]
(8)

and the size component is defined as

Ds

(
ã, b̃

)
= cos

 µ (ã) + µ
(
b̃
)

2× µ
(
ã⊕ b̃

) × π

2

 (9)

Tran and Duckstein (2002) [16]: In the framework of
fuzzy data analysis, Tran and Duckstein proposed the interval
numbers’ distance (TD-IND):

D2
TD

(
ã, b̃

)
=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

{[
1

2

(
a+ + a−)+ x

(
a+ − a−)]

−
[
1

2

(
b+ + b−

)
+ y

(
b+ − b−

)]}2

dxdy

=
1

4

[(
a− + a+)− (

b− + b+
)]2

+
1

12

[(
a+ − a−)2 + (

b+ − b−
)2]

(10)

Hausdorff distance [17]: Considering two sets A and B
of points of Rn, and a distance d (x, y), where x ∈ A and
y ∈ B. The Hausdorff distanc (H-IND) is defined as follows:

DH (A,B) = max

(
sup
x∈A

inf
y∈B

d (x, y), sup
y∈B

inf
x∈A

d (x, y)

)
(11)

If d (x, y) is the Manhattan distance (also called the City block
distance), i.e., d (x, y) = |x− y|, then Chavent et al. (2002)
proved that

DH

(
ã, b̃

)
= max

(∣∣a− − b−
∣∣ , ∣∣a+ − b+

∣∣) (12)

De Carvalho et al. (2006) [18]: A family of distances
between interval numbers has been proposed by De Carvalho
et al. based on the bounds of interval numbers. The metric of
norm-q (Nq-IND) is defined as:

DNq

(
ã, b̃

)
=

(∣∣a− − b−
∣∣q + ∣∣a+ − b+

∣∣q) 1
q (13)

B. Numerical example

Different INDs can be used for implementing the BBA
determinations. Here, we use a numerical example for com-
paring the interval number based BBA determination methods
using different INDs. The BBA determination methods using
different INDs are applied on a three-classes classification
problem. In this numerical example, we give the features’
ranges of different classes directly, as shown in Figure 1, where
the feature’s range of class 1 (θ1) is [1, 4], class 2 (θ2) is [3, 7]
and class 3 (θ3) is [5, 8].

From the Figure 1, the interval numbers models of focal
elements can be constructed, which is listed in Table I. Note

1 2 3 4 5 6 7 8

Class 1

Class 2

Class 3

Feature values

Overlapping region 
of class 1 and class 2

Overlapping region 
of class 2 and class 3

Fig. 1. Feature values’ ranges of different classes

TABLE I
THE INTERVAL NUMBERS MODELS OF FOCAL ELEMENTS.

Focal elements Interval number model
{θ1} [1, 4]

{θ2} [3, 7]

{θ3} [5, 8]

{θ1, θ2} [3, 4]

{θ2, θ3} [5, 7]

{θ1, θ3} N/A
{θ1, θ2, θ3} N/A

that in this example {θ1, θ3} and {θ1, θ2, θ3} do not have
interval number models, because the {θ1}’s and {θ3}’s interval
number models do not have overlapping region.

Suppose we have a testing sample whose feature value is 2,
i.e., ã = [2, 2], as the purple dot on X-axis of Figure 1. Then
we use different INDs, i.e., the GR-IND as in Eq. (7), the TD-
IND as in Eq. (10), the H-IND as in Eq. (12), and the Nq-IND
as in Eq. (13) (with q = 2 in Nq-IND), for measuring the
distance between the ã and different focal elements’ interval
number models, respectively. The distances are listed in Table
II.

TABLE II
THE INDS BETWEEN THE ã AND FOCAL ELEMENTS’ INTERVAL NUMBER

MODELS.

Focal elements GR-IND TD-IND H-IND Nq-IND
{θ1} 0.9296 1.0000 2.0000 2.2361
{θ2} 1.0315 3.2146 5.0000 5.0990
{θ3} 1.5474 4.5826 6.0000 6.7082
{θ1, θ2} 1.1464 1.5275 2.0000 2.2361
{θ2, θ3} 1.5745 4.0415 5.0000 5.8310

Then, using the distances the similarity degrees are calculated
according to Eq. (6), where the support coefficient is set to
α = 5. By normalizing the similarity degrees the BBAs are
obtained as listed in Table III.

As the BBAs in Table III, the basic beliefs assigned to
different focal elements have small differences using GR-
IND compared with that using TD-IND, H-IND and Nq-
IND. For example, using GR-IND the basic beliefs assigned
to {θ1} and {θ2} are 0.2552 and 0.2305, which have small
differences. Using TD-IND, the basic beliefs of {θ1} and {θ2}
are 0.4086 and 0.1289, whose difference is larger. The BBAs
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TABLE III
THE BBAS DETERMINATED BASED ON DIFFERENT INDS.

Focal elements
BBAs

GR-IND TD-IND H-IND Nq-IND
{θ1} 0.2552 0.4086 0.3184 0.3163
{θ2} 0.2305 0.1289 0.1281 0.1394
{θ3} 0.1546 0.0906 0.1069 0.1061
{θ1, θ2} 0.2078 0.2693 0.3184 0.3162
{θ2, θ3} 0.1519 0.1026 0.1282 0.1220

determinated based on H-IND and Nq-IND are similar to each
other.

Here, we use the Pignistic probability transformation (as in
Eq. (5)) for transforming the BBAs to probabilities for decision
making. The probabilities of the testing sample belonging to
different classes are listed in Table IV.

TABLE IV
THE PIGNISTIC PROBABILITIES OBTAINED BASED ON DIFFERENT INDS.

Classes
Pignistic probabilities

GR-IND TD-IND H-IND Nq-IND
Class 1 (θ1) 0.3591 0.5433 0.4777 0.4744
Class 2 (θ2) 0.4103 0.3148 0.3514 0.3585
Class 3 (θ3) 0.2306 0.1419 0.1709 0.1671

Intuitively, the testing sample belongs more likely to class
1, as shown in Fig. 1. According to Table IV, the methods
using the TD-IND, H-IND and Nq-IND all can make right
classifications. According to the probabilities originated from
the GR-IND, the testing sample should be classified to class
2. Revisiting the BBA determinated based on GR-IND, the
basic beliefs assigned to the focal elements with single class
has the right tend, i.e., m ({θ1}) > m ({θ2}) > m ({θ3}).
However, the Pignistic probabilities originated from the GR-
IND is counter-intuitive, where the beliefs assigned to the focal
elements with multiple classes are counted together. From this
perspective, the BBA determinated based on GR-IND is not
so good. In this numerical example, the interval number based
methods using the TD-IND, H-IND and Nq-IND perform more
proper for the BBA determination than that using the GR-IND
if the decision-making is based on max of BetP.

V. EXPERIMENT

To compare the interval number based BBA determination
method using different INDs, we use Monte-Carlo experiments
on the classification of the artificial set and the iris set. The
information fusion based classification is implemented as fol-
lows. In each classification, the interval number based method
is used for determinating the BBA in each single feature.
Then these multiple BBAs are combined using Dempster’s
combination rule as in Eq. (4). Then the combined BBA
is transformed into probabilities using Pignistic probability
transformation as in Eq. (5). The testing sample is classified
as the class which has the largest Pignistic probability.

In the experiment, the interval number based methods using
different INDs are used for determinating the BBAs respec-

tively. In the Nq-IND, we have taken q = 2. The parameter
α in the generation of the similarity degrees in the interval
number based BBA determination method (as in Eq. (6)) is set
to 5. The Monte-Carlo classification experiments are repeated
100 times with random testing samples. The effectiveness of
the interval number based BBA determination methods using
different INDs are compared using the average accuracy of
the 100 runs.

A. Experiment on artificial set

The artificial set generated contains 3 classes. Each class has
50 samples, and each sample has 3 features. The features of
different classes are generated according to Gaussian distribu-
tion, i.e., G

(
µ, σ2

)
. The standard deviations (σ) of different

classes’ different features are all set as σ = 1. The mean
(µ) settings of different classes’ different features are listed in
Table V.

TABLE V
THE MEAN (µ) SETTINGS OF DIFFERENT CLASSES’ DIFFERENT FEATURES.

Classes
Mean (µ)

Feature 1 Feature 2 Feature 3
Class 1 (θ1) 8 5 10
Class 2 (θ2) 10 9 6
Class 3 (θ3) 5 11 9

The features of different classes in the artificial set we
generated are shown in Figures 2–4.
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Fig. 2. Artificial samples’ feature 1 of different classes.
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Fig. 3. Artificial samples’ feature 2 of different classes.

As shown in Figures 2–4, the class 3 is linearly separable
from class 1 and class 2, and class 1 and class 2 are not linearly
separable from each other in feature 1. Similarly, class 2 and
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class 3 are not linearly separable from each other in feature 2,
and class 1 and class 3 are not linearly separable from each
other in feature 3.
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Fig. 4. Artificial samples’ feature 3 of different classes.

In each Monte-Carlo run, we randomly select 25 samples
from each class (75 samples in total) as the set of training
samples, and the remaining samples are used as the testing
samples. We first classify the testing sample according to the
BBA determinated based on each single feature, respectively.
Then, we combine the BBAs determinated based on the 3
features, and use the combined BBA for classifying the testing
sample. The results of the methods based on different INDs
are listed in Table VI.

TABLE VI
THE RESULTS OF THE METHODS BASED ON DIFFERENT INDS.

INDs
Classification correct rate (%)

Feature 1 Feature 2 Feature 3 Combined
GD-IND 44.70 64.86 42.62 80.95
TD-IND 67.71 84.13 61.66 94.84
H-IND 64.66 80.24 56.01 89.66
Nq-IND 65.86 81.68 55.84 91.97

In Table VI, the columns “Feature 1”, “Feature 2” and “Feature
3” are the results of the methods using different INDs based on
each single features. The column “Combined” are the results
obtained by combining the BBAs determinated on different
features with Demspter’s rule of combination. According to
Table VI, the classifications of the methods using different
INDs based on each single feature does not perform well.
However, the BBAs determinated based on different features
reflect different aspects’ information of the samples. By fusing
the BBAs based on different features, better classification
performances are obtained. Comparing the results of the
methods based on different INDs, the method based on GD-
IND performs the worst. The performances of the methods
based on TD-IND, H-IND and Nq-IND are similar, where the
one based on TD-IND is the best. The BBA built using the
GD-IND is not recommended for the BBA determination.

B. Experiment on iris set

The iris set contains 3 classes. Each class has 50 samples,
and each sample has 4 features. In this experiment, we
randomly select different numbers of samples as the training
samples (the number of the samples selected from different

classes are the same), and all the samples are used as the
testing samples. The results of the interval number based BBA
determination methods based on different INDs are shown in
Figure 5.
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Fig. 5. Performances of the interval number based methods using different
INDs with different scales of training samples on iris data set.

According to Figure 5, the methods using TD-IND, H-IND
and Nq-IND perform well in both the cases with small number
of training samples and large number of training samples. The
method using TD-IND performs the best compared with the
methods using other three INDs. The results of the method
using GD-IND have a counter-intuitive behavior, since its
accuracy decreases with the increasing of the number of the
training samples. When the number of training samples is
large, the interval numbers generated can better model the
features of corresponding classes, especially, for the mixture
classes’ focal elements (i.e., the overlapping range of corre-
sponding classes’ interval number models). However, as dis-
cussed in the numerical example in section IV-B, the interval
number based method using GD-IND is not recommended for
determinating the BBA, especially, counting the mixture class
focal elements together. That is why the method using GD-
IND performs bad when the number of training samples is
large.

VI. CONCLUSION

In this paper, we have tested different INDs for implement-
ing the interval number based BBA determination method. The
effectiveness of the BBAs are compared based on the infor-
mation fusion based classification problems. The experiments
validate that combining the BBAs determinated using interval
number based methods with different INDs performs well
for the classification problems. The methods using the TD-
IND, H-IND and Nq-IND provide quasi similar performances,
where the one using TD-IND is the best one. Using the
GD-IND, the basic beliefs construction is not very effective.
With GD-IND, the differences of the basic beliefs assigned to
different focal elements are small, which is not discriminant
enough for making decisions, especially, counting the mixture
classes’ focal elements. Therefore, the method using the GD-
IND is not recommended.

Up to now, the interval number based BBA determination
methods are implemented on the single feature. In future work,
we will try to use the interval numbers for determinating
the BBAs on the multiple features spaces, and compare the
effectiveness of the ones using different INDs. We will explore
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also different decision-making strategies (i.e. DSmP, min of
d BI, etc.), and test other rules of combination as well to see
if we can improve classification performances.
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Abstract—One of the challenges of remote sensing image based
building change detection is distinguishing building changes from
other types of land cover alterations. Height information can be
a great assistance for this task but its performance is limited to
the quality of the height. Yet, the standard automatic methods
for this task are still lacking. We propose a very high resolution
stereo series data based building change detection approach that
focuses on the use of time series information. In the first step,
belief functions are explored to fuse the change features from
the 2D and height maps to obtain an initial change detection
result. In the second step, the building probability maps (BPMs)
from the series data are adopted to refine the change detection
results based on Dempster-Shafer theory. The final step is to fuse
the series building change detection results in order to obtain a
final change map. The advantages of the proposed approach are
demonstrated by testing it on a set of time series data captured
in North Korea.

Keywords: Change detection, belief functions, DST, DSM..

I. INTRODUCTION

Building change detection is one of the fundamental
remote sensing research topics. Although many approaches
are available, it is still very difficult to select one standard
approach that works for all situations. Especially along with
the improvement of the image resolution, besides building
changes many irrelevant changes may also be visible in the
remote sensing images, which makes the 2D building change
detection more challenge. 3D building change detection has
gained a great attention and is able to provide more accurate
results. Due to the unprecedented technology development of
sensor, platforms and algorithms for 3D data acquisition and
generation, the 3D data become more accessible than before.
Stereo time series data will allow a better understanding of
the building change types and further increase the change
accuracy.

Many research works have proved the advantages of in-
troducing Digital Surface Models (DSM) to building change
detection [1]–[2]. However, the performance of the 3D change
detection approaches rely heavily on the quality of the DSMs.
And the DSMs from satellite images do not always provide
reliable height information, due to the occlusion and matching
errors. In the case of large regions have incorrect height values,
it is very difficult to avoid false detections. In our previous
research, time-series information worked well to to improve
the building detection results. In this research, we will further
adopt this information to improve the change detection results.

In paper [3], the belief functions introduced in the
Dempster-Shafer Theory (DS) [4]–[5], and extended in Dezert-
Smarandache Theory (DSmT) [6] were used to deal with
the uncertainty information delivered from the DSMs. In
[3] the possibility of using Dempter’s fusion rule and the
Proportional Conflict Redistribution Rule #6 (PCR6) of DSmT
in our application were tested. Though improvements have
been proven by comparing with the method stated in [7], the
results delivered under DS and DSmT frameworks were rather
similar. Therefore, in this paper, only the DS fusion rule is
used to get an initial change detection result.

This paper is organized as follow: firstly, the belief func-
tions and building change detection fusion models are briefly
reviewed. Then, the series image based fusion model together
with the building extraction method are introduced. In the end,
these refined fusion models are tested on the satellite real data.

II. DS BELIEF FUNCTION BASED BUILDING CHANGE
DETECTION

A. Basics of DST

Dempster-Shafer fusion (DST) is one of the fundamental
decision fusion theory. It allows the combination of evidence
from individual experts or any data sources. The general
introduction of of DST can be found in [4], [6], and [8].

Let Θ be a frame of discernment of a problem under
consideration. Θ = {θ1, θ2, . . . , θN} consists of a list of N ex-
haustive and mutually exclusive elements θi, i = 1, 2, . . . , N .
Each θi represents a possible state related to the problem we
want to solve. The assumption of exhaustivity and mutual
exclusivity of elements of Θ is classically referred as Shafer’s
model of the frame Θ. A basic belief assignment (BBA) also
called a belief mass function (or just a mass for short), is a
mapping m(.) : 2Θ → [0, 1] from the power set1 of Θ denoted
2Θ to [0, 1], that verifies [4]:

m(∅) = 0, and
∑
X∈2Θ

m(X) = 1. (1)

m(X) represents the mass of belief exactly committed to
X . An element X ∈ 2Θ is called a focal element (FE) if
and only if m(X) > 0. In DST, the combination (fusion)
of several independent sources of evidences is done with
Dempster-Shafer2 (DS) rule of combination, assuming that

1The power set is the set of all subsets of Θ, including empty set.
2Although the rule has been proposed originally by Dempster, we call it

Dempster-Shafer rule because it has been widely promoted by Shafer in DST.

Originally published as: J. Tian, J. Dezert, R. Qin, Time-series 3D Building Change Detection Based on 
Belief Functions, in Proc. of Int. Conf. on Information Fusion (Fusion 2018), Cambridge, UK, July 10–13, 
2018, and reprinted with permission.
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the sources are not in total conflict3. DS combination of two
independent BBAs m1(.) and m2(.), denoted symbolically
by DS(m1,m2), are defined by mDS(∅) = 0, and for all
X ∈ 2Θ \ {∅} by:

mDS(X) =
1

1−KDS

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2), (2)

where the total degree of conflict KDS is given by

KDS ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2). (3)

B. Building change detection

1) Choice of the frame of discernment: As noted above,
the accuracy of 2D change detection is limited due to the
misdetections caused by irrelevant changes. These irrelevant
changes have a greater effect on very high resolution (VHR)
images since more detail on land-cover objects is visible. To
solve this problem, in the decision fusion based 3D change
detection framework, three classes have been considered. They
are,

Θ = {θ1 , Pixel ∈ BuildingChange,

θ2 , Pixel ∈ OtherChange,

θ3 , Pixel ∈ NoChange},
(4)

and
θ1 ∩ θ2 ∩ θ3 = ∅. (5)

Based on the three classes, the set of focal elements FE that
are of interest in our application is:

FE = {θ1, θ2, θ3, θ1 ∪ θ2, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}. (6)

Two change indicators, one from images and one from
DSMs were involved in the fusion model. Changes from spec-
tral images are highlighted by using the Iteratively Reweighted
Multivariate Alteration Detection (IRMAD) [9]. Consequently
height changes from DSMs are shown after robust height
differencing [7].

2) BBAs construction: In [3], the sigmoidal model for
both concordance and discordance indexes are constructed
by projecting the change values to a sigmoid curve fτ,T . T
represents the symmetry point of the sigmoid curve, while the
τ control the slope of it. The concordance index measures the
concordance of change indicator and BBA in the assertion,
while the discordance measures the opposition of change
indicator to the BBAs in the assertion. The symmetry point
of the concordance and discordance sigmoid curves can be
automatically calculated with multi-level thresholding method
proposed by Otsu [10].

Thus, using height change index as example, the BBAs
for discordance and concordance height change index are
functions of values a∆H and b∆H defined by

a∆H = fτ,T1(∆H), and b∆H = f−τ,T2(∆H). (7)

3Otherwise DS rule is mathematically undefined because of 0/0 indetermi-
nacy.

The factor τ could be calculated with a sample value
(∆H = 1, a∆H = 0.1), which means 1 meter height change
indicates 10% probability to be building changes. The BBAs
for discordance and concordance image change index are
built similarly. Differences appearing in 2D images give a
concordance indication for all changes, which include the
building changes and other changes (θ1 ∪ θ2). In this paper
the changes from images are named ∆Img.

In [3], the fusion models have been described in detail.
Here we only explain the fusion model of the height changes
as an example. In Table I the construction of the BBAs from
the sources of evidence based DS rule of combination for
the height change indicator (i.e. the first source of evidence).
In Table I, m1(.) and m′1(.) represent the concordance and
discordance BBAs from ∆H .

TABLE I. BBA CONSTRUCTION FOR HEIGHT CHANGE INDICATOR
∆H .

[K∆H = a∆Hb∆H ]

Focal Elem. m1(.) m′1(.) mDS
1 (.)

θ1 a∆H 0 a∆H (1−b∆H )

1−K∆H
θ2 0 0 0
θ3 0 0 0

θ1 ∪ θ2 0 0 0
θ2 ∪ θ3 0 b∆H

(1−a∆H )b∆H
1−K∆H

θ1 ∪ θ2 ∪ θ3 1− a∆H 1− b∆H
(1−a∆H )(1−b∆H )

1−K∆H

III. TIME SERIES FUSION MODEL

To further improve the accuracy of the change detection
map, the pre- and post-event building probability maps are in-
troduced to the decision fusion model. The building probability
maps are prepared using our previous research results.

A. Time-series based building probability map extraction

The building extraction method based on spatiotemporal
inferences are adopted to prepare the building probability
maps (BPM) [11]. The approach is mainly composed of three
steps: (1) training sample selection; (2) feature extraction and
classification; (3) spatiotemporal based BPM refinement.

1) training sample selection: Training sample selection is a
time consuming and tedious process, which should be avoided
for the automatic image processing chain. In this step, we
are trying to produce the training data automatically from
history database. More precisely, only one set of training data
containing of building, ground&road, shadow and trees was
manually annotated. Training data for the images captures of
other dates can be automatically generated by using a decision
based change detection approach. The normalized DSM is
used to separate the above ground object from ground and
and road. And the height changes, shadow index changes and
the normalized difference vegetation index (NDVI) changes
are used to generate a coarse change maps, thus update the
training data. More details are described in paper [11].

2) feature extraction and classification: Based on the train-
ing data, the Random Forests (RF) [12] supervised classifier
was adopted. The features extracted for the classification task
include: 1) Principal component analysis [13] transformation
components of the multispectral channels; 2) Differential
morphological profile [14] of the panchromatic image; 3)
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Normalized DSM. The RF classifier took the normalized
feature vectors as input for a pixel-based classification. Besides
the final classification results, the confidence values of each
class label were given to each pixel. Thus a BPM map were
generated for each dataset among the time-series images.

3) Spatiotemporal based BPM refinement: As it was men-
tioned in [11], the BPMs across all dates may be not consistent
due to some potentially imprecise training samples, or un-
wanted objects on optical images, such as cloud/snow covered
regions. In addition, as a general drawback of the pixel-based
classification approaches the salt-and-pepper effect exists in the
results. Thus a consistency check through spatial and temporal
domain would be helpful to improve the final result. The basic
idea of this approach could be explained through Eq. (8).

Pf (x, y, t) =
1∑

w(x, y, t)
×

m=x+l∑
m=x−l

n=y+l∑
n=y−l

h∑
k=1

w(m,n, k)P (m,n, t), (8)

where P (m,n, t) is the BPM at time t. The refined BPM is
recorded as Pf (x, y, t). A window size (2× l+1)2 is used for
the spatial consistence check. We have used l = 7 in [11]. h is
the number of temporal data set. w(m,n, k) is the 3D adaptive
kernel, which aims to balance the similarity and distance of
the neighboring pixels in three dimensions.

B. DS based change map refinement

One of the main advantages of DST lies in the handling
indicators from various sources flexibly. Benefit from the
previous steps, the refined BPMs from each time would be
delivered. And a building change probability map can be
calculated by using the approach from Section II. Based on
the building change detection approach, we obtain a building
change probability map in which all pixels represent a proba-
bility that pixel were classified as building change. Thus, when
comparing two datasets the available indicators would be,

• pre-event BPM (Ppre)

• post-event BPM (Pafter)

• initial building change probability map (PBC)

four To model this situation more precisely, we categorize
the change situations into four groups, which are buildings
to buildings (BB), non-building to buildings (NB), buildings
to non-building (BN) and non-building to non-building (NN).
Based on these four classes and the indicators, the FE set that
are of interest in this fusion model is,

FE = {BB,NB,BN,NN,BB ∪BN,BB ∪NB,Θ}. (9)

The probability masses {P1, P2, P3} obtained respectively
from these three indicators are assigned to FE as shown in
Table. II. One of the basis principles is that all newly built
buildings should have a lower value in the pre-event BPM,
and a higher value in the post-event BPM. Based on the DS
fusion rule, the fused masses are listed in the last column.

TABLE II. DS FUSION MODEL FOR RESULT REFINEMENT
[K = P1 ∗ P3].

FE. Ppre Pafter PBC Fused mass
BB 0 0 0 P1∗P2∗(1−P3)

1−K

NB 0 0 P3
(1−P1)∗P3

1−K

BN 0 0 0 0
NN 0 0 0 0

BB ∪ BN P1 0 0 P1∗(1−P2)∗(1−P3)
1−K

BB ∪NB 0 P2 0 (1−P1)∗P2∗(1−P3)
1−K

Θ 1-P1 1-P2 1-P3
(1−P1)∗(1−P2)∗(1−P3)

1−K

C. Time-series fusion model

The previous fusion steps are performed to each multi-
temporal data pair separately. They can be then combined in
the time-series fusion model. In this section, we use three
datasets captured from three dates as an example to describe
our fusion model. Three datasets are notated as d1, d2 and d3,
respectively. They are arranged according to the acquisition
time. d1 is the oldest dataset. Then the building change
detection (BC) outcomes among these datasets can be recoded
as BC12, BC23 and BC13, respectively.

By referring to the fusion model in Table II, a global mass
{mBB ,mNB ,mBN ,mNN ,mBB∪BN ,mBB∪NB ,mΘ} can be
obtained. We will transform the global mass to a three-classes
FE mass on NB, NB, and Θ by coarsening the original set of
focal elements. For this, we apply the following transformation
which can be seen as a partial pignistic transformation. In the
pignistic probabilities [4], global masses of joint elements are
averagely redistributed to each class. Since the full ignorance
Θ is one focal elements in the three-classes FE, we will keep
this value to m(Θ) and only take the partial ignorance when
calculating the m′(.) as shown in Eq. (10).

m′(NB) = mNB +
1

2
mBB∪NB ,

m′(BB) = mBB +
1

2
mBB∪NB +

1

2
mBB∪BN ,

m′(BN) = mBN +
1

2
mBB∪BN ,

m′(NN) = 0,

m′(Θ) = m(Θ).

(10)

To clarify the notation, we use a, b and c to represent
the mass values for NB, NB and Θ, respectively. With
m′(NN) = 0, they can be calculated with Eq. (11). Thus
the building change detection results from NB12, NB23 and
NB13, denoted as PNB12, PNB23 and PNB13, can be fused
according to the fusion model shown in Table III.

TABLE III. THE INDICATORS FOR TIME SERIES FUSION MODEL.

FE. PNB12 PNB23 PNB13

C1 P1a 0 0
C2 0 P2a 0
C3 0 0 P3b

C1 ∪ C2 0 0 P3a

C2 ∪ C3 P1b 0 0
C1 ∪ C3 0 P2b 0

Θ P1c P2c P3c

In this fusion model, the focal three change classes would
be, changes happened between d1 and d2, notated as C1;
changes happened between between d2 and d3, notated as C2;
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and no-building change, notated as C3.

a = m′(NB),

c = m′(Θ),

b = m′(NB) = 1−m′(NB)−m′(Θ).

(11)

With the conjunction rules, the following belief masses will
be obtained,

m(C1) = P1aP2cP3a + P1aP2cP3c + P1aP2bP3a

+ P1aP2bP3c + P1cP2bP3a,

m(C2) = P1bP2aP3a + P1bP2aP3c + P1bP2cP3a

+ P1cP2aP3a + P1cP2aP3c,

m(C3) = P1bP2bP3b + P1bP2cP3b + P1cP2bP3b

+ P1cP2cP3b + P1bP2bP3c,

m(C1 ∪ C2) = P1cP2cP3a,

m(C2 ∪ C3) = P1bP2cP3c,

m(C1 ∪ C3) = P1cP2bP3c,

m(Θ) = P1cP2cP3c,

K = 1−m(C1)−m(C2)−m(C3)−m(C1 ∪ C2)

−m(C2 ∪ C3)−m(C1 ∪ C3)−m(Θ).

(12)

in which K represents the mass of conflict.

Based on the DS fusion rule, the final mass will be
calculated by

mDS(X) =
m(X)

1−K
, (13)

for X ∈ {mBB ,mNB ,mBN ,mNN ,mBB∪BN ,mBB∪NB ,mΘ},
and X 6= ∅; and mDS(∅) = 0.

IV. EXPERIMENTS

The improved building change detection fusion models
have been tested on satellite images. The datasets and the
experiments are described in this section.

A. Datasets

The experimental datasets consist of five pairs of IKONOS
and one pair of GeoEye-1 stereo imagery captured from 2006
to 2011. The detailed capture dates of these data are shown
in Table IV. The true color images of the earliest and latest
datasets are shown in Fig. 1 (a) and 1 (b), respectively. Within
these five years, many new buildings are constructed in this
test region. As a data preparation procedure, DSMs have been
generated based on the method explained in [15].

TABLE IV. TIME SERIES DATASETS DESCRIPTION.

No. Satellite Capture date Resolution (m)
PAN MS

1 IKONOS 23-02-2006 1 4
2 GeoEye-1 20-12-2009 0.5 2
3 IKONOS 12-01-2010 1 4
4 IKONOS 13-05-2010 1 4
5 IKONOS 07-01-2011 1 4
6 IKONOS 02-05-2011 1 4

The sub-pixel co-registration among these data is per-
formed based on the camera model parameters correction [11].
The radiometric co-registration method is described in [7].

B. Results and evaluation

In the first change detection step, the data from 2006 are
used as the pre-event test data. The rest five datasets are the
post-event dataset. Thus five change detection case studies
are prepared and named as C06−09, C06−1001, C06−1005,
C06−1101, C06−1105, correspondingly. The change indicators
from DSMs and images are detected respectively by using
robust height differences and IRMAD. The change maps are
recorded as Hdiff and Imgdiff . At the same time, BPMs from
all six datasets are calculated and refined with the approach
described in section III-A. Then the change detection result
between each pairs of datasets is refined by using the pre-
event and post-event BPMs.

To evaluate quantitatively the performances of the different
fusion approaches, the extracted BBAs from both approaches
(original and refined) are compared to the manually extracted
change reference masks. The results are analyzed in terms of
Receiver Operating Characteristic (ROC) curve [16]. A larger
area under the ROC curve (AUC) indicates a better accuracy
of the building change map. The numerical evaluation results
are described in Table V. The obtained AUC values prove
an obvious accuracy improvement after the proposed fusion
model is applied. The m′(NB) is used as the first-step change
detection results, and listed as Refined1.

TABLE V. BUILDING CHANGE DETECTION ACCURACY COMPARISON.

Change maps C06−09 C06−1001 C06−1005 C06−1101 C06−1105

Hdiff 0.9267 0.9233 0.9016 0.8289 0.8211
Imgdiff 0.9049 0.5937 0.9004 0.8283 0.8610
Fusion 0.9540 0.9271 0.9474 0.8885 0.8862
Refined1 0.9771 0.9744 0.9668 0.9241 0.9442

In the time-series fusion model, we have tested the data
from 2006, 2009 and 2010 May as a test combination. The
further improved building change probability map (C06−09)
with (AUC=0.9795) is delivered. The differences between the
original change detection result and the refined one can be
observed in Fig. 2.

V. CONCLUSIONS

Detecting building changes is an important but difficult
topic. Many approaches have been proposed for specific build-
ing types or for certain types of data sets. In addition, the image
quality and the existing of some unwanted objects may also
influence the effectiveness of some approaches. Our previous
research has evidenced the performance of the belief functions
in DSM assisted change detection [3]. In this paper, we have
further explored in more detail the belief functions for building
change detection. Time-series data were used for this purpose.
They were firstly adopted to provide the BPMs after checking
the temporal consistency for each date. Then, pre- and post-
event BPMs are used to improve the accuracy of the DS-based
building detection result. In the last step, the time-series change
detection results can be fused again according to the DS fusion
rule, which results a further improved building change map.
However, in the time-series fusion model, only three sets of
data are involved. As part of our further work, this fusion
model will be further refined that may accommodate more
datasets as inputs.
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Fig. 1. The true color images of the first (a) and sixth (b)experimental dataset and (c) the change reference map (Blue: built before 2009; Orange: built before
January 2011; Red: built before May 2011)

Fig. 2. The building change detection results between 2006 and 2009 based
on (a) inital fusion model (b) time-series fusion model.
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Abstract—In belief functions related fields, the distance mea-
sure is an important concept, which represents the degree
of dissimilarity between bodies of evidence. Various distance
measures of evidence have been proposed and widely used in
diverse belief function related applications, especially in perfor-
mance evaluation. Existing definitions of strict and non-strict
distance measures of evidence have their own pros and cons.
In this paper, we propose two new strict distance measures of
evidence (Euclidean and Chebyshev forms) between two basic
belief assignments (BBAs) based on the Wasserstein distance
between belief intervals of focal elements. Illustrative examples,
simulations, applications and related analyses are provided to
show the rationality and efficiency of our proposed measures for
distance of evidence.

Keywords: distance of evidence, belief functions, evidence

theory, dissimilarity, belief interval.

I. INTRODUCTION

The theory of belief functions, also called Dempster-Shafer

evidence theory (DST) [1], is an important mathematical

framework for uncertainty modelling and reasoning. It has

been applied to information fusion [2], pattern recognition [3]

[4], multiple-attribute decision making [5], fault diagnosis [6],

etc. DST has some limitations, see [7]–[9] for discussions.

Generalized or refined theories were proposed including trans-

ferable belief model (TBM) [10] and Dezert-Smarandache

Theory (DSmT) [7], [11], etc.

In DST, the basic belief assignment (BBA) is a common

way for modeling (epistemic) uncertainty. The distance of

evidence is a crucial metric for measuring the distance between

two BBAs. It indicates a BBA is “far” from or “close” to

another one. In many belief functions related applications,

the distance of evidence is required. Such belief function-

related applications can be categorized into two types. The

first type is the performance evaluation or optimization [12]–

[16]. For example, in the performance evaluation of BBA

approximation [16], which aims to simplify the BBA to reduce

the computational complexity, the distance of evidence is

needed to measure accuracy of an approximated BBA (the

one closer to the original BBA is better). Furthermore, some

BBA approximation approach is directly based on the distance

minimization [17], therefore, the distance of evidence is indis-

pensable. The second type of applications is to determine the

agreement between sources of information. For example, in

the clustering analysis [4], [18], [19] and the determination

of discounting factors [20], [21], the distance of evidence is

required.

Since the distance of evidence is a very crucial concept in

many applications, it has attracted increasing research interest

recently in the belief functions community. Many definitions

of distance (or dissimilarity) measures have been proposed in

the past two decades [22]. Some of them are non-strict distance

metrics, although they are often called “distance”. In practice,

Jousselme’s (strict) distance of evidence [13] and Tessem’s

(non strict) betting commitment distance [23] (also called the

pignistic probability distance) are most frequently used ones.

A fuzzy set based distance of evidence was also proposed in

our previous work [24]. Jousselme et al. provided an excellent

survey [22] on available works on the distance of evidence,

where many definitions are introduced and compared.

Various types of distance of evidence have been proposed

under the geometric interpretation [25] of the DST, where

a basic belief assignment (BBA) is considered as a vec-

tor of a Cartesian-alike space and each focal element is

deemed as a base of the space [22]. However, all existing

distances of evidence have their own limitations. First, a

strict distance metric should satisfy the requirements including

the non-negativity, non-degeneracy, symmetry, and triangular

inequality. None of the existing distances of evidence except

for Jousselme’s distance can satisfy all the requirements,

i.e., they are not strict distance metrics. This is due to the

switch between theoretical frameworks. For example, Tessem’s

betting commitment distance [23] first transforms BBAs into

pignistic probabilities, and fuzzy set based distance of ev-

idence [24] first transforms BBAs into fuzzy membership

functions. Such switches between different frameworks lead

to the loss of information, thus the distance between BBAs

cannot be described precisely using these measures. Therefore,

their strictness cannot be assured and they may encounter

counter-intuitive results when measuring the distance between

different BBAs. Although Jousselme’s distance is a strict

metric and performs well in many cases, it still has some

unsatisfactory behaviors based on our experiments, e.g., the

lack of discriminibility in some cases and the maximum value

Originally published as: D. Han, J. Dezert, Y. Yang, Belief interval Based Distances Measures in the 
Theory of Belief Functions, IEEE Trans. on SMC, Vol. 48(6), pp. 833–850, June 2018, and reprinted with 
permission.
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problem as pointed out and analyzed in this paper. Due to the

limitations of existing distance measures, we are motivated

to propose better strict distance measures of evidence. We

propose to use belief intervals [1] [Bel(A), P l(A)] of each

focal element A to describe the closeness between BBAs,

where Bel(A) and Pl(A) are respectively the belief and

plausibility of a focal element A computed from the given

BBA defined on a known frame of discernment. If we consider

that a BBA is used to model the uncertainty as a whole for all

focal elements, then the belief interval of each focal element

in a BBA represents the uncertainty of the corresponding

proposition. If we use all belief intervals of a BBA as a whole

as its “feature” vector, then the distance between the “feature”

vectors of different BBAs describes the difference between

them. Since a belief interval is an interval number, the distance

between the same focal element’s two belief intervals in two

BBAs can be calculated by Wasserstein’s distance of interval

numbers [26]. Based on all the distance values between belief

intervals, we design a Euclidean-family distance using the

sum of squares of all belief intervals’ distance values, and

a Chebyshev-family distance using the maximum of all belief

intervals’ distance values, respectively, to measure the distance

between two different “feature” vectors of belief intervals,

and thus to measure the distance between two BBAs. Our

new definitions directly use the belief intervals defined in

the DST, i.e., there is no switch between different theoretical

frameworks. It can be proved that our new proposed measures

of distance of evidence are strict distance metrics satisfying

the requirements of non-negativity, non-degeneracy, symmetry

and triangle inequality. This paper extends our preliminary

results in [27], where the basic idea of the belief interval based

distance is briefly introduced and a few illustrative examples

are provided. In this paper, the limitations of existing distances

are summarized more specifically, and the causes of these lim-

itations are analyzed. More detailed formulations, proofs, and

theoretical analyses of the new proposed distance measures are

provided. More examples, simulations, and related analyses

are provided for comparison between our proposed distances

and the existing ones. An application of the proposed distances

of evidence in the BBA approximation and an application of

multiple criteria decision making (MCDM) using the proposed

distance of evidence is also provided. These are all added

values (contributions) of this paper.

The rest of this paper is organized as follows. Basics of the

theory of belief functions are briefly introduced in Section

II. The geometric interpretation and some commonly used

distance measures of evidence are reviewed in Section III.

Limitations of existing measures are explained based on illus-

trative examples in Section III. In Section IV, two new distance

metrics in DST are proposed based on the belief intervals

and the distance between interval numbers. The proof of our

proposed distance metrics’ strictness, and the comparisons

between our measures and distance bounds are also provided

in Section IV. In Section V, examples, simulations, applications

and related analyses are provided based on the comparison

between new metrics and some existing ones from different

aspects to show the rationality and efficiency of our new

metrics. Section VI concludes this paper.

II. BASICS OF THEORY OF BELIEF FUNCTIONS

The theory of belief functions was first proposed by Demp-

ster and then further developed by Shafer, therefore, it is

usually called Dempster-Shafer evidence theory (DST) [1].

It has become an important theory and tool for uncertainty

modeling and reasoning.

The basic concept of the theory of belief functions is the

frame of discernment (FOD), which represents the discourse

domain of the problem we are interested in. Under the closed-

world assumption, the FOD: Θ = {θ1, ..., θn} is defined as a

set of n mutually exclusive and exhaustive elements. If a set

function m : 2Θ → [0, 1], where 2Θ is the powerset of Θ1,

satisfies
∑

A⊆Θ
m(A) = 1, m(∅) = 0, (1)

and if m(A) ≥ 0 holds, then m is called a basic belief

assignment (BBA, or mass function) over the FOD Θ. All

the sets A ∈ 2Θsatisfying m(A) > 0 are called the focal

elements. Each focal element represents a proposition in the

FOD. Given a BBA, a body of evidence (BOE) [1] can be

determined, which is defined as the set of focal elements and

their corresponding mass assignments.

A belief function over the FOD Θ, denoted by Bel : 2Θ →
[0, 1], is defined as:

Bel(A) =
∑

B⊆A
m(B), ∀A ⊆ Θ. (2)

A plausibility function over the FOD Θ, denoted by Pl :
2Θ → [0, 1], is defined as:

Pl(A) =
∑

B∩A 6=∅
m(B), ∀A ⊆ Θ. (3)

The plausibility function and the belief function satisfy [1]:

Pl(A) = 1−Bel(Ā), (4)

where Ā is the complementary proposition of A ∈ 2Θ. The

plausibility Pl(A) and the belief Bel(A) constitute a belief

interval [Bel(A), P l(A)]. The length of the belief interval

[Bel(A), P l(A)] represents the degree of imprecision for the

proposition or focal element A. The non-null mass value

assigned to Θ represents the degree of ignorance, i.e., the

“unknown” state. Furthermore, in DST, different uncertainty

measures have been proposed such as Non-specificity [28],

Ambiguity Measure (AM) [29], Aggregated Uncertainty (AU)

[30] and distance-based uncertainty measures [31].

The evidence combination rules are for uncertainty reason-

ing, e.g., Dempster’s rule of combination is used to combine

different distinct bodies of evidence (BOEs). Suppose that

there are two independent BBAs: m1 and m2. The conflict

coefficient [1] is defined as

K ,
∑

Ai∩Bj=∅
m1(Ai)m2(Bj). (5)

1The powerset is the set of all subsets of Θ including the empty set ∅.
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If K < 1, then the combined BBA m can be obtained using

Dempster’s rule of combination:

m(A) =











0, A = ∅,
∑

Ai∩Bj=A

m1(Ai)m2(Bj)

1− ∑

Ai∩Bj=∅

m1(Ai)m2(Bj)
, A 6= ∅, (6)

where A1, ..., Ak and B1, ..., Bl are focal elements of m1 and

m2, respectively. Note that Dempster’s rule of combination is

both commutative and associative, i.e., symmetric.

The obtained BBA is in fact the orthogonal sum of the

original BBAs. Dempster’s rule of combination has been criti-

cized for its counter-intuitive behaviors [9], [32], especially in

high conflict cases. Accordingly, many alternative combination

rules have emerged. See [7], [33] for details.

III. TRADITIONAL MEASURES OF DISTANCE OF EVIDENCE

How to measure the closeness between two BBAs? This

is crucial for performance evaluation, algorithm optimization

and other belief functions based applications. The answer is

the distance of evidence. The conflict coefficient K (defined

in Eq. (5)) in Dempster’s rule of combination was the only

means to quantify the interaction between BBAs for about

two decades (from 1967 to 1990). However, this coefficient K
(denoted by dC in the sequel) may be inappropriate to quantify

the closeness between two BBAs as the conflict between two

identical BBAs might not equal to 0.

Example 1. Suppose that the FOD is Θ = {θ1, ..., θn}. Two

BBAs defined on Θ are m1({θ1}) = · · · = m1({θn}) = 1/n
and m2({θ1}) = · · · = m2({θn}) = 1/n.

Obviously, they are two identical BBAs and dC = 1− 1/n.

When n becomes large, dC approximates to its upper bound

(i.e., 1). If one considered dC as a distance, such a result would

be somewhat counter-intuitive.

A strict distance metric defined on the set E d(·, ·) : E×E →
R, (x, y) 7→ d(x, y) should satisfy

1) Non-negativity: d(x, y) ≥ 0;

2) Non-degeneracy: d(x, y) = 0 ⇔ x = y;

3) Symmetry: d(x, y) = d(y, x);

4) Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z), ∀z ∈ E .

Obviously, dC violates the Non-degeneracy condition. It is

not difficult to verify that dC only satisfies the Non-negativity

and Symmetry conditions. Therefore, it is not a strict distance

metric.

Many other definitions2 of distance of evidence were pro-

posed in the past two decades as reported in Jousselme’s sur-

vey [22]. Most of them can be considered as being established

under the framework of the geometrical interpretation of the

DST.

2To be rigorous, only those definitions satisfying the four requirements can
be called “distance”. The ones that do not satisfy these four requirements
can only be called “dissimilarity” or “closeness” measures. In the sequel, for
the convenience, all dissimilarity definitions are called “distance” when no
ambiguity should occur.

A. Geometric interpretation of the theory of belief functions

The geometrical interpretation of the DST [25] is as follows.

Suppose that the FOD is Θ with |Θ| = n. Let EΘ be the 2n

-dimensional Cartesian space3 spanned by the set of column

vectors {eA, A ⊆ Θ}. Each vector v of EΘ could be rewritten

as v =
∑

A⊆Θ
αA · eA. Here αA ∈ R can be considered as

the coordinate of v along the direction of eA.

A BBA m is a vector of EΘ, which should satisfy
∑

A⊆Θ
αA = 1, α∅ = 0, with αA ≥ 0 and αA , m(A) due

to the properties of unity and non-negativity for mass values,

as illustrated in Eq. (1).

For example, suppose that the FOD Θ = {θ1, θ2}. A BBA m

on Θ is m({θ1}) = 0.3,m({θ2}) = 0.2,m({θ1, θ2}) = 0.5.

Under the closed-world assumption, m is illustrated in Fig. 1.

Figure 1. Geometrical interpretation of a BBA.

According to the geometrical interpretation of DST, two BBAs

m1 and m2 are two vectors. That is, m1 and m2 are two

“points” in the evidential Cartesian space. In the past thirty

years, people use all kinds of distance for Cartesian space

like Euclidean distances, Chevbyshev distances, Minkowski

distances, Manhattan distances, etc, to define the distance be-

tween BOEs according to the geometrical interpretation [22].

Note that many available definitions are non-strict distance

metrics [22]. A few typical measures are reviewed in details

in the following. Many other definitions can be found in

Jousselme’s survey [22].

B. Selected existing distance measures of evidence

The earliest distance of evidence is the Tessem’s distance of

betting commitment [23], which is proposed for the evaluation

of BBA approximations.

1) Tessem’s betting commitment distance: The pignistic

probability corresponding to a BBA m is defined by [34]:

BetP(A) ,
∑

B⊆Θ

|A ∩B|
|B| m(B), (7)

3Note that whether the geometric interpretation of the DST satisfies
the strict requirements or properties of the geometric space needs further
justifications. Here we call it as the evidential Cartesian space.
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which is a probabilistic transformation [35] from a BBA

for the probabilistic decision making in DST. The betting

commitment distance (or Tessem’s distance) dT is computed

by [23]:

dT (m1,m2) , max
A⊆Θ

{|BetP1(A)− BetP2(A)|} . (8)

It can be reformulated according to the evidential Cartesian

space as

cdT (m1,m2) = max



















|BetP1(A1)−BetP2(A1)|
|BetP1(A2)−BetP2(A2)|

...

|BetP1(A2n)−BetP2(A2n)|



















= max
A⊆Θ

{∣

∣BetP1
′ · eA −BetP2

′ · eA

∣

∣

}

,

(9)

where BetPi = [BetPi(A1), BetPi(A2), ..., BetPi(A2n)]
′,

i = 1, 2.

dT is a Chebyshev L∞ alike distance. From the definition of

dT , we can see that there is a switch from the DST framework

to the probability framework when calculating this distance.

The inconsistency between different theoretical frameworks

leads to the loss of information and some unexpected results,

therefore, it is not recommended.

Actually, due to the switch between different frameworks,

Tessem’s distance is not a strict distance metric [36]. It violates

the non-degeneracy condition as shown in Example 2.

Example 2. Suppose that FOD is Θ = {θ1, .., θn}. There

are two BBAs m1 and m2 defined on Θ including m1({θ1}) =
· · · = m1({θn}) = 1/n and m2(Θ) = 1. Their corresponding

pignistic probabilities are both P (θ1) = · · · = P (θn) = 1/n.

Therefore, dT (m1,m2) = 0, although they are different BBAs.

Thus, dT does not satisfy the non-degeneracy condition. dT
also does not satisfy the triangle inequality and has other

drawbacks. See details in [36].

2) Fuzzy membership function (FMF) based dissimilarity:

First transform BBAs m1(·) and m2(·) into FMFs4: µ(1) and

µ(2) as for i = 1, 2

µ(i) =
[

µ(i)(θ1), µ
(i)(θ2), · · ·µ(i)(θn)

]

=
[

Pl(i)(θ1), P l(i)(θ2), · · · , P l(i)(θn)
]

.
(10)

According to the dissimilarity definition between FMFs, dF is

defined as [24]:

dF (m1,m2) = 1−
∑n

i=1
(µ(1)(θi) ∧ µ(2)(θi))

∑n

i=1
(µ(1)(θi) ∨ µ(2)(θi))

. (11)

In (11), the operator ∧ represents the conjunction (min) and

∨ represents the disjunction (max).

4The FMF quantifies the membership grade of the element to the fuzzy
set. It is a generalization of the characteristic function in classical set and can
take its values in the interval [0, 1].

It can be reformulated according to the evidential Cartesian

space as

dF (m1,m2) ,

1−
∑n

i=1
min ((Int · m1)

′ · eθi , (Int · m2)
′ · eθi)

∑n

i=1
max ((Int · m1)′ · eθi , (Int · m2)′ · eθi)

,
(12)

where Int is the intersection matrix, whose element is

Int(A,B) = 1, if A∩B 6= ∅; Int(A,B) = 1, if A∩B = ∅.

One has Pl = Int·m, where Pl is the corresponding plausibility

vector of m.

dF in fact indirectly represents the distance between two

BBAs using the distance between their corresponding FMFs.

Note that dF is not a strict distance metric. First, dF does

not satisfy the non-degeneracy condition due to the switch

from the DST framework to the fuzzy set framework. Given

two different BBAs, their corresponding fuzzy membership

functions (FMFs) (singleton plausibility) might be the same

as shown in Example 3.

Example 3. Suppose that FOD is Θ = {θ1, θ2, θ3}. Two

BBAs m1 and m2 defined on Θ are

m1({θ1, θ3}) = 0.3,m1({θ1, θ2}) = 0.7.
m2({θ1}) = 0.3,m2({θ1, θ2}) = 0.4,m2(Θ) = 0.3.

Their corresponding singleton plausibilities are the same:

µ(1)(θ1) = Pl1({θ1}) = 1.0, µ(1)(θ2) = Pl1({θ2}) = 0.7,

µ(1)(θ3) = Pl1({θ3}) = 0.3.
µ(2)(θ1) = Pl2({θ1}) = 1.0, µ(2)(θ2) = Pl2({θ2}) = 0.7,

µ(2)(θ3) = Pl2({θ3}) = 0.3.

Therefore, dF (m1,m2) = 0, although m1 and m2 are different

BBAs.

3) Jousselme’s distance: By borrowing the L2 Euclidean

distance with weighting matrix in Cartesian space, Jousselme’s

distance [13] is defined as:

dJ (m1,m2) ,

√

0.5 · (m1 − m2)
T
Jac (m1 − m2), (13)

where the elements Jac(A,B) of Jaccard’s weighting matrix

Jac are defined as

Jac(A,B) =
|A ∩B|
|A ∪B| (14)

It has been proved to be a strict distance metric in [37] and

has become the most commonly used one so far; however, it

might cause some unsatisfactory results as shown in Example

4.

Example 4. Suppose that the FOD is Θ = {θ1, ..., θ6}.

Three groups of BBAs are as follows.
{

m1({θ1}) = 1;
m2({θ2}) = 1.

{

m3({θ1, θ2}) = 1;
m4({θ3, θ4}) = 1.

{

m5({θ1, θ2, θ3}) = 1;
m6({θ4, θ5, θ6}) = 1.

Using Jousselme’s distance, one gets dJ (m1,m2) =
dJ(m3,m4) = dJ (m5,m6) = 1, that is, they all reach the
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maximum value 1. The six BBAs here are all categorical

BBAs5. m1 and m2 each has a unique singleton focal element.

The opinions of m1 and m2 are totally different, and both of

them are specific, i.e., with no ambiguity. The opinions of m3

and m4 are totally different, however, both of them are not

specific and with ambiguity. The BBAs m5 and m6 carry larger

ambiguity. Intuitively, it makes sense that the distance between

m1 and m2 should be larger than the distance between m3 and

m4; also, the distance between m3 and m4 should be larger

than the distance between m5 and m6. Jousselme’s distance

does not provide this expected behavior.

Furthermore, Jousselme’s distance is relatively insensitive

to the change of BBA in some cases as shown in Example 5.

Example 5. Suppose that FOD is Θ = {θ1, ..., θ3}. Con-

sider the following three BBAs m1, m2 and m3:

m1({θ1}) = m1({θ2}) = m1({θ3}) = 1/3;

m2({θ1}) = m2({θ2}) = m2({θ3}) = 0.1,m2(Θ) = 0.7;

m3({θ1}) = m3({θ2}) = 0.1,m2({θ3}) = 0.8.

Since both m1 and m2 have no preference on any singleton

{θi} and m3 commits more belief to {θ3}, it is intuitively

expected that the distance between m1 and m2 should be

smaller than that between m1 and m3. However, Jousselme’s

distance leads to dJ (m1,m2) = dJ (m1,m3) = 0.4041, which

shows that dJ does not discriminate them well.

In summary, many existing distance measures of evidence

have evident limitations, even for the strict Jousselme’s dis-

tance metric. For Tessem’s distance and FMF-based dis-

tance, there exist the switches between different theoretical

frameworks. With Tessem’s distance, there is a switch from

the framework of DST to the framework of the probability

theory; with FMF-based distance, there is a switch from the

framework of DST to the framework of the fuzzy sets theory.

These switches bring the undesired loss of information, which

should be avoided. Jousselme’s distance borrows the distance

metric from the traditional Cartesian space to the evidential

Cartesian space. The strictness of the evidential Cartesian

space, i.e., the geometrical interpretation of DST needs further

verification. Therefore, it is not uncommon to obtain some

unsatisfactory results when using Jousselme’s distance.

Since traditional distances in DST have limitations (or

unsatisfactory behaviors), we propose new strict distance mea-

sures of evidence with better behaviors.

IV. DISTANCE OF EVIDENCE USING BELIEF INTERVALS

As aforementioned, the limitations and non-strictness of

some existing distances of evidence are caused by the switches

between theoretical frameworks, therefore in our design of

the new distances, no such switch is allowed. In Jousselme’s

distance, there is no switch between different theoretical

frameworks, where only the focal elements and the corre-

sponding mass values are used. Given a BBA, the mass value

for a proposition (or focal element) A represents the basic

belief assigned to A. Besides the mass value m(A), other

5A categorical BBA is a BBA only has one focal element.

values, like Bel(A) and Pl(A), are optional. Furthermore,

the belief interval [Bel(A), P l(A)] can be used to represent

the degree of imprecision of A. Therefore, the belief interval

[Bel(A), P l(A)] carries more information of a given proposi-

tion A than the mass value m(A), which is a scalar. Therefore,

we propose to use the belief interval (with more information)

to replace the mass value for achieving better performance.

In DST, besides the BBA (m), the belief function (Bel) and

plausibility function (Pl), there also exist the doubt function

(Dou) and the commonality function (Q) [1]. Given one

function, it can be transformed to any other one of these

five functions according to their definitions and the Möbius

transformations [1]. That is, any one of the five functions has

one-to-one correspondence to the other, therefore, one can also

try to jointly use other functions like the commonality and

doubt for designing new distance measures. In this paper, we

choose the belief interval [Bel(A), P l(A)], ∀A ⊆ Θ, since the

belief and plausibility are more familiar to people and more

widely used in practice than the doubt and the commonality.

Furthermore, [Bel(A), P l(A)] has intuitive physical meaning,

i.e., the degree of imprecision for the proposition A.
Suppose that two BBAs m1 and m2 are defined on

Θ = {θ1, θ2, ..., θn}. For each focal element Ai ⊆ Θ
(i = 1, ..., 2n − 1), we can calculate the belief interval
of Ai for m1 and m2, respectively, which are denoted by
[Bel1(Ai), P l1(Ai)] and [Bel2(Ai), P l2(Ai)]. That is, each
BBA mj (j = 1, 2) can also equivalently be modeled by a
matrix with the size of (2n − 1)× 2:







[Belj(A1), P lj(A1)]
...

...
[Belj(A2n−1), P lj(A2n−1)]






.

A belief interval can be regarded as a classical interval
number6 included in [0, 1]. Then the above matrix can be
regarded as a vector of interval numbers (belief intervals):

Fej =







[Belj(A1), P lj(A1)]
...

...
[Belj(A2n−1), P lj(A2n−1)]







=







BIj(A1)
.
..
BIj(A2n−1)






.

(15)

Here Fej can be considered as a generalized feature vector

describing the BBA mj . If we can define the distance between

Fe1 and Fe2, then the distance between m1 and m2 is readily

obtained. Here Fe1 and Fe2 are two generalized vectors whose

elements are intervals7.

We can borrow the definition of the distance metric for the

vectors in Cartesian space to define the distance of evidence

here: 1) define the distance between two feature vectors in each

dimension; 2) combine the distance value for each dimension

into a scalar.

6An interval number [a, b] with a ≤ b is actually an interval with the lower
bound a and the upper bound b, where a, b ∈ R. When a = b, an interval
number degenerates to a real number.

7The Fej can be also considered in the evidential Cartesian-alike space,
however, the coordinate of each direction eA is a generalized real number,
i.e., an interval number.
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Therefore, in the step 1, the distance in each dimension

should be defined, i.e., we must define the distance between

two interval numbers. Irpino et al [26] proposed a Wasserstein

distance for interval numbers as briefly introduced below.

Suppose that F and G are the corresponding distribution

functions of the random variables f and g, respectively,

Wasserstein L2 metric is defined as [26]

dWass(F,G)
∆
=

√

∫ 1

0

(F−1(t)−G−1(t))2dt. (16)

For a uniform distribution of points, an interval of reals xi =
[ai, bi] can be expressed as a function of [26]:

xi(t) = [ai, bi] = ai + t(bi − ai), ∀0 ≤ t ≤ 1. (17)

If one further considers a description of the interval using

its midpoint (ai + bi) /2 and radius (bi − ai) /2, xi can be

rewritten as

xi(t) =
ai + bi

2
+

bi − ai
2

(2t− 1) , ∀0 ≤ t ≤ 1 (18)

Then, Euclidean distance between homologous points of two

intervals x1 = [a1, b1] and x2 = [a2, b2] is defined as [26]

dBI ([a1, b1], [a2, b2]) = dWass(x1, x2)

=
√

∫ 1

0
[x1(t)− x2(t)]

2
dt

=

√

∫ 1

0

[

a1+b1
2

− a2+b2
2

+
(

b1−a1

2
− b2−a2

2

)

(2t− 1)

]2

dt

=

√

[

a1+b1
2

− a2+b2
2

]2
+ 1

3

[

b1−a1

2
− b2−a2

2

]2
.

(19)

Note that there are also other types of distance between

interval numbers [26]. We choose the Wasserstein distance

in Eq. (19) to calculate the distance between belief intervals,

because it is a strict distance metric, which is very crucial for

defining distance measures of evidence. Furthermore, it has a

simple form, and is easy to compute.

According to Eq. (19), the distance between two feature vec-

tors Fe1 and Fe2 in terms of each dimension i (i = 1, ..., 2n−
1), i.e., the distance between two belief intervals BI1(Ai) :
[Bel1(Ai), P l1(Ai)] and BI2(Ai) : [Bel2(Ai), P l2(Ai)] can

be obtained. dBI (BI1(Ai), BI2(Ai)) can be regarded as the

distance between m1 and m2 when considering the focal

element Ai only.

Therefore, we can obtain in total 2n − 1 belief interval

distance values for all Ai ⊆ Θ.

In step 2, we combine all the 2n − 1 distance values into

one scalar, i.e., to get the total distance between Fe1 and Fe2.

In Cartesian space, if we try to measure the distance be-

tween two points, we also calculate the dissimilarity between

each dimension of the two points, and then use some way

to combine the dissimilarity values of different dimensions

to a scalar, i.e., the distance value. Euclidean family and

Chebyshev family are two commonly used ways to generate

such a scalar in the Cartesian space. We can borrow this idea

to generate a scalar from the above mentioned 2n − 1 focal

elements’ corresponding dissimilarity values. Therefore, two

commonly used distance definitions — the Euclidean family

and the Chebyshev family — are used to combine the distance

values of all dimensions into a scalar, i.e., the distance value.

Two new distances of evidence are presented next.

A. Euclidean-family Belief Interval-based Distance dEBI

Given two BBAs m1 and m2, our proposed Euclidean-

family belief interval-based distance is a combination of each

focal element’s belief interval distance value. To be specific, it

is a normalized root squared summation of the distance value

between belief intervals in each dimension (focal element) as

shown in Eq. (20)

dEBI(m1,m2) ,

√

Nc ·
∑2n−1

i=1
[dBI(BI1(Ai), BI2(Ai))]

2
.

(20)

Here Nc denotes the normalization factor to make dEBI ∈ [0, 1].
Eq. (20) can be re-written as

dEBI(m1,m2) ,

√

Nc · dBI · I
(2n−1) · d

T
BI

=

√

Nc · dBI · d
T
BI ,

(21)

where I
(2

n−1) is an identity matrix with rank 2n − 1, and

dBI =







dBI(BI1(A1), BI2(A1))
...

dBI(BI1(A2n−1), BI2(A2n−1))






.

The normalization factor for Euclidean-family Belief

Interval-based Distance dEBI is Nc = 1/2n−1.

Suppose that the FOD is {θ1, θ2, ..., θn}. m1 and m2 are

two BOEs. m1({θl}) = 1, l ∈ {1, ..., n} is a categorical

BBA, which represents the most certain case, i.e., there is no

uncertainty when assign the belief to the singleton proposition

{θl}. The two BBAs:

m1({θi}) = 1,m2({θj}) = 1, ∀i 6= j, i, j ∈ {1, ..., n}.
(22)

are two different and the most certain cases. They have no

common part, i.e., they fully support different singletons,

therefore, the dissimilarity (distance) between them reaches

the maximum.

Assume that A is a focal element.

When |A| = 1, only two belief intervals have distance

value dBI of 1 (i.e., dBI(BI1(θi), BI2(θi)) = 1 and

dBI(BI1(θj), BI2(θj)) = 1 ). The other values are 0.

When |A| > 1, dBI = 1 for those focal elements including

θi or θj (but not including both θi and θj) are 1. dBI = 0 for

the rest.

To be specific,

when |A| = 2, dBI = 1 only for 2×C1
n−2 focal elements8.

dBI = 0 for the rest;

when |A| = 3, dBI = 1 only for 2× C2
n−2 focal elements.

dBI = 0 for the rest;

8Choose one element θk out of the Θ′ = Θ−{θi, θj}(|Θ
′| = n−2). Then,

together with θi and θj , respectively, to constitute focal element {θk, θi} and
{θk, θj}, respectively. So, the number of focal elements with dBI values of
1 is 2×C1

n−2 . Similarly, we can obtain the values in other cases for A > 1.
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...

when |A| = n− 1, dBI = 1 only for 2× Cn−2
n−2 focal ele-

ments. dBI = 0 for the rest;

when |A| = n, the dBI value of unique focal element, i.e.,

total set (Θ) is 0.

So, the summation Sc of all (dBI)
2 is

Sc = 2× 1 + 2× C1
n−2 + 2× C2

n−2 + ...
+2× Cn−2

n−2 + 0
= 2× (C0

n−2 + C1
n−2 + C2

n−2 + ...+ Cn−2
n−2 )

= 2× 2n−2 = 2n−1.

(23)

So, the normalization factor Nc = 1/Sc = 1/2n−1.

B. Chebyshev-family Belief Interval-based Distance dCBI

Given two BBAs m1 and m2, our proposed Chebyshev-

family belief interval-based distance is the maximum of all

belief interval distance values.

dCBI (m1,m2) , max
Ai⊆Θ,i=1,...,2n−1

{dBI (BI1(Ai), BI2(Ai))} .
(24)

Actually, we use the distance of belief intervals for focal

elements instead of their mass assignments to define the

distances of evidence when compared with traditional defi-

nitions. Euclidean-family belief interval-based distance dEBI

and Chebyshev-family belief interval-based distance dCBI are

strict distance metrics. dEBI and dCBI are defined over belief

intervals. Given a BBA (m(Ai), i = 1, ..., 2n − 1), we can

generate a set of belief intervals ([Bel(Ai), P l(Ai)]). On the

other hand, given a set of belief intervals ([Bel(Ai), P l(Ai)]),
according to the Möbius transformation, we can generate a

unique BBA (m(Ai), i = 1, ..., 2n − 1) from Pl(Ai), i =
1, ..., 2n − 1 or Bel(Ai), i = 1, ..., 2n − 1. As we know [1],

there is a one-to-one mapping between a set of belief intervals

([Bel(Ai), P l(Ai)]) and a BBA (m(Ai), i = 1, ..., 2n − 1).

According to Eqs. (20)-(21) and (24), it is easy to verify

that dEBI and dCBI satisfy non-negativity, non-degeneracy and

symmetry conditions. We need to prove the property of

triangle inequality of dEBI .

Suppose that there are three BBAs m1,m2,m3 defined on

the same FOD with size of n. Because dBI defined in Eq. (19)

is a strict distance metric, so, for each Ai (i = 1, ..., s, s =
2n − 1) there exists

dEBI(m1(Ai),m2(Ai)) + dEBI(m2(Ai),m3(Ai))

≥ dEBI(m1(Ai),m3(Ai)).

Suppose that

dEBI(m1(Ai),m2(Ai)) = ai; d
E
BI(m2(Ai),m3(Ai)) = bi;

dEBI(m1(Ai),m3(Ai)) = ci.
One has

ai + bi ≥ ci
⇒ (ai + bi)

2 ≥ c2i
⇒ a2i + b2i + 2aibi ≥ c2i

⇒
s
∑

i=1

a2i +
s
∑

i=1

b2i + 2
s
∑

i=1

aibi ≥
s
∑

i=1

c2i .

(25)

According to Cauchy-Schwarz inequality,

√

√

√

√

s
∑

i=1

a2i

s
∑

i=1

b2i ≥
s
∑

i=1

aibi. (26)

So,

s
∑

i=1

a2i +
s
∑

i=1

b2i + 2

√

s
∑

i=1

a2i
s
∑

i=1

b2i

≥
s
∑

i=1

a2i +
s
∑

i=1

b2i + 2
s
∑

i=1

aibi ≥
s
∑

i=1

c2i

⇒
s
∑

i=1

a2i +
s
∑

i=1

b2i + 2

√

s
∑

i=1

a2i
s
∑

i=1

b2i ≥
s
∑

i=1

c2i .

(27)

Therefore,

s
∑

i=1

a2i +
s
∑

i=1

b2i + 2

√

s
∑

i=1

a2i
s
∑

i=1

b2i

=

(√

s
∑

i=1

a2i +

√

s
∑

i=1

b2i

)2

=
(

dEBI(m1,m2) + dEBI(m2,m3)
)2

⇒
(

dEBI(m1,m2) + dEBI(m2,m3)
)2 ≥

(

dEBI(m1,m3)
)2

⇒ dEBI(m1,m2) + dEBI(m2,m3) ≥ dEBI(m1,m3).
(28)

So, the triangle inequality for dEBI is satisfied.

For dCBI , we have

dCBI(m1,m2) + dCBI(m2,m3) = max
i=1,...,s

ai + max
i=1,...,s

bi,

dCBI(m1,m3) = max
i=1,...,s

ci = ak + bk, k = argmax
i=1,...,s

ci.

(29)

There exists

ak+bk ≤ max
i=1,...,s

ai+ max
i=1,...,s

bi = dCBI(m1,m2)+dCBI(m2,m3),

(30)

i.e., dCBI(m1,m2) + dCBI(m2,m3) ≥ dCBI(m1,m3). Conse-

quently, dCBI satisfies triangle inequality.

In summary, dEBI and dCBI are strict distance metrics.

In the traditional geometric interpretation of DST introduced

in section III, the coordinates of different bases are represented

by mass values (real numbers), while for our new proposed

distances, the coordinates are represented by belief intervals

(interval numbers). Therefore, our new distances are under a

generalized geometric interpretation of evidence theory.

C. An illustrative example

Example 6. Suppose that the FOD is Θ = {θ1, θ2, θ3}. Two

BBAs m1,m2 over the FOD are:

m1({θ1}) = 0.1,m1({θ2}) = 0.1,m1({θ3}) = 0.05,
m1({θ1, θ2}) = 0.1,m1({θ1, θ3}) = 0.05,
m1({θ2, θ3}) = 0.1,m1(Θ) = 0.5.

m2({θ1}) = 0.2,m2({θ2}) = 0.3,m2({θ3}) = 0.1,
m2({θ1, θ2}) = 0.05,m2({θ1, θ3}) = 0.1,
m2({θ2, θ3}) = 0.05,m2(Θ) = 0.2.
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First, the belief intervals are calculated for each focal
element of m1 and m2, respectively:

BI1({θ1}) : [0.10, 0.75],
BI1({θ2}) : [0.10, 0.80],
BI1({θ3}) : [0.05, 0.70],
BI1({θ1, θ2}) : [0.30, 0.95],
BI1({θ1, θ3}) : [0.20, 0.90],
BI1({θ2, θ3}) : [0.25, 0.90],
BI1(Θ) : [1.00, 1.00].

BI2({θ1}) : [0.20, 0.55],
BI2({θ2}) : [0.30, 0.60],
BI2({θ3}) : [0.10, 0.45],
BI2({θ1, θ2}) : [0.55, 0.90],
BI2({θ1, θ3}) : [0.40, 0.70],
BI2({θ2, θ3}) : [0.45, 0.80],
BI2(Θ) : [1.00, 1.00].

Second, use Eq. (19) to compute the distance between belief
intervals of each corresponding focal element in m1 and m2:

dBI =


















dBI (BI1({θ1}), BI2({θ1}))
dBI (BI1({θ2}), BI2({θ2}))
dBI (BI1({θ3}), BI2({θ3}))
dBI (BI1({θ1, θ2}), BI2({θ1, θ2}))
dBI (BI1({θ1, θ3}), BI2({θ1, θ3}))
dBI (BI1({θ2, θ3}), BI2({θ2, θ3}))
dBI (BI1(Θ), BI2(Θ))



















=



















0.1000
0.1155
0.1323
0.1323
0.1155
0.1000
0.0000



















.

Then, according to Eq. (20), dEBI(m1,m2) is computed by

dEBI(m1,m2)

=

√

23−1 ×
(

0.10002 + 0.11552 + 0.13232+
0.13232 + 0.11552 + 0.10002 + 02

)

= 0.1429.

According to Eq. (24), dCBI(m1,m2) is computed by

dCBI(m1,m2) = max

{

0.1000, 0.1155, 0.1323,
0.1323, 0.1155, 0.1000, 0

}

= 0.1323.

D. On distance bounds

Here, the distance bounds are analyzed. In Antonucci’s work

[38], a lower bound and an upper bound of a distance of

evidence were proposed based on the distance of consistent

probabilities. For a BBA m, its consistent set of probability

mass functions (PMF) is

Km =

{

P

∣

∣

∣

∣

∑

θ∈Θ
P (θ) = 1

∑

θ∈A P (θ) ≥ Bel(A), ∀A ∈ 2Θ

}

, (31)

where P is a consistent PMF. Given two PMFs P1 and P2,

their Manhattan distance is

δ(P1, P2)
∆
=

1

2
·
∑

θ∈Θ
|P1(θ)− P2(θ)|. (32)

Given two BBAs m1 and m2, the lower bound δ and upper

bound δ are defined as






δ(m1,m2) = min
P1∈Km1

,P2∈Km2

δ(P1, P2),

δ(m1,m2) = max
P1∈Km1

,P2∈Km2

δ(P1, P2).
(33)

We calculate dEBI , dCBI and the strict distance measure dJ
together with the upper and lower bounds to check whether

these measures are beyond the bounds or not. We set |Θ| = 3
and randomly generate 1000 BBA pairs according to the BBA

generation algorithm [39] in Table I.

Table I
ALGORITHM 1: RANDOM BBA GENERATION - UNIFORM SAMPLING FROM

ALL FOCAL ELEMENTS.

Input: Θ: Frame of discernment;
Nmax: Maximum number of focal elements
Output: Output: m: BBA
Generate P(Θ), which is the power set of Θ;
FOReach 1 ≤ i ≤ |P(Θ)| do
Generate a value according to the Gamma distribution G(1, 1) → mi,
END
Normalize the vector m = [m1, ...,m|P(Θ)|] → m′;

m(Ai) = m′

i;

The results are shown in Figs. 2 and 3 (zoom in around

lower bound). Results are sorted by increasing values of dJ .

It is experimentally shown that dJ and our proposed dEBI and

dCBI are not beyond the lower and upper bounds as shown in

Figs. 2 and 3 in this simulation.
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Figure 3. Comparisons between bounds, dJ , dEBI and dCBI (Zoom in around
the lower bound).

In the next section, experiments and simulations are pro-

vided to show the rationalities of our proposed distance

measures of evidence based on the comparisons with available

measures.
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V. EXPERIMENTS, SIMULATIONS AND APPLICATIONS

To verify the rationality of the proposed distances, numeri-

cal examples, simulations and the applications related to BBA

approximations and MCDM are provided.

In each example below, dJ , dT , dF , dC , dEBI and dCBI are

compared9.

A. Example 7

Suppose that the FOD is Θ = {θ1, θ2, θ3}. m1 has relatively

large mass value for {θ2} as shown in Table II. Therefore,

intuitively, for mi, i = 2, ..., 7 listed in Table III, if the mass

assignment for {θ2} is relative large, the distance between m1

and mi intuitively should be relatively small. For m5 and m6,

the mass of focal elements containing {θ2} (i.e., {θ1, θ2} and

{θ2, θ3}) is 0.8. It makes more sense if the distance value with

respect to m5 and m6 decreases.

Table II
BBA m1

Focal element Mass assignment

{θ1} 0.1
{θ2} 0.8
{θ3} 0.1

{θ1, θ2} 0
{θ2, θ3} 0
{θ1, θ3} 0

{θ1, θ2, θ3} 0

Table III
BBAS mi , i = 2, . . . , 7

Focal el.\ BBAs m2 m3 m4 m5 m6 m7

θ1 0.8 0 0 0 0 0
θ2 0 0.8 0 0 0 0
θ3 0 0 0.8 0 0 0
θ1 ∪ θ2 0 0 0 0.8 0 0
θ2 ∪ θ3 0 0 0 0 0.8 0
θ1 ∪ θ3 0 0 0 0 0 0.8
θ1 ∪ θ2 ∪ θ3 0.2 0.2 0.2 0.2 0.2 0.2

Calculate the distance between m1 and mi, i = 2, ..., 7 using

different distance definitions as illustrated in Fig. 4. All the

distance measures perform similarly in all seven cases and

agree with the expected behavior as we can see in Fig. 4.

The following Examples 8 - 12 drawn from [13] are used

for comparing our proposed measures and available ones.

B. Example 8

Suppose that three BBAs m1, m2, and m3 are defined on

the FOD Θ = {θ1, ..., θn} as follows:

m1({θ1}) = m1({θ2}) = · · · = m1({θn}) = 1/n;

m2(Θ) = 1;

m3({θk}) = 1, for some k ∈ {1, ..., n}.
9dC corresponds to the conflict coefficient K defined in Eq. (4).
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Figure 4. Distance between m1 and mi, i = 2, ...,7.

The change of the distance values with the increase of the size

n of FOD are illustrated in Fig. 5.

dT provides undesired result, i.e., with the increase of n,

there always exists dT (m1,m2) = 0. dC cannot discriminate

m1 and m2, and also m2 and m3.

In this example, m1 is a Bayesian BBA, which only has

singleton focal elements; m2 is a vacuous BBA, which only

has the total set Θ as the unique focal element; m3 is a

categorical BBA with one singleton focal element, which is

absolutely confident in {θk}.

m1 represents the case with only discord and with zero

non-specificity; m3 represents the crispest case; m2 represents

the most ambiguous case. So, the distance between m2 and

m3 represents the dissimilarity between the most ambiguous

case and the crispest case; the distance between m1 and m3

represents the dissimilarity between the case with zero non-

specificity and the crispest case; the distance between m1 and

m2 represents the dissimilarity between the case with zero

non-specificity and the most ambiguous case.
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Figure 5. Dissimilarities between m1, m2 and m3 for Example 8.
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Therefore, intuitively, the distance between m2 and m3 should

be the largest one. As we can see in Fig. 5, dEBI(m2,m3) and

dJ (m2,m3) provide satisfactory results, i.e.,

dEBI(m2,m3) = max
i,j∈{1,2,3}
i6=j

dEBI(mi,mj).

From the decision standpoint, m1 has no inclination to any

choice θi; m2 also has no inclination to any choice θi; m3

has a clear inclination to the choice θk. Therefore, intuitively,

the dissimilarity between m1 and m2 should be smaller than

that between m1 and m3. As shown in Fig. 5, our proposed

dEBI , dCBI , and dF provide satisfactory results according to this

standpoint, i.e., dEBI(m1,m2) < dEBI(m1,m3), d
C
BI(m1,m2) <

dCBI(m1,m3) and dF (m1,m2) < dF (m1,m3).
As we observed, dJ cannot discriminate this since

dJ (m1,m2) = dJ(m1,m3) with the increase of n. This is

because one has

dJ (m1,m2) = dJ(m1,m3) =

√

1

2
(1− 1

n
).

according to Jousselme’s distance defined in Eq. (13).

Based on the analyses above, dEBI provides rational behav-

iors in this example.

C. Example 9 (Example 5 Revisited)

The values of the different distances between m1 and m2,

and between m1 and m3 are given in Table IV.

Table IV
EXAMPLE 9: RESULTS BASED ON DIFFERENT DISTANCES OF EVIDENCE.

Distance dJ dT dF dC dEBI dCBI
d(m1,m2) 0.4041 0 0.5833 0.2000 0.2858 0.2333
d(m1,m3) 0.4041 0.4667 0.6364 0.6667 0.4041 0.4667

As aforementioned, both m1 and m2 have no preference

on any singleton {θi} and m3 commits more belief to {θ3},

therefore, it is intuitively expected that the distance between

m1 and m2 should be smaller than that between m1 and m3.

Using Jousselme’s distance, one obtains dJ(m1,m2) =
dJ (m1,m3) = 0.4041 which is unsatisfactory for such a case.

Table IV shows that when using dT , dC , dF , dEBI and dCBI , one

obtains d(m1,m2) < d(m1,m3), which is more reasonable.

However, Tessem’s distance leads to dT (m1,m2) = 0, and it

is counter-intuitive.

D. Example 10

Suppose that the FOD is Θ = {θ1, ..., θ10}. A BBA mt

defined on Θ is

mt(Θ) = 0.1,mt({θ2, θ3, θ3}) = 0.05,mt({θ7})) = 0.05,

mt(At) = 0.8.

where At is a varying focal element from {θ1} to Θ. One

singleton {θi} is added at each step. All the At, ∀t = 1, ..., 10
are as shown in Table V. The second BBA m

∗ has only one

focal element, and it is defined as

m∗({θ1, θ2, θ3, θ4, θ5}) = 1.

Table V
EXAMPLE 10: DISTANCE VALUE CHANGES WITH At .

Step At

1 {θ1}
2 {θ1, θ2}
3 {θ1, θ2, θ3}
4 {θ1, θ2, θ3, θ4}
5 {θ1, θ2, θ3, θ4, θ5}
6 {θ1, θ2, θ3, θ4, θ5, θ6}
.
.
.

.

.

.
10 {θ1, θ2, θ3, θ4, θ5, θ6, ..., θ10}

We use different distance measures including dJ , dT , dC ,

dF , dEBI and dCBI to calculate the distance between m
∗ and

mt. Their behaviors are shown in Fig. 6.

Intuitively, when At starts from the focal element {θ1}
to the focal element {θ1, θ2, θ3, θ4, θ5}, the distance be-

tween mt and m
∗ should become smaller. When At =

{θ1, θ2, θ3, θ4, θ5}, the distance should reach the minimum

value. Then, when the size of At becomes larger and departs

from {θ1, θ2, θ3, θ4, θ5}, the distance value should become

larger. As shown in Fig. 6, dJ , dT , dF and our proposed dEBI

provide expected behaviors.
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Figure 6. Distance between mt and m
∗ for Example 10.

Since the conflict between mt and m
∗ are fixed, i.e.,

dC(mt,m
∗) = mt({θ7}) · m∗({θ1, θ2, θ3, θ4, θ5}) = 0.05,

the value of dC is fixed to 0.05. Therefore, dC is not a

proper distance. As shown in Fig. 6, our proposed dEBI

performs well, however dCBI does not provide a satisfactory

behavior. Although dCBI reaches its minimum value when

At = {θ1, θ2, θ3, θ4, θ5}, it cannot detect the change of At

when the size of At is smaller than 5 or the size of At is

larger than 5.

E. Example 11

Suppose that the FOD is Θ = {θ1, θ2, θ3, θ4, θ5, θ6}. In

each case of this example, we set a fixed BBA m2, re-
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spectively, where m2(B) = 1. B can be considered as a

“desired” focal element. Another BBA m1 is also set, where

m1(A) = 1/63, ∀A ⊆ Θ. Let m1 approximate to m2 in some

way. To implement this, at each step, we increase m1(B)’s
value of ∆ = 0.02 and the mass value of other focal elements

(A 6= B, ∀A ⊆ Θ) is decreased of ∆/62.

We also let m1 go away from m2. To implement this, at each

step, m1(C), C 6= B, ∀C ⊆ Θ has an increase of ∆ = 0.02
and the mass value of other focal elements (A 6= C, ∀A ⊆ Θ)

has a decrease of ∆/62. Therefore, C can be considered as

an “undesired” focal element.

We use different distances between m1 and m2 at each step.

Their behaviors with varying m1 are analyzed.

1) Case A: Here B = {θ2}, i.e., the desired focal element

B is a singleton. With the change of m1(B), m1 is gradually

close to m2. Therefore, if a distance measure becomes smaller

with the change of m1(B), then it behaves as intuitively

expected.
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Figure 7. Distance between m1 and m2 for Example 11-Case A.

The changes of the different distance measures in the above

procedure are shown in Fig. 7. All the distance measures used

here provide expected behaviors.

2) Case B: Here |B| > 1, e.g., B = {θ1, θ2} or

B = {θ1, θ2, θ3}. That is, the desired focal element B is a

compound focal element. With the change of m1(B), m1 is

gradually close to m2.

Given different |B|, the changes of different distances in the

above procedure are shown in Fig. 8, where all distances used

here provide expected behaviors when B is a compound focal

element.

0 10 20 30 40 50
0

0.5

1
d

J

 

 

0 10 20 30 40 50
0

0.5

1
d

T

0 10 20 30 40 50
0

0.5

1
d

F

0 10 20 30 40 50
0

0.5

1
d

C

0 10 20 30 40 50
0

0.5

1
d

BI

E

0 10 20 30 40 50
0

0.5

Step

 

 

d
BI

C

|A|=2

|A|=3

|A|=4

|A|=5

|A|=6

Figure 8. Distance between m1 and m2 for Example 11-Case B.

3) Case C: Here B = {θ4} and C = {θ5}, where the

undesired focal element C is a singleton.

With the change of m1(C), m1 is gradually away from

m2. If a distance measure becomes larger with the change

of m1(C), then it behaves reasonably (i.e., as intuitively

expected).

The changes of the different distance measures in the above

procedure are shown in Fig. 9, where all the distance measures

tested here provide expected behaviors.
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Figure 9. Distance between m1 and m2 for Example 11- Case C.

4) Case D: Here B = {θ6} and the undesired focal element

C = Θ. With the change of m1(C), m1 is gradually away from
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m2. If a distance measure becomes larger with the change of

m1(C), then it behaves as intuitively expected. Fig. 10 shows

the changes of the different distance measures in the above

procedure.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step

D
is

ta
n
ce

 V
al

u
es

 

 

d
J

d
T

d
F

d
C

d
BI

E

d
BI

C

Figure 10. Distance between m1 and m2 for Example 11-CaseD.

As seen in Fig. 10, only dEBI and dJ behave as expected.

dT never changes in the whole procedure, because the corre-

sponding pignistic probability never change with the increase

of m1(Θ). dC diminishes significantly with the increase of

m1(Θ), because as the mass assignment is increasing for the

total set, the conflict between m1 and m2 becomes smaller.

Therefore, dC is only a conflict degree and must not be used

as a proper distance measure.

F. Example 12

Suppose that the FOD is Θ = {θ1, ..., θ10}. A BBA mt

defined on Θ is

mt(Θ) = 0.1,mt({θ2, θ3, θ4}) = 0.05,mt({θ7}) = 0.05,

mt(Bt) = 0.8.

where Bt is a varying focal element from {θ1} to Θ. One

singleton θi is added at each step (step 1-10). Bt, ∀t = 1, ..., 10
equals to At as shown in Table V in Example 10.

From the step 11 - 19, Bt is pruned from its first element

until attaining the singleton {θ10} at step 19. All the Bt at

different steps are shown in Table VI. The second BBA m
∗ is

m∗({θ10}) = 1. We test different distance measures including

dJ , dT , dC , dF , dEBI and dCBI to calculate the distance between

m
∗ and mt. Their behaviors are shown in Fig. 11.

From the Step 1 to 9, Bt does not include {θ10}. At the step

10, Bt = {θ1, ..., θ10}, which first includes {θ10}. After the

Step 10, all distance values diminish to reach their minimum

values when Bt = {θ10}. This is what we expect intuitively.

Table VI
EXAMPLE 10: DISTANCE VALUE CHANGES WITH At .

Step Bt

1-10 At

11 {θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10}
12 {θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10}
13 {θ4, θ5, θ6, θ7, θ8, θ9, θ10}
14 {θ5, θ6, θ7, θ8, θ9, θ10}
15 {θ6, θ7, θ8, θ9, θ10}
.
.
.

.

.

.
19 {θ10}

At the first stage (Step 1 - Step 9), dC does not change

when Bt changes, because the conflict between mt and m
∗

never changes before the step 10, where

dC(mt,m
∗) = (mt({θ1, θ2, θ3}

+mt({θ7}) +mt(Bt)) ·m∗({θ10}) = 0.9.
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Figure 11. Distance between mt and m∗ for Example 12.

At the second stage (Step 10 - Step 19), dC does not change

with the change of Bt. Although with the emergence of {θ10},

dC diminishes, however, its value is fixed up to the final

step, because the degree of conflict never changes after the

decreasing at the Step 10, where

dC(mt,m
∗) = (mt({θ1, θ2, θ3}+mt({θ7})) ·m∗({θ10})

= 0.1.

Therefore, dC must not be used as a proper distance

measure. It is just a degree of conflict between two BBAs.

At the first stage, dF provides unsatisfactory behavior. It

slightly increases with the change of Bt, that is, it is insensitive

to the change of Bt in the first stage. At the second stage, dF
provides an expected behavior, i.e., it decreases and reaches

its minimum value at the final Step 19.

dCBI is insensitive to the change of Bt in both the first and

the second stages. Its value never changes in the first stage
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and after a decreasing at the step 10, it remains unchanged in

the second stage.

The major difference between the behaviors of dJ and dEBI

is in the first stage, where dJ increases while dEBI decreases.

We think that the decrease makes more sense in fact, and

the reason is as follows. In the first stage, the size of Bt

becomes larger, and thus, the degree of uncertainty, i.e., the

ambiguity of mt increases. For two focal elements {θ1} and

{θ1, θ2}, although they both do not include {θ10}, the distance

from {θ10} to a more ambiguous case, i.e., {θ1, θ2} intuitively

should be smaller than the distance from {θ10} to a more

specific case. We can make an analogy here. {θ10} is our

desired result, while {θ1} and {θ1, θ2} are two undesired

results. A more ambiguous undesired result should be more

preferred than a clear undesired result, i.e., the distance from

the desired result to the more ambiguous undesired result

should be intuitively smaller.

With the increase of |Bt|, such a distance should intuitively

further decrease. Therefore, dEBI provides the correct expected

behavior in this example.

G. Example 13

Suppose that the FOD is Θ = {θ1, θ2, ..., θ2n}. Two BBAs

defined on Θ are

m1 : m1({θ1}) = m1({θ2}) = ... = m1({θn}) = 1/n;
m2 : m2({θn+1}) = m2({θn+2}) = ... = m2({θ2n}) = 1/n;

In this example, we set n from 1 to 7, i.e., the size of

FOD is from 2 to 14. We use dJ , dT , dC , dF , dEBI and dCBI

to calculate the distance between m1 and m2 given different

values of n. The distance values are shown in Fig. 12. As

we can see in Fig. 12, all the distance measures except for

our proposed dEBI remain unchanged with the increase of n.

Our proposed dEBI decreases with the increase of n, which

intuitively makes sense. The reason is as follows. With the

increase of n from k−1 to k, the cardinality of the FOD, i.e.,

|Θ| = 2(k − 1) also increases to 2k. Then, the number of all

possible “focal” elements10 increases from 22(k−1) to 2k.
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Figure 12. Distance between m1 and m2 for Example 13.

10Here “focal” elements refer to all the subsets of the FOD Θ. They could
have non-zero mass values or zero mass values.

Note that for each BBA, there are only n focal elements with

non-zero mass assignment. When n = k − 1, for each BBA,

there are 2(k−1) focal elements in total with non-zero value;

when n = 2k, for each BBA, there are 2(k−1) focal elements

in total with non-zero value. So, the number of focal elements

with non-zero mass assignment increases from 2(k − 1) to

2k, i.e., only two more focal elements with non-zero mass

assignment are added.

On the other hand, when n = k − 1, for each BBA, there

are 22(k−1)−(k−1)−1 focal elements in total with zero mass

assignment; when n = k, for each BBA, there are 22k −k− 1
focal elements in total with zero mass assignment. That is,

with the increase of n from k−1 to k, there are 22k−k−1−
(22(k−1) − (k − 1)− 1) = 3× 4k−1 + 1 more focal elements

with zero mass values.

The common part (“focal” elements with zero mass assign-

ment) between m1 and m2 is significantly enlarged. At the

same time, their different parts (those focal elements with

non-zero values) only slightly increases of 2. Therefore, their

distance should decrease. So, our proposed dEBI also behaves

as expected in this case.

H. Brief summary

According to above examples, our proposed dEBI behaves

as expected in all the cases, in contrary to other measures

compared. dJ also behaves well in many cases, however, in

some special cases, it provides counter-intuitive behaviors. Our

proposed dCBI behaves as expected in many cases, however,

it is insensitive to the change of BBA due to the L∞ norm

used in its definition. Other measures like dC , dF , dT are

not strict distance metrics. They generate counter-intuitive

behaviors in some cases, although they can be used to describe

the dissimilarity between BOEs in particular cases.

Note that the results of the above examples can only show

that our proposed distance measures behave as expected in

those cases in the examples. Whether the rationality of our

proposed measures has more generalized meaning needs fur-

ther theoretical analysis besides the testing based on examples.

In the following part, simulation results based on random

experiments are presented.

I. Simulation

In this section, different measures are compared based on

random simulations.

Relationship analyses are helpful for the joint use of mul-

tiple distance measures. Almost all the available distance

measures have their own pros and cons. If one does not

trust any single distance measure, one can use two distance

measures together to construct a 2-D measure to describe the

dissimilarity between two BOEs, e.g., Liu’s 2-D measure [40].

Then how to describe such a complementarity between mem-

bers in a 2-D measure? As referred in Jousselme’s survey [22],

a low correlation (close to 0) between two measures means

that they quantify two distinct (and possibly complementary)

aspects of the distance between two belief functions, while a
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high correlation means that they are redundant. Hence, weakly

correlated pairs of distances could be good candidates for 2-D

measures.

The relationships between different measures are described

using scatter plots and the correlation coefficient. The basic

procedure of the simulations is as follows.

Let D denote the set of distance measures used here, which

includes dJ , dT , dC , dF , dEBI and dCBI . Here, we calculate the

correlation between different distance measures as follows.

1) Set the size of FOD to |Θ| and generate Ns BBAs: m
s

(s = 1, ..., Ns) according to Algorithm 1 [39] in Table I.

2) Generate a reference BBA m
r according to Algorithm 1.

3) Pick up a distance pair dx and dy , where dx, dy ∈ D and

calculate (dx(m
r,m

s), dy(m
r,m

s)) for all s = 1, ..., Ns.

4) Draw the scatter plot for (dx(m
r,m

s), dy(m
r,m

s)) (s =
1, ..., Ns) to show the correlation between dx and dy .

5) Compute the correlation coefficient [22] for dx and dy:

CR(dx, dy) =

Ns
∑

s=1

(

dsx − d̄x
) (

dsy − d̄y
)

√

Ns
∑

s=1

(

dsx − d̄x
)2

√

Ns
∑

s=1

(

dsy − d̄y
)2

, (34)

where dsx denotes dx(m
r,m

s), dsy denotes dy(m
r,m

s), d̄x
denotes the mean of dsx, s = 1, ..., Ns, and d̄y denotes the

mean of dsy, s = 1, ..., Ns. For each pair dx and dy in D, we

calculate their correlation coefficient, to obtain a correlation

matrix CR.

In simulations, we generate five types of BBAs:

• Complete BBA: A BBA with 2|Θ|−1 focal elements with

non-zero mass assignment.

• Fixed length BBA: A BBA with a fixed number of focal

elements.

• Simple support BBA: m(A) = a,m(Θ) = 1 − a, where

A ⊂ Θ and a ∈ [0, 1].
• Dichotomous BBA: m(A) = a,m(Ā) = b,m(Θ) = 1 −

a − b, where A ⊂ Θ, Ā is the complementary set of

A ∈ Θ, a, b ∈ [0, 1] and a+ b ≤ 1.

• Consonant support BBA: A BBA with nested focal ele-

ments, e.g., {θ1}, {θ1, θ2}, {θ1, θ2, θ3}.

One can just make minor modifications to Algorithm 1 to

randomly generate the above types of BBA.

Case A: Here we set |Θ| = 8. Randomly generate 4000

complete BBAs m
s, s = 1, ..., 4000. The reference BBA

(complete) m
r is also randomly generated. According to the

above simulation steps, we can obtain the scatter plots between

each pair of distance measures in D = {dJ , dT , dC , dF ,

dEBI , dCBI} as shown in Fig. 13, where their corresponding

correlation coefficients are also provided for convenience.

As we can see in Fig. 13, our proposed dEBI and dCBI have

high correlation with Jousselme’s distance dJ , which is a

strict distance metric and performs well in many cases as

demonstrated in the previous subsection.

Figure 13. Scatter plots for |Θ| = 8 using complete BBAs.

dC always has low correlation with other measures, since

it is actually a degree of conflict, which is different to the

distance.

If a 2-D or 3-D measure to jointly use multiple distance

measures is desired, we can refer to the scatter plots and

corresponding CR values in Fig. 13. As aforementioned, the

members in the 2-D measure should better have low correla-

tion (close to 0), thus, they could be possibly complementary.

As shown in Fig. 13, our proposed dEBI and dCBI have relatively

low correlation with dC and dF , therefore, dC and dF are more

proper to be selected to construct 2-D measures. The focus of

this paper is not the 2-D measures. We mention 2-D measure

just to show our motivation of the correlation analysis between

different 1-D measures. If one is interested in the construction

and applications of 2-D measures, one can refer to Liu’s work

[40], where dT and dC are used jointly as a 2-D measure.

As shown in the previous subsection, dEBI and dJ are two

very appealing measures when compared with others, and they

seem highly correlated to each other. Therefore, in the sequel,

we will discuss the relationship between dJ and our proposed

dEBI in details.

Case B: Although in Case A, the high correlation between

dEBI and dJ has already been verified, with different FOD

size |Θ|, the correlation degree can be different. Here we

use different FOD size |Θ| to check whether the correlation

between dEBI and dJ is greatly affected by |Θ| or not, and to

obtain the influence trend with the change of |Θ|.
In this case, we set the size of the FOD to |Θ| =

2, 3, 4, 5, 6, 7, 8, respectively. First, randomly generate 4000

complete BBAs, 4000 simple support BBAs, 4000 dichoto-

mous BBAs and 4000 consonant support BBAs. Their corre-

sponding reference BBAs (complete, simple support, dichoto-

mous, consonant support) m
r’s are also randomly generated.
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Following the above steps and under different sizes of FOD,

we can obtain the scatter plots between each pair of distance

measures in D = {dJ , dEBI} for the 4000 complete BBAs,

4000 simple support BBAs, 4000 dichotomous BBAs and 4000

consonant support BBAs, respectively, as shown in Fig. 14.

Figure 14. Scatter plots for |Θ| = 2, ...,8 using different types of BBAs.

With the increase of |Θ|, the evolution of the correlation

coefficient between dJ and dEBI for four different types of

BBAs including complete, simple support, dichotomous, and

consonant support are shown in Fig. 15.

As seen in Figs. 14 and 15, the increase of |Θ| leads to the

decrease of the correlation coefficient for all types of BBAs.

No matter using which types of BBA, dJ and dEBI are highly

correlated, although the correlation coefficient decreases with

the increase of |Θ|. As aforementioned, this to some extent

shows the rationalities of our proposed new measure dEBI .
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Figure 15. Evolution of the correlation coefficient between dJ and dEBI using
different types of BBAs.

J. Application of distance in BBA approximation evaluation

Here we provide an application of different distance mea-

sures of evidence in BBA approximations. The BBA ap-

proximation [23], [41], [42] aims to obtain a simpler BBA

by removing some focal elements and thus to reduce the

computational cost in the evidence combination and other

operations in DST [1], [43]. A good BBA approximation

should have little loss of information when simplifying the

BBA. If the BBA obtained using an approximation is closer

to the original BBA, such an approximation has less loss of

information and thus, is more desired. Therefore, we can use

the distance of evidence to evaluate BBA approximations.

Here three types of BBA approximations are compared

including k − l − x [23], D1 [41] and summarization (Sum)

[42]. Using k − l− x, the approximated BBA is obtained by

1) keeping no less than k focal elements;

2) keeping no more than l focal elements;

3) deleting the masses which are no larger than x.

Sum method [42] also keeps focal elements with the largest

mass values as in k − l − x. The masses of removed focal

elements are accumulated and assigned to their union set.

D1 method [41] is to keep some focal elements with the

largest mass values in the original BBA and to re-assign the

mass assignments of the other focal elements to those kept

focal elements according to a well-designed criterion. See

more details in related references [23], [41], [42].

k − l − x has a coarse way of re-normalization, and Sum

method re-assigns the masses of removed focal elements to

their union set. D1 has a more subtle way to re-assign the mass,

therefore, D1 should be a better method. Here we provide a

simulation with distance of evidence as the evaluation criterion

to check if the evaluation results agree with the analysis.

In our simulation, |Θ| = 4. A complete BBA m (i.e., with

24 − 1 = 15 non-empty focal elements) can be randomly

generated according to the Algorithm 1 in Table I. We use the

distance of evidence (dJ , dT , dF , dEBI and dCBI , respectively)

between the approximated BBA m̂ and the original one m in

average as the performance evaluation criterion.

Our comparative analyses have 1000 Monte Carlo runs (i.e.,

totally 1000 complete BBAs are randomly generated). The

number of remaining focal elements r for the approaches used

here are set to from 14 down to 2 (decrease by 1). Then,

different approximation results in each run can be obtained

using the different approximations given a number r. The

average (over 1000 runs) distance values between the original

BBA m and the approximated BBA m̂ obtained using different

approaches given different remaining focal elements number

are shown in Fig. 16 (a)-(e).

Here the parameter in k−l−x is set as k = l = r and x = 0.5.

As shown in Fig. 16 (a)-(e), using different distances, the

distance values are different; however, the changing trends are

the same, i.e., with the decrease of the number remaining focal

elements, the distance value increases. This represents more
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Figure 16. Evaluation of BBA approximations using different distances.

loss of information. Based on all the distances of evidence used

here except for dT , the BBA obtained by D1 is usually closer

to the original BBA. It is experimentally shown that when

using the distances of evidence including our new proposed

ones, D1 is a better BBA approximation when compared with

others. This is accordant to the analyses above, therefore,

our proposed distances of evidence can be well used in

performance evaluation in belief function related applications.

K. Application of dEBI in multiple criteria decision making

Here we provide a multiple criteria decision making

(MCDM) application of our developed measure dEBI , which

usually performs well in the previous examples and simula-

tions.

Let’s consider a selection problem in the car purchase. Four

cars {A1, A2, A3, A4} are considered:

• A1 = TOYOTA YARIS 69 VVT-i Tendance;

• A2 = SUZUKI SWIFT MY15 1.2 VVT So’City;

• A3 = VOLKSWAGEN POLO 1.0 60 Confortline;

• A4 = OPEL CORSA 1.4 Turbo 100 ch Start/Stop Ed.;

Following criteria are for selecting the best car to purchase:

• C1 is the price (in e);

• C2 is fuel consumption (in L/km);

• C3 is the CO2 emission (in g/km);

• C4 is the fuel tank volume (in L);

• C5 is the trunk volume (in L);

From information extracted from car-makers technical char-
acteristics available on the Internet11, we can build the score
matrix S = [Sij ] for the above four cars as

S =







C1 C2 C3 C4 C5

A1 15000 4.3 99 42 737
A2 15290 5.0 116 42 892
A3 15350 5.0 114 45 952
A4 15490 5.3 123 45 1120







11http://www.choisir-sa-voiture.com

When we use criteria C1, C2 and C3, smaller is better. For
criteria C4 and C5, larger is better. We multiply values of
columns C1, C2 and C3 by -1 to generate a modified score
matrix S

′ in order that the MCDM problem here is with
homogeneous preference order (”larger is better”) for each
column:

S
′ =







C1 C2 C3 C4 C5

A1 −15000 −4.3 −99 42 737
A2 −15290 −5.0 −116 42 892
A3 −15350 −5.0 −114 45 952
A4 −15490 −5.3 −123 45 1120







For simplicity, the importance imp(Cj) of each criteria Cj

takes a value in {1, 2, 3, 4, 5}, where 1 means the least impor-

tant, and 5 means the most important. Here, imp(C1) = 5,

imp(C2) = 4, imp(C3) = 4, imp(C4) = 1 and imp(C5) = 3
are adopted, which means that the price (criteria C1) is the

most important one and the volume of fuel tank (criteria C4) is

the least important one. According to these importance values

and after the normalization, we obtain the following vector of

relative weights of criteria: w = [ 5

17

4

17

4

17

1

17

3

17
].

We use the BF-TOPSIS (Belief Function based Technique

for Order Preference by Similarity to Ideal Solution) approach

[44] with our dEBI to solve the MCDM problem above.
First, from the score matrix S

′, generate BBAs12 mi,j(Ai)
mi,j(Āi), and mi,j(Ai∪Āi) according to the BBA generation
approach proposed in [44] as:

m1,1(A1) = 0.9859, m1,1(A2 ∪A3 ∪A4) = 0.0047,
m1,1(Θ) = 0.0094;m2,1(A2) = 1.0,
m2,1(A1 ∪A3 ∪A4) = 0, m21(Θ) = 0;
m3,1(A3) = 0.0022, m3,1(A1 ∪A2 ∪A4) = 0.9932,
m3,1(Θ) = 0.0046;m4,1(A4) = 1.0,
m4,1(A1 ∪A2 ∪A3) = 0, m4,1(Θ) = 0;

m1,2(A1) = 1.0, m1,2(A2 ∪ A3 ∪A4) = 0,m1,2(Θ) = 0;
m2,2(A2) = 0.1250, m2,2(A1 ∪A3 ∪A4) = 0.4375,
m2,2(Θ) = 0.4375;
m3,2(A3) = 0.1250, m3,2(A1 ∪A2 ∪A4) = 0.4375,
m3,2(Θ) = 0.4375;
m4,2(A4) = 1.0, m4,2(A1 ∪ A2 ∪A3) = 0,m4,2(Θ) = 0;

m1,3(A1) = 1.0, m1,3(A2 ∪ A3 ∪A4) = 0,m1,3(Θ) = 0;
m2,3(A2) = 0.1250, m2,3(A1 ∪A3 ∪A4) = 0.4375,
m2,3(Θ) = 0.4375;
m3,3(A3) = 0.1964, m3,3(A1 ∪A2 ∪A4) = 0.3750,
m3,3(Θ) = 0.4286;
m4,3(A4) = 1.0, m4,3(A1 ∪ A2 ∪A3) = 0,m4,3(Θ) = 0;

m1,4(A1) = 0, m1,4(A2 ∪A3 ∪A4) = 1,m1,4(Θ) = 0;
m2,4(A2) = 0, m2,4(A1 ∪A3 ∪A4) = 1,m2,4(Θ) = 0;
m3,4(A3) = 1.0, m3,4(A1 ∪ A2 ∪A4) = 0,m3,4(Θ) = 0;
m4,4(A4) = 1.0, m4,4(A1 ∪ A2 ∪A3) = 0,m4,4(Θ) = 0;

m1,5(A1) = 0, m1,5(A2 ∪A3 ∪A4) = 1,m1,5(Θ) = 0;
m2,5(A2) = 0.1990, m2,5(A1 ∪A3 ∪A4) = 0.3825,
m2,5(Θ) = 0.4185;
m3,5(A3) = 0.3530, m3,5(A1 ∪A2 ∪A4) = 0.2231,
m3,5(Θ) = 0.4239;
m4,5(A4) = 1.0, m4,5(A1 ∪ A2 ∪A3) = 0,m4,5(Θ) = 0;

Second, for each alternative Ai, compute the dEBI(mi,j ,m
best
i,j )

between mi,j and the best ideal BBA defined by mbest
i,j (Ai) ,

12i = 1, ...,4 denotes the index of the alternative; j = 1, ...,5 denotes the
index of the criterion.
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1, and the distances dEBI(mi,j ,m
worst
i,j ) between mi,j and the

worst ideal BBA defined by mworst
i,j (Āi) , 1. Then, two

distance matrices13 are obtained:

D
best
BI =







0 0 0 0.8660 0.8660
0.6151 0.7032 0.7071 0.8660 0.6419
0.7100 0.7032 0.6430 0 0.5102
0.8660 0.8660 0.8660 0 0






,

and

D
worst
BI =







0.8660 0.8660 0.8660 0 0
0.2804 0.2033 0.1938 0 0.2552
0.1885 0.2033 0.2555 0.8660 0.3819
0 0 0 0.8660 0.8660






.

Here, the element Dbest
BI (i, j) = dEBI(mi,j ,m

best
i,j ) and

Dworst
BI (i, j) = dEBI(mi,j ,m

worst
i,j ).

Third, compute the weighted average of dEBI(mi,j ,m
best
i,j )

values with relative importance weighting factor wj of

criteria Cj . Similarly, compute the weighted average of

dEBI(mi,j ,m
worst
i,j ) values. More specifically, compute

dbest(Ai) ,

5
∑

j=1

wj · dEBI(mi,j ,m
best
i,j ), (35)

dworst(Ai) ,

5
∑

j=1

wj · dEBI(mi,j ,m
worst
i,j ). (36)

The relative closeness of the alternative Ai with respect to

ideal best solution Abest is then defined by

Cl(Ai, A
best) ,

dworst(Ai)

dworst(Ai) + dbest(Ai)
. (37)

Since dbest(Ai) ≥ 0 and dworst(Ai) ≥ 0, then Cl(Ai, A
best) ∈

[0, 1]. If dbest(Ai) = 0, it means that the alternative Ai coin-

cides with the ideal best solution and thus Cl(Ai, A
best) = 1

(the relative closeness of Ai with respect to Abest is max-

imal). Contrariwise, if dworst(Ai) = 0, it means that the

alternative Ai coincides with the ideal worst solution and thus

Cl(Ai, A
best) = 0 (the relative closeness of Ai with respect to

Abest is minimal).

In the final, the set of alternatives is ranked according to

the descending order of Cl(Ai, A
best) ∈ [0, 1], where a larger

Cl(Ai, A
best) value means a better alternative (or a higher

preference).

Based on the score matrix S
′ and importance of criteria, A1

tends to be the best car to buy, since the three most important

criteria clearly take their best values for car A1. When using

the classical TOPSIS [45] method with the Euclidean distance,

we obtain the preference order A4 ≻ A1 ≻ A3 ≻ A2, where

A4 is the best choice and A2 is the worst one. When we use

the BF-TOPSIS method based on our proposed dEBI , we obtain

a more satisfactory preference order A1 ≻ A3 ≻ A2 ≻ A4.

As shown in this application example, our proposed distance

measure can be well used in the multiple criterion decision

making. dEBI has also been used successfully in other kind

of applications related to risk management and for protecting

housing areas against torrential floods in France [46], [47].

13One can also try to use other distance measures for belief functions as
referred above. Here we only use dE

BI
for illustration.

VI. CONCLUSIONS

Two novel distance measures of evidence have been pro-

posed based on the distance measures between belief intervals.

According to the comparisons between our proposed measures

and the existing ones based on examples and simulations, it

is shown that our proposed distances well describe the degree

of closeness between different BOEs. Our results demonstrate

that Euclidean distance based on belief intervals works better

than the Chebyshev distance based on belief intervals.

Besides their good behaviors, the main interest of our pro-

posed distances of evidence is that they have been established

directly in the belief functions framework, contrary to most of

other distance measures that switch from belief functions to

probabilistic or fuzzy set framework, which leads to loss of

information and bad behaviors in general.

Note that in this paper, many justifications or verifications

of our new proposed distance measures are based on numer-

ical examples and simulations. Numerical examples in belief

functions related fields are usually designed according to the

subjective intuitions, which lack objective criteria and the

standard testing data. Furthermore, the results and conclusions

only based on examples are usually incomplete. Therefore,

more thorough justifications including theoretical analysis and

more examples in special cases are needed to further examine

our new measures. However, the theoretical evaluation or

justification in belief functions related fields is still premature.

Therefore, our future work will focus on the theoretical and

the objective evaluation and analysis of the belief functions re-

lated fields. We will try to establish the standard testing BBAs

for the distance measures in the theory of belief functions.

Our proposed distance measures will also be tested based on

more experiments and simulations to find the possible counter-

intuitive examples and analyze the reasons for the possible

counter-intuitive behaviors. Our new distance measures will

be applied to more belief functions related applications, e.g.,

the performance evaluations, for the further verification.

Furthermore, all the distance measures including ours are

under the closed-world assumption. That is, when the mass

assignment for the emptyset is positive, they cannot be used to

measure the closeness between BOEs. Therefore, generalizing

our new distance metrics to the open-world assumption is one

of our future research directions.
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Abstract—In this paper the notion of (probabilistic) inde-
pendence of two events defined classically in the theory of
probability is extended in the theory of belief functions as
the credibilistic independence of two propositions. This new
notion of independence which is compatible with the probabilistic
independence as soon as the belief function is Bayesian, is defined
from Fagin-Halpern belief conditioning formulas drawn from
Total Belief Theorem (TBT) when working in the framework of
belief functions to model epistemic uncertainties. We give some
illustrative examples of this notion at the end of the paper.

Keywords: credibilistic independence, belief functions, belief

conditioning, total belief theorem.

I. INTRODUCTION

In this paper the notion of (probabilistic) independence of

two events defined classically in the theory of probability [1]

is extended in the theory of belief functions [2]. We call it

the credibilistic independence of two propositions to make a

clear distinction between the origin of uncertainty related to

events (i.e. the random or stochastic uncertainty), and in a

more general context the origin of uncertainty of propositions

(i.e. the epistemic uncertainty due to lack of knowledge). The

epithet credibilistic refers to a credal system chosen for the

codification of belief. In this work our credal system is the

mathematical framework of belief functions.

Several works have been proposed in the past to define

different notions of independences in imprecise probability

framework and in the theory of belief functions. For exam-

ple, Couso et al. [3] did propose several notions of inde-

pendences illustrated by different combined Ellsberg’s urns

experiments. In 2000’s Ben Yaghlane, Smets and Mellouli

[4], [5] did explore the notion of independence and they

define the doxastic independence. Their proposal is however

essentially based on Dempster’s rule of combination which

is known problematic and incompatible with imprecise condi-

tional probabilistic calculus as shown in [6]–[8]. More recently

Jirousek and Vejnarova in [9] did propose a definition of

conditional independence which is based on some complicate

factorization principles of the joint basic belief assignment

(BBA) into separate marginal spaces of the variables. All

aforementioned works share two same basic principles for

attempting to define the notion(s) of independence: 1) work on

joint (Cartesian) product space, and 2) work with BBAs. These

two fundamental principles yield to quite complicate defini-

tions of independence(s) difficult to use by most engineers or

researchers for their own applications or developments.

In this research work we adopt a radically different stand-

point. We work with a BBA defined with respect to a single

frame of discernment1 (FoD), and we work directly with

belief intervals induced by Fagin-Halpern conditioning rule

[6], [7], rather than some factorization principles of joint

BBA or extension principles of marginal BBAs. Our approach

is constructive, easier than previous attempts to define inde-

pendence, and consistent with the notion of probabilistic (or

stochastic) independence of two events defined in the theory

of probability. Our notion of credibilistic independence can be

used easily to check if two propositions are credibilistically

independent, or not, given a BBA. This new approach could

be helpful for practitioners of belief functions. We do not

have yet made more investigations for showing its usefulness

for applications, but we expect it will generate some interest

because this problem has been already explored by several

researchers in the past based on different standpoints.

This paper is organized as follows. After a brief recall of

basics of probability theory and belief functions in Sections

II and III, we characterize mathematically the notion of

credibilistic independence of two propositions in Section IV.

Some basic illustrative examples are shown in Section V, with

conclusions in Section VI.

II. BASICS OF PROBABILITY THEORY

In probability theory [1], the elements θi of the space Θ
are experimental outcomes. The subsets of Θ are called events

and the event {θi} consisting of the single element θi is an

elementary event. The space Θ is called the sure event and

the empty set ∅ is the impossible event. We assign to each

event A a number P (A) in [0, 1], called the probability of A,

which satisfies the three Kolmogorov’s axioms: 1) P (∅) = 0;

2) P (Θ) = 1; and 3) if A ∩ B = {∅}, then P (A ∪ B) =
P (A) + P (B). The fundamental Total Probability Theorem

(TPT), also called the law of total probability, see [1] states

that for any event B and any partition {A1, A2, . . . , Ak} of

the space Θ, the following equality holds

P (B) = P (B ∩ A1) + P (B ∩ A2) + . . .+ P (B ∩ Ak). (1)

1It can be any Cartesian product space in fact. The main point is that the
(joint) BBA we work with is defined with respect to this space.
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Starting from TPT formula (1) and assuming P (B) > 0,
we get for any i ∈ {1, . . . , k} (after dividing each side of (1)
by P (B) and rearranging terms) the equality

P (Ai ∩B)

P (B)
= 1−

∑

j=1,...,k
j 6=i

P (Aj ∩B)

P (B)
= 1−

P (Āi ∩B)

P (B)
. (2)

This equality allows us to define the conditional probability

P (Ai|B) by2

P (Ai|B) , P (Ai ∩B)/P (B). (3)

One can verify that the conditional probability (3) satisfies

the three axioms of the Theory of Probability [1].

Similarly, by considering an event Ai of Θ and the partition

{B, B̄} of Θ, the formula P (Ai) = P (Ai ∩B) + P (Ai ∩ B̄)
applies, and by dividing it by P (Ai) (assuming P (Ai) > 0),

one gets
P (Ai ∩B)

P (Ai)
= 1− P (Ai ∩ B̄)

P (Ai)
. (4)

This allows to define the reverse conditional probability

P (B|Ai) by

P (B|Ai) , P (Ai ∩B)/P (Ai). (5)

Probabilistic Independence: Two events Ai and B are said

to be probabilistically independent (or P-independence for

short) if and only if P (Ai|B) = P (Ai) and P (B|Ai) =
P (B). From conditioning formulas (3) and (5) and because

conditional probabilities formulas P (Ai|B) and P (B|Ai) are

mathematically defined only if P (B) > 0 and P (Ai) > 0, one

determines the condition of P-independence (which is well

defined even if P (Ai) = 0, or P (B) = 0, or both) by the

formula

P (Ai ∩B) = P (Ai)P (B). (6)

III. BASICS OF BELIEF FUNCTIONS

Based on Dempster’s works [10], [11], Shafer did introduce

Belief Functions (BF) to model the epistemic uncertainty and

to reason under uncertainty in his Mathematical Theory of

Evidence [2], also known as Dempster-Shafer Theory (DST).

We consider a finite discrete frame of discernement (FoD)

Θ = {θ1, θ2, . . . , θn}, with n > 1, and where all exhaustive

and exclusive elements of Θ represent the set of the potential

solutions of the problem under concern. The set of all subsets

of Θ is the power-set of Θ denoted by 2Θ. The number of

elements (i.e. the cardinality) of 2Θ is 2|Θ|. A basic belief

assignment (BBA) associated with a given source of evidence

is defined as the mapping m(·) : 2Θ → [0, 1] satisfying the

conditions m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The quantity

m(A) is the mass of belief of subset A committed by the

source of evidence (SoE). A focal element X of a BBA

m(·) is an element of 2Θ such that m(X) > 0. Note that

the empty set ∅ is not a focal element of a BBA because

m(∅) = 0 (closed-world assumption of Shafer’s model for

2The notation , means equal by definition

the FoD). The set of all focal elements of m(·) is denoted3

FΘ(m) , {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0}.

Belief and plausibility functions are defined by4

Bel(A) =
∑

X∈2
Θ

X⊆A

m(X) =
∑

X∈FA(m)

m(X), (7)

Pl(A) =
∑

X∈2
Θ

X∩A 6=∅

m(X) = 1− Bel(Ā), (8)

where Ā , Θ − {A} = {X |X ∈ Θ and X /∈ A}, is the

complement of A in Θ and the minus symbol denotes the set

difference operator. The width U(A∗) = Pl(A) − Bel(A) =
∑

X∈FA∗ (m)
m(X) of the belief interval [Bel(A), P l(A)] is

called the uncertainty on A committed by the SoE. FA∗(m)
is the set of focal elements of m(·) not included in A and not

included in Ā, that is FA∗(m) , FΘ(m)−FA(m)−FĀ(m)
and U(A∗) represents the imprecision on the (subjective)

probability of A granted by the SoE which provides the BBA

m(·). When all elements of FΘ(m) are only singletons, m(·)
is called a Bayesian BBA [2] and its corresponding Bel(·)
and Pl(·) functions are homogeneous to a same (subjective)

probability measure P (·), and in this case FA∗(m) = ∅.

According to Shafer’s Theorem 2.9, see [2] page 39 with its

proof on page 51, the belief functions can be characterized

without referencing to a BBA. The quantities m(·) and Bel(·)
are one-to-one, and for any A ⊆ Θ the BBA m(·) is obtained

from Bel(·) by Möbius inverse formula (see [2], p.39)

m(A) =
∑

B⊆A⊆Θ

(−1)|A−B|Bel(B). (9)

Because for any partition {A1, . . . , Ak} of the FoD Θ, the

equality FΘ(m) = FA1
(m) ∪ . . . ∪ FAk

(m) ∪ FA∗(m) with

FA∗(m) , FΘ(m) − FA1
(m) − . . . − FAk

(m) is valid, the

following Total Belief Theorem (TBT) holds – see proof in

the companion paper [7].

Total Belief Theorem (TBT): Let’s consider a FoD Θ with

|Θ| ≥ 2 elements and a BBA m(·) defined on 2Θ with

the set of focal elements FΘ(m). For any chosen partition

{A1, . . . , Ak} of Θ and for any B ⊆ Θ, one has

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗ ∩B), (10)

where U(A∗ ∩B) ,
∑

X∈FA∗(m)|X∈FB(m)
m(X) ∈ [0, 1].

By expressing Bel(B̄) using TBT and noting that Pl(B) =
1−Bel(B̄), one get the Total Plausibility Theorem (TPlT) [7],

which states that for any partition {A1, . . . , Ak} of Θ and any

B ⊆ Θ, one has

Pl(B) =
∑

i=1,...,k

Pl(Āi ∪B) + 1− k − U(A∗ ∩ B̄), (11)

3More generally, the set of all focal elements of m(·) included in a subset
A ⊆ Θ is denoted FA(m).

4By convention, a sum of non existing terms (if it occurs in formulas
depending on the given BBA) is always set to zero.
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where U(A∗ ∩ B̄) ,
∑

X∈FA∗ (m)|X∈FB̄(m)
m(X) ∈ [0, 1].

In DST framework, Shafer [2] did propose to combine

s ≥ 2 distinct sources of evidence represented by BBAs

m1(.), . . . ,ms(.) over the same FoD with Dempster’s rule

of combination (i.e. the normalized conjunctive rule). The

justification and behavior of Dempster’s rule have however

been strongly disputed from both theoretical and practical

standpoints as reported in [12]–[15]. Furthermore, Shafer did

use also Dempster’s rule to establish formulas for conditional

belief and plausibility functions [2]. Unfortunately, Shafer’s

conditioning formulas are inconsistent with lower and upper

bounds of imprecise conditional probability values as dis-

cussed in [6], [16], [18] – see also Ellsberg’s urn example in

[7]. That is why we do not recommend Shafer’s conditioning

and Dempster’ rule in applications involving belief functions.

This standpoint has been already shared by several authors

before us, see by example [6], [8], [16], [19]–[21].

Recently in [7], we have proved that Fagin-Halpern condi-

tional belief and plausibility formulas [6], [16], [17] can be

directly obtained from TBT to define the conditional belief

as the lower envelope (i.e. the infimum) of a family of

conditional probability functions to make belief conditioning

consistent with imprecise conditional probability calculus. In

this paper we do not enter in details on the justification

of Fagin-Halpern conditioning formulas but we just need to

recall their expressions because they will be used in the next

section to define the notion of credibilistic independence (or

C-independence for short). Assuming Bel(B) > 0, Fagin

and Halpern proposed the following conditional formulas (FH

formulas for short)

Bel(A|B) = Bel(A∩B)/(Bel(A∩B)+Pl(Ā∩B)), (12)

Pl(A|B) = Pl(A ∩B)/(Pl(A ∩B) +Bel(Ā ∩B)). (13)

Fagin and Halpern proved in [6] that Bel(A|B) given by

(12) is a true belief function5. Later, Sundberg and Wagner

in [20] (p. 268) did give a clearer proof also (not very

easy to follow though). By switching notations and assuming

Bel(A) > 0, the previous FH formulas yield

Bel(B|A) = Bel(A∩B)/(Bel(A∩B)+Pl(B̄ ∩A)), (14)

Pl(B|A) = Pl(A ∩B)/(Pl(A ∩B) +Bel(B̄ ∩ A)). (15)

In [7], we did also generalize Bayes’ Theorem for working in

the framework of belief functions as follows.

Generalized Bayes’ Theorem (GBT): For any partition
{A1, . . . , Ak} of a FoD Θ, any belief function Bel(·) : 2Θ 7→
[0, 1], and any subset B of Θ with Bel(B) > 0, one has for
i ∈ {1, . . . , k}

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)

∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩ B)
∗

)
, (16)

5satisfying the three conditions of Shafer’s Theorem 2.9, see [2] page 39.

where

q(Ai, B) , Bel(Ai) + U((B̄ ∩ Ai)
∗
)− U(B∗ ∩ Ai),

U((B̄ ∩ Ai)
∗
) , Pl(B̄ ∩ Ai)−Bel(B̄ ∩Ai),

U((Āi ∩B)
∗
) , Pl(Āi ∩B)−Bel(Āi ∩B),

U(B∗ ∩ Ai) ,
∑

X∈FB∗(m)|X∈FAi
(m)

m(X).

Note that FH formulas are consistent with Bayes formula

(i.e. conditional probability formula) when the underlying

BBA m(·) is Bayesian. Indeed if m(·) is Bayesian, then

Pl(A∩B) = Bel(A∩B) = P (A∩B), Pl(Ā∩B) = Bel(Ā∩
B) = P (Ā ∩B) and Pl(B̄ ∩A) = Bel(B̄ ∩A) = P (B̄ ∩A)
and FH formulas become

Bel(A|B) = Pl(A|B) = P (A∩B)/P (B) = P (A|B), (17)

Bel(B|A) = Pl(B|A) = P (A∩B)/P (A) = P (B|A). (18)

The advantage of FH formulas is their complete compatibil-

ity with the bounds of conditional probability calculus [20] and

their theoretical constructive justification drawn from TBT.

IV. NOTION OF CREDIBILISTIC INDEPENDENCE

In this section we generalize in the belief functions frame-

work the notion of probabilistic independence of two events

A and B expressed by the condition P (A∩B) = P (A)P (B).

A. Definition of credibilistic independence

To define the credibilistic independence of two propositions

A and B, we start from the FH belief conditioning formu-

las (12)–(15) and we impose the Credibilistic Independence

Constraints (CIC) by analogy of what has been done in the

framework of probabilistic framework. So, we require the

conditions

Bel(A|B) = Bel(A), (19)

Bel(B|A) = Bel(B), (20)

Pl(A|B) = Pl(A), (21)

Pl(B|A) = Pl(B), (22)

which reflect the notion of independence of propositions A
and B.

Working with conditional belief expressions, the formula (12)

and the condition (19) yield

Bel(A)[Bel(A ∩B) + Pl(Ā ∩B)] = Bel(A ∩B)

or equivalently

Bel(A)Pl(Ā ∩B) = Bel(A ∩B)[1 −Bel(A)]

By noting that 1 − Bel(A) = Pl(Ā) and dividing both sides

of the previous equality by Pl(Ā) (assumed strictly positive),

we get

Bel(A ∩B) =
Bel(A)

Pl(Ā)
Pl(Ā ∩B) (23)

Similarly, the formula (14) and the condition (20) yield

Bel(B)[Bel(A ∩B) + Pl(A ∩ B̄)] = Bel(A ∩B),
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or equivalently

Bel(B)Pl(A ∩ B̄) = Bel(A ∩B)[1−Bel(B)].

By noting that 1 −Bel(B) = Pl(B̄) and dividing both sides

of the previous equality by Pl(B̄) (assumed strictly positive),

we get

Bel(A ∩B) =
Bel(B)

Pl(B̄)
Pl(A ∩ B̄). (24)

If CIC (19) and (20) are satisfied, then because of (23) and

(24), one must have also the following equality satisfied

Bel(A ∩B) =
Bel(A)

Pl(Ā)
Pl(Ā ∩B) =

Bel(B)

Pl(B̄)
Pl(A ∩ B̄).

This equality imposes the following condition to be satisfied

Bel(A)Pl(B̄)Pl(Ā ∩B) = Pl(Ā)Bel(B)Pl(A ∩ B̄). (25)

One sees that this equality is always satisfied if one has

Pl(A ∩ B̄) = Bel(A)Pl(B̄), (26)

Pl(Ā ∩B) = Pl(Ā)Bel(B). (27)

Working with conditional plausibility expressions, the formula

(13) and the condition (21) yield

Pl(A)[Pl(A ∩B) +Bel(Ā ∩B)] = Pl(A ∩B),

or equivalently

Pl(A ∩B) =
Pl(A)

Bel(Ā)
Bel(Ā ∩B). (28)

The formula (15) and the condition (22) yield

Pl(B)[Pl(A ∩B) +Bel(A ∩ B̄)] = Pl(A ∩B),

or equivalently

Pl(A ∩B) =
Pl(B)

Bel(B̄)
Bel(A ∩ B̄). (29)

If CIC (21) and (22) are satisfied, then because of (28) and

(29), one must have also the following equality satisfied

Pl(A ∩B) =
Pl(A)

Bel(Ā)
Bel(Ā ∩B) =

Pl(B)

Bel(B̄)
Bel(A ∩ B̄).

This equality imposes the following condition to be satisfied

Pl(A)Bel(B̄)Bel(Ā∩B) = Bel(Ā)Pl(B)Bel(A∩B̄). (30)

One sees that this equality is always satisfied if one has

Bel(A ∩ B̄) = Pl(A)Bel(B̄), (31)

Bel(Ā ∩B) = Bel(Ā)Pl(B). (32)

In summary, the four CIC are satisfied whenever the two

following conditions are satisfied for the two belief intervals

[Bel(A ∩ B̄), P l(A ∩ B̄)] and [Bel(Ā ∩B), P l(Ā ∩B)].

• Condition C1:

[Bel(A ∩ B̄), P l(A∩ B̄)] = [P l(A)Bel(B̄), Bel(A)P l(B̄)]. (33)

• Condition C2:

[Bel(Ā∩B), P l(Ā∩B)] = [Bel(Ā)P l(B), P l(Ā)Bel(B)]. (34)

The conditions C1 and C2 are in fact just necessary conditions

but not sufficient conditions because one needs also to impose

the coherence conditions C3 and C4 stating that right bound

of any belief interval must always be greater (or equal) than

its left bound. Hence the following inequalities (35) and (37)

must also be satisfied.

• Condition C3: The constraint Bel(A ∩ B̄) ≤ Pl(A ∩ B̄)
and (33) impose to have

Pl(A)Bel(B̄) ≤ Bel(A)Pl(B̄), (35)

which is equivalent to the condition6

Pl(A)−Bel(A) ≤ Pl(A)Pl(B)−Bel(A)Bel(B). (36)

• Condition C4: The constraint Bel(Ā ∩ B) ≤ Pl(Ā ∩ B)
and (34) impose to have

Bel(Ā)Pl(B) ≤ Pl(Ā)Bel(B), (37)

which is equivalent to the condition7

Pl(B)−Bel(B) ≤ Pl(A)Pl(B)−Bel(A)Bel(B). (38)

Thus, the conditions C1, C2, C3 and C4 characterize math-

ematically the notion of credibilistic independence (C-Indep)

between two propositions A and B according to a given BBA.

This allows us to establish the following theorem.

C-Indep Theorem: Consider a FoD Θ and a BBA m(·) :
2Θ 7→ [0, 1] and A and B two subsets of Θ. The two

propositions A and B are said credibilistically independent

if and only if

[Bel(A ∩ B̄), P l(A ∩ B̄)] = [Pl(A)Bel(B̄), Bel(A)Pl(B̄)],

[Bel(Ā ∩B), P l(Ā ∩B)] = [Bel(Ā)Pl(B), P l(Ā)Bel(B)],

and

Pl(A)−Bel(A) ≤ Pl(A)Pl(B)−Bel(A)Bel(B),

P l(B)−Bel(B) ≤ Pl(A)Pl(B)−Bel(A)Bel(B),

where Bel(·) and Pl(·) are respectively the belief and plau-

sibility functions related to the BBA m(·).
Remark: Fagin-Halpern formulas (12)–(15) are defined only

if Bel(B) > 0 and if Bel(A) > 0. This means that

[Bel(A), P l(A)] =]a1, a2] is a left open interval (excluding

a1 = 0 and with a1 ≤ a2 ≤ 1) and [Bel(B), P l(B)] =]b1, b2]
is also a left open interval (excluding b1 = 0 and with

b1 ≤ b2 ≤ 1). The credibilistic independence conditions of C-

Indep Theorem can however be satisfied even8 if Bel(A) = 0,

or Bel(B) = 0, but in this case the Fagin-Halpern formulas

yield 0/0 indeterminate form, which is perfectly normal.

6Substitute Bel(B̄) by 1− P l(B), P l(B̄) by 1−Bel(B) and rearrange
terms.

7Substitute Bel(Ā) by 1− P l(A), P l(Ā) by 1− Bel(A) and rearrange
terms.

8This is similar to probabilistic independence condition, where the condition
P (A ∩ B) = P (A)P (B) is valid even if P (A) = 0, or P (B) = 0, or if
both equalities hold.
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B. Discussion

The propositions A and B can be credibilistically inde-

pendent even if some of their lower or upper bounds equal

respectively to zero or one as it will be shown in the next

section. In this case, one can make a preliminary simple (pre-

filtering) test to check the necessary condition that the left

(lower) bound of belief interval must always be less (or equal)

to right bound. For establishing such a test, it is worth noting

that the following implications are true.

A ⊆ B ⇒ Bel(A) ≤ Bel(B), (39)

A ⊆ B ⇒ Pl(A) ≤ Pl(B). (40)

Proof: Indeed, if A ⊆ B, then B − A (the complement of A
in B) is also a subset of B. Since we have B = A∪ (B−A)
and A∩ (B −A) = ∅, from the definition of Bel(.) function,

one can write

Bel(B) =
∑

X⊆B

m(X)

=
∑

X⊆A∪(B−A)

m(X)

=
∑

X⊆A

m(X) +
∑

X⊆B−A

m(X),

which is obviously greater (or equal) to Bel(A) =
∑

X⊆Am(X). Therefore (39) is true.

Because9 A ⊆ B ⇒ B̄ ⊆ Ā where Ā , Θ − A and B̄ ,

Θ− B (the complements of A and of B in the FoD Θ), one

always has Bel(B̄) ≤ Bel(Ā). Hence, −Bel(Ā) ≤ −Bel(B̄),
and thus [Pl(A) = 1 − Bel(Ā)] ≤ [Pl(B) = 1 − Bel(B̄)].
Therefore (40) is also true.

Because A∩B is always included in A and in B, one always

has Bel(A∩B) ≤ Bel(A) and Bel(A∩B) ≤ Bel(B). For the

same reason, Pl(A ∩ B) ≤ Pl(A) and Pl(A ∩B) ≤ Pl(B).
Therefore the following inequalities always hold

Bel(A ∩B) ≤ min{Bel(A), Bel(B)}, (41)

Pl(A ∩B) ≤ min{Pl(A), P l(B)}. (42)

Let’s examine the bounds of the belief interval for the

condition C1 given in (33), which is

[Bel(A ∩ B̄), P l(A ∩ B̄)] = [Pl(A)Bel(B̄), Bel(A)Pl(B̄)].

• Lower bound of belief interval: Because Bel(A ∩
B̄) ≤ min{Bel(A), Bel(B̄)} and Bel(A ∩ B̄) =
Pl(A)Bel(B̄), the following condition

Pl(A)Bel(B̄) ≤ min{Bel(A), Bel(B̄)},
must be satisfied. In fact, because Pl(A)Bel(B̄) ≤
Bel(B̄) is always true because Pl(A) ∈ [0, 1], the

following coherence condition must hold

Pl(A)Bel(B̄) ≤ Bel(A), (43)

9Letting x ∈ B̄ says that x does not belong to B, but the hypothesis
A ⊆ B tells us that A is included in B and hence x does not belong to A

as well, or in other words x ∈ Ā. Therefore we have proven B̄ ⊆ Ā.

or equivalently (because Bel(B̄) = 1− Pl(B))

Pl(A)−Bel(A) ≤ Pl(A)Pl(B). (44)

Note that the constraint (43) is a bit less restrictive

than the inequality (35) of condition C3. This coherence

constraint says that the uncertainty on A must be less than

the product of plausibilities of A and of B if one wants

to have equality for the lower bound of belief interval

Bel(A ∩ B̄) = Pl(A)Bel(B̄) possible.

• Upper bound of belief interval: Because Pl(A ∩ B̄) ≤
min{Pl(A), P l(B̄)} and Pl(A ∩ B̄) = Bel(A)Pl(B̄),
the following condition

Bel(A)Pl(B̄) ≤ min{Pl(A), P l(B̄)},
must be satisfied. In fact, because Bel(A)Pl(B̄) ≤
Pl(B̄) is always true because Bel(A) ∈ [0, 1], the

following coherence condition must hold

Bel(A)Pl(B̄) ≤ Pl(A). (45)

Using the fact that Pl(B̄) = 1 − Bel(B) in (45), and

rearranging terms we get

Bel(A)(1−Bel(B)) ≤ Pl(A), (46)

Bel(A)−Bel(A)Bel(B)) ≤ Pl(A), (47)

−Bel(A)Bel(B)) ≤ Pl(A)−Bel(A). (48)

As we see, the inequality (48) is always satisfied because

Bel(A), Bel(B) and Pl(A) belong to [0, 1] and because

Pl(A) ≥ Bel(A), so that −Bel(A)Bel(B) ≤ 0 whereas

Pl(A)−Bel(A) ≥ 0.

Thus, there is in fact no need for a coherence constraint

for the upper bound of belief interval to allow the

equality Pl(A ∩ B̄) = Bel(A)Pl(B̄) possible.

Let’s examine the bounds of the belief interval for the

condition C2 given in (34), which is

[Bel(Ā ∩B), P l(Ā ∩B)] = [Bel(Ā)Pl(B), P l(Ā)Bel(B)].

• Lower bound of belief interval: Because Bel(Ā ∩
B) ≤ min{Bel(Ā), Bel(B)} and Bel(Ā ∩ B) =
Bel(Ā)Pl(B), the following condition

Bel(Ā)Pl(B) ≤ min{Bel(Ā), Bel(B)},
must be satisfied. In fact, because Bel(Ā)Pl(B) ≤
Bel(Ā) is always true because Pl(B) ∈ [0, 1], the

following coherence condition must hold

Bel(Ā)Pl(B) ≤ Bel(B), (49)

or equivalently (because Bel(Ā) = 1− Pl(A))

Pl(B)−Bel(B) ≤ Pl(A)Pl(B). (50)

Note that the constraint (49) is a bit less restrictive

than the inequality (37) of condition C4. This coherence

constraint says that the uncertainty on B must be less than

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

663



the product of plausibilities of A and of B if one wants

to have equality for the lower bound of belief interval

Bel(Ā ∩B) = Bel(Ā)Pl(B) possible.

• Upper bound of belief interval: Because Pl(Ā ∩ B) ≤
min{Pl(Ā), P l(B)} and Pl(Ā ∩ B) = Pl(Ā)Bel(B),
the following condition

Pl(Ā)Bel(B) ≤ min{Pl(Ā), P l(B)},
must be satisfied. In fact, because Pl(Ā)Bel(B) ≤
Pl(Ā) is always true because Bel(B) ∈ [0, 1], the

following coherence condition must hold

Pl(Ā)Bel(B) ≤ Pl(B). (51)

Using the fact that Pl(Ā) = 1 − Bel(A) in (51), and

rearranging terms we get

(1−Bel(A))Bel(B) ≤ Pl(B), (52)

Bel(B)−Bel(A)Bel(B)) ≤ Pl(B), (53)

−Bel(A)Bel(B)) ≤ Pl(B)− Bel(B). (54)

As we see, the inequality (54) is always satisfied because

Bel(A), Bel(B) and Pl(B) belong to [0, 1] and because

Pl(B) ≥ Bel(B), so that −Bel(A)Bel(B)) ≤ 0
whereas Pl(B)−Bel(B) ≥ 0.

Thus, there is in fact no need for a coherence constraint

for the upper bound of belief interval to allow the

equality Pl(Ā ∩B) = Pl(Ā)Bel(B) possible.

In summary, the conditions

Pl(A)−Bel(A) ≤ Pl(A)Pl(B), (55)

Pl(B)−Bel(B) ≤ Pl(A)Pl(B), (56)

are necessary for the coherence of belief interval bounds

defined in the conditions C1 and C2. They express the fact

that the width of belief interval (i.e. the uncertainty) of the

proposition A and B must be less than the product of their

plausibilities. The conditions (55)–(56) are very convenient

to test quickly the non credibilistic independence of A and

B, because if at least one condition (55), or (56) (or both)

is not satisfied, then we are sure that A and B cannot be

credibilistically independent. If the inequalities (55)–(56) are

satisfied, we need to check if the conditions C1, C2, C3 and

C4 are also satisfied to declare the credibilistic independence

of A and B.

C. Special case: Bayesian belief functions

The notion of credibilistic independence defined in the

previous section is a generalization of the notion of proba-

bilistic independence. This can be justified (and verified) by

examining what provides the conditions C1, C2, C3 and C4

in the limit case when the BBA m(·) is Bayesian. In this

case, belief function Bel(·) and plausibility function Pl(·)
coincide with a probability measure P (·), which means that

the conditions C3 and C4 characterized by formulas (36)

and (38) are always satisfied because Pl(A) = Bel(A),

and Pl(B) = Bel(B). Moreover, the conditions C1 and C2

become equalities between the following degenerate intervals

[P (A ∩ B̄), P (A ∩ B̄)] = [P (A)P (B̄), P (A)P (B̄)],

[P (Ā ∩B), P (Ā ∩B)] = [P (Ā)P (B), P (Ā)P (B)],

or equivalently

P (A ∩ B̄) = P (A)P (B̄),

P (Ā ∩B) = P (Ā)P (B).

These conditions are in fact equivalent to the probabilistic

independence condition P (A∩B) = P (A)P (B). This can be

shown from the TPT formulas P (A∩B̄)+P (A∩B) = P (A)
and P (A ∩B) + P (Ā ∩B) = P (B) as follows.

• If P (A∩B̄) = P (A)P (B̄), then P (A∩B̄)+P (A∩B) =
P (A)P (B̄) +P (A∩B) = P (A), and thus P (A∩B) =
P (A)(1 − P (B̄)) = P (A)P (B).

• If P (Ā∩B) = P (Ā)P (B), then P (A∩B)+P (Ā∩B) =
P (A∩B) +P (Ā)P (B) = P (B), and thus P (A∩B) =
(1− P (Ā))P (B) = P (A)P (B).

Therefore, one has proved that our notion of credibilistic

independence derived from FH conditioning coincides with

the notion of probabilistic independence as soon as the belief

function under consideration is Bayesian.

V. ILLUSTRATIVE EXAMPLES

For convenience (and not for significance), we give some

simple examples illustrating the credibilistic independence

between two propositions A and B with respect to some given

basic belief assignments, so that the reader will be able to

check by himself how to perform the derivations.

A. Example 1 (Bayesian case)

Let consider the FoD Θ = {θ1, θ2, θ3, θ4, θ5, θ6} and the

(uniform) Bayesian BBA defined by m(θi) = 1/6 for i =
1, 2, . . . , 6. Consider the two propositions (subsets) A and B
of Θ defined as A , θ1 ∪ θ2 and B , θ2 ∪ θ4 ∪ θ6. In this

case, Ā = θ3 ∪ θ4 ∪ θ5 ∪ θ6 and B̄ = θ1 ∪ θ3 ∪ θ5. We have

also A ∩ B̄ = θ1, and Ā ∩ B = θ4 ∪ θ6. Because m(·) is a

Bayesian BBA, Bel(X) = Pl(X) = P (X) for X ∈ 2Θ. Here

one has

Bel(A) = Bel(θ1 ∪ θ2) = m(θ1) +m(θ2) = 1/3,

P l(A) = Pl(θ1 ∪ θ2) = m(θ1) +m(θ2) = 1/3,

Bel(Ā) = Bel(θ3 ∪ θ4 ∪ θ5 ∪ θ6) = 1− Pl(A) = 2/3,

P l(Ā) = Pl(θ3 ∪ θ4 ∪ θ5 ∪ θ6) = 1−Bel(A) = 2/3,

Bel(B) = m(θ2) +m(θ4) +m(θ6) = 1/2,

P l(B) = m(θ2) +m(θ4) +m(θ6) = 1/2,

Bel(B̄) = Bel(θ1 ∪ θ3 ∪ θ5) = 1− Pl(B) = 1/2,

P l(B̄) = Pl(θ1 ∪ θ3 ∪ θ5) = 1−Bel(B) = 1/2,

Bel(A ∩ B̄) = m(θ1) = 1/6,

P l(A ∩ B̄) = m(θ1) = 1/6,

Bel(Ā ∩B) = Bel(θ4 ∪ θ6) = m(θ4) +m(θ6) = 1/3,

P l(Ā ∩B) = Pl(θ4 ∪ θ6) = m(θ4) +m(θ6) = 1/3.
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Conditions C1 and C2 are satisfied because

C1:

{

[Bel(A ∩ B̄), P l(A ∩ B̄)] = [ 1
6
, 1

6
],

[Pl(A)Bel(B̄), Bel(A)Pl(B̄)] = [ 1
3
· 1

2
, 1

3
· 1

2
] = [ 1

6
, 1

6
],

C2:

{

[Bel(Ā ∩B), P l(Ā ∩B)] = [ 1
3
, 1

3
],

[Bel(Ā)Pl(B), P l(Ā)Bel(B)] = [ 2
3
· 1

2
, 2

3
· 1

2
] = [ 1

3
, 1

3
].

The condition C3 : Pl(A)Bel(B̄) ≤ Bel(A)Pl(B̄) is sat-

isfied because Pl(A)Bel(B̄) = 1

3
· 1

2
= Bel(A)Pl(B̄). The

condition C4 : Bel(Ā)Pl(B) ≤ Pl(Ā)Bel(B) is also satisfied

because Bel(Ā)Pl(B) = 2

3
· 1

2
= Pl(Ā)Bel(B).

Because the conditions C1, C2, C3 and C4 are satisfied,

the propositions A and B are credibilistically independent. In

fact, in this Bayesian case, A and B are also probabilistically

independent because P (A∩B) = P (θ2) = P (A)P (B). Note

that the coherence conditions (55) and (56) are of course

satisfied because

[Pl(A)−Bel(A) = 0] ≤ [Pl(A)Pl(B) = (1/3) · (1/2)],
[Pl(B)−Bel(B) = 0] ≤ [Pl(A)Pl(B) = (1/3) · (1/2)].

B. Example 2 (Non Bayesian case)

Let consider the FoD Θ = {θ1, θ2, θ3, θ4, θ5} and the two

propositions (subsets) A and B of Θ defined as A , θ1∪θ2∪θ3
and B , θ3∪θ4. In this case, Ā = θ4∪θ5 and B̄ = θ1∪θ2∪θ5.

We have also A∩ B̄ = (θ1∪θ2∪θ3)∩ (θ1 ∪θ2∪θ5) = θ1∪θ2
and Ā ∩ B = (θ4 ∪ θ5) ∩ (θ3 ∪ θ4) = θ4. Suppose that the

BBA m(·) is simply defined as10

m(θ1) = 0.5, m(θ3) = 0.1, m(θ1 ∪ θ3) = 0.4.

Based on the BBA m(·), the belief and plausibilities of

propositions involved in the derivations are

[Bel(A), P l(A)] = [1, 1], [Bel(Ā), P l(Ā)] = [0, 0],

[Bel(B), P l(B)] = [0.1, 0.5], [Bel(B̄), P l(B̄)] = [0.5, 0.9],

[Bel(A ∩B), P l(A ∩B)] = [0.1, 0.5],

[Bel(A ∩ B̄), P l(A ∩ B̄)] = [0.5, 0.9],

[Bel(Ā ∩B), P l(Ā ∩B)] = [0, 0].

The condition C1 is satisfied because

C1:

{

[Bel(A ∩ B̄), P l(A ∩ B̄)] = [0.5, 0.9],

[Pl(A)Bel(B̄), Bel(A)Pl(B̄)] = [1 · 0.5, 1 · 0.9].
The condition C2 is also satisfied because

C2:

{

[Bel(Ā ∩B), P l(Ā ∩B)] = [0, 0],

[Bel(Ā)Pl(B), P l(Ā)Bel(B)] = [0 · 0.5, 0 · 0.1].

The condition C3 given by Pl(A)Bel(B̄) ≤ Bel(A)Pl(B̄)
is satisfied because Pl(A)Bel(B̄) = 1 · 0.5 = 0.5 and

Bel(A)Pl(B̄) = 1 · 0.9 = 0.9.

10All other elements of 2Θ which are not focal elements of the BBA m(·)
receive a zero value.

The condition C4 given by Bel(Ā)Pl(B) ≤ Pl(Ā)Bel(B)
is satisfied because Bel(Ā)Pl(B) = 0 · 0.5 = 0 and

Pl(Ā)Bel(B) = 0 · 0.1 = 0.

Therefore the propositions A and B are credibilistically in-

dependent. One can easily verify using Fagin-Halpern for-

mulas that [Bel(A|B), P l(A|B)] = [Bel(A), P l(A)] and

[Bel(B|A), P l(B|A)] = [Bel(B), P l(B)]. Indeed, in apply-

ing (12) and (13) one gets

Bel(A|B) =
Bel(A ∩B)

Bel(A ∩B) + Pl(Ā ∩B)
=

0.1

0.1 + 0

= 1 = Bel(A),

P l(A|B) =
Pl(A ∩B)

Pl(A ∩B) +Bel(Ā ∩B)
=

0.5

0.5 + 0

= 1 = Pl(A),

and in applying (14) and (15), one gets

Bel(B|A) = Bel(A ∩B)

Bel(A ∩B) + Pl(A ∩ B̄)
=

0.1

0.1 + 0.9

= 0.1 = Bel(B),

P l(B|A) = Pl(A ∩B)

Pl(A ∩B) +Bel(A ∩ B̄)
=

0.5

0.5 + 0.5

= 0.5 = Pl(B).

Note that the coherence conditions (55) and (56) are of

course satisfied because

[Pl(A)−Bel(A) = 0] ≤ [Pl(A)Pl(B) = 1 · 0.5 = 0.5],

[Pl(B)−Bel(B) = 0.4] ≤ [Pl(A)Pl(B) = 1 · 0.5 = 0.5].

C. Example 3 (Non Bayesian case)

Here we consider a more interesting example where the

widths of belief intervals are not all restricted to zero. Consider

the frame of discernment Θ = {θ1, θ2, θ3, θ4} and the very

simple BBA m(·) defined by m(θ3) = 0.7 and m(θ1 ∪ θ3) =
0.3. We consider the propositions A , θ1∪θ3 and B , θ2∪θ3.

In this case, we have Ā = θ2 ∪ θ4, B̄ = θ1 ∪ θ4, A∩B = θ3,

A ∩ B̄ = θ1 and Ā ∩ B = θ2. Based on the BBA m(·),
the belief and plausibilities of propositions involved in the

derivations are

[Bel(A), P l(A)] = [1, 1], [Bel(Ā), P l(Ā)] = [0, 0],

[Bel(B), P l(B)] = [0.7, 1], [Bel(B̄), P l(B̄)] = [0, 0.3],

[Bel(A ∩B), P l(A ∩B)] = [0.7, 1],

[Bel(A ∩ B̄), P l(A ∩ B̄)] = [0, 0.3],

[Bel(Ā ∩B), P l(Ā ∩B)] = [0, 0].

The condition C1 is satisfied because

C1:

{

[Bel(A ∩ B̄), P l(A ∩ B̄)] = [0, 0.3],

[Pl(A)Bel(B̄), Bel(A)Pl(B̄)] = [1 · 0, 1 · 0.3].
The condition C2 is satisfied because

C2:

{

[Bel(Ā ∩B), P l(Ā ∩B)] = [0, 0],

[Bel(Ā)Pl(B), P l(Ā)Bel(B)] = [0 · 1, 0 · 0.7].
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The condition C3 given by Pl(A)Bel(B̄) ≤ Bel(A)Pl(B̄)
is satisfied because Pl(A)Bel(B̄) = 1 · 0 = 0 and

Bel(A)Pl(B̄) = 1 · 0.3 = 0.3.

The condition C4 given by Bel(Ā)Pl(B) ≤ Pl(Ā)Bel(B)
is satisfied because Bel(Ā)Pl(B) = 0 · 1 = 0 and

Pl(Ā)Bel(B) = 0 · 0.7 = 0.

Therefore the propositions A and B are credibilistically in-

dependent. One can easily verify using Fagin-Halpern for-

mulas that [Bel(A|B), P l(A|B)] = [Bel(A), P l(A)] and

[Bel(B|A), P l(B|A)] = [Bel(B), P l(B)]. Indeed, in apply-

ing (12) and (13) one gets

Bel(A|B) =
Bel(A ∩B)

Bel(A ∩B) + Pl(Ā ∩B)
=

0.7

0.7 + 0

= 1 = Bel(A),

P l(A|B) =
Pl(A ∩B)

Pl(A ∩B) +Bel(Ā ∩B)
=

1

1 + 0

= 1 = Pl(A),

and in applying (14) and (15), one gets

Bel(B|A) = Bel(A ∩B)

Bel(A ∩B) + Pl(A ∩ B̄)
=

0.7

0.7 + 0.3

= 0.7 = Bel(B),

P l(B|A) = Pl(A ∩B)

Pl(A ∩B) +Bel(A ∩ B̄)
=

1

1 + 0

= 1 = Pl(B).

Note that the coherence conditions (55) and (56) are of course

satisfied because

[Pl(A)−Bel(A) = 0] ≤ [Pl(A)Pl(B) = 1 · 1 = 1],

[Pl(B)−Bel(B) = 0.3] ≤ [Pl(A)Pl(B) = 1 · 1 = 1].

VI. CONCLUSIONS

In this paper the notion of credibilistic independence of two

propositions has been proposed in the framework of belief

functions. It is a generalization of the notion of (probabilistic)

independence of two events defined classically in the theory

of probability. Our definition is totally consistent with the

probabilistic independence when the basic belief assignment

is Bayesian because it is based on Fagin-Halpern belief condi-

tioning formulas (derived from Total Belief Theorem) which

are consistent with imprecise conditional probability calculus.

Simple examples of the notion of credibilistic independence

have also been given to illustrate how to test easily the

credibilistic independence of two propositions in practice from

a given basic belief assignment.
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Abstract—In his Mathematical Theory of Evidence published
in 1976, Shafer did propose belief and plausibility conditioning
formulas based on Dempster’s rule of combination. It turns out
that the proof given by Shafer for belief conditioning is incorrect
and in this paper we present the correct proof of Shafer’s belief
conditioning formula.
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I. INTRODUCTION

In his Mathematical Theory of Evidence published in 1976

[1], Glenn Shafer did propose belief and plausibility condition-

ing formulas based on Dempster’s rule of combination. It turns

out that the proof of Theorem 3.6 given by Shafer in [1] (p. 66)

for belief conditioning is incorrect and we will explain why.

In this paper we present the correct proof of Shafer’s belief

conditioning formulas. This paper must not be considered as a

support for Shafer’s belief conditioning approach because we

recommend Fagin-Halpern conditioning approach [2] instead

(see our paper [3] for justification). It is only a clarification

of correct obtaining of Shafer’s conditioning formulas, no less

no more.

II. BASICS OF BELIEF FUNCTIONS

Based on Dempster’s works [4], [5], Shafer did introduce

Belief Functions (BF) to model the epistemic uncertainty and

to reason under uncertainty [1]. Shafer’s theory of evidence is

often called Demspter-Shafer Theory (DST) in the literature.

We consider a finite discrete frame of discernement (FoD)

Θ = {θ1, . . . , θn}, with n > 1, and where all exhaustive

and exclusive elements of Θ represent the set of the potential

solutions of the problem under concern. The set of all subsets

of Θ is the power-set of Θ denoted by 2Θ. The number of

elements (i.e. the cardinality) of 2Θ is 2|Θ|. A basic belief

assignment (BBA) associated with a given source of evidence

is defined as the mapping m(·) : 2Θ → [0, 1] satisfying the

conditions m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The quantity

m(A) is the mass of belief of subset A committed by the

source of evidence (SoE). A focal element X of a BBA m(·)
is an element of 2Θ such that m(X) > 0. Note that the empty

set ∅ is not a focal element of a BBA because m(∅) = 0
(closed-world assumption of Shafer’s model for the FoD). The

set of all focal elements (i.e. the core) of m(·) is denoted

FΘ(m) , {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0},

and the set of focal elements of m(·) included in A ⊆ Θ is

denoted FA(m) , {X ∈ FΘ(m)|X ∩ A = X}. Belief and

plausibility functions are defined by1

Bel(A) =
∑

X∈2
Θ

X⊆A

m(X)

=
∑

X∈FΘ(m)

X⊆A

m(X) =
∑

X∈FA(m)

m(X), (1)

Pl(A) =
∑

X∈2
Θ

X∩A 6=∅

m(X)

=
∑

X∈FΘ(m)

X∩A 6=∅

m(X) = 1− Bel(Ā). (2)

When all elements of FΘ(m) are only singletons, m(·)
is called a Bayesian BBA [1] and its corresponding Bel(·)
and Pl(·) functions are homogeneous to a same (subjective)

probability measure P (·). The vacuous BBA representing a

totally non informative source of evidence is characterized by

the BBA m(Θ) = 1. According to Shafer’s Theorem 1 (see [1]

page 39, with its proof on page 51), the belief functions can

be characterized without referencing to a BBA. The quantities

m(·) and Bel(·) are one-to-one, and the BBA m(·) is obtained

from Bel(·) by Möbius inverse formula (see [1], p. 39).

In DST, Shafer [1] did propose to combine s ≥ 2 distinct

sources of evidence represented by BBAs m1(.), . . . ,ms(.)
over the same FoD Θ with Dempster’s rule (i.e. the normalized

conjunctive rule). Mathematically Dempster’s rule of combi-

nation of s ≥ 2 BBAs is defined by mDS
12...s(∅) = 0, and for

any X 6= ∅ ∈ 2Θ

mDS
12...s(X) = [m1 ⊕ . . .⊕ms](X)

, mCR
12...s(X)/(1−mCR

12...s(∅)), (3)

where mCR
12...s(X) ,

∑

X1,...,Xs∈2
Θ

X1∩X2∩...∩Xs=X

∏s

i=1
mi(Xi) is the

conjunctive rule (CR) of combination. The term mCR
12...s(∅)

1By convention, a sum of non existing terms (if it occurs in formulas
depending on the given BBA) is always set to zero.
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reflects the amount of dissonance between the sources [6].

Dempster’s rule is commutative and associative and preserves

the neutrality of vacuous BBA in the fusion process. This

rule has been disputed from both theoretical and practical

standpoints, see [7]–[13] for discussions. In this paper we

do not focus on Dempster’s rule, but only on Shafer’s belief

conditioning formulas based on Dempster’s rule.

A. Shafer’s conditioning formulas

In this section we present briefly Shafer’s belief condition-

ing approach as proposed by Shafer in [1]. Suppose that the

effect of a new evidence on the frame of discernment Θ is

to establish a particular subset B ⊂ Θ with certainty. Then

Bel2 defined by Bel2(A) = 1 if B ⊂ A and Bel2(A) = 0
if B 6⊂ A will give a degree of belief one to the proposition

corresponding to B and to every proposition implied by it [1],

p.66. Shafer established the following important theorem2 for

conditional belief and plausibility.

Theorem 3.6 [1], p. 67: Suppose Bel2 is defined by above two

equations, and Bel1 is another belief function over Θ. Then

Bel1 and Bel2 are combinable if and only if Bel1(B̄) < 1. If

Bel1 and Bel2 are combinable, let Bel1(·|B) denote Bel1 ⊕
Bel2, and let Pl1 and Pl1(·|B) denote the upper probability

functions for Bel1 and Bel1⊕Bel2, respectively. Then for all

A ⊂ Θ,

Bel1(A|B) =
Bel1(A ∪ B̄)−Bel1(B̄)

1−Bel1(B̄)
, (4)

Pl1(A|B) =
Pl1(A ∩B)

Pl1(B)
. (5)

Shafer’s proof of this theorem is in [1] (see pages 71–72), but

we reproduce it here for convenience for a better identification

of the mistake in this proof.

Shafer’s Proof of Theorem 3.6 (as given in [1]):

Bel1(B̄) < 1 if and only if B overlaps the core of Bel1, and

since B is the core of Bel2, this is indeed equivalent to Bel1
being combinable with Bel2. Denote the basic probability

assignments of Bel1, Bel2 and Bel1 ⊕Bel2 by m1, m2 and

m. Since B is the only focal element of Bel2, and m2(B) = 1,

Dempster’s rule yields

m(A) =

∑

i
Ai∩B=A

m1(Ai)

1− ∑

i
Ai∩B=∅

m1(Ai)
=

∑

C
B∩C=A

m1(C)

1−Bel1(B̄)
, (6)

2In his theorem Shafer uses the notation P
∗ for upper probability instead

of P l used generally in the literature to denote the plausibility function.

and

Bel1(A|B) =
∑

D⊂A

m(D) =

∑

D
∅6=D⊂A

∑

C
B∩C=D

m1(C)

1−Bel1(B̄)
(7)

=

∑

C
∅6=B∩C⊂A

m1(C)

1−Bel1(B̄)
(8)

=

∑

C⊂A∪B̄
C 6⊂B

m1(C)

1−Bel1(B̄)
(9)

=
Bel1(A ∪ B̄)−Bel1(B̄)

1−Bel1(B̄)
. (10)

Hence

Pl1(A|B) = 1−Bel1(Ā|B) (11)

=
1−Bel1(B̄)−Bel1(Ā ∪ B̄) +Bel1(B̄)

1−Bel1(B̄)
(12)

=
1−Bel1(A ∩B)

1−Bel1(B̄)
=

Pl1(A ∩B)

Pl1(B)
. � (13)

III. WHY SHAFER’S PROOF IS INCORRECT

Although Shafer’s formulas (4)-(5) are correct3, we show

why Shafer’s proof is incorrect. To obtain the final expression

of Bel1(A|B) given by (10), Shafer goes from (8) to (9) in

the proof of Theorem 3.6. So, Shafer implicitly assumes that

the following equality is valid

∑

C
∅6=B∩C⊂A

m1(C) =
∑

C⊂A∪B̄
C 6⊂B

m1(C). (14)

In fact, (14) is wrong as shown in the next simple counter-

example. Hence, Shafer’s proof for Bel1(A|B) is incorrect.

This mistake casts doubts on the correctness of formulas in

Theorem 3.6. However, we show in the next section that

formulas given in Theorem 3.6 are in fact correct and we give

in this paper their correct proofs. It is quite easy to verify that

3if one accepts Shafer’s standpoint for belief conditioning based on Demp-
ster’s rule.
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(9) is not equal to (10) because4

Bel1(A ∪ B̄) =
∑

C⊂A∪B̄

m1(C)

=
∑

C⊂A∪B̄
C 6⊂B

m1(C) +
∑

C⊂A∪B̄
C⊂B

m1(C)

=
∑

C⊂A∪B̄
C 6⊂B

m1(C) +
∑

C⊂(A∪B̄)∩B

m1(C)

=
∑

C⊂A∪B̄
C 6⊂B

m1(C) +
∑

C⊂(A∩B)∪(B̄∩B)

m1(C)

=
∑

C⊂A∪B̄
C 6⊂B

m1(C) +
∑

C⊂(A∩B)∪∅
m1(C)

=
∑

C⊂A∪B̄
C 6⊂B

m1(C) +
∑

C⊂(A∩B)

m1(C)

=
∑

C⊂A∪B̄
C 6⊂B

m1(C) +Bel1(A ∩B).

Therefore, the numerators of (9) and (10) are different in

general because
∑

C⊂A∪B̄
C 6⊂B

m1(C) = Bel1(A ∪ B̄)−Bel1(A ∩B) (15)

6= Bel1(A ∪ B̄)−Bel1(B̄).

Remark: One may argue that there is just a small typo

error in Shafer’s book, and in fact the incorrect ex-

pression
∑

C⊂A∪B̄
C 6⊂B

m1(C) in (14), must be replaced by
∑

C⊂A∪B̄
C 6⊂B̄

m1(C). Even if one admits this possibility of typo

error in Shafer’s proof, it is not trivial to prove the (modi-

fied/corrected) equality
∑

C
∅6=B∩C⊂A

m1(C) =
∑

C⊂A∪B̄
C 6⊂B̄

m1(C), (16)

to get the final Shafer’s belief conditioning formula. That

is why we provide a complete exact and detailed proof of

Shafer’s belief conditioning formula in section IV.

A simple counter-example of Shafer’s proof

Consider the following FoD Θ = {θ1, . . . , θ7} satisfying

Shafer’s model. We consider and denote the focal elements of

m1(·) as follows A , {θ2, θ3, θ4, θ5, θ7} = θ2∪θ3∪θ4∪θ5∪θ7,

B , {θ1, θ2, θ3, θ4} = θ1 ∪ θ2 ∪ θ3 ∪ θ4, C1 , {θ3, θ5, θ6} =
θ3 ∪ θ5 ∪ θ6, C2 , {θ4, θ7} = θ4 ∪ θ7, C3 , θ2, and the

BBA m1(.) defined on the FoD Θ given by m1(A) = 0.1,

m1(B) = 0.1, m1(C1) = 0.2, m1(C2) = 0.3 and m1(C3) =
0.3. We consider the subset B = θ1 ∪ θ2 ∪ θ3 ∪ θ4 being

the conditioning term, characterized by the BBA m2(B) = 1,

4The denominators of (9) and (10) being equal, we just need to verify if
the numerators of (9) and (10) are equal, or not.

hence Bel2(B) = 1. Note that B̄ = Θ \ B = {θ5, θ6, θ7}
and Bel1(B̄) = 0 because there is no focal elements of m1(·)
included in B̄ = θ5 ∪ θ6 ∪ θ7.

• Let us calculate at first the sum S1 ,
∑

C
∅6=B∩C⊂A

m1(C)

involved in (8). All focal elements C of m1(·) such that ∅ 6=
B ∩C ⊂ A are the focal elements A, C1, C2 and C3 because

B ∩ A = θ2 ∪ θ3 ∪ θ4 6= ∅ and θ2 ∪ θ3 ∪ θ4 ⊂ A, B ∩
C1 = θ3 6= ∅ and θ3 ⊂ A, B ∩ C2 = θ4 6= ∅ and θ4 ⊂ A,

B ∩ C3 = θ2 6= ∅ and θ2 ⊂ A. The focal element C = B of

m1(·) is not involved in the sum S1 because if C = B, then

B ∩ C = B ∩B = B 6⊂ A. Therefore, one gets

S1 = m1(A) +m1(C1) +m1(C2) +m1(C3)

= 0.1 + 0.2 + 0.3 + 0.3 = 0.9.

Hence, based on (8) which is the correct expression obtained

from (7), one gets the correct value of Shafer’s belief condi-

tioning

Bel1(A|B) = S1/(1−Bel1(B̄)) = 0.9/(1− 0) = 0.9.

• Let us calculate the sum S2 ,
∑

C⊂A∪B̄
C 6⊂B

m1(C) involved

in (9). First note that A∪ B̄ = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ6 ∪ θ7 and

the focal elements C of m1(·) such that C ⊂ (A ∪ B̄) and

C 6⊂ B are the three focal elements A, C1 and C2 because

A ⊂ A ∪ B̄ and A 6⊂ B, C1 = θ3 ∪ θ5 ∪ θ6 ⊂ A ∪ B̄ and

C1 6⊂ B, C2 = θ4 ∪ θ7 ⊂ A ∪ B̄ and C2 6⊂ B. The focal

element B = θ1 ∪ θ2 ∪ θ3 ∪ θ4 of m1(·) is not included in

A∪ B̄ = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ6 ∪ θ7 because, in this example,

B is not included in A, and of course because B ∩ B̄ = ∅.

The focal element C3 = θ2 of m1(·) is included in A ∪ B̄ =
θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ6 ∪ θ7 but C3 = θ2 is also included in

B = θ1 ∪ θ2 ∪ θ3 ∪ θ4, so that the condition C3 6⊂ B is not

satisfied. Based on these remarks, one gets for S2

S2 = m1(A) +m1(C1) +m1(C2) = 0.1 + 0.2 + 0.3 = 0.6.

We can verify that the value of S2 corresponds to the value

obtained with the correct formula (15), because Bel1(A∪B̄) =
m1(A) +m1(C1) +m1(C2) +m1(C3) = 0.9 and Bel1(A ∩
B) = m1(C3) = 0.3 so that S2 = Bel1(A ∪ B̄)− Bel1(A ∩
B) = 0.9− 0.3 = 0.6. Hence, based on (9), one would get an

incorrect value of Shafer’s belief conditioning

Bel1(A|B) = S2/(1−Bel1(B̄)) = 0.6/(1− 0) = 0.6.

Clearly, this counter-example shows that S1 6= S2 and proves

that the equality (14) is incorrect. This simple counter exam-

ples illustrates that the proof of Theorem 3.6 given by Shafer

is incorrect.

IV. CORRECT PROOF OF FORMULAS OF THEOREM 3.6

Starting from Dempster’s rule we have m(∅) = 0 and for

all A 6= ∅ ∈ 2Θ,

m(A) = [m1 ⊕m2](A) =

∑

X1,X2∈2
Θ

X1∩X2=A

m1(X1)m2(X2)

1− ∑

X1,X2∈2
Θ

X1∩X2=∅

m1(X1)m2(X2)
.

(17)
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Because in conditioning by B 6= ∅, m2(·) is defined by

m2(X2) = 1 if X2 = B, and m2(X2) = 0 otherwise, the

previous expression reduces for A 6= ∅ to

m(A) =

∑

X1∈2
Θ

∅6=X1∩B=A

m1(X1)

1− ∑

X1∈2
Θ

X1∩B=∅

m1(X1)
=

∑

X1∈2
Θ

∅6=X1∩B=A

m1(X1)

1−Bel1(B̄)
, (18)

because Bel1(B̄) =
∑

X1∈2
Θ

X1⊆B̄

m1(X1) =
∑

X1∈2
Θ

X1∩B=∅

m1(X1).

Using the definition of the belief function, Bel1(A|B) for B 6=
∅ is given by

Bel1(A|B) =
∑

Y ∈2
Θ

Y ⊆A

m(Y )

=
∑

Y ∈2
Θ

Y ⊆A

∑

X1∈2
Θ

∅6=X1∩B=Y

m1(X1)

1− Bel1(B̄)

=

∑

Y ∈2
Θ

Y ⊆A

∑

X1∈2
Θ

∅6=X1∩B=Y

m1(X1)

1−Bel1(B̄)

=

∑

X1∈2
Θ

∅6=X1∩B⊆A

m1(X1)

1−Bel1(B̄)
. (19)

Note that equation (19) is the same as Shafer’s equation (8)

using slight modified notations5 for better presentation in the

sequel.

Because m1(·) is a normalized BBA, one has for all B ∈ 2Θ

∑

X1∈2
Θ

X1∩B=∅

m1(X1) +
∑

X1∈2
Θ

X1∩B 6=∅

m1(X1) = 1. (20)

Also, for any A ∈ 2Θ and in partitioning 2Θ in the subsets

{Y ∈ 2Θ|Y ⊆ A} and {Y ∈ 2Θ|Y 6⊆ A}, the following

equality also always holds

∑

Y ∈2
Θ

Y ⊆A

[

∑

X1∈2
Θ

X1∩B∩Y=∅

m1(X1) +
∑

X1∈2
Θ

X1∩B∩Y 6=∅

m1(X1)
]

+
∑

Y ∈2
Θ

Y 6⊆A

[

∑

X1∈2
Θ

X1∩B∩Y=∅

m1(X1) +
∑

X1∈2
Θ

X1∩B∩Y 6=∅

m1(X1)
]

= 1.

(21)

5We have also replaced symbol ⊂ by ⊆ for clarity.

This equality can be rewritten equivalently as

∑

X1∈2
Θ

(X1∩B=∅)⊆A

m1(X1) +
∑

X1∈2
Θ

(X1∩B 6=∅)⊆A

m1(X1)

+
∑

X1∈2
Θ

(X1∩B=∅) 6⊆A

m1(X1) +
∑

X1∈2
Θ

(X1∩B 6=∅) 6⊆A

m1(X1) = 1. (22)

The second term of the left hand side of (22) corresponds to

the numerator of Bel1(A|B) given in (19). We can express it

as

∑

X1∈2
Θ

(X1∩B 6=∅)⊆A

m1(X1) = 1−
∑

X1∈2
Θ

(X1∩B=∅)⊆A

m1(X1)

−
∑

X1∈2
Θ

(X1∩B=∅) 6⊆A

m1(X1)−
∑

X1∈2
Θ

(X1∩B 6=∅) 6⊆A

m1(X1).

Because
∑

X1∈2
Θ

(X1∩B=∅)⊆A

m1(X1)+
∑

X1∈2
Θ

(X1∩B=∅) 6⊆A

m1(X1) =
∑

X1∈2
Θ

X1∩B=∅

m1(X1),

one gets
∑

X1∈2
Θ

(X1∩B 6=∅)⊆A

m1(X1) = 1−
∑

X1∈2
Θ

X1∩B=∅

m1(X1)

−
∑

X1∈2
Θ

(X1∩B 6=∅) 6⊆A

m1(X1)

= 1−Bel1(B̄)− Pl1(Ā ∩B).

The last previous equality comes from the fact that

Bel1(B̄) =
∑

X1∈2
Θ

X1⊆B̄

m1(X1) =
∑

X1∈2
Θ

X1∩B=∅

m1(X1),

P l1(Ā ∩B) =
∑

X1∈2
Θ

X1∩B∩Ā 6=∅

m1(X1) =
∑

X1∈2
Θ

(X1∩B 6=∅) 6⊆A

m1(X1).

Therefore, the numerator of Bel1(A|B) given in (19) equals

1 − Pl1(Ā ∩ B) − Bel1(B̄). Because Pl1(Ā ∩ B) = 1 −
Bel1(Ā ∩B) = 1 − Bel1(A ∪ B̄), one finally gets for the

numerator of Bel1(A|B)
∑

X1∈2
Θ

(X1∩B 6=∅)⊆A

m1(X1) = Bel1(A ∪ B̄)−Bel1(B̄), (23)

and the final expression of Bel1(A|B) is given by

Bel1(A|B) = (Bel1(A ∪ B̄)−Bel1(B̄))/(1−Bel1(B̄)).
(24)

This expression coincides with the final expression (10) given

by Shafer in his flawed proof. The derivation of Pl1(A|B)
given in Shafer’s proof is correct since we have proved that

the expression of Bel1(A|B) is correct.
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V. CONCLUSION

In this paper we have shown why the proof of belief

conditioning formulas given by Shafer is wrong and we have

illustrated this incorrectness with a simple counter-example.

After the identification of the mistake in Shafer’s proof, we

have provided the correct proof of final expressions of Shafer’s

belief conditioning formulas. For readers interested in belief

conditioning, we provide a solid justification against the belief

conditioning method proposed by Shafer in our companion

paper [3]. Our criticism of Shafer’s conditioning approach is

based on the Total Belief Theorem and Generalized Bayes’

Theorem.
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Abstract—This paper presents two new theoretical contri-
butions for reasoning under uncertainty: 1) the Total Belief
Theorem (TBT) which is a direct generalization of the Total
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drawn from TBT. A constructive justification of Fagin-Halpern
belief conditioning formulas proposed in the nineties is also given.
We also show how our new approach and formulas work through
simple illustrative examples.
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I. INTRODUCTION

This paper presents new theoretical results for reasoning

under uncertainty with belief functions (BF) introduced by

Shafer in [1] in Dempster-Shafer Theory (DST). The first

important result is the Total Belief Theorem (TBT) which is

a generalization of the Total Probability Theorem (TPT) for

the belief functions framework. From TBT, one can provide

a solid justification of Fagin-Halpern (FH) belief conditioning

formulas [3]–[5] which are generalizations of the classical con-

ditional probability formulas. These theoretical results allow

us to establish rigorously the Generalized Bayes’ Theorem

(GBT). The belief conditioning problem is challenging, not

new, and one of the two main methods usually adopted by

users working with BF is : 1) Shafer’s belief conditioning

method based on Dempster’s rule of combination [1], or

2) the belief conditioning method consistent with imprecise

probability calculus bounds [2], [6], [7] based on the lower and

upper probability interpretation of belief functions popularized

by Fagin and Halpern [3]. In this paper we focus on the second

approach of belief conditioning because Dempster’s rule of

combination presents serious problems as reported in [8]–[16].

Smets did also attempt to generalize Bayes’ Theorem (BT) and

did propose his own GBT [17] on the basis of conditional

embedding, conjunctive merging and Shafer’s conditioning.

Unfortunately, Smets’ approach remains doubtful as reported

in [18]. Our new GBT establishment is obtained by a direct

constructive manner from TBT. It does not need extra as-

sumptions nor some underlying ad-hoc construction principles.

Also, we prove that our TBT and GBT presented in this work

are fully consistent with classical TPT and BT as soon as the

belief functions are Bayesian.

This paper starts with a brief review of very basics of

Probability Theory, including the Total Probability Theorem

(TPT) and Bayes’ Theorem (BT) in Section II because this

helps to have a better understanding of the generalizations we

propose. A brief review of belief functions is given in Section

III, followed by classical Shafer’s and Fagin-Halpern’s belief

conditioning methods respectively in Sections IV and V. In

Section VI, we present the decomposition of the set of focal

elements of any basic belief assignment (BBA) that allows

us to establish formally the TBT and its generalization on

Cartesian product space. The Section VII presents and justifies

the new belief conditioning formulas drawn from TBT which

are fully consistent with Fagin-Halpern conditioning formulas.

This section also presents the generalization of Bayes’ theorem

in the framework of belief functions. We illustrate our new

theoretical results with a quite simple GBT example in Section

VIII to show how to make derivations of GBT and to prove

that Shafer’s conditioning results are inconsistent with GBT.

Section IX concludes this paper.

II. TOTAL PROBABILITY THEOREM & BAYES’ FORMULA

A. Total Probability Theorem

In probability theory, the elements θi of the space Θ are

experimental outcomes. The subsets of Θ are called events

and the event {θi} consisting of the single element θi is an

elementary event. The space Θ is called the sure event and

the empty set ∅ is the impossible event. We assign to each

event A a number P (A) in [0, 1], called the probability of A,

which satisfies the three Kolmogorov’s conditions: 1) P (∅) =
0; 2) P (Θ) = 1; and 3) if A ∩ B = {∅}, then P (A ∪ B) =
P (A)+P (B). These conditions are the axioms of the theory of

probability [20]. The fundamental Theorem of the probability

theory is the Total Probability Theorem (TPT), also called a

the law of total probability, see [20] which can be stated as

follows.

Total Probability Theorem (TPT): Consider an event B and
any partition1 {A1, A2, . . . , Ak} of the space Θ. Then

P (B) = P (B ∩ A1) + P (B ∩A2) + . . .+ P (B ∩Ak). (1)

1A partition of Θ is a collection of exclusive subsets of Θ whose union
equals Θ.

Originally published as: J. Dezert, A. Tchamova, D. Han, Total Belief Theorem and Generalized Bayes’ 
Theorem, in Proc. of Int. Conf. on Information Fusion (Fusion 2018), Cambridge, UK, July 10–13, 2018 
(Best Paper Awards), and reprinted with permission.
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B. Conditional probability and Bayes’ formula

Starting from TPT formula (1) and assuming P (B) > 0, we get
for any i ∈ {1, . . . , k} after dividing each side of (1) by P (B) and
rearranging terms the equality

P (Ai ∩B)

P (B)
= 1−

∑

j=1,...,k
j 6=i

P (Aj ∩B)

P (B)
= 1−

P (Āi ∩B)

P (B)
, (2)

which allows us to define the conditional probability P (Ai|B) by2

P (Ai|B) , P (Ai ∩B)/P (B). (3)

Similarly, by considering an event Ai of Θ and the partition {B, B̄}

of Θ, the TPT formula P (Ai) = P (Ai ∩ B) + P (Ai ∩ B̄) applies,
and by dividing it by P (Ai) (assuming P (Ai) > 0), one gets

P (Ai ∩B)

P (Ai)
= 1−

P (Ai ∩ B̄)

P (Ai)
, (4)

which allows to define the conditional probability P (B|Ai) by

P (B|Ai) , P (Ai ∩B)/P (Ai). (5)

From (3) and (5), one deduces the equality

P (Ai ∩B) = P (Ai|B)P (B) = P (B|Ai)P (Ai). (6)

From equality (6) and assuming P (B) > 0 and P (Ai) > 0, we get

P (Ai|B) = P (B|Ai)P (Ai)/P (B), (7)

P (B|Ai) = P (Ai|B)P (B)/P (Ai). (8)

Using (1) and noting that P (Ai ∩B) = P (B|Ai)P (Ai), we get

P (B) =
k

∑

i=1

P (B|Ai)P (Ai). (9)

Substituting (9) in (7), we obtain Bayes’ Theorem (BT) formula stated
mathematically as the following equation

P (Ai|B) =
P (B|Ai)P (Ai)

∑k

i=1 P (B|Ai)P (Ai)
. (10)

One can verify that the conditional probability defined by (3)
satisfies the three axioms of the Theory of Probability [20].

Previously, Ai and B were events (subsets) of the same space Θ.
If Ai ⊆ Θ1 and B ⊆ Θ2 with Θ1 6= Θ2, which corresponds to a
so-called combined experiment [20], similar conditioning formulas
can also be established by working in the Cartesian product space
Θ , Θ1 × Θ2 whose elementary elements are all the ordered pairs
(xp, yq) with xp ∈ Θ1 and yq ∈ Θ2. The two experiments are viewed
as a single combined one whose outcomes are pairs (xp, yq). In this
space Θ = Θ1 × Θ2, xp is not an elementary element but a subset
of n elements of Θ, i.e. {xp} = {(xp, y1), . . . , (xp, yn)}. Similarly,
yq is not an elementary element but a subset of m elements of Θ,
i.e. {yq} = {(x1, yq), . . . , (xm, yq)}. If Ai ⊆ Θ1 and B ⊆ Θ2, then
Ai ×B = {(xp, yq)|xp ∈ A; yq ∈ B} ⊆ Θ. If one forms Ai × Θ2

and Θ1×B one sees that Ai×B = (Ai×Θ2)∩(Θ1×B) = (Θ1×

B)∩ (Ai×Θ2). Because the event Ai ×Θ2 occurs in the combined
experiment if the event Ai of the experiment 1 occurs no matter what
the outcome of experiment 2 is, one has P (Ai×Θ2) = P1(Ai) where
P1(Ai) is the probability of event Ai in the experiment 1. Similarly,
the event Θ1×B occurs if B occurs in experiment 2 no matter what
the outcome of experiment 1 is, so that P (Θ1×B) = P2(B) where
P2(B) is the probability of event B in the experiment 2. Considering
a partition {A1, A2, . . . , Ak} of Θ1 and a subset (event) B ⊆ Θ2,

2The notation , means equal by definition.

and based on set theory and property of Cartesian product, one can
establish also TPT formula

P (Θ1 ×B) =
∑

i=1,...,k

P ((Θ1 ×B) ∩ (Ai ×Θ2)),

and Bayes’ formula

P (Ai ×Θ2|Θ1 ×B) =
P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)

∑k

i=1 P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)
.

That is why, for notation convenience (and notation abuse), we can
just use classical formulas even when working with different sets of
experimental outcomes Θ1 and Θ2. One just has to keep in mind that
in this case Ai must be understood as Ai ×Θ2 and B as Θ1 ×B.

III. BASICS OF BELIEF FUNCTIONS

Based on Dempster’s works [2], [19], Shafer did introduce Belief
Functions (BF) to model the epistemic uncertainty3 and to reason
under uncertainty [1]. We consider a finite discrete frame of dis-
cernement (FoD) Θ = {θ1, θ2, . . . , θn}, with n > 1, and where
all exhaustive and exclusive elements of Θ represent the set of the
potential solutions of the problem under concern. The set of all
subsets of Θ is the power-set of Θ denoted by 2Θ. The number of

elements (i.e. the cardinality) of 2Θ is 2|Θ|. A basic belief assignment
(BBA) associated with a given source of evidence is defined as the
mapping m(·) : 2Θ → [0, 1] satisfying the conditions m(∅) = 0
and

∑

A∈2Θ m(A) = 1. The quantity m(A) is the mass of belief of
subset A committed by the source of evidence (SoE). A focal element
X of a BBA m(·) is an element of 2Θ such that m(X) > 0. Note that
the empty set ∅ is not a focal element of a BBA because m(∅) = 0
(closed-world assumption of Shafer’s model for the FoD). The set of
all focal elements of m(·) is denoted

FΘ(m) , {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0}. (11)

The set of focal elements of m(·) included in A ⊆ Θ is denoted

FA(m) , {X ∈ FΘ(m)|X ∩A = X}. (12)

Note that if A ⊆ B ⊆ Θ, then FA(m) ⊆ FB(m). Also,
∀A,B ⊆ Θ one has FA∩B(m) = FA(m) ∩ FB(m), but
FA∪B(m) 6= FA(m) ∪ FB(m) in general. The set FΘ(m) can
always be partitioned as {FA(m),FĀ(m),FA∗(m)} where4

FA∗(m) , FΘ(m)− FA(m)−FĀ(m) (13)

= {X ∈ FΘ(m)|X ∩A 6= ∅ and X ∩ Ā 6= ∅}, (14)

represents the set of focal elements of m(·) which are not subsets of

A and not subsets of Ā , Θ − {A} = {X|X ∈ Θ and X /∈ A},
where Ā is the complement of A in Θ and the minus symbol denotes
the set difference operator.

Belief and plausibility functions are defined by5

Bel(A) =
∑

X∈2Θ

X⊆A

m(X) =
∑

X∈FΘ(m)
X⊆A

m(X) =
∑

X∈FA(m)

m(X),

(15)

P l(A) =
∑

X∈2Θ

X∩A6=∅

m(X) =
∑

X∈FΘ(m)
X∩A6=∅

m(X) = 1− Bel(Ā). (16)

The width U(A∗) = P l(A)−Bel(A) of the belief interval
[Bel(A), P l(A)] is called the uncertainty on A committed by the

3Also called sometimes the cognitive uncertainty by some authors.
4For notation convenience, we use A∗ to denote focal elements of m(·)

which are not in A, nor in Ā.
5By convention, a sum of non existing terms (if it occurs in formulas

depending on the given BBA) is always set to zero.
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SoE. It represents the imprecision on the (subjective) probability of
A granted by the SoE which provides the BBA m(·). The uncertainty
U(A∗) can also be expressed directly as

U(A∗) =
∑

X∈FA∗ (m)

m(X). (17)

It is worth noting that U(Ā∗) = P l(Ā)−Bel(Ā) = (1−Bel(A))−
(1− P l(A)) = P l(A)−Bel(A) = U(A∗), or equivalently

U(Ā∗) =
∑

X∈FĀ∗ (m)

m(X), (18)

where FĀ∗(m) , FΘ(m)− FĀ(m)− FA(m) = FA∗(m).

When all elements of FΘ(m) are only singletons, m(·) is called a
Bayesian BBA [1] and its corresponding Bel(·) and P l(·) functions
are homogeneous to a same (subjective) probability measure P (·). In
this case FA∗(m) = FĀ∗(m) = ∅. According to Shafer’s Theorem 1
below, see [1] page 39 with its proof on page 51, the belief functions
can be characterized without referencing to a BBA.

Theorem 1: If Θ is a FoD, then a function Bel : 2Θ 7→ [0, 1] is a
belief function if and only if it satisfies the following conditions:

• B1) Belief in impossible event is zero, that is Bel(∅) = 0.
• B2) Belief in the certain event is one, that is Bel(Θ) = 1.
• B3) For every positive integer n, and for every collection A1,. . . ,

An of subsets of Θ

Bel(A1 ∪ . . . ∪An) ≥
∑

I⊂{1,...,n}

I 6=∅

(−1)|I|+1Bel(∩
i∈I

Ai). (19)

Quantities m(·) and Bel(·) are one-to-one, and for any A ⊆ Θ the
BBA m(·) is obtained from Bel(·) by Möbius inverse formula (see
[1], p.39)

m(A) =
∑

B⊆A⊆Θ

(−1)|A−B|Bel(B). (20)

Shafer [1] did propose to combine s ≥ 2 distinct sources of
evidence represented by BBAs m1(.), . . . ,ms(.) over the same FoD
with Dempster’s rule (i.e. the normalized conjunctive rule). However
Dempster’s rule has been strongly disputed from both theoretical and
practical standpoints as reported in [16], [21], [22]. In particular,
the high (or even very low) conflict level between the sources
can be totally ignored by Dempster’s rule which is a very serious
problem [15]. Also, Shafer’s conditioning (based on Dempster’s rule)
is inconsistent with the probabilistic conditioning (see next section).

IV. SHAFER’S CONDITIONING

A. Shafer’s conditioning formulas

Shafer’s conditioning formulas are established in Theorem 3.6 p.
66 of [1] from Dempster’s rule of combination of the original BBA
m(·) with the BBA mB(B) = 1 focused on B. We review them
for convenience. For A,B ⊆ Θ with P l(B) > 0, Bel(A|B) and
P l(A|B) are given by

Bel(A|B) = (Bel(A ∪ B̄)−Bel(B̄))/(1−Bel(B̄)), (21)

P l(A|B) = P l(A ∩B)/P l(B). (22)

The expression (21) of Bel(A|B) is equivalent to

Bel(A|B) = (P l(B)− P l(B ∩ Ā))/P l(B), (23)

because one has always (from definition of belief functions)
P l(B) = 1−Bel(B̄) and the numerator of (21) can be written as

Bel(A ∪ B̄)−Bel(B̄) = P l(B)− P l(B ∩ Ā).

If A = ∅, Bel(∅|B) = P l(∅|B) = 0, and if A = Θ,
Bel(Θ|B) = P l(Θ|B) = 1. Also, if B = Θ, Bel(A|Θ) = Bel(A)

and P l(A|Θ) = P l(A). Note that if B = A in (22)–(23), we get
Bel(A|A) = P l(A|A) = 1 which fits with the common sense.

In reversing the roles played by A and B and switching the
notations in previous expressions, the following formulas also hold
(assuming P l(A) > 0)

Bel(B|A) = (P l(A)− P l(A ∩ B̄))/P l(A), (24)

P l(B|A) = P l(B ∩A)/P l(A). (25)

From (22) and (25), one deduces that

P l(A ∩ B) = P l(A|B)P l(B) = P l(B|A)P l(A).

Hence, the following formula applies for conditional plausibilities
when P l(B) > 0

P l(A|B) = P l(B|A)P l(A)/P l(B). (26)

Shafer’s formula (25) is similar to conditional probabilities (3)
when replacing plausibility by probability. So, at first glance it seems
appealing. In the sequel we show why this is not the case.

B. Drawback of Shafer’s conditioning

The main drawback of Shafer’s conditioning is that the bounds
of belief interval [Bel(A|B), P l(A|B)] obtained by (21)-(22) are in
general incompatible with lower and upper bounds of the conditional
probability P (A|B). This problem makes Shafer’s conditioning based
on Dempster’s rule very disputable and cast doubts on pertinence
(validity) of Shafer’s conditioning results when used in applications.
This serious problem has already been reported and addressed by
several authors [3], [6], [7], [11] with some examples. To easily show
this incompatibility of Shafer’s conditioning with probability calculus
we present briefly the famous Ellsberg urn example [23].

Example 1 (Ellsberg urn): We consider an urn with red (R) balls,
black (B) and yellow (Y) balls. One knows that 1/3 of balls are
red balls and 2/3 or balls are black and yellow balls. So the a
priori information about the chance to pick a ball in the urn can
be represented by a (parametric) probability mass function P (·)

P (R) = 1/3, P (B) = 2/3− x, P (Y ) = x,

where x is an unknown number/parameter in [0, 2/3]. Therefore,
P (B) and P (Y ) are unknown but their bounds are known. In fact,
this problem can be seen as a problem of imprecise probabilities
where P (R) + P (B) + P (Y ) = 1 with

P (R) ∈ [1/3, 1/3], P (B) ∈ [0, 2/3], P (Y ) ∈ [0, 2/3].

Now let’s suppose that someone picks a ball at random in the
urn and tell us that the color of the ball is not black, i.e. the event
B̄ = R ∪ Y has occurred. How do we must revise (update) our
prior probabilities with this new information? The correct answer to
this question is obtained by computing the conditional probabilities
P (R|B̄), P (B|B̄) and P (Y |B̄) and by analyzing their bounds. This
is done using the fact that P (B̄) = P (R ∪ Y ) = P (R) + P (Y ) −
P (R ∩ Y ) = P (R) + P (Y ) = (1/3) + x. Indeed, P (R ∩ Y ) = 0
because the events R and Y are mutually exclusive. So, we get

P (R|B̄) =
P (R ∩ (R ∪ Y ))

P (R ∪ Y )
=

P (R)

(1/3) + x
=

1/3

(1/3) + x
,

P (B|B̄) =
P (B ∩ (R ∪ Y ))

P (R ∪ Y )
=

P (∅)

(1/3) + x
=

0

(1/3) + x
,

P (Y |B̄) =
P (Y ∩ (R ∪ Y ))

P (R ∪ Y )
=

P (Y )

(1/3) + x
=

x

(1/3) + x
.

If x = 0, then P (R|B̄) = 1 and P (Y |B̄) = 0. If x = 2/3, then
P (R|B̄) = 1/3 and P (Y |B̄) = 2/3. Therefore after conditioning
we get

P (R|B̄) ∈ [1/3, 1], P (B|B̄) ∈ [0, 0], P (Y |B̄) ∈ [0, 2/3].
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Let’s examine what we get with Shafer’s conditioning. The problem
is modeled using the a priori BBA m(·) defined on the FoD Θ =
{R,B, Y } with m(R) = 1/3 and m(B∪Y ) = 2/3 which gives the
belief intervals [Bel(R), P l(R)] = [1/3, 1/3], [Bel(B), P l(B)] =
[0, 2/3] and [Bel(Y ), P l(Y )] = [0, 2/3]. With Shafer’s conditioning
formulas and noting that P l(R) = 1/3, P l(B) = 2/3, P l(Y ) =
2/3, and P l(R ∪ Y ) = 1, we get

Bel(R|B̄) =
Pl(R ∪ Y ) − Pl((R ∪ Y ) ∩ (B ∪ Y ))

Pl(R ∪ Y )
=

1 − Pl(Y )

1
= 1/3,

Bel(B|B̄) =
Pl(R ∪ Y ) − Pl((R ∪ Y ) ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

1 − Pl(R ∪ Y )

1
= 0,

Bel(Y |B̄) =
Pl(R ∪ Y ) − Pl((R ∪ Y ) ∩ (R ∪ B))

Pl(R ∪ Y )
=

1 − Pl(R)

1
= 2/3,

P l(R|B̄) =
Pl(R ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

Pl(R)

Pl(R ∪ Y )
= 1/3,

P l(B|B̄) =
Pl(B ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

Pl(∅)
1

= 0,

P l(Y |B̄) =
Pl(Y ∩ (R ∪ Y ))

Pl(R ∪ Y )
=

Pl(Y )

Pl(R ∪ Y )
= 2/3.

Hence with Shafer’s conditioning we get results incompatible with
the real bounds of conditional probabilities because

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1/3] 6= [1/3, 1],

[Bel(B|B̄), P l(B|B̄)] = [0, 0],

[Bel(Y |B̄), P l(Y |B̄)] = [2/3, 2/3] 6= [0, 2/3].

V. FAGIN-HALPERN CONDITIONING

Fagin and Halpern (FH) proposed in [3], [4] to define the condi-
tional belief as the lower envelope (i.e. the infimum) of a family
of conditional probability functions to make belief conditioning
consistent with imprecise conditional probability calculus.

A. Fagin-Halpern conditioning formulas

Assuming Bel(B) > 0, Fagin and Halpern proposed the following
conditional formulas (FH formulas for short)

Bel(A|B) = Bel(A ∩ B)/(Bel(A ∩B) + P l(Ā ∩B)), (27)

P l(A|B) = P l(A ∩B)/(P l(A ∩B) +Bel(Ā ∩B)). (28)

They prove in [3] that Bel(A|B) given by (27) satisfies the
three conditions of Theorem 1 and so FH belief conditioning is
an appealing solution for BF conditioning. However, it is quite
obscure how Fagin and Halpern did obtain (construct) FH formulas.
A justification has been given by Sundberg and Wagner in [7] (p.
268) but it is not very easy to follow. In this paper, we justify clearly
and directly the establishment of FH formulas from the simple and
direct consequence of the Total Belief Theorem (TBT).

Similarly, by switching notations and assuming Bel(A) > 0, the
previous FH formulas can be rewritten as

Bel(B|A) = Bel(A ∩ B)/(Bel(A ∩B) + P l(B̄ ∩A)), (29)

P l(B|A) = P l(A ∩B)/(P l(A ∩B) +Bel(B̄ ∩ A)). (30)

As we see, FH formulas are also consistent with Bayes’ formula
when the underlying BBA m(·) is Bayesian. Indeed if m(·) is
Bayesian, then P l(A∩B) = Bel(A∩B) = P (A∩B), P l(Ā∩B) =
Bel(Ā∩B) = P (Ā∩B) and P l(B̄∩A) = Bel(B̄∩A) = P (B̄∩A)
and FH formulas become equivalent to

Bel(A|B) = P l(A|B) = P (A∩B)/(P (A∩B)+P (Ā∩B)). (31)

Thanks to TPT formula (1), the denominator involved in these
formula is P (A ∩B) + P (Ā ∩B) = P (B), therefore

Bel(A|B) = P l(A|B) = P (A ∩B)/P (B) = P (A|B). (32)

Similarly, one can also easily verify that

Bel(B|A) = P l(B|A) = P (A ∩B)/P (A) = P (B|A). (33)

B. Advantage of Fagin-Halpern conditioning

The advantage of FH conditioning is its complete compatibility
with the conditional probability calculus [7], [25]. We show what
provides FH conditioning in the previous Ellsberg urn example.

Ellsberg urn example revisited: Applying FH conditioning formulas
with the conditioning event B̄ = R ∪ Y we obtain

Bel(R|B̄) =
Bel(R ∩ (R ∪ Y ))

Bel(R ∩ (R ∪ Y )) + P l((B ∪ Y ) ∩ (R ∪ Y ))

=
Bel(R)

Bel(R) + P l(Y )
=

1/3

(1/3) + (2/3)
= 1/3,

P l(R|B̄) =
P l(R ∩ (R ∪ Y ))

Bel((B ∪ Y ) ∩ (R ∪ Y )) + P l(R ∩ (R ∪ Y ))

=
P l(R)

Bel(Y ) + P l(R)
=

1/3

0 + (1/3)
= 1.

Similarly, we can verify that Bel(B|B̄) = 0, P l(B|B̄) = 0,
Bel(Y |B̄) = 0 and P l(Y |B̄) = 2/3. Therefore with these condition-
ing formulas, we get the correct bounds of the imprecise conditional
probabilities

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1],

[Bel(B|B̄), P l(B|B̄)] = [0, 0],

[Bel(Y |B̄), P l(Y |B̄)] = [0, 2/3].

One can also verify that Bel(∅|B̄) = 0, Bel(R ∪ B|B̄) = 1/3,
Bel(R∪Y |B̄) = 1, Bel(B∪Y |B̄) = 0 and Bel(R∪B∪Y |B̄) = 1.
Applying Möbius inverse formula (20) with Bel(·|B̄), one gets the
conditional BBA m(R|B̄) = 1/3 and m(R∪Y |B̄) = 2/3, whereas
with Shafer’s conditioning one gets m(R|B̄) = 1/3 and m(Y |B̄) =
2/3. One sees that with Shafer’s conditioning, because (B ∪ Y ) ∩
(R ∪ Y ) 6= ∅ the mass m(B ∪ Y ) = 2/3 is entirely transferred
(optimistically) to the most specific focal element Y included in B̄ =
R∪Y . With FH conditioning, the mass m(B∪Y ) = 2/3 is entirely
transferred (pessimistically, or cautiously) to the least specific focal
element R ∪ Y included in B̄ = R ∪ Y .

VI. TOTAL BELIEF THEOREM (TBT)

In this section, we extend TPT theorem to BF and we establish the
Total Belief Theorem (TBT) based on a decomposition of FΘ(m).

A. Decomposition of FΘ(m)

Let us consider a FoD Θ = {θ1, . . . , θ|Θ|} with |Θ| > 1 elements,

and a BBA m(·) defined on 2Θ with a given set of focal elements
FΘ(m). Considering any partition {A1, A2, . . . , Ak} of the FoD Θ,
then FΘ(m) can be obtained by the union of following subsets

FΘ(m) = FA1
(m) ∪ . . . ∪ FAk

(m) ∪ FA∗(m). (34)

where FAi
(m) (i = 1, . . . , k) is the set of focal elements of m(·)

included in Ai, and FA∗(m) is the set of focal elements of m(·)
which are not included in Ai, i = 1, . . . , k. We use the notation
A∗ for representing the entity characterized by the focal set FA∗(m)
mathematically defined by

FA∗(m) , FΘ(m)− FA1
(m)− . . .−FAk

(m). (35)

The entity A∗ has in general no explicit form and it is used only for
notation convenience and conciseness. Because Ai for i = 1, . . . , k
are mutually exclusive (disjoint), the sets FAi

(m) are also mutually
exclusive and therefore ∩i=1,...,k(FΘ(m) − FAi

(m)) = FΘ(m) −
FA1

(m)− . . .−FAk
(m) because all possible intersections of focal

sets including FAi
(m) ∩ FAj

(m) for j 6= i equal the empty set.
Hence FA∗(m) can also be expressed as

FA∗(m) = ∩i=1,...,kF̄Ai
(m), (36)

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

676



where F̄Ai
(m) , FΘ(m)−FAi

(m) = FĀi
(m)+FA∗

i
(m) because

when partitioning Θ as {Ai, Āi} one has FA∗

i
(m) , FΘ(m) −

FAi
(m)− FĀi

(m).

Example 2: Consider Θ = {θ1, θ2, θ3, θ4, θ5} and a BBA m(·) de-
fined on 2Θ, with set of focal elements FΘ(m) = {X1, X2, . . . , X8}

chosen as follows: X1 = θ1, X2 = θ1 ∪ θ2, X3 = θ2 ∪ θ3,
X4 = θ3 ∪ θ4, X5 = θ4, X6 = θ4 ∪ θ5, X7 = θ1 ∪ θ3 ∪ θ5,
and X8 = θ5. Consider also the partition {A1, A2, A3} of Θ with
A1 = {θ1, θ2}, A2 = {θ3, θ4} and A3 = {θ5}. Therefore,

FA1
(m) = {X1, X2} = {θ1, θ1 ∪ θ2},

FA2
(m) = {X4, X5} = {θ3 ∪ θ4, θ4},

FA3
(m) = {X8} = {θ5},

FA∗(m) = {X1, . . . , X8} − {X1, X2} − {X4, X5} − {X8},

= {X3, X6, X7} = {θ2 ∪ θ3, θ4 ∪ θ5, θ1 ∪ θ3 ∪ θ5},

F̄A1
(m) = FΘ(m)− {X1, X2} = {X3, X4, X5, X6, X7, X8},

F̄A2
(m) = FΘ(m)− {X4, X5} = {X1, X2, X3, X6, X7, X8},

F̄A3
(m) = FΘ(m)− {X8} = {X1, X2, X3, X4, X5, X6, X7}.

Applying (36), one gets

F̄A1
(m) ∩ F̄A2

(m) ∩ F̄A3
(m) = {X3, X6, X7} = FA∗(m).

B. Total Belief Theorem (TBT)

Based on the previous decomposition of FΘ(m) according to any
partition {A1, . . . , Ak} of the FoD Θ, the following TBT holds.

Total Belief Theorem (TBT): Let’s consider a FoD Θ with |Θ| ≥

2 elements and a BBA m(·) defined on 2Θ with the set of focal
elements FΘ(m). For any chosen partition {A1, . . . , Ak} of Θ and
for any B ⊆ Θ, one has

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗

∩B), (37)

where FA∗(m) , FΘ(m)− FA1
(m)− . . .− FAk

(m) and

U(A∗

∩ B) ,
∑

X∈FA∗ (m)|X∈FB(m)

m(X). (38)

Proof of TBT: See appendix.

A∗ is a shorthand notation for the entity associated to the set of
focal elements FA∗(m) of the BBA m(·) involved in the summation
(38) of U(A∗

∩ B). From (38), one sees that U(A∗
∩ B) ∈ [0, 1].

If one applies TBT with B = Θ, we get for any chosen partition
{A1, . . . , Ak} of Θ,

∑

i=1,...,k Bel(Ai) + U(A∗) = 1 where

U(A∗) ,
∑

X∈FA∗ (m) m(X). This equality corresponds to TPT if

U(A∗) = 0 (i.e. there is no uncertainty on the value of probabilities
of Ai, i = 1, . . . , k). Note that if B = Θ and if the FoD Θ is simply

partitioned as {A , A1, Ā , A2}, then U(A∗
∩B) = U(A∗

∩Θ) =
U(A∗) = P l(A)−Bel(A) = P l(Ā)−Bel(Ā).

Corollary 1 of TBT: If m(·) is Bayesian, then TBT is consistent
with the Total Probability Theorem (TPT) because U(A∗

∩ B) = 0
and Bel(·) is homogeneous to a probability measure.

In expressing Bel(B̄) with TBT and noting that P l(B) = 1 −

Bel(B̄), one can also easily establish the following (not so elegant)
Total Plausibility Theorem (TPlT).

Total Plausibility Theorem (TPlT): For any partition {A1, . . . , Ak}

of Θ and any B ⊆ Θ, one has

P l(B) =
∑

i=1,...,k

P l(Āi ∪ B) + 1− k − U(A∗

∩ B̄). (39)

C. Example for TBT

Consider the FoD Θ = {θi, i = 1, . . . , 7} and FΘ(m) =
{X1, X2, . . . , X9} of a BBA m(·) defined over 2Θ as in Table I.

Consider also the partition {A1, A2, A3} of Θ with A1 , θ1 ∪ θ3 ∪
θ4∪θ7, A2 , θ2∪θ5 and A3 , θ6 and the subset B = θ4∪θ5∪θ6∪θ7
of Θ. The Table II summarizes the belief values of different subsets
of Θ which are needed to apply TBT.

Focal element X BBA m(X)
X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02
X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20
X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20
X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Table I
FOCAL ELEMENTS AND THEIR MASSES.

Subsets of Θ Bel(·)
B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39
A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04
A2 = θ2 ∪ θ5 Bel(A2) = 0.20
A3 = θ6 Bel(A3) = 0.05
A1 ∩ B = θ4 ∪ θ7 Bel(A1 ∩ B) = 0.04
A2 ∩ B = θ5 Bel(A2 ∩ B) = 0
A3 ∩ B = θ6 Bel(A3 ∩ B) = 0.05

Table II
BELIEF VALUES USED FOR THE DERIVATIONS.

In this example, one has

FB(m) = {X4, X6, X9} and FB̄(m) = {X5},

FA1
(m) = {X4} and FĀ1

(m) = {X5, X9},

FA2
(m) = {X5} and FĀ2

(m) = {X4, X6, X8, X9},

FA3
(m) = {X9} and FĀ3

(m) = {X1, X2, X4, X5, X7},

FA∗(m) = FΘ(m)− FA1
(m)− FA2

(m)− FA3
(m),

= {X1, X2, X3, X6, X7, X8}.

Therefore, one has

U(A∗

∩B) =
∑

X∈FA∗ (m)|X∈FB(m)

m(X) = m(X6) = 0.30.

In applying TBT formula (37), one can easily verify

Bel(B) =
∑

i=1,...,3

Bel(B ∩Ai) + U(A∗

∩B)

= 0.04 + 0 + 0.05 + 0.30 = 0.39.

D. Generalization of TBT

As explained in Section II-B, we have to work in Cartesian product
space Θ = Θ1 × Θ2 if the partition {A1, . . . , Ak} is related to a
given FoD Θ1 and B is a subset of an other FoD Θ2. Because
{A1, . . . , Ak} is a partition of Θ1, then {A1 × Θ2, . . . , Ak × Θ2}

defines a partition of Θ = Θ1 × Θ2 and because Θ1 × B =
∪i=1,...,k((Θ1×B)∩ (Ai×Θ2)), one can always apply TBT in the
Cartesian space Θ. More precisely, one has

Bel(Θ1 ×B) =
∑

i=1,...,k

Bel(Ai ×B) + U(A∗

×B)), (40)

and where U(A∗
×B) , U((A∗

×Θ2) ∩ (Θ1 ×B)).
This formula can be used if and only if one knows the joint BBA

m(·) (or equivalently the joint belief) defined over the powerset of
the Cartesian space Θ = Θ1 ×Θ2.
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VII. CONDITIONAL BELIEF FUNCTIONS AND GBT

Before justifying FH conditioning from TBT and presenting the
Generalized Bayes’ Theorem for BF, we establish a useful lemma.

Lemma 1: Consider a FoD Θ with a given BBA m(·) defined over
Θ, for partition {Ai, Āi} of Θ and any B ⊆ Θ, one always has

0 ≤ U((Āi ∩B)
∗

)− U(A∗

∩B) ≤ 1, (41)

where U((Āi ∩B)
∗

) =
∑

X∈F
(Āi∩B)∗

(m) m(X) and U(A∗
∩B) ,

∑

X∈FA∗ (m)|X∈FB(m) m(X).

Proof of Lemma 1: See appendix.

A. Conditional belief and plausibility

We consider a partition {Ai, Āi} of the FoD Θ and a subset B
of Θ. Using TBT, one has

Bel(B) = Bel(Ai ∩B) +Bel(Āi ∩B) + U(A∗

∩B). (42)

Hence

Bel(B)− U(A∗

∩B) = Bel(Ai ∩ B) +Bel(Āi ∩B). (43)

Moreover, since one has (by definition)

U((Āi ∩ B)
∗

) = P l(Āi ∩ B)−Bel(Āi ∩B), (44)

from the equality (44), one gets

Bel(Āi ∩B) = P l(Āi ∩B)− U((Āi ∩B)
∗

). (45)

Putting the expression of Bel(Āi ∩ B) above into (43) and
rearranging terms, one gets

Bel(B) + ∆(U) = Bel(Ai ∩ B) + P l(Āi ∩B), (46)

where ∆(U) , U((Āi ∩B)
∗

) − U(A∗
∩ B), and ∆(U) ∈ [0, 1]

because of Lemma 1.
Assuming Bel(B) > 0, and dividing left and right sides of the

equality (46) by Bel(B) + ∆(U), one gets

1 =
Bel(Ai ∩B)

Bel(B) + ∆(U)
+

P l(Āi ∩B)

Bel(B) + ∆(U)
. (47)

Hence, the equality (47) suggests to define the conditional belief
Bel(Ai|B) and P l(Āi|B) as follows

Bel(Ai|B) , Bel(Ai ∩B)/(Bel(B) + ∆(U)), (48)

P l(Āi|B) , P l(Āi ∩B)/(Bel(B) + ∆(U)). (49)

Using equality (46), the previous conditioning formulas can be
rewritten more concisely as

Bel(Ai|B) = Bel(Ai ∩ B)/(Bel(Ai ∩B) + P l(Āi ∩B)), (50)

P l(Āi|B) = P l(Āi ∩B)/(Bel(Ai ∩ B) + P l(Āi ∩B)). (51)

Replacing Āi by Ai in notations of formulas (49)–(51) we get6

the following expressions for conditional plausibility P l(Ai|B)

P l(Ai|B) ,
P l(Ai ∩ B)

Bel(B) + U((Ai ∩B)∗)− U(A∗ ∩ B)
, (52)

P l(Ai|B) =
P l(Ai ∩B)

Bel(Āi ∩B) + P l(Ai ∩ B)
. (53)

Formulas (50) and (53) coincide with FH formulas [4] originally
proposed from a very good intuition. In this work, we derive
them only from TBT by a direct constructive manner. Note that
Bel(Ai|B) given in (48) satisfies Bel(∅|B) = 0, Bel(Θ|B) = 1,

6It is worth to note that one has always U(A∗ ∩ B) =
∑

X∈FA∗(m)|X∈FB(m) m(X) = U(Ā∗ ∩ B) because FA∗ (m) =

FΘ(m)−FAi
(m)−FĀi

(m) = FΘ(m)−FĀi
(m)−FAi

(m) = FĀ∗ (m).

and Bel(Ai|B) ∈ [0, 1] conditions. To prove that Bel(Ai|B) defined
by (50) is a belief function one must also prove that it is an n-
monotone (n ≥ 2) Choquet’s capacity [24] on the finite set Θ, or
equivalently that the condition B3 of Theorem 1 holds for Bel(·|B).
The proof of B3 is difficult, but three different proofs have been
already given by Fagin and Halpern [3], Jaffray [6], and Sundberg
and Wagner [7], the latter one being the clearest of fashion.

B. Generalization of Bayes’ Theorem

Starting from (48) with ∆(U) , U((Āi ∩B)
∗

)−U(A∗
∩B) and

replacing Bel(B) by the expression (37) of TBT, we get

Bel(Ai|B) =
Bel(Ai ∩B)

∑

i=1,...,k Bel(Ai ∩ B) + U((Āi ∩B)
∗

)
. (54)

Similarly, in assuming Bel(Ai) > 0, Fagin-Halpern expression of
Bel(B|Ai) given by

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(B ∩Ai) + P l(B̄ ∩Ai)
, (55)

is equivalent to the formula

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(Ai) + U((B̄ ∩Ai)
∗

)− U(B∗ ∩Ai)
, (56)

where

U((B̄ ∩ Ai)
∗

) , P l(B̄ ∩Ai)−Bel(B̄ ∩Ai) (57)

=
∑

X∈F
(B̄∩Ai)

∗ (m)

m(X), (58)

with F(B̄∩Ai)
∗(m) = FΘ(m)−FB̄∩Ai

(m)−FB∪Āi
(m), and where

U(B∗

∩Ai) ,
∑

X∈FB∗ (m)|X∈FAi
(m)

m(X), (59)

with FB∗(m) = FΘ(m)− FB(m)− FB̄(m).

From (56), one obtains

Bel(Ai∩B) = Bel(B|Ai)[Bel(Ai)+U((B̄ ∩Ai)
∗

)−U(B∗

∩Ai)].

Replacing the above expression of Bel(Ai ∩B) into the formula
(54), we obtain the formula

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)

∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩B)
∗

)
, (60)

where the factor q(Ai, B) introduced here for notation conciseness
is defined by

q(Ai, B) , Bel(Ai) + U((B̄ ∩ Ai)
∗

)− U(B∗

∩Ai). (61)

This allows to establish the Generalized Bayes’ Theorem (GBT).

Generalized Bayes’ Theorem (GBT): For any partition
{A1, . . . , Ak} of a FoD Θ, any belief function Bel(·) : 2Θ 7→ [0, 1],
and any subset B of Θ with Bel(B) > 0, then one has for
i ∈ {1, . . . , k}

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)

∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩B)
∗

)
, (62)

U((Āi ∩B)
∗

) , P l(Āi ∩B)−Bel(Āi ∩B),

where U((Āi ∩ B)
∗

) ,
∑

X∈F
(Āi∩B)∗

(m) m(X) =

P l(Āi ∩ B) − Bel(Āi ∩ B), and where the factor q(Ai, B)
is defined by (61).

Lemma 2: GBT reduces to BT if Bel(·) is a Bayesian BF.
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Proof: See appendix.

Remark: When Ai ⊆ Θ1 and B ⊆ Θ2 with Θ1 6= Θ2, we must
work in the Cartesian product space Θ = Θ1 × Θ2 and the GBT
formula is similar to (62) in replacing Ai by Ai × Θ2, and B by
Θ1 × B. The application of GBT formula is not easy in general
because it requires the knowledge of joint BBA m(·) defined over

2Θ1×Θ2 which is rarely known in practice. If the joint BBA m(·)
can be expressed (or approximated) as a function of two marginal
BBAs m1(·) and m2(·) (assumed to be known) defined respectively
over Θ1 and Θ2, then GBT formula should become tractable.

VIII. ILLUSTRATIVE EXAMPLE OF GBT

Consider Θ = {θi, i = 1, . . . , 7}, FΘ(m) = {X1, X2, . . . , X9}

and m(·) given in Table III.

Focal element X BBA m(X)
X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02
X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20
X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20
X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Table III
FOCAL ELEMENTS AND THEIR MASSES.

Consider the partition {A1, A2, A3} of Θ with A1 = θ1∪θ3∪θ4∪
θ7, A2 = θ2∪θ5 and A3 = θ6, and the subset B = θ4∪θ5∪θ6∪θ7 of
Θ having belief Bel(B) = m(X4)+m(X6)+m(X9) = 0.39. Table
IV summarizes the BF values which are needed in the derivations.

Subsets X of Θ Bel(X) P l(X)
X = B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39 P l(B) = 0.80
X = A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04 P l(A1) = 0.75
X = A2 = θ2 ∪ θ5 Bel(A2) = 0.20 P l(A2) = 0.46
X = A3 = θ6 Bel(A3) = 0.05 P l(A3) = 0.53
X = A1 ∩B = θ4 ∪ θ7 Bel(X) = 0.04 P l(X) = 0.72
X = A2 ∩B = θ5 Bel(X) = 0 P l(X) = 0.04
X = A3 ∩B = θ6 Bel(X) = 0.05 P l(X) = 0.53
X = Ā1 ∩B = θ5 ∪ θ6 Bel(X) = 0.05 P l(X) = 0.54
X = Ā2 ∩B = θ4 ∪ θ6 ∪ θ7 Bel(X) = 0.39 P l(X) = 0.80
X = Ā3 ∩B = θ4 ∪ θ5 ∪ θ7 Bel(X) = 0.04 P l(X) = 0.75
X = A1 ∩ B̄ = θ1 ∪ θ3 Bel(X) = 0 P l(X) = 0.41
X = A2 ∩ B̄ = θ2 Bel(X) = 0.20 P l(X) = 0.43
X = A3 ∩ B̄ = ∅ Bel(X) = 0 P l(X) = 0

Table IV
BELIEF AND PLAUSIBILITY VALUES USED FOR THE DERIVATIONS.

• Results with Fagin-Halpern conditioning formulas

Using (50) and (55) and the fact that P l(Ai|B) = 1−Bel(Āi|B)
and P l(B|Ai) = 1−Bel(B̄|Ai), we get the values of Tables V–VI.

Subsets of Θ Bel(Ai|B) P l(Ai|B)
A1 Bel(A1|B) ≈ 0.0690 P l(A1|B) ≈ 0.9351
A2 Bel(A2|B) = 0 P l(A2|B) ≈ 0.0930
A3 Bel(A3|B) ≈ 0.0625 P l(A3|B) ≈ 0.9298

Table V
Bel(Ai|B) AND P l(Ai|B) WITH FAGIN-HALPERN CONDITIONING.

Subsets of Θ Bel(B|Ai) P l(B|Ai)
A1 Bel(B|A1) ≈ 0.0889 P l(B|A1) = 1
A2 Bel(B|A2) = 0 P l(B|A2) ≈ 0.1667
A3 Bel(B|A3) = 1 P l(B|A3) = 1

Table VI
Bel(B|Ai) AND P l(B|Ai) WITH FAGIN-HALPERN CONDITIONING.

To verify GBT, one calculates Bel(Ai), U((B̄ ∩Ai)
∗

) and
U(B∗

∩ Ai) for getting q(Ai, B), and U((Āi ∩B)
∗

). These val-
ues are given in Table VII. q(A1, B) = 0.45 is calculated by

q(A1, B) , Bel(A1)+U((B̄ ∩A1)
∗

)−U(B∗
∩A1) = 0.45 because

Bel(A1) = 0.04, U((B̄ ∩A1)
∗

) = P l(B̄ ∩A1)−Bel(B̄ ∩A1) =
0.41 and U(B∗

∩ A1) =
∑

X∈FA1
(m)|X∈FB∗(m) m(X) = 0.

U((Ā1 ∩B)
∗

) = 0.49 is calculated by U((Ā1 ∩B)
∗

) = P l(Ā1 ∩

B)−Be(Ā1 ∩B) = 0.54− 0.05 = 0.49, and other values of Table
VII are calculated similarly.

Subsets of Θ q(Ai, B) U((Āi ∩ B)
∗
)

A1 0.45 0.49
A2 0.43 0.41
A3 0.05 0.71

Table VII
VALUES OF q(Ai, B) AND U((Āi ∩ B)

∗

) FOR GBT FORMULA.

One verifies that GBT formula (62) works because we retrieve
correct values obtained with FH formula. Indeed, one has

Bel(A1|B) =
Bel(B|A1)q(A1, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩ B)

∗

)

≈
0.0889 · 0.45

(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.49

≈ 0.0690.

Similarly, one can easily verify that one obtains Bel(A2|B) = 0 and
Bel(A3|B) ≈ 0.0625 with GBT.

• Results with Shafer’s conditioning formulas

With formulas (22)–(23), we get the values of Tables VIII–IX.

Subsets of Θ Bel(Ai|B) P l(Ai|B)
A1 Bel(A1|B) = 0.3250 P l(A1|B) = 0.9000
A2 Bel(A2|B) = 0 P l(A2|B) = 0.0500
A3 Bel(A3|B) = 0.0625 P l(A3|B) = 0.6625

Table VIII
Bel(Ai|B) AND P l(Ai|B) WITH SHAFER’S CONDITIONING.

Subsets of Θ Bel(B|Ai) P l(B|Ai)
A1 Bel(B|A1) ≈ 0.4533 P l(B|A1) ≈ 0.9600
A2 Bel(B|A2) ≈ 0.0652 P l(B|A2) ≈ 0.0870
A3 Bel(B|A3) = 1 P l(B|A3) = 1

Table IX
Bel(B|Ai) AND P l(B|Ai) WITH SHAFER’S CONDITIONING.

One sees that the conditional values are not coherent since they
do not verify GBT because we obtain in this example

Bel(A1|B) = 0.3250 (using (23))

6=
Bel(B|A1)q(A1, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩ B)

∗

)

≈
0.4533 · 0.45

(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.49

≈ 0.2642.

Similarly, one can show that Bel(A2|B) = 0 (using (23)) 6=
0.0405 (using GBT) and Bel(A3|B) = 0.0625 (using (23)) 6=
0.0504 (using GBT). Hence, Ellsberg urn example and this example
show clearly that Dempster’s rule of combination used by Shafer to
establish his belief conditioning formulas does not provide coherent
and satisfactory results since they are inconsistent with lower and
upper bounds of imprecise conditional probabilities and they do not
satisfy GBT established directly by a constructive manner without
ad-hoc assumption.
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IX. CONCLUSION

This paper has presented new important results: the Total Belief
Theorem (TBT), the justification of Fagin-Halpern conditioning from
TBT, and the Generalized Bayes’ Theorem (GBT). Our theoretical
results allowed us to establish rigorously the Generalized Bayes’
Theorem by a direct constructive manner from TBT. It does not
need extra assumptions nor some underlying ad-hoc construction
principles. Also, we prove that our TBT and GBT are fully consistent
with classical TPT and Bayes Theorem as soon as the belief functions
are Bayesian. That way this achievement could be an excellent
ground for working in belief function framework. From Ellsberg’s
urn example and an illustrative example we have shown that Shafer’s
conditioning based on Dempster’s rule provides results inconsistent
with lower and upper bounds of imprecise conditional probabilities,
and inconsistent with GBT. These new results should allow to
reconcile practitioners of Bayesian reasoning with those of evidential
reasoning.

APPENDIX

A. Proof of TBT

Bel(B) =
∑

X∈FΘ(m)|X⊆B

m(X)

=
∑

X∈FA1
(m)|X∈FB(m)

m(X) + . . .

+
∑

X∈FAk
(m)|X∈FB(m)

m(X)

+
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

= Bel(A1 ∩ B) + . . .+Bel(Ak ∩B)

+
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

=
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗

∩ B),

where U(A∗ ∩B) ,
∑

X∈FA∗ (m)|X∈FB(m) m(X).

B. Proof of Lemma 1

For notation convenience, we denote

∆(U) , U((Āi ∩B)
∗

)− U(A∗

∩ B)

= [P l(Āi ∩B)−Bel(Āi ∩B)]

− [Bel(Ai ∩ B) +Bel(Āi ∩B)−Bel(B)]

= P l(Āi ∩ B)−Bel(Āi ∩B) +Bel(B)

−Bel(Ai ∩B)−Bel(Āi ∩ B).

To prove that ∆(U) ≥ 0, one needs to prove equivalently that
P l(Āi∩B)−Bel(Āi∩B)+Bel(B) ≥ Bel(Ai∩B)+Bel(Āi∩B).
Using TBT, one has Bel(B) = Bel(Ai∩B)+Bel(Āi∩B)+U(A∗

∩

B), and replacing expression of Bel(B) in the previous inequality,
one must verify if the following equality is satisfied

P l(Āi∩B)−Bel(Āi∩B)+Bel(Ai∩B)+Bel(Āi∩B)+U(A∗

∩B)

≥ Bel(Ai ∩B) +Bel(Āi ∩B).

After simplification, we have to check if inequality below holds

P l(Āi ∩B) + U(A∗

∩B) ≥ Bel(Āi ∩B).

Because P l(Āi ∩ B) = Bel(Āi ∩ B) + U((Āi ∩B)
∗

), one has to
check if Bel(Āi∩B)+U((Āi ∩B)

∗

)+U(A∗∩B) ≥ Bel(Āi∩B).
After simplification (omitting both Bel(Āi ∩ B) in left and right

side of the previous inequality), one just has to prove the inequality
U((Āi ∩B)

∗

) + U(A∗
∩B) ≥ 0 in order to prove that ∆(U) ≥ 0.

Because U((Āi ∩B)
∗

) ∈ [0, 1] and U(A∗
∩B) ∈ [0, 1], the previous

inequality always holds which proves that U((Āi ∩B)
∗

)−U(A∗
∩

B) ≥ 0. Moreover because U(A∗
∩ B) ∈ [0, 1], then −U(A∗

∩

B) ∈ [−1, 0], and because U((Āi ∩ B)
∗

) ∈ [0, 1] one deduces that
∆(U) = U((Āi ∩ B)

∗

)− U(A∗
∩B) ≤ 1.

C. Proof of Lemma 2

If Bel(·) : 2Θ 7→ [0, 1] is a Bayesian belief function, then all
focal elements of its corresponding BBA m(·) are singletons of

2Θ. In this case Bel(·) and P l(·) functions coincide and therefore
one has U((Āi ∩ B)

∗

) = P l(Āi ∩ B) − Bel(Āi ∩ B) = 0 and
U((B̄ ∩Ai)

∗

) = P l(B̄∩Ai)−Bel(B̄∩Ai) = 0. Any focal element
(singleton) of m(·) is either a subset of B or a subset of B̄ of the
FoD Θ. Therefore, FB∗ (m) = ∅, which implies U(B∗

∩Ai) = 0, so
that q(Ai, B) = Bel(Ai). The GBT formula (62) with in this case
q(Ai, B) = Bel(Ai) and U((Āi ∩B)

∗

) = 0 reduces to the formula

Bel(Ai|B) = Bel(B|Ai)Bel(Ai)/
∑k

i=1 Bel(B|Ai)Bel(Ai).
This coincides with formula (10) since Bel(·) (being a Bayesian
belief function) is homogeneous to a probability measure P (·). This
completes the proof that GBT formula is consistent with Bayes’
Theorem formula when the Belief function is Bayesian.

REFERENCES

[1] G. Shafer, A Mathematical Theory of Evidence, Princeton Press, 1976.
[2] A.P. Dempster, Upper and lower probabilities induced by a multivalued

mapping, Ann. of Math. Stat., (38): 325–339, 1967.
[3] R. Fagin, J.Y. Halpern, A new approach to updating beliefs, UAI Conf.

Proc., pp. 317–325, 1991.
[4] J.Y. Halpern, R. Fagin, Two views of belief: belief as generalized

probability and belief as evidence, Art. Intel., (54):275–317, 1992.
[5] J.Y. Halpern, Reasoning about uncertainty, MIT Press, 2003.
[6] J.-Y. Jaffray, Bayesian updating and belief functions, IEEE Trans. on

SMC, (22):1144–1152, 1992.
[7] C. Sunberg, C. Wagner, Generalized finite differences and Bayesian

conditioning of Choquet capacities, Adv. in Appl. Math., (13), 1992.
[8] P. Diaconis, S.L. Zabell, Updating subjective probability, J. of Amer.

Stat. Soc., (77):822-830, 1982.
[9] L.A. Zadeh, A Mathematical Theory of Evidence (book review), AI

Magazine, (5):81-83, 1984.
[10] J. Lemmer, Confidence factors, empiricism and the Dempster-Shafer

theory of evidence, Proc. of 1st UAI Conf., pp. 16–176, 1985.
[11] P.K. Black, Is Shafer general Bayes?, 3rd UAI Workshop, USA, 1987.
[12] P. Wang, A defect in Dempster-Shafer theory, UAI Conf. Proc., 1994.
[13] A. Gelman, The boxer, the wrestler, and the coin flip: a paradox of robust

Bayesian inference and belief functions, Amer. Stat. (60):146–150, 2006.
[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan 1988.
[15] J. Dezert, P. Wang, A. Tchamova, On the validity of Dempster-Shafer

theory, Fusion 2012 Proc., Singapore, July 9–12, 2012.
[16] J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and

its interpretation as a generalization of Bayesian fusion rule, Int. J. of
Intell. Syst., (29):223-252, 2014 (erratum in this DSmT Book Vol. 5).

[17] P. Smets, Belief functions: the disjunctive rule of combination and the

generalized Bayesian theorem, IJAR, Vol. 9, No. 1, pp. 1–35, 1993.
[18] D. Dubois, T. Denoeux, Conditioning in Dempster-Shafer Theory:

Prediction vs. Revision, Belief 2012 Conf. Proc., Compiègne, May 2012.
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Abstract—In this paper new theoretical results for reasoning
with belief functions are obtained and discussed. After a judicious
decomposition of the set of focal elements of a belief function,
we establish the Total Belief Theorem (TBT) which is the direct
generalization of the Total Probability Theorem when working in
the framework of belief functions. The TBT is also generalized
for dealing with different frames of discernments thanks to
Cartesian product space. From TBT, we can derive and define
formally the expressions of conditional belief functions which are
consistent with the bounds of imprecise conditional probability.
This work provides a direct establishment and solid justification
of Fagin-Halpern belief conditioning formulas. The well-known
Bayes’ Theorem of Probability Theory is then generalized in
the framework of belief functions and we illustrate it with an
example at the end of this paper.

Keywords: Total Belief Theorem (TBT), conditional belief
functions.

I. INTRODUCTION

In this paper, we present new theoretical results for rea-
soning with belief functions (BF) introduced by Shafer in [1],
known as Dempster-Shafer Theory (DST) in the literature. The
first result is the establishment of the Total Belief Theorem
(TBT) which can be interpreted as a generalization of the Total
Probability Theorem (TPT) for the belief functions framework.
TBT is essential for formally establishing conditional belief
functions in a constructive manner whose expressions are
consistent with original Dempster’s idea (through eq. (4.8) in
[2]), rediscovered independently and popularized by Fagin-
Halpern in [3], [4]. TBT also allows us to present a new
formulation of Generalized Bayes’ Theorem (GBT).

Several methods have been proposed in the literature to
address the belief conditioning problem. They essentially can
be separated in two different approaches: 1) Shafer’s belief
conditioning method based on Dempster’s rule of combination
[1], and 2) the belief conditioning method consistent with
imprecise probability calculus bounds [2], [3], [5]–[8] based
on the lower and upper probability interpretation of belief
functions.

Although Shafer’s belief functions offer an appealing math-
ematical framework for modeling epistemic uncertainty, their
use and the validity of the results obtained in the applications
are very controversial both for uncertain information fusion
as well as for belief conditioning mainly due to Shafer’s

choice of Dempster’s rule of combination as a pillar for
combining evidences represented by belief functions and for
conditioning. These well known problems of DST have already
been reported and discussed by many experts in the fields over
the last decades, see for example [9]–[23]. That is why in this
paper we focus on the second approach of belief conditioning
based on the lower and upper probability interpretation of BF.

It is worth noting that Smets in nineties [25] did pro-
pose a preliminary version of GBT to generalize Bayes’
Theorem (BT) to belief functions but Smets’ GBT is based
on conditional embedding, conjunctive merging and Shafer’s
conditioning which make it quite complicate to apply and
whose results have been cast in doubt in [26]. Here we propose
a simpler and direct constructive manner to derive a new
version of GBT without need of extra assumptions of some
underlying ad-hoc principles as done by Smets. Of course,
we prove that our TBT and GBT presented in this work are
fully consistent with classical TPT and BT as soon as the
belief functions are restricted to Bayesian belief functions (i.e.
classical probability measures).

This paper is organized as follows. After a brief recall of
basics of belief functions in Section II and Total Probability
Theorem in Section III, we present probability conditioning
and Bayes’ theorem in Section IV followed by classical
Shafer’s and Fagin-Halpern’s belief conditioning methods re-
spectively in Sections V and VI. In Section VII, we present
the decomposition of the set of focal elements of any basic
belief assignment that allows us to establish formally the
Total Belief Theorem and its generalization on Cartesian
product space. The Section VIII presents and justifies the
new belief conditioning formulas drawn from TBT which
are fully consistent with Fagin-Halpern conditioning formulas.
Section IX presents the generalization of Bayes’ theorem in
the framework of belief functions obtained from TBT. We
illustrate our new theoretical results with a quite simple GBT
example in Section X to show how to make derivations of GBT
and to prove that Shafer’s conditioning results are inconsistent
with GBT. Section XI concludes this paper.

II. BAS ICS OF B EL IEF FUNCTIONS

Belief functions (BF) have been introduced by Shafer in [1]
to model epistemic uncertainty based on preliminary works

Originally published as: J. Dezert, A. Tchamova, D. Han, Total Belief Theorem and Conditional Belief 
Functions, Int. Journal of Intelligent Systems, pp. 1–27, July 2018, and reprinted with permission.
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done by Dempster [2], [27]. Shafer’s Theory of Belief Func-
tions is also referred as Dempster-Shafer Theory (DST) in the
literature. We assume that the answer1 of the problem under
concern belongs to a known (or given) finite discrete frame
of discernement (FoD) Θ = {θ1, θ2, . . . , θn}, with n > 1,
and where all elements of Θ are exhaustive and exclusive2.
The set of all subsets of Θ (including empty set ∅, and Θ) is
the power-set of Θ denoted by 2Θ. The number of elements
(i.e. the cardinality) of 2Θ is 2|Θ|. A basic belief assignment
(BBA) associated with a given source of evidence is defined
as the mapping m(·) : 2Θ → [0, 1] satisfying the conditions
m(∅) = 0 and

∑

A∈2Θ
m(A) = 1. The quantity m(A) is

called the mass of A committed by the source of evidence.
Belief and plausibility functions are respectively defined by

Bel(A) =
∑

X∈2
Θ

X⊆A

m(X), (1)

Pl(A) =
∑

X∈2
Θ

X∩A 6=∅

m(X) = 1− Bel(Ā). (2)

where3 Ā , Θ − {A} = {X |X ∈ Θ and X /∈ A}, i.e.
Ā is the complement of A in Θ. The notation , means
equal by definition. The width Pl(A)−Bel(A) of the belief
interval [Bel(A), P l(A)] is usually called the uncertainty on A
committed by the source of evidence, and will be denoted4 by
U(A∗). It represents in fact the imprecision on the probability
of A granted by the source of evidence, which provides the
BBA m(·).

A focal element X of a BBA m(·) is an element of 2Θ

such that m(X) > 0. Note that the empty set ∅ is not a focal
element of a BBA because m(∅) = 0 (close-world assumption
of Shafer’s model for the FoD). The set of all focal elements
of m(·) is denoted

FΘ(m) = {X ⊆ Θ|m(X) > 0}
= {X ∈ 2Θ|m(X) > 0}. (3)

Because m(∅) = 0, one always has 1 ≤ |FΘ(m)| ≤ 2|Θ| − 1.
The set of focal elements of m(·) included in a subset A of
Θ is denoted

FA(m) , {X ⊆ A ⊆ Θ|m(X) > 0} (4)
= {X ∈ FΘ(m)|X ∩ A = X}. (5)

Note that if A ⊆ B ⊆ Θ, then FA(m) ⊆ FB(m), and one
always has5 FA(m)∩FB(m) = FA∩B(m) for any subsets A
and B of Θ, but FA∪B(m) 6= FA(m) ∪ FB(m) in general6.

1 i.e. the solution, or the decision to take.
2This is so-called Shafer’s model of FoD [28].
3Here the minus symbol denotes the set difference operator [29], [30].
4In the literature it is usually denoted by U(A). Here we use a new notation

U(A∗) which is not anecdotic. This new notation reveals its importance for
the consistency of notations used in formulas we give in this paper.

5Proof: FA(m)∩FB(m) = {X ∈ FΘ(m)|(X∩A)∩(X∩B) = X} =
{X ∈ FΘ(m)|X ∩ (A ∩ B) = X} = FA∩B(m).

6For example, consider the focal elements given in the example of section
X. One has A1∪ B̄ = {θ1, θ3, θ4, θ7}∪{θ1, θ2, θ3} = {θ1, θ2, θ3, θ4, θ7}
and therefore FA1∪B̄ = {X2, X4, X5, X7}, but FA1

= {X4} and FB̄ =
{X5}, so that FA1

∪ FB̄ = {X4,X5} 6= FA1∪B̄ .

By definition, all elements of 2Θ not in FΘ(m) have a zero
mass value, and therefore the definition of Bel(A) and Pl(A)
given in (1)–(2) can also be expressed7

Bel(A) =
∑

X∈FΘ(m)

X⊆A

m(X) =
∑

X∈FA(m)

m(X), (6)

Pl(A) =
∑

X∈FΘ(m)

X∩A 6=∅

m(X) = 1− Bel(Ā). (7)

The set of focal elements FΘ(m) of the BBA m(·) can always
been partitioned as {FA(m),FĀ(m),FA∗(m)} where

FA∗(m) , FΘ(m)−FA(m)−FĀ(m) (8)
= {X ∈ FΘ(m)|X ∩ A 6= ∅ and X ∩ Ā 6= ∅}, (9)

represents the set of focal elements of m(·) which are not
subsets of A and not subsets of Ā = Θ− {A}.

The uncertainty U(A∗) can also be expressed directly as

U(A∗) =
∑

X∈FA∗(m)

m(X). (10)

It is worth noting that U(Ā∗) = Pl(Ā) − Bel(Ā) = (1 −
Bel(A)) − (1 − Pl(A)) = Pl(A) − Bel(A) = U(A∗), or
equivalently

U(Ā∗) =
∑

X∈FĀ∗(m)

m(X), (11)

where FĀ∗(m) = FΘ(m)−FĀ(m)−FA(m) = FA∗(m).

When all elements of FΘ(m) are only singletons, m(·)
is called a Bayesian BBA [1] and its corresponding Bel(·)
and Pl(·) functions are homogeneous to a same (subjective)
probability measure P (·).

The class of belief functions can be characterized without
explicitly referencing to a BBA, see Shafers’ theorem in [1]
page 39, with its proof on page 51. More precisely, a mapping
Bel(·) : 2Θ 7→ [0, 1] is a belief function if and only if
Bel(∅) = 0, Bel(Θ) = 1 and for every positive integer n
and every collection A1,. . . , An of subsets of Θ

Bel(A1 ∪ . . . ∪ An) ≥
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1Bel(∩
i∈I

Ai). (12)

There is a one-to-one relationship between a BBA m(·) and
its corresponding belief function Bel(·). The BBA m(·) that
produces a given belief function is unique and is obtained for
any A ⊆ Θ by the following Möbius inverse formula (see [1],
p.39)

m(A) =
∑

B⊆A⊆Θ

(−1)
|A−B|

Bel(B). (13)

7More precisely, we should write Bel(A) = 0 +
∑

X∈FA(m) m(X) to
get a well defined value even there is no X ∈ FΘ(m) such that X ⊆ A. For
notation convenience, this zero additional term (as well other zero terms in
formulas (10)-(11), (42), etc) will be omitted in the sequel being understood
that a sum of non existing terms is always equal to zero.
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In DST framework, Shafer [1] did propose to combine
s ≥ 2 distinct sources of evidence represented by BBAs
m1(.), . . . ,ms(.) over the same FoD with Dempster’s rule
(i.e. the normalized conjunctive rule). Discussions on the
justification of Dempster’s rule with examples can be found
in [21]–[23].

III. TOTAL PROBAB IL ITY THEOREM (TPT)
We recall briefly the Total Probability Theorem because

we will present its extension in Belief function framework.
In probability theory, the elements θi of the space Θ are
experimental outcomes. The subsets of Θ are called events
and the event {θi} consisting of the single element θi is
an elementary event. The space Θ is called the sure event

and the empty set ∅ is the impossible event. We assign to
each event A a number P (A) in [0, 1], called the probability
of A, which satisfies the three Kolmogorov’s conditions: 1)
P (∅) = 0; 2) P (Θ) = 1; and 3) if A ∩ B = {∅}, then
P (A∪B) = P (A)+P (B). These conditions are the axioms of
the theory of probability [30], [31]. The fundamental Theorem
of the probability theory is the following Total Probability
Theorem (TPT), also called a the law of total probability, see
[31] and Theorem 1B of [32].

Total Probability Theorem (TPT): Consider an event B and
any partition8 {Ai, i = 1, . . . , k} of the space Θ, then

P (B) = P (B ∩A1) + P (B ∩A2) + . . .+ P (B ∩Ak). (14)

IV. CONDITIONAL PROBAB IL ITY AND BAY ES ’ FORMUL A

Starting from TPT formula (14) and assuming P (B) > 0, we get
for any i ∈ {1, . . . , k} after dividing each side of (14) by P (B) and
rearranging terms the equality

P (Ai ∩B)

P (B)
= 1−

∑

j=1,...,k
j 6=i

P (Aj ∩B)

P (B)
= 1−

P (Āi ∩B)

P (B)
, (15)

which allows us to define the conditional probability P (Ai|B) by9

P (Ai|B) , P (Ai ∩B)/P (B). (16)

Similarly, by considering an event Ai of Θ and the partition {B, B̄}

of Θ, the TPT formula P (Ai) = P (Ai ∩ B) + P (Ai ∩ B̄) applies,
and by dividing it by P (Ai) (assuming P (Ai) > 0), we get

P (Ai ∩ B)/P (Ai) = 1− P (Ai ∩ B̄)/P (Ai), (17)

which allows us to define also the conditional probability P (B|Ai)
by

P (B|Ai) , P (Ai ∩B)/P (Ai). (18)

From (16) and (18), one deduces the equality

P (Ai ∩B) = P (Ai|B)P (B) = P (B|Ai)P (Ai). (19)

From (19) and assuming P (B) > 0 we get
P (Ai|B) = P (B|Ai)P (Ai)/P (B), and assuming P (Ai) > 0
we get P (B|Ai) = P (Ai|B)P (B)/P (Ai).

8A partition of a set Θ is a collection of mutually exclusive subsets of Θ
whose union equals Θ.

9In probability theory, the notation P (Ai, B) ≡ P (Ai ∩ B) is also used
to represent the probability of the joint occurence (intersection) of events Ai

and B.

Using TPT formula (14) and noting that P (Ai ∩ B) =
P (B|Ai)P (Ai), we get

P (B) =

k
∑

i=1

P (B|Ai)P (Ai). (20)

Substituting (20) in P (Ai|B) = P (B|Ai)P (Ai)/P (B), we get the
well-known Bayes’ Theorem formula (BTF)

P (Ai|B) = P (B|Ai)P (Ai)/
k

∑

i=1

P (B|Ai)P (Ai). (21)

It can be easily verified that the conditional probability defined
by (16) verifies the three axioms of the Theory of probability [31]:
1) P (∅|B) = 0, 2) P (Θ|B) = 1 and 3) if A1 ∩ A2 = ∅, then
P (A1 ∪A2|B) = P (A1|B) + P (A2|B).

In the previous presentation, Ai (i = 1, . . . , k) and B are events
(subsets) of the same space Θ. How to proceed to compute P (Ai|B)
if the events Ai (i = 1, . . . , k) and B are subsets of different
spaces, say if Ai ⊆ Θ1 = {x1, . . . , xm} = {xp, p = 1, 2, . . . ,m}

(i = 1, . . . , k), and if B ⊆ Θ2 = {y1, . . . , yn} = {yq , q =
1, 2, . . . , n} with Θ1 6= Θ2? Such situation corresponds to a so-
called combined experiment [31]. In fact, one can prove that similar
conditioning formulas can also be established. For this, we need
to work with the Cartesian product space Θ , Θ1 × Θ2 whose
elementary elements are all the ordered pairs (xp, yq) with xp ∈ Θ1

and yq ∈ Θ2. The two experiments are viewed as a single combined
one whose outcomes are pairs (xp, yq). In this space Θ = Θ1 ×Θ2,
xp is not an elementary element but a subset of n elements of
Θ, i.e. {xp} = {(xp, y1), . . . , (xp, yn)}. Similarly, yq is not an
elementary element but a subset of m elements of Θ, i.e. {yq} =
{(x1, yq), . . . , (xm, yq)}. If Ai ⊆ Θ1 and B ⊆ Θ2, then Ai ×B =
{(xp, yq)|xp ∈ A; yq ∈ B} ⊆ Θ. If one forms Ai×Θ2 and Θ1×B
one sees that Ai×B = (Ai×Θ2)∩(Θ1×B) = (Θ1×B)∩(Ai×Θ2).
Because the event Ai×Θ2 occurs in the combined experiment if the
event Ai of the experiment 1 occurs no matter what the outcome
of experiment 2, one has P (Ai × Θ2) = P1(Ai) where P1(Ai)
is the probability of event Ai in the experiment 1. Similarly, the
event Θ1×B occurs if B occurs in experiment 2 no matter what the
outcome of experiment 1, so that P (Θ1×B) = P2(B) where P2(B)
is the probability of event B in the experiment 2. One considers a
partition {A1, A2, . . . , Ak} of Θ1 and a subset (event) B ⊆ Θ2.
Based on set theory and property of Cartesian product, one has

Θ1 ×B = (Θ1 ×B) ∩ (Θ1 ×Θ2)

= (Θ1 ×B) ∩ ((A1 ∪A2 ∪ . . . ∪Ak)×Θ2)

= (Θ1 ×B) ∩ ((A1 ×Θ2) ∪ . . . ∪ (Ak ×Θ2))

= ∪i((Θ1 ×B) ∩ (Ai ×Θ2)).

The elements Ai ×Θ2, i = 1, . . . , k being disjoint10 , one has the
following TPT formula

P (Θ1 ×B) = P (∪i((Θ1 ×B) ∩ (Ai ×Θ2)))

= P ((Θ1 ×B) ∩ (A1 ×Θ2))+

. . .+ P ((Θ1 ×B) ∩ (Ak ×Θ2)). (22)

After dividing each side of formula (22) by P (Θ1 × B) (assumed
positive) and rearranging terms, we get

P ((Ai ×Θ2) ∩ (Θ1 ×B))

P (Θ1 ×B)
=

1−
∑

j=1,...,k
j 6=i

P ((Aj ×Θ2) ∩ (Θ1 ×B))

P (Θ1 ×B)
. (23)

10because Ai are disjoint since {A1, . . . , Ak} is a partition of Θ1.
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Formula (23) suggests naturally to define the conditional proba-
bility P (Ai ×Θ2|Θ1 ×B) by

P (Ai ×Θ2|Θ1 ×B) , P (Ai ×B)/P (Θ1 ×B). (24)

Using same reasoning as before and working on Cartesian product
space Θ = Θ1 ×Θ2, one can also prove11 that if P (Ai ×Θ2) > 0
one can define

P (Θ1 ×B|Ai ×Θ2) = P (Ai ×B)/P (Ai ×Θ2). (25)

From (24) and (25), one deduces the equality

P (Ai ×Θ2|Θ1 ×B)P (Θ1 ×B) =

P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2). (26)

From equality (26) and assuming P (Θ1 ×B) > 0, we get

P (Ai ×Θ2|Θ1 ×B) =

P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)/P (Θ1 ×B). (27)

From equality (26) and assuming P (Ai ×Θ2) > 0 we get

P (Θ1 ×B|Ai ×Θ2) =

P (Ai ×Θ2|Θ1 ×B)P (Θ1 ×B)/P (Ai ×Θ2). (28)

Using TPT formula (22) and formula(25), we get P (Θ1 × B) =
∑k

i=1 P (Θ1 × B|Ai × Θ2)P (Ai × Θ2). Putting this expression in
(27), we obtain the Bayes’ Theorem formula (BTF) when A ⊆ Θ1

and B ⊆ Θ2 and Θ1 6= Θ2, which is written as

P (Ai ×Θ2|Θ1 ×B) =

P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)
∑k

i=1 P (Θ1 ×B|Ai ×Θ2)P (Ai ×Θ2)
. (29)

For notation convenience, we can use classical formulas when
working with different sets of experimental outcomes Θ1 and Θ2

with keeping in mind that in this case Ai must be understood as
Ai ×Θ2 and B as Θ1 ×B.

V. S HAFER ’ S CONDITIONING
In the belief functions framework, Shafer did propose formulas

to calculate conditional belief functions Bel(A|B) and P l(A|B).
Shafer’s formulas have been obtained from the conditional BBA
m(·|B) obtained from Dempster’s rule of combination of the original
BBA m(·) with the BBA mB(B) = 1 focused on B under the
condition that Bel(B̄) < 1, or equivalently12 under the condition that
P l(B) > 0. Shafer’s conditioning formulas for belief and plausibility
functions were established by Shafer in Theorem 3.6 p. 66 of [1].
For A,B ⊆ Θ with P l(B) > 0, Bel(A|B) and P l(A|B) are given
by

Bel(A|B) = (Bel(A ∪ B̄)−Bel(B̄))/(1−Bel(B̄)), (30)

P l(A|B) = P l(A ∩B)/P l(B). (31)

The expression (30) of Bel(A|B) is equivalent to

Bel(A|B) = (P l(B)− P l(B ∩ Ā))/P l(B), (32)

because one has always (from definition of belief functions) P l(B) =
1−Bel(B̄), and the numerator of (30) can be written as

Bel(A ∪ B̄)−Bel(B̄) = (1−Bel(B̄))− (1−Bel(A ∪ B̄))

= P l(B)− P l(A ∪ B̄)

= P l(B)− P l(B ∩ Ā).

11The proof is left to the reader due to space limitation restraint.
12Indeed, if Bel(B̄) < 1 then P l(B) = 1−Bel(B̄) is greater than zero.

Using (30)–(31) and taking A = ∅, we get Bel(∅|B) = P l(∅|B) =
0, and taking A = Θ we get Bel(Θ|B) = P l(Θ|B) = 1. Also
in taking B = Θ we get Bel(A|Θ) = Bel(A) and P l(A|Θ) =
P l(A). Note that taking B = A in (31)–(32), we obtain Bel(A|A) =
P l(A|A) = 1 which fits with the common sense.

In reversing the roles played by A and B and switching the
notations in previous expressions, the following formulas also hold
(assuming P l(A) > 0)

Bel(B|A) = (P l(A)− P l(A ∩ B̄)/P l(A), (33)

P l(B|A) = P l(B ∩ A)P l(A). (34)

From (31) and (34), one deduces P l(A ∩ B) = P l(A|B)P l(B) =
P l(B|A)P l(A). Hence, the following formula applies for conditional
plausibilities when P l(B) > 0

P l(A|B) = P l(B|A)P l(A)/P l(B). (35)

Note that this formula for conditional plausibilities is similar to the
expression for conditional probabilities given in (16) when replacing
plausibilities by probabilities.

The main drawback of Shafer’s conditioning is its incompatibil-
ity with probability calculus when working with imprecise prob-
abilities. More precisely, the bounds of belief interval defined by
[Bel(A|B), P l(A|B)] obtained by (30)-(31) are in general13 incom-
patible with lower and upper bounds of the conditional probability
P (A|B). This problem makes Shafer’s conditioning very disputable
and cast serious doubts on pertinence (validity) of Shafer’s condition-
ing results when used in applications, which is a direct consequence
of the validity of Dempster’s rule reported in [3], [9]–[23], [33],
[34]. Shafer’s conditioning problem has already been reported and
addressed by several authors [3], [6], [7], [14], [24] in the past
with some examples. To easily show this incompatibility of Shafer’s
conditioning with probability calculus we present briefly the famous
Ellsberg’s urn example [35].

Example 1 (Ellsberg’s urn): We consider an urn with red (R), black
(B) and yellow (Y) balls. The a priori information one has on the
repartition of the balls in the urn is the following: 1/3 of balls are
red balls and 2/3 or balls are black and yellow balls. We don’t know
precisely the percentage of black balls, nor the percentage of yellow
balls. So the a priori information about the chance to pick a ball in the
urn can be represented by a (parametric) probability mass function
P (·) with P (R) = 1/3, P (B) = 2/3−x, P (Y ) = x, where x is an
unknown number/parameter in [0, 2/3], P (R) is the probability to
pick at random a red ball in the urn, P (B) is the probability to pick
at random a black ball in the urn, and P (Y ) is the probability to pick
at random a yellow ball in the urn. Of course because x is unknown
but bounded, P (B) and P (Y ) are unknown but their bounds are
known. In fact, this problem can be seen as a problem of imprecise
probabilities where P (R) ∈ [1/3, 1/3], P (B) ∈ [0, 2/3], P (Y ) ∈

[0, 2/3] and with the constraint P (R) + P (B) + P (Y ) = 1. Now
let’s suppose that someone picks a ball at random in the urn and tell
us that the color of the ball is not black, i.e. the event B̄ = R∪Y has
occurred. How do we must revise (update) our prior probabilities with
this new information? The correct answer to this question is obtained
by computing the conditional probabilities P (R|B̄), P (B|B̄) and
P (Y |B̄) and by analyzing their bounds. This is done as follows using
the fact that P (B̄) = P (R ∪ Y ) = P (R) + P (Y ) − P (R ∩ Y ) =

13but if the BBA m(·) is Bayesian.
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P (R) + P (Y ) = (1/3) + x. Indeed, P (R ∩ Y ) = 0 because the
events R and Y are mutually exclusive. So, we get

P (R|B̄) = P (R ∩ (R ∪ Y ))/P (R ∪ Y )

= P (R)/((1/3) + x) = (1/3)/((1/3) + x),

P (B|B̄) = P (B ∩ (R ∪ Y ))/P (R ∪ Y )

= P (∅)/((1/3) + x) = 0/((1/3) + x),

P (Y |B̄) = P (Y ∩ (R ∪ Y ))/P (R ∪ Y )

= P (Y )/((1/3) + x) = x/((1/3) + x).

If x = 0, then P (R|B̄) = 1 and P (Y |B̄) = 0. If x = 2/3, then
P (R|B̄) = 1/3 and P (Y |B̄) = 2/3. Therefore after conditioning by
B̄ = R∪ Y we get as bounds of conditional probabilities values the
following intervals P (R|B̄) ∈ [1/3, 1], P (B|B̄) ∈ [0, 0], P (Y |B̄) ∈
[0, 2/3] with the constraint P (R|B̄) + P (B|B̄) + P (Y |B̄) = 1.

Let’s examine what we get using Shafer’s conditioning ap-
proach. For this, the problem is modeled directly in the belief
function framework using the a priori BBA m(·) defined on the
FoD Θ = {R,B, Y } with m(R) = 1/3, m(B ∪ Y ) =
2/3 which corresponds to the following a priori belief inter-
vals [Bel(R), P l(R)] = [1/3, 1/3], [Bel(B), P l(B)] = [0, 2/3],
[Bel(Y ), P l(Y )] = [0, 2/3].

With Shafer’s conditioning formulas and noting that P l(R) =
1/3, P l(B) = 2/3, P l(Y ) = 2/3, and P l(R ∪ Y ) = 1, we get
incompatible results with the real bounds of conditional probabilities
because

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1/3] (by Shafer)
6= [1/3, 1] (correct bounds),

[Bel(B|B̄), P l(B|B̄)] = [0, 0] (by Shafer)
= [0, 0] (correct bounds),

[Bel(Y |B̄), P l(Y |B̄)] = [2/3, 2/3] (by Shafer)
6= [0, 2/3] (correct bounds).

To overcome this problem, Fagin and Halpern did propose a more
efficient conditioning approach which is, by construction, always
consistent with conditional probability bounds. It is presented in the
next section.

VI. FAGIN-HAL PERN CONDITIONING
Fagin and Halpern (FH) proposed in [3], [4] to define the condi-

tional belief as the lower envelope (i.e. the infimum) of a family
of conditional probability functions to make belief conditioning
consistent with imprecise conditional probability calculus. Assuming
Bel(B) > 0, Fagin and Halpern proposed the following conditional
formulas (FH formulas for short)

Bel(A|B) = Bel(A ∩ B)/(Bel(A ∩B) + P l(Ā ∩B)), (36)

P l(A|B) = P l(A ∩B)/(P l(A ∩B) +Bel(Ā ∩B)). (37)

Fagin and Halpern did prove in [3] with long derivations and great
effort that the conditional belief Bel(A|B) given by (36) satisfies
also the three conditions for defining a true belief function according
to Shafer’s theorem in [1], p. 39. Therefore, the formula (36) is
also a good candidate and serious alternative for conditioning belief
functions. However, it is quite mysterious how Fagin and Halpern
did obtain (construct) these close-form expressions. According to
the authors, these expressions were rather established from a very
good intuition. A better justification has been given by Sundberg and
Wagner in [7] (p. 268) but it is still not so clear in our opinion.
In this paper, we justify clearly and directly the establishment of
FH formulas from the simple and direct consequence of the Total
Belief Theorem (TBT) which is one of the main contributions of
our work. From FH conditioning formulas (36)-(37), we can verify
that the common sense results are also obtained, that is Bel(∅|B) =

P l(∅|B) = 0, Bel(Θ|B) = P l(Θ|B) = 1, Bel(A|Θ) = Bel(A),
P l(A|Θ) = P l(A), and Bel(A|A) = P l(A|A) = 1.

FH conditioning formulas are consistent with Bayes conditioning
formulas when the underlying BBA m(·) is Bayesian. Indeed if
m(·) is Bayesian, then P l(A ∩ B) = Bel(A ∩ B) = P (A ∩ B),
P l(Ā ∩ B) = Bel(Ā ∩ B) = P (Ā ∩ B) and P l(B̄ ∩ A) =
Bel(B̄ ∩ A) = P (B̄ ∩ A) so that the FH formulas become
equivalent to Bel(A|B) = P (A∩B)/(P (A∩B)+P (Ā∩B)) and
P l(A|B) = P (A ∩ B)/(P (A ∩ B) + P (Ā ∩ B)). Thanks to total
probability theorem (TPT) formula (14), the denominator involved
in these formula is P (A ∩ B) + P (Ā ∩ B) = P (B), therefore
Bel(A|B) = P l(A|B) = P (A ∩ B)/P (B) = P (A|B).

Similarly, one can also easily verify that Bel(B|A) = P l(B|A) =
P (A∩B)/P (A) = P (B|A). The advantage of FH conditioning is its
complete compatibility with the conditional probability calculus [7].
Let us show what provides FH conditioning in the previous Ellsberg’s
urn example.

Ellsberg’s urn example revisited: Let’s see the result obtained by
formulas (63) and (65) for Ellsberg’s urn example. Applying formulas
(63) and (65) with the conditioning event B̄ = R ∪ Y we obtain

Bel(R|B̄) =
Bel(R ∩ (R ∪ Y ))

Bel(R ∩ (R ∪ Y )) + P l((B ∪ Y ) ∩ (R ∪ Y ))

=
1/3

(1/3) + (2/3)
= 1/3,

P l(R|B̄) =
P l(R ∩ (R ∪ Y ))

Bel((B ∪ Y ) ∩ (R ∪ Y )) + P l(R ∩ (R ∪ Y ))

=
1/3

0 + (1/3)
= 1,

Bel(B|B̄) =
Bel(B ∩ (R ∪ Y ))

Bel(B ∩ (R ∪ Y )) + P l((R ∪ Y ) ∩ (R ∪ Y ))

=
0

0 + 1
= 0,

P l(B|B̄) =
P l(B ∩ (R ∪ Y ))

Bel((R ∪ Y ) ∩ (R ∪ Y )) + P l(B ∩ (R ∪ Y ))

=
0

(1/3) + 0
= 0,

Bel(Y |B̄) =
Bel(Y ∩ (R ∪ Y ))

Bel(Y ∩ (R ∪ Y )) + P l((R ∪ B) ∩ (R ∪ Y ))

=
0

0 + (1/3)
= 0,

P l(Y |B̄) =
P l(Y ∩ (R ∪ Y ))

Bel((R ∪B) ∩ (R ∪ Y )) + P l(Y ∩ (R ∪ Y ))

=
2/3

(1/3) + (2/3)
= 2/3.

Hence with FH conditioning formulas, we get the correct condi-
tional probability bounds

[Bel(R|B̄), P l(R|B̄)] = [1/3, 1] (by Fagin-Halpern)
= [1/3, 1] (correct bounds),

[Bel(B|B̄), P l(B|B̄)] = [0, 0] (by Fagin-Halpern)
= [0, 0] (correct bounds),

[Bel(Y |B̄), P l(Y |B̄)] = [0, 2/3] (by Fagin-Halpern)
= [0, 2/3] (correct bounds).

We can also verify that Bel(∅|B̄) = 0, Bel(R ∪ B|B̄) = 1/3,
Bel(R∪Y |B̄) = 1, Bel(B∪Y |B̄) = 0 and Bel(R∪B∪Y |B̄) = 1.
Applying Möbius inverse formula (13) with this conditional belief
function Bel(·|B̄), we get the conditional mass of belief given by
m(R|B̄) = 1/3 and m(R ∪ Y |B̄) = 2/3 and all other mass
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values are equal to zero, whereas with Shafer’s approach based
on Dempster’s rule of combination we get m(R|B̄) = 1/3 and
m(Y |B̄) = 2/3. We see the difference between Shafer’s and
FH conditioning approaches. With Shafer’s conditioning approach,
because (B ∪ Y ) ∩ (R ∪ Y ) 6= ∅ the mass m(B ∪ Y ) = 2/3 is
entirely transferred (optimistically) to the most specific focal element
Y included in B̄ = R ∪ Y . With the FH conditioning method the
mass m(B ∪ Y ) = 2/3 is entirely transferred (pessimistically, or
cautiously) to the least specific focal element R ∪ Y included in
B̄ = R ∪ Y .

VII. TOTAL B EL IEF THEOREM (TB T)
In this section, we extend TPT theorem to belief and plausibility

functions and we establish the Total Belief Theorem (TBT). Before
this, we need to explain how the set of focal elements of a given BBA
m(·) must be decomposed because it is the basis of the establishment
of TBT.

A. Decomposition of the set of focal elements FΘ(m)

Let us consider a FoD Θ = {θ1, . . . , θ|Θ|} with |Θ| > 1 elements,
and a BBA m(·) defined on 2Θ with a given set of focal elements
FΘ(m). Consider any partition {A1, A2, . . . , Ak} of the FoD Θ,
then one can always decompose FΘ(m) as the union of following
subsets

FΘ(m) = FA1
(m) ∪ . . . ∪ FAk

(m) ∪ FA∗(m). (38)

where FAi
(m) (i = 1, . . . , k) is the set of focal elements of m(·)

included in Ai, and FA∗(m) is the set of focal elements of m(·)
which are not included in Ai, i = 1, . . . , k. We use the notation
A∗ for representing the entity characterized by the focal set FA∗(m)
mathematically defined by

FA∗(m) , FΘ(m)−FA1
(m)− . . .− FAk

(m). (39)

The entity A∗ has in general no explicit form and it is used only for
notation convenience to make presentation of formulas more concise
in the sequel. Because Ai for i = 1, . . . , k are mutually exclusive
(disjoint), the sets FAi

(m) are also mutually exclusive and therefore
∩i=1,...,k(FΘ(m)−FAi

(m)) = FΘ(m)−FA1
(m)− . . .−FAk

(m)
because all possible intersections of focal sets including FAi

(m) ∩
FAj

(m) for j 6= i equal the empty set. Hence FA∗(m) can also be
expressed as

FA∗(m) = ∩i=1,...,kF̄Ai
(m), (40)

where F̄Ai
(m) , FΘ(m) − FAi

(m) = FĀi
(m) + FA∗

i
(m)

represents the set of focal elements of m(·) which are not subsets of
Ai.

Example 2: Consider Θ = {θ1, θ2, θ3, θ4, θ5} and a BBA m(·) de-
fined on 2Θ, with set of focal elements FΘ(m) = {X1, X2, . . . , X8}

with X1 = θ1, X2 = θ1∪θ2, X3 = θ2∪θ3, X4 = θ3∪θ4, X5 = θ4,
X6 = θ4 ∪ θ5, X7 = θ1 ∪ θ3 ∪ θ5 and X8 = θ5. Consider the
partition {A1, A2, A3} of Θ with A1 = {θ1, θ2}, A2 = {θ3, θ4}
and A3 = {θ5}. In this example, one has

FA1
(m) = {X1, X2} = {θ1, θ1 ∪ θ2},

FA2
(m) = {X4, X5} = {θ3 ∪ θ4, θ4},

FA3
(m) = {X8} = {θ5},

FA∗(m) = FΘ(m)− FA1
(m)− FA2

(m)− FA3
(m)

= {X3, X6, X7}

= {θ2 ∪ θ3, θ4 ∪ θ5, θ1 ∪ θ3 ∪ θ5}.

One sees that

F̄A1
(m) = FΘ(m)− {X1, X2} = {X3, X4, X5, X6, X7, X8},

F̄A2
(m) = FΘ(m)− {X4, X5} = {X1, X2, X3, X6, X7, X8},

F̄A3
(m) = FΘ(m)− {X8} = {X1, X2, X3, X4, X5, X6, X7}.

and applying (40), we get

F̄A1
(m) ∩ F̄A2

(m) ∩ F̄A3
(m) = {X3, X6, X7} = FA∗(m).

Example 3: Consider Θ = {θ1, θ2, θ3, θ4, θ5} and a BBA m(·)
defined on 2Θ, with the degenerate set of focal elements with only
one focal element as follows FΘ(m) = {X1 = Θ} corresponding to
the vacuous BBA. Consider the partition {A1, A2, A3} of Θ where
A1 , {x3, x5}, A2 , {x2} and A3 , {x1, x4}. Then, we get
FA1

(m) = ∅, FA2
(m) = ∅, FA3

(m) = ∅ and FA∗(m) = {X1} −

∅ − ∅ − ∅ = Θ. Note that, F̄A1
(m) = F̄A2

(m) = F̄A2
(m) = Θ,

and therefore F̄A1
(m) ∩ F̄A2

(m) ∩ F̄A3
(m) = Θ = FA∗(m), and

of course FΘ(m) = FA1
(m) ∪ FA2

(m) ∪ FA3
(m) ∪ FA∗(m) =

∅ ∪ ∅ ∪ ∅ ∪Θ = Θ.

B. Total Belief Theorem (TBT)

Based on the previous decomposition of the set of focal elements
FΘ(m) according to any given partition {A1, . . . , Ak} of the FoD
Θ, the following Total Belief Theorem (TBT) is established.

Total Belief Theorem (TBT): Let’s consider a frame of discernment
Θ with |Θ| ≥ 2 elements and a BBA m(·) defined on 2Θ with the set
of focal elements FΘ(m). For any chosen partition {A1, . . . , Ak} of
Θ and for any B ⊆ Θ, one has

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩ B) + U(A∗

∩B), (41)

where FA∗(m) , FΘ(m)− FA1
(m)− . . .− FAk

(m) and

U(A∗

∩B) ,
∑

X∈FA∗ (m)|X∈FB(m)

m(X). (42)

Proof of TBT: See appendix.

A∗ is a shorthand notation for the entity associated to the set of
focal elements FA∗(m) of the BBA m(·) involved in the summation
(42) of U(A∗∩B). From the formula (42), one sees that U(A∗∩B) ∈
[0, 1]. Note that if B = Θ and if the FoD Θ is simply partitioned as
{A , A1, Ā , A2}, then U(A∗

∩ B) = U(A∗
∩ Θ) = U(A∗) =

P l(A)−Bel(A) = P l(Ā)−Bel(Ā).

If one applies TBT with B = Θ, we get for any chosen partition
{A1, . . . , Ak} of Θ

∑

i=1,...,k

Bel(Ai) + U(A∗) = 1, (43)

where U(A∗) ,
∑

X∈FA∗ (m) m(X). This equality corresponds to
TPT if U(A∗) = 0 (i.e. there is no uncertainty on the value of
probabilities of Ai, i = 1, . . . , k).

Corollary of TBT: If m(·) is Bayesian, then TBT is consistent with
the Total Probability Theorem (TPT).

Proof: See appendix.

From TBT one can establish the following (not so elegant) Total
Plausibility Theorem (TPlT).

Total Plausibility Theorem (TPlT): For any BBA m(·) : 2Θ 7→

[0, 1], and for any partition {A1, . . . , Ak} of Θ, one has for any
B ⊆ Θ

P l(B) =
∑

i=1,...,k

P l(Āi ∪B) + 1− k − U(A∗

∩ B̄). (44)

Proof: See appendix.
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Example 4: Consider the FoD Θ = {θ1, . . . , θ7} and the set of focal
elements FΘ(m) = {X1, X2, . . . , X9} of a BBA m(·) defined over
2Θ given in Table I.

Table I
FOCAL EL EMENTS AND THEIR MAS S ES .

Focal element X BBA m(X)
X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02
X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20
X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20
X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Let’s consider the partition {A1, A2, A3} of Θ with A1 , θ1 ∪ θ3 ∪
θ4∪θ7, A2 , θ2∪θ5 and A3 , θ6 and the subset B = θ4∪θ5∪θ6∪θ7
of Θ having positive belief Bel(B) = m(X4)+m(X6)+m(X9) =
0.39. Table II summarizes the belief values of different subsets of Θ
which are needed in the derivations to apply TBT.

Table II
B EL IEF AND PL AUS IB IL ITY VAL UES US ED FOR THE DERIVATIONS .

Subsets of Θ Bel(·)
B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39
A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04
A2 = θ2 ∪ θ5 Bel(A2) = 0.20
A3 = θ6 Bel(A3) = 0.05
A1 ∩ B = θ4 ∪ θ7 Bel(A1 ∩ B) = 0.04
A2 ∩ B = θ5 Bel(A2 ∩ B) = 0
A3 ∩ B = θ6 Bel(A3 ∩ B) = 0.05

In this example, one has

FB(m) = {X4, X6, X9} and FB̄(m) = {X5},

FA1
(m) = {X4} and FĀ1

(m) = {X5, X9},

FA2
(m) = {X5} and FĀ2

(m) = {X4, X6, X8, X9},

FA3
(m) = {X9} and FĀ3

(m) = {X1, X2, X4, X5, X7},

FA∗(m) = FΘ(m)−FA1
(m)− FA2

(m)− FA3
(m)

= {X1, X2, X3, X6, X7, X8}.

Therefore,

U(A∗

∩B) =
∑

X∈FA∗ (m)|X∈FB(m)

m(X) = m(X6) = 0.30.

In applying TBT formula (41), one can easily verify that

Bel(B) = Bel(B ∩ A1) +Bel(B ∩A2) +Bel(B ∩A3)

+ U(A∗

∩B)

= 0.04 + 0 + 0.05 + 0.30 = 0.39.

C. Special case : A partition with only two elements

If we consider any simple partition {A, Ā} of the FoD Θ and any
B subset of Θ, then the TBT and TPlT formulas (41) and (44) reduce
to14

Bel(B) = Bel(A ∩B) +Bel(Ā ∩B) + U(A∗

∩ B), (45)

P l(B) = P l(Ā ∪B) + P l(A ∪B)− 1− U(A∗

∩ B̄). (46)

14Take k = 2, and set A , A1 and Ā , A2 in (41) and (44).

Remark: If the BBA m(·) is Bayesian then U(A∗
∩ B) = 0 and

U(A∗
∩ B̄) = 0. Therefore the previous formulas reduce to

Bel(B) = Bel(A ∩B) +Bel(Ā ∩B), (47)

P l(B) = P l(Ā ∪B) + P l(A ∪ B)− 1. (48)

m(·) being a Bayesian BBA, Bel(·) and P l(·) are homogeneous to
a same (possibly subjective) probability measure P (.). Therefore, the
previous equalities can be rewritten as

P (B) = P (A ∩B) + P (Ā ∩B), (49)

P (B) = P (Ā ∪B) + P (A ∪B)− 1. (50)

The formula (49) is valid because {A, Ā} is a partition of Θ and
because of TPT theorem. The formula (50) is nothing but a dual form
of TPT formula. It is also valid because

P (Ā ∪ B) + P (A ∪ B)− 1 = P (Ā) + P (B)− P (Ā ∩B)

+ P (A) + P (B)− P (A ∩ B)− 1

= (P (Ā) + P (A)− 1) + 2P (B)

− (P (Ā ∩ B) + P (A ∩ B))

= 0 + 2P (B)− P (B) = P (B)

D. Generalization of TBT

Previously, the TBT formula was established when the partition
{A1, . . . , Ak} was related to a given FoD Θ and B was a sub-
set of the same FoD Θ. We can generalize TBT in considering
{Ai, . . . , Ak} as any partition of a FoD Θ1 = {x1, . . . , xm} =
{xp, p = 1, 2, . . . , m}, and B as being a subset of another FoD
Θ2 = {y1, . . . , yn} = {yq , q = 1, 2, . . . , n} with Θ1 6= Θ2. For this,
we need to work within the Cartesian product space Θ , Θ1×Θ2. In
the space Θ = Θ1×Θ2, xp is not an elementary element but a subset
of n elements of Θ, i.e. {xp} = {(xp, y1), . . . , (xp, yn)}. Similarly,
yq is not an elementary element but a subset of m elements of Θ,
i.e. {yq} = {(x1, yq), . . . , (xm, yq)}. If Ai ⊆ Θ1 and B ⊆ Θ2, then
Ai×B = {(xp, yq)|xp ∈ Ai; yq ∈ B} ⊆ Θ. Because {A1, . . . , Ak}

is a partition of Θ, then {A1×Θ2, . . . , Ak×Θ2} defines a partition of
Θ = Θ1×Θ2. Because Θ1×B = ∪i=1,...,k((Θ1×B)∩(Ai×Θ2)),
we can apply TBT in the Cartesian space Θ. More precisely,

Bel(Θ1 ×B) = Bel(∪i((Θ1 ×B) ∩ (Ai ×Θ2)))

= Bel((Θ1 ×B) ∩ (A1 ×Θ2))+

. . .+Bel((Θ1 ×B) ∩ (Ak ×Θ2))

+ U((A∗

×Θ2) ∩ (Θ1 ×B)),

where the quantity U((A∗
×Θ2) ∩ (Θ1 ×B)) is now defined by

U((A∗

×Θ2) ∩ (Θ1 ×B)) ,
∑

X∈FA∗×Θ2
(m)|X∈FΘ1×B(m)

m(X). (51)

The previous TBT formula when working in the Cartesian space
Θ = Θ1 ×Θ2 can be written more concisely as

Bel(Θ1 ×B) =
∑

i=1,...,k

Bel(Ai ×B) + U(A∗

×B)), (52)

because (Θ1×B)∩ (Ai×Θ2) = (Ai×Θ2)∩ (Θ1×B) = Ai×B,
and by notation convention U(A∗

×B) = U((A∗
×Θ2)∩(Θ1×B)).

Note that the formula (52) can be used if and only if one knows
the joint BBA m(·) (or equivalently the joint belief) defined over the
powerset of the Cartesian space Θ = Θ1 ×Θ2.
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VIII. CONDITIONAL B EL IEF FUNCTIONS BAS ED ON TB T
In this section we show how FaginHalpern belief conditioning

formulas can be established directly from TBT. This result is impor-
tant because its provides a solid construction of FH formulas and it
justifies its use for applications where belief conditioning is necessary.
For deriving FH formulas from TBT we consider a partition {Ai, Āi}

of the FoD Θ and a subset B of Θ. Using TBT, one has

Bel(B) = Bel(Ai ∩B) +Bel(Āi ∩B) + U(A∗

∩B), (53)

where FA∗(m) , FΘ(m)− FAi
(m)− FĀi

(m) and

U(A∗

∩ B) ,
∑

X∈FA∗ (m)|X∈FB(m)

m(X). (54)

Hence

Bel(B)− U(A∗

∩B) = Bel(Ai ∩ B) +Bel(Āi ∩B). (55)

At this stage, one may be tempted to divide right and left side of
previous equality by Bel(B)−U(A∗

∩B) (assuming its positiveness)
to get

1 =
Bel(Ai ∩ B)

Bel(B)− U(A∗ ∩B)
+

Bel(Āi ∩B)

Bel(B)− U(A∗ ∩B)
,

which would suggest to define Bel(Ai|B) by taking

Bel(Ai|B) = Bel(Ai ∩B)/(Bel(B)− U(A∗

∩B)). (56)

Unfortunately, it can be seen from Ellsberg’s urn example that
the conditional belief defined by (56) is inconsistent with bounds
of imprecise conditional probabilities. Therefore, we need to go one
step beyond in the calculus for defining consistent conditional belief
and plausibility functions. Because by definition U((Āi ∩B)

∗

) ,

P l(Āi ∩B)−Bel(Āi ∩B), we have

Bel(Āi ∩B) = P l(Āi ∩B)− U((Āi ∩B)
∗

). (57)

Putting this expression of Bel(Āi ∩ B) into (55) and rearranging
terms, we get

Bel(B) + ∆(U) = Bel(Ai ∩ B) + P l(Āi ∩B), (58)

with ∆(U) , U((Āi ∩B)
∗

)− U(A∗ ∩B) and ∆(U) ∈ [0, 1] (see
proof in appendix).

Assuming Bel(B) > 0, and dividing each side of (58) by
Bel(B) + ∆(U), we get

1 =
Bel(Ai ∩B)

Bel(B) + ∆(U)
+

P l(Āi ∩B)

Bel(B) + ∆(U)
, (59)

or equivalently

Bel(Ai ∩B)

Bel(B) + ∆(U)
= 1−

P l(Āi ∩B)

Bel(B) + ∆(U)
. (60)

Because the general relationship Bel(X) = 1− P l(X̄) between
the belief and the plausibility must always be satisfied for any X ⊆

Θ, the equality (60) allows to define the conditional belief Bel(Ai|B)
and P l(Āi|B) by taking

Bel(Ai|B) ,
Bel(Ai ∩ B)

Bel(B) + ∆(U)
, (61)

P l(Āi|B) ,
P l(Āi ∩ B)

Bel(B) + ∆(U)
. (62)

Using equality (58), the previous conditioning formulas can be
rewritten equivalently as

Bel(Ai|B) =
Bel(Ai ∩B)

Bel(Ai ∩B) + P l(Āi ∩ B)
, (63)

P l(Āi|B) =
P l(Āi ∩ B)

Bel(Ai ∩B) + P l(Āi ∩ B)
. (64)

In replacing Āi by Ai in notations of formulas (62)–(64) we get15

the conditional plausibility P l(Ai|B) as

P l(Ai|B) ,
P l(Ai ∩B)

Bel(B) + U((Ai ∩ B)∗)− U(A∗ ∩B)

=
P l(Ai ∩B)

Bel(Āi ∩B) + P l(Ai ∩B)
. (65)

Formulas (63) and (65) coincide with Fagin-Halpern formulas
[4] which were originally proposed from essentially a very good
intuition. In this work, we have derived Fagin-Halpern formulas only
from TBT using the proper decomposition of the set of focal elements
of the a priori BBA. Note that the definition of Bel(Ai|B) given in
(61) satisfies the conditions Bel(∅|B) = 0, Bel(Θ|B) = 1, and
Bel(Ai|B) ∈ [0, 1]. To prove that Bel(Ai|B) defined by (63) is a
belief function one must prove that it is also an n-monotone (n ≥ 2)
Choquet’s capacity [36] on the finite set Θ, or equivalently that the
following inequality holds for any B ⊆ Θ with Bel(B) > 0 and for
any collection A1,. . . ,An of subsets of Θ

Bel(A1 ∪ . . . ∪ An|B) ≥
∑

I⊂{1,...,n}

I 6=∅

(−1)|I|+1Bel(∩
i∈I

Ai|B).

The proof of this inequality is complicate. However, three very
different proofs have already been given by Fagin and Halpern [3],
Jaffray [6], and Sundberg and Wagner [7], the latter one being the
clearest of fashion.

IX . GENERAL IZATION OF BAY ES ’ THEOREM

In this section and thanks to the previous results, we generalize
Bayes’ Theorem (BT) in the framework of belief functions. Assuming
Bel(B) > 0, we have shown that Fagin-Halpern expression of
Bel(Ai|B) given by

Bel(Ai|B) =
Bel(Ai ∩B)

Bel(Ai ∩ B) + P l(Āi ∩B)
(66)

is equal to the formula (61), i.e.

Bel(Ai|B) =
Bel(Ai ∩B)

Bel(B) + U((Āi ∩ B)
∗

)− U(A∗ ∩B)
. (67)

In replacing Bel(B) by the expression (41) of TBT we get

Bel(Ai|B) =
Bel(Ai ∩B)

∑

i=1,...,k Bel(Ai ∩ B) + U((Āi ∩B)
∗

)
. (68)

Assuming Bel(Ai) > 0, Fagin-Halpern expression of Bel(B|Ai)
given by

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(B ∩ Ai) + P l(B̄ ∩Ai)
(69)

is equal to

Bel(B|Ai) =
Bel(B ∩Ai)

Bel(Ai) + U((B̄ ∩Ai)
∗

)− U(B∗ ∩Ai)
, (70)

where

U((B̄ ∩ Ai)
∗

) , P l(B̄ ∩Ai)−Bel(B̄ ∩Ai) (71)

=
∑

X∈F
(B̄∩Ai)

∗ (m)

m(X), (72)

15It is worth to note that one has always U(A∗) = U(Ai
∗) = U(Ā∗

i )
when partitioning Θ as {Ai, Āi} because U(Ai

∗) = P l(Ai)−Bel(Ai) =
(1− Bel(Āi))− (1− P l(Āi)) = P l(Āi)−Bel(Āi) = U(Ā∗

i ).
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with F(B̄∩Ai)
∗(m) = FΘ(m)−FB̄∩Ai

(m)−FB∪Āi
(m), and where

U(B∗

∩Ai) ,
∑

X∈FB∗ (m)|X∈FAi
(m)

m(X), (73)

with FB∗(m) = FΘ(m)− FB(m)− FB̄(m).

From (70), one obtains

Bel(Ai∩B) = Bel(B|Ai)[Bel(Ai)+U((B̄ ∩Ai)
∗

)−U(B∗

∩Ai)].

By replacing the above expression of Bel(Ai ∩ B) into (68), we
obtain

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)

∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩ B)
∗

)
, (74)

where the factor q(Ai, B) introduced here for notation conciseness
is defined by

q(Ai, B) , Bel(Ai) + U((B̄ ∩Ai)
∗

)− U(B∗

∩ Ai). (75)

This result allows us to establish the following Generalized Bayes’
Theorem (GBT).

Generalized Bayes’ Theorem (GBT): For any partition {Ai, i =
1, . . . , k} of a FoD Θ, any belief function Bel(·) : 2Θ 7→ [0, 1], and
any subset B of Θ with Bel(B) > 0, then one has

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)

∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩ B)
∗

)
, (76)

where

U((Āi ∩ B)
∗

) ,
∑

X∈F
(Āi∩B)∗

(m)

m(X)

= P l(Āi ∩ B)−Bel(Āi ∩B),

and

q(Ai, B) = Bel(Ai) + U((B̄ ∩Ai)
∗

)− U(B∗

∩ Ai).

Lemma: GBT reduces to Bayes’ Theorem if Bel(·) : 2Θ 7→ [0, 1] is
a Bayesian belief function.

Proof: See appendix.

When Ai ⊆ Θ1 and B ⊆ Θ2 with Θ1 6= Θ2, we must work in
the Cartesian product space Θ = Θ1 × Θ2 and the GBT formula is
similar to (76) in replacing Ai by Ai×Θ2, B by Θ1×B, and where

U((Āi ∩ B)
∗

) ,
∑

X∈F
((Āi×Θ2)∩(Θ1×B))∗

(m)

m(X)

= P l((Āi ×Θ2) ∩ (Θ1 ×B))

−Bel((Āi ×Θ2) ∩ (Θ1 ×B)), (77)

and where the factor q(Ai, B) must be replaced by

q(Ai ×Θ2,Θ1 ×B) ,

Bel(Ai ×Θ2) + U((B̄ ∩ Ai)
∗

)− U(B∗

∩ Ai), (78)

with

U((B̄ ∩Ai)
∗

) ,
∑

X∈F
(Θ1×B̄)∩(Ai×Θ2)∗

(m)

m(X)

= P l((Θ1 × B̄) ∩ (Ai ×Θ2))

−Bel((Θ1 × B̄) ∩ (Ai ×Θ2)), (79)

U(B∗

∩Ai) ,
∑

X∈FΘ1×B∗ (m)|X∈FAi×Θ2
(m)

m(X), (80)

and FΘ1×B∗(m) = FΘ1×Θ2
(m)−FΘ1×B(m)− FΘ1×B̄(m).

In the formulas (77)–(80), X is an elementary element of the
Cartesian space Θ = Θ1 ×Θ2, and m(X) is the (joint) BBA value
of X defined on the power set of Cartesian product space.

The application of GBT formula when working with Ai ⊆ Θ1 and
B ⊆ Θ2 with Θ1 6= Θ2 is not easy in general because it requires
the knowledge of joint BBA m(·) defined over 2Θ1×Θ2 which is
rarely known in practice. If the joint BBA m(·) can be expressed
(or approximated) as a function of two marginal BBAs mΘ1(·) and
mΘ2(·) (assumed to be known) defined respectively over Θ1 and Θ2,
then GBT formula should become tractable.

X . IL L US TRATIVE EX AMPL E OF GB T
In this section, we provide a complete quite simple illustrative

example to show how belief conditioning formulas work and how to
apply GBT.

Let us consider the FoD Θ = {θi, i = 1, . . . , 7} and the set of
focal elements FΘ(m) = {X1, X2, . . . , X9} of a BBA m(·) defined
over 2Θ given in Table III. Let’s consider the partition {A1, A2, A3}

of Θ with A1 = θ1∪θ3∪θ4∪θ7, A2 = θ2∪θ5 and A3 = θ6, and let
consider the subset B = θ4∪θ5∪θ6∪θ7 of Θ having positive belief
Bel(B) = m(X4)+m(X6)+m(X9) = 0.39. Table IV summarizes
the belief and plausibility values of different subsets of Θ which are
needed in the derivations.

Table III
FOCAL EL EMENTS AND THEIR MAS S ES .

Focal element X BBA m(X)

X1 = θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ7 m(X1) = 0.01
X2 = θ1 ∪ θ2 ∪ θ3 ∪ θ4 m(X2) = 0.02

X3 = θ3 ∪ θ5 ∪ θ6 m(X3) = 0.03
X4 = θ4 ∪ θ7 m(X4) = 0.04
X5 = θ2 m(X5) = 0.20

X6 = θ6 ∪ θ7 m(X6) = 0.30
X7 = θ2 ∪ θ3 ∪ θ7 m(X7) = 0.20

X8 = θ1 ∪ θ4 ∪ θ6 m(X8) = 0.15
X9 = θ6 m(X9) = 0.05

Table IV
B EL IEF AND PL AUS IB IL ITY VAL UES US ED FOR THE DERIVATIONS .

Subsets of Θ Bel(·) Pl(·)
B = θ4 ∪ θ5 ∪ θ6 ∪ θ7 Bel(B) = 0.39 Pl(B) = 0.80

A1 = θ1 ∪ θ3 ∪ θ4 ∪ θ7 Bel(A1) = 0.04 Pl(A1) = 0.75
A2 = θ2 ∪ θ5 Bel(A2) = 0.20 Pl(A2) = 0.46
A3 = θ6 Bel(A3) = 0.05 Pl(A3) = 0.53

A1 ∩B = θ4 ∪ θ7 Bel(A1 ∩ B) = 0.04 Pl(A1 ∩ B) = 0.72
A2 ∩B = θ5 Bel(A2 ∩ B) = 0 Pl(A2 ∩ B) = 0.04

A3 ∩B = θ6 Bel(A3 ∩ B) = 0.05 Pl(A3 ∩ B) = 0.53

Ā1 ∩B = θ5 ∪ θ6 Bel(Ā1 ∩ B) = 0.05 Pl(Ā1 ∩ B) = 0.54

Ā2 ∩B = θ4 ∪ θ6 ∪ θ7 Bel(Ā2 ∩ B) = 0.39 Pl(Ā2 ∩ B) = 0.80

Ā3 ∩B = θ4 ∪ θ5 ∪ θ7 Bel(Ā3 ∩ B) = 0.04 Pl(Ā3 ∩ B) = 0.75

A1 ∩ B̄ = θ1 ∪ θ3 Bel(A1 ∩ B̄) = 0 Pl(A1 ∩ B̄) = 0.41

A2 ∩ B̄ = θ2 Bel(A2 ∩ B̄) = 0.20 Pl(A2 ∩ B̄) = 0.43

A3 ∩ B̄ = ∅ Bel(A3 ∩ B̄) = 0 Pl(A3 ∩ B̄) = 0

In this example, one has

FB(m) = {X4, X6, X9},

FB̄(m) = {X5},

FB∗ (m) = FΘ(m)−FB(m)−FB̄(m)

= {X1, X2, X3, X7, X8},

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

689



FA1
(m) = {X4},

FĀ1
(m) = {X5, X9},

FA2
(m) = {X5},

FĀ2
(m) = {X4, X6, X8, X9},

FA3
(m) = {X9},

FĀ3
(m) = {X1, X2, X4, X5, X7},

FA∗(m) = FΘ(m)− FA1
(m)− FA2

(m)− FA3
(m)

= {X1, X2, X3, X6, X7, X8}.

• Results with Fagin-Halpern conditioning formulas

Using Fagin-Halpern conditioning formulas (63) and (69) and
the fact that P l(Ai|B) = 1 − Bel(Āi|B) and P l(B|Ai) = 1 −

Bel(B̄|Ai), we obtain in this example the conditional belief and
plausibility values given in Tables V–VI

Table V
Bel(Ai|B) AND P l(Ai|B) WITH FAGIN-HAL PERN CONDITIONING.

Subsets of Θ Bel(Ai|B) P l(Ai|B)
A1 Bel(A1|B) ≈ 0.0690 P l(A1|B) ≈ 0.9351
A2 Bel(A2|B) = 0 P l(A2|B) ≈ 0.0930
A3 Bel(A3|B) ≈ 0.0625 P l(A3|B) ≈ 0.9298

Table VI
Bel(B|Ai) AND P l(B|Ai) WITH FAGIN-HAL PERN CONDITIONING.

Subsets of Θ Bel(B|Ai) P l(B|Ai)
A1 Bel(B|A1) ≈ 0.0889 P l(B|A1) = 1
A2 Bel(B|A2) = 0 P l(B|A2) ≈ 0.1667
A3 Bel(B|A3) = 1 P l(B|A3) = 1

To apply and verify GBT on this example, one needs to compute
Bel(Ai), U((B̄ ∩Ai)

∗

) and U(B∗
∩ Ai) to calculate q(Ai, B)

factors and also U((Āi ∩B)
∗

) because they enter in GBT formula
(76). These values are listed in Table VII for convenience.

Table VII
VAL UES OF q(Ai, B) AND U((Āi ∩ B)

∗

) FOR GB T FORMUL A .

Subsets of Θ q(Ai, B) U((Āi ∩ B)
∗
)

A1 0.45 0.49
A2 0.43 0.41
A3 0.05 0.71

The value q(A1, B) = 0.45 appearing in Table VII has been
calculated as follows

q(A1, B) , Bel(A1) + U((B̄ ∩ A1)
∗

)− U(B∗

∩ A1) = 0.45,

because

Bel(A1) = 0.04,

U((B̄ ∩ A1)
∗

) = P l(B̄ ∩A1)−Bel(B̄ ∩A1) = 0.41,

U(B∗

∩ A1) =
∑

X∈FA1
(m)|X∈FB∗(m)

m(X) = 0.

The value U((Ā1 ∩ B)
∗

) = 0.49 appearing in Table VII is calculated
as follows

U((Ā1 ∩B)
∗

) = P l(Ā1 ∩B)−Be(Ā1 ∩ B)

= 0.54 − 0.05 = 0.49.

Other values of Table VII are calculated similarly.

One verifies that GBT formula (76) works because we retrieve
correct values obtained with FH formula, given in Table V. Indeed,
one has

Bel(A1|B) =
Bel(B|A1)q(A1, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩ B)

∗

)

≈
0.0889 · 0.45

(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.49

≈ 0.0690,

Bel(A2|B) =
Bel(B|A2)q(A2, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩ B)

∗

)

≈
0 · 0.43

(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.41

= 0,

Bel(A3|B) =
Bel(B|A3)q(A3, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā3 ∩ B)

∗

)

≈
1 · 0.05

(0.0889 · 0.45) + (0 · 0.43) + (1 · 0.05) + 0.71

≈ 0.0625.

• Results with Shafer’s conditioning formulas

Using Shafer’s conditioning formulas (31) and (32), we obtain in
this example the conditional belief and plausibility values given in
Table VIII and IX.

Table VIII
Bel(Ai|B) AND P l(Ai|B) WITH S HAFER ’ S CONDITIONING.

Subsets of Θ Bel(Ai|B) P l(Ai|B)
A1 Bel(A1|B) = 0.3250 P l(A1|B) = 0.9000
A2 Bel(A2|B) = 0 P l(A2|B) = 0.0500
A3 Bel(A3|B) = 0.0625 P l(A3|B) = 0.6625

Table IX
Bel(B|Ai) AND P l(B|Ai) WITH S HAFER ’ S CONDITIONING.

Subsets of Θ Bel(B|Ai) P l(B|Ai)
A1 Bel(B|A1) ≈ 0.4533 P l(B|A1) ≈ 0.9600
A2 Bel(B|A2) ≈ 0.0652 P l(B|A2) ≈ 0.0870
A3 Bel(B|A3) = 1 P l(B|A3) = 1

As shown in the previous Ellsberg’s urn example, one knows that
Shafer’s belief conditioning formulas are inconsistent with lower
and upper bounds of imprecise conditional probabilities, and with
this example one shows that Shafer’s belief conditioning is also
incompatible with GBT formula (76). We emphasize that GBT has
been established by a constructive manner from TBT using a direct
and relatively simple calculus16 without need of rule of combination

16assuming Bel(B) and Bel(Ai) being positive to have well defined
expressions as it is for this example.
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of basic belief assignments. When using Shafer’s belief conditioning
formulas, one sees that the conditional values are not coherent since
they do not verify GBT because we obtain in this example

Bel(A1|B) = 0.3250 (from the results in Table VIII using eq. (32))

6=
Bel(B|A1)q(A1, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)

∗

)

≈
0.4533 · 0.45

(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.49

≈ 0.2642,

Bel(A2|B) = 0 (from the results in Table VIII using eq. (32))

6=
Bel(B|A2)q(A2, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)

∗

)

≈
0.0652 · 0.43

(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.41

≈ 0.0405,

Bel(A3|B) = 0.0625 (from the results in Table VIII using eq. (32))

6=
Bel(B|A3)q(A3, B)

∑3
i=1 Bel(B|Ai)q(Ai, B) + U((Ā3 ∩B)

∗

)

≈
1 · 0.05

(0.4533 · 0.45) + (0.0652 · 0.43) + (1 · 0.05) + 0.71

≈ 0.0504.

Ellsberg’s urn example and this example show clearly that Demp-
ster’s rule of combination used by Shafer to establish his belief
and conditioning formulas does not provide coherent and satisfactory
results since they are inconsistent with lower and upper bounds of
imprecise conditional probabilities, and they do not satisfy GBT also.

X I. CONCL US ION

In this paper new important results for reasoning with belief
functions were obtained and discussed. The Total Belief Theorem
(TBT) was established from a simple decomposition of the set of
focal elements of any basic belief assignment. TBT is a generalization
of Total Probability Theorem for belief functions, and based on it
we are able to derive conditional belief and conditional plausibility
functions that coincide with Fagin-Halpern conditioning formulas
which are coherent with lower and upper bounds of imprecise
conditional probability. Hence, this work provides a solid justification
of the establishment of formulas presented by Fagin and Halpern.
The TBT has been generalized for dealing with different frames of
discernments as well thanks to the Cartesian product space. Also as a
direct consequence of TBT, we have presented a generalization of the
well-known Bayes’ Theorem for the framework of belief functions
called the Generalized Bayesian Theorem (GBT). We have proved
that TBT and GBT reduce to TPT and BT respectively as soon as we
work with Bayesian belief function because in this case the Bayesian
belief function is homogeneous to a probability measure. On the base
of Ellsberg’s urn example and an illustrative example we have shown
that Dempster’s rule of combination used by Shafer to establish
his belief and conditioning formulas does not provide coherent and
satisfactory results because they are inconsistent with lower and
upper bounds of imprecise conditional probabilities and because they
do not satisfy GBT also. These new theoretical results should (we
hope) reconcile the Bayesian reasoning practioners with evidential
reasoning practioners and bring new foundations for reasoning with
uncertainty thanks to belief functions.
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APPENDIX

Proof of TBT

From the basic definition of Bel(B) one has for any B ⊆ Θ,
Bel(B) =

∑

X∈FΘ(m)|X⊆B
m(X). Because the set of focal ele-

ments FΘ(m) can always be decomposed as the union FΘ(m) =
FA1

(m)∪ . . .∪FAk
(m)∪FA∗(m), then one can always decompose

the previous sum as follows

Bel(B) =
∑

X∈FΘ(m)|X⊆B

m(X)

=
∑

X∈FA1
(m)|X∈FB(m)

m(X) + . . .

+
∑

X∈FAk
(m)|X∈FB(m)

m(X)

+
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

= Bel(A1 ∩B) + . . .+Bel(Ak ∩B)

+
∑

X∈FA∗ (m)|X∈FB(m)

m(X)

=
∑

i=1,...,k

Bel(Ai ∩ B) + U(A∗

∩B),

where U(A∗
∩ B) ,

∑

X∈FA∗ (m)|X∈FB(m) m(X), which com-
pletes the proof of TBT.

Proof of the corollary of TBT

If m(·) is Bayesian then any focal element X of FΘ(m) is a
singleton of 2Θ which either belongs to Ai, or to Āi (but it cannot
belong to both). Therefore, FΘ(m) = FA1

(m) ∪ . . . ∪ FAk
(m)

and FA∗(m) = ∅. TBT formula applies with17 U(A∗ ∩ B) =
∑

X∈FA∗ (m)|X∈FB(m) m(X) =
∑

X∈∅|X∈FB(m) m(X) = 0 and
thanks to TBT one has in this case for any partition {A1, . . . , Ak}

of Θ and any subset B of Θ the following equality satisfied

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B). (81)

When m(·) is Bayesian, its corresponding belief function Bel(·)
is homogeneous to a probability measure P (·) [1], and therefore
the previous equality is consistent with TPT formula (14), which
completes the proof of the corollary of the TBT.

17We recall that if a summation has no term then its value is set to zero.
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Proof of TPlT

From equality P l(B) = 1−Bel(B̄) and TBT, one has

P l(B) = 1−Bel(B̄)

= 1−
∑

i=1,...,k

Bel(Ai ∩ B̄)− U(A∗

∩ B̄)

= 1−
∑

i=1,...,k

(Bel(Ai ∩ B̄) + 1− 1)− U(A∗

∩ B̄)

= 1−
∑

i=1,...,k

(−1 +Bel(Ai ∩ B̄) + 1)− U(A∗

∩ B̄)

= 1−
∑

i=1,...,k

(−(1−Bel(Ai ∩ B̄)) + 1)− U(A∗

∩ B̄)

= 1 +
∑

i=1,...,k

P l(Ai ∩ B̄)− k − U(A∗

∩ B̄)

=
∑

i=1,...,k

P l(Āi ∪B) + 1− k − U(A∗

∩ B̄),

which completes the proof of TPlT.

Proof that ∆(U) ∈ [0, 1]

∆(U) , U((Āi ∩ B)
∗

)− U(A∗

∩B)

= [P l(Āi ∩B)−Bel(Āi ∩ B)]

− [Bel(Ai ∩B) +Bel(Āi ∩ B)−Bel(B)]

= P l(Āi ∩B)−Bel(Āi ∩B)

+Bel(B)−Bel(Ai ∩B)−Bel(Āi ∩B).

To prove that ∆(U) ≥ 0, one must prove equivalently that

P l(Āi ∩B)−Bel(Āi ∩B) +Bel(B) ≥

Bel(Ai ∩B) +Bel(Āi ∩ B). (82)

Using TBT, one has

Bel(B) = Bel(Ai ∩B) +Bel(Āi ∩ B) + U(A∗

∩B).

Replacing expression of Bel(B) in inequality (82), one must verify
if the following equality is satisfied

P l(Āi∩B)−Bel(Āi∩B)+Bel(Ai∩B)+Bel(Āi∩B)+U(A∗

∩B)

≥ Bel(Ai ∩B) +Bel(Āi ∩B).

After simplification, we have to prove that the following inequality
holds

P l(Āi ∩B) + U(A∗

∩B) ≥ Bel(Āi ∩B).

Because P l(Āi ∩ B) = Bel(Āi ∩ B) + U((Āi ∩B)
∗

), one has to
verify if the following inequality holds

Bel(Āi ∩B) + U((Āi ∩ B)
∗

) + U(A∗

∩B) ≥ Bel(Āi ∩B).

After simplification (omitting both Bel(Āi∩B) in left and right side
of the previous inequality), one has to prove that the inequality below
is satisfied to prove that ∆(U) ≥ 0

U((Āi ∩ B)
∗

) + U(A∗

∩B) ≥ 0.

Because U((Āi ∩B)
∗

) ∈ [0, 1] and U(A∗∩B) ∈ [0, 1], the previous
inequality always holds which proves that U((Āi ∩ B)

∗

)−U(A∗ ∩

B) ≥ 0. Moreover because U(A∗ ∩ B) ∈ [0, 1], then −U(A∗ ∩

B) ∈ [−1, 0]. Because U((Āi ∩B)
∗

) ∈ [0, 1], one deduces that
U((Āi ∩B)

∗

)− U(A∗ ∩B) ≤ 1. This completes the proof.

Proof of Lemma

If Bel(·) : 2Θ 7→ [0, 1] is a Bayesian belief function, then all
focal elements of its corresponding BBA m(·) are singletons of
2Θ. In this case Bel(·) and P l(·) functions coincide and therefore
one has U((Āi ∩ B)

∗

) = P l(Āi ∩ B) − Bel(Āi ∩ B) = 0 and
U((B̄ ∩Ai)

∗

) = P l(B̄∩Ai)−Bel(B̄∩Ai) = 0. Any focal element
(singleton) of m(·) is either a subset of B or a subset of B̄ of the
FoD Θ. Therefore, FB∗ (m) = ∅, which implies U(B∗

∩Ai) = 0, so
that q(Ai, B) = Bel(Ai). The GBT formula (76) with in this case
q(Ai, B) = Bel(Ai) and U((Āi ∩ B)

∗

) = 0 reduces to formula

Bel(Ai|B) =
Bel(B|Ai)Bel(Ai)

∑k

i=1 Bel(B|Ai)Bel(Ai)
,

which coincides with formula (21) because Bel(·) (being a Bayesian
belief function) is homogeneous to a probability measure P (·). This
completes the proof that GBT formula is consistent with Bayesian
Theorem formula when the Belief function is Bayesian.
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Abstract—In this paper we present a simple formulation of
the Generalized Bayes’ Theorem (GBT) which extends Bayes’
theorem in the framework of belief functions. We also present
the condition under which this new formulation is valid. We
illustrate our theoretical results with simple examples.

Keywords: Generalized Bayes’ Theorem (GBT), Simplified
GBT (SGBT), Total Belief Theorem (TBT), belief functions.

I. INTRODUCTION

Based on Dempster’s works [1], [2], Shafer did introduce
Belief Functions (BF) in 1976 to model the epistemic uncer-
tainty1 and to reason under uncertainty [3] which is referred
as Dempster-Shafer Theory (DST) in the literature. Belief
functions are mathematically well defined and they are very
appealing from the theoretical standpoint because of their
good ability to model uncertainty interpreted as imprecise
probability measures in Dempster’s original works.

From the end of 1970’s the DST has however been cast in
doubts because Dempster’s rule of combination of Basic Belief
Assignments (BBAs) yields counter intuitive results not only
in high conflicting situations but also in low conflicting cases
as well [4]–[6], and Shafer’s conditioning formulas based on
Dempster’s rule are not consistent with conditional probability
calculus [7], [8]. Discussions on the validity of DST can be
found, for instance, in [4], [5], [9]–[13]. These two major
concerns make DST quite risky for applications involving
randomness and epistemic uncertainties and it should be
replaced by better techniques to reason under uncertainty with
belief functions.

In 2018 we did establish in [8], [14] two new important gen-
eral results for reasoning with belief functions: the Total Belief
Theorem (TBT), and the Generalized Bayes’ Theorem (GBT).
TBT and GBT generalize the well-known Total Probability
Theorem (TPT) and Bayes’ Theorem (BT) of the Probability
Theory (PT). Thanks to these new theorems we have now in
hands a generalized Bayesian inference mechanism for work-
ing with imprecise probability measures in the belief functions
framework. Similarly to the probability theory requiring a
good estimation of pdf (or pmf) involved in Bayes’ formula to
make a good inference, the major difficulty for applying GBT

1Also called sometimes the cognitive uncertainty by some authors.

is the knowledge (or good estimation) of all2 BBAs required in
GBT. For a given size of frame of discernment, GBT requires
more computations than Bayes formula (if we would prefer to
work with probabilities) because we need to work with BBAs
defined on the powerset of the frame of discernment.

The general formulation of GBT presented in details in
[8] is not easy to apply and that is why we present in this
paper a simpler and more convenient formulation of GBT
providing elegant and useful mathematical expressions. The
obtention of these new formulas of GBT are established from
a dichotomous partitioning of the frame of discernment.

This paper is organized as follows. After a short reminder of
basics of belief functions in Section II and their constructions
based on Dempster’s multi-valued mapping, we present briefly
the Total Belief Theorem and Fagin-Halpern conditioning in
Section III, and the Generalized Bayes Theorem in Section IV.
In section V we establish the Simplified GBT (SGBT) drawn
from GBT for working with a dichotomous partitioning of the
frame of discernment. Section VI presents and discusses two
examples of SGBT results. Section VII concludes this paper.

II. BAS ICS OF B EL IEF FUNCTIONS

A. Basic belief assignment

We consider a finite discrete frame of discernement (FoD)
Θ = {θ1, θ2, . . . , θn}, with n > 1, and where all exhaustive
and exclusive elements of Θ represent the set of the potential
solutions of the problem under concern. The set of all subsets
of Θ (including the empty set ∅, and Θ) is the power-set of Θ
denoted by 2Θ. The number of elements (i.e. the cardinality)
of 2Θ is 2|Θ|. A Basic Belief Assignment (BBA) associated
with a given source of evidence is defined as the mapping
m(·) : 2Θ → [0, 1] satisfying the conditions m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The quantity m(A) is the mass of belief

for subset A committed by the Source of Evidence (SoE).

B. Focal elements

A focal element X of a BBA m(·) is an element of 2Θ

such that m(X) > 0. Note that the empty set ∅ is not a
focal element of a BBA because m(∅) = 0 (closed-world

2possibly joint BBAs if we work on Cartesian product spaces [8].

Originally published as: J. Dezert, A. Tchamova, D. Han, T. Wickramarathne, A Simplified Formulation 
of Generalized Bayes’ Theorem, in Proc. of Int. Conf. on Information Fusion (Fusion 2019), Ottawa, 
Canada, July 2–5, 2019, and reprinted with permission.
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assumption of Shafer’s model for the FoD). The set of all
focal elements of m(·) is denoted

FΘ(m) , {X ⊆ Θ|m(X) > 0}
= {X ∈ 2Θ|m(X) > 0}. (1)

The set of focal elements of m(·) included in A ⊆ Θ is
denoted, where , means equal by definition, by

FA(m) , {X ∈ FΘ(m)|X ∩ A = X}. (2)

FΘ(m) can be partitioned as {FA(m),FĀ(m),FA∗(m)} with

FA∗(m) , FΘ(m)−FA(m)−FĀ(m), (3)

which represents the set of focal elements of m(·) which are
not subsets of A, and not subsets of the complement of A in
Θ which is Ā , Θ − {A}. The minus symbol in Θ − {A}
denotes the set difference operator.

C. Belief, plausibility and uncertainty

Belief and plausibility functions are defined as3

Bel(A) ,
∑

X∈2
Θ

X⊆A

m(X)

=
∑

X∈FΘ(m)

X⊆A

m(X)

=
∑

X∈FA(m)

m(X), (4)

Pl(A) ,
∑

X∈2
Θ

X∩A 6=∅

m(X)

=
∑

X∈FΘ(m)

X∩A 6=∅

m(X)

= 1−
∑

X∈FĀ(m)

m(X)

= 1− Bel(Ā). (5)

The length of the belief interval [Bel(A), P l(A)] is usually
called by abuse of terminology the uncertainty on A com-
mitted by the SoE. In fact it represents the imprecision on
the (possibly subjective) probability of A granted by the SoE
which provides the BBA m(·). We denote it U(A∗), and it is
defined as

U(A∗) , Pl(A)−Bel(A) =
∑

X∈FA∗(m)

m(X). (6)

If all the elements of FΘ(m) are singletons, m(·) is called
a Bayesian BBA [3], and its corresponding Bel(·) and Pl(·)
functions are homogeneous to a same (subjective) probability
measure P (·). In this case FA∗(m) = FĀ∗(m) = ∅. Shafer

3By convention, a sum of non existing terms (if it occurs in formulas
depending on the given BBA) is always set to zero.

did prove in [3] (p.39) that m(·), Bel(·) and Pl(·) are one-
to-one, and for any A ⊆ Θ, m(·) is obtained from Bel(·) by
Möbius inverse formula

m(A) =
∑

B⊆A⊆Θ

(−1)|A−B|Bel(B). (7)

D. Interpretation and construction of belief functions

In original Dempster’s works [1] belief Bel(A) and plausi-
bility Pl(A) are interpreted as lower and upper bounds of an
unknown probability P (A), and so Bel(A) ≤ P (A) ≤ Pl(A).
The construction of m(A), Bel(A) and Pl(A) are mathemat-
ically well defined from an underlying random variable with a
known probability measure and a given multi-valued mapping
as follows:

• Consider a random variable x with its set of possible
values in X = {x1, . . . , xm} with known probabilities
pj = P (x = xj), j = 1, . . . ,m;

• Consider a FoD Θ = {θ1, . . . , θn} for the variable θ
under concern;

• Consider/learn a multi-valued mapping Γ : X 7→ 2Θ such
that if x = xi then θ ∈ A, so that A = Γ(xi) ∈ 2Θ;

• The belief (lower proba) and plausibility (upper proba)
that θ ∈ A are given by [1]

P∗(A) = Bel(A) = Bel(θ ∈ A)

= P ({x ∈ X|Γ(x) 6= ∅,Γ(x) ⊆ A}), (8)
P ∗(A) = Pl(A) = Pl(θ ∈ A)

= P ({x ∈ X|Γ(x) ∩A 6= ∅}). (9)

The mass of belief that θ belongs to A is given by

m(A) = P ({x ∈ X|Γ(x) 6= ∅,Γ(x) = A}). (10)

Example for multi-valued mapping: Paul has been killed
and Police asks a witness W : Who did you see killing Paul?
Witness answer is Mary. To estimate the confidence of this
testimony report one has to consider if this witness W is more
or less precise when he is reliable, or if he is not reliable.
So the state of W can belong to X = {x1, x2, x3} where
x1 means W is precise, x2 means W is approximate, and
x3 means W is not reliable. We suppose that the a priori
probabilities of the state of W are P (x1) = 0.3, P (x2) = 0.1
and P (x3) = 0.6. As FoD Θ, we consider a set of three
suspects that includes the unknown killer

Θ = {θ1 = Mary, θ2 = Peter, θ3 = John}.
If we define the multivalued mapping Γ(.) as follows

Γ(x1 = W is precise) = θ1,

Γ(x2 = W is approximate) = {θ1, θ2},
Γ(x3 = W is not reliable) = {θ1, θ2, θ3} = Θ.

Γ(x1 = W is precise) = θ1 means that if W is precise then
Mary has killed Paul. Γ(x2 = W is approximate) = {θ1, θ2}
means that if W is less precise then Mary or Peter have killed
Paul. Γ(x3 = W is not reliable) = Θ means that if W is not
reliable then we have no useful information about the killer.
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Applying formulas (8) and (9), one gets

Bel(∅) = P ({x|Γ(x) ⊆ ∅}) = P (∅) = 0

= 1− P l(Θ),

Bel(θ1) = P ({x|Γ(x) ⊆ θ1}) = P (x1) = 0.3

= 1− P l(θ2 ∪ θ3),

Bel(θ2) = P ({x|Γ(x) ⊆ θ2}) = 0

= 1− P l(θ1 ∪ θ3),

Bel(θ3) = P ({x|Γ(x) ⊆ θ3}) = 0

= 1− P l(θ1 ∪ θ2),

Bel(θ1 ∪ θ2) = P ({x|Γ(x) ⊆ θ1 ∪ θ2}) = P ({x1, x2})

= P (x1) + P (x2) = 0.4

= 1− P l(θ3),

Bel(θ1 ∪ θ3) = P ({x|Γ(x) ⊆ θ1 ∪ θ3}) = P (x1) = 0.3

= 1− P l(θ2),

Bel(θ2 ∪ θ3) = P ({x|Γ(x) ⊆ θ2 ∪ θ3}) = 0

= 1− P l(θ1),

Bel(Θ) = P ({x|Γ(x) ⊆ Θ}) = P ({x1, x2, x3})

= P (x1) + P (x2) + P (x3) = 1

= 1− P l(∅),

and

P l(∅) = P ({x|Γ(x) ∩ ∅ 6= ∅}) = P (∅) = 0

= 1−Bel(Θ),

P l(θ1) = P (x|Γ(x) ∩ θ1 6= ∅}) = P ({x1, x2, x3})

= P (x1) + P (x2) + P (x3) = 1

= 1−Bel(θ2 ∪ θ3),

P l(θ2) = P ({x|Γ(x) ∩ θ2 6= ∅}) = P ({x2, x3}

= P (x2) + P (x3) = 0.7

= 1−Bel(θ1 ∪ θ3),

P l(θ3) = P ({x|Γ(x) ∩ θ3 6= ∅})

= P (x3) = 0.6

= 1−Bel(θ1 ∪ θ2),

P l(θ1 ∪ θ2) = P ({x|Γ(x) ∩ (θ1 ∪ θ2) 6= ∅}) = P ({x1, x2, x3})

= P (x1) + P (x2) + P (x3) = 1

= 1−Bel(θ3),

P l(θ1 ∪ θ3) = P ({x|Γ(x) ∩ (θ1 ∪ θ3) 6= ∅}) = P ({x1, x2, x3})

= P (x1) + P (x2) + P (x3) = 1

= 1−Bel(θ2),

P l(θ2 ∪ θ3) = P ({x|Γ(x) ∩ (θ2 ∪ θ3) 6= ∅}) = P ({x2, x3})

= P (x2) + P (x3) = 0.7

= 1−Bel(θ1),

P l(Θ) = P ({x|Γ(x) ∩ (θ1 ∪ θ2 ∪ θ3) 6= ∅}) = P ({x1, x2, x3})

= P (x1) + P (x2) + P (x3) = 1

= 1−Bel(∅).

In applying formula (10), one gets finally the BBA

m(∅) = P ({x|Γ(x) = ∅}) = P (∅) = 0,

m(θ1) = P ({x|Γ(x) = θ1}) = P (x1) = 0.3,

m(θ2) = P ({x|Γ(x) = θ2}) = 0,

m(θ3) = P ({x|Γ(x) = θ3}) = 0,

m(θ1 ∪ θ2) = P ({x|Γ(x) = θ1 ∪ θ2}) = P (x2) = 0.1,

m(θ1 ∪ θ3) = P ({x|Γ(x) = θ1 ∪ θ3}) = 0,

m(θ2 ∪ θ3) = P ({x|Γ(x) = θ2 ∪ θ3}) = 0,

m(Θ) = P ({x|Γ(x) = Θ}) = P (x3) = 0.6.

Some authors have proposed different interpretations of belief
functions to escape the probabilistic framework introduced by
Dempster to save DST of its inherent contradiction mainly
due to the choice of Dempster’s rule of combination and
Shafer’s conditioning approach based on Dempster’s rule. The
most important attempt has been done in 1990’s by Smets in
[15] with his axiomatic Transferable Belief Model (TBM).
It however remains disputable because of the ambiguous (or
inconsistent/double) interpretation of the empty set.

In this paper we adopt the original Dempster’s interpretation
and construction of belief functions because it is mathemati-
cally well defined, clear and consistent.

III. TB T AND FAGIN-HAL PERN CONDITIONING

A. Total Belief Theorem

In [8], we have generalized the Total Probability Theorem
(TPT) [16] for working with belief functions and we proved
the following simple and important theorem.

Total Belief Theorem (TBT): Let’s consider a FoD Θ with
|Θ| ≥ 2 elements and a BBA m(·) defined on 2Θ with
the set of focal elements FΘ(m). For any chosen partition
{A1, . . . , Ak} of Θ and for any B ⊆ Θ, one has

Bel(B) =
∑

i=1,...,k

Bel(Ai ∩B) + U(A∗ ∩B), (11)

where

U(A∗ ∩B) ,
∑

X∈FA∗(m)|X∈FB(m)

m(X), (12)

and FA∗(m) , FΘ(m)−FA1
(m)− . . .−FAk

(m).

Proof of TBT: see [8], with example.

From (12), one sees that U(A∗ ∩B) ∈ [0, 1]. If one applies
TBT with B = Θ, we get

∑

i=1,...,k Bel(Ai) + U(A∗) = 1

where U(A∗) ,
∑

X∈FA∗ (m)
m(X). This equality corre-

sponds to TPT if U(A∗) = 0 (i.e. there is no imprecision
on the value of probabilities of Ai, i = 1, . . . , k).

In spite of its apparent simplicity the TBT is very important
because it provides a strong theoretical justification of Fagin-
Halpern (FH) belief and plausibility conditioning formulas
[7], [17] proposed in 1990’s as a very serious alternative to
Shafer’s conditioning formulas. Indeed, it can be easily proved
with a simple counter-example (e.g. Ellsberg’s urn example
- see [8]) that conditioning formulas established by Shafer
from Dempster’s rule of combination are not consistent with
bounds of the conditional probabilities. The main advantage
of FH conditioning formulas is that they provide exact bounds
of imprecise conditional probability and they coincide exactly
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with the conditional probability when the belief functions
involved in FH formulas are Bayesian.

B. Fagin-Halpern belief conditioning formulas

In [8] we have proved that the TBT justifies the following
FH conditioning formulas (assuming Bel(B) > 0)

Bel(A|B) =
Bel(A ∩B)

Bel(A ∩B) + Pl(Ā ∩B)
, (13)

Pl(A|B) =
Pl(A ∩B)

Pl(A ∩B) +Bel(Ā ∩B)
. (14)

Fagin and Halpern in [7] proved that Bel(·|B) is a true
belief function and so FH belief conditioning is an appealing
solution for belief and plausibility conditioning. A proof that
FH formulas are belief functions has been also given by
Sundberg and Wagner in [18]. Hence TBT provides a complete
justification of FH formulas which offers a full compatibility
with the conditional probability calculus [18], [19].

Similarly, by interchanging notations A and B and assuming
Bel(A) > 0, the previous FH formulas can be expressed as

Bel(B|A) = Bel(A ∩B)

Bel(A ∩B) + Pl(B̄ ∩ A)
, (15)

Pl(B|A) = Pl(A ∩B)

Pl(A ∩B) +Bel(B̄ ∩ A)
. (16)

When m(·) is Bayesian Bel(·) = Pl(·) = P (·), and so
Pl(A∩B) = Bel(A∩B) = P (A∩B), Pl(Ā∩B) = Bel(Ā∩
B) = P (Ā∩B) and Pl(B̄ ∩A) = Bel(B̄ ∩A) = P (B̄ ∩A).
FH formulas above reduce to

Bel(A|B) = Pl(A|B) =
P (A ∩B)

P (A ∩B) + P (Ā ∩B)
.

From TPT [16]) P (A ∩B) + P (Ā ∩B) = P (B), thus

Bel(A|B) = Pl(A|B) = P (A∩B)/P (B) = P (A|B). (17)

Similarly, one can also easily verify that

Bel(B|A) = Pl(B|A) = P (A∩B)/P (A) = P (B|A). (18)

Hence from (17) and (18) one obtains the well-known equality

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A). (19)

IV. GENERAL IZED BAY ES ’ THEOREM

In [8] we did also establish from TBT the following
Generalized Bayes’ Theorem (GBT) and lemma.

Generalized Bayes’ Theorem (GBT): For any partition
{A1, . . . , Ak} of a FoD Θ, any belief function Bel(·) : 2Θ 7→
[0, 1], and any subset B of Θ with Bel(B) > 0, one has for
i ∈ {1, . . . , k}

Bel(Ai|B) =
Bel(B|Ai)q(Ai, B)

∑k

i=1 Bel(B|Ai)q(Ai, B) + U((Āi ∩ B)
∗

)
, (20)

where

q(Ai, B) , Bel(Ai) + U((B̄ ∩ Ai)
∗
)− U(B∗ ∩ Ai), (21)

with

U((B̄ ∩ Ai)
∗
) , Pl(B̄ ∩Ai)−Bel(B̄ ∩ Ai), (22)

U(B∗ ∩ Ai) ,
∑

X∈FB∗ (m)|X∈FAi
(m)

m(X), (23)

and where

U((Āi ∩B)
∗
) , Pl(Āi ∩B)−Bel(Āi ∩B). (24)

Lemma 1: GBT degenerates to Bayes’ theorem formula if
Bel(·) is a Bayesian BF, that is

P (Ai|B) =
P (B|Ai)P (Ai)

∑k

i=1
P (B|Ai)P (Ai)

. (25)

V. S IMPL IFIED FORMUL ATION OF GB T
In this section we establish a simplified formulation of

GBT which will be denoted SGBT for short in the sequel.
Because the GBT formula (20) is not very easy to use and
quite difficult to compute in applications, we propose a
more useful simplified formulation of GBT which is drawn
from (20) when considering only a simple dichotomous
partitioning of the frame of discernment Θ. More precisely
we consider a partition {A, Ā} of Θ with A ⊆ Θ and Ā is the
complement of A in Θ, that is Ā = Θ−{A}. We establish the
following theorem which is the main contribution of this paper.

Simplified Generalized Bayes’ Theorem (SGBT): For any
partition {A, Ā} of a FoD Θ, any belief function Bel(·) :
2Θ 7→ [0, 1], and any subset B of Θ, one has

• If Pl(A ∩ B̄) > 0 (Condition C1)

Bel(A|B) =
Bel(B|A)P l(A ∩ B̄)

Bel(B|A)P l(A ∩ B̄) + P l(B̄|A)P l(Ā ∩ B)
, (26)

• If Bel(A ∩ B̄) > 0 (Condition C2)

P l(A|B) =
P l(B|A)Bel(A ∩ B̄)

P l(B|A)Bel(A ∩ B̄) +Bel(B̄|A)Bel(Ā ∩ B)
, (27)

and if the denominators involved in formulas (26) and (27)
are strictly positive.

Note that if condition C2 is satisfied then the condition C1

is also satisfied, but not necessarily the converse.

Proof of SGBT: From GBT formula (20), we replace the terms
by their expressions to obtain SGBT formulas (26)–(27). For
notation convenience, we denote A1 , A and A2 , Ā. Hence
the GBT formula reduces to

Bel(A|B) =
Num

Den

=
Bel(B|A1)q(A1, B)

∑2

i=1
Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)

∗
)
,

where

Num , Bel(B|A1)q(A1, B),

Den , Bel(B|A1)q(A1, B)

+Bel(B|A2)q(A2, B) + U((Ā1 ∩B)
∗
),
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and

q(A1, B) = Bel(A1) + U((B̄ ∩A1)
∗
)− U(B∗ ∩ A1)

= Bel(A1) + P l(B̄ ∩ A1)− Bel(B̄ ∩ A1)
︸ ︷︷ ︸

U((B̄∩A1)
∗)

−U(B∗ ∩ A1).

Because FB∗(m) = FΘ(m)−FB(m)−FB̄(m) one has

U(B∗ ∩ A1) =
∑

X∈FB∗(m)|X∈FA1
(m)

m(X)

=
∑

X∈FΘ(m)−FB(m)−FB̄(m)|X∈FA1
(m)

m(X)

=
∑

X∈FΘ(m)|X∈FA1
(m)

m(X)

−
∑

X∈FB(m)|X∈FA1
(m)

m(X)

−
∑

X∈FB̄(m)|X∈FA1
(m)

m(X)

= Bel(A1)−Bel(A1 ∩B)−Bel(A1 ∩ B̄).

Therefore

q(A1, B) = Bel(A1) + P l(B̄ ∩ A1)−Bel(B̄ ∩ A1)
︸ ︷︷ ︸

U((B̄∩A1)
∗)

− [Bel(A1) −Bel(A1 ∩B) − Bel(A1 ∩ B̄)]
︸ ︷︷ ︸

U(B∗
∩A1)

= P l(A1 ∩ B̄) + Bel(A1 ∩ B).

Similarly, one has

q(A2, B) = Bel(A2) + U((B̄ ∩ A2)
∗

)− U(B∗ ∩ A2)

= Bel(A2) + P l(B̄ ∩ A2)−Bel(B̄ ∩ A2)
︸ ︷︷ ︸

U((B̄∩A2)
∗)

− [Bel(A2) −Bel(A2 ∩B) − Bel(A2 ∩ B̄)]
︸ ︷︷ ︸

U(B∗
∩A2)

= P l(A2 ∩ B̄) + Bel(A2 ∩ B).

The value U((Ā1 ∩B)
∗
) is given by

U((Ā1 ∩B)
∗
) = Pl(Ā1 ∩B)−Bel(Ā1 ∩B).

Therefore the numerator and denominator of Bel(A|B) are

Num , Bel(B|A1)q(A1, B)

= Bel(B|A1)[Pl(A1 ∩ B̄) +Bel(A1 ∩B)]

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)],

Den , Bel(B|A1)q(A1, B) +Bel(B|A2)q(A2, B)

+ U((Ā1 ∩B)
∗
)

= Bel(B|A1)[Pl(A1 ∩ B̄) +Bel(A1 ∩B)]

+Bel(B|A2)[Pl(A2 ∩ B̄) +Bel(A2 ∩B)]

+ [Pl(Ā1 ∩B)−Bel(Ā1 ∩B)]

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)]

+Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]

+ [Pl(Ā ∩B)−Bel(Ā ∩B)].

Because Bel(B|A) = Bel(A∩B)/[Bel(A∩B)+Pl(A∩B̄)]
and Bel(B|Ā) = Bel(Ā ∩ B)/[Bel(Ā ∩ B) + Pl(Ā ∩ B̄)]
based on FH formulas, after basic algebra one can verify that
Num = Bel(A∩B) and Den = Bel(A∩B) +Pl(Ā∩B).

Because Bel(B|Ā) = Bel(Ā∩B)/[Bel(Ā∩B)+Pl(Ā+B̄)],
the term Bel(B|Ā)[Pl(Ā∩B̄)+Bel(Ā∩B)] involved in Den
equals Bel(Ā ∩B). Hence the expression of Den reduces to

Den = Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)]

+Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]
︸ ︷︷ ︸

Bel(Ā∩B)

+ [Pl(Ā ∩B)−Bel(Ā ∩B)]

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)] + Pl(Ā ∩B).

If Pl(B̄|A) = Pl(A∩B̄)/[Pl(A∩B̄)+Bel(A∩B)] > 0 and
if we multiply the expressions of Num and Den by Pl(B̄|A)
one gets

Bel(A|B) =
Num

Den
=

Num · Pl(B̄|A)
Den · Pl(B̄|A)

=
Num · Pl(A∩B̄)

Pl(A∩B̄)+Bel(A∩B)

Den · Pl(A∩B̄)

Pl(A∩B̄)+Bel(A∩B)

=
Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)P l(A ∩ B̄) + Pl(B̄|A)Pl(Ā ∩B)
,

which corresponds exactly to the SGBT formula (26).

The SGBT formula (27) can also be obtained similarly from
GBT by expressing at first Bel(Ā|B) = Bel(A2|B) as

Bel(Ā|B) =
Num′

Den′
=

Bel(B|A2)q(A2, B)
∑2

i=1 Bel(B|Ai)q(Ai, B) + U((Ā2 ∩ B)
∗
)

=
Bel(B|A2)q(A2, B)

Bel(B|A1)q(A1, B) + Bel(B|A2)q(A2, B) + U((Ā2 ∩ B)
∗
)
,

where4

Num′ , Bel(B|A2)q(A2, B)

= Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]

= Bel(Ā ∩B),

Den′ , Bel(B|A1)q(A1, B) +Bel(B|A2)q(A2, B)

+ U((Ā2 ∩B)
∗
)

= Bel(B|A)[Pl(A ∩ B̄) +Bel(A ∩B)]

+Bel(B|Ā)[Pl(Ā ∩ B̄) +Bel(Ā ∩B)]

+ [Pl(A ∩B)−Bel(A ∩B)]

= Bel(Ā ∩B) + Pl(A ∩B).

4Here U((Ā2 ∩ B)
∗
) = P l(Ā2 ∩ B) − Bel(Ā2 ∩ B) = P l(A ∩ B) −

Bel(A ∩ B) because Ā2 = ¯̄A = A.
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If Bel(B̄|A) = Bel(A∩B̄)/[Bel(A∩B̄)+Pl(A∩B)] > 0
and if we multiply Num′ and Den′ by Bel(B̄|A) one gets5

Bel(Ā|B) =
Num′

Den′ =
Num′ ·Bel(B̄|A)
Den′ ·Bel(B̄|A)

=
Bel(Ā ∩B)Bel(B̄|A)

Bel(Ā ∩B)Bel(B̄|A) + Pl(A ∩B)Bel(B̄|A)

=
Bel(Ā ∩B)Bel(B̄|A)

Bel(Ā ∩B)Bel(B̄|A) + Pl(B|A)Bel(A ∩ B̄)
.

Hence

Pl(A|B) = 1−Bel(Ā|B)

=
Pl(B|A)Bel(A ∩ B̄)

Pl(B|A)Bel(A ∩ B̄) +Bel(B̄|A)Bel(Ā ∩B)
,

which corresponds to SGBT formula (27).
Therefore, one has proved that expression (26) can be

obtained from GBT if Pl(A ∩ B̄) > 0, and expression (27)
can be obtained from GBT if Bel(A∩B̄) > 0. This completes
the proof of SGBT.

Lemma 2: SGBT formulas (26) and (27) coincide with condi-
tional probability formula P (A|B) = P (B|A)P (A)/P (B) =
P (A ∩B)/P (B) if the belief function is Bayesian.

Proof: Replacing Bel(·) and Pl(·) by P (·) in (26) and
(27) we get P (A|B) = P (B|A)P (A∩B̄)

P (B|A)P (A∩B̄)+P (B̄|A)P (Ā∩B)
=

P (B|A)P (A∩B̄)
P (A∩B)

P (A)
P (A∩B̄)+

P (A∩B̄)

P (A)
P (Ā∩B)

= P (B|A)P (A)

P (A∩B)+P (Ā∩B)
=

P (B|A)P (A)

P (B)
because P (A ∩ B) + P (Ā ∩ B) = P (B). This

completes the proof of lemma 2.

In appendix we also prove that Bel(A|B) ≤ Pl(A|B) when
using SGBT formulas (26) and (27).

VI. EX AMPL ES

In this section we give two simple interesting examples of
application of SGBT. Example 1 shows that GBT and SGBT
works fine because conditions C1 and C2 are satisfied, whereas
the example 2 shows that GBT works fine but SGBT doesn’ t
work because of violation of condition C1.

A. Example 1

We consider Θ = {x1, x2, x3, x4} and the BBA chosen as
follows m(x1) = 0.05, m(x2) = 0.03, m(x1 ∪ x2) = 0.02,
m(x3) = 0.04, m(x4) = 0.06, m(x3 ∪ x4) = 0.10, m(x2 ∪
x3) = 0.30 and m(x1∪x2∪x3∪x4) = m(Θ) = 0.40. We also
consider the partition Θ = {A = {x1, x2}, Ā = {x3, x4}} and
the subset B = {x2, x3}. Hence one has

Θ = {
B

︷ ︸︸ ︷

x1, x2, x3, x4
︸ ︷︷ ︸ ︸ ︷︷ ︸

A Ā

}.

with A = {x1, x2} = x1 ∪ x2, Ā = {x3, x4} = x3 ∪ x4,
B = {x2, x3} = x2 ∪ x3, and B̄ = {x1, x4} = x1 ∪ x4.

5From FH formulas P l(A ∩B)Bel(B̄|A) = P l(B|A)Bel(A ∩ B̄).

The set of focal elements in this example is

FΘ(m) = {x1, x2, x1 ∪ x2, x3, x4, x3 ∪ x4,

x2 ∪ x3, x1 ∪ x2 ∪ x3 ∪ x4}.

The sets of focal elements included in A and in Ā are
FA(m) = {x1, x2, x1 ∪x2}, and FĀ(m) = {x3, x4, x3 ∪x4},
and one has FA∗(m) = FΘ(m)−FA(m)−FĀ(m) = {x2 ∪
x3, x1∪x2∪x3∪x4}. The sets of focal elements included in B
and in B̄ are FB(m) = {x2, x3, x2∪x3}, FB̄(m) = {x1, x4},
and one has FB∗(m) = FΘ(m) − FB(m) − FB̄(m) =
{x1∪x2, x3 ∪x4, x1 ∪x2 ∪x3 ∪x4}. From the BBA m(·) we
get the following belief and plausibility values listed in Table
I which are useful for making derivations of FH, GBT and
SGBT formulas.

Subsets of Θ Bel(·) P l(·)
A = x1 ∪ x2 Bel(A) = 0.10 P l(A) = 0.80
Ā = x3 ∪ x4 Bel(Ā) = 0.20 P l(Ā) = 0.90
B = x2 ∪ x3 Bel(A) = 0.37 P l(B) = 0.89
B̄ = x1 ∪ x4 Bel(B̄) = 0.11 P l(B̄) = 0.63
A ∩ B = x2 Bel(A ∩ B) = 0.03 P l(A ∩ B) = 0.75
A ∩ B̄ = x1 Bel(A ∩ B̄) = 0.05 P l(A ∩ B̄) = 0.47
Ā ∩ B = x3 Bel(Ā ∩ B) = 0.04 P l(Ā ∩ B) = 0.84
Ā ∩ B̄ = x4 Bel(Ā ∩ B̄) = 0.06 P l(Ā ∩ B̄) = 0.56

Table I
B EL IEF AND PL AUS IB IL ITY VAL UES US ED FOR THE DERIVATIONS .

• Application of FH formulas: with (13)-(14) one gets

Bel(A|B) =
Bel(A ∩B)

Bel(A ∩B) + Pl(Ā ∩B)
=

0.03

0.03 + 0.84

≈ 0.03448275,

P l(A|B) =
Pl(A ∩B)

Pl(A ∩B) +Bel(Ā ∩B)
=

0.75

0.75 + 0.04

≈ 0.94936708.

With FH formulas (15)-(16), one gets

Bel(B|A) = Bel(A ∩B)

Bel(A ∩B) + Pl(B̄ ∩A)
=

0.03

0.03 + 0.47

= 0.06,

P l(B|A) = Pl(A ∩B)

Pl(A ∩B) +Bel(B̄ ∩A)
=

0.75

0.75 + 0.05

= 0.9375.

• Application of SGBT formulas: with (26) and (27) one gets6

Bel(A|B) =
Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)P l(A ∩ B̄) + Pl(B̄|A)Pl(Ā ∩B)

=
Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)P l(A ∩ B̄) + [1−Bel(B|A)]Pl(Ā ∩B)

=
0.06 · 0.47

0.06 · 0.47 + [1− 0.06]0.84
=

0.0282

0.0282 + 0.7896

≈ 0.03448275,

6It is worth noting that conditions C1 and C2 are satisfied in this example
because P l(A ∩ B̄) = 0.47 and Bel(A ∩ B̄) = 0.05.
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Pl(A|B) =
Pl(B|A)Bel(A ∩ B̄)

Bel(B̄|A)Bel(Ā ∩B) + Pl(B|A)Bel(A ∩ B̄)

=
Pl(B|A)Bel(A ∩ B̄)

[1− P l(B|A)]Bel(Ā ∩B) + Pl(B|A)Bel(A ∩ B̄)

=
0.9375 · 0.05

[1− 0.9375]0.04+ 0.9375 · 0.05
=

0.046875

0.0025 + 0.046875
≈ 0.94936708.

• Application of GBT formula (20): we denote A1 = A =
x1 ∪ x2 and A2 = Ā = x3 ∪ x4. Here GBT formula (20)
becomes

Bel(A|B) =
Bel(B|A1)q(A1, B)

∑2

i=1
Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)

∗
)
,

where Bel(B|A1) and Bel(B|A2) terms are given by

Bel(B|A1) ≡ Bel(B|A) = Bel(A ∩B)

Bel(A ∩B) + Pl(B̄ ∩ A)

=
0.03

0.03 + 0.47
= 0.06,

Bel(B|A2) ≡ Bel(B|Ā) = Bel(Ā ∩B)

Bel(Ā ∩B) + Pl(B̄ ∩ Ā)

=
0.04

0.04 + 0.56
≈ 0.06666667.

The terms q(A1, B) and q(A2, B) are given by

q(A1, B) = Bel(A1) + U((B̄ ∩ A1)
∗
)− U(B∗ ∩ A1)

= 0.10 + 0.42− 0.02 = 0.50,

q(A2, B) = Bel(A2) + U((B̄ ∩ A2)
∗
)− U(B∗ ∩ A2)

= 0.20 + 0.50− 0.10 = 0.60,

because

U((B̄ ∩ A1)
∗
) = Pl(B̄ ∩A1)−Bel(B̄ ∩ A1)

= Pl(B̄ ∩A)−Bel(B̄ ∩A)

= 0.47− 0.05 = 0.42,

U(B∗ ∩ A1) =
∑

X∈FB∗(m)|X∈FA1
(m)

m(X)

=
∑

X∈FB∗(m)|X∈FA(m)

m(X)

= m(x1 ∪ x2) = 0.02,

and

U((B̄ ∩ A2)
∗
) = Pl(B̄ ∩A2)−Bel(B̄ ∩ A2)

= Pl(B̄ ∩ Ā)−Bel(B̄ ∩ Ā)

= 0.56− 0.06 = 0.50,

U(B∗ ∩ A2) =
∑

X∈FB∗(m)|X∈FA2
(m)

m(X)

=
∑

X∈FB∗(m)|X∈FĀ(m)

m(X)

= m(x3 ∪ x4) = 0.10.

The value U((Ā1 ∩B)
∗
) involved in the denominator of

Bel(A|B) expression is given by

U((Ā1 ∩B)
∗
) = Pl(Ā ∩B)−Bel(Ā ∩B)

= 0.84− 0.04 = 0.80.

Replacing all these values in GBT formula of Bel(A|B) we
get

Bel(A|B) ≡ Bel(A1|B)

=
Bel(B|A1)q(A1, B)

∑2

i=1
Bel(B|Ai)q(Ai, B) + U((Ā1 ∩B)

∗
)

≈ 0.06 · 0.50
0.06 · 0.50 + 0.06666667 · 0.60 + 0.80

≈ 0.03

0.870000002
≈ 0.03448275.

As shown, Bel(A|B) calculated by GBT and by SGBT
formulas are consistent with the value calculated directly from
FH formulas. For calculating Pl(A|B), we calculate at first
Bel(Ā|B) = Bel(A2|B) and then Pl(A|B) = 1−Bel(Ā|B).
Applying GBT formula for calculating Bel(A2|B), one has

Bel(Ā|B) = Bel(A2|B)

=
Bel(B|A2)q(A2, B)

∑2

i=1
Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)

∗
)
.

The values of Bel(B|Ai), q(Ai, B) for i = 1, 2 have been
calculated previously and U((Ā2 ∩B)

∗
) is given by

U((Ā2 ∩B)
∗
) = Pl(Ā2 ∩B)−Bel(Ā2 ∩B)

= Pl(A ∩B)−Bel(A ∩B)

= 0.75− 0.03 = 0.72.

Therefore,

Bel(Ā|B) ≡ Bel(A2|B)

=
Bel(B|A2)q(A2, B)

∑2

i=1
Bel(B|Ai)q(Ai, B) + U((Ā2 ∩B)

∗
)

≈ 0.06666667 · 0.60
0.06 · 0.50 + 0.06666667 · 0.60 + 0.72

≈ 0.040000002

0.790000002
≈ 0.05063292.

and finally we get

Pl(A|B) = 1−Bel(Ā|B) ≈ 0.94936708.

From this very simple example we have verified that FH
formulas, GBT formula and simplified GBT formula are all
consistent because the conditions C1 and C2 are satisfied.

B. Example 2

We consider the example of [8] (Section VIII). We verify
that SGBT formula (26) works because Bel(B|A1) = 0.0889,
Pl(A1 ∩ B̄) = 0.41, Pl(B̄|A1) = 1 − Bel(B|A1) = 1 −
0.0889 = 0.9111 and Pl(Ā1 ∩B) = 0.54 so that
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Bel(A1|B) =
Bel(B|A1)P l(A1 ∩ B̄)

Bel(B|A1)P l(A1 ∩ B̄) + P l(B̄|A1)P l(Ā1 ∩ B)

=
0.0889 · 0.41

0.0889 · 0.41 + 0.9111 · 0.54
= 0.0690.

which is the same value of what we get by applying directly
FH formula, or GBT formula (20). The SGBT formula (26)
works because the condition C1 (i.e. Pl(A1∩ B̄) = 0.41 > 0)
is satisfied. Similarly, using (26), one has for Bel(A2|B)

Bel(A2|B) =
Bel(B|A2)P l(A2 ∩ B̄)

Bel(B|A2)P l(A2 ∩ B̄) + P l(B̄|A2)P l(Ā2 ∩ B)

=
0 · 0.43

0 · 0.43 + 1 · 0.80
= 0,

which is the same value of what we get by applying directly
FH formula, or GBT formula (20). Here SGBT formula (26)
works because the condition C1 (i.e. Pl(A2∩ B̄) = 0.43 > 0)
is satisfied.

For the value Bel(A3|B) = 0.0625 computed by FH
conditioning formula, or by GBT formula (20) things are
different because when applying SGBT formula (26) we get
0/0 indetermination. Indeed,

Bel(A3|B) =
Bel(B|A3)P l(A3 ∩ B̄)

Bel(B|A3)P l(A3 ∩ B̄) + P l(B̄|A3)P l(Ā3 ∩ B)

=
1 · 0

1 · 0 + 0 · 0.75
=

0

0
.

So one sees that SGBT formula (26) does not work for
computing Bel(A3|B) in this case because the condition C1

(i.e. Pl(A3 ∩ B̄) > 0) is not satisfied which is normal. In this
case the correct value Bel(A3|B) = 0.0625 must be calculated
by GBT or FH formulas.

Therefore in practice a special attention must always be paid
to conditions C1 and C2 before applying SGBT formulas, and
in case of violation of one of these conditions, one needs to
work back directly with FH or GBT formulas.

VII. CONCL US ION

The main contribution of this paper is the derivation of a
simplified formulation of Generalized Bayes’ Theorem, called
SGBT, which extends Bayesian Theorem in the frame of
belief functions. The simplification is imposed from the fact
that the general formulation of GBT is not easy to apply in
real world applications. It is drawn from GBT for working
with a dichotomous partitioning of the frame of discernment.
The conditions under which this new formulation is valid
are presented. The theoretical results obtained are illustrated
with simple theoretical examples. The challenging question of
application of GBT and SGBT to solve real-world problems
is under investigation.

APPENDIX

A. Proof that Bel(A|B) ≤ Pl(A|B) from SGBT formula

To prove that Bel(A|B) ≤ Pl(A|B) from SGBT formulas
(26)-(27) one needs to prove the following inequality

Bel(B|A)Pl(A ∩ B̄)

Bel(B|A)P l(A ∩ B̄) + Pl(B̄|A)Pl(Ā ∩B)
≤

Pl(B|A)Bel(A ∩ B̄)

Bel(B̄|A)Bel(Ā ∩B) + Pl(B|A)Bel(A ∩ B̄)
.

After basic algebraic manipulations on the previous in-
equality, one has to prove if R1 ≤ R2 · R3 · R4. where,
for the notation convenience, R1 = Bel(B|A)/P l(B|A),
R2 = Bel(A ∩ B̄)/P l(A ∩ B̄), R3 = Pl(B̄|A)/Bel(B̄|A)
and R4 = Pl(Ā ∩ B)/Bel(Ā ∩ B). Our proof is done by
contradiction as follows.

Let us assume that R2 · R3 · R4 < R1 is valid, that is

Bel(A ∩ B̄)

Pl(A ∩ B̄)
︸ ︷︷ ︸

R2

· Pl(B̄|A)
Bel(B̄|A)
︸ ︷︷ ︸

R3

· Pl(Ā ∩B)

Bel(Ā ∩B)
︸ ︷︷ ︸

R4

<
Bel(B|A)
Pl(B|A)
︸ ︷︷ ︸

R1

(28)

Because R2 ≤ 1, one has necessarily R2 ·R3 ·R4 ≤ R3 ·R4,
so we must have (if our assumption is valid) R3 · R4 < R1,
that is

1−Bel(B|A)
1− P l(B|A)
︸ ︷︷ ︸

R3

· Pl(Ā ∩B)

Bel(Ā ∩B)
︸ ︷︷ ︸

R4

<
Bel(B|A)
Pl(B|A)
︸ ︷︷ ︸

R1

, (29)

or equivalently

[1−Bel(B|A)]P l(B|A) < Bel(B|A)[1−P l(B|A)]
Bel(Ā ∩B)

P l(Ā ∩B)
︸ ︷︷ ︸

1/R4

.

Because Bel(Ā ∩B)/P l(Ā ∩B) ≤ 1 then

Bel(B|A)[1−P l(B|A)]
Bel(Ā ∩B)

P l(Ā ∩B)
︸ ︷︷ ︸

1/R4

≤ Bel(B|A)[1−P l(B|A)].

So we must have (if our assumption is valid)

[1−Bel(B|A)]Pl(B|A) < Bel(B|A)[1− Pl(B|A)], (30)

which is (after rearranging terms) equivalent to have the
inequality Pl(B|A) < Bel(B|A) satisfied. However, from
Fagin-Halpern definitions of conditional belief function
and properties of belief functions the previous inequality
Pl(B|A) < Bel(B|A) is never satisfied. Therefore our
assumption R2 · R3 · R4 < R1 is not valid and one has
necessarily R1 ≤ R2 · R3 · R4, which completes the proof
that Bel(A|B) ≤ Pl(A|B) when Bel(A|B) and Pl(A|B)
are calculated by the SGBT formulas (26) and (27).
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Abstract—Image denoising is a fundamental problem in image
processing. The switching filtering is a popular approach to
reduce the impulse noise. It faces two challenges including the
impulse noise detection and filter design. The traditional detection
methods based on single criterion or multiple criteria encounter
uncertainty problems and produce many miss-detections and
false alarms, especially when the image is severely corrupted.
In this paper, the uncertainties encountered in the impulse noise
detection are ad- dressed using the theory of belief functions, and
a multi-criteria detection strategy for the impulse noise based on
evidential reasoning is proposed. Based on the pre-detection, an
adaptive median filter is de- signed, which adaptively determines
the size of the filtering window according to the estimated global
noise density and the degree of local corruption. Experimental
results and related analyses show that our proposed image
denoising method for the impulse noise has superior performance
compared with several state-of-the-art denoising methods.

Keywords: image denoising, impulse noise, multi-criteria

detection, evidential reasoning, adaptive median filtering.

I. INTRODUCTION

Digital images can be corrupted by various types of noise

during the image acquisition and transmission. The impulse

noise is one of the most common types, which is encountered

in cases with quick transients, e.g., faulty switching during

imaging [1]. The intensity of a pixel corrupted by the impulse

noise tends to be much higher or lower than those of its uncor-

rupted neighbors. The impulse noise dramatically influences

the image quality and makes images unsuitable for subsequent

human understanding or image processing such as the edge

detection [2], segmentation [3], object recognition [4], image

analysis [5] and image understanding [6].

Till now, the impulse noise reduction problem has not been

well solved and has attracted extensive research interests. The

median filtering is the most popular approaches for the impulse

noise reduction. The standard median (SM) filter [7] replaces

the target pixel’s intensity by the median of intensities of

its neighbors. Various modifications of the SM filter have

been proposed, such as the weighted median (WM) filter [8]

and the center weighted median (CWM) filter [9]. However,

all these filters apply the median operations to each pixel

ignoring whether the target pixel is corrupted or not. This

might destroy the details contributed from uncorrupted pixels

and lead to image quality degradation. To deal with this

problem, switching median filters [10] were proposed, which

introduce the noise detection prior to the filtering. Since only

the corrupted pixels will be filtered and the uncorrupted pixels

remain intact, more details can be preserved and better filtering

performance can be achieved if the pre-detection result is

accurate enough.

In recent years, sparse representation (SR) [11] is widely

used in image denoising [12], [13], [14], especially for

Gaussian noise. For the impulse noise, the noise detector

is incorporated into SR model and the weighted dictionary

learning method was proposed for impulse noise denoising

[15], [16], [17]. Both median filtering and SR based method

face the challenge of noise detector designing.

There have emerged two major criteria for the impulse noise

detection including the extreme property and discontinuity

property. Some detectors only use a single criterion, which

may involve some uncertainty problems. For example, the

boundary discriminative noise detection (BDND) [18] and the

efficient improvements on the BDND (IBDND) [19] use the

criterion of extreme property. Both algorithms label a pixel

as the noise if it is assigned to the low-intensity range or

high-intensity range according to the histogram distribution in

a local window centered at that given pixel. However, these

detectors easily lead to false alarms since not all the pixels

with low-intensity or high-intensity are noise. There are other

detectors that only use the criterion of discontinuity property.

Such detectors can be found in the adaptive impulse detection

using center-weighted median (ACWM) filter [20], directional

weighted median (DWM) filter [21], contrast enhancement-

based (CEF) filter [22], adaptive switching median (ASWM)

filter [23], weighted couple sparse representation (WCSR)

model [24] and the denoising framework combining the detec-

tion mechanism based on the robust outlyingness ratio with the

NL-means (ROR-NLM) [25]. They label a pixel as the noise if

its similarity with its neighbors is lower than a preset threshold.

Originally published as: Z. Zhang, D. Han, J. Dezert, Y. Yang, A New Adaptive Switching Median Filter 
for Impulse Noise Reduction with Pre-Detection Based on Evidential Reasoning, Signal Processing, Vol. 
147, pp. 173–198, 2018, and reprinted with permission.
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However, when the noise density is high, the impulse noise

pixels might not show the discontinuity property since there

are too many noise pixels in their neighbors. Since pixels

with extreme or discontinuity property may not always be the

noise, the detectors based on a single criterion will involve

uncertainty problems and tend to yield incorrect detection

results. Both criteria have their own rationalities; however,

they are one-sided. It should be better to jointly use them when

detecting the impulse noise. Therefore, some approaches using

the above two criteria jointly have been proposed, e.g., the

detector in noise adaptive soft-switching median (NASM) filter

[26] and the detector based on the cloud model (CM) [27].

These two-step detection methods first recognize the suspected

noise pixels using the extreme criterion, and then distinguish

the noise pixels from the suspected noise pixels using the

discontinuity criterion. However, they can easily produce miss-

detections when some noise pixels are not detected as the

suspected noise in the first step. Therefore, the two-step type

joint use is not preferred.

To deal with the uncertainties encountered in the impulse

noise detection and avoid the drawbacks of the two-step-

type joint use of detection criteria, in this paper, a new

detection approach for the impulse noise is proposed, which

uses the two criteria simultaneously based on the theory of

belief functions [28]. In our detection approach, the extreme

property is described using the interval data distance between

the target pixel’s intensity and the intensity range of the

whole noisy image (expressed as an interval number). The

discontinuity property is described using the rank-ordered

absolute differences (ROAD) statistic [29]. The uncertainty

problem encountered in the impulse noise detection, e.g.,

pixels with extreme or discontinuity property may not always

be the noise, are modeled by belief functions and are further

handled through the evidence combination.

The impulse noise detector implementation is the main

work of this paper. Based on the detection result, an adaptive

median filter is designed, which adaptively determines the size

of filtering window according to the estimated global noise

density and local corrupted degree. Experimental results show

that our proposed adaptive switching median filter with pre-

detection based on evidential reasoning (ASMF-DBER) has

superior performance compared with several state-of-the-air

switch median filters and the SR based method.

II. BASIS OF IMPULSE NOISE AND UNCERTAINTY

PROBLEMS ENCOUNTERED IN IMPULSE NOISE DETECTION

A. Impulse noise model

When an image is corrupted by the impulse noise, some

pixels are changed and their intensities are extremely high

or extremely low. We use the same impulse noise model

as used in BDND [18]. Assume that the noise pixels take

values in two fixed sets S1 = {0, 1, . . . , α} and S2 =
{255− α, 255 − (α − 1), . . . , 255} for an 8-bit monochrome

image. Let si,j and xi,j be the pixels’ intensities at location

(i, j) in the original and noisy images, respectively. Let ni,j

be the noise which is independent of si,j and corresponds to a

random value uniformly distributed in the set S1 and S2. Let p
denote the probability that a pixel is corrupted. The probability

mass function (pmf) [30] of xi,j is given by

P (xi,j) =

{

p, for xi,j = ni,j ,
1− p, for xi,j = si,j .

(1)

Specially, if α = 0, the intensities of noise pixels can only

take the two extreme values 0 or 255. This type of impulse

noise is also called the salt-and-pepper noise. Since ni,j is

independent of si,j , it is possible that ni,j = si,j . This kind

of pixel should be regarded as uncorrupted.

B. Uncertainties encountered in impulse noise detection

The impulse noise has two properties:

1) Extreme property: The intensity of an impulse noise

pixel is usually an extreme value (0 or 255) or close

to an extreme value.

2) Discontinuity property: The intensity of an impulse noise

pixel tends to be much higher or lower than those of its

neighbors.

These two properties are often used as detection criteria for

the impulse noise. Some detectors only use one of the criteria:

1) Detectors based on the criterion of extreme property:

These detectors label a pixel as the noise, if it is

assigned to the low-intensity range or high-intensity

range according to the histogram distribution in a local

window centered at that pixel, e.g., BDND [18] and

IBDND [19] detectors.

2) Detectors based on the criterion of discontinuity prop-

erty: These detectors label a pixel as the noise, if its

dissimilarity with its neighbors is larger than a preset

threshold, such as ACWM [20], DWM [21], CEF [22],

ASWM [23], ROR-NLM [25] and WCSR [24].

However, such single criterion based detectors may involve

the following uncertainty problems:

1) Uncertainty in extreme criterion: Some signal pixels may

also be detected as the noise, since their intensities are

very close to extreme values, e.g., some edge pixels and

texture pixels. Moreover, in some bright or dark area,

the intensity range of signal pixels may overlap with that

of the impulse noise pixels. Therefore, when using the

extreme criterion alone, it is uncertain to judge those

signal pixels with extreme property to be the impulse

noise or not.

2) Uncertainty in discontinuity criterion: The discontinuity

property of the impulse noise pixels becomes weaker

with the increase of noise density since there are many

noise pixels in their neighbors. At the same time, some

signal pixels may show discontinuity. Therefore, with

only the discontinuity criterion, it is uncertain to judge

a pixel to be the impulse noise or not.

Due to these uncertainties, the single criterion based detec-

tors are to some extent one-sided and tend to yield incorrect

detection results. Hence, it should be better to jointly use the

two criteria to implement a more comprehensive detection.
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Some two-step detection methods, like NASM [26] and

CM [27], jointly use these two criteria in two consecutive

steps. They first recognize suspected noise pixels according

to the extreme criterion, and then distinguish noise pixels

from suspected noise pixels according to the discontinuity

criterion, as illustrated in Fig. 1. In the first step, only

using the extreme criterion, some noise pixels may not be

detected as the suspected noise and therefore are miss-detected

straightly. These miss-detected pixels will not undergo the

filtering so that these two-step methods can easily lead to

poor noise-reduction capabilities. Therefore, when detecting

the impulse noise, it should be better to use these two criteria

simultaneously, but not in two consecutive steps.

Figure 1. The two-step detection method.

To deal with these uncertainties encountered in the single

criterion based detections and to implement a more compre-

hensive detection by using these two criteria simultaneously,

we propose an evidential reasoning based impulse noise de-

tection approach thanks to the ability of belief functions to

model uncertainty and for reasoning under uncertainty. The

theory of belief functions [28] are briefly recalled first below.

III. IMPULSE NOISE DETECTION BASED ON EVIDENTIAL

REASONING

A. Basic of evidence theory

The theory of belief functions, also called Dempster-Shafer

evidence theory (DST) [28], is a theoretical framework for

uncertainty modeling and reasoning.

In DST, elements in the frame of discernment (FOD)

Θ = {θ1, θ2, . . . , θl} are mutually exclusive and exhaustive.

The power set 2Θ of the FOD Θ is the set of all subsets of

Θ. Define a function m from 2Θ to [0, 1] as a basic belief

assignment (BBA, also called a mass function) satisfying
∑

A⊆Θ
m(A) = 1, m(∅) = 0. (2)

m(A) depicts the evidence support to the proposition A. If

m(A) > 0, A is called a focal element.

The plausibility function (Pl) and belief function (Bel) are

defined as:

Pl(A) =
∑

A∩B 6=∅
m(B), (3)

Bel(A) =
∑

B⊆A
m(B). (4)

The belief interval [28], [31] [Bel(A), P l(A)] represents the

imprecision of the support to the proposition A.

Dempster’s rule of combination [28], which is used for

combining two distinct pieces of evidence, is defined as

(m1 ⊕m2)(A) =

{

0, A = ∅,
1

1−K

∑

B∩C=A

m1(B)m2(C), A 6= ∅,
(5)

where K =
∑

B∩C=∅ m1(B)m2(C) represents the total con-

flict or contradictory mass assignments.

For a probabilistic decision-making, Smets defined the pig-

nistic probability transformation [32] to transform a BBA into

a probability measure BetP:

BetP(θi)
∆
=

∑

θi∈A

m(A)

|A| , ∀θi ∈ Θ, (6)

where |A| denotes the cardinality of A. The decision is made

by choosing the element in FOD which has the highest BetP

value. Note that there are still other probability transformations

of BBA, see [33] for details.

B. Evidential modeling for uncertainties and fusion based

detection

To deal with the uncertainties encountered in the impulse

noise detection, we propose a detection method based on

evidential reasoning, which uses the extreme criterion and

discontinuity criterion simultaneously. The flow chart of the

detection algorithm is illustrated in Fig. 2.

Here we propose two methods for uncertainties modeling.

One proposed method models the uncertainties of extreme cri-

terion and discontinuity criterion with two BBAs, respectively

(denoted by method I). The other proposed method treats this

impulse noise detection with two criteria as a multi-criteria

decision making problem, and uses cautious ordered weighted

averaging with evidential reasoning (COWA-ER) method [34]

to generate BBAs (denoted by method II). In both methods,

we use the distance of interval numbers to describe the

extreme property and use the rank-ordered absolute differences

(ROAD) statistic [29] to describe the discontinuity property.

B-1 Evidential modeling method I and fusion based detec-

tion

1) Evidential modeling for the uncertainty in extreme crite-

rion

According to the extreme property of the impulse noise, the

intensity of an impulse noise pixel must be an extreme value

or close to an extreme value.

Since all of the pixels’ intensities in an image are within a

range ([0, 255] for an 8-bit image), the intensity information of

an image can be represented by an interval number. An interval

number ã in R is a set of real numbers that lie between two real

numbers, i.e., ã = [a1, a2] = {x|a1 ≤ x ≤ a2}, a1, a2 ∈ R

and a1 ≤ a2. The intensity information of an image can be

expressed as an interval number Ĩ = [Imin, Imax], where Imin

and Imax denote the minimum and maximum intensities of the

image, respectively. Furthermore, a single pixel’s intensity x
can also be viewed as an interval number [x, x], whose upper

bound and lower bound are equal.

The distance of interval numbers is a measure of dissimilar-

ity between interval numbers. Here we use it to describe the

closeness between a pixel’s intensity and the extreme values.

Various types of distance for interval numbers [35] have been

proposed. Here, we use the following strict distance metric.
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Figure 2. Noise detection algorithm based on evidential reasoning.

Given two interval numbers ã = [a1, a2] and b̃ = [b1, b2], the

distance between ã and b̃ is defined as:

d(ã, b̃) =

√

[ (a1+a2)−(b1+b2)

2
]
2

+ 1

3
[ (a2−a1)−(b2−b1)

2
]
2

. (7)

According to (7), the distance between Ĩ and [x, x], which

describes the closeness between a pixel’s intensity x and the

extreme values, Imin and Imax, is:

d(Ĩ , [x, x]) =

√

( Imin+Imax

2
− x)

2
+ (Imax−Imin)

2

12
. (8)

Here, x takes values in the interval [Imin, Imax]. An illustration

of d(Ĩ , [x, x]) is shown in Fig. 3, where the intensity range

of the image is set as [0, 255]. When x takes the median of

[0, 255], i.e., 127 or 128, d(Ĩ , [x, x]) reaches the minimum

value. The closer between x and the extreme value, e.g., 0 or

255, the higher the value of d(Ĩ , [x, x]). Thus, d(Ĩ , [x, x]) can

be used to describe the extreme property.

Figure 3. An illustration of d(Ĩ , [x, x]).

Suppose that the only possible type of the noise existing in

the given image is the impulse noise. The pixel whose intensity

is far from the extreme values must be the signal, but the pixel

whose intensity is close to an extreme value may not be the

noise. For example, in some bright or dark area, the intensity

range of signal pixels may overlap with that of the impulse

noise pixels. Here, we use the belief function to describe this

uncertainty.

We set a detection window with a size of wD×wD centered

at the given pixel at (i, j):

WD(i, j) = {xi−s,j−t| −
(wD − 1)

2
≤ s, t ≤ (wD − 1)

2
},
(9)

where xi−s,j−t is the intensity of the pixel at (i − s, j − t).

We focus on two distances in WD:

1) dc denotes the distance between the center pixel’s inten-

sity and the interval number Ĩ , where Ĩ expresses the

intensity range of the pixels in the whole image.

2) d0 denotes the minimum distance in WD between a

pixel’s intensity and Ĩ , where the pixel is the one whose

intensity is the farthest one in WD from the extreme

values. Thus, this pixel is most unlikely to be the noise

in WD according to the extreme criterion.

We also focus on another two distances in the whole image:

1) dext denotes distance between Ĩ and the extreme value:

Imin or Imax. It is the maximum distance in the image

between a pixel’s intensity and Ĩ . If a pixel’s intensity

is close to the extreme value, its distance to Ĩ is close

to dext.
2) dmed denotes distance between Ĩ and the median of Ĩ . It

is the minimum possible distance in the image between

a pixel’s intensity and Ĩ . If a pixel’s intensity is much

far from the extreme values, its distance to Ĩ is close to

dmed.

Finally, we construct a BBA m1 using the above distances to

model the uncertainty of whether the center pixel is corrupted

by the impulse noise or not according to the extreme criterion:







m1(N) = dc−d0

dext−d0+ε
,

m1(S) = 1− dc−dmed

dext−dmed
,

m1(Θ) = 1−m1(N)−m1(S).

(10)

Here, the FOD Θ = {N,S}, where N denotes the noise and

S denotes the signal. The parameter ε is a small positive real

number to avoid m1(N) to be 1, when the intensity of the

center pixel is an extreme value. It means that a pixel with

an extreme value should not be absolutely recognized as the

noise because it might be the signal actually. Furthermore,

Dempster’s rule of combination in (5) has the problem of one

ballot veto when one BBA is assigned 1 on one singleton θi
(θi ∈ Θ), while 0 on other singletons. That is, if m1(N) = 1,

i.e., m1(S) = 0, no matter what m2 is, the combined BBA

has m(S) = 0, which indicates the center pixel cannot be the

signal.

Since dext ≥ dc ≥ d0 ≥ dmed, 0 ≤ (dc − d0)/(dext − d0 +
ε) < 1 and 0 ≤ (dc − dmed)/(dext − dmed) ≤ 1. That is,

0 ≤ m1(N) < 1 and 0 ≤ m1(S) ≤ 1. Besides, as dmed ≤ d0,

m1(N) ≤ dc − d0
dext − d0

≤ dc − dmed

dext − dmed

,
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Figure 4. Case a and the corresponding m1 of the center pixel. (a) A detection window for case a. (b) Corresponding m1 when x takes different values.

Figure 5. Case b and the corresponding m1 of the center pixel. (a) A detection window for case b. (b) Corresponding m1 when x takes different values.

which means m1(N) ≤ 1−m1(S) so that m1(N)+m1(S) ≤
1. Therefore, m1 satisfies the constraint in (2), and m1 is a

legitimate BBA.

According to m1, the center pixel will have a large value of

m1(N) only when its intensity is close to the extreme value,

and at the same time far from the intensity being the closest

to the median of Ĩ in WD . The center pixel will have a large

value of m1(S) when its intensity is close to the median of Ĩ .

Here, we consider two different cases about the detec-

tion window and the corresponding BBA m1 of the cen-

ter pixel when Ĩ = [0, 255], ε = 0.1 and α = 10, i.e., noise

pixels take values in the sets of S1 = {0, 1, . . . , 10} and

S2 = {245, 246, . . . , 255}.

1) For the most common case, the intensities of signal

pixels in a detection window WD are far from the

extreme values, as the example shown in Fig. 4(a), where

the intensity range of signal pixels is [100, 150]. The

pixel with the intensity of 127 is the most unlikely to

be the noise in WD, since 127 is the farthest intensity

in WD from the extreme values. If the center pixel’s

intensity xi,j is in the range of [0, 10] or [245, 255], it

is close to the extreme value, and at the same time far

from 127. Thus, the center pixel is assigned a large value

of m1(N). If the center pixel’s intensity is in the range

of [100, 150], it is close to the median of Ĩ . Thus, it is

assigned a large value of m1(S).
2) In some cases, all of the signal pixels’ intensities in a

detection window are close to an extreme value, as the

example shown in Fig. 5(a), where the intensity range of

signal pixels is [230, 250]. The pixel with the intensity

of 230 is the one that is most unlikely to be the noise

in WD , since 230 is the farthest intensity in WD from

the extreme values. If the center pixel’s intensity xi,j

is in the range of [0, 10] or [241, 255], it is close to

the extreme value and far from 230. Thus, the center

pixel is assigned a large value of m1(N). If the center

pixel’s intensity xi,j is in the range of [230, 240], the

center pixel is assigned a small value of m1(N) since its

intensity is close to 230. At the same time, it is assigned

a small value of m1(S) since xi,j is far from the median

of Ĩ . Therefore, m1(Θ) is large, which indicates it is

hard to say whether the center pixel is the noise or signal.

In summary, in this case, it is hard to get a crisp

description of the beliefs for the corresponding decisions

according to the extreme criterion, since the intensity

range of signal pixels overlaps with that of the noise pix-

els. However, our BBA m1 keeps the large uncertainty

(large m1(Θ)), which is helpful to avoid the arbitrary

detection decision.

From the above we can see that when using the extreme

criterion for noise detection, our evidential method uses the

BBA to describe the beliefs of the corresponding detection

decisions, which does not make a hard decision like two-

steps methods but keeps the uncertainty. This is more cautious

and can reduce the information loss for the final fusion-based

detection.

2) Evidential modeling for the uncertainty in discontinuity

criterion

According to the discontinuity property of the impulse

noise, the intensity of an impulse noise pixel tends to be

much higher or lower than the intensities of its neighbors.

For some signal pixels, e.g., edge pixels and signal pixels in

the bright or dark area, they are easily detected as the noise
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Figure 6. One-dimensional illustration of the differences between some signal pixels and the impulse noise. (a) Intensities of the impulse noise and its
neighbors. (b) Intensities of an edge pixel and its neighbors. (c) Intensities of signal pixels in the bright area.

according to the extreme criterion. However, they have some

differences from the noise pixel according to the discontinuity

criterion. The intensity of an edge pixel is higher or lower than

only a portion of the intensities of its neighbors. The intensity

of a signal pixel in the bright or dark area is similar to the

intensities of its neighbors.

For a pixel at (i, j), we consider its neighbors’ inten-

sity information in the same detection window WD(i, j) =
{xi−s,j−t| − (wD − 1)/2 ≤ s, t ≤ (wD − 1)/2} as used

in modeling the uncertainty in the extreme criterion. Those

differences between the signal, edge, and the bright area pixels

reflected in the discontinuity property are illustrated in Fig. 6.

Here for simplification, one-dimensional expressions of the

pixels’ intensities in the detection windows are used, where

q = (wD − 1)/2.

We use the rank-ordered absolute differences (ROAD) statis-

tic [29] to describe such differences reflected in the discon-

tinuity property. Define dif(xi,j , xi−s,j−t) = xi,j − xi−s,j−t

as the absolute difference of the intensities between the center

pixel at (i, j) and its neighbor at (i−s, j−t), where xi−s,j−t ∈
WD(i, j). If the size of WD(i, j) is M = wD×wD, there will

be M − 1 neighbors in the window, and therefore the amount

of dif(xi,j , ·) is M − 1. These dif(xi,j , ·) can describe the

dissimilarity between the center pixel and its neighbors. To

further analyze this dissimilarity, sort these M −1 dif(xi,j , ·)
values in the ascending order and denote rg(xi,j) as the gth
smallest dif(xi,j , ·). Finally, calculate the sum of the first n
smallest dif(xi,j , ·) as

ROADn(xi,j) =
n
∑

g=1

rg(xi,j), (11)

where 2 ≤ n ≤ M − 1.

If the center pixel is the noise, dif(xi,j , ·) is small when its

neighbor is a noise pixel whose intensity is close to the same

extreme value as the center pixel.

If the center pixel is the signal without extreme property,

dif(xi,j , ·) is large when its neighbor is the noise.

If the center pixel is the signal with extreme property,

dif(xi,j , ·) is large when its neighbor is a noise whose

intensity is close to the other extreme value.

Therefore, when the noise density is low, the impulse noise

has large value of ROADM−1(xi,j) as well as the sum of

its smallest n dif(xi,j , ·) values, i.e., ROADn(xi,j). The

signal pixel has small value of ROADM−1(xi,j) as well as

ROADn(xi,j).
With the increase of the noise density, the quantity of

impulse noise pixels increases in a detection window. If the

center pixel is the noise, the amount of small dif(xi,j , ·)
will increase since there are more noise neighbors having the

similar intensities with the center pixel. At the same time, the

amount of very large dif(xi,j , ·) also increases since there

are more noise neighbors having the intensities close to the

other extreme value. Thus, ROADn(xi,j) becomes smaller but

ROADM−1(xi,j) has no significant change.

If the center pixel is the signal, the amount of large

dif(xi,j , ·) will increase since there are more noise neighbors.

Thus, ROADM−1(xi,j) becomes larger but ROADn(xi,j) has

no significant change.

In summary, ROADn(xi,j) is large only when the cen-

ter pixel is the noise and the noise density is small;

ROADM−1(xi,j) is small only when the center pixel is the

signal and the noise density is small. With the increasing of

the noise density, the differences between the signal and the

noise reflected in ROADn(xi,j) and ROADM−1(xi,j) narrow.

This means that the discontinuity property of the impulse noise

pixels becomes weaker with the increase of the noise density. It

is unreasonable to use the discontinuity criterion to make hard

decisions for detection. Therefore, we construct a BBA m2 to

describe the beliefs of the corresponding detection decisions

according to the discontinuity criterion.

As we have discussed above, only the noise pixel can have

large ROADn(xi,j) and only the signal pixel can have small

ROADM−1(xi,j). Thus, for a given center pixel, the larger

value of ROADn(xi,j) it has, the larger belief it should be

assigned to being detected as the noise; the smaller value of

ROADM−1(xi,j) it has, the larger belief should be assigned

to being detected as the signal. For a center pixel with the

intensity of xi,j , its m2 is constructed as follow. We take n =
(M − 1)/2, which means that we focus on the first half small

dif(xi,j , ·) when considering the belief of that a pixel should

be detected as the noise.














m2(N) =
ROAD (M−1)

2

(xi,j)

(M−1)
2 ×(Imax−Imin)

,

m2(S) = 1− ROADM−1(xi,j)

(M−1)×(Imax−Imin)
,

m2(Θ) = 1−m2(N)−m2(S).

(12)

Here, Imax and Imin denote the maximum and minimum

intensities of the whole image, respectively.
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Figure 7. Visual representation of m2. (a) A detection window. (b) The illustration of rg(2). (c) Graphical representation of belief assignments.

Since rg(xi,j) ≤ Imax − Imin, ROAD (M−1)
2

(xi,j) ≤
(M−1)

2
× (Imax − Imin) and ROADM−1(xi,j) ≤ (M − 1) ×

(Imax − Imin). That is 0 ≤ m2(N) ≤ 1 and 0 ≤ m2(S) ≤ 1.

Besides, since

m2(N) +m2(S)

= 1− (
ROADM−1(xi,j)

(M−1)×(Imax−Imin)
− ROAD(M−1)/2(xi,j)

(M−1)
2 ×(Imax−Imin)

)

= 1−
∑M−1

g=
(M+1)

2

rg(xi,j)−ROAD(M−1)/2(xi,j)

(M−1)×(Imax−Imin)
,

and
∑M−1

g=
(M+1)

2

rg(xi,j) ≥ ROAD (M−1)
2

(xi,j), there exists

m2(N) + m2(S) ≤ 1. Thus, m2 satisfies the constraint of

BBA in (2) and m2 is a legitimate BBA.

For a given pixel, mass values in the BBA m2: m2(N),
m2(S) and m2(Θ) can be represented as the areas of regions

as shown in Fig. 7.

Fig. 7(a) illustrates an example of a detection window.

The intensity of the center pixel xi,j = 2. We suppose that

the largest intensity difference Imax − Imin in the image is

255. Since the size of the window M is 25, we can get 24

dif(xi,j , ·) values. The ascending ordered dif(xi,j , ·), i.e.,

rg(xi,j), (g = 1, 2, · · · , 24), are expressed as the histogram

in Fig. 7(b). We specify the area of the rectangular region

in Fig. 7(b) with the vertex points: (0, 0), (24, 0), (0, 255)
and (24, 255) as 1. It means that we represent the value of

(M−1)×(Imax−Imin) in (12) using a region with an area of 1.

Thus, the value of ROADM−1(xi,j)/[(M−1)×(Imax−Imin)]
can be represented by the region determined by rg(xi,j),
(g = 1, 2, · · · , 24) in Fig. 7(b). That is, the value of m2(S)
in (12), i.e., 1−ROADM−1(xi,j)/[(M − 1)× (Imax− Imin)]
can be represented as the blue area in Fig. 7(c). Similarly,

the value of ROAD(M−1)/2(xi,j)/[(M − 1)× (Imax − Imin)]
can be represented by the region determined by rg(xi,j),
(g = 1, 2, · · · , 12) in Fig. 7(b). That is, the value of m2(N) in

(12), i.e., 2×ROAD(M−1)/2(xi,j)/[(M−1)×(Imax−Imin)],
can be represented as the pink area1 in Fig. 7(c). Thus, the

value of m2(Θ) is represented as the remanent area, i.e. the

green area in Fig. 7(c).

1Since the value of m2(N) is the double of ROAD(M−1)/2(xi,j)/[(M−
1)× (Imax − Imin)], m2(N) can be represented as the double of the region
determined by rg(xi,j), (g = 1, 2, · · · , 12).

Fig. 8 shows the graphical representations of m2 for differ-

ent kinds of center pixels with different noise density levels

(25%, 50% and 75%). Center pixels include the impulse noise

pixel (the first column in Fig. 8), the signal pixels with extreme

property, such as the edge pixel (the second column in Fig. 8),

the signal pixels in the bright or dark area (the third column

in Fig. 8), and the common signal pixels with no extreme

property (the last column in Fig. 8). Here, we assume that the

largest intensity differences Imax − Imin for the whole image

in all cases are 255.

In Fig. 8, the signal pixels (from the second column to the

last column) have large values of m2(S) indicating that for

signal pixels, large beliefs are assigned to being detected as

the signal under all noise density levels.

For the impulse noise pixel, when the noise density ≤ 50%

(Fig. 8(a) or Fig. 8(e)), it has large value of m2(N) indicating

that large belief is assigned to being detected as the noise.

However, when the noise density is larger than 50% (Fig. 8(i)),

the impulse noise pixel has small value of m2(N) indicating

that only small belief is assigned to being detected as the noise.

But at the same time, its value of m2(Θ) is large indicating

that the uncertainty degree of discontinuity criterion is large

when the image is corrupted severely.

Our evidential method uses the BBA to describe the beliefs

of the corresponding detection decisions according to the

discontinuity criterion. We do not make the hard decision

directly but keep the uncertainty for the time being, which is

more cautious. Particularly, our modeling method here keeps

the large uncertainty of discontinuity criterion when the noise

intensity is large. This will be helpful for the final fusion-based

detection to decrease the miss-detections and false alarms.

3) Fusion based detection The generated BBAs m1 and m2

can be combined, e.g., using Eq. (5) to obtain m( · ) = [m1⊕
m2]( · ), which is a combined BBA for the noise detection

representing the simultaneous use of the extreme property

and discontinuity property. Once m is obtained, we use the

pignistic probability transformation in Eq. (6) to transform m
into a probability measure BetP. If BetP(N) ≥ 0.5, the center

pixel should be detected as the noise.

Here we use an example to illustrate our detection proce-

dure. A detection window is shown in Fig. 9.
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Figure 8. Illustration of m2 in cases with different noise densities. (From top to bottom, from left to right) The first row to third row show the cases when
the noise densities are 25%, 50% and 75% respectively. The first column to fourth column show the cases when the center pixels are the impulse noise, edge
pixel, signal pixel in the bright or dark area and common signal pixel without extreme property respectively.

Figure 9. The illustration of a detection window.

In this window, intensities of signal pixels range from 200

to 206 and several pixels are corrupted by the impulse noise

with intensities of 0, 8 or 9. Assume the intensity range of the

whole image is [0, 255]. The value of ε in (10) is 0.1.

According to the modeling method I, the generated BBAs

are:






m1(N) = 0.8416,
m1(S) = 0.0933,
m1(Θ) = 0.0651,

and







m2(N) = 0.5696,
m2(S) = 0.3320,
m2(Θ) = 0.0984.

The combined BBA is:






m(N) = 0.8978,
m(S) = 0.0926,
m(Θ) = 0.0096.

Then, we obtain the pignistic probability BetP(N) = 0.9026
and the center pixel is finally detected as the impulse noise

since BetP(N) > 0.5.

B-2 Evidential modeling method II and fusion based detec-

tion

The impulse noise detection with two criteria including the

extreme property and discontinuity property can be viewed

as a multi-criteria (to be more accurately bi-criteria) decision

making problem. Therefore, we can use the cautious ordered

weighted averaging with evidential reasoning (COWA-ER)

method [34] to generate BBAs and to implement the fusion-

based noise detection.
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1) COWA-ER method

In the noise detection problem, for a given pixel, the finite

set of alternatives Θ = {θ1, θ2} = {N,S}. According to the

analyses in method I, the pessimistic and optimistic valuations

of the expected payoffs to these alternatives obtained from

the two detection criteria (extreme criterion and discontinuity

criterion) are:































emin(N) = min{ dc−d0

dext−d0+ε
,

ROADM−1
2

(xi,j)

M−1
2 ×(Imax−Imin)

},

emax(N) = max{ dc−d0

dext−d0+ε
,

ROADM−1
2

(xi,j)

M−1
2 ×(Imax−Imin)

},
emin(S) = min{1− dc−dmed

dext−dmed
, 1− ROADM−1(xi,j)

(M−1)×(Imax−Imin)
},

emax(S) = max{1− dc−dmed

dext−dmed
, 1− ROADM−1(xi,j)

(M−1)×(Imax−Imin)
}.

(13)

Then, the expected payoff matrix is constructed as:

E =

[

E[N ]
E[S]

]

=

[

[emin(N), emax(N)]
[emin(S), emax(S)]

]

. (14)

Here, the expected payoffs E[N ] and E[S ] are imprecise

since they belong to the interval [emin( · ), emax( · )] where

the lower and upper bounds represent the pessimistic and

optimistic attitudes, respectively.

Then, divide each bound of intervals by the max of the

bounds, i.e., eMAX = max{emax(N), emax(S)}, to get a new

normalized imprecise expected payoff vector EImp:

EImp =

[

[emin(N)/eMAX, emax(N)/eMAX]
[emin(S)/eMAX, emax(S)/eMAX]

]

=

[

[a1, b1]
[a2, b2]

]

.

(15)

In the final, convert the normalized imprecise expected

payoff vector EImp into BBAs according to a very natural

and simple transformation [34], [36]. The generation of a BBA

associated to the hypothesis θi, (θ1 = N , θ2 = S) from any

imprecise value [ai , bi] ⊆ [0, 1] is generated as:







mi(θi) = ai,
mi(θ̄i) = 1− bi,
mi(θi ∪ θ̄i) = bi − ai.

(16)

θ̄i is the complement of θi in Θ. With such a conversion, one

sees that Bel(θi) = ai, Pl(θi) = bi and the uncertainty is

represented by the length of the interval [ai , bi].

2) Fusion based detection

By using the COWA-ER method, we can obtain two BBAs:

m1 and m2. The generated BBAs can be combined using

Eq. (5), that is m( · ) = [m1 ⊕m2]( · ). Once m is computed,

we use the pignistic probability transformation in (6) to trans-

form m into a probability measure BetP. If BetP(N) ≥ 0.5,

the center pixel should be detected as the impulse noise.

Here we consider the same example showed in Fig. 9. The

value of ε in Eq. (13) is 0.1. The BBAs generated from

modeling method II are:






m1(N) = 0.6768,
m1(S) = 0,
m1(Θ) = 0.3232,

and







m2(N) = 0.6055,
m2(S) = 0.1109,
m2(Θ) = 0.2836.

The combined BBA is:






m(N) = 0.8622,
m(S) = 0.0388,
m(Θ) = 0.0990.

Then, we get the pignistic probability BetP(N) = 0.9117 and

the center pixel is finally detected as the impulse noise because

BetP(N) > 0.5.

When modeling the uncertainty of noise detection, the two

proposed methods use the same information (extreme criterion

and discontinuity criterion) but generate belief functions in dif-

ferent ways. Either of these two methods can be an alternative

to the other in many cases but they might generate different

detection results in some special situations.

B-3 Different detection results with contradictory evidences

In many cases, the two proposed methods generate same

detection results since they describe the extreme criterion and

discontinuity criterion in very similar ways and both of their

combined evidences will assign a larger belief to the same

candidate (noise or signal). However, when these two evidence

sources are highly contradictory (extreme criterion and discon-

tinuity criterion give very different supports to the target pixel),

the two proposed methods might generate different detection

results as illustrated in the following two different examples

that the evidence sources are highly contradictory.

1) Detection results for situation 1

Situation 1 describes the situation when the target pixel is

a signal in a dark area close to an edge where the pixels at

the other side of the edge have higher intensities as shown in

Fig. 10.

Figure 10. Highly contradictory situation 1.

According to the extreme criterion and discontinuity crite-

rion, the two BBAs generated by evidential modeling method

I using Eq. (10) and Eq. (12) are:






m1(N) = 0.9548,
m1(S) = 0.0235,
m1(Θ) = 0.0217,

and







m2(N) = 0.0039,
m2(S) = 0.9440,
m2(Θ) = 0.0521.

In this situation, the proposition that the target pixel should

be detected as noise obtained very different supports from the

extreme criterion (m1(N) is large) and discontinuity criterion
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(m2(N) is small) since the target pixel’s intensity is very close

to the extreme value 0, but at the same time, the target pixel

has many neighborhoods have the similar intensities. After

the evidence combination and probability transformation, we

finally get BetP (N) = 0.5491 and the target pixel is false

alarmed as noise since BetP (N) > 0.5.

The evidential modeling method II deals with these two

highly contradictory evidences in different ways. According to

Eq. (13) and Eq. (14), the expected payoff matrix is generated

as:

E =

[

E[N ]
E[S]

]

=

[

[0.0039, 0.9548]
[0.0235, 0.9440]

]

.

Then, we get the normalized expected payoff vector:

EImp =

[

E[N ]
E[S]

]

=

[

[0.0041, 1.0000]
[0.0246, 0.9887] .

]

The generated BBAs are:






m1(N) = 0.0041,
m1(S) = 0,
m1(Θ) = 0.9959,

and







m2(N) = 0.0113,
m2(S) = 0.0246,
m2(Θ) = 0.9641.

After the evidence combination and probability transforma-

tion, we finally get BetP (N) = 0.4954 and the target pixel

is successfully detected as signal since BetP (N) < 0.5. For

this example, the detection result generated by the proposed

method II is more reasonable.

2) Detection results for situation 2

Situation 2 describes the highly corrupted situation when

the target pixel is noise and the neighborhood signal pixels

(colored with green) have similar intensities with the target

pixel as shown in Fig. 11.

Figure 11. Highly contradictory situation 2.

According to Eq. (10) and Eq. (12), the two BBAs generated

by evidential modeling method I are:






m1(N) = 0.7914,
m1(S) = 0.1049,
m1(Θ) = 0.1037,

and







m2(N) = 0.0141,
m2(S) = 0.7296,
m2(Θ) = 0.2564.

In this situation, the proposition that the target pixel should

be detected as noise obtained very different supports from the

extreme criterion (m1(N) is large) and discontinuity criterion

(m2(N) is small) since the target pixel’s intensity is close to

the extreme value 255, but at the same time, there are many

neighborhoods have the similar intensities with the target pixel.

After the evidence combination and probability transforma-

tion, we finally get BetP (N) = 0.5432 and the target pixel

is successfully detected as noise since BetP (N) > 0.5.

The evidential modeling method II deals with these two

highly contradictory evidences in different ways. According

to Eq. 13 and Eq. 14, the expected payoff matrix is generated

as:

E =

[

E[N ]
E[S]

]

=

[

[0.0141, 0.7914]
[0.1049, 0.7296]

]

.

Then, we get the normalized expected payoff vector:

EImp =

[

E[N ]
E[S]

]

=

[

[0.0178, 1.0000]
[0.1325, 0.9219]

]

.

The generated BBAs are:






m1(N) = 0.0178,
m1(S) = 0,
m1(Θ) = 0.9822,

and







m2(N) = 0.0781,
m2(S) = 0.1325,
m2(Θ) = 0.7894.

After the evidence combination and probability transfor-

mation, we finally get BetP (N) = 0.4809 and the target

pixel is miss-detected as signal since BetP (N) < 0.5. For

this example, the detection result generated by the proposed

method I is more reasonable.

From the above, the two proposed methods are likely to

generate different detection results in highly contradictory

situations.

IV. ADAPTIVE MEDIAN FILTERING

After the noise detection, we focus on the filter imple-

mentation. It should be better that only the corrupted pixels

will undergo the filtering. The size of the filtering window

influences the filtering performance a lot, and the optimal

window size is usually determined by the detection result.

Therefore, in this paper we further propose an adaptive switch

median filtering method, which adaptively determines the size

of filtering window according to the detection result.

For a given pixel at (i, j) , the filtering window with a size

of wF × wF centered at it is:

WF (i, j) = {xi−s,j−t| −
(wF − 1)

2
≤ s, t ≤ (wF − 1)

2
},
(17)

where xi−s,j−t is the intensity of the pixel at (i − s, j − t).
Generally, in order to preserve details better, the size of

filtering window should be as small as possible if there are

enough signal pixels in the filtering window to help determine

the filtered value. In the current filtering window WF (i, j),
the proportion of the detected signal pixels is:

SWF
pro =

SWF
num

wF × wF

, (18)

where SWF
num is the number of the detected signal pixels in

WF (i, j). If the proportion of signal pixels in the current

filtering window, i.e., SWF
pro is small, the size of the filtering
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Table I
ESTIMATION RESULTS OF NOISE DENSITY (%).

Actual 10 20 30 40 50 60 70 80 90

Method I 10.01 19.98 29.99 40.00 50.01 60.01 70.00 80.01 90.01

Method II 10.01 19.98 29.98 39.99 49.99 59.99 70.00 80.00 90.00

window should be expanded to see if the proportion is large

enough in a larger filtering window.

When the noise density is large, SWF
pro is likely to be

small. Thus, the minimum SWF
pro required for not extending

the filtering window size should be reduced with the increase

of the noise density to avoid over smoothing. Therefore, the

noise density should be estimated first.

A. Noise density estimation

The noise density is estimated according to the noise

detection result:

d̂N =
Nnum

Pnum

. (19)

Here, Nnum is the total number of the detected noise pixels

and Pnum is the total number of the pixels in the image.

The performance of noise density estimation for corrupted

Lena images are presented in Table I, where method I and

method II represent the two proposed evidential modeling

methods respectively. In this experiment, noise pixels take

values in the sets of S1 = {0, 1, . . . , 10} and S2 =
{245, 246, . . . , 255}, i.e., α = 10. The values of ε in Eq. (10)

and Eq. (13) are 0.1. The size of WD is 11 × 11 based on

a great deal of tests. According to Table I, the estimation

results are very close to the actual noise densities indicating

that our detection methods are effective, and they can be used

to determine the size of filtering window.

B. Filtering method

According to the estimated noise density d̂N and the propor-

tion of the detected signal pixels SWF
pro , the condition of judging

whether the current filtering window should be expanded or

not, is set as:

SWF
pro > (1 − d̂N )× β. (20)

Here, β is a scale factor taking value in the range of (0, 1). We

set it as 1/4 based on a great deal of tests on various images.

When the noise density is small, the minimum required SWF
pro

for not expanding the current filtering window is large; when

the noise density is large, the minimum required SWF
pro is small.

Our filtering method can be outlined below:

• Step 1: Set the initial size of filtering window wF ×wF to

3×3 and set the maximum window size to wmax
F ×wmax

F .

• Step 2: Set a filtering window WF (i, j) centered at the

target pixel at (i, j) with current size of wF × wF .

• Step 3: If the proportion of the detected signal pixels in

the filtering window, i.e., SWF
pro satisfies the criterion in

Eq. (20), go to Step 5).

• Step 4: Extend the filtering window size to (wF + 1) ×
(wF +1) and repeat Steps 2) - 3) until the current filtering

window size reaches wmax
F × wmax

F .

• Step 5: Apply a median filtering to the cur-

rent filtering window. The output intensity Yi,j =
median

{

xi−s,j−t|xi−s,j−t ∈ WD
F (S)

}

, where WD
F (S)

is the set of all detected signal pixels in the current

filtering window.

The maximum window size is empirically given in Table

II based on a large quantities of tests on various images. In

Table II, different window sizes are suggested for different

noise density levels.

Table II
RECOMMENDED MAXIMUM SIZE OF FILTERING WINDOW.

Estimated noise density wmax
F × wmax

F

0% < d̂N ≤ 30% 3 × 3

30% < d̂N ≤ 50% 5 × 5

50% < d̂N ≤ 70% 7 × 7

d̂N > 70% 9 × 9

V. EXPERIMENTS

The adaptive switching median filtering method we pro-

posed includes two components: the impulse noise detection

and the adaptive filtering process. Since the noise detection

plays a key role in the final denoising performance, we first

evaluate the performance of the noise detection. Then, we

evaluate the filtering performance of our proposed adaptively

median filtering and the whole denoising performance of our

proposed ASMF-DBER method, respectively. Furthermore,

the computational cost and sensitivity of the parameters’

setting of ASMF-DBER will be discussed. We will also check

the adaptability of our ASMF-DBER for the value of α in the

impulse noise model, which in fact controls the intensity range

that the noise pixels take values in.

Experiments are carried out using several monochrome

images (Fig. 12). The experiment results of several existing

methods, i.e., BDND [18], IBDND [19], ACWM [20], ASWM

[23], ROR-NLM [25] and WCSR [24] are also provided for

comparison.

A. Performance evaluation of noise detection

For the two proposed noise detection methods (method I

and method II) based on two different evidential modeling

methods respectively, we evaluate their performances using

corrupted Lena image and the results are shown in TABLE III.

The performances of ACWM, BDND, ASWM and ROR-NLM

methods are also provided for comparison. The performance

evaluation indices used here include the false alarm rate (FAR),

miss-detection rate (MDR) and accuracy rate (AR):

FAR =
FAnum

SA
num

, (21)
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Figure 12. Monochrome images for experiments. (a) Lena. (b) Barbara. (c) Baboon. (d) Boat. (e) Cameraman.

Table III
COMPARISON OF THE NOISE DETECTION PERFORMANCES FOR CORRUPTED LENA IMAGES (%).

Noise density Performance ACWM BDND ASWM ROR-NLM Method I Method II

FAR 0.291 0.003 0.654 1.020 0.004 0.003

10% MDR 0.302 0.023 0.317 0.019 0.237 0.191

AR 99.708 99.995 99.380 99.080 99.973 99.978

FAR 0.608 0.002 0.927 1.176 0.004 0.002

20% MDR 0.967 0.264 0.485 0.086 0.116 0.122

AR 99.320 99.946 99.161 99.042 99.974 99.974

FAR 1.263 0.004 1.372 1.341 0.003 0.002

30% MDR 2.995 1.123 0.855 0.157 0.046 0.107

AR 98.217 99.660 98.783 99.014 99.984 99.967

FAR 2.923 0.003 2.370 1.433 0.006 0.002

40% MDR 6.975 2.941 1.924 0.414 0.004 0.042

AR 95.456 98.822 97.808 98.975 99.995 99.982

FAR 6.191 0.010 13.893 5.663 0.014 0.002

50% MDR 12.864 6.057 3.492 1.634 0.003 0.027

AR 90.473 96.967 91.308 96.351 99.992 99.986

FAR 12.063 0.014 13.892 5.665 0.012 0.002

60% MDR 20.921 10.387 11.785 6.513 0 0.005

AR 82.622 93.762 87.372 93.826 99.995 99.996

FAR 21.176 0.047 29.166 18.784 0.037 0.004

70% MDR 30.789 15.587 22.981 18.742 0 0.002

AR 72.095 89.075 75.164 81.245 99.989 99.997

FAR 33.869 0.137 52.535 43.370 0.064 0.006

80% MDR 41.782 21.976 36.742 35.514 0 0.001

AR 59.801 82.392 60.099 62.915 99.987 99.998

FAR 50.239 0.852 76.716 74.130 0.114 0.004

90% MDR 52.852 29.431 38.678 48.875 0.001 0.001

AR 47.409 73.427 57.518 48.600 99.988 99.999

MDR =
MDnum

NA
num

, (22)

AR =
Pnum − FAnum −MDnum

Pnum

. (23)

Here, FAnum is the number of the actual signal pixels being

detected as the noise, MDnum is the number of the actual

noise pixels being detected as the signal, SA
num is the number

of the actual signal pixels, NA
num is the number of the actual

noise pixels, and Pnum is the number of pixels in the image.

In this experiment, α = 10, i.e., noise pixels take values

in S1 = {0, 1, . . . , 10} and S2 = {245, 246, . . . , 255}. Values

of ε in Eq. (10) and Eq. (13) are 0.1. The size of WD is

empirically determined as 11 × 11 based on a great deal of

tests.

As shown in Table III, when the noise density is no larger

than 60%, the accuracy rates of these methods are all larger

than 80%. When the noise density is larger than 60%, the

accuracy rates of ACWM, BDND, ASWM and ROR-NLM

methods drop rapidly. However, our proposed methods still

achieve high accuracy rates (≥ 90%).

B. Performance of filtering

To evaluate the filtering performance, we compare the

filtering performance of the proposed adaptive median filtering

method with the standard median filtering (SMF) used in

ACWM, ASWM and the filters used in BDND, IBDND

(adaptive weighted median filter), ROR-NLM and WCSR,

respectively. In this experiment, α = 10 and all the filters are

used on the detected noise pixels generated by the proposed

noise detection method I. The experimental result is shown in

Fig. 13, where FROR−NLM , FBDND , FIBDND and FWCSR

denote the filters used in ROR-NLM, BDND, IBDND and

WCSR algorithms respectively.

According to Fig. 13, when the noise density is no larger

than 30%, the proposed filter has similar performance with the

filters used in IBDND and WCSR. With the increase of the

noise density, the proposed filter generates better performance

than other filters.

C. Performance of denoising

To verify the whole denoising performance of our proposed

ASMF-DBER, we compare the denoising performance of our
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Figure 13. Comparison of filtering performances using PSNR for corrupted 
Lena images.

proposed ASMF-DBER with ACWM, ASWM, ROR-NLM,

BDND, IBDND and WCSR using PSNR and SSIM as shown

in Fig. 14 and Fig. 15, respectively. In this experiment, α = 10
and the size of detection window WD is 11 × 11. ASMF-
DBER I and II represent the denoising results based on the 
two proposed detection methods, respectively.

When the noise density is low (≤ 20%), BDND, IBDND,

and the proposed methods have similar denoising perfor-

mances since they all can obtain high detection accuracy rates

in low corrupted situations (as illustrated in Table III for Lena

image) and have similar denoising performances when the

noise detection results are accurate enough (as shown in Fig.

13 when only the actual noise pixels are filtered).

BDND and IBDND have better performance for Lena,

Baboon and Boat images when the noise density is 10%. These

images have no intensities close to extreme values (0 and 255).

BDND and IBDND method can obtain better performance

easily since they only uses extreme criterion when detecting

impulse noise.

WCSR method has very good performance on Barbara

image when the noise density is 10%. The reason is that

Barbara image has big areas with regular texture. When the

noise density is low, since the noise detection result is accurate

enough, WCSR can reconstruct the texture very well using the

trained dictionaries.

With the increase in noise density, the PSNR of BDND,

IBDND and WCSR are much lower than that they achieved in

Fig. 13 when only the actual noise pixels, but not the detected

noise pixels, are filtered. That means, when carrying out the

filtering on the detected impulse noise pixels, the detection

result affects the whole denoising performance significantly.

BDND, IBDND and WCSR fail to achieve satisfied filtering

performances because of their poor detection results.

The subjective quality comparisons of filtered images are

illustrated from Fig. 16 to Fig. 19. The false alarmed pixels and

miss-detected pixels of the two proposed methods are colored

with red and green, respectively. Except for Cameraman im-

age, other test images do not have many false alarms and miss-

detections. In order to highlight the colored pixels in these

images, we circled the colored pixels using the corresponding

colors (red for false alarms and green for miss-detections).

From the comparisons of quantitative results and visually

subjective qualities, we can see that the proposed ASMF-

DBER algorithms obtain superior denoising results compared

with other switch median filters and the sparse representation

based method. Particularly, in the high noise density cases,

ASMF-DBER has obvious advantages over others.

For Cameraman image, the pixels around the edge of the

“cameraman” would obtain highly contradictory evidence sup-

ports from the extreme criterion and discontinuity criterion, as

the highly contradictory situation 1 (Fig. 10), and the proposed

two detection methods are likely to obtain different detection

results. In Fig. 17, ASMF-DBER II has more false alarms

than ASMF-DBER I at these pixels, so that the denoising

performance of ASMF-DBER I for Cameraman image is not

so good as ASMF-DBER II, as shown in Fig. 14(e) and Fig.

??(e).

Among these algorithms, WCSR has the most parameters (8
parameters) to be determined and some of them are sensitive

with the noise density, what is a challenge for WCSR to obtain

a satisfied denoising result.

From the above colored incorrect detections of the proposed

two methods and Table III, we can find that ASMF-DBER I

generates more false alarms than ASMF-DBER II and ASMF-

DBER II generates more miss-detections than ASMF-DBER I.

Therefore, in practical applications, if the user relatively more

emphasizes low miss-detection rate, we suggest ASMF-DBER

I; if the user relatively more emphasizes low false-alarm rate,

we suggest ASMF-DBER II.

D. Sensitivity of parameters’ setting

There are two parameters to determine in our method. One

is the detection window size and the other one is β in Eq. 20

used for deciding whether the current filtering window should

be expanded or not. To discuss the sensitivity of the setting of

these two parameters, we compare the denoising performances

of all the combinations of the two parameters. The comparison

results for the two proposed denoising methods are shown

in Table IV and Table V, respectively. In this experiment, β
changes with an incremental step 1/8 from 1/8 to 7/8. The

detection window size is set as 5 × 5, 7 × 7, 9 × 9, 11 × 11
or 13× 13.

From Table IV and Table V, the filtering performance is not

very sensitive to the setting of β. When the noise density is

10% or 20%, all the β generate the same performance since

the limited maximum filtering window is 3 × 3 when the

estimated noise density is no larger than 30% according to

Table II. With the increase of the noise density, the denoising

performance becomes poorer when selecting small size of

detection window. When the noise density is higher than 70%,

large detection windows (larger than 7 × 7) achieve obvious

better denoising performance than small detection windows

(no larger than 7× 7). When the size of detection window is
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Figure 14. Comparisons of denoising performances using PSNR. (a) Lena. (b) Barbara. (c) Baboon. (d) Boat. (e) Cameraman.

Figure 15. Comparisons of denoising performances using SSIM. (a) Lena. (b) Barbara. (c) Baboon. (d) Boat. (e) Cameraman.
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Table IV
DENOISING PERFORMANCES OF ASMF-DBER I FOR DIFFERENT DETECTION WINDOW SIZE AND β .

Noise density 10% 20% 30% 40% 50% 60% 70% 80% 90%

β = 1/8 41.50 38.27 35.96 34.22 32.56 30.96 29.07 23.04 13.36

β = 1/4 41.50 38.27 35.96 34.26 32.59 30.96 29.09 23.07 13.36

β = 3/8 41.50 38.27 35.96 34.24 32.59 31.08 29.40 23.08 13.39

5 × 5 β = 1/2 41.50 38.27 35.96 34.24 32.43 31.08 29.42 23.13 13.39

β = 5/8 41.50 38.27 35.96 34.16 32.43 30.68 29.37 25.30 13.46

β = 3/4 41.50 38.27 35.96 33.73 32.30 30.63 28.84 25.30 13.46

β = 7/8 41.50 38.27 35.96 33.73 32.30 30.31 28.73 25.36 13.45

β = 1/8 41.77 38.56 36.12 34.35 32.63 31.04 29.59 27.61 20.34

β = 1/4 41.77 38.56 36.12 34.40 32.66 31.04 29.60 27.67 20.35

β = 3/8 41.77 38.56 36.12 34.37 32.66 31.15 29.60 27.67 20.35

7 × 7 β = 1/2 41.77 38.56 36.12 34.37 32.50 31.15 29.59 27.70 20.73

β = 5/8 41.77 38.56 36.12 34.30 32.50 30.73 29.54 27.51 20.80

β = 3/4 41.77 38.56 36.12 33.82 32.36 30.68 28.88 27.49 20.80

β = 7/8 41.77 38.56 36.12 33.82 32.36 30.35 28.70 27.38 21.08

β = 1/8 41.96 38.70 36.18 34.37 32.63 31.05 29.58 27.70 24.28

β = 1/4 41.96 38.70 36.18 34.42 32.67 31.05 29.61 27.73 24.33

β = 3/8 41.96 38.70 36.18 34.40 32.67 31.16 29.59 27.74 24.33

9 × 9 β = 1/2 41.96 38.70 36.18 34.40 32.48 31.16 29.59 27.73 24.66

β = 5/8 41.96 38.70 36.18 34.30 32.48 30.74 29.53 27.43 24.70

β = 3/4 41.96 38.70 36.18 33.82 32.21 30.69 28.88 27.40 24.70

β = 7/8 41.96 38.70 36.18 33.82 32.12 30.36 28.70 27.28 24.66

β = 1/8 41.92 38.76 36.23 34.38 32.62 31.05 29.58 27.71 25.07

β = 1/4 41.92 38.76 36.23 34.43 32.65 31.05 29.61 27.75 25.13

β = 3/8 41.92 38.76 36.23 34.41 32.65 31.16 29.59 27.75 25.13

11 × 11 β = 1/2 41.92 38.76 36.23 34.41 32.47 31.16 29.59 27.74 25.25

β = 5/8 41.92 38.76 36.23 34.31 32.47 30.74 29.53 27.45 25.29

β = 3/4 41.92 38.76 36.23 33.83 32.18 30.69 28.88 27.44 25.29

β = 7/8 41.92 38.76 36.23 33.83 32.10 30.36 28.70 27.32 25.18

β = 1/8 41.99 38.74 36.21 34.37 32.62 31.04 29.56 27.69 25.09

β = 1/4 41.99 38.74 36.22 34.41 32.64 31.04 29.58 27.73 25.15

β = 3/8 41.99 38.74 36.22 34.35 32.64 31.15 29.55 27.74 25.15

13 × 13 β = 1/2 41.99 38.74 36.20 34.35 32.47 31.15 29.55 27.72 25.25

β = 5/8 41.99 38.74 36.20 34.23 32.46 30.72 29.48 27.41 25.29

β = 3/4 41.99 38.74 35.90 33.76 32.18 30.67 28.80 27.39 25.29

β = 7/8 41.99 38.74 35.52 33.76 32.10 30.33 28.62 27.29 25.18

Table V
DENOISING PERFORMANCES OF ASMF-DBER II FOR DIFFERENT DETECTION WINDOW SIZE AND β .

Noise density 10% 20% 30% 40% 50% 60% 70% 80% 90%

β = 1/8 41.77 38.29 35.87 33.87 32.31 30.63 28.38 22.67 13.23

β = 1/4 41.77 38.29 35.87 33.89 32.34 30.63 28.39 22.70 13.23

β = 3/8 41.77 38.29 35.87 33.78 32.34 30.70 28.90 22.70 13.26

5 × 5 β = 1/2 41.77 38.29 35.87 33.78 32.17 30.70 28.91 22.75 13.26

β = 5/8 41.77 38.29 35.87 33.66 32.17 30.40 28.90 24.82 13.32

β = 3/4 41.77 38.29 35.87 33.26 32.08 30.35 28.49 24.82 13.32

β = 7/8 41.77 38.29 35.87 33.26 32.08 30.18 28.40 24.95 13.65

β = 1/8 42.04 38.56 36.11 34.09 32.53 30.98 29.44 27.45 19.78

β = 1/4 42.04 38.56 36.11 34.11 32.56 30.99 29.44 27.51 19.78

β = 3/8 42.04 38.56 36.11 34.00 32.56 31.00 29.35 27.51 19.78

7 × 7 β = 1/2 42.04 38.56 36.11 34.00 32.38 31.00 29.35 27.51 20.18

β = 5/8 42.04 38.56 36.11 33.86 32.38 30.62 29.32 27.41 20.24

β = 3/4 42.04 38.56 36.11 33.44 32.27 30.57 28.76 27.40 20.24

β = 7/8 42.04 38.56 36.11 33.44 32.27 30.19 28.64 27.31 21.50

β = 1/8 42.13 38.73 36.24 34.16 32.58 31.04 29.49 27.60 24.56

β = 1/4 42.13 38.73 36.24 34.18 32.62 31.04 29.49 27.64 24.60

β = 3/8 42.13 38.73 36.24 34.06 32.62 31.06 29.40 27.65 24.60

9 × 9 β = 1/2 42.13 38.73 36.24 34.06 32.43 31.05 29.39 27.64 24.86

β = 5/8 42.13 38.73 36.24 33.93 32.43 30.66 29.37 27.46 24.93

β = 3/4 42.13 38.73 36.24 33.50 32.32 30.62 28.79 27.44 24.93

β = 7/8 42.13 38.73 36.24 33.50 32.32 30.22 28.64 27.35 24.88

β = 1/8 42.15 38.77 36.27 34.18 32.61 31.05 29.50 27.60 24.97

β = 1/4 42.15 38.77 36.27 34.20 32.64 31.06 29.50 27.65 25.01

β = 3/8 42.15 38.77 36.27 34.09 32.64 31.07 29.41 27.65 25.01

11 × 11 β = 1/2 42.15 38.77 36.27 34.09 32.45 31.06 29.40 27.64 25.12

β = 5/8 42.15 38.77 36.27 33.95 32.45 30.68 29.38 27.46 25.17

β = 3/4 42.15 38.77 36.27 33.52 32.34 30.63 28.79 27.44 25.17

β = 7/8 42.15 38.77 36.27 33.52 32.34 30.24 28.67 27.35 25.09

β = 1/8 42.20 38.79 36.27 34.19 32.60 31.05 29.50 27.60 24.97

β = 1/4 42.20 38.79 36.27 34.20 32.63 31.06 29.50 27.65 25.01

β = 3/8 42.20 38.79 36.27 34.09 32.63 31.07 29.41 27.65 25.01

13 × 13 β = 1/2 42.20 38.79 36.27 34.09 32.44 31.06 29.41 27.64 25.12

β = 5/8 42.20 38.79 36.27 33.96 32.44 30.68 29.36 27.46 25.16

β = 3/4 42.20 38.79 36.27 33.52 32.33 30.63 28.71 27.45 25.16

β = 7/8 42.20 38.79 36.27 33.52 32.33 30.24 28.54 27.36 25.09
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Figure 16. Denoising results for Lena image (noise density is 30%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f) WCSR.
(g) ASMF-DBER I. (h) ASMF-DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II.

Figure 17. Denoising results for Cameraman image (noise density is 40%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f)
WCSR. (g) ASMF-DBER I. (h) ASMF-DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II.

set as 11× 11, and β is set as 1/4, we can usually obtain the

best denoising performance.

E. Computational cost

The computational cost is an important index to evaluate

an algorithm. We timed the computational costs of ACWM,

ASWM, ROR-NML, BDND, IBDND, WCSR and the pro-

posed methods by running the algorithms on a Windows 7

Enterprise system equipped with Intel Core i7-4790 CPU at

3.60 GHz and 8.00 GB DDR-III memory. The comparison

of their average execution time for corrupted Lena images

with size of 512× 512 are shown in Table VI. Each average

execution time is calculated from 10 runs of experiments.

According to Table VI, the computational cost of the proposed

methods varies from 80 to 130 seconds with the increase of

noise density. The sparse representation based method WCSR

is most time consuming (more than 3000 seconds) and the

proposed methods need more computational cost compared

with ACWM, ASWM, BDND and IBDND algorithms.
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Figure 18. Denoising results for Barbara image (noise density is 70%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f) WCSR.
(g) ASMF-DBER I. (h) ASMF-DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II.

Figure 19. Denoising results for Baboon image (noise density is 90%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f) WCSR.
(g) ASMF-DBER I. (h) ASMF-DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II.
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Table VI
AVERAGE EXECUTION TIME OF EIGHT ALGORITHMS FOR CORRUPTED LENA IMAGE WITH DIFFERENT NOISE DENSITIES (UNIT SECOND).

Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%

ACWM 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

ASWM 27.9 28.9 29.3 29.4 36.7 37.5 44.1 50.3 63.2

ROR-NLM 68.5 84.5 100.1 115.7 131.5 144.2 151.0 147.2 137.6

BDND 75.6 74.7 74.9 75.5 75.9 76.6 77.5 77.4 77.7

IBDND 75.8 75.0 74.4 76.0 76.2 76.7 77.2 76.9 77.2

WCSR 3281.3 3288.5 3297.8 3293.3 3328.3 3298.6 3312.7 3326.0 3219.6

ASMF-DBER I 87.8 88.4 95.7 98.5 101.3 111.3 111.5 124.9 126.3

ASMF-DBER II 88.3 88.8 96.3 99.2 102.0 113.1 114.0 125.4 127.1

Figure 20. Comparisons of denoising performance using PSNR for Lena images corrupted by the impulse noise with various values of α. (a) α = 0. (b)
α = 5. (c) α = 15. (d) α = 20.

To some extent, the better denoising performance of the

proposed methods is at the cost of more computational cost.

F. Adaptability for different impulse noise models

In order to further check the adaptability of ASMF-DBER

for the different values of α in noise model, i.e., the different

intensity ranges for impulse noise, we use PSNR for Lena

images corrupted by the impulse noise with other values of α,

the quantitative results are shown in Fig. 20. Furthermore, we

also compare the results obtained using a recent alternative

fusion rule PCR6 [37] (Proportional Conflict Redistribution

rule No. 6) when combining the generated BBAs m1 and m2

in our ASMF-DBER I and ASMF-DBER II methods. These

two results are denoted by ASMF-DBER I (PCR6) and ASMF-

DBER II (PCR6) respectively.

As shown in Fig. 20, the PSNR of ASMF-DBER results

are relatively high when α varies between 0 and 15. Although

they drop slightly when α = 20, they are still higher than other

methods in general.

VI. CONCLUSION

To deal with the problem of the impulse noise reduc-

tion, first, we propose two impulse noise detection methods

based on evidential reasoning before filtering. Second, we

design an adaptive switching median filtering method, which

adaptively determines the size of filtering window according

to detection results. The subjective and objective analyses

from our experimental results verify that our new proposed

detections approaches and related filtering algorithms have

superior performance compared with existing algorithms.

The generation of BBAs is crucial in evidential reasoning,

however there is no general theoretical method for BBA

generation. In this paper, we use two types of BBA generation

methods in evidential modeling for the uncertainties encoun-

tered in the impulse noise detection and have evaluated their

performances. In future work, we will focus on other BBA

generation methods, which can better depict the uncertainty

encountered in the impulse noise detection. Other evidence

combination rules will also be used to make comparisons. We

will also do more theoretical analyses on the determination of

parameters used in our algorithm. Furthermore, we will apply

our impulse noise detection method to sparse representation

based filtering approach to deal with more complicated noise

models, such as the impulse/Gaussian mixed noise.
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Abstract—Recently, a measure of total uncertainty (TU) in 
Dempster–Shafer Theory (DST), based on the pignistic distri-
bution called Ambiguity Measure (AM), have been modified. 
The resulting new measure has been simply referred as Modified 
Ambiguity Measure (MAM). In the literature, it has been shown 
that AM, in addition to showing some undesirable behaviors, has 
important drawbacks related to two essential properties for such 
measures: subadditivity and monotonicity. The MAM measure 
has been developed to solve the AM subadditivity problem, but 
this paper demonstrates that MAM suffers the same drawback 
as AM with respect to monotonicity. A measure of uncertainty 
that cannot meet the monotonicity requirement has a major 
drawback for its exploitation in operational contexts such as in 
analytics, information fusion and decision support. This paper 
aims at identifying and discussing drawbacks of this type of 
measures (AM, MAM). Our main motivation is to insist upon 
the important requirement of monotonicity that a TU measure 
should possess to improve its potential of being used and trusted 
in applications. This discussion is due time since the monotonicity 
problem needs first to be solved to avoid building too high 
expectations for usefulness and potential exploitation of such 
measures in operational communities.
Keywords: Imprecise probabilities, theory of evidence, mea-

sures of uncertainty, conflict, non-specificity, pignistic proba-

bility.

I. INTRODUCTION

Dempster-Shafer’s theory (DST) extends the classical prob-

ability theory (PT). In DST, more types of uncertainty can

be represented than in PT. These types of uncertainty found

in DST are called conflict, randomness or discord; and non-

specificity respectively (see Yager [25]). Klir and Wierman

[18] present a total uncertainty (TU) measure in DST that has

been justified by an axiomatic approach considering TU in

probability theory as a reference. They also attach to that TU

definition, a set of five desired properties that TU must verify.

Abellán and Masegosa [7] extend that set to add the important

property of monotonicity as well as other behavioral properties

related to TU.

In DST, upper (or maximum) of entropy is the only function

that verifies all the basic required properties listed later in

Section III: P1-P5. Jousselme et al. [15] presented a new TU

measure in DST, called AM, based on the pignistic distribu-

tion. The authors, in 2006, proved that AM verifies the needed

properties (P1-P5) and that AM sorts out other shortcomings

of upper entropy. However, Klir and Lewis [19] found that AM

function does not, in fact, verify requirement P4: subadditivity.

Abellán and Masegosa [7] presented an extension of the set of

the required properties (P1-P5) that a TU measure in DST must

verify. They extended the set (P1-P5) from Klir and Wierman

[18] and added some desirable behaviors that TU should have.

In 2008, Abellán and Masegosa [7] showed that AM does not

verify the important property of monotonicity (P6) in addition

to present some undesirable behaviors. Recently, Shahpari and

Seyedin [22] have presented a modified function of AM, called

MAM. They claim that MAM verifies the required properties

(P1-P5) as well as behaves correctly in applications. That

claim motivates our discussion here about the drawbacks of

such measures.

This paper aims at identifying drawbacks of such measures

of uncertainty (AM, MAM) based on the pignistic trans-

formation of a basic probability assignment in DST. Our

main motivation is to insist upon the important requirement

of monotonicity (P6) that a TU measure should possess to

improve its potential to be used and trusted in applications

such as in analytics, information fusion and decision support.

Defined as they are in Jousselme et al. [15] and Shahpari and

Seyedin [22], AM and MAM will produce incorrect results

and undesirable behaviors if used in applications.

The paper is organized as follows. Section II reviews briefly

the representation of information and uncertainty within the

framework of the Dempster-Shafer Theory (DST). Section III

discusses the drawbacks of AM and MAM with respect to the

required properties of a total uncertainty (TU) in DST. Section

IV presents a discussion on desirable behavioral requirements

of a TU measure in DST. We conclude in Section V.

II. INFORMATION REPRESENTATION IN THEORY OF

EVIDENCE

A. Dempster-Shafer theory of Evidence

Let X be a finite set considered as a set of possible

situations, |X | = n, ℘(X) the power set of X and x any

element in X. Dempster-Shafer theory of evidence (Dempster

[9], Shafer [23]) is based on a function called basic probability

assignment (b.p.a.), that is a mapping m : ℘(X) → [0, 1] ,
such that m(∅) = 0 and

∑

A⊆X

m(A) = 1. A set A such that

m(A) > 0 is called a focal element of m.

Originally published as: J. Abellan, E. Bosse, Drawbacks of Uncertainty Measures Based on the Pignistic 
Transformation, IEEE Trans. On Systems, Man, and Cybernetics: Systems, Vol. 48(3), pp. 382-388, 
March 2018, and reprinted with permission.
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Let X,Y be finite sets. Let X × Y be the product space of

those sets and m a b.p.a. on X × Y . We use m↓X to note to

the marginal b.p.a. on X , (and similarly on Y , m↓Y ), and it

is defined as follows:

m↓X(A) =
∑

R|A=R↓X

m(R), ∀A ⊆ X (1)

where R↓X is the set projection of R on X .

Associated with each basic probability assignment, there

exists two functions: a belief function, Bel, and a plau-

sibility function, Pl: Bel(A) =
∑

B⊆A

m(B), P l(A) =
∑

A∩B 6=∅
m(B). They can be considered as the lower and upper

probability of A, respectively.

We may note that belief and plausibility are interrelated for

all A ∈ ℘(X), by Pl(A) = 1 − Bel(Ac), where Ac denotes

the complement of A. Furthermore, Bel(A) ≤ Pl(A).
On each b.p.a. on a finite set X , there exists a set of

associated probability distributions p on X , of the following

way:

Km = {p| Bel(A) ≤ p(A), ∀A ∈ ℘(X)} (2)

We remark that Bel(A) ≤ p(A) is, in this case, equivalent

to Bel(A) ≤ p(A) ≤ Pl(A). Km is a closed and convex

set of probability distributions, also called a credal set in the

literature.

B. Measures of uncertainty in DST

The entropy function (Shannon [24]) on probability theory

is defined by the following continuous function:

S(p) = −
∑

x∈X

p(x) log2(p(x)), (3)

where p = (p(x))x∈X is a probability distribution on X , p(x)
is the probability of value x and log2 is used to quantify

the value in bits, but in the literature is used log and log2
indifferently. The value S(p) (also used as S(p(x1), p(x2), ...))
quantifies the only type of uncertainty presented on probability

theory. This measure in PT verifies a large set of properties

(see Shannon [24], Klir and Wierman [18]).

In DST, Yager [25] found different two types of uncertainty:

the first one appears when a b.p.a. has positive masses on sets

with empty intersections; and the other one appears when the

b.p.a.has positive masses on sets with cardinality greater than

one. Those types of uncertainty are normally called conflict

and non-specificity, respectively.

Dubois and Prade [10], introduced in DST a function based

on the classical Hartley measure (Hartley [11]) on classical

set theory. That measure, noted as I , represents a measure

of non-specificity for a b.p.a. It is expressed in the following

way:

I(m) =
∑

A⊆X

m(A) log(|A|). (4)

This measure I(m) has its minimum value (zero) for a

b.p.a. m that is a probability distribution. Its maximum value,

log(|X |), is obtained for a b.p.a., m, where m(X) = 1 and

m(A) = 0, ∀A ⊂ X . We can see in the literature that I
verifies a large set of needed properties for such a type of

measure.

In the 90’s, some measures were introduced with the aim to

quantify the conflict degree that a b.p.a. expresses (see Klir and

Wierman [18]). Yager [25] introduced the following function:

E(m) = −
∑

A⊆X

m(A) logPl(A). (5)

But this function does not verify in DST all the required

properties.

The measure: S∗(m) equal to the maximum/upper of the

entropy (upper entropy) on the set of probability distributions

verifying Bel(A) ≤ ∑

x∈A

p(x) ≤ Pl(A), ∀A ⊆ X , was pro-

posed by Harmanec and Klir [12], [13]. This set of probability

distributions is the credal set associated with a b.p.a. m, that

we have noted as Km in Eq. (2).

S∗ is considered as a total uncertainty measure in DST:

a measure that quantifies both types of uncertainty: conflict

and non-specificity. But in Harmanec and Klir [13] was

not separated in those corresponding parts. It can be seen

in Abellán, Klir and Moral [6], that this measure can be

separating coherently in conflict and non-specificity parts. In

DST those parts are similar to the ones for general credal sets.

It can be consider

S∗(m) = S∗(m) + (S∗ − S∗)(m), (6)

with S∗(m) the maximum entropy and S∗(m) the minimum

entropy on the credal set Km associated to a b.p.a. m. S∗(m)
coherently quantifying the conflict part and (S∗ − S∗)(m) its

non-specificity part. That measure has been successfully used

in applications (see Abellán and Moral [3])

To quantify conflict and non-specificity (ambiguity) in DST,

Jousselme et al. [15] presented a measure based on the

pignistic distribution on DST. Let m be a b.p.a. on a finite

set X , then the pignistic probability distribution BetPm, is

defined on all the subsets A in X as follows:

BetPm(A) =
∑

B⊆X

m(B)
|A ∩B|
|B| . (7)

For a singleton set A = {x}, we have BetPm({x}) =
∑

x∈B[m(B)/|B|]. Hence, as the authors says [15], the Am-

biguity Measure (AM) for a b.p.a. m on a finite set X can be

defined as:

AM(m) =
∑

x∈X

BetPm(x) log(BetPm(x)), (8)

i.e., the entropy of the BetPm probability distribution.

Recently, Shahpari and Seyedin [22] have presented a mod-

ified function of AM, based on the AM drawbacks identified

in Klir and Lewis [19]. This function is called MAM and

unfortunately presents some mathematical shortcomings in its

definition as explained below. Shahpari and Seyedin exposed
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that MAM coincides with AM on 1-dimensional space but

in the case of 2-dimensional space, they used a different

definition for the pignistic distribution without providing the

essential justification. Here are the details. Let X,Y be finite

sets, and m a b.p.a. on X×Y . On X×Y , MAM coincides with

AM function, via the probability distribution MBetmXY
=

BetmXY
(MAM is the entropy of that probability distribution).

In the case of 2-dimensional space, Shahpari and Seyedin use

the following function on each marginal b.p.a.:

MBetmX
(xi) =

∑

B∈℘(X),B∋xi

∑

A∈℘(X×Y ),B=A↓X

mXY (A)♯(xi∈A)
|A| , ∀xi ∈ X

(9)

with ♯(xi ∈ A) the number of appearances of xi in the set

A, and |A| the cardinal of A. Similarly they define the values

MBetmY
(yi), ∀yi ∈ Y .

To simplify, this expression can be reduced to the following

one:

MBetmX
(xi) =

∑

A∈℘(X×Y ),A↓X∋xi

mXY (A)♯(xi∈A)
|A| , ∀xi ∈ X

(10)

MAM function is then the entropy of those probability

distributions on X and Y respectively. Authors supposed that

MBetmX
is a probability distribution on X that belongs to the

credal set associated with the marginal of m on X (Km↓X ).

That essential assertion has not been verified or proved by the

authors. The following property below is our way to prove

that assertion.

Proposition 1: With the above notation, the probability

distribution expressed by Eq. (9) (or Eq. (10)) belongs to the

associated credal set of the marginal b.p.a. on the space X
As MBetmX

is a probability distribution on X , it is only

necessary to prove the following expression ∀B ⊆ X :

Belm↓X (B) ≤ MBetmX
(B) =

∑

xi∈B

MBetmX
(xi).

Without lost of generality, let B be a set in ℘(X) such that

B = {x1, x2, ..., xr}; and A1, A2, · · · , At be all the focal sets

of m, Ai in ℘(X × Y ), such that A↓X
i ⊆ B.

We know that

MBetmX
(x1) =

m(A1)♯(x1 ∈ A1)

|A1|
+..+

m(At)♯(x1 ∈ At)

|At|
+α1

· · ·

MBetmX
(xr) =

m(A1)♯(xr ∈ A1)

|A1|
+..+

m(At)♯(xr ∈ At)

|At|
+αr

with all αi ≥ 0, i = 1, .., r. We remark the following consider-

ations in the above expressions of MBetmX
(xi), i = 1, .., r:

- The values ♯(xi ∈ Aj) can be 0 if xi 6∈ Aj

- The αi values come from the sets C ∈ ℘(X × Y ) such

that xi ∈ C but C↓X * B.

If we sum all the above expressions, we have that the first

terms sums to m(A1), the second ones to m(A2), and so on

with all the rest. Hence,

MBetmX
(B) =

∑

xi∈B

MBetmX
(xi) =

∑

j

m(Aj) + α,

with α =
∑

i αi ≥ 0.

Finally

Belm↓X (B) =
∑

j

m(Aj) ≤ MBetmX
(B)

With the Property 1 we show that MBetmX
is compatible

with the correct definition of a marginal b.p.a. of m on X .

But, as we will show in Section III, it would require some

modification in the definition of the MAM measure, for being

mathematically correct.

III. DRAWBACKS OF MEASURES BASED ON PIGNISTIC

TRANSFORMATION IN DST

In Klir and Wierman [18] are exposed requirements for

uncertainty measures in DST that quantify both types of un-

certainty, i.e. total uncertainty measures. These requirements,

in form of properties are the following ones:

(P1) Probabilistic consistency: A total uncertainty measure

must be equal to the Shannon entropy in the case that the

focal elements of a b.p.a. m are all singleton ones:

TU(m) =
∑

x∈X

m(x) logm(x). (11)

(P2) Set consistency: When exist a set A such that m(A) =
1 then TU must collapse to the Hartley measure:

TU(m) = log |A|. (12)

(P3) Range: The range of TU(m) must be [0, log |X |].
(P4) Subadditivity: Let m be a b.p.a. on the space X × Y ,

m↓X and m↓Y its marginal b.p.a.s on X and Y respec-

tively, then TU must satisfy the following inequality:

TU(m) ≤ TU(m↓X) + TU(m↓Y ). (13)

(P5) Additivity: Let m be a b.p.a. on the space X×Y , m↓X

and m↓Y its marginal b.p.a.s on X and Y respectively

such that these marginal are not interactive (m(A×B) =
m↓X(A)m↓Y (B), with A ⊆ X , B ⊆ Y and m(C) = 0
if C 6= A×B), then TU must satisfy the equality:

TU(m) = TU(m↓X) + TU(m↓Y ). (14)

These requirements pretend to extend those of Shannon’s

entropy in probability theory. In DST there are two different

types of uncertainty; one more than in classic PT. The require-

ment of range is in some way debatable. In literature, one can

find arguments in favor of a larger range. In PT never we can

find a probability distribution that contains the information of

other probability distribution. But, this situation can appear in

DST: one b.p.a. can contains the information of another b.p.a.,

as we can see in the following example.
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Example 1: In the analysis about the mortality of a traf-

fic accident can be related to 3 main causes: (1) External

causes (EC), i.e. poor visibility, bad road and/or atmospheric

conditions; (2) overspeed (OS); (3) driver ill conditions due

to consumption of harmful substances (D). Let assume the

following two situations in the analysis of a particular accident.

Situation1: we have 3 Evidences (E1, E2 and E3) on the

causes of the mortality of an accident. An expert expresses

his knowledge in form of the following b.p.a. on the universal

X = {EC,OS,D}:

E1 −→ m1({EC,OS}) = β1,

E2 −→ m1({EC,D}) = β2,

E3 −→ m1({OS,D}) = β3,

where βi > 0, i = 1, 2, 3, and
∑

i βi = 1.

Situation2: thinking better on the Evidences, now the expert

finds that there exist some reasons to not discard D in the

Evidence E1, i.e. a lost in information is produced. Hence, he

thinks that he must to change his b.p.a to the following one:

E1 −→ m2({EC,OS,D}) = β1,

E2 −→ m2({EC,D}) = β2,

E3 −→ m2({OS,D}) = β3.

It is clear that Situation2 represents a situation with a greater

level of uncertainty than Situation1. Here, we have Bel2(A) ≤
Bel1(A) and Pl1(A) ≤ Pl2(A), ∀A ⊆ X , implying a bigger

level of uncertainty for m2.

Example 1 expresses a situation that must be taken into

account for a total uncertainty measure in DST. Hence, for a

TU in DST is necessary to verify the following property:

(P6) Monotonicity: A total uncertainty measure in DST

must take into account the decreasing or increasing in

information.

Formally, let 2 b.p.a.s be on a finite set X , m1 and m2,

verifying that Bel2(A) ≤ Bel1(A), ∀A ⊆ X , then it

must be verified that:

TU(m1) ≤ TU(m2). (15)

The above definition of monotonicity is called weak inclusion.

Using the results of Klir and Wierman [18], Jousselme

et al. [15], Klir and Lewis [19], Abellán and Masegosa [7]

and Shahpari and Seyedin [22], we have the initial following

properties for S∗, AM and MAM functions:

S∗: P1, P2, P3, P4, P5 and P6.

AM : P1, P2, P3 and P5.

MAM : P1, P2, P3, P4− and P5.

S∗ is the only measure that satisfies all the proposed prop-

erties. We mark P4 for MAM as P4− because that property is

satisfies under a controversial way as we explain below.

A. Drawbacks of the AM measure

In Jousselme et al. it is showed that AM function satisfies

P4 requirement. In Klir and Lewis [19] it is showed that there

exists an error in their proof about the P4 requirement, and

the AM function does not verifies that property.

Abellán and Masegosa [7] proved that also AM function

does not verifies P6 property. Extended details can be found

in those two references.

B. Drawbacks of the MAM measure

MAM measure coincides on 1-dimensional space with AM

measure, then the example provided in Abellán and Masegosa

[7] about the non-monotonicity for AM is valid for MAM.

Consequently, MAM does not verifies P6 property. Moreover,

if we consider Example 1 with values β1 = 0.3, β2 = 0.5 and

β3 = 0.2, we have the following values for MAM:

1.049 = MAM(m2) < MAM(m1) = 1.081

These values imply that decreasing the real information, MAM

can give us lower values of uncertainty. This drawback must

not be allowed for such a type of measure.

MAM measure satisfies the Property P4 in a controversial

way, as discussed below.

When looking for a measure that verifies P4 property, the

definition of MAM function is not mathematically totally

correct as eluded in the previous section. The authors says

that “In cases where the projection process is not used, the

modified pignistic probability is computed employing (13)”,

where “(13)” is the equation of the AM function (Eq. (8)).

It means that on (1-dimensional) m↓X one would use the

AM function but when the pignistic probability comes from a

join b.p.a then one must used Eq. (9). That is questionable.

Let discuss this question by the following example:

Example 2: Let m1 be a b.p.a. on space X = {x1, x2, x3},

and masses

m1({x1, x2}) = 0.6,m1({x3}) = 0.1,m1(X) = 0.3

Then MAM quantifies the information of m1 as the entropy,

S, of the probability distribution (0.4, 0.4, 0.2).
On the other hand, if we consider the space Y = {y1, y2}

and m on X × Y with masses

m({z11, z12, z21}) = 0.6,m({z31, z32}) = 0.1,

m(X × Y ) = 0.3,

where zij = (xi, yj). Here the MAM function quantifies the

information of m on X as S(0.5, 0.3, 0.2). But, in this case,

m↓X = m1. This incongruence in the definition of MAM can

be arranged by a different definition of marginal as described

below.

Shahpari and Seyedin [22] do not use the standard definition

of marginal of a b.p.a. and its properties, with the aim that

MAM function verifies the property P4. They do not use

the standard definition of subadditivity for a measure M

where it must be verified that, being m a b.p.a. on X × Y
M(m) ≤ M(m↓X) + M(m↓Y ), having correct definitions

of marginal b.p.a.s. As said in Shahpari and Seyedin [22]:

“some probabilistic information is lost in the classic DST

projection process”. One avenue would have been to change
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the standard definition of marginal in DST. The standard

definition of marginal is an extension of the one used in

PT. Shahpari and Seyedin choose instead to define a different

’pignistic’ probability distribution on the marginal b.p.a.s on

X and Y . It is clear that Betm(mX) ∈ Km↓X , but that

MBetm(mX) ∈ Km↓X has not been verified in the work

of Shahpari and Seyedin. We prove that assertion in Section

II.

Suppose that we have a general b.p.a. m on the space X ×
Y ×T . If we need to work on X×Y space, we use the standard

marginal on X × Y , m↓XY . But to use the ’pignistic’ values

in this case, should we use MBetmXY or BetmXY ?, i.e. the

one from m or the direct one from m↓XY . If we need to use

the similar values on X or Y , should we use the values from

m or the values from m↓XY ?. These questions appear because

of the controversial definition of MAM.

From Shahpari and Seyedin [22], with S the entropy func-

tion, we know that:

S(MBetm) ≤ S(MBetmXY ) + S(MBetmT ), (16)

S(MBetm) ≤
S(MBetmX) + S(MBetmY ) + S(MBetmT ).

(17)

But how is S(MBetmXY ) with respect to S(MBetmX) +
S(MBetmY )?. It should be checked that similar inequality is

verified.

How is the relation between MBetmX , obtained from

m and the similar one obtained from m↓XY ?. They can be

different.

All questions raised above will not appear if, for instance:

- A new definition of the marginal of a b.p.a., compatible

with PT and the definition of MAM function, is used.

- The definition MAM on each b.p.a. is independent from

its origin, i.e it should not be taken into account if it

comes from a joint b.p.a. or not.

The problem of the marginal found by Shahpari and Seyedin

is an intrinsic one of the DST as extension of PT, because on

a joint space X×Y has sense that a b.p.a has as focal element

a set C, with C 6= A×B, for any A ⊆ X and B ⊆ Y .

Hence, under our point of view, the definition of the function

MAM has some drawbacks but the critical one is that it does

not verify the monotonicity property P6 and consequently,

limits considerably its usage in applications.

IV. BEHAVIORAL REQUIREMENTS FOR TOTAL

UNCERTAINTY MEASURES IN DST

Jousselme et al. [15] discuss some shortcomings of S∗

function (upper entropy) in DST and provide a comparison

with the behavior of the AM function. These shortcomings

have been presented by Klir and collaborators in the literature

and can be expressed of the following way:

(1) The measure must be computable directly or via algo-

rithms.

(2) The measure must be separated coherently in the two

types of uncertainty coexisting in DST: conflict and non-

specificity.

(3) The measure must be sensitivity to changes of evidence.

These considerations are analyzed in Abellán and Masegosa

[7] adding for (3) that a TU should be sensitive to changes

in evidence directly or via its parts. They found that it is

possible that an increment of conflict causes a decrease in

non-specificity and vice versa. It is shown that we can have

similar total uncertainty value with different conflict and non-

specificity parts. Hence, Abellán and Masegosa [7] showed

that a set of Behavioral Requirements (BR) for a TU in DST

could be exposed in the following way:

(BR1) A TU should have a direct calculus or via an

algorithm.

(BR2) A TU must not conceal the two types of uncer-

tainty coexisting in the evidence theory: conflict and non-

specificity.

(BR3) A TU must be sensitive in changes of evidence,

directly or via its parts of conflict and non-specificity.

Based on the “Generalized Information theory”, of Klir

[16], we know that there exists situations where the infor-

mation can be expressed by more general models. Hence,

the Principle of uncertainty invariance expresses that “the

amount of uncertainty (and information) must be preserved

when a representation of uncertainty in one mathematical

theory is transformed into its counterpart in another theory”.

Via this principle, Abellán and Masegosa [7], considered other

requirement for a TU in DST, that one can called Extensibility:

(BR4) The extension of a TU in DST on more general

theories must be possible.

The above requirements (BR1-BR4) have been analyzed in

Abellán and Masegosa [7] for S∗ and AM functions. Here,

we verify for MAM, comparing with AM and S∗. As these

requirements do not need the use on a joint space, the case of

MAM coincides with AM:

BR1: AM and MAM functions have a simpler calcula-

tion than the S∗, it is only necessary to obtain the pig-

nistic probability distribution of a b.p.a. The calculation

of S∗ in DST has a high computational complexity. The

algorithm of Meyerowitz et al [21] was the first to obtain

this value. Recently, the computation of this algorithm

has been reduced by Liu et al. [20]. Hence, we could

conclude that the calculation of all TU in DST can be

implemented in a simple way, though they have different

complexity.

BR2: Abellán, Klir and Moral [6] separate S∗ in two

parts: S∗ (minimum of entropy) as a conflict measure

and S∗ − S∗ as a non-specificity measure. In Abellán

and Moral [4], it is shown a branch and bound algorithm

to get S∗ on DST and more general theories. AM
and MAM functions do not present a clear separation

between conflict and non-specificity. In Jousselme et

al. [15], AM is presented as a special case of the

function δS∗ + (1− δ)I , for an unknown δ ∈ (0, 1). So,
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using AM(m) value, one can not know which quantity

corresponds to conflict and which one to non-specificity.

BR3: In Abellán and Masegosa [7], we see that the

problem on the sensitivity to changes of evidence of S∗,

raised in Klir and Smith [17], is not totally justified if

we consider its parts. In the examples shown in Klir and

Smith [17], an increasing in the conflict part produces a

decreasing in the non-specificity part and viceversa. In

Jousselme et al. [15], we see that this problem does not

appears for AM (and then for MAM ), but we do not

know what happen with the variations of conflict or non-

specificity in those measures.

BR4: Using the results of Abellán and Moral [1], [2] and

in Abellán, Klir and Moral [6], S∗ can be extended to

more general theories than DST, verifying similar sets of

properties. In addition, On these theories exist algorithms

to obtain S∗ and S∗, as we can see in Abellán and Moral

[4], [5]. The extensions of AM and MAM functions

on more general theories is still an open question. One

possibility for this extension could be to use the Möbious

transform as for I function (see Abellán and Moral [1]),

though its calculation would be more complex. As we can

see in Abellán, Klir and Moral [6] that the generalization

of some uncertainty measures defined in DST could have

many problems when they are extended on more general

theories. That is the case of E measure in DST. The

question here might be: is it worthy if property P6 is not

met?

In addition, Abellán [8] showed, via an example, that in

situations where there is no conflict, S∗ could present some

questionable behavior that could be considered as not totally

correct. In these situations, S∗, that quantifies the part of

conflict, is equal to 0. One could think that intuitively S∗

does not reflect a proper behavior. In that example, 2 b.p.a.s

with a clear difference of information are used: m1 and m2,

with Km1
⊂ Km2

and S∗(m1) = S∗(m2).
If we apply AM or MAM to similar situations, we get an

ill behavior for those measures. The monotonicity property P6

is broken as illustrated by the following example.

Example 3: Let m1 and m2 the following b.p.a.s on a finite

set X = {x1, x2, x3}, with values:

m1({x1, x3}) = 0.5,m1({x2, x3}) = 0.5

m2({x2, x3}) = 0.5,m2({x1, x2, x3}) = 0.5

It can be checked that Km1
⊂ Km2

(Bel2(A) ≤
Bel1(A), ∀A ⊆ X) and a clear decreasing in information

appears when we pass from m1 to m2.

Example 3 presents a case where there is no conflict among

their focal sets in both b.p.a.s. In this example S∗(m1) =
S∗(m2); but

1.040 = AM(m1) > AM(m2) = 1.028

and similar situation appears for MAM. It clearly shows again

an incorrect behavior for the measures based on the pignistic

probability distribution.

V. CONCLUSIONS

This paper discussed drawbacks of total uncertainty (TU)

measures drafted in DempsterShafer Theory (DST) and based

upon the pignistic transformation. Those measures have been

labelled as (AM, MAM) in this paper. The first step was

to recall the basic requirements that those measures should

meet. Previous work presented analysis about shortcomings

of upper entropy which is the only measure that meet those

basic requirements within DST. Previous work also added

some desirable behavioral requirements as well as an im-

portant property to the basic set: monotonicity. Both AM

and MAM fail that critical requirement. In addition, we have

demonstrated that AM and MAM defined as they are in

Jousselme et al. [15] and Shahpari and Seyedin [22], will

produce incorrect results and undesirable behaviors if used in

applications. Some drawbacks have been corrected but several

questions raised, for instance, in Section III would require

more extensive work not included here. We provided some

hints to solve some issues but the main problem is that both

AM and MAM do not meet the important requirement of

monotonicity that limit considerably the interest towards their

operational applications.
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On Decombination of Belief Function

Abstract—The evidence combination is a kind of decision-
level information fusion in the theory of belief functions. Given
two basic belief assignments (BBAs) originated from different
sources, one can combine them using some combination rule,
e.g., Dempster’s rule to expect a better decision result. If one
only has a combined BBA, how to determine the original two
BBAs to combine? This can be considered as a defusion of
information. This is useful, e.g., one can analyze the difference
or dissimilarity between two different information sources based
on the BBAs obtained using evidence decombination. Therefore,
in this paper, we research on such a defusion in the theory of
belief functions. We find that it is a well-posed problem if one
original BBA and the combined BBA are both available, and it
is an under-determined problem if both BBAs to combine are
unknown. We propose an optimization-based approach for the
evidence decombination according to the criteria of divergence
maximization. Numerical examples are provided illustrate and
verify our proposed decombination approach, which is expected
to be used in applications such the difference analysis between
information sources in information fusion systems when the
original BBAs are discarded, and performance evaluation of
combination rules.

Index Terms—information fusion, decombination, belief func-
tions, combination, divergence maximization

I. INTRODUCTION

The theory of belief functions, which is also known as the

Dempster-Shafer evidence theory [1], has been widely used

in many information fusion based applications including the

pattern classification [2], [3], multi criteria decision making

(MCDM) [4], fault diagnosis [5] and image processing [6].

The information fusion in the theory of belief functions is

implemented by evidence combination based on some combi-

nation rule, e.g., the well-known Demspter’s rule. There have

also emerged various alternative combination rules including

Yager’s rule [7], Dubois & Prade’s rule [8], Smets’ rule [9],

Murphy’s rule [10], Florea’s rule [11], proportional conflict

redistribution 5 (PCR5), and PCR6 [12], [13], etc.

The inverse process of the information fusion, which can

also be called as information “defusion” or “decombination”,

is also meaningful in information processing and analysis.

Like the blind source separation (BSS) [14] and independent

This work was supported by the National Natural Science Foundation
(No. 61573275, No. 61671370), Postdoctoral Science Foundation of China
(No. 2016M592790), Postdoctoral Science Research Foundation of Shaanxi
Province (No. 2016BSHEDZZ46), and Fundamental Research Funds for the
Central Universities (No. xjj2016066)

component analysis [15], which aim to recover independent

sources given only the observations that are unknown linear

mixtures of the unobserved independent source signals, can

be considered as a process of information decombination. One

can analyze the original information sources and judge their re-

lationship based on the results obtained using decombination.

The community of belief functions theory seldom research

on the information decombination problem, which means that

given a combined BBA, how to determine the original BBAs

for the combination. In Smets’ work [16], the concept of

decomposition of evidence was proposed, which focuses on

decomposing any BBA (not always assumed to a combined

BBA) into many simple support function of BBAs. He also

proposed the inverse operation of evidence combination, which

only focus on the following case: given a combined BBA and

one BBA participating the combination, how to restore another

BBA participating the combination. In this paper, we focus

on the information decombination (separation) or evidence

decombination in the theory of belief functions. For simplicity,

here we only concern the evidence decombination for two

information sources. We find that given the combined BBA

together with one original BBA, it is well-posed, that is, the

other BBA can be uniquely determined. However, it turns out

to be an under-determined problem (with multiple solutions)

if both BBAs participating the combination are unknown and

the combined BBA is given. The optimization (maximization)

based decombination method is proposed accordingly, where

the objective function is the distance between the two orig-

inal BBAs (unknown variables to determine). Examples and

experiments are provided to illustrate and verify our proposed

information decombination method for the belief function.

II. BASICS OF BELIEF FUNCTIONS THEORY

The basic concept in the theory of belief functions [1] is the

frame of discernment (FOD), which is determined by what

we want to know and what we know. Elements in an FOD

are mutually exclusive and exhaustive. m : 2Θ → [0, 1] is

defined as a basic belief assignment (BBA, also called a mass

function) defined on the FOD Θ satisfying

∑

A⊆Θ
m(A) = 1, m(∅) = 0 (1)

Originally published as: D. Han, Y. Yang, J. Dezert, On Decombination of Belief Function, in Proc. of Int. 
Conf. on Information Fusion (Fusion 2019), Ottawa, Canada, July 2–5, 2019, and reprinted with 
permission.
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where 2Θ denotes the powerset of Θ. if ∀m(A) > 0, then A
is called a focal element of m(·). If a BBA only has singleton

focal elements, then it is called a Bayesian BBA.

Given a BBA m(·), its corresponding belief function (Bel)
and plausibility function (Pl) are respectively defined as

Bel(A) =
∑

B⊆A
m(B) (2)

Pl(A) =
∑

A∩B 6=∅
m(B) (3)

The belief Bel(A) represents the justified specific support for

the focal element (or proposition) A, while the plausibility

Pl(A) represents the potential specific support for A. The

length of the belief interval [Bel(A), P l(A)] represents the

imprecision degree of A.

The evidence combination is the fusion of the BBAs

originated from different sources. Two independent BBAs

m1(·) and m2(·) can be combined using Dempster’s rule of

combination [1] defined by

m(A) =











0, A = ∅
∑

Ai∩Bj=A

m1(Ai)m2(Bj)

1− ∑

Ai∩Bj=∅

m1(Ai)m2(Bj)
, A 6= ∅ (4)

Dempster’s rule in general can be considered as a multiplica-

tive and conjunctive fusion rule. Dempster’s rule of combi-

nation has been criticized for its counter-intuitive behaviors

[17], [18], especially in high conflict cases. Many alternative

combination rules have been proposed accordingly. See [12],

[19], [20] for details. Other researchers like Haenni [21] think

that the conflict results from a fault in the framing of problem.

Distance of evidence is for measuring the dissimilarity

between BBAs. The most commonly used and strict distance

of evidence is Jousselme’s distance [22] defined as follows.

dJ (m1,m2) ,

√

0.5 · (m1 −m2)
T
Jac (m1 −m2) (5)

where the elements Jac(A,B) of Jaccard’s weighting matrix

Jac are defined as

Jac(A,B) = |A ∩B|/|A ∪B| (6)

Here A, B are focal elements of m1 and m2, respectively.

Jaccard’s matrix has been proved to be positive-definite [23],

therefore, Jousselme’s distance is a strict metric satisfying

four requirements of the distance metric including the non-

negativity, non-degeneracy, symmetry, and triangular inequal-

ity.

III. EVIDENCE DECOMBINATION IN BELIEF FUNCTIONS

THEORY

The evidence combination can be considered as a procedure

of information fusion1 as shown in Fig. 1.

1or information compression because from two BBAs we get one.

Fig. 1. Evidence combination - Information Fusion.

Given a BBA obtained after the combination, if one wants to

know the possible original BBAs, then the evidence decombi-

nation is needed, which can be considered as a procedure of

information decombination as shown in Fig. 2.

Fig. 2. Evidence decombination - Information Decombination or “Defusion”.

In this paper, we focus on determining the original BBAs given

a combined BBA. First, we analyze the relationship between

the combined BBA and the original ones. For simplicity, we

only suppose that there are two original BBAs in this paper.

A. Relation between Combined BBA and Original Ones ac-

cording to Dempster’s Rule

According to the Dempster’s rule in Eq.(4), one can obtain

the following equations. Suppose that m1(·) and m2(·) are

two BBAs defined on the FOD Θ = {θ1, ..., θn}. For each

BBA, there are at most 2n−1 focal elements as shown below.

m1 m2












{θ1}
{θ2}

{θ1, θ2}
...
Θ

























{θ1}
{θ2}

{θ1, θ2}
...
Θ













Define a matrix R(k) for each k = 1, ..., 2n − 1 where

R(k)(i, j) =

{

1, if Ck = Ai ∩Bj

0, if Ck 6= Ai ∩Bj
(7)

where Ai is the focal element of m1(·), and where Bj is

the focal element of m2(·). The combined BBA is m(·) =
m1(·)⊕m2(·), and Ck is the focal element of m(·). Note that

i, j, k = 1, ..., 2n − 1. According to Dempster’s rule, the mass

assignment of focal element Ck in the combined BBA is

m(Ck) =











m1({θ1})
m1({θ2})

...

m1(Θ)











T

R(k)











m2({θ1})
m2({θ2})

...

m2(Θ)











1−K
(8)
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where k = 1, ..., 2n − 1 and K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj)
denotes the conflict coefficient. For simplicity in the sequel,

we denote the mass value vector as

m1 =





















m1({θ1})
m1({θ2})
m1({θ1, θ2})
m1({θ3})
m1({θ1, θ3})
m1({θ2, θ3})
m1(Θ)





















T

,m2 =





















m2({θ1})
m2({θ2})
m2({θ1, θ2})
m2({θ3})
m2({θ1, θ3})
m2({θ2, θ3})
m2(Θ)





















T

Then, Eq. (8) can be rewritten as

m(Ck) =
m

T
1 R

(k)
m2

1−K

1) Case I: In this case, the combined BBA m(·) is avail-

able, and both original BBAs are unknown. That is, m1(Ai)
(i = 1, ..., 2n−1) and m2(Bj) (j = 1, ..., 2n−1) are unknown

variables to determine, then the quantity of the unknown

variable is 2n − 1× 2 = 2n+1 − 2. For the BBA, there exists

2
n−1
∑

i=1

m1(Ai) = 1 (9)

2
n−1
∑

j=1

m2(Bj) = 1 (10)

Considering Eqs. (8)-(10), we have 2n − 1 + 2 = 2n + 1
simultaneous equations. As aforementioned, to determine all

the mass values of m1(·) and m2(·), we have 2n+1 − 2
unknown variables. That is, the quantity of the unknown

variables is larger than that of the equations. Therefore, this

is an under-determined problem with multiple solutions in

general.

2) Case II: In this case, the combined BBA m(·) and one

original BBA (e.g., m1(·)) are available, while another original

BBA (e.g., m2(·)) is unknown. To determine m2(·), we have

2n − 1 unknown variables. By considering Eqs. (8) and (10),

we have 2n simultaneous equations. That is, the quantity of the

unknown variables is less than that of the equations. Therefore,

this is an over-determined problem, and then m2(·) can be

determined uniquely.

B. Optimization Based Evidence Decombination

As aforementioned, given a combined BBA, to determine

the two original BBAs is an under-determined problem, for

which, the optimization-based approach is feasible. Then, the

key issue is to select an appropriate criterion to establish the

objective function for the optimization.

In fact, the evidence decombination is like the blind source

separation (BSS), where the divergence between different

sources are used for the optimization based source sepa-

ration, e.g, minimization of the mutual information (MMI)

[24], which represents the largest divergence. Therefore, in

this paper, we use for reference the criterion in BSS to

design the objective function in optimization based evidence

decombination. Here we use the distance of evidence to

describe the divergence between BBAs. Furthermore, we use

the simultaneous equations including the Eqs (8)-(10) together

with inequalities (to assure a legal BBA2 with the mass value

lies in [0,1]) as the constraints for the distance maximization

to implement the evidence decombination as illustrated in

Eq. (11).

max
m1,m2

dJ(m1,m2) =

√

0.5 · (m1 −m2)
T

Jac (m1 −m2)

s.t.











































m(Ck) =
m1

TR(k)
m2

1−K
2
n−1
∑

i=1

m1(Ai) = 1

2
n−1
∑

j=1

m2(Bj) = 1

0 ≤ m1(Ai) ≤ 1, ∀i = 1, ..., 2n − 1
0 ≤ m2(Bj) ≤ 1, ∀j = 1, ..., 2n − 1

(11) 
By solving3 the constrained maximization problem in Eq. (11), 
one can obtain a pair of BBAs that are farthest to each 
other, and that provide the combined BBA when fusioned with 
Dempster’s rule.

IV. NUMERICAL EXAMPLES OF EVIDENCE

DECOMBINATION BASED ON OPTIMIZATION

In this section we give different examples illustrating how 
BBAs decombination can be obtained based on optimization 
of evidence decombination.

A. Example 1
Suppose that the FOD is {θ1, θ2, θ3}. A BBA obtained after

the combination of two unknown BBAs is

m({θ1}) = 0.1,m({θ2}) = 0.2,m({θ1, θ2}) = 0.1,
m({θ3}) = 0.1,m({θ1, θ3}) = 0.1,
m({θ2, θ3}) = 0.3,m(Θ) = 0.1.

The equality constraints for the maximization problem include

m({θ1}) = 0.1 =







m1({θ1})

m1({θ2})

m1({θ1, θ2})

m1({θ3})

m1({θ1, θ3})

m1({θ2, θ3})

m1(Θ)







T

R(1)







m2({θ1})

m2({θ2})

m2({θ1, θ2})

m2({θ3})

m2({θ1, θ3})

m2({θ2, θ3})

m2(Θ)







1−K

where

R(1) =







1 0 1 0 1 0 1

0 0 0 0 0 0 0

1 0 0 0 1 0 0

0 0 0 0 0 0 0

1 0 1 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0







It can be rewritten to a simpler form as

m({θ1}) = 0.1 =
m1

TR(1)
m2

1−K

For other focal elements,

m({θ2}) = 0.2 =
m1

TR(2)
m2

1−K

2to obtain admissible BBAs with values in [0,1] and their sum equals to
one.

3Here we use the global optimization toolbox in MatlabTM .
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where

R(2) =







0 0 0 0 0 0 0

0 1 1 0 0 1 1

0 1 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0







m({θ1, θ2}) = 0.1 =
m1

TR(3)
m2

1−K

where

R(3) =







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0







m({θ3}) = 0.1 =
m1

TR(4)
m2

1−K

where

R(4) =







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 0 0 1 0 1 0

0 0 0 1 1 0 0

0 0 0 1 0 0 0







m({θ1, θ3}) = 0.1 =
m1

TR(5)
m2

1−K

where

R(5) =







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 0 0

0 0 0 0 1 0 0







m({θ2, θ3}) = 0.3 =
m1

TR(6)
m2

1−K

where

R(6) =







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 0







m(Θ) = 0.1 =
m1

TR(7)
m2

1−K

where

R(7) =







0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1







and the two equations in Eqs.(9) and Eqs.(10). The inequality

constraints are
0 ≤ m1({θ1}) ≤ 1
0 ≤ m1({θ2}) ≤ 1
0 ≤ m1({θ1, θ2}) ≤ 1
0 ≤ m1({θ3}) ≤ 1
0 ≤ m1({θ1, θ3}) ≤ 1
0 ≤ m1({θ2, θ3}) ≤ 1
0 ≤ m1(Θ) ≤ 1

and
0 ≤ m2({θ1}) ≤ 1
0 ≤ m2({θ2}) ≤ 1
0 ≤ m2({θ1, θ2}) ≤ 1
0 ≤ m2({θ3}) ≤ 1
0 ≤ m2({θ1, θ3}) ≤ 1
0 ≤ m2({θ2, θ3}) ≤ 1
0 ≤ m2(Θ) ≤ 1

According to the constrained maximization in Eq. (11), one

can obtain two BBAs as follows:

ma({θ1}) = 0, ma({θ2}) = 0,ma({θ1, θ2}) = 0.0323,
ma({θ3}) = 0.1612, ma({θ1, θ3}) = 0.1612,
ma({θ2, θ3}) = 0.4840, ma(Θ) = 0.1613.

and

mb({θ1}) = 0.0834, ma({θ2}) = 0, mb({θ1, θ2}) = 0.3666,
mb({θ3}) = 0,mb({θ1, θ3}) = 0.0001,
mb({θ2, θ3}) = 0, mb(Θ) = 0.5499.

It is easy to verify that the combination result ma(·)⊕mb(·)
is the same as the given BBA m(·).
B. Example 2

Suppose that there are two BBAs defined on the FOD Θ =
{θ1, θ2, θ3}:

m1({θ1}) = 0.6,m1({θ2}) = 0.2,
m1({θ2, θ3}) = 0.1,m1(Θ) = 0.1.

and
m2({θ1}) = 0.2,m2({θ2}) = 0.6,
m2({θ2, θ3}) = 0.1,m2(Θ) = 0.1.

By calculating the Jousselme’s distance in Eq. (5), one obtains

that

dJ (m1,m2) = 0.4.

With Dempster’s rule of combination, one obtains that m(·) =
m1(·)⊕m2(·) with

m({θ1}) = 0.3846,m({θ2}) = 0.5385,
m({θ2, θ3}) = 0.0577,m(Θ) = 0.0192.

According to the evidence decombination approach in Eq (11),

one obtains that

ma({θ1}) = 0,ma({θ2}) = 0.8750,
ma({θ2, θ3}) = 0.0851,ma(Θ) = 0.0400.

and
mb({θ1}) = 0.9399,mb({θ2}) = 0,
mb({θ2, θ3}) = 0.0131,mb(Θ) = 0.0470.

It is easy to verify that the combination result ma(·)⊕mb(·) =
m(·), which is the same as m1(·)⊕m2(·).

By calculating the Jousselme’s distance given by Eq. (5),

one can verify that

dJ (ma,mb) = 0.9265 > dJ (m1,m2) = 0.4.

C. Example 3

A given combined BBA is the same as that in Example 2.

m({θ1}) = 0.3846,m({θ2}) = 0.5385,
m({θ2, θ3}) = 0.0577,m(Θ) = 0.0192.

Moreover, suppose that we have additional information and

we also know m1(·):
m1({θ1}) = 0.6,m1({θ2}) = 0.2,
m1({θ2, θ3}) = 0.1,m1(Θ) = 0.1.

Then, we try to use the BBA decombination to calculate

the m̂2(·) and to check whether it is the same as m2(·) in
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Example 2. Here is just the case II as aforementioned in Sect

III.A. Therefore, m̂2(·) should be unique. So, there should

exist m2(·) = m̂2(·). It is an over-determined problem, and

we can still use the optimization to solve m̂2(·) by modifying

the optimization problem to

max
m̂2

dJ (m1, m̂2) =

√

0.5 · (m1 − m̂2)
T

Jac (m1 − m̂2)

s.t.



















m(Ck) =
m1

TR(k)
m̂2

1−K
2
n−1
∑

j=1

m̂2(Bj) = 1

0 ≤ m̂2(Bj) ≤ 1, ∀j = 1, ..., 2n − 1
(12)

where

m̂2 =











m̂2({θ1})
m̂2({θ2})

...

m̂2(Θ)











By solving Eq. (12), one obtains

m̂2({θ1}) = 0.2, m̂2({θ2}) = 0.6,
m̂2({θ2, θ3}) = 0.1, m̂2(Θ) = 0.1.

That is, given a combined BBA and one original BBA, another

original one can be determined uniquely.

V. FURTHER ANALYSIS ON EVIDENCE DECOMBINATION

A. Divergence Minimization or Maximization?

In the evidence decombination shown in Eq. (11), distance

maximization is adopted. This is inspired by the minimization

of mutual information (i.e., the maximization of divergence)

between sources in Blind Source Separation (BSS), which

aims to bring out more independent components [24]. One

can also try to implement the evidence decombination based

on the distance minimization. Based on our analysis, we find

that if the distance minimization is used, the minimum distance

will be zero and the BBAs of two sources are identical.

Suppose that m1(·) = m2(·) = m0(·), one can rewrite the

constraints in Eq. (11) as















m(Ck) =
m0

TR(k)
m0

1−K
2
n−1
∑

i=1

m0(Ai) = 1

0 ≤ m0(Bj) ≤ 1, ∀j = 1, ..., 2n − 1

(13)

where

m0 =











m0({θ1})
m0({θ2})

...

m0(Θ)











As we see in Eq. (13), there are 2n − 1 unknown variables

(mass values for 2n−1 focal elements in m0(·)) to determine.

There are 2n − 1 + 1 = 2n simultaneous equations in total.

Therefore, if the solution exists, in general this is an over-

determined problem which has the unique solution.

Here we provide an example to verify this, where the

combined BBA is still as chosen in Example 2, which is

m({θ1}) = 0.3846,m({θ2}) = 0.5385,
m({θ2, θ3}) = 0.0577,m(Θ) = 0.0192.

According to Eq. (11) and change the maximization to mini-

mization, we obtain that m1(·) = m2(·) = m0(·), which is

m0({θ1}) = 0.3877,m0({θ2}) = 0.3958,
m0({θ2, θ3}) = 0.1082,m0(Θ) = 0.1082.

It is easy to verify that m0(·)⊕m0(·) = m(·).
We prefer the criterion of distance maximization, since it

can bring out more distinct (likely to be more independent)

evidences.

Note that since we select the maximization, to assure to

find the unique global optimal, the objective should be upper-

convex. However, the objective function, i.e., the distance

of evidence cannot satisfy this. Therefore, in our work in

this paper, intelligent optimization algorithms [25] (e.g., the

particle swarm algorithm and genetic algorithm) are adopted

for the maximization to achieve a better solution.

B. Possible Applications

Note that given a combined BBA m(·), ma(·) and mb(·)
after the evidence decombination. However, we do not know

the specific correspondence between {ma(·), mb(·)} and

{m1(·), m2(·)}. That is, ma(·) could correspond to m1(·) or

m2(·), and mb(·) could also correspond to m1(·) or m2(·).
Therefore, it cannot be used for analyzing or evaluating

specific single sensor; however, the evidence decombination is

expected to be used in applications like divergence evaluation

between sensors, which is helpful for the sensor management.

Given a BBA, if one can decombine it into two BBAs, then

the maximum difference between corresponding information

sources can be evaluated by calculating the distance between

the two BBAs.

Another possible application is the evaluation of different

combination rules. Here, we only use the Dempster’s rule to

construct the evidence decombination. In fact, other alternative

combination rules can also be used for finding evidence

decombination, where the difference between most of existing

rules of combinations available in the literature lies in the

choice of matrix R(k) in Eq. (7). Then, given a BBA, one

can use different decombination methods corresponding to

different combination rule to bring out different pairs of BBAs.

One can calculate the distance between two BBAs in each pair

to represent the aggregation capability of the corresponding

combination rule. That is, an evidence decombination ap-

proach can bring out a more divergent BBA pair, then the

decombination method’s corresponding combination rule can

aggregate (combine) a more divergent BBA pair to the same

BBA compared with other rules. So we say that it has a better

aggregation capability.
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VI. CONCLUSIONS

In this paper, an evidence decombination approach is pro-

posed, where the distance maximization criterion is adopted

in the evidence decombination. Some numerical examples and

related analysis are provided to illustrate our proposed method

and the possible applications are forecasted.

In this paper, the distance of evidence used in the op-

timization is Jousselme’s distance. In our future work, we

will try other strict distance metric [26], [27] in the theory

of belief functions for comparison. Currently, the objective

function is the distance of evidence. In future work, we will

try to use the difference between BBAs’ uncertainty measure

values [28], [29]. Furthermore, we only consider two sources

of evidence for the evidence decombination for simplicity. In

our future work, we will try to design more sources (larger

than two) for the evidence decombination. This paper is only

a preliminary work on the evidence decombination, in future

research work, we will try to apply the proposed method in

various appropriate applications.
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combination rules for evidence theory,” Information Fusion, vol. 10,
no. 2, pp. 183–197, 2009.

[12] F. Smarandache and J. Dezert, Advances and Applications of DSmT for

Information Fusion-Collected Works-Volume 3. American Research
Press, 2009.

[13] ——, Advances and Applications of DSmT for Information Fusion-

Collected Works-Volume 4. American Research Press, 2015.

[14] D. G. Fantinato, L. T. Duarte, Y. Deville, R. Attux, C. Jutten, and
A. Neves, “A second-order statistics method for blind source separation
in post-nonlinear mixtures,” Signal Processing, vol. 155, pp. 63 – 72,
2019.

[15] P. Comon and C. Jutten, Handbook of Blind Source Separation, Inde-

pendent Component Analysis and Applications. Oxford, UK: Academic
Press, 02 2010.

[16] P. Smets, “The canonical decomposition of a weighted belief,” in Pro-

ceedings of the International Joint Conference on Artificial Intelligence.
Montreal, Quebec, Canada: AAAI, Aug 20th - Aug 25th 1995, pp. 1–6.

[17] L. A. Zadeh, “A simple view of the Dempster-Shafer theory of evidence
and its implication for the rule of combination,” AI Magazine, vol. 7,
no. 2, pp. 85–90, 1986.

[18] J. Dezert and A. Tchamova, “On the validity of Dempster’s fusion
rule and its interpretation as a generalization of Bayesian fusion rule,”
International Journal of Intelligent Systems, vol. 29, no. 3, pp. 223–252,
2014.

[19] D. Han, Y. D. Deng, and C. Han, “Sequential weighted combination
for unreliable evidence based on evidence variance,” Decision Support

Systems, vol. 56, pp. 387–393, 2013.
[20] X. Deng, D. Han, J. Dezert, Y. Deng, and Y. Shyr, “Evidence combina-

tion from an evolutionary game theory perspective,” IEEE Transactions

on Cybernetics, vol. 46, no. 9, pp. 2070–2082, 2016.
[21] R. Haenni, “Shedding new light on Zadeh’s criticism of Dempster’s rule

of combination,” in Proceedings of the 7th International Conference on

Information Fusion, ISIF. Philadelphia, Pennsylvania, USA: IEEE, June
27th-July 1st 2006, pp. 1–6.

[22] A.-L. Jousselme, D. Grenier, and É. Bossé, “A new distance between
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User-specified Optimization Based Transformation
of Fuzzy Membership into Basic Belief Assignment

Abstract—To combine different types of uncertain information
from different sources under different frameworks, we need
transformations between different frameworks. For the trans-
formation of a fuzzy membership function (FMF) into a basic
belief assignment (BBA), several approaches have been proposed.
Among these approaches, the uncertainty optimization based
transformations can provide BBAs without predefining focal
elements. However, these two transformations, which respectively
use the uncertainty maximization and minimization criteria,
emphasize the extreme cases of uncertainty. We expect to obtain
a BBA, which is the trade-off between the two BBAs obtained
by solving the uncertainty maximization and minimization, to
avoid extreme attitudinal bias. In this paper, we propose two
transformations of an FMF into a BBA by using a user-specified
weighting factor to obtain such a trade-off (or balanced) BBA.
Some examples and related analyses are provided to show the
rationality and effectiveness of the proposed transformations.

Index Terms—evidence theory, basic belief assignment, fuzzy
membership function, optimization, transformation

I. INTRODUCTION

In the information fusion, we need to deal with a large
amount of uncertain information. Various types of uncertainty
theories have been proposed to deal with different types of
uncertainty, e.g., the probability theory, fuzzy set theory [1],
possibility theory [2], rough set theory [3] and Dempster-
Shafer evidence theory (DST) [4] etc. When we fuse the
information from different sources under different theoretical
frameworks, we need the transformation between different
frameworks.

For the information represented by the FMF and BBA, we
can transform an FMF into a BBA. Then, we can combine
the BBAs to implement the information fusion. There have
been proposed many transformations of an FMF into a BBA
[5]–[9]. In [5], Bi et al. proposed a transformation that
normalizes a given FMF to generate a BBA with singleton
focal elements only. By using the α-cut approach, Florea et
al. [6] transformed an FMF into a BBA with focal elements
nested in order. However, these two approaches above have to
predefine the focal elements, which lack of intuitiveness and

This work was supported by the National Natural Science Foundation
(Nos. 61573275, 61671370), Postdoctoral Science Foundation of China
(No. 2016M592790), Postdoctoral Science Research Foundation of Shaanxi
Province (No. 2016BSHEDZZ46) and Fundamental Research Funds for the
Central Universities (No. xjj2016066).

objectiveness. Han et al. [7] proposed two approaches without
predefining focal elements. These two approaches can provide
BBAs by solving constrained uncertainty maximization and
minimization.

For the two transformations of Han et al. [7], both two
objective functions are the ambiguity measure (AM ) and their
constraints are mainly constructed based on the given FMF.
Their rationality and effectiveness are both justified in [7].
During the process of solving optimization problems, these
two transformations emphasize on the minimum and maximal
uncertainties of the BBA, respectively. We think that the
BBA being the trade-off (or balanced) between the two BBAs
obtained by solving the uncertainty maximization and mini-
mization is more preferred, which might avoid being “one-
sided” on the uncertainty degree. In this paper, we propose
two approaches by using a user-specified weighting factor to
determine BBAs. One transformation is the weighted average
by using the user-specified weighting factor with the two
BBAs obtained by optimization based transformations [7]. The
other transformation brings out a trade-off BBA by solving
a constrained minimization problem. The objective function
is based on the user-specified weighting factor, the distance
of evidence and the two BBAs obtained by uncertainty opti-
mization. The constraints are mainly based on the given FMF.
That is, each of our proposed transformations can transform
an FMF into a BBA, which can be considered as the trade-off
between the two BBAs obtained with uncertainty optimization.
Some examples and related analyses are provided to justify the
proposed transformations.

II. PRELIMINARY

A. Basics of the Theory of Belief Functions

The theory of belief functions [4], introduced historically
by Shafer in DST, is a powerful framework for uncertainty
modeling and reasoning. Let Θ = {θ1, θ2, ..., θn} be the frame
of discernment (FOD). Under the closed world assumption,
the FOD is mutually exclusive and exhaustive. The BBA (also
called a mass function) is defined on the power set of Θ, which
can be denoted by a function m : 2Θ → [0, 1] satisfying∑

A⊆Θ

m(A) = 1,m(∅) = 0 (1)

Originally published as: X. Fan, D. Han, J. Dezert, Y. Yang, User-Specified Optimization Based 
Transformation of Fuzzy Membership Into Basic Belief Assignment, in Proc. of Int. Conf. on Information 
Fusion (Fusion 2019), Ottawa, Canada, July 2-5, 2019, and reprinted with permission.
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where ∅ denotes the empty set. ∀A, if m(A) > 0, then A is
called a focal element. m(A) denotes the evidence support to
the proposition A.

The belief function Bel for all A ⊆ Θ, as:

Bel(A) =
∑
B⊆A

m(B) (2)

The plausibility function Pl for all A ⊆ Θ, as:

Pl(A) =
∑

A∩B 6=∅

m(B) (3)

Suppose there are two independent BBAs m1 and m2 on the
same FOD. Historically Shafer proposed Dempster’s rule to
combine two (or more) BBAs. Dempster’s rule of combination
is

m(A) =


0, A = ∅∑
B∩C=A

m1(B)m2(C)

1−K
, A 6= ∅

(4)

where K =
∑
B∩C=∅m1(B)m2(C) represents the conflict

coefficient between two BBAs. There exist other alternative
combination rules [10], [11].

B. Uncertainty Measure of a BBA

The uncertainty of a BBA includes two types: the dis-
cord and the non-specificity. Different measures of uncer-
tainty [12]–[16] have been proposed, e.g., the non-specificity
measure [14], the ambiguity measure (AM ) [15] and the
aggregated uncertainty (AU ) [16]. The definition of AM is
as follows:

AM(m) = −
∑
θ∈Θ

BetPm(θ) log2(BetPm(θ)) (5)

where BetPm(θ) =
∑
θ∈A⊆Θm(A)/ |A| is the pignistic

probability [17]. |A| denotes the cardinality of the set A.

III. TRANSFORMATION OF FMF INTO BBA

A. Concept of Fuzzy Set

Fuzzy sets [1] were proposed by Zadeh to describe the
concepts without precise definitions. Let Θ be the universe
of discourse (equivalent to FOD in the belief functions). A
fuzzy membership function is denoted by u = µ(θ), θ ∈ Θ.
For µ : Θ → [0, 1], µ(θ) ∈ [0, 1] is called the degree of
membership for θ.

B. Traditional Transformations of FMF into BBA

a) Transformations with the predefinition of focal ele-
ments: For a given FMF, two available types of transforma-
tions below can provide a BBA, which have to predefine the
focal elements. Suppose that the FOD is Θ = {θ1, θ2, ..., θn}
and the given FMF is µ = [µ(θ1), µ(θ2), ..., µ(θn)]. The
obtained BBA is represented by m.

In the work of Bi et al. [5], the BBA is determined as
follows:

m({θi}) = µ(θi)

/
n∑
j=1

µ(θj) (6)

This approach predefines all focal elements as singletons, and
it is the result of normalization for the given FMF.

Another transformation with the predefinition of focal el-
ements is the work of Florea et al. [6] by using the α-cut
approach. Suppose that µ(θ1), µ(θ2), ..., µ(θn) are sorted into
ascending order as 0 = α0 < α1 < α2 < ... < αM ≤ 1, where
M ≤ |Θ|. The BBA is determined by using the transformation
[6] as follows:

m(Aj) =
αj − αj−1

αM
(7)

where Aj = {θi ∈ Θ|µ(θi) ≥ αj}, i = 1, 2, ..., n, j =
1, 2, ...,M . This transformation predefines the focal elements
nested in order for the given FMF.

Both two approaches can transform an FMF into a BBA.
However, the transformations with the predefinition of focal
elements lack of intuitiveness and objectiveness. For a given
FMF, the optimization based transformations can obtain a BBA
without predefining the focal elements.

b) Transformations based on the uncertainty optimiza-
tion: In the work of Han et al. [7], the two transformations
that have no predefinition of focal elements are obtained
by solving the uncertainty maximization and minimization.
Suppose that the FOD is Θ = {θ1, θ2, ..., θn} and the given
FMF is µ = [µ(θ1), µ(θ2), ..., µ(θn)]. The obtained BBA is
represented by m.

There exists a relationship [18] between the FMF and the
belief function or plausibility function. When

∑n
i=1 µ(θi) ≥ 1,

the FMF is equivalent to a singleton plausibility function,
which is denoted by

Pl({θi}) =
∑

{θi}∩A6=∅

m(A) = µ(θi),∀ {θi} ⊆ Θ (8)

It is the necessary and sufficient condition for the FMF to be
a singleton plausibility function.

When
∑n
i=1 µ(θi) ≤ 1, the FMF is equivalent to a singleton

belief function, which is denoted by

Bel({θi}) =
∑

A⊆{θi}

m(A) = µ(θi),∀ {θi} ⊆ Θ (9)

Similarly, it is the necessary and sufficient condition for the
FMF to be a singleton belief function.

The detailed proof of the above relationships are given in
[18].

There is a BBA transformed from a given FMF, and the
FMF and BBA satisfy Eq. (8) or Eq. (9). Then, n linear
equations for the corresponding relations can be obtained. In
addition, one has

∑
A⊆Θm(A) = 1. There exist n+ 1 linear

equations. However, except for m(∅) = 0, in the worst case
there are 2n−1 focal elements to assign the belief. The n+ 1
linear equations with respect to 2n−1 undetermined variables,
which is an under-determined problem, i.e., it usually has
multiple solutions.

Therefore, to obtain a unique BBA, Han et al. [7] established
two uncertainty optimization based transformations for the
given FMF. Both two objective functions are AM and the
constraints are mainly based on the given FMF.
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The objective function of the uncertainty maximization
problem and the corresponding constraints are as follows:
When

∑n
i=1 µ(θi) ≥ 1,

max
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

{θi}∩A6=∅
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(10)

When
∑n
i=1 µ(θi) ≤ 1,

max
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

A⊆{θi}
m(A) = µ(θi), ∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(11)

In the sequel, this transformation is represented by “Tmax”
for convenience.

The objective function of the uncertainty minimization
problem and the corresponding constraints are as follows:
When

∑n
i=1 µ(θi) ≥ 1,

min
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

{θi}∩A6=∅
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(12)

When
∑n
i=1 µ(θi) ≤ 1,

min
m

{
−

n∑
i=1

[BetPm(θi) log2(BetPm(θi))]

}

s.t.


∑

A⊆{θi}
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(13)

In the sequel, this transformation is represented by “Tmin” for
convenience.

The unique BBA can be determined without predefining
focal elements by using “Tmax” or “Tmin”. The obtained BBA
is the optimal solution of the uncertainty maximization or
minimization. During the process of transforming an FMF into
a BBA, “Tmax” and “Tmin” emphasize on the maximal and
minimum uncertainty cases of the obtained BBA, respectively.
We think that the BBA being the trade-off between the
two BBAs obtained by using “Tmax” and “Tmin” is more
preferred, which might avoid bias in terms of uncertainty
degree.

IV. TRANSFORMATIONS WITH USER-SPECIFIED
WEIGHTING FACTOR

As aforementioned, we can obtain two BBAs by using
“Tmax” and “Tmin”, respectively. Based on these two BBAs,

we aim to construct a transformation to determine a trade-
off BBA. The trade-off BBA which satisfies the relationship
between the FMF and the singleton plausibility or singleton
belief. We use a user-specified weighting factor to influence
how close the trade-off BBA is to each of the two BBAs above.
Suppose that the user-specified weighting factor is represented
by α and 0 ≤ α ≤ 1. When α→ 0, the trade-off BBA is close
to the BBA obtained by using “Tmin”. When α → 1, the
trade-off BBA is close to the BBA obtained by using “Tmax”.
To meet the requirements above, we propose two different
approaches to determine the trade-off BBAs.

A. Weighted Average based Transformation

Let Θ = {θ1, θ2, ..., θn} be the FOD. The given FMF is
represented by µ = [µ(θ1), µ(θ2), ..., µ(θn)]. Suppose that the
BBA obtained by using “Tmin” is denoted by mmin, and the
BBA obtained by using “Tmax” is denoted by mmax. The
user-specified weighting factor is denoted by α (0 ≤ α ≤ 1).
The trade-off BBA is denoted by m. The Weighted Average
of mmin and mmax can bring out a trade-off BBA as follows:

m(A) = (1− α) ·mmin(A) + α ·mmax(A) (14)

where A ⊆ Θ. In the sequel, the transformation based on the
weighted average (WA) is denoted by “TWA” for convenience.

The BBA obtained in (14) is an admissible BBA and it
satisfies the constraints established based on FMF.

According to Eq. (14), the following conditions can be
satisfied: ∑

A⊆Θ

m(A) = 1, 0 ≤ m(A) ≤ 1 (15)

For the transformation of an FMF into a BBA, it is necessary
that the obtained BBA satisfies the relationship between the
FMF and the singleton plausibility or singleton belief. Al-
though “TWA” is a simple and direct transformation of an
FMF into a trade-off BBA, it also satisfies the relationship.
The proof is provided below.

When
∑n
i=1 µ(θi) ≥ 1, mmin and mmax satisfy Eq. (6),

respectively, i.e., Plmin ({θi}) = Plmax ({θi}) = µ(θi), i =
1, 2, ..., n. According to Eq. (14),

Pl({θi}) =
∑

{θi}∩A6=∅

m(A)

=
∑

{θi}∩A6=∅

[(1−α)·mmin(A)+α·mmax(A)]

=(1−α)·
∑
{θi}∩A6=∅

mmin(A)+α·
∑
{θi}∩A6=∅

mmax(A)

= (1− α)·Plmin ({θi}) + α·Plmax ({θi})
= (1− α) · µ(θi) + α · µ(θi)

= µ(θi)

(16)

Similarly, when
∑n
i=1 µ(θi) ≤ 1, mmin and mmax satisfy

Eq. (7), respectively, i.e., Belmin ({θi}) = Belmax ({θi}) =
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µ(θi), i = 1, 2, ..., n. According to Eq. (14),

Bel ({θi}) =
∑

A⊆{θi}

m(A)

=
∑
A⊆{θi}

[(1−α)·mmin(A) + α·mmax(A)]

=(1−α)·
∑
A⊆{θi}

mmin(A)+α·
∑
A⊆{θi}

mmax(A)

= (1− α)·Belmin ({θi})+α·Belmax ({θi})
= (1− α) · µ(θi) + α · µ(θi)

= µ(θi)

(17)

For the trade-off BBA, when
∑n
i=1 µ(θi) ≥ 1, the given

FMF is equivalent to the corresponding singleton plausibility.
When

∑n
i=1 µ(θi) ≤ 1, the given FMF is equivalent to the

corresponding singleton belief. That is, “TWA” can transform
the given FMF into the trade-off BBA, which satisfies the
relationship between the FMF and the BBA.

B. User-specified Optimization based Transformation

Let the FOD be Θ = {θ1, θ2, ..., θn}. The given FMF is
denoted by µ = [µ(θ1), µ(θ2), ..., µ(θn)]. Suppose that mmin

and mmax denote the BBAs obtained by “Tmin” and “Tmax”,
respectively. The user-specified weighting factor is denoted by
α (0 ≤ α ≤ 1). The trade-off BBA is represented by m.

The user-specified weighting factor is used to influence the
similarity between the trade-off BBA and mmin (or mmax).
The degree of similarity between two BBAs is represented by
the distance of evidence. We can use the Jousselme’s distance
[19], which is a strict metric defined as

dJ(ma,mb) =

√
1

2
(ma −mb)D(ma −mb) (18)

where D(A,B) = |A ∩B| / |A ∪B|, A ⊆ Θ, B ⊆ Θ.
According to Eq. (18), the obtained BBA is more similar to
mmin, if dJ(m,mmin) is smaller. If dJ(m,mmax) is smaller,
the obtained BBA is more similar to mmax.

To obtain the trade-off BBA between mmin and mmax, a
relationship between the user-specified weighting factor and
the distance of evidence can be constructed. When α is given
from 0 to 1, with the decreasing of dJ(m,mmin), the value
of dJ(m,mmax) is increasing. Then we can establish the
following equation:

dJ(m,mmin)

dJ(m,mmax)
=

α

1− α
(19)

The BBA satisfies Eq. (19) may not always exist. If the fol-
lowing function (equivalent to Eq. (19)) achieves the minimum
value, then the trade-off BBA is obtained.

obj(m) = [(1− α)·dJ(m,mmin)− α·dJ(m,mmax)]
2 (20)

When α is given, we can establish a constrained minimiza-
tion problem to transform an FMF into a BBA. The objective
function is Eq. (20) and the constraints are mainly based on

Eq. (6) or Eq. (7). The transformation of an FMF into a trade-
off BBA is obtained by solving the user-specified optimization
problem as follows:
When

∑n
i=1 µ(θi) ≥ 1,

min
m

{
[(1− α)·dJ(m,mmin)− α·dJ(m,mmax)]

2
}

s.t.


∑

{θi}∩A6=∅
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(21)

When
∑n
i=1 µ(θi) ≤ 1,

min
m

{
[(1− α)·dJ(m,mmin)− α·dJ(m,mmax)]

2
}

s.t.


∑

A⊆{θi}
m(A) = µ(θi),∀ {θi} ⊆ Θ∑

A⊆Θ

m(A) = 1

0 ≤ m(A) ≤ 1

(22)

In the sequel, the transformation based on the user-specified
optimization (USO) is denoted by “TUSO” for convenience.

For a given FMF, the trade-off BBA can be obtained by
using “TUSO”, which is a user-specified optimization based
transformation.

V. EXPERIMENTS

In this section, we provide some examples to illustrate how
to transform an FMF into a trade-off BBA using our approach-
es. Here, we use the optimization toolbox in the MatlabTM to
solve the optimization problems under constraints.

A. Example 1

Let the FOD be Θ = {θ1, θ2, θ3}. The given FMF is
µ(θ1) = 0.9, µ(θ2) = 0.7, µ(θ3) = 0.3. Suppose that
mmin and mmax are the BBAs obtained by using “Tmin” and
“Tmax”, respectively. We just list the corresponding BBAs for
α = 0, 0.3, 0.7 and 1.

This FMF satisfies
∑3
i=1 µ(θi) = 1.9 > 1. Therefore, the

given FMF is equivalent to the singleton plausibility. The
BBAs obtained by using “TWA” and “TUSO” are listed in
the Table I and Table II, respectively.

By using “TWA” and “TUSO”, when α = 0, the obtained
BBAs are identical to mmin, and the values of AM are the
minimum uncertainty. When α → 0, the obtained BBA is
similar to mmin, and its uncertainty is close to the minimum
uncertainty.

Similarly, when α = 1, the obtained BBAs are identical to
mmax, and the values of AM are the maximal uncertainty.
When α → 1, the obtained BBA is similar to mmax, and its
uncertainty is close to the maximal uncertainty.

B. Example 2

Let the FOD be Θ = {θ1, θ2, θ3, θ4}. The given FMF is
µ(θ1) = 1, µ(θ2) = 0.2, µ(θ3) = 0.3, µ(θ4) = 0.3. Suppose
that mmin and mmax are the BBAs obtained by using “Tmin”
and “Tmax”, respectively. We just list the corresponding BBAs
for α = 0, 0.2, 0.8 and 1.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

742



TABLE I
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 1.

α BBA AM

α = 0
m({θ1}) = 0.3, m({θ1, θ2}) = 0.3

1.3367
m({θ2}) = 0.1, m(Θ) = 0.3

α = 0.3

m({θ1}) = 0.21, m({θ1, θ2}) = 0.42

1.4003m({θ2}) = 0.07, m({θ1, θ3}) = 0.06

m({θ3}) = 0.03, m(Θ) = 0.21

α = 0.7

m({θ1}) = 0.09, m({θ1, θ2}) = 0.58

1.4730m({θ2}) = 0.03, m({θ1, θ3}) = 0.14

m({θ3}) = 0.07, m(Θ) = 0.09

α = 1
m({θ1, θ2}) = 0.7, m({θ3}) = 0.1

1.5129
m({θ1, θ3}) = 0.2

TABLE II
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 1.

α BBA AM

α = 0
m({θ1}) = 0.3, m({θ1, θ2}) = 0.3

1.3367
m({θ2}) = 0.1, m(Θ) = 0.3

α = 0.3

m({θ1}) = 0.2027, m({θ1, θ2}) = 0.4145

1.3969m({θ2}) = 0.0828, m({θ1, θ3}) = 0.0802

m({θ3}) = 0.0172, m(Θ) = 0.2026

α = 0.7

m({θ1}) = 0.1037, m({θ1, θ2}) = 0.5962

1.4828m({θ2}) = 0.0001, m({θ1, θ3}) = 0.0965

m({θ3}) = 0.0999, m(Θ) = 0.1036

α = 1
m({θ1, θ2}) = 0.7, m({θ3}) = 0.1

1.5129
m({θ1, θ3}) = 0.2

According to
∑4
i=1 µ(θi) = 1.8 > 1, the FMF is equivalent

to the singleton plausibility. In the Table III and Table IV,
the BBAs obtained by using “TWA” and “TUSO” are listed,
respectively.

When α = 0, the obtained BBAs are identical to mmin, and
the values of AM are the minimum uncertainty. When α = 1,
the obtained BBAs are identical to mmax, and the values of
AM are the maximal uncertainty.

In the Table III and Table IV, when α → 0, the obtained
BBA is similar to mmin, and its uncertainty is close to the
minimum uncertainty. When α → 1, the obtained BBA is
similar to mmax, and its uncertainty is close to the maximal
uncertainty.

TABLE III
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 2.

α BBA AM

α = 0
m({θ1}) = 0.7, m(Θ) = 0.2

1.0896
m({θ1, θ3, θ4}) = 0.1

α = 0.2

m({θ1}) = 0.60, m({θ1, θ2}) = 0.04

1.2099m({θ1, θ3}) = 0.06, m({θ1, θ4}) = 0.06

m({θ1, θ3, θ4}) = 0.08, m(Θ) = 0.16

α = 0.8

m({θ1}) = 0.3, m({θ1, θ2}) = 0.16

1.5122m({θ1, θ3}) = 0.24, m({θ1, θ4}) = 0.24

m({θ1, θ3, θ4}) = 0.02, m(Θ) = 0.04

α = 1
m({θ1}) = 0.2, m({θ1, θ2}) = 0.2

1.5955
m({θ1, θ3}) = 0.3, m({θ1, θ4}) = 0.3

TABLE IV
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 2.

α BBA AM

α = 0
m({θ1}) = 0.7, m(Θ) = 0.2

1.0896
m({θ1, θ3, θ4}) = 0.1

α = 0.2

m({θ1}) = 0.6008, m({θ1, θ2}) = 0.0471

1.2133

m({θ1, θ3}) = 0.0484

m({θ1, θ2, θ3}) = 0.0037

m({θ1, θ4}) = 0.0515

m({θ1, θ2, θ4}) = 0.0006

m({θ1, θ3, θ4}) = 0.0993, m(Θ) = 0.1486

α = 0.8

m({θ1}) = 0.2990, m({θ1, θ2}) = 0.1665

1.5227
m({θ1, θ3}) = 0.2345, m({θ1, θ4}) = 0.2010

m({θ1, θ2, θ4}) = 0.0335

m({θ1, θ3, θ4}) = 0.0655

α = 1
m({θ1}) = 0.2, m({θ1, θ2}) = 0.2

1.5955
m({θ1, θ3}) = 0.3, m({θ1, θ4}) = 0.3

C. Example 3

Let the FOD be Θ = {θ1, θ2, θ3, θ4}. The given FMF is
µ(θ1) = 0.6, µ(θ2) = 0.1, µ(θ3) = 0.2, µ(θ4) = 0.1. We just
list the corresponding BBAs for α = 0, 0.4, 0.9 and 1.

This FMF satisfies
∑4
i=1 µ(θi) = 1. The FMF is equivalent

to the singleton plausibility or singleton belief. In the Table
V and Table VI, the BBAs obtained by using “TWA” and
“TUSO” are listed, respectively.

In the Table V and Table VI, the BBAs obtained when α = 0
are identical to the BBAs obtained when α = 1, i.e., the two
BBAs obtained by using “Tmin” and “Tmax” are the same.
Therefore, ∀α ∈ [0, 1], the obtained BBAs are without the
influence of α. When α is given from 0 to 1, all the obtained
BBAs are Bayesian belief functions and are identical.

TABLE V
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 3.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.4
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.9
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

D. Example 4

Let the FOD be Θ = {θ1, θ2, θ3}. The given FMF is
µ(θ1) = 0.6, µ(θ2) = 0.2, µ(θ3) = 0.1. Suppose that
mmin and mmax are the BBAs obtained by using “Tmin” and
“Tmax”, respectively. We just list the corresponding BBAs for
α = 0, 0.3, 0.8 and 1.

This FMF satisfies
∑3
i=1 µ(θi) = 0.9 < 1. The FMF is

equivalent to the singleton belief. The BBAs obtained by using
“TWA” and “TUSO” are listed in the Table VII and Table VIII,
respectively.
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TABLE VI
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 3.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.4
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 0.9
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.1

1.5710
m({θ3}) = 0.2, m({θ4}) = 0.1

In the Table VII and Table VIII, when α = 0, the obtained
BBAs are identical to mmin, and the values of AM are the
minimum uncertainty. When α = 1, the obtained BBAs are
identical to mmax, and the values of AM are the maximal
uncertainty. When α → 0, the obtained BBA is similar to
mmin, and its uncertainty is close to the minimum uncertainty.
When α → 1, the obtained BBA is similar to mmax, and its
uncertainty is close to the maximal uncertainty.

TABLE VII
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 4.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ3}) = 0.1

1.2362
m({θ2}) = 0.2, m({θ1, θ2}) = 0.1

α = 0.3

m({θ1}) = 0.6, m({θ1, θ2}) = 0.07

1.2749m({θ2}) = 0.2, m({θ2, θ3}) = 0.03

m({θ3}) = 0.1

α = 0.8

m({θ1}) = 0.6, m({θ1, θ2}) = 0.02

1.3321m({θ2}) = 0.2, m({θ2, θ3}) = 0.08

m({θ3}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.2

1.3527
m({θ3}) = 0.1, m({θ2, θ3}) = 0.1

TABLE VIII
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 4.

α BBA AM

α = 0
m({θ1}) = 0.6, m({θ3}) = 0.1

1.2362
m({θ2}) = 0.2, m({θ1, θ2}) = 0.1

α = 0.3

m({θ1}) = 0.6, m({θ1, θ2}) = 0.0697

1.2748m({θ2}) = 0.2, m({θ1, θ3}) = 0.0006

m({θ3}) = 0.1, m({θ2, θ3}) = 0.0297

α = 0.8

m({θ1}) = 0.6, m({θ1, θ2}) = 0.02

1.3321m({θ2}) = 0.2, m({θ2, θ3}) = 0.08

m({θ3}) = 0.1

α = 1
m({θ1}) = 0.6, m({θ2}) = 0.2

1.3527
m({θ3}) = 0.1, m({θ2, θ3}) = 0.1

E. Example 5

Suppose that a system of classification with three sensors,
including displacement sensor S1, pressure sensor S2 and
image sensor S3. Let the FOD be Θ = {θ1, θ2, θ3}. Three
sensors are used for measuring the size, weight and state of the
sample, respectively. The measurements of sensors are used to

obtain two FMFs and a BBA. According to the parameters and
the measurements of the sensor, the FMF is defined as

µ(θj) =


x−mini
avei −mini

, x ∈ [mini, avei]

x−maxi
avei −maxi

, x ∈ (avei,maxi]

0, others

(23)

where i = 1, 2. mini and maxi are the minimum and maximal
values of the class θj (j = 1, 2, 3), respectively. avei is the
average value of the class θj .

TABLE IX
THE PARAMETERS AND THE MEASUREMENTS OF SENSORS.

Class S1 S2

min1 max1 ave1 min2 max2 ave2
θ1 43.3 58.4 50.8 2.9 4.1 3.4
θ2 50.9 70.1 59.5 2.0 3.4 2.8
θ3 49.4 79.3 65.7 2.2 3.8 2.9

Sample 56 3.2

In the Table IX, the parameters of S1 and S2 and the
measurements of a sample are listed. The class of this sample
is θ2. According to (23), two FMFs are as follows:
S1 : µ(θ1) = 0.3158, µ(θ2) = 0.5930, µ(θ3) = 0.4049;
S2 : µ(θ1) = 0.6, µ(θ2) = 0.6667, µ(θ3) = 0.3333.

According to the image of S3, the expert determined the
BBA directly as follows:
mS3

({θ3})=0.51, mS3
({θ2, θ3})=0.38, mS3

(Θ)=0.11.

TABLE X
USING “TWA” TO OBTAIN BBAS IN EXAMPLE 5.

α mS1 mS2

α = 0

mS1 ({θ1}) = 0.0021 mS2 ({θ1}) = 0.2667

mS1 ({θ2}) = 0.5930 mS2 ({θ2}) = 0.4

mS1
({θ3}) = 0.0912 mS2

({θ1, θ3}) = 0.0666

mS1
({θ1, θ3}) = 0.3137 mS2

({Θ}) = 0.2667

α = 0.3

mS1
({θ1}) = 0.0759 mS2

({θ1}) = 0.1967

mS1
({θ2}) = 0.4989 mS2

({θ2}) = 0.3

mS1 ({θ1, θ2}) = 0.0203 mS2 ({θ1, θ2}) = 0.17

mS1
({θ3}) = 0.1115 mS2

({θ3}) = 0.09

mS1
({θ1, θ3}) = 0.2196 mS2

({θ1, θ3}) = 0.0466

mS1
({θ2, θ3}) = 0.0738 mS2

({θ2, θ3}) = 0.01

mS2 ({Θ}) = 0.1867

α = 0.8

mS1
({θ1}) = 0.1989 mS2

({θ1}) = 0.08

mS1 ({θ2}) = 0.3420 mS2 ({θ2}) = 0.1334

mS1
({θ1, θ2}) = 0.0542 mS2

({θ1, θ2}) = 0.4534

mS1
({θ3}) = 0.1454 mS2

({θ3}) = 0.24

mS1
({θ1, θ3}) = 0.0627 mS2

({θ1, θ3}) = 0.0133

mS1 ({θ2, θ3}) = 0.1968 mS2 ({θ2, θ3}) = 0.0266

mS2
({Θ}) = 0.0533

α = 1

mS1 ({θ1}) = 0.2480 mS2 ({θ1}) = 0.0333

mS1
({θ2}) = 0.2793 mS2

({θ2}) = 0.0667

mS1
({θ1, θ2}) = 0.0687 mS2

({θ1, θ2}) = 0.5667

mS1 ({θ3}) = 0.1590 mS2 ({θ3}) = 0.3

mS1
({θ2, θ3}) = 0.2459 mS2

({θ2, θ3}) = 0.0333

Suppose that mS1
and mS2

denote the obtained BBAs
transformed from the two FMFs of S1 and S2, respectively.
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TABLE XI
USING “TUSO” TO OBTAIN BBAS IN EXAMPLE 5.

α mS1 mS2

α = 0

mS1 ({θ1}) = 0.0021 mS2 ({θ1}) = 0.2667

mS1
({θ2}) = 0.5930 mS2

({θ2}) = 0.4

mS1
({θ3}) = 0.0912 mS2

({θ1, θ3}) = 0.0666

mS1 ({θ1, θ3}) = 0.3137 mS2 ({Θ}) = 0.2667

α = 0.3

mS1
({θ1}) = 0.0354 mS2

({θ1}) = 0.1902

mS1 ({θ2}) = 0.4927 mS2 ({θ2}) = 0.2641

mS1 ({θ1, θ2}) = 0.0670 mS2 ({θ1, θ2}) = 0.2124

mS1
({θ3}) = 0.1654 mS2

({θ3}) = 0.0291

mS1
({θ1, θ3}) = 0.2062 mS2

({θ1, θ3}) = 0.1140

mS1 ({θ2, θ3}) = 0.0260 mS2 ({θ2, θ3}) = 0.1068

mS1
({Θ}) = 0.0073 mS2

({Θ}) = 0.0834

α = 0.8

mS1 ({θ1}) = 0.1918 mS2 ({θ1}) = 0.0942

mS1
({θ2}) = 0.3190 mS2

({θ2}) = 0.1193

mS1
({θ1, θ2}) = 0.0844 mS2

({θ1, θ2}) = 0.4532

mS1
({θ3}) = 0.2152 mS2

({θ3}) = 0.2379

mS1 ({θ2, θ3}) = 0.15 mS2 ({θ1, θ3}) = 0.0012

mS1
({Θ}) = 0.0396 mS2

({θ2, θ3}) = 0.0428

mS2
({Θ}) = 0.0514

α = 1

mS1
({θ1}) = 0.2480 mS2

({θ1}) = 0.0333

mS1
({θ2}) = 0.2793 mS2

({θ2}) = 0.0667

mS1
({θ1, θ2}) = 0.0687 mS2

({θ1, θ2}) = 0.5667

mS1 ({θ3}) = 0.1590 mS2 ({θ3}) = 0.3

mS1
({θ2, θ3}) = 0.2459 mS2

({θ2, θ3}) = 0.0333

TABLE XII
THE COMBINED BBAS IN EXAMPLE 5.

α “TWA” “TUSO”

α = 0

m({θ1}) = 0.0276 m({θ1}) = 0.0276

m({θ2}) = 0.5731 m({θ2}) = 0.5731

m({θ3}) = 0.3652 m({θ3}) = 0.3652

m({θ1, θ3}) = 0.0340 m({θ1, θ3}) = 0.0340

α = 0.3

m({θ1}) = 0.0429 m({θ1}) = 0.0408

m({θ2}) = 0.5531 m({θ2}) = 0.5547

m({θ1, θ2}) = 0.0024 m({θ1, θ2}) = 0.0069

m({θ3}) = 0.3637 m({θ3}) = 0.375

m({θ1, θ3}) = 0.0168 m({θ1, θ3}) = 0.0135

m({θ2, θ3}) = 0.0212 m({θ2, θ3}) = 0.0089

m({Θ}) = 0.0002

α = 0.8

m({θ1}) = 0.0513 m({θ1}) = 0.0418

m({θ2}) = 0.5409 m({θ2}) = 0.5341

m({θ1, θ2}) = 0.0089 m({θ1, θ2}) = 0.0199

m({θ3}) = 0.3747 m({θ3}) = 0.3780

m({θ1, θ3}) = 0.0014 m({θ2, θ3}) = 0.0255

m({θ2, θ3}) = 0.0228 m({Θ}) = 0.0007

α = 1

m({θ1}) = 0.0487 m({θ1}) = 0.0487

m({θ2}) = 0.5435 m({θ2}) = 0.5435

m({θ1, θ2}) = 0.0124 m({θ1, θ2}) = 0.0124

m({θ3}) = 0.3837 m({θ3}) = 0.3837

m({θ2, θ3}) = 0.0118 m({θ2, θ3}) = 0.0118

TABLE XIII
THE PIGNISTIC PROBABILITIES IN EXAMPLE 5.

α “TWA” “TUSO”

α = 0

BetP ({θ1}) = 0.0446 BetP ({θ1}) = 0.0446

BetP ({θ2}) = 0.5731 BetP ({θ2}) = 0.5731

BetP ({θ3}) = 0.3822 BetP ({θ3}) = 0.3822

α = 0.3

BetP ({θ1}) = 0.0525 BetP ({θ1}) = 0.0511

BetP ({θ2}) = 0.5648 BetP ({θ2}) = 0.5627

BetP ({θ3}) = 0.3827 BetP ({θ3}) = 0.3863

α = 0.8

BetP ({θ1}) = 0.0565 BetP ({θ1}) = 0.0520

BetP ({θ2}) = 0.5567 BetP ({θ2}) = 0.5570

BetP ({θ3}) = 0.3868 BetP ({θ3}) = 0.3910

α = 1

BetP ({θ1}) = 0.0549 BetP ({θ1}) = 0.0549

BetP ({θ2}) = 0.5556 BetP ({θ2}) = 0.5556

BetP ({θ3}) = 0.3895 BetP ({θ3}) = 0.3895

The BBAs obtained by using “TWA” and “TUSO” are listed
in the Table X and Table XI, respectively. Then, we combine
these three BBAs (i.e., mS1 , mS2 and mS3 ). The combined
BBA is represented by m. The combined BBAs and the
pignistic probabilities are listed in the Table XII and Table
XIII, respectively. We just list the corresponding BBAs for
α = 0, 0.3, 0.8 and 1.

In the Table XIII, all the classification results are θ2 and
are correct. When α is given from 0 to 1, mS1

({θ2}) and
mS2

({θ2}) are decreasing in the Table X and Table XI. With
the increasing value of α, mS1

and mS2
are more close to

mmax (i.e., the BBA obtained by using “Tmax” or the BBA
obtained when α = 1), which is the reason of the decreasing
value of BetP ({θ2}) in the Table XIII.

VI. CONCLUSIONS

In this paper, we have proposed two approaches with a
user-specified weighting factor to transform a given FMF into
a trade-off BBA. These two approaches are both effective
approaches for obtaining a trade-off BBA. The users can
transform a given FMF into a BBA by their preferred ap-
proach. With the cardinality of FOD increasing, the computa-
tional complexity of the optimization will become exponential
growth. The reason for this is the structure of the belief
functions. By using the user-specified weighting factor to
influence how close the trade-off BBA is to each of the two
BBAs obtained by solving the uncertainty maximization and
minimization. The example of using our transformations in
the practical application is provided. The numerical examples
indicate that the uncertainty of the obtained BBA is between
the minimum and maximal uncertainties. In a future work, we
will try to use and compare different types of the distance
of evidence as objective function to expect a better trade-off
BBA.
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Abstract—Dempster-Shafer evidence theory, also called the
theory of belief function, is widely used for uncertainty mod-
eling and reasoning. However, when the size and number of
focal elements are large, the evidence combination will bring
a high computational complexity. To address this issue, various
methods have been proposed including the implementation of
more efficient combination rules and the simplifications or
approximations of Basic Belief Assignments (BBAs). In this paper,
a novel principle for approximating a BBA into a simpler one
is proposed, which is based on the degree of non-redundancy
for focal elements. More non-redundant focal elements are kept
in the approximation while more redundant focal elements in
the original BBA are removed first. Three types of degree
of non-redundancy are defined based on three different def-
initions of focal element distance, respectively. Two different
implementations of this principle for BBA approximations are
proposed including a batch and an iterative type. Examples,
experiments, comparisons and related analyses are provided to
validate proposed approximation approaches.

Keywords: belief function, combination rule, BBA approxi-

mation, focal element redundancy.

I. INTRODUCTION

Dempster-Shafer Theory (DST) [1] which is also called

the theory of belief function, has been widely used in many

uncertainty modeling and reasoning related application fields

including information fusion [2], pattern classification [3] and

Multiple Attributes Decision Making (MADM) [4]. How-

ever, DST was criticized because of its limitations [5]. One

limitation is its computational complexity [6] in evidence

combination, which is influenced by the cardinality of the

frame of discernment and the number of focal elements in

BBAs to combine. The high computational cost brings a big

challenge to the practical use of belief functions.

To reduce the computational cost encountered in evidence

combination, many approaches were proposed, which can be

in general categorized into the following types. The first type is

to design efficient combination algorithms. The representatives

of this type include Kennes’ method [7], Barnett’s approach

[8] and Shafer and Logan’s implementation for hierarchical

evidence [9]. The second type is to simplify the original

Basic Belief Assignment (BBA), i.e., to obtain a corresponding

approximated BBA. Two major types can be found in the

prevailing BBA approximations: (A) To use a BBA with a

simpler and special structure to approximate the original one.

For example, one can use the Bayesian BBA [10] and the

consonant approximation of a BBA [11]; (B) To limit the

quantity or size of focal elements by removing some focal

elements by following some criteria (focal elements’ size

or mass value, or both). Tessem’s k − l − x method [12],

Lowrance et al’s summarization approach [13], Bauer’s D1

approximation [14], Denœux’ inner and outer approximations

[15], Monte-Carlo approximation [16], etc. are representatives.

They remove focal elements and redistribute the corresponding

mass assignment values. In our previous works in recent years,

a hierarchical proportional redistribution approach,17 rank-

level based BBA approximation [18], and optimization based

approximations [19] were proposed. Shou et al. proposed a

BBA approximation based on the correlation coefficient [20].

The work in current paper focuses on reducing the com-

putational cost of evidence combination with BBA approx-

imations. As aforementioned, one can limit the number of

focal elements according to some criteria. Intuitively, the

rational criterion should relate to the importance or non-

redundancy of the focal elements. A focal element with more

“common” or “shared information” with other focal elements

is more redundant and should be removed first if possible.

However, the available criterion is either the focal element’s

size (i.e., cardinality) or its mass assignment, which has no

direct and logical relation with the focal elements’ importance

or the non-redundancy. Therefore, criteria related to the focal

elements’ non-redundancy are required for proposing more

reliable and efficient BBA approximation approaches. This is

the motivation of our work in this paper.

We use the average distance between a given focal element

and all other focal elements to define the non-redundancy.

Smaller average distance means that the given focal element

carries more similar information compared with the others,

i.e., it is less non-redundant and should be removed earlier.

Different definitions of the distance between focal elements are

used in this paper to define different non-redundancies of focal

elements. Two strategies of removal (including a batch and an

iterative mode) are proposed in the sequel, followed by the re-

normalization or redistribution. Numerical examples, simula-

tions and related analyses are provided to show the rationality

Originally published as: Y. Yang, D. Han, J. Dezert, Basic Belief Assignment Approximations Using 
Degree of Non-Redundancy for Focal Element, Chinese Journal of Aeronautics, Vol. 32(11), pp. 2503–
2515, 2019, and reprinted with permission.
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and interest of the novel BBA approximation approaches.

This paper extends our previous ideas briefly introduced in

[21], where the non-redundancy for focal elements was prelim-

inarily proposed. Comparatively, more definitions for distance

of focal element are used to define the non-redundancy of

focal elements and different distance definitions are analyzed

and compared in this extended version. We also provide more

experiments and analyses to provide a precise evaluation of

these new approximation methods. These are all added val-

ues. The rest of the paper is organized as follows. Section II

provides the essentials of DST. Some limitations, especially

the computational cost, are pointed out. A brief review of the

available works on BBA approximations is provided in Section

III. Section III then proposes the non-redundancy of focal

elements based on three different types of distance of focal

elements. Numerical examples are provided to illustrate and

compare different definitions of non-redundancy. Simulations

and related analyses are provided in Section IV to verify and

evaluate our proposed non-redundancy of focal elements and

their performance in BBA approximations. Comparisons be-

tween the new proposed approaches and some typical existing

ones are also provided. Section V concludes this paper.

II. PRELIMINARIES OF BBA APPROXIMATION

A. Basics of Dempster-Shafer evidence theory

In Dempster Shafer evidence theory [1], those elements in

the Frame of Discernment (FOD) Θ are mutually exclusive and

exhaustive. A basic belief assignment (BBA, also called mass

function) on a FOD is defined by a mapping m : 2Θ 7→ [0, 1]
satisfying m(∅) = 0 and

∑

A∈2Θ

m(A) = 1 (1)

If m(A) > 0, A is a focal element. Two Bodies of Evidence

(BOEs) can be combined using Dempster’s rule as

m(A) =

{

0, for A = ∅,
1

1−K

∑

Ai∩Bj=A m1(Ai)m2(Bj), for A 6= ∅.
(2)

where K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj) is the conflict co-

efficient representing the total conflicting mass assignments

between BOEs to combine. Note that Dempster’s rule is

both commutative and associative. Dempster’s rule has also

received serious arguments due to its counter-intuitive be-

haviors [22]. Various alternative combination rules have been

proposed. See [23] for more details. These alternatives focus

on suppressing the counter-intuitive behaviors of Dempster’s

rule. However, they also have to face the high computational

cost problem6 with the increase of the FOD’s cardinality and

that of the focal elements number.

To reduce the high computational cost caused by the evi-

dence combination, one can try to design simpler combination

rules, attempt to develop efficient implementations for prevail-

ing rules, or try to simplify (approximate) the original BBA by

a simpler one with less focal elements. In this paper, we focus

on the BBA approximation, which is deemed more intuitive

for human beings to catch the meaning [24].

B. Brief review of available BBA approximation approaches

An approximation f(·) of BBA aims to find a simpler BBA

mS to represent the original BBA m, i.e., mS = f(m). The

available approaches can be categorized into the following two

types: using the BBA with a special structure and reducing the

number of focal elements.

1) Using BBA with special structure:

(1) Bayesian BBA approximation

A Bayesian BBA approximation outputs a Bayesian BBA

with a special structure where all focal elements are singletons.

The most representative Bayesian approximation of a BBA

is the pignistic probability transformation proposed by Smets

[6] and Kennes [7]. Voorbraak [10] uses the normalization

of the plausibility for singletons to approximate the original

BBA. Sudano [25]–[27] proposed a series of Bayesian ap-

proximations based on the proportion between plausibilities

or beliefs including the batch mode and the iterative mode.

Cuzzolin [28] proposed an intersection approximation for BBA

using the proportional repartition of the total non-specific mass

assignment for each contribution of the non-specific mass

assignments involved. Smarandache and Dezert [23] proposed

a Bayesian BBA approximation in the framework of Dezert-

Smarandache Theory (DSmT), i.e., the Dezert-Smarandache

Probability transformation (DSmP), which can also be applied

in DST model. In our previous work [29], a hierarchical DSmP

was proposed. More analyses, comparisons and evaluations on

these Bayesian approximations can be found in [30].

Note that the Bayesian approximation is usually used for

the probabilistic decision but not reducing the computational

cost in evidence combination, since any Bayesian BBA ap-

proximation makes too lossy approximations.

(2) Consonant approximations

Here, the special structure for an approximated BBA is

assumed to be consonant support, i.e., the available focal

elements are nested in order. The representative works of the

consonant approximation include [11], [31].

2) Removing focal elements according to some criteria:

(1) Limiting the maximum allowed cardinality of remain-

ing focal elements

In k-additive approximations [32], the maximum cardinality

of available focal elements is no greater than a predefined

size k. In [32], the mass assignments of focal elements

with cardinality larger than k are redistributed to those with

cardinality no larger than k. Such a redistribution mass assign-

ments is done according to the proportions designed based

on the average cardinality. In our previous work [19], such

a redistribution of mass assignments is implemented via an

optimization approach. In our another previous work [17], a

BBA approximation with the hierarchical redistribution was

proposed. These methods aim to remove the focal elements

with larger cardinalities since they bring more computational

cost in the combination in general.

(2) Limiting the maximum allowed number of remaining

focal elements

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

748



In this type of approaches, the number of focal elements

is reduced by removing some focal elements according to

some criteria until the predefined quantity of remaining focal

elements is reached

(A) k − l − x method [12]:

A simplified BBA is obtained according to rules: one

should keep no less than k focal elements; one should

keep no more than l focal elements; one should delete

the masses being no greater than x.

In the k− l−x method, all focal elements in the original

BBA are sorted in a descending order based on their

mass assignment values. Then, choose the first p focal

elements such that k ≤ p ≤ l and the summation of

mass values of those first p focal elements is no less

than 1 − x. The removed mass values are redistributed

to remaining focal elements (re-normalization).

(B) Summarization method [13]:

Summarization method is similar to the classical k− l−
x, where focal elements with the highest mass values

are kept. The removed mass values are accumulated

and assigned to the union set of corresponding focal

elements. Suppose that k is the number of focal elements

in the desired simplified BBA mS(·) of an original BBA

m(·). Let M denotes the collection (or set) of k−1 focal

elements with the highest mass values. One can obtain

the simplified BBA according to

mS(A) =











m(A), if A ∈ M,
∑

A′⊆A,A′ /∈M m(A′), if A = A0,

0, otherwise.

(3)

where

A0 ,
⋃

A′ /∈M,m(A′)>0

A′ (4)

(C) D1 method [14]:

Let m(·) be the original BBA and mS(·) denote the

simplified BBA. The desired number of remaining focal

elements is k. Let M denote the set including k − 1
focal elements with the highest mass assignment values

in m(·), and M− be the set including all the other

focal elements of m(·). D1 method aims to keep all the

members of M and to assign the mass values of those

focal elements in set M− among the focal elements in

M . The set re-assignment is implemented as follows.

For A ∈ M−, find all the supersets of A in M to form

the set MA. If MA 6= ∅, m(A) will be uniformly re-

assigned among those focal elements with smallest size

in MA. When MA = ∅, then construct the set M ′
A:

M ′
A = {B ∈ M | |B| ≥ |A|, B ∩ A 6= ∅} (5)

If M ′
A 6= ∅, m(A) is assigned among the focal elements

with smallest size in M ′
A. The value assigned to a focal

element B depends on |B ∩ A|. The above procedure

will be executed iteratively until all m(A), A ∈ M−

have been re-assigned to those focal elements in the set

M . If M ′
A = ∅ there might be two cases: if Θ ∈ M ,

the summation of mass assignment values of the focal

elements in M− will be added to m(Θ); if Θ /∈ M , one

should set Θ as a focal element of mS(·) and assign the

sum of mass assignment values of the focal elements in

the set M− to the simplified BBA mS(Θ).
More details on D1 method with examples can be found

in [14].

(D) Joint use of cardinality and mass assignment with rank-

level fusion:

In our previous work [18], we jointly use the cardinality

and the mass values of focal element to design a rank-

level fusion based BBA approximation approach, which

is briefly recalled below.

Step 1. Sort all the focal elements of an original

BBA (with L focal elements) in an ascending order

according to the mass assignment values (an underlying

assumption: the focal element with small mass should

be deleted first). The rank vector can be obtained as

rm = [rm(1), rm(2), . . . , rm(L)] (6)

Here rm(i) is the rank position of thei-ih focal element

(i = 1, 2, . . . , L) in the original BBA based on mass

values.

Step 2. Sort all focal elements of the original BBA

in a descending order according to the cardinalities

(an underlying assumption: the focal element with big

cardinality should be deleted first). The rank vector can

be obtained as

rc = [rc(1), rc(2), . . . , rc(L)] (7)

Here rc(i) denotes the rank position of the i-th focal

elements in the original BBA based on the focal element

size.

Step 3. By using the rank-level fusion (weighted aver-

age), one can obtain a fused rank vector as

rf = [rf (1), rf (2), . . . , rf (L)] (8)

where rf (i) = αrm(i) + (1 − α)rc(i) and α ∈ [0, 1]
denotes the preference of two different criteria. Such a

fused rank can be considered as a relatively compre-

hensive criterion reflecting both the information of mass

values and cardinality.

Step 4. Sort rf in an ascending order and find out

the focal element with the smallest rf value, i.e.,

rf (j) = min rf (i). Then remove the j-th focal element

in the original BBA.

Step 5. Repeat Steps 1–4 until k focal elements are

left. Renormalize the remaining masses of the k focal

elements, and output the approximated BBA in the final.

Step 6. Correlation coefficient based BBA approxima-

tion (CR-based approximation)

The correlation coefficient is defined as

CRBBA(m1,m2) =
c(m1,m2)

√

c(m1,m1)c(m2,m2)
(9)
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where

c(m1,m2) =
2
n−1
∑

i=1

2
n−1
∑

j=1

m1(Ai)m2(Aj)
|Ai ∩Bj |
|Ai ∪Bj |

(10)

is used for BBA approximation. Suppose that original

BBA has L focal elements, and the quantity of desired

remaining focal elements is k.

i) Remove one focal element Ai and reassigned its

mass value m(Ai) to the related remaining focal

elements according to the redistribution strategy

based on single- ton relation proposed in Ref. 20

to generate an approximated BBA m′
i. For each Aj

(j = 1, 2, . . . , L) and corresponding m′
j , calculate

c(mi,m
′
j) using Eq. (10)).

ii) Sort the Aj (j = 1, 2, . . . , L) according to

c(mi,m
′
j) in an ascending order. Remove L − k

focal elements with top L−k values of correlation

coefficient c.
iii) Reassign the mass values of removed focal ele-

ments to the remaining focal elements according

to the redistribution strategy based on singleton

relation proposed in [20]. Then, one obtain the

approximated BBA.

Besides the above BBA approximations with a preset quan-

tity of remaining focal elements, Denœux’s BBA approxima-

tions by the outer and inner approximations [15] using distance

between focal elements also preset such a quantity in the

approximations. See [15] for details.

Note that the Monte-Carlo based BBA approximation can

also be classified into the approximation approaches using the

strategy of removing focal elements. See [16] for details.

In this paper, we focus on the BBA approximations through

presetting the quantity of remaining focal elements. As afore-

mentioned, existing BBA approximations of this type proposed

to remove some focal elements that have smaller mass assign-

ment values, larger cardinalities, or both. Although they have

some rational justifications, it is quite dangerous (or risky)

to remove those focal elements with small mass values or

larger sizes. It may also be unconvincing to remove those

focal elements with large cardinality justified only by their

bringing possible high computational cost to the combination.

Therefore, one should be prudent when using a technique

of BBA approximation. It is more convincing to remove

those “unimportant” focal elements. The very redundant focal

elements can reasonably be considered as “unimportant” (carry

duplicate information) and the relatively non-redundant focal

elements can reasonably be deemed as important; therefore,

we propose to define the degree of non-redundancy for a focal

element at first. From this degree of non-redundancy, we can

then develop new BBA approximation methods by removing

focal elements according to the degree of non-redundancy,

and intuitively, the loss of information in terms of distance

of evidence might be smaller.

III. BBA APPROXIMATIONS BASED ON NON-REDUNDANCY

OF FOCAL ELEMENTS

In this section, we define the degree of non-redundancy for

focal elements based on the distance of focal elements first.

Then, we design BBA approximations based on the degree of

non-redundancy.

A. Non-redundancy of focal elements

Suppose that a BBA m(·) has l > 2 focal elements. If a
focal element Ai has the largest average distance with other
focal ele- ments Aj ⊆ Θ (j 6= i), then Ai shares the least
common information with other focal elements in the BBA
m(·), i.e., Ai is the most non-redundant one. Therefore, one
can define the degree of non-redundancy using the average
focal distance between a focal element and the others. Suppose
that dF (Ai, Aj) is the distance between two focal elements Ai

and Aj . First, we can compute the distance matrix for all focal
elements in BBA m(·) as

MatFE =











dF (A1, A1) dF (A1, A2) . . . dF (A1, Al)
dF (A2, A1) dF (A2, A2) . . . dF (A2, Al)

..

.
..
.

. . .
..
.

dF (Al, A1) dF (Al, A2) . . . dF (Al, Al)











(11)

Since dF is a distance, at least there should exist

dF (Ai, Ai) = 0 and dF (Ai, Aj) = dF (Aj , Ai) where

i = 1, 2, . . . , l. That is, the matrix MatFE is symmetric. There-

fore, it is not necessary to compute all elements in MatFE.

For focal element Ai, we can then define its degree of non-

redundancy as

nRd(Ai) ,
1

l − 1

l−1
∑

j=1

dF (Ai, Aj) (12)

When nRd(Ai) is larger, Ai has a larger non-redundancy

(less redundancy); when nRd(Ai) takes a smaller value, Ai has

a less non-redundancy (larger redundancy). Then, the problem

is how to describe the distance between focal elements. To

be more strictly, the “distance” used here should be “dis-

similarity”, since the distance metric should satisfy all the

four requirements including non-degeneracy, symmetry, non-

negativity, and the triangular inequality. When there is no

confusion raised, we still use the distance in the sequel.

B. Distance between focal elements

In general, the distance between two focal elements should

use the two aspects of information in focal elements including

the mass assignment and focal element (set) as

dF (Ai, Aj) , f(m(Ai), Ai,m(Aj), Aj) (13)

The available distances between focal elements are intro-

duced below.

(1) Erkmen’s distance:

Erkmen and Stephanou [33] proposed a distance (denoted by

dFE here) between focal elements as

dFE(Ai, Aj) =
|Ai ∪ Aj |
|Ai ∩ Aj |

[m(Ai)−m(Aj)] log2
m(Ai)

m(Aj)
(14)
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This definition is far from robustness and can bring counter-

intuitive results as shown in the following cases.

Case I: if Ai ∩ Aj = ∅, i.e., |Ai ∩ Aj | = 0, then

dFE(Ai, Aj) = 0 cannot be calculated (due to a division

by zero). One can also say that it tends to infinity; however,

this is not reasonable since in this case the value of distance

is dominated by the relationship between focal elements

(sets).

Case II: if m(Ai) = m(Aj), then dFE(Ai, Aj) = 0. This

is also counter-intuitive, because the distance value is totally

dominated by mass assignments. That is to say, two differ-

ent focal elements with the same mass value is deemed as

identical. Therefore, Erkmen’s definition is not appropriate for

designing the focal element redundancy.

(2) Denœux’s union distance:

Denœux [15] proposed a union-operation based distance as

δ∪(Ai, Aj) = [m(Ai) +m(Aj)]|Ai ∪ Aj |
−m(Ai)|Ai| −m(Aj)|Aj | (15)

(3) Denœux’s intersection distance:

Denœux [15] also proposed an intersection-operation based

distance as

δ∩(Ai, Aj) = m(Ai)|Ai|+m(Aj)|Aj |
− [m(Ai) +m(Aj)]|Ai ∩ Aj | (16)

Actually, both δ∪ and δ∩ can be considered as a weighted

sum of the Hamming distance [15]. It is not difficult to

verify that both δ∪ and δ∩ have no counter-intuitive results

for aforementioned Cases I and II. Therefore, we choose δ∪
and δ∩ to define the degrees of non-redundancy for the focal

element. Here we give further analyses on the two distance

definitions δ∪ and δ∩.

C. Analyses on δ∪ and δ∩

Suppose that m(·) is a BBA defined on the FOD Θ where

|Θ| = n. To simplify the analysis, we assume that m(·) only

has two focal elements A1 and A2 with mass assignments

m(A1) = a and m(A2) = 1− a. The behaviors of δ∪ and δ∩
are analyzed under different situations.

1) Focal elements’ relation: A1 ⊂ A2.

In such a case, for δ∩ one gets

δ∩(A1, A2) = m(A1)|A1|+m(A2)|A2|
− [m(A1) +m(A2)]|A1 ∩ A2|

= m(A1)|A1|+m(A2)|A2|
− [m(A1) +m(A2)]|A1|

= (1−m(A1))(|A2| − |A1|) (17)

As shown in Eq. (17), if m(A1) is fixed, δ∩ becomes larger

with the enlargement of the difference between focal elements’

cardinalities |A2| − |A1|. This makes sense. If the difference of

cardinalities i.e., |A2| − |A1| is fixed, δ∩ becomes smaller with

the increase of mass assignment of A1 (which is contained by

A2).

For δ∩, one gets

δ∪(A1, A2) = [m(A1) +m(A2)]|A1 ∪ A2|
−m(A1)|A1| −m(A2)|A2|

= [m(A1) +m(A2)]|A2|
−m(A1)|A1| −m(A2)|A2|

= m(A1))(|A2| − |A1|) (18)

As shown in Eq. (18), if m(A) is fixed, δ∪ becomes larger

with the enlargement of the difference between focal elements’

cardinalities |A2| − |A1|. This makes sense. If the difference

of cardinalities i.e., |A2| − |A1| is fixed, δ∪ becomes lager

with the increase of mass assignment of A1 (contained by

A2). That is, when A1 ⊂ A2 and |A2| − |A1| are fixed, δ∪ is

positively correlated to the mass of focal element with smaller

cardinality (A1), while δ∪ is positively correlated to the mass

of focal element with larger cardinality (A2).

The analyses above can be supported by Example 1 below.

Example 1. (Focal elements are nested) Suppose that the FOD

is Θ = {θ1, θ2, . . . , θ5}. Four BBAs are defined on Θ, and

each has two focal elements as listed in Table I.

Table I
FOUR BBAS IN EXAMPLE 1.

BBA A1 A2

m1 {θ1} Θ
m2 {θ1, θ2} Θ
m3 {θ1, θ2, θ3} Θ
m4 {θ1, θ2, θ3, θ4} Θ

For each BBA, the mass value of A1 changes from 0.01 to

0.95 with an increase of 0.01 at each step. The values of δ∩
and δ∪ are shown in Fig. 1.

As shown in Fig. 1, δ∪ is positively correlated to the mass

of focal element with smaller cardinality (A1) while δ∩ is

positively correlated to the mass of focal element with larger

cardinality (A2). Given a fixed m(A1), with the increase of

cardinality of A1, i.e., the decrease of |A2| − |A1|, both δ∩
and δ∪ become smaller.

2) Focal elements’ relation: A1 ∩ A2 = ∅.

When A1 ∩ A2 = ∅, one gets |A1 ∩ A2| = 0 and

δ∩(A1, A2) = m(A1)|A1|+m(A2)|A2|
− [m(A1) +m(A2)]|A1 ∩ A2|

= m(A1)|A1|+m(A2)|A2|
= m(A1)(|A1| − |A2|) + |A2| (19)

For δ∪, one gets

δ∪(A1, A2) = [m(A1) +m(A2)]|A1 ∪ A2|
−m(A1)|A1| −m(A2)|A2|

= [m(A1) +m(A2)](|A1|+ |A2|
−m(A1)|A1| −m(A2)|A2|

= m(A1))|A2| −m(A2)|A1|
= m(A1)(|A2| − |A1|) + |A1| (20)
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Figure 1. Two distances in Example 1

It can be seen that when A1 ∩ A2 = ∅ if |A1| is closer to

|A2|, both δ∩ and δ∪ are smaller (it means that {θ1} is farther

from {θ2, θ3} than from {θ3}, which makes some sense). This

can be shown in Example 2 below.

Example 2. (focal elements have no intersect) Suppose that

the FOD is Θ = {θ1, θ2, . . . , θ5}. Four BBAs are defined on

Θ, and each has two focal elements as listed in Table II.

Table II
FOUR BBAS IN EXAMPLE 2.

BBA A1 A2

m1 {θ1} {θ2}
m2 {θ1} {θ2, θ3}
m3 {θ1} {θ2, θ3, θ4}
m4 {θ1} {θ2, θ3, θ4, θ5}

In each BBA, the two focal elements have an empty inter-

section. For each BBA, the mass assignment of A1 changes

from 0.01 to 0.95 with an increase of 0.01 at each step. The

values of δ∩ and δ∪ are shown in Fig. 2.

As shown in Fig. 2, when |A1| = |A2| and |A1| is fixed,

both δ∩ and δ∪ remain unchanged. Given a fixed m(A1),
when the difference |A2| − |A1| becomes larger, both δ∩ and

δ∪ become larger. When the difference |A2| − |A1| is fixed,

δ∪ is positively correlated to the mass of focal element with

smaller cardinality (A1), while δ∩ is positively correlated to

the mass of the focal element with larger cardinality (A2),

i.e., negatively correlated to the mass of the focal element

with smaller cardinality.

Figure 2. Two distances in Example 2

3)Focal elements’ relation: A1 ∩ A2 6= ∅.

Here A1 ∩ A2 6= ∅. Furthermore, A1 cannot be contained

by A2, and A2 cannot be contained by A1. We provide an

example to show δ∩ and δ∪ behaviors in this situation.

Example 3. (focal elements have no intersect) Suppose that

the FOD is Θ = {θ1, θ2, . . . , θ6}. Four BBAs are defined on

Θ, and each has two focal elements as listed in Table III.

Table III
FOUR BBAS IN EXAMPLE 3.

BBA A1 A2

m1 {θ1, θ2} {θ2, θ3}
m2 {θ1, θ2} {θ2, θ3, θ4}
m3 {θ1, θ2} {θ2, θ3, θ4, θ5}
m4 {θ1, θ2} {θ2, θ3, θ4, θ5, θ6}

For each BBA, the mass assignment of A1 changes from

0.01 to 0.95 with an increase of 0.01 at each step. The values

of δ∩ and δ∪ are shown in Fig. 3.

As we see in Fig. 3, when |A1| = |A2|, δ∩ and δ∪
equal 1, and they remain unchanged. This is because when

|A1| = |A2| = 2, one has δ∪(A1, A2) = |A1 ∪ A2| − |A2|
and δ∩(A1, A2) = |A2| − |A1 ∩A2|. So, δ∩(A1, A2) = 1 and

δ∪(A1, A2) = 1.

Given a fixed m(A1), when the difference |A2| − |A1|
becomes larger, both δ∩ and δ∪ become larger as shown in

Fig. 3. This makes sense, because the uncommon part of A1

and A2 becomes large. When the difference |A2| − |A1| is

fixed, δ∪ is positively correlated to the mass of focal element

with A1 having a smaller cardinality, while δ∩ is positively

correlated to the mass of the focal element A2 having a larger
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Figure 3. Two distances in Example 3

cardinality, i.e., negatively correlated to the mass of the focal

element with smaller cardinality.

D. Implementation of BBA approximation using degree of

redundancy for focal elements

Based on the degree of non-redundancy in Eq. (12), new

BBA approximation methods are proposed in this paper, where

the more non-redundant focal elements are kept and the more

redundant ones will be removed earlier.

1) Batch-mode approximation method: Given an original

BBA m(·) with l focal elements, in the approximation, we

want to keep k < l focal elements. The batch-mode means

that the focal elements quantity is reduced from l to k in one

run as follows.

Step 1. Compute the matrix MatFE first, and then for each Ai

(i = 1, 2, . . . , l) compute its non-redundancy value nRd(Ai).
Step 2. Sort all nRd(Ai) (i = 1, 2, . . . , l) in a descending

order.

Step 3. Remove the focal elements with ranking positions of

bottom l − k.

Step 4. Normalize the mass assignments of the kept k focal

elements and obtain the approximated BBA mBRd
S (·).

2) Iterative-mode approximation method: Here, we propose

to remove iteratively the most redundant focal element (with

the least nRd value) in each step until k focal elements are

kept. This method consists of the following steps:

Step 1. Compute the matrix MatFE and the nRd values for

each focal element Ai (i = 1, 2, . . . , l).
Step 2. Sort all nRd(Ai) (i = 1, 2, . . . , l) in a descending

order.

Step 3. Remove the bottom focal element Ar.

Step 4 .If the quantity of the kept focal elements is larger

than k, re-compute nRd(Ai) of the kept focal elements where

i 6= r and go back to Step 3. Otherwise, switch to Step 5.

Step 5. Normalize the mass assignments of the kept k focal

elements and obtain the approximated BBA mIRd
S (·).

In the iterative-mode, the matrix and degrees of non-

redundancy are re-computed in each step after removing a

focal element in the precedent step. That is to say, only the

non-redundancy values of the current remaining focal elements

are involved in each step.

E. Illustrative examples

Illustrative examples for presenting the procedure of our

proposed non-redundancy degree based BBA approximation

approaches are provided here. The specific calculation steps

of other major BBA approximation approaches with presetting

the number of focal elements are also provided here for

comparisons.

Example 4. Let us consider a BBA m(·) defined on

Θ = {θ1, θ2, . . . , θ5} as listed in Table IV.

Table IV
FOCAL ELEMENTS AND MASS ASSIGNMENTS.

Focal element Mass value

A1 = {θ1, θ2} 0.50
A2 = {θ1, θ3, θ4} 0.30
A3 = {θ3} 0.10
A4 = {θ3, θ4} 0.05
A5 = {θ4, θ5} 0.05

(1) Using k − l − x [12]:

Parameters k and l are both set to 3, and x = 0.1. Focal

elements A4 = {θ3, θ4} and A5 = {θ4, θ5} are removed. The

kept total mass value is 1 − 0.05 − 0.05 = 0.9; therefore,

the constraint of x is not violated. All the remaining focal

elements’ mass assignments are divided by 0.9 for the nor-

malization. The approximated BBA mk−l−x
S (·) obtained using

k− l− x is shown in Table V. Here A′
i (i = 1, 2, 3) are focal

elements1 in mk−l−x
S (·).

Table V
mk−l−x

S
(·) USING k − l − x FOR EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.5556

A′

2 = {θ1, θ3, θ4} 0.3333

A′

3 = {θ3} 0.1111

(2) Using summarization [13]:

Parameter k = 3. By using the summarization method, one

removes focal elements A3 = {θ3}, A4 = {θ3, θ4} and

1In the tables VI–XI, table XIII, and tables XV–XVIII we also denote A′

i

the focal elements of approximate BBAs obtained by the different methods.
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A5 = {θ4, θ5}. Their union {θ3, θ4, θ5} is set as a new

focal element whose mass assignment is 0.2, since m({θ3})+
m({θ3, θ4}) + m({θ4, θ5}) = 0.2. The approximated BBA

mSum
S (·) is as shown in Table VI.

Table VI
mSUM

S
(·) USING SUMMARIZATION FOR EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.50

A′

2 = {θ1, θ3, θ4} 0.30

A′

3 = {θ3, θ4, θ5} 0.20

(3) Using D1 method [14]

The parameter k is still set to 3 here. When we use D1

method, focal elements A1 and A2 belong to M and A3, A4

and A5 belong to M−. The focal element A1 = {θ1, θ2} has

no intersection with those focal elements in M ; therefore, its

value remains unchanged. In M , A2 is the unique superset

of A3 and A4, so, m(A3) + m(A4) = 0.10 + 0.05 = 0.15
is added to A2’s original mass assignment. A2 covers half of

A5, so m(A5)/2 = 0.025 is further added to the mass of A2.

Finally, the rest mass is assigned to Θ. The approximated BBA

mD1
S (·) is as shown in Table VII.

Table VII
mD1

S
(·) USING D1 FOR EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.500

A′

2 = {θ1, θ3, θ4} 0.475

A′

3 = Θ 0.025

(4) Using Denœux’s inner and outer approximations [15]

Since this method uses the focal element distance definition

in Eq. (14), here we also use it for comparison. When using

the inner approximation [15], the focal elements pair with the

smallest distance is removed, and their intersection is consid-

ered as a supplemented focal element. Its mass value is the

summation of two removed focal elements’ mass assignments.

Such a procedure is repeated until the preset focal elements

quantity is reached. The approximated BBA mInner
S (·) is shown

in Table VIII.

Table VIII
mINNER

S
(·) USING INNER APPROXIMATION FOR EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.50

A′

2 = {θ1, θ3, θ4} 0.30

A′

3 = ∅ 0.20

As one sees in Table VIII, the empty set is generated as a

focal element, which is not allowed in the classical DST under

the closed-world assumption.

The outer approximation is similar to the inner approxima-

tion except that the distance used is δ∪. The approximated

BBA mOuter
S (·) is shown in Table IX.

Table IX
mOUTER

S
(·) USING OUTER APPROXIMATION FOR EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.50

A′

2 = {θ1, θ3, θ4} 0.45

A′

3 = {θ4, θ5} 0.05

(5) Using rank-level fusion based method [18]

The rank of focal elements in m(·) according to the mass

assignments is [1, 2, 3, 4, 4] (in a descending order). Here

[1, 2, 3, 4, 4] means that A1 takes the 1st place; A2 takes the

2nd place; A3 takes the 3rd place; and A4 and A5 both take

the 4th place due to their equal mass values.

The rank of focal elements according to their cardinalities

in ascending order is [2, 3, 1, 2, 2]. Here we set α = 0.5, and

approximated BBA mRank
S (·) is shown in Table X.

Table X
mRANK

S
(·) USING RANK-LEVEL FUSION BASED APPROXIMATION FOR

EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.7692

A′

2 = {θ3, θ4} 0.1539

A′

3 = {θ1, θ3, θ4} 0.0769

(6) Using CR-based approximation

Using the CR-based approximation, the correlation coeffi-

cient values are

c(m,m′
1) = 0.7096,

c(m,m′
2) = 0.9462,

c(m,m′
3) = 0.9912,

c(m,m′
4) = 0.9462,

c(m,m′
5) = 0.9975.

Then, remove A3 and A5, since they have the top two

correlation coefficient values. After the redistribution, the

approximated BBA mCR
S (·) is shown in Table XI.

Table XI
mCR

S
(·) USING RANK-LEVEL FUSION BASED APPROXIMATION FOR

EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.5083

A′

2 = {θ3} 0.1208

A′

3 = {θ1, θ3, θ4} 0.3709
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(7) Using the non-redundancy based batch-mode approxima-

tion

We want to keep three focal elements, i.e., k = 3. Calculate

the distance matrix MatFE as

MatFE =













A1 A2 A3 A4 A5

A1 0 1.10 1.10 1.10 1.10
A2 1.10 0 0.60 0.30 0.65
A3 1.10 0.60 0 0.05 0.20
A4 1.10 0.30 0.05 0 0.10
A5 1.10 0.65 0.20 0.10 0













Using this matrix, the degree of non-redundancy for all focal

elements of m(·) are obtained as listed in Table XII.

Table XII
NON-REDUNDANCY FOR DIFFERENT FOCAL ELEMENTS.

Focal element Mass value nRd(Ai)
A1 = {θ1, θ2} 0.50 1.1000
A2 = {θ1, θ3, θ4} 0.30 0.6625
A3 = {θ3} 0.10 0.4875
A4 = {θ3, θ4} 0.05 0.3875
A5 = {θ4, θ5} 0.05 0.5125

Since A3 and A4 have the two smallest nRd values, they

are two focal elements with the lowest non-redundancy (the

highest redundancy). So, they’d better be removed first and

their mass assignments are redistributed with the classical

normalization step. The approximated BBA mBRd
S (·) is listed

in Table XIII.

Table XIII
mBRD

S
(·) USING BATCH APPROXIMATION BASED ON REDUNDANCY FOR

EXAMPLE 4.

Focal element Mass value

A′

1 = {θ1, θ2} 0.5882

A′

2 = {θ1, θ3, θ4} 0.3530

A′

3 = {θ4, θ5} 0.0588

(8) Using the redundancy-based iterative approximation

Here k = 3, and then two focal elements should be removed.

In the iterative mode, we only remove one focal element in

each step. Therefore, two steps are required in this example.

In Step 1, we obtain the same degrees of non-redundancy

as listed in Table XI. Then, A4 is removed.

In Step 2, nRd for Ai (i = 1, 2, . . . , 5, i 6= 4) is recalculated

according to

nRd(Ai) =

5
∑

j=1,j 6=4,j 6=i

dF (Ai, Aj)

The results are

nRd(A1) = 1.1000,

nRd(A2) = 0.7833,

nRd(A3) = 0.6333,

nRd(A5) = 0.6500.

Then, A3 is removed due to its smallest nRd value (i.e., the

biggest redundancy among those remaining focal elements).

In this example, the BBA mIRd
S (·) obtained is the same as

mBRd
S (·) listed in Table XII. Note that the batch-mode and

the iterative approximations do not always obtain the same

results as illustrated in Example 5.

Example 5. Assume that the FOD is Θ = {θ1, θ2, θ3}. An

original BBA m(·) is listed in Table XIV, and the quantity of

remaining focal elements is set to k = 3.

Table XIV
FOCAL ELEMENTS AND MASS VALUES.

Focal element Mass value

A1 = {θ1, θ2} 0.1780
A2 = {θ2, θ3} 0.2477
A3 = {θ2} 0.2322
A4 = {θ3} 0.1759
A5 = Θ 0.1662

• Using δ∩ we can obtain the distance matrix:

MatFE =













A1 A2 A3 A4 A5

A1 0 0.4257 0.1780 0.5319 0.1662
A2 0.4257 0 0.2477 0.2477 0.1662
A3 0.1780 0.2477 0 0.4081 0.3324
A4 0.5319 0.2477 0.4081 0 0.3324
A5 0.1662 0.1662 0.3324 0.3324 0













All focal elements’ degrees of non-redundancy are

nRd(A1) = 0.3255,

nRd(A2) = 0.2718,

nRd(A3) = 0.2915,

nRd(A4) = 0.3800,

nRd(A5) = 0.2493.

Using the batch mode method, focal elements A2 and A5 are

removed. The approximated BBA is shown in Table XV.

Table XV
mBRD

S
(·) USING BATCH APPROXIMATION BASED ON REDUNDANCY WITH

THE DISTANCE δ∩ .

Focal element Mass value

A′

1 = {θ1, θ2} 0.5882

A′

2 = {θ2} 0.3530

A′

3 = {θ3} 0.0588

By using the iterative mode method, the degrees of non-

redundancy obtained in Step 1 are

nRdI(A1) = 0.3255,

nRdI(A2) = 0.2718,

nRdI(A3) = 0.2915,

nRdI(A4) = 0.3800,

nRdI(A5) = 0.2493.
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Then, we first remove the focal element A5 since nRdI(A5) is

the least one. Then recalculate nRd values for remaining focal

elements A1, A2, A3 and A4:

nRdII(A1) = 0.3785,

nRdII(A2) = 0.3070,

nRdII(A3) = 0.2779,

nRdII(A4) = 0.3959.

In Step 2, nRdII(A3) is the least one, therefore A3 is

removed. After normalization, we obtain the BBA mIRd
S (·) with

iterative approximation as shown in Table XVI.

Table XVI
mIRD

S
(·) USING ITERATIVE APPROXIMATION BASED ON REDUNDANCY

WITH THE DISTANCE δ∩ .

Focal element Mass value

A′

1 = {θ1, θ2} 0.2959

A′

2 = {θ2, θ3} 0.4117

A′

3 = {θ3} 0.2924

• Using δ∪, the distance matrix is

MatFE =













A1 A2 A3 A4 A5

A1 0 0.4257 0.2322 0.5298 0.1780
A2 0.4257 0 0.2322 0.1759 0.2477
A3 0.2322 0.2322 0 0.4081 0.4644
A4 0.5298 0.1759 0.4081 0 0.3518
A5 0.1780 0.2477 0.4644 0.3518 0













All focal elements’ degrees of non-redundancy are

nRd(A1) = 0.3414,

nRd(A2) = 0.2705,

nRd(A3) = 0.3342,

nRd(A4) = 0.3664,

nRd(A5) = 0.3105.

By using the batch mode method, the focal elements A2 and

A5 are removed. After applying the normalization, we obtain

the approximated BBA as shown in Table XVII.

Table XVII
mBRD

S
(·) USING BATCH APPROXIMATION BASED ON REDUNDANCY WITH

THE DISTANCE δ∪ .

Focal element Mass value

A′

1 = {θ1, θ2} 0.3037

A′

2 = {θ2} 0.3962

A′

3 = {θ3} 0.3001

Using the iterative mode method, degrees of non-

redundancy obtained in Step 1 are

nRdI(A1) = 0.3414,

nRdI(A2) = 0.2705,

nRdI(A3) = 0.3342,

nRdI(A4) = 0.3664,

nRdI(A5) = 0.3105.

The focal element A2 is removed first, since it has the smallest

nRd value. Then recalculate all nRd values for remaining focal

elements A1, A3, A4 and A5:

nRdII(A1) = 0.3133,

nRdII(A2) = 0.3682,

nRdII(A3) = 0.4299,

nRdII(A4) = 0.3314.

In Step 2, the focal element A1 is removed, since nRd(A1) is

the smallest one. After normalization, we can obtain the BBA

mIRd
S (·) as shown in Table XVIII.

Table XVIII
mIRD

S
(·) USING ITERATIVE APPROXIMATION BASED ON REDUNDANCY

WITH THE DISTANCE δ∪ .

Focal element Mass value

A′

1 = {θ2} 0.4043

A′

2 = {θ3} 0.3063

A′

3 = Θ 0.2894

As we can see in Example 5, the results of the batch

mode and iterative mode approximations are different. In

the next section, we provide experiments and simulations to

evaluate our proposed BBA approximation approaches and

those available ones.

IV. SIMULATIONS FOR EVALUATION

We use the computational cost caused by the evidence

combination and the closeness between the approximated BBA

and the original one in average to evaluate the performance

of approximations. An approximation with less computational

cost and larger closeness is desirable. To describe the closeness

between BBAs, we use a strict distance of evidence, which is

Jousselme’s distance (dJ ) [34]. One can also use other types

of strict distance in evidence theory e.g., belief interval based

distance of evidence [35].

Suppose that m1, m2 are two BBAs defined on Θ, with

|Θ| = n. If m1 and m2 are considered as two vectors denoted

by m1 and m2, respectively, Jousselme’s distance of evidence

is defined as

dJ (m1,m2) ,

√

0.5(m1 −m2)
T
Jac (m1 −m2), (21)

where Jac is the so-called Jaccard’s weighting matrix whose

elements Jij = Jac(Ai, Bj) are defined by

Jac(Ai, Bj) =
|Ai ∩Bj |
|Ai ∪Bj |

(22)
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It is a most widely used distance of evidence, and it has

been proven to be a strict distance metric [36].

Our simulation is based on a Monte Carlo simulation

using M = 200 random runs. In j-th simulation run, the

original BBA to approximate mj(·) is randomly generated

and the different approximation results {mj
Si
(·)} are obtained

using the different approximations, where i denotes the i-
th approximation approach. Here we use ⊕ to denote the

evidence combination. We calculate the computational time

of the original evidence combination of mj(·) ⊕ mj(·) with

Dempster’s rule, and the computation time of Dempster’s

combination of each approximated BBA mj
Si
(·)⊕mj

Si
(·). Here

we compare our proposed approaches with k − l − x method

(S1), D1 method (S2), Summarization method (S3), Denœux’s

outer approximation (S4), the rank-level fusion based ap-

proximation (S5), and our new degree of non-redundancy

based approximations including the batch mode with δ∩ (S6),

iterative mode with δ∩ (S7), batch mode with δ∪ (S8), iterative

mode with δ∪ (S9), and CR-based approximation (S10) since

all these methods can set the quantity of the remaining focal

elements, and they never consider the empty set as a valid focal

element (contrarily to inner approximation which will bring

troubles for making the comparisons because Jousselme’s

distance cannot be computed if one allows to put positive mass

on empty set because |∅| = 0).

In our simulations, the cardinality of the FOD Θ is 4. In

each random generation, there are 24− 1 = 15 focal elements

in the original BBA. The number of remaining focal elements

for all the approaches used here is set to from 14 down to 2.

We randomly generate BBA using Algorithm 1 [37] in Table

XIX below.

Table XIX
ALGORITHM 1: RANDOM GENERATION OF BBA.

Random generation of BBA

Input: Θ: Frame of discernment;
Nmax: Maximum number of focal elements

Output: m BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → R(Θ);
Generate an integer between 1 and Nmax → l.
FOR each: First k elements of R(Θ) do

Generate a value within [0, 1] → mi(·), (i = 1, 2, . . . , l);
END

Normalize the vector m = [m1, m2, . . . ,ml] → m′;
m(Ai) = m′

i

The average (over 200 runs) combination time and average

(over 200 runs) distance values (dJ ) between the original

BBA and the approximated BBA’s obtained using different

approaches given different remaining focal elements’ numbers

are shown in Figs. 4 and 5, respectively.

The average (over all runs and all numbers of remaining

focal elements) computation time and distance values are

shown in Table XX.

Note that the computer for the experiments is with i7-

8550CPU, 16 GB LPDDRIII RAM, WINDOWS 10 OS and

MATLAB 2013B.

Figure 4. Comparisons between different approximations in terms of com-
putation time.

Figure 5. Comparisons between different approximations in terms of dJ .

Table XX
COMPARISONS BETWEEN DIFFERENT BBA APPROXIMATIONS IN TERMS

OF COMBINATION TIME AND CLOSENESS.

Approach Time (s) dJ
Original BBA 0.0260 0
k − l− x (S1) 0.0085 0.1072
D1 (S2) 0.0074 0.1284
Sum (S3) 0.0077 0.1512
Outer (S4) 0.0086 0.1143
Rank-level (S5) 0.0079 0.1104
Batch δ∩ (S6) 0.0083 0.1027
Iterative δ∩ (S7) 0.0082 0.0926
Batch δ∪ (S8) 0.0085 0.1139
Iterative δ∪ (S9) 0.0086 0.0973
CR-based (S10) 0.0084 0.1031
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It can be shown from Table XX, Figs. 4 and 5 that for

all the approximations compared here including our proposed

four types of approximations based on degree of redundancy

for focal elements, the computational time are significantly

reduced when compared with original computation time. At

the same time, our focal element redundancy based approxima-

tions have smaller distance (less loss of information) according

to all the distances of evidence used here. In our four new

approximations, the iterative mode with δ∩ performs the best.

Here we also provide the comparisons of computational cost

of different approximation approaches themselves. To obtain

the approximation computation time, in each run for different

approximation approaches, the average time of approximation

with remaining focal elements numbers from 2 to 14 is

calculated. Then, each approximation approach’s averaging

computation time over 200 runs is listed in Table XXI. The

computational complexity of each approach listed is also listed

in Table XXI.

Table XXI
COMPARISON BETWEEN DIFFERENT BBA APPROXIMATIONS IN TERMS OF

COMBINATION COMPLEXITY.

Approach Aver. comp. time (s) Complexity

k − l− x (S1) 0.00075 O(n logn)
D1 (S2) 0.00052 O(n)
Sum (S3) 0.00056 O(n)
Outer (S4) 0.00150 O(n2 + n2 logn)
Rank-level (S5) 0.00079 O(n logn)
Batch δ∩ (S6) 0.00110 O(n2 + n2 logn)
Iterative δ∩ (S7) 0.00540 O((n− k)(n2 + n2 logn))
Batch δ∪ (S8) 0.00100 O(n2 + n2 logn)
Iterative δ∪ (S9) 0.00500 O((n− k)(n2 + n2 logn))
CR-based (S10) 1.78150 O((2n)n−k)

As shown in Fig. 5, the approximated BBA obtained using

CR-based method can have smaller distance to the original

BBA when the number of remaining focal elements are not

so small (from 14 down to 9). However, it is at the price of

computational cost. Its computation time is about 102 times

of other approaches compared.

CR-based method use a way like the traversal when se-

lecting the focal elements to remove. Actually, it is not a

real traversal, since it removes the L− k focal elements in

a batch, but not one by one. Therefore, when the remaining

focal elements number is small, its distance becomes not so

small.

Comparatively, according to the experimental results, our

proposed approximation approach can achieve smaller distance

and at the same time, its time cost is accepted.

Note that with the improvement of the computer’s comput-

ing capability, the importance of the mass function approx-

imation will be decreased. However, there still exists some

resource-restricted environment or platforms, for example, the

embedded system for real time tasks, where the computational

resource including the CPU and the RAM are not so adequate

and the approximation, which can save computational time, is

still important.

On the other hand, the BBA approximation could be

considered as a preprocessing of “data”, which can reduce

the computational cost. Even if the computational resource

is enough, to further reduce the computational cost is still

desirable, especially for those real-time applications.

Note that our current performance evaluation on different

approximation approaches is based on the experimental results

in terms of the statistical averaging combination computational

time, and the distance between the approximated BBA and

the original one. This makes sense from the engineering or

application viewpoints. To comprehensively evaluate different

approximation approaches, theoretical analysis and proof are

needed, which is also one of the research focuses in our work

in the future.

V. CONCLUSION

Novel methods for BBA approximations are proposed in

this paper, where the most redundant focal elements are

removed at first. The degree of non-redundancy is defined

based on dis- tance between focal elements. Batch and iterative

implementations of the BBA approximations are provided. It

is experimentally shown that our new BBA approximations

can reduce the computational cost of evidence combination

with less loss of information, which is described by the

distance of evidence. At the same time, the computation time

of approximations in our proposed approaches is acceptable.

In our future work, we will focus on designing more com-

prehensive and rational distance of focal elements, based on

which, the degree of focal elements can be calculated. In

fact, the non-redundancy represents a type of “importance”

for focal elements. We will also try to define some new type

of “importance”, based on which the removal of focal elements

can be done more rationally executed. As shown in this paper,

we evaluate the performance of different BBA approximations

using the computation time and the distance of evidence. In

future work, we will also explore more comprehensive evalua-

tion criteria and theoretical evaluation in mathematics for the

BBA approximation approaches. This is crucial for the design

of more effective BBA approximations.

When we use some criterion (e.g., the non-redundancy

proposed in this paper) to determine those “unimportant”

or “redundant” focal elements, we can combine these focal

elements to a new one (with intersection or union operation

of these ele- ments) besides removing them. For example, we

can combine the most two redundant focal elements to a new

focal element by using the operations like intersection, union

and other ways to replace the current the removal of redundant

focal elements. Furthermore, we can use the method like PCA

in the design of BBA approximations for the combination of

focal elements to expect a better approximation performance

in the future research work.
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Approximation of Basic Belief Assignment Based
on Focal Element Compatibility

Abstract—The theory of belief functions is an important tool
in the field of information fusion. However, the fusion of Basic
Belief Assignments (BBAs) requires high computational cost and
long computing time when a large number of focal elements are
involved in the fusion rules. This problem becomes a bottleneck
of application of Belief Functions (BF) in high-dimensional real
problems. To overcome this drawback, many approaches were
proposed to approximate BBAs to reduce the computational
complexity in the fusion process. In this paper, we present a
novel method based on the compatibility of focal elements to
approximate a BBA by removing some focal elements of the
original BBA. Besides, a new mass assignment strategy based
on the distance of focal elements is proposed. Several examples,
simulations and related analyses are provided to illustrate the
interest and efficiency of the proposed method.

Keywords—Information fusion, Belief functions, Basic belief
assignment, Approximation

I. INTRODUCTION

The evidence theory was proposed by Dempster in the study

of multivalued mapping in 1967 [1] and later promoted by

Shafer in 1976 [2] with the introduction of Belief Functions

(BF). The theory of belief functions is named also Dempster-

Shafer Theory (DST) in the literature. Belief Functions provide

an effective method for dealing with the expression and

synthesis of uncertain information and they have been widely

used in many fields such as image processing [3, 4], target

tracking [5], and fault diagnosis [6, 7].

However, the evidence combination will encounter high

computational cost when the frame of discernment (FoD) is

large. To overcome this drawback, one effective approach to

reduce the computational complexity is the BBA approxi-

mation. The BBA approximation aims to obtain a simpler

BBA by removing some focal elements according to different

simplification criteria. In existing works, the simplification

criteria can be divided into the following three categories:

1) Simplification based on the mass assignment of a
focal element. The focal elements with smaller mass

assignments are deemed unimportant, which should be

removed firstly. k − l − x [8], Summarization [9] and

D1 [10] are representatives of this criterion.

2) Simplification based on the cardinality of a focal
element. The focal elements with larger cardinalities

may cause more computational cost. k−additive ap-

proach [11] and hierarchical proportional redistribution

approach [12] accomplish the simplification according

to this criterion.

3) Hybrid simplification mixing the two previous ones.
Use the previous two criteria jointly to determine which

focal elements should be removed at first. Methods like

inner and outer approximation [13], rank-level fusion ap-

proximation [14], non-redundancy approximation [15],

iterative approximation based on distance of evidence

[16] and correlation coefficient approximation [17] enter

in this hybrid simplification strategy.

In general, the hybrid simplification is the right direction to

approximate a BBA due to the one-sidedness of the first and

the second simplification criterion.
In this paper, we propose a novel approach using the notion

of focal element compatibility. In our method, each focal

element has a compatible focal element which can be replaced

by it due to the compatibility (based on a similarity measure)

between them. To quantify the notion of compatibility, we use

the mass value and the cardinality of the set which contains

all the focal elements which can replace the given focal

element jointly. The focal element with the highest degree of

compatibility should be removed at first. Users can preset the

number of remaining focal elements. After removing a focal

element, the removed mass is redistributed to remaining focal

elements to execute the next iteration according to our new

mass assignment strategy. Experimental results based on the

comparisons with other approximation strategies and related

analyses justify that our approach is rational and effective.
This paper is organized as follows. After brief prelimi-

naries on Belief Functions in Section II and classical BBA

approximation methods in Section III, we will present the new

approximation method based on focal element compatibility in

Section IV. Evaluation of it and comparative analysis will be

done in Section V with concluding remarks in Section VI.

II. PRELIMINARIES

A. Basics of Belief Functions
We consider a frame of discernment (FoD) Θ = {θ1, ..., θn}

whose elements are mutually exclusive and exhausive. A basic

Originally published as: Q. Wei, X. Li, J. Dezert, Approximation of Basic Belief Assignment Based on 
Focal Element Compatibility, in Proc. of Int. Conf. on Information Fusion (Fusion 2019), Ottawa, 
Canada, July 2-5, 2019, and reprinted with permission.
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belief assignment (BBA) over the FoD Θ is defined as
∑

A⊆Θ

m(A) = 1, m(∅) = 0 (1)

If m(A) > 0 holds, A is called a Focal Element (FE). The

belief function and plausibility function are defined as follows

[2].

Bel(A) =
∑

B⊆A

m(B); Pl(A) =
∑

A∩B �=∅
m(B) (2)

In DST, two independent bodies of evidence (BOEs) are

combined by Dempster’s rule as follows. ∀A ∈ 2Θ:

m(A) =

⎧
⎨

⎩

0, A = ∅
1

1−K

∑
Ai∩Bj=A

m1(Ai)m2(Bj), A �= ∅ (3)

where K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj) is the conflict coeffi-

cient, which represents the total degree of conflict. Other rules

of combinations have also been proposed to combine BBAs

in the literature [18] but they will be not detailed in this paper

since this is out of its scope.

B. Distance of Focal Elements

We use the definition proposed by Denœux [13] to measure

the distance between two focal elements, which is defined as

δ∩(Ai, Aj) =m(Ai)|Ai|+m(Aj)|Aj |
− [m(Ai) +m(Aj)]|Ai ∩Aj |

(4)

For a given focal element Ai, if δ∩(Ai, Aj) =
minj′ �=i δ∩(Ai, Aj′), we will say that Aj has the highest

compatibility degree with Ai, and Aj shares the most similar

information with Ai.

III. BRIEF REVIEW OF BBA APPROXIMATIONS

Some existing BBA approximation approaches are briefly

reviewed in this section for the purpose of comparisons with

our new method.

1) k−l−x approximation [8]. This method involves three

parameters and the approximated BBA is obtained by

• keeping no less than k focal elements;

• keeping no more than l focal elements;

• deleting the masses which are no greater than x.

In k − l − x algorithm, all original focal elements are sorted

according to the mass assignments in a decreasing order. Then,

the first p focal elements are selected such that k ≤ p ≤ l and

such that the sum of the mass assignments of these p focal

elements is no less than 1−x. The removed mass assignments

are redistributed to remaining focal elements by a classical

normalization procedure.

2) Summarization approximation [9]. This method also

keeps focal elements having largest mass values which is

similar to the k − l − x method. The only difference is that

the removed mass values are redistributed to their union set.

Suppose that m(·) is the original BBA and k is the desired

number of remaining focal elements in the approximated BBA

m̂(·). Let M denote the set of k−1 focal elements with largest

mass values in m(·). Then m̂(·) is obtained from m(·) by

m̂(A) =

⎧
⎪⎨

⎪⎩

m(A), A ∈ M
∑

A′⊆A,A′ /∈M m(A′), A = A0

0, otherwise

(5)

where A0 is

A0 �
⋃

A′ /∈M,m(A′)>0

A′ (6)

3) D1 approximation [10]. Suppose that m(·) is the original

BBA and k is the desired number of remaining focal elements

in the approximated BBA m̂(·). Let M denote the set of k−1
focal elements with largest mass values in m(·) and M− be the

set including all the other focal elements of m(·). D1 method

is to keep all the members of M as the focal elements of m̂(·)
and to assign the mass values of the focal elements in M−

among the focal elements in M according to the following

procedure.

For a focal element A ∈ M−, in M , find all the supersets of

A to construct a collection MA. If MA is not empty, the mass

value of A is uniformly assigned among the focal elements

having smallest cardinality in MA. When MA is empty, then

construct M ′
A as

M ′
A = {B ∈ M ||B| ≥ |A|, B ∩A �= ∅} (7)

Then, if M ′
A is not empty, m(A) is assigned among the focal

elements with smallest cardinality in M ′
A. The value assigned

to a focal element B depends on the value of |B ∩ A|. Such

a procedure is iteratively executed until all m(A) have been

assigned to the focal elements in M .

If M ′
A is empty, there are two possible cases:

• If the total set Θ ∈ M , the sum of mass values of the

focal elements in M− will be added to Θ;

• If Θ /∈ M , then let Θ be a focal element of m̂(·) and

assign the sum of mass values of the focal elements in

M− to m̂(Θ).

Note that the number of remaining focal elements is k− 1, if

Θ ∈ M .

4) Rank-level fusion approximation [14]. This method

uses jointly the mass assignments and cardinalities of focal

elements to make the simplification. The specific procedure is

listed as follows.

• Sort all the focal elements of the original BBA (with L
focal elements) according to the mass assignments (in

ascending order which is due to the assumption that the

focal element with smallest mass should be removed at

first). The rank vector obtained is

rm = [rm(1), rm(2), ..., rm(L)] (8)

• Sort all the focal elements of the original BBA according

to the cardinalities (in descending order which is due

to the assumption that the focal element with large
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cardinality should be removed at first). The rank vector

obtained is

rc = [rc(1), rc(2), ..., rc(L)] (9)

• Execute the rank-level fusion and the comprehensive rank

vector is

rf = [rf (1), rf (2), ..., rf (L)] (10)

where

rf (i) = α · rm(i) + (1− α) · rc(i) (11)

The parameter α ∈ [0, 1] is to weight the two different criteria.

Finally, we remove the focal element with the smallest rf
value and do the renormalization of remaining focal elements.

Repeat the above steps until only k focal elements remain and

the total mass assignments value to be deleted is no greater

than x.
5) Correlation coefficient approximation [17]. The cor-

relation coefficient proposed by Jiang [19] can measure the

similarity between two BBAs. In this approximation approach,

we remove a focal element Ai from the original BBA m(·)
and the mass of Ai is redistributed to remaining focal el-

ements to generate a new BBA m̂i(·). Then, we calculate

the correlation coefficient between m and m̂i. We perform

the same operation for each focal element and sort all the

focal elements in ascending order according to the correlation

coefficient. Finally, we remove the largest k focal elements

from the original BBA and do the normalization according to

a new assignment strategy.
6) Iterative approximation based on distance of evidence

[16]. In this algorithm, we remove at first a focal element

Ai from the original BBA m(·) and we normalize the re-

maining focal elements to generate a new BBA m̂i(·). Then,

we calculate Jousselme’s distance between m and m̂i. We

perform the same operation for each focal element. Finally,

we remove the focal element which generates the new BBA

having the closest distance with the original BBA and after a

normalization we proceed the next iteration. The above steps

are performed iteratively until only k focal elements remain.

IV. NEW BBA APPROXIMATION BASED ON FOCAL

ELEMENT COMPATIBILITY

In this section, a novel method for approximating a BBA is

proposed. As briefly shown in the previous section, the existing

approaches remove some focal elements according to the mass

assignment, the cardinality or both two criteria. Here we adopt

a different standpoint in which a specific focal element can

be removed if there exists a number of other focal elements

compatible with it, i.e., its degree of incompatibility is small.

Now the focus is how to define the degree of incompatibility

of a focal element. We define the incompatibility degree for a

focal element at first.

A. Degree of Incompatibility of Focal Elements
As mentioned before, the distance between two focal ele-

ments is given by Eq.(4). The compatible focal element AC
i

1

1We use the notation “C” as the upper index because it is the first letter of
word “Compatible”.

of a given focal element Ai ⊆ Θ for a BBA m(·) (with l focal

elements) is defined by

AC
i � argmin

Aj

δ∩(Ai, Aj)

s.t.

{
Aj ⊆ Θ

j = 1, 2, ..., l, j �= i

(12)

AC
i has the smallest distance with the focal element Ai, i.e.,

among all focal elements, AC
i is the most compatible with

Ai. It should be noted that AC
i can be replaced by Ai, but the

reverse may not be true.
We define the degree of incompatibility of the focal element

Ai by

ICP (Ai) �

{
m(Ai)

|MC
i | , MC

i �= ∅
∞, MC

i = ∅ (13)

where

MC
i =

{
Aj |AC

j = Ai, j = 1, 2, ..., l, j �= i
}

(14)

The set MC
i contains all the focal elements which can replace

Ai. The ICP (Ai) value describes the average effect on the

|MC
i | (MC

i �= ∅) focal elements after removing Ai. The

smaller ICP (Ai) value, the smaller the effect, which is pre-

ferred. From another perspective, the effect can be explained

as the incompatibility degree of Ai. The smaller the effect,

the smaller the incompatibility degree and the more it can be

removed. MC
i = ∅ means that no focal elements can replace

Ai, so its degree of incompatibility is infinite.
Here we provide a simple example to show how MC

i and

ICP (Ai) are computed.

Example 1: Consider the BBA m(·) defined over the

FoD Θ = {θ1, θ2, θ3}. The mass assignments of focal

elements A1 = {θ1}, A2 = {θ2}, A3 = {θ2, θ3} and

A4 = {θ1, θ2, θ3} are as follows.

m(A1) = 0.5,m(A2) = 0.28

m(A3) = 0.17,m(A4) = 0.05

1) We calculate the distance between any two focal elements

and find the compatible focal element for each focal element.

δ∩(A1, A2) = 0.78, δ∩(A1, A3) = 0.84

δ∩(A1, A4) = 0.1, δ∩(A2, A3) = 0.17

δ∩(A2, A4) = 0.1, δ∩(A3, A4) = 0.05

AC
1 = AC

2 = AC
3 = A4, AC

4 = A3

2) We compute MC
i for each focal element.

MC
1 = MC

2 = ∅
MC

3 = {A4} ,MC
4 = {A1, A2, A3}

3) We compute ICP (Ai) for each focal element.

ICP (A1) = ICP (A2) = ∞
ICP (A3) =

m(A3)

|MC
3 | =

0.17

1
= 0.17

ICP (A4) =
m(A4)

|MC
4 | =

0.05

3
= 0.0167
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So, A4 = {θ1, θ2, θ3} should be removed at first when

approximating the original BBA m(·).
B. New Mass Assignment Strategy

Here, we propose a new mass assignment strategy based on

distance of focal elements. Let m(·) denote the original BBA

with l focal elements and m̂(·) denote the remaining BBA after

removing the focal element Ar, where A′
i, i = 1, 2, ..., l − 1

are the focal elements of m̂(·). Then m̂(·) is obtained by

m̂(A′
i) =

{
m(A′

i) +
m(Ar)

D·δ∩(A′
i,Ar)

, A′
i �= ∅

0, A′
i = ∅ (15)

where

D =

l−1∑

i=1

1

δ∩(A′
i, Ar)

, A′
i �= ∅ (16)

The proof that m̂(·) is a true normalized BBA is given in

Appendix.

From Eq.(15) and (16), we can see that the mass of each

removed focal element Ar is redistributed to remaining focal

elements Aj according to their distances to Ar. The smaller

the distance, the more mass is committed to Aj . Based on

the compatibility of the focal elements and the new mass

assignment strategy, we propose a novel BBA approximation

approach described in the next subsection.

C. New BBA Approximation Algorithm

Let m(·) denote the original BBA with l focal elements. In

the approximation, we want to keep k (k < l) focal elements

and remove the focal elements one by one iteratively. The

detailed steps of this new BBA approximation method are as

follows.

• Step 1: Calculate ICP (Ai) for each remaining focal

element;

• Step 2: Sort all the focal elements in descending order

according to their incompatibility degree to obtain the

sorted list of focal elements;

• Step 3: Remove the last focal element Ar of the sorted

list of focal elements, and redistribute its mass value to

the mass of focal elements upper it in the sorted list to

generate an approximated BBA m̂ according to our new

mass assignment strategy. Reduce the number of focal

elements by one, i.e., l ← l − 1;

• Step 4: Assign m = m̂. If the number of removed focal

elements is not reached, go to Step 1, otherwise output

m as the final approximated BBA.

The whole procedure is illustrated in Fig.1.

Here we provide an illustrative example to show how our

approximation method works and we compare it with other

methods.

Example 2: Consider the BBA m(·) defined over the

FoD Θ = {θ1, θ2, θ3, θ4, θ5} listed in Table I.

1) k − l − x approximation. Here k and l are set to 5. x
is set to 0.2. The focal elements A2 = {θ2, θ3, θ4, θ5} and

A7 = {θ2, θ5} are removed without violating the constraints

A BBA m with l 
focal elements

l = k

Calculate ICP(Ai) for each 
remaining focal element

N

Sort all the focal elements 
in descending order

Remove the last focal 
element Ar

Redistribute the mass of Ar to 
remaining focal elements to generate 

an approximated BBA 

l = l-1, m = 

Output m as the final 
approximated BBA

Y

m̂

m̂

Fig. 1. Scheme of the new BBA approximation.

TABLE I
FOCAL ELEMENTS AND MASS VALUES OF m(·).

Focal Elements Mass Values
A1 = {θ1} 0.13

A2 = {θ2, θ3, θ4, θ5} 0.06

A3 = {θ4, θ5} 0.3

A4 = {θ3, θ5} 0.15

A5 = {θ1, θ2} 0.14

A6 = {θ2, θ4, θ5} 0.12

A7 = {θ2, θ5} 0.1

in k−l−x. The remaining total mass value is 1−0.06−0.1 =
0.84. Then, all the focal elements’ mass values are divided by

0.84 to accomplish the normalization. The approximated BBA

m̂klx(·) is listed in Table II, where A′
i, i = 1, 2, 3, 4, 5 are the

focal elements of m̂klx(·).
TABLE II

m̂klx(·) OBTAINED USING k − l − x.

Focal Elements Mass Values
A′

1
= {θ1} 0.1548

A′
2
= {θ4, θ5} 0.357

A′
3
= {θ3, θ5} 0.1786

A′
4
= {θ1, θ2} 0.1667

A′
5
= {θ2, θ4, θ5} 0.1429

2) Summarization approximation. Here k is set to 5. Ac-

cording to the summarization method, the focal elements
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A2 = {θ2, θ3, θ4, θ5}, A7 = {θ2, θ5} and A6 = {θ2, θ4, θ5}
are removed and their union set {θ2, θ3, θ4, θ5} is generated

as a new focal element (existed already) with mass value

m(A2) + m(A7) + m(A6) = 0.28. The approximated BBA

m̂Sum(·) is listed in Table III.

TABLE III
m̂Sum(·) OBTAINED USING SUMMARIZATION.

Focal Elements Mass Values
A′

1
= {θ1} 0.13

A′
2
= {θ2, θ3, θ4, θ5} 0.28

A′
3
= {θ4, θ5} 0.3

A′
4
= {θ3, θ5} 0.15

A′
5
= {θ1, θ2} 0.14

3) D1 approximation. Here k is set to 5. It can be obtained

that A3, A4, A5, A1 belong to M , and A6, A7, A2 belong to

M−. For A6 and A2, there are no supersets of them in M , i.e.,

MA = ∅, and we can not construct the set M ′
A, i.e., M ′

A = ∅.

So the mass values of A6 and A2 are assigned to the total

set Θ. For A7, we can construct the set M ′
A = {A3, A4, A5}.

The parameter ratio and number are calculated to be 1 and 3.

Therefore, m(A7)/3 = 0.0333 is added to the mass value of

A3, A4 and A5 respectively. The approximated BBA m̂D1(·)
is listed in Table IV.

TABLE IV
m̂D1(·) OBTAINED USING D1.

Focal Elements Mass Values
A′

1
= {θ1} 0.13

A′
2
= {θ4, θ5} 0.3334

A′
3
= {θ3, θ5} 0.1833

A′
4
= {θ1, θ2} 0.1733

A′
5
= Θ 0.18

4) Rank-level fusion approximation. Here k and l are set

to 5 and x is 0.2. The parameter α is set to 0.5. At the

first iteration, we calculate the comprehensive vector rf =
[rf (A1), rf (A2), ..., rf (A7)] = [5.5, 1, 5, 4.5, 4, 2.5, 2.5].
Then we remove A2 = {θ2, θ3, θ4, θ5} at first and

do the normalization of remaining focal elements. At

the second iteration, we obtain the comprehensive vector

rf = [rf (A1), rf (A3), rf (A4), rf (A5), rf (A6), rf (A7)] =
[4.5, 4, 3.5, 3, 1.5, 1.5]. Then, we remove A6 = {θ2, θ4, θ5}
(or A7) and normalize the remaining focal elements to obtain

the final approximated BBA m̂Rank(·) listed in Table V.

TABLE V
m̂Rank(·) OBTAINED USING RANK-LEVEL FUSION.

Focal Elements Mass Values
A′

1
= {θ1} 0.1585

A′
2
= {θ4, θ5} 0.3659

A′
3
= {θ3, θ5} 0.1829

A′
4
= {θ1, θ2} 0.1707

A′
5
= {θ2, θ5} 0.122

5) Correlation coefficient approximation. Here k is set to 2,

i.e., we have to remove two focal elements. The correlation

coefficients between the remaining BBA m̂i(·), i = 1, 2, ..., 7
and the original BBA m(·) are 0.9805, 0.9981, 0.9274, 0.9778,

0.9842, 0.9946 and 0.9927. We sort all the focal elements in

ascending order according to the correlation coefficient and

remove the two bottom focal elements A2 = {θ2, θ3, θ4, θ5}
and A6 = {θ2, θ4, θ5} from the original BBA. Then, we

redistribute the removed mass to remaining focal elements to

obtain the final approximated BBA m̂CC(·) listed in Table VI.

TABLE VI
m̂CC(·) OBTAINED USING CORRELATION COEFFICIENT.

Focal Elements Mass Values
A′

1
= {θ1} 0.13

A′
2
= {θ4, θ5} 0.3718

A′
3
= {θ3, θ5} 0.1839

A′
4
= {θ1, θ2} 0.1677

A′
5
= {θ2, θ5} 0.1466

6) Iterative approximation based on distance of evidence.

Here k is set to 2, i.e., we have to remove two focal

elements. At the first iteration, Jousselme’s distances between

the remaining BBA m̂i(·), i = 1, 2, ..., 7 and the original BBA

m(·) are 0.1053, 0.0315, 0.1932, 0.1049, 0.105, 0.05981 and

0.05982. We remove A2 = {θ2, θ3, θ4, θ5} at first. Then, we

normalize the remaining focal elements and assign m = m̂2 to

execute the next iteration. At the second iteration, Jousselme’s

distances between the remaining BBA m̂i(·), i = 1, 3, 4, 5, 6, 7
and m(·) are 0.1113, 0.2101, 0.114, 0.1118, 0.0644 and

0.0663. So we remove A6 = {θ2, θ4, θ5} and normalize the

remaining focal elements to obtain the final approximated

BBA m̂Dis(·) listed in Table VII.

TABLE VII
m̂Dis(·) OBTAINED USING DISTANCE OF EVIDENCE.

Focal Elements Mass Values
A′

1
= {θ1} 0.1585

A′
2
= {θ4, θ5} 0.3659

A′
3
= {θ3, θ5} 0.1829

A′
4
= {θ1, θ2} 0.1707

A′
5
= {θ2, θ5} 0.122

7) ICP method (Our approximation method). The desired

remaining focal elements is set to k = 5 and we obtain the

final approximated BBA in two iterations as follows.

• The first iteration: We first calculate ICP (Ai), i =
1, 2, ..., 7 and sort all the focal elements in descending

order according to ICP (Ai) value. The result of the first

iteration is listed in Table VIII. Because ICP (A2) is the

smallest and the focal element A2 = {θ2, θ3, θ4, θ5} is

removed at first, then we redistribute the mass of A2 to

remaining focal elements to proceed the next iteration.

• The second iteration: We recalculate ICP (Ai), i =
1, 3, 4, 5, 6, 7 and sort all the remaining focal elements.

The result of the second iteration is listed in Table

VIII. Because ICP (A7) is the smallest value, the focal
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element A7 = {θ2, θ5} is removed at this iteration. Now

the number of remaining focal elements is five and we

redistribute the mass of A7 to remaining focal elements

to obtain the final approximated BBA m̂ICP (·) listed in

Table IX.

TABLE VIII
THE RESULTS OF TWO ITERATIONS USING ICP.

The First Iteration
Focal Elements Mass Values |MC

i | ICP (Ai)

A3 = {θ4, θ5} 0.3 MC
3

= ∅ ∞
A4 = {θ3, θ5} 0.15 MC

4
= ∅ ∞

A7 = {θ2, θ5} 0.1 MC
7

= ∅ ∞
A5 = {θ1, θ2} 0.14 1 0.14

A1 = {θ1} 0.13 1 0.13

A6 = {θ2, θ4, θ5} 0.12 1 0.12

A2 = {θ2, θ3, θ4, θ5} 0.06 4 0.015

The Second Iteration
Focal Elements Mass Values |MC

i | ICP (Ai)

A3 = {θ4, θ5} 0.3105 MC
3

= ∅ ∞
A4 = {θ3, θ5} 0.1605 MC

4
= ∅ ∞

A5 = {θ1, θ2} 0.1439 1 0.1439

A1 = {θ1} 0.1334 1 0.1334

A6 = {θ2, θ4, θ5} 0.1411 2 0.0705

A7 = {θ2, θ5} 0.1106 2 0.0553

TABLE IX
m̂ICP (·) OBTAINED USING ICP.

Focal Elements Mass Values
A′

1
= {θ1} 0.1491

A′
2
= {θ4, θ5} 0.3237

A′
3
= {θ3, θ5} 0.181

A′
4
= {θ1, θ2} 0.1658

A′
5
= {θ2, θ4, θ5} 0.1804

V. EXPERIMENTS AND ANALYSIS

In this section, we compare all the aforementioned BBA

approximation methods to demonstrate the effectiveness and

interest of our method in terms of three Measures of Perfor-

mance (MoP): 1) closeness, 2) computational efficiency, and

3) decision-making.

A. MoP of Closeness and Computational Efficiency

The smaller the distance between the new approximated

BBA and the original BBA, the less information is lost, which

is preferred. We use dEBI distance [20] to describe the degree

of closeness between two pieces of evidence, which is defined

as

dEBI(m1,m2) =

√√√√Nc ·
2n−1∑

i=1

[dI(BI1(Ai), BI2(Ai))]2 (17)

Here Nc = 1/2n−1 is the normalization factor. BI1(Ai) and

BI2(Ai) are belief intervals of Ai for m1(·) and m2(·), which

are denoted by [Bel1(Ai), P l1(Ai)] and [Bel2(Ai), P l2(Ai)].

TABLE X
ALGORITHM 1: RANDOM GENERATION OF BBA.

Input: Θ: Frame of Discernment;

Nmax: Maximum number of focal elements

Output: m(·): BBA

Generate P(Θ), which is the power set of Θ;

Generate a random permutation of P(Θ) → R(Θ);

Generate an integer between 1 and Nmax → l;

FOReach First k elements of R(Θ) do

Generate a value within [0, 1] → mi, i = 1, 2, ..., l;

END
Normalize the vector m = [m1,m2, ...,ml] → m′;

The strict distance between interval numbers [a1, b1] and

[a2, b2](bi ≥ ai, i = 1, 2) is defined by

dI([a1, b1], [a2, b2]) =√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2 (18)

Our comparative analysis is based on a Monte Carlo sim-

ulation using M = 200 random runs. The cardinality of

the FoD is |Θ| = 5. In the j-th simulation run, a BBA

mj(·) is randomly generated according to Algorithm 1 [21]

of Table X. The number j of remaining focal elements for

all the approaches are set to from 2 to 30 and then the

different approximation results m̂j
i (·) can be obtained using

different methods, where i denotes the i-th approximation

approach. We record the computational time of the original

BBA combination of mj(·)⊕mj(·) with Dempster’s rule and

the computational time of using Dempster’s rule for each

approximated BBA m̂j
i (·) ⊕ m̂j

i (·). The average (over 200
runs) computational time for the original and approximated

combination are shown in Fig.2. The average (over 200 runs)

distance between the original BBAs and the approximated

BBAs obtained using different approaches given different

remaining focal elements’ number are shown in Fig.3.

As we can see in Fig.2, all the BBA approximation ap-

proaches permit to reduce the computational time with respect

to the original computational time due to the removal of

focal elements. Besides, from Fig.3 we observe that, the

approximated BBAs using our new proposed approach are

globally closer to the original one when compared with other

approaches, which represents the least loss of information.

Note that when the number of remaining focal elements is

small, there are no data points for the curve of k − l − x
and rank-level fusion methods because they can not remove

a certain number of focal elements like other methods due

to the constraint that the removed masses are no greater than

x = 0.2.

B. MoP of Decision-making

In this work we use the DSmP Transformation [18] to

make the final decision by selecting the θi with the maxi-
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Fig. 2. Computational time comparisons.
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mum DSmPε(θi) value. The DSmPε(θi) probability of any

elements θi, i = 1, 2, ..., |Θ| of the FoD Θ can be obtained by

DSmPε(θi) =m(θi)+

[m(θi) + ε]
∑

X∈2Θ

X⊃θi
|X|≥2

m(X)∑

Y ∈2Θ

X⊃Y
|Y |=1

m(Y ) + ε · |X| (19)

where ε ≥ 0 is a tuning parameter.

In our simulations, all the approximation approaches are

compared from the aspect of the accuracy of decision-making.

The cardinality of the FoD is |Θ| = 5 and the parameter ε has

been set to 0.001. Firstly, 1000 BBAs are randomly generated

according to Algorithm 1 [21] of Table X. Then, use the DSmP

Transformation to make the final decision for the original

BBAs. After that, 1000 approximated BBAs are generated

and 1000 decisions are made for each approximation method.

Finally, the accuracy of decision-making is counted for each

method and the results with different number of remaining

focal elements are shown in Fig.4.

As we can see in Fig.4, although ICP method is not the best,

it presents a stable and good performance, especially when the

number of remaining focal elements is small, which represents

the less loss of information from our standpoint. It should be

noted that there are no data points for the curve of k − l − x
and rank-level fusion methods due to the constraint mentioned

before, when the number of remaining focal elements is small.
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VI. CONCLUSION

With the increase of cardinality of the FoD, evidence

combination exhibits a large computational cost. In this paper,

a novel BBA approximation approach based on focal element

compatibility is proposed based on a new mass assignment

strategy. This new method offers a good balance between the

computational time and the loss of information. Simulations

and comparative analyses show the interest and efficiency

of our new method. In future, we will consider other BBA

approximation approaches based on the removal of focal

elements to solve the bottleneck of BBA combination for

different rules of combination.

APPENDIX

The proof that m̂(·) which is obtained by the new mass

assignment strategy is a true normalized BBA is as follows.

Proof:
1) m̂(∅) = 0.

2) δ∩(A′
i, Ar) > 0 for any focal element A′

i �= ∅.

δ∩(A′
i, Ar) =m(A′

i)|A′
i|+m(Ar)|Ar|

− [m(A′
i) +m(Ar)]|A′

i ∩Ar|
≥m(A′

i)|A′
i|+m(Ar)|Ar|

− [m(A′
i) +m(Ar)]min {|A′

i|, |Ar|}
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Suppose that min {|A′
i|, |Ar|} = |Ar|.

δ∩(A′
i, Ar) ≥m(A′

i)|A′
i|+m(Ar)|Ar|

− [m(A′
i) +m(Ar)]|Ar|

=m(A′
i)(|A′

i| − |Ar|) > 0

3)
∑l−1

i=1 m̂(A′
i) = 1.

l−1∑

i=1

m̂(A′
i) =

l−1∑

i=1

[
m(A′

i) +
m(Ar)

D · δ∩(A′
i, Ar)

]

=
l−1∑

i=1

m(A′
i) +

m(Ar)

D

l−1∑

i=1

1

δ∩(A′
i, Ar)

=
l−1∑

i=1

m(A′
i) +

m(Ar)

D
D

=

l−1∑

i=1

m(A′
i) +m(Ar) = 1
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Abstract—Data association is one of the main tasks to achieve
in perception applications. Its aim is to match the sensor detec-
tions to the known objects. To treat such issue, recent research
focus on the evidential approach using belief functions, which
are interpreted as an extension of the probabilistic model for
reasoning about uncertainty. The data fusion process begins by
quantifying sensor data by belief masses. Thereafter, these masses
are combined in order to provide more accurate information.
Finally, a probabilistic approximation of these combined masses
is done to make-decision on associations. Several probabilistic
transformations have been proposed in the literature. However,
to the best of our knowledge, these transformations have been
evaluated only on simulated examples. For this reason, the
objective of this paper is to benchmark most of interesting prob-
abilistic transformations on real-data in order to evaluate their
performances for the autonomous vehicle perception problematic.

Keywords: Data Association, Evidential Theory, Belief Func-
tions, Probabilistic Transformation.

I. INTRODUCTION

Multiple Target Tracking (MTT) is important in percep-
tion applications (autonomous vehicle, surveillance, etc.). The
MTT system is usually based on two main steps: data associ-
ation and tracking. The first step associates detected objects in
the perceived scene, called targets, to known objects charac-
terized by their predicted tracks. The second step estimates the
track states over time typically thanks to Kalman Filters [1], or
improved state estimation techniques (like particle filters, etc).
Nevertheless, bad associations provide wrong track estimation
and then leads to false perception results.

The data association problem is usually resolved by
Bayesian theory [1], [2]. Several methods have been proposed
as the Global Nearest Neighbor (GNN) method, the Prob-
abilistic Data Association Filter (PDAF), and the Multiple
Hypothesis Tracking (MHT) [3]–[5]. However, the Bayesian
theory doesn’t manage efficiently data imperfection due to the
lack of knowledge we can have on sensor quality, reliability,
etc. To circumvent this drawback, the Evidential theory [6],
[7] appears as an interesting approach because of its ability
to model and deal with epistemic uncertainty. Its provides a
theoretical framework to manage ignorance and data imper-
fection.

Several evidential data association approaches have been
proposed [8]–[11] in the framework of belief functions. Rom-
baut [11] uses the Evidential theory to measure the confidence
of the association between perceived and known obstacles.
To manage efficiently objects appearance and disappearance,
Gruyer and Cherfaoui [12] propose the bi-directional data
association. The first direction concerns the target-to-track
pairings which provides a good way to manage the appearance
of the new tracks. The second direction concerns the track-to-
target pairings and then manage disappearance of tracks. This
approach has been extended by Mercier et al. [10] to track
vehicles by using a global optimization to make assignment
decisions. To reduce the complexity for real-time applications,
a local optimization has been used [8], [13]. For all these
methods, the data fusion process begins by defining belief
masses from sensor information and prior knowledge. These
masses represent the belief and ignorance on the assignment
hypotheses. Thereafter, the masses are combined in order to
provide a complete information of the considered problem.
Finally, to make a decision, the belief masses are classically
approximated by a probability measure thanks to a chosen
probabilistic transformation.

For data association applications, the widely used prob-
abilistic transformation (i.e. approximation) is the pignistic
transformation [8], [10], [13], [14]. This transformation is
based on a simple mapping process from belief to prob-
ability domain. However, several published works criticize
the pignistic transformation and propose generalized and/or
alternative transformations [16]–[21]. To our knowledge, the
proposed transformationshave been evaluated by their authors
only on simulated examples. The main objective of this paper
is to compare these transformations on real-data in order to
determine which one is well-suited for assignment problems.

The rest of the paper is structured as follows. Section
II recalls the basics of belief functions and their uses in
data association problems. In Section III, the most appealing
probabilistic transformations are presented and compared on
the well-known KITTI public database in Section IV. Finally,
Section V concludes the paper.

Originally published as: M. Boumediene, J. Dezert, Evaluation of Probabilistic Transformations for 
Evidential Data Association, in Proc. of IPMU 2020 Int. Conf., Lisbon, Portugal, June 15–19, 2020, and 
reprinted with permission.
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II. B EL IEF FUNCTIONS FOR DATA AS S OCIATION

To select “best” associations, the data fusion process con-
sists in four steps: modeling, estimation, combination and
decision-making. This section presents their definitions and
principles.

A. Basic Fundamentals

The Belief Functions (BF) have been introduced by
Shafer [7] based on Dempster’s researches [6]. They offer a
theoretical framework for reasoning about uncertainty. Let’ s
consider a problem where we have an exhaustive list of
hypotheses (Hj) which are mutually exclusive. They define
a so-called frame of discernment Θ:

Θ =
k⋃
j=1

{Hj}with Hi ∩Hj = ∅ (1)

The power set 2Θ is the set of all subsets of Θ, that is:

2Θ = {∅, H1, ...,Hk, ..., {H1, H2, H3} , ...,Θ} (2)

The propositionA = {H1, H2, H3} represents the disjunc-
tion meaning that either H1 or H2 or H3 can be the solution
to the problem under concern. In other words, A represents
a partial ignorance if A is the disjunction of several elements
of Θ. The union of all hypotheses Θ represents the total
ignorance and ∅ is the empty set that represents the impossible
solution (interpreted usually as the conflicting information).

The truthfulness of each proposition A ∈ 2Θ issued from
source j is modeled by a basic belief assignment (bba)
mΘ
j (A):

mΘ
j : 2Θ → [0, 1],

∑
A∈2Θ

mΘ
j (A) = 1 (3)

Thereafter, the different bbas (mΘ
j ) are combined which

provides a global knowledge of the considered problem.
Several rules of combination have been proposed [22], the
conjunctive operator is widely used in many rules proposed in
the literature for the combination of sources of evidence. For
instance, Shafer [7] did propose Dempster’s rule of combina-
tion below which is nothing but the normalized version of the
conjunctive rule [23]:

 mΘ
DS(A) = 1

1−K
∑

A1∩...∩Ap=A

p∏
j=1

mΘ
j (Aj)

mΘ
DS(∅) = 0,

(4)

where K is a normalized coefficient:

K =
∑

A1∩...∩Ap=∅

p∏
j=1

mΘ
j (Aj). (5)

Finally, in order to make decisions in Θ, a probabilistic
approximation of the combined bbas (mΘ

DS(A)) is usually
done. The upper and the lower bounds of the unknown

probability P (A) are defined by the belief Bel(A) and the
plausibility Pl(A) functions given respectively by:

Bel(A) =
∑
B⊆A

mΘ
DS(B)

Pl(A) =
∑

B∩A6=∅

mΘ
DS(B)

(6)

B. Belief Modeling

The data association problem can be analyzed from two
points of view: target-to-track and track-to-target association.
Consequently, two frames of discernment are defined: Θi,. and
Θ.,j , i = 1, ..., n, with n the number of targets, and j =
1, ...,m, with m the number of tracks:

Θi,. =
{
Y(i,1), Y(i,2), ..., Y(i,m), Y(i,∗)

}
Θ.,j =

{
X(1,j), X(2,j), ..., X(n,j), X(∗,j)

} (7)

where Θi,. is composed of the m possible target(i)-to-track(j)
associations denoted Y(i,j). The hypothesis of appearance is
represented by Y(i,∗)

1. Θ.,j contains the n possible track(j)-
to-target(i) associations denotedX(i,j), and X(∗,j) is the track
disappearance.

C. Basic Belief Assignment

For target-to-track assignment, three bba’s are used to
answer the question “Is target Xi associated with track Yj?”:

• m
Θi,.

j (Y(i,j)): belief in “Xi is associated with Yj”,
• m

Θi,.

j (Y(i,j)): belief in “Xi is not associated with Yj”2,
• m

Θi,.

j (Θi,.): the degree of ignorance.
The recent benchmark [24] on huge real data shows that

the most suited model is the non-antagonist model [11], [25]
which is defined as follows:

m
Θi,.

j (Y(i,j)) =

{
0 , Ii,j ∈ [0, τ ]
Φ1(Ii,j) , Ii,j ∈ [τ, 1]

(8)

m
Θi,.

j (Y(i,j)) =

{
Φ2(Ii,j) , Ii,j ∈ [0, τ ]
0 , Ii,j ∈ [τ, 1]

(9)

m
Θi,.

j (Θi,.) = 1−mΘi,.

j (Y(i,j))−m
Θi,.

j (Y(i,j)), (10)

where 0 < τ < 1 represents the impartiality of the association
process and Ii,j ∈ [0, 1] is an index of similarity between Xi

and Yj . Φ1(.) and Φ2(.) are two cosine functions defined by: Φ1(Ii,j) = α
2

[
1− cos(π

Ii,j−τ
τ )

]
Φ2(Ii,j) = α

2

[
1 + cos(π

Ii,j
τ )
]
,

(11)

where 0 < α < 1 is the reliability factor of the data source.
In the same manner, belief masses are generated for the track-
to-target assignment.

1Y(i,∗) refers to the fact that no track is assigned to the target(i).
2Y(i,j) defines the complementary hypothesis of Y(i,j),

Y(i,j) = {Y(i,1), . . . , Y(i,j−1), Y(i,j+1), . . . , Y(i,m), Y(i,∗)}.
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Table I
PROBAB IL ITIES OF TARGET-TO-TRACK AS S OCIATIONS

Pi,.(.) Y1 . . . Ym Y∗
X1 P1,.(Y(1,1)) . . . P1,.(Y(1,m)) P1,.(Y(1,∗))
X2 P2,.(Y(2,1)) . . . P2,.(Y(2,m)) P2,.(Y(2,∗))

...
...

...
...

...
Xn Pn,.(Y(n,1)) . . . Pn,.(Y(n,m)) Pn,.(Y(n,∗))

D. Belief Combination

Based on Dempster’s rule (4), the combined masses mΘi,.

(and mΘ.,j ) over 2Θi,. (and 2Θ.,j ) can be computed as fol-
lows [26]:

mΘi,.
(
Y(i,j)

)
= K · mΘi,.

j

(
Y(i,j)

) m∏
a=1
a6=j

α(i,a)

mΘi,.({Y(i,j), . . . , Y(i,l), Y(i,∗)}) = K · γ(i,(j,...,l))

m∏
a=1
a6=j
......
a6=l

β(i,a)

mΘi,.
(
Y(i,∗)

)
= K ·

m∏
a=1

β(i,a)

mΘi,. (Θi,.) = K ·
m∏
a=1

mΘi,.
a (Θi,.)

(12)
with:

α(i,a) = 1−mΘi,.
a

(
Y(i,a)

)
β(i,a) = m

Θi,.
a

(
Y(i,a)

)
γ(i,(j,...,l)) = m

Θi,.

j (Θi,.) . . .m
Θi,.

l (Θi,.)

K =

 m∏
a=1

α(i,a) +
m∑
a=1

mΘi,.
a

(
Y(i,a)

) m∏
b=1
b6=a

α(i,b)


−1

E. Decision-Making

Finally, the probabilities matrix Pi,. (P.,j) is obtained by
using a probabilistic transformation. Table I presents the Pi,.
matrix where each line defines the association probabilities
of the target Xi with all tracks Yj . Pi,.(Y(i,∗)) represents the
appearance probability of Xi.

The association decisions are made by using a global or
a local optimization strategy. The Joint Pignistic Probability
(JPP) [10] selects associations that maximize the probability
product. However, this global optimization is time-consuming
and can select doubtful local associations. To cope these
drawbacks, local optimizations have been proposed as the
Local Pignistic Probability (LPP). Interested readers in the
benchmark of these algorithms can refer to [14], [15].

III. PROBAB IL IS TIC TRANS FORMATIONS

The generalized formula of the probabilistic transformation
can be defined as follows:

Pi,.
(
Y(i,j)

)
= mΘi,.

(
Y(i,j)

)
+

∑
A∈2Θi,.

Y(i,j)⊂A

T (Y(i,j), A) ·mΘi,. (A), (13)

where A represents the partial/global ignorance about the
association of target Xi and T (Y(i,j), A) represents the rate of
the ignorance mass mΘi,. (A) which is transfered to singleton
Y(i,j).

Several probabilistic transformationshave been proposed in
the literature. In this section, only the most interesting ones
are presented.

A. Pignistic Probability

The pignistic transformationdenoted by BetP and proposed
by Smets [27], [28] is still widely used for evidential data as-
sociation applications [8], [10], [25], [29]. This transformation
redistributes equitably the mass of ignorance on singletons as
follows:

TBetPi,.(Y(i,j), A) = 1
|A| , (14)

where |A| represents the cardinality of the subset A. However,
the pignistic transformation(14) ignores the bbas of singletons
which can be considered as a crude commitment.BetP is easy
to implement because it has a low complexity due to its simple
redistribution process.

B. Dezert-Smarandache Probability

Besides of the cardinality, Dezert-Smarandache Probability
(DSmP ) transformation [18] considers the values of masses
when transferring ignorance on singletons:

TDSmPi,.(Y(i,j), A) =
mΘi,.(Y(i,j))+ε∑

Y(i,k)⊂A
mΘi,.

(
Y(i,k)

)
+ ε · |A|

(15)
The value of the tuning parameter ε ≥ 0 is used to adjust

the effect of focal element’s cardinality in the proportional
redistribution, and to make DSmP defined and computable
when encountering zero masses. Typically, one takes ε =
0.001. The smaller ε, the better approximation of probability
measure we get [18]. DSmP allows to obtain in general
a higher Probabilistic Information Content (PIC) [30] than
BetP because it uses more information than BetP for its
establishment. The PIC indicates the level of the available
knowledge to make a correct decision. PIC = 0 indicates
that no knowledge exists to take a correct decision.

C. MultiScale Probability

The Multiscale Probability (MulP ) transformation [19]
highlights the proportion of each hypothesis in the frame of
discernment by using a difference function between belief and
plausibility:
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TMulPi,.
(Y(i,j), A) =

(PlΘi,.
(
Y(i,j)

)
−BelΘi,.

(
Y(i,j)

)
)q∑

Y(i,k)⊂A
(PlΘi,.

(
Y(i,k)

)
−BelΘi,.

(
Y(i,k)

)
)q
, (16)

where q ≥ 0 is a factor used to amend the proportion of
the difference (Pl(·)−Bel(·)). However, the TMulPi,.

is not
defined ( 0

0 ) when m(·) is a Bayesian mass (Pl(·) = Bel(·)).

D. Sudano’s Probabilities

Sudano proposes several alternatives to BetP as the Pro-
portional Plausibility (PrP l) and the Proportional Belief
(PrBel) transformations [18], [21]. Those latter redistribute
respectively the ignorance mass according to the normalized
plausibility and belief functions:

TPrPli,.(Y(i,j), A) =
PlΘi,.(Y(i,j))∑

Y(i,k)⊂A
PlΘi,.

(
Y(i,k)

)
(17)

TPrBeli,.(Y(i,j), A) =
BelΘi,.(Y(i,j))∑

Y(i,k)⊂A
BelΘi,.

(
Y(i,k)

)
(18)

E. Pan’s Probabilities

Other proportional transformations have been proposed
in [20]. Those transformations assume that the bba are pro-
portional to a function S(·) which is based on the belief and
the plausibility:

TPrBPi,.(Y(i,j), A) = S(i,j)∑
Y(i,k)⊂A

S(i, k)
,

(19)

where different definitions of S have been proposed:
PrBP1i,. : S(i, j) = PlΘi,.

(
Y(i,j)

)
·BelΘi,.

(
Y(i,j)

)
PrBP2i,. : S(i, j) = BelΘi,.(Y(i,j)) · (1− PlΘi,.(Y(i,j)))

−1

PrBP3i,. : S(i, j) = PlΘi,.(Y(i,j)) · (1−BelΘi,.(Y(i,j)))
−1

(20)

IV. RES ULTS

This section presents a benchmark of the probabilistic
transformations in the framework of the object association
system for autonomousvehicles. The aim is to assign detected
objects in the scene (targets) to known ones (tracks). The
transformations have been evaluated on real data.

The KITTI dataset3 provides 21 sequences recorded from
cameras mountedon a moving vehicle on urban roads [31]. To
our knowledge, no comparison of probabilistic transformations
has been done on real data where more than 30000 associations
have been observed. These latter cover different road scenarii
as shown in Fig. 1. For this work, detections are defined only
by 2D bounding box in the image plane as presented in Fig. 1.

3http://www.cvlibs.net/datasets/kitti/eval tracking.php

Figure 1. Examples of images provided by KITTI [24].

Figure 2. The illustration of the distances d right
i,j and d left

i,j [24].

A. Experimental Setting

The assignment information are based on the distance
between objects in the image plane. For that, the distance di,j
is defined as follows:

di,j =
1

2
(d right
i,j + d left

i,j ), (21)

where d right
i,j (resp. d left

i,j ) is the Euclidean distance between
bottom-right (resp. top-left) corners of the bounding boxes of
target Xi (detected object) and track Yj (known object) as
presented in Fig. 2.

The parameters of the bba model (11) are: α = 0.9 and
τ = 0.5. The index of similarity is defined as follows:

Ii,j =

{
1− di,j

D , if di,j < D
0 , otherwise,

(22)

where D is the limit distance for association which is deter-
mined heuristically, e.g. D = 210 in this work.

The tuning parameters ε = 0.001 and q = 5 for DSmP
and MulP transformations respectively. The LPP algorithm
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has been used as optimization strategy in the decision-making
step.

B. Comparison of probabilistic transformations

All discussed transformations are characterized by an equiv-
alent complexity except the pignistic transformation.BetP is
computed directly from combined masses which leads to a
lower computational time.

To compare the performance of the probabilistic transfor-
mations presented previously, the object association system is
evaluated by the True Associations Rate (TAR):

TAR =

∑
t True Associationt∑
tGround Trutht

, (23)

where t is the frame index.
Table II compares association outcomes of the system based

on different probabilistic transformations. Only target-to-track
association results have been presented in Table II due to
the lack of space. However, from track-to-target association
results, similar comments/conclusions hold. The penultimate
row of Table II shows the weighted average of TAR value
based on all sequences which is given by:

TARavg =
20∑
i=0

wiTARi (24)

where TARi is the TAR value of the i-th sequence, and where
the weight wi is wi = ni/

∑20
i=0 ni and ni being the number

of associations of the i-th sequence. For instance, TARaver =
0.9852 (or 98.52%) for the BetP transformation,etc. The last
row of Table II represents the weighted standard deviation
(σw) of association scores defined as follows:

σw =

√√√√ 20∑
n=0

wi(TARi − TARavg.)2 (25)

The obtained results show that PrBel, PrBP1, and
PrBP2 provide the worst mean associations scores (≤
97.40%) with the largest standard deviation (1.36%) for
PrBP2. It can be explained by the fact that these transfor-
mations are based on the Bel function which is a pessimistic
measurement. The rest of the transformations provide rates of
correct association (i.e. scores) > 98.40% which represents
a gain of +1%. The best mean score ≈ 98.50% is given
by BetP , PrP l, and MultP transformations. Based only
on the mean score criterion, BetP seems more interesting
because it provides better scores on 15 sequences from 21
as illustrated in Fig. 3. In addition, BetP is based on a
very simple transferring process of uncertainty which makes
BetP a good choice for real-time applications. However, this
apparent advantage of BetP needs to be seen in relative terms
because BetP also generates a quite large standard deviation
of 1.38%, which clearly indicate thatBetP is not very precise.
PrP l and MultP are also characterized by a relatively
high standard deviation (1.22% and 1.39%). On the other
hand, the lower standard deviation 1.05% is given by DSmP
transformation with a good association score = 97.85%. This

transformation performs well in term of PCI criteria which
leads to make correct decisions [18]. Consequently, DSmP
is an interesting alternative to BetP for the data association
process in autonomous vehicle perception system.

Number of worst/best scores
0 5 10 15

BetP

DSmP

PrPl

PrBel

MulP

PrBP1

PrBP2

PrBP3

15

6

8

1

12

3

1

7

1

4

1

3

1

1

12

1
Best scores
Worst scores

Figure 3. The number of worst/best scores obtained by each probabilistic
transformation on 21 sequences; e.g. PrBel provides three worst scores
(sequences 0, 10, and 17) and only one best score on sequence 12.

V. CONCL US ION

An evaluation of several probabilistic transformations for
evidential data association has been presented in this paper.
These transformations approximate the belief masses by a
probability measure in order to make association decisions.
The widely used probabilistic approximation is the pignistic
transformation. However, several published studies criticize
the choice of this method of approximation and propose
generalized transformations.

We did compare the performances of these probabilistic
transformations on real-data in order to determine which
one is more suited for assignment problems in the context
of autonomous vehicle navigation based on real datasets.
The obtained results based on the well-known KITTI dataset
show that the pignistic transformation provides one of the
better scores. However, it provides a quite large standard
deviation contrary to DSmP transformation which provides
the lowest standard deviation. In addition, DSmP procures
a nearly similar association score to that given by BetP .
Consequently, DSmP can be a good alternative to BetP for
the autonomousvehicle perception problematic requiring a bit
more computational power with respect to BetP .
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   Generation of Fuzzy Evidence Numbers
for the Evaluation of Uncertainty Measures 

Abstract— Uncertainty is an important dimension to consider 
to evaluate the quality of information. In real world, information 
tends, usually, to be uncertain, vague and imprecise leading to 
different types of uncertainty, such as randomness, ambiguity and 
imprecision. Methods to quantify uncertainty, will help to quantify 
information quality. This paper presents a general measure of 
uncertainty framed into the fuzzy evidence theory named GM, 
quantifying in an aggregate way the three basic types of 
uncertainty: non-specificity, fuzziness and discord considered 
within the framework of Generalized Information Theory (GIT). 
Monte-Carlo simulations are used to study the behavior of GM 
with respect to the up-cited uncertainty types. Results show that 
the total uncertainty GM behave properly as we increase and 
decrease the various types of uncertainty.   

Keywords—fuzzy evidence theory, uncertainty measures, 
fuzziness, non-specificity, discord, ambiguity, imprecision, fuzzy 
randomness 

I. INTRODUCTION 

Uncertainty is a primary importance in evaluating 
information quality.  In the field of Generalized Information 
Theory (GIT), Klir and Yan [1] defined three basic types of 
uncertainty: non-specificity, fuzziness and discord (or 
randomness). These types are considered as the three main types 
of uncertainty that covered all the aspects. Indeed, fuzziness is 
due to the non-crisp boundaries of a set. Non-specificity is due 
to the numerous elements of a set. Discord appears when 
different occurrences are possible. The typology, presented in 
Fig. 1, is an extension of Klir and Yan’s  typology that was 
originally initiated in Liu [2].   

The typology exhibits three types of uncertainty, resulting 
from the combination of each pair of basic types of uncertainty. 
In fact, imprecision is introduced as a general concept for both 
fuzziness and non-specificity. Ambiguity is a combination 
between non-specificity and discord. For the third combination, 
the concept of discord used here, is equivalent to the randomness 
one, used by Pal et al. [3], but clearly differs from the 

inconsistency concept introduced by Smets [4], or of conflict 
concept, in the Dempster’s sense [5]. No term has been proposed 
so far for combining fuzziness and discord. Hence, we propose 
here fuzzy randomness to designate the total uncertainty in the 
fuzzy-probability theory. Hence, three general terms are used to 
designate the combinations of (1) non-specificity and discord, 
i.e. ambiguity, (2) non-specificity and fuzziness, i.e. imprecision
and (3) fuzziness and confusion, i.e. fuzzy randomness. The
term “total uncertainty” is kept for the combination of the three
basic kinds of uncertainty.

Fig. 1. Circular typology of uncertainty 

This paper proposes to pursue the analysis of the properties 
and behaviors of a general measure of uncertainty named GM, 
framed into the fuzzy evidence theory [6] that was originally 
defined in Liu [2]. The analysis has been further developed by 
Jousselme et al. [7] that resulted in a new measure of ambiguity, 
AM. Finally, Burkov et al. [8] presented preliminary results 
from an empirical study about the behavior of GM and AM.  

The paper is organized as follows: Section II introduces the 
fuzzy evidence theory that will be used in the following sections. 
It also presents existing measures of uncertainty as well as 
proposed measures, namely imprecision measure and GM 

Originally published as: S. Barhoumi, I.K. Kallel, S.A. Bouhamed, E. Bosse, B. Solaiman, Generation of 
Fuzzy Evidence Numbers for the Evaluation of Uncertainty Measures, in Proc. of 5th Int. Conf. on 
Advanced Technologies for Signal and Image Processing (ATSIP 2020), 02–05 September 2020, Sousse, 
Tunisia, and reprinted with permission.
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measure that quantifies all kinds of uncertainty. In section III, a 
consistency analysis is performed on the mentioned measures, 
to illustrate GM consistency behavior under the three main types 
of uncertainty: discord, non-specificity and fuzziness. The data 
used for experiments is provided by a fuzzy evidence number 
generator. We present our conclusions on the fourth section. 

II. UNCERTAINTY IN FUZZY EVIDENCE THEORY  

A. Basic concepts  

Definition 1. Let 𝑋 = {𝑥1, 𝑥2, . . , 𝑥𝑁}, classically referred to the 
universe of discourse in the probability theory and the frame of 
discernment in the evidence theory.be a frame of discernment 
(FoD). It is a finite discrete set with 𝑁 exclusive and exhaustive 
hypotheses. It defines the working space for the application as it 
entails all the propositions, for which information sources can 
provide evidence. We denote by: 

- 𝒫(𝑋) = 2𝑋 the power set of 𝑋 (all possible sub-sets of X),  

- 𝒫̃(𝑋) = [0,1] 𝑋 the set of fuzzy parts of 𝑋, 

- 𝐴 and 𝐵 are two crisp sets from 𝒫(𝑋), 

- 𝐴̃ and 𝐵̃ are two fuzzy sets from 𝒫̃(𝑋) with fuzzy 
membership degree 𝜇𝐴(𝑥𝑖), ∀ 𝑥𝑖 ∈ 𝐴 and 𝜇𝐵(𝑥𝑗), ∀ 𝑥𝑗 ∈ 𝐵. 

B. Fuzzy evidence theory 

1) Fuzzy sets theory 

Definition 2. A fuzzy set 𝐴̃ [9] is a generalization of a classical 
set allowing each one of its elements to have a degree of 
membership to the set. The membership function is defined on 
the FoD 𝑋 by: 

 𝜇𝐴: 𝑋 → [0,1],  𝑥 ⟼ 𝜇𝐴(𝑥) (1) 

Where 𝜇𝐴(𝑥) is the membership degree of the element 𝑥 to the 
fuzzy set 𝐴̃. A crisp set is a special case of a fuzzy set where 
𝜇𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 and 𝜇𝐴(𝑥) = 0 if 𝑥 ∉ 𝐴.  

2) Evidence theory  

The evidence theory started with Glenn Shafer [10]. He 
formalized the field of belief functions based on the work of 
Arthur Dempster on upper and lower bounds of probability [5]. 
For that, it is also called Dempster-Shafer theory (DST). DST 
is often defined as an extension of probability theory. Indeed, a 
probability distribution is a belief function whose focal 
elements are singletons. The advantage of the DST is that it 
provides important tools to handle both random and epistemic 
uncertainty. It is based on two dual non-additive measures, i.e. 
belief measure and plausible measure and it assigns a mass to 
every subset of FoD. In the following, we define the different 
notions. 

Definition 3. A mass assignment 𝑚 is mapping function from 
𝒫(𝑋) to [0,1]. It satisfies the following conditions: 

a)  𝑚(∅) = 0, (2) 

b) ∑ 𝑚(𝐴) = 1𝐴⊆𝒫(𝑋)   (3) 

The value 𝑚(𝐴) expresses the degree of support of the 
evidential claim that the true alternative is in the set 𝐴, but not 
in any specific subset. Any additional evidence, supporting the 

claim that the true alternative is in a subset of 𝐴, let’s be 𝐵 ⊂ 𝐴, 
must be expressed by another nonzero value 𝑚(𝐵). Condition 
(b) of the equation 3, is called a normalization condition of 
DST. A subset 𝐴 is called a focal element if 𝑚(𝐴) > 0. ℱ ≡
{𝐴 ⊆ 𝒫(𝑋)| 𝑚(𝐴) > 0} is the set of focal elements. 

The belief function can then be deduced from 𝑚 as: 

 Bel(A) = ∑ 𝑚(𝐵)𝐵/𝐵⊆𝐴   (4) 

The plausibility function also can be deduced from 𝑚 as:  

 Pl(A) = ∑ 𝑚(𝐵)𝐵/𝐵∩𝐴≠∅   (5) 

The pignistic probability 𝐵𝑒𝑡𝑃𝑚 called as such by Smets [40], 
corresponds to a classical probabilistic transformation of a 
belief function:  

 𝐵𝑒𝑡𝑃𝑚(A) = ∑
𝑚(𝐵)

|𝐵|𝐵⊆𝑋 |𝐴⋂𝐵| ,  ∀ 𝐴 ⊆ 𝑋  (6) 

Where |𝐴| is the cardinality of 𝐴. If 𝐴 reduces to a singleton 
{𝑥}: 𝐵𝑒𝑡𝑃𝑚(𝑥) = ∑

𝑚(𝐵)

|𝐵|𝑥∈𝐵 . 

Definition 4. A piece of evidence is an information that 
supports different hypotheses with different probabilities. It can 
contain variety of uncertainties due to the diversity of the 
information sources.  

Definition 5. A body of evidence (BoE), which is also called 
basic probability assignment (BPA) or basic belief assignment 
(BBA), is defined as the focal sets and their corresponding mass 
functions: 

 𝐵𝑜𝐸 ≡ {< 𝐴𝑖, 𝑚(𝐴𝑖) >: 𝐴𝑖 ∈ ℱ, 𝑚(𝐴𝑖) > 0}𝑖=1:𝑓 (7) 

Where 𝑓 ≡ |ℱ| is the cardinality of ℱ, called also the number 
of focal elements. 

In DST, given two pieces of information, represented in the 
form of two different bodies of evidence, Dempster's 
combination rule for combining them, is defined as follows:  

 𝑚(𝐶) ≡
∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴⋂𝐵=𝐶

1 − ∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴⋂𝐵=∅

 (8) 

3) Fuzzy evidence theory 

DST is a powerful and flexible mathematical tool for 
handling uncertainty, impreciseness, and incomplete 
information. Even though, it represents appropriately non-
specificity and discord, it exists some types of uncertainty that 
cannot be represented: for instance, fuzziness. Fuzzy evidence 
theory [6] is built to solve this problem. In fact, it combines the 
concepts of DST with fuzzy sets in order to represent the three 
types of uncertainty within one framework (fig. 2). 

Definition 6. A fuzzy mass assignment 𝑚 is mapping function 
from 𝒫̃(𝑋) to [0,1]. It satisfies the following conditions [12]:  

a) The set of focal element ℱ̃ ≡ {𝐴̃ ∈ 𝒫̃(𝑋), 𝑚(𝐴̃) > 0} is 
finite. 

b) 𝑚(∅) = 0 , 
c) ∑ 𝑚(𝐴̃) = 1𝐴⊆  

A fuzzy subset 𝐴̃ is called a focal element if 𝑚(𝐴̃) > 0. 
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Fig. 2. Extended Klir et al.’s typology, adopted from [11] 

Definition 7. In the framework of the fuzzy evidence theory, a 
piece of evidence is characterized by a portion of weight called 
mass function 𝑚. The generation of the mass, with taking into 
account uncertainties, is an essential step to generate a fuzzy 
evidence number. A Fuzzy evidence number is assumed to a 
fuzzy subset to which is granted a mass. 

Definition 8. A fuzzy body of evidence (BoE) [8], known as a 
fuzzy basic probability assignment (FBPA) or fuzzy basic 
belief assignment (FBBA) [13-15], is defined as the fuzzy focal 
sets and their corresponding mass functions: 

 
𝐹𝐵𝑜𝐸 ≡ {< 𝐴̃𝑖 , 𝑚(𝐴̃𝑖), 𝜇𝐴𝑖

>: 𝐴̃𝑖 ∈ 𝒫̃(𝑋),
𝑚(𝐴̃𝑖) > 0}𝑖=1:𝑓 (9) 

Where 𝑓 ≡ |ℱ| is the number of focal elements. 

C. Uncertainty measures 

For Harmanec [16], “measuring uncertainty or information 
means assigning a number or value from some ordinal scale to 
a given model of an epistemic state”. 

1) Non-specificity 

Non-specificity exists when numerous alternatives exist in 
a given set 𝐴. In a fuzzy set is obligatory linked to fuzziness 
since based on the fuzzy cardinality. It also exists in evidence 
theory, since the BPAs are defined over the crisp subsets of X. 
The Hartley measure is proposed in [15] that quantify the non-
specificity by the formulation: 

 (𝐴) = log2|𝐴| (10) 

where |𝐴| is the cardinality of 𝐴.  

A natural generalization of the Hartley measure of non-
specificity to the fuzzy-set interpretation of possibility theory 
was developed by Higashi and Klir [17] under the name U-
uncertainty: 

 𝑈(𝐴) = ∫ log2| 𝐴𝛼 | 𝑑𝛼
1

0
  (11) 

Dubois and Prade [18] proposed another generalization of 
the non-specificity measure in Dempster–Shafer’s theory:  

 𝑁(𝑚) = ∑ 𝑚(𝐴) log2|𝐴|𝐴∈𝒫(𝑋)   (12) 

Many other authors gave other generalization types of 
Hartley measure as in [19] by Abellan and Moral and  by Klir 
and Yuan in [20].  

2) Discord 

Discord represents a feature that expresses the fact that 
conflictual alternatives are considered as potentially occurring, 
and commonly represented by an additional measure. The basic 
measure of discord has been established by Shannon in the 
probability theory [21]: 

 𝑆(𝑝) = − ∑ 𝑝(𝑥) log2 𝑝(𝑥)𝑥∈𝑋   (13) 

Where 𝑝 is a probability distribution on 𝑋. 

This measure has been used as the starting point for many 
theories to quantify uncertainty in situations where the 
probabilistic representation is inadequate.  

3) Fuzziness 

Fuzziness is the type of uncertainty represented by fuzzy 
sets theory, which is clearly distinct from discord. Two main 
approaches exist for measuring fuzziness, namely either 
“entropy-like” measures when the membership function is 
related to a probability distribution [22], [23], [24], [25], or 
“non-specificity-like” measures when an extension to the 
classical measure of cardinality is involved [26], [27].  

The degenerated measure of fuzziness proposed by De 
Luca and Termini, [25] and called the entropy of a fuzzy set is 
given by the following equation: 

 𝐹𝐷𝑇𝑒(𝐴̃) = −𝐾 ∑ [𝜇(𝑥) log2 𝜇(𝑥) + (1 −𝑥∈𝐴

𝜇(𝑥)) log2(1 − 𝜇(𝑥))  
(14) 

where  𝐾 is a normalizing constant and 𝐴̃ is the fuzzy set. 

A wide literature survey of the different measures of 
fuzziness is presented in [28], where 15 measures are reviewed. 

4) Ambiguity 

Following Klir and Yuan [1], ambiguity is the sum of non-
specificity and discord. It is called the total uncertainty in a 
BPA. Other terms are used, such as total uncertainty, aggregate 
uncertainty or general uncertainty to designate this type of 
uncertainty. A measure of ambiguity AM is proposed by 
Jousselme et al [4]: 

 𝐴𝑀(𝑚) = − ∑ 𝐵𝑒𝑡𝑃𝑚(𝑥) log2 𝐵𝑒𝑡𝑃𝑚(𝑥)𝑥∈𝑋   (15) 

where 𝐵𝑒𝑡𝑃𝑚(A) = ∑
𝑚(𝐵)

|𝐵|𝐵⊆𝑋 |𝐴⋂𝐵| ,  ∀ 𝐴 ⊆ 𝑋 

Shahpari and Seyedin presented a modified version of AM 
named Modified Ambiguity Measure (MAM) [29] to resolve 
the issues raised in [30] about the subadditivity property of AM. 
Abellán and Bossé [31, 32] have analyzed the drawbacks of 
these measures defined around the pignistic transformation and 
belief intervals.  

5) Imprecision 

Imprecision is the total uncertainty of a fuzzy set that 
accounts for both fuzziness and non-specificity. We name this 
measure, IM, standing for imprecision measure. This measure 
was slightly discussed in Liu [2] and with the authors of [7]. IM 
is composed of two parts as in Eq.16: 1) the non-specificity 
generally quantified by 𝐻, the Hartley measure, and; 2) the 
fuzziness quantified by 𝐹𝐷𝑇𝑒.  
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 𝐼𝑀(𝐴̃) =
𝑁𝐴

|𝐴|
[𝐹𝐷𝑇𝑒(𝐴̃) + 𝑈(𝐴̃)]  (16) 

where  𝐹𝐷𝑇𝑒(𝐴̃) is the entropy of a fuzzy set, 𝑈(𝐴̃) is U-
uncertainty representing the Hartley measure of a fuzzy set 𝐴̃ 
and 𝑁 the number of hypothesis in the frame of discernment.  

6) Fuzzy randomness 

Fuzzy randomness is the proposed term to designate the 
total uncertainty of a fuzzy probability measure, since it 
contains both fuzziness and randomness. The first term 
concerns the prediction of the result, i.e., the event that will 
occur, and the second term is related to the interpretation of the 
result as 1 or 0. Fuzzy randomness can be modeled by a fuzzy 
random (stochastic) variable, which is a mathematical 
description of a fuzzy stochastic phenomenon. The first 
measure of uncertainty in fuzzy probability theory was 
proposed by Zadeh [33] as the weighted entropy for quantifying 
uncertainty. De Luca and Termini in [25] proposed a measure 
of uncertainty in the fuzzy probability theory framework that 
can represent the fuzzy randomness with the following 
formulation: 

𝐻𝐷𝑇
𝑡𝑜𝑡(𝑝) = − ∑ [𝑝(𝑥) log2 𝑝(𝑥) +𝑥∈𝑋

𝑝(𝑥)[𝜇(𝑥) log2 𝜇(𝑥) + (1 − 𝜇(𝑥)) log2(1 − 𝜇(𝑥))]]  
(17) 

where 𝑝 is a fuzzy probability distribution on 𝑋 and 𝜇 is the 
membership degree of each element 𝜇 to 𝑋. 

D. Total uncertainty measure 

To evaluate the performance of fusion systems, it is 
necessary to evaluate the information that processes it, i.e. to 
quantify the different types of uncertainty related to this 
information. GM is a measure proposed by Liu [2] in the 
framework of the fuzzy evidence theory, to gather the different 
types of uncertainty.  
Definition 10. For a given 𝐹𝐵𝑜𝐸 = {𝐴̃𝑖, 𝑚(𝐴̃𝑖),  𝜇𝐴𝑖

(𝑥)}, the 
formulation of GM is : 
𝐺𝑀(𝐹𝐵𝑜𝐸) ≡
− ∑ [𝐵𝑒𝑡𝑃(𝑥) log2 𝐵𝑒𝑡𝑃(𝑥) +  𝐵𝑒𝑡𝑃̅̅ ̅̅ ̅̅ ̅(𝑥) log2 𝐵𝑒𝑡𝑃̅̅ ̅̅ ̅̅ ̅(𝑥)]𝑥∈𝑋   

(18) 

Where : 

 𝐵𝑒𝑡𝑃(𝑥𝑖) ≡ ∑
𝑚𝑋(𝐴𝑖)𝜇𝐴̃𝑖

(𝑥)

∑ 𝜇𝐴̃𝑖
(𝑥′)𝑥′∈𝑆𝐴̃𝑖

𝑓
𝑖=1   (19) 

 𝐵𝑒𝑡𝑃(𝑥𝑖) ≡ ∑
𝑚𝑋(𝐴𝑖)(1−𝜇𝐴̃𝑖

(𝑥))

∑ 𝜇𝐴̃𝑖
(𝑥′)𝑥′∈𝑆𝐴̃𝑖

𝑓
𝑖=1   (20) 

Here 𝑆𝐴 is the Support 𝑆𝐴 = {𝑥 ∈ 𝑋,  𝜇𝐴(𝑥) > 0} and 𝑓is the 
number of focal elements in the FBoE. 
 
E. Basic Scenarios to study the behavior of GM  

This section attempts to illustrate the behavior of GM which 
is an aggregate measure including all kinds of uncertainty. By 
varying these kinds of uncertainty using three basic operations 
on a fuzzy BPA: 

1) Defuzzification: this operation gives more precision 
to the information. It transforms a fuzzy BPA into a 

crisp one. When it’s applied to a fuzzy set, it gives a 
crisp set and when it’s applied to a fuzzy probability 
distribution, defuzzification gives a classical 
probability distribution. 

2) Specification: this operation removes the ambiguity 
part. It transforms a fuzzy BPA into a fuzzy 
probability distribution. When it’s applied to a fuzzy 
set, specification gives a nonspecific fuzzy set, while 
applied to a crisp set, specification gives a singleton. 

3) Accordance: this operation reduces randomness. It 
transforms a fuzzy BPA into a fuzzy set. When it is 
applied to a fuzzy probability distribution, accordance 
gives a nonspecific fuzzy set, while applied to a 
classical probability distribution accordance gives a 
singleton. 

Fig. 3 Schemes to vary the amount and type of uncertainty to study the 
GM behavior 

Six ways to vary the amount and type of uncertainty on a 
fuzzy BPA, using different combinations of these three 
operations. Hence, we can see the behavior of GM according to 
these variations.  

F. GM behavior  

Each time one of the operations, mentioned above, is 
applied to a FBPA, GM must behave accordingly. For instance, 
if we reduce a type of uncertainty the GM measure must 
decrease. Fig.3 shows the six ways to vary the uncertainty and 
the associated measures generated along the path. For instance, 
there are six (6) different ways to make GM decreasing. GM 
will correspond to the different measures quantifying the 
remaining types of uncertainty as we progress along the path 
such as 𝐴𝑀, 𝐼𝑀, 𝐻𝐷𝑇

𝑡𝑜𝑡, 𝐹𝐷𝑇𝑒, 𝑆 or 𝐻.  
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For example, in Fig. 3(a), the defuzzification operation is 
first applied to the initial fuzzy BPA, which leads to a crisp 
BPA. Hence, the framework of fuzzy evidence theory turns into 
evidence theory framework and the uncertainty measure is then 
be quantified by 𝐴𝑀. Then the crisp BPA that includes both 
discord and non-specificity is accorded, leading to a single 
classical set, whose uncertainty is the Hartley measure 𝐻. 
Finally, this classical set is specified, leading to a singleton, 
thus a null uncertainty. And so on for all the other five figures 
for  𝐺𝑀. 

III. A FUZZY EVIDENCE NUMBER GENERATOR 

We need simulations to study the behavior of GM. To this 
end, fuzzy bodies of evidence (FBPA) have to be generated to 
implement the schemes depicted in Fig, 3 for the computation 
of GM. Firstly, we have to generate, on the frame of 
discernment 𝑋, a collection ℱ̃ = {𝐴̃1, … , 𝐴̃𝑖, … , 𝐴̃𝑓} of fuzzy 
numbers of evidence that are fuzzy subsets. These sets define 
the focal elements of a FBPA. To each focal element, a mass 
function is associated. We generate the mass function as in 
Burkov [8] presented in Algorithms 1 &2 : 
Algorithm 1 

1. input: 𝒫̃, the set of size 𝑓; 
2. 𝑟𝑒𝑠𝑡  1; 
3. For 𝑖1 to 𝑓 − 1 
4.     do generate an exponentially distributed random 

value 𝑦; 
5. 𝑚𝑋(𝐴̃𝑖)  𝑃(𝑌 ≤ 𝑦). 𝑟𝑒𝑠𝑡; 
6. 𝑟𝑒𝑠𝑡  𝑟𝑒𝑠𝑡 − 𝑚𝑋(𝐴̃𝑖); 
7. 𝑚(𝐴̃𝑓) 𝑟𝑒𝑠𝑡; 
8. return {𝑚(𝐴̃𝑖)}

1:𝑓
 

Algorithm 2  
1. input: 𝑋, the frame of discernement; 
2. 𝑡𝑦𝑝𝑒 =′ 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙′; 
3. 𝑓𝑢𝑛1 =′ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐′, 𝑓𝑢𝑛2 =′ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐′; 
4. Select four random (uniformaly distributed) points 𝐴, 𝐵, 

𝐶 and 𝐷 such that 𝑖𝑛𝑓𝑋 ≤ 𝐴 < 𝐵 < 𝐶 < 𝐷 ≤ 𝑠𝑢𝑝𝑋; 
5. define 𝑓

1
 according to 𝑓𝑢𝑛1 and values of 𝐴, 𝐵; 

6. define 𝑓
2
 according to 𝑓𝑢𝑛2 and values of 𝐶, 𝐷; 

7. Define 𝐴̃ as ⟨𝐴,  𝑓
1

,  𝐵,  𝐶, 𝑓
2

,  𝐷⟩. 
8. return 𝐴̃ 

IV. EVALUATION OF GM 

The generated FBPA is represent by two components:  
- A vector 𝑚 that contains the masses of all focal elements,  
- A matrix 𝑭𝑩 that contains the membership degrees of 

elements in each focal element of the FBPA. 
One focal element is a fuzzy subset of FoD with non-zero mass 
values.  

𝐹𝐵 = [

𝜇11
𝜇21

⋮
𝜇𝑓1

…
…

⋮
…

𝜇1𝑁
𝜇2𝑁
…

𝜇𝑓𝑁

]   and   𝑚 = [𝑚1 𝑚2 … 𝑚𝑓]𝑇 

where 𝑓is the number of focal elements and 𝑁 is the number of 
elements in a FoD.  

An initial fuzzy BPA, say 𝐹𝐵𝑃𝐴0, is first randomly 
generated using a uniform distribution between 0 and 1 for the 
matrix 𝐹𝐵 and the vector m. This latter must satisfy moreover 

the normalization condition of DST for a BPA. Then, the 
uncertainty in 𝐹𝐵𝑃𝐴0 is successively reduced using the three 
basic operations described above.  

Fig.4  Proposed approach to compute GM 
Technically, to perform defuzzification, we change step by 

step the degrees of membership of 𝐹𝐵, whose greater than 0.5 
rising to 1 and whose lower than 0.5 decreasing to 0. To 
perform accordance, we change step by step the values in 𝑚, 
the maximum rising to 1 and all the other values decreasing to 
0. And the specification is performed by randomly pruning 
elements of 𝐹𝐵 (i.e. changing them for 0). After each basic 
operation, GM is computed using the corresponding consistent 
expression (see Fig.4). 

 Fig. 5 shows the result of a Monte Carlo simulation using 
1000 runs and a reducing scheme of uncertainty according to 
six different ways for the 1000 randomly selected fuzzy BPAs: 
1) Defuzzification, Accordance, Specification in Fig. 5(a); 
2) Defuzzification, Specification, Accordance in Fig. 5(b); 
3) Accordance, Defuzzification, Specification in Fig. 5(c); 
4) Accordance, Specification, Defuzzification in Fig. 5(d); 
5) Specification, Defuzzification, Accordance in Fig. 5(e); 
6) Specification, Accordance, Defuzzification in Fig. 5(f). 

 
(a) DAS (b) DSA 

 
(c) ADS (d) ASD 
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(e) SDA (f) SAD 

Fig. 5 GM computation following 6 combinations of operations: 
defuzzification (D), accordance (A) and specification (S). 

The results of Fig.5 from simulations show that GM 
behaves as expected according to the variation of amount and 
type of uncertainty: GM decreases in a monotonous way when 
we decrease the amount of uncertainty and obviously increases 
as we increase uncertainty. The method to generate FBPAs is 
being validated so that it results in a simulation tool that is 
appropriate to evaluate and select approaches such as fusion 
rules that are being used to reduce uncertainty. 

V. CONCLUSION 

The problem of measuring uncertainty within the general 
framework of fuzzy evidence theory has been discussed. This 
paper contributed with a simulation tool to support studies on 
the three main types of uncertainty and their associated 
measures: nonspecificity, fuzziness and discord.  The tool that 
is centralized around the simulation of FBPAs can be used to 
evaluate the performance of systems and techniques that have 
the objective of reducing uncertainty. For instance, it can be 
used to evaluate and select fusion rules that are framed in a 
general theory of uncertainty such as fuzzy evidence.  
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Abstract—The theory of evidence has been largely used for
many applications. This theory is a generalization of proba-
bility distribution and offers a mathematical representation for
two types of uncertainty-based information: discord and non-
specificity. Several measures have already been developed to
quantify these two types of uncertainty. They have been called
total uncertainty measures since they quantify both types of
uncertainty. The generalized Hartley measure and the maximum
entropy have been the only measures so far that satisfy a list of
properties very desirable for practical applications. Recently, two
new measures of non-specificity and total uncertainty based on
belief intervals have been proposed. These two measures do not
satisfy the properties of additivity, superadditivity and subaddi-
tivity in the theory of evidence. The present critique is about these
shortcomings and provides a more complete analysis of those
uncertainty measures with respect to a list of desired properties.
A potential consequence of an ill-characterized measure may
yield selecting an inappropriate rule for decision-making in the
processing chain from data to information to decisions.

Keywords: Imprecise probabilities, theory of evidence, uncer-

tainty measures, non-specificity, additivity, subadditivity.

I. INTRODUCTION

The main goal of information is to enable adequate deci-

sions and actions. Uncertainty and information are two sides

of the same coin. Uncertainty-based information is a major

dimension of information quality that is paramount to decision

quality. The representation of uncertainty is a crucial issue

in applications in many areas of science and engineering that

support the transformation of information along the processing

chain: data to information to knowledge to decisions and

actions.

Classical set theory and probability theory (PT) have been

regarded as reference frameworks for centuries to represent

uncertainty. However, these two frameworks cannot easily

represent all types of uncertainty. Numerous other theories

have been developed by expanding the conceptual frameworks

on which those classical theories are based.

Amongst them, the theory of evidence (TE), also known as

Dempster-Shafer’s theory [8], [32], has been presented as an

important extension of the classical probability theory (PT). In

TE, the available information is represented via a new concept

called basic probability assignment (BPA), which is introduced

to generalize the probability distribution concept of PT. This

theory has been widely used in several areas and applications

such as in [34], [35], [25], [41], [13], [44], [19].

Characterizing information is a crucial step in the develop-

ment of applications framed within evidential theory as well

as within any other uncertainty representation framework. The

development of measures of uncertainty is part of that step that

impacts on the subsequent calculus processes such as updating

(conditioning), aggregation, combination, and decision rules.

If a property of a measure is ill-defined or misinterpreted

then it could mislead the rest of the processing chain. As an

example, a non-additive measure that is characterized as being

additive may be combined with an improper rule [36]. The

main motivation behind the critique presented in this paper is

to insist upon the need to best characterize the information and

its imperfections upstream of the processing chain to prevent

misinterpretation at decision level.

Uncertainty measures within TE have been exploited suc-

cessfully in several applications namely in pattern classifica-

tion [2], [5], [27], [28], [29] to reference a few.

In TE, more types of uncertainty can be represented by a

BPA than in PT [23]. Yager [38] makes the distinction between

two types of uncertainty called: discord (or randomness or

conflict) and non-specificity. The first one has been related to

entropy and the second to imprecision.

The majority of measures presented in the literature have

Shannon’s entropy [33] as a starting point. The motivation

has been because Shannon’s entropy satisfies a large set of

properties in PT. For example, the maximum entropy measure

in [15] satisfies a similar list of properties in TE than in PT.

Hence, it has been considered as the best established measure

in TE quantifying jointly both types of uncertainty [4], [5],

[6]. This type of measures is called total uncertainty measures

(TU). Several other measures have been recently proposed to

quantify, jointly or separately, both types of uncertainty [31],

[9], [7], [39], [40], [43] within the TE framework.

Non-specificity is associated with cases where the informa-

tion is focused on sets with cardinality greater than one. A

non-specificity measure is then based on the way to quantify

imprecision in a BPA. This type of uncertainffty does not

appear in the PT and can be considered as a major difference

between PT and other theories that claim to generalize it. The

majority of these theories are based on imprecise probabilities

[42], [21].

A measure of non-specificity must satisfy a list of properties

[12], [23]. So far, only the called generalized Hartley measure

Originally published as: J. Abellan, E. Bosse, Critique of Recent Uncertainty Measures Developed Under 
the Evidence Theory and Belief Intervals, IEEE Trans. On Systems, Man, and Cybernetics: Systems, Vol. 
50(3), pp. 1186-1192, March 2020. Reprinted with permission.
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satisfies all the required properties for a non-specificity mea-

sure in TE [21]. However, there is no study in the literature

that establishes the relative importance of that list of properties

and its exhaustivity for the use of that measure in practical

applications.

Very recently, Yang et al. [39] have presented a new measure

of non-specificity in TE. This measure is based on beliefs

intervals that a BPA represents about single elements of a

finite set. The authors make simplifications of that measure to

facilitate its use in applications. In addition, the authors claim

that the new measure satisfies the following list of properties:

range, monotonicity, symmetry, additivity and subadditivity.

By the means of a counter-example, this paper shows that

the properties of additivity and subadditivity are not always

satisfied with the proposed measure. In their mathematical

derivations, the authors of [39] have not taken into account

some considerations related to the cardinal of the focal sets.

The contribution offered by our critique here is to provide a

more complete analysis of the listed properties and to point

out where the shortcomings are.

Another contribution of this paper is to complete the analy-

sis of the Total Uncertainty (TU) measure presented by Yang

and Han [40] based on belief intervals. This measure uses

the distance between intervals numbers, presented in [18],

[37] and applied to belief intervals of an evidence. This TU

measure satisfies some properties in the list, but additivity and

subbaditivity properties have not been discussed. This paper

completes the discussion by showing that TU does not satisfy

both additivity and subbaditivity properties.

In theory of evidence (TE), the complexity of a problem

can be reduced by using the principle of decomposition. This

is achieved through projections of an evidence. However, for

those measures based on this decomposition, it can exhibit a

very conflicting behavior: sometimes an increase of informa-

tion and sometimes a decrease in information. This behavior

makes no sense when the same functional projection has been

used.

The paper is organized as follows. Section 2 reviews briefly

the necessary background about theory of evidence, uncer-

tainty measures and the definitions of some of their desired

properties. Section 3 presents an analysis of the additivity

and subadditivity of the new TU measures based on belief

intervals. Finally, section 4 presents conclusions.

II. BRIEF BACKGROUND

A. The theory of evidence

The theory of evidence (TE) [8], [32], is a type of mathemat-

ical theory based on imprecise probabilities (see Walley [42]).

Its principal characteristics and concepts can be described as

follows.

Let X be a finite set, considered as a set of possible

situations, |X | = n, ℘(X) the power set of X and x any

element in X. Evidential theory used the concept of a basic

probability assignment (BPA), also called mass assignment. A

BPA is a mapping m : ℘(X) → [0, 1] , such that m(∅) = 0

and
∑

A⊆X

m(A) = 1. A set A such that m(A) > 0 is called

a focal element1 of m.

Let X,Y be finite sets. Considering the product space of

possible situations X × Y and m a BPA on X × Y . The

marginal BPA on X , m↓X (and similarly on Y , m↓Y ), is

defined as follows:2

m↓X(A) =
∑

R|A=RX

m(R), ∀A ⊆ X, (1)

where RX is the set projection of R on X .

There are two functions associated with each BPA, a belief

function, Bel; and a plausibility function, Pl:

Bel(A) =
∑

B⊆A

m(B); Pl(A) =
∑

A∩B 6=∅
m(B).

They can be seen as the belief bounds of A (lower and upper

belief of the set A, respectively).

We note that belief and plausibility are interrelated for all

A ∈ ℘(X), by Pl(A) = 1 − Bel(Ac), where Ac denotes the

set complement of A. Furthermore, Bel(A) ≤ Pl(A). Hence,

the interval [Bel(A), P l(A)] is called the belief interval for

the set A.

B. Measures of uncertainty in the theory of evidence (TE)

Shannon [33] presented a measure of entropy on probability

theory (PT) defined as follows:

S(p) = −
∑

x∈X

p(x) log2(p(x)), (2)

where p = (p(x))x∈X is a probability distribution on X , a

finite set; p(x) is the probability of the value x. Here, log2 is

normally used to measure the value in bits. S(p) measures the

only type of uncertainty that can be represented in probability

theory and it satisfies a list of desirable properties [33], [23].

There exist two types of uncertainty in evidence theory

(Yager [38]): “one associated with cases where the information

is focused on sets with empty intersections; and one associated

with cases where the information is focused on sets with

cardinality greater than one”. The first concept is known as

discord (also as randomness or conflict); and the second one

is known as non-specificity.

A significant effort has been allocated to quantify the degree

of discord in evidence theory [23]. In this paper, the discussion

will be focussed on measures of non-specificity and total

uncertainty within the framework of TE.

Dubois and Prade [10] have introduced in TE a function

based on the Hartley measure [14], which was defined in the

classical set theory. It represents a measure of non-specificity

associated with a BPA and it is expressed as follows:

1The focal elements can be noted as A ∈ ℘(X) or A ⊆ X , with
m(A) > 0. The empty set is never considered here because always m(∅) =
0.

2The expression of the marginal BPAs from Eq. (21) in the paper of Yang
et al. [39] has an erratum: the set “R” must be “S”.
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I(m) =
∑

A⊆X

m(A) log2(|A|). (3)

I(m) attains its minimum value (zero) when m is a proba-

bility distribution. Its maximum value (log2(|X |)), is obtained

for a BPA, m, with m(X) = 1 and m(A) = 0, ∀A ⊂ X .

I satisfies a large set of desired properties [10], [23]. In the

literature, to our knowledge, there is no other measure of non-

specificity that satisfies a similar list of properties.

Several composed measures have appeared within the theory

of evidence to jointly quantify both parts of uncertainty.

They are called total uncertainty measures (TU) in TE. The

most established one seems to be the measure proposed by

Harmanec and Klir [15], [16]: S∗(m) equal to the maximum

of the entropy (upper entropy) of the probability distributions

satisfying Bel(A) ≤ ∑

x∈A

p(x) ≤ Pl(A), ∀A ⊆ X. This

measure quantifies discord and non-specificity but it does

not exhibit the respective separate parts. Some years later,

Abellán, Klir and Moral [4], have proposed upper entropy as

an aggregate measure framed in more general theories than

TE, coherently separating discord and non-specificity. Similar

splitting can be done within TE:

S∗(m) = S∗(m) + (S∗ − S∗)(m), (4)

where S∗(m) represents maximum entropy and S∗(m) repre-

sents minimum entropy on the credal set3 Km associated with

a BPA m, which can be defined the following way:

Km = {p| Bel(A) ≤ p(A), ∀A ∈ ℘(X)} (5)

Here S∗(m) measures respectively the discord part and (S∗−
S∗)(m) the non-specificity part of the BPA m [3], [6].

C. Additivity and subadditivity of non-specificity measures in

the theory of evidence

Klir and Wierman [23] define a list of desired properties for

an uncertainty measure in TE. The additivity and subadditivity

properties belong to that list. A measure of uncertainty (MU),

can then be defined as follows [7]:

Additivity: “Let m be a BPA on the space X×Y , m↓X

and m↓Y its marginal BPAs on X and Y respectively

such that these marginals are not interactive (m(A×B) =
m↓X(A)m↓Y (B), with A ⊆ X , B ⊆ Y and m(C) = 0
if C 6= A×B). Then MU satisfies the additivity property

iff it satisfies the equality:

MU(m) = MU(m↓X) +MU(m↓Y )”. (6)

The same property can be expressed in a reverse manner.

If we build a BPA m on X × Y from two independent

BPAs on X and Y , m1 and m2 respectively (m = m1 ·
m2), the total amount of information should be preserved.

In this case the marginals of m on X and Y , are m1 and

m2 respectively (the marginals are not interactive).

3A closed and convex set of probability distributions [4].

Subadditivity: “Let m be a BPA on the space X × Y ,

m↓X and m↓Y its marginal BPAs on X and Y respec-

tively. Then MU satisfies the subadditivity property iff it

satisfies the inequality:

MU(m) ≤ MU(m↓X) +MU(m↓Y )”. (7)

The expression indicates that the amount of information

must not be increased through a disaggregation process

to respect the principle of information conservation.

Additivity and subadditivity represent important properties

that a measure of non-specificity must satisfy in TE [12].

To further analyze the meaning of these properties, let use

examine the following practical example.

Example 1: Three riders and two horses are participating

agents of an obstacle race. The competition is that each rider

with each horse performs a circuit of obstacles in the shortest

possible time. The final score depends on the time taken and

the number of overturned obstacles. There are 3 different

competitions as follows: (i) the best binomial set (rider +

horse); (ii) the best rider; and (iii) the best horse. One can bet

money on each type of competition, but the greatest reward

is for type (i) since there are more alternatives and it is more

difficult to win. The reward for (i) can be considered as an

aggregation value of the rewards for (ii) and (iii).

Two cases are analyzed. Case “D” where there is a priori

knowledge about riders and horses that can provide an

advantage to win the race. Pairing knowledge between riders

and horses does exist (no independence between rider and

horse). The second case denoted as “I” represents the case

where riders do not possess any knowledge about any horse.

In Case D, experts can assign a numerical value to a

binomial set (rider + horse) that would be the winning one,

as given: 1) the circuit done with different types of obstacles,

and 2) the experts’ a priori knowledge obtained from past

competitions. In Case I, there are horse experts and rider

experts. There is no cross-knowledge (pairing knowledge)

and experts are consulted separately on horses and on riders.

For both cases, a set of possible riders is defined as

RI = {r1, r2, r3}; a set of horses as H = {h1, h2}; and a

set of binomials as B = {bij |i = 1, 2, 3; j = 1, 2}, where bij
expresses the binomial ri + hj and B = RI ×H .

All experts use belief functions to express their knowledge

on riders, horses and binomial sets.

These two cases, Case D and Case I, are analyzed below

with respect to the additivity and subadditivity properties.

- Case I. The BPA mRI is given by an expert on riders

while BPA mH is from an expert on horses. Each

quantified knowledge is independent on each other, i.e. if
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we build m = mRI ·mH , the marginals are not interactive

since mRI = m↓RI and mH = m↓H .

The information obtained from m, built from the

marginal BPAs, is used to bet on the binomial sets.

The product space creates more alternatives, then the

uncertainty must be greater (or at least not less) than

with each marginal taken separately. The question raised

here is the following: is it coherent that the sum of

information from the original independent BPAs be

less or greater than the one of the joint BPA via an

information based-uncertainty measure?

Let then examine the following situation: (a) a bet on

the binomial sets OR (b) bets on riders and horses

separately. Here, (a) and (b) are exclusive. Rewards for

(a) and (b) are equivalent according to the previous

definitions. Our common sense would say to choose

(a) or (b) with the same level of credibility than

obtained with the available information. This is what the

definition of the additivity property means. A joint case

is being built from independent sources so as a result

there will be neither more neither less information: the

available amount of information must be preserved.

Consequently, the additivity property is then an essential

property for a measure of information (uncertainty) in TE.

- Case D. An expert expresses his knowledge via the BPA

m on B = RI × H , and we want to make the three

possible bets. To this end, we use: 1) the marginal BPAs

m↓RI , m↓H and, 2) an uncertainty measure UM . Let

then examine the following statement:

UM(m) > UM(m↓RI) + UM(m↓H)

The expression above would mean that via the measure

UM , one can gain information with a simple math-

ematical procedure on BPAs. Moreover, if we build

the BPA4 m′ = m↓RI · m↓H on B, it could result

in providing more information via UM than obtained

from the original expert on binomial sets. That means

improving the original information source. Based upon

the above additivity property, to be coherent, we can have

the following situation:

UM(m) > UM(m↓RI) + UM(m↓H) = UM(m′)

In this case, it results in having more information to the

binomial sets than the one obtained from the original

expert (!). The subadditivity property indicates, in accor-

dance with our common sense, that is not coherent. The

amount of information must not be increased with only

calculations of the marginal BPAs.

4m 6= m′ might be possible.

III. MEASURES OF UNCERTAINTY BASED ON BELIEF

INTERVALS

A. A measure of non-specificity based on belief intervals

Very recently, Yang et al. [39] have presented a new non-

specificity measure in TE based on belief intervals. This

measure takes into account the maximum difference of belief

of each possible state of a finite set X . If we consider a

BPA m on a finite set X with states {x1, · · · , xn}, the

measure is defined using the values Pl({xi}) − Bel({xi}),
i ∈ {1, · · · , n}. The measure is the average of those values

on the belief intervals, and can be expressed as follows:

NEBI(m) =
1

n

∑

i

(Pl({xi})−Bel({xi})). (8)

This definition makes sense in relation to the non-specificity

concept and its coherence. Non-specificity is focused on the

degree of imprecision of a BPA. Then, it is related to the values

of the belief intervals used in the definition of the measure.

Yang et al. [39] have shown that NEBI can be reduced5 to

the following expression:

NEBI(m) =
∑

A⊆X, |A|>1

m(A)
|A|
n

. (9)

1) Properties : The measure in Yang et al. [39], has been

shown to satisfy the properties of range, monotonicity and

symmetry. These three properties will not be discussed here.

In addition, Yang et al. have shown that their measure satisfies

a multiplicativity and a submultiplicativity property. These

properties are equivalent to the additivity and subadditivity

properties6, as it is remarked in Yang et al. [39]. These

properties can be described in a similar way as for additivity

and subadditivity.

Multiplicativity: “Let m be a BPA on the space X ×Y ,

m↓X and m↓Y its marginal BPAs on X and Y re-

spectively such that these marginals are not interactive

(m(A × B) = m↓X(A)m↓Y (B), with A ⊆ X , B ⊆ Y
and m(C) = 0 if C 6= A×B). Then NEBI satisfies the

equality:

NEBI(m) = NEBI(m↓X) ·NEBI(m↓Y )”. (10)

Submultiplicativity: “Let m be a BPA on the space

X × Y , m↓X and m↓Y its marginal BPAs on X and

Y respectively. Then NEBI satisfies the inequality:

5The expression of the summations from Eq. (15) in the paper of Yang
et al. [39] brings some sort of confusion. For example, to express the value of
the P l({θi}),

∑

n

j=1;i<j
m({θi, θj})is used ; and for P l({θn}) one could

interpret that the summation does not include any term, because there is no
j > n. One should use

∑

n

j=1;i6=j
m({θi, θj}) instead, which represents the

correct form.
6They represent their counter-part definitions [12]. The additivity and

subadditivity are used when the measure has a range of [0, log(n)], whereas
the multiplicativity and submultiplicativity with a range of [0, 1]; but they
represent the same concept.
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NEBI(m) ≤ NEBI(m↓X) ·NEBI(m↓Y )”. (11)

At this point, we would like to cite Yang et al. [39] about

the importance of these two properties:

”Note that the physical meaning of submultiplicativity is

essential in the conservation of information, i.e., the amount

of uncertainty in a joint BPA is no greater than the total

amount of uncertainty of its corresponding marginal BPAs.

The equation holds if and only if the corresponding marginal

BPAs are independent, i.e., there is not correlated part. If

two marginal BPAs are dependent, then the double counting

uncertainty amount should be removed, therefore, the total

amount of uncertainty in the joint BPA is larger than the total

amount in marginal BPAs.”

Let then consider the following example based on the

Example 1:

Example 2: Using the case expressed in Example 1. Let

RI × H be the product space of the sets RI = {r1, r2, r3}
and H = {h1, h2}, and m1 and m2 the following BPAs on

RI and H expressed by two experts on riders and horses,

respectively:

m1({r1, r2}) = 0.45,m1({r3}) = 0.45,m1(RI) = 0.1;

m2(H) = 1.

Hence, the BPA m = m1×m2 on RI×H has the following

masses:

m({b11, b12, b21, b22}) = 0.45,m({b31, b32}) = 0.45,

m(RI ×H) = 0.1,

where we note bij = (ri, hj). Then m1 = m↓RI and m2 =
m↓H , and they are not interactive by definition.

The values of uncertainty via NEBI measure are the

following ones:

NEBI(m) = 0.3 + 0.15 + 0.1 = 0.55;

NEBI(m1) ·NEBI(m2) = (0.3 + 0.1) · 1 = 0.4.

Then NEBI(m′) 6= NEBI(m1) · NEBI(m2), and the

multiplicativity property is not satisfied by NEBI . �

The above Example 2 can also be used to prove that NEBI

does not satisfy the submultiplicativity property. Let use the

same BPA m on RI ×H and then its marginal BPAs are m1

and m2 on RI and H , respectively. We have that:

NEBI(m) > NEBI(m↓RI) ·NEBI(m↓H),

and this implies that the submultiplicativity property is not

satisfied for NEBI .

The results above say that the new measure, as opposed of

what has been said in Yang et al. [39], does not satisfy the

multiplicativity and submultiplicativity properties. The main

error in Yang et al. [39] mathematical proofs is located at the

cardinal of the sets. For example, if A ⊆ RI and B ⊆ H ,

then A×B ⊆ RI ×H and it is possible to find focal sets of

each BPA such that, |A×B| > 1 and |A| = 1, |B| > 1, as it

is happening in the Example 2.

To analyze the proof about the multiplicativity, we apply

the values of the Example 2 on the penultimate step in the

Equation (23) of Yang et al. [39]. We can observe the following

situation7, (detailed calculations of Example 2):

NSBI(m) = ... =
∑

A,B;|A×B|>1

mX(A)mY (B)
|A||B|
nXnY

=

= (0.45 · 1)(2 · 2)
3 · 2 + (0.45 · 1)(1 · 2)

3 · 2 + (0.1 · 1)(1 · 3)
3 · 2 ;

NSBI(m1) =
∑

A;|A|>1

mX(A)
|A|
nX

= 0.45
2

3
+ 0.1

3

3
;

NSBI(m2) =
∑

B;|B|>1

mY (B)
|B|
nY

= 1
2

2
.

It is easy to see that

∑

A,B;|A×B|>1

mX(A)mY (B)
|A||B|
nXnY

6= (0.45
2

3
+0.1

3

3
)·(12

2
) =

=
∑

A;|A|>1

mX(A)
|A|
nX

·
∑

B;|B|>1

mY (B)
|B|
nY

Hence, the penultimate step in Eq. (23) of Yang et al. [39] is

shown to be incorrect.

Focal elements with cardinal 1 in the set X , i.e. sets that

do not produce any imprecision, can be components of sets

in the product space X × Y that produce imprecision. This

case has not been considered in the proof of multiplicativity

in Yang et al. [39].

Now, let us look at the proof of the submultiplicativity

property and here again there is a problem with the last step.

That last step expresses the following equality:

NSBI(m↓X ×m↓Y ) =
∑

R⊆X×Y ;|RX |>1,|RY |>1

m(R)
|R|

nXnY

But, this equality is not always correct. Again, if we consider

the values of the Example 2, the left term of the above equality

is NSBI(m) and contains the following addend:

7Here, X is R and Y is H to follow the notation of [39].
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NSBI(m) = · · ·+m({b31, b32})
2

6
+ · · ·

Now, considering R = {b31, b32}, we have that RRI = {x3}
and |RRI | = 1. Hence, that addend can not be in the right

part of the equality. In this specific case, the equality is shown

to be incorrect.

That could lead us to think that this measure always

produces an uncertainty decrease when using decomposition

with the marginals in TE. That might not be a good operation

for this measure and implies to add more coherence. The

property associated with that situation is known as supermul-

tiplicativity.8 With the above notation, it can be defined, for

a UM measure, as:

UM(m) ≥ UM(m↓X) · UM(m↓Y ), (12)

but with the example below we show that NEBI does not

satisfy that property.

Example 3:

Let X×Y be the product space of the sets X = {x1, x2, x3}
and Y = {y1, y2}, and m the following BPA on X × Y :

m({z11, z12, z21, z22, z31}) = 0.4,m({z21, z22, z31, z32}) = 0.4,

m(X × Y ) = 0.2,

where we note zij = (xi, yj).
Now, the marginals on X and Y have the following values:

m↓X({x2, x3}) = 0.4,m↓X(X) = 0.6

m↓Y (Y ) = 1

The values of uncertainty via NEBI measure are the

following ones:

NEBI(m) = 0.8;

NEBI(m↓X) ·NEBI(m↓Y ) = 0.866 · 1 = 0.866.

Hence, NEBI(m) < NEBI(m↓X) · NEBI(m↓Y ), and the

supermultiplicativity property is not satisfied by NEBI . �

The Examples 2 and 3 represents a very conflictive situation

for the new measure of Yang et al. [39]. If we have a

complex set of information represented within TE that can be

decomposed using the marginals to make projections on two

(2) less complex sets, then in some situations the information

available can be decreased; and in others ones it can be

increased. This is a very undesirable behaviour for such a

measure.

B. A measure of total uncertainty based on belief intervals

Let m be a BPA on a finite set X with n elements

{x1, · · · , xn}. Each element has the following belief intervals

[Bel({xi}), P l({xi})], i ∈ {1, · · · , n}, that we simplify as

8It is equivalent to the super-additivity property [11].

[Beli, P li]. Yang and Han [40] have recently proposed the

following measure of total uncertainty in TE:

TU ′(m) = 1− 1

n

√
3
∑

i

d′([Beli, P li]; [0, 1]) (13)

where d′ is a distance function between intervals obtained from

[18], [37], and it has the following expression:

d′([a,b1]; [a2, b2]) =

=

√

[

a1+b1
2 − a2+b2

2

]2
+ 1

3

[

b1−a1

2 − b2−a2

2

]2
(14)

1) Properties : Yang and Han [40] prove that TU ′ measure

has some desirable properties for a TU measure in TE: range,

monotonicity, probability consistency and set consistency.

Unfortunately they do not show whether this TU measure

satisfies additivity and subadditivity properties; in this case,

since the range of TU is [0, 1], the equivalent properties of

multiplicativity and submultiplicativity. These two properties

will be verified below.

The following Example 4 shows that TU ′ measure does not

satisfy the multiplicativity property.

Example 4: Let X × Y be the product space of the sets

X = {x1, x2, x3} and Y = {y1, y2}. Let the following BPAs

m1 and m2 be on X and Y respectively:

m1({x1, x2}) = 0.5,m1({x3}) = 0.5;

m2({y1}) = 0.5,m2(Y ) = 0.5.

We build the BPA m = m1 ×m2 on X ×Y (the marginals

of m are not interactive). Then, m has the following values,

where again we note zij = (xi, yj):

m({z11, z21}) = 0.25,m({z11, z12, z21, z22}) = 0.25,

m({z31}) = 0.25,m({z31, z32}) = 0.25,

Now, the set of belief intervals of each zij are the following

ones:

{[0, 0.5]; [0, 0.25]; [0, 0.5]; [0, 0.25]; [0.25, 0.5]; [0, 0.25]}
and we obtain:

TU ′(m) = 0.386

Similarly, for m1 and m2 we have the following belief

intervals, respectively:

{[0, 0.5]; [0, 0.5]; [0.5, 0.5]},
{[0.5, 1]; [0, 0.5]},

and TU ′ values:

TU ′(m1) = 0.5, TU ′(m2) = 0.5
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Hence, we have that

0.386 = TU ′(m) 6= TU ′(m1) · TU ′(m2) = 0.5 · 0.5 = 0.25

and the multiplicativity property is not satisfied. �

To prove that TU ′ also does not satisfy the submultiplica-

vility property we only need the Example 4. Considering the

BPA m on X × Y , we have that its marginal BPAs are m1

and m2 on X and Y , respectively so that:

0.386 = TU ′(m) > TU ′(m↓X)·TU ′(m↓X) = 0.5·0.5 = 0.25

implying that TU ′ does not satisfy the submultiplicativity

property.

As happens with the NEBI measure, TU ′ also does not

satisfy the supermultiplivativity property, expressed in Eq.

(12). To prove it, we only need to consider the Example 5.

Example 5:

Let X×Y be the product space of the sets X = {x1, x2, x3}
and Y = {y1, y2}, and m the following BPA on X × Y :

m({z11, z12, z21, }) = 0.6,m({z31}) = 0.1,

m(X × Y ) = 0.3,

where we note zij = (xi, yj).

Now the marginals on X and Y have the following values:

m↓X({x1, x2}) = 0.6,m↓X({x3}) = 0.1,m↓X(X) = 0.3

m↓Y ({y1}) = 0.1,m↓Y (Y ) = 0.9

These evidences produces the following sets of belief intervals

on X × Y , X and Y respectively:

{[0, 0.9]; [0, 0.9]; [0, 0.9]; [0, 0.3]; [0.1, 0.4]; [0, 0.3]}
{[0, 0.9]; [0, 0.9]; [0.1, 0.4]},

{[0.1, 1]; [0, 0.9]},

The values of uncertainty via TU ′ measure are the following

ones:

TU ′(m) = 0.624;

TU ′(m↓X) · TU ′(m↓Y ) = 0.748 · 0.9 = 0.673.

Now TU ′(m) < TU ′(m↓X) · TU ′(m↓Y ), and the

supermultiplicativity property is not satisfied by TU ′.
�

We see that the new total uncertainty measure, TU ′, in TE

has a similar undesirable behaviour than the NEBI measure.

In some situations the use of the projections produces an

increase of information, and a decrease in other ones. This

behaviour is incoherent. It could impact negatively a subse-

quent decision-making process (not analyzed in this current

paper).

IV. CONCLUSIONS

In this paper, we have analyzed the properties of additivity

and subadditivity of new measures of uncertainty in TE based

on belief intervals. The definitions of these measures makes

sense and they satisfy a list of interesting and important

properties but they have shortcomings: they do not satisfy the

properties of additivity and subadditivity. These two properties

belongs to a list of required properties for such types of

measures in TE. It has been also shown that these new

measures present incoherent results when a decomposition is

done using the same functional projections: in some situation

that decomposition presents an increase in information, but in

others it presents a decrease of information. The importance

of those shortcomings in real life applications cannot be

appreciated without more analysis and extensive empirical

studies. However, considering the results presented in this

paper, more work is required to adjust those measures or

to develop new ones that possess all required properties for

exploitation along the complete processing chain from data to

decisions and actions.
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Abstract—In this paper we examine many existing measures
of uncertainty (MoU) of basic belief assignments proposed in
the literature related with the theory of belief functions. Some
measures capture only a particular aspect of the uncertainty,
others propose a total measure of uncertainty to characterize
the information quality of a source of information. We discuss
the effectiveness of these measures with respect to four main
important desiderata that we consider essential for the definition
of a satisfactory MoU (i.e. effective entropy of basic belief
assignment).
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I. INTRODUCTION

In the classical framework of belief functions, a source of

evidence expresses its belief on the possible solutions of a

given problem defined with respect to a chosen (finite) frame

of discernment (FoD) Θ. This belief is usually characterized

by a basic belief assignment (BBA), referred also as a belief

mass denoted by m(·). One of the major concern related with

belief function is how to measure/quantify the uncertainty

encompassed by a source of evidence and inherent to any

BBA. This problem is challenging and of crucial importance

because its effective solution would allow to well characterize

any BBA, to make fair comparisons of sources of evidence,

to compare fusion results in term of uncertainty reduction, to

achieve a BBA complexity reduction by new approximations

methods, etc.

In this paper we make a state-of-the-art survey of most

of existing MoUs available in the literature, and point out

their theoretical drawbacks to warn the reader about their

misuses and irrelevances in applications. This work justifies

the requirement for better effective MoUs to make a step-ahead

in the understanding and characterization of uncertainty in

the belief functions framework. There exist several survey pa-

pers covering different proposals for measures of uncertainty,

among them we must cite by chronological order [1]–[14],

and more recently in [15], [16]. These papers however do not

consider the effectiveness of MoU as we propose in this paper.

In the sequel, we suppose the reader familiar with the

classical (i.e. Shannon) information theory [17]–[22], and

specially with Shannon entropy measure, and with the theory

of belief functions introduced by Shafer in [23]. Some of

these basics are recalled in appendix for convenience and for

recalling the classical notations.

This paper is organized as follows. In section II we present

and justify the four essential desiderata that a MoU should

satisfy in order to be considered as effective. In section III

we examine many existing MoUs proposed in the literature

over 40 years, and check if they pass the effectiveness test, or

not. For those that pass successfully the test, we examine in

details in section IV if they are sufficiently well justified for

considering them as serious candidate for effective MoU to

be used in applications. Section V concludes this survey and

gives some perspectives for future research works.

II. DESIDERATA FOR AN EFFECTIVE MOU

Our analysis of many existing works on Measures of

Uncertainty (MoU) of belief functions reveals that most of

MoUs suffer of serious problems, and we explain why in

the next section. Here we introduce several very essential

desiderata that a satisfactory MoU, denoted by U(m), should

satisfy. Some of these desiderata have already been identified

in the past by some researchers working towards axiomatic

approaches of MoUs, for instance by Klir [8] and Abellán

[12], [13], [15]. Here we keep only the four desiderata that

we consider as really important and indispensable, and we

justify our choice for these desiderata. We also explain why

we consider the other desiderata not fundamental, and why we

decide to discard them. The four essential and indispensable

desiderata we consider for a satisfactory MoU are mathemat-

ically expressed as follows

• Desideratum D1: (zero min value of U(m))

U(m) = 0 (1)

if the BBA m defined on the power set 2Θ of the frame

of discernment Θ is focused on a singleton, that is if

m(X) = 1 for some X of 2Θ with |X | = 1.

Justification of D1: This desideratum is very natural

and intuitive because any particular BBA for which

m(X) = 1 with |X | = 1 characterizes the certainty of a

singleton X , which is one of most specific element of 2Θ.

There is no uncertainty about the choice of this element

X characterized by m(X) = 1 since this element X
(a smallest information granule) does not include other

Originally published as: J. Dezert, A. Tchamova, On the Effectiveness of Measures of Uncertainty of Basic 
Belief Assignments, Information & Security Journal, Vol.N52, pp. 9–36, 2022, and reprinted with 
permission.
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smaller element in it. So, the measure of uncertainty must

be minimal, and it can always be arbitrarily set to zero

reflecting well such non-uncertainty case.

• Desideratum D2: (increasing of MoU of vacuous BBA)

U(mΘ
v ) < U(mΘ

′

v ), if |Θ| < |Θ′|. (2)

where mΘ
v and mΘ

′

v are the vacuous BBAs defined

respectively on the frames of discernment (FoDs) Θ and

Θ′ of cardinalities |Θ| and |Θ′|.
Justification of D2: This desideratum stipulates that the

measure of uncertainty of a total ignorant source of

evidence represented by the vacuous BBA must increase

with the cardinality of the frame of discernment. This

desideratum makes perfect sense because the total igno-

rant source of evidence on Θ = {θ1, . . . , θN} for which

mΘ
v (Θ) = 1 means that one knows absolutely nothing

about only N elements, whereas the total ignorant source

of evidence on Θ′ = {θ1, . . . , θN , θN+1, . . . , θN ′} for

which mΘ
′

v (Θ′) = 1 means that one knows absolutely

nothing about more elements because N ′ > N . This

clearly indicates that mΘ
′

v must be considered in fact as

more ignorant than mΘ
v , and the condition (2) reflects this

necessity.

• Desideratum D3: (compatibility with Shannon entropy)

U(m) = −
∑

X∈Θ

m(X) log(m(X)) (3)

if the BBA m(·) is a Bayesian BBA defined on the FoD

Θ. We recall that any Bayesian BBA commits zero belief

mass for all elements of the power set of Θ having their

cardinality greater than one [23].

Justification of D3: This desideratum D3 seems also very

natural because Shannon entropy is the most well-known

(and justified [20], [24]–[27]) measure used so far to

quantify the uncertainty (i.e. the randomness, or variabil-

ity, also called conflict by some authors) of a probability

mass function (pmf). Because any Bayesian BBA induces

belief and plausibility functions that coincide with a

probability measure, one must have a total coherence of

U(m) with Shannon entropy when the BBA is Bayesian

if one admits, as we do here, that Shannon entropy is

an effective measure the uncertainty (or randomness) of

a pmf. Under the acceptance of Shannon entropy as

MoU for pmf, the desideratum D3 makes perfect sense.

Of course, this desideratum D3 could be disputed (and

eventually rejected) if one can cast in doubt (based on

very strong justification) the use of Shannon entropy as

MoU for pmf. For alternatives of Shannon entropy, see

the non-exhaustive list of alternatives given in [28]–[30],

and discussions in [9], [31]–[33] for instance.

• Desideratum D4: (unicity of max value of U(m))

∀m 6= mv, U(m) < U(mv), (4)

where m is any BBA different of the vacuous BBA mv

defined with respect to the same FoD.

Justification of D4: This fourth desideratum is very

important and it makes perfect sense also because the

total ignorant source of evidence is characterized by the

vacuous BBA mv(·), and no source of evidence can be

more uncertain than the total ignorant source, so the

unique maximum value of U(m) must be obtained for

U(mv). As it will be shown next, many existing MoUs

fail to satisfy this important and essential desideratum.

Effectiveness of a measure of uncertainty: A measure of

uncertainty U(m) is said effective if and only if it satisfies

desiderata D1, D2, D3, and D4 and if it is strongly well

justified. Any MoU that fails to satisfy at least one of these

desiderata is said non-effective, and in this case it cannot be

considered seriously as a satisfactory measure of uncertainty

for characterizing a basic belief assignment of a source of

evidence. Consequently, all non-effective MoUs should be

discarded in all applications that necessitate some MoU eval-

uation.

Remark 1: It is worth noting that we do not specify a priori

what should be the range of an effective MoU in contrary

to some axiomatic attempts made by different authors as

reported, for instance, in [15], [34], [35]. We consider that

the choice of the range must not be chosen a priori. The max-

imum range must result of the effective MoU mathematical

definition. We only request the satisfaction of the desideratum

D4, which is much more general, natural and essential.

Remark 2: We voluntarily do not include the subadditivity

desideratum in our list of our desiderata for the search of an

effective MoU in the belief function framework because this

desideratum appears in general (i.e. for non-Bayesian non-

vacuous BBAs) to be incompatible with essential desideratum

D4, and thus it is illusory and vain to ask for a sub-additive

MoU for non-Bayesian non-vacuous BBAs. We recall that the

subadditivity condition is defined by U(mΘ×Θ
′

) ≤ U(m↓Θ)+
U(m↓Θ′

) or any joint BBA defined on the cartesian product

Θ × Θ′ of FoDs Θ and Θ′, where m↓Θ is the marginal (i.e.

projection) of mΘ×Θ
′

(·) on the power-set 2Θ, and m↓Θ′

is

the marginal (i.e. projection, see [36], [37] for definition) of

mΘ×Θ
′

(·) on the power-set 2Θ
′

. This impossibility comes

from the fact that there exist in general 2|Θ×Θ
′|−2|Θ|·2|Θ′| > 0

elements of the power set 2Θ×Θ
′

(including some disjunctions

of elements of Θ × Θ′) whose mass of belief cannot be

obtained from the masses of elements of 2Θ and of 2Θ
′

, and

which contribute in the uncertainty measure of the joint BBA

mΘ×Θ
′

. Indeed, if |Θ| = N and |Θ′| = N ′ the cartesian

product space Θ × Θ′ has N · N ′ elements and its power

set 2Θ×Θ
′

has 2N ·N ′

elements which is always bigger than

the cartesian product space of power sets 2Θ × 2Θ
′

because

2N · 2N ′

(= 2N+N ′

) < 2N ·N ′

as soon as N > 2 and N ′ > 2.

It is worth mentioning also that most of elements of 2Θ× 2Θ
′

do not have the same structure as the elements of the power

set 2Θ×Θ
′

. This means that we cannot recover the joint BBA
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mΘ×Θ
′

from the product, or combination, of its marginal m↓Θ

and m↓Θ′

in general, but if the joint BBA is totally vacuous or

if the joint BBA is Bayesian and if it is equal to the product

of two so-called non-interacting (or independent) probability

measures [8]. To be more clear, consider two FoDs Θ and Θ′

with |Θ| = 2 and |Θ′| = 3. Hence the cartesian product space

Θ × Θ′ has 2 · 3 = 6 elements1, and its power set 2Θ×Θ
′

has 26 = 64 elements (couples, and unions of couples). If

we consider the vacuous BBA mΘ×Θ
′

v on 2Θ×Θ
′

defined by

mΘ×Θ
′

v (Θ×Θ′) = 1, then its projection on Θ is the vacuous

BBA mΘ
v (Θ) = 1 defined on the FoD Θ = {θ1, θ2} having

only two elements, and its projection on Θ′ is the vacuous

BBA mΘ
′

v (Θ′) = 1 defined on the FoD Θ′ = {θ′1, θ′2, θ′3}
having only three elements. Why the MoU of mΘ×Θ

′

v (i.e.

full ignorant source) related to 6 elements of Θ × Θ′ should

be less (or equal) to the sum of MoU of mΘ
v related to only

the two elements of Θ and the MoU of mΘ
′

v only related to

the three elements of Θ′? To amplify this point, if we consider

|Θ| = 5 and |Θ′| = 8 then |Θ × Θ′| = 40. Why the MoU of

the vacuous BBA mΘ×Θ
′

v related to 40 elements of Θ × Θ′

should be less (or equal) to the sum of MoU of vacuous BBA

mΘ
v related to only 5 elements of Θ and the MoU of the

vacuous BBA mΘ
′

v only related to the 8 elements of Θ′? We

do not see any solid theoretical reason, nor intuitive reason,

for justifying and requiring the subadditivity desideratum in

the general framework of belief functions, and put it as a

property to satisfy in general listed in [15]. Unlike Vejnarova

and Klir opinions [38] (p.28) and many authors, we do not

consider that the meaningful measure of uncertainty of basic

belief assignment must satisfy the subadditivity property. The

proposal of adding the desiderata of subadditivity, additivity,

and monotonicity for a search of a MoU of belief functions had

been explored and defended by Klir in [2] at the end of 1980s.

It is however worth mentioning that if a MoU satisfies the

desideratum D3 (when the BBA is Bayesian), its subadditivity

property is always guaranteed because Shannon entropy is

subadditive [8], [20].

III. EXISTING MEASURES OF UNCERTAINTY

In this section we analyze most of existing measures of

uncertainty available in the open literature related to belief

functions. We verify if these measure pass, or not, the effec-

tiveness test. We say that a MoU fails the effectiveness test if

at least one of the desiderata D1, D2, D3 or D4 is not satisfied

by the MoU under test. If necessary, we explain what is the

problem with this MoU and when necessary we give a counter-

example for it.

The Tables I and II show the formulas of all the MoUs

analyzed in this work. Some existing MoUs capture only

some aspects of uncertainty2 and have specific names given

by their authors (e.g. conflict, dissonance, discord, strife, etc)

1Each element is a couple of the form (θi, θ
′

j), i = 1, 2 and j = 1, 2, 3.
2referred to as entropy-like uncertainty, nonspecificity (or imprecision), and

fuzziness which is uniquely connected with fuzzy sets [10].

listed in the third column of these tables3. For convenience,

the MoUs have been indexed and listed by the year of their

publication in the tables I and II. We have also included in

Tables I and II the name of authors of the MoUs, the names of

the MoU when it exists (and eventually new names if needed

for clarity), and the formulas of the MoUs. For convenience,

we have used the natural log in the mathematical expressions

of MoUs for the homogeneity of the presentation. Some

authors prefer log2 instead, but this preference does not really

matter because the values of an expression will differ only

from the constant multiplicative factor 1/ log(2), and the

unity will just change from nats to bits.

The Table III indicates if each MoU satisfies, or not, the

desiderata D1, D2, D3 and D4, and thus if it passes the

effectiveness test, or not. Most of results listed in Table III

are easy to verify directly from the mathematical definition

of each MoU of Tables I and II, and are left as exercises

for the reader. Some results however of Table III, specially

those related to the failure of D4 desideratum, may appear

less obvious to verify and that is why we give some nu-

merical counter-examples for them in the Tables IV and V

for convenience4. These counter-examples have been obtained

from Monte-Carlo simulation of randomly generated BBAs

for testing the desiderata. Of course, many more counter-

examples can be found by Monte-Carlo simulation, but of

course only one is sufficient to prove the failure of a MoU

for a desideratum, specially for D4. Extra justifications about

violation of desiderata by some MoUs are presented next.

The MoU1984(m) = −∑

X⊆Θ
m(X) log(m(X)) does not

satisfy D2 desideratum because MoU1984(m
Θ
v ) = 0 whatever

is the size of the FoD Θ. Consequently, MoU1984(m) >
MoU1984(mv) if m 6= mv, hence D4 desideratum is violated.

That is why MoU1984(m) cannot be recommended as an

effective measure of uncertainty.

The MoU1990b(m) = T (m) does not satisfy D4 desideratum

because we can have m 6= mv such that T (m) = T (mv) as

shown in the counter-example given in [52] (p.165). See also

our simpler counter-example given in Table IV.

The MoU1992(m) = S(m) (i.e. the strife) does not satisfy

D2 desideratum because one can easily verify that one has

always5 S(mΘ
v ) = S(mΘ

′

v ) = 0 when |Θ| 6= |Θ′|. The strife

does not satisfy D4 either because if m is the uniform Bayesian

BBA on (non-empty) FoD Θ, one has S(m) = log(|Θ|) which

is greater than zero, proving that S(m) violates D4.

The MoU1992b(m) = NS(m) does not satisfy D4 desider-

atum because we can have m 6= mv but such that NS(m) =
NS(mv), as shown in the counter-example of Table IV,

3The names and notations are not always homogeneous from one author to
another, for instance U-uncertainty is also called nonspecificty and denoted
by N(m) in [39]–[41].

4The numerical values have been truncated to their 3rd digit.
5It is worth noting that Klir’s statement, at the bottom of page 86 of [8],

saying (using our notation) S(mv) = log(|Θ|) is clearly wrong.
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Table I
LIST OF EXISTING MOUS FOR THE PERIOD 1980–2000.

Measures of Uncertainty Author(s) & Ref. Name Mathematical expression

MoU1981(m) Höhle [42], [43] confusion C(m) = −
∑

X⊆Θ

m(X) log(Bel(X))

MoU1983(m) Yager [44] dissonance E(m) = −
∑

X⊆Θ
m(X) log(P l(X))

MoU1983b(m) Yager [44], [45] nonspecificity N(m) = 1−
∑

X⊆Θ

m(X)/|X|

MoU1983c(m) Dubois et al.
[46]–[48]

U-uncertainty U(m) =
∑

X⊆Θ

m(X) log(|X|)

MoU1984(m) Höhle [1], [49],
[50]

entropy of discernibleness Em(m) = −
∑

X⊆Θ
m(X) log(m(X))

MoU1987(m) Dubois et al. [1] entropy-like index C′(m) = −
∑

X⊆Θ

m(X) log(q(X))

MoU1987b(m) Dubois et al. [1] index of fuzziness d(m) = − log(
∑

X⊆Θ

m(X)Bel(X))

MoU1988(m) Dubois et al. [51] imprecision l(m) =
∑

X⊆Θ
m(X)|X|

MoU1988b(m) Lamata et al. [37] lower entropy Lent(m) = E(m) + U(m) = −
∑

X⊆Θ

m(X) log(P l(X)/|X|)

MoU1988c(m) Lamata et al. [37] upper entropy

Uent(m) = −
∑

X⊆Θ

m(X) sup{log(P l(θi))|θi ∈ X}

+ log(
∑

X⊆Θ

m(X)|X|)

MoU1990(m) Klir et al. [52]–
[54]

discord D(m) = −
∑

X⊆Θ
m(X) log(

∑

Y ⊆Θ
m(Y )

|X∩Y |

|Y |
)

MoU1990b(m) Klir et al. [52],
[53]

total uncertainty T (m) = U(m) +D(m)

MoU1992(m) Klir et al. [38],
[53]

strife S(m) = −
∑

X⊆Θ

m(X) log(
∑

Y ⊆Θ

m(Y ) |X∩Y |

|X|
)

MoU1992b(m) Klir et al. [53] NS(m) = U(m) + S(m)
MoU1993(m) Pal et al. [6] average total uncertainty ATU(m) = −

∑

X⊆Θ

m(X) log(m(X)) + U(m)

MoU1993b(m) Maeda et al. [55] Maeda extended entropy M(m) = AU(m) + U(m)
MoU1994(m) Harmanec et al.

[39], [56]
amount of uncertainty AU(m) = −

∑

θi∈Θ
P ∗(θi) log(P

∗(θi))

MoU1996(m) George et al. [9],
[45]

total conflict TC(m) =
∑

X⊆Θ

m(X)(
∑

Y ⊆Θ

m(Y )[1−
|X∩Y |

|X∪Y |
])

MoU1997(m) Maluf [57] Maluf entropy Hds(m) = −
∑

X⊆Θ|m(X)>0

P l(X) log(Bel(X))

MoU1999(m) Klir [58] Shannon-like measure SL(m) = −
∑

θi∈Θ

Bel(θi) log(Bel(θi))+Pl(θi) log(Pl(θi))
∑

θj∈Θ

Bel(θj )+Pl(θj)

MoU2000(m) Yager [59], [60] Shapley entropy HS(m) = −
∑

θi∈Θ

[
∑

X⊆Θ|θi∈X

m(X)
|X|

] log
(

∑

X⊆Θ|θi∈X

m(X)
|X|

)

where6 U(m) = log(2) and S(m) = log(3) − log(2), so

that NS(m) = U(m) + S(m) = log(3), and we have

U(mv) = log(3) and S(mv) = 0 yielding NS(mv) = log(3),
and hence proving NS(m) = NS(mv).

The MoU1994(m) = AU(m) proposed by Harmanec and

Klir [39], [40] is nothing but the maximal Shannon entropy

value obtained by analyzing all the pmfs P (·) compatible with

Bel(·) and Pl(·) functions of the BBA m(·) such that for all

X ⊆ Θ, Bel(X) ≤ ∑

θi∈X P (θi) ≤ Pl(X). More precisely,

P ∗(·) = arg max
All compatible

pmf P (·)

−
∑

θi∈Θ

P (θi) log(P (θi))

This max-entropy pmf P ∗(·) is obtained by solving a non

linear optimization problem, see [86]–[88]. It is clear that this

6The easy verification from U(m) and S(m) formulas is left to the reader.

MoU, as well as all other Shannon-alike entropy measures

based on different probabilistic approximations techniques7 (as

BetP-entropy, PlPr-entropy, or DSmP-entropy, etc) of (non-

bayesian) BBA m to a bayesian BBA fail to satisfy D4

desideratum. Indeed, the vacuous BBA mv will always be

approximated by the uniform pmf P unif(·) defined on the FoD

Θ, and there will be no difference between the Shannon-alike

entropy value for mv (for the total ignorant source of evidence)

and the Shannon-alike entropy value of the Bayesian uniform

BBA. This explains why AU(m) and all other Shannon-alike

entropies violate the D4 desideratum.

The MoU1996(m) = TC(m) violates D2 because

TC(mv) = 0 whatever is the dimension of the (non-

7BetPm, DSmPm and PlPrm are different probabilistic transformations of a
non-Bayesian BBA into a Bayesian one. They have been proposed by different
authors, see in [89]–[91] for details.
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Table II
LIST OF EXISTING MOUS FOR THE PERIOD 2001–2021.

Measures of Uncertainty Author(s) & Ref. Name Mathematical expression

MoU2003(m) Dezert et al. [61],
Jousselme et al.
[11]

Pignistic entropy or BetP-
entropy or Ambiguity
measure

AM(m) = −
∑

θi∈Θ
BetPm(θi) log(BetPm(θi))

MoU2016(m) Deng [62] Deng entropy Ed(m) = −
∑

X⊆Θ
m(X) log

(

m(X)

2|X|
−1

)

MoU2016b(m) Yang et al. [63] total uncertainty, dI (·, ·)
is Wasserstein distance

TUI(m) = 1−
√

3
|Θ|

∑

θi∈Θ
dI ([Bel(θi), P l(θi)], [0, 1])

MoU2017(m) Deng et al. [64] improved TUI(m) with
Euclidean distance dIE

iTUI(m) =
∑

θi∈Θ
[1− dIE([Bel(θi), P l(θi)], [0, 1])]

MoU2017b(m) Zhou et al. [65]–
[67]

improved Deng entropy EId(m) = −
∑

X⊆Θ

m(X) log
(

m(X)

2|X|
−1

e
|X|−1

|Θ|

)

MoU2017c(m) Tang et al. [68] Tang weighted belief en-
tropy

EWd(m) = −
∑

X⊆Θ

|X|

|Θ|
m(X) log

(

m(X)

2|X|
−1

)

MoU2018(m) Jiroušek et al.
[69]

Extended PlPr-entropy Hext
PlPr

(m) = −
∑

θi∈Θ

P lPrm(θi) log(P lPrm(θi)) + U(m)

MoU2018b(m) Jiroušek et al.
[70], [71]

q-entropy Hq(m) =
∑

X⊆Θ

(−1)|X|q(X) log(q(X))

MoU2018c(m) Mambé et al. [72] Mambé entropy ENm(m) = −
∑

X⊆Θ
m(X) log

(

m(X)

2|X|
−1

e
|X|−1

2|Θ|

)

MoU2018d(m) Pan et al. [73] Pan 1st entropy Hbel(m) = −
∑

X⊆Θ

Bel(X)+Pl(X)
2

log
(

Bel(X)+Pl(X)

2(2|X|
−1)

)

MoU2018e(m) Wang et al. [74] Wang entropy
SU(m) =

∑

θi∈Θ
[−Bel(θi)+Pl(θi)

2
log2

(

Bel(θi)+Pl(θi)
2

)

+ Pl(θi)−Bel(θi)
2

]

MoU2019(m) Li et al. [75] Li entropy IQ(m) =
∑

X⊆Θ

(

m(X)

2|X|
−1

)2

MoU2019b(m) Cui et al. [76] Cui entropy
ECui(m) = −

∑

X⊆Θ
m(X) log

(

m(X)

2|X|
−1

· e

∑

Y ⊆Θ
Y 6=X&m(Y )>0

|X∩Y |

2|Θ|
−1

)

MoU2019c(m) Pan et al. [77] Pan 2nd entropy HPQ(m) = −
∑

X⊆Θ

m(X) log
(

∑

θi∈X

P lPrm(θi)
)

+ U(m)

MoU2019d(m) Chen et al. [78] Chen entropy Ei(m) = −
∑

X⊆Θ

m(X) log
(

m(X)

2|X|
−1

·
|X|

|

⋃

Y ⊆Θ
m(Y )>0

Y |

)

MoU2019e(m) Zhao et al. [79] Zhao entropy

Hinter(m) =

−
∑

θi⊆Θ

Bel(θi)+Pl(θi)
2

log
(

Bel(θi)+Pl(θi)
2

e−(Pl(θi)−Bel(θi))
)

−

∑

X⊆Θ,|X|>1

m(X) log
(

m(X)

2|X|
−1

e−(Pl(X)−Bel(X))
)

MoU2020(m) Li et al. [80] Li improved entropy
IQLi(m) =

∑

X⊆Θ

(

m(X)

2|X|
−1

)2
· e

∑

Y ⊆Θ
Y 6=X

|X∩Y |

|Θ|

MoU2020b(m) Wen et al. [81] Wen entropy

Uexp(m) = 1

e− 1

|Θ|2
e

1

|Θ|2

[

e−
∑

X⊆Θ
|X|=1

m(X)em(X) −

∑

X⊆Θ
|X|6=1

m(X)
|X|·|

⋃

Y ⊆Θ
m(Y )>0

Y |
e

m(X)

|X|·|
⋃

Y ⊆Θ
m(Y )>0

Y |

]

MoU2020c(m) Chen et al. [82] Chen improved entropy EC
Wd

(m) = −
∑

X⊆Θ

|X|

|Θ|

1−m(X)
|FΘ(m)|−1

log
(

1−m(X)
|FΘ(m)|−1

· 1
2|X|

−1

)

MoU2020d(m) Qin et al. [83] Qin entropy Q(m) = Em(m) +
∑

X⊆Θ

|X|

|Θ|
m(X) log(|X|)

MoU2020e(m) Yan et al. [84] Yan entropy Hn(m) = −
∑

X⊆Θ
m(X) log

(

m(X)+Bel(X)
2

· 1
2|X|

−1
· e

|X|−1

|C(m)|

)

MoU2020f(m) Li et al. [85] Li-Pan entropy HBF (m) = Em(m) + |Θ| · U(m)
MoU2021(m) This paper Extended BetP-entropy Hext

BetP
(m) = −

∑

θi∈Θ

BetPm(θi) log(BetPm(θi)) + U(m)

MoU2021b(m) This paper Extended DSmP-entropy Hext
DSmP

(m) = −
∑

θi∈Θ
DSmPm(θi) log(DSmPm(θi)) + U(m)
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Table III
DESIDERATA VERIFICATION, AND EFFECTIVENESS TEST RESULTS.

Measures of Uncertainty D1 D2 D3 D4 Effectiveness test

minU(m) = 0 U(mΘ
v ) < U(mΘ′

v ) U(m) is Shannon entropy U(m) < U(mv) result
for m(θi) = 1 if |Θ| < |Θ′| for Bayesian BBA if m 6= mv

MoU1981(m) = C(m) yes no yes no failed
MoU1983(m) = E(m) yes no yes no failed
MoU1983b(m) = N(m) yes yes no yes failed
MoU1983c(m) = U(m) yes yes no yes failed
MoU1984(m) = Em(m) yes no yes no failed
MoU1987(m) = C′(m) yes no yes no failed
MoU1987b(m) = d(m) yes no no no failed
MoU1988(m) = l(m) no yes no yes failed
MoU1988b(m) = Lent(m) yes yes yes no failed
MoU1988c(m) = Uent(m) yes yes yes no failed
MoU1990(m) = D(m) yes no yes no failed
MoU1990b(m) = T (m) yes yes yes no failed
MoU1992(m) = S(m) yes no yes no failed
MoU1992b(m) = NS(m) yes yes yes no failed
MoU1993(m) = ATU(m) yes yes yes no failed
MoU1993b(m) = M(m) yes yes yes yes okay

MoU1994(m) = AU(m) yes yes yes no failed
MoU1996(m) = TC(m) yes no no no failed
MoU1997(m) = Hds(m) yes no yes no failed
MoU1999(m) = SL(m) yes no yes no failed
MoU2000(m) = HS(m) yes yes yes no failed

MoU2003(m) = AM(m) yes yes yes no failed
MoU2016(m) = Ed(m) yes yes yes no failed

MoU2016b(m) = TUI(m) yes no no yes failed

MoU2017(m) = iTUI(m) yes yes no yes failed
MoU2017b(m) = EId(m) yes yes yes no failed
MoU2017c(m) = EWd(m) yes yes no no failed
MoU2018(m) = Hext

PlPr
(m) yes yes yes yes okay

MoU2018b(m) = Hq(m) no no yes no failed
MoU2018c(m) = ENm(m) yes yes yes no failed
MoU2018d(m) = Hbel(m) no yes no no failed
MoU2018e(m) = SU(m) yes yes yes yes okay
MoU2019(m) = IQ(m) yes no no no failed
MoU2019b(m) = ECui(m) yes yes yes no failed
MoU2019c(m) = HPQ(m) yes yes yes no failed
MoU2019d(m) = Ei(m) yes yes no no failed
MoU2019e(m) = Hinter(m) yes yes yes no failed
MoU2020(m) = IQLi(m) no yes no no failed
MoU2020b(m) = Uexp(m) yes no no yes failed

MoU2020c(m) = EC
Wd(

m) no (NaN) no (NaN) no no (NaN) failed

MoU2020d(m) = Q(m) yes yes yes no failed
MoU2020e(m) = Hn(m) yes yes no no failed
MoU2020f (m) = HBF (m) yes yes yes no failed
MoU2021(m) = Hext

BetP
(m) yes yes yes yes okay

MoU2021b(m) = Hext
DSmP

(m) yes yes yes yes okay

Table IV
COUNTER-EXAMPLES FOR SOME MOUS ON Θ = {θ1, θ2, θ3}.

Elem. of 2Θ m m m m m m
∅ 0 0 0 0 0 0
θ1 1/3 0.18 0 0 0 0.22
θ2 1/3 0.17 0 0 0 0.09
θ1 ∪ θ2 0 0.32 1/3 1/3 1/3 0.02
θ3 1/3 0.31 0 0 0 0.01
θ1 ∪ θ3 0 0 1/3 1/3 1/3 0.11
θ2 ∪ θ3 0 0 1/3 1/3 1/3 0.17
θ1 ∪ θ2 ∪ θ3 0 0.02 0 0 0 0.38

MoU(m) Lent(m) = 1.098 Uent(m) = 1.105 T (m) = log(3) NS(m) = log(3) ATU(m) = 1.791 HBF (m) = 3.462
MoU(mv) Lent(mv) = 1.098 Uent(mv) = 1.098 T (mv) = log(3) NS(mv) = log(3) ATU(mv) = 1.098 HBF (mv) = 3.295
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Table V
COUNTER-EXAMPLES FOR SOME MOUS ON Θ = {θ1, θ2, θ3}.

Elem. of 2Θ m m m m m m
∅ 0 0 0 0 0 0
θ1 0 0 0.10 0 0.11 0.12
θ2 0 0 0.10 0 0.26 0.09
θ1 ∪ θ2 1/3 1/3 0.16 1/3 0.24 0.17
θ3 0 0 0.03 0 0.01 0.04
θ1 ∪ θ3 1/3 1/3 0.06 1/3 0.04 0.15
θ2 ∪ θ3 1/3 1/3 0.21 1/3 0.15 0.23
θ1 ∪ θ2 ∪ θ3 0 0 0.34 0 0.19 0.20

MoU(m) Ed(m) = 2.197 EId(m) = 1.863 EWd(m) = 2.058 ENm(m) = 2.072 Hn(m) = 1.795 ECui(m) = 2.003
MoU(mv) Ed(mv) = 1.945 EId(mv) = 1.279 EWd(mv) = 1.945 ENm(mv) = 1.695 Hn(mv) = 1.279 ECui(mv) = 1.945

empty) FoD Θ. It violates D3, because for Bayesian BBA

one gets TC(m) =
∑n

i=1
P (θi)(1 − P (θi)) as reported in

[45]. It also violates D4 in general because for Bayesian

BBA one has TC(m) > 0, except in the particular Bayesian

case where the BBA is entirely focused on a singleton

θi (i.e. m(θi) = 1). In this particular case we obtain

TC(m) = TC(mv) = 0. So for all Bayesian BBAs m we

will always have TC(m) ≥ TC(mv), which clearly violates

D4 desideratum.

The original formula of MoU1997(m) = Hds(m) pro-

posed by Maluf in [57] was actually Hds(m) =
− ∑

X⊆Θ

Pl(X) log(Bel(X)) which is obviously ill-defined

when Pl(X) > 0 and Bel(X) = 0 because log(0) = −∞.

That is why we did consider only focal elements of the

BBAs m in the modified formula Hds(m) given in Table

I. For any cardinality of non-empty FoD Θ we have always

Hds(mv) = 0 because for the vacuous BBA mv, the only

focal element is Θ for which Bel(Θ) = Pl(Θ) = 1 so

that Hds(mv) = −Pl(Θ) log(Bel(Θ)) = −1 log(1) = 0. So,

Hds(m) violates D2. This MoU violates also D4 because for

Bayesian BBA Hds(m) is the same as Shannon entropy, and

Shannon entropy is greater than zero in general.

The MoU2000(m) = HS(m) (Shapley entropy) coincides

with Shannon entropy for Bayesian BBAs, and one can easily

verify that HS(mv) = log(|Θ|) which is also the same

maximum value of Shannon entropy for the uniform Bayesian

BBA. Hence HS(mv) is not the unique maximum measure

of uncertainty value when we use Shapley entropy. Also it

can be verified that this maximum value can be also obtained

by non-Bayesian BBA. For instance, if Θ = {θ1, θ2, θ3}
and m(θ1 ∪ θ2) = m(θ1 ∪ θ3) = m(θ2 ∪ θ3) = 1/3,

then HS(m) = log(3), which is also the same value as

for HS(m
Θ
v ). Because Shapley entropy proposed by Yager

violates D4 desideratum, we cannot recommend it as an

effective MoU.

The MoU2016(m) = Ed(m) (Deng entropy) has recently

aroused the interest and enthusiasm of some researchers be-

cause it was highly publicized by Deng during the last five

years [14]. We really wonder about such strong interest of

this MoU because Deng entropy is obviously not effective,

as proved by our simple counter-example given in Table V.

Abellán has already pointed out the problem of Deng entropy

in [92]. Nevertheless, some researchers try to use it, publicize

it or improve it unsuccessfully as shown in our analysis

summarized in Table III. So, it is clear that Deng Entropy is not

recommended for applications, as well as other generalizations

(modifications or extensions) of it, as those recently proposed

by the same author (Rényi-Deng (R-D) entropy, Tsallis-Deng

(T-D) entropy, Rényi-Tsallis-Deng (R-T-D) entropy, Interval-

valued Deng entropy, Fractal-based belief Deng entropy, Deng

entropy for orderable set, etc), see for instance [93], [94]

because they do not have interest since they are non-effective.

We emphasize that even if a MoU collapses with Shannon

entropy (as Deng entropy does) when a BBA is Bayesian, it

can be non-effective and useless if it violates D4 desideratum.

That is why Deng entropy (and all its recent variants based on

it) is non-effective as most of other MoUs actually reported

in Table III.

The MoU2018b(m) = Hq(m) (q-entropy alike) violates D1

because Hq(m) can be negative so its minimum value is not

zero. For instance if Θ = {θ1, θ2, θ3} and m(θ1∪θ2) = m(θ1∪
θ3) = m(θ2 ∪ θ3) = 1/3, then Hq(m) ≈ −0.2877. This

MoU also violates D2 because Hq(mv) = 0 whatever is the

dimension of the (non-empty) FoD Θ. This MoU collapses

with Shannon entropy because if m is a Bayesian BBA one

has q(X) = m(X) for all X ⊆ Θ, and the focal elements of m
are necessarily singletons X ⊆ Θ for which |X | = 1, so that

(−1)|X| = −1, and consequently the mathematical definition

of Hq(m) given in Table I is same as Shannon entropy. This

MoU violates D4 because for Bayesian BBA Hq(m) is the

same as Shannon entropy, and Shannon entropy is greater than

zero in general8. For instance if Θ = {θ1, θ2, θ3} and m(θ1) =
m(θ2) = m(θ3) = 1/3, then Hq(m) = log(|Θ|) = log(3) >
0. Hence Hq(m) > Hq(mv).

The MoU2018d(m) = Hbel(m) (Pan 1st entropy) violates

D1 because if we consider the simplest case of FoD with

Θ = {θ1, θ2}, and the specific BBA m(θ1) = 1, we

have [Bel(θ1), P l(θ1)] = [1, 1], [Bel(θ2), P l(θ2)] = [0, 0]
and [Bel(θ1 ∪ θ2), P l(θ1 ∪ θ2)] = [1, 1], so we have

8except in the case where m(θi) = 1 for some θi ∈ Θ.
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(Bel(θ1) + Pl(θ1))/2 = 1, (Bel(θ2) + Pl(θ2))/2 = 0 and

(Bel(θ1 ∪ θ2) + Pl(θ1 ∪ θ2))/2 = 1. Hence Hbel(m) =
−1 log(1/(21 − 1)) − 0 log(1/(21 − 1)) − 1 log(1/(22 −
1)) = log(3) > 0. Pan 1st entropy violates D3 (Shannon

entropy consistency) too because if m is the uniform Bayesian

BBA given by m(θ1) = m(θ2) = 0.5, then Hbel(m) =
−0.5 log(0.5) − 0.5 log(0.5) − 1 log(1/3) = log(2) + log(3)
which is greater than Shannon entropy which is equal to

−0.5 log(0.5)−0.5 log(0.5) = log(2). Pan 1st entropy violates

D4 also because for the vacuous BBA mv(θ1 ∪ θ2) = 1,

one has [Bel(θ1), P l(θ1)] = [0, 1], [Bel(θ2), P l(θ2)] = [0, 1]
and [Bel(θ1 ∪ θ2), P l(θ1 ∪ θ2)] = [1, 1], and (Bel(θ1) +
Pl(θ1))/2 = 0.5, (Bel(θ2) +Pl(θ2))/2 = 0.5 and (Bel(θ1 ∪
θ2)+Pl(θ1∪θ2))/2 = 1, so that Hbel(mv) = −0.5 log(0.5)−
0.5 log(0.5) − 1 log(1/3) = log(2) + log(3) which is the

same value as for uniform Bayesian BBA, so Hbel(mv) is

not strictly greater than other Pan 1st entropy values.

The formula of MoU2018e(m) = SU(m) (Wang entropy)

has been kept with its orignal formulation (with log2(·)
function) in Table II, so it is expressed in bits. If one wants

to express SU(m) in nats we must replace log2(·) function

by the natural logarithm function log(·) and the second terms

(Pl(θi) − Bel(θi))/2 must be multiplied by log(2) in the

mathematical definition of SU(m).

For the MoU2019b(m) = ECui(m) (Cui entropy) proposed in

[76], it is clear that the original mathematical definition of this

entropy does not fit with the derivations of what the authors

have in mind when making their numerical examples in their

paper because of a mistake in their exponential term. That

is why we have to correct this term by replacing
∑

Y⊆Θ

Y 6=X

by
∑

Y ⊆Θ

Y 6=X&m(Y )>0

in the original formula. Cui entropy violates

D4 desideratum as shown in the example of Table V.

The MoU2019c(m) = HPQ(m) (Pan 2nd entropy) is not

effective because HPQ(mv) coincides with HPQ(m) when m
is the uniform Bayesian BBA, so it violates D4 desideratum.

The MoU2019d(m) = Ei(m) (Chen entropy) is not effec-

tive because one can have Ei(m) > Ei(mv). For instance,

consider the vacuous BBA mv on FoD Θ = {θ1, θ2, θ3},

then Ei(mv) = log(2|Θ| − 1) = log(7) = 1.9459, and if

one considers the uniform Bayesian BBA for which m(θ1) =
m(θ2) = m(θ3) = 1/3 one gets Ei(m) = − log(1

3
· 1

3
) =

2 log(3) = 2.1972 > Ei(mv). So, Chen entropy violates D4

desideratum.

The MoU2019e(m) = Hinter(m) (Zhao entropy) is not

effective because it violates D4 desideratum. As simple

counter-example, consider Θ = {θ1, θ2, θ3} with the BBA

m(θ1 ∪ θ2) = m(θ1 ∪ θ3) = m(θ2 ∪ θ3) = 1/3, then

Hinter(m) = 4.6291 nats, where as for vacuous BBA

mv(Θ) = 1 we get Hinter(mv) = 4.4856 nats. Clearly

Hinter(m) > Hinter(mv), which does not make sense be-

cause the vacuous BBA mv characterizes the most ignorant

source of evidence.

It is worth mentioning that the numerical examples given

by Li and Cui in their paper are incorrect because they are

inconsistent with their original new entropy formula (12) for

IQmi, see [80]. If we admit that the original Li’s definition

of entropy is correct then we get the effectiveness test re-

sults listed for this entropy in Table III, and we conclude

that the MoU2020(m) = IQLi(m) (Li improved entropy) is

not effective. If we consider that numerical examples by

Li and Cui are correct, then we need to modify the expo-

nent term in the original Li’s definition (12) of IQmi as
∑

Y⊆Θ

Y 6=X&m(Y )>0

|X ∩ Y |/|Θ|. In this case the effectiveness

test result is worse because this modified Li improved entropy

will fail to pass the four desiderata, and it is still non-effective.

The MoU2020b(m) = Uexp(m) (Wen entropy) violates

clearly Shannon entropy compatibility desideratum D2, and for

the vacuous BBA mv one has always Uexp(mv) = 1 whatever

is the dimension of the FoD Θ. Therefore Wen entropy does

not verify desideratum D2. It is not certain that Uexp(m)
satisfies, or not, D4 desideratum, but we did thousands of

Monte Carlo tests with random BBAs for different size of

FoD Θ, and Uexp(m) did always pass successfully the D4

test, so we conjecture that Wen entropy satisfies D4. Even if

our conjecture about satisfaction of D4 for Uexp(m) is wrong,

it does not change our conclusion that Wen entropy is not

effective because it fails to verify D2 and D3.

MoU2020c(m) = EC
Wd(m) (Chen improved entropy) is not

mathematically well-defined because when the BBA m has

only one focal element (i.e. |FΘ(m)| = 1), then one has a

division by |FΘ(m)| − 1 = 0 which yields a NaN (Not a

Number) indeterminate value in Table III. Even if |FΘ(m)| >
1 this entropy is not compatible with Shannon entropy for

Bayesian BBAs. So, Chen improved entropy is not effective.

MoU2020d(m) = Q(m) (Qin entropy) violates D4 desider-

atum because Qin entropy takes same value log(|Θ|) for the

vacuous BBA and for the uniform Bayesian BBA.

MoU2020e(m) = Hn(m) (Yan entropy) is non-effective.

A counter-example for D4 desideratum is given in Table V

expressed in nats. To express them in bits we have of course to

divide our results by log(2). It is worth noting that in Section

III.B of [84], the numerical results given by Yan and Deng for

Hn(m3) and Hn(m4) for their example 5 are wrong.

MoU2020f (m) = HBF (m) (Li-Pan entropy) is also non-

effective. A counter-example for D4 desideratum is given in

Table IV.

IV. DISCUSSION

Our analysis of forty-five measures of uncertainty listed

in Tables I and II covering 40 years of research in this

field reveals that almost 89 % of them are non-effective

because they violate at least one of the four very essential

desiderata D1, D2, D3 or D4. In our analysis only five

MoUs (M(m) 1993, Hext
PlPr(m) 2018, SU(m) 2018, Hext

BetP(m)
2021, Hext

DSmP(m) 2021) pass successfully the effectiveness
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test as we can observe in Table III. We see that all these

effective MoUs share two basic principles: 1) approximate the

BBA m by a probability measure (i.e. a Bayesian BBA) Pm

based on some method and evaluate its Shannon entropy to

estimate the randomness (or conflict) inherent to the BBA,

and 2) add a term to Shannon entropy value that estimates

the level of ambiguity (or non specificity) inherent of the

BBA (usually thanks to Dubois & Prade U -uncertainty). This

general principle is simple and quite intuitive but it lacks

seriously of theoretical justification. We consider such type

of effective MoU construction is unfortunately conceptually

flawed and not very satisfactory for the two following reasons.

• 1st reason: These effective MoUs highly depend on

the choice of the method of approximation. This mech-

anism appears quite arbitrary, and we do not see

any strong justification for preferring one of them, ei-

ther P ∗ in M(m) MoU, BetP in Hext
BetP(m) MoU,

DSmP in Hext
DSmP(m) MoU, mid belief-interval value

(Bel(θi) + Pl(θi))/2 in SU(m) MoU, etc. Worse, a

method of approximation can be totally misleading as

for instance Cobb-Shenoy PlPrm transformation [90]

because the evaluation of probabilities can be incon-

sistent with belief interval values. More precisely, one

can have PlPrm(θi) /∈ [Bel(θi), P l(θi)] with Cobb-

Shenoy method, which is obviously not reasonable, nor

acceptable at all. As a simple counter-example of Cobb-

Shenoy transformation, just consider Θ = {θ1, θ2, θ3}
with m(θ1) = 0.2 and m(θ2 ∪ θ3) = 0.8. Then,

[Bel(θ1), P l(θ1)] = [0.2, 0.2], [Bel(θ2), P l(θ2)] =
[0, 0.8] and [Bel(θ3), P l(θ3)] = [0, 0.8]. Applying

PlPrm transformation, we get PlPrm(θ1) = 0.2/(0.2+
0.8 + 0.8) ≈ 0.112. Therefore PlPrm(θ1) < Bel(θ1)
which shows that PlPrm(θ1) /∈ [Bel(θ1), P l(θ1)]. We

emphasize the fact that if a method of approximation

of a BBA m by a probability measure Pm is chosen,

it must be at least consistent with belief interval values

generated by the BBA m under concern. Clearly, we

cannot recommend Cobb-Shenoy PlPrm transformation

for building an effective MoU based on aforementioned

principles 1) and 2) as Hext
PlPr(m) MoU proposed recently

by Jiroušek and Shenoy based on questionable Shafer

semantics and fallacious Dempster’s rule arguments.

• 2nd reason: More fundamentally, we do not see any

serious reason which necessitates the arbitrary use of an

approximation of any (non-Bayesian) BBA by a Bayesian

BBA at first for using Shannon entropy measure as 1st

valid principle. Also why do we need, or request, to

make the distinction of the two aspects of uncertainty

(conflict and non-specificity) in additive manner? This is

conceptually very disputable because the randomness (or

conflict) and ambiguity (or nonspecificity) are actually

interwoven in a subtle way that needs to be explored

in deep for a better understanding of the mechanism

governing the uncertainty with a better description of the

(probably non-additive) link between them.

Very recently however Zhang et al. in [104] did propose

three new innovant effective MoUs not based on arbitrary

approximation of the BBA by a probability as in the afore-

mentioned effective MoUs. These measures are denoted by

H1(m), H2(m) and H3(m) and respectively defined by9

H1(m) = −
∑

X⊆Θ

m(X) log2(Pl(X))

+
∑

X⊆Θ

m(X)2 log2(|X |) (5)

H2(m) = −
∑

X⊆Θ

m(X) log2(Pl(X))

+
∑

X⊆Θ

m(X) log2(2
|X| − 1) (6)

H3(m) = −
∑

X⊆Θ

m(X) log2(Pl(X))

+
∑

X⊆Θ

|X|>1

m(X)|X | (7)

These new effective MoUs differ conceptually from the

previous effective MoUs M(m), Hext
PlPr(m), SU(m), Hext

BetP(m)
and Hext

DSmP(m) but the authors fail to capture well the inter-

woven link between conflict and non-specificity (or impreci-

sion). Actually the authors set arbitrarily the range of their

MoU as a simple parameter, either taken as [0, 2 log2(|Θ|)],
[0, log2(2

|Θ| − 1)] or [0, |Θ|], to define their H1(m), H2(m)
and H3(m) measures of uncertainty. This approach is rather

ad-hoc and very questionable, and possibly other ranges

could have been chosen instead. The authors do not iden-

tify (or propose) the best MoU to select between H1(m),
H2(m) and H3(m) which is a serious problem for using

them in applications. Which one to choose? The other se-

rious problem in this approach is the lack of solid justifi-

cation for using the plausibility function in the summation

−∑

X⊆Θ
m(X) log2(Pl(X)). Although effective, these three

new MoUs are actually ill-justified and heuristically defined,

and somehow they can be considered as conceptually flawed.

V. CONCLUSION

In this paper we have clearly proved that most of existing

measures of uncertainty proposed during the last forty years

are actually non-effective, and we consider that the effective

ones are conceptually defective. We emphasize the fact that

in this jungle of non-effective measures, many of them have

bloomed like mushrooms since 2016 with the publication of

Deng’s paper because of its high publicity. Most of papers

since 2016 do not pay attention to the four essential properties

that an effective MoU must satisfy, which is a serious problem.

We regret this matter of fact, and we hope that this paper have

pointed out clearly this concern, and also that it will help

to reduce the proliferation of useless publications about non-

effective MoUs. We encourage the future authors working on

9We correct here the definition of H3(m) which is mathematically badly
formulated in [104].
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new MoUs to verify the effectiveness of their MoU as done re-

cently by Zhang et al. in [104]. We agree with Abellán, Mantas

and E. Bossé vision that an (effective) MoU should not be too

complicate to calculate (with direct simple explicit mathemat-

ical formula), must obviously incorporate the two aspects of

uncertainty (in a subtle and efficient interwoven manner), and

must be sensitive to changes of evidence. Recently, we have

developed in [105] a better conceptual effective measure of

uncertainty for the basic belief assignments not based on the

additive decomposition of conflict and non-specificity which,

we hope, will attract the attention of all readers interested by

this topic for their own applications.

APPENDIX

Shannon entropy

Consider a random variable represented by a probability

mass function (pmf) PN = (p1, p2, . . . , pN), where pi =
P (θi) is the probability of the i-th state θi (i.e. outcome) of

Θ = {θ1, θ2, . . . , θN}. Shannon was interested in communi-

cation systems where the various events were the carriers of

coded messages, and he did propose (and justify) his entropy

measure as appropriate measure of average uncertainty (or

measure of randomness) of a random variable [17], [18], [21],

[22]. In the classical information theory, the entropy of a

random variable is the average level of surprisal, or uncertainty

inherent in the variable’s possible outcomes [95]. It is worth

noting that Shannon theory does not concern the semantic

aspects of the content of a message [46], [96], [97], but only

its transmission through communication systems. Shannon

entropy formula is defined by10

H(PN ) , −
|Θ|
∑

i=1

P (θi) log(P (θi)) (8)

By convention, we take P (θi) log(P (θi)) , 0 if P (θi) = 0
which is easily justified by continuity since x log(x) → 0 as

x → 0. Adding terms of zero probability does not change

the entropy. In (8) we use the natural logarithm (i.e. base

e logarithm) and in this case the Shannon entropy value is

expressed in nats unity. We can also use the base 2 logarithm

(log2) function instead of the natural logarithm, and if so

the Shannon entropy value will be expressed in bits. In this

case, the entropy is the number of bits on average required

to describe the random variable, or equivalently the minimum

expected number of binary questions required to determine the

value of the random variable.

Shannon entropy can be interpreted as a generalization

of Hartley entropy (1928) [98], [99] when presuming the

pmf of equally probable states (i.e. uniform pmf P unif
N for

which P (θi) = 1/N for i = 1, 2, . . . , N ), hence getting

H(P unif
N ) = log(|Θ|) = log(N). Note that if we have a

uniform pmf P unif
N defined on Θ with |Θ| = N and another

uniform pmf P unif
N ′ defined on Θ′ with |Θ′| = N ′, and if

|Θ| < |Θ′| then H(P unif
N ) < H(P unif

N ′ ) because log(|Θ|) <

10The symbol , means equal by definition.

log(|Θ′|) since log(x) is an increasing function. The minimum

value of Shannon entropy is zero, which characterizes a non-

random (or sure) event θj for which P (θj) = 1, because

−∑|Θ|
i=1

P (θi) log(P (θi)) = −P (θj) log(P (θj)) = 0.

In fact, Shannon rarely used the term information (nor infor-

mation content) in his works, and he preferred the term entropy

to describe the scattering of symbols in the communication

system. As reported in [100], in 1961 Shannon explained to

Tribus his choice for naming the measure of uncertainty as en-

tropy, instead of information as follows: “My greatest concern

was what to call it. I thought of calling it ’information,’ but

the word was overly used, so I decided to call it ’uncertainty’.

When I discussed it with John von Neumann, he had a better

idea. Von Neumann told me, ’You should call it entropy,

for two reasons. In the first place your uncertainty function

has been used in statistical mechanics under that name, so it

already has a name. In the second place, and more important,

no one really knows what entropy really is, so in a debate you

will always have the advantage.” Shannon did not prove that

his entropy formula is the best measure of uncertainty, and

even if it is a measure for information. He only stated a set

of reasonable criteria [101] to describe a measure that would

serve the requirements of his signal transmission theory, and he

found that the entropy formula meets those criteria. We prefer

to interpret Shannon entropy as a measure of uncertainty (or

randomness) of a pmf, rather than a measure of information

content [101], because of multiple possible interpretations and

definitions of information.

The main algebraic properties of the Shannon entropy are,

see [20] p. 30 for details: the symmetry, the normality11,

expansibility, decisivity, additivity and recursivity. We recall

that Shannon entropy value H(PN ) is always smaller than

H(P unif
N ) if PN 6= P unif.

N , expressing the fact that the uniform

pmf is the only pmf giving the maximal Shannon entropy

value, and characterizing the maximum of uncertainty (or

randomness), which is called the maximality property. Another

important property of Shannon entropy is its subadditivity

property when considering two (not necessarily independent)

events, see [20] p. 36, which can be formulated by the

following inequality

H(PN ·N ′) ≤ H(PN ) +H(PN ′) (9)

where PN ·N ′ is the joint pmf defined on cartesian product

space Θ × Θ′ = {(θi, θ′j), i = 1, 2, . . .N, j = 1, 2, . . . , N ′}.

PN and PN ′ are marginal pmfs (i.e. the projections) of the

joint pmf PN ·N ′ on spaces (i.e. frames of discernements) Θ
and Θ′ respectively.

Belief functions

The belief functions (BF) have been introduced by Shafer

[23] to model epistemic uncertainty to reason about uncer-

tainty. We assume that the answer of the problem under

concern belongs to a known finite discrete frame of dis-

cernement (FoD) Θ = {θ1, θ2, . . . , θn}, with n > 1, and

11This stipulates that H(P unif
2 ) = 1 using base 2 logarithm function in (8).

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

798



where all elements of Θ are exhaustive and exclusive. The

set of all subsets of Θ (including empty set ∅, and Θ) is

the power-set of Θ denoted by 2Θ. The number of elements

(i.e. the cardinality) of 2Θ is 2|Θ|. A (normal) basic belief

assignment (BBA) associated with a given source of evidence

is a mapping m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and
∑

A∈2Θ
m(A) = 1. The number m(A) is called the mass of

A committed by the source of evidence. The subset A ∈ 2Θ

is called a focal element (FE) of the BBA m(·) if and only if

m(A) > 0. The set of all the focal elements of the BBA m(·)
is noted by FΘ(m) = {X ∈ 2Θ|m(X) > 0}, or just F for

shortand notation when there is no ambiguity on the FoD Θ
and the BBA m we are using. The core C(m) of a BBA m is

the union of all its focal elements, i.e. C(m) =
⋃

X∈FΘ(m)

X .

The belief of A denoted Bel(A) and the plausibility of A
denoted Pl(A) are usually interpreted respectively as lower

and upper bounds of an unknown (subjective) probability

measure P (A). They are respectively defined for any A ∈ 2Θ

from the BBA m(·) by

Bel(A) =
∑

X∈2Θ|X⊆A

m(X) (10)

and

Pl(A) =
∑

X∈2Θ|A∩X 6=∅
m(X) = 1− Bel(Ā). (11)

where Ā represents the complement of A in Θ, that is Ā ,

Θ \ {A} = {X |X ∈ Θ and X /∈ A}. The symbol \ denotes

the set difference operator. Also, the commonality function

q(·) defined for all A ⊆ Θ by q(A) =
∑

X⊆Θ|A⊆X m(X) is

involved in the some derivations, for instance in the definition

of MoU1987(m) (cf Table I). The vacuous BBA (VBBA for

short) representing a totally ignorant source is defined by

mv(Θ) = 1. In this short presentation, we implicitly work

on the FoD Θ and so we did omit to refer to it in our

previous notations. If we have to work with BBAs defined on

different FoDs, say Θ and Θ′, then we will explicitly indicate

these FoDs in the BBA notations as mΘ(.) and mΘ
′

(.). In

the classical theory of belief functions the combination of

several distinct sources of evidence characterized by their

BBAs defined on the same FoD is done with Dempster’s

rule of combination, see [23]. To circumvent the problems

of Dempster’s rule (e.g. its dictatorial behavior, its possible

insensitivity to conflict level, its counter-intuitive results in

high and low conflicting situations, etc), other rules have been

developed in particular those based on proportional conflict

redistribution (PCR) principles, see [102], [103].
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Linköping, Sweden, pp. 1–10, July, 2022.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

801



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

802



Abstract—This paper presents a new effective measure of un-
certainty (MoU) of basic belief assignments. This new continuous
measure is effective in the sense that it satisfies a small number
of very natural and essential desiderata. Our new simple math-
ematical definition of MoU captures well the interwoven link of
randomness and imprecision inherent to basic belief assignments.
Its numerical value is easy to calculate. This new effective MoU
characterizes efficiently any source of evidence used in the belief
functions framework. Because this MoU coincides with Shannon
entropy for any Bayesian basic belief assignment, it can be also
interpreted as an effective generalization of Shannon entropy. We
also provide several examples to show how this new MoU works.

Keywords: Measure of Uncertainty, MoU, belief functions,

Shannon entropy.

I. INTRODUCTION

In the classical probabilistic framework of the theory of

communication developed by Shannon in 1948 [1], [2], the

measure of uncertainty (MoU), also called entropy, for char-

acterizing a source of information (from signal transmission

standpoint) is represented by Shannon entropy. This entropy

measures the randomness of a probability mass function.

Shannon entropy has played a very important role in the

development of modern communication systems during the

second half of the 20th century, and in signal and image

coding, data compression, and cryptography [3] until today.

Shannon theory does not concern the semantic aspects of the

content of a message but only its transmission.

From 1980s and until now, many research works have been

proposed to try to extend Shannon measure of uncertainty

(i.e. entropy) in the belief functions framework since their

introduction by Shafer in the mid of 1970s [5]. In parallel,

other research works have been done on the characterization

of particular aspects of the uncertainty which are related

to the set consistency (or non-specificity) of basic belief

assignments (BBAs). Recently Jousselme et al. [6] proposed

an interesting attempt of mathematical unification of existing

MoU formulations. In our recent survey paper [7], we did

analyze in details 40 years of research works on MoUs. Our

deep analysis of forty-eight MoUs reveals that only very few of

them can be considered as effective in the mathematical sense

defined in Section III. Unfortunately, these existing effective

MoUs are conceptually flawed. The main contribution of this

paper is to provide a clear positive answer with a new well-

justified mathematical solution to the fundamental challenging

question stated in the conclusion of [7]:

Is there a better conceptual effective measure of uncertainty

for the basic belief assignments?

This paper is organized as follows. Section II presents the

basics of belief functions. Section III presents and justifies the

four essential desiderata that a MoU must satisfy in order to be

effective. In the section IV we list the existing effective MoUs

and we explain their conceptual flaws. Section V presents

the new effective MoU for BBA (i.e. generalized Shannon

entropy) with some examples in the section VI. Concluding

remarks and perspectives are given in the section VII.

II. BELIEF FUNCTIONS

The belief functions (BF) were introduced by Shafer [5] for

modeling epistemic uncertainty, reasoning about uncertainty

and combining distinct sources of evidence. The answer of

the problem under concern is assumed to belong to a known

finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN}
where all elements (i.e. members) of Θ are exhaustive and

exclusive. The set of all subsets of Θ (including empty set

∅, and Θ) is the power-set of Θ denoted by 2Θ. The number

of elements (i.e. the cardinality) of the power-set is 2|Θ|. A

(normalized) basic belief assignment (BBA) associated with a

given source of evidence is a mapping mΘ(·) : 2Θ → [0, 1]
such that mΘ(∅) = 0 and

∑

X∈2Θ
mΘ(X) = 1. A BBA mΘ(·)

characterizes a source of evidence related with a FoD Θ. For

notation shorthand, we can omit the superscript Θ in mΘ(·)
notation if there is no ambiguity on the FoD we work with.

The quantity m(X) is called the mass of belief of X . X ∈ 2Θ

is called a focal element (FE) of m(·) if m(X) > 0. The

set of all focal elements of m(·) is denoted1 by FΘ(m) ,

{X ∈ 2Θ|m(X) > 0}. The belief and the plausibility of X
are respectively defined for any X ∈ 2Θ by [5]

Bel(X) =
∑

Y ∈2Θ|Y⊆X

m(Y ) (1)

Pl(X) =
∑

Y ∈2Θ|X∩Y 6=∅
m(Y ) = 1− Bel(X̄). (2)

where X̄ , Θ \ {X} is the complement of X in Θ.

1, means equal by definition.
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One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [5]. For

X = ∅, Bel(∅) = Pl(∅) = 0, and for X = Θ one has

Bel(Θ) = Pl(Θ) = 1. Bel(X) and Pl(X) are often inter-

preted as the lower and upper bounds of unknown prob-

ability P (X) of X , that is Bel(X) ≤ P (X) ≤ Pl(X).
To quantify the uncertainty (i.e. the imprecision) of

P (X) ∈ [Bel(X), P l(X)], we use u(X) ∈ [0, 1] defined by

u(X) , Pl(X)−Bel(X) (3)

The quantity u(X) = 0 if Bel(X) = Pl(X) which means that

P (X) is known precisely, and one has P (X) = Bel(X) =
Pl(X). One has u(∅) = 0 because Bel(∅) = Pl(∅) = 0,

and one has u(Θ) = 0 because Bel(Θ) = Pl(Θ) = 1. If

all focal elements of m(·) are singletons of 2Θ the

BBA m(·) is a Bayesian BBA because ∀X ∈ 2Θ one has

Bel(X) = Pl(X) = P (X) and u(X) = 0. Hence the belief

and plausibility of X coincide with a probability measure

P (X) defined on the FoD Θ. The vacuous BBA characterizing

a totally ignorant source of evidence is defined by mv(X) = 1
for X = Θ, and mv(X) = 0 for all X ∈ 2Θ different of Θ.

This very particular BBA plays a major role in the establish-

ment of a new effective measure of uncertainty for BBA.

III. ESSENTIAL DESIDERATA FOR A MOU

Before defining our new effective measure of uncertainty,

denoted by U(m), for any basic belief assignment m(·) related

to a (non-empty) FoD Θ, we present the four essential and very

natural desiderata that an effective MoU must satisfy [7].

Desideratum D1: For any non-empty frame of discernment

Θ and for any BBA m(·) focused on a singleton X of 2Θ one

must have

U(m) = 0 (4)

Justification of D1: this desideratum is natural and intuitive

because any particular BBA for which a singleton X has

m(X) = 1 characterizes its certainty, which means that there

is no uncertainty about the choice of this element since it does

not include other smaller element in it. So, in this case U(m)
must take zero value.

Desideratum D2: The measure of uncertainty of a total

ignorant source of evidence must increase with the cardinality

of the frame of discernment. That is

U(mΘ
v ) < U(mΘ

′

v ), if |Θ| < |Θ′|. (5)

Justification of D2: this second desideratum makes perfect

sense because the total ignorant source of evidence on

Θ = {θ1, . . . , θN} for which mΘ
v (Θ) = 1 knows absolutely

nothing about only N elements, whereas the total ignorant

source of evidence on Θ′ = {θ1, . . . , θN , θN+1, . . . , θN ′} with

mΘ
′

v (Θ′) = 1 knows absolutely nothing about more elements

because N ′ > N . This clearly indicates that mΘ
′

v must be in

fact more ignorant than mΘ
v .

Desideratum D3: The measure of uncertainty U(m) must

coincide with Shannon entropy [1]–[3] if the BBA m(·) is a

Bayesian BBA. This desideratum is mathematically expressed

for any Bayesian BBA m(·) defined on the FoD Θ by the

condition2

U(m) = −
∑

X∈Θ

m(X) log(m(X)) (6)

Justification of D3: this third desideratum is also very natural

because Shannon entropy is the most well-known and justified

[9] measure used to characterize the uncertainty (the random-

ness, or variability) of a probability mass function. Because

any Bayesian BBA induces belief and plausibility functions

that coincide with a probability measure, one must have a

coherence of U(m) with Shannon entropy when the BBA is

Bayesian.

Desideratum D4: For any non-vacuous BBA m(·) and for

the vacuous BBA mv(·) defined with respect to the same FoD

one must have

U(m) < U(mv) (7)

Justification of D4: this last desideratum is also a very impor-

tant one and it makes perfect sense because the total ignorant

source is always characterized by the vacuous BBA mv(·),
and obviously no source of evidence can be more uncertain

than the total ignorant source.

Effectiveness of a measure of uncertainty: A measure of

uncertainty (MoU) is said effective if and only if it satisfies

the four essential desiderata D1, D2, D3, and D4.

Any MoU that fails to satisfy at least one of these four

desiderata is said non-effective, and in this case it cannot

be considered seriously as a good measure of uncertainty

for characterizing a basic belief assignment of a source of

evidence. Consequently, a non-effective MoU should not be

used in applications involving MoU.

As justified in [7], we voluntarily do not include the sub-

additivity desideratum in the list of our desiderata for the

search of an effective MoU in the belief function framework

because this desideratum does not make sense when working

with general (i.e. non-Bayesian) BBAs, and it is incompatible

with the essential desideratum D4. We recall that the sub-

additivity condition is defined by U(mΘ×Θ
′

) ≤ U(m↓Θ) +
U(m↓Θ′

) or any joint BBA defined on the cartesian product

Θ × Θ′ of FoDs Θ and Θ′, where m↓Θ is the marginal (i.e.

projection) of mΘ×Θ
′

(·) on the power-set 2Θ, and m↓Θ′

is the

marginal (i.e. projection, see [10], [11]) of mΘ×Θ
′

(·) on the

power-set 2Θ
′

. To justify our choice, just consider a simple

example with |Θ| = 5 and |Θ′| = 8, which means that the

cartesian product space Θ×Θ′ has |Θ×Θ′| = 40 elements.

Why the MoU of the vacuous BBA mΘ×Θ
′

v related to 40

elements of Θ × Θ′ should be less (or equal) to the sum

of MoU of vacuous BBA mΘ
v related to only 5 elements of

Θ and the MoU of the vacuous BBA mΘ
′

v only related to

the 8 elements of Θ′? We do not see any solid theoretical

reason, nor intuitive reason, for justifying and requiring the

2Shannon entropy [1] is given here in nats, and we take 0 log(0) = 0
because lim

x→0+ x log(x) = 0 which is proved using L’Hôpital’s rule [4].
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subadditivity desideratum in the general framework of belief

functions, and to select it as an axiom to satisfy in general as

done in [12]. Unlike Vejnarova and Klir opinions [15] (p.28)

(and some authors following them), we do not consider that

the meaningful (or effective) measure of uncertainty of basic

belief assignment must satisfy the sub-additivity desideratum

in general.

IV. EXISTING EFFECTIVE MOUS

Before presenting our new effective MoU (or generalized

entropy) in the next section, we must discuss a bit of the

few existing effective measures of uncertainty proposed in

the literature. As shown in [7], most3 of existing MoUs are

actually non-effective, and only eight MoUs can be considered

as effective in the mathematical sense defined in the previous

section. Most of effective MoUs share two basic principles:

1) approximate the BBA m by a probability measure (i.e. a

Bayesian BBA) Pm based on some method of approximation

and evaluate its Shannon entropy to estimate the randomness

(or conflict) inherent to the BBA, and 2) add a term to Shannon

entropy that characterizes the level of ambiguity (or non-

specificity) inherent of the BBA (usually thanks to Dubois

& Prade U -uncertainty [16]). For instance in [7] the BetP

and DSmP transformations are used, in [17] the Cobb-Shenoy

transformation [18] is used, and in [19] the authors suggest to

use4 the Bayesian BBA compatible with belief intervals drawn

from m(·) that maximizes Shannon entropy. This general

2-steps principle is rather simple and quite intuitive but it

seriously lacks of theoretical justification. We consider that

such type of effective MoU construction is conceptually flawed

and not very satisfactory for two main reasons:

Reason 1: these effective MoUs highly depend on the

method of approximation whose choice is quite arbitrary.

Worse, a method of approximation of a BBA m(·) to a

Bayesian BBA can be totally misleading as for instance Cobb-

Shenoy PlPrm transformation [18] because for this trans-

formation the evaluation of probabilities can be inconsistent

with belief interval values. More precisely, one can have

PlPrm(θi) /∈ [Bel(θi), P l(θi)] with Cobb-Shenoy method,

which is obviously not reasonable, nor acceptable at all, see

discussion in [7] with example. We emphasize the fact that

if a method of approximation of a BBA m by a probability

measure Pm is chosen, it must be at least consistent with

belief interval values generated by the BBA m under concern.

Clearly, we cannot recommend Cobb-Shenoy transformation

for building an effective MoU based on aforementioned prin-

ciples 1) and 2) as proposed recently by Jiroušek and Shenoy

in [17].

Reason 2: In fact, there is no solid reason or evidence that

necessitates to approximate any (non-Bayesian) BBA by

a Bayesian BBA (for using Shannon entropy measure) in

the construction of MoU. Also, there is no reason why

3Forty-eight MoUs have been analyzed in [7].
4found using a complicate optimization method, see [20], [21] for details.

we need (or request) to make the distinction of the two

aspects of uncertainty (conflict and non-specificity), and to

consider them as additively separable. This is conceptually

very disputable because the randomness (or conflict) and

ambiguity (or non-specificity) are actually interwoven through

the mass value of the focal elements of the BBA and their

belief intervals.

Very recently, Zhang et al. in [22] did propose three new

effective MoUs not directly based on the aforementioned 2-

steps principle approach, and that is why they have attracted

our attention. These MoUs are denoted by H1(m), H2(m)
and H3(m) and they are respectively defined by5

H1(m) = −
∑

X⊆Θ

m(X) log2(P l(X)) +
∑

X⊆Θ

m(X)2 log2(|X|)

H2(m) = −
∑

X⊆Θ

m(X) log2(P l(X)) +
∑

X⊆Θ

m(X) log2(2
|X| − 1)

H3(m) = −
∑

X⊆Θ

m(X) log2(P l(X)) +
∑

X⊆Θ
|X|>1

m(X)|X|

Unfortunately, Zhang et al. fail to capture well the interwoven

link between conflict and non-specificity (or imprecision).

Actually the authors set arbitrarily the range of their MoU as

a simple parameter, either taken arbitrarily as [0, 2 log2(|Θ|)],
[0, log2(2

|Θ| − 1)] or [0, |Θ|], to define their H1(m), H2(m)
and H3(m) measures of uncertainty. Zhang’s approach is very

questionable, and actually other ranges could have been chosen

instead. Moreover Zhang et al. do not identify (nor propose)

the best MoU to use between H1(m), H2(m) and H3(m).
The other serious problem with Zhang’s approach is its lack

of solid justification for using the plausibility function in the

summation −∑

X⊆Θ
m(X) log2(Pl(X)). Although effective

in the mathematical sense defined in section III, Zhang’s

new MoUs are ill-justified and they can also be considered

as conceptually flawed. That is why we present a better

conceptual effective measure of uncertainty for BBA in the

next section.

V. A NEW EFFECTIVE MEASURE OF UNCERTAINTY

A. Mathematical definition

The new effective measure of uncertainty we propose is

given by the following simple formula

U(m) =
∑

X∈2Θ

s(X) (8)

with

s(X) , −(1− u(X))m(X) log(m(X))

+ u(X)(1−m(X)) (9)

s(X) is the uncertainty contribution of X in the MoU U(m).
We call s(X) the entropiece of X . Because u(X) ∈ [0, 1]
and m(X) ∈ [0, 1] one has s(X) ≥ 0, and U(m) ≥ 0. The

5We have corrected here the definition of H3(m) which is mathematically
ill-formulated in [22].
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entropiece s(X) takes into account the belief mass m(X), and

the uncertainty (or imprecision) u(X) = Pl(X) − Bel(X)
about the unknown probability of X in a subtle interwoven

manner. The cardinality of X enters indirectly (i.e. not ex-

plicitly) in the derivations of Bel(X) and Pl(X), and thus

in the calculation of u(X) and in the entropiece s(X). The

quantity −(1−u(X)) log(m(X)) = (1−u(X)) log(1/m(X))
entering in s(X) in (9) is the surprisal [8] log(1/m(X)) of

X discounted by the confidence (1−u(X)) one has about the

precision of P (X). The term −m(X)(1− u(X)) log(m(X))
is the weighted discounted surprisal of X . The second term

u(X)(1 − m(X)) corresponds to the imprecision of P (X)
discounted by (1 − m(X)) because the greater m(X) the

less one should take into account the imprecision u(X) in

the MoU. As we will prove next, this new very simple MoU

U(m) satisfies the four essential desiderata, and thus it is

effective and conceptually well justified, and it presents several

advantages over existing effective MoUs given in Section VII.

Because for X = ∅, one has m(∅) = 0 and u(∅) = 0 the

entropiece of the empty set ∅ is s(∅) = 0. Hence the expression

of U(m) can be written equivalently as

U(m) = s(∅) +
∑

X∈2Θ|X 6=∅
s(X) =

∑

X∈2Θ|X 6=∅
s(X) (10)

It is worth noting that for any BBA focused on X 6= ∅
with m(X) = 1, we have m(X) = Bel(X) = Pl(X) = 1,

and thus u(X) = 0. In this case, the entropiece of X is6

s(X) = −(1− u(X))m(X) log(m(X)) + u(X)(1−m(X))

= −(1− 0)1 log(1) + 0(1− 1) = 0

In particular, if m(Θ) = 1 (which corresponds to the vacuous

BBA) we have the entropiece s(Θ) = 0.

U(m) is expressed in nats because we use the natural log-

arithm which makes derivations simpler, specially for making

some proofs in the sequel. U(m) can be expressed in bits by

dividing the U(m) value in nats by log(2) = 0.69314718....
This measure of uncertainty U(m) is a continuous function in

its basic belief mass arguments because it is a summation of

continuous functions.

B. Entropy of the vacuous BBA

Consider the FoD Θ of cardinality |Θ| = N greater than

zero, and the vacuous BBA mv defined on this FoD for

which mv(Θ) = 1 and mv(X) = 0 for any X 6= Θ in 2Θ.

For this vacuous BBA one always has Bel(Θ) = Pl(Θ) = 1
and thus u(Θ) = Pl(Θ)−Bel(Θ) = 0, and one has also

u(∅) = 0. For all elements X 6= Θ with X ∈ 2Θ \ {∅} one

has also necessarily Bel(X) = 0, Pl(X) = 1 and thus

6because log(1) = 0.

u(X) = Pl(X)−Bel(X) = 1. Consequently, the expression

(10) with the BBA mv becomes7

U(mv) = −
∑

X∈2Θ|X 6=∅
(1− u(X))mv(X) log(mv(X))

+
∑

X∈2Θ|X 6=∅
u(X)(1−mv(X))

= −(1− u(Θ))mv(Θ) log(mv(Θ))

−
∑

X∈2Θ|(X 6=∅)∧(X 6=Θ)

(1− u(X))mv(X) log(mv(X))

+ u(Θ)(1−mv(Θ))

+ [
∑

X∈2Θ|(X 6=∅)∧(X 6=Θ)

u(X)(1−mv(X))]

In this expression of U(mv) we have8



















−(1− u(Θ))mv(Θ) log(mv(Θ)) = −(1− 0)1 log(1) = 0

−∑

X∈2Θ|(X 6=∅)∧(X 6=Θ)
(1 − u(X))mv(X) log(mv(X)) = 0

u(Θ)(1−mv(Θ)) = 0(1− 1) = 0
∑

X∈2Θ|(X 6=∅)∧(X 6=Θ)
u(X)(1−mv(X)) = 2N − 2

Therefore, it comes finally for the vacuous BBA mv defined

on a FoD of size N > 0 the following MoU value

U(mv) = 2N − 2 (11)

The entropy U(m) makes perfect sense because for

the vacuous BBA mv(·) there is no information about

the conflicts between the elements of the FoD. One has

u(∅) = 0 because [Bel(∅), P l(∅)] = [0, 0], u(Θ) = 0 because

[Bel(Θ), P l(Θ)] = [1, 1], and for all X ∈ 2Θ \ {∅,Θ} one

has u(X) = 1 because [Bel(X), P l(X)] = [0, 1]. Hence, the

sum of all imprecisions of P (X) for all X ∈ 2Θ is exactly

equal to 2N − 2 when |Θ| = N . In the degenerate case where

|Θ| = N = 1, one has U(mv) = 21 − 2 = 0 which indicates

that there is absolutely no uncertainty in this very particular

case. This result makes perfect sense also. For non-degenerate

FoD (i.e. when |Θ| > 1) one has always U(mv) > log(N)
which means that the vacuous BBA representing the totally

ignorant source of evidence has an entropy greater than the

maximum of Shannon entropy log(N) obtained with the

uniform probability mass function distributed on Θ. This is

an expected result because no BBA can represent the total

ignorance, but the vacuous BBA.

C. Effectiveness of U(m)

In this subsection we establish the effectiveness of our new

generalized entropy U(m) defined in (8). For this, we prove

the following four lemmas.

Lemma 1: U(m) satisfies the desideratum D1.

Proof: Consider at first the very special case where

Θ includes only one element θ, that is Θ = {θ} and

|Θ| = 1. In this case there exists only one possible

7The notation a ∧ b means that the conditions a and b are both satisfied.
8For X 6= Θ, mv(X) = 0 and mv(X) log(mv(X)) = 0 log(0) = 0.
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BBA over 2Θ = {∅, θ} defined by m(∅) = 0 and

m(θ) = 1. Hence Bel(θ) = Pl(θ) = 1, u(θ) = 0, and

s(θ) = (1 − u(θ))m(θ) log(m(θ)) + u(θ)(1 −m(θ)) = 0.

Therefore U(m) = s(∅) + s(θ) = 0. In more general (i.e.

when |Θ| > 1) if X is a singleton of 2Θ (i.e. |X | = 1) and

if m(X) = 1 then Bel(X) = Pl(X) = 1 and u(X) = 0.

For the elements Y of 2Θ \ {∅} containing X one has

also Bel(Y ) = Pl(Y ) = 1 and therefore u(Y ) = 0. For all

elements Y of 2Θ \ {∅} not containing X one has always

Bel(Y ) = Pl(Y ) = 0 and therefore u(Y ) = 0. In summary,

one has: 1) m(X) = 1, u(X) = 0, s(X) = 0, 2) m(Y ) = 0,

u(Y ) = 0, s(Y ) = 0 for all Y 6= X , Y ∈ 2Θ \ {∅}, and

3) s(∅) = 0. Applying formula (8) (or (10)) we obtain

U(m) = 0, which completes the proof of lemma 1.

Lemma 2: U(m) satisfies the desideratum D2.

Proof: Consider two FoD Θ et Θ′ with |Θ| = N and

|Θ′| = N ′ greater than zero, and suppose N < N ′. For

the vacuous BBA mΘ
v defined on the FoD Θ, one has

U(mΘ
v ) = 2N − 2. Similarly, for the vacuous BBA mΘ

′

v de-

fined on the FoD Θ′, one has U(mΘ
′

v ) = 2N
′ − 2. Because

the exponential function is an increasing function, one has

always 2N < 2N
′

, and also 2N − 2 < 2N
′ − 2. Therefore

U(mΘ
v ) < U(mΘ

′

v ) when |Θ| < |Θ′|, which completes the

proof of lemma 2.

Lemma 3: U(m) satisfies the desideratum D3.

Proof: When the BBA m is Bayesian, its focal elements are

only singletons of 2Θ and Bel(X) = Pl(X) for all X ∈ 2Θ.

Hence u(X) = 0 for all X ∈ 2Θ. Thus, in the expression (9)

of s(X) one has always −(1 − u(X))m(X) log(m(X)) =
−m(X) log(m(X)) and u(X)(1−m(X)) = 0(1−m(X)) =
0, so that s(X) = −m(X) log(m(X)). Therefore U(m) =
∑

X∈2Θ
s(X) = −∑

X∈2Θ
m(X) log(m(X)). Because the

masses of all non-singleton elements of 2Θ are zero, we

finally obtain U(m) = −∑

X∈2Θ||X|=1
m(X) log(m(X)) =

−∑

X∈Θ
m(X) log(m(X)), and this is Shannon entropy. This

completes the proof of lemma 3.

Lemma 4: U(m) satisfies the desideratum D4.

Proof: see the appendix.

Theorem: U(m) is an effective measure of uncertainty of a

basic belief assignment.

Proof: Because U(m) satisfies all desiderata D1, D2, D3, and

D4 as proved in lemmas 1–4, the measure of uncertainty U(m)
defined in (8) is effective.

D. Remarks about U(m)

Remark 1: It is worth noting that we do not have specified

a priori what should be the range of an effective MoU in

contrary to some axiomatic attempts made by different authors

as reported, for instance, in [12]. We consider that the choice

of the range must not be chosen a priori. The maximum range

must result of the effective MoU mathematical definition. We

only request the satisfaction of the desideratum D4, which is

much more general, natural and essential.

Remark 2: The choice of the desideratum D3 (compatibility

with Shannon probabilistic entropy) could be disputed be-

cause other entropy definitions and generalizations exist in

the probabilistic framework (as those defined by Rényi [13],

Tsallis [14], etc). We think however that Shannon entropy is

still the most used and preferred one for engineers working

in information fusion. The measure of uncertainty U(m)
presented in this paper could be (hopefully) generalized by

replacing the desideratum D3 by another one using another

choice of generalized entropy definition, which would obvi-

ously necessitate a modification of the definition of U(m).
This theoretical question has not yet been explored, and is left

for future research.

Remark 3: It can be proved9 that U(m) verifies the mono-

tonicity property. More precisely, if mY and mZ are two

distinct BBAs defined on the same FoD Θ and respec-

tively focused on Y and on Z in 2Θ, then one has always

U(mY ) < U(mZ) if |Y | < |Z|. As a special case, one has

U(mY ) < U(mZ) if Y ⊂ Z .

Remark 4: Consider a BBA mΘ defined on a FoD Θ. Its

zero-extension mΘ
′

on a FoD Θ′ including Θ (i.e. Θ ⊆ Θ′)
is defined by mΘ

′

(X) = 0 for all X ∈ 2Θ
′

not included in

2Θ, and mΘ
′

(X) = mΘ(X) for all X ∈ 2Θ. It means that

[Bel(θi), P l(θi)] = [0, 0] for all θi ∈ Θ′\Θ. Under this condi-

tion, one has always U(mΘ) ≤ U(mΘ
′

) because uΘ
′

(X) ≥ 0
if X ∩ Y 6= ∅ for some Y ∈ 2Θ. Hence there exists at least

an extra term sΘ
′

(X) > 0 entering in U(mΘ
′

) calculation

(w.r.t. U(mΘ)) if mΘ 6= mΘ
′

v . Therefore, the extendability

property of Shannon entropy for probability measures must

be extended as U(mΘ) ≤ U(mΘ
′

) for (non-Bayesian) basic

belief assignments. The equality U(mΘ) = U(mΘ
′

) holds

if mΘ is a Bayesian BBA because U(mΘ) coincides with

Shannon entropy in this case.

VI. EXAMPLES

In this section we give several simple numerical examples

of the value of the measure of uncertainty U(m) expressed in

nats. The examples are given in Table I and they correspond

to different BBAs mi (i = 1, 2, . . . , 6), and to the vacuous

BBA mv defined on a FoD Θ. For |Θ| = 2, we have only

one possible union/disjunction θ1 ∪ θ2 in 2Θ which makes

the examples too simple and not very interesting. Because for

|Θ| ≥ 4 we have 24 = 16 elements of 2Θ to list, and due to

paper length restriction we just give here some examples for

|Θ| = 3 with Θ = {θ1, θ2, θ3}.

The numerical values of U(m) have been truncated to their

third decimal. m1 and m2 are Bayesian BBAs, and m2 is the

uniform Bayesian BBA. Hence we have U(m2) = log(|Θ|) =
log(3) ≈ 1.098 which is the maximum of Shannon entropy for

this FoD. The BBAs m3, . . . , m6 and mv are non-Bayesian

9Sketch of proof: prove that U(mY ) = 2|Θ| − 1 − |{X ∈ 2Θ|Y ⊆
X}| − |{X ∈ 2Θ|X ∩Y = ∅}| and U(mZ ) = 2|Θ| − 1− |{X ∈ 2Θ|Z ⊆
X}| − |{X ∈ 2Θ|X ∩ Z = ∅}|, and compare U(mY ) and U(mZ ) when
|Y | < |Z| to complete the proof.
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BBAs, and U(mv) = 23 − 2 = 6 is the maximum value of

the new proposed generalized entropy.

X ∈ 2Θ m1 m2 m3 m4 m5 m6 mv

∅ 0 0 0 0 0 0 0
θ1 0.2 1/3 0.1 0.1 1/7 0 0
θ2 0.3 1/3 0.2 0.2 1/7 0 0

θ1 ∪ θ2 0 0 0.7 0.05 1/7 1 0
θ3 0.5 1/3 0 0.3 1/7 0 0

θ1 ∪ θ3 0 0 0 0.03 1/7 0 0
θ2 ∪ θ3 0 0 0 0.02 1/7 0 0

Θ 0 0 0 0.3 1/7 0 1

U(mi) 1.029 1.098 3.005 3.100 3.435 4 6

Table I
EXAMPLES FOR U(mi), i = 1, 2 . . . , 6 AND U(mv).

It is worth noting that a non-Bayesian BBA m can have an

entropy value U(m) smaller than the maximum of Shannon

entropy, which is normal and not surprising. For instance, if

we consider Θ = {θ1, θ2, θ3} and the BBA m(θ1) = 0.1,

m(θ2) = 0.8 and m(θ1 ∪ θ2) = 0.1, we get U(m) ≈ 0.909
which is smaller than log(|Θ|) = log(3) ≈ 1.098. Therefore,

the condition U(m) < log(|Θ|) does not imply that the BBA

m is necessarily a Bayesian BBA, but if U(m) > log(|Θ|) we

are sure that m is a non-Bayesian BBA. We recall also that

any BBA focused on a singleton has always zero uncertainty

because lemma 1 holds.

Abellán and Moral’s example revisited

We revisit Abellán and Moral’s example [23] with the FoD

Θ = {θ1, θ2, θ3} and the BBAs m(·) and m′(·) defined by
{

m(θ1) = m(θ2) = m(θ3) = 0.2

m(Θ) = 0.4










m′(θ1) = m′(θ2) = m′(θ3) = 0.161

m′(θ2 ∪ θ3) = 0.317

m′(Θ) = 0.2

Abellán and Moral’s intuitively think it is reasonable that m
should represent more uncertainty than m′ as m is completely

symmetrical and m′ points to θ2 ∪ θ3. We disagree with

this intuition because the authors did not take into account

the changes of masses values between m and m′, nor the

imprecisions of all unknown probabilities P (X) generated by

m, and the imprecisions of P ′(X) generated by m′.
If we analyze more carefully these two basic belief assign-

ments we get the belief intervals [Bel(X), P l(X)] based on

m, and the belief intervals [Bel′(X), P l′(X)] based on m′

listed in Table II. Based on the belief interval values listed in

Table II, it is clear that m′ generates in fact globally more

uncertainty (imprecisions on probabilities of elements of the

power set of Θ) than m if we compare u(X) and u′(X) values.

If we apply our new effective MoU definition, we obtain

U(m) = 3.1059 nats, and U(m′) = 3.3384 nats. One sees

that U(m) < U(m′), which well reflects that m′ is actually a

bit more uncertain than m, contrary to what one would expect

based on an incorrect intuition. This simple example is very

interesting because it shows clearly how a simplistic intuition

can easily fail.

X ∈ 2Θ [Bel(X), P l(X)] u(X) [Bel′(X), P l′(X)] u′(X)
∅ [0,0] 0 [0,0] 0
θ1 [0.2,0.6] 0.4 [0.161,0.361] 0.200
θ2 [0.2,0.6] 0.4 [0.161,0.678] 0.517

θ1 ∪ θ2 [0.4,0.8] 0.4 [0.322,0.839] 0.517
θ3 [0.2,0.6] 0.4 [0.161,0.678] 0.517

θ1 ∪ θ3 [0.4,0.8] 0.4 [0.322,0.839] 0.517
θ2 ∪ θ3 [0.4,0.8] 0.4 [0.639,0.839] 0.200

Θ [1,1] 0 [1,1] 0

Table II
BELIEF INTERVALS DRAWN FROM m AND m′ .

Entropic surface for all BBAs m(.) defined on Θ = {θ1, θ2}

The figure 1 shows the entropic surface corresponding to

U(m) when m(θ1) ∈ [0, 1], m(θ2) ∈ [0, 1] such that m(θ1)+
m(θ2) ≤ 1, and with m(θ1 ∪ θ2) = 1−m(θ1)−m(θ2).

Figure 1. Entropy value U(m) for all m(.) defined on Θ = {θ1, θ2}.

One verifies visually that U(m) surface is smooth. Its border

in the vertical plane passing through the points (m(θ1) =
1,m(θ2) = 0) and (m(θ1) = 0,m(θ2) = 1) corresponds to

Shannon entropy curve whose maximum value is log(2) ≈
0.6931, which is what we naturally expect. The unique max-

imum value of U(m) is for the vacuous BBA mv, and it is

U(mv) = 2|Θ| − 2 = 2.

VII. CONCLUSION

In this paper we have presented a new effective measure of

uncertainty for basic belief assignments which is conceptually

better justified than the few existing effective measures defined

so far. This new generalized entropy measure verifies all the

four very natural and essential desiderata, and presents the

main advantages of simplicity, continuity, monotonicity and

it also responds to the change of dimension of the frame of

discernment. It is based on the interwoven link between the

randomness and the imprecision of unknown probabilities of
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all elements of the power set of the frame of discernment

which is inherent to any basic belief assignment.

This new entropy measure makes a clear distinction be-

tween the maximum uncertainty of the vacuous BBA, and the

uncertainties related to all non-vacuous BBAs, in particular

with respect to Bayesian BBAs. Hence, we have answered

positively to the challenging question about the existence

of a better conceptual effective measure of uncertainty for

BBAs. We hope that this new effective entropy measure will

arouse the interest of users of belief functions who need an

effective entropy measure in their own applications. It is worth

mentioning that a dual of this new measure of entropy can be

defined to characterize the information content of any BBA,

as well as the notion of information gain and information

loss between two BBAs. This will be reported in a future

publication.

As a first perspective of this theoretical work, this new

entropy measure could be useful to develop advanced methods

for performance evaluation of information fusion techniques,

and for reasoning under uncertainty using the belief functions.

As a second perspective, this new entropy could also serve to

measure the uncertainty of quantitative possibility measures

in the possibility theory because any quantitative possibility

measure is a special case of a plausibility function which is

one-to-one with a consonant belief mass function (i.e. a BBA

having nested focal elements).
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APPENDIX

Proof of Lemma 4

We first note from the expression (9) of s(X) that we always

have s(X) = u(X) for X ∈ 2Θ and X 6= ∅ if m(X) = 0. We

have also s(X) = 0 for X ∈ 2Θ and X 6= ∅ if m(X) = 1.

For X ∈ 2Θ and X 6= ∅, if 0 < m(X) < 1 one has

s(X) = −(1− u(X))m(X) log(m(X)) + u(X)(1−m(X))

= (1− u(X))m(X) log(
1

m(X)
) + u(X)(1−m(X))

< (1− u(X))m(X)(
1

m(X)
− 1) + u(X)(1−m(X))

This strict inequality comes from the fact that for any real

number x > 0 with x 6= 1, the strict inequality log(x) < x−1
holds10 (see [24], p. 68). Because (1− u(X))m(X)( 1

m(X)
−

1) + u(X)(1 − m(X)) = 1 − m(X), one has finally the

following inequality

s(X) < 1−m(X) (12)

10because the derivative f ′(x) of f(x) = x−1− log(x) is always positive
for x > 0 except for x = 1 where f ′(1) = 0.

To prove that U(m) < U(mv), we consider all the cases for

the distribution of the belief masses in the BBA m 6= mv as

follows:

Case 1: 0 < m(X) < 1 for all X 6= ∅ of 2Θ.

In this (most general) case we have

U(m) =
∑

X∈2Θ|X 6=∅
s(X) <

∑

X∈2Θ|X 6=∅
(1−m(X))

The majorant
∑

X∈2Θ|X 6=∅(1−m(X)) can be written as

∑

X∈2Θ|X 6=∅
1−m(X) =

∑

X∈2Θ|X 6=∅
1−

∑

X∈2Θ|X 6=∅
m(X)

Because one has
∑

X∈2Θ|X 6=∅ 1 = 2N − 1, and
∑

X∈2Θ|X 6=∅ m(X) = 1, the majorant is given by

∑

X∈2Θ|X 6=∅
1−m(X) = 2N − 1− 1 = 2N − 2

This majorant corresponds exactly to U(mv), therefore we

have proved that

U(m) < U(mv) (13)

when 0 < m(X) < 1 for all X 6= ∅ of 2Θ.

Case 2: Consider the particular BBA for which m(X) = 1
for some X 6= ∅ and X 6= Θ in 2Θ.

• If X is a singleton of 2Θ then Bel(X) = Pl(X) = 1
and u(X) = 0. For the elements Y of 2Θ including X
one has Bel(Y ) = Pl(Y ) = 1 and thus u(Y ) = 0.

for the elements Y of 2Θ not including X one always

has Bel(Y ) = Pl(Y ) = 0 and thus u(Y ) = 0. Hence,

m(X) = 1, u(X) = 0, s(X) = 0, and also m(Y ) = 0,

u(Y ) = 0, s(Y ) = 0 for all Y 6= X . Therefore we get

U(m) = 0 which is smaller than U(mv) = 2N − 2, i.e.

U(m) < U(mv) in this case.

• If X is not a singleton of 2Θ and if m(X) = 1 then

Bel(X) = Pl(X) = 1, u(X) = 0 and s(X) = 0.

We have also s(Θ) = 0 because m(Θ) = 0, and we

have u(Θ) = 0 because Bel(Θ) = Pl(Θ) = 1. For all

Y 6= ∅, Y 6= X and Y 6= Θ such that X ∩ Y = ∅,

we always have u(Y ) = 0 because Bel(Y ) = 0 and

Pl(Y ) = 0. For all Y 6= ∅, Y 6= X and Y 6= Θ such

that X ∩ Y 6= ∅, we always have u(Y ) = 1 because

Bel(Y ) = 0 and Pl(Y ) = m(X) = 1 because X
has a non-empty intersection with Y . Consequently, the

expression of U(m) can be reformulated as

U(m) = s(∅) + s(X) + s(Θ)

+
∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X=∅
s(Y )

+
∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X 6=∅
s(Y ) (14)

We have s(∅) + s(X) + s(Θ) = 0 because s(∅) = 0,

s(Θ) = 0 and s(X) = 0 when m(X) = 1. For

Y ∈ 2Θ \ {∅, X,Θ} such that Y ∩ X = ∅, we have
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u(Y ) = 0 and m(Y ) = 0, hence s(Y ) = −(1 −
u(Y ))m(Y ) log(m(Y )) + u(Y )(1 − m(Y )) = (1 −
0)0 log(0) + 0(1− 0) = 0. Consequently

∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X=∅
s(Y ) = 0

For Y ∈ 2Θ \ {∅, X,Θ} such that Y ∩ X 6= ∅,

we have u(Y ) = 1 and m(Y ) = 0, hence s(Y ) =
−(1 − u(Y ))m(Y ) log(m(Y )) + u(Y )(1 − m(Y )) =
(1− 1)0 log(0) + 1(1− 0) = 1. Consequently,

∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X 6=∅
1 < 2N − 2

Therefore, if a BBA is focused on any element X 6= Θ
(singleton, or not), that is if m(X) = 1, we have proved that

the strict inequality U(m) < U(mv) always holds.

Case 3: Some elements of the BBA have at least a zero

mass value, and others have some strictly positive mass values

strictly smaller than 1.

The measure of uncertainty U(m) defined in (10) requires

2N − 1 terms s(X) to calculate in general (i.e. when all

X ∈ 2Θ \ {∅} are focal elements of m). If some elements

X have zero mass value, this measure U(m) can always be

decomposed as

U(m) =
∑

X∈2Θ|(X 6=∅)∧(m(X)=0)

s(X)

+
∑

X∈2Θ|(X 6=∅)∧(0<m(X)<1)

s(X) (15)

Because one has s(X) = u(X) when m(X) = 0, the first

summation of (15) is equal to
∑

X∈2Θ|(X 6=∅)∧(m(X)=0)
u(X).

Because u(X) ≤ 1, and s(X) < 1−m(X) when m(X) < 1,

one has the following strict inequality that holds

U(m) <
∑

X∈2Θ|(X 6=∅)∧(m(X)=0)

1

+
∑

X∈2Θ|(X 6=∅)∧(0<m(X)<1)

(1−m(X))

We can have at most 2N−3 elements of 2Θ\{∅} having a mass

equal to zero because we must have at least (2N −1)− (2N −
3) = 2 elements X1 and X2 of 2Θ for which 0 < m(X1) < 1,

0 < m(X2) < 1 with m(X1) + m(X2) = 1. If we assume

that there are 1 < M ≤ 2N −3 elements of 2Θ \{∅} that have

zero mass value, then there exist K = 2N − 1−M elements

X1, X2, . . . , XK of 2Θ \ {∅} for which 0 < m(Xk) < 1,

k = 1, . . . ,K and with
∑(2

N−1)−M

k=1
m(Xk) = 1. Hence,

U(m) < M +

(2
N−1)−M
∑

k=1

(1−m(Xk))

or equivalently,

U(m) < M + (2N − 1)−M
︸ ︷︷ ︸

2N−1

−
(2

N−1)−M
∑

k=1

m(Xk)

︸ ︷︷ ︸

1

Hence, U(m) < 2N − 2, and consequently we have U(m) <
U(mv) because U(mv) = 2N − 2.

In summary, we have examined all possible cases for the

distribution of the belief masses, and we have proved that we

always have the strict inequality U(m) < U(mv) satisfied.

This completes the proof of the Lemma 4.
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Abstract—In this paper, we present a method to solve ana-
lytically the simplest Entropiece Inversion Problem (EIP). This
theoretical problem consists in finding a method to calculate a
Basic Belief Assignment (BBA) from the knowledge of a given
entropiece vector which quantifies effectively the measure of
uncertainty of a BBA in the framework of the theory of belief
functions. We give an example of the calculation of EIP solution
for a simple EIP case, and we show the difficulty to establish the
explicit general solution of this theoretical problem that involves
transcendental Lambert’s functions.

Keywords: belief functions, entropy, measure of uncertainty.

I. INTRODUCTION

In this paper, we suppose the reader to be familiar with the

theory of Belief Functions (BF) introduced by Shafer in [1],

and we do not present in details the basics of BF. We just recall

that a frame of discernement (FoD) Θ = {θ1, θ2, . . . , θN} is a

finite exhaustive set of N > 1 mutually exclusive elements θi
(i = 1, . . . , N ), and its power set (i.e. the set of all subsets) is

denoted by 2Θ. A FoD represents a set of potential solutions

of a decision-making problem under consideration. A Basic

Belief Assignment (BBA)1 is a mapping m : 2Θ → [0, 1] with

m(∅) = 0, and
∑

X∈2Θ
m(X) = 1.

A new effective entropy measure U(m) for any BBA m(·)
defined on a FoD Θ has been defined as follows [2]:

U(m) =
∑

X∈2Θ

s(X), (1)

where s(X) is named the entropiece of X , which is defined

by

s(X) = −m(X)(1− u(X)) log(m(X))

+ u(X)(1−m(X)), (2)

with

u(X) = Pl(X)−Bel(X)

=
∑

Y ∈2Θ|X∩Y 6=∅
m(Y )−

∑

Y ∈2Θ|Y⊆X

m(Y ). (3)

1For notation convenience, we denote by m or m(·) any BBA defined
implicitly on the FoD Θ, and we also denote it as mΘ to explicitly refer to
the FoD when necessary.

Pl(X) and Bel(X) are respectively the plausibility and the

belief of the element X of the power set of Θ, see [1]

for details. u(X) quantifies the imprecision of the unknown

probability of X . The vacuous BBA characterizing the total

ignorant source of evidence is denoted by mv, and it is such

that mv(Θ) = 1 and mv(X) = 0 for any X ⊂ Θ.

This measure of uncertainty U(m) (i.e. entropy measure)

is effective because it satisfies the following four essential

properties [2]:

1) U(m) = 0 for any BBA m(·) focused on a singleton X
of 2Θ;

2) U(mΘ
v ) < U(mΘ

′

v ) if |Θ| < |Θ′|;
3) U(m) = −∑

X∈Θ
m(X) log(m(X)) if m(·) is a

Bayesian2 BBA. Hence, U(m) reduces to Shannon

entropy [7] in this case;

4) U(m) < U(mv) for any non-vacuous BBA m(·) and for

the vacuous BBA mv(·) defined with respect to the same

FoD.

The proof of the three first properties is quite simple to make,

whereas the proof of U(m) < U(mv) is much more difficult,

see [2] for proofs and examples. A detailed analysis of other

(non-effective) entropy measures proposed in the literature

during the last four decades is done in [3].

The entropiece s(X) given by (2) corresponds to the

contribution of X to the whole uncertainty measure U(m).
The entropiece s(X) involves m(X) and the imprecision

u(X) = Pl(X)−Bel(X) about the unknown probability of

X in a subtle interwoven manner named epistemic entangle-

ment. The cardinality of X is indirectly taken into account

in the derivation of s(X) thanks to u(X) which requires the

derivation of Pl(X) and Bel(X) functions that depend on the

cardinality of X . Because u(X) ∈ [0, 1] and m(X) ∈ [0, 1]
one has s(X) ≥ 0, and U(m) ≥ 0. The quantity U(m) is

expressed in nats because we use the natural logarithm. U(m)
can be expressed in bits by dividing the U(m) value in

nats by log(2) = 0.69314718.... This measure of uncertainty

U(m) is a continuous function in its basic belief mass

arguments because it is a summation of continuous func-

2m is Bayesian BBA if it has only singletons as focal elements, i.e.
m(θi) > 0 for some θi ∈ Θ and m(X) = 0 for all non-singletons X
of 2Θ.

Originally published as: J. Dezert, F. Smarandache, A. Tchamova, Analytical Solution of the Simplest 
Entropiece Inversion Problem, in Proc. of 8th Int. Conf. of Modelling and development of Intelligent 
Systems (MDIS 2022), Sibiu, Romania, October 28–30, 2022, and reprinted with permission.
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tions. In formula (2), we always take m(X) log(m(X)) = 0
when m(X) = 0 because limm(X)→0+ m(X) log(m(X)) = 0
which can be proved using L’Hôpital rule [4]. Note that for

any BBA m, one has always s(∅) = 0 because m(∅) = 0
and u(∅) = Pl(∅) − Bel(∅) = 0 − 0 = 0. For the

vacuous BBA, one has s(Θ) = 0 because mv(Θ) = 1 and

u(Θ) = Pl(Θ)−Bel(Θ) = 1− 1 = 0.

As proved in [2], the entropy of the vacuous BBA on the

FoD Θ is equal to

U(mv) = 2|Θ| − 2. (4)

This maximum entropy value 2|Θ| − 2 makes perfectly sense

because for the vacuous BBA there is no information at

all about the conflicts between the elements of the FoD.

Actually for all X ∈ 2Θ \ {∅,Θ} one has u(X) = 1 be-

cause [Bel(X), P l(X)] = [0, 1], and one has u(∅) = 0 and

u(Θ) = 0. Hence, the sum of all imprecisions of P (X)
for all X ∈ 2Θ is exactly equal to 2|Θ| − 2 which corre-

sponds to U(mv) as expected. Moreover, one has always

U(mv) > log(|Θ|) which means that the vacuous BBA has

always an entropy greater than the maximum of Shannon

entropy log(|Θ|) obtained with the uniform probability mass

function distributed on Θ. As a dual concept of this entropy

measure U(m), we have defined in [8] the measure of infor-

mation content of any BBA by

IC(m) = U(mv)− U(m) = (2|Θ| − 2)−
∑

X∈2Θ

s(X). (5)

From the definition (5), one sees that for m 6= mΘ
v one has

IC(m) > 0 because U(m) < U(mv), and for m = mv one

has IC(mv) = 0 (i.e. the vacuous BBA carries no informa-

tion), which is what we naturally expect.

Note that the information content IC(mΘ) of a BBA

depends not only of the BBA m(·) itself but also on the

cardinality of the frame of discernment Θ because IC(m)
requires the knowledge of |Θ| = N to calculate the max

entropy value U(mv) = 2|Θ| − 2 entering in (5). This remark

is important to understand that even if two BBAs (defined on

different FoDs) focus entirely on a same focal element, their

information contents are necessarily different. This means that

the information content depends on the context of the problem,

i.e. the FoD. The notions of information gain and information

loss between two BBAs are also mathematically defined in [8]

for readers interested in this topic.

This paper is organized as follows. Section 2 defines the

general entropiece inversion problem (EIP). Section 3 de-

scribes the simplest entropiece inversion problem (SEIP). An

analytical solution of SEIP is proposed and it is applied on a

simple example also in Section 3. The conclusion is made in

Section 4.

II. GENERAL ENTROPIECE INVERSION PROBLEM (EIP)

The set {s(X), X ∈ 2Θ} of the entropieces values s(X)
given by (2) can be represented by an entropiece vector

s(m) = [s(X), X ∈ 2Θ]T , where any order of elements X
of the power set 2Θ can be chosen. For simplicity, we

suggest to use the classical N -bits representation if |Θ| = N ,

with the increasing order (see example in Section 3). The

general Entropiece Inversion Problem, or EIP for short, is an

interesting theoretical problem which can be easily stated as

follows:

Suppose that if the entropiece vector s(m) known (estimated

or given), is it possible to calculate a BBA m(·) corresponding

to this entropiece vector s(m)? and how?

Also we would like to know if the derivation of m(·) from

s(m) provides a unique BBA solution, or not?

This general entropiece inversion problem is a challenging

mathematical problem, and we do not know if a general

analytical solution of EIP is possible, or not. We leave it as an

open mathematical question for future research. However, we

present in this paper the analytical solution for the simplest

case where the FoD Θ has only two elements, i.e. when

|Θ| = N = 2. Even in this simplest case, the EIP solution is

no so easy to calculate as it will be shown in the next section.

This is the main contribution of this paper.

The mathematical EIP addressed in this paper is not related

(for now) to any problem for the natural world and it cannot

be confirmed experimentally using data from nature because

the entropy concept is not directly measurable, but only

computable from the estimation of probability p(·) or belief

mass functions m(·). So, why do we address this entropiece

inversion problem? Because in advanced information fusion

systems we can imagine to have potentially access to this

type of information and it makes sense to assess the underlying

BBA provided by a source of evidence to eventually modify it

in some fusion systems for some aims. We could also imagine

to make adjustments of entropieces values to volontarly im-

prove (or degrade) IC(m), and to generate the proper modified

BBA for some tasks. At this early stage of research work it is

difficult to anticipate the practical interests of the calculation

of solutions of the general EIP, but to present its mathematical

interest for now.

III. SIMPLEST ENTROPIECE INVERSION PROBLEM (SEIP)

A. Example

We consider a FoD Θ with only two elements, say

Θ = {A,B}, where A and B are mutually exclusive and

exhaustive, and the following BBA

m(A) = 0.5, m(B) = 0.3, m(A ∪B) = 0.2.

Because [Bel(∅), P l(∅)] = [0, 1] one has u(∅) = 0. Because

[Bel(A), P l(A)] = [0.5, 0.7], [Bel(B), P l(B)] = [0.3, 0.5],
[Bel(Θ), P l(Θ)] = [1, 1], one has u(A) = 0.2, u(B) = 0.2,

and u(Θ) = 0. Applying (2), one gets s(∅) = 0, s(A) ≈
0.377258, s(B) ≈ 0.428953 and s(Θ) ≈ 0.321887. Using

the 2-bits representation with increasing ordering3, we encode

3Once the binary values are converted into their digit value with the most
significant bit on the left (i.e the least significant bit on the right).
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the elements of the power set as ∅ = 00, A = 01, B = 10
and A ∪B = 11. The entropiece vector is

s(mΘ) =









s(∅)
s(A)
s(B)

s(A ∪B)









≈









0
0.3773
0.4290
0.3219









. (6)

If we use the classical 2-bits (here |Θ| = 2) representation

with increasing ordering (as we recommand) the first compo-

nent of entropiece vector s(m) will be s(∅) which is always

equal to zero for any BBA m, hence the first component of

s(m) is always zero and it can be dropped (i.e. removed

of the vector representation actually). By summing all the

components of the entropiece vector s(m) we obtain the

entropy U(m) ≈ 1.128098 nats of the BBA m(·). Note that

the components s(X) (for X 6= ∅) of the entropieces vector

s(m) are not independent because they are linked to each other

through the calculation of Bel(X) and Pl(X) values entering

in u(X).

B. Analytical solution of SEIP

Because we suppose Θ = {A,B}, the expression of three

last components4 of the entropiece vector s(m) are given by

(2), and we have

s(A) = −m(A)(1 − u(A)) log(m(A))

+ u(A)(1 −m(A)),

s(B) = −m(B)(1 − u(B)) log(m(B))

+ u(B)(1−m(B)),

s(A ∪B) = −m(A ∪B)(1 − u(A ∪B)) log(m(A ∪B))

+ +u(A ∪B)(1 −m(A ∪B)).

Because u(A) = Pl(A)−Bel(A) = (m(A) +m(A ∪B)) −
m(A) = m(A ∪ B), u(B) = Pl(B) − Bel(B) = (m(B) +
m(A ∪ B)) −m(B) = m(A ∪ B) and u(A ∪ B) = Pl(A ∪
B)−Bel(A∪B) = 1− 1 = 0, one gets the following system

of equations to solve

s(A) = −m(A)(1 −m(A ∪B)) log(m(A))

+m(A ∪B)(1−m(A)), (7)

s(B) = −m(B)(1−m(A ∪B)) log(m(B))

+m(A ∪B)(1−m(B)), (8)

s(A ∪B) = −m(A ∪B) log(m(A ∪B)). (9)

The set of equations (7), (8) and (9) is called the EIP

transcendental equation system for the case |Θ| = 2.

The plot of function s(A ∪B) = −m(A ∪B) log(m(A ∪B))
is given in Figure 1 for convenience. By derivating the function

−m(A ∪ B) log(m(A ∪ B)) we see that its maximum value

is obtained for m(A ∪B) = 1/e ≈ 0.3679 for which

s(A ∪B) = −1

e
log(1/e) =

1

e
log(e) =

1

e
.

Therefore, the numerical value of s(A∪B) always belongs to

the interval [0, 1/e].

4We always omit the 1st component s(∅) of entropiece vector s(m) which
is always equal to zero and not necessary in our analysis.

Figure 1. Plot of s(A ∪B) = −m(A ∪ B) log(m(A ∪ B)) (in red) with
x-axis equals m(A ∪ B) ∈ [0, 1], and y-axis equals s(A ∪ B) in nats.

Without loss of generality, we assume 0 < s(A∪B) ≤ 1/e
because if s(A ∪ B) = 0 then one deduces directly without

ambiguity that either m(A ∪ B) = 1 (which means that the

BBA m(·) is the vacuous BBA) if s(A) = s(B) = 1, or

m(A∪B) = 0 otherwise. With the assumption 0 < s(A∪B) ≤
1/e, the equation (9) is of the general transcendental form

yey = a ⇔ log(m(A ∪B))m(A ∪B) = −s(A ∪B). (10)

by considering the known value as a = −s(A∪B) in [− 1

e
, 0),

and the unknown as y = log(m(A ∪B)).

Unfortunately the solution of the transcendental equation

(10) does not have an explicit expression involving simple

functions. Actually, the solution of this equation is actually

given by the Lambert’s W -function which is a multivalued

function (called also the omega function or product logarithm

in mathematics) [6]. It can however be calculated5 with a good

precision by some numerical methods - see [5] for details.

The equation yey = a admits real solution(s) only if a ≥
− 1

e
. For a ≥ 0, the solution of yey = a is y = W0(a),

and for − 1

e
≤ a < 0 there are two possible real values of

W (a) - see Figure 1 of [5] which are denoted respectively

y1 = W0(a) and y2 = W−1(a). The principal branch of the

Lambert’s function W (x) satisfying −1 ≤ W (x) is denoted

W0(x), and the branch satisfying W (x) ≤ −1 is denoted by

W−1(x) by Corless et al. in [5]. In our context because we

have a ∈ [− 1

e
, 0), the solutions of yey = a are given by

y1 = W0(a) = W0(−s(A ∪B)),

y2 = W−1(a) = W−1(−s(A ∪B)).

Hence we get two possible solutions for the value of m(A∪
B), which are

m1(A ∪B) = ey1 = eW0(−s(A∪B)), (11)

m2(A ∪B) = ey2 = eW−1(−s(A∪B)). (12)

Of course, at least one of these solutions is necessarily

correct but we do not know which one. So, at this current

5Lambert’s W -function is implemented in MatlabTM as lambertw function.
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stage, we must consider6 and the two solutions m1(A ∪ B)
and m1(A ∪ B) for m(A ∪ B) as acceptable, and we must

continue to solve equations (7) and (8) to determine the mass

values m(A) and m(B).

Let’s now determine m(A) at first by solving (7). Suppose

we set the value of m(A ∪ B) is known and taken either as

m1(A ∪ B), or as m2(A ∪ B), then we can rearrange the

equation (7) as

−s(A)−m(A ∪B)

1−m(A ∪B)
= m(A)[log(m(A)) +

m(A ∪B)

1−m(A ∪B)
],

which can be rewritten as the general equation of the form

(y + a)ey = b, (13)

by taking

y = log(m(A)), (14)

a =
m(A ∪B)

1−m(A ∪B)
, (15)

b = −s(A)−m(A ∪B)

1−m(A ∪B)
. (16)

The solution of (13) are given by [5]

y = W (bea)− a. (17)

Once y is calculated by formula (17) and since y = log(m(A))
we obtain the solution for m(A) given by

m(A) = ey = eW (bea)−a. (18)

Similarly, the solution for m(B) will be given by

m(B) = ey = eW (bea)−a, (19)

by solving the equation (y + a)ey = b with

y = log(m(B)), (20)

a =
m(A ∪B)

1−m(A ∪B)
, (21)

b = −s(B)−m(A ∪B)

1−m(A ∪B)
. (22)

We must however check if there is one solution only m(A) =
eW0(be

a
)−a, or in fact two solutions m1(A) = eW0(be

a
)−a

and m2(A) = eW−1(be
a
)−a, and similarly for the solution for

m(B). This depends on the parameters a and b with respect

to [−1/e, 0) interval and [0,∞).

We illustrate in the next subsection how to calculate the

SEIP solution from these analytical formulas for the previous

exemple.

6If the two masses values are admissible, that is if m1(A ∪ B) ∈ [0, 1]
and if m2(A∪B) ∈ [0, 1]. If one of them is non-admissible it is eliminated.

C. SEIP solution of the previous example

We recall that we have for this example s(∅) = 0,

s(A) ≈ 0.3773, s(B) ≈ 0.4290 and s(Θ) ≈ 0.3219.

If we apply formulas (11)-(12) for this example, we have

a = −s(A ∪B) = −0.3219 and therefore

y1 = W0(−0.3219) = −0.5681,

y2 = W−1(−0.3219) = −1.6094.

Hence the two potential solutions for the mass m(A∪B) are

m1(A ∪B) = ey1 ≈ 0.5666,

m2(A ∪B) = ey2 = 0.2000.

It can be easily verified that

−m1(A ∪B) log(m1(A ∪B)) = 0.3219 = s(A ∪B),

−m2(A ∪B) log(m2(A ∪B)) = 0.3219 = s(A ∪B).

We see that the second potential solution m2(A ∪ B) =
0.2000 is the solution that corresponds to the original mass of

A ∪B of the BBA m(A ∪B) of our example.

Now, we examine what would be the values of m(A) and

m(B) given respectively by (18) and (19) by taking either

m(A ∪B) = m1(A ∪B) = 0.5666 or m(A ∪B) = m2(A ∪
B) = 0.20.

• Let’s examine the 1st possibility with the potential solu-

tion

m(A ∪B) = m1(A ∪B) = 0.5666.

For determining m(A), we have to solve (y + a)ey = b
with the unknown y = log(m(A)) and with

a =
m(A ∪B)

1−m(A ∪B)
≈ 0.5666

1− 0.5666
= 1.3073,

b = −s(A)−m(A ∪B)

1−m(A ∪B)
≈ −0.3773− 0.5666

1− 0.5666
= 0.4369.

Hence, bea = 0.4368 · e1.3073 ≈ 1.6148.

Applying formula (18), one gets7

m1(A) = eW0(be
a
)−a = 0.5769,

m2(A) = eW−1(be
a
)−a = −0.0216+ 0.0924i.

For determining m(B) we have to solve (y + a)ey = b
with the unknown y = log(m(B)) and with

a =
m(A ∪B)

1−m(A ∪B)
≈ 0.5666

1− 0.5666
= 1.3073,

b = −s(B)−m(A ∪B)

1−m(A ∪B)
≈ −0.4290− 0.5666

1− 0.5666
= 0.3176.

Hence, bea = 0.3176 · e1.3073 ≈ 1.1739.

Applying formula (19), one gets

m1(B) = eW0(be
a
)−a = 0.5065,

m2(B) = eW−1(be
a
)−a = −0.0204 + 0.0657i.

7Using lambertw MatlabTM function.
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One sees that there is no effective choice for the values

of m(A) and m(B) if we suppose m(A∪B) = m1(A∪
B) = 0.5666 because if one takes as real values solutions

m(A) = m1(A) = 0.5769 and m(B) = m1(B) =
0.5065 one would get

m(A) +m(B) +m(A ∪B) = 0.5769 + 0.5065 + 0.5666

= 1.65,

which is obviously greater than one. This generates an

improper BBA.

• Let’s consider the 2nd possibility with the potential

solution

m(A ∪B) = m2(A ∪B) = 0.20.

For determining m(A), we have to solve (y + a)ey = b
with the unknown y = log(m(A)) and with

a =
m(A ∪B)

1−m(A ∪B)
=

0.20

1− 0.20
= 0.25,

b = −s(A)−m(A ∪B)

1−m(A ∪B)
≈ −0.3773− 0.20

1− 0.20
= −0.2216.

Hence, bea = −0.2216 · e0.25 ≈ −0.2845.

m1(A) = eW0(be
a
)−a = 0.5000,

m2(A) = eW−1(be
a
)−a = 0.1168.

For determining m(B) we have to solve (y + a)ey = b
with the unknown y = log(m(B)) and with

a =
m(A ∪B)

1−m(A ∪B)
≈ 0.20

1− 0.20
= 0.25,

b = −s(B)−m(A ∪B)

1−m(A ∪B)
≈ −0.4290− 0.20

1− 0.20
= −0.2862.

Hence, bea = −0.2862 · e0.25 ≈ −0.3675.

Applying formula (19), one gets

m1(B) = eW0(be
a
)−a = 0.3000,

m2(B) = eW−1(be
a
)−a = 0.2732.

Based on this 2nd possibility for potential solution

m(A ∪ B) = 0.20, one sees that the only possible

effective choice of mass values m(A) and m(B) is to take

m(A) = m1(A) = 0.50 and m(B) = m1(B) = 0.30
which gives the proper sought BBA such that m(A) +
m(B)+m(A∪B) = 1 which exactly corresponds to the

orignal BBA that has been used to generate the entropiece

vector s(m) for this example.

In summary, for the case |Θ| = 2 it is always possible to

calculate the BBA m(·) from the knowledge of the entropiece

vector, and the solution of SEIP is obtained by analytical

formulas.

D. Remark

In the very particular case where s(A∪B) = 0 the equation

(9) reduces to

−m(A ∪B) log(m(A ∪B)) = 0, (23)

which has two possible solutions m(A∪B) = m1(A∪B) = 1,

and m(A ∪B) = m2(A ∪B) = 0.

If m(A ∪ B) = 1, then it means that necessarily the

BBA is the vacuous BBA, and so m(A) = m(B) = 0,

u(A) = Pl(A)−Bel(A) = 1, u(B) = Pl(B)−Bel(B) = 1.

Therefore8

s(A) = −m(A)(1 − u(A)) log(m(A)) + u(A)(1 −m(A))

= −m(A)(1 −m(A ∪B)) log(m(A))

+m(A ∪B)(1−m(A))

= 0(1− 1) log(0) + 1(1− 0) = 1,

s(B) = −m(B)(1− u(B)) log(m(B)) + u(B)(1−m(B))

= −m(B)(1−m(A ∪B)) log(m(B))

+m(A ∪B)(1−m(B))

= 0(1− 1) log(0) + 1(1− 0) = 1.

So the choice of m(A ∪ B) = m1(A ∪ B) = 1 is the only

possible if the entropiece vector is s(m) = [110]T .

If s(A) < 1, or if s(B) < 1 (or both) then we must choose

m(A ∪ B) = m2(A ∪ B) = 0, and in this case we have to

solve the equations

s(A) = −m(A)(1 − u(A)) log(m(A)) + u(A)(1 −m(A))

= −m(A)(1 −m(A ∪B)) log(m(A))

+m(A ∪B)(1−m(A))

= −m(A) log(m(A)),

s(B) = −m(B)(1− u(B)) log(m(B)) + u(B)(1−m(B))

= −m(B)(1−m(A ∪B)) log(m(B))

+m(A ∪B)(1−m(B))

= −m(B) log(m(B)).

The possible solutions of equation s(A) =
−m(A) log(m(A)) are given by

m1(A) = eW0(−s(A)), (24)

m2(A) = eW−1(−s(A)), (25)

and the possible solutions of equation s(B) =
−m(B) log(m(B)) are given by

m1(B) = eW0(−s(B)), (26)

m2(B) = eW−1(−s(B)). (27)

8We use the formal notation log(0) even if log(0) is −∞ because in our
derivations we have always a 0 log(0) product which is equal to zero due to
L’Hôpital’s rule [4].
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In this particular case where s(A ∪ B) = 0, and s(A) < 1
or s(B) < 1, we have to select the pair of possible solutions

among the four possible choices

(m(A),m(B)) = (m1(A),m1(B)),

(m(A),m(B)) = (m1(A),m2(B)),

(m(A),m(B)) = (m2(A),m1(B)),

(m(A),m(B)) = (m2(A),m2(B)).

The judicious choice of pair (m(A),m(B)) must satisfy the

proper BBA constraint m(A)+m(B)+m(A∪B) = 1, where

m(A ∪B) = 0 because s(A ∪B) = 0 in this particular case.

For instance, if we consider Θ = {A,B} and the following

(Bayesian) BBA

m(A) = 0.6,m(B) = 0.4,m(A ∪B) = 0.

The entropiece vector s(m) is

s(m) =





s(A)
s(B)

s(A ∪B)



 ≈





0.3065
0.3665

0



 . (28)

Hence from s(m) we can deduce m(A ∪B) = 0 because we

cannot consider m(A ∪ B) = 1 as a valid solution because

s(A) < 1 and s(B) < 1. The possible solutions of equation

s(A) = −m(A) log(m(A)) are

m1(A) = eW0(−s(A)) = eW0(−0.3065) = 0.6000,

m2(A) = eW−1(−s(A)) = eW−1(−0.3065) = 0.1770,

and the possible solutions of the equation

s(B) = −m(B) log(m(B)) are

m1(B) = eW0(−s(B)) = eW0(−0.3665) = 0.4000,

m2(B) = eW−1(−s(B)) = eW−1(−0.3665) = 0.3367.

One sees that the only effective (or judicious) choice for

m(A) and m(B) is to take m(A) = m1(A) = 0.60 and

m(B) = m1(B) = 0.40, which coincides with the original

Bayesian BBA that has been used to generate the entropiece

vector s(m) = [0.3065, 0.3665, 0]T .

IV. CONCLUSION

In this paper we have introduced for the first time the en-

tropiece inversion problem (EIP) which consists in calculating

a basic belief assignment from the knowledge of a given

entropiece vector which quantifies effectively the measure

of uncertainty of a BBA in the framework of the theory

of belief functions. The general analytical solution of this

mathematical problem is a very challenging open problem

because it involves transcendental equations. We have shown

however how it is possible to obtain an analytical solution for

the simplest EIP involving only two elements in the frame of

discernment. Even in this simplest case the analytical solution

of EIP is not easy to obtain because it requires a calculation

of values of the transcendental Lambert’s functions. Even if

no general analytical formulas are found for the solution of

general EIP, it would be interesting to develop numerical

methods to approximate the general EIP solution, and to

exploit it in future advanced information fusion systems.
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Abstract—In this paper, we present a measure of Information
Content (IC) of Basic Belief Assignments (BBAs), and we show
how it can be easily calculated. This new IC measure is inter-
preted as the dual of the effective measure of uncertainty (i.e.
generalized entropy) of BBAs developed recently.

Keywords: belief functions, information content, generalized
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I. INTRODUCTION

Information quality (IQ) evaluation is of major importance

for information processing and for helping the decision-

making under uncertainty. In [1], the authors introduced the

Accessibility, Interpretability, Relevance, and Integrity con-

cepts as main attributes to describe the information quality in

the context of assurance and belief networks, but unfortunately

they present only general concepts without explicit formulas to

evaluate quantitatively these attributes. In several recent books

devoted to IQ [2]–[5], the authors proposed different models

and methods of IQ evaluations. Recently in [6], Bouhamed et

al. proposed a quantitative IQ evaluation using the possibility

theory framework, which could be extended to the belief

functions theory framework with further investigations. In

this latter work, the information quantity component being

necessary for the IQ evaluation is based on Gini’s entropy

rather than classical Shannon entropy. From the examination of

these aforementioned references (and some references therein),

it is far from obvious to make a clear justified choice among

all these methods, especially when we model the uncertain

information by belief functions (BF). What is clear however

is that several distinct factors (or components) must be taken

into account in the IQ evaluation mechanism. In this paper we

focus on one of these components which is the Information

Content (IC) component that we consider as the very (if not the

most) essential component for IQ evaluation and indispensable

for developing an effective IQ evaluation method in future

research works.

It is worth noting that we do not address directly the

whole IQ evaluation problem in this work but to provide a

mathematical solution for measuring the IC of any Basic Belief

Assignments (BBA) in the belief functions (BF) framework.

Our new IC measure is interpreted as the dual of an effective

Measure of Uncertainty (MoU) developed recently [7]. We

show how to calculate the IC of a BBA, and we also discuss

the notion of information gain and information loss in the

BF context. In our opinion, we cannot define a measure of

Information Content independently of a Measure of Uncer-

tainty (MoU) because they must be strongly related to each

other. Actually these measures are two different sides of a

same abstract coin we would say. On one side (the uncertainty

side), more uncertainty content we have harder is the decision

or choice to make, and on the other side (the information side)

more information content we have easier and stronger is the

decision or choice to make. This very simple and natural basic

principle will be clarified mathematically next. So, the measure

of information content of a BBA must reflect somehow the

easiness and strength in the choice of an element of the frame

of discernment drawn from the BBA (i.e. in the decision-

making). This paper is organized as follows. After a brief

recall of basics of belief functions in section II, we recall the

effective MoU adopted in this work in section III. Section IV

defines the measure of information content of a BBA and the

information granules vector. Section V introduces the notions

of information gain and information loss. Conclusions and

perspectives appear in the last section.

II. BELIEF FUNCTIONS

The belief functions (BF) were introduced by Shafer [8] for

modeling epistemic uncertainty, reasoning about uncertainty

and combining distinct sources of evidence. The answer of

the problem under concern is assumed to belong to a known

finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN}
where all elements (i.e. members) of Θ are exhaustive and mu-

tually exclusive. The set of all subsets of Θ (including empty

set ∅, and Θ) is the power-set of Θ denoted by 2Θ. The number

of elements (i.e. the cardinality) of the power-set is 2|Θ|. A

(normalized) basic belief assignment (BBA) associated with a

given source of evidence is a mapping mΘ(·) : 2Θ → [0, 1]
such that mΘ(∅) = 0 and

∑

X∈2Θ
mΘ(X) = 1. A BBA mΘ(·)

characterizes a source of evidence related with a FoD Θ. For

notation shorthand, we can omit the superscript Θ in mΘ(·)

Originally published as: J. Dezert, A. Tchamova, D. Han, Measure of Information Content of Basic Belief 
Assignments, in Proc. of Belief 2022 Int. Conf., Paris, France, Oct. 26–28, 2022, and reprinted with 
permission.
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notation if there is no ambiguity on the FoD we work with1.

The quantity m(X) is called the mass of belief for X . The

element X ∈ 2Θ is called a focal element (FE) of m(·) if

m(X) > 0. The set of all focal elements of m(·) is denoted2

by FΘ(m) , {X ∈ 2Θ|m(X) > 0}.

The belief and the plausibility of X are defined for any

X ∈ 2Θ by [8]

Bel(X) =
∑

Y ∈2Θ|Y⊆X

m(Y ), (1)

Pl(X) =
∑

Y ∈2Θ|X∩Y 6=∅
m(Y ) = 1− Bel(X̄), (2)

where X̄ , Θ \ {X} is the complement of X in Θ.

One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [8]. For

X = ∅, Bel(∅) = 0 and Pl(∅) = 0, and for X = Θ one

has Bel(Θ) = 1 and Pl(Θ) = 1. Bel(X) and Pl(X) are

often interpreted as the lower and upper bounds of unknown

probability P (X) of X , that is Bel(X) ≤ P (X) ≤ Pl(X).
To quantify the uncertainty (i.e. the imprecision) of

P (X) ∈ [Bel(X), P l(X)], we use the notation u(X) ∈ [0, 1]
defined by

u(X) , Pl(X)−Bel(X). (3)

The quantity u(X) = 0 if Bel(X) = Pl(X) which means that

P (X) is known precisely, and one has P (X) = Bel(X) =
Pl(X). One has u(∅) = 0 because Bel(∅) = Pl(∅) = 0,

and one has u(Θ) = 0 because Bel(Θ) = Pl(Θ) = 1. If

all focal elements of m(·) are singletons of 2Θ the

BBA m(·) is a Bayesian BBA because ∀X ∈ 2Θ one has

Bel(X) = Pl(X) = P (X) and u(X) = 0. Hence the belief

and plausibility of X coincide with a probability measure

P (X) defined on the FoD Θ. The vacuous BBA characterizing

a totally ignorant source of evidence is defined by mv(X) = 1
for X = Θ, and mv(X) = 0 for all X ∈ 2Θ different from

Θ. This particular BBA has played a major role in the

establishment of a new effective measure of uncertainty of

BBA defined in [7].

III. GENERALIZED ENTROPY OF A BBA

In [9] we did analyze in details forty-eight measures of

uncertainty (MoU) of BBAs by covering 40 years of research

works on this topic. Some of these MoUs capture only a par-

ticular aspect of the uncertainty inherent to a BBA (typically,

the non-specificity and the conflict). Other MoUs propose a

total uncertainty measure to capture jointly several aspects of

the uncertainty. Unfortunately, most of these MoUs fail to

satisfy four very simple reasonable and essential desiderata,

and so they cannot be considered as really effective and

useful. Actually only six MoUs can be considered as effective

from the mathematical sense presented next, but unfortunately

they appear as conceptually defective and disputable, see

discussions in [9]. That is why, a better effective measure of

uncertainty (MoU), i.e. generalized entropy of BBAs has been

1However, we will keep mΘ(·) notation when very necessary.
2, means equal by definition.

developed and presented in [7]. The mathematical definition

of this new effective entropy is given by

U(m) =
∑

X∈2Θ

s(X), (4)

with

s(X) , −m(X)(1− u(X)) log(m(X))

+ u(X)(1−m(X)). (5)

In (5), the term −(1− u(X)) log(m(X)) is equal to

(1− u(X)) log(1/m(X)), and log(1/m(X)) is called the

surprisal3 of X . Therefore (1 − u(X)) log(1/m(X)) repre-

sents the discounted surprisal of X by the confidence factor

(1−u(X)) one has on the precision of the probability P (X).
The term u(X)(1−m(X)) entering in (5) corresponds to the

imprecision u(X) about P (X) discounted by (1−m(X)).
The main idea is the greater m(X) the less one should

take into account the imprecision u(X) in the MoU. The

quantity s(X) is the uncertainty contribution related to element

X (named the entropiece of X) in the MoU U(m). This

entropiece s(X) involves m(X) and the imprecision u(X) =
Pl(X) − Bel(X) about the unknown probability of X in a

subtle interwoven manner. The cardinality of X is indirectly

taken into account in the derivation of s(X) thanks to u(X)
which requires the derivation of Pl(X) and Bel(X) functions

depending on the cardinality of X . Because u(X) ∈ [0, 1]
and m(X) ∈ [0, 1] one has s(X) ≥ 0, and U(m) ≥ 0. The

quantity U(m) is expressed in nats because we use the natural

logarithm. U(m) can be expressed in bits by dividing the

U(m) value in nats by log(2) = 0.69314718.... This measure

of uncertainty U(m) is a continuous function in its basic belief

mass arguments because it is a summation of continuous func-

tions. In formula (5), we always take m(X) log(m(X)) = 0
when m(X) = 0 because limm(X)→0+ m(X) log(m(X)) =
0 which can be proved using L’Hôpital rule [11]. Note

that for any BBA m, one has always s(∅) = 0 because

m(∅) = 0 and u(∅) = Pl(∅)−Bel(∅) = 0− 0 = 0. For the

vacuous BBA, one has s(Θ) = 0 because mv(Θ) = 1 and

u(Θ) = Pl(Θ)−Bel(Θ) = 1− 1 = 0.

The set {s(X), X ∈ 2Θ} of the entropieces values s(X) can

be represented by an entropiece vector s(mΘ) = [s(X), X ∈
2Θ]T , where any order of elements X of the power set 2Θ

can be chosen. For simplicity, we suggest to use the classical

N -bits representation (if |Θ| = N ) with the increasing order

- see the next example.

This measure of uncertainty U(m) is effective because it

can be proved (see proofs in [7]) that it satisfies the following

four essential properties:

1) U(m) = 0 for any BBA m(·) focused on a singleton X
of 2Θ;

2) U(mΘ
v ) < U(mΘ

′

v ) if |Θ| < |Θ′|;

3This terminology is not used by Shannon in his original paper but it has
been introduced by Tribus in [10] in the probabilistic context, and by analogy
we adopt Tribus’ terminology also for BBAs.
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3) U(m) = −∑

X∈Θ
m(X) log(m(X)) if the BBA m(·)

is a Bayesian BBA. Hence, U(m) reduces to Shannon

entropy [12] in this case;

4) U(m) < U(mv) for any non-vacuous BBA m(·) and

for the vacuous BBA mv(·) defined with respect to the

same FoD.

The proof of the three first properties is quite simple to make.

The proof of the last property is much more difficult. As

explained in [7], we do not consider that the sub-additivity

property [13] of U(m) is a fundamental desideratum that

an effective MoU must satisfy in general. In fact the sub-

additivity desideratum is incompatible with the fourth impor-

tant property U(m) < U(mv) above which stipulates that

none non-vacuous BBA can be more uncertain (i.e. more

ignorant about the problem under consideration) than the

vacuous BBA. Actually, it does not make sense to have the

entropy U(mΘ×Θ
′

v ) of the vacuous joint BBA mΘ×Θ
′

v defined

on the cartesian product space Θ×Θ′ smaller than (or equal

to) the sum U(mΘ
v )+U(mΘ

′

v ) of entropies of vacuous BBAs

mΘ
v and mΘ

′

v defined respectively on Θ and Θ′. There is

no theoretical justification, nor intuitive reason for this sub-

additivity desideratum in the context of non-Bayesian BBAs.

Of course for Bayesian BBAs, U(m) is equivalent to Shannon

entropy which is in this case sub-additive.

It can be also proved, see [7] for details, that the entropy

of the vacuous BBA mv related to a FoD Θ is equal to

U(mΘ
v ) = 2|Θ| − 2. (6)

This maximum entropy value U(mv) makes perfect sense

because for this very particular BBA there is no information

at all about the conflicts between the elements of the FoD.

Actually for all X ∈ 2Θ \ {∅,Θ} one has u(X) = 1 because

[Bel(X), P l(X)] = [0, 1], and one has u(∅) = 0 and u(Θ) =
0. Hence, the sum of all imprecisions of P (X) for all X ∈ 2Θ

is exactly equal to 2|Θ| − 2 which corresponds to U(mΘ
v ) as

expected. Moreover, one has always U(mΘ
v ) > log(|Θ|) which

means that the vacuous BBA has always an entropy greater

than the maximum of Shannon entropy log(|Θ|) obtained with

the uniform probability mass function distributed on Θ.

Example 1 of entropy calculation: consider Θ = {θ1, θ2}
and the BBA mΘ(θ1) = 0.5, mΘ(θ2) = 0.3 and mΘ(θ1 ∪
θ2) = 0.2, then one has [Bel(∅), P l(∅)] = [0, 1] and u(∅) = 0,

[Bel(θ1), P l(θ1)] = [0.5, 0.7], [Bel(θ2), P l(θ2)] = [0.3, 0.5],
and [Bel(Θ), P l(Θ)] = [1, 1]. Hence, u(θ1) = 0.2, u(θ2) =
0.2 and u(Θ) = 0. Applying (5), one gets s(∅) = 0, s(θ1) ≈
0.377258, s(θ2) ≈ 0.428953 and s(Θ) ≈ 0.321887. Using the

2-bits representation with increasing ordering4, we encode the

elements of the power set as ∅ = 00, θ1 = 01, θ2 = 10 and

θ1 ∪ θ2 = 11. The entropiece vector for this simple example

is

s(mΘ) =









s(∅)
s(θ1)
s(θ2)

s(θ1 ∪ θ2)









≈









0
0.377258
0.428953
0.321887









. (7)

4Once the binary values are converted into their digit value with the most
significant bit on the left (i.e the least significant bit on the right).

If we use the classical N-bits (here N = 2) representa-

tion with increasing ordering (as we recommend) the first

component of entropiece vector s(mΘ) will be s(∅) which

is always equal to zero for any BBA m, hence the first

component of s(mΘ) is always zero. By summing all the

components of the entropiece vector s(mΘ) we obtain the

entropy U(mΘ) ≈ 1.128098 nats of the BBA mΘ(·). Note

that the components s(X) (for X 6= ∅) of the entropieces

vector s(mΘ) are not independent because they are linked

to each other through the calculation of Bel(X) and Pl(X)
values entering in u(X).

Example 2 of entropy calculation: for the vacuous BBA mΘ
v ,

and when using the binary increasing encoding of elements of

2Θ, the first component s(∅) and the last component s(Θ) of

entropiece vector s(mΘ
v ) will always be equal to zero, and all

other components of s(mΘ
v ) will be equal to one. For instance,

if we consider Θ = {θ1, θ2} and the vacuous BBA mΘ
v (θ1) =

0, mΘ
v (θ2) = 0 and mΘ

v (θ1 ∪ θ2) = 1, the corresponding

entropiece vector s(mΘ
v ) is

s(mΘ
v ) =









s(∅)
s(θ1)
s(θ2)

s(θ1 ∪ θ2)









=









0
1
1
0









. (8)

By summing all the components of the entropiece vector

s(mΘ
v ) we obtain the entropy value U(mΘ

v ) = 2 nats for this

vacuous BBA mΘ
v (·), which is of course in agreement with

the formula (6).

IV. INFORMATION CONTENT OF A BBA

We consider a (non-empty) FoD of cardinality |Θ| = N ,

and we model our state of knowledge about the problem

under consideration by a BBA defined on 2Θ. Without more

knowledge than the FoD itself (and its cardinality N ), we

are totally ignorant about the solution of the problem we

want to solve, and of course we have no clue for making a

decision/choice among the elements of the FoD. The BBA

reflecting this total ignorant situation is the vacuous BBA

mv(·), whose maximal entropy is U(mv) = 2N − 2. In such

case, we naturally expect that the information content we have5

is zero when the uncertainty measure is maximal. In the very

opposite case, it is very natural to consider that the information

content of a BBA is maximal if the entropy value (the MoU

value) of a BBA m(·) is zero, meaning that we make a

choice of one element of the FoD without hesitation. Based on

these very simple ideas, we propose to define the information

content of any BBA m(·) as the dual of the effective measure

of uncertainty, more precisely by

IC(mΘ) , U(mΘ
v )− U(mΘ)

= (2|Θ| − 2)−
∑

X∈2Θ

s(X), (9)

5aside of the value of N of course.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

819



where s(X) is the entropiece of the element X ∈ 2Θ given

by (5), that is

s(X) , −(1− u(X))mΘ(X) log(mΘ(X))

+ u(X)(1−mΘ(X)),

and where u(X) is the level of imprecision of the probability

P (X) given by

u(X) = PlΘ(X)−BelΘ(X)

=
∑

Y ∈2Θ|X∩Y 6=∅
mΘ(Y )−

∑

Y ∈2Θ|Y⊆X

mΘ(Y ) (10)

From the definition (9), one sees that for mΘ 6= mΘ
v one has

IC(mΘ) > 0 because U(mΘ) < U(mΘ
v ), and for mΘ = mΘ

v

one has IC(mΘ
v ) = 0, which is what we naturally expect.

It is worth mentioning that the information content IC(mΘ)
of a BBA depends not only of the BBA m(.) itself but also

on the cardinality of the frame of discernment6 Θ because

IC(mΘ) requires the knowledge of |Θ| to calculate the max

entropy value U(mΘ
v ) = 2|Θ|− 2 entering in (9). This remark

is very important to understand that even if two BBAs (defined

on different FoDs) focus entirely on a same focal element, their

information contents are necessarily different. For instance, if

we consider the Bayesian BBA with mΘ(θ1) = 1 defined on

the FoD Θ = {θ1, θ2}, then

IC(mΘ) = U(mΘ
v )− U(mΘ) = (2|Θ| − 2)− 0 = 2 (nats),

whereas if we consider the Bayesian BBA with mΘ
′

(θ1) = 1
defined on the larger FoD Θ′ = {θ1, θ2, θ3} (for instance),

then

IC(mΘ
′

) = U(mΘ
′

v )−U(mΘ
′

) = (2|Θ
′| − 2)− 0 = 6 (nats).

So even if the decision θ1 that we would make based either

on mΘ or on mΘ
′

is the same, these decisions must not be

considered actually with the same strength, and this is what

reflects our information content measure.

From this very simple definition of information content, we

can also define the Normalized Information Content (NIC) (if

needed later in some applications), denoted by NIC(mΘ) by

normalizing IC(mΘ) with respect to the maximal value of

entropy U(mΘ
v ) as

NIC(mΘ) ,
U(mΘ

v )− U(mΘ)

U(mΘ
v )

= 1− U(mΘ)

U(mΘ
v )

. (11)

Hence we will have NIC(mΘ) ∈ [0, 1] and NIC(mΘ) = 0
for m = mv, and NIC(mΘ) = 1 for U(m) = 0 which is

obtained when m(·) is entirely focused on a singleton θi ∈ Θ,

that is mΘ(θi) = 1 for some i ∈ {1, 2, . . . , |Θ|}.

In fact, the (total) information content of a BBA IC(mΘ)
is the sum of all the information granules IG(X |mΘ) of

elements X ∈ 2Θ carried by a BBA mΘ, that is

IC(mΘ) =
∑

X∈2Θ

IG(X |mΘ) (12)

6That is why it is better, we think, to use the notation IC(mΘ) instead of
IC(m).

where

IG(X |mΘ) ,











0, if X = ∅,
−s(X), if X = Θ,

1− s(X) otherwise.

(13)

We can define the information granules vector7
IG(m) =

[IG(X |mΘ), X ∈ 2Θ]T by

IG(mΘ) , s(mΘ
v )− s(mΘ). (14)

One sees that the (total) information content IC(mΘ) of a

BBA mΘ is just the sum of all components IG(X |mΘ) of the

information granules vector IG(m). The information granules

vector IG(m) is interesting and useful because it helps to see

the contribution of each element X in the whole measure of

the information content IC(mΘ) of a BBA mΘ.

Example 1 (continued): consider Θ = {θ1, θ2} and the BBA

mΘ(θ1) = 0.5, mΘ(θ2) = 0.3 and mΘ(θ1 ∪ θ2) = 0.2. The

information granules vector IG(mΘ) is given by

IG(mΘ) = s(mΘ
v )− s(mΘ)

=









0
1
1
0









−









0
0.377258
0.428953
0.321887









=









0
0.622742
0.571047
−0.321887









.

By summing all the components of the information granules

vector IG(mΘ) we obtain the (total) information content

IC(mΘ) = 0.871902 nats of the BBA mΘ, which can of

course be calculated direcltly also as

IC(mΘ) = U(mΘ
v )− U(mΘ) = 2− 1.128098 = 0.871902.

However, the information granules vector IG(mΘ) is inter-

esting to identify the contribution of each element X in the

whole measure of the information content.

V. INFORMATION GAIN AND INFORMATION LOSS

Once the IC measure is defined for a BBA, it is rather simple

to define the information gain and information loss of a BBA

with respect to another one, both defined on a same FoD Θ.

Suppose that we have a first BBA mΘ
1 and a second BBA

mΘ
2 , then we can calculate by formula (9) their respective

information contents IC(mΘ
1 ) and IC(mΘ

2 ). The difference

of information content measure of mΘ
2 with respect to mΘ

1 is

defined by8

∆IC(m2|m1) , IC(mΘ
2 )− IC(mΘ

1 ). (15)

If we replace IC(mΘ
2 ) and IC(mΘ

1 ) by their expressions

according to (9), it comes

∆IC(m2|m1) = [U(mΘ
v )− U(mΘ

2 )]− [U(mΘ
v )− U(mΘ

1 )]

= U(mΘ
1 )− U(mΘ

2 ). (16)

7We suppose for convenience that the elements X ∈ 2Θ are listed in
increasing order using the classical |Θ|-bits representation with the least
significant bit on the right.

8Similarly, we can define ∆IC(m1|m2) , IC(mΘ
1 ) − IC(mΘ

2 ) =
−∆IC(m2|m1).
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If ∆IC(m2|m1) = 0, the BBAs mΘ
1 and mΘ

2 have same

measure of information content. So, there is no gain and no

loss in information content if one switches from mΘ
1 to mΘ

2

or vice versa. ∆IC(m2|m1) = 0 does not mean that the

decisions based on mΘ
1 and on mΘ

2 are the same. It does

only means that the decision based on mΘ
1 must be as easy as

the decision made based on mΘ
2 . It means that they have the

same informational strength. That’s it. If ∆IC(m2|m1) > 0,

one has IC(mΘ
2 ) > IC(mΘ

1 ), i.e. the BBA mΘ
2 is more

informative than mΘ
1 . In this case we get an information gain

if one switches from mΘ
1 to mΘ

2 , and by duality we get an

uncertainty reduction by switching from mΘ
1 to mΘ

2 . It means

that it must be easier to make a decision based on mΘ
2 rather

on mΘ
1 . If ∆IC(m2|m1) < 0, one has IC(mΘ

2 ) < IC(mΘ
1 ),

i.e. the BBA mΘ
2 is less informative than mΘ

1 . In this case

we get an information loss if one switches from mΘ
1 to mΘ

2 ,

and by duality we get an uncertainty raise by switching from

mΘ
1 to mΘ

2 . It means that it must be easier to make a decision

based on mΘ
1 rather on mΘ

2 .

As simple example, consider Θ = {θ1, θ2, θ3}. For the vac-

uous BBA one has U(mΘ
v ) = 23−2 = 6 nats. Suppose at time

k = 1 one has the BBA mΘ
1 (θ1∪θ2) = 0.2, mΘ

1 (θ1∪θ3) = 0.3,

mΘ
1 (θ1 ∪ θ2 ∪ θ3) = 0.5, then U(mΘ

1 ) ≈ 5.1493 nats, and

IC(mΘ
1 ) = U(mΘ

v ) − U(mΘ
1 ) ≈ 0.8507 nats. Suppose that

after some information processing (belief revision, or fusion,

etc) we come up with the BBA mΘ
2 at time k = 2 defined by

mΘ
2 (θ1) = 0.2 and mΘ

2 (θ1∪θ3) = 0.8, then U(mΘ
2 ) ≈ 0.5004

nats and IC(mΘ
2 ) = U(mΘ

v )−U(mΘ
2 ) ≈ 5.4996 nats. In this

case, we get ∆IC(m2|m1) = 5.4996−0.8507 = 4.6489 which

is positive. Hence we get an information gain by switching

from mΘ
1 to mΘ

2 thanks to the information processing applied.

VI. CONCLUSIONS

In this paper we have introduced a measure of information

content (IC) for any basic belief assignment (BBA). This

IC measure based on an effective measure of uncertainty of

BBAs is quite simple to calculate, and it reflects somehow the

informational strength and easiness ability to make a decision

based on any belief mass function. We have also shown how

it is possible to identify the contribution of each focal element

of the BBA to this information content measure thanks to

the information granule vector. This new IC measure is also

interesting because it allows to well quantify the information

loss or gain between two BBAs, and thus as perspectives

we could use it to quantify precisely and compare the per-

formances of information processing using belief functions

(like fusion rules, belief conditioning, etc). We hope that this

new theoretical IC measure will open interesting tracks for

forthcoming research works on reasoning about uncertainty

with belief functions.
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Abstract—In this erratum we correct a mathematical mistake
included in the paper entitled: On the Validity of Dempster’s Fusion
Rule and its Interpretation as a Generalization of Bayesian Fusion
Rule, published in 2014 in [1]. In taking into account this
mathematical correction the Bayesian fusion rule is associative in
contrary to what is claimed in the original version of our paper.
The comments in our paper remain valid for pages 223 to 238.
Corrections in several pages from page 239 to the end of our
paper must be done as explained next in this erratum.

Keywords: Bayesian fusion, belief functions.

ERRATUM

In [1] page 239, the general formulas1 #(34)–#(36) are

incorrect. The correct formulas are presented in this erratum.

Based on conditional statistical independence assumption

P (Z1, Z2|X) = P (Z1|X)P (Z2|X), we have

P (X |Z1 ∩ Z2) =
P (Z1 ∩ Z2|X)P (X)

P (Z1 ∩ Z2)

=
P (Z1|X)P (Z2|X)P (X)

P (Z1 ∩ Z2)

=

P (X|Z1)P (Z1)
P (X)

P (X|Z2)P (Z2)
P (X) P (X)

∑N

i=1 P (X = xi, Z1 ∩ Z2)
, (1)

which can be written as

P (X |Z1 ∩ Z2) =
P (X |Z1)P (X |Z2)/P (X)

∑N

i=1
P (X=xi|Z1)P (X=xi|Z2)

P (X=xi)

. (2)

The formula (2) corresponds to formula #(24) of our original

paper [1]. This formula (2) can be rewritten in a symmetrical

form as follows

P (X |Z1 ∩ Z2) =
1

K ′(Z1, Z2)
· P (X |Z1)
√

P (X)
· P (X |Z2)
√

P (X)

=
1

K ′(Z1, Z2)
· P (X |Z1)

P
1

2 (X)
· P (X |Z2)

P
1

2 (X)
, (3)

1For avoiding confusion with formula number in this erratum, we denote
the formula number appearing in the original paper [1] by #(xx), where xx

is the number under concern.

where the normalization constant K ′(Z1, Z2) is given by:

K ′(Z1, Z2) ,

N
∑

i=1

P (X = xi|Z1)
√

P (X = xi)
· P (X = xi|Z2)
√

P (X = xi)

=

N
∑

i=1

P (X = xi|Z1)

P
1

2 (X = xi)
· P (X = xi|Z2)

P
1

2 (X = xi)
(4)

The formulas #(24)–#(33) of [1] are correct.

If we generalize the formula (1) for s > 2 conditioning

terms, we obtain the following expression

P (X |Z1 ∩ . . . ∩ Zs) =
P (Z1 ∩ . . . ∩ Zs|X)P (X)

P (Z1 ∩ . . . ∩ Zs)

=
P (Z1|X) . . . P (Zs|X)P (X)

P (Z1 ∩ . . . ∩ Zs)

=

P (X|Z1)P (Z1)
P (X) . . . P (X|Zs)P (Zs)

P (X) P (X)
∑N

i=1 P (X = xi, Z1 ∩ . . . ∩ Zs)
,

(5)

which can be written as

P (X |Z1∩. . .∩Zs) =
P (X |Z1) . . . P (X |Zs)/P

s−1(X)
∑N

i=1
P (X=xi|Z1)...P (X=xi|Zs)

P s−1(X=xi)

, (6)

or equivalently as

P (X |Z1 ∩ . . . ∩ Zs) =

∏s

k=1 P (X |Zk)

K(X,Z1, . . . , Zs)
, (7)

where the coefficient K(X,Z1, . . . , Zs) is defined by

K(X,Z1, . . . , Zs) , P s−1(X)

N
∑

i=1

(
∏s

k=1 P (X = xi|Zk))

P s−1(X = xi)
.

(8)

The formula #(34) of [1] must be replaced by the formula

(8) above.
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The symmetrized form of Eq. (6) is:

P (X |Z1 ∩ . . . ∩ Zs) =
1

K ′(Z1, . . . , Zs)
·

s
∏

k=1

P (X |Zk)
s

√

P s−1(X)

=
1

K ′(Z1, . . . , Zs)
·

s
∏

k=1

P (X |Zk)

P
s−1

s (X)
,

(9)

with the normalization constant K ′(Z1, . . . , Zs) given by:

K ′(Z1, . . . , Zs) ,

N
∑

i=1

s
∏

k=1

P (X = xi|Zk)
s

√

P s−1(X = xi)

=

N
∑

i=1

s
∏

k=1

P (X = xi|Zk)

P
s−1

s (X = xi)
(10)

Hence the incorrect expression #(35) of P (X |Z1∩ . . .∩Zs)
in [1] must be replaced by the formula (9) above, and the

incorrect expression #(36) of K ′(Z1, . . . , Zs) must be replaced

by the formula (10).

The agreement As(X) of order s, the global agreement

GAs, and the global conflict GCs for s sources must be also

corrected as follows:

As(X = xi) ,

s
∏

k=1

P (X = xi|Zk)
s

√

P s−1(X = xi)
,

GAs ,

N
∑

i1,...,is=1|i1=...=is

P (X = xi1 |Z1)
s

√

P s−1(X = xi1 )

. . .
P (X = xis |Zs)

s

√

P s−1(X = xis)
,

GCs ,

N
∑

i1,...,is=1

P (X = xi1 |Z1)
s

√

P s−1(X = xi1)

. . .
P (X = xis |Zs)

s

√

P s−1(X = xis)
−GAs.

The first consequence of this correction is that the property

P1 stated in [1] page 242 must be corrected as (P1): The PMF

P(X) is a neutral element of Bayes fusion rule. Remark 2 and

formula #(45) on page 242 must be removed.

The remark 3 on page 242 of [1] is incorrect. Indeed, if

we take P (X |Zk) = P (X) for k = 1, . . . , s and based on the

correct formula (9), we get actually

Bayes(P (X), P (X), ..., P (X);P (X)) = P (X),

and for any type of pmf P (X) (i.e. uniform, and non-uniform

pmf).

The property (P3) : The Bayes fusion rule is in general not

associative stated in [1] on page 242 is incorrect and it must

be corrected as (P3) : The Bayes fusion rule is associative.

Proof of the property P3 (Associativity of Bayes rule): The

expression of P (X |Z1 ∩ . . . ∩ Zs−1) is given by formula (9)

when using s− 1 conditioning terms. Hence we have

P (X |Z1 ∩ . . . ∩ Zs−1) =

∏s−1
k=1

P (X|Zk)

P
s−2

s−1 (X)

K ′(Z1, . . . , Zs−1)
, (11)

with the normalization constant K ′(Z1, . . . , Zs−1) given by

K ′(Z1, . . . , Zs−1) =

N
∑

i=1

s−1
∏

k=1

P (X = xi|Zk)

P
s−2

s−1 (X = xi)
. (12)

To calculate P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) from
P (X |Z1 ∩ . . . ∩ Zs−1) and P (X |Zs), we use Bayes formula
with the conditional statistical independence assumption, and
we get

P (X|(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) =

P (Z1 ∩ . . . ∩ Zs−1|X)P (Zs|X)P (X)
∑

N

i=1
P (Z1 ∩ . . . ∩ Zs−1|X = xi)P (Zs|X = xi)P (X = xi)

.

(13)

Because

P (Z1∩. . .∩Zs−1|X) =
P (X|Z1 ∩ . . . ∩ Zs−1)P (Z1 ∩ . . . ∩ Zs−1)

P (X)
,

and

P (Zs|X) =
P (X |Zs)P (Zs)

P (X)
,

the expression of P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) given by (13)

can be rewritten as

P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) =
P (X|Z1∩...∩Zs−1)

P (X)
P (X|Zs)
P (X) P (X)

∑N
i=1

P (X=xi|Z1∩...∩Zs−1)
P (X=xi)

P (X=xi|Zs)
P (X=xi)

P (X = xi)
(14)

After the simplification by P (X) in the numerator of (14)

and the simplification by P (X = xi) in the denominator of

(14) it comes

P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) =

P (X |Z1 ∩ . . . ∩ Zs−1)
P (X|Zs)
P (X)

∑N
i=1 P (X = xi|Z1 ∩ . . . ∩ Zs−1)

P (X=xi|Zs)
P (X=xi)

. (15)

Replacing P (X |Z1 ∩ . . . ∩ Zs−1) by its expression given in

(11), we have

P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) =
[

1
K′(Z1,...,Zs−1)

·∏s−1
k=1

P (X|Zk)

P
s−2

s−1 (X)

]

P (X|Zs)
P (X)

∑N

i=1

[

1
K′(Z1,...,Zs−1)

·∏s−1
k=1

P (X=xi|Zk)

P
s−2

s−1 (X=xi)

]

P (X=xi|Zs)
P (X=xi)

.

(16)
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After simplification by the constant K ′(Z1, . . . , Zs−1) one

gets

P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) =
[

∏s−1
k=1

P (X|Zk)

P
s−2

s−1 (X)

]

P (X|Zs)
P (X)

∑N

i=1

[

∏s−1
k=1

P (X=xi|Zk)

P
s−2

s−1 (X=xi)

]

P (X=xi|Zs)
P (X=xi)

=

1
P s−1(X)

∏s

k=1 P (X |Zk)
∑N

i=1
1

P s−1(X=xi)

∏s

k=1 P (X = xi|Zk)
. (17)

The formula (17) can be rewritten with an equivalent

symmetrical form as

P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) =
∏s

k=1
P (X|Zk)

P
s−1

s (X)
∑N

i=1

∏s

k=1
P (X=xi|Zk)

P
s−1

s (X=xi)

=

∏s
k=1

P (X|Zk)

P
s−1

s (X)

K ′(Z1, . . . , Zs)
, (18)

where K ′(Z1, . . . , Zs) =
∑N

i=1

∏s

k=1
P (X=xi|Zk)

P
s−1

s (X=xi)
.

Therefore, we have proved that expression of

P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) given by (18) is equal

to the expression of P (X |Z1 ∩ . . . ∩ Zs−1 ∩ Zs) given

by (9). This proves the associativity of Bayes fusion rule,

i.e. the validity of the property P3. Note that the equality

P (X |(Z1 ∩ . . . ∩ Zs−1) ∩ Zs) = P (X |Z1 ∩ . . . ∩Zs−1 ∩ Zs)
does not depend on a particular choice of the intersection

of s − 1 subsets involved in the conditioning because the

intersection operator is associative. Hence the conditioning

terms (Z1 ∩ . . . ∩ Zs−1) ∩ Zs and Z1 ∩ . . . ∩ Zs−1 ∩ Zs

are equal. This implies that the two conditional probabilities

must be necessary equal, which is proved by our previous

derivations.

With the correct formulas (9)-(10), the numerical applica-

tion for example 1 on page 243 of [1] gives

P (X = x1|Z1 ∩ Z2 ∩ Z3) =
1

K123

0.1
3
√
0.22

0.5
3
√
0.22

0.6
3
√
0.22

= 0.7273,

P (X = x2|Z1 ∩ Z2 ∩ Z3) =
1

K123

0.9
3
√
0.82

0.5
3
√
0.82

0.42

3
√
0.82

= 0.2727.

where the normalization constant K123 = K ′(Z1, Z2, Z3)
is given by (10) for s = 3, i.e.

K123 =
0.1

3
√
0.22

0.5
3
√
0.22

0.6
3
√
0.22

+
0.9

3
√
0.82

0.5
3
√
0.82

0.4
3
√
0.82

= 1.0312

This corrected result shows that Bayes fusion rule is actually

associative because one has










P (X |(Z1 ∩ Z2) ∩ Z3) = P (X |Z1 ∩ Z2 ∩ Z3),

P (X |Z1 ∩ (Z2 ∩ Z3)) = P (X |Z1 ∩ Z2 ∩ Z3),

P (X |Z2 ∩ (Z1 ∩ Z3)) = P (X |Z1 ∩ Z2 ∩ Z3).

As consequence, the property (P4) on page 245 of [1],

although being correct, is not necessary.

On page 250 of [1], the sentence:

Indeed, in Bayes rule one divides each posterior source

mi(xj) by s

√

m0(xj), i = 1, 2, . . . , s, whereas the prior source

m0(.) is combined in a pure conjunctive manner by DS rule

with the bba’s mi(.), i = 1, 2, . . . , s, as if m0(.) was a simple

additional source.

must be corrected as:

Indeed, in Bayes rule one divides each posterior source

mi(xj) by s

√

ms−1
0 (xj), i = 1, 2, . . . , s, whereas the prior

source m0(.) is combined in a pure conjunctive manner by DS

rule with the bba’s mi(.), i = 1, 2, . . . , s, as if m0(.) was a

simple additional source.

This erratum concerns also some incorrect formulas appear-

ing in a preliminary version of [1] presented in 2013 in [2].

REFERENCES

[1] J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and its

interpretation as a generalization of Bayesian fusion rule, International
Journal of Intelligent Systems, Special Issue: Advances in Intelligent
Systems, Vol. 29, Issue 3, pp. 223–252, March 2014.

[2] J. Dezert, A. Tchamova, D. Han, J.-M. Tacnet, Why Dempster’s fusion

rule is not a generalization of Bayes fusion rule, in Proc. of Fusion 2013
Int. Conf. on Information Fusion (Fusion 2013), Istanbul, Turkey, July
9–12, 2013.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

825



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

826



On Inequalities Bounding Imprecision and

Nonspecificity Measures of Uncertainty

Jean Dezerta, Albena Tchamovab

aThe French Aerospace Lab, ONERA - DTIS/MIDL, 91120 Palaiseau, France.
bInstitute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. 

Emails: jean.dezert@onera.fr, tchamova@bas.bg

Abstract—In this paper we prove two inequalities about two
measures of uncertainty of basic belief assignments, called re-
spectively Imprecision measure and U-uncertainty measure that
have been introduced by Dubois and Prade in 1980’s. These
inequalities have been considered as obvious by these authors,
but to prove them rigorously needs some effort, as it will be
shown.

Keywords: belief functions, measure of uncertainty, convex

combination, inequalities.

I. INTRODUCTION

This paper presents two mathematical proofs of inequalities

about two measures of uncertainty of basic belief assignments,

called respectively the Imprecision and the U-uncertainty (or

nonspecificity) that have been introduced by Dubois and Prade

in [1]–[3]. We recall that a Basic Belief Assignment (BBA) m
defined on the power set 2Θ of the finite frame of discernment

(FoD) Θ = {θ1, θ2, . . . , θn} is a mapping m(·) : 2Θ → [0, 1]
such that m(∅) = 0 and

∑

X⊆Θ
m(X) = 1. This type of

mapping has been introduced by Shafer in [4]. The cardinality

of the FoD is |Θ| = n. The measures of imprecision l(m), and

of nonspecificity U(m) are respectively defined by

l(m) =
∑

X⊆Θ

m(X)|X | =
∑

Xi∈2Θ

m(Xi)|Xi|, (1)

U(m) =
∑

X⊆Θ

m(X) log(|X |) =
∑

Xi∈2Θ

m(Xi) log(|Xi|),

(2)

where Xi is the i-th element of the power set 2Θ of the FoD

Θ, and |Xi| its cardinality. By convention, and without loss of

generality, we will take X1 = ∅ (the empty set), and X2n = Θ.

The integer index i varies from 1 to 2n = 2|Θ|.
mv is the vacuous BBA defined by mv(X) = 1 if X = Θ,

and mv(X) = 0 for all elements X 6= Θ of 2Θ. This vacuous

BBA mv characterizes a full ignorant source of evidence.

In the next sections we prove that for any BBA m 6= mv

defined on 2Θ the two following inequalities hold

l(m) < l(mv), (3)

and

U(m) < U(mv). (4)

We will prove these two inequalities in two ways: 1) by

a direct application of the Theorem of convex combination

(see Theorem 1, and Theorem 2 in the appendix) by a direct

calculation from the mathematical definitions of l(m) and

U(m) measures of uncertainty.

For proving these inequalities, we first recall that a convex

combination, denoted by sn, of n values {zi, i = 1, 2, . . . , n}
is a linear combination of the form

sn =

n
∑

i=1

wizi, (5)

where wi ∈ [0, 1] is the weight of the value zi such that
∑n

i=1
wi = 1.

In the appendix, we prove the following useful theorem that

will help us to prove the inequalities (3) and (4) in the next

sections.

Theorem 1: Let sn =
∑n

i=1
wizi be a convex combination

of n values z1, . . . , zn with normalized weights w1, . . . , wn,

where wi ∈ [0, 1]. Then, we have

min{zi ∈ Z} ≤ sn ≤ max{zi ∈ Z}, (6)

where Z , {zi ∈ {z1, z2, . . . , zn}|wi > 0}.

Proof of Theorem 1: see appendix.

II. PROOF THAT l(m) < l(mv) IF m 6= mv

A. First Proof : using the Theorem of convex combination

The proof of inequality (3) is a direct application of the

Theorem 1 when working with 2n = 2|Θ| values1 zi = |Xi|
and weights wi = m(Xi). We recall that w1 = m(X1) =
m(∅) = 0 for any BBA m (by definition of m). Therefore

one has always at least one weight (i.e. w1) among all 2n

weights equals zero, which justifies the use of Theorem 1,

rather than Theorem 2 of appendix.

The imprecision measure l(m) can also be expressed as

l(m) =
∑2

n

i=1
m(Xi)|Xi| because

∑

Xi∈2Θ

m(Xi)|Xi| =
2
n

∑

i=1

m(Xi)|Xi|

1We recall that integer index i spans {1, 2, . . . , 2n}.

Originally published as: J. Dezert, A. Tchamova, On Inequalities Bounding Imprecision and 
Nonspecificity Measures of Uncertainty, Information & Security Journal, Vol. 52, pp. 37–51, February 
2022, and reprinted with permission.
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Based on Theorem 1, we have

min{|Xi| ∈ {|X1|, |X2|, . . . , |X2n |}|m(Xi) > 0}

≤
2
n

∑

i=1

m(Xi)|Xi| ≤

max{|Xi| ∈ {|X1|, |X2|, . . . , |X2n |}|m(Xi) > 0}. (7)

The upper bound of inequality (7) is always lower than

|Θ| = n if m 6= mv, and it is equal to |Θ| = n when m = mv.

Therefore, one has

2
n

∑

i=1

m(Xi)|Xi| < |Θ|, (8)

and because l(mv) = mv(Θ) · |Θ| = 1 · |Θ| = |Θ|, one sees

that the valid inequality (8) is the same as

l(m) < l(mv), (9)

which completes the proof of the inequality (3).

B. Second proof : using direct calculation

First we note that

l(mv) = m(Θ) · |Θ| = 1 · n = n.

Because m is a (normalized) BBA [4] such that m(∅) = 0
and

∑

X⊆Θ
m(X) = 1, one has

m(Θ) +
∑

X⊂Θ

m(X) = 1,

or equivalently

m(Θ) = 1−
∑

X⊂Θ

m(X).

Therefore

n ·m(Θ) = n · [1−
∑

X⊂Θ

m(X)].

The expression of l(m) can be decomposed as

l(m) =
∑

X⊆Θ

m(X)|X |

= m(Θ) · |Θ|+
∑

X⊂Θ

m(X)|X |

= n ·m(Θ) +
∑

X⊂Θ

m(X)|X |

= n · [1−
∑

X⊂Θ

m(X)] +
∑

X⊂Θ

m(X)|X |

= n− [n
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X)|X |].

To prove that l(m) < l(mv) is equivalent to prove that

n− [n
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X)|X |] < n,

or to prove

n
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X)|X | > 0. (10)

We can express
∑

X⊂Θ
m(X)|X | as

∑

X⊂Θ

m(X)|X | =
∑

X⊂Θ s.t.|X|=1

m(X) · 1

+
∑

X⊂Θ s.t.|X|=2

m(X) · 2

+
∑

X⊂Θ s.t.|X|=3

m(X) · 3

+ . . .

+
∑

X⊂Θ s.t.|X|=n−1

m(X) · (n− 1),

that is

∑

X⊂Θ

m(X)|X | =
∑

X⊂Θ s.t.|X|=1

m(X)

+ 2 ·
∑

X⊂Θ s.t.|X|=2

m(X)

+ 3 ·
∑

X⊂Θ s.t.|X|=3

m(X)

+ . . .

+ (n− 1) ·
∑

X⊂Θ s.t.|X|=n−1

m(X),

which can be rewritten as

∑

X⊂Θ

m(X)|X | =
∑

X⊂Θ s.t.|X|=1

m(X)

+
∑

X⊂Θ s.t.|X|=2

m(X) +
∑

X⊂Θ s.t.|X|=2

m(X)

+
∑

X⊂Θ s.t.|X|=3

m(X) + 2 ·
∑

X⊂Θ s.t.|X|=3

m(X)

+ . . .

+
∑

X⊂Θ s.t.|X|=n−1

m(X)

+ (n− 2) ·
∑

X⊂Θ s.t.|X|=n−1

m(X),

or equivalently

∑

X⊂Θ

m(X)|X | =
∑

X⊂Θ

m(X)

+
∑

X⊂Θ s.t.|X|=2

m(X)

+ 2 ·
∑

X⊂Θ s.t.|X|=3

m(X)

+ . . .

+ (n− 2) ·
∑

X⊂Θ s.t.|X|=n−1

m(X).
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Then, for the left hand side of the inequality (10) we obtain

the following expression

n ·
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X)|X | =

(n− 1) ·
∑

X⊂Θ s.t.|X|=1

m(X)

+(n− 2) ·
∑

X⊂Θ s.t.|X|=2

m(X)

+(n− 3) ·
∑

X⊂Θ s.t.|X|=3

m(X)

+ . . .

+(n− (n− 1)) ·
∑

X⊂Θ s.t.|X|=n−1

m(X).

The right hand side of the previous expression is clearly

strictly positive, that is

(n− 1) ·
∑

X⊂Θ s.t.|X|=1

m(X)

+(n− 2) ·
∑

X⊂Θ s.t.|X|=2

m(X)

+(n− 3) ·
∑

X⊂Θ s.t.|X|=3

m(X)

+ . . .

+(n− (n− 1)) ·
∑

X⊂Θ s.t.|X|=n−1

m(X) > 0,

because n > 1 (the FoD has more than one hypothesis inside),

and also because there is at least one element X ⊂ Θ for

which m(X) > 0 when m 6= mv .

Then we obtain

n ·
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X)|X | > 0,

which completes our second proof of (3) by a direct calcula-

tion.

III. PROOF THAT U(m) < U(mv) IF m 6= mv

A. First Proof : using the Theorem of convex combination

The proof of inequality U(m) < U(mv) is similar to the

proof of l(m) < l(mv) by replacing values |Xi| by log(|Xi|),
and by taking m(X1) log(|X1|) = m(∅) log(|∅|) = 0·log(0) =
0 which is easily justified by continuity since x log(x) → 0
as x → 0. More precisely, we can express U(m) as

U(m) = m(∅)(log(|∅|) +
∑

Xi∈2Θ\{∅}
m(Xi) log(|Xi|)

=

2
n

∑

i=2

m(Xi) log(|Xi|).

Based on Theorem 1, we have

min{log(|Xi|) ∈ {log(|X2|), . . . , log(|X2n |)}|m(Xi) > 0}

≤
2
n

∑

i=2

m(Xi) log(|Xi|) ≤

max{log(|Xi|) ∈ {log(|X2|), . . . , log(|X2n |)}|m(Xi) > 0}.
Because log(·) is a continuous increasing function, the

upper bound of the previous inequality is always lower than

log(|Θ|) = log(n) when m 6= mv . Therefore,

2
n

∑

i=2

m(Xi) log(|Xi|) < log(|Θ|), (11)

and because U(mv) = mv(Θ) · log(|Θ|) = 1 · log(|Θ|) = log(|Θ|),
one sees that the valid inequality (11) is the same as

U(m) < U(mv), (12)

which completes the proof of the inequality (4).

B. Second proof : using direct calculation

We prove the inequality U(m) < U(mv) similarly to our

second proof for l(m) < l(mv) by replacing values |Xi| by

log(|Xi|). We note that

U(mv) = m(Θ) · log(|Θ|) = 1 · log(n) = log(n).

Because m is a (normalized) BBA [4] such that m(∅) = 0
and

∑

X⊆Θ
m(X) = 1, one has

m(Θ) +
∑

X⊂Θ

m(X) = 1,

or equivalently

m(Θ) = 1−
∑

X⊂Θ

m(X).

Therefore

log(n) ·m(Θ) = log(n) · [1−
∑

X⊂Θ

m(X)].

The expression of U(m) can be decomposed as

U(m) =
∑

X⊆Θ

m(X) log(|X |)

= m(Θ) · log(n) +
∑

X⊂Θ

m(X) log(|X |)

= log(n) · [1−
∑

X⊂Θ

m(X)] +
∑

X⊂Θ

m(X) log(|X |)

= log(n)− [log(n)
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X) log(|X |)].

To prove that U(m) < U(mv) is equivalent to prove that

log(n)−[log(n)
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X) log(|X |)] < log(n),

or to prove

log(n)
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X) log(|X |) > 0. (13)
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We can express
∑

X⊂Θ
m(X) log(|X |) as

∑

X⊂Θ

m(X) log(|X |) =
∑

X⊂Θ s.t.|X|=1

m(X) · log(1)

+
∑

X⊂Θ s.t.|X|=2

m(X) · log(2)

+
∑

X⊂Θ s.t.|X|=3

m(X) · log(3)

+ . . .

+
∑

X⊂Θ s.t.|X|=n−1

m(X) · log(n− 1).

Then for the left hand side of inequality (13) we obtain:

log(n)
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X) log(|X | =

[log(n)− log(1)] ·
∑

X⊂Θ s.t.|X|=1

m(X)

+[log(n)− log(2)] ·
∑

X⊂Θ s.t.|X|=2

m(X)

+[log(n)− log(3)] ·
∑

X⊂Θ s.t.|X|=3

m(X)

+ . . .

+[log(n)− log(n− 1)] ·
∑

X⊂Θ s.t.|X|=n−1

m(X).

Because log(1) = 0, the equation above can be rewritten as

log(n)
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X) log(|X | =

log(n) ·
∑

X⊂Θ s.t.|X|=1

m(X)

+[log(n)− log(2)] ·
∑

X⊂Θ s.t.|X|=2

m(X)

+[log(n)− log(3)] ·
∑

X⊂Θ s.t.|X|=3

m(X)

+ . . .

+[log(n)− log(n− 1)] ·
∑

X⊂Θ s.t.|X|=n−1

m(X).

Because n > 1, and because log(.) is an increasing

function one always has for n > 1, log(n) > 0, and

[log(n)− log(n− 1)] > 0. Because there is at least one el-

ement X ⊂ Θ for which m(X) > 0 when m 6= mv, we can

conclude that

log(n)
∑

X⊂Θ

m(X)−
∑

X⊂Θ

m(X) log(|X | > 0.

which completes our second proof of (4) by a direct calcula-

tion.

IV. CONCLUSION

In this paper we have proved that the imprecision measure

l(m) is always lower than l(mv) = |Θ|, and its U-uncertainty

(also known as non-specificity) measure U(m) is always lower

than U(mv) = log(|Θ|) for any non vacuous BBA m. The

proofs presented in this paper have been obtained by two

different ways: by the theorem of convex combination, and by

direct calculation from the mathematical definitions for l(m),
l(mv), U(m), and U(mv). We have shown that the use of

the theorem of convex combination provides an elegant and

shorter proof of the inequalities. This theorem will be helpful

to evaluate the lower and upper bounds of any measures of

uncertainty of a BBA that would be based on any convex

combination of mass values (chosen as weighting factors) and

real values committed to each element of the power set of the

frame of discernment.

APPENDIX

Before proving Theorem 1, we need to establish at first the

following theorem.

Theorem 2: Let sn =
∑n

i=1
wizi be a convex combination of

n values z1, . . . , zn with strictly positive normalized weights

w1, . . . , wn. Then, we have

min{z1, . . . , zn} ≤ sn ≤ max{z1, . . . , zn}. (14)

The proof of Theorem 2 is done by induction.

Proof of the theorem 2:

• For n = 1, one has only one value z1 with weight

w1 = 1. Hence s1 = w1z1 = z1, min{z1} = z1, and

max{z1} = z1. Therefore, min{z1} = s1 = max{z1},

which is a special case of the inequality (14). Therefore

the inequality (14) is valid for n = 1.

• For n = 2, one has two values {z1, z2} with (strictly)

positive weights {w1, w2} and s2 = w1z1 + w2z2.

1) if z1 = z2, then s2 = w1z1 + w2z2 =
w1z1 + w2z1 = (w1 + w2)z1 = z1 = z2.

Hence one has min{z1, z2} = z1 = z2 and

max{z1, z2} = z1 = z2. Therefore, one gets

min{z1, z2} = s2 = max{z1, z2}, which is a

special case of the inequality (14) for n = 2.

2) If z1 6= z2, then two sub-cases are possible:

a) Case 1: if z1 < z2, then min{z1, z2} = z1 and

max{z1, z2} = z2. We have

s2 = w1z1 + w2z2 = (z1 − z1) + w1z1 + w2z2

= z1 − (1− w1)z1 + w2z2

= z1 − w2z1 + w2z2

= z1 + w2(z2 − z1) ≥ min{z1, z2}.

This last inequality comes from the fact

that w2 ≥ 0, and z2 − z1 ≥ 0 be-

cause min{z1, z2} = z1. So we have proved

min{z1, z2} ≤ s2.
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Because w2 ∈ [0, 1], we have w2(z2−z1) ≤ z2−
z1, and therefore

s2 = z1 + w2(z2 − z1)

≤ z1 + (z2 − z1) = z2 = max{z1, z2}.

This shows that s2 ≤ max{z1, z2}. Therefore,

we have proved

min{z1, z2} ≤ s2 ≤ max{z1, z2}.

We see that the inequality (14) holds for n = 2
for the case 1.

b) Case 2: if z2 < z1, then min{z1, z2} = z2 and

max{z1, z2} = z1. We have

s2 = w1z1 + w2z2 = (z2 − z2) + w1z1 + w2z2

= z2 − (1− w2)z2 + w1z1

= z2 − w1z2 + w1z1

= z2 + w1(z1 − z2) ≥ min{z1, z2}.

This last inequality comes from the fact

that w1 ≥ 0, and z1 − z2 ≥ 0 be-

cause min{z1, z2} = z2. So we have proved

min{z1, z2} ≤ s2.

Because w1 ∈ [0, 1], we have w1(z1−z2) ≤ z1−
z2, and therefore

s2 = z2 + w1(z1 − z2)

≤ z2 + z1 − z2 = z1 = max{z1, z2}.

This shows that s2 ≤ max{z1, z2}. Therefore,

we have proved

min{z1, z2} ≤ s2 ≤ max{z1, z2}.

We see that the inequality (14) holds for n = 2
for the case 2.

Finally, the inequality (14) is always valid for

n = 2 in all cases, i.e. when z1 = z2, or z1 < z2,

or z2 < z1.

• For n > 2, we suppose that the inequality (14) holds.

That is

min{z1, . . . , zn} ≤ sn ≤ max{z1, . . . , zn}. (15)

We prove next by induction that this inequality also holds

for n+ 1.

• For the induction with n+ 1, we have to consider n+ 1
values {z1, . . . , zn, zn+1} and n+ 1 strictly positive nor-

malized weights {w1, . . . , wn, wn+1}, that is wi > 0 for

i = 1, 2, . . . , n and
∑n+1

i=1
wi = 1. Because all wi > 0,

one has necessarily wn+1 < 1. So, we can always express

sn+1 as

sn+1 =

n+1
∑

i=1

wizi

= wn+1zn+1 +
n
∑

i=1

wizi

= wn+1zn+1 +

n
∑

i=1

1− wn+1

1− wn+1

wizi

= wn+1zn+1 + (1− wn+1)

n
∑

i=1

wi

1− wn+1

zi

= wn+1zn+1 + (1− wn+1)sn,

where

sn =
n
∑

i=1

wi

1− wn+1

zi =
n
∑

i=1

vizi. (16)

The new weights involved in sn defined by vi ,
wi

1−wn+1

are also all strictly positive because wi > 0 and 1 −
wn+1 > 0, and they are also normalized because

n
∑

i=1

vi =

n
∑

i=1

wi

1− wn+1

=
1

1− wn+1

n
∑

i=1

wi

=
1

1− wn+1

(1− wn+1) = 1,

because
∑n+1

i=1
wi = 1, which implies

∑n

i=1
wi = 1 −

wn+1.

Hence, we observe that sn =
∑n

i=1
vizi is also a convex

combination of the n real values {z1, . . . , zn} with

normalized and strictly positive weights vi, and therefore

the inequality (14) holds (by assumption).

One sees that the problem of combination of n+1 values

has been reformulated as a convex combination of two

values zn+1 and sn =
∑n

i=1
vizi with strictly positive

and normalized weights wn+1 and (1− wn+1). Because

the inequality (14) is satisfied for the convex combination

of two real values (for n = 2), the following inequality

holds

min{sn, zn+1} ≤ sn+1 ≤ max{sn, zn+1}. (17)

Because min{z1, . . . , zn} ≤ sn ≤ max{z1, . . . , zn} is

assumed to be true, the inequality (17) can be rewritten

as

min{min{z1, z2, . . . , zn}, zn+1}
≤ sn+1 ≤

max{max{z1, z2, . . . , zn}, zn+1}, (18)
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or quivalently

min{z1, z2, . . . , zn, zn+1}
≤ sn+1 ≤
max{z1, z2, . . . , zn, zn+1}. (19)

Therefore the inequality (14) is also valid for n+1, which

completes the proof of Theorem 2.

We can generalize the Theorem 2 to take into

account all the cases where some weights are zero.

For this, the set on n real values denoted by

Z = {z1, z2, . . . , zn} can always be expressed as

Z = Z ∪ Z̄ , where Z , {zi ∈ {z1, z2, . . . , zn}|wi > 0}
and Z̄ , {zi ∈ {z1, z2, . . . , zn}|wi = 0}. The convex

combination sn =
∑n

i=1
wizi can be expressed as

sn =
∑

zi∈Z

wizi +
∑

zi∈Z̄

wizi. (20)

because wi = 0 for any zi ∈ Z̄ , one has
∑

zi∈Z̄
wizi = 0,

and therefore sn =
∑

zi∈Z
wizi, whose bounds are given by

Theorem 2. Hence, min{zi ∈ Z} ≤ sn ≤ max{zi ∈ Z}. This

completes the proof of Theorem 1, which is more general than

Theorem 2.
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Abstract—In information fusion, the uncertain information
from different sources might be modeled with different theoreti-
cal frameworks. When one needs to fuse the uncertain informa-
tion represented by different uncertainty theories, constructing
the transformation between different frameworks is crucial.
Various transformations of a Fuzzy Membership Function (FMF)
into a Basic Belief Assignment (BBA) have been proposed, where
the transformations based on uncertainty maximization and
minimization can determine the BBA without preselecting the
focal elements. However, these two transformations that based
on uncertainty optimization emphasize the extreme cases of
uncertainty. To avoid extreme attitudinal bias, a trade-off or
moderate BBA with the uncertainty degree between the minimal
and maximal ones is more preferred. In this paper, two moderate
transformations of an FMF into a trade-off BBA are proposed.
One is the weighted average based transformation and the
other is the optimization-based transformation with weighting
mechanism, where the weighting factor can be user-specified
or determined with some prior information. The rationality
and effectiveness of our transformations are verified through
numerical examples and classification examples.

Keywords: Belief functions, basic belief assignment, fuzzy

membership function, information fusion, moderate transfor-

mation.

I. INTRODUCTION

In multi-source information fusion, the information ob-

tained from different sources usually have different types of

uncertainty. Various kinds of uncertainty theories have been

proposed including probability theory, fuzzy set theory [1],

possibility theory [2], rough set theory [3] and theory of

belief functions [4], etc., for dealing with different types of

uncertain information. According to the type of uncertainty,

the uncertain information from different sources might be

modeled with different theoretical frameworks. Usually, these

uncertain information with different representations cannot

be directly combined or fused. Therefore, transformations

between different frameworks are needed [5], and then, one

can fuse them under the same framework.

Random set theory is regarded as a unified framework

for various frameworks of uncertainty including probability

theory, fuzzy set theory, theory of belief functions, etc [5].

In particular, to fuse the opinion of an expert represented

by a Fuzzy Membership Function (FMF) and the output of

a sensor expressed by Basic Belief Assignment (BBA), one

can transform the FMF into a BBA and then combine two

BBAs. One can also transform the BBA into an FMF and

then combine two FMFs. In this paper, we focus on the

transformation of an FMF into a BBA. Many transformations

have been proposed [5]–[10], which can be categorized into

two types.

One type of transformation has to preselect the focal ele-

ments. For example, Bi et al. [6] transform an FMF into a BBA

by normalizing the given FMF, where the focal elements are

preselected as singletons. As a result, the obtained BBA has

no compound focal elements. In [5], Florea et al. transform an

FMF into a BBA with α-cut approach, where focal elements

are preselected to the “nested in order”. However, a prior

selection of focal elements might lead to information loss.

The other type of transformation obtains a BBA by solving

constrained optimization problems. For example, our previous

work [7] proposed two transformations based on uncertainty

optimization, which avoid the subjective preselection of focal

elements. The difference between the two transformations is

the specific optimization criterion, which is the maximization

and minimization, respectively. It has been shown in [7] that

both transformations based on uncertainty optimization are

rational and effective. However, these transformations based

on uncertainty optimization seem to be “one-sided” in terms of

the uncertainty degrees, since they only focus on the minimal

or maximal uncertainty. Either the minimal uncertainty or the

maximal uncertainty is an extreme case of uncertainty. If one

only pays attention to one of the extreme cases of uncertainty

in the process of solving the optimization problem, it would

bring the bias of extreme attitudinal on the uncertainty degree,

which might bring counter-intuitive results. If we jointly

consider two extreme cases of uncertainty, we can obtain the

BBA with the degree of uncertainty between the minimal

and maximal ones. Such a BBA is more “balanced” and

“moderate” than the BBA obtained by pursuing the maximal

or minimal uncertainty. In other words, joint consideration of

two extremes of uncertainty corresponds to a better moderate

attitude (corresponding to a preferred consensual agreement of

behavior) for a transformation of FMF into a BBA, and then

we can avoid the bias of extreme attitudinal on the uncertainty

degree.

Originally published as: X. Fan, D. Han, J. Dezert, Y. Yang, Novel Moderate Transformation of Fuzzy 
Membership Function into Basic Belief Assignment, Chinese Journal of Aeronautics, 2022, and reprinted 
with permission.
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In this paper, we aim to obtain such a trade-off BBA to avoid

“one-sidedness” on the uncertainty degree, which is based on

the two BBAs obtained by the two transformations proposed

in our previous work [7]. To transform an FMF into such a

trade-off or moderate BBA, a weighting factor is used, which

can make the trade-off BBA closer to the BBA obtained with

the uncertainty maximization or closer to the BBA obtained

with the uncertainty minimization. The weighting factor could

be determined by using prior information or user-specified,

which reflect the objective situation or meet subjective pref-

erences of users. We propose two “moderate” (i.e., balanced)

transformations in this paper. One transformation assigns the

weighting factors to the two BBAs obtained by optimization-

based transformations. Then, the weighted average of these

two BBAs is the trade-off BBA. The other transformation is

based on a constrained minimization problem with weighting

mechanism. The objective function is constructed by the

weighting factor and two degrees of dissimilarity between the

trade-off BBA (to determine) and the two BBAs obtained

by solving the uncertainty minimization and maximization.

According to the given FMF and the legitimate conditions

of a BBA, the constraints are constructed. Compared with

the transformations based on uncertainty optimization, our

transformations can avoid the extreme attitudinal bias and

allow users to choose the degree of a trade-off BBA according

to their preference.

This paper is an extended version of our previous pre-

liminary work published in [11]. Based on the preliminary

work, the main extended work and added value in this paper

is as follows. The limitations of available transformations of

an FMF into a BBA are analyzed. Examples are given to

illustrate the loss of information that might be caused by

the preselection of focal elements and the counter-intuitive

results that might be caused by the extreme attitudinal of

uncertainty. We use another more rational uncertainty measure,

which is designed without switching frameworks, to construct

the objective function in the transformations proposed in [7].

This is because the uncertainty measure Ambiguity Measure

(AM) used in [7] as the objective function has some disputes

and limitations, which are mentioned in [7]. Furthermore, to

compare our transformations with the others, some numerical

examples and a classification example are provided. Compared

with the average classification accuracy of available transfor-

mations, the moderate transformation has a better classification

performance.

The paper is organized as follows. After a brief introduction

of the basics for theory of belief functions and some basic

concepts of the fuzzy set theory in Section II, some traditional

transformations of an FMF into a BBA are reviewed and

their limitations are provided in Section III. In Section IV, the

transformations of an FMF into a trade-off BBA are presented.

In Section V, our transformations are compared with several

traditional approaches and related examples are provided. As

shown, these new transformations can bring better perfor-

mances than other transformations in a classification example.

Section VI concludes this paper.

II. PRELIMINARY

A. Basics for theory of belief functions

The theory of belief functions, also called Dempster-Shafer

theory [12], has been applied to information fusion [13]–

[15], decision making [16]–[19], pattern recognition [20]–

[22], etc. It is a powerful framework for uncertainty mod-

eling and reasoning. The Frame of Discernment (FOD) Θ =
{θ1, θ2, . . . , θn} is mutually exclusive and exhaustive under

the closed-world assumption. Based on the power set of Θ
(2Θ), a basic belief assignment (BBA, also called a mass

function) is defined as
∑

A⊆Θ

m(A) = 1, m(∅) = 0, (1)

where A ⊆ Θ is a proposition in the FOD. If ∀m(A) > 0, A
is called a focal element of m.

For all A ⊆ Θ the belief function Bel and plausibility

function Pl are defined as.

Bel(A) =
∑

B⊆A

m(B), (2)

Pl(A) =
∑

A∩B 6=∅
m(B). (3)

Bel(A) and Pl(A) are the lower and upper bound of the

probability of a focal element A, respectively. The belief

interval of A is represented by [Bel(A), Pl(A)] whose length

is used to describe the imprecision of A’s probability.

Let’s consider two independent BBAs: m1 and m2 on the

same FOD. Dempster’s rule [4] is defined as

mDemp(A) =

{

0, A = ∅,
∑

B∩C=A
m1(B)m2(C)

1−K
, A 6= ∅,

(4)

where K =
∑

B∩C=∅ m1(B)m2(C) denotes the conflict co-

efficient between two BBAs. Dempster’s rule applies only if

K 6= 1. When a high conflict between BBAs exists, Demp-

ster’s rule might bring counter-intuitive results [23]–[25].

Alternative rules [26]–[30] have been proposed.

B. Uncertainty measure of BBA and distance of evidence

The uncertainty measure is used for evaluating the degree

of uncertainty in a BBA. There are two types of uncertainty

for a BBA in belief functions including the discord and non-

specificity, which are collectively known as the ambiguity.

Various kinds of uncertainty measures in the theory of belief

functions have been proposed [31]–[38].

Let consider the FOD Θ = {θ1, θ2, . . . , θn}. One of the

total uncertainty measures is the AM [34] defined by

AM(m) =
∑

θ∈Θ

BetP(θ) log2 BetP(θ), (5)

where BetP(θ) is the pignistic probability of a BBA [39]

BetP(θ) =
∑

θ⊆Θ

m(A)

|A| . (6)
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|A| denotes the cardinality of a focal element A. Actually, in

AM, the Shannon entropy of the pignistic probability is used

to quantify the uncertainty. The range of AM is [0, log2(|Θ|)].
The distance-based total uncertainty measure (TUI) is based

on the Wasserstein distance [40] between belief intervals,

which is defined as follows:

dW([a1, b1], [a2, b2]) =
√

(a1 + b1
2

+
a2 + b2

2

)2

+
1

3

(b1 − a1
2

− b2 − a2
2

)2

. (7)

To be more specific, in TUI, [a1, b1] is replaced by

[Bel({θi}), Pl({θi})] and [a2, b2] is replaced by [0, 1]. Then,

TUI is defined as [36]

TUI(m) = 1−
√
3

n

n
∑

i=1

dW([Bel({θi}), Pl({θi})], [0, 1]). (8)

where
√
3 is for normalization. The belief interval [0, 1] is the

most uncertain case for a singleton.

Compared with AM, TUI is a total uncertainty measure that

is defined directly in the theory of belief functions without

switching frameworks from the probability theory to the theory

of belief functions. The range of TUI is [0, 1], where TUI = 0
represents the crispest case, i.e., m({θi}) = 1, while TUI = 1
represents the most uncertain case, i.e., m(Θ) = 1.

The distance of evidence is a metric for the degree of

dissimilarity between two BBAs, which can describe how “far”

it is from one BBA to the other. The distance of evidence is

crucial for many belief functions related applications. Jous-

selme’s distance between two BBAs m1 and m2 defined on

the same FOD is defined as [41]

dJ(m1,m2) =

√

1

2
(m1 −m2)TD(m1 −m2), (9)

where the elements D(A,B) of Jaccard’s matrix D are defined

as D(A,B) = |A ∩B|/|A ∪B| for A ⊆ Θ and B ⊆ Θ. 1/2 is

the normalization factor. dJ is a strict distance satisfying non-

negativity, non-degeneracy, symmetry and triangular inequality

[41]. There are also various types of distance measures that

have been proposed [42]–[47].

C. Fuzzy set theory

Fuzzy set theory [1] can be used to model the information

without a crisp definition or a strict limit (e.g., “the target is

fast”, “the target turns quickly”). A fuzzy set Af is defined

on a universe of discourse Θ, which is equivalent to the FOD

in belief functions. Af is represented by a Fuzzy Membership

Function (FMF) µAf
(θ). The value of µAf

(θ) denotes the

degree of membership for θ in Af . µAf
: Θ → [0, 1]; θ 7→

µAf
(θ) ∈ [0, 1]. The sum of µAf

might be equal to, greater

than or less than 1. For Θ = {θ1, θ2, . . . , θn}, a fuzzy measure

[48] is defined as

D(µAf
) =

1

n ln 2

n
∑

i=1

S(µAf
(θi)), (10)

where S(µAf
(θi)) is Shannon’s function defined by

S(x) =

{

−x lnx− (1 − x) ln(1 − x), 0 < x < 1,

0, x = 0, 1.
(11)

In the field of fuzzy set theory, there are many related

concepts including Z-number [49], intuitionistic fuzzy set

[50] and Pythagorean fuzzy set [51] which describe fuzzy

information from different aspects. Z-number [49] is defined

as an ordered pair of fuzzy numbers containing the reliability

of uncertain information and can be denoted as Z = (A,B).
For the definition of a Z-number, A is a possibility restriction

and B denotes the reliability of the possibility measure of A.

Intuitionistic Fuzzy Fet [50] (IFS) is extended based on

traditional fuzzy set. For θ ∈ Θ, an IFS can be represented

as A = {〈θ, µA(θ), νA(θ)〉|θ ∈ Θ}. µA(θ) : Θ → [0, 1] is the

membership function, which denotes the degree of belonging

θ to A. νA(θ) : Θ → [0, 1] is the non-membership function,

which denotes the degree of non-belonging θ to A. One has

0 ≤ µA(θ) + νA(θ) ≤ 1, and 1− µA(θ)− νA(θ) denotes the

degree of hesitation.

Pythagorean Fuzzy Set (PFS) [51] is a non-standard

fuzzy subset, which can be represented as P =
{〈θ, µP (θ), νP (θ)〉|θ ∈ Θ}. It satisfies 0 ≤ (µP (θ))

2 +
(νP (θ))

2 ≤ 1, where µP (θ) : Θ → [0, 1] denotes the

membership function, and νP (θ) : Θ → [0, 1] denotes the

non-membership function.

III. TRANSFORMATIONS OF FMF INTO BBA

Although fuzzy set theory and the theory of belief functions

are two different theoretical frameworks, there are relation-

ships between their basic concepts [52]. The relationships are

between the FMF and the singleton plausibility function or

singleton belief function, which are as follows.

A. Relationships between FMF and BBA

Consider the FOD is Θ = {θ1, θ2, . . . , θn}. The given FMF

is denoted by µ = [µ(θ1), µ(θ2), . . . , µ(θn)]. The correspond-

ing BBA is denoted by m. When
∑n

i=1
µ(θi) > 1, the FMF

is equivalent to a singleton plausibility function:

Pl({θi}) =
∑

{θi}∩A 6=∅
m(A) = µ(θi), ∀{θi} ⊆ Θ. (12)

When the FMF is equivalent to a singleton plausibility

function, it is also equivalent to a contour function.

When
∑n

i=1
µ(θi) < 1, it is equivalent to a singleton belief

function:

Bel({θi}) = m({θi}) = µ(θi), ∀{θi} ⊆ Θ. (13)

The detailed proof of two relationships is given in [52].

When
∑n

i=1
µ(θi) = 1, the FMF can be equivalent to either

the singleton plausibility or singleton belief, because when
∑n

i=1
µ(θi) = 1 Eq. (12) and Eq. (13) are equivalent. The

proof of their equivalence is in the appendix.

The transformation of an FMF into a BBA is a multi-answer

problem [7]. There exists 2n − 1 focal elements of the FOD

Θ = {θ1, θ2, . . . , θn}, except for ∅. That is to say, at most
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2n − 1 unknown variables need to be determined. However,

according to Eq. (12) or Eq. (13), one can obtain n linear

equations about the undetermined BBA. In addition, one has
∑

A⊆Θ
m(A) = 1, which is one of the legitimate conditions

of a BBA. Then, using the n+1 linear equations to determine

2n − 1 unknown variables is an under-determined problem

when n ≥ 2. Thus, the transformation of an FMF into a BBA

is a multi-answer (multi-solution) problem.

To deal with the multi-answer problem, various methods

have been proposed [5]–[10], which can be categorized into

two major types: the transformations with preselection of focal

elements, and transformations based on uncertainty optimiza-

tion.

B. Available transformations with preselection of focal ele-

ments

1) Normalization based transformation: Bi et al. [6] trans-

form an FMF into a BBA in the application of the text

categorization. They normalize the given FMF to determine

a unique BBA. Let the FOD be Θ = {θ1, θ2, . . . , θn}. The

given FMF is denoted by µ = [µ(θ1), µ(θ2), . . . , µ(θn)]. The

obtained BBA is denoted by mnorm. In the work of Bi et al.

[6], the BBA is determined as follows:

mnorm({θi}) = µ(θi)/

n
∑

j=1

µ(θj), (14)

where i = 1, 2, . . . , n. In the sequel, this transformation is

represented by “Tnorm”. By using Tnorm, one can obtain a

Bayesian BBA, i.e., the focal elements are only singletons.
2) Transformation based on α-cut approach:

Suppose that an FOD is Θ = {θ1, θ2, . . . , θn}.

µ = [µ(θ1), µ(θ2), . . . , µ(θn)] denotes the given FMF.

Florea et al. [5] transform an FMF into a BBA by

using α-cut approach, where µ should be sorted into

ascending order. Here, we represent the sort of µ as

0 = α0 < α1 < . . . < αM ≤ 1, where M ≤ |Θ|. αj

(j = 1, 2, . . . ,M ) is the value of the FMF. Then the BBA,

denoted by mα-cut, is determined as

mα-cut(Aj) = (αj − αj−1)/αM , (15)

where Aj = {θi ∈ Θ|µ(θi) ≥ αj}, i = 1, 2, . . . , n and

j = 1, 2, . . . ,M . In the sequel, the above transformation is

represented by “Tα-cut”. By using Tα-cut, the supposed structure

of focal elements for the obtained BBA is nested in order.

3) Transformation based on assigning mass to a focal

element triplet: Let the FOD be Θ = {θ1, θ2, . . . , θn}. The

given FMF is denoted by µ = [µ(θ1), µ(θ2), . . . , µ(θn)]. In

[10], the authors use a focal element triplet, which is a

structure defined as three focal elements B1, B2 and B3.

B1, B2 ⊆ Θ are singletons, and B3 is the total set (i.e., Θ).

First, the normalization of the given FMF is calculated using

m({θi}) = µ(θi)/
∑n

j=1
µ(θj) for i = 1, 2, . . . , n. Then, the

BBA represented by mtri can be obtained as follows:

mtri(B1) = m({θs}),mtri(B2) = m({θt}),
mtri(B3) = 1−m({θs})−m({θt}) (16)

where B1, B2 and B3 are defined by

B1 = θs = argmax
θi∈Θ

(m({θi})),

B2 = θt = arg max
θi∈Θ\{θs}

(m({θi})),

B3 = Θ.

This transformation is represented by “Ttri” in the sequel.

C. Transformations based on uncertainty optimization

In our previous work [7], the multi-answer problem is

formulated as a constrained optimization to obtain a unique

BBA without preselecting focal elements. We established two

transformations based on uncertainty optimization of an FMF

into a BBA, where the uncertainty measure AM (see Eq. (5))

is used as the objective function. When an FMF is given,

except for m(∅) 6= 0, at most 2n − 1 focal elements for the

undetermined BBA need to assign the mass. According to the

relationships between the given FMF and belief or plausibility

function, together with the BBA legitimate conditions, there

are n + 1 equations, which are used as the constraints.

When the given FMF is equivalent to a singleton plausibility

function, the corresponding constraint can also use the contour

function.

As analyzed in [7], using AM as the objective function has

some disputes and limitations because it actually quantifies

the randomness of the pignistic probability measure approx-

imating a BBA, so it does not capture all the aspects of

uncertainty (specially the ambiguity) represented by a BBA.

AM has also been criticized in [36]. TUI is a total uncertainty

measure without switching frameworks [36], which is based

on Wasserstein distance [33] (a strict distance). Therefore, we

replace AM with TUI (see Eq. (8)) as the objective function of

the transformations based on uncertainty optimization in this

paper.

1) Transformation based on uncertainty minimization:

The objective function of the transformation based on un-

certainty minimization is TUI. The constraints are mainly

based on the relationship defined Eq. (12) or Eq. (13). Sup-

pose that the given FMF defined on Θ = {θ1, θ2, . . . , θn} is

µ = [µ(θ1), µ(θ2), . . . , µ(θn)]. The BBA, denoted by mmin,

can be obtained as follows:

When
∑n

i=1
µ(θi) ≥ 1,

mmin = argmin
m

TUI(m)

= argmin
m

1−
√
3

n

n
∑

i=1

dW([Bel({θi}), Pl({θi})], [0, 1])

(17)

s.t.











∑

θi∩A 6=∅m(A) = µ(θi), ∀{θi} ⊆ Θ,
∑

A⊆Θ
m(A) = 1,

0 ≤ m(A) ≤ 1.
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When
∑n

i=1
µ(θi) ≤ 1,

mmin = argmin
m

TUI(m)

= argmin
m

1−
√
3

n

n
∑

i=1

dW([Bel({θi}), Pl({θi})], [0, 1])

(18)

s.t.











m({θi}) = µ(θi), ∀{θi} ⊆ Θ,
∑

A⊆Θ
m(A) = 1,

0 ≤ m(A) ≤ 1.

In the sequel, the transformation based on uncertainty

minimization is represented by “Tmin” for convenience. When
∑n

i=1
µ(θi) = 1, Eq. (17) and Eq. (18) are equivalent.

Therefore when
∑n

i=1
µ(θi) = 1, one can choose either Eq.

(17) or Eq. (18) to do the transformation. The proof of their

equivalence is in the Appendix.

2) Transformation based on uncertainty maximization:

The transformation based on the uncertainty maximization

has the same objective function as that in Tmin. The corre-

sponding constraints are also mainly based on the relationship

between the given FMF and the BBA to determine. For the

FOD Θ = {θ1, θ2, . . . , θn}, µ = [µ(θ1), µ(θ2), . . . , µ(θn)] is

the given FMF. The obtained BBA is represented by mmax.

The objective function and corresponding constraints are as

follows:

When
∑n

i=1
µ(θi) ≥ 1,

mmax = argmax
m

TUI(m)

= argmax
m

1−
√
3

n

n
∑

i=1

dW([Bel({θi}), Pl({θi})], [0, 1])

(19)

s.t.











∑

θi∩A 6=∅m(A) = µ(θi), ∀{θi} ⊆ Θ,
∑

A⊆Θ
m(A) = 1,

0 ≤ m(A) ≤ 1.

When
∑n

i=1
µ(θi) ≤ 1,

mmax = argmax
m

TUI(m)

= argmax
m

1−
√
3

n

n
∑

i=1

dW([Bel({θi}), Pl({θi})], [0, 1])

(20)

s.t.











m({θi}) = µ(θi), ∀{θi} ⊆ Θ,
∑

A⊆Θ
m(A) = 1,

0 ≤ m(A) ≤ 1.

In the sequel, the transformation based on uncertainty

maximization is represented by Tmax for convenience. When
∑n

i=1
µ(θi) = 1, one can choose either Eq. (19) or Eq. (20)

to do the transformation, because when
∑n

i=1
µ(θi) = 1, Eq.

(19) and Eq. (20) are equivalent. The proof of their equivalence

is in the Appendix. Although the available transformations

can transform a given FMF into a BBA, there are still some

limitations and problems described in the next section.

D. Limitations of available transformations

1) Limitations of transformations with preselection of focal

elements: As referred previously, to deal with the under-

determined problem for the transformation of an FMF into a

BBA, preselecting focal elements or solving the optimization

problem are used. Compared with solving the optimization

problem (Tmin and Tmax), preselecting the focal elements

without sufficient witness might bring the loss of information.

Since the focal elements are preselected, the obtained BBA can

only assign the mass to the focal elements specified beforehand

(e.g., as with Tnorm, Tα-cut or Ttri). For the BBA obtained by

using Tnorm, there are no compound focal elements. The BBA

obtained by using Tα-cut or Ttri has a specific structure of focal

elements for the given FMF. In addition, for different FMFs

(such as in Example 1), the same BBAs might be obtained by

using Tnorm, Tα-cut or Ttri.

2) Example 1: Let the FOD be Θ = {θ1, θ2, θ3}. There are

two FMFs µ1 = [0.3, 0.2, 0.1] and µ2 = [0.9, 0.6, 0.3]. The

BBAs obtained by Tnorm are as follows:

µ1 : m1({θ1}) = 1/2,m1({θ2}) = 1/3,m1({θ3}) = 1/6,

µ2 : m2({θ1}) = 1/2,m2({θ2}) = 1/3,m2({θ3}) = 1/6.

Using Tα-cut, the BBAs obtained from µ1 and µ2 are:

µ1 : m3({θ1}) = 1/3,m3({θ1, θ2}) = 1/3,m3(Θ) = 1/3,

µ2 : m4({θ1}) = 1/3,m4({θ1, θ2}) = 1/3,m4(Θ) = 1/3.

Using Ttri, the BBAs obtained from µ1 and µ2 are:

µ1 : m5({θ1}) = 1/2,m5({θ2}) = 1/3,m5(Θ) = 1/6,

µ2 : m6({θ1}) = 1/2,m6({θ2}) = 1/3,m6(Θ) = 1/6.

One can see that m1 = m2, m3 = m4 and m5 = m6.

This is not that rational. µ1 and µ2 are completely different

FMFs and have different uncertainty degrees. Using Eq. (10)

to calculate the degrees of fuzziness for µ1 and µ2, one can

verify that D(µ1) = 0.6907 6= D(µ2) = 0.7737. That is to

say, given two FMFs with different degrees of fuzziness, the

obtained BBAs are respectively identical by using Tnorm, Tα-cut

or Ttri.

3) Limitations of transformations based on uncertainty op-

timization: The optimization-based transformations take every

possible focal element into consideration to assign the mass,

which avoid preselecting the focal elements and deal with

multi-answer problem by solving optimization problem. How-

ever, in the process of solving optimization problem, the two

transformations based on uncertainty optimization consider the

minimal and maximal uncertainty degrees respectively, which

might lead to extreme attitudinal bias on the uncertainty degree

and bring “one-sided” and counter-intuitive results.
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4) Example 2: Suppose that the given FMF

is µ3 = [0.58, 0.5, 0.42]. The given FMF satisfies
∑3

i=1
µ(θ1) = 1.5 > 1. Using Eq. (19), the BBA obtained by

Tmax is

µ3 :m7({θ1}) = 0.09,m7({θ2}) = 0.17,

m7({θ1, θ2}) = 0.32,m7({θ3}) = 0.25,

m7({θ1, θ3}) = 0.16,m7(Θ) = 0.01.

One can calculate pignistic probability of m7 with Eq. (6).

BetP7(θ1) = 1/3,BetP7(θ2) = 1/3,BetP7(θ3) = 1/3.

As can be seen,

BetP7(θ1) = BetP7(θ2) = BetP7(θ3).

However, the values of µ3 have obvious difference and thus

this equation is not that rational. When only emphasizing the

maximal uncertainty, a certain degree of difference might be

ignored.

Suppose that the given FMF is µ4 = [0.5001, 0.5, 0.4999],
the BBA obtained by Tmin is as follows:

µ4 :m8({θ1}) = 0.5,m8({θ1, θ2}) = 0.0001,

m8({θ2, θ3}) = 0.4999.

The corresponding pignistic probability is BetP8(θ1) ≈ 0.5,

BetP8(θ2) ≈ 0.25 and BetP8(θ3) ≈ 0.25. When only empha-

sizing the minimal uncertainty, BetP8(θ1) is overemphasized.

The optimization-based transformations emphasize the ex-

treme cases of uncertainty and might bring counter-intuitive

results. In fact, a trade-off, i.e., a more “moderate” (or bal-

anced) BBA, is more natural than the obtention of BBA based

on extreme (min, or max) strategies. To avoid being “one-

sided”, we propose “moderate” transformations to obtain the

trade-off BBA with an uncertainty between the minimal and

maximal uncertainty as presented in the next section.

IV. MODERATE TRANSFORMATIONS WITH WEIGHTING

FACTOR

To obtain a BBA with a trade-off or moderate uncertainty

degree, one can use weighting factors, which can be user-

specified or determined by some prior information. Consider-

ing different preference or requirements of users, the value of

the weighting factor can be determined according to the prior

information or directly determined by the user. We use the

weighting factor to transform an FMF into a trade-off BBA

based on the two BBAs mmin and mmax, where mmin is

obtained by Tmin, and mmax is obtained by Tmax. Let β
(0 ≤ β ≤ 1) be the weighting factor, the trade-off BBA

satisfies the following conditions:

(1) When β → 0, the trade-off BBA becomes closer to mmin;

(2) When β → 1, the trade-off BBA becomes closer to mmax.

Meanwhile, the trade-off BBA’s corresponding singleton

belief or singleton plausibility should be equivalent to the

given FMF. Here, we propose two transformations of an FMF

into such a trade-off BBA.

A. Weighted average based transformation

Consider the frame of discernment Θ = {θ1, θ2, . . . , θn}.

The given FMF is µ = [µ(θ1), µ(θ2), . . . , µ(θn)]. First, we

calculate mmin and mmax by Tmin and Tmax, respectively.

A trade-off BBA, denoted by mwa, is a weighted average of

mmin and mmax as shown in Eq. (21):

mwa = (1− β)mmin + βmmax, (21)

where A ⊆ Θ. In the sequel, the transformation based on the

Weighted Average (WA) is represented by “Twa”.

The trade-off BBA obtained by Eq. (21) satisfies the follow-

ing legitimate conditions of a BBA:
∑

A⊆Θ

mwa(A) = 1, and 0 ≤ mwa(A) ≤ 1, ∀A ⊆ Θ.

In addition, the singleton belief or singleton plausibility for

the trade-off BBA obtained by Twa is equivalent to the given

FMF. When
∑n

i=1
µ(θi) ≥ 1, both mmin and mmax satisfy

Eq. (12). Then, we have Plmin({θi}) = Plmax({θi}) = µ(θi),
i = 1, 2, . . . , n, where Plmin and Plmax are the plausibility

functions for mmin and mmax, respectively. According to Eq.

(21), one can deduce that

Plwa({θi}) =
∑

{θi}∩A 6=∅
mwa(A)

=
∑

{θi}∩A 6=∅
(1 − β)mmin(A) + βmmax(A)

= (1− β)
∑

{θi}∩A 6=∅
mmin(A)

+ β
∑

{θi}∩A 6=∅
mmax(A) (22)

= (1− β)Plmin({θi}) + βPlmax({θi})
= (1− β)µ(θi) + βµ(θi) = µ(θi)

When
∑n

i=1
µ(θi) ≤ 1, both mmin and mmax satisfy Eq.

(13). Then, we have Belmin({θi}) = Belmax({θi}) = µ(θi),
i = 1, 2, . . . , n, where Belmin and Belmax are the plausibility

functions for mmin and mmax, respectively. According to Eq.

(21), one can deduce that

Belwa({θi}) =
∑

A={θi}
mwa(A)

=
∑

A={θi}
(1− β) ·mmin(A) + β ·mmax(A)

= (1− β) ·
∑

A={θi}
mmin(A)

+ β ·
∑

A={θi}
mmax(A) (23)

= (1− β) · Belmin({θi}) + β · Belmax({θi})
= (1− β) · µ(θi) + β · µ(θi) = µ(θi)

According to Eq. (21), the trade-off BBA obtained by

using Twa conforms to the conditions aforementioned at the
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beginning of Section IV. When β → 0, mwa approximates to

mmin. When β → 1, mwa approximates to mmax.

Beside the directly weighted approach, we can also use

degree of dissimilarity between the trade-off BBA and the

BBA obtained by using mmin or mmax. Then, the weighting

factor can influence the relationship between two degrees of

dissimilarity to obtain the trade-off BBA.

B. User-specified optimization based transformation

We use the distance of evidence between two BBAs in

this transformation. A trade-off BBA to determine is repre-

sented by muo, where the subscript “uo” denotes the “user-

specified optimization”. mmin is obtained by Tmin. mmax

is obtained by Tmax. d(muo,mmin) denotes the distance

of evidence between muo and mmin, while d(muo,mmax)
denotes the distance of evidence between muo and mmax.

When d(muo,mmax) is larger, muo is closer to mmin. When

d(muo,mmin) is larger, muo is closer to mmax.

Then, we can use the weighting factor β (0 ≤ β ≤ 1) to

influence how close muo is to mmin or mmax. The relation-

ship between two distances of evidence (i.e., d(muo,mmin)
and d(muo,mmax)) is defined based on β as follows:

d(muo,mmin)

d(muo,mmax)
=

β

1− β
(24)

Here, β can be regarded as the weight of d(muo,mmin),
and 1 − β can be regarded as the weight of d(muo,mmax).
The visualized illustration of Eq. (24) can be shown in Fig. 1.

Figure 1. Illustration of Eq. (24).

As we see in Fig. 1, when the value of β gradually

decreases, d(muo,mmin) gradually decreases. Meanwhile,

the value of d(muo,mmax) gradually increases. Then muo

becomes similar to mmin. Conversely, when the value of β
increases gradually, the value of d(muo,mmin) increases and

the value of d(muo,mmax) decreases gradually. Then muo

becomes similar to mmax. However, a BBA strictly satisfied

Eq. (24) might not always exist. Therefore, we rewrite Eq.

(24) as

obj(muo) = [(1− β) · d(muo,mmin)− β · d(muo,mmax)]
2

(25)

where the value range of β can be [0, 1].
Although Eq. (24) cannot strictly hold sometime, so long as

the value of obj(muo) is small enough, Eq. (24) holds approx-

imately. Then, we establish a minimization problem, whose

objective function is Eq. (25), to obtain the trade-off BBA. The

constraints of this minimization problem are mainly based on

the given FMF. Consider an FOD Θ = {θ1, θ2, . . . , θn}, the

given FMF is represented by µ = [µ(θ1), µ(θ2), . . . , µ(θn)].
Here, we use Jousselme’s distance (see Eq. (9)) to construct

the objective function.

When
∑n

i=1
µ(θi) ≥ 1,

muo = argmin
m

[(1 − β) · dJ (m,mmin)− β · dJ(m,mmax)]
2

s.t.











∑

θi∩A 6=∅ m(A) = µ(θi), ∀{θi} ⊆ Θ,
∑

A⊆Θ
m(A) = 1,

0 ≤ m(A) ≤ 1.

(26)

When
∑n

i=1
µ(θi) ≤ 1,

muo = argmin
m

[(1 − β) · dJ (m,mmin)− β · dJ(m,mmax)]
2

s.t.











m({θi}) = µ(θi), ∀{θi} ⊆ Θ,
∑

A⊆Θ
m(A) = 1,

0 ≤ m(A) ≤ 1.

(27)

In the sequel, the user-specified optimization-based trans-

formation is represented by Tuo for convenience. When
∑n

i=1
µ(θi) = 1, one can choose either Eq. (26) or Eq. (27)

to do the transformation, because when
∑n

i=1
µ(θi) = 1, Eq.

(26) and Eq. (27) are equivalent. The proof of their equivalence

is in the Appendix.

We find that using different evidence distances to construct

the objective function might transform a given FMF into

different BBAs. But the difference between these BBAs is rela-

tively small. Therefore, we use Jousselme’s distance, one of

the representative evidence distances, as the objective function

of Tuo in this paper.

For convenience, we list all the transformations aforemen-

tioned and their abbreviations in Table 1 together with the

symbols of corresponding BBAs obtained.

Table I
TRANSFORMATIONS AND THEIR ABBREVIATIONS.

Approach Description of Transformation BBA

Tnorm Normalization based transformation mnorm

cf Eq. (14)
Tα-cut Transformation based on α-cut mα-cut

cf Eq. (15)
Ttri Transformation based on assigning mass mtri

to a focal element triplet, cf Eq. (16)
Tmin Transformation based on uncertainty minimization mmin

cf Eq. (17) or Eq. (18)
Tmax Transformation based on uncertainty maximization mmax

cf Eq. (19) or Eq. (20)
Twa Weighted average based transformation mwa

cf Eq. (21)
Tuo User-specified optimization based transformation muo

cf Eq. (26) or Eq. (27)
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C. Example 3 for illustration

Here, an illustrative example to show the computation

procedure of our transformations is provided. Let the FOD be

Θ = {θ1, θ2, θ3}. The given FMF is µ(θ1) = 0.9, µ(θ2) = 0.7,

µ(θ3) = 0.3. The weighting factor is β, (0 ≤ β ≤ 1). The

possible focal elements for this example are A1 = {θ1},

A2 = {θ2}, A3 = {θ1, θ2}, A4 = {θ3}, A5 = {θ1, θ3},

A6 = {θ2, θ3}, and A7 = Θ.

First, mmin and mmax are calculated. Using Tmin and Tmax

we have

mmin(A1) = 0.3

mmin(A3) = 0.4

mmin(A6) = 0.1

mmin(A7) = 0.2

mmax(A1) = 0.05

mmax(A2) = 0.03

mmax(A3) = 0.62

mmax(A4) = 0.07

mmax(A5) = 0.18

mmax(A7) = 0.05

Second, using Twa, mwa can be obtained. For instance, if

we choose β = 0.8, then we have

mwa(A1) = (1− 0.8)× 0.3 + 0.8× 0.05 = 0.1

mwa(A2) = 0.8× 0.03 = 0.024

mwa(A3) = (1− 0.8)× 0.4 + 0.8× 0.62 = 0.576

mwa(A4) = 0.8× 0.07 = 0.056

mwa(A5) = 0.8× 0.18 = 0.144

mwa(A6) = (1− 0.8)× 0.1 = 0.02

mwa(A7) = (1− 0.8)× 0.2 + 0.8× 0.05 = 0.08

According to
∑3

i=1
µ(θi) = 1.9 > 1, the given FMF is

equivalent to the singleton plausibility. For the user-specified

optimization-based transformations, Eq. (26) is used to trans-

form the given FMF into a trade-off BBA.

muo = argmin
m

[(1 − β) · dJ (m,mmin)− β · dJ(m,mmax)]
2

s.t.































m(A1) +m(A3) +m(A5) +m(A7) = µ(θ1) = 0.9

m(A2) +m(A3) +m(A6) +m(A7) = µ(θ2) = 0.6

m(A4) +m(A5) +m(A6) +m(A7) = µ(θ3) = 0.3
∑7

i=1
m(Ai) = 1,

0 ≤ m(Ai) ≤ 1, i = 1, 2, . . . , 7

The trade-off BBAs can be obtained by using Tuo. Here,

β = 0.8 and

muo(A1) = 0.1013

muo(A2) = 0.0390

muo(A3) = 0.5597

muo(A4) = 0.0610

muo(A5) = 0.1377

muo(A7) = 0.1013

As expected, when β = 0.8, mwa and muo are closer to

mmax, respectively.

V. EXAMPLES

We use different approaches to transform an FMF into a

BBA in this section. Some numerical examples are provided

to illustrate the difference between different transformations

(including all the transformations mentioned in Table I). In

addition, a classification example is provided to compare our

transformations with other transformations.

A. Example 4

This example is a revisiting of the two examples in III-D2

and III-D4 with Θ = {θ1, θ2, θ3}. As mentioned above,

using transformations with preselection of focal elements

might transform different FMFs (e.g., µ1 = [0.3, 0.2, 0.1] and

µ2 = [0.9, 0.6, 0.3] in Example 1) into the same BBA. Then

we need to know the results of using transformations based on

uncertainty optimization and moderate transformations. Here,

we use Tmin, Tmax, Twa and Tuo to transform µ1 and µ2

into BBAs, respectively. The corresponding obtained BBAs

are listed in Table II and Table III, respectively. The results of

moderate transformations (i.e., Twa and Tuo) are obtained with

β = 0.7.

According to the results of each transformation listed in

Tables II and III, it can be seen that the BBAs transformed

from µ1 and µ2 are different. Their degrees of uncertainty

are different. That is, using optimization-based transformations

can avoid transforming different FMFs into the same BBAs

due to the preselection of focal elements. Although only the

results of moderate transformations with β = 0.7 are listed,

the trade-off BBAs transformed from µ1 and µ2 would be

different at any value of β.

For µ3 = [0.58, 0.5, 0.42] and µ4 = [0.5001, 0.5, 0.4999] in

Example 2, the aforementioned results in Section III-D4 show

that using transformations based on uncertainty optimization

might lead to extreme attitudinal bias on the uncertainty degree

during the process of solving optimization problem and bring

counter-intuitive results. Can moderate transformations avoid

such a bias?

In this example, we use the moderate transformations to

obtain BBAs from µ3 and µ4, respectively. Then, we calculate

the corresponding pignistic probability. The trade-off BBAs

transformed from µ3 and µ4 are listed in Table IV and Table

V, respectively. Here, β = 0.7.
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Table II
BBAS TRANSFORMED FROM µ1 .

Approach BBA TUI

Tmin mmin(A1) = 0.3, mmin(A2) = 0.2, mmin(A3) = 0.4, mmin(A4) = 0.1 0.4997
Tmax mmax(A1) = 0.3, mmax(A2) = 0.2, mmax(A4) = 0.1, mmax(A7) = 0.4 0.6318
Twa mwa(A1) = 0.3, mwa(A2) = 0.2, mwa(A3) = 0.12, mwa(A4) = 0.1, mwa(A7) = 0.28 0.5923
Tuo muo(A1) = 0.3, muo(A2) = 0.2, muo(A3) = 0.12, muo(A4) = 0.1, 0.5795

muo(A5) = 0.0335, muo(A6) = 0.1849, muo(A7) = 0.1779

Table III
BBAS TRANSFORMED FROM µ2 .

Approach BBA TUI

Tmin mmin(A1) = 0.4, mmin(A3) = 0.3, mmin(A6) = 0.1, mmin(A7) = 0.2 0.5131
Tmax mmax(A1) = 0.1, mmax(A2) = 0.0364, mmax(A3) = 0.5636, mmax(A4) = 0.0636, mmax(A5) = 0.2364 0.6155
Twa mwa(A1) = 0.19, mwa(A2) = 0.0255, mwa(A3) = 0.4845, mwa(A4) = 0.0445, 0.5896

mwa(A5) = 0.1655, mwa(A6) = 0.03, mwa(A7) = 0.06
Tuo muo(A1) = 0.1922, muo(A2) = 0.0490, muo(A3) = 0.4588, muo(A4) = 0.0506, 0.5931

muo(A5) = 0.1572, muo(A6) = 0.0005, muo(A7) = 0.0917

!htp]
Table IV

BBAS TRANSFORMED FROM µ3 .

Approach BBA [BetP(θ1),BetP(θ2),BetP(θ3)]
Twa mwa(A1) = 0.297, mwa(A2) = 0.1361, mwa(A3) = 0.1469, [0.4233, 0.3029, 0.2738]

mwa(A4) = 0.1579, mwa(A5) = 0.0451, mwa(A6) = 0.126, mwa(A7) = 0.091
Tuo muo(A1) = 0.2283, muo(A2) = 0.2355, muo(A3) = 0.1162, muo(A4) = 0.0747, [0.3977, 0.3613, 0.2410]

muo(A5) = 0.1969, muo(A6) = 0.1098, muo(A7) = 0.0386

Table V
BBAS TRANSFORMED FROM µ4 .

Approach BBA [BetP(θ1),BetP(θ2),BetP(θ3)]
Twa mwa(A1) = 0.3385, mwa(A2) = 0.0885, mwa(A3) = 0.0731, [0.4167, 0.2917, 0.2916]

mwa(A4) = 0.0886, mwa(A5) = 0.0729, mwa(A6) = 0.3228, mwa(A7) = 0.0156
Tuo muo(A1) = 0.3584, muo(A2) = 0.1393, muo(A3) = 0.0024, muo(A4) = 0.0741, [0.4173, 0.3077, 0.2750]

muo(A5) = 0.0675, muo(A6) = 0.2864, muo(A7) = 0.0719

As can be seen in Table IV, the three values of the pignistic

probability of each trade-off BBA are different instead of

BetP7(θ1) = BetP7(θ2) = BetP7(θ3) in Example 2. Using the

moderate transformation can obtain a trade-off or balanced

BBA to express even a small difference of the given FMF

(e.g., µ3) and bring a rational result.

According to the results listed in Table V, there is no

overemphasis on BetP(θ1) (the pignistic probability in Exam-

ple 2 is BetP8(θ1) = 0.5, BetP8(θ2) = 0.25 and BetP8(θ3) =
0.25. One can transform such an FMF like µ4 into a trade-

off BBA by using the moderate transformations to avoid the

overemphasis caused by “one-sidedness” on the uncertainty

degree. Even if the difference of values of µ4 is tiny, they are

different and there exists µ4(θ1) > µ4(θ2) > µ4(θ3). As can

be seen in Table V, the trade-off BBAs obtained by using Twa

and Tuo can represent the tiny difference between the values

of µ4, respectively.

B. Example 5

This example is a revisiting of the illustrative example

(Example 3) in Section IV-C. In addition to using the moderate

transformations, we also use Tnorm, Tα-cut and Ttri to transform

the given FMF µ = [0.9, 0.7, 0.3] into a BBA. The obtained

BBAs are listed in Table VI. Furthermore, the trade-off BBAs

obtained by using moderate transformations with β = 0.4 (we

did use β = 0.8 in Section IV-C) are listed in the same table.

The corresponding degrees of uncertainty are also listed.

Furthermore, we provide the degrees of uncertainty for the

trade-off BBAs obtained with β = 0.8 as follows:

TUI(mmin) = 0.5785

TUI(mmax) = 0.6532

TUI(mwa) = 0.6458

TUI(muo) = 0.6484

As shown in Table VI, mnorm only has singleton focal

elements. The structure of focal elements for mα-cut is nested

and that for mtri depends on the ordering of values of the given

FMF. According to the results in Example 3 and Table VI,

using the uncertainty optimization based transformations and

moderate transformations can consider more focal elements

to assign mass. Moreover, the focal element structure of the
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obtained BBA is not fixed. When the FMF is given, using the

transformations with preselection of focal elements can only

obtain a BBA with a certain structure of focal elements.

For the moderate transformations, the degrees of uncertainty

of the trade-off BBAs are both between the minimal and

maximal degrees of uncertainty (i.e., the degrees of uncertainty

of mmin and mmax). When β = 0.4, the trade-off BBAs

are closer to mmin. Meanwhile, for the degree of uncertainty

of the trade-off BBA, it is closer to the minimal degree of

uncertainty. When β = 0.8, the trade-off BBAs are closer to

mmax. Contrary to the situation when β = 0.4, the degrees of

uncertainty of the trade-off BBA are closer to the maximal

degree of uncertainty when β = 0.8. It can be indicated

that the obtained trade-off BBAs satisfy the conditions for

the trade-off BBA mentioned at the beginning of Section IV.

In addition, although there exist TUI(mnorm) < TUI(mmin),
TUI(mα-cut) < TUI(mmin) and TUI(mtri) < TUI(mmin),
the three BBAs mnorm, mα-cut and mtri do not satisfy the

relationship as Eq. (12).

C. Example 6

Let the FOD be Θ = {θ1, θ2, θ3, θ4}. The given FMF is

µ(θ1) = 0.4, µ(θ2) = 0.3, µ(θ3) = 0.2, and µ(θ4) = 0.1.

The weighting factor is β, (0 ≤ β ≤ 1). The possible focal

elements of the obtained BBAs for this example are denoted as

follows: A1 = {θ1}, A2 = {θ2}, A3 = {θ1, θ2}, A4 = {θ3},

A5 = {θ1, θ3}, A6 = {θ2, θ3}, A7 = {θ1, θ2, θ3}, A8 =
{θ4}, A9 = {θ1, θ4}, A10 = {θ2, θ4}, A11 = {θ1, θ2, θ4},

A12 = {θ3, θ4}, A13 = {θ1, θ3, θ4}, A14 = {θ2, θ3, θ4}, and

A15 = Θ.

Using all the transformations in Table I, one can transform

the given FMF into a BBA. According to
∑4

i=1
µ(θi) = 1,

the FMF is equivalent to the singleton plausibility or singleton

belief. The proof of this equivalent is in the appendix. The ob-

tained BBAs and corresponding values of uncertainty degrees

are listed in Table VII. For the moderate transformations, we

just list the corresponding BBAs for β = 0.1 and β = 0.9.

In Table VII, mnorm only has singleton focal elements.

mα-cut has four nested focal elements. No matter how many

elements the FOD contains, mtri always has only three focal

elements. According the criterion of preselection of each

transformation with preselection of focal elements and the

values of the given FMF, the corresponding BBA has a

specific structure of focal elements. As can be seen, mmin,

mmax, mwa and muo in Table VII are identical. No matter

what the value of β is, no matter which transformation is

used, the trade-off BBAs are identical. This is normal in this

particular example because mmin = mmax. Although there exist

TUI(mα-cut) > TUI(mmax) and TUI(mtri) > TUI(mmax), the

two BBAs mα-cut and mtri do not satisfy the relationship as

Eq. (12) or Eq. (13).

D. Example 7

Let the FOD be Θ = {θ1, θ2, θ3}. The given FMF is

µ(θ1) = 0.3, µ(θ2) = 0.3, and µ(θ3) = 0.3. The weighting

factor is β, (0 ≤ β ≤ 1). The possible focal elements of the

obtained BBAs for this example are denoted as follows:

A1 = {θ1}, A2 = {θ2}, A3 = {θ1, θ2}, A4 = {θ3},

A5 = {θ1, θ3}, A6 = {θ2, θ3}, and A7 = Θ.

We use all the transformations in Table I to transform the

given FMF into a BBA. The obtained BBAs and correspond-

ing values of uncertainty are listed in Table VIII. According

to
∑3

i=1
µ(θi) = 0.9 < 1, the given FMF is equivalent to the

singleton belief. For Twa and Tuo, we just list the corresponding

results for β = 0.2 and β = 0.6.

As shown in Table VIII, mnorm only has singleton focal

elements and the mass values are the same for all singleton

focal elements. By using Tα-cut, Θ is the only focal element

of the obtained BBA. This is because µ(θ1) = µ(θ2) =
µ(θ3) = 0.3. All mass values assigned to the total set

means the most uncertain case. For mtri, mtri(A1) = 0, but

mtri(A2) = mtri(A4) = 1/3. According to A2 = {θ2} and

A4 = {θ3}, there exists overemphasis on {θ2} and {θ3}.

If the given FMF has more than two identical values and

uses Ttri to obtain a BBA, the BBA would overemphasize

two singletons when assigning mass, i.e., suppose there are

more than two same values in the given FMF (e.g., µ(θ1) =
µ(θ2) = µ(θ3) = µ(θ4) = µ(θ5)), two of them (e.g., µ(θ1)
and µ(θ2)) are overemphasized. This is not that rational.

More focal elements are considered to assign mass by using

transformations based on uncertainty optimization and mod-

erate transformations. However, mmin overemphasize A3 =
{θ1, θ2} and do not assign mass to other compound focal ele-

ments. Using moderate transformations can avoid overempha-

sizing a certain focal element. In this example, mwa = muo.

When β = 0.2, mwa and muo are closer to mmin, respectively.

The values of TUI for the corresponding trade-off BBAs are

between the minimal and maximal values of TUI and closer

to TUI(mmin). When β = 0.6, the trade-off BBAs are closer

to mmax. The values of uncertainty degrees are between the

minimal and maximal degrees of uncertainty and closer to

TUI(mmax).
In addition, although some of the degrees of uncertainty of

the BBAs obtained by using transformations with preselection

of focal elements are greater (or less) than the maximal degree

of uncertainty (or the minimal degree of uncertainty), the three

BBAs mnorm, mα-cut and mtri do not satisfy the relationship

as Eq. (13).

E. Example 8

To verify the effectiveness for the moderate transformations

of an FMF into a trade-off BBA, we compare the average

accuracy of 300-run experiments of all the mentioned trans-

formations in a classification problem. Note that we only

aim to show the impact of different transformations on the

classification results, rather than improve the classification

accuracy.

We use three datasets of open UCI database [53] including

iris dataset, wheat seeds dataset and wine dataset. Iris dataset

has 150 samples including 3 classes, each of which has 50

samples. Every sample has 4 features and all data of 4 features

for 150 samples are complete. Wheat seeds dataset has 210
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Table VI
OBTAINED BBAS IN EXAMPLE 5.

Approach BBA TUI

Tnorm mnorm(A1) = 0.4737, mnorm(A2) = 0.3684, mnorm(A4) = 0.1579 0.3910
Tα-cut mα-cut(A1) = 2/9, mα-cut(A3) = 4/9, mα-cut(A7) = 1/3 0.5667
Ttri mtri(A1) = 0.4737, mtri(A2) = 0.3684, mtri(A7) = 0.1579 0.4321
Twa with β = 0.4 mwa(A1) = 0.2, mwa(A2) = 0.012, mwa(A3) = 0.488, mwa(A4) = 0.028 0.6154

mwa(A5) = 0.072, mwa(A6) = 0.06, mwa(A7) = 0.14
Tuo with β = 0.4 muo(A1) = 0.2061, muo(A2) = 0.0578, muo(A3) = 0.4361, muo(A4) = 0.0168, 0.6180

muo(A5) = 0.0771, muo(A6) = 0.0255, muo(A7) = 0.1806

Table VII
OBTAINED BBAS IN EXAMPLE 6.

Approach BBA TUI

Tnorm mnorm(A1) = 0.4, mnorm(A2) = 0.3, mnorm(A4) = 0.2, mnorm(A8) = 0.1 0.3218
Tα-cut mα-cut(A1) = 0.25, mα-cut(A3) = 0.25, mα-cut(A7) = 0.25, mα-cut(A15) = 0.25 0.5625
Ttri mtri(A1) = 0.4, mtri(A2) = 0.3, mtri(A15) = 0.2 0.4697
Tmin mmin(A1) = 0.4, mmin(A2) = 0.3, mmin(A4) = 0.2, mmin(A8) = 0.1 0.3218
Tmax mmax(A1) = 0.4, mmax(A2) = 0.3, mmax(A4) = 0.2, mmax(A8) = 0.1 0.3218
Twa with β = 0.1 mwa(A1) = 0.4, mwa(A2) = 0.3, mwa(A4) = 0.2, mwa(A8) = 0.1 0.3218
Twa with β = 0.9 mwa(A1) = 0.4, mwa(A2) = 0.3, mwa(A4) = 0.2, mwa(A8) = 0.1 0.3218
Tuo with β = 0.1 muo(A1) = 0.4, muo(A2) = 0.3, muo(A4) = 0.2, muo(A8) = 0.1, 0.3218
Tuo with β = 0.9 muo(A1) = 0.4, muo(A2) = 0.3, muo(A4) = 0.2, muo(A8) = 0.1, 0.3218

Table VIII
OBTAINED BBAS IN EXAMPLE 7.

Approach BBA TUI

Tnorm mnorm(A1) = 1/3, mnorm(A2) = 1/3, mnorm(A4) = 1/3, mnorm(A8) = 0.1 0.4226
Tα-cut mα-cut(A7) = 1 1
Ttri mtri(A2) = 1/3, mtri(A4) = 1/3, mtri(A7) = 1/3 0.5556
Tmin mmin(A1) = 0.3, mmin(A2) = 0.3, mmin(A3) = 0.1, mmin(A4) = 0.3 0.4508
Tmax mmax(A1) = 0.3, mmax(A2) = 0.3, mmax(A4) = 0.3, mmax(A7) = 0.1 0.4804
Twa with β = 0.2 mwa(A1) = 0.3, mwa(A2) = 0.3, mwa(A3) = 0.08, mwa(A4) = 0.3, mwa(A7) = 0.02 0.4568
Twa with β = 0.6 mwa(A1) = 0.3, mwa(A2) = 0.3, mwa(A3) = 0.04, mwa(A4) = 0.3, mwa(A7) = 0.06 0.4687
Tuo with β = 0.2 muo(A1) = 0.3, muo(A2) = 0.3, muo(A3) = 0.08, muo(A4) = 0.3, muo(A7) = 0.02 0.4568
Tuo with β = 0.6 muo(A1) = 0.3, muo(A2) = 0.3, muo(A3) = 0.04, muo(A4) = 0.3, muo(A7) = 0.06 0.4687

samples including 3 classes and each of which has 70 samples.

Every sample has 7 features and all data of 7 features for 210

samples are complete. Wine dataset has 178 samples including

3 classes, each of which has 59, 71 and 48 samples. Every

sample has 13 features and all data of 13 features for 178

samples are complete. The transformation process is given.

In this example, only iris dataset is used to illustrate the

detailed process of classification and the four features are

denoted by f1, f2, f3 and f4. We randomly select 70% of

samples from each class as samples of the training set and

the test set consist of the rest samples. In the training set, the

minimal values, average values and maximal values of each

feature for each class are used as parameters. Then, the FMF

can be defined as follows:

µ(θj) =











xi−mini

avei−mini
, for mini ≤ xi ≤ avei,

xi−maxi
avei−maxi

, for avei ≤ xi ≤ maxi,

0, otherwise.

(28)

where i = 1, 2, 3, 4. mini is the minimal value of Class j (θj ,

j = 1, 2, 3). avei is the average value of the Class j. maxi is

the maximal value of the Class j.

In Table IX, the corresponding parameters of training set

are listed. The test sample, randomly selected from the test

set, is x = [5.6, 3, 4.5, 1.5], which belongs to Class 2 (i.e. θ2).

According to the test sample and the corresponding parameters

listed in Table IX, the triangular fuzzy membership functions

of each feature for each class are shown in Fig. 2.

According to Eq. (28), the four corresponding FMFs are

determined as follows:

FMF1 : µ1(θ1) = 0.1446, µ1(θ2) = 0.6171, µ1(θ3) = 0.4344

FMF2 : µ2(θ1) = 0.1955, µ2(θ2) = 0.6422, µ2(θ3) = 0.9777

FMF3 : µ3(θ1) = 0, µ3(θ2) = 0.7692, µ3(θ3) = 0

FMF4 : µ4(θ1) = 0, µ4(θ2) = 0.6481, µ4(θ3) = 0.1502

Using all the transformations listed in Table 1, one can

transform the above four FMFs into BBAs, respectively. Let

the FOD be Θ = {θ1, θ2, θ3}. The possible focal elements

are represented as follows: A1 = {θ1}, A2 = {θ2}, A3 =
{θ1, θ2}, A4 = {θ3}, A5 = {θ1, θ3}, A6 = {θ2, θ3}, and

A7 = Θ.

The corresponding BBAs obtained by using transformations

with preselection of focal elements, transformations based
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Table IX
PARAMETERS OF TRAINING SET.

Feature Class 1 (θ1) Class 2 (θ2) Class 3 (θ3)

min1 ave1 max1 min2 ave2 max2 min3 ave3 max3

f1 4.3 5.0086 5.7 4.9 6.0343 7 4.9 6.5114 7.9
f2 2.9 3.4114 4.4 2.2 2.771 3.4 2.5 3.0117 3.8
f3 1 1.4571 1.9 3 4 5.1 4.5 5.5314 6.9
f4 0.1 0.2571 0.6 1 1.3371 1.8 1.4 2.0657 2.5

Figure 2. FMFs of four features.

on uncertainty optimization and moderate transformations

are listed in Table X. We use moderate transformations to

determine trade-off BBAs with β = 0.2.

When the BBAs of each feature are determined, one can

combine the corresponding four BBAs of each transformation.

For convenience and simplicity, Dempster’s rule of combina-

tion is used. The combined BBAs of each transformation are

listed in Table XI.

According to the results of Table XI, the corresponding

pignistic probabilities can be calculated by using Eq. (6).

As we can see in Table XII, the values of BetP(θ2) for

all the transformations are the largest, which means that the

classifications are correct.

In order to compare the moderate transformations with the

traditional transformations, we provide 300-run experiments

on three datasets (including iris dataset, wheat seeds

dataset and wine dataset) to obtain the average accuracy,

respectively. All the transformations in Table I are used and

the transformation process is the same as above. We use

all the features in iris dataset. In wheat seeds dataset and

wine dataset, we randomly select 4 features and 7 features to

classify, respectively. Reducing the feature dimensions used

for classification is to simplify the experiment process.
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Table X
OBTAINED BBAS IN EXAMPLE 8.

Approach Feature BBA

Tnorm f1 mnorm(A1) = 0.1209, mnorm(A2) = 0.5159, mnorm(A4) = 0.3632
f2 mnorm(A1) = 0.1077, mnorm(A2) = 0.3538, mnorm(A4) = 0.5385
f3 mnorm(A2) = 1
f4 mnorm(A2) = 0.8118, mnorm(A4) = 0.1882

Tα-cut f1 mα-cut(A2) = 0.2961, mα-cut(A6) = 0.4696, mα-cut(A7) = 0.2343
f2 mα-cut(A4) = 0.3431, mα-cut(A6) = 0.4569, mα-cut(A7) = 0.2
f3 mα-cut(A2) = 1
f4 mα-cut(A2) = 0.7682, mα-cut(A6) = 0.2318

Ttri f1 mtri(A2) = 0.5159, mtri(A4) = 0.3632, mtri(A7) = 0.1209
f2 mtri(A2) = 0.3538, mtri(A4) = 0.5385, mtri(A7) = 0.1077
f3 mtri(A2) = 1
f4 mtri(A2) = 0.8118, mtri(A4) = 0.1882

Tmin f1 mmin(A2) = 0.5656, mmin(A4) = 0.2383, mmin(A5) = 0.1446, mmin(A6) = 0.0515
f2 mmin(A3) = 0.0223, mmin(A4) = 0.3578, mmin(A6) = 0.4467, mmin(A7) = 0.1732
f3 mmin(A2) = 0.7692, mmin(A3) = 0.1887, mmin(A6) = 0.0421
f4 mmin(A2) = 0.6482, mmin(A4) = 0.1502, mmin(A6) = 0.2016

Tmax f1 mmax(A1) = 0.1446, mmax(A2) = 0.4210, mmax(A4) = 0.2382, mmax(A6) = 0.1962
f2 mmax(A1) = 0.0115, mmax(A2) = 0.0069, mmax(A4) = 0.1623, mmax(A5) = 0.18, mmax(A6) = 0.6353
f3 mmax(A2) = 0.7692, mmax(A5) = 0.2308
f4 mmax(A2) = 0.6481, mmax(A4) = 0.1502, mmax(A5) = 0.1739, mmax(A7) = 0.0278

Twa, f1 mwa(A1) = 0.0289, mwa(A2) = 0.5367, mwa(A4) = 0.2382, mwa(A5) = 0.1157, mwa(A6) = 0.0805
β = 0.2 f2 mwa(A1) = 0.0031, mwa(A2) = 0.0014, mwa(A3) = 0.0179, mwa(A4) = 0.3187,

mwa(A5) = 0.036, mwa(A6) = 0.4844, mwa(A7) = 0.1385
f3 mwa(A2) = 0.7692, mwa(A3) = 0.1509, mwa(A5) = 0.0348, mwa(A6) = 0.0337
f4 mwa(A2) = 0.6481, mwa(A4) = 0.1502, mwa(A5) = 0.0348, mwa(A6) = 0.1613, mwa(A7) = 0.0056

Tuo, f1 muo(A1) = 0.0289, muo(A2) = 0.5637, muo(A4) = 0.2382, muo(A5) = 0.1157, muo(A6) = 0.0805
β = 0.2 f2 muo(A3) = 0.0223, muo(A4) = 0.3185, muo(A5) = 0.0393, muo(A6) = 0.486, muo(A7) = 0.1339

f3 muo(A2) = 0.7692, muo(A3) = 0.1383, muo(A5) = 0.0002, muo(A6) = 0.0923
f4 muo(A2) = 0.6481, muo(A3) = 0.0421, muo(A4) = 0.1506, muo(A6) = 0.1592

Table XI
COMBINED BBAS IN TABLE X.

Approach BBA

Tnorm mnorm(A2) = 1
Tα-cut mα-cut(A2) = 1
Ttri mtri(A2) = 1
Tmin mmin(A2) = 0.9816, mmin(A4) = 0.0176, mmin(A6) = 0.0008
Tmax mmax(A1) = 0.0054, mmax(A2) = 0.8520, mmax(A4) = 0.1426
Twa mwa(A1) = 0.0006, mwa(A2) = 0.9621, mwa(A4) = 0.0363, mwa(A6) = 0.0001, mwa(A7) = 0.0009
Tuo muo(A1) = 0.0005, muo(A2) = 0.9646, muo(A4) = 0.0328, muo(A6) = 0.0021

Table XII
PIGNISTIC PROBABILITIES IN EXAMPLE 8.

Approach BetP(θ1) BetP(θ2) BetP(θ3)
Tnorm 0 1 0
Tα-cut 0 1 0
Ttri 0 1 0
Tmin 0 0.9820 0.0180
Tmax 0.0054 0.8520 0.1426
Twa 0.0006 0.9626 0.0368
Tuo 0.0005 0.9656 0.0339
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Table XIII
AVERAGE CLASSIFICATION ACCURACY (%).

Approach Iris Wheat Wine

Tnorm 87.92 ± 4.79 84.14± 4.80 70.88± 5.08
Tα-cut 87.92 ± 4.79 84.14± 4.80 70.88± 5.08
Ttri 88.19 ± 4.65 83.86± 4.73 70.47± 5.14
Tmin 92.81 ± 4.31 87.60± 3.73 78.93± 4.04
Tmax 92.16 ± 4.65 87.01± 3.70 77.81± 3.93
Twa, β = 0.2 93.76 ± 3.49 89.29± 3.69 80.99± 3.96
Tuo, β = 0.2 93.83 ± 3.52 89.16± 3.73 81.10± 3.86
Twa, β = 0.5 93.53 ± 3.75 88.73± 3.61 80.07± 3.94
Tuo, β = 0.5 93.54 ± 3.60 88.14± 3.78 80.04± 4.05
Twa, β = 0.8 93.73 ± 4.31 88.70± 3.51 79.02± 4.01
Tuo, β = 0.8 93.31 ± 4.57 88.24± 3.88 79.69± 4.04

On each run, 70% of each class samples of iris dataset

and wheat seeds dataset are for training samples, and the rest

samples are for testing. For wine dataset, 34 samples (the class

with the smallest samples contains 48 samples, 70% of which

is about 34) of each class samples are for training samples

and the rest samples are for testing. The training samples

are select randomly. For moderate transformations, we specify

β = 0.2, 0.5, 0.8 to obtain the trade-off BBA, respectively. The

results for average classification accuracy of three datasets are

listed in Table XIII.

According to the results in Table XIII, there is a gap

between the classification accuracy we obtained and the best

possible classification accuracy for each dataset (e.g., for iris,

the best possible accuracy with other classification approach

can be beyond 95%). Here, we only aim to compare the

impact of different BBA transformations on the classification

performance.

All the results based on optimization-based transformations

are better than those based on transformations with preselec-

tion of focal elements, i.e., considering more possible focal

elements might reduce the loss of information due to the

preselection of focal elements, thereby improving the clas-

sification accuracy. Meanwhile, the moderate transformations

achieve higher classification accuracy than other transforma-

tions. The moderate transformations do not pursue the minimal

or maximal degree of uncertainty on the basis of considering

all possible focal elements, since the extreme attitudinal bias

on the uncertainty degree might bring counter-intuitive results

and a moderate (or balanced) BBA without the minimal or

maximal degree of uncertainty is more natural.

Besides, we note two cases of samples of 300-run experi-

ments:

• Case 1: the classification results of transformations based

on uncertainty optimization are wrong and that of mod-

erate transformations is correct.

• Case 2: the classification results of moderate transfor-

mations are wrong and that of transformations based on

uncertainty optimization is correct.

In this example, the test sets of three datasets have 45,

63 and 76 samples, respectively. Here, we count the number

of samples for Case 1 in each run experiment and calculate

the average. The average numbers of samples of Case 1 are

2.2167 (4.93%), 1.8833 (3.00%) and 4.08 (5.37%) for three

datasets, respectively, i.e., the moderate transformations can

bring better results. We find that the samples belonging to

Case 1 in each dataset contain at least one dimension feature

with small difference in values of different classes. Compared

with the transformations based on uncertainty optimization, the

moderate transformations can better represent the uncertainty

contained in the FMFs obtained according to the samples,

e.g., the samples marked in Fig. 3 are the samples of Case

1 in iris dataset after 300-run experiments (repetitive samples

are marked only once). In Fig. 3, samples of Class 1 are

marked in red points; samples of Class 2 are marked in blue

solid diamonds; samples of Class 3 are marked in cyan solid

triangles. We use red circles to mark the samples of Case 1 of

Class 1; we use blue diamonds to mark the samples of Case

1 of Class 2; we use cyan triangles to mark the samples of

Case 1 of Class 3.

As we can see in Fig. 3(b), the samples of Class 1 can

be clearly distinguished from the samples of the other two

classes. However, the values of f1 and f2 of Class 1 have

small difference with the other two classes. Taking a sample

x = [7, 3.2, 4.7, 1.4] of Case 1 of iris dataset as an example,

this test sample belongs to Class 2. The corresponding FMFs

are:

FMF1 : µ1(θ1) = 0, µ1(θ2) = 0, µ1(θ3) = 0.6618

FMF2 : µ2(θ1) = 0.8119, µ2(θ2) = 0.3017, µ2(θ3) = 0.7095

FMF3 : µ3(θ1) = 0, µ3(θ2) = 0.4389, µ3(θ3) = 0

FMF4 : µ4(θ1) = 0, µ4(θ2) = 0.7349, µ4(θ3) = 0.0001

According to these four FMFs, we can transform them into

BBAs, respectively. The results are listed in Table XIV.

One can combine the corresponding four BBAs of each

transformation by using Dempster’s rule of combination and

then obtain the following results by using Eq. (6), yielding

BetPmin(θ1) = 0.2427

BetPmin(θ2) = 0.3426

BetPmin(θ3) = 0.4147
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Figure 3. Samples of Case 1 of iris dataset.

Table XIV
OBTAINED BBAS OF A SAMPLE OF CASE 1 IN EXAMPLE 8.

Approach Feature BBA

Tmin f1 mmin(A4) = 0.6618, mmin(A5) = 0.2859, mmin(A6) = 0.0523
f2 mmin(A1) = 0.2906, mmin(A5) = 0.4077, mmin(A6) = 0.1881, mmin(A7) = 0.1136
f3 mmin(A2) = 0.4389, mmin(A3) = 0.3351, mmin(A6) = 0.2260
f4 mmin(A2) = 0.7394, mmin(A4) = 0.1417, mmin(A6) = 0.1189

Tmax f1 mmax(A3) = 0.3309, mmax(A4) = 0.6617, mmax(A7) = 0.0074
f2 mmax(A1) = 0.0941, mmax(A2) = 0.1329, mmax(A3) = 0.0636, mmax(A4) = 0.0553, mmax(A5) = 0.5489, mmax(A7) = 0.1053
f3 mmax(A2) = 0.4389, mmax(A5) = 0.2194, mmax(A7) = 0.3417
f4 mmax(A2) = 0.7395, mmax(A5) = 0.2605

Twa, f1 mwa(A3) = 0.1654, mwa(A4) = 0.6618, mwa(A5) = 0.1430, mwa(A6) = 0.0261, mwa(A7) = 0.0037
β = 0.5 f2 mwa(A1) = 0.1923, mwa(A2) = 0.0664, mwa(A3) = 0.0318, mwa(A4) = 0.0277,

mwa(A5) = 0.4783, mwa(A6) = 0.0941, mwa(A7) = 0.1094
f3 mwa(A2) = 0.4389, mwa(A3) = 0.1676, mwa(A5) = 0.1097, mwa(A6) = 0.1130, mwa(A7) = 0.1708
f4 mwa(A2) = 0.7395, mwa(A3) = 0.0708, mwa(A5) = 0.1303, mwa(A6) = 0.0594

Tuo, f1 muo(A3) = 0.1249, muo(A4) = 0.6618, muo(A5) = 0.0816, muo(A6) = 0.1054, muo(A7) = 0.0263
β = 0.5 f2 muo(A1) = 0.1852, muo(A2) = 0.0002, muo(A3) = 0.1051, muo(A4) = 0.1615,

muo(A5) = 0.3516, muo(A6) = 0.0264, muo(A7) = 0.1700
f3 muo(A2) = 0.4389, muo(A3) = 0.1440, muo(A5) = 0.1537, muo(A6) = 0.1907, muo(A7) = 0.0727
f4 muo(A2) = 0.7394, muo(A3) = 0.0574, muo(A5) = 0.0973, muo(A6) = 0.0032, muo(A7) = 0.1027

BetPmax(θ1) = 0.2372

BetPmax(θ2) = 0.3512

BetPmax(θ3) = 0.4116

BetPwa(θ1) = 0.1927

BetPwa(θ2) = 0.4161

BetPwa(θ3) = 0.3912

BetPuo(θ1) = 0.1282

BetPuo(θ2) = 0.4643

BetPuo(θ3) = 0.4075

We can see that the classification results are correct except

for the results obtained using Tmin and Tmax.

On the other hand, the average numbers of samples for Case

2 (the moderate transformations bring out incorrect results,

while Tmin and Tmax bring out correct results) in 300-run exper-

iment are 0.07 (0.16%), 0.2967 (0.47%) and 0.1433 (0.19%)

for three datasets, respectively. Compared with the average

numbers of samples for Case 1, moderate transformations are

better than transformations based on uncertainty optimization.

Using moderate transformations can avoid “one-sidedness” in

terms of the uncertainty degrees. Meanwhile, the trade-off

BBA can represent the small differences between the values

of a given FMF. In summary, the moderate transformations

can bring better classification results compared with that of
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the transformations based on uncertainty optimization in a

statistical sense.

VI. CONCLUSIONS

In this paper, we propose two transformations with a

weighting factor to transform a given FMF into a trade-off or

moderate BBA. The weighting factor could be determined by

using prior information or user-specified to reflect the objective

situation or meet subjective preferences of users. Numerical

examples and classification results validate the effectiveness

of the two moderate transformations. Comparing these two

transformations, the computational complexity of Twa is lower,

and Tuo can bring a better classification performance. In

practical applications, users can choose Twa or Tuo according

to the demands of applications. Note that our transformations

have been evaluated through some numerical and classification

examples, within which, the design of numerical examples is

usually subjective. In fact, the related fields of belief func-

tions, including the generation of a BBA, lack objective and

reasonable evaluation criteria. The conclusions obtained by

numerical examples are incomplete. An objective evaluation

criterion can help to obtain better related tools or approaches

to deal with belief functions. Therefore, we will focus on

the objective evaluation criteria of the belief functions in

our future work. With the increase of FOD’s cardinality, the

possible focal elements in a BBA will grow exponentially,

i.e., the unknown variables that need to be determined in

our formulated optimization problem will grow exponentially.

The exponential growth of computational complexity is a

limitation of our transformations. In the future work, we will

attempt to use more simple and effective approaches beside

the optimization-based transformations to transform an FMF

into a trade-off BBA.
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APPENDIX

Proof of the equivalence between Eq. (12) and Eq. (13) when
∑n

i=1
µ(θi) = 1.

Consider the FOD Θ = {θ1, θ2, . . . , θn}. The given FMF is

denoted by µ = [µ(θ1), µ(θ2), . . . , µ(θn)]. According to Eq.

(12), the FMF is equivalent to a singleton plausibility and then

we have the following n equations.















































m({θ1}) +m({θ1, θ2}) + . . .+m({θ1, θn}) +m({θ1, θ2, θ3})

+ . . .+m({θ1, θn−1, θn}) + . . .+m(Θ) = µ(θ1)

m({θ2}) +m({θ1, θ2}) + . . .+m({θ2, θn}) +m({θ1, θ2, θ3})

+ . . .+m({θ2, θn−1, θn}) + . . .+m(Θ) = µ(θ2)
.
..

m({θn}) +m({θ1, θ2}) + . . .+m({θn−1, θn}) +m({θ1, θ2, θn})

+ . . .+m({θn−2, θn−1, θn}) + . . .+m(Θ) = µ(θn)
(A.1)

By adding the left and right sides of these n equations, then

m({θ1}) +m({θ2}) + . . .+m({θn})
+2[m({θ1, θ2}) + . . .+m({θn−1, θn})]

+3[m({θ1, θ2, θ3}) + . . .

+m({θ1, θ2, θn}) + . . .+m({θn−2, θn−1, θn})]
+ . . .+ nm(Θ) = µ(θ1) + µ(θ2) + . . .+ µ(θn) = 1

(A.2)

According to
∑

A⊆Θ
m(A) = 1, Eq. (A.2) can be rewritten

as follows:

m({θ1, θ2}) + . . .+m({θn−1, θn}) + 2[m({θ1, θ2, θ3})
+ . . .+m({θ1, θ2, θn})

+ . . .+m({θn−2, θn−1, θn})]
+ . . .+ (n− 1)m(Θ) = 0

(A.3)

Because 0 ≤ m(A) ≤ 1, (A ⊆ Θ). This means that the

focal elements at the left side of Eq. (A.3) are 0. Then we

have

m({θ1, θ2}) = . . . = m({θn−1, θn}) = m({θ1, θ2, θ3})
= . . . = m({θn−2, θn−1, θn}) = . . . = m(Θ)

= 0 (A.4)

Then, Eq. (A.1) can be rewritten as.























m({θ1}) = µ(θ1)

m({θ2}) = µ(θ2)
...

m({θn}) = µ(θn)

(A.5)

which means that the FMF is also equivalent to both the

singleton belief function and singleton plausibility function

when
∑n

i=1
µ(θi) = 1.
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[52] J. Kampé de Feriet, Interpretation of fuzzy membership functions of fuzzy

sets in terms of plausibility and belief, Fuzzy Information and Decision
Processes, pp. 93–98, edited by M.M. Gupta and E. Sanchez, North-
Holland, Amsterdam, 1982.

[53] UCI repository of machine learning databases [Internet]. Available from:
http://archive.ics.uci.edu/ml/index.php.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

849



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

850



Cross-Entropy and Relative Entropy

of Basic Belief Assignments

Jean Dezert, Frédéric Dambreville

Department of Information Processing and Systems

The French Aerospace Lab - ONERA

Palaiseau, France.

Emails: jean.dezert@onera.fr, frederic.dambreville@onera.fr

Abstract—This paper introduces the concept of cross-entropy
and relative entropy of two basic belief assignments. It is based
on the new entropy measure presented recently. We prove that
the cross-entropy satisfies a generalized Gibbs-alike inequality
from which a generalized Kullback-Leibler divergence measure
can be established in the framework of belief functions. We show
on a simple illustrating example how these concepts can be used
for decision-making under uncertainty.
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I. INTRODUCTION

In Shannon’s theory of communication developed in 1948

[1], [2], the measure of uncertainty (MoU), also called en-

tropy, for characterizing a source of information (from signal

transmission standpoint) is defined by Shannon entropy. This

entropy measures the randomness of a probability distribution

P and is usually noted by H(P ). Shannon entropy does not

concern the semantic aspects of the content of a message

but only its transmission [3]–[5]. H(P ) has played a very

important role in the development of modern communication

systems and cryptography [6] until today. According to Cover

and Thomas [7], the cross-entropy denoted by H(P,Q) is

the average number of bits needed to encode data coming

from a source with a probability distribution P when we

use a distribution model Q to define our codebook. Cross-

entropy is commonly used in machine learning as a loss

function [8], and the cross-entropy method is often used in

practice to estimate an unknown true pmf (probability mass

function) based on a test set where Q is the assumed (or

eventually empirical) pmf model. The minimization of the

cross-entropy is related with the principle of the maximization

of the likelihood. That is why cross-entropy plays a major role

in many statistical applications. The relative entropy, often

referred as Kullber-Leibler divergence [9], is the difference

between the cross-entropy and Shannon entropy, and so it is

H(P,Q) − H(P ). All these aforementioned basic concepts

have been well established (and strongly justified) from the

mid of 20th century, and all use the theory of probability as

the fundamental underlying mathematical framework.

In this paper we go beyond the classical probabilistic

framework because we want to work possibly with epistemic

uncertainty represented by non-probabilistic models thanks to

the mathematical framework of belief functions introduced by

Shafer [10], and in this context the legitimate and important

question is to know if it is possible, or not, to extend the

concepts of entropy, cross-entropy and relative entropy for

the belief functions. Concerning the concept of entropy, the

answer is affirmative and very recently a new generalized

entropy measure has been proposed in [11] in the framework of

the theory of belief functions. Concerning the second and third

theoretical questions about cross-entropy and relative entropy

concepts, we give new comprehensive and better answers to

these questions in this paper. This is our new theoretical

contribution in the field. The concrete meaning of relative

entropy and cross-entropy measures in the belief functions

framework is a challenging question because the entropy of

belief function is merely related to the uncertainty of epistemic

knowledge rather than of statistical knowledge. No concrete

meaning of these notions has been firmly established so far.

This interesting open question is left for future research works.

To make the material of this paper quite self-contained, we

recall the basic classical concepts related to entropy (Shannon

entropy, cross-entropy, and relative entropy) in the section II,

and we present the basics of belief functions [10] in Section

III with the new concept of entropy measure of basic belief

mass assignment (BBA) [11] in the section IV. After recalling

a very recent definition of cross-entropy of BBAs [12] based

on the non effective Deng’s entropy definition [13], we present

in the section V a new cross-entropy definition based on our

new effective entropy definition. The section VI presents the

concept of relative entropy of BBAs which can be interpreted

as a generalization of the Kullback-Leibler divergence measure

for belief functions. An example of the use of these concepts

for decision-making under uncertainty is given in the section

VII. Concluding remarks and perspectives are given in the

section VIII.

II. CLASSICAL NOTIONS RELATED TO ENTROPY

A. Shannon entropy

Consider a discrete random variable θ represented by a

probability mass function (pmf) PN = (p1, p2, . . . , pN ), where

pi = P (θi) is the probability of the i-th state θi (i.e.

outcome) of Θ = {θ1, θ2, . . . , θN}. Shannon was interested in

communication systems where the various events were the

carriers of coded messages, and he did justify his entropy

measure as appropriate measure of average uncertainty (or

Originally published as: J. Dezert, F. Dambreville, Cross-Entropy and Relative Entropy of Basic Belief 
Assignments, in Proc. of Int. Conf. on Information Fusion (Fusion 2023), Charleston, SC, USA, June 
2023, and reprinted with permission.
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measure of randomness) of a random variable [1], [2], [6],

[7]. The entropy of a random variable is the average level

of surprisal, or uncertainty inherent in the variable’s possible

outcomes [14]. Shannon entropy is defined by1

H(PN) , −

|Θ|
∑

i=1

P (θi) log(P (θi)) . (1)

By convention, P (θi) log(P (θi)) = 0 if P (θi) = 0. This is

easily justified by continuity because limx→0+ x log x = 0,

which can be proved using L’Hôpital rule [15]. Adding terms

of zero probability does not change the entropy value. In (1)

we use the natural logarithm (i.e. base e logarithm) and in this

case the Shannon entropy value is expressed in nats unity. We

can also use the base 2 logarithm (log2) function instead of

the natural logarithm, and if so the Shannon entropy value will

be expressed in bits. Shannon entropy can be interpreted as a

generalization of Hartley entropy (1928) [16] when presuming

the pmf of equally probable states (i.e. uniform2 pmf P unif
N ),

hence getting H(P unif
N ) = log(|Θ|) = log(N). Note that if we

have a uniform pmf P unif
N defined on Θ with |Θ| = N and

another uniform pmf P unif
N ′ defined on Θ′ with |Θ′| = N ′, and

if |Θ| < |Θ′| then H(P unif
N ) < H(P unif

N ′ ) because log(|Θ|) <
log(|Θ′|) since log(x) is an increasing function. The minimum

value of Shannon entropy is zero, which characterizes a non-

random (or sure) event θj for which P (θj) = 1.

The main algebraic properties of Shannon entropy are,

see [17] (p. 30) for details: the symmetry, the normality3,

expansibility, decisivity, sub-additivity and recursivity. We

recall that Shannon entropy value H(PN ) is always smaller

than H(P unif
N ) if PN 6= P unif.

N , expressing the fact that the

uniform pmf is the only pmf giving the maximal Shannon

entropy value, and characterizing the maximum of uncertainty

(or randomness), which is called the maximality property.

B. The cross-entropy

Consider a finite set of exhaustive events Θ = {θ1, . . . , θn}
where θi are mutually exclusive (i.e. θi ∩ θj = ∅ if i 6= j).

Suppose that P = {P (θ1) = p1, . . . , P (θn) = pn} is a

probability distribution over the set Θ. Then for any other

probability distribution Q = {Q(θ1) = q1, . . . , Q(θn) = qn}
the Gibbs inequality holds [18]

−

n
∑

i=1

pi log(qi) ≥ −

n
∑

i=1

pi log(pi) . (2)

The cross-entropy between probability distriputions P and Q
over the same underlying set of events Θ is defined by

H(P,Q) = −

n
∑

i=1

pi log(qi) = −
∑

X∈Θ

P (X) log(Q(X)) . (3)

One can easily verify that H(P,Q) = H(P ) when Q = P ,

i.e. when the probability distribution Q coincides with the

1The symbol , means equal by definition.
2for which P (θi) = 1/N for i = 1, 2 . . . , N .
3This stipulates that H(P unif

2 ) = 1 using base 2 logarithm function in (1).

true probability distribution P the cross-entropy value equals

Shannon entropy of P . Gibbs inequality is H(P,Q) ≥ H(P ).

C. The relative entropy

The difference between the cross-entropy H(P,Q) and
Shannon entropy H(P ) is named the relative entropy or the
Kullback-Leibler (KL) divergence [9]), and is often denoted
by4

DKL(P ‖ Q) , H(P,Q)−H(P ) =
n
∑

i=1

pi log(pi/qi) . (4)

DKL(P‖Q) measures how the probability distribution P is

different from a second, reference probability distribution Q.

It corresponds to the expectation of the logarithmic difference

between the probability distributions P and Q, where the

expectation is taken using the distribution P . In general the rel-

ative entropy DKL(P ‖ Q) is not symmetric under interchange

of the distributions P and Q and we have DKL(P ‖ Q) 6=
DKL(Q ‖ P ). Therefore, DKL is not strictly a distance even if

it is often abusively called a distance in the literature, even by

Cover in [7]. This relative entropy (i.e. divergence measure)

is important in pattern recognition and neural networks for

making classification, as well as in information theory. Kull-

back and Leibler also proposed a symmetrized measure in

[9] defined as DKL(P ‖ Q) +DKL(Q ‖ P ). Another renown

symmetric version of the KL divergence is the Jensen-Shannon

(JS) divergence defined by Lin in [19]

DJS(P ‖ Q) ,
1

2
DKL

(

P ‖
P +Q

2

)

+
1

2
DKL

(

Q ‖
P +Q

2

)

. (5)

The Jensen-Shannon divergence can be interpreted as the

total Kullback-Leibler divergence to the average probability

distribution (P + Q)/2. This JS divergence is often used in

practice because its square root is a metric often referred to

as Jensen-Shannon distance [20], that is

dJS(P,Q) ,
√

DJS(P ‖ Q) . (6)

Jensen-Shannon divergence has been applied in different

fields of applications (e.g. bioinformatics, social sciences, fire

experiments, machine learning, in deep learning for studying

generative adversarial networks, etc), see [21].

III. BELIEF FUNCTIONS

The belief functions (BF) were introduced by Shafer [10] for

modeling epistemic uncertainty, reasoning about uncertainty

and combining distinct sources of evidence. The answer of

the problem under concern is assumed to belong to a known

finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN}
where all elements (i.e. members) of Θ are exhaustive and

exclusive. The set of all subsets of Θ (including empty set

4As in [7] (p. 19), in the formula (4) we use the conventions that
0 log(0/0) = 0, 0 log(0/q) = 0, and p log(p/0) = ∞. So, if there is
any X ∈ Θ such that P (X) > 0 and Q(X) = 0, DKL(P‖Q) = ∞.
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∅, and Θ) is the power-set of Θ denoted by 2Θ. The number

of elements (i.e. the cardinality) of the power-set is 2|Θ|. A

(normalized) basic belief assignment (BBA) associated with a

given source of evidence is a mapping mΘ(·) : 2Θ → [0, 1]
such that5 mΘ(∅) = 0 and

∑

X∈2Θ
mΘ(X) = 1. A BBA

mΘ(·) characterizes a source of evidence related with a FoD

Θ. For notation shorthand, we can omit the superscript Θ in

mΘ(·) notation if there is no ambiguity on the FoD we work

with. The quantity m(X) is called the mass of belief of X .

X ∈ 2Θ is called a focal element (FE) of m(·) if m(X) > 0.

The set of all focal elements of m(·) is denoted by FΘ(m) ,
{X ∈ 2Θ|m(X) > 0}. The belief and the plausibility of X
are respectively defined for any X ∈ 2Θ by [10]

Bel(X) =
∑

Y ∈2Θ|Y ⊆X

m(Y ) , (7)

P l(X) =
∑

Y ∈2Θ|X∩Y 6=∅

m(Y ) = 1− Bel(X̄) , (8)

where X̄ , Θ \ {X} is the complement of X in Θ .

One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [10].

For X = ∅, Bel(∅) = Pl(∅) = 0, and for X = Θ one has

Bel(Θ) = Pl(Θ) = 1. Bel(X) and Pl(X) are often inter-

preted as the lower and upper bounds of unknown prob-

ability P (X) of X , that is Bel(X) ≤ P (X) ≤ Pl(X).
To quantify the uncertainty (i.e. the imprecision) of

P (X) ∈ [Bel(X), P l(X)], we use u(X) ∈ [0, 1] defined by

u(X) , P l(X)−Bel(X) . (9)

The quantity u(X) = 0 if Bel(X) = Pl(X) which

means that P (X) is known precisely, and one has

P (X) = Bel(X) = Pl(X). One has u(∅) = 0 be-

cause Bel(∅) = Pl(∅) = 0, and one has u(Θ) = 0 because

Bel(Θ) = Pl(Θ) = 1. If all focal elements of m(·) are single-

tons of 2Θ the BBA m(·) is a Bayesian BBA because ∀X ∈ 2Θ

one has Bel(X) = Pl(X) = P (X) and u(X) = 0. Hence

the belief and plausibility of X coincide with a probability

measure P (X) defined on the FoD Θ. The vacuous BBA

characterizing a totally ignorant source of evidence is defined

by mv(X) = 1 for X = Θ, and mv(X) = 0 for all X ∈ 2Θ

different of Θ. This very particular BBA plays a major role

in the establishment of a new effective measure of uncertainty

for BBA.

IV. ENTROPY OF BASIC BELIEF ASSIGNMENTS

In [22] we did analyze in details forty-five measures of

uncertainty (MoU) of BBAs by covering 40 years of research

works on this topic. Some of these MoUs capture only a par-

ticular aspect of the uncertainty inherent to a BBA (typically,

the non-specificity and the conflict). Other MoUs propose a

total uncertainty measure to capture jointly several aspects of

the uncertainty. Unfortunately, most of these MoUs fail to

satisfy four very simple reasonable and essential desiderata,

and so they cannot be considered as really effective and

5In Shafer’s theory of BFs we work with a closed FoD and the mass of
the empty set must always be equal to zero.

useful. Actually only five MoUs can be considered as effective

from the mathematical sense presented next, but unfortunately

they appear as conceptually defective and disputable, see

discussions in [22]. That is why, a better effective measure of

uncertainty (MoU), i.e. generalized entropy of BBAs has been

developed and presented in [11]. The mathematical definition

of this new effective entropy is given by

U(m) =
∑

X∈2Θ

s(X) (10)

with

s(X) , −m(X)(1− u(X)) log(m(X))

+ u(X)(1−m(X)) . (11)

s(X) is the uncertainty contribution related to X named the

entropiece of X . This entropiece s(X) involves m(X) and

the imprecision u(X) = Pl(X)−Bel(X) about the unknown

probability of X in a subtle interwoven manner. Because

u(X) ∈ [0, 1] and m(X) ∈ [0, 1] one has s(X) ≥ 0,

and U(m) ≥ 0. The quantity U(m) is expressed in nats

because we use the natural logarithm. U(m) can be expressed

in bits by dividing the U(m) value in nats by log(2) =
0.69314718.... This measure of uncertainty U(m) is a con-

tinuous function in its basic belief mass arguments because it

is a summation of continuous functions. In formula (11), we

always take m(X) log(m(X)) = 0 when m(X) = 0 because

limm(X)→0+ m(X) log(m(X)) = 0. Note that for any BBA

m, one has s(∅) = 0 because m(∅) = 0 and u(∅) = 0. For

the vacuous BBA, one has s(Θ) = 0 because mv(Θ) = 1 and

u(Θ) = 0.

This measure of uncertainty U(m) is effective because it

can be proved (see proofs in [11]) that it satisfies the following

four essential properties:

1) U(m) = 0 for any BBA m(·) focused on a singleton X
of 2Θ.

2) U(mΘ
v ) < U(mΘ

′

v ) if |Θ| < |Θ′|.
3) U(m) = −∑

X∈Θ
m(X) log(m(X)) if the BBA m(·)

is a Bayesian BBA. Hence, U(m) reduces to Shannon

entropy [1] in this case.

4) U(m) < U(mv) for any non-vacuous BBA m(·) and

for the vacuous BBA mv(·) defined with respect to the

same FoD.

The maximum of entropy value is obtained for the vacuous

BBA mv over a FoD Θ, because mv characterizes a source

of evidence with a full lack of information. This maximum

entropy value is U(mΘ
v ) = 2|Θ| − 2 (see derivation in [11])

and it represents the sum of all imprecisions of P (X) for all

X ∈ 2Θ. Because for all X ∈ 2Θ \ {∅,Θ} one has u(X) = 1
because [Bel(X), P l(X)] = [0, 1], and one has u(∅) = 0 and

u(Θ) = 0 when considering the vacuous BBA then the sum

of all imprecisions u(X) about P (X) is equal to 2|Θ| − 2. It

is worth mentioning that one has always U(mΘ
v ) > log(|Θ|)

which means that the vacuous BBA has always an entropy

greater than the maximum of Shannon entropy log(|Θ|) ob-

tained with the uniform pmf on Θ.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

853



V. CROSS-ENTROPY OF TWO BBAS

A. Cross-entropy derived from Deng’s entropy

Very recently in [12], Gao et al. proposed a definition of

the cross-entropy of two BBAs inspired by the non-effective

Deng’s entropy Ed(m) proposed earlier by Deng in [13] and

defined as follows:

Ed(m) = −
∑

X⊆Θ

m(X) log(
m(X)

2|X| − 1
) (12)

where m(X) is the mass of belief of any subset X of the

frame of discernment Θ, and where |X | is the cardinality of

X . If m(X) = 0, the term m(X) log( m(X)

2|X|−1
) is set to zero.

Deng’s entropy definition is unfortunately not recommended

because it is non-effective. Indeed, we can have Ed(m) >
Ed(mv) indicating that a non-vacuous BBA m(.) can be more

uncertain than the vacuous BBA mv(.), which obviously is not

appropriate because the vacuous BBA characterizes the state of

total ignorance. As a simple counterexample of Deng’s entropy

consider Θ = {A,B,C} the vacuous BBA mv(.) with mv(A∪
B∪C) = 1, and the non-vacuous BBA m(.) with m(A∪B) =
m(A ∪ C) = m(B ∪ C) = 1/3. Clearly, one gets Ed(m) >
Ed(mv). See the paper [22] for more discussions about other

non-effective entropy proposals. For this counterexample, the

values of Deng’s entropies are

Ed(mv) = −mv(A ∪ B ∪ C) log(
mv(A ∪B ∪ C)

2|A∪B∪C| − 1
)

= −1 · log(
1

23 − 1
) = − log(

1

7
) ≈ 1.9459 ,

Ed(m) = −m(A ∪B) log(
m(A ∪ B)

2|A∪B| − 1
)

−m(A ∪ C) log(
m(A ∪ C)

2|A∪C| − 1
)

−m(B ∪ C) log(
m(B ∪ C)

2|B∪C| − 1
)

= −3 ·
1

3
· log(

1

3
·

1

22 − 1
) = − log(1/9) ≈ 2.1972 .

Based on this non-effective entropy measure, the cross-

entropy defined by Gao et al. [12] between BBAs m1 and m2

is based on a mimicry of the classical cross-entropy definition

using Deng’s entropy, that is

C(m1, m2) = −
∑

X⊆Θ

m1(X) log(
m2(X)

2|X| − 1
) .

Similarly, the cross-entropy between m2 and m1 is

C(m2, m1) = −
∑

X⊆Θ

m2(X) log(
m1(X)

2|X| − 1
) .

Because Deng’s entropy is non effective, we have serious

doubt on the validity of the cross-entropy concept defined

by C(m1,m2) and C(m2,m1) formulas. This matter of fact

justifies the necessity of using a better entropy measure [11]

defined by (10)–(11), and the development of a better cross-

entropy measure. This is what we present in the next section.

B. A new definition of cross-entropy

Based on the definition (3) of cross-entropy in the proba-

bilistic framework, and the definition of the effective general-

ized entropy U(m) given in (10), it seems quite natural to try

to extend directly the concept of cross-entropy of two pdfs p
and q to the cross-entropy of two BBAs m1 and m2 defined

over the same FoD Θ. The extension of the classical cross-

entropy formula (3) applied with generalized entropy U(m)
given in (10) suggests directly the following generic formula

of the cross-entropy between two BBAs

U(m1,m2) =
∑

X∈2Θ

s1,2(X) (13)

with

s1,2(X) , −m1(X)(1− ui(X)) log(m2(X))

+ uj(X)(1−mk(X)) (14)

where indexes i, j and k have to belong to the set {1, 2}.

From this generic formulation, one sees that we could a

priori define eight different cross-entropies between two BBAs

depending on the choice of indexes (i, j, k) listed in Table I.

Table I
POSSIBLE TRIPLETS (i, j, k).

Triplet T = (i, j, k) Value

T1 (1,1,1)
T2 (1,1,2)
T3 (1,2,1)
T4 (1,2,2)
T5 (2,1,1)
T6 (2,1,2)
T7 (2,2,1)
T8 (2,2,2)

It is worth mentioning that if m2 = m1 the cross-

entropy measure coincides with the entropy measure, that is

U(m1,m2) = U(m1,m1) = U(m1).
What is the best definition of the cross-entropy of two

BBAs among the eight possible definitions? Or equivalently,

what is the most suitable triplet of indexes (i, j, k) to plug

in the generic cross-entropy formula (14)? To answer to this

important question, we propose to consider as the effective

choice of triplet (i, j, k) the one which allows the information

entropy of a BBA m1 to be less than or equal to its cross-

entropy with any other BBA m2. More precisely, select the

triplet (i, j, k) such that for any BBAs m1 and m2 defined on

the same FoD, the following inequality holds

U(m1,m2) ≥ U(m1) . (15)

Actually for the eight a priori possible definitions of cross-

entropy drawn from (13)–(14), one can easily find by Monte-

Carlo simulations of random pairs (m1,m2) of BBAs that

the choices of triplets (1, 1, 1), (1, 2, 1), (1, 2, 2), (2, 1, 1),
(2, 1, 2), (2, 2, 1), and (2, 2, 2) are not judicious because the

inequality (15) can be violated, see some examples in the

appendix. Because our Monte-Carlo analysis based on 100000
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random pairs (m1,m2) of BBAs revealed that the inequality

(15) was satisfied only for the triplet (i, j, k) = (1, 1, 2) for

different cardinalities of frames of discernment tested up to

|Θ| = 10, we did conjecture that the satisfactory definition

of a cross-entropy of two BBAs satisfying inequality (15) is

mathematically defined by (13) with

s1,2(X) , −m1(X)(1− u1(X)) log(m2(X))

+ u1(X)(1−m2(X)) . (16)

The term s1,2(X) defined in (16) is called the cross-

entropiece of X .

Theorem 1: Let m1 and m2 be BBAs defined on the same

frame of discernment. The cross-entropy U(m1,m2) defined

by (13) and (16) always satisfies the inequality U(m1,m2) ≥
U(m1), with equality only if m1 = m2.

Proof: see appendix.

Proposition: If the BBAs m1 and m2 are Bayesian the cross-

entropy defined by (13) and (16) coincides with the classical

cross-entropy given by (3).

Proof: Since u1(X) = 0 for all X ∈ 2Θ for any Bayesian

BBA m1(.), the proposition is immediate.

VI. RELATIVE ENTROPY OF TWO BBAS

It is worth mentioning that the inequality (15) is a gen-

eralization of the well-known Gibbs inequality (2), and it

coincides with Gibbs inequality when the BBAs m1 and m2

are Bayesian BBAs. The generalized relative entropy (GRE)

of two BBAs m1 and m2 that are defined over the same frame

of discernment Θ is naturally defined by

U(m1 ‖ m2) , U(m1,m2)− U(m1) . (17)

Because Theorem 1 holds, one has always U(m1 ‖ m2) ≥
0, with equality if m1 equals m2. As for the classical relative

entropy defined by (4), the GRE is not symmetric under the

interchange of the BBAs m1 and m2, so that in general

U(m1 ‖ m2) 6= U(m2 ‖ m1). Therefore GRE must also not

be considered as a distance. This GRE is a direct general-

ization of Kullback-Leibler (KL) divergence measure in the

framework of belief functions. Using expressions (16) and6

(11) the mathematical definition of U(m1 ‖ m2) is

U(m1 ‖ m2) =
∑

X⊆Θ

[m1(X)(1− u1(X))

· (log(m1(X))− log(m2(X)))

+ u1(X)(m1(X)−m2(X))] . (18)

GRE coincides with KL-divergence formula (4) when the

BBAs m1 and m2 are Bayesian because if focal elements of

m1 and m2 are singletons of 2Θ then u1(X) = 0 and

6with m replaced by m1.

U(m1 ‖ m2) =
∑

X⊆Θ

m1(X)(log(m1(X))− log(m2(X)))

=
∑

X∈Θ

m1(X) log

(

m1(X)

m2(X)

)

(19)

which is equivalent to formula (4) when interpreting the

bayesian BBA m1 as a probability measure p, and the bayesian

BBA m2 as a probability measure q over the set Θ.

VII. EXAMPLE OF APPLICATION

In this section we present an example of the use of the

entropy, cross-entropy and relative entropy concepts defined

in this paper for the purpose of decision-making under uncer-

tainty. More precisely, given a BBA m(.) defined over a FoD

Θ, how to make a decision based on m(.) and how the select

the most pertinent element θi of Θ?

A. Decision using relative entropy

Classically the decision-making from a BBA is based on

the max of Pl(.), on the max of Bel(.), or on the max of

pignistic probability depending on the attitude chosen by the

decision-maker (resp. optimistic, pessimistic or in-between

attitudes). Here we propose to make the decision based on the

relative entropy measure. More precisely, from any BBA m
defined over a FoD Θ = {θi, i = 1, . . . , n}, we calculate the

divergences U(mi ‖ m) for i = 1, 2, . . . , n, where mi is the

BBA focused on the element θi ∈ Θ such that mi(θi) = 1.

We will take as decision θ̂ the element θi for which the

divergence between m and mi is minimal, that is θ̂ = θi⋆

with i⋆ = argmini∈{1,2,...,n} U(mi ‖ m).

Example: Consider the FoD Θ = {θ1, θ2, θ3}, and after some

fusion processing suppose we obtain the following BBA

m(.) defined by m(θ1) = 0.1, m(θ2) = 0.2, m(θ3) = 0.3,

m(θ1 ∪ θ2) = 0.01, m(θ1 ∪ θ3) = 0.02, m(θ2 ∪ θ3) = 0.07
and m(θ1 ∪ θ2 ∪ θ3) = 0.3. Then we get U(m1 ‖ m) ≈ 2.30,

U(m2 ‖ m) ≈ 1.60 and U(m3 ‖ m) ≈ 1.20. Based on this

result the decision will be θ̂ = θ3 because the divergence

U(m3 ‖ m) = 1.20 is the least value among the values 2.30,

1.60 and 1.20. This decision is consistent with what we

intuitively expect because [Bel(θ1), P l(θ1)] = [0.10, 0.43],
[Bel(θ2), P l(θ2)] = [0.20, 0.58] and [Bel(θ3), P l(θ3)] =
[0.30, 0.69] showing that θ3 is the element of Θ that has the

maximum of belief and also the maximum of plausibility.

Remark 1: We could not use U(m ‖ mi) instead of

U(mi ‖ m). Indeed, we get U(m ‖ mi) = +∞, and thus

cannot decide. But the use of U(mi ‖ m) is how-

ever not completely satisfactory because for mi we

have ui(X) = 0 for all X ∈ 2Θ and U(mi) = 0, so that

U(mi ‖ m) = U(mi,m)− U(mi) = − log(m(θi)). Thus, the

decision is made with only part of the information of m
about θi and not with the other mass values of non-singleton

focal elements of m (if any). Subsequently, a pseudo-distance

inspired by Jensen-Shannon is proposed which uses the whole

BBA information.
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B. Decision using Jensen-Shannon pseudo-distance

In [23] we did propose a decision-making method based on

the minimum of belief-interval distance that used Wasserstein

distance. We take for decision θ̂ the element θi for which

the distance d(m,mi) between m and mi is minimal, that is

θ̂ = θi⋆ with i⋆ = argmini∈{1,2,...,n} d(m,mi). This method

implicitly assumes the uniform distribution of the probability

P (X) in [Bel(X), P l(X)] which is disputable because we

cannot check in practice if this assumption is true, or not.

To circumvent this problem, we propose to replace the belief-

interval distance between BBAs by the Jensen-Shannon-alike

pseudo-distance derived from our relative entropy concept,

which would be defined by

d(m,m′) ,

√

1

2
[U(m ‖

m+m′

2
) + U(m′ ‖

m+m′

2
)] . (20)

Note that d(m,m′) coincides with Jensen-Shannon distance

(6) when the BBAs m and m′ are bayesian BBAs. One has

also d(m,m′) = d(m′,m), d(m,m′) ≥ 0 and d(m,m′) = 0
when m = m′ because U(m ‖ m+m

2
) = U(m ‖ m), and

U(m ‖ m) = U(m,m)− U(m) = 0.

In our example, we obtain the following pseudo-distances:

d(m,m1) ≈ 0.67, d(m,m2) ≈ 0.60, and d(m,m3) ≈ 0.55.

Based on these values we will take the decision θ̂ = θ3.

Note also that if m is the vacuous BBA (i.e.

m = mv), then in this particular case we will obtain

d(mv,m1) = d(mv,m2) = d(mv,m3) = 0.6656 so that no

clear decision can be drawn from the vacuous BBA since

it does not contain useful information, which makes perfect

sense. Note that the inequality (d(m,m1) = 0.6763) >
(d(mv,m1) = 0.6656) is not surprising because the BBA m
is more unfavorable to θ1 than the vacuous BBA mv is.

Remark 2: We tested (20) against the triangular inequality

d(m,m′) + d(m′,m′′) ≥ d(m,m′′). A crude Monte Carlo

analysis based on millions of random BBAs generated uni-

formly over different frames of discernment up to cardinality

|Θ| = 13 revealed no counterexample. This indicates that such

counterexamples are rare events. However, we tried a refined

Monte Carlo analysis, where the set of focal elements were

generated prior to the BBA. On the basis of 10000 different

generated BBAs and near 500 · 109 combination cases, we

have found a rate of 2 · 10−5 counterexamples to the triangular

inequality. This is quite small. More interestingly, the degree

of violation of the triangular inequality was small, since we

found 1.17 as the maximum value for
d(m,m′′

)

d(m,m′)+d(m′,m′′)
. That

is why we consider d(m,m′) only as a pseudo-distance, i.e. a

semimetric. But our simulations suggest that this semimetric

satisfies a sharp ρ-relaxed triangle inequality:

d(m,m′′) ≤ ρ(d(m,m′) + d(m′,m′′)) with ρ ≥ 1.2 .

In conclusion, the topology induced by this semimetric is

certainly very close to a true metric topology.

Counterexample of triangular inequality:

Consider Θ = {θ1, θ2, θ3} and the three BBAs m, m′ and
m′′ as follows:

m(θ3) = 0.25, m(θ1∪θ3) = 0.19, m(θ2∪θ3) = 0.21, m(Θ) = 0.35 ,

m′(θ1 ∪ θ3) = 0.25, m′(θ2 ∪ θ3) = 0.26, m′(Θ) = 0.49 ,

m′′(θ1 ∪ θ2) = 0.44, m′′(Θ) = 0.56 .

We get d(m,m′) ≈ 0.1144, d(m′,m′′) ≈ 0.1800 and

d(m,m′′) ≈ 0.3306. Hence d(m,m′) + d(m′,m′′) = 0.2945
which is smaller than d(m,m′′) = 0.3306. So there, the

triangular inequality d(m,m′) + d(m′,m′′) ≥ d(m,m′′) is

violated.

VIII. CONCLUSION

In this paper we have proposed new measures of cross-

entropy and relative entropy of two basic belief assignments

based on the new effective measure of entropy of belief func-

tion presented in 2022. These new concepts are mathematically

well-defined and are direct generalizations of their classical

formulations drawn of the probabilistic framework. It is ex-

pected that these new theoretical concepts will become useful

in some applications for decision-making under uncertainty.

As research perspectives, we hope to improve them a bit more

in order to provide a true Jensen-Shannon metric for belief

functions in a near future. Also, applications of these new

concepts are under development and they will be reported in

future publications.

APPENDIX

A. Counterexamples of inequality (15)

We consider the FoD Θ = {A,B,C} and we give BBAs7

m1(.) and m2(.) such that inequality (15) is violated for the

different choices of triplet (i, j, k) used in the formula (14).

• Consider (i, j, k) = (1, 1, 1) and the BBAs of Table II.

We get U(m1) = 3.9742 and U(m1,m2) = 3.9432. The

inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (1, 2, 1) and the BBAs of Table III.

We get U(m1) = 3.7447 and U(m1,m2) = 2.4995. The

inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (1, 2, 2) and the BBAs of Table IV.

We get U(m1) = 3.9568 and U(m1,m2) = 2.5086. The

inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (2, 1, 1) and the BBAs of Table V.

We get U(m1) = 3.2115 and U(m1,m2) = 2.8616. The

inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (2, 1, 2) and the BBAs of Table VI.

We get U(m1) = 2.5542 and U(m1,m2) = 2.2147. The

inequality (15) is violated because U(m1) > U(m1,m2).

• Consider (i, j, k) = (2, 2, 1) and the BBAs of Table VII.

We get U(m1) = 4.5243 and U(m1,m2) = 3.8714.The

inequality (15) is violated because U(m1) > U(m1,m2).

7The numerical values entering in the tables have been approximated to
their fourth decimal for convenience.
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• Consider (i, j, k) = (2, 2, 2) and the BBAs of Table VIII.

We get U(m1) = 3.8858 and U(m1,m2) = 3.0406. The

inequality (15) is violated because U(m1) > U(m1,m2).

Table II
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.2094 0.1199
B 0.0537 0.0885

A ∪ B 0.3016 0.2833
C 0.0054 0.0112

A ∪ C 0.0713 0.0539
B ∪ C 0.0712 0.0646

A ∪ B ∪C 0.2874 0.3786

Table III
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.1443 0.4612
B 0.0695 0.0657

A ∪ B 0.0128 0.0291
C 0.0903 0.2119

A ∪ C 0.2922 0.1056
B ∪ C 0.2324 0.0305

A ∪ B ∪C 0.1585 0.0960

Table IV
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.1585 0.2677
B 0.0180 0.2017

A ∪ B 0.2202 0.0566
C 0.0758 0.2432

A ∪ C 0.1396 0.0120
B ∪ C 0.1681 0.1051

A ∪ B ∪C 0.2198 0.1137

Table V
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.1718 0.0852
B 0.1045 0.0246

A ∪ B 0.1721 0.0551
C 0.1329 0.0598

A ∪ C 0.1721 0.2664
B ∪ C 0.2078 0.2391

A ∪ B ∪C 0.0388 0.2698

B. Proof of the Theorem 1

Subsequently, log is the natural logarithm function to the

base of the mathematical Euler constant e. To prove the

Theorem 1, we first prove the theorem 2 below.

Theorem 2: Let M(Θ) be the set of basic belief assignments

over Θ. Then:

arg min
m∈M(Θ)

U(m1,m) = {m1} .

Table VI
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.2228 0.0284
B 0.2112 0.0617

A ∪ B 0.0767 0.3397
C 0.2523 0.0428

A ∪ C 0.0726 0.1748
B ∪ C 0.1196 0.2164

A ∪B ∪ C 0.0448 0.1362

Table VII
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.0443 0.1234
B 0.0892 0.2140

A ∪ B 0.2486 0.1321
C 0.0473 0.0962

A ∪ C 0.0562 0.2928
B ∪ C 0.0803 0.0245

A ∪B ∪ C 0.4341 0.1170

Table VIII
BBAS m1(.) AND m2(.).

Focal Elem. m1(.) m2(.)
A 0.0164 0.2007
B 0.0196 0.0967

A ∪ B 0.2219 0.1484
C 0.0746 0.2518

A ∪ C 0.1052 0.0996
B ∪ C 0.4906 0.1538

A ∪B ∪ C 0.0717 0.0490

Proof: Let F1 ⊂ 2Θ \ {∅} be the set of focal elements of

m1. First at all, it is noticed that u1(X) < 1 for all X ∈ F1.

Moreover, if there are X ∈ F1 and m ∈ M(Θ) such that

m(X) = 0, then U(m1,m) = +∞. As a consequence, if m
minimizes U(m1,m), then its set of focal elements contains

the set of focal elements of m1.

Optimizations. Let F be such that F1 ⊂ F ⊂ 2Θ \ {∅}. The

proof is done by solving:

min
m:F→R

∗

+

f(m) (21)

under constraint

∑

X∈F

m(X) = 1 (22)

where

f(m) = U(m1, m) =
∑

∅6=X 6=Θ

u1(X)(1−m(X))

+
∑

X∈F1

−m1(X)(1− u1(X)) log(m(X)). (23)
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It is worth noting that m(X) is nothing but the component

of index X of the unknown map vector m : F → R
∗
+. The

optimization (21) with equality constraint (22) could typically

be solved by means of Lagrangian multiplier method.

Because log(m(X)) is a concave function of m(X), the

term −m1(X)(1 − u1(X)) log(m(X)) is proportional to

− log(m(X)) and is a convex function of m(X). And because

u1(X)(1 − m(X)) is a linear function of m(X), the term

−m1(X)(1 − u1(X)) log(m(X)) + u1(X)(1 − m(X)) is

a convex function of m(X). Therefore, the function f(m)
is a convex function. We are then ensured that Lagrangian

multiplier condition will point, if it is fulfilled, to the minima

of the function.

Lagrangian multiplier is defined for this problem by:

L(m,λ) ,
∑

X∈F1

−m1(X)(1− u1(X)) log(m(X))

+
∑

∅6=X 6=Θ

u1(X)(1−m(X)) + λ[1−
∑

X∈F

m(X)]. (24)

The optimality conditions are:

Dm(X)L(m,λ) = 0 for all X ∈ F .

Where Dm(X)L(m,λ) is the differential of L(m,λ) with

respect to m(X) given by

Dm(X)L(m,λ) =
−m1(X)(1− u1(X))

m(X)
− u1(X)− λ ,

for X ∈ F1, and:

Dm(X)L(m,λ) = −u1(X)− λ , for X ∈ F \ F1 .

Then, the optimal solution for (21) is mopt such that:

mopt(X) =
m1(X)(1− u1(X))

(−λ− u1(X))
, for all X ∈ F1 , (25)

with λ chosen such that:

− λ = u1(X) for all X ∈ F \ F1 , (26)
∑

X∈F\F1

mopt(X) +
∑

X∈F1

m1(X)(1− u1(X))

(−λ− u1(X))
= 1 . (27)

Noticed that (25) implies −λ− u1(X) > 0 for all X ∈ F1.

Case F 6= F1: Condition (26) implies −λ ≤ 1 and then:

∑

X∈F1

m1(X)(1− u1(X))

(−λ− u1(X))
≥

∑

X∈F1

m1(X) = 1 .

Then by (27), it comes mopt(X) = 0 for X ∈ F \F1, which

contradicts hypothesis that F is the set of focal elements of

m. There is no solution with more focal elements than m1.

Case F = F1: Choice λ = −1 is obvious. Therefore, the

unique minimizer mopt = m1 is obtained.

Conclusion. It has been shown that minimizer of U(m1,m)
only exists if it has the same set of focal elements than m1.

Moreover, it is shown in that case that the only minimizer is

m1. As a consequence:

arg min
m∈M(Θ)

U(m1,m) = {m1} for all m ∈ M(Θ) .

Because Theorem 2 holds, we have U(m1,m) > U(m1)
when m 6= m1, and U(m1,m1) = U(m1) when m = m1.

Therefore, U(m1,m) ≥ U(m1) for any BBA m ∈ M(Θ).
Thus the inequality (15) holds, with equality only if m1 = m2,

which completes the proof of the Theorem 1.
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Abstract—In this short paper we discuss the monotonicity
desideratum for defining an efficient entropy measure of basic
belief assignments. We browse some alternatives of the effective
entropy measure developed recently, and we show that all these
new alternatives for an entropy measure are not efficient. Only
one appears to be quasi-efficient for the frame of discernment of
dimension 2.

Keywords: entropy, cross-entropy, belief functions.

I. INTRODUCTION

We assume that the formula of the entropy for basic belief

assignment (BBA) is of the general form, see [1] for details

U(m) =
∑

X∈2Θ

s(X) (1)

with

s(X) , −α(u(X))m(X) log(m(X))

+ β(u(X),m(X)) (2)

where u(X) = Pl(X)−Bel(X), α(u(X)) ∈ [0, 1] is a

weighting function of the surprisal − log(m(X)), and

β(u(X),m(X)) is a function that must increase the entropy

U(m) as soon as there is some imprecision on unknown

probability P (X) of X . s(X) has been called the entropiece

of subset X .

In [1], the function U(m) has been defined as effective if

it satisfies the four natural following desiderata:

D1: For any non-empty frame of discernment Θ and for any

BBA m(·) focused on a singleton X of 2Θ one must have

U(m) = 0 (3)

D2: The measure of uncertainty of a total ignorant source of

evidence must increase with the cardinality of the frame of

discernment. That is

U(mΘ
v ) < U(mΘ

′

v ), if |Θ| < |Θ′|. (4)

D3: The measure of uncertainty U(m) must coincide with

Shannon entropy [2]–[4] if the BBA m(·) is a Bayesian

BBA. This desideratum is mathematically expressed for any

Bayesian BBA m(·) defined on the FoD Θ by the condition1

U(m) = −
∑

X∈Θ

m(X) log(m(X)) (5)

D4: For any non-vacuous BBA m(·) and for the vacuous BBA

mv(·) defined with respect to the same FoD one must have

U(m) < U(mv) (6)

It has been proved in [1] that U(m) is effective in particular

if one takes

α(u(X)) = 1− u(X) (7)

β(u(X),m(X)) = u(X)(1−m(X)) (8)

There is unfortunately no unicity for the choice of α(u(X))
and β(u(X),m(X)) functions, even if this particular choice

has a quite simple interpretation. The interest of this choice is

that it allows to define easily the cross-entropy U(m1,m2) of

BBAs in a simple way satisfying the Gibbs-alike inequality

[5] U(m1,m2) > U(m1). However this effective entropy

formula is not entirely satisfying because the triangular

inequality for Jensen-Shannon-alike distance can be violated

in rare situations for some distributions of BBAs. This matter

of fact motivates us to search for improved effective entropy

formulas.

For this, we would like that the entropy satisfies a 5th
desideratum D5 about the monotonicity of U(m). More pre-
cisely, we want that a reduction of mass of X ⊂ Y transferred
to its superset Y increases the entropy value, and we want
that any reduction of mass of m(Y ) transferred to one of its
subset X decreases the entropy value. As a simple example,
for Θ = {A,B} if we consider the BBAs m(.) and mǫ(.)
defined by


















m(∅) = 0

m(A) = a

m(B) = b

m(A ∪ B) = 1− a− b

and



















mǫ(∅) = 0

mǫ(A) = ǫ · a

mǫ(B) = b

mǫ(A ∪B) = 1− (ǫ · a)− b

with 0 ≤ ǫ < 1. We would like to have U(m) < U(mǫ)
because the BBA mǫ is less specific than U(m) because the

1Shannon entropy [2] is given here in nats, and we take 0 log(0) = 0
because limx→0+

x log(x) = 0 which is proved using L’Hôpital’s rule.
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mass of ambiguity (or disjunction) A ∪ B for mǫ is bigger

than for the BBA m.

So we would like that the entropy of a BBA satisfies the

extra desiderata D5 (i.e. the monotonicity desideratum) stated

as follows:

D5 (monotonicity): U(m) must increase when a mass of a

proposition Y increases while the mass of one of its subset

X ⊂ Y decreases by the same amount, and vice versa.

Note that D5 is equivalent to the mathematical condition

∂U(m)

∂m(X)
<

∂U(m)

∂m(Y )

for all X and Y such that m(X) > 0 and X ⊂ Y .

It is worth mentioning that if U(m) satisfies D5 then it

will satisfy D4, but the converse is unfortunately false for the

entropy proposed in [1] because it can be easily shown based

on a simple counter-example that the U(m) based on (7) and

(8) (which satisfies D4) can occasionally violate D5.

Example: Consider Θ = {A,B}, ǫ = 0.5 and the BBAs



















m(∅) = 0

m(A) = 0.0067

m(B) = 0.8645

m(A ∪B) = 0.1288

and



















mǫ=0.5(∅) = 0

mǫ=0.5(A) = 0.00335

mǫ=0.5(B) = 0.8645

mǫ=0.5(A ∪B) = 0.13215

We get U(m) = 0.548244475651207 and U(mǫ) =
0.542869517947531, and we observe that U(m) > U(mǫ).
This proves that D5 is not satisfied in this counter-example

with the effective entropy measure defined in [1] by the

formulas (1) and (2).

A measure of uncertainty U(m) that will satisfy desiderata

D1, D2, D3 and D5 (and thus D4 too) will be named an

efficient entropy.

II. ATTEMPTS FOR IMPROVING ENTROPY FORMULATION

In the spirit of original effective entropy formula defined

in [1] by the formulas (1) and (2), we did explore other

possible formulas by slightly changing the α(u(X)) and

β(u(X),m(X)) functions involved in the derivation of the

entropieces s(X). The Monte-Carlo evaluation of these mod-

ifications with respect to the satisfaction of desiderata D4 and

D5 are reported in the next section. For D5, we did only make

the evaluation based on the example presented before when

considering m and mǫ defined only over 2Θ = {A,B}.

To keep the spirit of principle of entropy we choose positive

functions α(u(X)) such that α(u(X)) = 0 for u(X) = 1,

and α(u(X)) = 1 for u(X) = 0, so that the first part

of entropy formula (1) remains compatible with Shannon

entropy for Bayesian BBA. We also choose positive functions

β(u(X),m(X)) having same behavior as u(X)(1 − m(X))
at the limits when u(X) equals zero or one, and when m(X)
equals zero or one.

We make a behavior analysis of U(m) with the

change of the functions α(u(X)) and β(u(X),m(X)).
We refer a particular choice of couple of functions

(α(u(X)), β(u(X),m(X))) by a version number vi.

The original version v0 corresponds to the choice used in

effective definition presented in [1], i.e. α(u(X)) = 1−u(X)
and β(u(X),m(X)) = u(X)(1−m(X)).

First, we analyze the behavior of U(m) with respect to the

change of α(u(X)) function as those tested in Table I.

Version # α(u(X)) β(u(X), m(X))

v0 1− u(X) u(X)(1 −m(X))

v1
1−u(X)

1+(u(X)/|X|)
u(X)(1 −m(X))

v2
1−u(X)

1+u(X)
u(X)(1 −m(X))

v3
1−u(X)

1+|X|·u(X)
u(X)(1 −m(X))

v4
1−u(X)

1−(u(X)/|X|)
u(X)(1 −m(X))

v5
1−u(X)

1−(u(X)/2)
u(X)(1 −m(X))

v6
1−u(X)

1−(1−
1

|X|
)u(X))

u(X)(1 −m(X))

Table I
FUNCTIONS ANALYZED.

The functions α(u(X)) used in versions v1, v2 and v3

under-amplify the discounting because these functions are

under the line (1 − u(X)). The functions α(u(X)) used in

versions v4, v5 and v6 over-amplify the discounting because

these functions are above the line (1− u(X)).

Secondly, we analyze the behavior of U(m) with re-

spect to the change of the u(X) function appearing in

β(u(X),m(X))) of version v0 by those tested in Table II.

Version # α(u(X)) β(u(X), m(X))

v0 1− u(X) u(X)(1 −m(X))

v7 1− u(X) (1−
1−u(X)

1−(u(X)/|X|)
)(1 −m(X))

v8 1− u(X) (1−
1−u(X)

1−(u(X)/2)
)(1−m(X))

v9 1− u(X) (1−
1−u(X)

1−(1−
1

|X|
)u(X))

)(1 −m(X))

v10 1− u(X) (1−
1−u(X)

1+u(X)/|X|
)(1 −m(X))

v11 1− u(X) (1−
1−u(X)

1+u(X)
)(1 −m(X))

v12 1− u(X) (1 −
1−u(X)

1+|X|·u(X)
)(1 −m(X))

Table II
FUNCTIONS ANALYZED.

The functions in v7, v8 and v9 under-amplify

u(X)(1−m(X)) because they are below the line

u(X)(1 − m(X)), whereas the functions in v10, v11

and v12 over-amplify u(X)(1 − m(X)) because they are

above the line u(X)(1−m(X)).

Thirdly, we analyze the behavior of U(m) with respect

to the change of the linear term 1 − m(X) entering in

β(u(X),m(X)) formula of the original entropy version v0,

and we consider the functions listed in the Table III.
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Version # α(u(X)) β(u(X), m(X))

v0 1− u(X) u(X)(1 −m(X))

v13 1− u(X) u(X)
1−m(X)

1+(m(X)/|X|)

v14 1− u(X) u(X)
1−m(X)

1+m(X)

v15 1− u(X) u(X) 1−m(X)

1+|X|·m(X)

v16 1− u(X) u(X)
1−m(X)

1−(m(X)/|X|)

v17 1− u(X) u(X) 1−m(X)

1−(m(X)/2)

v18 1− u(X) u(X)
1−m(X)

1−(1−
1

|X|
)m(X)

Table III
FUNCTIONS ANALYZED.

III. SIMULATION RESULTS

The following tables presents the results of the tests of

satisfaction of D4 and D5 based on NMC = 500000 random

generations of BBAs used in our Monte-Carlo simulation.

N(D4) is the number of cases where U(m) > U(mv) has

occurred, i.e. the number of violations of D4 for the case

where |Θ| = 5, and where mv is the vacuous BBA for

which mv(Θ) = 1. Nǫ(D5) is the number of cases where

U(m) > U(mǫ) has occurred, i.e. the number of violations of

D5 when working with the frame of discernment Θ = {A,B}.

Table IV gives the results corresponding to functions listed

in Table I.

Version # (N(D4), U(mv)) N0.9(D5) N0.5(D5) N0.2(D5)

v0 (0, 30) 15380 20248 26798

v1 (0, 30) 6048 7775 10117

v2 (0, 30) 6040 7699 10365

v3 (0, 30) 5851 7716 10474

v4 (0, 30) 34488 45352 63153

v5 (0, 30) 25667 33673 45652

v6 (0, 30) 15294 19931 26900

Table IV
NUMBERS OF FAILURES AMONG NMC = 500000 RANDOM RUNS.

We observe from the results of Table IV that all expressions

of U(m) satisfy D4, and more we discount m(A) (i.e. closer

to zero is the ǫ-factor) more failures we get for the D5 test.

We also observe that using an under-amplifying α(u(X))
function as in versions v1, v2 and v3 reduces notably (by

almost a factor 3) the number of failures for the D5 test with

respect to the original linear weighting function 1−u(X) used

in original entropy formula of v0. We observe conversely that

using over-amplifying α(u(X)) function as in versions v4, v5

and v6 increase drastically the number of failures of the D5 test

with respect to the original linear weighting function 1−u(X)
used in original entropy formula of v0. Therefore, the choice

for an under-amplifying α(u(X)) function is recommended.

Table V gives the results corresponding to functions listed

in Table II.

As we observe in Table V, replacing u(X) by an under-

amplifying function as in versions v7, v8, and v9 has an

impact on number of failures of D5 test but it changes

Version # (N(D4), U(mv)) N0.9(D5) N0.5(D5) N0.2(D5)

v0 (0, 30) 15380 20248 26798

v7 (0,∞) 1452 1899 2585

v8 (0, 60) 3818 4954 6528

v9 (0, 75) 15542 20067 27014

v10 (0, 30) 12653 16280 22376

v11 (0, 30) 12617 16396 22230

v12 (0, 30) 12603 15999 22090

Table V
NUMBERS OF FAILURES AMONG NMC = 500000 RANDOM RUNS.

substantially the entropy of vacuous BBA. If we replace

u(X) by an over-amplifying function as in versions v10,

v11, and v12 we do not change the entropy of vacuous

BBA which remains equal to U(mv) = 2|Θ| − 2, and

we reduce moderately the number of failures of D5 test

and all results with versions v10, v11, and v12 are very similar.

Table VI gives the results corresponding to functions listed

in Table III.

Version # (N(D4), U(mv)) N0.9(D5) N0.5(D5) N0.2(D5)

v0 (0, 30) 15380 20248 26798

v13 (0, 30) 10574 13614 18423

v14 (0, 30) 10645 13857 18521

v15 (0, 30) 10506 13645 18578

v16 (0, 30) 12496 16401 22062

v17 (0, 30) 16226 20251 28595

v18 (0, 30) 15513 19848 26816

Table VI
NUMBERS OF FAILURES AMONG NMC = 500000 RANDOM RUNS.

We observe that using an under-amplifying function of

1 − m(X) as with versions v13, v14, and v15 reduces by

about 1/3 the number of D5 failures, and there is no so much

differences between results of these three versions. One sees

that using over-amplifying functions as those in versions

v16, v17, and v18 does nor reduce substantially the number

of failures of D5 test, and it can even be slightly worse than

result of v0 as we can see when using functions of v17.

Our analysis of the behavior of U(m) done with all func-

tions tested in the Tables I, II and III reveals that the most

important effect on the reduction of the number of failures of

D5 desideratum is obtained when using an under-amplifying

function α(u(X)).

In order to reduce a bit more the number of failures of D5,

we combine the expressions of α(u(X)) and β(u(X),m(X))
that provide the minimum of failures to obtain the most failure

reduction of D5 test. Hence if we consider the expression of

α(u(X)) in v2, and the expression of β(u(X),m(X)) in v13,
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we get the following entropiece expression (denoted v19)

s(X) = −1− u(X)

1 + u(X)
m(X) log(m(X))

+ u(X)
1−m(X)

1 + (m(X)/|X |) (9)

Using this entropiece formulation, named v19 v19, we get

the results of Table VII.

Version # (N(D4), U(mv)) N0.9(D5) N0.5(D5) N0.2(D5)

v0 (0, 30) 15380 20248 26798

v19 (0, 30) 4180 5424 7250

Table VII
NUMBERS OF FAILURES AMONG NMC = 500000 RANDOM RUNS.

We see that using this new expression v19 for entropiece,

we drastically reduce the number of failures of D5 to ap-

proximately (5000/500000) · 100 = 1%. Even if this failure

percentage is quite small, it is not equal to zero. Therefore,

the entropy measure based on this version v19 for entropiece

definition is not totally efficient, but almost efficient for the

case with |Θ| = 2. Of course a more deeper and general

analysis of test D5 with random BBA generated with frames

of discernment Θ having more than two elements should

be tested to see if a similar small percentage of failure are

obtained with the entropiece defined in the version v19, and in

this case we could conjecture that this new entropy measure

is quasi-efficient.

IV. CONCLUSION

The existence of an entropy formulation that would war-

ranties the efficiency (i.e. D1, D2, D3 and D5 desiderata)

of the entropy measure of any BBA remains an open very

challenging problem. We hope that a theoretical solution of

this interesting problem exists, and if so the proof of its unicity

(if any) would also be very welcome.
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Abstract—This paper analyzes the different definitions of a
negator of a probability mass function (pmf) and a basic belief
assignment (BBA) available in the literature. To overcome their
limitations we propose an involutory negator of BBA, and we
present a new indirect information fusion method based on this
negator which can simplify the conflict management problem.
The direct and indirect information fusion strategies are analyzed
for three interesting examples of fusion of two BBAs. We also
propose two methods for using the whole available information
(the original BBAs and their negators) for decision-making
support. The first method is based on the combination of the
direct and indirect fusion strategies, and the second method
selects the most reasonable fusion strategy to apply (direct, or
indirect) based on the maximum entropy principle.

Keywords: belief functions, BBA negator, information fusion,
measure of uncertainty, entropy.

I. INTRODUCTION

This paper is an extended version of our paper published in
Cybernetics and Information Technologies (CIT) journal [1].
Due to page limit restrictions of the CIT journal, we were not
able to provide all technical details and the examples, and that
is why we propose this extended version for the readers and
researchers interested in this topic.

This paper deals with basic belief assignments (BBAs) in-
troduced by Shafer in his mathematical theory of evidence [2]
known also as Dempster-Shafer Theory (DST) in the literature.
We focus on the construction of an involutory negator of a
BBA, and its application for information fusion. The concept
of the complement of a body of evidence (i.e. a negator) has
been introduced by Dubois and Prade [3] in 1986, and re-
examined by Yager in [4] who has attracted a new interest of
the research community working with the belief functions. The
main disadvantage with these negators (and of the most recent
proposals) is that they are not involutory1 in general so that
the information content of the negator of a negator of a BBA
is not equal to the information content of the original BBA.
This is problematic from the informational standpoint because
we naturally expect that working with negator of negator

1An involutory function (or involution) is a function f that is its own
inverse, that is f(f(x)) = x for all x in the domain of f . This means that
applying f twice produces the original value.

of evidence should be equivalent to working with original
evidence. The problem we address in this paper can be stated
as follows: let’s consider a frame of discernment (FoD) Θ of
a problem under concern. Knowing a first expert providing a
BBA m(·) defined on the power set2 2Θ, is it possible to find
a second expert with a BBA m̄(·) defined on the power set
2Θ that expresses the opposite (or negation) assessment of the
first expert? How can this be done effectively? Based on which
principle and justifications? The second problem we address is
the use of negator of BBAs for the information fusion and their
possible advantages for decision-making support. It is worth
mentioning that the negation of a BBA (i.e a BBA negator)
must not be confused with negative values for masses of belief
which are not allowed in Shafer’s mathematical theory of
evidence. This work focuses on the search for an involutory
negator of BBA which can be interpreted as a dual approach
of the characterization of any source of evidence.

This paper is organized as follows. Section II recalls the
basic notions of Belief Functions (BF) and the entropy of
BBAs. In Section III a detailed review and examples of several
negators of probability mass function (pmf) and BBA proposed
in the literature up to now is made. Section IV introduces
a new involutory negator for BBAs. Section V recalls the
principle of the classical direct fusion approach and describes
the principle of a new indirect fusion approach based on
the new involutory negator for BBA. In Section VI three
interesting examples related to conflicting sources of evidences
are described. The results obtained on the base of direct
and indirect fusion approaches using Dempster’s rule and
Proportional Conflict Redistribution rule No.6 of combination
are analyzed. Section VII discusses two important remarks
about the indirect fusion based on conjunctive rule and about
the entropy change due to the use of BBA’s negator. Section
VIII is devoted to the management of direct and indirect
fusions for decision-making support. Conclusion is done in
Section IX.

2By definition, 2Θ = {X|X ⊆ Θ}, which is the set of all subsets of Θ
(empty set ∅ and Θ included). We usually omit { and } characters for denoting
the elements of the power-set because it makes the notation simpler and
shorter. For instance, if the frame of discernment is Θ = {A,B}, the power-
set 2Θ will be denoted by {∅, A,B,A∪B} with our notation which uses only
11 characters, instead of using the classical notation {∅, {A}, {B}, {A,B}}
which would require 17 characters. We can make the notation even more
shorter by writing 2Θ as {∅, A,B,Θ} using only 9 characters.

Originally published as: J. Dezert, A. Tchamova, Involutory Negator of Basic Belief Assignments Applied 
to Information Fusion, Cybernetics and Information Technologies Journal, Sofia, Vol. 23(3), September 
2023, and reprinted with permission.
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II. B EL IEF FUNCTIONS AND ENTROPY

The belief functions were introduced by Shafer [2] for
modeling epistemic uncertainty, for reasoning about uncer-
tainty, and for combining distinct sources of evidence (SoEs).
The answer of the problem under concern is assumed to
belong to a known finite discrete frame of discernement (FoD)
Θ = {θ1, . . . , θN} where all elements (i.e. members) of Θ are
exhaustive and exclusive. The set of all subsets of Θ (including
empty set ∅, and Θ) is the power-set of Θ denoted by 2Θ. The
number of elements (i.e. the cardinality) of the power-set is
2|Θ|.

A. Basic definitions

A normalized basic belief assignment3 (BBA), associated
with a given source of evidence is a mapping mΘ(·) : 2Θ →
[0, 1] such that mΘ(∅) = 0 and

∑

X∈2Θ
mΘ(X) = 1. A BBA

mΘ(·) characterizes a source of evidence related with a FoD
Θ. For notation shorthand, we can omit the superscript Θ in
mΘ(·) notation if there is no ambiguity on the FoD we work
with. The quantity m(X) is called the mass of belief of X .
The element X ∈ 2Θ is called a focal element (FE) of m(·) if
m(X) > 0. The set of all focal elements of m(·) is denoted4

by FΘ(m) , {X ∈ 2Θ|m(X) > 0}. The belief and the
plausibility of X are respectively defined for any X ∈ 2Θ by
[2]

Bel(X) =
∑

Y ∈2Θ|Y⊆X

m(Y ) , (1)

Pl(X) =
∑

Y ∈2Θ|X∩Y 6=∅
m(Y ) = 1− Bel(X̄) . (2)

where X̄ , Θ \ {X} is the complement of X in Θ.
One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [2]. For

X = ∅, Bel(∅) = Pl(∅) = 0, and for X = Θ one has
Bel(Θ) = Pl(Θ) = 1. Bel(X) and Pl(X) are often inter-
preted as the lower and upper bounds of unknown prob-
ability P (X) of X , that is Bel(X) ≤ P (X) ≤ Pl(X).
To quantify the uncertainty (i.e. the imprecision) of
P (X) ∈ [Bel(X), P l(X)], we use u(X) ∈ [0, 1] defined by

u(X) , Pl(X)−Bel(X) . (3)

The quantity u(X) = 0 if Bel(X) = Pl(X), which
means that P (X) is known precisely, and one has
P (X) = Bel(X) = Pl(X). One has u(∅) = 0 be-
cause Bel(∅) = Pl(∅) = 0, and one has u(Θ) = 0 because
Bel(Θ) = Pl(Θ) = 1. If all focal elements of m(·) are single-
tons of 2Θ the BBA m(·) is a Bayesian BBA because ∀X ∈ 2Θ

one has Bel(X) = Pl(X) = P (X) and u(X) = 0. Hence
the belief and plausibility of X coincide with a probability
measure P (X) defined on the FoD Θ. The vacuous BBA
characterizing a totally ignorant source of evidence is defined
by mv(X) = 1 for X = Θ, and mv(X) = 0 for all X ∈ 2Θ

different of Θ. This very particular BBA has played a major
role in the establishment of a new effective measure of
uncertainty (i.e. entropy) for BBA in [5].

3also referred as a normal BBA, or a proper BBA in the literature.
4The symbol , means equals by definition.

B. Entropy of a BBA

In [6] we did analyze in details forty-eight measures of
uncertainty (MoU) of BBAs by covering 40 years of research
works on this topic. Some of these MoUs capture only a par-
ticular aspect of the uncertainty inherent to a BBA (typically,
the non-specificity and the conflict). Other MoUs propose a
total uncertainty measure to capture jointly several aspects of
the uncertainty. Unfortunately, most of these MoUs fail to
satisfy four very simple reasonable and essential desiderata,
and so they cannot be considered as really effective and
useful. Actually only six MoUs can be considered as effective
from the mathematical sense presented next, but unfortunately
they appear as conceptually defective and disputable, see
discussions in [6]. That is why, a better effective measure of
uncertainty (MoU), i.e. generalized entropy of BBAs has been
developed and presented in [5]. The mathematical definition
of this new effective entropy is given by

U(m) =
∑

X∈2Θ

s(X) , (4)

with

s(X) , −m(X)(1− u(X)) log(m(X))

+ u(X)(1−m(X)) . (5)

s(X) is the uncertainty contribution related to X named the
entropiece of X . This entropiece s(X) involves m(X) and
the imprecision u(X) = Pl(X)−Bel(X) about the unknown
probability of X in a subtle interwoven manner. Because
u(X) ∈ [0, 1] and m(X) ∈ [0, 1] one has s(X) ≥ 0,
and U(m) ≥ 0. The quantity U(m) is expressed in nats
because we use the natural logarithm. U(m) can be ex-
pressed in bits by dividing the U(m) value in nats by
log(2) ≈ 0.69314718. This measure of uncertainty U(m) is a
continuous function in its basic belief mass arguments because
it is a summation of continuous functions. In formula (5), we
always take m(X) log(m(X)) = 0 when m(X) = 0 because
limm(X)→0+ m(X) log(m(X)) = 0. Note that for any BBA
m, one has s(∅) = 0 because m(∅) = 0 and u(∅) = 0. For
the vacuous BBA, one has s(Θ) = 0 because mv(Θ) = 1
and u(Θ) = 0. This measure of uncertainty U(m) is effective
because it can be proved [5] that it satisfies the following four
essential desiderata:

1) U(m) = 0 for any BBA m(·) focused on a singleton X
of 2Θ.

2) U(mΘ
v ) < U(mΘ

′

v ) if |Θ| < |Θ′|.
3) U(m) = −∑

X∈Θ
m(X) log(m(X)) if the BBA m(·)

is a Bayesian BBA. Hence, U(m) reduces to Shannon
entropy [7] in this case.

4) U(m) < U(mv) for any non-vacuous BBA m(·) and
for the vacuous BBA mv(·) defined with respect to the
same FoD Θ.

The maximum of entropy value is obtained for the vacuous
BBA mv over a FoD Θ, because mv characterizes a source
of evidence with a full lack of information. This maximum
entropy value is U(mΘ

v ) = 2|Θ| − 2 (see derivation in [5]),
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and it represents the sum of all imprecisions of P (X) for all
X ∈ 2Θ. Because for all X ∈ 2Θ \ {∅,Θ} one has5 u(X) = 1,
and one has u(∅) = 0 and u(Θ) = 0 when considering the
vacuous BBA, the sum of all imprecisions u(X) about P (X)
is equal to 2|Θ|−2. It is worth mentioning that one has always
U(mΘ

v ) > log(|Θ|), which means that the vacuous BBA has
always an entropy greater than the maximum of Shannon
entropy log(|Θ|) obtained with the uniform probability mass
function (pmf) on the frame of discernment Θ.

III. NEGATORS OF PMF AND B BA IN THE L ITERATURE

In this section we present several negators proposed in the
literature with some examples, and we comment them.

A. Dubois and Prade non-involutory negator of a BBA (1986)

In 1986, Dubois and Prade introduced in [3] (pp. 202–203)
for the first time the concept of negation of a BBA which
has been adopted later by Smets [9] in his transferable belief
model framework. Dubois and Prade (DP) negator is defined
for any X ⊆ Θ by

m̄(X) = m(X̄) , (6)

where X̄ = Θ \ {X} is the complement of X in the FoD Θ.

This simple definition is quite natural except that it does
not satisfy the involutory property because ¯̄m 6= m in general.
Because we consider that this must be a very a natural and
desired property to satisfy by an effective negator, we do not
consider DP negator as effective. Moreover, it is clear that the
DP negator of the vacuous BBA given by m̄v(∅) = mv(Θ) =
1 is not a proper BBA.

B. Yager’s non-involutory negator of a pmf (2015)

Yager introduced the concept of the negation of a probability
distribution P in [4] which was raised by Zadeh in his Berke-
ley Initiative in Soft Computing (BISC) blog. By the term
negation Yager means the representation of the knowledge
we use if we have the statement not P . The negation of
a probability mass function (pmf) P (.) over a reference set
Θ = {θ1, θ2, . . . , θn} has been defined by Yager as follows

P̄ (θi) =
1

λ
P (θ̄i) , (7)

where θ̄i = Θ \ {θi} is the complement of θi in the set Θ,
P (θ̄i) = 1 − P (θi), and where λ is a normalization factor
given by

λ =

n
∑

i=1

P (θ̄i) =

n
∑

i=1

(1− P (θi)) = n− 1 . (8)

The definition (7) is called Yager’s negator in the literature
[10]. Yager’s justification for his definition is based on the
maximal entropy principle of the weights associated with each
focal element. As Yager pointed out in [4] the definition
(7) does not satisfy the double negation (i.e. involutory or
involutionary) property in general (when |Θ| > 2 and P (.) is

5Because [Bel(X), P l(X)] = [0, 1].

not the uniform pmf), that is ¯̄P (.) 6= P (.). Yager’s negator of a
probability distribution is the one that provides the maximum
entropy among all possible negation definitions. The iterative
application of Yager’s negator converges towards the uniform
pmf for which the entropy is maximal in the framework of the
probability theory.

Example 1: Consider the set Θ = {θ1, θ2, θ3} and the pmf
P (.) with P (θ1) = 1 (i.e. θ1 is a sure event). Based on (7),
we get P̄ (θ1) = 0, P̄ (θ2) = 1/2 and P̄ (θ3) = 1/2. In this
example the whole probability mass P (θ1) = 1 is equally
distributed back to singletons θ2 and θ3 of θ̄1 = θ2 ∪ θ3. The
double Yager’s negator of P (.) is

¯̄P (θ1) =
1− 0

3− 1
= 0.5 6= P (θ1) ,

¯̄P (θ2) =
1− 0.5

3− 1
= 0.25 6= P (θ2) ,

¯̄P (θ3) =
1− 0.5

3− 1
= 0.25 6= P (θ3) .

Example 2: Consider the set Θ = {θ1, θ2, θ3} and the uniform
pmf P (.) with P (θ1) = P (θ2) = P (θ3) = 1/3. Based on (7)
we get also the uniform pmf because

P̄ (θ1) = P̄ (θ2) = P̄ (θ3) =
1− (1/3)

3− 1
=

2/3

2
= 1/3 .

As a general result, the negation of any uniform pmf defined
over Θ of cardinality n > 1 is always equal to the uniform
pmf, i.e. the negation operator has no impact on the uniform
pmf, and if P (.) is uniform we always have ¯̄P (.) = P (.). The
uniform pmf is the fixed point of Yager’s negator.

Example 3: Consider the set Θ = {θ1, θ2, θ3} and the non-
uniform pmf P (.) with P (θ1) = 0.6, P (θ2) = 0.3 and
P (θ3) = 0.1. Based on (7) we get the negator

P̄ (θ1) =
1− 0.6

3− 1
= 0.20 ,

P̄ (θ2) =
1− 0.3

3− 1
= 0.35 ,

P̄ (θ3) =
1− 0.1

3− 1
= 0.45 .

Note that in the very particular case where Θ = {θ1} (i.e.
there is only one element in the reference set), we have n = 1
and necessarily P (θ1) = 1. Therefore by applying (7) we
obtain P̄ (θ1) =

1−P (θ1)

n−1
= 0/0 which is indeterminate.

A generalization of Yager’s negator has been proposed in
[10] by considering

P̄ (θi) =
1

λ
(1− d · P (θi)) , (9)

where d ∈ [0, 1] is a tuning parameter, and

λ =

n
∑

i=1

(1− d · P (θi)) = n− d . (10)

The analysis of the new properties of Yager’s negator has
been done by Srivastava et al. in [11], [12]. An extension of
Yager’s negator based on Tsallis entropy has been proposed by
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Zhang et al. in [13]. More recently a non-involutory exponen-
tial negator for pmf has been proposed by Wu et al. in [14]
which unfortunately does not bring useful advantages w.r.t.
Yager’s negator for applications up to now. Wu’s exponential
negator has a better convergence rate towards uniform pmf
by the repetitive application of it, but the real interest of
this behaviour for practical applications is questionable and
remains to be demonstrated.

C. Yin’s non-involutory negator of a BBA (2019)

In 2019, Yin et al. [15] proposed a definition of the
negation of a BBA as a three steps procedure which can be
expressed more concisely as follows for any focal element
X of a BBA m(.) defined over a frame of discernment
Θ = {θ1, θ2, . . . , θn}:

m̄(X) =
1

λ
· (1 −m(X)) , (11)

where λ is the normalization constant defined by

λ =
∑

X∈2Θ|m(X)>0

(1 −m(X)) = N − 1 , (12)

and where N is the number of focal elements of m(.).
Clearly, Yin’s negator is directly inspired by Yager’s nega-

tor, but it works with BBA instead of pmf. Yin’s negator is
disputable because it is easy to check that it is non-involutory
as shown in the example 4 next.

Example 4: Consider the set Θ = {θ1, θ2, θ3} and the BBA
m(.) with m(θ1) = 0.1, m(θ1 ∪ θ2) = 0.2, m(θ2 ∪ θ3) = 0.3,
m(Θ) = 0.4. Here N = 4 because we the BBA m(.) has four
focal elements. Based on (11), we get

m̄(θ1) =
1− 0.1

4− 1
= 0.30 ,

m̄(θ1 ∪ θ2) =
1− 0.2

4− 1
≈ 0.27 ,

m̄(θ2 ∪ θ3) =
1− 0.3

4− 1
≈ 0.23 ,

m̄(Θ) =
1− 0.4

4− 1
= 0.20 .

The double Yin’s negator of m(.) is

¯̄m(θ1) =
1− 0.3

4− 1
≈ 0.23 6= m(θ1) ,

¯̄m(θ1 ∪ θ2) ≈
1− 0.27

4− 1
≈ 0.24 6= m(θ1 ∪ θ2) ,

¯̄m(θ2 ∪ θ3) ≈
1− 0.23

4− 1
≈ 0.26 6= m(θ2 ∪ θ3) ,

¯̄m(Θ) =
1− 0.20

4− 1
≈ 0.27 6= m(Θ) .

So, we see that ¯̄m(.) obtained with Yin’s negator is not
equal to the original BBA m(.). This simple counter-example
suffices to prove that Yin’s negator is non-involutory.

More problematic, Yin’s negator is indeterminate for the
vacuous BBA mv(.) for which mv(Θ) = 1, because in this
case Θ is the only focal element so that N = 1, and from

(11) we get m̄(Θ) = 1−m(Θ)

N−1
= 0/0 which is indeterminate.

Actually, this serious problem occurs not only for the vacuous
BBA, but for any BBA focused on only one focal element.
Therefore, Yin’s negator is not appropriate for the negation of
a BBA. It is worth mentioning that the iterative application of
Yin’s negator converges towards the uniform distribution of
masses on all focal elements of m(.) (assuming N > 1) [15],
which does not coincide to the vacuous BBA that must give
the maximum of entropy [5].

We mention that Yin’s negator has been presented also by
Gao and Deng in [16]. Unfortunately this reference contains
several mistakes, and the authors do not apply correctly Yin’s
definition in some of their examples. For instance, in their first
specific example considering Θ = {a} with m(a) = 1 (i.e. we
have only N = 1 focal element for m(.)) the author claim that
m̄(a) = 0. This is obviously wrong because one has m̄(a) =
(1−m(a))/(N − 1) = 0/0 which is indeterminate. Gao and
Deng write also: Assumed a BPA that contains only one focal

element (e.g. the m(a) = 0), the negation of BPA can be

defined by m̄(a) = 1. This claim is incorrect because any focal
element X must be such that m(X) > 0 by definition [2]. So,
there is no proper BBA that contains only one focal element
satisfying m(a) = 0. In their example 1 (see of Section IV-A
of [16]) the same authors consider Θ = {a, b} with m(a) =
m(b) = 0.5 (i.e. a Bayesian BBA with N = 2 focal elements).
Applying (12) we must obtain m̄(a) = (1−0.5)/(2−1) = 0.5
and m̄(b) = (1 − 0.5)/(2 − 1) = 0.5, and not m̄(a) = 0.25,
m̄(b) = 0.25 and m̄(a ∪ b) = 0.5 as the authors claim. This
casts doubts on the correctness of the technical content of Gao
and Deng paper [16].

D. Xie and Xiao non-involutory negator of a BBA (2019)

An other non-involutory negator of a BBA has been pro-
posed by Xie and Xiao in [17]. This negator is defined by

m̄ = E ·m , (13)

where m is the BBA m(.) expressed as a vertical vector of
size 2|Θ|, that is m = [m(∅),m(θ1), . . . ,m(Θ)]T , and m̄ is
the negation vector of the BBA vector m which characterizes
the negation of m(.). The matrix E is a negation symmetrical

matrix E = [eij ] of size 2|Θ| × 2|Θ| whose elements eij are
defined as follows

eij =































0, for i = 1, . . . , 2|Θ| and j = 1 ,

0, for j = 1, . . . , 2|Θ| and i = 1 ,

0, for i = j and i 6= 2|Θ| ,

1, for i = j = 2|Θ| ,
|Xi∩X̄j |

∑

Xk∈2Θ\{∅,Θ}
|Xk∩X̄j | , otherwise .

(14)

where Xk is an element of the power-set 2Θ of the FoD
Θ. By convention X1 = ∅ and X2|Θ| = Θ, that is k ∈
{1, 2, . . . , 2|Θ|}. X̄j = Θ−{Xj} is the complement of Xj in
the FoD Θ.

Xie and Xiao proposal for a BBA negator is based on redis-
tribution factors defined by (14) which appear rather ad-hoc
and counter-intuitive as the following example 5 demonstrates.
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Example 5: Consider the set Θ = {θ1, θ2, θ3} and the BBA
entirely focused on θ1. Hence we have the BBA vector6

m =

























m(∅)
m(θ1)
m(θ2)
m(θ3)

m(θ1 ∪ θ2)
m(θ1 ∪ θ3)
m(θ2 ∪ θ3)

m(Θ)

























=

























0
1
0
0
0
0
0
0

























.

The negation matrix E = [eij ] is given by (see example 3
in [17])

E =





















0 0 0 0 0 0 0 0
0 0 1/6 1/6 0 0 1/3 0
0 1/6 0 1/6 0 1/3 0 0
0 1/6 1/6 0 1/3 0 0 0
0 1/6 1/6 1/3 0 1/3 1/3 0
0 1/6 1/3 1/6 1/3 0 1/3 0
0 1/3 1/6 1/6 1/3 1/3 0 0
0 0 0 0 0 0 0 1





















.

Therefore, the negation of the BBA m(.) is given by

m̄ =

























m̄(∅)
m̄(θ1)
m̄(θ2)
m̄(θ3)

m̄(θ1 ∪ θ2)
m̄(θ1 ∪ θ3)
m̄(θ2 ∪ θ3)

m̄(Θ)

























= E ·m =

























0
0
1/6
1/6
1/6
1/6
1/3
0

























.

This result is very counter-intuitive because this negator
commits some mass of belief to elements that have a non-
empty intersection with θ1. This behavior does not make sense
because the complement of θ1 must have an empty intersection
with θ1 so the mass of θ1 must be redistributed only to
elements of the power set that have an empty intersection
with θ1 or eventually their disjunction. Moreover, Xie and
Xiao present their analysis of their negator using Deng’s
entropy concept which is known to be non effective [6]. It
is worth mentioning that Xie and Xiao negator is of course
not involutory because in this very simple example we get

¯̄m =

























¯̄m(∅)
¯̄m(θ1)
¯̄m(θ2)
¯̄m(θ3)

¯̄m(θ1 ∪ θ2)
¯̄m(θ1 ∪ θ3)
¯̄m(θ2 ∪ θ3)

¯̄m(Θ)

























= E · m̄ =

























0
1/6
1/12
1/12
1/4
1/4
1/6
0

























6= m .

A variant of Xie and Xiao approach has been published by
Luo and Deng in [18]. Unfortunately, Luo and Deng negator
is not involutory and it suffers of the same problems as Xie
and Xiao negator.

6The elements of 2Θ are listed as done by Xie and Xiao in [17].

E. Deng and Jiang non-involutory negator of a BBA (2020)

In 2020, Deng and Jiang proposed a new negator for any
BBA defined as follows [19] over a frame of discernment Θ =
{θ1, θ2, . . . , θn}

m̄(X) =
∑

Y ∈2Θ|⋃
θi∈Y

(Θ\{θi})=X

m(Y ) . (15)

As explained in [19] (p. 348) the authors consider that
the negation of a singleton focal element X = θi is X̄ =
θ̄i = Θ \ {θi}, and if a focal element X is not a singleton
its negation is equal to X̄ =

⋃

θi∈X(Θ \ {θi}) = Θ.
This is what we call here the Deng-Jiang complementation
principle. Unfortunately, there is no strong justification for
adopting this complementation principle which is ad-hoc and
very counter-intuitive because the negation of all non-singleton
focal elements will correspond to the same complement ele-
ment Θ which is the whole FoD. This principle is actually
inappropriate. The application of formula (15) is illustrated in
the Example 6 drawn from [19].

Example 6: Consider the FoD Θ = {θ1, θ2, θ3} and m(.) with
m(θ1) = 0.7, m(θ2 ∪ θ3) = 0.1, and m(θ1 ∪ θ2 ∪ θ3) = 0.2.

Because the focal element θ1 is a singleton, its Deng-Jiang
complement is the classical complement θ̄1 = Θ \ {θ1} =
θ2 ∪ θ3, and we have

m̄(θ̄1) = m̄(θ2 ∪ θ3) = m(θ1) = 0.7 .

Because the focal element θ2∪θ3 is a not a singleton, its Deng-
Jiang complement is (by definition) taken as θ2 ∪ θ3 = Θ, and
we have

m̄(θ2 ∪ θ3) = m̄(Θ) = m(θ2 ∪ θ3) = 0.1 .

Because the focal element Θ = θ1 ∪ θ2 ∪ θ3 is a not a
singleton, its Deng-Jiang complement is (by definition) taken
as θ1 ∪ θ2 ∪ θ3 = Θ, and we have

m̄(θ1 ∪ θ2 ∪ θ3) = m̄(Θ) = m(θ1 ∪ θ2 ∪ θ3) = 0.2 .

Finally the two negator masses m̄(Θ) = 0.1 and m̄(Θ) = 0.2
are added together to give the final result m̄(θ1∪θ2∪θ3) = 0.3.
This is how formula (15) works.

Besides its weird complementation principle, Deng and
Jiang’s negator is not involutory in general. Indeed, if we
apply this negator on the negator m̄(.) of example 5 we obtain
¯̄m(θ1 ∪ θ2 ∪ θ3) = 1 which is the vacuous BBA and not
the original BBA m(.) of example 5. This non-involutionary
property also appears in Table 4 of [19]. We point out also a
flaw of Deng and Jiang negator which has a problem in the
very special case where Θ = {θ1} and m(θ1) = 1. In this
case because the focal θ1 is a singleton and based on Deng
and Jiang’s complementation we have θ̄1 = Θ \ {θ1} = ∅
and applying Deng and Jiang’s formula (15) we will get
m̄(θ̄1) = m̄(∅) = m(θ1) = 1 which is not a proper BBA
according to Shafer’s definition [2]. As for Yin’s negator, we
consider that Deng and Jiang negator is not appropriate, and
not effective from the theoretical standpoint, and we do not
recommend its use for applications.
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F. Batyrshin’s involutory negator of a pmf (2021)

In [20], [21] Batyrshin proposed an involutory negator of a
pmf P defined over a reference set Θ = {θ1, θ2, . . . , θn} by

P̄ (θi) =
MP − P (θi)

n ·MP − 1
, (16)

where MP , maxP +minP .

Example 1 (continued): Consider the set Θ = {θ1, θ2, θ3} and
the pmf P (.) with P (θ1) = 1 (i.e. θ1 is a sure event). Based
on (16), we get MP = 1 and Batyrshin’s negator P̄ (θ1) =
1−1

3−1
= 0, P̄ (θ2) =

1−0

3−1
= 1/2 and P̄ (θ3) =

1−0

3−1
= 1/2. This

result coincides with Yager’s result based on (7). The double
Batyrshin’s negator of P (.) is now given by

¯̄P (θ1) =
0.5− 0

3 · 0.5− 1
= 0.5/0.5 = 1 = P (θ1) ,

¯̄P (θ2) =
0.5− 0.5

3 · 0.5− 1
= 0/0.5 = 0 = P (θ2) ,

¯̄P (θ3) =
0.5− 0.5

3 · 0.5− 1
= 0/0.5 = 0 = P (θ3) .

Example 2 (continued): Consider the set Θ = {θ1, θ2, θ3} and
the uniform pmf P (.) with P (θ1) = P (θ2) = P (θ3) = 1/3.
Based on (16), we get MP = 1

3
+ 1

3
= 2/3 and Batyrshin’s

negator

P̄ (θ1) = P̄ (θ2) = P̄ (θ3) =
(2/3)− (1/3)

3 · (2/3)− 1
= 1/3 ,

which corresponds also to the uniform pmf, and thus the
double Batyrshin’s negator of uniform pmf P (.) is equal to
itself. Actually, the uniform pmf is a fixed point for Batyrshin’s
negator (as it is for Yager’s negator too), see [20] for details.

Example 3 (continued): We consider Θ = {θ1, θ2, θ3} and the
non-uniform pmf P (.) with P (θ1) = 0.6, P (θ2) = 0.3 and
P (θ3) = 0.1. Batyrshin’s negator of P is given by7

P̄ (θ1) =
0.7− 0.6

3 · 0.7− 1
=

0.1

1.1
≈ 0.09 ,

P̄ (θ2) =
0.7− 0.3

3 · 0.7− 1
=

0.4

1.1
≈ 0.36 ,

P̄ (θ3) =
0.7− 0.1

3 · 0.7− 1
=

0.6

1.1
≈ 0.55 .

It is worth mentioning that Batyrshin’s negator of P (.)
equals P (.) in the very special case where Θ = {θ1},
because in this case one has n = 1 and necessarily P (θ1) = 1.
Therefore, minP = maxP = 1 and MP = 2, and from (16)
we obtain Batyrshin’s negator P̄ (θ1) =

MP−P (θ1)

n·MP−1
= 2−1

1·2−1
=

1 = P (θ1).
Even if this negator is appealing from the theoretical stand-

point when working with probabilities its real usefulness has
to be shown in real applications. Batyrshin’s negator has not
yet been extended for the framework of the theory of belief
functions, and it may be interesting to extend it (if possible)
for the theory of evidence

7because MP = 0.7.

G. Liu’s non-involutory negator of a BBA (2023)

In 2023 Liu et al [22] did propose a new negator of
a BBA m(.) defined over a frame of discernment Θ =
{θ1, θ2, . . . , θn} by

m̄(X) =
1

λ
· 2|X| − 1
∑

Y ∈2Θ|Y 6=X 2|Y | − 1
(1−m(X)) , (17)

where X ∈ 2Θ, and λ is the normalization constant defined
by

λ =
∑

X∈2Θ

2|X| − 1
∑

Y ∈2Θ|Y 6=X 2|Y |−1
(1−m(X)) . (18)

This new negator is unfortunately not involutory as proved
by the authors in [22], and they justify this new negator based
on Deng’s entropy concept which is non effective [5], [6]. So,
their justification is flawed. It is also clear that the concept of
complementation used by Liu et al. is inappropriate as shown
in the very simple following example.
Example 7: Consider the FoD Θ = {A,B} and the vacuous
BBA mv(.) defined on this FoD by mv(∅) = 0, mv(A) = 0,
mv(B) = 0, and mv(A ∪ B) = 1. By applying (17) we will
obtain8 the following Liu’s negator

m̄v(∅) =
1

λ
·
(2|∅| − 1)(1−mv(∅))
∑

Y ∈2Θ|Y 6=∅
2|Y | − 1

=
0 · 1

1 + 1 + 3
= 0 ,

m̄v(A) =
1

λ
·
(2|A|

− 1)(1−mv(A))
∑

Y ∈2Θ|Y 6=A
2|Y | − 1

=
1 · 1

0 + 1 + 3
= 0.5 ,

m̄v(B) =
1

λ
·
(2|B|

− 1)(1−mv(B))
∑

Y ∈2Θ|Y 6=B 2|Y | − 1
=

1 · 1

0 + 1 + 3
= 0.5 ,

m̄v(A ∪B) =
1

λ
·
(2|A∪B|

− 1)(1−mv(A ∪ B))
∑

Y ∈2Θ|Y 6=A∪B
2|Y | − 1

=
3 · 0

0 + 1 + 1
= 0 .

because λ = (0/4) + (2/4) + (2/4) + (0/2) = 1.
One sees clearly that Liu’s negator is inappropriate because

A and B cannot be considered as valid complements of A∪B
because A ∩ (A ∪B) 6= ∅ and B ∩ (A ∪B) 6= ∅.

IV. A NEW INVOL UTORY NEGATOR FOR B BAS

We have shown in the previous section that most of nega-
tors developed previously are not involutory functions except
Batyrshin’s negator which applies only to probabilities, and not
to non-Bayesian BBAs. Consequently, these negators increase
in general the entropy when negator applies iteratively and this
iterative application of negator makes the result to converge
towards uniform pmf or BBA, which is not very useful in
practice. In this section we present a new simple definition for
an involutionary negator of any BBA m(.) : 2Θ → [0, 1] which
expresses the opposite evidence of any source of evidence
characterized by m(.). The opposite (i.e. the negator) of the
BBA m(.) is denoted by m̄(.), and it is simply defined by

m̄(X) =











0, if X = ∅ ,
m(X̄), ∀X 6= ∅ ⊂ Θ ,

m(Θ), if X = Θ .

(19)

8Because |∅| = 0 and 20 = 1 we have 2|∅| − 1 = 0.
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X̄ is the complement of the subset X in the FoD Θ, that is
X̄ = Θ \ {X}.

This new negator defined by (19) is actually a revised
definition of Dubois and Prade negator (6). This definition may
appear strange at the first glance for some readers because of
the conditions m̄(∅) = 0 and m̄(Θ) = m(Θ). Some readers
may dispute why the mass of belief committed to the whole
ignorance proposition Θ is kept unchanged in the expression
(19) of the negator of the source of evidence. This is a
legitimate question because the (classical) complement Θ̄ of
Θ in Θ is equal to the empty set, and because the (classical)
complement ∅̄ of the empty set in Θ is equal to Θ. As Dubois
and Prade did, we could consider a priori taking m̄(∅) = m(Θ)
and m̄(Θ) = m(∅). We think however that this option is
actually not very reasonable because it would mean that the
negation of a BBA will not be a proper BBA (as defined
by Shafer in [2]). In fact, we would have m̄(∅) > 0 when
m(Θ) > 0, and we would always have m̄(Θ) = 0 because
m(∅) = 0 which is very restrictive. We consider that the most
reasonable solution is to consider that the negation of the BBA
m(.) is better defined by (19). This new very simple definition
for the negator of a BBA presents the great advantage to
preserve the involutionary property of the negator concept of
a BBA so that ¯̄m(.) = m(.). Note that the negator of any
BBA m(.) defined by m̄(.) in (19) is a proper BBA because
m̄(X) ∈ [0, 1], m̄(∅) = 0 and

∑

X∈2Θ
m̄(X) = 1 because

the focal elements of m̄(.) belong to 2Θ and they correspond
to the complement of the focal elements of m(.) which is a
proper BBA.

We mention that the negator of a Bayesian BBA is not a
Bayesian BBA in general as soon as the FoD Θ has more
than two elements. This is normal because if a focal element,
say θi ∈ Θ, of m(.) is a singleton with m(θi) > 0, then its
complement θ̄i = Θ\{θi} is not singleton of Θ if |Θ| > 2, and
we have m̄(θ̄i) = m(θi) > 0 with |θ̄i| > 1 which indicates
that the BBA m̄(.) is not Bayesian. We also mention that the
negator of the vacuous BBA mv(.) is equal to itself, which
indicates that the vacuous source of evidence plays a neutral
role with respect to this new negator concept. This is not very
surprising because from no useful information (characterized
by a fully ignorant source whose BBA is the vacuous BBA) we
cannot draw any conclusion for making a decision in favor of
one hypothesis or its opposite. This makes the definition (19)
coherent with the intuition when working with vacuous BBA
and the negator concept.

Of course, it is always possible to approximate any non-
Bayesian BBA (or any non-Bayesian negator of a BBA) by a
pmf (if we want or we need for any reason) thanks to different
techniques of approximation, for instance using BetP, or DSmP
transformations [23], [24]. As a simple example consider the

FoD Θ = {A,B,C} and the Bayesian BBAs m(.) defined by9

m(A) = 0.9,m(B) = 0,m(C) = 0.1 .

Its negator is the non-Bayesian BBA defined as

m̄(B ∪ C) = 0.9, m̄(A ∪B) = 0.1 .

If one approximates m̄(.) by a probability measure thanks
to the BetP transformation for instance, we will obtain the
Bayesian negation of m(.) denoted either as m̄Bayesian(.) or
more concisely as BetP̄ (.) which is given by

BetP̄ (A) =
1

2
m̄(A ∪B) = 0.05 ,

BetP̄ (B) =
1

2
m̄(B ∪ C) +

1

2
m̄(A ∪B) = 0.50 ,

BetP̄ (C) =
1

2
m̄(B ∪ C) = 0.45 .

This result is quite reasonable because based on the fact
that m̄(B∪C) = 0.9 and m̄(A∪B) = 0.1 (when considering
the negator of m(.) as valid input information) it makes sense
that B has the most chance to occur among A, B and C , and
A has the second best chance to occur. This is what reflects
the BetP̄ (.) distribution for this example.

V. DIRECT AND INDIRECT FUS ION APPROACHES

In this section we recall the principle of the classical direct
fusion approach, and we describe also the principle of the
indirect fusion approach based on the involutory negator of
the BBAs described in the previous section.

A. Direct fusion approach

Before presenting the application of the BBA negator for
information fusion, we recall several well-known fusion rules
used to combine directly distinct bodies of evidence repre-
sented by the BBAs m1, m2, . . . , mS defined over the same
FoD Θ. This is what we call the direct fusion approach.

To make this presentation simple, we present the formulas
for the combination of two BBAs only (i.e. S = 2). General
formulas for more than two BBAs can be encountered in the
literature, see [2], [25], [26] for instance. A survey of more
fusion rules can be found in [27].

• Conjunctive rule of combination: ∀X ∈ 2Θ,

m∩
1,2(X) =

∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2) . (20)

• Disjunctive rule of combination: ∀X ∈ 2Θ,

m∪
1,2(X) =

∑

X1,X2∈2
Θ

X1∪X2=X

m1(X1)m2(X2) . (21)

9Here we voluntarily indicate that m(B) = 0 for convenience to point
out that we have three elements in the frame of discernment. The notation
m(B) = 0 could be omitted of course because only A and C are the focal
elements of the BBA m(.). In fact all elements of the power set 2Θ have
masses equal to zero except A and C in this example. In general, only masses
of focal elements need to be listed because all other masses equal zero.
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• Dempster-Shafer (DS) rule of combination [2]:
mDS

1,2(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mDS
1,2(X) =

∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2)

1−m∩
1,2(∅)

. (22)

• Proportional Conflict Redistribution Rule no. 6 (PCR6)
[26]: mPCR6

1,2 (∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR6
1,2 (X) = m∩

1,2(X)+
∑

Y ∈2
Θ

X∩Y=∅

m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
. (23)

In this paper we consider only PCR6 rule because we
use examples for the fusion of only two BBAs to keep
the presentation as simple as possible. If one needs to
combine three BBAs (or more) altogether, we recommend
to use the improved PCR6 rule (denoted by PCR6+)
which is presented in details10 in [26] with Matlab codes.

If the sources of evidence are considered fully reliable the
conjunctive fusion rule applies, but it happens that the sources
to combine are conflicting if m∩

1,2(∅) > 0. In this case m∩
1,2(.)

is not strictly a proper BBA. To overcome this problem,
Dempster-Shafer (DS) rule of combination or PCR6 fusion
rule can be used to obtain a normalized and combined BBA.
DS rule offers the main advantage of being associative making
its use quite easy for the applications, and DS preserves
the neutrality11 of the vacuous BBA mv which is generally
considered as a good property for a fusion rule. DS rule
being associative, the sequential DS fusion of many sources
of evidence is independent of the sequence order which is
appealing. Unfortunately, DS rule exhibits counter-intuitive
dictatorial behavior in high and low conflict situations as well
[28], [29]. This is one of the main reasons12 why DS rule has
been abandoned by many researchers and engineers working
with belief functions. If the two sources are in total conflict
(i.e. m∩

1,2(∅) = 1), DS rule does not work because of the
division by zero in (22). PCR6 rule provides more reasonable
fusion results, and it works in low and high conflicting
situations as well. PCR6 does not behave dictatorially. The
main disadvantage of PCR6 rule is its high complexity because
it is not associative that is why all the sources of evidence
must be combined altogether (not sequentially) with this rule.
PCR6 does not preserve the neutrality of the vacuous BBA
mv when combining more than two BBAs altogether, but an
improved version denoted by PCR6+ preserves the neutrality
of mv , see [26] for details. If one of the sources of evidence
is not reliable and we do not know which one, the disjunctive
fusion rule applies.

10Note that PCR6+ and PCR6 rules coincide for the fusion of two BBAs.
11The vacuous BBA mv has no impact on the fusion result when combined

to a BBA m 6= mv with DS rule.
12The second main reason is that Shafer’s BBA conditioning based on DS

rule is not consistent with lower and upper bounds of conditional probability
[30].

Finally the direct fusion approach of S BBAs m1, m2, . . . ,
mS defined over the same FoD Θ is denoted symbolically by

mDF
1,2,...,S = F (m1,m2, . . . ,mS) , (24)

where DF means the chosen Direct Fusion (DF) rule used
for the combination of the S sources of evidence. Typically
DF = DS if we use Dempster-Shafer rule for making the direct
fusion of the S BBAs, or DF = PCR6 if we use the PCR6
fusion rule for making the direct fusion, etc.

B. Indirect fusion using the involutory negator of BBAs

In some information fusion situations the combination of
BBAs m1(.), m2(.), . . . , mS(.) (with S > 1) is problem-
atic if there exist some conflicts between the sources of
evidence. This means that m1(X1)m2(X2) . . .mS(XS) > 0
when X1 ∩X2 ∩ . . . ∩XS = ∅ for some focal elements X1,
X2, . . . , and XS . When conflicts occur the simple conjunctive
rule of combination (20) is not able to provide an acceptable
fusion result because it commits a strictly positive mass of
belief to the impossible event (i.e. to the empty set), that
is m∩

1,2,...,S(∅) > 0. Therefore, it is generally necessary to
manage the existing conflicts between the sources efficiently
to obtain what we consider as reasonable fusion result for
decision-making support. That is the reason why many fusion
rules of combination have been developed and proposed in the
literature during the last decades [25], [27].

In this work, we propose a new generic approach to combine
the sources of evidence thanks to their involutory negator of
the BBAs, which is what we call the indirect fusion approach.
The idea behind the indirect fusion approach is rather simple.
Instead of combining directly the original BBAs by some
fusion rules (typically Dempster-Shafer (DS) rule [2], PCR6
rule [25], [26], Dubois-Prade rule [3], etc) to directly obtain
the fusion result, we propose to compute the fusion result
indirectly using the negators of BBAs. This new indirect fusion
approach is based on the following three simple steps:

• Step-1 (Calculation of the BBAs negators):

Calculate the involutory negator of BBAs m1(.), m2(.),
. . . , mS(.) using (19) to get m̄1(.), m̄2(.), . . . , m̄S(.).

• Step-2: (Combination of the negators)

Combine (i.e. fuse) the S > 1 BBAs m̄1(.), m̄2(.), . . . ,
m̄S(.) by a chosen fusion rule denoted symbolically by
DF to get the direct fusion of negators, that is

m̄DF
1,2,...,S(.) = F (m̄1, m̄2, . . . , m̄S) . (25)

The choice of the direct fusion rule DF for combining the
negators is left to the fusion system designer. Proponents
of DST will prefer Dempster-Shafer’s rule of combination
(22), while opponents of DS rule will use other fusion
rules (typically PCR6 rule (23), etc).

• Step-3 (Negation of the fused negators):

Once the fusion result m̄DF
1,2,...,S(.) is obtained, one cal-

culates its negator to get the final Indirect Fusion (IF)
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result of the original BBAs thanks to the definition (19)
where m(.) is replaced by m̄DF

1,2,...,S(.), that is

mIF
1,2,...,S(X) =











0, if X = ∅ ,
m̄DF

1,2,...,S(X̄), ∀X 6= ∅ ⊂ Θ ,

m̄DF
1,2,...,S(Θ), if X = Θ .

(26)

More concisely, we will write steps 1, 2 and 3 by the
symbolic expression

mIF
1,2,...,S = ¯̄mDF

1,2,...,S , (27)

where the negator operator used in (27) (represented by a bar
symbol) is the involutory negator defined in (19).

As it will be discussed in Section VIII, in general we
have mIF

1,2,...,S 6= mDF
1,2,...,S . This means that the direct and

indirect fusion methods provide different results depending on
the fusion rule chosen, and on the distribution of masses of
belief to focal elements. This is because the fusion rules do
not satisfy De Morgan’s law when a conflict exists between
the sources of evidence. Only in the case where S = 2 and
m1(.) = mv , or m2(.) = mv , one has mIF

1,2 = mDF
1,2 because

there is no conflict between the two sources of evidence to
deal with in this very particular case.

VI. S OME INTERES TING EX AMPL ES

In this section we examine three interesting examples where
a conflict exists between two sources of evidence, and we
compare the result based on indirect fusion method with the
result obtained with the classical direct fusion approach using
DS and PCR6 rules of combination.

A. Zadeh’s example (two Bayesian BBAs)

Consider the famous Zadeh’s example [28] where Θ =
{A,B,C} represents three hypotheses about the origin of a
diseases of a patient, and two Bayesian BBAs m1(.) and m2(.)
expressed by two doctors after the examination of the same
patient. These BBAs are given as follows

m1(A) = 0.9,m1(C) = 0.1 ,

m2(B) = 0.9,m2(C) = 0.1 .

• Direct fusion with DS rule:

By applying DS rule (22), we obtain the Bayesian BBA
mDS

1,2(C) = 1, which is considered as a counter-intuitive
result by Zadeh and by many authors because this result
means that the hypothesis C is diagnosed for sure for the
origin of the disease by DS rule even if both doctors agree
in committing a low belief to the origin C . This example
is important because it has served as a starting point to
question the validity of DS rule in Shafer’s theory of
belief functions by Zadeh. This result has however been
justified by a first school of proponents of DS theory
by the fact that the two sources of evidence are highly
conflicting in this example because

m∩
1,2(∅) = m1(A)m2(B) +m1(A)m2(C)

+m1(C)m2(B) = 0.81 + 0.09 + 0.09 = 0.99

Therefore, the proponents of this rule argue that DS
rule should not be applied without preprocessing (i.e.
discounting) the sources of evidence in this situation.
Other proponents of DS rule belonging to the second
school of proponents of DS rule argue that DS result
makes perfectly sense in Zadeh’s example. Both schools
of proponents defend DS rule but their conclusions are
based on very different contradictory arguments, which
amplify the suspicion about the validity of DS rule as
pointed out by Zadeh in [28]. Actually the two types of
arguments used to defend DS rule are flawed because DS
rule behaves dictatorially even in low conflict situation as
well as reported by the authors in [29]. This will be shown
in the problematic example of Section VI-B.

• Direct fusion with PCR6 rule

By applying PCR6 fusion rule (23) to combine m1(.) and
m2(.) we get

mPCR6
1,2 (A) = 0.486 ,

mPCR6
1,2 (B) = 0.486 ,

mPCR6
1,2 (C) = 0.028 .

This Bayesian PCR6 result is more reasonable than DS
result because it clearly points out the difficulty to make
a choice between hypotheses A and B because of the
disagreement of two doctors while rejecting both the third
hypothesis C .

• Indirect fusion approach:

By applying the indirect fusion approach, after step 1 we
get the following BBAs negators

m̄1(B ∪ C) = 0.9, m̄1(A ∪B) = 0.1 ,

m̄2(A ∪ C) = 0.9, m̄2(A ∪B) = 0.1 .

We observe that there is no conflict between these two
negators so that the conjunctive fusion rule can be used,
and there is no need to adopt a specific management of
conflicting masses either by DS rule, or by PCR6 rule
because results from both rules are equal to the result
computed with the conjunctive rule, when no conflict
occurs.
At step-2, we use the conjunctive fusion of m̄1 and m̄2

because there is no conflict between these negators, and
we get

m̄∩
1,2(A) = m̄1(A ∪B)m̄2(A ∪ C) = 0.09 ,

m̄∩
1,2(B) = m̄1(B ∪ C)m̄2(A ∪B) = 0.09 ,

m̄∩
1,2(C) = m̄1(B ∪ C)m̄2(A ∪ C) = 0.81 ,

m̄∩
1,2(A ∪B) = m̄1(A ∪B)m̄2(A ∪B) = 0.01 .
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At step 3, we take the negator of m̄∩
1,2(.) as the final

indirect fusion result. We obtain13

mIF-∩
1,2 (A ∪B) = ¯̄m∩

1,2(C) = 0.81 ,

mIF-∩
1,2 (A ∪ C) = ¯̄m∩

1,2(B) = 0.09 ,

mIF-∩
1,2 (B ∪ C) = ¯̄m∩

1,2(A) = 0.09 ,

mIF-∩
1,2 (C) = ¯̄m∩

1,2(A ∪B) = 0.01 .

This non-Bayesian indirect fusion result is more accept-
able than DS result because it reveals clearly the uncer-
tainty between hypotheses A and B, while reinforcing
the disbelief of hypothesis C as we intuitively expect. We
observe that mIF-∩

1,2 6= mDS
1,2 and mIF-∩

1,2 6= mPCR6
1,2 . However,

if we approximate mIF-∩
1,2 by a probability measure thanks

to BetP transform we obtain

BetPIF-∩(A) =
mIF-∩

1,2 (A ∪B)

2
+

mIF-∩
1,2 (A ∪ C)

2
= 0.45 ,

BetPIF-∩(B) =
mIF-∩

1,2 (A ∪B)

2
+

mIF-∩
1,2 (B ∪ C)

2
= 0.45 ,

BetPIF-∩(C) = mIF-∩
1,2 (C) +

mIF-∩
1,2 (A ∪ C)

2

+
mIF-∩

1,2 (B ∪ C)

2
= 0.1 .

This BetPIF-∩(.) result is without doubt closer to the direct
PCR6 fusion result than the DS result although not strictly
equal. One observes that the BetPIF-∩(.) distribution ob-
tained from this indirect fusion result coincides with the
simple averaging fusion rule which is a common fusion
rule adopted by users not familiar with belief functions.
This behavior is, we think, another argument against the
direct fusion result provided by DS rule.

B. Dezert-Tchamova example (two non-Bayesian BBAs)

Here we consider another problematic example presented
by Dezert and Tchamova in [29] to show the dictatorial
behavior of DS rule of combination in high and low conflicting
situations as well. An infinity of problematic examples like this
one can be defined, see [32] for more examples. We consider
the FoD Θ = {A,B,C} with the following two (generic)
non-Bayesian BBAs

m1(A) = a,m1(A ∪B) = 1− a ,

m2(A∪B) = b1,m2(C) = 1− b1− b2,m2(A∪B∪C) = b2 ,

with 0 < a, b1, b2 < 1 and b1 + b2 < 1.
The conflict of these two BBAs is actually independent of

the BBA m1(.) because

m∩
1,2(∅) = m1(A)m2(C) +m1(A ∪B)m2(C)

= m2(C) = 1− b1 − b2 .

One can easily verify that the direct Dempster-Shafer’s
fusion of these two BBAs gives mDS

12 (A) = m1(A) = a and

13We use the notation mIF-∩
1,2 (.) to explicitly specify that the indirect fusion

(IF) has been done with the conjunctive rule (symbolized by the ∩ symbol).

mDS
12 (A ∪B) = m1(A ∪B) = 1− a which indicates that the

fusion result is actually independent of the BBA m2(.) even
if m2(.) is not the vacuous BBA and the conflict degree can
be taken as high or as low as we want. This behavior of DS
rule is of course counter-intuitive and dictatorial, and that is
why we do not recommend its use in applications.

Example 8: We consider here Dezert-Tchamova example with
parameters a = 0.3, b1 = 0.2 and b2 = 0.3. Hence,

m1(A) = 0.3,m1(A ∪B) = 0.7 ,

m2(A ∪B) = 0.2,m2(C) = 0.5,m2(A ∪B ∪ C) = 0.3 .

For this numerical example, using the conjunctive fusion
rule, we obtain

m∩
1,2(∅) = 0.3 · 0.5 + 0.7 · 0.5 = 0.50 ,

m∩
1,2(A) = 0.3 · 0.2 + 0.3 · 0.3 = 0.15 ,

m∩
1,2(A ∪B) = 0.7 · 0.2 + 0.7 · 0.3 = 0.35 .

One sees that there exists a positive conflict m∩
1,2(∅) between

these two sources of evidence that needs to be redistributed in
order to obtain a proper resulting BBA.

• Direct fusion with DS rule:

By applying DS rule (22), we obtain

mDS
1,2(∅) = 0 ,

mDS
1,2(A) =

0.3 · 0.2 + 0.3 · 0.3
0.5

= 0.3 = m1(A) ,

mDS
1,2(A ∪B) =

0.7 · 0.2 + 0.7 · 0.3
0.5

= 0.7 = m1(A ∪B) .

Same dictatorial DS fusion result would be obtained for
other numerical values of positive parameters a, b1 and
b2 with b1 + b2 < 1.

• Direct fusion with PCR6 rule:

By applying PCR6 rule14 (23), we obtain

mPCR6
1,2 (∅) = 0 ,

mPCR6
1,2 (A) = 0.2062 ,

mPCR6
1,2 (A ∪B) = 0.5542 ,

mPCR6
1,2 (C) = 0.2396 .

We see that the PCR6 fusion rule does not behave
dictatorially. It can be easily verified that the PCR6 fusion
result changes with different values of b1 and b2.

• Indirect fusion with DS rule:

If we apply the indirect fusion approach, the negators of
m1(.) and m2(.) are given by

m̄1(B ∪ C) = 0.3, m̄1(C) = 0.7 ,

m̄2(C) = 0.2, m̄2(A∪B) = 0.5, m̄2(A∪B ∪C) = 0.3 .

14see formulas (12)–(14) in [31] for details. Note that PCR5 and PCR6
formulas for the fusion of two BBAs provide the same result.
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Hence the conjunctive fusion of negators gives

m̄∩
1,2(∅) = 0.7 · 0.5 = 0.35 ,

m̄∩
1,2(B) = 0.3 · 0.5 = 0.15 ,

m̄∩
1,2(C) = 0.3 · 0.2 + 0.7 · 0.2 + 0.7 · 0.3 = 0.41 ,

m̄∩
1,2(B ∪ C) = 0.3 · 0.3 = 0.09 .

Note that ¯̄m∩
1,2(.) 6= m∩

1,2(.). Applying DS rule of com-
bination of these negators we obtain

m̄DS
1,2(∅) = 0 ,

m̄DS
1,2(B) = 0.15/0.65 ≈ 0.23 ,

m̄DS
1,2(C) = 0.41/0.65 ≈ 0.63 ,

m̄DS
1,2(B ∪ C) = 0.09/0.65 ≈ 0.14 .

After taking the negator of m̄DS
1,2(.) we obtain using the

indirect DS (i.e. IF-DS) fusion approach the following
final result

mIF-DS
1,2 (∅) = ¯̄mDS

1,2(∅) = 0 ,

mIF-DS
1,2 (A ∪B) = ¯̄mDS

1,2(C) ≈ 0.63 ,

mIF-DS
1,2 (A ∪ C) = ¯̄mDS

1,2(B) ≈ 0.23 ,

mIF-DS
1,2 (A) = ¯̄mDS

1,2(B ∪C) ≈ 0.14 .

This result appears a bit more acceptable than the di-
rect DS fusion result without being dictatorial because
mIF-DS

1,2 (.) 6= m1(.) and mIF-DS
1,2 (.) 6= m2(.). It is worth

mentioning that this new indirect DS fusion approach
does not always circumvent the bad dictatorial behavior
of DS rule in general thanks to the negators and their DS
fusion. To validate this remark, it is easy to built another
(dual) Dezert-Tchamova example where the fusion of
negators of BBAs really provides a dictatorial behavior
instead of the direct DS fusion. For instance, consider
Θ = {A,B,C} and the following BBAs

m1(B ∪ C) = a,m1(C) = 1− a ,

m2(C) = b1,m2(A∪B) = 1−b1−b2,m2(A∪B∪C) = b2 .

Then we have

m̄1(A) = a, m̄1(A ∪B) = 1− a ,

m̄2(A∪B) = b1, m̄2(C) = 1−b1−b2, m̄2(A∪B∪C) = b2 .

The fusion of m̄1(.) and m̄2(.) with Dempster-Shafer’s
rule exhibits a dictatorial behavior because one gets
m̄DS

12 (A) = a and m̄DS
12 (A ∪ B) = 1 − a, and the final

result based on these negators and indirect DS fusion is
dictatorial and given by

mIF-DS
12 (B ∪ C) = ¯̄mDS

12 (A) = a ,

mIF-DS
12 (C) = ¯̄mDS

12 (A ∪B) = 1− a .

Hence, we get mIF-DS
12 (B ∪ C) = a = m1(B ∪ C) and

mIF-DS
12 (C) = 1 − a = m1(C). So the use of Dempster-

Shafer’s rule in the information fusion method based on
the negators of BBA remains also disputable in this case.

That is why in any strategy of fusion chosen (direct
and indirect) we cannot recommend seriously Dempster-
Shafer rule of combination because of its potential dic-
tatorial behavior.

• Indirect fusion with PCR6 rule:

If we apply the indirect PCR6 fusion approach of the
negators of m1(.) and m2(.) we obtain

m̄PCR6
1,2 (∅) = 0 ,

m̄PCR6
1,2 (B) = m̄∩

1,2(B) = 0.1500 ,

m̄PCR6
1,2 (C) = m̄∩

1,2(C) +
m̄1(C)2m̄2(A ∪B)

m̄1(C) + m̄2(A ∪B)
= 0.6142 ,

m̄PCR6
1,2 (B ∪ C) = m̄∩

1,2(B ∪ C) = 0.0900 ,

m̄PCR6
1,2 (A ∪B) =

m̄1(C)m̄2(A ∪B)2

m̄1(C) + m̄2(A ∪B)
= 0.1458 .

After taking the negator of m̄PCR6
1,2 (.) using Indirect PCR6

(IF-PCR6) fusion approach we obtain the following final
result

mIF-PCR6
1,2 (∅) = ¯̄mPCR6

1,2 (∅) = 0 ,

mIF-PCR6
1,2 (A ∪B) = ¯̄mPCR6

1,2 (C) = 0.6142 ,

mIF-PCR6
1,2 (A ∪ C) = ¯̄mPCR6

1,2 (B) = 0.1500 ,

mIF-PCR6
1,2 (A) = ¯̄mPCR6

1,2 (B ∪C) = 0.0900 ,

mIF-PCR6
1,2 (C) = ¯̄mPCR6

1,2 (A ∪B) = 0.1458 .

We observe that direct and indirect PCR6-based fusion
methods provide distinct results because mIF-PCR6

1,2 (.) 6=
mPCR6

1,2 (.). It is worth noting also that the indirect fusion
results based on DS rule (IF-DS) and PCR6 rule (IF-
PCR6) provide quite similar maximal mass value for the
same focal element A∪B because mIF-DS

1,2 (A∪B) ≈ 0.63
and mIF-PCR6

1,2 (A∪B) = 0.6142. However, we observe that
the set of focal elements of mIF-DS

1,2 (.) and mIF-PCR6
1,2 (.)

are not the same because IF-PCR6 commits a mass
specifically to the element C which is not a focal element
of mIF-DS

1,2 (.). Therefore the structures (i.e. the set of
focal elements) of BBAs mIF-DS

1,2 (.) and mIF-PCR6
1,2 (.) are

different.

C. Blackman’s example (Bayesian and non-Bayesian BBAs)

This simple example has been introduced by Blackman in
[33] and analyzed by the authors in [34]. We consider the FoD
Θ = {A,B} and the following two BBAs

m1(A) = 0.5, m1(B) = 0.5 m1(A ∪B) = 0 ,

m2(A) = 0.1, m2(B) = 0.1, m2(A ∪B) = 0.8 .

We see that there is no way to decide either A or B in this
particular example because each source of evidence does not
bring useful information to help for decision-making. Each
BBA m1(.) and m2(.) is completely symmetrical to A and B.
So intuitively, there is no reason to expect an improvement in
the decision-making based on the fusion of these two BBAs.
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We mention that m1(.) is a Bayesian BBA, and m2(.) is a
non-Bayesian BBA in Blackman’s example.

The conjunctive fusion of m1(.) and m2(.) yields

m∩
12(∅) = m1(A)m2(B) +m1(B)m2(A) = 0.10 ,

m∩
12(A) = m1(A)m2(A) +m1(A)m2(A ∪B) = 0.45 ,

m∩
12(B) = m1(B)m2(B) +m1(B)m2(A ∪B) = 0.45 ,

m∩
12(A ∪B) = 0 .

We see that the conflicting mass m∩
12(∅) = 0.10 must be

redistributed to some elements of 2Θ \ {∅} in order to get a
proper fused BBA.

• Direct fusion with DS rule:

By applying DS rule (22), we obtain

mDS
1,2(∅) = 0

mDS
1,2(A) =

m∩
12(A)

1−m∩
12(∅)

= 0.45/0.9 = 0.5 ,

mDS
1,2(B) =

m∩
12(B)

1−m∩
12(∅)

= 0.45/0.9 = 0.5 ,

mDS
1,2(A ∪B) =

m∩
12(A ∪B)

1−m∩
12(∅)

= 0.00/0.9 = 0 .

• Direct fusion with PCR6 rule:

By applying PCR6 rule (23), we obtain

mPCR6
1,2 (∅) = 0 ,

mPCR6
1,2 (A) = m∩

12(A) +
m1(A)

2m2(B)

m1(A) +m2(B)

+
m1(B)m2(A)

2

m1(B) +m2(A)
= 0.5 ,

mPCR6
1,2 (B) = m∩

12(B) +
m1(B)2m2(A)

m1(B) +m2(A)

+
m1(A)m2(B)2

m1(A) +m2(B)
= 0.5 ,

mPCR6
1,2 (A ∪B) = m∩

12(A ∪B) = 0 .

As intuitively expected, the direct fusion results based on
DS rule and on PCR6 rule do not help to make a rational
decision in favor of A or B.

• Indirect fusion with DS and PCR6 rules:

Applying BBA negator defined by (19), we obtain

m̄1(B) = 0.5, m̄1(A) = 0.5 m̄1(A ∪B) = 0 ,

m̄2(B) = 0.1, m̄2(A) = 0.1, m̄2(A ∪B) = 0.8 .

Because |Θ| = 2, we observe that we have in this
example m̄1(.) = m1(.) and m̄2(.) = m2(.). Therefore,
we will get the same result with the conjunctive fusion of
m̄1(.) and m̄2(.) as for the direct conjunctive fusion of
m1(.) and m2(.). The direct or indirect fusion methods

based on DS and PCR6 rules will yield actually to the
same fusion result, that is

mDS
1,2(A) = mIF-DS

1,2 (A) = mPCR6
1,2 (A) = mIF-PCR6

1,2 (A) = 0.5 ,

mDS
1,2(B) = mIF-DS

1,2 (B) = mPCR6
1,2 (B) = mIF-PCR6

1,2 (B) = 0.5 .

This example is interesting because it clearly shows that
there exist some situations where there is no advantage of
using direct fusion w.r.t. indirect fusion, and vice-versa.

Extension of Blackman’s example

We extend Blackman’s example using a bigger FoD as
follows. We consider Θ = {A,B,C} with the two following
BBAs

m1(A) = m1(B) = m1(C) = 1/3 ,

m2(A) = m2(B) = m2(C) = 0.1, m2(A ∪B ∪ C) = 0.7 .

As in the previous Blackman’s example we see that there is no
way to decide either A, B or C because each BBA m1(.) and
m2(.) is completely symmetrical to A, B and C . So there is
no rational reason to expect an improvement in the decision-
making based on the fusion of these two BBAs. Here also
m1(.) is a Bayesian BBA, and m2(.) is a non-Bayesian BBA
in this example.

The conjunctive fusion of m1(.) and m2(.) yields

m∩
12(∅) = 0.6/3,m∩

12(A) = m∩
12(B) = m∩

12(C) = 0.8/3 .

The direct DS fusion and the direct PCR6 fusion give the same
result which is

mDS
12 (∅) = mPCR6

12 (∅) = 0 ,

mDS
12 (A) = mPCR6

12 (A) = 1/3 ,

mDS
12 (B) = mPCR6

12 (B) = 1/3 ,

mDS
12 (C) = mPCR6

12 (C) = 1/3 .

If we want to apply the indirect fusion methods, the negators
of m1(.) and m2(.) are the non-Bayesian BBAs m̄1(.) and
m̄2(.) given by

m̄1(B ∪ C) = m̄1(A ∪ C) = m̄1(A ∪B) = 1/3 ,

m̄2(B ∪ C) = m̄2(A ∪ C) = m̄2(A ∪B) = 0.1 ,

m̄2(A ∪B ∪C) = 0.7 .

The conjunctive fusion of m̄1(.) and m̄2(.) gives

m̄∩
12(∅) = 0 ,

m̄∩
12(A) = m̄∩

12(B) = m̄∩
12(C) = 0.2/3 ,

m̄∩
12(A ∪B) = m̄∩

12(A ∪ C) = m̄∩
12(B ∪C) = 0.8/3 .

Because there is no conflicting mass to redistribute, there is
no need to apply indirect DS fusion of m̄1(.) and m̄2(.), nor
indirect PCR6 fusion of m̄1(.) and m̄2(.). More precisely if
we apply DS rule or PCR6 rule we will obtain

m̄DS
1,2(.) = m̄PCR6

1,2 (.) = m̄∩
12(.) .
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After taking the negator of m̄∩
12(.) we obtain using indirect

fusion approaches the following final result

mIF-DS
1,2 (.) = mIF-PCR6

1,2 (.) = mIF-∩
12 (.) = ¯̄m∩

12(.) ,

where

mIF-∩
12 (∅) = ¯̄m∩

12(∅) = 0 ,

mIF-∩
12 (B ∪ C) = ¯̄m∩

12(A) = 0.2/3 ,

mIF-∩
12 (A ∪ C) = ¯̄m∩

12(B) = 0.2/3 ,

mIF-∩
12 (A ∪B) = ¯̄m∩

12(C) = 0.2/3 ,

mIF-∩
12 (C) = ¯̄m∩(A ∪B) = 0.8/3 ,

mIF-∩
12 (B) = ¯̄m∩(A ∪ C) = 0.8/3 ,

mIF-∩
12 (A) = ¯̄m∩(B ∪ C) = 0.8/3 .

As we can see in this extended Blackman’s example, the
indirect fusion approach eliminates the problem of conflict
management because there is no conflict to deal with when
working with the negators. Of course the fusion result is
less specific than the one we obtain using the direct fusion
approaches (based on DS and on PCR6 rules), and mIF-∩

12 (.)
result is no more helpful for decision-making standpoint which
is normal in such situation, but this indirect fusion approach
could be interesting to use if other sources of evidence may
become available in the fusion system.

VII. TWO IMPORTANT REMARKS

Remark 1: As shown in Zadeh’s example of Section VI-A
the indirect fusion method gives

mIF-∩
1,2 (A ∪B) = ¯̄m∩

1,2(C) = 0.81 ,

mIF-∩
1,2 (A ∪ C) = ¯̄m∩

1,2(B) = 0.09 ,

mIF-∩
1,2 (B ∪ C) = ¯̄m∩

1,2(A) = 0.09 ,

mIF-∩
1,2 (C) = ¯̄m∩

1,2(A ∪B) = 0.01 .

It is interesting to observe that this result coincides with the
fusion result obtained with the disjunctive rule of combination
(21). Indeed, we have

m∪
1,2(A ∪B) = m1(A)m2(B) = 0.81 ,

m∪
1,2(A ∪ C) = m1(A)m2(C) = 0.09 ,

m∪
1,2(B ∪ C) = m1(C)m2(B) = 0.09 ,

m∪
1,2(C) = m1(C)m2(C) = 0.01 .

We may question if the equality mIF-∩
1,2 (.) = m∪

1,2(.) is a
general property satisfied, or only just a coincidence. In fact
this equality does not hold in general but it is due to the very
particular structure of focal elements of the BBAs involved
in Zadeh’s example. This equality does not hold even if there
is no conflict between the negators (as it appears in Zadeh’s
example). As a simple counter-example, consider again the
extended Blackman’s example of Section VI-C where no

conflict exists between the negators m̄1(.) and m̄2(.). The
indirect fusion approach gives the final result

mIF-∩
12 (∅) = 0 ,

mIF-∩
12 (A) = 0.8/3 ,

mIF-∩
12 (B) = 0.8/3 ,

mIF-∩
12 (C) = 0.8/3 ,

mIF-∩
12 (A ∪B) = 0.2/3 ,

mIF-∩
12 (A ∪ C) = 0.2/3 ,

mIF-∩
12 (B ∪ C) = 0.2/3 ,

mIF-∩
12 (A ∪B ∪ C) = 0 .

The fusion result obtained with the disjunctive rule of
combination (21) for this extended Blackman’s example is

m∪
1,2(∅) = 0

m∪
1,2(A) = m1(A)m2(A) = 0.1/3 ,

m∪
1,2(B) = m1(B)m2(B) = 0.1/3 ,

m∪
1,2(C) = m1(C)m2(C) = 0.1/3 ,

m∪
1,2(A ∪B) = m1(A)m2(B) +m1(B)m2(A) = 0.2/3 ,

m∪
1,2(A ∪ C) = m1(A)m2(C) +m1(C)m2(A) = 0.2/3 ,

m∪
1,2(B ∪C) = m1(B)m2(C) +m1(C)m2(B) = 0.2/3 ,

m∪
1,2(A ∪B ∪ C) = m1(A)m2(A ∪B ∪ C)

+m1(B)m2(A ∪B ∪ C)

+m1(C)m2(A ∪B ∪ C) = 0.7 .

We see clearly that mIF-∩
1,2 (.) 6= m∪

1,2(.) in this example,
so the property mIF-∩

1,2 (.) = m∪
1,2(.) is not always satisfied.

This means that De Morgan’s law does not hold in general
in information fusion. More precisely, the direct disjunctive
fusion of BBAs is not necessarily equivalent to the negator
of the conjunctive fusion of negators. Similarly, the direct
conjunctive fusion of BBAs is not necessarily equivalent to
the negator of the disjunctive fusion of the negators.

Remark 2: The negation of a BBA does not necessarily in-
crease the entropy contrary to what is claimed in the literature
in some papers cited in Section III. To prove this, just consider
the FoD Θ = {A,B,C} and the BBA m(.) given by

m(A ∪B) = 0.7,m(A ∪C) = 0.2,m(A ∪B ∪ C) = 0.1 .

It can be easily verified that the entropy of the BBA m(.)
obtained by the formula (4) of effective entropy definition is
(expressed in nats)

U(m) ≈ 4.299 .

The negator of m(.) based on the definition (19) is

m̄(C) = 0.7, m̄(B) = 0.2, m̄(A ∪B ∪ C) = 0.1 ,

whose entropy is (expressed in nats)

U(m̄) ≈ 1.254 .
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One sees that one has U(m̄) < U(m) in this simple ex-
ample. Therefore, the negation of a BBA m(.) does not
necessarily increase the entropy. This really depends on the
distribution of the mass of belief committed to focal elements
of the original BBA m(.).

VIII. MANAGEMENT OF DIRECT AND INDIRECT FUS IONS

As shown in the examples of the Section VI the results
obtained with direct fusion approach and indirect fusion ap-
proach do not coincide but in very particular cases. In general,
we have mIF

1,2,...,S 6= mDF
1,2,...,S . Therefore, at this stage of our

research work we are facing to a new problem: what to do
with these two fusion results mDF

1,2,...,S(.) and mIF
1,2,...,S(.) for

decision-making support? This section provides two possible
answers to this important question.

A. Answer 1: Fuse mDF
1,2,...,S with mIF

1,2,...,S

The first intuitive answer to the aforementioned question
would consist in fusing (i.e. combining) the two fusion results
mDF

1,2,...,S with mIF
1,2,...,S by some chosen appropriate rule of

combination, typically the PCR6 rule (or the PCR6+ rule
if S > 2, see [26]). This first answer is unfortunately not
very satisfactory and not recommended from the theoretical
standpoint because the fusion results mDF

1,2,...,S and mIF
1,2,...,S

are actually based on exactly the same original inputs cor-
responding to BBAs m1(.), m2(.), . . . , mS(.). Therefore,
the inputs mDF

1,2,...,S and mIF
1,2,...,S cannot be considered as

(cognitively) independent and their fusion is not recommended
because of redundant information which may generate some
biases in the final result, and induce decision-making mistakes.

If this approach is however used in applications by some
users, we suggest at least to take into account the quality of
each source mDF

1,2,...,S and mIF
1,2,...,S characterized somehow by

their entropies U(mDF
1,2,...,S) and U(mIF

1,2,...,S).
A very simple fusion method would consist for instance

to apply the weighted averaging fusion of mDF
1,2,...,S with

mIF
1,2,...,S defined for any X ∈ 2Θ by

m(X) = wDFmDF
1,2,...,S(X) + wIFmIF

1,2,...,S(X) , (28)

where the importance weighting factors wDF and wIF belong to
[0, 1] and satisfy wDF +wIF = 1. These factors should depend
on the quality of the BBAs mDF

1,2,...,S and mIF
1,2,...,S which is

related to their entropy. Hence we could take

wDF =
Uv − U(mDF

1,2,...,S)

Uv − U(mDF
1,2,...,S) + Uv − U(mIF

1,2,...,S)
,

wIF =
Uv − U(mIF

1,2,...,S)

Uv − U(mDF
1,2,...,S) + Uv − U(mIF

1,2,...,S)
,

where Uv is the maximum value of the entropy corresponding
to the vacuous BBA mv(.). This max value is given by (see
[5] for details)

Uv = 2|Θ| − 2

Other fusion methods based on discounting techniques and
entropies could be eventually developed also, but funda-
mentally we do not recommend to combine mDF

1,2,...,S with

mIF
1,2,...,S for the aforementioned reason of underlying depen-

dency of original BBAs that have been used to generate direct
and indirect fusion results mDF

1,2,...,S and mIF
1,2,...,S .

B. Answer 2: Select either mDF
1,2,...,S or mIF

1,2,...,S

Because we consider that the intuitive previous answer is
not satisfactory, we need to seriously consider a second option
of management of direct and indirect fusion results mDF

1,2,...,S

and mIF
1,2,...,S . This second option consists in selecting only

one BBA mDF
1,2,...,S or mIF

1,2,...,S for decision-making support.
But which one to select? How?

For selecting the BBA mDF
1,2,...,S or mIF

1,2,...,S we propose
to adopt the maximum entropy principle which states we
should select the BBA which leaves us the largest remain-
ing uncertainty. More precisely, we will select mDF

1,2,...,S if
U(mDF

1,2,...,S) > U(mIF
1,2,...,S), and we will select mIF

1,2,...,S if
U(mIF

1,2,...,S) > U(mDF
1,2,...,S). In the very rare cases where

mDF
1,2,...,S = mIF

1,2,...,S , no selection is needed because the
two BBAs mDF

1,2,...,S and mIF
1,2,...,S coincide. This maximum

entropy principle is rather simple to use in practice because
we need only to calculate the entropies U(mDF

1,2,...,S) and
U(mIF

1,2,...,S).

We now provide more details on how to proceed in the
interesting examples considered in Section VI.

For Zadeh’s example (two Bayesian BBAs)

• With direct fusion using DS rule:

We obtain the Bayesian BBA mDS
1,2(C) = 1. The entropy

of mDS
1,2 is U(mDS

1,2) = 0 nats. This stipulates that there is
no uncertainty carried by this very specific BBA which
is a counter-intuitive result as explained in [28].

• With direct fusion using PCR6 rule

We obtain

mPCR6
1,2 (A) = mPCR6

1,2 (B) = 0.486,mPCR6
1,2 (C) = 0.028 .

The entropy of this Bayesian BBA mPCR6
1,2 based on the

formula (4) is U(mPCR6
1,2 ) ≈ 0.8014 nats.

• With indirect fusion approach:

We obtain (see section VI)

mIF-∩
1,2 (A ∪B) = 0.81 ,

mIF-∩
1,2 (A ∪C) = 0.09 ,

mIF-∩
1,2 (B ∪ C) = 0.09 ,

mIF-∩
1,2 (C) = 0.01 .

The entropy of this non-Bayesian BBA mIF-∩
1,2 based on

the formula (4) is U(mIF-∩
1,2 ) ≈ 3.8714 nats.

Clearly, the BBA to use for decision-making support corre-
sponds to the indirect fusion result mIF-∩

1,2 because U(mIF-∩
1,2 ) >

U(mPCR6
1,2 ). From the selected BBA mIF-∩

1,2 the final decision can
be done thanks to different techniques that are detailed in [35].
In Zadeh’s example the hypothesis C will be rejected, even
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if there is a tie between A and B. This tie can be eliminated
arbitrarily (if we want), or randomly by a uniform random
draw (i.e. perfect coin tossing) between A and B.

For Dezert-Tchamova example (two non-Bayesian BBAs)

We consider the example 7 given in section VI-B.
• For direct fusion with DS rule:

We have

mDS
1,2(A) = 0.3 = m1(A) ,

mDS
1,2(A ∪B) = 0.7 = m1(A ∪B) .

The entropy of mDS
1,2 is U(mDS

1,2) ≈ 0.6108 nats.

• For direct fusion with PCR6 rule:

We have

mPCR6
1,2 (A) = 0.2062 ,

mPCR6
1,2 (A ∪B) = 0.5542 ,

mPCR6
1,2 (C) = 0.2396 .

The entropy of mPCR6
1,2 is U(mPCR6

1,2 ) ≈ 2.917 nats.

• For indirect fusion with DS rule:

We have

mIF-DS
1,2 (A ∪B) ≈ 0.63 ,

mIF-DS
1,2 (A ∪ C) ≈ 0.23 ,

mIF-DS
1,2 (A) ≈ 0.14 .

The entropy of mIF-DS
1,2 is U(mIF-DS

1,2 ) ≈ 3.4175 nats.

• For indirect fusion with PCR6 rule:

We have

mIF-PCR6
1,2 (A) = 0.0900 ,

mIF-PCR6
1,2 (C) = 0.1458 ,

mIF-PCR6
1,2 (A ∪B) = 0.6142 ,

mIF-PCR6
1,2 (A ∪ C) = 0.1500 .

The entropy of mIF-PCR6
1,2 is U(mIF-PCR6

1,2 ) ≈ 3.4358 nats.

One sees that if DS rule is used by the user (for his
own reason) and because U(mIF-DS

1,2 ) > U(mDS
1,2), it will be

more reasonable for the user to select mIF-DS
1,2 rather than

mDS
1,2 to draw the final decision. Because we do not rec-

ommend DS fusion rule in general due to its bad dictato-
rial behavior, we will actually select mIF-PCR6

1,2 for decision-
making because U(mIF-PCR6

1,2 ) > U(mPCR6
1,2 ). For this example

and based on mIF-PCR6
1,2 we will finally decide A because

mIF-PCR6
1,2 is closest to the sure BBA defined by mA(A) = 1

than to the sure BBAs defined by mB(B) = 1 and by
mC(C) = 1. More precisely, for this numerical example we
get dBI(m

IF-PCR6
1,2 ,mA) = 0.5019, dBI(m

IF-PCR6
1,2 ,mB) = 0.6456

and dBI(m
IF-PCR6
1,2 ,mC) = 0.7093, where dBI(., .) is the Eu-

clidean belief interval distance between two BBAs, see [35]

for details. Note that the same decision A will be drawn
incidentally from mIF-DS

1,2 .

For Blackman’s example (Bayesian and non-Bayesian BBAs)

For the simple Blackman’s example of Section VI-C we
have

mDS
1,2(A) = mIF-DS

1,2 (A) = mPCR6
1,2 (A) = mIF-PCR6

1,2 (A) = 0.5 ,

mDS
1,2(B) = mIF-DS

1,2 (B) = mPCR6
1,2 (B) = mIF-PCR6

1,2 (B) = 0.5 .

Therefore there is no BBA selection to do because all
coincide and we have

U(mDS
1,2) = U(mIF-DS

1,2 ) ≈ 0.6931 nats,

and
U(mPCR6

1,2 ) = U(mIF-PCR6
1,2 ) ≈ 0.6931 nats.

Because all the masses of belief of A and B are equal there
is no way to make a rational decision towards A, or towards B.
The final decision-making in this situation (where there is a tie)
can be done based either on an arbitrary choice between A and
B, or by a (uniform) random choice between A and B based
on a perfect coin tossing experiment. Eventually in a given
practical fusion problem (for instance in a tracking application)
where a tie occurs we would estimate the main consequences
generated by the arbitrary (or random) decision chosen (in
term of costs and benefits for instance) to select the best one.
This tie elimination method needs of course extra knowledge
about the problem under concern. This goes beyond the scope
of this paper.

For the extended Blackman’s example of Section VI-C the
direct DS fusion and the direct PCR6 fusion give the same
following result

mDS
12 (A) = mPCR6

12 (A) = 1/3 ,

mDS
12 (B) = mPCR6

12 (B) = 1/3 ,

mDS
12 (C) = mPCR6

12 (C) = 1/3 .

Therefore,

U(mDS
1,2) = U(mPCR6

1,2 ) ≈ 1.0986 nats.

If we apply the indirect fusion approach, we obtain for this
extended Blackman’s example

mIF-DS
1,2 (.) = mIF-PCR6

1,2 (.) = mIF-∩
12 (.) ,

where

mIF-∩
12 (A) = 0.8/3 ,

mIF-∩
12 (B) = 0.8/3 ,

mIF-∩
12 (C) = 0.8/3 ,

mIF-∩
12 (A ∪B) = 0.2/3 ,

mIF-∩
12 (A ∪ C) = 0.2/3 ,

mIF-∩
12 (B ∪ C) = 0.2/3 .

Therefore,

U(mIF-DS
1,2 ) = U(mIF-PCR6

1,2 ) ≈ 2.0524 nats.
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We observe that U(mIF-PCR6
1,2 ) > U(mPCR6

1,2 ). This inequality
indicates that the BBA mIF-PCR6

1,2 (.) (which coincides also with
mIF-DS

1,2 (.) and mIF-∩
12 (.)) is selected for the decision-making

support. Because of the same repartition of mass of belief
committed to A, B and C and their disjunctions there is no
way to make a rational decision towards A, B, or towards C in
this very particular tied situation unless an arbitrary or random
decision strategy is adopted. So, there is no real advantage
of using indirect fusion w.r.t. direct fusion in Blackman’s
example. However, things could obviously become different
if a third source of evidence enters in the fusion problem.

IX . CONCL US ION

In this paper we have analyzed different definitions of
a negator of a probability mass function, and of a basic
belief assignment (BBA) existing so far in the literature. In
order to overcome their limitations we have introduced a new
involutory negator of BBA. Based on it, a new indirect in-
formation fusion method was proposed which can circumvent
the conflict management problem in difficult fusion situations.
The classical direct and the new indirect information fusion
strategies were analyzed for three interesting examples of
fusion of two BBAs. In order to manage properly these two
types of fusion strategies, two methods for using the whole
available information (the original BBAs and their negators)
for decision-making support were presented. The first method
is based on the combination of the direct and indirect fusion
strategies. The second one selects the most reasonable fusion
strategy (direct, or indirect) to apply based on the maximum
entropy principle. A deep analysis of the advantages and
drawbacks of these two methods was made. We will evaluate
these new fusion approaches in different fields of applica-
tions (multi-sensor data association for tracking, multi-criteria
decision-making under uncertainty, perception in robotics, risk
assessment, etc) in our future research works. We also invite
the users of belief functions and the fusion system designers
to share and report their evaluation of this new approach on
their own applications in future publications.
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Abstract—This short paper points out an erroneous claim
about a new rule of combination of basic belief assignments
presented recently by Kenn et al. in [1], referred as Kenn’s rule
of combination (or just as KRC for short). We prove thanks a
very simple counter-example that Kenn’s rule is not associative.
Consequently, the results of the method proposed by Kenn et al.
highly depends on the ad-hoc sequential order chosen for the
fusion process as proposed by the authors. This serious problem
casts in doubt the interest of this method and its real ability to
provide trustful results and to make good decisions to help for
precise breast cancer therapy.

Keywords: belief functions, rule of combination, Kenn’s rule.

I. INTRODUCTION

Recently a paper devoted to the Breast Cancer Precision

Therapy by Kenn et al. [1] attracted our attention for two

main reasons: 1) this application of information fusion is very

interesting and important; 2) Kenn’s et al. method is based on

a new rule of combination of basic belief assignments (BBAs).

Because we did some theoretical contributions in this field [2]

we wanted to examine this new combination rule in detail. So,

we have read with interest Kenn’s et al paper. Unfortunately

we quickly discovered a serious erroneous claim about Kenn’s

rule of combination (KRC) and this has strong consequences

on the methodology presented by Kenn. In this short technical

note we warn the readers of the risk of potential therapy errors

if such a method is used in practice. We clearly explain the

problem of the method presented by Kenn et al. To make the

paper self-containing, we recall briefly the basics of belief

functions in the next section, and the KRC in the section

III. In section IV we prove thanks a very simple numerical

counter-example that KRC is not associative. Conclusion and

recommendations are given in the last section of this note.

II. BELIEF FUNCTIONS

The belief functions (BF) were introduced by Shafer [3] for

modeling epistemic uncertainty, reasoning about uncertainty

and combining distinct sources of evidence. The answer of

the problem under concern is assumed to belong to a known

finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN}
where all elements (i.e. members) of Θ are exhaustive and

exclusive. The set of all subsets of Θ (including empty set

∅, and Θ) is the power-set of Θ denoted by 2Θ. The number

of elements (i.e. the cardinality) of the power-set is 2|Θ|. A

(normalized) basic belief assignment (BBA) associated with a

given source of evidence is a mapping mΘ(·) : 2Θ → [0, 1]
such that mΘ(∅) = 0 and

∑

X∈2Θ
mΘ(X) = 1. A BBA mΘ(·)

characterizes a source of evidence related with a FoD Θ. For

notation shorthand, we can omit the superscript Θ in mΘ(·)
notation if there is no ambiguity on the FoD we work with.

The quantity m(X) is called the mass of belief of X . The

element X ∈ 2Θ is called a focal element (FE) of m(·) if

m(X) > 0. The set of all focal elements of m(·) is denoted1

by FΘ(m) , {X ∈ 2Θ|m(X) > 0}. The belief and the

plausibility of X are respectively defined for any X ∈ 2Θ by

[3]

Bel(X) =
∑

Y ∈2Θ|Y⊆X

m(Y ) (1)

Pl(X) =
∑

Y ∈2Θ|X∩Y 6=∅
m(Y ) = 1− Bel(X̄). (2)

where X̄ , Θ \ {X} is the complement of X in Θ.

One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [3]. For

X = ∅, Bel(∅) = Pl(∅) = 0, and for X = Θ one has

Bel(Θ) = Pl(Θ) = 1. Bel(X) and Pl(X) are often inter-

preted as the lower and upper bounds of unknown prob-

ability P (X) of X , that is Bel(X) ≤ P (X) ≤ Pl(X).
To quantify the uncertainty (i.e. the imprecision) of

P (X) ∈ [Bel(X), P l(X)], we use u(X) ∈ [0, 1] defined by

u(X) , Pl(X)−Bel(X) (3)

If u(X) = 0, Bel(X) = Pl(X) and therefore P (X) is

known precisely because P (X) = Bel(X) = Pl(X). One has

u(∅) = 0 because Bel(∅) = Pl(∅) = 0, and one has u(Θ) = 0
because Bel(Θ) = Pl(Θ) = 1. If all focal elements of m(·)
are singletons of 2Θ the BBA m(·) is a Bayesian BBA because

∀X ∈ 2Θ one has Bel(X) = Pl(X) = P (X) and u(X) = 0.

Hence the belief and plausibility of X coincide with a prob-

ability measure P (X) defined on the FoD Θ. The vacuous

BBA characterizing a totally ignorant source of evidence is

defined by mv(X) = 1 for X = Θ, and mv(X) = 0 for all

X ∈ 2Θ different of Θ.

1, means equal by definition.
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In the Mathematical Theory of Evidence of Glenn Shafer,

the combination of two BBAs m1(.) and m2(.) defined over

the same FoD Θ is obtained with Dempster’s rule. More

precisely2 by mDS
12 (∅) = 0, and for any X ∈ 2Θ \ {∅} by

mDS
12 (X) =

∑

X1,X2⊆Θ

X1∩X2=X

m1(X1)m2(X2)

1−∑

X1,X2⊆Θ

X1∩X2=∅
m1(X1)m2(X2)

(4)

The value K12 =
∑

X1,X2⊆Θ

X1∩X2=∅
m1(X1)m2(X2) is classically

interpreted as the degree of conflict between the BBAs m1(.)
and m2(.). When the degree of conflict is maximum one

has K12 = 1, and in this particular case Dempster-Shafer

rule cannot be applied because of division by zero in the

formula (4). This rule can be easily directly generalized for

the combination of more than two BBAs.

The DS rule has had a great success during the past decades

in expert systems and artificial intelligence mainly because

it is a commutative and associative rule of combination able

to deal with (possibly epistemic) uncertainty and incomplete

information based on an appealing mathematical framework.

This makes its use very attractive from the implementation

standpoint in decision-making support systems. Indeed, be-

cause of its associativity we can apply DS rule sequentially

when we have more than two sources of evidence to fuse, and

the sequence order will not impact the DS fusion result. Un-

fortunately, DS rule of combination generates counter-intuitive

results due to the normalization step in DS formula (not only

in high conflicting situations but also in low conflicting situ-

ations as well), and it generates very controversial dictatorial

behaviors, see [4], [5] for discussions with examples. That is

why many alternatives of DS rule have been proposed in the

literature to circumvent these serious problems of DS rule.

Unfortunately, there is no general consensus in the scientific

community about the choice of the best rule of combination

of belief functions to make for the applications.

III. KENN’S RULE OF COMBINATION

Kenn’s rule of combination (KRC) proposed in [1] is a slight

modification of DS rule introducing a tuning parameter λ ∈
[0, 1]. The KRC of two BBAs m1(.) and m2(.) defined over

the same FoD Θ is denoted symbolically m1 ⊕λ m2 in [1].

Its mathematical expression is given by3 mKRC
12 (∅) = 0, for

X ∈ 2Θ \ {∅} by

mKRC
12 (X) = [m1 ⊕λ m2](X)

=

∑

X1,X2⊆Θ
X1∩X2=X

m1(X1)m2(X2)

1− λ
∑

X1,X2⊆Θ

X1∩X2=∅
m1(X1)m2(X2)

(5)

2DS upper index in formula (4) stands for Dempster-Shafer because this
rule is often referred also as Dempster-Shafer rule of combination in the
literature.

3see formula (4) in [1]

and for X = Θ, by

mKRC
12 (Θ) = [m1 ⊕λ m2](Θ)

= 1−
∑

X⊂Θ

mKRC
12 (X) (6)

For λ = 1, KRC coincides with Dempster-Shafer rule and

consequently it will suffer of same problems as DS rule in this

particular case. According to Kenn et al., the parameter λ in

the formula (5) provides flexibility to adapt to circumstances

and the restriction to λ ≤ 1 is motivated by restricting the

authors to an interpolation type evidential combination rule.

KRC is claimed associative and commutative by Kenn et al.

(see page 5 of [1]). We prove in the next section that KRC is

in fact not associative. Because of non-associativity of KRC,

the methodology proposed in [1] becomes very disputable

and doubtful, and potentially very dangerous for breast cancer

therapy application addressed by Kenn et al., and for any other

applications using sequential fusion of sources of evidences

based on KRC.

IV. COUNTER-EXAMPLE OF ASSOCIATIVITY OF KRC

To prove that KRC is not associative it suffices to verify

that

(m1 ⊕λ m2)⊕λ m3 6= m1 ⊕λ (m2 ⊕λ m3) (7)

To prove (7) when λ < 1, just consider for instance λ = 0.2,

the FoD Θ = {A,B} and the three BBAs given in Table I

Table I
THREE BASIC BELIEF ASSIGNMENTS.

Elements m1 m2 m3

∅ 0 0 0
A 0.2 0.8 0.4
B 0.7 0.1 0.3

A ∪B 0.1 0.1 0.3

A. Derivation of (m1 ⊕0.2 m2)⊕0.2 m3

For the combination of m1 with m2 we have the degree of

conflict

K12 = m1(A)m2(B)+m1(B)m2(A) = 0.2·0.1+0.7·0.8 = 0.58

The results of the conjunctive fusion of m1 with m2 for A
and B are

m12(A) = m1(A)m2(A) +m1(A)m2(A ∪B)

+m2(A)m1(A ∪B)

= 0.2 · 0.8 + 0.2 · 0.1 + 0.8 · 0.1 = 0.26

m12(B) = m1(B)m2(B) +m1(B)m2(A ∪B)

+m2(B)m1(A ∪B)

= 0.7 · 0.1 + 0.7 · 0.1 + 0.1 · 0.1 = 0.15

For KRC of m1 with m2 we get (taking λ = 0.2) mKRC
12 (∅) =

0 and
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mKRC
12 (A) = [m1 ⊕λ m2](A)

=
m12(A)

1− λK12

=
0.26

1− 0.2 · 0.58 ≈ 0.2941

mKRC
12 (B) = [m1 ⊕λ m2](B) =

m12(B)

1− λK12

=
0.15

1− 0.2 · 0.58 ≈ 0.1697

mKRC
12 (A ∪B) = [m1 ⊕λ m2](A ∪B)

= 1− 0.26

1− 0.2 · 0.58 − 0.15

1− 0.2 · 0.58
≈ 0.5362

For the combination of mKRC
12 = m1 ⊕λ m2 with m3 we

have the degree of conflict

K(12)3 = mKRC
12 (A)m3(B) +mKRC

12 (B)m3(A)

≈ 0.2941 · 0.3 + 0.1697 · 0.4 ≈ 0.1561

The results of the conjunctive fusion of mKRC
12 with m3 for

A and B are

m(12)3(A) = mKRC
12 (A)m3(A) +mKRC

12 (A)m3(A ∪B)

+m3(A)m
KRC
12 (A ∪B)

≈ 0.2941 · 0.4 + 0.2941 · 0.3 + 0.4 · 0.5362
= 0.4204

m(12)3(B) = mKRC
12 (B)m3(B) +mKRC

12 (B)m3(A ∪B)

+m3(B)mKRC
12 (A ∪B)

≈ 0.1697 · 0.3 + 0.1697 · 0.3 + 0.3 · 0.5362
= 0.2627

Therefore, the KRC of mKRC
12 with m3 yields mKRC

(12)3
(∅) =

0 and

mKRC
(12)3 (A) = [mKRC

12 ⊕λ m3](A)

=
m(12)3(A)

1− λK(12)3

=
0.4204

1− 0.2 · 0.1561 ≈ 0.4339

mKRC
(12)3 (B) = [mKRC

12 ⊕λ m3](B)

=
m(12)3(B)

1− λK(12)3

=
0.2627

1− 0.2 · 0.1561 ≈ 0.2711

mKRC
(12)3 (A ∪B) = [mKRC

12 ⊕λ m3](A ∪B)

≈ 1− 0.4339− 0.2711 ≈ 0.2950

Hence for the fusion (m1 ⊕0.2 m2)⊕0.2 m3 we get finally

mKRC
(12)3 (A) = [(m1 ⊕0.2 m2)⊕0.2 m3](A)

≈ 0.4339 (8)

mKRC
(12)3 (B) = [(m1 ⊕0.2 m2)⊕0.2 m3](B)

≈ 0.2711 (9)

mKRC
(12)3 (A ∪B) = [(m1 ⊕0.2 m2)⊕0.2 m3](A ∪B)

≈ 0.2950 (10)

B. Derivation of m1 ⊕0.2 (m2 ⊕0.2 m3)

For the combination of m2 with m3 we have

K23 = m2(A)m3(B) +m2(B)m3(A)

= 0.8 · 0.3 + 0.1 · 0.4 = 0.28

The results of the conjunctive fusion of m2 with m3 for A
and B are

m23(A) = m2(A)m3(A) +m2(A)m3(A ∪B)

+m3(A)m2(A ∪B)

= 0.8 · 0.4 + 0.8 · 0.3 + 0.4 · 0.1 = 0.60

m23(B) = m2(B)m3(B) +m2(B)m3(A ∪B)

+m3(B)m2(A ∪B)

= 0.1 · 0.3 + 0.1 · 0.3 + 0.3 · 0.1 = 0.09

For KRC of m2 with m3 we get (taking λ = 0.2)

mKRC
23 (∅) = 0 and

mKRC
23 (A) = [m2 ⊕λ m3](A)

=
m23(A)

1− λK23

=
0.60

1− 0.2 · 0.28 ≈ 0.6356

mKRC
23 (B) = [m2 ⊕λ m3](B)

=
m23(B)

1− λK23

=
0.09

1− 0.2 · 0.28 ≈ 0.0953

mKRC
23 (A ∪B) = [m2 ⊕λ m3](A ∪B)

≈ 1− 0.6356− 0.0953 ≈ 0.2691

For the combination of m1 with mKRC
23 = m2 ⊕λ m3 we

have the degree of conflict

K1(23) = mKRC
23 (A)m1(B) +mKRC

23 (B)m1(A)

≈ 0.63563 · 0.7 + 0.0953 · 0.2 ≈ 0.4640

The results of the conjunctive fusion of m1 with mKRC
23 for

A and B are

m1(23)(A) = mKRC
23 (A)m1(A) +mKRC

23 (A)m1(A ∪B)

+m1(A)m
KRC
23 (A ∪B)

≈ 0.6356 · 0.2 + 0.6356 · 0.1 + 0.2 · 0.2691 ≈ 0.2445

m1(23)(B) = mKRC
23 (B)m1(B) +mKRC

23 (B)m1(A ∪B)

+m1(B)mKRC
23 (A ∪B)

≈ 0.0953 · 0.7 + 0.0953 · 0.1 + 0.7 · 0.2691 ≈ 0.2646
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Therefore, the KRC of m1 with mKRC
23 yields mKRC

1(23)
(∅) =

0 and

mKRC
1(23) (A) = [m1 ⊕λ mKRC

23 ](A)

=
m1(23)(A)

1− λK1(23)

=
0.2445

1− 0.2 · 0.4640 ≈ 0.2695

mKRC
1(23) (B) = [m1 ⊕λ mKRC

23 ](B)

=
m1(23)(B)

1− λK1(23)

=
0.2646

1− 0.2 · 0.4640 ≈ 0.2917

mKRC
1(23) (A ∪B) = [m1 ⊕λ mKRC

23 ](A ∪B)

≈ 1− 0.2695− 0.2917 ≈ 0.4388

Hence for the fusion m1 ⊕0.2 (m2 ⊕0.2 m3) we get finally

mKRC
1(23) (A) = [m1 ⊕0.2 (m2 ⊕0.2 m3)](A)

≈ 0.2695 (11)

mKRC
1(23) (B) = [m1 ⊕0.2 (m2 ⊕0.2 m3)](B)

≈ 0.2917 (12)

mKRC
1(23) (A ∪B) = [m1 ⊕0.2 (m2 ⊕0.2 m3)](A ∪B)

≈ 0.4388 (13)

We see clearly that KRC is not associative because (m1⊕λ

m2)⊕λ m3 6= m1 ⊕λ (m2 ⊕λm3) as reported in the Table II.

Table II
COUNTER-EXAMPLE OF ASSOCIATIVITY OF KRC WITH λ = 0.2.

Elements (m1 ⊕λ m2)⊕λ m3 m1 ⊕λ (m2 ⊕λ m3)
∅ 0 0
A 0.4339 0.2695
B 0.2711 0.2917

A ∪ B 0.2950 0.4388

C. Comment on decision-making method used by Kenn et al.

For our simple example we get with the sequential fusion

(m1 ⊕0.2 m2)⊕0.2 m3 the following belief intervals

[Bel(12)3(∅), P l(12)3(∅)] = [0, 0]

[Bel(12)3(A), P l(12)3(A)] = [0.4339, 0.7289]

[Bel(12)3(B), P l(12)3(B)] = [0.2711, 0.5661]

[Bel(12)3(A ∪B), P l(12)3(A ∪B)] = [1, 1]

and with the sequential fusion m1 ⊕0.2 (m2 ⊕0.2 m3)

[Bel1(23)(∅), P l1(23)(∅)] = [0, 0]

[Bel1(23)(A), P l1(23)(A)] = [0.2695, 0.7083]

[Bel1(23)(B), P l1(23)(B)] = [0.2917, 0.7305]

[Bel1(23)(A ∪B), P l1(23)(A ∪B)] = [1, 1]

Based on these results and the decision-making method

used by Kenn et al. (see section 3.4 of [1]) it is clear that

no decision for A or for B can be made using the sequen-

tial fusion (m1 ⊕0.2 m2) ⊕0.2 m3 because we have neither

Bel(12)3(A) > Pl(12)3(B), nor Bel(12)3(B) > Pl(12)3(A).
Similarly, no decision can be drawn for A or for B from

the result of the sequential fusion m1 ⊕0.2 (m2 ⊕0.2 m3)
because we have neither Bel1(23)(A) > Pl1(23)(B), nor

Bel1(23)(B) > Pl1(23)(A). In fact we just could always take

as final decision based on Kenn’s decision-making method

the whole frame of discernment because one always has

(Bel(12)3(A∪B) = 1) > (Pl(12)3(∅) = 0) and (Bel1(23)(A∪
B) = 1) > (Pl1(23)(∅) = 0) but such type of decision

is obviously not useful at all for the applications because

it does not help to make a clear choice between A and B.

So, the decision-making method used by Kenn et al. does not

work for all cases of BBA distributions as shown in this very

simple example, and that is why it is not judicious and not

recommended for applications.

V. CONCLUSION

The consequence of non-associativity of the method pre-

sented by Kenn et al. in [1] can have a strong impact on

the results and on decision-making in general if the KRC is

applied sequentially for information fusion as it is proposed

by the authors in their paper (see formula (9) page 7 of [1]).

Because of this problem, we have a serious concern about the

interest and the effectiveness of the method presented by Kenn

et al.. We warn the potential users of this approach about the

high risk of wrong decisions (when they are possible which is

not always the case as shown in our counter-example) based on

this method. This could have dramatical therapy consequences.

If the authors want to use this KRC-based approach we think

they should at least better consider a global information fusion

processing than a sequential one, and they should adopt a

better decision-making strategy. They also should compare

their results with other advanced rules of combination and

use the same decision strategy to make comparisons to show

the real advantages of this approach, if any. The measure

of the performances of the method with real open data sets

for breast cancer therapy application and ground truth is also

recommended.
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Weighted Fusion of Multiple Classifiers
for Human Activity Recognition

Abstract—Human Activity Recognition (HAR) based on wear-
able device has become a hot topic of research due to its wide
range of applications in health-care, fitness and smart homes.
However, the classification of some activities with similar sensor
readings, such as standing and sitting, is usually more challeng-
ing for the design of efficient activity recognition algorithms.
Considering the inconsistent performance of different classifiers,
which can provide information complementary for individual
classifier, we propose a novel multi-classifier fusion method based
on belief functions (BFs) theory for HAR. Specifically, at first,
four classifiers are trained using time-domain and frequency-
domain features to obtain basic belief assignments (BBA) of
activity, respectively. Then, three assessment criteria are utilized
to evaluate the reliability of the classifiers and a scoring matrix
is constructed. Next, the algorithm of Belief Function based the
Technique for Order Preference by Similarity to Ideal Solution
(BF-TOPSIS) is employed to calculate the weighting coefficients
for each classifier. Finally, the discounting and Dempster’s rules
are adopted to combine the multiple classifiers and further deci-
sion making. Several experiments were conducted to illustrate the
performance of the proposed method using the UCI smartphone
dataset, and the results show that the proposed method is more
accurate than the state-of-art methods.

Index Terms—Belief functions theory, multiple classifiers fu-
sion, BF-TOPSIS, human activity recognition.

I. INTRODUCTION

With the booming development of micro-sensor technol-
ogy, Human Activity Recognition (HAR) based on wearable
sensors has become one of the hot research topics [1], [2].
Data of daily activities can be well collected in an all-
round and non invasive discrete manner using accelerometers,
gyroscopes and other such portable wearable devices, so as to
accomplish the work of assisted living and health monitoring
while effectively protecting the privacy of users [3]. Obviously,
it has certain advantages compared to traditional vision-based
methods. However, the accuracy of HAR based on wearable
devices is affected by many factors, such as the number
and the deployment location of sensors, the complexity of
activities [4], and so on. Due to the uncertainty, diversity
and individual differences of activities [5], many scholars
took the perspective of multi-sensor information fusion to
achieve higher accuracy of HAR. For example, Dong et al.
[6] developed the kernel density estimation models to fit
the multi-sensor data to obtain the basic belief assignments

(BBAs), and then Dezert-Smarandache theory (DSmT) was
adopted to combine the acquired BBAs. Uddin et al. [7]
fused data from different multimodal sensors with statistical
features of different orders and then trained a deep recurrent
neural network (RNN) for activity recognition. Although they
achieve good accuracy, it is still difficult to accurately identify
some activities with high similarity of sensor readings such as
sitting and standing. Furthermore, the reliability of activity
recognition can be significantly compromised when sensor
readings are missing or disturbed by noise without additional
sensor information.

Recently, the multi-classifier fusion has been applied in
pattern recognition [8], information fusion [9], [10] and other
fields, especially for classification problems in complex envi-
ronments. Different classifiers can learn different feature in-
formation, and multiple classifiers can provide complementary
information compared with any individual classifier, which
can help identify similar human activities such as sitting
and standing. By using multi-classifier fusion, we expect the
improvement of the classification accuracy, which brings the
possibility of high precision HAR. On the other hand, multiple
classifiers can be seen as multiple sources of evidence, and we
fuse the basic belief assignments (BBAs) of the human activity
categories output by the classifiers.

The multi-classifier fusion usually consists of generating
membership classifiers, applying combination rules, and make
a decision about the positioning of the patient. Various ap-
proaches have been proposed for membership classifier gener-
ation, for example, using different training samples, different
features and different types of classifiers [11]. Common clas-
sifier fusion methods include voting method [12], naive Bayes
[13], Dempster-Shafer (DS) rule in Dempster-Shafer theory
(DST) [14], and so on. In the fusion process, the classifiers
may have different reliabilities (weights) and their decision
results may be contradicting, which inevitably brings conflict
issues. In order to improve classification accuracy, it becomes
particularly important to evaluate the reliability of classifiers
before combining them. For instance, Liu et al. employed
contextual reliability evaluation based on inner reliability and
relative reliability concepts [10]. Dong et al. [15] took two
classes of criteria into account to evaluate the classifiers. The

Originally published as: K. Zuo, X. Li, J. Dezert, Y. Dong, Weighted Fusion of Multiple Classifiers for 
Human Activity Recognition, in Proc. of Int. Conf. on Information Fusion (Fusion 2023), Charleston, 
SC, USA, June 2023, and reprinted with permission.
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first class is the conflict between the classifiers and the second
class is the imprecision of the information provided by each
classifier. The effective evaluation of the reliability of multiple
classifiers and their fusion is a challenging problem for HAR
tasks.

In this article, we propose a novel Weighted Fusion of
Multiple Classifiers (WFMC) method for HAR based on BFs
theory. Our main contributions are summarized as follows:

• Four classifiers including support vector machine (SVM),
random forest (RF), multi-layer perceptron (MLP) and lo-
gistic regression (LR) are trained by same training dataset
for acquiring BBAs of human activities. To improve the
multi-classifier fusion accuracy, Belief Jensen–Shannon
(BJS) divergence, Interval distance function and belief
entropy are considered to measure the reliability of the
classifiers and a scoring matrix is constructed.

• The BF-TOPSIS1 multi-criteria decision-making algo-
rithm is employed to calculate the weighting coefficients
for each classifier, and multiple classifiers are fused using
discounting technique and DS rule in this work, the final
decision is made based on the maximum belief mass of
all involved single focal elements.

• We evaluate the performance of our proposed method on
the widely used UCI Smart-phone public dataset.

The rest of this article is organized as follows. Section
II presents the basic concepts of BFs theory, discounting
technique and pignistic probability transformation. Section III
provides a detailed description of the new proposed multi-
classifier fusion strategy for HAR. Section IV presents the
detailed experimental results and discussions. The final section
V gives concluding remarks with some perspectives of this
work.

II. PRELIMINARIES

A. Belief Functions Theory

BFs theory (known also as DST) has been widely used in
multi-sensor information fusion due to its ability to deal with
uncertain and imprecise information [17]. The basic concepts
are introduced in this section based on [14]. Let Θ be a finite
set of elements denoted by

Θ = {θ1, θ2, ..., θn}. (1)

The set Θ is called a frame of discernment (FoD), which
consists of exhaustive and exclusive hypotheses. Information
sources distribute mass of belief to elements of the power set
of the FoD, denoted by 2Θ. For example, if Θ = {θ1, θ2},
then

2Θ = {∅, θ1, θ2, θ1 ∪ θ2}. (2)

A BBA, called a mass function, is defined by the mapping
m(·) : 2Θ 7→ [0, 1] , which satisfies m(∅) = 0 and∑

A∈2Θ

m(A) = 1. (3)

1BF-TOPSIS is an extension of the technique for order preference by
similarity to ideal solution (TOPSIS) based on belief functions (BF) [16].

For a proposition A ⊆ Θ, the belief function is defined as:

Bel(A) =
∑

B⊆A,B∈2Θ

m(B). (4)

The plausibility function is defined as:

Pl(A) =
∑

B∩A̸=∅,B∈2Θ

m(B). (5)

If the focal elements of BBA are all singletons, the BBA
is called Bayesian BBA [14]. In pattern classification, m(A)
represents the support degree of the object associated with
class. For example, if A is a set of classes (e.g., A = {θ1, θ2}),
m(A) denotes the possibility of classification among the class
θ1 and θ2 with respect to the object. In DST, the classical
Dempster’s rule (also called Dempster-Shafer rule, or just DS
rule) is used to combine two (or more2) independent Sources
of Evidence (SoEs), which is denoted as m1⊕m2 and defined
as follows [14]: for ∀A ∈ 2Θ, A ̸= ∅ ,

(m1 ⊕m2)(A)=
1

1− k

∑
B,C∈2Θ|B∩C=A

m1 (B)m2 (C) (6)

with
k =

∑
B,C∈2Θ|B∩C=∅

m1 (B)m2 (C) (7)

where k represents the total conflict degree. If k = 1, it implies
that the two SoEs are in total conflict, and the DS rule cannot
be applied because of division by zero.

B. Classical Discounting Technique

The SoEs may have varying degrees of reliability due to
their different abilities of classification. The discounting oper-
ations are frequently conducted by using a discounting factor α
for each source of evidence. A particular discounting operation
has been introduced by Shafer [14] for the combination of
SoEs with different degrees of reliability. Shafer discounts
the masses of all focal elements by a discounting (weighting)
factor α ∈ [0, 1] to the total ignorance. Each discounted BBA
characterizing each discounted source of evidence is used in
the fusion process. More precisely, for ∀A ∈ 2Θ\{Θ}, the
discounted mass of discounted source of evidence is defined
as follows: {

mα (A) = α ·m (A)
mα (Θ) = 1− α+ α ·m (Θ)

(8)

where α = 1 means that the SoE is completely reliable, and
α = 0 means that the SoE is completely unreliable.

C. Pignistic Probability Transformation

When multi-source information is combined, there may
be disjunctive focal elements with strictly positive mass of
belief. It is worth noting that the final decision is made only
among singleton focal elements. Classically, a BBA is usually
transformed into a (possibly subjective) probability measure

2To keep the presentation as simple as possible, we present DS rule for
only two BBAs, see [14] for its generalization.
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for decision making. The Pignistic Probability Transformation
(PPT, or BetP transform) proposed by Smets in [18], [19]
is generally considered as a reasonable in-between decisional
attitude between the max of Bel(.) (pessimistic attitude) and
max of Pl(.) (optimistic attitude). The betting probability
BetP (θi) of any singleton focal element θi of the FoD is
defined by

BetP (θi) =
∑

θi∈X,X∈2Θ

m (X)

|X|
(9)

where |X| refers to the cardinality of a subset X . One
clearly sees tat the BetP transform evenly distributes the belief
assignment of disjunctive focal element to the singleton focal
element it contains.

III. WEIGHTED FUSION OF MULTIPLE CLASSIFIERS

A. Classifiers for HAR

In this article, we use classical machine learning classifiers
[20] such as SVM, RF, MLP and LR to generate BBAs
of human activity, and these classifiers can only give the
mass of belief for singleton focal elements (i.e. we work
with Bayesian BBAs). In the fusion of multiple classifiers,
a BBA can be represented by the output of each classifier.
It is worth noting that we should choose different types of
classifiers as far as possible. In general, when the diversity
between the multiple classifiers is larger, the advantages will
be more obvious. At the same time, we need to guarantee
the individual prediction accuracy of each classifier, which
is the basis for the high accuracy of our WFMC algorithm.
Furthermore, we train each classifier separately using the same
training dataset. Once multiple classifiers are trained, we can
obtain the corresponding BBAs for each category of human
activity.

B. Assessment Criteria

After acquiring multiple BBAs of the human activity to
be identified, we can use DS rule to fuse these BBAs and
further make decisions. In this article we work with DS rule
mainly because of its simplicity even we are aware of its well-
known disputable dictatorial behavior in some cases, and that
is why we use discounting techniques. We will evaluate the
performances of alternative fusion rules in our future works.
From the perspective of conflicts between multiple BBAs
or uncertain information, the reliability of multiple BBAs
should be evaluated before combination, its goal is to eliminate
and reduce the negative influence of unreliable BBAs on the
final recognition accuracy. For this reason, the appropriate
assessment criterion need to be chosen in advance. In this
article, we have selected three assessment criteria, described
as follows:

a) Divergence degree: The Belief Jensen–Shannon (BJS)
divergence measure was presented by Xiao [21] to measure
the divergence between belief functions in DST. It is the gen-
eralization of the Jensen-Shannon divergence [22] where the
probability distribution is replaced with belief mass functions.

Let m1 and m2 be two BBAs on the same FoD, containing
n mutually exclusive and exhaustive hypotheses. The BJS
divergence between m1 and m2 is denoted as:

BJS (m1,m2) =
1

2

[
2n−1∑
i=1

m1(Ai) log

(
2m1(Ai)

m1(Ai) +m2(Ai)

)

+
2n−1∑
i=1

m2(Ai) log

(
2m2(Ai)

m1(Ai) +m2(Ai)

)]
(10)

where Ai is a non empty element of the power-set 2Θ,
and

∑2n−1
i=1 m1(Ai) = 1,

∑2n−1
i=1 m2(Ai) = 1. The lower and

upper bounds of the BJS divergence measure are respectively
equal to zero and one. When m1 has the same BBAs as m2,
the BJS divergence between m1 and m2 is 0. When two BBAs
are completely different, the BJS divergence value is 1. In this
article, the average BJS divergence of a BBA can be calculated
by

B̃JS(m) =
1

N − 1

N∑
j=1

BJS(m,mj) (11)

where N indicates the number of classifiers.
b) Distance degree: The smaller the distance between

a pair of BBAs, the closer their belief values are, and the
better for our decision-making. In this article, the interval
distance [23] is an excellent metric, as it considers the belief
intervals using the belief and plausibility functions of each
focal element to describe the closeness between BBAs. The
interval distance is defined as follows:

dEc
BI (m1,m2)

∆
=

√√√√ 1

2n−1
·
2n−1∑
i=1

[dBI (BI1 (Ai) , BI2 (Ai))]
2

(12)
with

BI (Ai)= [Bel (Ai) , P l (Ai)] (13)

dBI ([a1, b1] , [a2, b2]) =√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2 .

(14)
The average interval distance of one set of BBAs can be

calculated by

d̃Ec
BI(m) =

1

N − 1

N∑
j=1

dEc
BI(m,mj) (15)

where N indicates the number of classifiers. The larger the
value of the interval distance, the greater the degree of conflict
between the current BBA and other BBAs, the less reliable it
will be, and vice versa.

c) Uncertain degree: A novel effective measure of uncer-
tainty (i.e. entropy) of BBAs is proposed by Dezert [24], this
new continuous measure is effective in the sense that it satisfies
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a small number of very natural and essential desiderata. The
new entropy measure is defined by

U(m) =
∑

X∈2Θ

s (X) (16)

with

s(X)
∆
= −(1− u(X))m(X) log(m(X)) + u(X)(1−m(X))

(17)
u(X)

∆
= Pl(X)−Bel(X). (18)

s(X) is the uncertainty contribution of X in U(m). This
measure of uncertainty coincides with Shannon entropy for any
Bayesian BBA, it can be also interpreted as an effective gener-
alization of Shannon entropy. We always have U(m) ≥ 0, and
U(m) < U(mv) if the BBA m(.) is different of the vacuous
BBA mv(.) defined by mv(Θ) = 1. It is worth noting that it is
possible that a non-Bayesian BBA can have an entropy value
U(m) smaller than the maximum of Shannon entropy given
by log(|Θ|). When X is a single focal element and satisfies
m(X) = 1, U(m) has a minimum value of 0, which indicates
that the source of evidence is completely certain and it plays
an important role in the final combination.

C. Reliability Evaluation of Classifiers
In this article, each classifier can be regarded as a evidence

source. We obtain the reliability of one classifier by evaluating
its output, as follows:

a) Construction of scoring matrix: Supposing that there
exists N classifiers over the same FoD, and their BBAs
composition are as follows:

A1 A2 · · · AM

C1 m1 (A1) m1 (A2) · · · m1 (AM )
C2 m2 (A1) m2 (A2) · · · m2 (AM )
...

...
...

. . .
...

CN mN (A1) mN (A2) · · · mN (AM )

(19)

where Ai ∈ 2Θ, and Cj , j = 1, 2, ..., N represents the jth
classifier. Then we calculate the scores of each classifier
according to the assessment criteria Critη, η = 1, 2, ..., q and
the scoring matrix S can be generated as follows:

C1 C2 · · · Cj · · · CN

Crit1 S11 S12 · · · S1j · · · S1N

Crit2 S21 S22 · · · S2j · · · S2N

...
...

...
. . .

...
. . .

...
Critq Sq1 Sq2 · · · Sqj · · · SqN

(20)

In this article, q = 3, that is: Crit1
∆
= BJS(·), Crit2

∆
=

dEc
BI(·) and Crit3

∆
= U(·).

b) Construction of local BBAs for classifiers: Consid-
ering the assessment criteria and their corresponding evalu-
ation vectors, we can calculate the positive support degree
Supη (Cj) and negative support degree Infη (Cj) for each
classifier by the following equations (see [16] for details)

Supη (Cj)
∆
=

∑
κ∈{1,··· ,N}|Sηκ≤Sηj

|Sηj − Sηκ|. (21)

Infη (Cj)
∆
= −

∑
κ∈{1,··· ,N}|Sηκ≥Sηj

|Sηj − Sηκ|. (22)

Then, the maximum value Cη
max and minimum value Cη

min

of the classifier Cj under the assessment criteria Critη can be
obtained by the following equations.

Cη
max

∆
= maxjSupη (Cj) (23)

Cη
min

∆
= minjInfη (Cj) . (24)

Next, the construction of local BBAs is based on the method
presented in [16] and defined as follows:

mj−η (Cj)
∆
= Belη (Cj)

mj−η

(
Cj

) ∆
= 1− Plη (Cj)

mj−η

(
Cj ∪ Cj

) ∆
= Plη (Cj)−Belη (Cj)

(25)

with 

Belη (Cj)
∆
=

Supη (Cj)

Cη
max

Belη
(
Cj

) ∆
=

Infη (Cj)

Cη
min

Plη (Cj)
∆
= 1− Infη (Cj)

Cη
min

(26)

where mj−η (Cj), mj−η

(
Cj

)
and mj−η

(
Cj ∪ Cj

)
respec-

tively represent the positive support belief, negative support
belief and uncertainty belief of the classifier Cj based on the
assessment criteria Critη .

c) Calculation of weight factors: We employ the BF-
TOPSIS algorithm [16] to calculate the weight factors for each
classifier and the specific steps are as follows.

• Step 1 Calculate the local BBAs mj−η (Cj), mj−η

(
Cj

)
and mj−η

(
Cj ∪ Cj

)
of each classifier according to the

scoring matrix.
• Step 2 For each classifier, calculate dEc

BI

(
mj−η,m

best
η

)
and dEc

BI

(
mj−η,m

worst
η

)
, mbest

η and mworst
η represent

the best and the worst ideal BBAs based on the assess-
ment criteria Critη , respectively, where mbest

η (Cj) = 1

and mworst
η

(
Cj

)
= 1.

• Step 3 Calculate the weighted average distance dbest (Cj)
and dworst (Cj) of classifier, where

dbest (Cj)
∆
=

N∑
η=1

υ (Critη) · dEc
BI

(
mj−η,m

best
η

)
(27)

dworst (Cj)
∆
=

N∑
η=1

υ (Critη)·dEc
BI

(
mj−η,m

worst
η

)
(28)

where υ (Critη) represents the weight of assessment
criteria Critη . In this article, υ (Crit1) = υ (Crit2) =
υ (Crit3) = 1/3 .
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• Step 4 The final weight of the classifier Cj is defined as
follows:

ω (Cj) =
dworst (Cj)

dworst (Cj) + dbest (Cj)
(29)

In the proposed WFMC algorithm, when a classifier is in
complete conflict with other classifiers, it will be supported
to a small degree. According to the reliability evaluation
algorithm, the classifier will receive a small weighting factor,
which discounts the masses of all focal elements to the total
ignorance. This reduces the total conflict between classifiers
in the fusion process, making the total conflict in the proposed
WFMC algorithm always less than 1, thus improving the
reliability of the fusion results.

After obtaining the weight factors for each classifier, mul-
tiple classifiers can be fused using the classical (i.e. Shafer’s)
discounting technique and DS rule, and decision can be
made based on the maximum BetP probability value. For the
convenience of implementation, the brief framework of the
WFMC method is given in Fig. 1.

Fig. 1. The framework of WFMC method.

As we can see in Fig. 1, the proposed WFMC algorithm
includes four main steps:

• Step 1 (Classifiers trained): Multiple classifiers of dif-
ferent types are trained by the same training dataset for
acquiring BBAs.

• Step 2 (Classifiers evaluation): For each BBA generated
by the classifier, a reliability evaluation is performed
using three criteria and a scoring matrix is constructed.

• Step 3 (Calculation of weight factors): The BF-TOPSIS
algorithm is employed to calculate the weight factors for
each classifier based on the scoring matrix.

• Step 4 (Discounting fusion): Multiple classifiers are
combined sequentially using the classical discounting
technique and DS rule, the final decision can be made
based on the maximum BetP probability.

IV. EXPERIMENTS AND DISCUSSIONS

A. UCI Smartphone Dataset

In this article, the UCI Smartphone dataset is considered
for experimental verification. In UCI Smartphone dataset,
the experiments have been carried out with a group of 30
volunteers within an age bracket of 19-48 years. Each person
performed six activities (walking, walking upstairs, walking
downstairs, sitting, standing and laying) wearing a smartphone
on the waist. Three-axial linear acceleration and three-axial
angular velocity at a constant rate of 50Hz were captured by
using its embedded accelerometer and gyroscope. The sensor
signals (accelerometer and gyroscope) were pre-processed
by applying noise filters and then sampled in fixed-width
sliding windows of 2.56 sec and 50 percent overlap (128
readings/window). More descriptions of the UCI Smart-phone
dataset can be found in [25].

B. Example

In order to show how our WFMC method works, an example
is given to illustrate its specific procedures. Firstly, the focal
element in BFs theory can be applied to mathematically
represent human activities. Specifically θ1

∆
= walking, θ2

∆
=

walking upstairs, θ3
∆
= walking downstairs, θ4

∆
= sitting, θ5

∆
=

standing, θ6
∆
= laying. For the 480th sample data with a true

label of (standing) in the test dataset, the corresponding BBAs
generated by four classifiers are shown in Table I. According
to the principle of maximum probability, it can be seen that
SVM and RF support θ4 (sitting) while MLP and LR support
θ5 (standing), which causes trouble to make decisions. We
utilize DS rule to combine the four classifiers and the fusion
results have the maximum belief value of 0.567 to support θ4
(sitting), which is not what we want.

Next, we use WFMC algorithm for testing. The scoring
matrix is acquired based on (9), (13) and (14), as shown in
Table II. Then, we can get the positive support and negative
support degree of each classifier according to (17) and (18),
which are given in Table III and Table IV. It can be seen that
BJS(·) has the highest support for RF, while U(·) has the
highest support for SVM, and dEc

BI(·) supports both RF and
MLP. After that, the derived local BBAs of each classifier can
be also obtained using (21) shown in Table V, Table VI and
Table VII. And then by using step 2 and step 3 in BF-TOPSIS
algorithm, we can obtain distance dbest (Cj) and dworst (Cj)
of classifiers. The weight coefficients of each classifier can
be further obtained based on (27), as shown in Table VIII. It
can be seen that SVM acquires the smallest weighting factor,
while MLP gets the largest weighting factor and RF has a
similar weighting factor to MLP, which indicates that MLP
has the highest reliability for the current activity. Finally, four
classifiers are combined using DS rule (6) generalized3 for
four BBAs, and the probability values for each category of
activity are obtained based on (9), as shown in Table IX. We

3Because DS rule is associative, the four BBAs can also be fused sequen-
tially and the sequential order of DS fusion does not impact the final result.
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can see that θ5 (standing) has the maximum BetP probability
value, which is consistent with the true label.

TABLE I
BBAS OF THE 480TH TEST SAMPLE.

θ1 θ2 θ3 θ4 θ5 θ6 Result
SVM 0.0 0.0 0.0 0.844 0.156 0.0 θ4
RF 0.0 0.0 0.0 0.573 0.427 0.0 θ4

MLP 0.0 0.0 0.0 0.349 0.651 0.0 θ5
LR 0.0 0.0 0.0 0.251 0.749 0.0 θ5

DS rule 0.0 0.0 0.0 0.567 0.433 0.0 θ4

TABLE II
SCORING MATRIX OF FOUR CLASSIFIERS.

SVM RF MLP LR
BJS(·) 0.218 0.043 0.056 0.088
dEc
BI(·) 0.113 0.068 0.068 0.084
U(·) 0.628 0.984 0.935 0.8162

TABLE III
POSITIVE SUPPORT DEGREE Supη(·) OF FOUR CLASSIFIERS.

Supη(·) SVM RF MLP LR
BJS(·) 0.0 0.232 0.194 0.130
dEc
BI(·) 0.0 0.061 0.061 0.029
U(·) 0.852 0.0 0.05 0.287

TABLE IV
NEGATIVE SUPPORT DEGREE Infη(·) OF FOUR CLASSIFIERS.

Infη(·) SVM RF MLP LR
BJS(·) -0.466 0.0 -0.013 -0.077
dEc
BI(·) -0.119 0.0 0.0 -0.033
U(·) 0.0 -0.575 -0.425 -0.188

TABLE V
LOCAL BBAS OF FOUR CLASSIFIERS ON BJS(·).

SVM RF MLP LR
mBJS(·) (Cj) 0.0 1.0 0.835 0.560
mBJS(·)

(
Cj

)
1.0 0.0 0.027 0.164

mBJS(·)
(
Cj ∪ Cj

)
0.0 0.0 0.138 0.276

TABLE VI
LOCAL BBAS OF FOUR CLASSIFIERS ON dEc

BI(·).

SVM RF MLP LR
mdEc

BI
(·) (Cj) 0.0 1.0 1.0 0.470

mdEc
BI

(·)
(
Cj

)
1.0 0.0 0.0 0.273

mdEc
BI

(·)
(
Cj ∪ Cj

)
0.0 0.0 0.0 0.257

C. Measure of Performances
The classical Accuracy is applied to measure the perfor-

mance of our proposed method. The specific definitions are as
follows:

Accuracy=
1

n

n∑
i=1

TPi + TNi

TPi + TNi + FPi + FNi
(30)

TABLE VII
LOCAL BBAS OF FOUR CLASSIFIERS ON U(·).

SVM RF MLP LR
mU(·) (Cj) 1.0 0.0 0.059 0.337
mU(·)

(
Cj

)
0.0 1.0 0.740 0.327

mU(·)
(
Cj ∪ Cj

)
0.0 0.0 0.202 0.336

TABLE VIII
WEIGHTED COEFFICIENTS OF FOUR CLASSIFIERS.

dbest (Cj) dworst (Cj) ω (Cj)

SVM 0.471 0.236 0.333
RF 0.236 0.471 0.667

MLP 0.238 0.506 0.680
LR 0.334 0.461 0.580

TABLE IX
RESULTS OF THE WFMC METHOD.

θ1 θ2 θ3 θ4 θ5 θ6 Θ
Weighted

fusion 0.0 0.0 0.0 0.389 0.548 0.0 0.063

BetP (·) 0.01 0.01 0.01 0.399 0.558 0.01 0.0

where i denotes class index and n is the number of classes.
TPi, TNi, FNi and FNi are respectively True Positives, True
Negatives, False Positives and False Negatives.

D. Experimental Results and Analysis

According to the specific steps described in Fig. 1, we
first train four classifiers using 7352 samples, including a
SVM, a RF, a MLP and a LR. For the parameters of SVM,
the sigmoid function is selected as kernel function, and the
penalty parameter is set to 1.0. For the parameters of RF,
the number of trees in the forest is set to 150. For the
parameters of MLP, the number of hidden layers is set to
300. For the parameters of LR, the penalty is set to L1.
Default parameters are selected for the remaining parameters
of four classifiers. In this article, features are extracted from
raw sensor data for model training, including 11 time-domain
and 6 frequency-domain features as shown in Table II. Then
the trained four classifiers are employed to predict the testing
dataset containing 2947 samples. Furthermore, we fuse the
four classifiers using the DS rule and the proposed WFMC
algorithm, respectively, the results are shown in the Table III,
and the related confusion matrixs are shown in Fig. 2 and
Fig. 3. We can find that LR has the highest accuracy among
the individual classifier with 93.52%, which is weaker than
the DS rule approach. It indicates that individual classifier
has limited classification ability. Moreover, we can clearly
see that the performance of the proposed WFMC method is
significantly better than other mentioned method, which shows
the effectiveness of our strategy.

Compared to the approach of traditional DS rule, the pro-
posed method effectively improves the recognition accuracy.
The misclassification where sitting was incorrectly recognized
as standing is reduced from 12.4% to 8.4% and the misclassi-
fication where walking downstairs was incorrectly recognized
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TABLE X
FEATURE EXTRACTION

Domain Features

Time

Mean value, Standard deviation, Median
absolute value, Maximum, Minimum, Signal
magnitude area, Average sum of the squares,

Interquartile range, Signal entropy,
Autoregression coefficients, Correlation

Frequency
Largest frequency component, Weighted average,

Skewness, Kurtosis, Energy of a frequency
interval, Angle between two vectors

Fig. 2. Confusion matrix on UCI smartphone dataset by DS rule.

Fig. 3. Confusion matrix on UCI smartphone dataset by the WFMC method.

as walking upstairs is reduced from 6.7% to 4.3%. This is due
to the fact that the three evaluation criteria we have given are
a good measure of the conflict between multiple classifiers
and their own uncertainty, and the BF-TOPSIS algorithm
efficiently calculates the weight coefficients for each classifier,
which improves the accuracy of the multi-classifier fusion.

Furthermore, we compare with some state-of-the-art ap-
proaches in literatures to demonstrate the superiority of our
method, including Activity Graph Based Convolutional Neural
Network [26], DSmT-Based Kernel Density Estimation [6],
Sensor fusion and deep recurrent neural network-based [7],
Two-stream Transformer Network [27], Hesitant Fuzzy Belief

TABLE XI
COMPARISON OF WFMC METHOD WITH TRADITIONAL METHODS ON THE

UCI SMARTPHONE DATASET.

Method Accuracy Time (s)
SVM 91.75% 9.08
RF 92.94% 2.06

MLP 92.53% 1.95
LR 93.52% 1.97

DS rule 94.43% 26.01
WFMC 96.20% 33.10

Structure Based Fused Extreme Learning Machine [28]. As
we can see in Table IV, our method outperforms these state-
of-the-art methods in terms of accuracy.

TABLE XII
COMPARISON OF WFMC METHOD WITH STATE-OF-THE-ART METHODS

ON THE UCI SMARTPHONE DATASET.

Method Accuracy Time(s)
Activity Graph CNN-Based [26] 90.17% 11.34

DSmT-Based Kernel Density Estimation [6] 93.05% 24.46
Sensor fusion and deep RNN-based [7] 94.27% 15.95
Two-stream Transformer Network [27] 94.12% 20.19
Hesitant Fuzzy Belief Based ELM [28] 95.20% 23.78

WFMC 96.20% 33.10

In terms of time consumption, our WFMC method was
programming in Python 3.7 with a hardware of Intel Core i7-
8700 CPU at 3.20 GHz and 16 GB RAM. We use 2947 test
samples and counted the total time consumed by each method.
As can be seen, traditional machine learning algorithms have
the advantage of being fast. As our WFMC algorithm is devel-
oped based on DST, it inevitably increases the computational
burden. Nevertheless, the average elapsed time per test sample
is about 11ms, which is sufficient for practical applications.

V. CONCLUSION

In this article, we have proposed a novel weighted fusion
of multiple classifiers based on belief functions theory for
human activity recognition. Firstly, we train four classical ma-
chine learning classifiers by using time-domain and frequency-
domain features to obtain basic belief assignments of human
activities. Secondly, we evaluate the outputs of four classifiers
using three criteria and construct a scoring matrix. Thirdly, we
use the multi-criteria BF-TOPSIS algorithm to calculate the
weight coefficients of each classifier. Finally, we adopt a dis-
counting technique and DS rule to combine the four classifiers,
and make decisions thanks to the pignistic probability values.
Several experiments have been conducted based on the UCI
Smartphone dataset. The experimental results prove that our
WFMC approach can significantly improve the classification
accuracy with respect to several classical and state-of-the-art
methods.

In our future works, we will evaluate a better measure of
divergence between belief functions based on a more effective
definition of relative entropy and cross-entropy. We will also
explore the possibility to adapt our Stable Preference Ordering
Towards Ideal Solution (SPOTIS) rank reversal multi-criteria
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method for HAR instead using the BF-TOPSIS method which
is not robust to rank reversal. We will test and compare
an other decision-making technique based on belief-interval
distance, and work on how to reduce the complexity of multi-
classifier fusion for HAR in order to apply it to an online real
activity recognition system.
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Abstract—Imbalanced data is an important research for the
classification and there are multiple techniques to deal with this
problem. Each method has its own advantage for solving imbal-
anced data. To improve the classification accuracy, these strate-
gies are combined in decision level via an appropriate way to
fully take advantages of the complementary information among
different methods. Thus a new method is proposed as imbalanced
data classification based on belief functions theory (IDCBF). The
classification result generated by different strategies (i.e., hybrid-
sampling, over-sampling, or under-sampling) may have different
reliabilities for query patterns. So an appropriate quality evalua-
tion rule is created to estimate the credibility of each classification
result based on the close neighborhoods. The revised classification
results from different strategies are then combined by Dempster’s
rule to reduce the ignorant information and to generate the final
classification result. Multiple experiments are used to test the
performance of the IDCBF method, and the results show that
IDCBF can efficiently improve the classification accuracy with
respect to other related methods.

Keywords: pattern classification, belief functions, evidence

theory, imbalanced data.

I. INTRODUCTION

Traditional classification methods [1]–[3] usually assume

that each category in a dataset contains the same number of

samples and the misclassification costs are equal. However,

the data in the real world may have imbalanced distributions

[4]–[7]. A class with fewer instances is known as a positive

class or a minority class, and a class with more examples is

called a negative class or a majority class. The minority class

is more important than the majority class in the real world,

and the cost of misclassification is also higher. Nowadays, im-

balanced classification is widely used in information security

[8] and software prediction [9]. In such a way, the imbalanced

data classification has attracted extensive interest from many

researchers. This paper is an extension of our works presented

in [10] and [11].

The imbalanced data classification methods are divided

into three kinds: data preprocessing level [12]–[14], feature

selection level [15]–[17], and classification methods improve-

ment level [18], [19]. In this work, we attempt to solve

the problem at data preprocessing level, which decreases

the imbalanced ratio of the dataset via creating minority

data or deleting majority data. It focuses on under-sampling

[20], over-sampling [21] and hybrid-sampling [22] methods

to minimize the imbalanced ratio by redistributing the data.

In under-sampling technique, it deletes the majority data to

increase the classification accuracy of minority classes such

as the Nearmiss [20] method. In the over-sampling method, it

creates the minority data by the Euclidean distance to balance

the sample ratio such as Synthetic Minority Oversampling

Techniques (SMOTE) [21]. The hybrid-sampling method is

linked with under-sampling and over-sampling techniques such

as SmoteTomek [23] method.

These methods have their own advantages and drawbacks

when they are utilized to deal with the imbalanced data clas-

sification. Over-sampling methods allow to generate minority

data but they may cause the over-fitting problems. Under-

sampling techniques remove majority data which may discard

potentially important information. Hybrid-sampling algorithms

are conducted with the connection of under-sampling and

over-sampling methods. Each technique has its own particular

benefits. To better improve the classification accuracy, we will

propose a new method at decision level to combine these

three algorithms via making full use of their complementary

information.

Belief functions theory provides an essential decision-level

information fusion tool, and it is able to well combine the

uncertain information. It has been already applied in data

fusion and pattern classification fields [24] [25]. In this paper,

we want to propose a new method called imbalanced data

classification based on belief functions theory (IDCBF). The

output classification results generated by different methods

(i.e., hybrid-sampling, over-sampling, and under-sampling)

may have different qualities/reliabilities. A reliability matrix

through the neighborhood of the object is proposed to make

a refined reliability evaluation. The classification outputs by

different techniques will be cautiously revised utilizing the

reliability matrix. Finally, the corrected classification results

are combined by the evidence combination rule for making

the final decision.

The remainder of this paper is organized as follows. Section

II describes the proposed method in detail. The experimental

applications are presented to test the performance of IDCBF

in Section III. Section IV provides the conclusions.

New contribution: J. Niu, Z. Liu, Imbalanced Data Classification Based on Belief Functions Theory.
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II. IMBALANCED DATA CLASSIFICATION BASED ON BELIEF

FUNCTIONS THEORY

The three imbalanced data classification methods (hybrid-

sampling, over-sampling, and under-sampling) have their own

advantages and drawbacks. To better improve the classification

accuracy, these three methods are combined through an appro-

priate way for taking fully advantages of the complementary

information among these methods. Belief functions theory also

called as evidence theory, which provides an efficient tool to

combine the uncertain information at decision level. Thus,

the belief functions theory will be utilized here to combine

these three techniques. A new method called imbalanced data

classification based on belief functions theory (IDCBF) is pro-

posed here to revise the classifier. We can obtain three pieces

of classification results represented by evidence with three

classifiers (i.e., hybrid-sampling, over-sampling, and under-

sampling), and we will combine these classification results

under the belief functions framework efficiently.

The classification results of different data sampling method

may have different reliabilities, and it may be harmful for

the combination if the result with low reliability. So it is

essential to evaluate the reliability of each classification output

properly, and then revising the result based on the evaluation

to improve the combination performance. We propose to

estimate a refined reliability matrix to represent the qualities

of each classification result. Such reliability matrix will be

estimated based on the neighborhoods of objects in training

dataset space, and it will show the possibility of the object

misclassified to other classes. After that, the classification

results are able to revised according to this matrix in a cautious

way under belief functions framework. The three corrected

classification results are combined by belief functions theory

for predicting the class of object.

A. Basics of belief functions theory

Belief functions theory, also called evidence theory or

Dempster-Shafer Theory (DST), provides an efficient tool

to combine the uncertain information at decision level. In

belief functions theory, the mass function m, also called the

basic belief assignment (BBA) is defined over the frame of

discernment denoted by Ω = {ωi, i = 1, 2, . . . , c}, consist-

ing of c exhaustive and exclusive hypotheses (classes) ωi,

i ∈ {1, 2, . . . , c}. The power-set 2Ω is composed by all the

subsets of Ω. A BBA is a mapping m(.) from 2Ω to [0, 1]
which satisfies m(∅) = 0 and

∑

A∈2Ω

m(A) = 1, (1)

A is called a focal element of m(.) which satisfy m(A) > 0.

The BBA is called Bayesian BBA if the focal elements of BBA

are all singleton classes. In this paper, we mainly assume that

combining the classification results in form of BBAs.

Dempster’s rule (DS rule) is usually utilized to combine the

multiple classification results represented by BBA. DS rule for

the combination of two BBA as m = m1 ⊕ m2 over 2Ω is

defined by m(∅) = 0, and ∀A 6= ∅ ∈ 2Ω with the following

formula,

m = m1 ⊕m2 =

{
∑

B∩C=A
m1(B)m2(C)

1−m12(∅) , ∀A ∈ 2Ω\{∅}
0, if A = ∅

(2)

where m12(∅) ,
∑

B,C∈2Ω|B∩C=∅m1(B)m2(C) is the total

conjunctive conflicting masses. DS rule is associative, the

combination results are not influenced by the combination

order for multiple BBA.

In reality, the classification result by different classifica-

tion methods (hybrid-sampling, over-sampling, and under-

sampling) may have different reliabilities. It is essential to

evaluate the reliabilities of classification results and revised

the results based on the evaluation before combination.

B. Evidence reliability evaluation

The classification results by different classifier may have

different qualities. The under-sampling method deletes the

majority data which may change the distribution of data to

affect the classification accuracy. The over-sampling technique

generates fake instance for minority class which may also

has bad influence on classification result. The classification

result of different methods can be seen as the evidence (BBA).

The three classifiers (hybrid-sampling, over-sampling, and

under-sampling) are denoted by three classifiers as C1, C2, C3

here. The object is classified over the frame of discernment

Ω = {ω1, ω2, . . . , ωc}, and ωi represents the class label.

Assume a training set of S labelled patterns is available.

For each classifier Cl, l ∈ {1, 2, 3}, the classification result

for the training data xi, i ∈ {1, 2, . . . , S}, is denoted by

pi = {pi,1, pi,2, . . . , pi,c}, where pi,j represents the probabi-

lity which xi belongs to ωj . The true classification result of

training data is ti(ωj) = 1 and ti(ωg) = 0, ωj 6= ωg when the

true label of xi is ωj . Given a test pattern y, the classification

result of y by different classifier can be shown as a BBA

ml, l ∈ {1, 2, 3}. The final label of y is calculated by the

combination of these BBAs.

For each classifier Cl, l ∈ {1, 2, 3}, it often shows close

performance to close neighborhoods, and the close neighbors

of object in dataset can be used to evaluate the quality of

each classification result [26], [27]. The classification results of

training data are given by pi, and the true label of training data

is also known. So the bias error of classifier can be computed

by comparing the classifier output and the true label. Thus we

can estimate the quality of the classification result of the y
based on these neighbors.

How to select the suitable neighbors is an essential rule in

reliability evaluation of each classification result. If we seek

the close neighbors according to the attribute data, the selected

neighbors seem near from the object, but the classification

result of these neighbors as pi may not close to the object of

mi. These neighbors are not very useful to efficiently evaluate

the quality of the classification result.

However, if we seek the close neighbors according to the

distance of classification results. The selected neighbors with
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the similar classification results to the object may quite differ

from the object in attribute data space. If so, these neighbors

cannot provide necessary knowledge on the reliability evalua-

tion of the classification result of the object. Thus, we propose

a new way to select the neighbors of the object based on both

the attribute data and the classifier output. This ensures the

selected neighbors with close attribute and the classification

results to the object.

We seek N nearest neighbors of the object y using the

attribute information at first, and the selected ones are rep-

resented by x1, x2, . . . , xN . In these selected N neighbors,

there may exist some of them whose classification results

pi are quite different from the classification result of the

object as ml. These neighbors may not be beneficial and

even harmful for the refined reliability evaluation of mi.

Thus, we will choose K neighbors from the previous N ones

according to the distance of classification results between pi

and ml. Eventually, the classification results of the K selected

neighbors are given by p1,p2, . . . ,pK, and the corresponding

class label are known as t1, t2, . . . , tK. These K neighbors can

provide important prior knowledge for reliability evaluation.

Since these chosen neighbors are not totally similar to

the object, they cannot be completely trusted during the

reliability evaluation. The confidence factor mainly depends on

the difference between the object and the selected neighbors,

and both distance of attribute as well as the classifier output

are considered to compute the difference. The beliefs in the

classification result are divided into two parts. One will enter

the correction process based on reliability evaluation, and the

other will be preserved in the original result.

The attribute data is normalized by the general linear

normalization method as eq. (3) to make the value in [0, 1].

a∗j =
aj − amin

amax − amin

, (3)

where aj represents the attribute value in dimension j, and a∗j
is the normalized value.

The confidence factor αl, l ∈ {1, 2, 3} is computed to the

average distance between the object and these neighbors. The

neighbors are very similar to the object when their distance is

small, and the confidence on the reliability evaluation is high,

and vice versa.

αl = e−βldl , (4)

dl =
1

2K
(
1

d̄A

K
∑

k=1

dAyk +
1

d̄P

K
∑

k=1

dPyk), (5)

d̄A =
1

KS

S
∑

i=1

K
∑

k=1

dAxk, d̄P =
1

KS

S
∑

i=1

K
∑

k=1

dPxk. (6)

For each classifier Cl, βl is a parameter used to adjust the

influence of attribute distance and classifier output distance

ratio on the confidence factor. dl is the average distance be-

tween the object and its K neighbors in regard to the attribute

and the classification result. dAyk = ‖y − xk‖ represents the

Euclidean distance between the object and the K neighbors.

dPyk = ‖ml − pk‖ represents the Euclidean distance between

the classification result of the object and the K neighbors. d̄A

is the mean value of the average distance from each training

data to its K neighbors. d̄P represents the mean value of the

average distance from the classification result for the training

data to its K neighbors.

If the confidence factor is high, it means that these neighbors

are quite similar to the object, and we are likely to get

important knowledge from these neighbors to correct the

classification result of the object. In such case, a large amount

of beliefs will be allowed to enter the correction process.

However, if the confidence factor is low, it means that these

neighbors are not quite close to the object, and we are not very

confident of the reliability evaluation from these neighbors. So

most beliefs will be kept in the original classification results,

and only a few will be redistributed in the sequel.

The beliefs on the classification results of the object are

divided into two parts. One part will be redistributed in the

correction process on the basis of the reliability evaluation, and

the amount of beliefs to be redistributed mlr is determined

by eq. (7). The other is still preserved on each class as in the

original classification result, and the amount of beliefs in this

part mlo is given by eq. (8).

mlr = αlml, (7)

mlo = (1− αl)ml. (8)

C. Classification result correction

The quality of the classification result of the object will be

evaluated in a refined way based on K neighbors, and then the

classifier output will be revised according to the evaluation.

A reliability matrix Φ reflects the information about the

misclassification error of the object, and the element φij is

the probability of the object classified to ωi but the ground

truth is ωj . Now we will see how to calculate the value of φij

using these K selected neighbors.

We have the class label t of these neighbors as training data,

and the classification results pi of these neighbors by the given

classifier are also known. So we can estimate the possibility

(i.e., wji) of the object classified to ωi when it truly belongs to

ωj . It is defined by the sum of the probabilities committed to

ωi for the neighbors with the ground truth ωj (i.e., tkj = 1).

wji =
K
∑

k=1|tkj=1

e−λld̃kpk (ωi) , (9)

where d̃k = 1

2
[

dA
yk

mink dA
yk

+
dP
yk

mink dP
yk

] is the relative distance

between the object and the K neighbors. λl > 0 is a tuning

parameter to control the influence of the distance here.

In eq. (9), one can see the neighbors close to the object

will play an essential role in the calculation of wji, because

these neighbors can provide more useful prior knowledge on

classification for the object. The neighbor far from the object

has little influence on the reliability evaluation. Therefore,

our proposed method is robust to the K number of selected

neighbors to a certain extent.
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The probability of the object classified to ωi when it belongs

to ωj can be calculated by Bayesian rule,

φij =
wji

∑

g wgi

, (10)

where
∑c

i=1
φij = 1, c is the number of the classes. We can

similarly calculate the reliability matrix for each object with

the given classification method (i.e., hybrid-sampling, over-

sampling, and under-sampling).

The classification result of the object can be revised by this

matrix. The reliability matrix provides the prior knowledge

about the conditional probability of the object belonging to

one class when it is classified to another class. We can

get the belief of the object belonging to each class ωj ,

j ∈ {1, 2, . . . , c}, as follows,

m̃lr(ωj) =

c
∑

i=1

φijmlr(ωi). (11)

Thus we can obtain the evidence as

m̂l(ωj) = mlo(ωj) + m̃lr(ωj)

= (1− αl)ml(ωj) +

c
∑

i=1

φijmlr(ωi).
(12)

In our method, each piece of evidence produced by different

imbalanced data classification methods (i.e., hybrid-sampling,

over-sampling, and under-sampling) can be corrected similarly

as explained above. DS rule as eq. (2) is employed here to

combine these updated pieces of evidence to acquire the final

classification result,

mf = m1 ⊕m2 ⊕m3, (13)

where ⊕ denotes the DS combination operation.

D. Parameter Optimization

Our proposed method requires two tuning parameters: β,

and λ. The parameter β is used to determine the confidence

factor α by eq. (4). It can control the influence of distance

on the confidence factor. The bigger β, the smaller confidence

factor α. If β is too big, it will make a few beliefs entering

the correction process, which is not efficient for improving the

classification performance. If β is too small, most beliefs will

be redistributed even when the neighbors are not very close to

the object, which may increase the risk of belief redistribution.

The parameter λ is involved in calculating the reliability matrix

φ by eq. (9). Because the normalization operation is used

to calculate the reliability matrix by eq. (10), this matrix is

usually not very sensitive to the tuning of λ to some extent.

The optimal parameter is sought by minimizing an error

criteria defined by the sum of distances between combined

classifier result mf and the true label t. In Matlab™, the

function fmincon is used to deal with this optimization prob-

lem,

{β, λ} = argmin
β,λ

S
∑

i=1

∥

∥

∥
m

f
i − ti

∥

∥

∥
, β ∈ [0.5, 1.5], λ > 0,

(14)

where ‖.‖ is the Euclidean distance, and S is the number of

the training dataset. m
f
i is the result of combining evidence

concerning the ith training data, and ti = [ti1, ti2, . . . , tic].
tij = 1 means the true label of xi is ωj .

III. EXPERIMENTAL APPLICATION

In this section, we will test the performance of our proposed

IDCBF method with some benchmark datasets by comparing

with other related imbalanced data classification methods

and information fusion methods such as Smote, Nearmiss,

SmoteTomek, and averaging fusion (AF) [28].

A. Base classifier

In our experiments, the Random Forest (RF) [29], and the

K-nearest neighbors (KNN) [30], [31] are employed as base

classifiers to classify the imbalanced datasets. The RF is an

ensemble tool to build a decision tree. It creates multiple trees

and merges them to obtain a better prediction result through

maximum voting from a panel of independent judges. The

KNN predicts the result by majority rule with the major class

of its k most similar training data in the feature space. In the

KNN, the weight of distance is set to “distance”. In all these

base classifiers, the optimal parameter values (the number of

trees, the maximum number of features, the minimum sample

leaf size in RF, the distance in KNN) can be determined by

grid search on the training data.

B. Benchmark datasets

Some imbalanced datasets are selected from UCI1 and

KEEL2 dataset repository. The basic information of these data

sets, including instance, attribute, class, majority instances,

minority instances and imbalanced ratio, are shown in Table

I. The imbalanced ratio is the ratio of the sample size of the

majority data and that of the minority data, which is calculated

as
Nmaj

Nmin
. Different from other existing binary class imbalanced

data handling methods, this work contains multi-class data sets

with several classes as high as ten classes in the case of the

Penbased dataset. Classes that include only one example have

been removed from the datasets because the Smote method

cannot generate instances in only one data.

C. Performance evaluation metrics

We evaluate the model sensitivity towards the minority

class using the Area under Curve (AUC) [32] method. In our

experiment, we use the one-vs-rest strategy [33], which is also

widely applied in multi-classification problem. This method

computes the average AUC values for each class against the

rest of the other classes. Each class generates one AUC value,

and the weight of each AUC is computed by the reference

class’s prevalence in the data set. The large AUC means that

the classifier has high accuracy.

1http://archive.ics.uci.edu/ml
2https://sci2s.ugr.es/keel/datasets.php
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Table I
IMBALANCED DATASET DESCRIPTION OF THE UCI AND KEEL.

Data Instance Attribute Class Majority instances Minority instances Imbalanced ratio

Abalone 2560 8 3 1000 200 5
Dermatology 366 34 6 77 14 5.55

Ecoli 336 7 8 100 7 71.5
Genus 2880 2 3 2000 100 20

Pageblocks0 5472 10 2 3932 438 8.79
Penbased 1100 16 10 80 75 1.06

Pima 768 8 2 400 215 1.87
Shuttle 2175 9 4 1200 9 853
Thyroid 720 21 3 533 13 36.94

Yeast 1484 8 7 400 20 23.15
Yeast4 1484 8 2 1150 40 28.1
Yeast5 1484 8 2 971 29 32.73

Table II
THE AUC VALUES USING RF CLASSIFIER.

Datasets Original Smote Nearmiss Smotetomek Voting average IDCBF

Abalone 66.96 76.48 70.32 76.65 66.51 77.05 77.71
Dermatology 86.52 95.34 87.94 96.84 94.41 96.19 98.08

Ecoli 85.14 97.31 93.67 97.01 92.07 96.47 97.75

Genus 78.61 89.02 80.67 87.28 84.06 87.43 88.54

Pageblocks0 94.48 89.69 98.93 98.76 94.79 98.00 98.96
Penbased 91.07 96.55 91.26 96.17 96.23 95.66 99.14

Pima 71.24 81.79 84.24 83.69 75.84 84.16 84.34

Shuttle 88.53 96.99 89.87 97.02 93.54 97.21 99.99
Thyroid 99.01 99.37 98.96 99.37 98.43 98.38 99.01

Yeast 60.21 91.07 86.15 90.63 76.97 90.65 91.16

Yeast4 88.96 87.64 72.64 88.64 66.79 86.05 87.73
Yeast5 97.55 95.11 89.56 98.99 86.02 98.40 99.41

Average 84.02 91.36 87.01 92.58 85.47 92.13 93.48

Table III
THE AUC VALUES USING KNN CLASSIFIER.

Datasets Original Smote Nearmiss Smotetomek Voting average IDCBF

Abalone 59.41 68.12 65.65 71.22 71.47 70.29 69.62
Dermatology 57.42 60.37 64.77 65.35 57.27 68.08 68.67

Ecoli 81.19 93.31 93.35 93.29 90.38 95.09 95.41

Genus 43.57 51.32 54.32 50.67 49.67 53.69 55.69

Pageblocks0 90.09 93.36 92.38 95.81 90.89 95.33 97.12

Penbased 96.61 99.15 98.63 99.15 98.11 99.16 99.19
Pima 66.67 72.54 75.63 74.81 69.07 71.26 75.84

Shuttle 89.37 97.78 86.64 98.58 96.69 98.99 99.96

Thyroid 86.11 93.75 62.18 91.38 80.21 93.96 95.38

Yeast 80.53 84.42 84.56 87.42 76.78 89.62 89.61
Yeast4 62.93 66.06 79.54 81.86 78.46 82.15 86.71

Yeast5 79.46 86.02 96.84 92.51 86.02 98.83 98.91

Average 74.44 80.51 79.54 83.50 78.51 84.70 86.00

D. Experimental results and evaluation

The AUC values of imbalanced datasets using different

classifiers are summarized in Tables II-III. The maximum

AUC value is marked in boldface type. Imbalanced data clas-

sification based on belief functions theory (IDCBF) method

generally produces higher accuracy than single data sampling

methods. This indicates that the complementary information

among different techniques is very useful for improving clas-

sification performance. We can also find that the proposed

IDCBF method typically yields the highest accuracy compar-

ing with the other combination methods. In IDCBF method,

the reliability is evaluated based on the close neighbors in a

refined way, and then the classifier output is cautiously revised

to improve the quality. Moreover, the involved parameter in

IDCBF is automatically optimized by minimizing an error

criteria. Thus, IDCBF is able to produce the best classification

accuracy in general.

IV. CONCLUSION

In this paper, we have proposed a new method for combina-

tion of classifiers to solve the imbalanced data classification.

Imbalanced data classification based on belief functions the-

ory (IDCBF) method is able to take advantage of essential

complementary information among different data sampling

techniques to improve classification performance. Multiple

imbalanced datasets are used to validate the performance of

the proposed method. The experimental results show that
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the IDCBF method is able to improve classification result

comparing with other data sampling techniques and fusion

methods.
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Abstract—The self-driving cars face important challenges in
the applications of perception tasks. The driving surrounding
areas are often chaotic and the conditions of the weather vary
significantly. In terms of sensors, the capacities have increased,
raising interest in big data fields such as artificial intelligence.
Alongside, fusion techniques allow accurate coupling of informa-
tion from different sources. Neural networks have proved good
performance, but limitations in complex situations still occur.
In the decision-making world, evidence theory increases the
robustness of decisions and handles conflict management. In this
research, a deep learning architecture based on a camera-lidar
cross-fusion technique is proposed to achieve semantic segmenta-
tion capabilities. The model is coupled with evidence theory and
serves for semantic segmentation tasks. The architecture has the
decision-making part relying on the decision belief interval and
the information that can be represented through belief functions.
The evidence theory is versatile and contributes to understand
better imprecise data and to achieve more efficient predictions.
The KITTI dataset is used in this work. The results highlight the
interest in integrating belief theory functions into deep learning
architecture fusing information from two heterogeneous sensors.

Keywords: intelligent vehicles, environment perception, evi-
dence theory, belief functions, deep learning.

I. INTRODUCTION

A. Self-driving cars

Autonomous cars grasp big improvements thanks to ap-
proaches based on neural networks. The goal of self-driving
cars is to offer safe driving and efficiency, minimizing the rou-
tine tasks of humans and putting forward better transportation.
To facilitate quicker levels of autonomy, the cars are equipped
with various sensors like cameras, point cloud devices, and
more. In this way, perception can benefit from multi-modal
sensor fusion from different sources of information to increase
the robustness of the decisions. Alongside with, self-driving
cars rely on both reference generation (path and trajectory
planning) and control theory techniques [1]. The intelligent
vehicles provide therefore localization and environment un-
derstanding about the object and traffic participants, so that,
the navigable area can be projected and followed using control
algorithms.

B. Motivation

This paper focuses on the first hierarchical step of au-
tonomous driving: perception, and particularly surrounding
environment perception. In scene analysis, there are various
particularities to be considered. For example, on the path
planning side, the interval distance between a car and a
sidewalk has a different sensibility than the interval distance
between two cars. In the risk analysis state of the art, rules
for safe minimal distance are referred to. These protocols
differ with respect to the situation, for instance, at least 1
meter distance between two cars longitudinally on the lane is
required. However, there is no specified rule related to the tol-
erated lateral distance between a car and a sidewalk, where the
environment is prone to involve pedestrians, or just the interval
between two cars, where there is a risk of crashing as well
[2]. Within these situations, imprecise information from the
perception system could result in inaccurate control actions.
Consequently, decision-making approaches that can represent
efficient information are required, so that, the perception and
path-planning control chain are well-assured.

Neural networks approaches, particularly prominent deep
learning methods [3]–[5] have been slightly designed for
environment perception features to bring value in detection,
classification, and segmentation tasks. Besides neural net-
works, fusion methods broadcast meaningful information from
various sensors to empower the robustness of decisions.

The benefits introduced by deep learning facilitate percep-
tion tasks in the environment and help understand the self-
driving car needs. However, since the field is sensitive to
the quality of decisions, confidence in decision-making is
required. A relevant way to both represent and trust infor-
mation is to use the belief theory. This approach is a well-
known framework utilized in the world of probabilities and
information reasoning.

C. Belief functions theory

The theory of evidence, also known as Belief Functions
(BF) theory or Dempster-Shafer Theory (DST), was proposed
by Shafer in 1976 [6] based on previous works of Dempster
[7]. It represents evidence elements (i.e. beliefs) for uncertain
models. The evidence theory key features are the following:
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generality (it extends both propositional logic and probabilistic
reasoning), operationality (works with elementary pieces of
evidence coupled with Dempster-Shafer’s rule1 of combina-
tion), and scalability (evidential reasoning can be addressed to
more complicated problems in terms of decisions and uncer-
tainties from different sources of information), making it richer
than the theory of probabilities for dealing with epistemic
uncertainty. In autonomous driving tasks, such as obstacle
avoidance, BF proves to deliver accurate performances, for
example, the occupancy grid map of a LiDAR sensor by
expressing conflict in more representative ways [8]. In the
scope of pedestrian detector tasks, evidential combination rules
fetched considerable performances over the Bayesian approach
[9].

Moreover, in multi-model perception, evidential theory han-
dles missing information, imprecision, and ignorance. In [10],
KITTI semantic segmentation images from various sensors,
cameras, and different layers of LiDAR are embodied together,
which allows for enlarging the object classes or the number
of sensors. The approach seeks to improve performances for
a better understanding of the drivable area.

In the deep-learning field, Cappelier et al. [11] propose
a neural network architecture based on MLP (Multi-Layer
Perceptron) to classify arbitrary LiDAR objects for perception.
Their model replaces the probabilistic output with an evi-
dential inference method, inspired by the generalized logistic
classifier of Denœux [12].

Thus, frameworks based on belief functions evince promis-
ing results in perception systems for both road segmentation
and multi-object detection tasks, which are the main topics
addressed in this work. The main goal is then to provide an
evidential deep-learning model that fuses information from
different sensors to achieve autonomous driving capabilities.

The approaches based on belief functions delivered sig-
nificant improvements for different axes of research such as
decision-making, conflict management, and fusion [13]. The
partial or total ignorance produced by the evidence theory are
very appealing to model uncertainties. However, combining
efficiently several independent belief functions and agreeing
on a final decision from a belief function are challenging tasks,
especially the decision-making under uncertainties for defense
and security applications, like autonomous vehicles. In [14],
Dezert et al. proposed a new decision-making method based
on a belief interval distance that helps the decision-making
process under uncertainty. This decision-making approach
provides a judgment by selecting the best focal element (i.e.
object class) for which the minimal distance with respect to
the piece of evidence under concern is obtained. This decision-
making approach also provides the calculation of a quality (or
confidence factor) characterizing the quality of decision (i.e.
the final judgment) for a future action.

II. BASICS OF BELIEF FUNCTIONS

Evidence theory is a formalism for reasoning and making a
decision with uncertainty. The classical approach of evidence

1also referred as DS rule in the literature.

theory is based on Dempster-Shafer rule of combination. A
more detailed discussion can be found in [6], [15], which is
adopted in this work.

Let Θ = {θ1, θ2, θ3, ..., θn} be a finite set of mutually
exclusive elements, called the frame of discernment (FoD),
and the mutually exclusive elements of single cardinality are
called singletons. A basic belief assignment (BBA), or mass
function m(·), is a mapping m : 2Θ → [0, 1] such that:

m(∅) = 0 (1)∑
X⊆Θ

m(X) = 1 (2)

The quantity m(X), known as the mass of element (i.e. subset)
X of Θ, measures the belief that one commits exactly to X;
and (1) indicates closed world assumption. The subset X is
called a focal element of m(·) if and only if m(X) > 0.

Given a BBA m(·), two concepts can be defined, a belief
function (Bel) and a plausibility function (Pl) using the
following expressions:

Bel(X) =
∑
Y⊆X

m(Y ) (3)

Pl(X) =
∑

Y ∩X ̸=∅

m(Y ) = 1−Bel(X̄) (4)

Bel(X) can be interpreted as the degree of total support to
X , whereas Pl(X) is the degree one fails to doubt X .

If the BBA m(·) is only focalized on the whole set Θ, i.e.
m(Θ) = 1, the BBA m(·) is called the vacuous BBA, which
models the total ignorance.

In DST, two BBAs m1 and m2 representing independent
pieces of evidence are combined by Dempster’s rule defined
by:

(m1 ⊕m2)(X) =
1

1−K

∑
Y ∩Z=X

m1(Y )m2(Z) (5)

For all X ⊆ Θ, X ̸= ∅, and (m1 ⊕m2)(∅) = 0. The degree
of conflict between the two BBAs, denoted by K, is given by:

K ≜
∑

Y ∩Z=∅

m1(Y )m2(Z) (6)

This DS rule of combination can be easily generalized for
the combination of more than two sources of evidence. DS
rule is commutative and associative which is very appealing
for its implementation because the fusion of several sources
can be done sequentially and the sequential fusion order does
not matter. In the vehicle perception applications developed
so far in the IRIMAS lab, the DS rule produces generally
good outcomes, but because the DS rule is not always exempt
from leading to some decision issues due to its dictatorial
behavior in some cases [16], [17], alternative research works
and comparative analysis with other fusion rules are also under
consideration.
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Figure 1: Evidential Lite-CF Architecture: Semantic Segmentation.

III. PROPOSED METHOD FOR AUTOMATIC PERCEPTION

A. Evidential Cross-Fusion Architecture

In a previous work, an innovative camera-lidar fusion
method known as Lite Cross-fusion was proposed, featuring
a fully convolutional neural network for road recognition as
detailed in [18]. This cross-fusion architecture exhibited sig-
nificant results compared with early or late fusion approaches.
Consequently, the network was subsequently integrated in
another work [19], ensuing a reduction in the computational
complexity, by 15%. The architecture is founded upon an
encoder-decoder model that leverages dilated convolution for
strengthening image resolution conservation. This architecture
represents the baseline of this work in terms of neural networks
and multimodal fusion. Regarding evidence theory, [11], [20]
propose the evidential classifier for classification tasks. The
decision-making approach is based on the distance to pro-

totypes method as a substitute for the conventional softmax
decision layer.

Taking into account the two previous methods, specifically
the cross-fusion road detection (Lite-CF) and the architecture
based on evidential classifiers, this work, introduces a combi-
nation of these two methodologies. The resulting architecture,
referred to as Lite CF-Evi, combines the strengths of the
two frameworks designed for semantic segmentation tasks. An
overview of the complete architecture for evidential Lite-CF
is illustrated in Fig. 1.

The standard neural network architecture produces prob-
ability distributions from logits using a softmax layer. The
evidential Lite-CF produces mass functions (BBAs) rather than
probabilities to represent the prediction of imprecise data. It
has an encoder-decoder-based network, evidential formulation
layer, and a decision-making unit. The encoding section has
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two processing pipelines of 13 layers each, one for feeding
LiDAR input and the other for the camera frames. At each
layer level, information from one modality is combined with
the corresponding layer from the other modality through a
trainable weighted sum operation (∗bi and ∗ai respectively,
where i is the layer number). These fusion weights are
adaptable, allowing the fusion’s position and its extent to be
fixed by the data.

Once the LiDAR and camera inputs are transformed into
Basic Belief Assignments (BBAs) within the evidential for-
mulation layer, decisions can be rendered concerning specific
elements within the power set2 denoted by 2Θ. In the seman-
tic segmentation task, this power set encompasses elements
such as “road”, “vehicle”, and “background” elements in the
probabilistic version, and additionally “unknown” area in the
evidential formulation. Consequently, the evidential approach
enables having an uncertain prediction represented by the
disjunction of single classes and interpreted as an “unknown”
class.

B. Decision-Making. Distance to Prototypes

The evidential formulation layer uses as its input, the feature
maps generated by the decoding section. When the decoder
reaches its maximum resolution, BBAs are generated by
computing the distances between their corresponding feature
maps (i.e., L18 in Fig. 1) and the propagated prototypes, which
are learned automatically. The technique is called distance to
prototypes. An illustration of the approach is shown in Fig. 2.

Figure 2: Distance to Protoypes [21].

The distance to prototypes methodology can be described
in three steps procedure as it follows (more details in [21]):

Step 1: Distance to prototype: Let x be a feature vector
representing features of a pixel to be classified
possibly as class1 (θ1) or class2 (θ2) (i.e., the

2The power set of Θ is the set of all the subsets of Θ, the empty set ∅ and
Θ included.

FoD Θ = {θ1, θ2}). The Euclidean distance di is
determined between x and each prototype pi:

di = ∥x− pi∥ i = 1, · · · , n. (7)

Step 2: Establish the correspondence of mass functions to
prototypes and their interference: Each prototype
pi has a degree of membership ui

j to each class
θj , with a constraint ui

1 + ui
2 = 1. Using the class

membership ui
j and the distance di, a BBA mi is

constructed as:

mi({θj}) = αiui
jϕ

i(di), j = 1, 2

mi(Θ) = 1− αiϕi(di),
(8)

ensuring that the cumulative mass sum equals 1, as
indicated in the subsequent formula:∑

X⊆Ω

mi(X) =
2∑

j=1

mi ({θj}) +mi(Θ) = 1 (9)

where, in the expression (8), 0 < αi < 1, and the
decreasing function ϕi are defined as:

ϕi(di) = exp
(
−γi(di)2

)
, γi > 0 (10)

Step 3: Combination: The BBAs from step 2 are combined
using Dempster’s rule (5). The resulting combined
BBA represents the evidence to make a decision on
the pixel class.

The parameters associated with the prototype pi (i.e., αi, ui
j ,

and γi), are incorporated into the evidential deep learning-
based architectures as weighting factors.

However, the learnable weights are not inherently restricted.
Therefore, they are redefined and implemented in terms of
some real number valued variables ηi, ξi, and βi

j :

γi = (ηi)2 (11)

αi =
1

1 + exp{−ξi}
(12)

ui
j =

(βi
j)

2 + ϵ
2∑

k=1

((βi
k)

2 + ϵ)

(13)

Equation (13) is slightly modified from the expression given
in [21]. To avoid the membership values ui

j from becoming
zero, a small positive term denoted as ϵ is introduced. This
precautionary measure handles conflict limitations that could
occur in Dempster’s total conflict (i.e. to prevent the case with
K = 1).

Following the previous steps and the Fig. 2, a simple case
with only two classes can be exemplified. A frame of discern-
ment such as the following FoD: Θ = {R, V } (where R stands
for road, V for vehicle) is considered. Thus, for feature vector
x the neural network model outputs some pixel characteristic
values corresponding to road and vehicle. Firstly in level 1
(L1) distances to prototypes (pi) are calculated. In this case,
the number of prototypes has to be defined and is tunable.
Moreover, it influences directly the model’s complexity and
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Figure 3: Evidential Formulation - Decision making using BBAs.

it has to be at least equal to the number of classes. The
more prototypes are injected, the more complex the model
is. Continuously, the example with 3 steps approaches is
reproduced as:

• Step 1 (L1): Distance to prototype
p1 = [−1.5 − 2.5 − 3.5]T , γ1 = 0.1, α1 = 0.5 and
p2 = [2.3 1.5 3.1]T , γ2 = 0.1, α2 = 0.5
Then expressing equation (7), the following distances are
computed:
d1 = 5.10 and d2 = 3.70
Continuously, with respect to expression (10), the activa-
tions si have the following values:
s1 = 0.04 and s2 = 0.13

Once the Euclidean distances based on prototypes and their
activations are set, within the level 2, mass functions are
constructed:

• Step 2 (L2): BBA construction
Classes {R, V} have the membership degrees (13) ui:
u1 = [0.8 0.2]T and u2 = [0.3 0.7]T

The BBAs mi are computed following expression (8):
m1 : m1(R) = 0.03, m1(V ) = 0.01, m1(Θ) = 0.96
m2 : m2(R) = 0.04, m2(V ) = 0.09, m2(Θ) = 0.87

Continuously, for the last level, the mass functions from the
previous step are calculated with DS rule (5):

• Step 3 (L3): DS combination of m1 with m2. Mass
function values after computing the conjunctive rule:
m(R) = 0.0657, m(V ) = 0.096, m(Θ) = 0.8352,
m(∅) = 0.0031(K)

Finally, the BBAs after Shafer’s normalization by 1 −
K, mDS(·) = m(·)/(1−K) are:
mDS(R) = 0.0659, mDS(V ) = 0.0963, mDS(Θ) =
0.8378, mDS(∅) = 0, and their total sum is 1.

In this case, the conflict is very low, the highest value of
the mass function is the vacuous m(Θ), meaning that model
does not have enough evidence to support road or vehicle.

A scheme that illustrates how the Distance to Prototypes
approach works is presented in Fig. 3. Since this illustration
represents the perception application, it shows two options for
the decision-making, both evidential and probabilistic for a
semantic segmentation task with three classes: road, vehicle,
and background.

The probabilistic approach relies on Bayesian formulation
for decision-making and is based on the classical pignistic
transformation. The evidential formulation part is based on
interval dominance for the decision-making before the final
prediction, but it can be substituted with another method such
as Jousselme’s distance [22] or the Decision based on Belief
Interval (dBI) method [14]. The latter one represents the main
baseline for the contribution of this work. The method is
implemented and applied to semantic segmentation tasks to
help the decision-making part of the cross-fused evidential
deep learning model.

C. Decision based on Belief Interval

Han et al. present different decision-making using belief
functions in [23], and they propose an Euclidean belief interval
distance dBI(m1,m2) between two mass functions m1(·) and
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X ∈ 2Θ m(R) m(V ) m3(R ∪ V ) m(B) m(R ∪B) m(V ∪B) m(R ∪ V ∪B)
m(·) 0.83 0.17 0 0 0 0 0

dBI (mi,mX) 0.1700 0.8300 0.4384 0.9268 0.5265 0.779 0.5991
dmin
BI (mi,mX) 0.1700 - - - - - -

q(X̂) 0.9118 0.5692 0 0.5190 0 0 0

Table I: Example decision belief interval and quality of decision q(X̂).

m2(·) represented on the power set for the aforementioned
FoD Θ = {θ1, θ2, θ3, ..., θn}. This dBI distance is defined by:

dBI (m1,m2) ≜
√
Nc ·

∑
X∈2Θ

d2W (BI1(X), BI2(X)) (14)

Nc = 1/2n−1 represents a normalization factor to have
dBI (m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X)) is
the Wasserstein’s distance, [24], between belief intervals
BI1(X) ≜ [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) ≜
[Bel2(X), P l2(X)] = [a2, b2].

Wasserstein’s distance is concisely noted as:

dW = dW ([a1, b1] , [a2, b2]) (15)

and it explicitly has the following expression:

dW ≜

√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2
(16)

Continuously, mX represents the categorical BBA, that
contains only X as the focal element, while X̂ is the final
decision. The final decision is characterized by the minimum
between the mass functions m(·) and mX , X ∈ 2⊖ \{∅}. X̂
is defined as:

X̂ = arg min
X∈2⊖\{∅}

dBI (m,mX) (17)

where dBI (m,mX) is calculated according to expression
(14). Here, m(·) represents the mass functions under consider-
ation, and mX(·) is the categorical BBA focused on a chosen
focal element X .

The decision-making methodology is scalable implying the
advantages of the model to consider a decision among all the
power-set 2Θ possibilities. Consequently, decision space can
encapsulate more elements than the singletons of the frame
of discernment, including unions (i.e. disjunctions) of these
(singleton1∪ singleton2). More details can be found in [14].
Alongside the final decision X̂ , the method proposed in [14]
is also able to assess how good (or trustable) the decision X̂
is, considering other alternatives. Thus, the quality indicator
(confidence factor) q(X̂) is defined by:

q(X̂) ≜ 1−
dBI

(
m,mX̂

)∑
X∈2Θ\{∅} dBI (m,mX)

(18)

Undoubtedly, the value of the quality indicator q(X̂) will
be bigger (and close to 1) when the model is more confident
in making the decision X̂ .

Once the BBAs representing the pieces of evidence in the
corresponding pixels are evaluated, a final task remains to

decide the classes from pixels. Therefore, given the previous
statement (17) as presented in [14], the decision rule can be
expressed by three classes for the semantic segmentation task
as following:

Case i) The decision is constrained to singletons: The pos-
sible judgment elements are θ1 (road), θ2 (vehicle)
and θ3 (background). In this situation, the expres-
sion (17) becomes:

X̂ = arg min
X∈{R,V,B}

dBI(m,mX) (19)

Case ii) The decision is not constrained: It might be in-
teresting to allow the assignment of ambiguous
pixels to imprecise classes like Θ. This can reduce
classification errors by avoiding decisions that have
more of an arbitrary nature.

Recalling the example of distance to prototypes approach
with two classes, road, and vehicle, here an example with
the following FoD: Θ = {R, V,B} is presented. These three
elements are representative of the goal of this work. Therefore,
R stands for road, V for vehicle, B for background, and the
decision space includes all singletons, and their disjunctions,
that is 2Θ \{∅} = {R, V,R∪V,B,R∪B, V ∪B,R∪V ∪B}
which appears in formula (17).

In this case, and considering Fig. 3, the decision-based on
belief interval distance method is positioned in the middle
phase, within the BBA construction and it represents the final
decision for the prediction. The dBI approach reflects another
way of combining efficiently the mass functions to handle
uncertain predictions.

For the given example, both the decision based on interval
and its quality indicator are explained and highlighted in the
above Table I. In this case, the mass functions have assigned
the following values:

• road: m(R) = 0.83, vehicle: m(V ) = 0.17
• background: m(B) = 0
• unions of classes:

– road-vehicle: m(R ∪ V ) = 0
– road-background: m(R ∪B) = 0
– vehicle-background: m(V ∪B) = 0
– road-vehicle-background: m(R ∪ V ∪B) = 0.

Continuously, the distances based on the dBI method are
calculated. As expected in this situation, the distance corre-
sponding to the element R (road) is minimal (0.17), because
R has the highest value of the mass function. Given this, the
minimal distance will follow as the final decision. Quality
indicators are computed accordingly. As highlighted in the
table I, the q(X̂) values show that the model is pretty confident
when considering the element R, with a confidence of 91.18%.
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In the realm of decision-making methodology, it is impor-
tant to get accurate judgments, and to assess how efficient
and trustable is the decision made for the application under
concern.

Perception systems based on neural networks are more
sensitive in terms of making a decision and encountering
uncertainties, therefore confidence in a judgment is crucial.
Correspondingly, this work highlights perception applications
using multi-sensors, fusion, and neural networks, evidence
theory-based that provides decision-making features and as-
sesses the quality of decisions.

IV. EXPERIMENTAL RESULTS

This section presents the dataset used for the applica-
tion and the obtained results. The Lite-CF-Evi architecture
is assessed for scene segmentation tasks against the KITTI
semantic segmentation database. Firstly the probabilistic and
evidential results are exemplified. Alternatively, the decision
belief interval and quality indicators are computed for a set of
frames.

A. Dataset

The semantic KITTI dataset has originally only 200 camera
images. The dataset is similar to KITTI Stereo and KITTI Flow
2012/2015 datasets. Since the KITTI semantic has no LiDAR
frames (like the road dataset for instance), the corresponding
3D point-cloud points of the existing camera frames have to
be identified in the big original KITTI raw dataset [25], which
contains the data for all tasks. Hence, for 127 out of the
200 camera images, LiDAR frames have been successfully
projected and up-sampled to create dense depth images. A
3D LiDAR point x is mapped into a point y in the camera
plane according to the KITTI projection P , rectification R and
translation T matrices:

y = P R T x (20)

As the projected LiDAR scan is sparse, up-sampling is
employed to generate a dense depth map, as depicted in Fig. 4.
The up-sampling process is implemented following the method
outlined in [19] and [26].

B. Semantic Segmentation

After the up-sampling process, the newly constructed dense
depth images from LiDAR are integrated into the Lite-CF-
Evi model in parallel with the camera images to feed the two
pipeline inputs of the architecture.

Concerning the ground truth, the masks are simplified to 3
classes: road (magenta), vehicle (dark blue), and background
(blue), according to the original annotation. The road class is
preserved, however, the vehicle class incorporates annotations
such as car, truck, and bus of the original ground truth. In
turn, the background class encapsulates all the other classes,
except for the above-mentioned ones.

Fig. 5a shows an illustration with an example of the original
ground truth, while Fig. 5b describes the simplified ground
truth.

(a) LiDAR projection.

(b) LiDAR up-sampling.

Figure 4: LiDAR pre-processing.

(a) Original ground truth.

(b) Simplified ground truth, 3 classes: road, vehicle, background.

Figure 5: Dataset pre-processing.

The dataset consists of 127 images: 114 for training and 13
for validation. This method has been exclusively assessed us-
ing the specially reconstructed KITTI semantic dataset, which
includes the added LiDAR frames for the evidential cross-
fusion architecture. To the best of the author’s knowledge,
this dataset has not yet been examined by any other methods,
unless their own work, since the point clouds were identified
in the raw dataset and included. The ground-truth masks are
one-hot encoded and class weight is applied to address the
unbalanced data. Consecutively, the model is trained for 500
epochs using mean squared error loss and Adam optimizer.

To measure the performances, the model is evaluated using
the intersection-over-union metric, denoted as IoU, in accor-
dance with the PASCAL VOC benchmark [27]:

IoU =
TP

TP + FP + FN
(21)

with TP, FP, and FN, respectively, true positive, false positive,
and false negative.
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The Lite-CF-Evi is evaluated for 3 classes in a probabilis-
tic manner. It can be observed that the global mean IoU ,
92.707%, in the evidential architecture, is higher than 92.384%
for the probabilistic model. Individually over each class, the
evidential model outperforms the probabilistic one (Table II),
and visually the results are better for the Lite-Cf Evi.

IoU
Arch. Probab. Lite-CF Lite-CF Evi.

mean IoU 92.384% 92.707%
mean IoUroad 92.713% 93.163%
mean IoUvehicle 87.118% 87.446%
mean IoUbackground 97.322% 97.513%

Table II: Mean Intersection over Union/class.

One interesting part of the evidential formulation is that the
decision-making can be adapted to derive from a fixed number
of classes (equal to the number of singletons) to the maximum
number of acts, |2Θ| − 1. However, often the desired decision
elements are considered only the singletons and the uncertain
predictions.

The image of Fig. 6a represents the predicted image with
the probabilistic model. The image of Fig. 6b represents the
predicted image with the evidential model (Lite-CF-Evi). It
can be observed that classes road, vehicle, and background
exhibit slightly higher accuracy in their predictions, with road
class being notably precise. Furthermore, an additional class,
denoted as the “unknown” (depicted in white) area, effectively
captures pixels associated with uncertain predictions. This
approach prevents the misclassification of uncertain pixels into
incorrect categories, a scenario that may arise when utilizing
a probabilistic approach.

The “unknown” primarily manifests itself at the class
boundaries, where the model frequently provides errors in its
predictions. Likewise, pixels from distant objects often lack
sufficient information, suggesting that the model encounters
challenges in classifying them due to data uncertainty. Con-
sequently, these pixels are classified as “unknown”, offering
improved comprehension and demonstrating the effectiveness
of evidential reasoning in managing uncertainties.

The image of Fig. 6c represents an illustration, where the
so-called partial ignorance is highlighted. That means that the
previous class “unknown” is now distributed into the unions.
This occurs as a result of changing the decision space.

In the previous examples, results with predictions have been
shown, when considering different decision space elements.

For the considered perception task in the world of au-
tonomous driving, the frame of discernment containing road
(R), vehicle (V ) and background (B) is considered:

• FoD = {R, V,B}
while the decision space is represented by more elements,
singletons, or the disjunctions (i.e. unions) of singletons:

• decision = {R, V,R ∪ V,B,R ∪B, V ∪B,R ∪ V ∪B}
Therefore, the scalability of Dempster-Shafer’s theory is

highlighted: the model is flexible, such that, by changing the
value of decision elements, it directly influences the number
of predicted classes. In this place, classes are represented by

(a) Probabilistic Prediction Lite-CF: road, vehicle, background.

(b) Evidential Prediction with Lite-CF-Evi: road, vehicle, background,
unknown (white).

(c) Partial ignorance: singletons + unions (road ∪ background (green), car ∪
background (red), etc).

Figure 6: Semantic segmentation results.

elements of the non-zero power-set elements. Similar with
the case of only one additional class unknown, in the case
of unions, last image from the group of three, respectively
Fig. 6c, the disjunctions occur preponderantly in the regions
with boundaries between classes, where the model is more
vulnerable to wrong predictions, which makes sense.

C. Quality of Decision

To evaluate the decision-making part, the quality of the
decision method is pursued over the predictions. In this way,
the confidence in making decisions can be evaluated both
for each pixel of the image (each decision that has been
effectuated for defining the prediction), similarly as it can be
computed like the average decision for each class (e.g. the
average quality of decision for the road class).

The quality indicator recalled in equation (18) is used.
Thus, X̂ represents the final decision and q(X̂) the quality
indicator (whenever the model decides which class should be
predicted, based on the minimal belief interval distance as
in expression (14). After applying the mathematical formulas,
corresponding to the previously mentioned expressions, two
aspects are illustrated in the next images. Two situations are
considered: the best solution with the minimal distance and
the second best result, with the second smallest distance. One
is the quality decision indicator for each pixel, respectively,
the second shows the average quality indicator for each class.

Therefore, the first image, Fig. 7a shows the q(X̂) for each
decision of the model, basically how accurate the judgment
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(a) q(X̂) for each pixel.

(b) Average q(X̂) for each class.

Figure 7: Quality Indicator. 1st best solution.

is for each pixel. Most of these values are close to 1, which
represents high confidence in decision-making. In this case,
the colorbar represents how confident the model is, the more
green it is, the more sure about prediction is, and the opposite
when it is red. The edges between classes and the boundaries
are more prone to be sensitive when considering a decision.
Therefore, the values for these decisions are slightly around
0.94 between green and red. The second image, Fig. 7b, is
realized in the same way, but it does illustrate the average
quality indicator for each class. Hence, the judgment parameter
for this distribution is reduced to 7 values for each element
of the decision space, and this judgment value represents the
quality indicator of each class.

Similar to the previous images, a group of two other
predictions are assessed against quality indicators. Likewise
in the first set, Fig. 8a stands for the quality of each decision
of the model, while the second image, Fig. 8b represents the
average quality indicator for the second best solution.

The range of confidence has slightly changed. The quality
indicator values have decreased as well. The figures resemble
the first set of images but with a lower confidence. In the next
table, there is a short comparison between the two solutions.
The table shows the average quality indicator for each element
of the decision space in the two scenarios, when the minimum
distance is calculated (first best solution), and when the second
minimum belief interval distance is considered. As expected,

(a) q(X̂) for each pixel.

(b) Average q(X̂) for each class.

Figure 8: Quality Indicator. 2nd best solution.

the model is more confident in the first case.

Element
Average q(X̂)

1st solution 2nd solution

R 0.9970 0.8802
V 0.9928 0.8816
R ∪ V 0.8806 0.8797
B 0.9950 0.8807
R ∪B 0.9149 0.8865
V ∪B 0.9085 0.8855
R ∪ V ∪B 0 0

Table III: 1st best solution vs 2nd best solution.
Average quality indicator/class.

The uncertain predictions are spread between unions of two
singletons, therefore the last line of the table III for the union
of all the singletons is equal to zero.

V. CONCLUSION

In this work, a camera-lidar fusion has been proposed by
using a deep learning architecture combined with evidence
theory for intelligent vehicle perception. The combination is
realized at the very last level, replacing the softmax decision
with a decision calculation by the distance to prototypes
approach. The introduction of an unknown class as a decision
element further improves efficiency. Hence, distant points
and ambiguous features can be categorized as “unknown”
rather than being erroneously assigned to specific predictions.
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The conducted experiments show different results depending
on the chosen decision space that can include unions of
singletons (i.e. disjunctions). For the decision-making part,
the application adopts the decision based on the belief interval
distance which avoids a loss of information with respect to the
classical maximum of pignistic probability decision-making
approach. Moreover, the quality of predictions are evaluated
thanks to the quality-decision indicator (i.e. confidence factor)
presented in the results section. The results of performed
simulation show that the obtained confidence factors are very
high (within [0.9, 1.0] interval) for all decisions taken, which
shows a good behavior of the decision-making method used
for this application. As perspectives, the plan is to enhance
the Lite CF-Evi model for various class configurations and
more intricate tasks while maintaining the computational
efficiency needed for real-time applications. Additionally, a
more in-depth examination of the distribution and impact of
“unknown” predictions is intended to be explored, as well
as advanced rules of combination based on the proportional
conflict redistribution principle.
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Abstract—We introduce a novel deep neural network architec-
ture based on Dempster-Shafer theory capable of handling large
image datasets with numerous classes, such as ImageNet. Our
approach involves analyzing images through multiple experts,
composed of convolutional deep neural networks that predict
mass functions. These experts are then merged using Dempster’s
rule, thereby returning a set of potential classes by selecting
the best expected utility based on the previously computed
mass functions. Our innovative algorithm can identify the best
set of classes among the 2K possible sets for K classes while
maintaining a complexity of O(K log(K)). To illustrate our
approach, we apply it to an out-of-distribution example search
problem, demonstrating its efficiency.

Keywords: Dempster-Shafer theory, evidence theory, belief

function, deep learning, out-of-distribution.

I. INTRODUCTION

In recent years, image classification has made remarkable

strides with the advent of deep neural networks (DNNs).

However, high ambiguity in the feature vector may lead

to missclassification due to the fact that multiple classes

share similar expected probabilities. Moreover, a model only

trained for precise classification may struggle to detect out-of-

distribution (OOD) data.

One promising solution to this problem is set-valued clas-

sification [1], [2]. This method allows the model to assign

a new data to a non-empty set of classes, particularly when

uncertainty is high and precise classification is challenging.

In the context of Out-of-Distribution (OOD) detection, a

prevalent approach is the utilization of a classification method

with a reject option [3], [4], which can be seen as a special case

of set-valued classification. Rejection is defined by assigning

a data to the set of all possible classes, indicating a state of

high uncertainty.

Recently, several works have sought to integrate the

Dempster-Shafer theory (DST) into deep neural networks,

aiming to leverage the power of evidential reasoning [5]–[7].

However, these attempts have been confined to relatively small

and well-structured datasets such as MNIST [8] or CIFAR-

10 [9]. The primary impediment has been the algorithmic

complexity of DST, which scales exponentially with the size

of the frame of discernment Ω, containing 2K subsets where

K = |Ω|.

Based on [10], [11] proposed an end-to-end deep evi-

dential neural network that allocates mass values only to

singletons and Ω. This method addresses this computational

bottleneck, effectively reducing the spatial complexity from

O(2K) to O(K + 1) for the training phase. Nevertheless, the

decision-making process for set-valued classification during

the evaluation phase remains a computationally expensive task,

requiring an exhaustive selection from all possible subsets of

Ω, still operating at O(2K) complexity. Thus, they selected

the possible subsets of Ω based on the distance between the

classes derived from the confusion matrix.

We propose in this work an algorithmic solution to mitigate

the O(2K) complexity, making set-valued decisions derived

from a mass function output by a Convolutional Neural Net-

work (CNN) feasible with linear complexity without interme-

diate steps to restrict the number of subsets. Additionally, we

introduce mathematical optimizations to enhance numerical

computations, enabling scalable implementation of set-valued

classification evidential models. These contributions pave the

way for the application of the DST theoretical framework

to high-dimensional real-world datasets with many classes.

They offer significant potential for improving the reliability

of deep learning models in various applications such as OOD

detection.

The remaining parts of this work are organized as follows.

In section II we recall basics of Dempster-Shafer theory. In

section III, we present the evidential neural network architec-

ture we use and the algorithmic solution we propose to make

set-valued decision in linear complexity. The experiments and

preliminary results on large datasets are presented in section

IV. Finally, we conclude in section V.

II. BELIEF THEORY

A. Background on belief functions

Belief function theory, called also Evidence theory or

Dempster-Shafer theory [12], [13], is able to model and reason

about imprecise and uncertain problems, and has more obvious

advantages in the representation and combination of uncertain

information.

To represent partial knowledge in the belief function theory,

let consider the frame of discernment Ω as a finite set of
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variables ω which refers to K elementary events to a given

problem (Ω = {ω1, ω2, ..., ωK}).
The power set of Ω is the set of all the 2K possible subsets.

It is presented as follows:

2Ω = {∅, {ω1}, ...., {ωk}, {ω1, ω2}, {ω1, ω3}, ....,Ω}, (1)

where the {wi} elements are titled as singletons and ∅ denotes

the empty set.

The key point of Dempster-Shafer theory is the basic belief

assignment (bba) which represents the partial knowledge about

the value of w. A bba is a function from 2Ω to [0, 1] defined

as follows:

m : 2Ω → [0, 1]

A 7→ m(A)
(2)

where m satisfies the following constraint:
∑

A⊆Ω

m(A) = 1. (3)

An element A of Ω is called a focal element when

m(A) > 0, and the set containing all these elements is called

a body of evidence (BOE). When each element in BOE is a

singleton, m is named a Bayesian bba. On the other hand,

when BOE contains only Ω as a focal element, we are in the

complete ignorance situation and m is called vacuous belief

function. However, when it contains only one singleton of Ω
as a focal element, m is presented as a Certain mass function.

A bba function is normalized when the mass given to

the empty set is constrained to be zero (m(∅) = 0). In that

case, it corresponds to the closed-world assumption [13].

A contrary explanation is that the frame of discernment Ω
can be incomplete and the value of w can be taken outer

Ω. Accordingly, the mass of belief that is not linked to Ω
can allowed to be strictly positive (m(∅) > 0). That case

corresponds to the open world assumption [14].

B. Information fusion

The most common way to combine two bbas m1 and m2

defined on the same frame of discernment Ω is the Dempster’s

rule [13], denoted as ⊕. It is defined by mDS(∅) = 0 and

∀A ∈ 2Ω\{∅} by

mDS(A) = (m1 ⊕m2)(A) =
1

1− κ

∑

B∩C=A
B,C∈2

Ω

m1(B)m2(C)

(4)

where κ is the degree of conflict between the two sources of

evidence defined by:

κ =
∑

B∩C=∅
B,C∈2

Ω

m1(B)m2(C).

This fusion can be seen as the normalized version of the

conjunctive rule which is defined by:

m∩(A) =
∑

B∩C=A
B,C∈2

Ω

m1(B)m2(C). (5)

C. Decision-making

The most common way of making decisions with belief

functions is to apply the pignistic transformation [15] to

obtain a probability vector of size K , then the predicted class

corresponds to the argmax of this vector. However, such a

strategy does not allow the model to predict a set of classes.

To this end, [16] defines the lower and upper expected utilities

of selecting A ⊆ Ω as follows:

E(fA) =
∑

B⊆Ω

m(B) max
ωj∈B

uA,j (6)

E(fA) =
∑

B⊆Ω

m(B) min
ωj∈B

uA,j (7)

where uAj ∈ [0, 1] designates the utility of the act of

selecting A ⊆ Ω denoted as fA when the ground truth is ωj .

The utility matrix U2|Ω|×K is computed following [17], [18]

with a parameter γ ∈ [0.5, 1] that represents the imprecision

tolerance degree. If the true class is ωj , the utility of assigning

a sample to set A is calculated as an Ordered Weighted

Average (OWA) aggregation [18] of the individual utilities

associated with each precise assignment within A as follows:

uA,j = g|A|1{ωj∈A} (8)

where g ∈ R
|A| is a weight vector whose elements represent

the decision making strategy’s tolerance to imprecision, and

1{ωj∈A} = 1 if ωj ∈ A for A ⊆ Ω, and 0 otherwise. For

example if g = (1, 0, . . . , 0), then the decision making’s

strategy will be totally intolerant to imprecision, thus forcing

the model to output only one class.

Following [17] and [19], this weight vector is obtained by

maximizing the following entropy:

Ent(g) =

|A|
∑

k=1

log gk (9)

subject to constraints

|A|
∑

k=1

gk = 1,

|A|
∑

k=1

|A| − k

|A| − 1
gk = γ and

gk ≥ 0 where γ is a parameter representing the tolerance

to imprecision. An example of a utility matrix with γ = 0.9
and Ω = {ω1, ω2, ω3} is shown in Table I. As we can see,

the values in the utility matrix are the same according to

the cardinality of the selected set. This means that instead

of computing every values of the utility matrix, we only need

to compute a value Uk for each possible cardinality of the

subsets of Ω. In this example, we have U1 = 1, U2 = 0.9 and

U3 = 0.8263.

Since we have:

min
ωj∈A

uA,j =

{

Uk if A = Ω
0 else

(10)

and

max
ωj∈A

uA,j = U|A| (11)

the equations (6) and (7) can be simplified as illustrated in

section III-C.
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Figure 1. Architecture of an evidential deep neural network.

ω1 ω2 ω3

f{ω1} 1 0 0
f{ω2} 0 1 0
f{ω3} 0 0 1

f{ω1,ω2} 0.9 0.9 0
f{ω1,ω3} 0.9 0 0.9
f{ω2,ω3} 0 0.9 0.9
f{Ω} 0.8263 0.8263 0.8263

Table I
UTILITY MATRIX WITH γ = 0.9 AND K = 3.

The expected utility is then obtained using the generalized

Hurwicz decision criterion [20], [21] as follows:

E(fA) = νE(fA) + (1− ν)E(fA). (12)

Where ν ∈ [0, 1] is the pessimism index.

When γ = 0.5, the decision-making strategy is totally

intolerant to imprecision so that uij = 1 if ωi = ωj , else

uAj = 0. In this sense, we can see the expected utility as

a generalized accuracy. The other extreme strategy is totally

tolerant, which is achieved when γ = 1 where uAj = 1 if

ωj ∈ A, else uAj = 0 so that a model that always outputs Ω
will get an expected utility of 1.

We chose this decision-making strategy among all those

proposed in [16] since it is the most general form of decision

criterion resulting from Jaffray’s axioms [21]. Moreover, the

expression of the expected utility leads to interesting simpli-

fications in the restricted framework where we only consider

the singletons and Ω.

III. SCALABLE EVIDENTIAL NEURAL NETWORK

In this section, we present how the DST framework can be

incorporated into a deep neural network architecture. Based

on some assumptions on the structure of bbas, we propose

an algorithmic solution to make set-valued decision in linear

complexity along with mathematical optimizations for a more

scalable implementation.

A. Evidential deep neural network

As depicted in Figure 1, the proposed evidential neural

network architecture is very similar to a probabilistic one. Our

architecture is based on the evidential deep neural network

architecture introduced in [11]. The main difference resides

in the construction of the mass function. The given image

of size (C ×H ×W ) first passes through the backbone of a

convolutional neural network, resulting in a feature map of

size (C′ × 1× 1). This feature map captures the data’s latent

representation.

In the work presented in [11], the construction of mass

functions involves the use of a distance-based layer. The

classifier is composed of p prototypes ti in R
P , where P

is the dimension of the feature map. In their method, the

first step is to compute the distance-based support between

the feature map x of a data and each prototype ti. For the

second step, the mass function mi associated to ti is computed

by multiplying the distance-based support si by a weight hij

which characterizes the degree of membership of prototype ti
to the class ωi.

Our method for constructing the mass functions is more

computer vision oriented and is inspired by mixture of experts

approaches [22]. Instead of considering prototypes, we con-

sider p experts that see the feature map of a data from different

points of view. For this purpose, the classical fully connected

layer is replaced by a depthwise convolution [23] with a

kernel of size (1 × 1) and p groups. For a given feature map

and a given number of experts p, the depthwise convolution

will output a matrix of size (p× (K + 1)), namely one mass

function per expert. Each mass function holds |Ω|+ 1 values,

with one value dedicated to each singleton and an another

one for the entire set Ω. This vector is then reshaped into a

matrix of experts of size p× (|Ω|+ 1). We apply a softmax

activation to satisfy the equation (3). In this matrix, the i-th
row represents the mass function associated with expert pi.
The bbas of this matrix are then fused with Dempster’s rule

to obtain a final bba of size |Ω|+ 1 which we will present in

the next section.

B. Computational optimization of Dempster’s rule

As seen in the previous section, since our network is only

considering the masses assigned to singletons and Ω, the

expression of the conjunctive rule simplifies to formula (13)

∀A ∈ Ω

m∩(A) =
∑

B∩C=A
B,C∈2

Ω

m1(B)m2(C)

= m1(A)m2(A) +m1(A)m2(Ω) +m1(Ω)m2(A)
(13)
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This brings us to an iterative algorithm for performing

Dempster’s rule as shown by the Algorithm 1. We define

µ1 = m1 and µi+1 = m∩(µi,mi) where µi represents the

mass function obtained by the fusion of the i first expert’s

mass functions by the conjunctive rule.

Algorithm 1 Iterative Dempster’s rule

Require: p mass functions m1, . . . , mp

µ1 ← m1

for i = 2, . . . , p do

for j = 1, . . . ,K do

µi({ωj}) = µi−1({ωj})mi({ωj})
+µi−1({ωj})mi(Ω)+µi−1(Ω)mi({ωj})

end for

µi(Ω) = µi−1(Ω)mi(Ω)
end for

return µp/Z
where Z is a normalization term.

The expression of µi({ωj}) can be rewriten as follows:

µi({ωj}) = µi−1({ωj})mi({ωj}) + µi−1({ωj})mi(Ω)

+ µi−1(Ω)mi({ωj})
= (µi−1({ωj}) + µi−1(Ω))× (mi({ωj}) +mi(Ω))

− µi−1(Ω)mi(Ω)
(14)

which leads to an improved algorithm that only iterates on

the number of classes K as presented in the Algorithm 2.

Algorithm 2 Scalable Dempster’s rule

Require: p mass functions m1, . . . , mp

µp(Ω) =

p
∏

i=1

mi(Ω)

for j = 1, . . . ,K do

µp({ωj}) =
p
∏

i=1

(mi({ωj}) +mi(Ω)) − µp(Ω)

end for

return µp/Z where Z is a normalization term.

The algorithm 2 is highly parallelizable and each element

of the loop can be calculated independently of the others,

unlike the algorithm 1 where each element depends on the

previous iteration. In practice, this second algorithm provides

a very fast implementation of Dempster’s rule in the restricted

framework chosen where we only consider singletons and Ω
as focal elements.

C. Scalable decision making

Since we only consider the singletons and Ω for the con-

struction of the mass function, we can simplify the equations

(6) and (7) as follows:

E(fA) =
∑

ωi∈Ω

(m({ωi})uA,i) +m(Ω) max
ωk∈Ω

uA,k, (15)

E(fA) =
∑

ωi∈Ω

(m({ωi})uA,i) +m(Ω) min
ωk∈Ω

uA,k. (16)

During the training phase, we want fA to be a singleton.

That’s to say uii = 1 and uij = 0 ∀i 6= j which can be seen

as the classical accuracy metric. Under those hypotheses, we

can simplify the equations (15) and (16) as follows:

E(fωi
) = m({ωi}) +m(Ω) (17)

E(fωi
) = m({ωi}) (18)

leading to this simplified expression of the expected utility:

E(fωi
) = νm({ωi}) + (1− ν) (m({ωi}) +m(Ω))

= m({ωi}) + (1− ν)m(Ω).
(19)

This expression can be considered as a rewriting of the

pignistic transformation in our restricted framework. Indeed,

taking ν = 1− 1

|Ω| in equation (19) leads to the pignistic

probability expression when m(A) = 0 ∀A ⊂ Ω such that

|A| ≥ 2.

We propose to use the cross-entropy loss on the expected

utilities vector for training our network:

−
n
∑

i=1

K
∑

k=1

yi,k log (E(fωk
(xi))) (20)

with n is size of training dataset, yi,k is 1 if the label of

example xi is ωk and 0 otherwise.

For decision-making during the evaluation and test phase,

we want our network to be able to output a subset of Ω.

The main obstacle is the algorithmic complexity since it

would require to compute 2|Ω| expected utilities to choose the

subset that maximizes it. To solve this issue, [11] proposes to

compute the confusion matrix from the training set generated

by an evidential deep neural network as explained above.

Based on the distance between the classes, they only keep

the classes and groups of classes that are similar enough by

thresholding. Although in practice this strategy reduces the

number of expected utilities to be computed, it remains in 2|Ω|

in the worst case (when the result is to be attributed to the Ω
set). Furthermore, we are not convinced that this strategy is

sufficient to scale to databases with a large number of classes

such as ImageNet [24] where |Ω|=1000. Moreover, it requires

a costly intermediate step between the training phase and the

evaluation and test phases.

To this end, we propose a very simple and computation-

ally efficient iterative algorithm (3) to determine the argmax

between all subsets of Ω without any a priori about the

correlation between the classes nor intermediate step to restrict

the number of subsets of Ω. The first step is to compute

the expected utilities of singletons using the equation (19)

and to sort them in a decreasing order. We then compare

the higher singleton expected utility with the expected utility

of the subset composed of the two best singletons using the

equations (12),(15),(16) and so on until adding a new singleton

to the subset decreases the expected utility. Let’s consider Ω =
{ω1, ω2, ω3, ω4} with E(ω1) > E(ω2) > E(ω3) > E(ω4). We
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then compute E({ω1, ω2}) and compare it with E(ω1). Let’s

suppose that E({ω1, ω2}) is effectively higher than E(ω1), we

now have to compute E({ω1, ω2, ω3}). By considering that

E({ω1, ω2}) > E({ω1, ω2, ω3}), we obtain A⋆ = {ω1, ω2}. If

E(A⋆) > E(Ω) then the model outputs A⋆, else it ouputs Ω.

Algorithm 3 Argmax of the Expected Utility

Require: sorted singletons expected utilities E({ωα1
}) ≥

E({ωα2
}) ≥ . . . ≥ E({ωαK

}).
A⋆ ← ωα1

for i = 2, . . . ,K do

A⋆
temp ← {A⋆, ωαi

}
if E(A⋆

temp) > E(A⋆) then A⋆ ← A⋆
temp

end if

end for

return A⋆

This strategy allows the model to output a set of classes

among all the possible subsets of Ω while maintaining a

complexity of O(K log(K)) without requiring any limitations

on the number of subsets of Ω to compare their expected

utilities.

IV. EXPERIMENTS

To demonstrate the relevance of our model, we conducted

several experiments. Firstly, we carry out a study on the

impact of the various parameters on our model. Secondly, we

sought to demonstrate the ability of our model to process large

databases containing a large number of classes and compare

our model with a standard probabilistic model for classification

problem. Finally, we demonstrated the superiority of our

approach over the standard probabilistic model for an OOD

detection task.

In all our experiments, we assume that the backbone used

is of type ResNext50 [25]. This applies both to our model

and to the probabilistic models to which the comparison is

conducted.

A. Datasets

We conducted our experiments using the following 3

databases: CIFAR-100, ImageNet and SVHN dataset.

CIFAR-100 [26] is a database of low-resolution 28 × 28
images. It contains 60, 000 images divided into 100 classes

with 600 images per class.

ImageNet [24] contains 1.5 million images of 224 × 224
resolution, manually annotated in 1, 000 categories. The an-

notation is based on the WordNet hierarchical object catego-

rization structure (augmented by 120 dog categories).

The SVHN (Street View House Numbers) database [27] is a

collection of 32× 32 digital images that includes handwritten

digits from photos of house numbers taken in street scenes.

The database contains 10 classes, corresponding to digits from

0 to 9.

B. Ablation study

In this section, we present some experiments designed to

measure the impact of the various parameters of our approach

on its performances. We measure two metrics: expected utility

and average cardinality.

Given that the accuracy is obtained by fixing the imprecision

tolerance degree γ to 0.5 while computing the expected utility,

we propose to evaluate the expected utilities across a range of

γ values from 0.5 to 0.95.

We compute the average cardinality of the predictions

according to γ as follows:

AC(T ) =
1

|T |

|T |
∑

i=1

|A(i)| (21)

where T = {x1, . . . , x|T |} is the test set and A(i) is the set-

valued output for the data xi ∈ T . It is clear that for γ = 1, the

model will always output fΩ since E(Ω) = 1 and the average

cardinality will be equal to the number of elements in Ω.

Figure 2. Expected Utility according to the number of experts on CIFAR-100.

Firstly, we need to determine the hyperparameters of our

model, namely the number of experts p and the degree of

pessimism ν. Since this search process is quite time-intensive,

we restrict it to the CIFAR-100 dataset. To identify the optimal

number of experts, we fix ν to 0.99 so that the equation(19)

corresponds to the pignistic probability. As shown on Figure

2, the impact of the number of experts does not appear to

be significant. This is mainly because there is no guarantee

that the experts simulated by the fully connected layer will be

independent. So we choose p = 4 as there is no need for a lot

of experts. Then we search for the optimal ν by setting the

number of experts p = 4. As depicted in Figure 3, the model

learns in a similar way, independently of ν. Indeed, the model

always outputs a value very close to zero for m(Ω) for precise

classification task, so the impact of ν is not significant during

the training phase. Consequently, we have selected ν = 1

|Ω| ,
namely ν = 0.99 for CIFAR-100 and ν = 0.999 for ImageNet.
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Figure 3. Expected Utility according to ν on CIFAR-100.

C. Comparison with probabilistic approaches for image clas-

sification

Now that we have fixed the model hyperparameters, we can

compare the evidential neural network with the probabilistic

one on precision classification. As mentioned previously, the

probabilistic model used corresponds to a ResNext50 type

backbone. This is followed by a fully connected layer and

a softmax.

For fair comparison between our method and the proba-

bilistic approach, we have to allow the probabilistic network

to output set-valued predictions in order to compute the

expected utility. To do so, we consider the probability vector

output by the model as a mass function with m(Ω) = 0 and

m({ωj}) = p(ωj) ∀j = 1, . . . ,K .

The Expected Utility and Cardinality curves over 10 runs

on CIFAR-100 are respectively presented in Figure 4 and

Figure 5. The Expected Utility and Cardinality curves on

ImageNet are respectively presented in Figure 6 and Figure

7. Due to the size of the database, we limited the ImageNet

experiments to a single run and were therefore unable to

calculate standard deviations. For both experiments, we can

see that there is almost no difference between the two models

from γ = 0.5 to γ = 0.7 where the decision-making strategy

is quite intolerant to uncertainty, forcing the model to output

one or two classes. For γ = 0.75 to γ = 0.95 the evidential

model is less confident than the probabilistic one and outputs

sets with a higher cardinality, which decreases the Expected

Utility. On Imagenet the performance of the probabilistic

model is 77.77% in accuracy against 77.65%. The difference

in performance is relatively small.

D. OOD detection

For OOD detection task, we want to evaluate the capability

of the network to output Ω if, and only if, the data does not

belong to the classes from the training set. For this purpose,

Figure 4. Expected Utility on CIFAR-100.

Figure 5. Average Cardinality on CIFAR-100.

we evaluate the rate of fΩ by varying γ from 0.5 to 0.95. A

good model has to get a high rate of fΩ on out-of-distribution

data and a low rate of fΩ on in-distribution data. For γ = 1,

the model will always predict Ω since all the non-zero values

in the utility matrix will be equal to 1. So the fΩ rate will

always be equal to 100%.

The results on the OOD detection task for the models trained

on CIFAR-100 and ImageNet are respectively presented in

Figure 8 and Figure 9. As expected, the fΩ rate is very low for

the evidential and the probabilistic models on in-distribution

test set. However, it is clear that the evidential network

outperforms the probabilistic network for OOD detection task

when we evaluate them on the SVHN dataset.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

912



Figure 6. Expected Utility on ImageNet.

Figure 7. Average Cardinality on ImageNet.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we have presented a novel deep neural

network based on Dempster-Shafer theory capable of handling

large datasets for image classification. Furthermore, we have

introduced mathematical optimizations to improve numerical

computations, facilitating a scalable implementation of eviden-

tial models for set-valued classification. This approach makes

it possible to obtain results on databases with a large number

of classes, while avoiding the problem of traversing the 2K

subset of possible classes.

The proposed evidential neural network shows similar re-

sults to the probabilistic one for precise classification task.

One way to improve it can be to ensure the independence of

the experts with a Deep Ensemble approach [28], [29].

However, our network clearly outperforms the probabilistic

one for OOD detection task regarding the fΩ rate. This

Figure 8. fΩ rate for OOD detection, CIFAR-100.

Figure 9. fΩ rate for OOD detection, ImageNet.

illustrates that the proposed method overcomes one of the

main problems of neural networks, namely the overconfidence

even if the data is out-of-distribution. Of course, the scope of

our method does not limit itself to image classification. We

can adapt it to other computer vision tasks such as semantic

segmentation and instance segmentation.

Another way of improving our method would be to also take

into account the partial ignorance of the experts when fusing

the mass functions and making a decision. This would require

to overcome computational bottlenecks but would open the

doors for other decision-making strategies and more optimal

fusion rules.
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de Haute Alsace, in Mulhouse, France. His research interests are mainly focused on computer vision and machine learning

through the analysis of depth images, 3D videos, time series and human body motion. He works on various application fields

like medicine, robotics, ambient assisted living and autonomous vehicles.

Email: maxime.devanne@uha.fr

Jean DEZERT graduated from EFREI Engineering School in Paris in 1985, and obtained the Ph.D. degree in automatic

control and signal processing from the University Paris XI, Orsay, France in 1990. During 1986–1990, he did research in

multi-sensor multi-target tracking (MS-MTT) at the French Aerospace Research Lab (ONERA), Châtillon, France. During

1991–1992, he visited the ESE Department at UConn University in Connecticut USA as Post-doc Research Fellow under

supervision of Professor Bar-Shalom. During 1992–1993, he was a Teaching Assistant in Electrical Engineering Department at
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de Haute-Alsace (UHA), Mulhouse, France, in 2002. Since 2004, he has been an Assistant Professor at the UHA with the

ENSISA Engineering College. He is responsible for the international relations for ENSISA. Since 2016, he has been Full

Professor and Dean of the Control Engineering and Embedded Systems Department for ENSISA. His research interests

include multisensor perception, data fusion, belief functions, navigation, and tracking for intelligent transportation systems.

He is a member of the IFAC “Transportation Systems” TC7.4 and Associate Editor of the IEEE Transactions on Intelligent

Vehicles. He is also a regular Associate Editor of IEEE and IFAC conferences.

Email: jean-philippe.lauffenburger@uha.fr

Alexis LECHERVY received his Ph.D. in 2012 from the University of Cergy-Pontoise in France. He is now an Associate

Professor at the University of Caen in France since 2013, and is a member of the Greyc laboratory (UMR CNRS 6072).

His research focuses on the design of neural network architecture for multimodal data fusion and metric learning. He is also

studying the possibilities of building machine learning models that are more economical in terms of resources and data.

Email: alexis.lechervy@unicaen.fr

Gaétan LE-GOIC received his Ph.D. from the university of Savoie Mont-Blanc (Annecy, France) in 2012. Afterwards,

he was postdoctoral fellow at the SYMME Laboratory. He is now Associate Professor at the university of Bourgogne
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Professor and the Head of the Image and Information Processing Department. He has published several academic books, more

than 180 journal articles, several book chapters, more than 230 conference proceedings, and technical reports. He has held

visiting professor positions at several universities the University of Bristol, U.K.; the University of Carabobo, Venezuela; the

University of Michigan, Ann Arbor, USA; the Technical University of Budapest, Hungary; E.T.S, Montreal, Canada; M.U.T,

Warsaw, Poland; and the Technical University of Melaka (UTEM), Malaysia. His application domains research activities

range from civilian into military ones: medical, remote sensing, underwater imaging, machine learning, information, and

knowledge fusion. He chaired several international conferences focusing on his research activities and related to signal and

image processing, data and information fusion, and pattern recognition.

Email: basel.solaiman@imt-atlantique.fr

Miroslava STEFANOVA, M.S. in physics, Assistant Professor in Institute of Neurobiology, Bulgarian Academy of Science,

Department of Sensory Neurobiology, Research Team Mechanisms of Perception - Research topics: Motion perception, Real

and Apparent motion, Global direction, Short-range process, Direction and speed changes. Experience in: statistical modeling,

psychophysical methods, preparing experiments, organizing a subject pool. Scientific activity includes the 8 publications in

journals indexed in Medline or ISI Web, 14 publications in journals without ISI, 10 participations in International Conferences

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 5

926



(ECVP) and 3 in Regional Balkan Meetings.

Email: md.stefanova@inb.bas.bg

Jean-Marc TACNET works in INRAE (National Research Institute for Agriculture, Food and the Environment) as a

senior researcher in the Institute of Geosciences, a joined research Team between Grenoble Alpes University, CNRS, IRD,

Grenoble-INP and INRAE in Grenoble, France. He received two Master Engineering Degrees, a M.Sc. degree in Applied

Computer Science (Grenoble University) and a Ph.D. thesis (École Nationale Supérieure des Mines de Saint-Étienne) whose
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This fifth volume on Advances and Applications of DSmT for Information Fusion

collects theoretical and applied contributions of researchers working in different

fields of applications and in mathematics, and is available in open-access. The

collected contributions of this volume have either been published or presented after

disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf

or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international

conferences, seminars, workshops and journals, or they are new. The contributions

of each part of this volume are chronologically ordered.

First Part of this book presents some theoretical advances on DSmT, dealing

mainly with modified Proportional Conflict Redistribution Rules (PCR) of

combination with degree of intersection, coarsening techniques, interval calculus

for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers,

canonical decomposition of dichotomous belief functions, fast PCR fusion, fast

inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving

the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources

of evidence with their Matlab codes.

Because more applications of DSmT have emerged in the past years since the

apparition of the fourth book of DSmT in 2015, the second part of this volume is
about selected applications of DSmT mainly in building change detection, object

recognition, quality of data association in tracking, perception in robotics, risk

assessment for torrent protection and multi-criteria decision-making, multi-modal

image fusion, coarsening techniques, recommender system, levee characterization

and assessment, human heading perception, trust assessment, robotics, biometrics,

failure detection, GPS systems, inter-criteria analysis, group decision, human

activity recognition, storm prediction, data association for autonomous vehicles,

identification of maritime vessels, fusion of support vector machines (SVM), Silx-

Furtif RUST code library for information fusion including PCR rules, and network

for ship classification.

Finally, the third part presents interesting contributions related to belief functions

in general published or presented along the years since 2015. These contributions

are related with decision-making under uncertainty, belief approximations,

probability transformations, new distances between belief functions, non-classical

multi-criteria decision-making problems with belief functions, generalization of

Bayes theorem, image processing, data association, entropy and cross-entropy

measures, fuzzy evidence numbers, negator of belief mass, human activity

recognition, information fusion for breast cancer therapy, imbalanced data

classification, and hybrid techniques mixing deep learning with belief functions as

well.
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