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Abstract: In this short note we show that the so-called Ambiguous Set (2019) is a subclass of the 

Double Refined Indeterminacy Neutrosophic Set (2017) and is a particular case of the Refined 

Neutrosophic Set (2013). Also, the Ambiguous Set is similar to the Quadripartitioned Neutrosophic 

Set (2016), and Belnap’s Four-Valued Logic (1975). 
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1. Introduction 

We provide the definitions of the previous five types of sets, and we prove that the Ambiguous Set 

is a particular case of the Refined Neutrosophic Set (RNS), Quadripartitioned Neutrosophic Set 

(QNS), and Belnap’s Four-Valued Logic (BFVL), and mostly that the Ambiguous Set coincides with 

the Double Refined Indeterminacy Neutrosophic Set with the distinction that the sum of quadruple 

components is ≤ 2 for the AS, which makes it a subclass of the DRINS where the sum is any number 

between 0 and 4. 

 

2. Ambiguous Set 

The definition of the Ambiguous Set (AS) according to [1, 2] is given as follows: 

Let U = {g} be the universe for any event 𝑔, which is fixed. An AS Ś for g ∈ U is defined by: 

                          Ś = {g, Πt(g), Πf(g), Πta(g), Πfa(g) | g ∈ U} 

where, Πt(g): U → [0,1], Πf(g): U → [0,1], Πta(g): U → [0,1], and Πfa(g): U → [0,1] are 
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called the true membership degree (TMD), false membership degree (FMD),  

true-ambiguous membership degree (TAMD), and false-ambiguous membership degree 

(FAMD), respectively.  

Where Πt(g), Πf(g), Πta(g) and Πfa(g) must satisfy the following condition as: 

0 ≤ Πt(g) + Πf(g) + Πta(g) + Πfa(g) ≤ 2 

 

3. Double Refined Indeterminacy Neutrosophic Set (DRINS) 

 

The definition of Double Refined Indeterminacy Neutrosophic Set is given in [3] as follows: 

Let X be a space of points (objects) with generic elements in X denoted by x.  

A Double Refined Indeterminacy Neutrosophic Set (DRINS) A in X is characterized by four 

components: 

truth membership function TA(x), indeterminacy leaning towards truth membership 

function ITA(x),  

indeterminacy leaning towards falsity membership function IFA(x), and falsity membership 

function FA(x).  

For each generic element x ∈ X, there are TA(x), ITA(x), IFA(x), FA(x) ∈ [0, 1],  

and 0 ≤ TA(x)+ITA(x)+IFA(x)+ FA(x) ≤ 4.  

Therefore, a DRINS A can be represented by  

A = {⟨x, TA(x), ITA(x), IFA(x), FA(x)⟩ | x ∈ X}. 

 

4. Ambiguous Set vs. Double Refined Indeterminacy Neutrosophic Set 

 

Let’s compare the two definitions. 

 

The definition of Ambiguous Set, as presented by Singh, Huang, & Lee [1, 2] in 2019 and 

in 2023, coincides with that of Double Refined Indeterminacy Neutrosophic Set 

introduced by Ilanthenral & Smarandache [3] in 2017, ahead of them. 

 

They only renamed: 

   the indeterminacy leaning towards truth membership function ITA(x), as true-ambiguous 

membership degree (TAMD), 

   and the indeterminacy leaning towards falsehood membership function ITA(x), 

as false-ambiguous membership degree (FAMD). 

 

The only distinction between AS and DRINS is that: 

the sum of AS quadruple components is restricted to be ≤ 2,  
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while the sum of DRINS quadruple components is ≤ 4 (no restriction), which means that one 

can take any number between 0 and 4, in the particular case they took the number 2, whence 

AS is a subclass of the DRINS. 

 

5. Refined Neutrosophic Set 

 

The Definition of Refined Neutrosophic Set is the following. 

Let X be a space of points (objects) with generic elements in X denoted by x.  

A Refined Neutrosophic Set (RNS) A in X is characterized by n sub-components: 

sub-truth membership functions T1A(x), T2A(x), … , TpA(x);  

sub-indeterminacy membership functions I1A(x), I2A(x), …, IrA(x); 

and sub-falsehood membership functions F1A(x), F2A(x), … , FsA(x); 

where p, r, s ≥ 0 are integers, and p + r + s = n ≥ 2, such that at least one of p, r, s is ≥ 2 

for assuring the refinement of at least one neutrosophic component amongst T, I, or F. 

For each generic element x ∈ X, the functions 

T1A(x), T2A(x), … , TpA(x), I1A(x), I2A(x), …, IrA(x), F1A(x), F2A(x), … , FsA(x) ∈ [0, 1], 

with their sum 

0 ≤ T1A(x) + T2A(x) + … + TpA(x) + I1A(x) + I2A(x) + … + IrA(x) +  

      + F1A(x) + F2A(x) + … + FsA(x) ≤ n 

Therefore, a RNS A can be represented by  

ARNS = {⟨x, T1A(x), T2A(x), … , TpA(x), I1A(x), I2A(x), …, IrA(x), F1A(x), F2A(x), … , FsA(x)>, | x ∈ X}. 

The Ambiguous Set is a particular case of the Refined Neutrosophic Set, since one takes  

p = 1 (only one true membership); 

r = 2 (two types of indeterminacy memberships,  

          I1 = true-ambiguous membership degree (TAMD),  

           and  

                     I2 = false-ambiguous membership degree (FAMD);  

s = 1 (only one false membership). 

Therefore, the Ambiguous Set is a particular case of the Refined Neutrosophic Set. 

In the same way it is proven that the Double Refined Indeterminacy Neutrosophic Set is 

a particular of the Refined Neutrosophic Set. 

 

6. Ambigous Set vs. Refined Neutrosophic Set 

 

Both, the so-called Ambiguous Set and the Double Refined Indeterminacy Neutrosophic 

Set are particular cases of the Refined Neutrosophic Set [4] introduced by Smarandache 

in 2013. 

 

7. Quadripartitioned Neutrosophic Set 
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The Definition of single-valued Quadripartitioned Neutrosophic Set [5]  

Let X be a non-empty set. The Quadripartitioned single-valued Neutrosophic Set (QNS) A 

over X characterizes each element x in X by a truth-membership function TA , a contradiction 

membership function CA , an ignorance–membership function UA and a falsity membership 

function FA such that: 

 for each x X one has ( ), ( ), ( ), ( ) [0,1]A A A AT x C x U x F x   and 

0 ( ) ( ) ( ) ( ) [0,1] 4A A A AT x C x U x F x      . 

When X is discrete, A is represented as 

              
1

( ), ( ), ( ), ( ) / , .
n

A i A i A i A i i i

i

A T x C x U x F x x x X


     

However, when X is continuous, A is represented as:  

( ), ( ), ( ), ( ) / , .A A A A

X

T x C x U x F x x x X    

    It is clear the Quadripartitioned Neutrosophic Set (no matter if it is single-valued, 

interval-valued, or set-valued in general) is a particular case of the Refined Neutrosophic 

Set, of the form T, F, and indeterminacy I is split into two parts: I1 = C 

(contradiction-membership) and I2 = U (ignorance-membership). 

While the Ambiguous Set is similar with the Quadripartitioned Neutrosophic Set, where the 

two types of sub-indeterminacies I1 and I2 are named differently: true-ambiguous 

membership and respectively false-ambiguous membership. 

   Surely, one can rename the sub-indeterminacies I1 and I2 in many ways, since there are 

many types of indeterminacies / uncertainties / vagueness / conflicting informations etc. 

 

8. Belnap’s Four-Valued Logic  

 

    In 1975 Belnap has considered a logic of four values:  true, false, both (true and false), 

and neither (neither true, nor false). We can denote them by T (true), F (false), C (true and 

false = contradiction), U (neither true not false = ignorance) respectively and we see that the 

Ambiguous Set and Quadripartitioned Neutrosophic Set are similar to Belnap’s Logic 

Further on, the Belnap’s 4-valued Logic is a particular case of the Refined Neutrosophic n-valued 

Logic that has types of truths T1, T2, …, Tp, types of indeterminacies I1, I2, …, Ir, and types of 

falsehoods: F1, F2, …, Fs. 

 

9. Conclusion 

 

    We proved that the so-called Ambiguous Set coincides with the Double Refined 

Indeterminacy Neutrosophic Set with respect their quadruple structures, while, with respect 

to the sum of components, AS is a subclass of the DRINS.  
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Also, AS is similar with the Quadripartitioned Neutrosophic Set and Belnap Four-Valued 

Logic as well. 

Further on, we proved that the AS, DRINS, QNS and BFVL are particular cases of the 

Refined Neutrosophic Set / Logic respectively. 
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