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Aims and Scope 

Neutrosophic theory and its applications have been expanding in 
all directions at an astonishing rate especially after of the introduction the 
journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, 
algorithms have been rapidly developed. One of the most striking trends in the 
neutrosophic theory is the hybridization of neutrosophic set with other 
potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The 
different hybrid structures such as rough neutrosophic set, single valued 
neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic 
hesitant fuzzy set, etc. are proposed in the literature in a short period of time. 
Neutrosophic set has been an important tool in the application of various areas such 
as data mining, decision making, e-learning, engineering, law, medicine, social 
science, and some more.  

(Editors) 
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Preface 

Neutrosophy, introduced by Dr. Florentin Smarandache in the early 1990s, extends 
classical logic by incorporating indeterminacy and partial truth. This gives rise to 
"neutrosophic sets" and "neutrosophic logic," which allow for the modeling of 
uncertainty and inconsistency—phenomena often encountered in real-world 
systems. These concepts have led to the development of neutrosophic algebraic 
structures, which extend traditional algebra to handle issues of ambiguity, 
indeterminacy, and vagueness.  

This book explores the emerging field of Neutrosophic Algebraic Structures, 
focusing on both their theoretical foundations and practical applications. We apply 
innovative algorithmic methods to investigate the complex interactions of 
neutrosophic elements, such as neutrosophic numbers, sets, and functions, within 
algebraic systems. Our goal is to show how neutrosophic structures challenge and 
expand traditional algebraic approaches, offering solutions to problems across 
diverse fields like computer science, engineering, artificial intelligence, and 
decision-making.  

A key theme of this work is the integration of mathematical theory with 
computational methods. Neutrosophic logic provides more accurate and flexible 
models for problems involving uncertainty and imprecision, making it a valuable 
tool in areas where classical approaches fall short. The algorithms introduced here 
aim to apply neutrosophic theory to solve complex problems that are difficult to 
address using traditional techniques.  

We invite readers to explore the synergy between abstract mathematical theory and 
cutting-edge computational algorithms. Our aim is to inspire further research in this 
exciting and rapidly evolving field and demonstrate its relevance in solving real-
world problems that involve ambiguity, uncertainty, and indeterminacy. 

We hope this work will serve as a valuable resource for students, researchers, and 
practitioners, contributing to the growing body of knowledge at the intersection of 
algebraic structures, logic, and modern computational techniques. 

 http://fs.unm.edu/neutrosophy.htm. 

http://fs.unm.edu/neutrosophy.htm
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Chapter 1 

Multiple Generalized Set-Valued Neutrosophic 
Quintuple Sets 

Memet ŞAHİN1, Abdullah KARGIN2 and Damla YALVAÇ3 
1Department of Mathematics, Gaziantep University, Gaziantep 27310-Turkey; 

mesahin@gantep.edu.tr 
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ABSTRACT 

 In this chapter, the definition and basic properties of multiple generalized 
set-valued neutrosophic quintuple sets are given.  Furthermore, some decision 
operators (average union, average intersection, optimistic union, optimistic 
intersection, pessimistic union, pessimistic intersection) for multiple generalized 
set-valued neutrosophic quintuple sets are defined and examples of these operators 
are given. Thus, a new structure was obtained by using multiple neutrosophic 
theory and neutrosophic quintuple theory together. 

Keywords: Multi-valued Neutrosophic Sets, Multiple Generalized Set-Valued 
Neutrosophic Quadruple Sets, Multiple Generalized Set-Valued Neutrosophic 
Quintuple Sets, Generalized Set-Valued Neutrosophic Quintuple Numbers 

1.INTRODUCTION

Classical logic, fuzzy logic [1], intuitionistic logic [2] and neutrosophy [3] are 
systems of logic that emerged and developed at different stages of this progression. 
Ancient Greek thinkers, especially Aristotle, developed the basic principles of logic 
and built classical logic. Aristotle's logic has a mathematical structure based on 
precise concepts, truth and falsity. Classical logic is known as bivalent logic because 
propositions are only considered true or false. Developed in 1965 by Lotfi Zadeh 
[1], fuzzy logic is designed to handle uncertainty and ambiguous information in the 
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real world. Neutrosophy [3] is a theory of logic proposed by Florentin Smarandache 
in the late 20th century. Neutrosophy is a more complex and versatile logic system 
that extends fuzzy logic to deal with uncertainty. As a result, neutrosophy is an 
important step in the development of these logic systems for dealing with 
complexity and uncertainty, because it directly combines fuzzy and intuitionistic 
logic systems, offering a more comprehensive perspective. Also, researchers studied 
this theory [4-19, 28-63]. In 2016, Chatterjee et al. defined quadripartioned 
neutrosophic sets [20]. Unlike neutrosophic sets, it is defined with a contradiction 
function and an ambiguity function instead of an uncertainty function. In 2015, Peng 
and Wang obtained multiple neutrosophic sets [21] and used them in a multi-
criteria decision-making application. Also, researchers studied based on this set [22, 
23]. Smarandache defined the neutrosophic quadruple set (NQS) [24] in 2015. In 
general, a neutrosophic quadruple number is of the form (k, lT, mI, nF) (k, l, m, n ∈ 
R or C). The components T, I and F in this notation are components in neutrosophic 
logic. However, unlike the NS, NQS has a known part (k) and an unknown part ((lT, 
mI, nF)). Şahin et al. defined generalized set-valued neutrosophic quadruple 
numbers (GSVNQN) [25] in 2020. Thanks to this new structure, the NQS theory has 
become available in the field of applications. Also, in 2023, Şahin et al. defined 
generalized set-valued neutrosophic quintuple sets (GSVNQS) [26] and some 
operations on them were defined. Başer and Uluçay [42] defined energy of a 
neutrosophic soft set and applied it to multi-criteria decision-making problems to 
show its effectiveness. Başer and Uluçay [46] defined effective q- fuzzy soft expert 
sets. The above-mentioned theories have been studied in various fields, such as: [64-
87]. Recently, Kargın et al. obtained multiple generalized set-valued neutrosophic 
quintuple sets (MGSVNQS) [27].  

The chapter is organized as follows: In The background Section, the basic 
definitions, and properties to be used in this chapter are indroduced for SVNS, 
SVQNS, MNS, GSVNQS and MGSVNQS.  In the research and findings section, we 
define the MGSVNQPN and MGSVNQPS and the main features of these new 
concepts are given. Thus, we have obtained a new structure for SVQNS, GSVNQPN. 
Optimistic union, pessimistic union, average union, pessimistic intersection, 
optimistic intersection, average intersection operators were defined for 
MGSVNQPS. Sample sets from daily life were created and operations were 
performed on the sets for all the for ementioned properties and definitions. In The 
Conclusion Section, the results obtained in the study and suggestions for future 
studies are presented. 

2.BACKGROUND
Definition 1 [18] Let X be a universal set. For ∀𝑑̃𝑑𝛽𝛽 ∈ X, 
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0 ≤ 𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� + 𝐼𝐼�𝑑𝑑�𝛽𝛽�

𝐾𝐾� + 𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� ≤ 3 

T𝐾𝐾�: X → [0,1] , I𝐾𝐾�: X → [0,1]  and F𝐾𝐾�: X → [0,1] 

With functions, a 𝐾𝐾� single-valued NS on X; It is defined as 

𝐾𝐾� = �〈𝑑̃𝑑𝛽𝛽 ,𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� , 𝐼𝐼�𝑑𝑑�𝛽𝛽�

𝐾𝐾� ,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 〉 : 𝑑̃𝑑𝛽𝛽 ∈ X�. 

𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� , 𝐼𝐼�𝑑𝑑�𝛽𝛽�

𝐾𝐾� ,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾�  are the degree of truth, indeterminancy and falsity of 𝑑̃𝑑𝛽𝛽 ∈ X , 

respectively.  

Definition 2 [21] Let E be an universal set, a MVNS 𝐾𝐾� over the set E can be defined 
as follows.  

For ∀xj ∈ E; i=1,...,p and 𝛽𝛽 =1,...,n;  

𝐾𝐾�

= {〈𝑑̃𝑑𝛽𝛽 , �𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

,𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … ,𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

� , �𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

, 𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … , 𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

� , �𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … ,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

�〉 : 𝑑̃𝑑𝛽𝛽
∈ E} 

𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

,𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … ,𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

: E → [0,1] , 

𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

, 𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … , 𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

: E → [0,1], 

𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … ,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

: E → [0,1]. 

It is also, 

0 ≤ 𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑖𝑖

+ 𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑖𝑖

+ 𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� İ

≤ 3 

�𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

,𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … ,𝑇𝑇�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

� , �𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

, 𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … , 𝐼𝐼�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

� and �𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 1

,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 2

, … ,𝐹𝐹�𝑑𝑑�𝛽𝛽�
𝐾𝐾� 𝑃𝑃

� 

The degree of truth, the degree of indeterminacy, the degree of falsity, respectively. 

Definition 3. [20] Let X be a universal set. For ∀d�β ∈ X,  

0 ≤ T�d�β�
K� + U�d�β�

K� + C�d�β�
K� + F�d�β�

K� ≤ 4 

TK� : X → [0,1] , UK� : X → [0,1], CK� : X → [0,1]  and FK� : X → [0,1] 

With functions, a K� single-valued quadripartitioned NS on X; It is defined as 

K� = �〈d�β, T�d�β�
K� , I�d�β�

K� , F�d�β�
K� 〉 : d�β ∈ X�. 
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T�d�β�
K� , U�d�β�

K� , C�d�β�
K� , F�d�β�

K�  degrees of truth, degrees of uncertainty, degrees of 

contradiction and degrees of falsity, respectively of d�β ∈ X, respectively. 

Definition 4. [26] Let X be a set and let P(X) be the power set of X. 𝐾𝐾�𝑖𝑖  set of a 
GSVNQN form  

𝐾𝐾� = ��𝐾𝐾�𝛽𝛽1𝑖𝑖 ,𝐾𝐾�𝛽𝛽2𝑖𝑖𝑇𝑇𝛽𝛽2𝑖𝑖
𝐾𝐾� ,𝐾𝐾�𝛽𝛽3𝑖𝑖𝑈𝑈𝛽𝛽3𝑖𝑖

𝐾𝐾� ,𝐾𝐾�𝛽𝛽4𝑖𝑖𝑈𝑈𝛽𝛽4𝑖𝑖
𝐾𝐾� ,𝐾𝐾�𝛽𝛽5𝑖𝑖𝐹𝐹𝛽𝛽5𝑖𝑖

𝐾𝐾� � :𝐾𝐾�𝛽𝛽1𝑖𝑖 ,𝐾𝐾�𝛽𝛽2𝑖𝑖 ,𝐾𝐾�𝛽𝛽3𝑖𝑖 ,𝐾𝐾�𝛽𝛽4𝑖𝑖 ,𝐾𝐾�𝛽𝛽5𝑖𝑖 ∈ P(X); i

= 1,2,3, … , n� 

𝑇𝑇𝛽𝛽2𝑖𝑖
𝐾𝐾� , 𝑈𝑈𝛽𝛽3𝑖𝑖

𝐾𝐾� , 𝐶𝐶𝛽𝛽4𝑖𝑖
𝐾𝐾�  and 𝐹𝐹𝛽𝛽4𝑖𝑖

𝐾𝐾� are the usual quadripartitioned neutrosophic logic tools. Also, 
a GSVNQS is defined such that 

𝐾𝐾�𝑖𝑖𝑁𝑁 = �𝐾𝐾�𝛽𝛽1𝑖𝑖 ,𝐾𝐾�𝛽𝛽2𝑖𝑖𝑇𝑇𝛽𝛽2𝑖𝑖
𝐾𝐾� ,𝐾𝐾�𝛽𝛽3𝑖𝑖𝑈𝑈𝛽𝛽3𝑖𝑖

𝐾𝐾� ,𝐾𝐾�𝛽𝛽4𝑖𝑖𝑈𝑈𝛽𝛽4𝑖𝑖
𝐾𝐾� ,𝐾𝐾�𝛽𝛽5𝑖𝑖𝐹𝐹𝛽𝛽5𝑖𝑖

𝐾𝐾� �. 

Where, a GSVNQN representing an entity that can be a number, an idea, an object, 
etc. For a GSVNQN �𝐾𝐾�𝛽𝛽1𝑖𝑖 ,𝐾𝐾�𝛽𝛽2𝑖𝑖𝑇𝑇𝛽𝛽2𝑖𝑖

𝐾𝐾� ,𝐾𝐾�𝛽𝛽3𝑖𝑖𝑈𝑈𝛽𝛽3𝑖𝑖
𝐾𝐾� ,𝐾𝐾�𝛽𝛽4𝑖𝑖𝑈𝑈𝛽𝛽4𝑖𝑖

𝐾𝐾� ,𝐾𝐾�𝛽𝛽5𝑖𝑖𝐹𝐹𝛽𝛽5𝑖𝑖
𝐾𝐾� � 

𝐾𝐾�𝛽𝛽1𝑖𝑖 

is called the known part and  

�𝐾𝐾�𝛽𝛽2𝑖𝑖𝑇𝑇𝛽𝛽2𝑖𝑖
𝐾𝐾� ,𝐾𝐾�𝛽𝛽3𝑖𝑖𝑈𝑈𝛽𝛽3𝑖𝑖

𝐾𝐾� ,𝐾𝐾�𝛽𝛽4𝑖𝑖𝑈𝑈𝛽𝛽4𝑖𝑖
𝐾𝐾� ,𝐾𝐾�𝛽𝛽5𝑖𝑖𝐹𝐹𝛽𝛽5𝑖𝑖

𝐾𝐾� � 

is called the unknown part. 

We can also show that the GSVNQN consisting of GSVNQS 

𝐾𝐾� = �𝐾𝐾�𝑖𝑖𝑁𝑁; i = 1,2, … , n�. 

Definition 5. [27] Let E be universal set and P(E) be power set of E. 𝐶̈𝐶 MGSVNQS 
over the set E is defined as 

𝐶̈𝐶 =
{��𝑀𝑀1(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 � ,

�𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

           
�𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � �𝐼𝐼𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 , 𝐼𝐼𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 , 𝐼𝐼𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … , 𝐼𝐼𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � ,

 �𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

          �𝐹𝐹𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 �� :𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛  ∈ 𝑃𝑃(𝐸𝐸)}. 

Here,  
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i=1,…,j; n=1,…,p 

𝑇𝑇𝑀𝑀2
1 ,𝑇𝑇𝑀𝑀2

2 ,𝑇𝑇𝑀𝑀2
3 , … ,𝑇𝑇𝑀𝑀2

𝑛𝑛 :𝐸𝐸 → [0,1],  

𝐼𝐼𝑀𝑀3
1 , 𝐼𝐼𝑀𝑀3

2 , 𝐼𝐼𝑀𝑀3
3 , … , 𝐼𝐼𝑀𝑀3

𝑛𝑛 :𝐸𝐸 → [0,1],  

𝐹𝐹𝑀𝑀4
1 ,𝐹𝐹𝑀𝑀4

2 ,𝐹𝐹𝑀𝑀4
3 , … ,𝐹𝐹𝑀𝑀4

𝑛𝑛 ∶ 𝐸𝐸 → [0,1] 

0 ≤ … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
𝑛𝑛 + 𝐼𝐼𝑀𝑀3(𝑥𝑥𝑖𝑖)

𝑛𝑛 + 𝐹𝐹𝑀𝑀4(𝑥𝑥𝑖𝑖)
𝑛𝑛 ≤ 3 

and 

𝑇𝑇𝑀𝑀2
1 �𝑥𝑥𝑗𝑗�,𝑇𝑇𝑀𝑀2

2 �𝑥𝑥𝑗𝑗�,𝑇𝑇𝑀𝑀2
3 �𝑥𝑥𝑗𝑗�, … ,𝑇𝑇𝑀𝑀2

𝑛𝑛 �𝑥𝑥𝑗𝑗�, 

𝐼𝐼𝑀𝑀3
1 �𝑥𝑥𝑗𝑗�, 𝐼𝐼𝑀𝑀3

2 �𝑥𝑥𝑗𝑗�, 𝐼𝐼𝑀𝑀3
3 �𝑥𝑥𝑗𝑗�, … , 𝐼𝐼𝑀𝑀3

𝑛𝑛 �𝑥𝑥𝑗𝑗�, 

𝐹𝐹𝑀𝑀4
1 �𝑥𝑥𝑗𝑗�,𝐹𝐹𝑀𝑀4

2 �𝑥𝑥𝑗𝑗�,𝐹𝐹𝑀𝑀4
3 �𝑥𝑥𝑗𝑗�… ,𝐹𝐹𝑀𝑀4

𝑛𝑛 �𝑥𝑥𝑗𝑗� 

degrees of truth, degrees of indeterminacy, degrees of falsity, respectively. 

3.Research and Findings 

Definition 6  Let E be universal set and P(E) be power set of E. 𝐶̈𝐶 MGSVNQPS 
over the set E is defined as 

𝐶̈𝐶 =
{��𝑀𝑀1(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

�𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

          
�𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � �𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � ,

 �𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

   �𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

         𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

Here,  

i=1,…,j; n=1,…,p 

𝑇𝑇𝑀𝑀2
1 ,𝑇𝑇𝑀𝑀2

2 ,𝑇𝑇𝑀𝑀2
3 , … ,𝑇𝑇𝑀𝑀2

𝑛𝑛 :𝐸𝐸 → [0,1],  

𝑈𝑈𝑀𝑀3
1 ,𝑈𝑈𝑀𝑀3

2 ,𝑈𝑈𝑀𝑀3
3 , … ,𝑈𝑈𝑀𝑀3

𝑛𝑛 :𝐸𝐸 → [0,1],  

𝐶𝐶𝑀𝑀3
1 ,𝐶𝐶𝑀𝑀3

2 ,𝐶𝐶𝑀𝑀3
3 , … ,𝐶𝐶𝑀𝑀3

𝑛𝑛 :𝐸𝐸 → [0,1], 
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𝐹𝐹𝑀𝑀4
1 ,𝐹𝐹𝑀𝑀4

2 ,𝐹𝐹𝑀𝑀4
3 , … ,𝐹𝐹𝑀𝑀4

𝑛𝑛 ∶ 𝐸𝐸 → [0,1] 

0 ≤ … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
𝑛𝑛 + 𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

𝑛𝑛 + 𝐶𝐶𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 + 𝐹𝐹𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ≤ 3 

and 

𝑇𝑇𝑀𝑀2
1 �𝑥𝑥𝑗𝑗�,𝑇𝑇𝑀𝑀2

2 �𝑥𝑥𝑗𝑗�,𝑇𝑇𝑀𝑀2
3 �𝑥𝑥𝑗𝑗�, … ,𝑇𝑇𝑀𝑀2

𝑛𝑛 �𝑥𝑥𝑗𝑗�, 

𝑈𝑈𝑀𝑀3
1 �𝑥𝑥𝑗𝑗�,𝑈𝑈𝑀𝑀3

2 �𝑥𝑥𝑗𝑗�,𝑈𝑈𝑀𝑀3
3 �𝑥𝑥𝑗𝑗�, … ,𝑈𝑈𝑀𝑀3

𝑛𝑛 �𝑥𝑥𝑗𝑗�, 

𝐶𝐶𝑀𝑀3
1 �𝑥𝑥𝑗𝑗�,𝐶𝐶𝑀𝑀3

2 �𝑥𝑥𝑗𝑗�,𝐶𝐶𝑀𝑀3
3 �𝑥𝑥𝑗𝑗�, … ,𝐶𝐶𝑀𝑀3

𝑛𝑛 �𝑥𝑥𝑗𝑗� 

𝐹𝐹𝑀𝑀4
1 �𝑥𝑥𝑗𝑗�,𝐹𝐹𝑀𝑀4

2 �𝑥𝑥𝑗𝑗�,𝐹𝐹𝑀𝑀4
3 �𝑥𝑥𝑗𝑗�… ,𝐹𝐹𝑀𝑀4

𝑛𝑛 �𝑥𝑥𝑗𝑗� 

degrees of truth, degrees of uncertainty, degrees of contradiction and degrees of 
falsity, respectively. 

Also, in the MGSVNQPS, p is the number of elements of the set and n is the 
number of components of each element.    

Definition 7  Let 

𝐶̈𝐶 =
{��𝑀𝑀1(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

�𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

          
�𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � �𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

 �𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

 �𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

           𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

be a MGSVNQPS and let P(E) be the power set of E. A MGSVNQPN 𝐶̈𝐶1 is defined 
as 

𝐶̈𝐶1
= {(𝑀𝑀1𝑆𝑆𝑥𝑥1

1 ,𝑀𝑀1𝑆𝑆𝑥𝑥1
2 , … ,𝑀𝑀1𝑆𝑆𝑥𝑥1

𝑛𝑛), (𝑀𝑀2𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀2𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀2𝑆𝑆𝑥𝑥1
𝑛𝑛)(𝑇𝑇𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝑇𝑇𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝑇𝑇𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1)), 

          (𝑀𝑀3𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀3𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀3𝑆𝑆𝑥𝑥1
𝑛𝑛)(𝑈𝑈𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝑈𝑈𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝑈𝑈𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1)), 

          �𝑀𝑀4𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀4𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀4𝑆𝑆𝑥𝑥1
𝑛𝑛� �𝐶𝐶𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝐶𝐶𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝐶𝐶𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1)� 

          (𝑀𝑀5𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀5𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀5𝑆𝑆𝑥𝑥1
𝑛𝑛)(𝐹𝐹𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝐹𝐹𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝐹𝐹𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1))}. 
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Where, i=1; n=1,…,p.  

As in NQN, an MGSVNQPN representing an entity that can be a number, an idea, 
an object, etc. For  

𝐶̈𝐶1 

(𝑀𝑀1𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀1𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀1𝑆𝑆𝑥𝑥1
𝑛𝑛) is called the known part and 

(𝑀𝑀2𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀2𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀2𝑆𝑆𝑥𝑥1
𝑛𝑛)(𝑇𝑇𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝑇𝑇𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝑇𝑇𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1)), 

(𝑀𝑀3𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀3𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀3𝑆𝑆𝑥𝑥1
𝑛𝑛)(𝑈𝑈𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝑈𝑈𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝑈𝑈𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1)), 

�𝑀𝑀4𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀4𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀4𝑆𝑆𝑥𝑥1
𝑛𝑛� �𝐶𝐶𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝐶𝐶𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝐶𝐶𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1)� 

�𝑀𝑀5𝑆𝑆𝑥𝑥1
1 ,𝑀𝑀5𝑆𝑆𝑥𝑥1

2 , … ,𝑀𝑀5𝑆𝑆𝑥𝑥1
𝑛𝑛� �𝐹𝐹𝑆𝑆𝑥𝑥11(𝑥𝑥1),𝐹𝐹𝑆𝑆𝑥𝑥12(𝑥𝑥1), … ,𝐹𝐹𝑆𝑆𝑥𝑥1𝑛𝑛(𝑥𝑥1)� 

is called the unknown part. 

MGSVNQPS can also be represented in the form of 

𝐶̈𝐶 = �𝐶̈𝐶𝑖𝑖 ;  𝑖𝑖 = 1,2, … , 𝑗𝑗�. 

Example 8 Let  

𝐶̈𝐶𝑛𝑛1 = {({𝑘𝑘, 𝑥𝑥}), ({𝑡𝑡,𝑚𝑚})(0.3), ({𝑠𝑠,𝑦𝑦})(0.5), ({𝑧𝑧})(0.1), ({𝑦𝑦, 𝑥𝑥})(0.2)} 

𝐶̈𝐶𝑛𝑛2 = {({𝑠𝑠}), ({𝑙𝑙,𝑚𝑚})(0.2), ({𝑘𝑘, 𝑥𝑥})(0.6), ({𝑡𝑡, 𝑧𝑧})(0.3), ({𝑘𝑘, 𝑥𝑥})(0.3)} 

𝐶̈𝐶𝑛𝑛3 = {({𝑚𝑚, 𝑠𝑠}), ({𝑦𝑦,𝑚𝑚})(0.3), ({𝑙𝑙, 𝑧𝑧})(0.5), ({𝑡𝑡})(0.1), ({𝑚𝑚, 𝑥𝑥})(0.2)} 

𝐶̈𝐶𝑛𝑛4 = {({𝑡𝑡}), ({𝑙𝑙, 𝑧𝑧})(0.2), ({𝑦𝑦, 𝑥𝑥})(0.6), ({𝑡𝑡,𝑚𝑚})(0.3), ({𝑘𝑘,𝑦𝑦})(0.3)} 

be four GSVNQPS. Now, if we represent these four sets as a single set, we obtain 
 C̈n MGSVNQPS such that 

 C̈n = 

{({k, x}, {s}, {m, s}, {t}), ({t, m}, {l, m}, {y, m}, {l, z})(0.3,0.2,0.3,0.2), 

({s, y}, {k, x}, {l, z}, {y, x})(0.5,0.6,0.5,0.6), ({z}, {t, z}, {t}, {t, m})(0.1,0.3,0.1,0.3), 

({y, x}, {k, x}, {m, x}, {k, y})(0.2,0.3,0.2,0.3)} 

Where, thanks to C̈n MGSVNQPS, the sets C̈n1, C̈n2, C̈n3, C̈n4 were expressed as a 
single set. 
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Definition 9 Let 

𝑀𝑀𝐶̈𝐶 =
{��𝑀𝑀1(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

�𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

           
�𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � �𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

 �𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

�𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

           𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

and 

𝑁𝑁𝐶̈𝐶 =
{��𝑁𝑁1(𝑥𝑥𝑖𝑖)

1 ,𝑁𝑁1(𝑥𝑥𝑖𝑖)
2 ,𝑁𝑁1(𝑥𝑥𝑖𝑖)

3 , … ,𝑁𝑁1(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

�𝑁𝑁2(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

          
�𝑁𝑁3(𝑥𝑥𝑖𝑖)

1 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
2 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)

3 , … ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � �𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

1 ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)
2 ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

3 , … ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

 �𝑁𝑁4(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

   

�𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑁𝑁5(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

         𝑁𝑁1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

be two MGSVNQPSs. 

i. If the following conditions are satisfied, we say that 𝑀𝑀𝐶̈𝐶  is a subset of  𝑁𝑁𝐶̈𝐶  and 
denote        𝑀𝑀𝐶̈𝐶  ⊂  𝑁𝑁𝐶̈𝐶. 

𝑀𝑀1
𝑛𝑛(𝑥𝑥𝑖𝑖) ⊂ 𝑁𝑁1𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀2
𝑛𝑛(𝑥𝑥𝑖𝑖) ⊂ 𝑁𝑁2𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀3
𝑛𝑛(𝑥𝑥𝑖𝑖) ⊂ 𝑁𝑁3𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀4
𝑛𝑛(𝑥𝑥𝑖𝑖) ⊂ 𝑁𝑁4𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀5
𝑛𝑛(𝑥𝑥𝑖𝑖) ⊂ 𝑁𝑁5𝑛𝑛(𝑥𝑥𝑖𝑖) 
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and 

𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ≤ 𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛  

𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ≥ 𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

𝑛𝑛  

𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
𝑛𝑛 ≥ 𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛  

𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ≥ 𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛  

i=1,…,j; n=1,…,p. 

ii.  If the following conditions are satisfied, 𝑀𝑀𝐶̈𝐶  is equal to 𝑁𝑁𝐶̈𝐶 and is denoted as 
𝑀𝑀𝐶̈𝐶 =  𝑁𝑁𝐶̈𝐶 .  

𝑀𝑀1
𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝑁𝑁1𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀2
𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝑁𝑁2𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀3
𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝑁𝑁3𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀4
𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝑁𝑁4𝑛𝑛(𝑥𝑥𝑖𝑖) 

𝑀𝑀5
𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝑁𝑁5𝑛𝑛(𝑥𝑥𝑖𝑖) 

and 

𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛  

𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

𝑛𝑛  

𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛  

𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛  

i=1,…,j; n=1,…,p. 

Definition 10 Let 

𝑀𝑀𝐶̈𝐶 =
{��𝑀𝑀1(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

�𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

            
�𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � �𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

1 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
2 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

3 , … ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

 �𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 
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   �𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

           𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

and 

𝑁𝑁𝐶̈𝐶 =
{��𝑁𝑁1(𝑥𝑥𝑖𝑖)

1 ,𝑁𝑁1(𝑥𝑥𝑖𝑖)
2 ,𝑁𝑁1(𝑥𝑥𝑖𝑖)

3 , … ,𝑁𝑁1(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

�𝑁𝑁2(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

            
�𝑁𝑁3(𝑥𝑥𝑖𝑖)

1 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
2 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)

3 , … ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
𝑛𝑛 � �𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

1 ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)
2 ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

3 , … ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)
𝑛𝑛 �,

 �𝑁𝑁4(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

        �𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑁𝑁5(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

            𝑁𝑁1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

be two MGSVNQPSs. 

i. Average ∪ operation for 𝑀𝑀𝐶̈𝐶  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝐶̈𝐶 is defined as  

𝑀𝑀𝐶̈𝐶  ∪�𝐴𝐴 𝑁𝑁𝐶̈𝐶 = ��((𝑀𝑀,𝑁𝑁)11(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)21(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖)), 

          ((𝑀𝑀,𝑁𝑁)12(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)22(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖)) (𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ), 

         ((𝑀𝑀,𝑁𝑁)13(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)23(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖)) (𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ), 

         ((𝑀𝑀,𝑁𝑁)14(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)24(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖)) (𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ),          

                      
 ((𝑀𝑀,𝑁𝑁)15(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)25(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖)) (𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

1 ,𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
2 , … ,𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

𝑛𝑛 )�, 

                          (𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖) ∈
𝑃𝑃(𝐸𝐸)}. 

Where, 

(𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖) = 𝑀𝑀1
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁1𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖) = 𝑀𝑀2
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁2𝑛𝑛(𝑥𝑥𝑖𝑖) 
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(𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖) = 𝑀𝑀3
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁3𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖) = 𝑀𝑀4
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁4𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖) = 𝑀𝑀5
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁5𝑛𝑛(𝑥𝑥𝑖𝑖) 

and 

𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 =

𝑇𝑇(𝑀𝑀)2(𝑥𝑥𝑖𝑖)+
𝑛𝑛 𝑇𝑇(𝑁𝑁)2(𝑥𝑥𝑖𝑖)

𝑛𝑛

2
 

𝑈𝑈(𝑀𝑀,𝑁𝑁)3(𝑥𝑥𝑖𝑖)
𝑛𝑛 =

𝑈𝑈(𝑀𝑀)3(𝑥𝑥𝑖𝑖)+
𝑛𝑛 𝑈𝑈(𝑁𝑁)3(𝑥𝑥𝑖𝑖)

𝑛𝑛

2
 

𝐶𝐶(𝑀𝑀,𝑁𝑁)4(𝑥𝑥𝑖𝑖)
𝑛𝑛 =

𝐶𝐶(𝑀𝑀)4(𝑥𝑥𝑖𝑖)+
𝑛𝑛 𝐶𝐶(𝑁𝑁)4(𝑥𝑥𝑖𝑖)

𝑛𝑛

2
 

𝐹𝐹(𝑀𝑀,𝑁𝑁)5(𝑥𝑥𝑖𝑖)
𝑛𝑛 =

𝐹𝐹(𝑀𝑀)5(𝑥𝑥𝑖𝑖)+
𝑛𝑛 𝐹𝐹(𝑁𝑁)5(𝑥𝑥𝑖𝑖)

𝑛𝑛

2
 

i=1,…,j; n=1,…,p. 

ii. Average ∩ operation for 𝑀𝑀𝐶̈𝐶  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝐶̈𝐶  is obtained by taking the intersection 
operation (∩) instead of the union operation (∪) in the (i). 

iii. Optimistic ∪ operation for 𝑀𝑀𝐶̈𝐶  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝐶̈𝐶  is defined as  

𝑀𝑀𝐶̈𝐶  ∪�𝑂𝑂 𝑁𝑁𝐶̈𝐶 = ��((𝑀𝑀,𝑁𝑁)11(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)21(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖)), 

           ((𝑀𝑀,𝑁𝑁)12(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)22(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖)) (𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ), 

          ((𝑀𝑀,𝑁𝑁)13(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)23(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖)) (𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ), 

         ((𝑀𝑀,𝑁𝑁)14(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)24(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖)) (𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ),          

                     
 ((𝑀𝑀,𝑁𝑁)15(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)25(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖)) (𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

1 ,𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
2 , … ,𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

𝑛𝑛 )�, 

                        (𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖) ∈
𝑃𝑃(𝐸𝐸)}. 

Where, 

(𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖) = 𝑀𝑀1
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁1𝑛𝑛(𝑥𝑥𝑖𝑖) 
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(𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖) = 𝑀𝑀2
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁2𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖) = 𝑀𝑀3
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁3𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖) = 𝑀𝑀4
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁4𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖) = 𝑀𝑀5
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁5𝑛𝑛(𝑥𝑥𝑖𝑖) 

and 

𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝑇𝑇(𝑀𝑀)2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑇𝑇(𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

𝑈𝑈(𝑀𝑀,𝑁𝑁)3(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝑈𝑈(𝑀𝑀)3(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑈𝑈(𝑁𝑁)3(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

𝐶𝐶(𝑀𝑀,𝑁𝑁)4(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝐶𝐶(𝑀𝑀)4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝐶𝐶(𝑁𝑁)4(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

𝐹𝐹(𝑀𝑀,𝑁𝑁)5(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝐹𝐹(𝑀𝑀)5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝐹𝐹(𝑁𝑁)5(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

i=1,…,j; n=1,…,p. 

iv. Optimistic ∩ operation for 𝑀𝑀𝐶̈𝐶  𝑣𝑣𝑣𝑣 𝑁𝑁𝐶̈𝐶  is obtained by taking the intersection 
operation (∩) instead of the union operation (∪) in the (iii). 

v. Pessimistic ∪ operation for 𝑀𝑀𝐶̈𝐶  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝐶̈𝐶  is defined as  

𝑀𝑀𝐶̈𝐶  ∪�𝑃𝑃 𝑁𝑁𝐶̈𝐶 = ��((𝑀𝑀,𝑁𝑁)11(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)21(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖)), 

          ((𝑀𝑀,𝑁𝑁)12(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)22(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖)) (𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ), 

          ((𝑀𝑀,𝑁𝑁)13(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)23(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖)) (𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝑈𝑈(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ), 

         ((𝑀𝑀,𝑁𝑁)14(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)24(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖)) (𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

2 ,…, 
𝐶𝐶(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 ),          

                     
 ((𝑀𝑀,𝑁𝑁)15(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)25(𝑥𝑥𝑖𝑖), … , (𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖)) (𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

1 ,𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)
2 , … ,𝐹𝐹(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)

𝑛𝑛 )�, 

                        (𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖), (𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖) ∈
𝑃𝑃(𝐸𝐸)}. 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 

(𝑀𝑀,𝑁𝑁)𝑛𝑛1(𝑥𝑥𝑖𝑖) = 𝑀𝑀1
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁1𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛2(𝑥𝑥𝑖𝑖) = 𝑀𝑀2
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁2𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛3(𝑥𝑥𝑖𝑖) = 𝑀𝑀3
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁3𝑛𝑛(𝑥𝑥𝑖𝑖) 
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(𝑀𝑀,𝑁𝑁)𝑛𝑛4(𝑥𝑥𝑖𝑖) = 𝑀𝑀4
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁4𝑛𝑛(𝑥𝑥𝑖𝑖) 

(𝑀𝑀,𝑁𝑁)𝑛𝑛5(𝑥𝑥𝑖𝑖) = 𝑀𝑀5
𝑛𝑛(𝑥𝑥𝑖𝑖) ∪ 𝑁𝑁5𝑛𝑛(𝑥𝑥𝑖𝑖) 

and 

𝑇𝑇(𝑀𝑀,𝑁𝑁)2(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝑇𝑇(𝑀𝑀)2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑇𝑇(𝑁𝑁)2(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

𝑈𝑈(𝑀𝑀,𝑁𝑁)3(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝑈𝑈(𝑀𝑀)3(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑈𝑈(𝑁𝑁)3(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

𝐶𝐶(𝑀𝑀,𝑁𝑁)4(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝐶𝐶(𝑀𝑀)4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝐶𝐶(𝑁𝑁)4(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

𝐹𝐹(𝑀𝑀,𝑁𝑁)5(𝑥𝑥𝑖𝑖)=𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛 {𝐹𝐹(𝑀𝑀)5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝐹𝐹(𝑁𝑁)5(𝑥𝑥𝑖𝑖)
𝑛𝑛 } 

i=1,…,j; n=1,…,p. 

vi.  Pessimistic ∩ operation for 𝑀𝑀𝐶̈𝐶  𝑣𝑣𝑣𝑣 𝑁𝑁𝐶̈𝐶 is is obtained by taking the intersection 
operation (∩) instead of the union operation (∪) in the (v). 

Properties 11 Let 
𝑀𝑀𝐶̈𝐶 =

{��𝑀𝑀1(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀1(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀1(𝑥𝑥𝑖𝑖)

𝑛𝑛 �,

�𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

             

�𝑀𝑀3(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀3(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
1 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

2 ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
3 , … ,𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)

𝑛𝑛 �,

 �𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

  �𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

𝑀𝑀1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑀𝑀4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

𝑁𝑁𝐶̈𝐶 =

{��𝑁𝑁1(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁1(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁1(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁1(𝑥𝑥𝑖𝑖)

𝑛𝑛 �,

�𝑁𝑁2(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

�𝑁𝑁3(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁3(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)
1 ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

2 ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)
3 , … ,𝑈𝑈𝑁𝑁3(𝑥𝑥𝑖𝑖)

𝑛𝑛 �,

 �𝑁𝑁4(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

             �𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑁𝑁5(𝑥𝑥𝑖𝑖)
1 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 
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           𝑁𝑁1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑁𝑁2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑁𝑁3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑁𝑁4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

and 

𝑃𝑃𝐶̈𝐶 =

{��𝑃𝑃1(𝑥𝑥𝑖𝑖)
1 ,𝑃𝑃1(𝑥𝑥𝑖𝑖)

2 ,𝑃𝑃1(𝑥𝑥𝑖𝑖)
3 , … ,𝑃𝑃1(𝑥𝑥𝑖𝑖)

𝑛𝑛 �,

�𝑃𝑃2(𝑥𝑥𝑖𝑖)
1 ,𝑃𝑃2(𝑥𝑥𝑖𝑖)

2 ,𝑃𝑃2(𝑥𝑥𝑖𝑖)
3 , … ,𝑃𝑃2(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑇𝑇𝑃𝑃2(𝑥𝑥𝑖𝑖)
1 ,𝑇𝑇𝑃𝑃2(𝑥𝑥𝑖𝑖)

2 ,𝑇𝑇𝑃𝑃2(𝑥𝑥𝑖𝑖)
3 , … ,𝑇𝑇𝑃𝑃2(𝑥𝑥𝑖𝑖)

𝑛𝑛 �, 

               �𝑃𝑃3(𝑥𝑥𝑖𝑖)
1 ,𝑃𝑃3(𝑥𝑥𝑖𝑖)

2 ,𝑃𝑃3(𝑥𝑥𝑖𝑖)
3 , … ,𝑃𝑃3(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝑈𝑈𝑃𝑃3(𝑥𝑥𝑖𝑖)
1 ,𝑈𝑈𝑃𝑃3(𝑥𝑥𝑖𝑖)

2 ,𝑈𝑈𝑃𝑃3(𝑥𝑥𝑖𝑖)
3 , … ,𝑈𝑈𝑃𝑃3(𝑥𝑥𝑖𝑖)

𝑛𝑛 �,

 �𝑃𝑃4(𝑥𝑥𝑖𝑖)
1 ,𝑃𝑃4(𝑥𝑥𝑖𝑖)

2 ,𝑃𝑃4(𝑥𝑥𝑖𝑖)
3 , … ,𝑃𝑃4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � 

        �𝐶𝐶𝑃𝑃4(𝑥𝑥𝑖𝑖)
1 ,𝐶𝐶𝑃𝑃4(𝑥𝑥𝑖𝑖)

2 ,𝐶𝐶𝑃𝑃4(𝑥𝑥𝑖𝑖)
3 , … ,𝐶𝐶𝑃𝑃4(𝑥𝑥𝑖𝑖)

𝑛𝑛 � , �𝑃𝑃5(𝑥𝑥𝑖𝑖)
1 ,𝑃𝑃5(𝑥𝑥𝑖𝑖)

2 ,𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 � �𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
1 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

2 ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)
3 , … ,𝐹𝐹𝑁𝑁5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ��: 

            𝑃𝑃1(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑃𝑃2(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑃𝑃3(𝑥𝑥𝑖𝑖)
𝑛𝑛 ,𝑃𝑃4(𝑥𝑥𝑖𝑖)

𝑛𝑛 ,𝑃𝑃5(𝑥𝑥𝑖𝑖)
𝑛𝑛 ∈ 𝑃𝑃(𝐸𝐸)}. 

be three MGSVNQPSs. Then, the following properties are provided. 
i) 𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 𝑁𝑁𝐶̈𝐶 = 𝑁𝑁𝐶̈𝐶 ∪�𝐴𝐴 𝑀𝑀𝐶̈𝐶   

ii) 𝑀𝑀𝐶̈𝐶 ∪�𝑂𝑂 𝑁𝑁𝐶̈𝐶 = 𝑁𝑁𝐶̈𝐶 ∪�𝑂𝑂 𝑀𝑀𝐶̈𝐶  

iii) 𝑀𝑀𝐶̈𝐶 ∪′𝑃𝑃 𝑁𝑁𝐶̈𝐶 = 𝑁𝑁𝐶̈𝐶 ∪′𝑃𝑃 𝑀𝑀𝐶̈𝐶 

iv) 𝑀𝑀𝐶̈𝐶 ∩�𝐴𝐴 𝑁𝑁𝐶̈𝐶 = 𝑁𝑁𝐶̈𝐶 ∩�𝐴𝐴 𝑀𝑀𝐶̈𝐶  

v) 𝑀𝑀𝐶̈𝐶 ∩′𝑂𝑂 𝑁𝑁𝐶̈𝐶 = 𝑁𝑁𝐶̈𝐶 ∩′𝑂𝑂 𝑀𝑀𝐶̈𝐶 

vi) 𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 𝑁𝑁𝐶̈𝐶 = 𝑁𝑁𝐶̈𝐶 ∩′𝑃𝑃 𝑀𝑀𝐶̈𝐶 

vii) If  

𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝑇𝑇𝑃𝑃2(𝑥𝑥𝑖𝑖)

𝑛𝑛 , 𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝑈𝑈𝑃𝑃3(𝑥𝑥𝑖𝑖)

𝑛𝑛 , 𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝐶𝐶𝑃𝑃4(𝑥𝑥𝑖𝑖)

𝑛𝑛 , 𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝐹𝐹𝑃𝑃5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ; i=1,…,j; n=1,…,p. 

Then 

𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 (𝑁𝑁𝐶̈𝐶 ∪�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 𝑁𝑁𝐶̈𝐶) ∪�𝐴𝐴 𝑃𝑃𝐶̈𝐶  

viii) 𝑀𝑀𝐶̈𝐶 ∪�𝑂𝑂 (𝑁𝑁𝐶̈𝐶 ∪�𝑂𝑂 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∪�𝑂𝑂 𝑁𝑁𝐶̈𝐶) ∪�𝑂𝑂 𝑃𝑃𝐶̈𝐶   

ix) 𝑀𝑀𝐶̈𝐶 ∪�𝑃𝑃 (𝑁𝑁𝐶̈𝐶 ∪�𝑃𝑃 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∪�𝑃𝑃 𝑁𝑁𝐶̈𝐶) ∪�𝑃𝑃 𝑃𝑃𝐶̈𝐶   

x) If  

𝑇𝑇𝑀𝑀2(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝑇𝑇𝑃𝑃2(𝑥𝑥𝑖𝑖)

𝑛𝑛 , 𝑈𝑈𝑀𝑀3(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝑈𝑈𝑃𝑃3(𝑥𝑥𝑖𝑖)

𝑛𝑛 , 𝐶𝐶𝑀𝑀4(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝐶𝐶𝑃𝑃4(𝑥𝑥𝑖𝑖)

𝑛𝑛 , 𝐹𝐹𝑀𝑀5(𝑥𝑥𝑖𝑖)
𝑛𝑛 = 𝐹𝐹𝑃𝑃5(𝑥𝑥𝑖𝑖)

𝑛𝑛 ; i=1,…,j; n=1,…,p. 

then 

𝑀𝑀𝐶̈𝐶 ∩�𝐴𝐴 (𝑁𝑁𝐶̈𝐶 ∩�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∩�𝐴𝐴 𝑁𝑁𝐶̈𝐶) ∩�𝐴𝐴 𝑃𝑃𝐶̈𝐶  

xi) 𝑀𝑀𝐶̈𝐶 ∩′𝑂𝑂 (𝑁𝑁𝐶̈𝐶 ∩′𝑂𝑂 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∩′𝑂𝑂 𝑁𝑁𝐶̈𝐶) ∩′𝑂𝑂 𝑃𝑃𝐶̈𝐶   
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xii) 𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 (𝑁𝑁𝐶̈𝐶 ∩′𝑃𝑃 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 𝑁𝑁𝐶̈𝐶) ∩′𝑃𝑃 𝑃𝑃𝐶̈𝐶   

xiii) 𝑀𝑀𝐶̈𝐶 ∩�𝐴𝐴 (𝑁𝑁𝐶̈𝐶 ∪�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∩�𝐴𝐴 𝑁𝑁𝐶̈𝐶) ∪�𝐴𝐴 (𝑀𝑀𝐶̈𝐶 ∩�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) 

xiv) 𝑀𝑀𝐶̈𝐶 ∩′𝑂𝑂 (𝑁𝑁𝐶̈𝐶 ∪�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∩′𝑂𝑂 𝑁𝑁𝐶̈𝐶) ∪�𝐴𝐴 (𝑀𝑀𝐶̈𝐶 ∩′𝑂𝑂 𝑃𝑃𝐶̈𝐶  ) 

xv) 𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 (𝑁𝑁𝐶̈𝐶 ∪�𝑃𝑃 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 𝑁𝑁𝐶̈𝐶) ∪�𝑃𝑃 (𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 𝑃𝑃𝐶̈𝐶  ) 

xvi) 𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 (𝑁𝑁𝐶̈𝐶 ∩�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 𝑁𝑁𝐶̈𝐶) ∩′𝑂𝑂 (𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) 

xvii) 𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 (𝑁𝑁𝐶̈𝐶 ∩′𝑂𝑂 𝑃𝑃𝐶̈𝐶  ) = (𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 𝑁𝑁𝐶̈𝐶) ∩′𝑂𝑂 (𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 𝑃𝑃𝐶̈𝐶  ) 

xviii) 𝑀𝑀𝐶̈𝐶 ∪�𝑃𝑃 (𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 𝑃𝑃𝐶̈𝐶) = (𝑀𝑀𝐶̈𝐶  ∪�𝑃𝑃 𝑁𝑁𝐶̈𝐶) ∩′𝑃𝑃 (𝑀𝑀𝐶̈𝐶 ∪�𝑃𝑃 𝑃𝑃𝐶̈𝐶  ) 

xix) İf 𝑀𝑀𝐶̈𝐶 = 𝑁𝑁𝐶̈𝐶 then 𝑀𝑀𝐶̈𝐶 ∪�𝐴𝐴 𝑁𝑁𝐶̈𝐶 = 𝑀𝑀𝐶̈𝐶 ∪�𝑂𝑂 𝑁𝑁𝐶̈𝐶 = 𝑀𝑀𝐶̈𝐶 ∪′𝑃𝑃 𝑁𝑁𝐶̈𝐶  

xx) İf 𝑀𝑀𝐶̈𝐶 = 𝑁𝑁Ç then 𝑀𝑀𝐶̈𝐶 ∩�𝐴𝐴 𝑁𝑁𝐶̈𝐶 = 𝑀𝑀𝐶̈𝐶 ∩′𝑂𝑂 𝑁𝑁𝐶̈𝐶 = 𝑀𝑀𝐶̈𝐶 ∩′𝑃𝑃 𝑁𝑁𝐶̈𝐶  

Abbreviations 

NS: Neutrosophic Set 

NQN: Neutrosophic Quadruple Number 

NQS: Neutrosophic Quadruple Set 

MVNS: Multi-Valued Neutrosophic Set 

SVNQN: Set Valued Neutrosophic Quadruple Number 

SVNQS: Set Valued Neutrosophic Quadruple Set 

GSVNQS: Generalized Set Valued Neutrosophic Quintuple Set 

MGSVNQS: Multiple Generalized Set Valued Neutrosophic Quadruple Set 

MGSVNQPS: Multiple Generalized Set Valued Neutrosophic Quintuple Set 

MGSVNQPN: Multiple Generalized Set Valued Neutrosophic Quintuple Number 

4.Conclusions 

In this chapter, multiple generalized set-valued neutrosophic quintuple sets, 
multiple generalized set-valued neutrosophic quintuple numbers, some operators 
on them (average union, average intersection, optimistic union, optimistic 
intersection, pessimistic union, pessimistic intersection) are defined and their basic 
properties are given. This new set fulfills the properties of both quadripartioned 
neutrosophic sets, multiple neutrosophic sets and multiple neutrosophic quadruple 
sets.  
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5.Future Research Directions 
Researchers can use these studies to obtain interval multiple generalized set-valued 
neutrosophic quintuple sets, bipolar multiple generalized set-valued neutrosophic 
quintuple sets. In addition, researchers can use the operators obtained in this study 
in multi-criteria decision making applications to find more objective solutions to 
real-life problems. 
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ABSTRACT 

 In this study, we define a Hamming similarity measure for interval 
generalized set valued neutrosophic quadruple numbers. It is shown that this 
Hamming similarity measure satisfies the similarity measure conditions. 
Furthermore, an example application was carried out using the Hamming similarity 
measure defined for interval generalized set-valued neutrosophic quadruple 
numbers. In this application, the similarities of 10 fictitious universities to the ideal 
university were analyzed using the factors affecting university choice. In addition, 
similarities were also calculated with Hamming measures defined for interval-
valued neutrosophic numbers and generalized set-valued neutrosophic quadruple 
numbers and the results were compared. Although this application was made with 
fictitious data, researchers can apply this similarity measure with real data to obtain 
more objective results. Researchers can obtain new results in real-life problems by 
improving this similarity measure or using it in different decision-making 
applications. 

Keywords: Neutrosophic quadruple sets, Neutrosophic quadruple numbers, 
Generalized set valued neutrosophic quadruple sets, Generalized set valued 
quadruple numbers, Hamming similarity measure.   
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1.INTRODUCTION

In 1998, Florentin Smarandache defined the neutrosophic set theory [1]. In 
this theory, the elements in the set are expressed by the values of truth T, 
indeterminacy I and falsity F, making the mathematical expression of ambiguous 
situations very objective. Also, in 2010, Wang et al. defined SVNSs [2]. In these sets, 
the truth, indeterminacy and falsity values of each element are in the range of [0,1]. 
In 2020, Kargın et al. defined neutrosophic triple m-Banach spaces [3]. In 2020, Şahin 
et al. obtained neutrosophic ternary partial bipolar metric spaces [4]. Moreover, it 
was shown that neutrosophic ternary partial bipolar metric spaces have different 
properties from the classical partial metric space, neutrosophic ternary partial 
metric space and neutrosophic ternary metric space structures. Thus, the theory of 
neutrosophic metric spaces was shown to be more comprehensive. In 2021, Şahin 
defined the notion of homomorphism on the neutrosophic multigroup and the 
homomorphism kerlf, automorphism, homomorphic image and homomorphic 
preimage of the neutrosophic multigroup, respectively [5]. In 2022, Hawk obtained 
neutro-sigma algebras and anti-sigma algebras [6]. In 2024, Ali et al. defined some 
mean and geometric operators based on the q-digit orthopair neutrosophic soft set 
[7]. In 2024 Kaviyarasu et al. developed circular economy strategies to promote 
sustainable development using t-neutrosophic fuzzy graphs [8]. In 2024, Futjita 
aimed to extend the study of neutrosophic graphs by defining general-neutrosophic 
graphs, anti-neutrosophic graphs, balanced-neutrosophic graphs, and semi-
neutrosophic graphs [9]. 

In 2005, Wang et al. defined IVNSs as an important stage in the progress of 
neutrosophic theory [10]. This new concept is based on expressing truth, 
indeterminacy and falsity values as an interval instead of a fixed number. Thus, a 
wider range of uncertainties can be taken into account in decision-making 
processes, rather than relying only on a single precise value.  Başer and Ulucay [29] 
defined Effective Q fuzzy soft expert sets its some properties. In 2024, Alqazzazaz 
and Sallam in Industry 4.0 used a multi-criteria decision making (MCDM) approach 
for supplier selection process in Industry 4.0, using IVNSs to handle uncertainties, 
resulting in more flexible and reliable evaluations [11]. Başer and Ulucay [44] 
defined energy of a neutrosophic soft set.  In 2024, Razak et al. proposed a new 
concept based on Interval Valued Pythagorean Neutrosophic Set to deal with 
uncertainty and incomplete information [12]. In 2024, Palanikumar et al. presented 
a new approach to the (δ, ε) interval-valued neutrosophic set, an extension of 
interval-valued neutrosophic sets [13]. In 2024, Saeed et al. extended the interval-
valued neutrosophic fuzzy soft set (IVNFSS) to interval-valued neutrosophic fuzzy 
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set (IVNFSS) and developed a hybrid concept that includes complementary, 
combinatorial, and integrative operations and a quality assessment distance 
measure to improve decision-making truth [14]. 

In 2015, Smarandache defined neutrosophic quadruple sets and 
neutrosophic quadruple numbers for the first time, providing a significant 
expansion in the field of neutrosophic logic [15]. Neutrosophic quadruple sets, like 
neutrosophic sets, include the parameters truth (T), indeterminacy (I) and falsity (F), 
but are structured to include both the known and unknown components of these 
parameters. In 2019, Şahin and Kargın defined set-valued neutrosophic quadruple 
numbers and neutrosophic triple groups based on neutrosophic quadruple 
numbers [16]. New mathematical structures were defined by using set-valued 
neutrosophic quadruple numbers and neutrosophic triple groups together. Thus, 
new results were obtained in the field of set-valued neutrosophic quadruple 
numbers. The above-mentioned theories have been studied in various fields [29-90]. 
In 2020, Şahin et al. generalized neutrosophic quadruple sets and numbers [17]. In 
2022, Kargın and Şahin defined IGSVNQSs [18].  A new structure was developed 
based on GSVNQSs and IVNNs. This structure provides the properties of GSVNQSs 
and interval neutrosophic sets. In 2024, Kargın et al. defined multivalued 
generalized set valued neutrosophic quadruples and sets as a generalized form of 
multivalued neutrosophic numbers and neutrosophic quadruple sets [19]. This new 
set was constructed using GSVNQSs and multiple neutrosophic sets. The resulting 
structure contains the properties of both sets. In 2024, Al Tahan et al. defined the 
concept of neutrosophic quadruple Hv-modules on neutrosophic quadruple Hv-
rings [20]. 

In 2014, Ye defined similarity measures for SVNSs for the first time [21]. In 
2014, Ye defined the Hamming similarity measure for IVNSs [22]. In 2021, Kargın 
et al. developed a Hamming similarity measure for GSVNQNs. They also proved 
that this new approach provides more accurate results than previous methods for 
decision-making problems in legal science and other fields [23]. In 2021, Şahin et al. 
defined Euclidean distance and similarity measures based on GSVNQNs.  
Moreover, an algorithm based on the generalized Euclidean similarity measure was 
developed and demonstrated that this algorithm can be used in multi-criteria 
decision-making processes in the healthcare domain, such as COVID-19 treatment 
[24]. In 2021, Şahin et al. defined Hausdorff distance and similarity measures based 
on GSVNQNs and developed a new decision-making algorithm. This algorithm had 
an application in evaluating the effects of online learning [25]. In 2024, Mustapha et 
al. developed a hybrid weighted similarity measure based on neutrosophic sets, 
aiming to improve medical diagnosis processes in analyzing patient symptoms with 
indeterminacy [26]. In 2024, Rahman et al. developed a new structure and 
algorithms that provide flexibility and reliability in decision support systems by 
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combining probabilistic neutrosophic set with hypersoft set to effectively deal with 
uncertainties [27]. 

In 2016, Odabaş et al. determined the factors affecting university students' 
university preferences by pairwise comparison method. Data of 863 students 
studying at Hacettepe, Siirt and Aksaray universities in 2012 were analyzed. The 
findings show that, in general, the most important factor affecting university 
preference in all student groups is score ranking. Especially for Hacettepe 
University students, the quality of education ranked first, while for Siirt and 
Aksaray University students, being close to family or friends was the most decisive 
reason for preference. In addition, it was concluded that score ranking was the most 
important criterion in the groups of students who were satisfied and dissatisfied 
with their university choices [28]. 

The chapter is organized as follows: In the background Section, we present 
the basic definitions and properties to be used in this study. In the Research and 
Results Section, the Hamming similarity measure for IGSVNQNs numbers is 
defined and shown to satisfy the similarity conditions. In the Application section, 
we performed a similarity analysis for the factors affecting university selection 
using IGSVNQNs. In this application, the similarities of 10 fictitious universities 
with an ideal university were calculated using the Hamming similarity measure. In 
the comparison section, the results obtained for IVNNs and GSVNQNs are 
compared with the IGSVNNs used in the application. This comparison was done in 
order to evaluate how consistent and reliable the similarity measures are between 
different sets. In the conclusion, the findings of the study are summarized and 
suggestions for future research are presented. 

2.BACKGROUND 
Definition 1: [2] Let 𝒟𝒟 ≠ ∅. For  ∀𝒴𝒴�𝓋𝓋�𝒸𝒸 ∈ 𝒟𝒟 . A SVNS 𝒴𝒴�  over 𝒟𝒟 with functions; is 
defined as 

𝒴𝒴� = �〈𝒴𝒴�𝓋𝓋�𝒸𝒸 ,𝑇𝑇𝒴𝒴�𝓋𝓋�𝒸𝒸 , 𝐼𝐼𝒴𝒴�𝓋𝓋�𝒸𝒸 ,𝐹𝐹𝒴𝒴�𝓋𝓋�𝒸𝒸 〉 :𝒴𝒴�𝓋𝓋�𝒸𝒸 ∈ 𝒟𝒟, 𝒸𝒸 = 1,2, … ,𝒶𝒶� 

such that 

0 ≤   𝑇𝑇𝒴𝒴�𝓋𝓋�𝒸𝒸 + 𝐼𝐼𝒴𝒴�𝓋𝓋�𝒸𝒸 + 𝐹𝐹𝒴𝒴�𝓋𝓋�𝒸𝒸  ≤ 3, 

𝑇𝑇𝒴𝒴� :𝒟𝒟 → [0, 1], 𝐼𝐼𝒴𝒴� :𝒟𝒟 → [0, 1] and 𝐹𝐹𝒴𝒴� :𝒟𝒟 → [0, 1]. 

Where  𝑇𝑇𝒴𝒴�𝓋𝓋�𝒸𝒸 , 𝐼𝐼𝒴𝒴�𝓋𝓋�𝒸𝒸  and 𝐹𝐹𝒴𝒴�𝓋𝓋�𝒸𝒸 are the degree of thuth, degre of indeterminancy and 

degree of falsity of  𝒴𝒴�𝓋𝓋�𝒸𝒸 ∈ 𝒟𝒟 respectively.  

Definition 2: [10] Let  𝒟𝒟 ≠ ∅. For 𝒴𝒴�𝓋𝓋�𝒸𝒸 ∈ 𝒟𝒟. An IVNSs 𝒴𝒴�  over 𝒟𝒟 with functions is 
defined as 
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𝒴𝒴� = {< 𝒴𝒴�𝓋𝓋�𝒸𝒸 , �𝑇𝑇𝒴𝒴�𝓋𝓋�𝒸𝒸
𝐿𝐿 ,𝑇𝑇𝒴𝒴�𝓋𝓋�𝒸𝒸

𝑈𝑈 � , �𝐼𝐼𝒴𝒴�𝓋𝓋�𝒸𝒸
𝐿𝐿 , 𝐼𝐼𝒴𝒴�𝓋𝓋�𝒸𝒸

𝑈𝑈 � , �𝐹𝐹𝒴𝒴�𝓋𝓋�𝒸𝒸
𝑈𝑈 ,𝐹𝐹𝒴𝒴�𝓋𝓋�𝒸𝒸

𝑈𝑈 � >,𝒴𝒴�𝓋𝓋�𝒸𝒸 ∈ 𝒟𝒟, 𝑐𝑐 = 1,2, … ,𝑎𝑎}. 

Here, 

�𝑇𝑇𝒴𝒴�𝓋𝓋�𝒸𝒸
𝐿𝐿 ,𝑇𝑇𝒴𝒴�𝓋𝓋�𝒸𝒸

𝑈𝑈 � , �𝐼𝐼𝒴𝒴�𝓋𝓋�𝒸𝒸
𝐿𝐿 , 𝐼𝐼𝒴𝒴�𝓋𝓋�𝒸𝒸

𝑈𝑈 � and �𝐹𝐹𝒴𝒴�𝓋𝓋�𝒸𝒸
𝑈𝑈 ,𝐹𝐹𝒴𝒴�𝓋𝓋�𝒸𝒸

𝑈𝑈 � are intervals

𝑇𝑇𝒴𝒴�
𝐿𝐿:𝒟𝒟 → [0, 1], 𝑇𝑇𝒴𝒴�

𝑈𝑈:𝒟𝒟 → [0, 1] are truth functions, 

𝐼𝐼𝒴𝒴�
𝐿𝐿 :𝒟𝒟 → [0, 1], 𝐼𝐼𝒴𝒴�

𝑈𝑈:𝒟𝒟 → [0, 1] are indeterminancy functions, 

𝐹𝐹𝒴𝒴�
𝐿𝐿:𝒟𝒟 → [0, 1],𝐹𝐹𝒴𝒴�

𝑈𝑈:𝒟𝒟 → [0, 1] are falsity functions. 

Definition 3:[16] Let  𝒟𝒟 ≠ ∅ and P(𝒟𝒟) be the power set of 𝒟𝒟. An set valued 
neutrosophic quadruple numbers  

(𝒴𝒴�, 𝒴𝒴�𝑇𝑇T, 𝒴𝒴�𝐼𝐼𝐼𝐼,𝒴𝒴�𝐹𝐹F). 

Here, the components T, I and F are respectively the truth, indeterminacy and 
falsity functions in the SVNSs. In addition,  

𝒴𝒴�, 𝒴𝒴�𝑇𝑇, 𝒴𝒴�𝐼𝐼, 𝒴𝒴�𝐹𝐹 ∈ P(𝒟𝒟). 

Also, a set valued neutrosophic quadruple set 

𝒴𝒴�𝐷𝐷={(𝒴𝒴�, 𝒴𝒴�𝑇𝑇T, 𝒴𝒴�𝐼𝐼𝐼𝐼,𝒴𝒴�𝐹𝐹F), 𝒴𝒴� 𝒴𝒴�𝑇𝑇, 𝒴𝒴�𝐼𝐼, 𝒴𝒴�𝐹𝐹 ∈ P(𝒟𝒟)} 

is shown in the form. Here it is 

 “ 𝒴𝒴�” 

is called known part and 

‘‘𝒴𝒴�𝑇𝑇T,𝒴𝒴�𝐼𝐼𝐼𝐼,𝒴𝒴�𝐹𝐹F’’ 

is called the unknown part. 

Definition 4:[18] Let 𝒟𝒟 be a set and P(𝒟𝒟) be the power set of 𝒟𝒟. An IGSVNQS is 
represented as  

𝒴𝒴� = {< (𝐴𝐴𝒴𝒴�1),(𝐴𝐴𝒴𝒴�1)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�1 ,𝑇𝑇𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�1 , 𝐼𝐼𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�1 ,𝐹𝐹𝑈𝑈𝒴𝒴�1�; 
(𝐴𝐴𝒴𝒴�2),(𝐴𝐴𝒴𝒴�2)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�2 ,𝑇𝑇𝑈𝑈𝒴𝒴�2�, (𝐴𝐴𝒴𝒴�2)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�2 , 𝐼𝐼𝑈𝑈𝒴𝒴�2�,(𝐴𝐴𝒴𝒴�2)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�2 ,𝐹𝐹𝑈𝑈𝒴𝒴�2�; 
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... 
(𝐴𝐴𝒴𝒴�𝑎𝑎), (𝐴𝐴𝒴𝒴�𝑎𝑎)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�𝑎𝑎 ,𝑇𝑇𝑈𝑈𝒴𝒴�𝑎𝑎�, (𝐴𝐴𝒴𝒴�𝑎𝑎)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�𝑎𝑎 , 𝐼𝐼𝑈𝑈𝒴𝒴�𝑎𝑎�, (𝐴𝐴𝒴𝒴�𝑎𝑎)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�𝑎𝑎 ,𝐹𝐹𝑈𝑈𝒴𝒴�𝑎𝑎�>; 
(𝐴𝐴𝒴𝒴�𝑐𝑐), (𝐴𝐴𝒴𝒴�𝑐𝑐)𝑇𝑇, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐼𝐼, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐹𝐹 ∈ 𝑃𝑃(𝒟𝒟); 𝑐𝑐 = 1,2,3, … ,𝑎𝑎}. 

Here, the components  𝑇𝑇𝐿𝐿𝒴𝒴�𝑐𝑐 ,𝑇𝑇𝑈𝑈𝒴𝒴�𝑐𝑐,𝐼𝐼
𝐿𝐿
𝒴𝒴�𝑐𝑐 , 𝐼𝐼𝑈𝑈𝒴𝒴�𝑐𝑐, 𝐹𝐹

𝐿𝐿
𝒴𝒴�𝑐𝑐 ,𝐹𝐹𝑈𝑈𝒴𝒴�𝑐𝑐 are truth, indeterminacy and 

falsity functions in the IVNSs. In addition, 

(𝐴𝐴𝒴𝒴�𝑐𝑐), (𝐴𝐴𝒴𝒴�𝑐𝑐)𝑇𝑇, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐼𝐼, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐹𝐹 ∈ 𝑃𝑃(𝒟𝒟). 

Also, an IGSVNQNs 

�𝒴𝒴�𝑁𝑁�
1

= {< (𝐴𝐴𝒴𝒴�1),(𝐴𝐴𝒴𝒴�1)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�1 ,𝑇𝑇𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�1 , 𝐼𝐼𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�1 ,𝐹𝐹𝑈𝑈𝒴𝒴�1� >}

is shown in the form. Here it is,  

“(𝐴𝐴𝒴𝒴�1)’’ 

is called known part and 

“(𝐴𝐴𝒴𝒴�1)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�1 ,𝑇𝑇𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�1 , 𝐼𝐼𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�1 ,𝐹𝐹𝑈𝑈𝒴𝒴�1�’’ 

is called the unknown part. Also, 

𝑄𝑄 = {�𝒴𝒴�𝑁𝑁�
𝑐𝑐
; 𝑐𝑐 = 1,2, … ,𝑎𝑎}

is shown in the form. 

Definition 5: [18] Let 

𝒴𝒴� = {< (𝐴𝐴𝒴𝒴�1),(𝐴𝐴𝒴𝒴�1)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�1 ,𝑇𝑇𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�1 , 𝐼𝐼𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�1 ,𝐹𝐹𝑈𝑈𝒴𝒴�1�; 
(𝐴𝐴𝒴𝒴�2),(𝐴𝐴𝒴𝒴�2)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�2 ,𝑇𝑇𝑈𝑈𝒴𝒴�2�, (𝐴𝐴𝒴𝒴�2)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�2 , 𝐼𝐼𝑈𝑈𝒴𝒴�2�,(𝐴𝐴𝒴𝒴�2)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�2 ,𝐹𝐹𝑈𝑈𝒴𝒴�2�; 
... 
(𝐴𝐴𝒴𝒴�𝑎𝑎), (𝐴𝐴𝒴𝒴�𝑎𝑎)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�𝑎𝑎 ,𝑇𝑇𝑈𝑈𝒴𝒴�𝑎𝑎�, (𝐴𝐴𝒴𝒴�𝑎𝑎)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�𝑎𝑎 , 𝐼𝐼𝑈𝑈𝒴𝒴�𝑎𝑎�, (𝐴𝐴𝒴𝒴�𝑎𝑎)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�𝑎𝑎 ,𝐹𝐹𝑈𝑈𝒴𝒴�𝑎𝑎�>; 
(𝐴𝐴𝒴𝒴�𝑐𝑐), (𝐴𝐴𝒴𝒴�𝑐𝑐)𝑇𝑇, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐼𝐼, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐹𝐹 ∈ 𝑃𝑃(𝒟𝒟); 𝑐𝑐 = 1,2,3, … ,𝑎𝑎} 

and 

ℒ̃ = {< (𝐴𝐴ℒ̃1),(𝐴𝐴ℒ̃1)𝑇𝑇�𝑇𝑇𝐿𝐿ℒ̃1 ,𝑇𝑇𝑈𝑈ℒ̃1�, (𝐴𝐴ℒ̃1)𝐼𝐼�𝐼𝐼𝐿𝐿ℒ̃1 , 𝐼𝐼𝑈𝑈ℒ̃1�, (𝐴𝐴ℒ̃1)𝐹𝐹�𝐹𝐹𝐿𝐿ℒ̃1 ,𝐹𝐹𝑈𝑈ℒ̃1�; 

(𝐴𝐴ℒ̃2),(𝐴𝐴ℒ̃2)𝑇𝑇�𝑇𝑇𝐿𝐿ℒ̃2 ,𝑇𝑇𝑈𝑈ℒ̃2�, (𝐴𝐴ℒ̃2)𝐼𝐼�𝐼𝐼𝐿𝐿ℒ̃2 , 𝐼𝐼𝑈𝑈ℒ̃2�,(𝐴𝐴ℒ̃2)𝐹𝐹�𝐹𝐹𝐿𝐿ℒ̃2 ,𝐹𝐹𝑈𝑈ℒ̃2�; 

... 

(𝐴𝐴ℒ̃𝑎𝑎), (𝐴𝐴ℒ̃𝑎𝑎)𝑇𝑇�𝑇𝑇𝐿𝐿ℒ̃𝑎𝑎 ,𝑇𝑇𝑈𝑈𝒴𝒴�𝑎𝑎�, (𝐴𝐴ℒ̃𝑎𝑎)𝐼𝐼�𝐼𝐼𝐿𝐿ℒ̃𝑎𝑎 , 𝐼𝐼𝑈𝑈ℒ̃𝑎𝑎�, (𝐴𝐴ℒ̃𝑎𝑎)𝐹𝐹�𝐹𝐹𝐿𝐿ℒ̃𝑎𝑎 ,𝐹𝐹𝑈𝑈ℒ̃𝑎𝑎�>; 
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(𝐴𝐴ℒ̃𝑐𝑐), (𝐴𝐴ℒ̃𝑐𝑐)𝑇𝑇, (𝐴𝐴ℒ̃𝑐𝑐)𝐼𝐼, (𝐴𝐴ℒ̃𝑐𝑐)𝐹𝐹 ∈ 𝑃𝑃(𝒟𝒟); 𝑐𝑐 = 1,2,3, … ,𝑎𝑎} 

be IGSVNQSs.  

i. ℒ̃ is a equal to  𝒴𝒴� (𝒴𝒴� = ℒ̃) if and only if 
�𝐴𝐴𝒴𝒴�𝑐𝑐� = (𝐴𝐴ℒ̃𝑐𝑐), (𝐴𝐴𝒴𝒴�𝑐𝑐)𝑇𝑇 = (𝐴𝐴ℒ̃𝑐𝑐)𝑇𝑇, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐼𝐼 = (𝐴𝐴ℒ̃𝑐𝑐)𝐼𝐼, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐹𝐹 = (𝐴𝐴ℒ̃𝑐𝑐)𝐹𝐹,    
𝑇𝑇𝐿𝐿𝒴𝒴�𝑐𝑐 = 𝑇𝑇𝐿𝐿ℒ̃𝑐𝑐, 𝑇𝑇

𝑈𝑈
𝒴𝒴�𝑐𝑐 = 𝑇𝑇𝑈𝑈ℒ̃𝑐𝑐, 𝐼𝐼

𝐿𝐿
𝒴𝒴�𝑐𝑐 = 𝐼𝐼𝐿𝐿ℒ̃𝑐𝑐, 𝐼𝐼

𝑈𝑈
𝒴𝒴�𝑐𝑐 = 𝐼𝐼𝑈𝑈ℒ̃𝑐𝑐, 𝐹𝐹

𝐿𝐿
𝒴𝒴�𝑐𝑐 = 𝐹𝐹𝐿𝐿ℒ̃𝑐𝑐, 𝐹𝐹

𝑈𝑈
𝒴𝒴�𝑐𝑐 = 𝐹𝐹𝑈𝑈ℒ̃𝑐𝑐. 

ii. ℒ̃ is a subset of  𝒴𝒴� (𝒴𝒴� ⊂ ℒ̃) if and only if 
(𝐴𝐴𝒴𝒴�𝑐𝑐) ⊂ (𝐴𝐴ℒ̃𝑐𝑐), (𝐴𝐴𝒴𝒴�𝑐𝑐)𝑇𝑇 ⊂ (𝐴𝐴ℒ̃𝑐𝑐)𝑇𝑇, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐼𝐼 ⊂ (𝐴𝐴ℒ̃𝑐𝑐)𝐼𝐼, (𝐴𝐴𝒴𝒴�𝑐𝑐)𝐹𝐹 ⊂ (𝐴𝐴ℒ̃𝑐𝑐)𝐹𝐹,    

𝑇𝑇𝐿𝐿𝒴𝒴�𝑐𝑐 ≤ 𝑇𝑇𝐿𝐿ℒ̃𝑐𝑐, 𝑇𝑇
𝑈𝑈
𝒴𝒴�𝑐𝑐 ≤ 𝑇𝑇𝑈𝑈ℒ̃𝑐𝑐, 𝐼𝐼

𝐿𝐿
𝒴𝒴�𝑐𝑐 ≥ 𝐼𝐼𝐿𝐿ℒ̃𝑐𝑐, 𝐼𝐼

𝑈𝑈
𝒴𝒴�𝑐𝑐 ≥ 𝐼𝐼𝑈𝑈ℒ̃𝑐𝑐, 𝐹𝐹

𝐿𝐿
𝒴𝒴�𝑐𝑐 ≥ 𝐹𝐹𝐿𝐿ℒ̃𝑐𝑐, 𝐹𝐹

𝑈𝑈
𝒴𝒴�𝑐𝑐 ≥ 𝐹𝐹𝑈𝑈ℒ̃𝑐𝑐. 

Definition 6: [21] Let 

𝒴𝒴�1 = 〈𝒴𝒴�𝓋𝓋�1 ,𝑇𝑇𝒴𝒴�𝓋𝓋�1 , 𝐼𝐼𝒴𝒴�𝓋𝓋�1 ,𝐹𝐹𝒴𝒴�𝓋𝓋�1〉 and  𝒴𝒴�2 = 〈𝒴𝒴�𝓋𝓋�2 ,𝑇𝑇𝒴𝒴�𝓋𝓋�2 , 𝐼𝐼𝒴𝒴�𝓋𝓋�2 ,𝐹𝐹𝒴𝒴�𝓋𝓋�2〉 

be SVNNs,  𝑆𝑆𝐻𝐻�:𝒴𝒴�1 × 𝒴𝒴�2 → [0,1] be a function. The Hamming similarity measure 
between  𝒴𝒴�1 and 𝒴𝒴�2 denoted by  𝑆𝑆𝐻𝐻�(𝒴𝒴�1,𝒴𝒴�2) such that 

𝑆𝑆𝐻𝐻��𝒴𝒴�1,𝒴𝒴�2� = 1
3
��𝑇𝑇𝒴𝒴�𝓋𝓋�1 − 𝑇𝑇𝒴𝒴�𝓋𝓋�2� + �𝐼𝐼𝒴𝒴�𝓋𝓋�1 − 𝐼𝐼𝒴𝒴�𝓋𝓋�2� + �𝐹𝐹𝒴𝒴�𝓋𝓋�1 − 𝐹𝐹𝒴𝒴�𝓋𝓋�2��. 

Theorem 1: [21] Let 𝒴𝒴�1, 𝒴𝒴�2 and 𝒴𝒴�3 three SVNNs, 𝑆𝑆𝐻𝐻�:𝒴𝒴�1 × 𝒴𝒴�2 → [0,1] be a Hamming 
similarity measure. 𝑆𝑆𝐻𝐻�(𝒴𝒴�1,𝒴𝒴�2) satisfies below properties. 

i. 0 ≤ 𝑆𝑆𝐻𝐻�(𝒴𝒴�1,𝒴𝒴�2) ≤ 1, 
ii. 𝑆𝑆𝐻𝐻��𝒴𝒴�1,𝒴𝒴�2� = 1 ⇔ 𝒴𝒴�1 = 𝒴𝒴�2  

iii. 𝑆𝑆𝐻𝐻��𝒴𝒴�1,𝒴𝒴�2� = 𝑆𝑆𝐻𝐻�(𝒴𝒴�2,𝒴𝒴�1)  
iv. If  𝒴𝒴�1 ⊆ 𝒴𝒴�2 ⊆ 𝒴𝒴�3 ,then  

  𝑆𝑆𝐻𝐻�(𝒴𝒴�1,𝒴𝒴�3) ≤ 𝑆𝑆𝐻𝐻�(𝒴𝒴�1,𝒴𝒴�2) and 𝑆𝑆𝐻𝐻�(𝒴𝒴�1,𝒴𝒴�3) ≤ 𝑆𝑆𝐻𝐻�(𝒴𝒴�2,𝒴𝒴�3). 
Definition 7:[22] Let 

�𝒴𝒴�𝑁𝑁�
1

= {< (𝒴𝒴�1),�𝑇𝑇𝐿𝐿𝒴𝒴�1 ,𝑇𝑇𝑈𝑈𝒴𝒴�1�, �𝐼𝐼
𝐿𝐿
𝒴𝒴�1 , 𝐼𝐼𝑈𝑈𝒴𝒴�1�, �𝐹𝐹

𝐿𝐿
𝒴𝒴�1 ,𝐹𝐹𝑈𝑈𝒴𝒴�1� >} 

and 

�𝒴𝒴�𝑁𝑁�
2

= {< (𝒴𝒴�2),�𝑇𝑇𝐿𝐿𝒴𝒴�2 ,𝑇𝑇𝑈𝑈𝒴𝒴�2�, �𝐼𝐼
𝐿𝐿
𝒴𝒴�2 , 𝐼𝐼𝑈𝑈𝒴𝒴�2�,�𝐹𝐹

𝐿𝐿
𝒴𝒴�2 ,𝐹𝐹𝑈𝑈𝒴𝒴�2� >} 

be two IVNNs. 𝑆𝑆𝐻𝐻�: �𝒴𝒴�𝑁𝑁�
1

× �𝒴𝒴�𝑁𝑁�
2
→ [0,1] be a function. The Hamming similarity 

measure between �𝒴𝒴�𝑁𝑁�
1
 and �𝒴𝒴�𝑁𝑁�

2
 denoted by 𝑆𝑆𝐻𝐻� ��𝒴𝒴�N�

1
, �𝒴𝒴�N�

2
� such that 

𝑆𝑆𝐻𝐻� ��𝒴𝒴�N�
1

, �𝒴𝒴�N�
2
�

=
��TL

𝒴𝒴�1 − TL
𝒴𝒴�2� + �IL𝒴𝒴�1 − IL𝒴𝒴�2� + �FL𝒴𝒴�1 − FL𝒴𝒴�2� + �TU

𝒴𝒴�1 − TU
𝒴𝒴�2� + �IU𝒴𝒴�1 − IU𝒴𝒴�2� + �FU𝒴𝒴�1 − FU𝒴𝒴�2��

6
. 
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Definition 8:[23] Let 

�𝒴𝒴�𝑁𝑁�
1

= {< (𝐴𝐴𝒴𝒴�1),(𝐴𝐴𝒴𝒴�1)𝑇𝑇𝑇𝑇𝒴𝒴�1, (𝐴𝐴𝒴𝒴�1)𝐼𝐼𝐼𝐼𝒴𝒴�1, (𝐴𝐴𝒴𝒴�1)𝐹𝐹𝐹𝐹𝒴𝒴�1 >} 

and 

�𝒴𝒴�𝑁𝑁�
2

= {< (𝐴𝐴𝒴𝒴�2),(𝐴𝐴𝒴𝒴�2)𝑇𝑇𝑇𝑇𝒴𝒴�2, (𝐴𝐴𝒴𝒴�2)𝐼𝐼𝐼𝐼𝒴𝒴�2,(𝐴𝐴𝒴𝒴�2)𝐹𝐹𝐹𝐹𝒴𝒴�2 >} 

be two IGSVNQNs. 𝑆𝑆𝐻𝐻�: �𝒴𝒴�𝑁𝑁�
1

× �𝒴𝒴�𝑁𝑁�
2
→ [0,1]  be function. The Hamming 

similarity measure between  𝒴𝒴�1 and 𝒴𝒴�2 denoted by  𝑆𝑆𝐻𝐻�(𝒴𝒴�1,𝒴𝒴�2) such that 

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1
, �𝒴𝒴�𝑁𝑁�

2
� = 1 −

1
2 �
��𝑇𝑇𝒴𝒴�1 − 𝑇𝑇𝒴𝒴�2�+ �𝐼𝐼𝒴𝒴�1 − 𝐼𝐼𝒴𝒴�2�+ �𝐹𝐹𝒴𝒴�1 − 𝐹𝐹𝒴𝒴�2��

3
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤
. 

3.HAMMIING DISTANCE MEASURE FOR INTERVAL 
GENERALIZED SET-VALUED NEUTROSOPHIC QUADRUPLE 

NUMBERS 

Definition 9 Let  

�𝒴𝒴�𝑁𝑁�
1

= {< (𝐴𝐴𝒴𝒴�1),(𝐴𝐴𝒴𝒴�1)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�1 ,𝑇𝑇𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�1 , 𝐼𝐼𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�1 ,𝐹𝐹𝑈𝑈𝒴𝒴�1� >} 

�𝒴𝒴�𝑁𝑁�
2

= {< (𝐴𝐴𝒴𝒴�2),(𝐴𝐴𝒴𝒴�2)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�2 ,𝑇𝑇𝑈𝑈𝒴𝒴�2�, (𝐴𝐴𝒴𝒴�2)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�2 , 𝐼𝐼𝑈𝑈𝒴𝒴�2�,(𝐴𝐴𝒴𝒴�2)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�2 ,𝐹𝐹𝑈𝑈𝒴𝒴�2� >} 

be two IGSVNQNs. 𝑆𝑆𝐻𝐻�: �𝒴𝒴�𝑁𝑁�
1

× �𝒴𝒴�𝑁𝑁�
2
→ [0,1] be a function. Then, 

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�1, �𝒴𝒴�𝑁𝑁�2�
= 1

−
1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2�+ �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2�+ �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2�+ �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�

6
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤
. 

is called generalized Hamming similarity measure for IGSVNQNs. 

Example 1: Let 

�𝒴𝒴�𝑁𝑁�
1

= {< {𝜏̂𝜏1, 𝜏̂𝜏2, 𝜏̂𝜏4, 𝜏̂𝜏5, 𝜏̂𝜏6}, {𝜏̂𝜏2, 𝜏̂𝜏4}[0.32, 0.5], {𝜏̂𝜏1, 𝜏̂𝜏5}[0.1, 0.75], {𝜏̂𝜏6, 𝜏̂𝜏5, 𝜏̂𝜏4}[0, 0.2]
>} 
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41 

and 

�𝒴𝒴�𝑁𝑁�
2

= {< {𝜏̂𝜏1, 𝜏̂𝜏5, 𝜏̂𝜏6}, {𝜏̂𝜏5, 𝜏̂𝜏1}[0, 0.25], {𝜏̂𝜏6}[0.55, 0.7], {𝜏̂𝜏5}[0.1, 0.8] >}

be two IGSVNQNs and  𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
�  be generalized Hamming similarity

measure for IGSVNQNs. Then  

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�1, �𝒴𝒴�𝑁𝑁�2�
= 1

−
1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2�+ �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2�+ �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2�+ �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�

6
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤

= 1

−
1
2
�
|0.32 − 0| + |0.1 − 0.55| + |0 − 0.1| + |0.5 − 0.25| + |0.75 − 0.7| + |0.2 − 0.8|

6

+
4 − � 3

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,6} + 0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,4} + 0

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3} + 1
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3}�

4
� = 0,373. 

Theorem 2: Let 

�𝒴𝒴�𝑁𝑁�
1

= {< (𝐴𝐴𝒴𝒴�1),(𝐴𝐴𝒴𝒴�1)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�1 ,𝑇𝑇𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�1 , 𝐼𝐼𝑈𝑈𝒴𝒴�1�, (𝐴𝐴𝒴𝒴�1)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�1 ,𝐹𝐹𝑈𝑈𝒴𝒴�1� >}, 

�𝒴𝒴�𝑁𝑁�
2

= {< (𝐴𝐴𝒴𝒴�2),(𝐴𝐴𝒴𝒴�2)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�2 ,𝑇𝑇𝑈𝑈𝒴𝒴�2�, (𝐴𝐴𝒴𝒴�2)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�2 , 𝐼𝐼𝑈𝑈𝒴𝒴�2�,(𝐴𝐴𝒴𝒴�2)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�2 ,𝐹𝐹𝑈𝑈𝒴𝒴�2� >} 

and 

�𝒴𝒴�𝑁𝑁�
3

= {< (𝐴𝐴𝒴𝒴�3),(𝐴𝐴𝒴𝒴�3)𝑇𝑇�𝑇𝑇𝐿𝐿𝒴𝒴�3 ,𝑇𝑇𝑈𝑈𝒴𝒴�3�, (𝐴𝐴𝒴𝒴�3)𝐼𝐼�𝐼𝐼𝐿𝐿𝒴𝒴�3 , 𝐼𝐼𝑈𝑈𝒴𝒴�3�, (𝐴𝐴𝒴𝒴�3)𝐹𝐹�𝐹𝐹𝐿𝐿𝒴𝒴�3 ,𝐹𝐹𝑈𝑈𝒴𝒴�3� >} 

be three IGSVNQNs and 𝑆𝑆𝐻𝐻�: �𝒴𝒴�𝑁𝑁�
1

× �𝒴𝒴�𝑁𝑁�
2
→ [0,1]  be generalized Hamming

similarity measure in Definition 9. Then, 𝑆𝑆𝐻𝐻� satisfies the following conditions. 

i) 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
� ∈ [0,1]

ii) 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
� = 1 ⟺ �𝒴𝒴�𝑁𝑁�

1
= �𝒴𝒴�𝑁𝑁�

2

iii) 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
� = 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�

2
, �𝒴𝒴�𝑁𝑁�

1
�

iv) If �𝒴𝒴�𝑁𝑁�
1
⊂ �𝒴𝒴�𝑁𝑁�

2
⊂ �𝒴𝒴�𝑁𝑁�

3
, then
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42 

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
3
� ≤ 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�

1
, �𝒴𝒴�𝑁𝑁�

2
� and 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�1, �𝒴𝒴�𝑁𝑁�3� ≤ 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�2, �𝒴𝒴�𝑁𝑁�3�

Proof: 

i) Let �𝒴𝒴�𝑁𝑁�
1

= �𝒴𝒴�𝑁𝑁�
2
 . Then,

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
�

= 1

−
1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�

6
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑎𝑎𝑘𝑘𝑘𝑘�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤

    =1 − 1
2
�0+0+0+0+0+0

6
+ 4−[1+1+1+1]

4
� 

=1        (1) 

Thus max �𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
�� = 1.

Now, let  

(𝐴𝐴𝒴𝒴�1) ∩ (𝐴𝐴𝒴𝒴�2) = ∅, (𝐴𝐴𝒴𝒴�1)𝑇𝑇 ∩ (𝐴𝐴𝒴𝒴�2)𝑇𝑇 = ∅ , (𝐴𝐴𝒴𝒴�1)𝐼𝐼 ∩ (𝐴𝐴𝒴𝒴�2)𝐼𝐼 = ∅, (𝐴𝐴𝒴𝒴�1)𝐹𝐹 ∩ (𝐴𝐴𝒴𝒴�2)𝐹𝐹 = ∅ 

and 

�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� = 1, �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� = 1, 

�𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� = 1, �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� = 1, 

�𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� = 1, �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2� = 1. 

Then 

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
�

= 1

−
1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�

6
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤
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      =1 − 1
2
�1+1+1+1+1+1

6
+ 4−[0+0+0+0]

4
� 

=0                                                                                                                                          (2) 

Thus,  min �𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
�� = 0.  

Hence, we obtain 

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
� ∈ [0,1]. 

ii) Let   �𝒴𝒴�𝑁𝑁�
1

= �𝒴𝒴�𝑁𝑁�
2
 . From (1), we obtain   𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�

1
, �𝒴𝒴�𝑁𝑁�

2
� = 1. We assume 

that 

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
�

= 1

−
1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�

6
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤
 

     =1 

Where, it must be  

1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�

6
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤

= 0 

Thus,  

�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2�
+ �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2� = 0 

and 
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4 − �
𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
� = 0         (2) 

 From (2), we obtain that 

�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� = 0, �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� = 0, �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� = 0,  

�𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� = 0, �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� = 0, �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2� = 0 

and 

𝑆𝑆�(𝐴𝐴𝒴𝒴�1) ∩ (𝐴𝐴𝒴𝒴�2)�
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1, 𝑆𝑆�(𝐴𝐴𝒴𝒴�1) ∪ (𝐴𝐴𝒴𝒴�2)��

=
𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇 ∩ (𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1, 𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇 ∪ (𝐴𝐴𝒴𝒴�2)𝑇𝑇��

=
𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼 ∩ (𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1, 𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼 ∪ (𝐴𝐴𝒴𝒴�2)𝐼𝐼��
=

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹 ∩ (𝐴𝐴𝒴𝒴�2)𝐹𝐹�
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1, 𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹 ∪ (𝐴𝐴𝒴𝒴�2)𝐹𝐹��

= 1 

Thus, we have that 

 𝑇𝑇𝐿𝐿𝒴𝒴�1 = 𝑇𝑇𝐿𝐿𝒴𝒴�2 , 𝐼𝐼𝐿𝐿𝒴𝒴�1 = 𝐼𝐼𝐿𝐿𝒴𝒴�2 , 𝐹𝐹𝐿𝐿𝒴𝒴�1 = 𝐹𝐹𝐿𝐿𝒴𝒴�2 , 𝑇𝑇
𝑈𝑈
𝒴𝒴�1 = 𝑇𝑇𝑈𝑈𝒴𝒴�2 , 𝐼𝐼𝑈𝑈𝒴𝒴�1 = 𝐼𝐼𝑈𝑈𝒴𝒴�2 ,𝐹𝐹𝑈𝑈𝒴𝒴�1 = 𝐹𝐹𝑈𝑈𝒴𝒴�2, 

�𝐴𝐴𝒴𝒴�1� = (𝐴𝐴𝒴𝒴�2) , (𝐴𝐴𝒴𝒴�1)𝑇𝑇 = (𝐴𝐴𝒴𝒴�2)𝑇𝑇 , (𝐴𝐴𝒴𝒴�1)𝐼𝐼 = (𝐴𝐴𝒴𝒴�2)𝐼𝐼, (𝐴𝐴𝒴𝒴�1)𝐹𝐹 = (𝐴𝐴𝒴𝒴�2)𝐹𝐹 . 

Therefore, from Definition 5; we obtain 

�𝒴𝒴�𝑁𝑁�
1

= �𝒴𝒴�𝑁𝑁�
2

. 

 

iii)  

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
2
�

= 1

−
1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�

6
 

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤
 

= 1

−
1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2� + �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2�
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+

4 − �
𝑆𝑆��𝐴𝐴𝒴𝒴�2�∩�𝐴𝐴𝒴𝒴�1��

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆��𝐴𝐴𝒴𝒴�2�∪�𝐴𝐴𝒴𝒴�1���
+

𝑆𝑆��𝐴𝐴𝒴𝒴�2�𝑇𝑇
∩�𝐴𝐴𝒴𝒴�1�𝑇𝑇

�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆��𝐴𝐴𝒴𝒴�2�𝑇𝑇
∪�𝐴𝐴𝒴𝒴�1�𝑇𝑇

��
+

𝑆𝑆��𝐴𝐴𝒴𝒴�2�𝐼𝐼
∩�𝐴𝐴𝒴𝒴�1�𝐼𝐼

�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆��𝐴𝐴𝒴𝒴�2�𝐼𝐼
∪�𝐴𝐴𝒴𝒴�1�𝐼𝐼

��
+

𝑆𝑆��𝐴𝐴𝒴𝒴�2�𝐹𝐹
∩�𝐴𝐴𝒴𝒴�1�𝐹𝐹

�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆��𝐴𝐴𝒴𝒴�2�𝐹𝐹
∪�𝐴𝐴𝒴𝒴�1�𝐹𝐹

��
�

4

⎦
⎥
⎥
⎥
⎥
⎤

 

= 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
2

, �𝒴𝒴�𝑁𝑁�
1
�. 

iv) Let �𝒴𝒴�𝑁𝑁�
1
⊂ �𝒴𝒴�𝑁𝑁�

2
⊂ �𝒴𝒴�𝑁𝑁�

3
 . From Definition 5, we obtain that 

 (𝐴𝐴𝒴𝒴�1) ⊂ (𝐴𝐴𝒴𝒴�2) ⊂ (𝐴𝐴𝒴𝒴�3) , (𝐴𝐴𝒴𝒴�1)𝑇𝑇 ⊂ (𝐴𝐴𝒴𝒴�2)𝑇𝑇 ⊂ (𝐴𝐴𝒴𝒴�3)𝑇𝑇 , (𝐴𝐴𝒴𝒴�1)𝐼𝐼 ⊂ (𝐴𝐴𝒴𝒴�2)𝐼𝐼 ⊂ (𝐴𝐴𝒴𝒴�3)𝐼𝐼 , 
(𝐴𝐴𝒴𝒴�1)𝐹𝐹 ⊂ (𝐴𝐴𝒴𝒴�2)𝐹𝐹 ⊂ (𝐴𝐴𝒴𝒴�3)𝐹𝐹; 

𝑇𝑇𝐿𝐿𝒴𝒴�1 ≤ 𝑇𝑇𝐿𝐿𝒴𝒴�2 ≤ 𝑇𝑇𝐿𝐿𝒴𝒴�3 , 𝑇𝑇𝑈𝑈𝒴𝒴�1 ≤ 𝑇𝑇𝑈𝑈𝒴𝒴�2 ≤ 𝑇𝑇𝑈𝑈𝒴𝒴�3;  𝐼𝐼𝐿𝐿𝒴𝒴�1 ≤ 𝐼𝐼𝐿𝐿𝒴𝒴�2 ≤ 𝐼𝐼𝐿𝐿𝒴𝒴�3 , 𝐼𝐼𝑈𝑈𝒴𝒴�1 ≤ 𝐼𝐼𝑈𝑈𝒴𝒴�2 ≤ 𝐼𝐼𝑈𝑈𝒴𝒴�3; 

𝐹𝐹𝐿𝐿𝒴𝒴�1 ≤ 𝐹𝐹𝐿𝐿𝒴𝒴�2 ≤ 𝐹𝐹𝐿𝐿𝒴𝒴�3 , 𝐹𝐹𝑈𝑈𝒴𝒴�1 ≤ 𝐹𝐹𝑈𝑈𝒴𝒴�2 ≤ 𝐹𝐹𝑈𝑈𝒴𝒴�3 .                                                                                                         
(3) 

From (3), we have that  

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
>  

       
𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�3)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�3)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�3)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�3)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�3)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�3)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�3)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�3)𝐹𝐹��
               (4) 

Also, From (4), we have that 

�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�2� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�2� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�2� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�2� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�2�
+ �𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�2� < 

�𝑇𝑇𝐿𝐿𝒴𝒴�1 − 𝑇𝑇𝐿𝐿𝒴𝒴�3� + �𝐼𝐼𝐿𝐿𝒴𝒴�1 − 𝐼𝐼𝐿𝐿𝒴𝒴�3� + �𝐹𝐹𝐿𝐿𝒴𝒴�1 − 𝐹𝐹𝐿𝐿𝒴𝒴�3� + �𝑇𝑇𝑈𝑈𝒴𝒴�1 − 𝑇𝑇𝑈𝑈𝒴𝒴�3� + �𝐼𝐼𝑈𝑈𝒴𝒴�1 − 𝐼𝐼𝑈𝑈𝒴𝒴�3� +
�𝐹𝐹𝑈𝑈𝒴𝒴�1 − 𝐹𝐹𝑈𝑈𝒴𝒴�3�              (5) 

Thus, from (4) and (5), we obtain that 

1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1−𝑇𝑇

𝐿𝐿
𝒴𝒴�2�+�𝐼𝐼

𝐿𝐿
𝒴𝒴�1−𝐼𝐼

𝐿𝐿
𝒴𝒴�2�+�𝐹𝐹

𝐿𝐿
𝒴𝒴�1−𝐹𝐹

𝐿𝐿
𝒴𝒴�2�+�𝑇𝑇

𝑈𝑈
𝒴𝒴�1−𝑇𝑇

𝑈𝑈
𝒴𝒴�2�+�𝐼𝐼

𝑈𝑈
𝒴𝒴�1−𝐼𝐼

𝑈𝑈
𝒴𝒴�2�+�𝐹𝐹

𝑈𝑈
𝒴𝒴�1−𝐹𝐹

𝑈𝑈
𝒴𝒴�2�

6
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+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤

< 

1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1−𝑇𝑇

𝐿𝐿
𝒴𝒴�3�+�𝐼𝐼

𝐿𝐿
𝒴𝒴�1−𝐼𝐼

𝐿𝐿
𝒴𝒴�3�+�𝐹𝐹

𝐿𝐿
𝒴𝒴�1−𝐹𝐹

𝐿𝐿
𝒴𝒴�3�+�𝑇𝑇

𝑈𝑈
𝒴𝒴�1−𝑇𝑇

𝑈𝑈
𝒴𝒴�3�+�𝐼𝐼

𝑈𝑈
𝒴𝒴�1−𝐼𝐼

𝑈𝑈
𝒴𝒴�3�+�𝐹𝐹

𝑈𝑈
𝒴𝒴�1−𝐹𝐹

𝑈𝑈
𝒴𝒴�3�

6
  

+
4−�

𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)∩(𝐴𝐴𝒴𝒴�3

)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)∪(𝐴𝐴𝒴𝒴�3

)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)𝑇𝑇∩(𝐴𝐴𝒴𝒴�3

)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)𝑇𝑇∪(𝐴𝐴𝒴𝒴�3

)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)𝐼𝐼∩(𝐴𝐴𝒴𝒴�3

)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)𝐼𝐼∪(𝐴𝐴𝒴𝒴�3

)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)𝐹𝐹∩(𝐴𝐴𝒴𝒴�3

)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1
)𝐹𝐹∪(𝐴𝐴𝒴𝒴�3

)𝐹𝐹��
�

4

⎦
⎥
⎥
⎥
⎤
                      

(6) 

Hence, from (6), we have that 

1 − 1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1−𝑇𝑇

𝐿𝐿
𝒴𝒴�3�+�𝐼𝐼

𝐿𝐿
𝒴𝒴�1−𝐼𝐼

𝐿𝐿
𝒴𝒴�3�+�𝐹𝐹

𝐿𝐿
𝒴𝒴�1−𝐹𝐹

𝐿𝐿
𝒴𝒴�3�+�𝑇𝑇

𝑈𝑈
𝒴𝒴�1−𝑇𝑇

𝑈𝑈
𝒴𝒴�3�+�𝐼𝐼

𝑈𝑈
𝒴𝒴�1−𝐼𝐼

𝑈𝑈
𝒴𝒴�3�+�𝐹𝐹

𝑈𝑈
𝒴𝒴�1−𝐹𝐹

𝑈𝑈
𝒴𝒴�3�

6
  

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�3)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�3)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�3)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�3)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�3)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�3)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�3)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�3)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤

> 

1 − 1
2
�
�𝑇𝑇𝐿𝐿𝒴𝒴�1−𝑇𝑇

𝐿𝐿
𝒴𝒴�2�+�𝐼𝐼

𝐿𝐿
𝒴𝒴�1−𝐼𝐼

𝐿𝐿
𝒴𝒴�2�+�𝐹𝐹

𝐿𝐿
𝒴𝒴�1−𝐹𝐹

𝐿𝐿
𝒴𝒴�2�+�𝑇𝑇

𝑈𝑈
𝒴𝒴�1−𝑇𝑇

𝑈𝑈
𝒴𝒴�2�+�𝐼𝐼

𝑈𝑈
𝒴𝒴�1−𝐼𝐼

𝑈𝑈
𝒴𝒴�2�+�𝐹𝐹

𝑈𝑈
𝒴𝒴�1−𝐹𝐹

𝑈𝑈
𝒴𝒴�2�

6
  

+
4 − �

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∩(𝐴𝐴𝒴𝒴�2)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)∪(𝐴𝐴𝒴𝒴�2)��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∩(𝐴𝐴𝒴𝒴�2)𝑇𝑇�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝑇𝑇∪(𝐴𝐴𝒴𝒴�2)𝑇𝑇��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∩(𝐴𝐴𝒴𝒴�2)𝐼𝐼�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐼𝐼∪(𝐴𝐴𝒴𝒴�2)𝐼𝐼��
+

𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∩(𝐴𝐴𝒴𝒴�2)𝐹𝐹�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�1,𝑆𝑆�(𝐴𝐴𝒴𝒴�1)𝐹𝐹∪(𝐴𝐴𝒴𝒴�2)𝐹𝐹��
�

4
⎦
⎥
⎥
⎥
⎤
 

Therefore, we obtain   𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
3
� ≤ 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�

1
, �𝒴𝒴�𝑁𝑁�

2
�  

Also, 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
3
� ≤ 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�

2
, �𝒴𝒴�𝑁𝑁�

3
� can be proved similar to   

𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�
1

, �𝒴𝒴�𝑁𝑁�
3
� ≤ 𝑆𝑆𝐻𝐻� ��𝒴𝒴�𝑁𝑁�

1
, �𝒴𝒴�𝑁𝑁�

2
�. 

4.Application 
 

In this section, we aim to identify the optimal university by considering 
various factors affecting university selection. For this purpose, the Hamming 
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similarity measure defined for IGSVNQNs in Definition 9 is used. In this 
application, fictitious data is used to demonstrate the usability of the Hamming 
similarity measure.  Researchers can use this application to obtain solutions to their 
own problems with real data. The factors used in the application were taken from 
Odabaş, Yakar and Gündeğer's study titled “Scaling the reasons of university 
students for choosing university by pairwise comparison method” [28]. 

Example 2: Using the Hamming similarity measure defined for interval generalized 
set-valued neutrosophic quadruple numbers, the factors affecting university 
selection and the most ideal university will be determined. 

Step 1: The set of factors influencing university choice is defined as 

𝜕𝜕 = {𝜕𝜕1,𝜕𝜕2,𝜕𝜕3,𝜕𝜕4,𝜕𝜕5, 𝜕𝜕6,𝜕𝜕7}. 

Here,  

𝜕𝜕1 = Quality of education at the university 

𝜕𝜕2 = Social and physical facilities of the university 

𝜕𝜕3 = Social and physical facilities of the city where the university is located 

𝜕𝜕4 = Place in the standings 

𝜕𝜕5 = Location in the same/close province with family or friends 

𝜕𝜕6 = Family request 

𝜕𝜕7 = Guidance from the guidance specialist 

7 factors were identified. 

Step 2: The set of universities is defined as  

𝒞𝒞 = {𝒞𝒞1,𝒞𝒞2,𝒞𝒞3,𝒞𝒞4,𝒞𝒞5,𝒞𝒞6,𝒞𝒞7,𝒞𝒞8,𝒞𝒞9,𝒞𝒞10}. 

Step 3: Using the factors influencing university choice, each university is 
determined as an IGSVNQNs.  

𝒞𝒞1 = {< {𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕4, 𝜕𝜕5, 𝜕𝜕7}, {𝜕𝜕1, 𝜕𝜕4, 𝜕𝜕5}[0.54, 0.6], {𝜕𝜕1, 𝜕𝜕2}[0.2, 0.7], {𝜕𝜕5, 𝜕𝜕7}[0.45, 0.65] >} 

𝒞𝒞2 = {< {𝜕𝜕1, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕6, 𝜕𝜕7}, {𝜕𝜕3, 𝜕𝜕6, 𝜕𝜕7}[0.7, 0.85], {𝜕𝜕1, 𝜕𝜕4, 𝜕𝜕6}[0.32, 0.5], {𝜕𝜕4}[0.2, 0.45] >} 

𝒞𝒞3 = {< {𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7},{𝜕𝜕2𝜕𝜕5}[0.9, 1],{𝜕𝜕3, 𝜕𝜕7}[0.6, 0.7], {𝜕𝜕3,𝜕𝜕5, 𝜕𝜕6}[0.15, 0.3] >} 

𝒞𝒞4 = {< {𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5, 𝜕𝜕6},{𝜕𝜕1, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕6}[0.75, 0.9],{𝜕𝜕2}[0.2, 0.3],{𝜕𝜕2, 𝜕𝜕4, 𝜕𝜕5}[0.5, 0.65] >} 

𝒞𝒞5 = {< {𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕6, 𝜕𝜕7},{𝜕𝜕1}[0.6, 0.85], {𝜕𝜕3, 𝜕𝜕6}[0.4, 0.52], {𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕7}[0.1, 0.3] >} 

𝒞𝒞6 = {< {𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5},{𝜕𝜕4, 𝜕𝜕5}[0.5, 0.6], {𝜕𝜕3}[0.2, 0.35], {𝜕𝜕2, 𝜕𝜕5}[0, 0.2] >} 
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𝒞𝒞7 = {< {𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5},{𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5}[0.2, 0.65], {𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3}[0.55, 0.7], {𝜕𝜕3, 𝜕𝜕4}[0.3, 0.5] >} 

𝒞𝒞8 = {< {𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7},{𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5}[0.8, 0.95], {𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7}[0.5, 0.6], {𝜕𝜕4, 𝜕𝜕5}[0.4, 0.7] >} 

𝒞𝒞9 = {< {𝜕𝜕1, 𝜕𝜕4, 𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7},{𝜕𝜕4, 𝜕𝜕5, 𝜕𝜕6}[0.35, 0.4], {𝜕𝜕1, 𝜕𝜕7}[0.8, 0.85], {𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7}[0.5, 0.7] >} 

𝒞𝒞10 = {< {𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4,𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7},{𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5}[0.65, 0.8], {𝜕𝜕1, 𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7}[0.4, 0.6], {𝜕𝜕1, 𝜕𝜕5}[0.1, 0.3] >} 

Step 4: To compare universities, the ideal university is determined as an IGSVNQN  

𝒞𝒞İ = {< {𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7}, {𝜕𝜕1, 𝜕𝜕2,𝜕𝜕3, 𝜕𝜕4, 𝜕𝜕5, 𝜕𝜕6, 𝜕𝜕7}[1, 1],∅[0, 0],∅[0, 0] >}. 

Step 5: The similarity of the universities with the ideal university is calculated using 
the Hamming similarity measure in Definition 3.1, which is defined for IGSVNQNs. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞1) = 1 − 1
2
�|1−0.54|+|0−0.2|+|0−0.45|+|1−0.6|+|0−0.7|+|0−0.65|

6
+

4−�4− 5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

3
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,𝑆𝑆2}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}�

4
� =

0.2973. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞2) = 1 − 1
2
�|1−0.7|+|0−0.32|+|0−0.2|+|1−0.85|+|0−0.5|+|0−0.45|

6
+

4−� 5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

3
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,1}�

4
� = 0.3757. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞3) = 1 − 1
2
�|1−0.9|+|0−0.6|+|0−0.15|+|1−1|+|0−0.7|+|0−0.3|

6
+

4−� 5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠{1,3}�

4
� = 0.3994. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞4) = 1 − 1
2
�|1−0.75|+|0−0.2|+|0−0.5|+|1−0.9|+|0−0.3|+|0−0.65|

6
+

4−� 6
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

4
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,1}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3}�

4
� = 0.3690. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞5) = 1 − 1
2
�|1−0.6|+|0−0.4|+|0−0.1|+|1−0.85|+|0−0.52|+|0−0.3|

6
+

4−� 5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

1
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3}�

4
� = 0.4155. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞6) = 1 − 1
2
�|1−0.5|+|0−0.2|+|0−0|+|1−0.6|+|0−0.35|+|0−0.2|

6
+

4−� 4
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,1}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}�

4
� = 0.3982. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞7) = 1 − 1
2
�|1−0.2|+|0−0.55|+|0−0.3|+|1−0.65|+|0−0.7|+|0−0.5|

6
+

4−� 5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

3
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}�

4
� = 0.2960. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞8) = 1 − 1
2
�|1−0.8|+|0−0.5|+|0−0.4|+|1−0.95|+|0−0.6|+|0−0.7|

6
+

4−� 6
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

4
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}�

4
� = 0.3315. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞9) = 1 − 1
2
�|1−0.35|+|0−0.8|+|0−0.5|+|1−0.4|+|0−0.85|+|0−0.7|

6
+

4−� 5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

3
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,3}�

4
� = 0.1940. 

𝑆𝑆𝐻𝐻�(𝒞𝒞İ,𝒞𝒞10) = 1 − 1
2
�|1−0.65|+|0−0.4|+|0−0.1|+|1−0.8|+|0−0.6|+|0−0.3|

6
+

4−� 7
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

3
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,7}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,4}+

0
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{1,2}�

4
� = 0.4089. 

Step 6: The similarities obtained are given in Table 1. 

Table 1: Similarities of universities 

Universities Similarity 
𝒞𝒞1 0.2973 
𝒞𝒞2 0.3757 
𝒞𝒞3 0.3994 
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𝒞𝒞4 0.3690 
𝒞𝒞5 0.4155 
𝒞𝒞6 0.3982 
𝒞𝒞7 0.2960 
𝒞𝒞8 0.3315 
𝒞𝒞9 0.1940 
𝒞𝒞10 0.4089 

 

5.Comparison 

In this section, we compare the methods in Step 3 of Example 2, in which different 
numbers of IGSVNQNs are obtained and their similarities are calculated using the 
Hamming similarity measures defined for the obtained numbers. 

i. method: Calculated in Step 5 of Example 2 and given in Table 2. The ranking of 
the similarities obtained is given in Table 3. 

ii. method: One IVNNs was obtained by subtracting the sets from the IGSVNQNs 
in Step 3 of Example 2. Using these IVNNs and the Hamming similarity measure in 
Definition 6, similarities are calculated and given in Table 2. The ranking of the 
similarities obtained is given in Table 3. 

iii. method:  One GSVNQNs was obtained by taking the upper bounds of the 
intervals of the IGSVNQNs in Step 3 of Example 2. Using these numbers and the 
Hamming similarity measure in Definition 7, similarities are calculated and given 
in Table 2. The ranking of the similarities obtained is given in Table 3. 

iv. method: One GSVNQNs was obtained by taking the lower bounds of the 
intervals of the IGSVNQNs in Step 3 of Example 2. Using these numbers and the 
Hamming similarity measure in Definition 7, similarities are calculated and given 
in Table 2. The ranking of the similarities obtained is given in Table 3. 

v. method: One GSVNQNs was obtained by averaging the lower and upper bounds 
of the intervals of the IGSVNQNs in Step 3 of Example 2. Using these numbers and 
the Hamming similarity measure in Definition 7, similarities are calculated and 
given in Table 2. The ranking of the similarities obtained is given in Table 3. 

Table 2: Comparison of similarities of universities 

 i. method ii. method iii. method iv. method v. method 
𝒞𝒞1 0.2973 0.476 0.3507 0.2440 0.2973 

𝒞𝒞2 0.3757 0.320 0.3990 0.3523 0.3757 

𝒞𝒞3 0.3994 0.4583 0.4119 0.3869 0.3994 
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𝒞𝒞4 0.3690 0.333 0.3773 0.3607 0.3648 

𝒞𝒞5 0.4155 0.3116 0.4214 0.4097 0.4155 

𝒞𝒞6 0.3982 0.275 0.4190 0.3773 0.3982 

𝒞𝒞7 0.2960 0.533 0.2607 0.2773 0.2690 

𝒞𝒞8 0.3315 0.4083 0.3523 0.3107 0.3357 

𝒞𝒞9 0.1940 0.683 0.2107 0.1773 0.1774 

𝒞𝒞10 0.4089 0.325 0.4297 0.3880 0.4089 

 

When the data in Table 2 are analyzed, it is observed that the similarity of 𝒞𝒞1 
university to the structure defined as “ideal university” varies according to the 
methods used. Accordingly, the similarity is calculated as 0.2973 according to i. 
method, 0.467 according to method ii, 0.3507 according to method iii, 0.2440 
according to iv. method and 0.2973 according to v. method. These values reveal that 
the method with the highest fit of  𝒞𝒞1  university to the ideal structure is ii. method 
and the method with the lowest fit is method iv. It is also seen that the results 
obtained from i. and iv. methods are equal. In this context, the selection of the 
method used in similarity analysis in accordance with the structure of the problem 
is of great importance in terms of the accuracy and reliability of the results to be 
obtained. The fact that each method offers a different perspective enables a more 
comprehensive analysis by considering various dimensions in the evaluation of the 
results. 

Table 3: Similarity rankings 

Method Similarity Rankings of Universities 
i. 𝒞𝒞5 > 𝒞𝒞10 > 𝒞𝒞3 > 𝒞𝒞6 > 𝒞𝒞2 > 𝒞𝒞4 > 𝒞𝒞8 > 𝒞𝒞1 > 𝒞𝒞7 > 𝒞𝒞9 

ii. 𝒞𝒞9 > 𝒞𝒞7 > 𝒞𝒞1 > 𝒞𝒞3 > 𝒞𝒞8 > 𝒞𝒞4 > 𝒞𝒞10 > 𝒞𝒞2 > 𝒞𝒞5 > 𝒞𝒞6 

iii. 𝒞𝒞10 > 𝒞𝒞5 > 𝒞𝒞6 > 𝒞𝒞3 > 𝒞𝒞2 > 𝒞𝒞4 > 𝒞𝒞8 > 𝒞𝒞1 > 𝒞𝒞7 > 𝒞𝒞9 

iv. 𝒞𝒞5 > 𝒞𝒞10 > 𝒞𝒞3 > 𝒞𝒞6 > 𝒞𝒞4 > 𝒞𝒞2 > 𝒞𝒞8 > 𝒞𝒞7 > 𝒞𝒞1 > 𝒞𝒞9 

v. 𝒞𝒞5 > 𝒞𝒞10 > 𝒞𝒞3 > 𝒞𝒞6 > 𝒞𝒞2 > 𝒞𝒞4 > 𝒞𝒞8 > 𝒞𝒞1 > 𝒞𝒞7 > 𝒞𝒞9 

 

As can be seen in Table 3, while the same rankings were obtained in methods i and 
v, different results were obtained in other methods. 𝒞𝒞9  university, which was 
determined as the least similar university according to i, iii, iv. and v. methods, was 
determined as the most similar university according to ii. method. Similarly, 𝒞𝒞5 
university, which was one of the first two most similar universities according to i., 
iii., iv. and v. methods, was determined as the second least similar university in ii. 
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method. This shows that the methods used can lead to quite different results in the 
similarity assessment between universities. 

6.Conclusions 

In this paper, we define a Hamming similarity measure for IGSVNQNs. It is proved 
mathematically that this similarity measure satisfies the similarity measure criteria. 
Furthermore, an example application is realized using this Hamming similarity 
measure. In this application, the similarity of 10 fictitious universities to an ideal 
university is analyzed by considering the factors that affect university choice. 
Moreover, similarity calculations were computed using Hamming similarity 
measures defined for both IVNNs and GSVNQNs and the results were compared. 
It is concretely demonstrated that similar or different results can be obtained in 
decision-making processes when different numbers are used. Therefore, the 
numbers to be used in decision-making applications should be selected by 
considering the characteristics and objectives of the problem domain.  

7.Future Research Directions 
Researchers can use the similarity measure in this study with real data in different 
applications. They can also define Euclidean and Hausorff similarity measures for 
IGSVNQNs. 
Abbreviations 

SVNN: Single valued neutrosophic number 
SVNS: Single valued neutrosophic set 
IVNN: Interval valued neutrosophic number 
IVNS: Interval valued neutrosophic set 
GSVNQN: Generalized set valued neutrosophic quadruple number 
GSVNQS: Generalized set valued neutrosophic quadruple set 
IGSVNQN: Interval Generalized set valued neutrosophic quadruple number 
IGSVNQS: Interval Generalized set valued neutrosophic quadruple set 
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ABSTRACT 

 Symbolic n-plithogenic algebraic structures are considered as symmetric 
generalizations of classical algebraic structures by using 𝑛𝑛 + 1  symmetric 
components. This paper is dedicated to generalize symbolic 3-plithogenic Vector 
Spaces by defining symbolic 4-plithogenic Vector Spaces and 5-plithogenic Vector 
Spaces, where these new classes of n-symbolic plithogenic algebraic structures will 
be defined for the first time, and it will be studied through its algebraic 
substructures.  

Keywords: Neutrosophic sets, Symbolic 4-plithogenic Vector Spaces, , Symbolic 4-
plithogenic Vector Spaces homomorphism, Symbolic 5-plithogenic Vector Spaces, 
5-plithogenic Vector Spaces homomorphism.

1.INTRODUCTION

The vagueness or uncertainty representation of imperfect knowledge 
becomes a crucial issue in the areas of computer science and artificial intelligence. 
To deal with the uncertainty, the fuzzy set proposed by Zadeh [29] allows the 
uncertainty of a set with a membership degree between 0 and 1. Then, Atanassov 
[30] introduced an intuitionistic Fuzzy set (IFS) as a generalization of the Fuzzy set.
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The IFS represents the uncertainty with respect to both membership and non-
membership. However, it can only handle incomplete information but not the 
indeterminate and inconsistent information which exists commonly in real 
situations. Therefore, Smarandache [31] proposed a neutrosophic set. It can 
independently express truth-membership degree, indeterminacy-membership 
degree, and false membership degree and deal with incomplete, indeterminate, and 
inconsistent information.  

During the last two years, the research steps interested in studying    symbolic 
n-plithogenic algebraic structures. These structures were supposed by 
Smarandache in [4]. For 𝑛𝑛 = 2 , we get the symbolic 2-plithogenic algebraic 
structures such as symbolic 2-plithogenic spaces/rings/modules, and integers [1-3,5-
8]. For 𝑛𝑛 = 3 , we get the symbolic 3- plithogenic algebraic structures such as 
symbolic 3-plithogenic spaces/rings/modules, and integers [20-23].  

All of the mentioned algebraic structures  are characterized by having very 
similar algebraic properties to the refined neutrosophic structures [9-18, 24-30,33-
45].  Başer and Uluçay [39] defined effective q- fuzzy soft expert sets. Then, Başer 
and Ulucay [68] defined energy of a neutrosophic soft set. Recently, studies on 
extensions of fuzzy sets have been continuing very rapidly on applications and 
algebraic structures [46-89] 

This is what prompted us to follow up the previous scientific efforts and to 
study 4-plithogenic Vector Spaces for the first time, by providing basic definitions 
and proofs that describe the algebraic behavior of the elements of these Vector 
Spaces.  It is noteworthy that these new rings will be very useful in more extensive 
classes of algebraic modules, and cryptographic algorithms. 

2.BACKGROUND 

Definition 1. [31]Let 𝒰𝒰 be a universe. 𝒜𝒜 neutrosophic sets 𝒜𝒜 over 𝒰𝒰 is defined by  

𝒜𝒜 = �≺ 𝑢𝑢, (𝜇𝜇𝒜𝒜(𝑢𝑢), 𝑣𝑣𝒜𝒜(𝑢𝑢),𝑤𝑤𝒜𝒜(𝑢𝑢)� ≻:𝑢𝑢 ∈ 𝒰𝒰} 

where, 𝜇𝜇𝒜𝒜(𝑢𝑢) , 𝑣𝑣𝒜𝒜(𝑢𝑢) and 𝑤𝑤𝒜𝒜(𝑢𝑢)  are called truth-membership function, 
indeterminacy-membership function and falsity- membership function, 
respectively. They are respectively defined by 
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𝜇𝜇𝒜𝒜:𝒰𝒰 →]−0, 1+[ , 𝑣𝑣𝒜𝒜:𝒰𝒰 →]−0, 1+[ ,       𝑤𝑤𝒜𝒜: 𝒰𝒰 →]−0, 1+[  

such that 0− ≤ 𝜇𝜇𝒜𝒜(𝑢𝑢)+𝑣𝑣𝒜𝒜(𝑢𝑢)+𝑤𝑤𝒜𝒜(𝑢𝑢) ≤ 3+. 

Definition 2 [32] Let 𝒰𝒰 be a universe. An single valued neutrosophic set (SVN-set) 
over 𝒰𝒰  is a neutrosophic set over 𝒰𝒰 , but the truth-membership function, 
indeterminacy-membership function and falsity- membership function are 
respectively defined by 

𝜇𝜇𝒜𝒜:𝒰𝒰 → [0,1], 𝑣𝑣𝒜𝒜:𝒰𝒰 → [0,1] ,       𝑤𝑤𝒜𝒜: 𝒰𝒰 → [0,1]  

Such that 0 ≤ 𝜇𝜇𝒜𝒜(𝑢𝑢)+𝑣𝑣𝒜𝒜(𝑢𝑢)+𝑤𝑤𝒜𝒜(𝑢𝑢) ≤ 3. 

In the next section, we will define a new Hybrid Distance-Based Similarity Measures 
for Refined Neutrosophic Sets (RNSs). 

Definition 3. [3]   Let’s consider two plithogenic numbers:  

𝑃𝑃𝑁𝑁1 = 𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + ⋯+ 𝑎𝑎𝑛𝑛𝑃𝑃𝑛𝑛 

𝑃𝑃𝑁𝑁2 = 𝑏𝑏0 + 𝑏𝑏1𝑃𝑃1 + 𝑏𝑏2𝑃𝑃2 + ⋯+ 𝑏𝑏𝑛𝑛𝑃𝑃𝑛𝑛 

1. Addition of Plithogenic Numbers: 𝑃𝑃𝑁𝑁1 + 𝑃𝑃𝑁𝑁2 = (𝑎𝑎0 + 𝑏𝑏0) + ∑ (𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖)𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=1  

2. Subtraction of Plithogenic Numbers: 𝑃𝑃𝑁𝑁1 − 𝑃𝑃𝑁𝑁2 = (𝑎𝑎0 − 𝑏𝑏0) + ∑ (𝑎𝑎𝑖𝑖 −𝑛𝑛
𝑖𝑖=1

𝑏𝑏𝑖𝑖)𝑃𝑃𝑖𝑖 

3. Scalar Multiplication of Plithogenic Numbers:  𝑟𝑟𝑟𝑟𝑁𝑁1 = 𝑟𝑟𝑟𝑟0 + 𝑟𝑟𝑎𝑎1𝑃𝑃1 +
𝑟𝑟𝑟𝑟2𝑃𝑃2 + ⋯+ 𝑟𝑟𝑎𝑎𝑛𝑛𝑃𝑃𝑛𝑛 

4. Multiplication of Plithogenic Numbers 

 𝑃𝑃𝑁𝑁1 ∙ 𝑃𝑃𝑁𝑁2 = (𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + ⋯+ 𝑎𝑎𝑛𝑛𝑃𝑃𝑛𝑛) ∙ (𝑏𝑏0 + 𝑏𝑏1𝑃𝑃1 + 𝑏𝑏2𝑃𝑃2 + ⋯+ 𝑏𝑏𝑛𝑛𝑃𝑃𝑛𝑛) 

And then one multiplies them, term by term 𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖 ∙ 𝑎𝑎𝑗𝑗𝑃𝑃𝑗𝑗 = 𝑎𝑎𝑖𝑖 ∙ 𝑎𝑎𝑗𝑗𝑃𝑃max (𝑖𝑖,𝑗𝑗) where ∙ is 
the classical multiplication as in classical algebra, using the above multiplication of 
symbolic plithogenic components. 

As particular case: 

1. 0.𝑃𝑃𝑖𝑖 = 0 

2. 1 = 1 + 0.𝑃𝑃1 + 0.𝑃𝑃2 + ⋯+ 0.𝑃𝑃𝑛𝑛 
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3.Symbolic 4-plithogenic Vector Spaces 

Definition 4. Let 𝑉𝑉 be a Vector Spaces, the symbolic 4-plithogenic Vector Spaces is: 

4 − 𝑆𝑆𝑃𝑃𝑅𝑅 = �𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4;  𝑎𝑎𝑖𝑖 ∈ 𝑅𝑅,𝑃𝑃𝑗𝑗2 = 𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑖𝑖 × 𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖,𝑗𝑗)�. 

Operations on 4 − 𝑆𝑆𝑃𝑃𝑅𝑅: 

Addition: 

[𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4] + [𝑏𝑏0 + 𝑏𝑏1𝑃𝑃1 + 𝑏𝑏2𝑃𝑃2 + 𝑏𝑏3𝑃𝑃3 + 𝑏𝑏4𝑃𝑃4] = 

(𝑎𝑎0 + 𝑏𝑏0) + (𝑎𝑎1 + 𝑏𝑏1)𝑃𝑃1 + (𝑎𝑎2 + 𝑏𝑏2)𝑃𝑃2 + (𝑎𝑎3 + 𝑏𝑏3)𝑃𝑃3 + (𝑎𝑎4 + 𝑏𝑏4)𝑃𝑃4. 

Multiplication: 

[𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4]. [𝑏𝑏0 + 𝑏𝑏1𝑃𝑃1 + 𝑏𝑏2𝑃𝑃2 + 𝑏𝑏3𝑃𝑃3 + 𝑏𝑏4𝑃𝑃4] = 

𝑎𝑎0𝑏𝑏0 + (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 + 𝑎𝑎1𝑏𝑏1)𝑃𝑃1 + (𝑎𝑎0𝑏𝑏2 + 𝑎𝑎1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏0 + 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2)𝑃𝑃2 + 

(𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎2𝑏𝑏3 + 𝑎𝑎3𝑏𝑏3 + 𝑎𝑎3𝑏𝑏0 + 𝑎𝑎3𝑏𝑏1 + 𝑎𝑎3𝑏𝑏2)𝑃𝑃3 + 

(𝑎𝑎0𝑏𝑏4 + 𝑎𝑎1𝑏𝑏4 + 𝑎𝑎2𝑏𝑏4 + 𝑎𝑎3𝑏𝑏4 + 𝑎𝑎4𝑏𝑏0 + 𝑎𝑎4𝑏𝑏1 + 𝑎𝑎4𝑏𝑏2 + 𝑎𝑎4𝑏𝑏3 + 𝑎𝑎4𝑏𝑏4)𝑃𝑃4. 

Scalar Multiplication:   

𝑟𝑟(𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4) = 𝑟𝑟𝑟𝑟0 + 𝑟𝑟𝑎𝑎1𝑃𝑃1 + 𝑟𝑟𝑟𝑟2𝑃𝑃2+𝑟𝑟𝑟𝑟3𝑃𝑃3 + 𝑟𝑟𝑎𝑎4𝑃𝑃4 

As particular case: 

3. 0.𝑃𝑃𝑖𝑖 = 0 

4. 1 = 1 + 0.𝑃𝑃1 + 0.𝑃𝑃2 + 0.𝑃𝑃3 + 0.𝑃𝑃4 

It is clear that (4 − 𝑆𝑆𝑃𝑃𝑅𝑅) is a Vector Spaces. 

Example 5. Consider the Vector Spaces 𝑅𝑅 = 𝑍𝑍3 = {0,1,2}, the corresponding 4 −
𝑆𝑆𝑃𝑃𝑅𝑅 is: 

4 − 𝑆𝑆𝑃𝑃𝑅𝑅 = {𝑎𝑎 + 𝑏𝑏𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑑𝑑𝑃𝑃3 + 𝑒𝑒𝑃𝑃4;𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒 ∈ 𝑍𝑍3}. 

If 𝑋𝑋 = 2 + 2𝑃𝑃1 + 1𝑃𝑃2 + 𝑃𝑃3 + 𝑃𝑃4,𝑌𝑌 = 𝑃𝑃2 + 2𝑃𝑃3, then: 

𝑋𝑋 + 𝑌𝑌 = 2 + 2𝑃𝑃1 + 2𝑃𝑃2 + 𝑃𝑃4, 

𝑋𝑋 − 𝑌𝑌 = 2 + 2𝑃𝑃1 − 𝑃𝑃3 + 𝑃𝑃4,  
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𝑋𝑋.𝑌𝑌 = 2𝑃𝑃2 + 4𝑃𝑃3 + 2𝑃𝑃2 + 4𝑃𝑃3 + 𝑃𝑃2 + 2𝑃𝑃3 + 𝑃𝑃3 + 2𝑃𝑃3 + 𝑃𝑃4 + 2𝑃𝑃4 = 5𝑃𝑃2 + 13𝑃𝑃3 + 3𝑃𝑃4. 

Theorem 6. Let 4 − 𝑆𝑆𝑃𝑃𝑅𝑅 be a 4-plithogenic symbolic Vector Spaces, Let 𝑋𝑋 = 𝑒𝑒0 +
𝑒𝑒1𝑃𝑃1 + 𝑒𝑒2𝑃𝑃2 + 𝑒𝑒3𝑃𝑃3 + 𝑒𝑒4𝑃𝑃4 be an arbitrary element, then: 

1. 𝑋𝑋 is invertible if and only if 𝑒𝑒0, 𝑒𝑒0 + 𝑒𝑒1, 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2, 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3, 𝑒𝑒0 +
𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 are invertible. 

2. 𝑋𝑋−1 = 𝑒𝑒0−1 + [(𝑒𝑒0 + 𝑒𝑒1)−1 − 𝑒𝑒0−1]𝑃𝑃1 + [(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 − (𝑒𝑒0 +
𝑒𝑒1)−1]𝑃𝑃2+[(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1]𝑃𝑃3 + [(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 +
𝑒𝑒4)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1]𝑃𝑃4. 

Proof. 

1. Assume that 𝑋𝑋 is invertible, than there exists 𝑌𝑌 = 𝑛𝑛0 + 𝑛𝑛1𝑃𝑃1 + 𝑛𝑛2𝑃𝑃2 + 𝑛𝑛3𝑃𝑃3 +
𝑛𝑛4𝑃𝑃4 such that 𝑋𝑋.𝑌𝑌 = 1, hence: 

⎩
⎪
⎨

⎪
⎧
𝑒𝑒0𝑛𝑛3 + 𝑒𝑒1𝑛𝑛3 + 𝑒𝑒2𝑛𝑛3 + 𝑒𝑒3𝑛𝑛3 + 𝑒𝑒3𝑛𝑛1 + 𝑒𝑒3𝑛𝑛2 + 𝑒𝑒3𝑛𝑛0 = 0 (1)

𝑒𝑒0𝑛𝑛0 = 1 … (2)
𝑒𝑒0𝑛𝑛1 + 𝑒𝑒1𝑛𝑛0 + 𝑒𝑒1𝑛𝑛1 = 0 … (3)

𝑒𝑒0𝑛𝑛2 + 𝑒𝑒2𝑛𝑛0 + 𝑒𝑒2𝑛𝑛2 + 𝑒𝑒1𝑛𝑛2 + 𝑒𝑒2𝑛𝑛1 = 0 … (4),
𝑒𝑒0𝑛𝑛4 + 𝑒𝑒1𝑛𝑛4 + 𝑒𝑒2𝑛𝑛4 + 𝑒𝑒3𝑛𝑛4 + 𝑒𝑒4𝑛𝑛0 + 𝑒𝑒4𝑛𝑛1 + 𝑒𝑒4𝑛𝑛3 + 𝑒𝑒4𝑛𝑛4(5)

 

From (2), 𝑒𝑒0 is invertible. 

By adding (3) to (2), we get (𝑒𝑒0 + 𝑒𝑒1)(𝑛𝑛0 + 𝑛𝑛1) = 1, thus 𝑒𝑒0 + 𝑒𝑒1 is invertible. 

By adding (4) to (3)𝑡𝑡𝑡𝑡 (2), (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)(𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2) = 1, hence 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 is 
invertible. 

By adding (1) to (2) to (3) to( 4),  

(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)(𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3) = 1, hence 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 is invertible. 

Adding all equations gives: 

(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)(𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4) = 1, hence 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 is 
invertible. 

2. From the first part. We have: 

𝑛𝑛0 = 𝑒𝑒0−1,𝑛𝑛0 + 𝑛𝑛1 = (𝑒𝑒0 + 𝑒𝑒1)−1,𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 = (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 , (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 +
𝑒𝑒3)−1 = 𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3, (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1 = 𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4 , 
then: 
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𝑌𝑌 = 𝑒𝑒0−1 + [(𝑒𝑒0 + 𝑒𝑒1)−1 − 𝑒𝑒0−1]𝑃𝑃1 + [(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 − (𝑒𝑒0 + 𝑒𝑒1)−1]𝑃𝑃2 + 

[(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1]𝑃𝑃3 + 

[(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1]𝑃𝑃4 = 𝑋𝑋−1. 

Example 7. Take 𝑅𝑅 = 𝑍𝑍3 = {0,1,2}, 4 − 𝑆𝑆𝑃𝑃𝑍𝑍3 is the corresponding symbolic 4-
plithogenic Vector Spaces, consider 𝑋𝑋 = 2 + 2𝑃𝑃2 + 𝑃𝑃4 ∈ 4 − 𝑆𝑆𝑃𝑃𝑍𝑍3, then: 

𝑒𝑒0 = 2 is invertible with 𝑒𝑒0−1 = 2, 𝑒𝑒0 + 𝑒𝑒1 = 2 is invertible with (𝑒𝑒0 + 𝑒𝑒1)−1 = 2, 

 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 = 1 is invertible with (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 = 1, 

 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 = 1, (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1 = 1 , 

𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 = 2, (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1 = 2  hence: 

𝑋𝑋−1 = 2 + (2 − 2)𝑃𝑃1 + (1 − 2)𝑃𝑃2 + (1 − 1)𝑃𝑃3 + (2 − 1)𝑃𝑃4 = 2 + 2𝑃𝑃2 + 𝑃𝑃4. 

Theorem 8. Let 4 − 𝑆𝑆𝑃𝑃𝑅𝑅 be a symbolic 4-plithogenic Vector Spaces, hence if  𝑋𝑋 =
𝑚𝑚 + 𝑛𝑛𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑞𝑞𝑃𝑃3 + 𝑙𝑙𝑃𝑃4, then: 

 𝑋𝑋𝑛𝑛 = 𝑚𝑚𝑛𝑛 + [(𝑚𝑚 + 𝑛𝑛)𝑛𝑛 − 𝑚𝑚𝑛𝑛]𝑃𝑃1 + [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐)𝑛𝑛 − (𝑚𝑚 + 𝑛𝑛)𝑛𝑛]𝑃𝑃2+ [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 +
𝑞𝑞)𝑛𝑛 − (𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐)𝑛𝑛]𝑃𝑃3 + [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞 + 𝑙𝑙)𝑛𝑛 − (𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞)𝑛𝑛]𝑃𝑃4   for every 𝑛𝑛 ∈
𝑍𝑍+. 

Proof. 

For 𝑛𝑛 = 1, it holds easily. Assume that it is true for  𝑛𝑛 = 𝑘𝑘, we prove it for 𝑛𝑛 = 𝑘𝑘 +
1. 

𝑋𝑋𝑘𝑘+1 = 𝑋𝑋.𝑋𝑋𝑘𝑘 = 

(𝑚𝑚 + 𝑛𝑛𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑞𝑞𝑃𝑃3 + 𝑙𝑙𝑃𝑃4)(𝑚𝑚𝑘𝑘 + [(𝑚𝑚 + 𝑛𝑛)𝑘𝑘 − 𝑚𝑚𝑘𝑘]𝑃𝑃1 + [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐)𝑘𝑘 −
(𝑚𝑚 + 𝑛𝑛)𝑘𝑘]𝑃𝑃2 + [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞)𝑘𝑘 − (𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐)𝑘𝑘]𝑃𝑃3 + [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞 + 𝑙𝑙)𝑘𝑘 −
(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞)𝑘𝑘]𝑃𝑃4) = 𝑚𝑚𝑘𝑘+1 + [(𝑚𝑚 + 𝑛𝑛)𝑘𝑘+1 − 𝑚𝑚𝑘𝑘+1]𝑃𝑃1 + [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐)𝑘𝑘+1 −
(𝑚𝑚 + 𝑛𝑛)𝑘𝑘+1]𝑃𝑃2+ 

 [(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞)𝑘𝑘+1 − (𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐)𝑘𝑘+1]𝑃𝑃3 + 

[(𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞 + 𝑙𝑙)𝑘𝑘+1 − (𝑚𝑚 + 𝑛𝑛 + 𝑐𝑐 + 𝑞𝑞)𝑘𝑘+1]𝑃𝑃4.  

Therefore, that proof is complete by induction. 
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Definition 9. Let 𝑅𝑅,𝑇𝑇 be two Vector Spaces, 4 − 𝑆𝑆𝑃𝑃𝑅𝑅 , 4 − 𝑆𝑆𝑃𝑃𝑇𝑇 are the corresponding 
symbolic 4-plithogenic Vector Spaces, let 𝑓𝑓0,𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, 𝑓𝑓4:𝑅𝑅 → 𝑇𝑇 be Vector Spaces 
homomorphisms, we define the symbolic 4-plithogenic Vector Spaces 
homomorphism: 

𝑓𝑓: 4 − 𝑆𝑆𝑃𝑃𝑅𝑅 → 4 − 𝑆𝑆𝑃𝑃𝑇𝑇  such that: 

𝑓𝑓(𝑚𝑚 + 𝑛𝑛𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑞𝑞𝑃𝑃3 + 𝑙𝑙𝑃𝑃4) = 𝑓𝑓0(𝑚𝑚) + 𝑓𝑓1(𝑛𝑛)𝑃𝑃1 + 𝑓𝑓2(𝑐𝑐)𝑃𝑃2+𝑓𝑓3(𝑞𝑞)𝑃𝑃3 + 𝑓𝑓4(𝑙𝑙)𝑃𝑃4 

If 𝑓𝑓0 = 𝑓𝑓1 = 𝑓𝑓2 = 𝑓𝑓3 = 𝑓𝑓4, then 𝑓𝑓 is called symbolic 4-plithogenic Vector Spaces 
homomorphism. 

Remark 10. If 𝑓𝑓0,𝑓𝑓1,𝑓𝑓2,𝑓𝑓3,𝑓𝑓4 is isomorphisms, then 𝑓𝑓 is called symbolic 4-
plithogenic Vector Spaces isomorphism. 

Example 11. Take  𝑅𝑅 = 𝑍𝑍,  𝑇𝑇 = 𝑍𝑍4, 𝑓𝑓0,𝑓𝑓1:𝑅𝑅 → 𝑇𝑇 such that: 

𝑓𝑓0(𝑥𝑥) = 𝑥𝑥(𝑚𝑚𝑚𝑚𝑚𝑚 4),𝑓𝑓1(2) = 2𝑥𝑥(𝑚𝑚𝑚𝑚𝑚𝑚 4). It is clear that 𝑓𝑓0,𝑓𝑓1 are homomorphisms. 

We define  𝑓𝑓: 4 − 𝑆𝑆𝑃𝑃𝑅𝑅 → 4 − 𝑆𝑆𝑃𝑃𝑇𝑇, where:  
𝑓𝑓(𝑚𝑚 + 𝑛𝑛𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑞𝑞𝑃𝑃3 + 𝑙𝑙𝑃𝑃4) = 𝑓𝑓0(𝑚𝑚) + 𝑓𝑓1(𝑛𝑛)𝑃𝑃1 + 𝑓𝑓0(𝑐𝑐)𝑃𝑃2 + 𝑓𝑓1(𝑞𝑞)𝑃𝑃3 + 𝑓𝑓1(𝑙𝑙)𝑃𝑃4 =
𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚 4) + 2𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃1 + (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃2+(2𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃3 + (2𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃4 

Which is a symbolic 4-plithogenic Vector Spaces homomorphism. 

Theorem 12. Let 𝑓𝑓 = 𝑓𝑓0 + 𝑓𝑓1𝑃𝑃1 + 𝑓𝑓2𝑃𝑃2 + 𝑓𝑓3𝑃𝑃3 + 𝑓𝑓4𝑃𝑃4: 4 − 𝑆𝑆𝑃𝑃𝑅𝑅 → 4 − 𝑆𝑆𝑃𝑃𝑇𝑇 be a 
mapping, then: 

1. If 𝑓𝑓 is symbolic 4-plithogenic Vector Spaces homomorphism, then 𝑓𝑓 is a 
Vector Spaces homomorphism. 

2. If 𝑓𝑓 is an symbolic 4-plithogenic Vector Spaces homomorphism, then it is an 
isomorphism. 

Proof. 

1. Assume that 𝑓𝑓 is an symbolic 4-plithogenic Vector Spaces homomorphism, 
then: 

 𝑓𝑓0 = 𝑓𝑓1 = 𝑓𝑓2 = 𝑓𝑓3 = 𝑓𝑓4  are homomorphisms. 

Let 𝑋𝑋 = 𝑑𝑑0 + 𝑑𝑑1𝑃𝑃1 + 𝑑𝑑2𝑃𝑃2 + 𝑑𝑑3𝑃𝑃3 + 𝑑𝑑4𝑃𝑃4,𝑌𝑌 = 𝑐𝑐0 + 𝑐𝑐1𝑃𝑃1 + 𝑐𝑐2𝑃𝑃2 + 𝑐𝑐3𝑃𝑃3 + 𝑐𝑐4𝑃𝑃4 ∈ 4 −
𝑆𝑆𝑃𝑃𝑅𝑅, we have: 
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𝑓𝑓(𝑋𝑋 + 𝑌𝑌) = 

𝑓𝑓0(𝑑𝑑0 + 𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑1 + 𝑐𝑐1)𝑃𝑃1 + 𝑓𝑓0(𝑑𝑑2 + 𝑐𝑐2)𝑃𝑃2 + 𝑓𝑓0(𝑑𝑑3 + 𝑐𝑐3)𝑃𝑃3 + 𝑓𝑓0(𝑑𝑑4 + 𝑐𝑐4)𝑃𝑃4
= 𝑓𝑓(𝑋𝑋) + 𝑓𝑓(𝑌𝑌) 

𝑓𝑓(𝑋𝑋.𝑌𝑌) = 𝑓𝑓0(𝑑𝑑0𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑0𝑐𝑐1 + 𝑑𝑑1𝑐𝑐0 + 𝑑𝑑1𝑐𝑐1)𝑃𝑃1
+ 𝑓𝑓0(𝑑𝑑0𝑐𝑐2 + 𝑑𝑑2𝑐𝑐0 + 𝑑𝑑2𝑐𝑐2 + 𝑑𝑑2𝑐𝑐1 + 𝑑𝑑1𝑐𝑐2)𝑃𝑃2
+ 𝑓𝑓0(𝑑𝑑0𝑐𝑐3 + 𝑑𝑑1𝑐𝑐3 + 𝑑𝑑2𝑐𝑐3 + 𝑑𝑑3𝑐𝑐3 + 𝑑𝑑3𝑐𝑐1 + 𝑑𝑑3𝑐𝑐0 + 𝑑𝑑3𝑐𝑐2)𝑃𝑃3 + 

(𝑑𝑑0𝑐𝑐4 + 𝑑𝑑1𝑐𝑐4 + 𝑑𝑑2𝑐𝑐4 + 𝑑𝑑3𝑐𝑐4 + 𝑑𝑑4𝑐𝑐0 + 𝑑𝑑4𝑐𝑐1 + 𝑑𝑑4𝑐𝑐2 + 𝑑𝑑4𝑐𝑐3 + 𝑑𝑑4𝑐𝑐4)𝑃𝑃4
= 𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐0) + �𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐1) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐1)�𝑃𝑃1
+ �𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑦𝑦0) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐1)
+ 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐2)�𝑃𝑃2
+ ��𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐3) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐3) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐3) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐3)
+ 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐1) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐0)��𝑃𝑃3
+ ��𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐4) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐4) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐4) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐4)
+ 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐1) + 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐4)
+ 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐3)��𝑃𝑃4 = 

[𝑓𝑓0(𝑑𝑑0) + 𝑓𝑓0(𝑑𝑑1)𝑃𝑃1 + 𝑓𝑓0(𝑑𝑑2)𝑃𝑃2 + 𝑓𝑓0(𝑑𝑑3)𝑃𝑃3 + 𝑓𝑓0(𝑑𝑑4)𝑃𝑃4][𝑓𝑓0(𝑐𝑐0) + 𝑓𝑓0(𝑐𝑐1)𝑃𝑃1 + 𝑓𝑓0(𝑐𝑐2)𝑃𝑃2 +
𝑓𝑓0(𝑐𝑐3)𝑃𝑃3 + 𝑓𝑓0(𝑐𝑐4)𝑃𝑃4] = 𝑓𝑓(𝑋𝑋).𝑓𝑓(𝑌𝑌). 

This implies the proof. 

4. Symbolic 5-plithogenic Vector Spaces 
 
Definition 13.  Let 𝑅𝑅 be a Vector Spaces, the symbolic 5-plithogenic Vector Spaces 
is: 
5 − 𝑆𝑆𝑃𝑃𝑅𝑅 = �𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4 + 𝑎𝑎5𝑃𝑃5;  𝑎𝑎𝑖𝑖 ∈ 𝑅𝑅,𝑃𝑃𝑗𝑗2 = 𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑖𝑖 × 𝑃𝑃𝑗𝑗 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖,𝑗𝑗)�. 
Operations on 5 − 𝑆𝑆𝑃𝑃𝑅𝑅: 
Addition: 
[𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4 + 𝑎𝑎5𝑃𝑃5] + [𝑏𝑏0 + 𝑏𝑏1𝑃𝑃1 + 𝑏𝑏2𝑃𝑃2 + 𝑏𝑏3𝑃𝑃3 + 𝑏𝑏4𝑃𝑃4 + 𝑏𝑏5𝑃𝑃5]

= 
(𝑎𝑎0 + 𝑏𝑏0) + (𝑎𝑎1 + 𝑏𝑏1)𝑃𝑃1 + (𝑎𝑎2 + 𝑏𝑏2)𝑃𝑃2 + (𝑎𝑎3 + 𝑏𝑏3)𝑃𝑃3 + (𝑎𝑎4 + 𝑏𝑏4)𝑃𝑃4 + (𝑎𝑎5 + 𝑏𝑏5)𝑃𝑃5. 

Multiplication: 
[𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4 + 𝑎𝑎5𝑃𝑃5]. [𝑏𝑏0 + 𝑏𝑏1𝑃𝑃1 + 𝑏𝑏2𝑃𝑃2 + 𝑏𝑏3𝑃𝑃3 + 𝑏𝑏4𝑃𝑃4 + 𝑏𝑏5𝑃𝑃5] = 

𝑎𝑎0𝑏𝑏0 + (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 + 𝑎𝑎1𝑏𝑏1)𝑃𝑃1 + (𝑎𝑎0𝑏𝑏2 + 𝑎𝑎1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏0 + 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2)𝑃𝑃2 + 
(𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎2𝑏𝑏3 + 𝑎𝑎3𝑏𝑏3 + 𝑎𝑎3𝑏𝑏0 + 𝑎𝑎3𝑏𝑏1 + 𝑎𝑎3𝑏𝑏2)𝑃𝑃3 + 
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(𝑎𝑎0𝑏𝑏4 + 𝑎𝑎1𝑏𝑏4 + 𝑎𝑎2𝑏𝑏4 + 𝑎𝑎3𝑏𝑏4 + 𝑎𝑎4𝑏𝑏0 + 𝑎𝑎4𝑏𝑏1 + 𝑎𝑎4𝑏𝑏2 + 𝑎𝑎4𝑏𝑏3 + 𝑎𝑎4𝑏𝑏4)𝑃𝑃4 +( 𝑎𝑎0𝑏𝑏5 + 𝑎𝑎1𝑏𝑏5 +
𝑎𝑎2𝑏𝑏5 + 𝑎𝑎3𝑏𝑏5 + 𝑎𝑎4𝑏𝑏5 + 𝑎𝑎5𝑏𝑏0 + 𝑎𝑎5𝑏𝑏1 + 𝑎𝑎5𝑏𝑏2 + 𝑎𝑎5𝑏𝑏3 + 𝑎𝑎5𝑏𝑏4 + 𝑎𝑎5𝑏𝑏5)𝑃𝑃5. 
Scalar Multiplication:   

𝑟𝑟(𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1 + 𝑎𝑎2𝑃𝑃2 + 𝑎𝑎3𝑃𝑃3 + 𝑎𝑎4𝑃𝑃4 + 𝑎𝑎5𝑏𝑏5)
= 𝑟𝑟𝑟𝑟0 + 𝑟𝑟𝑎𝑎1𝑃𝑃1 + 𝑟𝑟𝑟𝑟2𝑃𝑃2+𝑟𝑟𝑟𝑟3𝑃𝑃3 + 𝑟𝑟𝑎𝑎4𝑃𝑃4 + 𝑟𝑟𝑟𝑟5𝑏𝑏5 

As particular case: 
1. 0.𝑃𝑃𝑖𝑖 = 0 
2. 1 = 1 + 0.𝑃𝑃1 + 0.𝑃𝑃2 + 0.𝑃𝑃3 + 0.𝑃𝑃4 + 0. 𝑏𝑏5 

It is clear that (4 − 𝑆𝑆𝑃𝑃𝑅𝑅) is a Vector Spaces. 
Example 14. Consider the Vector Spaces 𝑅𝑅 = 𝑍𝑍3 = {0,1,2}, the corresponding 5 −
𝑆𝑆𝑃𝑃𝑅𝑅 is: 
4 − 𝑆𝑆𝑃𝑃𝑅𝑅 = {𝑎𝑎 + 𝑏𝑏𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑑𝑑𝑃𝑃3 + 𝑒𝑒𝑃𝑃4 + 𝑤𝑤𝑃𝑃5;𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑤𝑤 ∈ 𝑍𝑍3}. 
If 𝑋𝑋 = 2 + 2𝑃𝑃1 + 𝑃𝑃4,𝑌𝑌 = 𝑃𝑃2 + 2𝑃𝑃5, then: 

𝑋𝑋 + 𝑌𝑌 = 2 + 2𝑃𝑃1 + 𝑃𝑃2 + 𝑃𝑃4 + 2𝑃𝑃5, 
𝑋𝑋 − 𝑌𝑌 = 2 + 2𝑃𝑃1 − 𝑃𝑃2 + 𝑃𝑃4 − 2𝑃𝑃5,  

𝑋𝑋.𝑌𝑌 = 2𝑃𝑃2 + 4𝑃𝑃3 + 2𝑃𝑃2 + 4𝑃𝑃5 + 𝑃𝑃4 + 2𝑃𝑃5 = 4𝑃𝑃2 + 4𝑃𝑃3 + 𝑃𝑃4 + 2𝑃𝑃5. 
Theorem 15. Let 5 − 𝑆𝑆𝑃𝑃𝑅𝑅 be a 5-plithogenic symbolic Vector Spaces, with unity (1). 
Let 𝑋𝑋 = 𝑒𝑒0 + 𝑒𝑒1𝑃𝑃1 + 𝑒𝑒2𝑃𝑃2 + 𝑒𝑒3𝑃𝑃3 + 𝑒𝑒4𝑃𝑃4 + 𝑒𝑒5𝑃𝑃5 be an arbitrary element, then: 

3. 𝑋𝑋  is invertible if and only if 𝑒𝑒0, 𝑒𝑒0 + 𝑒𝑒1, 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 ,  𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 ,  𝑒𝑒0 +
𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4, 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5 are invertible. 

4. 𝑋𝑋−1 = 𝑒𝑒0−1 + [(𝑒𝑒0 + 𝑒𝑒1)−1 − 𝑒𝑒0−1]𝑃𝑃1 + [(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 − (𝑒𝑒0 +
𝑒𝑒1)−1]𝑃𝑃2 +[ (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1]𝑃𝑃3 + [(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 +
𝑒𝑒4)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1]𝑃𝑃4 + [(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5)−1 − (𝑒𝑒0 +
𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1]𝑃𝑃4. 

Proof. 
3. Assume that 𝑋𝑋 is invertible, than there exists 𝑌𝑌 = 𝑛𝑛0 + 𝑛𝑛1𝑃𝑃1 + 𝑛𝑛2𝑃𝑃2 + 𝑛𝑛3𝑃𝑃3 +

𝑛𝑛4𝑃𝑃4 + 𝑛𝑛5𝑃𝑃5 such that 𝑋𝑋.𝑌𝑌 = 1, hence: 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑒𝑒0𝑛𝑛3 + 𝑒𝑒1𝑛𝑛3 + 𝑒𝑒2𝑛𝑛3 + 𝑒𝑒3𝑛𝑛3 + 𝑒𝑒3𝑛𝑛1 + 𝑒𝑒3𝑛𝑛2 + 𝑒𝑒3𝑛𝑛0 = 0 (1)
𝑒𝑒0𝑛𝑛0 = 1 … (2)

𝑒𝑒0𝑛𝑛1 + 𝑒𝑒1𝑛𝑛0 + 𝑒𝑒1𝑛𝑛1 = 0 … (3)
𝑒𝑒0𝑛𝑛2 + 𝑒𝑒2𝑛𝑛0 + 𝑒𝑒2𝑛𝑛2 + 𝑒𝑒1𝑛𝑛2 + 𝑒𝑒2𝑛𝑛1 = 0 … (4),

𝑒𝑒0𝑛𝑛4 + 𝑒𝑒1𝑛𝑛4 + 𝑒𝑒2𝑛𝑛4 + 𝑒𝑒3𝑛𝑛4 + 𝑒𝑒4𝑛𝑛0 + 𝑒𝑒4𝑛𝑛1 + 𝑒𝑒4𝑛𝑛3 + 𝑒𝑒4𝑛𝑛4(5)
𝑒𝑒0𝑛𝑛5 + 𝑒𝑒1𝑛𝑛5 + 𝑒𝑒2𝑛𝑛5 + 𝑒𝑒3𝑛𝑛5 + 𝑒𝑒4𝑛𝑛5 + 𝑒𝑒5𝑛𝑛0 + 𝑒𝑒5𝑛𝑛1 + 𝑒𝑒5𝑛𝑛2 + 𝑒𝑒5𝑛𝑛3 + 𝑒𝑒5𝑛𝑛4 + 𝑒𝑒5𝑛𝑛5 = 0 (6)

 

From (2), 𝑒𝑒0 is invertible. 
By adding (3) to (2), we get (𝑒𝑒0 + 𝑒𝑒1)(𝑛𝑛0 + 𝑛𝑛1) = 1, thus 𝑒𝑒0 + 𝑒𝑒1 is invertible. 
By adding (4)  to (3)𝑡𝑡𝑡𝑡 (2) , (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)(𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2) = 1 , hence 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2  is 
invertible. 
By adding (1) to (2) to (3) to( 4),  
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(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)(𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3) = 1, hence 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 is invertible. 
Adding all equations (1),(2),(3),(4),(5) gives: 
(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)(𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4) = 1, hence 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4  is 
invertible. 
Adding all equations (1) to (6) gives: 
(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5)(𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4 + 𝑛𝑛5) = 1, 
hence 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5 is invertible. 

4. From the first part. We have: 
𝑛𝑛0 = 𝑒𝑒0−1,𝑛𝑛0 + 𝑛𝑛1 = (𝑒𝑒0 + 𝑒𝑒1)−1,𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 = (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 , (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 +
𝑒𝑒3)−1 = 𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3, (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1 = 𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 +
𝑛𝑛4 , (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5)−1 = 𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4 + 𝑛𝑛5, then: 
𝑌𝑌 = 𝑒𝑒0−1 + [(𝑒𝑒0 + 𝑒𝑒1)−1 − 𝑒𝑒0−1]𝑃𝑃1 + [(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 − (𝑒𝑒0 + 𝑒𝑒1)−1]𝑃𝑃2 + 
[(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1]𝑃𝑃3 + 
[(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1]𝑃𝑃4 + 

[(𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5)−1 − (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1]𝑃𝑃5 = 𝑋𝑋−1. 
Example 16. Take 𝑅𝑅 = 𝑍𝑍3 = {0,1,2} , 5 − 𝑆𝑆𝑃𝑃𝑍𝑍3  is the corresponding symbolic 5-
plithogenic Vector Spaces, consider 𝑋𝑋 = 2 + 2𝑃𝑃2 + 𝑃𝑃5 ∈ 5 − 𝑆𝑆𝑃𝑃𝑍𝑍3, then: 
𝑒𝑒0 = 2 is invertible with 𝑒𝑒0−1 = 2, 𝑒𝑒0 + 𝑒𝑒1 = 2 is invertible with (𝑒𝑒0 + 𝑒𝑒1)−1 = 2, 
 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 = 1 is invertible with (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2)−1 = 1, 

 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 = 1, (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3)−1 = 1 , 
𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 = 1, (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4)−1 = 1, 𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 +
𝑒𝑒5 = 2, (𝑒𝑒0 + 𝑒𝑒1 + 𝑒𝑒2 + 𝑒𝑒3 + 𝑒𝑒4 + 𝑒𝑒5)−1 = 2 hence: 
𝑋𝑋−1 = 2 + (2 − 2)𝑃𝑃1 + (1 − 2)𝑃𝑃2 + (1 − 1)𝑃𝑃3 + (1 − 1)𝑃𝑃4 + (2 − 1)𝑃𝑃5 = 2 + 2𝑃𝑃2 +
𝑃𝑃5. 
Definition 17. Let 𝑅𝑅,𝑇𝑇 be two Vector Spaces, 5 − 𝑆𝑆𝑃𝑃𝑅𝑅 , 5 − 𝑆𝑆𝑃𝑃𝑇𝑇 are the corresponding 
symbolic 5-plithogenic Vector Spaces, let 𝑓𝑓0,𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, 𝑓𝑓4,𝑓𝑓5:𝑅𝑅 → 𝑇𝑇  be symbolic 5-
plithogenic Vector Spaces homomorphisms   𝑓𝑓: 5 − 𝑆𝑆𝑃𝑃𝑅𝑅 → 5 − 𝑆𝑆𝑃𝑃𝑇𝑇 such that: 
𝑓𝑓(𝑚𝑚 + 𝑛𝑛𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑞𝑞𝑃𝑃3 + 𝑙𝑙𝑃𝑃4 + 𝑘𝑘𝑃𝑃5) = 𝑓𝑓0(𝑚𝑚) + 𝑓𝑓1(𝑛𝑛)𝑃𝑃1 + 𝑓𝑓2(𝑐𝑐)𝑃𝑃2 + 𝑓𝑓3(𝑞𝑞)𝑃𝑃3 +
𝑓𝑓4(𝑙𝑙)𝑃𝑃4 + 𝑓𝑓5(𝑘𝑘)𝑃𝑃5 
If 𝑓𝑓0 = 𝑓𝑓1 = 𝑓𝑓2 = 𝑓𝑓3 = 𝑓𝑓4 = 𝑓𝑓5, then 𝑓𝑓 is called symbolic 5-plithogenic Vector Spaces 
homomorphism. 
Remark 18. If 𝑓𝑓0,𝑓𝑓1,𝑓𝑓2,𝑓𝑓3,𝑓𝑓4,𝑓𝑓5  are isomorphisms, then 𝑓𝑓  is called symbolic 5-
plithogenic Vector Spaces isomorphism. 
Example 19. Take 𝑅𝑅 = 𝑍𝑍, 𝑇𝑇 = 𝑍𝑍4, 𝑓𝑓0,𝑓𝑓1:𝑅𝑅 → 𝑇𝑇 such that: 
𝑓𝑓0(𝑥𝑥) = 𝑥𝑥(𝑚𝑚𝑚𝑚𝑚𝑚 4),𝑓𝑓1(2) = 2𝑥𝑥(𝑚𝑚𝑚𝑚𝑚𝑚 4). It is clear that 𝑓𝑓0,𝑓𝑓1 are homomorphisms. 
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We define 𝑓𝑓: 5 − 𝑆𝑆𝑃𝑃𝑅𝑅 → 5 − 𝑆𝑆𝑃𝑃𝑇𝑇 , where:  
𝑓𝑓(𝑚𝑚 + 𝑛𝑛𝑃𝑃1 + 𝑐𝑐𝑃𝑃2 + 𝑞𝑞𝑃𝑃3 + 𝑙𝑙𝑃𝑃4 + 𝑘𝑘𝑃𝑃5) = 𝑓𝑓0(𝑚𝑚) + 𝑓𝑓1(𝑛𝑛)𝑃𝑃1 + 𝑓𝑓0(𝑐𝑐)𝑃𝑃2 + 𝑓𝑓1(𝑞𝑞)𝑃𝑃3 +
𝑓𝑓1(𝑙𝑙)𝑃𝑃4 + 𝑓𝑓1(𝑘𝑘)𝑃𝑃5 = 𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚 4) + 2𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃1 + (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃2 + (2𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃3 +
(2𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃4 + (2𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 4)𝑃𝑃5 
Which is an symbolic 5-plithogenic Vector Spaces homomorphism. 
Theorem 20. Let 𝑓𝑓 = 𝑓𝑓0 + 𝑓𝑓1𝑃𝑃1 + 𝑓𝑓2𝑃𝑃2 + 𝑓𝑓3𝑃𝑃3 + 𝑓𝑓4𝑃𝑃4 + 𝑓𝑓5𝑃𝑃5: 5 − 𝑆𝑆𝑃𝑃𝑅𝑅 → 5 − 𝑆𝑆𝑃𝑃𝑇𝑇  be a 
mapping, then: 

1. If 𝑓𝑓 is an symbolic 5-plithogenic Vector Spaces homomorphism, then 𝑓𝑓 is 
a Vector Spaces homomorphism. 

2. If 𝑓𝑓 is an symbolic 5-plithogenic Vector Spaces homomorphism, then it is 
an isomorphism. 

Proof. 
1. Assume that 𝑓𝑓 is an symbolic 5-plithogenic Vector Spaces homomorphism, 

then 𝑓𝑓0 = 𝑓𝑓1 = 𝑓𝑓2 = 𝑓𝑓3 = 𝑓𝑓4 = 𝑓𝑓5 are homomorphisms. 
Let 
 𝑋𝑋 = 𝑑𝑑0 + 𝑑𝑑1𝑃𝑃1 + 𝑑𝑑2𝑃𝑃2 + 𝑑𝑑3𝑃𝑃3 + 𝑑𝑑4𝑃𝑃4 + 𝑑𝑑5𝑃𝑃5,𝑌𝑌 = 𝑐𝑐0 + 𝑐𝑐1𝑃𝑃1 + 𝑐𝑐2𝑃𝑃2 + 𝑐𝑐3𝑃𝑃3 + 𝑐𝑐4𝑃𝑃4 +
𝑐𝑐5𝑃𝑃5 ∈ 5 − 𝑆𝑆𝑃𝑃𝑅𝑅, we have: 
𝑓𝑓(𝑋𝑋 + 𝑌𝑌) = 
𝑓𝑓0(𝑑𝑑0 + 𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑1 + 𝑐𝑐1)𝑃𝑃1 + 𝑓𝑓0(𝑑𝑑2 + 𝑐𝑐2)𝑃𝑃2 + 𝑓𝑓0(𝑑𝑑3 + 𝑐𝑐3)𝑃𝑃3 + 𝑓𝑓0(𝑑𝑑4 + 𝑐𝑐4)𝑃𝑃4 + 𝑓𝑓0(𝑑𝑑5

+ 𝑐𝑐5)𝑃𝑃5 = 𝑓𝑓(𝑋𝑋) + 𝑓𝑓(𝑌𝑌) 
𝑓𝑓(𝑋𝑋.𝑌𝑌) = 𝑓𝑓0(𝑑𝑑0𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑0𝑐𝑐1 + 𝑑𝑑1𝑐𝑐0 + 𝑑𝑑1𝑐𝑐1)𝑃𝑃1

+ 𝑓𝑓0(𝑑𝑑0𝑐𝑐2 + 𝑑𝑑2𝑐𝑐0 + 𝑑𝑑2𝑐𝑐2 + 𝑑𝑑2𝑐𝑐1 + 𝑑𝑑1𝑐𝑐2)𝑃𝑃2
+ 𝑓𝑓0(𝑑𝑑0𝑐𝑐3 + 𝑑𝑑1𝑐𝑐3 + 𝑑𝑑2𝑐𝑐3 + 𝑑𝑑3𝑐𝑐3 + 𝑑𝑑3𝑐𝑐1 + 𝑑𝑑3𝑐𝑐0 + 𝑑𝑑3𝑐𝑐2)𝑃𝑃3 + 

(𝑑𝑑0𝑐𝑐4 + 𝑑𝑑1𝑐𝑐4 + 𝑑𝑑2𝑐𝑐4 + 𝑑𝑑3𝑐𝑐4 + 𝑑𝑑4𝑐𝑐0 + 𝑑𝑑4𝑐𝑐1 + 𝑑𝑑4𝑐𝑐2 + 𝑑𝑑4𝑐𝑐3 + 𝑑𝑑4𝑐𝑐4)𝑃𝑃4
+ (𝑑𝑑0𝑐𝑐5 + 𝑑𝑑1𝑐𝑐5 + 𝑑𝑑2𝑐𝑐5 + 𝑑𝑑3𝑐𝑐5 + 𝑑𝑑4𝑐𝑐5 + 𝑑𝑑5𝑐𝑐0 + 𝑑𝑑5𝑐𝑐1 + 𝑑𝑑5𝑐𝑐2 + 𝑑𝑑5𝑐𝑐3
+ 𝑑𝑑5𝑐𝑐4 + 𝑑𝑑5𝑐𝑐5)𝑃𝑃5
= 𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐0) + �𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐1) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐1)�𝑃𝑃1
+ �𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑦𝑦0) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐1)
+ 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐2)�𝑃𝑃2
+ ��𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐3) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐3) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐3) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐3)
+ 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐1) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐0)��𝑃𝑃3
+ ��𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐4) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐4) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐4) + 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐4)
+ 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐1) + 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐4)
+ 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐3)��𝑃𝑃4 + [𝑓𝑓0(𝑑𝑑0)𝑓𝑓0(𝑐𝑐5) + 𝑓𝑓0(𝑑𝑑1)𝑓𝑓0(𝑐𝑐5) + 𝑓𝑓0(𝑑𝑑2)𝑓𝑓0(𝑐𝑐5)
+ 𝑓𝑓0(𝑑𝑑3)𝑓𝑓0(𝑐𝑐5) + 𝑓𝑓0(𝑑𝑑4)𝑓𝑓0(𝑐𝑐5) + 𝑓𝑓0(𝑑𝑑5)𝑓𝑓0(𝑐𝑐0) + 𝑓𝑓0(𝑑𝑑5)𝑓𝑓0(𝑐𝑐1)
+ 𝑓𝑓0(𝑑𝑑5)𝑓𝑓0(𝑐𝑐2) + 𝑓𝑓0(𝑑𝑑5)𝑓𝑓0(𝑐𝑐3) + 𝑓𝑓0(𝑑𝑑5)𝑓𝑓0(𝑐𝑐4) + 𝑓𝑓0(𝑑𝑑5)𝑓𝑓0(𝑐𝑐5)]𝑃𝑃5 = 
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[𝑓𝑓0(𝑑𝑑0) + 𝑓𝑓0(𝑑𝑑1)𝑃𝑃1 + 𝑓𝑓0(𝑑𝑑2)𝑃𝑃2 + 𝑓𝑓0(𝑑𝑑3)𝑃𝑃3 + 𝑓𝑓0(𝑑𝑑4)𝑃𝑃4 + 𝑓𝑓0(𝑑𝑑5)𝑃𝑃5][𝑓𝑓0(𝑐𝑐0) + 𝑓𝑓0(𝑐𝑐1)𝑃𝑃1 +
𝑓𝑓0(𝑐𝑐2)𝑃𝑃2 + 𝑓𝑓0(𝑐𝑐3)𝑃𝑃3 + 𝑓𝑓0(𝑐𝑐4)𝑃𝑃4 + 𝑓𝑓0(𝑐𝑐5)𝑃𝑃5] = 𝑓𝑓(𝑋𝑋).𝑓𝑓(𝑌𝑌). 
This implies the proof. 
 

5.Conclusions 

In this paper, we have defined the symbolic 4-plithogenic Vector Spaces and 5-
plithogenic Vector Spaces, with  many  algebraic properties. Also, we have shown 
some related substructures such as symbolic 4-plithogenic Vector Spaces 
homomorphisms and symbolic 5-plithogenic Vector Spaces homomorphisms and 
many illustrative examples were presented. 

References 

 
[1]Nader Mahmoud Taffach , Ahmed Hatip., "A Review on Symbolic 2-

Plithogenic Algebraic Structures " Galoitica Journal Of Mathematical 
Structures and Applications, Vol.5, 2023. 

[2]Nader Mahmoud Taffach , Ahmed Hatip.," A Brief Review on The Symbolic 
2-Plithogenic Number Theory and Algebraic Equations ", Galoitica Journal 
Of Mathematical Structures and Applications, Vol.5, 2023. 

[3]Merkepci, H., and Abobala, M., " On The Symbolic 2-Plithogenic Rings", 
International Journal of Neutrosophic Science, 2023. 

[4][Smarandache, F., " Introduction to the Symbolic Plithogenic Algebraic 
Structures (revisited)", Neutrosophic Sets and Systems, vol. 53, 2023. 

[5]Taffach, N., " An Introduction to Symbolic 2-Plithogenic Vector Spaces 
Generated from The Fusion of Symbolic Plithogenic Sets and Vector Spaces", 
Neutrosophic Sets and Systems, Vol 54, 2023. 

[6]Taffach, N., and Ben Othman, K., " An Introduction to Symbolic 2-Plithogenic 
Modules Over Symbolic 2-Plithogenic Rings", Neutrosophic Sets and 
Systems, Vol 54, 2023. 

[7]Merkepci, H., and Rawashdeh, A., " On The Symbolic 2-Plithogenic Number 
Theory and Integers ", Neutrosophic Sets and Systems, Vol 54, 2023. 

https://americaspg.com/articleinfo/33/show/1689
https://americaspg.com/articleinfo/33/show/1689
https://americaspg.com/articleinfo/33/show/1691
https://americaspg.com/articleinfo/33/show/1691


Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative 
Algorithmic Approaches 

71 

[8]Albasheer, O., Hajjari., A., and Dalla., R., " On The Symbolic 3-Plithogenic 
Rings and TheirAlgebraic Properties", Neutrosophic Sets and Systems, Vol 
54, 2023. 

[9]Olgun, N., Hatip, A., Bal, M., and Abobala, M., " A Novel Approach To 
Necessary and Sufficient Conditions For The Diagonalization of Refined 
Neutrosophic Matrices", International Journal of neutrosophic Science, Vol. 
16, pp. 72-79, 2021. 

[10]Merkepci, H., and Abobala, M., " The Application of AH-isometry In The 
Study Of Neutrosophic Conic Sections", Galoitica Journal Of Mathematical 
Structures And Applications, Vol.2, 2022. 

[11]Abobala, M., and Zeina, M.B., " A Study Of Neutrosophic Real Analysis By 
Using One Dimensional Geometric AH-Isometry", Galoitica Journal Of 
Mathematical Structures And Applications, Vol.3, 2023. 

[12]Khaldi, A., " A Study On Split-Complex Vector Spaces", Neoma Journal Of 
Mathematics and Computer Science, 2023. 

[13]Ahmad, K., " On Some Split-Complex Diophantine Equations", Neoma 
Journal Of Mathematics and Computer Science, 2023. 

[14]Ali, R., " On The Weak Fuzzy Complex Inner Products On Weak Fuzzy 
Complex Vector Spaces", Neoma Journal Of Mathematics and Computer 
Science, 2023. 

[15]Von Shtawzen, O., " Conjectures For Invertible Diophantine Equations Of 3-
Cyclic and 4-Cyclic Refined Integers", Journal Of Neutrosophic And Fuzzy 
Systems, Vol.3, 2022. 

[16]Basheer, A., Ahmad, K., and Ali, R., " A Short Contribution To Von 
Shtawzen's Abelian Group In n-Cyclic Refined Neutrosophic Rings", Journal 
Of Neutrosophic And Fuzzy Systems,, 2022. 

[17]Bisher Ziena, M., and Abobala, M., " On The Refined Neutrosophic Real 
Analysis Based on Refined Neutrosophic Algebraic AH-Isometry", 
Neutrosophic Sets and Systems, vol. 54, 2023. 

[18]M. B. Zeina and M. Abobala, "A Novel Approach of Neutrosophic 
Continuous Probability Distributions using AH-Isometry used in Medical 
Applications," in Cognitive Intelligence with Neutrosophic Statistics in 
Bioinformatics, Elsevier, 2023. 



Editors: Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın &N. Merve Şahin 
              
 

72 
 

[19]Ali, R., and Hasan, Z., " An Introduction To The Symbolic 3-Plithogenic 
Modules ", Galoitica Journal Of Mathematical Structures and Applications, 
vol. 6, 2023. 

[20]Ali, R., and Hasan, Z., "An Introduction To The Symbolic 3-Plithogenic 
Vector Spaces", Galoitica Journal Of Mathematical Structures and 
Applications, vol. 6, 2023. 

[21]Rawashdeh, A., "An Introduction To The Symbolic 3-plithogenic Number 
Theory", Neoma Journal Of Mathematics and Computer Science, 2023. 

[22]Ben Othman, K., "On Some Algorithms For Solving Symbolic 3-Plithogenic 
Equations", Neoma Journal Of Mathematics and Computer Science, 2023. 

[23]Florentin Smarandache, Plithogenic Algebraic Structures. Chapter in “Nidus 
idearum Scilogs, V: joining the dots” (third version), Pons Publishing 
Brussels, pp. 123-125, 2019. 

[24]Florentin Smarandache: Plithogenic Set, an Extension of Crisp, Fuzzy, 
Intuitionistic Fuzzy, and Neutrosophic Sets – Revisited, Neutrosophic Sets and 
Systems, vol. 21, 2018, pp. 153-166. 

[25]Sarkis, M., " On The Solutions Of Fermat's Diophantine Equation In 3-refined 
Neutrosophic Ring of Integers", Neoma Journal of Mathematics and 
Computer Science, 2023. 

[26]Abobala, M., "On Some Algebraic Properties of n-Refined Neutrosophic 
Elements and n-Refined Neutrosophic Linear Equations", Mathematical 
Problems in Engineering, Hindawi, 2021 

[27]Abobala, M., "A Study Of Nil Ideals and Kothe's Conjecture In Neutrosophic 
Rings", International Journal of Mathematics and Mathematical Sciences, 
hindawi, 2021 

[28]Abobala, M., "On The Characterization of Maximal and Minimal Ideals In 
Several Neutrosophic Rings", Neutrosophic sets and systems, Vol. 45, 2021. 

[29]Abobala, M., Bal, M., Aswad, M., "A Short Note On Some Novel 
Applications of Semi Module Homomorphisms", International journal of 
neutrosophic science, 2022. 

[30]L.A. Zadeh, (1965). Fuzzy Sets, Inform. and Control 8: 338-353. 
[31]Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 87-

96. 
[32]Smarandache, F. (1998) A Unifying Field in Logics Neutrosophy: 

Neutrosophic Probability, Set and Logic.  



Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative 
Algorithmic Approaches 

73 

[33]Wang H, Smarandache FY, Q. Zhang Q, Sunderraman R (2010). Single 
valued neutrosophic sets. Multispace and Multistructure 4:410-413. 

[34]Ahmed Hatip, Mohammad Alsheikh, Iyad Alhamadeh. (2023, 29 9). On The 
Orthogonality in Real Symbolic 2-Plithogenicand 3-Plithogenic Vector 
Spaces. Neutrosophic Sets and Systems, 59, pp. 103-118.  

[35]Hatip, A. (2023, March 13). On Intuitionistic Fuzzy Subgroups of (M-N) Type 
and Their Algebraic Properties. Galoitica: Journal of Mathematical Structures 
and Applications, 4(1), pp. 15-20.  

[36]Keskin Tütüncü, D., & Başer, Z. (2024). An investigation of the Baer–
Kaplansky property. São Paulo Journal of Mathematical Sciences, 1-5. 

[37]Hatip, A. (2023, August 03). On The Algebraic Properties of Symbolic n-
Plithogenic Matrices For n=5, n=6. Galoitica: Journal of Mathematical 
Structures and Applications, 7(1), pp. 08-17.  

[38]Mohamed Nedal Khatib , Ahmed Hatip. (2024, March 28). On Refined 
Netrusophic Fractional Calculus. International Journal of Neutrosophic 
Science, 24, pp. 08-18.  

[39]Başer, Z., & Uluçay, V. (2024). Effective Q–Fuzzy Soft Expert Sets and Its 
Some Properties. Uncertainty Discourse and Applications. 

[40]Sezgin, A., & Yavuz, E. (2024). Soft Binary Piecewise Plus Operation: A New 
Type of Operation For Soft Sets. Uncertainty Discourse and Applications, 
1(1), 79-100.  

[41]Hesami, F. (2024). A hybrid ANP-TOPSIS method for strategic supplier 
selection in RL under rough uncertainty: a case study in the electronics 
industry. Uncertainty discourse and applications, 1(1), 41-65. 

[42]Adak, A. K., Kumar, D., & Edalatpanah, S. A. (2024). Some new operations 
on Pythagorean fuzzy sets. Uncertainty discourse and applications, 1(1), 11-
19. 

[43]Şahin, M.; Uluçay, V.; Olgun, N.; Kilicman, A. On neutrosophic soft lattices. 
Afr. Matematika 2017, 28, 379–388. 

[44]Şahin, M.; Olgun, N.; Kargın, A.; Uluçay, V. Isomorphism theorems for soft 
G-modules. Afrika Matematika, 2018, 1-8. 

[45]Ulucay, V.; Şahin, M.;Olgun, N. Time-Neutrosophic Soft Expert Sets and Its 
Decision Making Problem. Matematika,2018 34(2), 246-260. 



Editors: Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın &N. Merve Şahin 
              
 

74 
 

[46]Uluçay, V.;Kiliç, A.;Yildiz, I.;Sahin, M. (2018). A new approach for multi-
attribute decision-making problems in bipolar neutrosophic sets. 
Neutrosophic Sets and Systems, 2018, 23(1), 142-159. 

[47]Uluçay, V.; Şahin, M.; Hassan, N. Generalized neutrosophic soft expert set 
for multiple-criteria decision-making. Symmetry, 2018, 10(10), 437. 

[48]Bakbak, D., Uluçay, V., & Şahin, M. (2019). Neutrosophic Soft Expert 
Multiset and Their Application to Multiple Criteria Decision Making. 
Mathematics, 7(1), 50. 

[49]Sahin, M., Olgun, N., Uluçay, V., Kargın, A., & Smarandache, F. (2017). A 
new similarity measure based on falsity value between single valued 
neutrosophic sets based on the centroid points of transformed single valued 
neutrosophic numbers with applications to pattern recognition. Infinite 
Study.2018. 

[50]Şahin, M., Uluçay, V., & Acıoglu, H. Some weighted arithmetic operators 
and geometric operators with SVNSs and their application to multi-criteria 
decision making problems. Infinite Study.2018. 

[51]Şahin, M., Uluçay, V., & Broumi, S. Bipolar Neutrosophic Soft Expert Set 
Theory. Infinite Study.2018. 

[52] H. M. Zhang, Z. S. Xu and Q. Chen, Clustering method of intuitionistic 
fuzzy sets, Control Decision 22 (2007), 882–888.  

[53]Huang, H. L. (2016). New Distance Measure of Single‐Valued Neutrosophic 
Sets and Its Application. International Journal of Intelligent Systems.31(10), 
1-12. 

[54]Wang, H., Smarandache, Zhang, F. Q. &  Sunderraman, R., 2010. Single 
valued neutrosophic sets. Multispace and Multistructure 4, 410-413.  

[55]Aslan, C., Kargın, A., & Şahin, M. (2020). Neutrosophic modeling of Talcott 
Parsons’s action and decision-making applications for it. Symmetry, 12(7), 
1166. 

[56]Şahin, M., & Kargın, A. (2020). New similarity measure between single-
valued neutrosophic sets and decision-making applications in professional 
proficiencies. In Neutrosophic Sets in Decision Analysis and Operations 
Research (pp. 129-149). IGI Global. 

[57]Kargın, A., Dayan, A., Yıldız, İ., & Kılıç, A. (2020). Neutrosophic Triplet m-
Banach Spaces Neutrosophic Sets and Systems, Vol. 38, 383-398. 



Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative 
Algorithmic Approaches 

75 

[58]Şahin, M., Kargın, A., & Yıldız, İ. Neutrosophic Triplet Field and 
Neutrosophic Triplet Vector Space Based on Set Valued Neutrosophic 
Quadruple Number. TIF, 52. 

[59]Bakbak D Uluçay V (2020) A Theoretic Approach to Decision Making 
Problems in Architecture with Neutrosophic Soft Set. Quadruple 
Neutrosophic Theory and Applications Volume I (pp.113-126) Pons 
Publishing House Brussels 

[60]Şahin, M., Kargın, A., & Yücel, M. (2020). Neutrosophic Triplet Partial g-
Metric Spaces. Neutrosophic Sets and Systems, 33, 116-133. 

[61]Uluçay, V., & Şahin, M. (2019). Neutrosophic multigroups and applications. 
Mathematics, 7(1), 95. 

[62]ŞAHIN, M., & KARGIN, A. (2019). Single valued neutrosophic quadruple 
graphs. Asian Journal of Mathematics and Computer Research, 243-250. 

[63]Şahin, M., Kargın, A., Uz, M. S., & Kılıç, A. (2020). Neutrosophic Triplet 
Bipolar Metric Spaces. Quadruple Neutrosophic Theory And Applications, 
Volume I, 150. 

[64]Şahin, M., Kargın, A., & Smarandache, F. Combined Classic–Neutrosophic 
Sets and Numbers, Double Neutrosophic Sets and Numbers. Quadruple 
Neutrosophic Theory And Applications, Volume I, 254. 

[65]ŞAHİN, M. Mappings on Generalized Neutrosophic Soft Expert Sets. 6th 
International Multidisciplinary Studies Congress (Multicongress’19) 
Gaziantep, Türkiye 

[66]Şahin, M., & Kargın, A. (2019). Neutrosophic Triplet Partial v-Generalized 
Metric Space. Quadruple Neutrosophic Theory And Applications, Volume I. 

[67]Uluçay, V. (2021). Q-neutrosophic soft graphs in operations management 
and communication network. Soft Computing, 1-19. 

[68] Başer, Z., & Uluçay, V. (2024). Energy of a neutrosophic soft set and its 
applications to multi-criteria decision-making problems. Neutrosophic Sets 
and Systems. Accepted for publication. 

[69] Uluçay, V., & Şahin, M. (2024). Intuitionistic fuzzy soft expert graphs with 
application. Uncertainty discourse and applications, 1(1), 1-10. 

[70] Uluçay, V., Deli, I., & Edalatpanah, S. A. (2024). Prioritized Aggregation 
Operators of GTHFNs MADM Approach for the Evaluation of Renewable 
Energy Sources. Informatica, 1-24. 



Editors: Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın &N. Merve Şahin 
              
 

76 
 

[71] Uluçay, V., & Okumuş, N. (2024). A new generalized similarity measure 
based on intuitionistic trapezoidal fuzzy multi-numbers: Turkey's 
sustainable tourism economy strategy application. Journal of Fuzzy Extension 
and Applications, 5(2), 238-250. 

[72]Uluçay, V., & Deli, İ. (2024). TOPSIS-Based Entropy Measure for N-Valued 
Neutrosophic Trapezoidal Numbers and Their Application to Multi-Criteria 
Decision-Making Problems. In Analytical Decision Making and Data 
Envelopment Analysis: Advances and Challenges (pp. 433-454). Singapore: 
Springer Nature Singapore. 

[73] Broumi, S., Krishna Prabha, S., & Uluçay, V. (2023). Interval-valued 
Fermatean neutrosophic shortest path problem via score 
function. Neutrosophic Systems with Applications, 11, 1-10. 

[74] Uluçay, V., & Deli, I. (2023). Vikor method based on the entropy measure 
for generalized trapezoidal hesitant fuzzy numbers and its application. Soft 
Computing, 1-13. 

[75] Uluçay, V., Şahin, N. M., Toz, N. İ., & Bozkurt, E. (2023). VIKOR Method for 
Decision-Making Problems Based on Q-Single-Valued Neutrosophic Sets: 
Law Application. Journal of Fuzzy Extension & Applications (JFEA), 4(4). 

[76]Qiuping, N., Yuanxiang, T., Broumi, S., & Uluçay, V. (2023). A parametric 
neutrosophic model for the solid transportation problem. Management 
Decision, 61(2), 421-442. 

[77]BAKBAK, D., & ULUÇAY, V. (2023). Multi-criteria decision-making method 
based on intuitionistic trapezoidal fuzzy multi-numbers and some harmonic 
aggragation operators: Application of Architucture. 2023 Neutrosophic 
SuperHyperAlgebra And New Types of Topologies, 172. 

[78]ULUÇAY, V., & ŞAHİN, N. M. (2023). Some harmonic aggragation operators 
with trapezoidal fuzzy multi-numbers: Application of Law. 2023 
Neutrosophic SuperHyperAlgebra And New Types of Topologies, 202. 

[79] Bakbak, D., Ulucay, V., & Edalatpanah, S. A. (2024). Trapezoidal fuzzy 
multi-number preference relations based on architecture multi-criteria 
decision-making application. Iranian Journal of Fuzzy Systems, 21(2), 51-65. 

[80]Okumuş, N., & Uz, M. S. (2022). Decision Making Applications for Business 
Based on Generalized Set-Valued Neutrosophic Quadruple Sets. 
International Journal of Neutrosophic Science (IJNS), 18(1). 



Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative 
Algorithmic Approaches 

77 

[81]OKUMUŞ, N., & ULUÇAY, V. (2022). Chapter Thirteen. A Comparative 
Analysis for Multi-Criteria Decision-Making Methods: TOPSIS and VIKOR 
methods using NVTN-numbers for Application of Circular Economy 
Neutrosophic Algebraic Structures and Their Applications, 201. 

[82]Ulucay, V., Sahin, M., & Olgun, N. (2018). Time-neutrosophic soft expert sets 
and its decision making problem. Infinite Study. 

[83]Şahin, M., & Uluçay, V. (2020). Soft Maximal Ideals on Soft Normed 
Rings. Quadruple Neutrosophic Theory And Applications, 1, 203. 

[84]Uluçay, V., Şahin, M., & Olgun, N. (2016). Soft normed rings. SpringerPlus, 5, 
1-6. 

[85]Ulucay, V., Sahin, M., Olgun, N., Oztekin, O., & Emniyet, A. (2016). 
Generalized Fuzzy σ-Algebra and Generalized Fuzzy Measure on Soft 
Sets. Indian J. Sci. Technol, 9(4), 1-7. 

[86]Şahin, M., Olgun, N., Kargın, A., & Uluçay, V. (2018). Isomorphism theorems 
for soft G-modules. Afrika Matematika, 29, 1237-1244. 

[87]Olgun, N., Sahin, M., & Ulucay, V. (2016). Tensor, symmetric and exterior 
algebras Kähler modules. New Trends in Mathematical Sciences, 4(3), 290-295. 

[88]ŞAHİN, M., & ULUÇAY, V. (2019). Fuzzy soft expert graphs with 
application. Asian Journal of Mathematics and Computer Research, 26(4), 216-
229. 

[89]Uluçay, V., Sahin, M., Olgun, N., & Kılıçman, A. (2016). On soft expert metric 
spaces. Malaysian Journal of Mathematical Sciences, 10(2), 221-231. 
 
 

 
 
 
 

 

 

 

 

 

 



78 

Chapter 4 

A New Approach for Application of Cyber Wars with Q-Fuzzy Sets 
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Abstract 

In today's world, where almost all information is stored and processed in the cyber 

environment, devices are managed in the cyber environment, and the operational 

superiority of the armies is based on tactics such as electronic communication, 

image acquisition and remote sensing, attack and defense strategies and tactics are 

developed according to the fifth battlefield, the cyber environment. In international 

relations, a time has come when cyber armies and attacks are included to resolve 

conflicts between countries. Therefore, to facilitate the decision-making process in 

complex decision problems, many multi-criteria decision-making methods have 

been proposed and developed from past to present. These methods continue to 

develop by developing new approaches and methods and use in wide application 

areas. Therefore, a new mathematical tool has been proposed to achieve consensus 

among the countries here. Our aim of this study was to develop the VIKOR method 

on Q-fuzzy sets, which is a new method for multi-criteria decision-making methods. 

By applying this method to the real-life problem of cyber warfare, he demonstrated 

the flexibility, effectiveness, and feasibility of the proposed VIKOR method. 

Keywords: Cyber War, Cyber Law, fuzzy set, Q-fuzzy set, Decision-making. 
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1. Introduction 

With the revolutionary developments in the last quarter century in the field of 
technology, mankind has reached a standard of living and style that he could not 
even imagine. The enlargement of the possibilities in the information environment 
of the newly developing technology is the biggest problem for the lawyers in 
defining the terms. Computers have shrunk, mobile phones have become almost 
computers, and the living space where these two devices cannot be taken or used 
has almost disappeared. These developments have also caused some important 
problems in the field of law, new concepts have emerged, the definitions of these 
concepts have begun to be discussed and to have legal consequences. However, 
following the developments in this field and putting forth appropriate definitions, 
reconciliation in the international arena and regulation in the national field is the 
difficulties faced by the lawyers. So, solving fuzzy phenomena and uncertain events 
in real life is necessary as science and technology advance. Zadeh [1] first explicitly 
and systematically proposed fuzzy sets to solve these problems effectively.  

Decision making is the act of identifying and choosing alternatives to find 
out the best solution from a pool of options based on different factors and 
considering the decision maker’s expectations. Every decision is made within an 
environment, which is defined as the collection of information, alternatives, values 
and preferences available at the time when the decision must be made.  Başer and 
Ulucay [35] defined energy of a neutrosophic soft set and its applications to multi-
criteria decision-making problems. Till date, several MCDM methods [17-53] have 
been proposed and successfully deployed to solve complex decision-making 
problems arising from different corners of engineering and management. Amongst 
those techniques, VIKOR (the Serbian name is ‘Vlse Kriterijumska Optimizacija 
Kompromisno Resenje’ which means multi-criteria optimization and compromise 
solution) method has gained much popularity among the decision-making 
community due to its simple and easily comprehensible computational steps [2]. 
Opricovic used the VIKOR model to investigate some MCGDM problems with 
conflicting criteria [3,4]. Also, we solve an MCDM problem with cyber wars related 
example based on VIKOR strategy in Q- fuzzy sets. Multi Q -fuzzy soft expert set 
[9]. Effective Q- fuzzy soft expert sets [31], Q -fuzzy soft sets [10-12], and multi-Q 
fuzzy soft sets [13-15] were proposed by Adam and Hassan. 
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Recently, it has been used by other researchers [5-8, 54-75]. To fill up this 
research gap, we propose a new VIKOR method to deal with MCDM problems in 
Q- fuzzy set environment. Since Q-fuzzy sets are developing and novel sets, there 
is a scarcity in the number of studies in the literature, which is a contribution of this 
study.  

2. Preliminaries 

Definition 2.1[1] The fuzzy sets defined on a non-empty  as objects having the 

form   where the functions : → [0, 1] for v  V. 

Definition 2.2 [16] Let  be unit interval and  be a positive integer. A multi Q -

fuzzy set  in  and a non-empty set Q is a set of ordered sequences 

 where  

 

The function  is called the membership function of 

multi Q- fuzzy set   and  is called the 

dimension of   The set of all multi Q- fuzzy sets of dimension  in  and Q is 

denoted by  

3. A New Method on Q-Fuzzy Sets 

To address the uncertainties and conflicts that arise in real-world decision-making, 
the VIKOR method is often employed. This method is particularly effective in 
solving MCDM problems by incorporating more practical and flexible preference 
information provided by decision-makers. In this context, the VIKOR method is 
adapted to operate within Q-fuzzy sets, enhancing its ability to manage uncertainty 
and imprecision. The method offers a structured, systematic approach to decision-
making, enabling the identification of both the best and a compromise solution, 
particularly in settings involving fuzzy logic.  

Figure 1 shows the steps followed when the VIKOR method is applied to MCDM 
problems using fuzzy sets. It shows how this approach leads to systematic selection 
of the best solutions in situations involving uncertainty, using criteria characterized 
by the uncertainty. 
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Figure 1:  VIKOR Method 

According to Figure 1, VIKOR consists of 11 steps. There are two types of optimal 
criterion weights, which distinguish VIKOR from other methods, these are 
subjective and objective weights. 

Let 𝐷𝐷(𝑘𝑘)  be a set of decision makers where k=1,2,…,p. 𝐴𝐴𝑖𝑖  represents alternatives 
where i=1,2,…,m and  𝐶𝐶𝑖𝑖 represent criteria j=1,2,…,n. The criteria are classified as 
cost criteria and benefit criteria. 

Step 1: Criteria are defined and measurement scales are created. 

Step 2: A Direct Relationship Matrix is established with Q fuzzy sets. We will obtain 
the fuzzy Decision matrix [𝑅𝑅𝑖𝑖𝑖𝑖]𝑚𝑚𝑚𝑚𝑚𝑚, (𝑖𝑖 = 1,2, … ,𝑘𝑘 𝑣𝑣𝑣𝑣 𝑗𝑗 = 1,2, … ,𝑝𝑝) as follows: 

                              𝐶𝐶1    𝐶𝐶2 … 𝐶𝐶𝑛𝑛 

Step 1: Criteria are determined and measurement 
scales are created.
Step 2: A direct relationship matrix is created in Q 
fuzzy sets.
Step 3: The direct relationship matrix is replaced 
with grammar in Q fuzzy sets.
Step 4: The weight of the decision makers is 
determined.

Step 5: A batch Q fuzzy sets martial is created.
Step 6: The optimal weights of the criteria are 
obtained by considering the subjective weight and 
objective weight.

Step 7: PIS and NIS values are calculated.

Step 8: Benefit (S) and Cost (R) values are 
calculated.

Step 9: The priority value (Q) is calculated.

Step 10: S, R and Q values are sorted according to 
max criteria.
Step 11: Alternatives are listed and a compromise 
solution is obtained.
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[𝑅𝑅𝑖𝑖𝑖𝑖]𝑚𝑚𝑚𝑚𝑚𝑚 =

𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴𝑚𝑚

�

𝑅𝑅11 𝑅𝑅12 … 𝑅𝑅1𝑛𝑛
𝑅𝑅21 𝑅𝑅22 … 𝑅𝑅2𝑛𝑛
⋮ ⋮ ⋮ 

𝑅𝑅𝑚𝑚1 𝑅𝑅𝑚𝑚2 … 𝑅𝑅𝑚𝑚𝑚𝑚

� 

where 𝑅𝑅𝑖𝑖𝑖𝑖 = 〈�𝑥𝑥𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖�: �𝜇𝜇𝑖𝑖𝑖𝑖�〉 

Step 3: The Direct Relationship Matrix is replaced with grammatical information. 

Step 4: The weights of the decision makers are determined. The weights of the 
decision makers can be obtained with the following formula: 

𝜛𝜛𝑘𝑘 =
𝜇𝜇𝑘𝑘

∑ 𝜇𝜇𝑘𝑘
𝑝𝑝
𝑘𝑘=1

 ,    𝜛𝜛𝑘𝑘 ≥ 0 ,�𝜛𝜛𝑘𝑘 = 1
𝑝𝑝

𝑘𝑘=1

 

𝜇𝜇:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Step 5: Consolidated Q fuzzy sets decision matrix is created 𝒩𝒩(𝑘𝑘) = (𝒩𝒩𝑖𝑖𝑖𝑖
𝑘𝑘)𝑚𝑚𝑚𝑚𝑚𝑚 k. Let 

the decision maker have a single value decision matrix Q fuzzy sets weight operator 
is used to sum all the individual decision matrices 𝒩𝒩. 

𝒩𝒩(𝑘𝑘) = (𝒩𝒩𝑖𝑖𝑖𝑖
𝑘𝑘)𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑘𝑘 = 1,2, … ,𝑝𝑝 , 𝑖𝑖 = 1,2, … ,𝑚𝑚 𝑣𝑣𝑣𝑣 𝑗𝑗 = 1,2, … ,𝑛𝑛 . 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝑑𝑑𝑖𝑖𝑖𝑖
(1),𝑑𝑑𝑖𝑖𝑖𝑖

(2), … ,𝑑𝑑𝑖𝑖𝑖𝑖
(𝑝𝑝)� = (1 −  ��1 − 𝜇𝜇𝑖𝑖𝑖𝑖

(𝑘𝑘)�
1
𝑝𝑝

𝑝𝑝

𝑘𝑘=1

) 

The aggregate decision matrix D is defined as follows: 

𝒩𝒩 =

⎣
⎢
⎢
⎡
𝑑𝑑11 𝑑𝑑12 … 𝑑𝑑1𝑛𝑛
𝑑𝑑21 𝑑𝑑22 … 𝑑𝑑2𝑛𝑛
⋮ ⋮ ⋮ 

𝑑𝑑𝑚𝑚1 𝑑𝑑𝑚𝑚2 … 𝑑𝑑𝑚𝑚𝑚𝑚⎦
⎥
⎥
⎤
 ,𝑑𝑑𝑖𝑖𝑖𝑖 = 〈�𝑥𝑥𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖�: �𝜇𝜇𝑖𝑖𝑖𝑖�〉 

Step 6: The optimal weights of the criterion are obtained. 

There are two types of weights in this section that are subjective and need to be 
considered. 

3.1. Subjective Weight 
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The rating of the alternatives according to each criterion is collected by the decision 
makers. The importance weights of the criteria corresponding to the alternatives are 
determined using the linguistic rating scale as follows. 

LANGUAGE TERMS IMPACT SCORE Fuzzy Value 
TOO LOW 1 (0) 
LOW 2 (0) 
MEDIUM LOW 3 (0.1) 
MEDIUM 4 (0.3) 
MEDIUM HIGH 5 (0.5) 
HIGH 6 (0.7) 
TOO HIGH 7 (0.9) 

Considering that the criterion weight is obtained using the equation: 

𝑤𝑤𝑗𝑗 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄�𝑤𝑤𝑗𝑗1,𝑤𝑤𝑗𝑗2, … ,𝑤𝑤𝑗𝑗𝑙𝑙� = �1 −  ��1 − 𝜇𝜇𝑖𝑖𝑖𝑖
(𝑘𝑘)�

𝜓𝜓𝑘𝑘
𝑙𝑙

𝑘𝑘=1

�        

𝑗𝑗 = 1,2, … ,𝑛𝑛 𝑣𝑣𝑣𝑣 𝑤𝑤𝑗𝑗 = (𝜇𝜇𝑗𝑗)  

The subjective weight of each criterion is obtained using the formula below. 

𝑤𝑤𝑗𝑗𝑠𝑠 = 𝜇𝜇𝑘𝑘 + �−(
1

ln𝑚𝑚 
)�𝜇𝜇𝑘𝑘

𝑚𝑚

𝑖𝑖=1

�
−1

 

𝑗𝑗 = 1,2, … ,𝑛𝑛 𝑣𝑣𝑣𝑣 ∑ 𝑤𝑤𝑗𝑗𝑠𝑠 = 1𝑛𝑛
𝑗𝑗=1 . 

3.2. Objective Weight 

The evaluation criteria are normalized using the following equation. 

𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑅𝑅𝑖𝑖𝑖𝑖

∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

 

where 𝑃𝑃𝑖𝑖𝑖𝑖 is the predicted result of criterion j. Next, the predicted results of the j 
criterion entropy set 𝐸𝐸𝑗𝑗   are calculated. 

𝐸𝐸𝑗𝑗 = −(
1

ln𝑚𝑚 
)�𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 

where m is the number of criteria and 0 ≤ 𝐸𝐸𝑗𝑗 ≤ 1. 
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After that, to obtain the objective weights of the criteria, the divergence 𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗 , which 
is the degree of deviation of the information of the j criterion, must be defined. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗 = 1 −  𝐸𝐸𝑗𝑗 

The greater the degree of deviation of this criterion, the more important the criterion 
is in the decision-making process. Finally, objective weights can be obtained using 
the following equation. 

𝑤𝑤𝑗𝑗𝑜𝑜 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗

∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑛𝑛
𝑗𝑗=1

 

Step 7: Fuzzy values of positive ideal solution (PIS) are calculated 𝑓𝑓𝑗𝑗+ =
〈�𝑥𝑥𝑗𝑗𝑞𝑞𝑗𝑗�: �𝜇𝜇𝑗𝑗+�〉 and fuzzy values of negative ideal solution (NIS) are calculated 𝑓𝑓𝑗𝑗− =
〈�𝑥𝑥𝑗𝑗𝑞𝑞𝑗𝑗�: �𝜇𝜇𝑗𝑗−� 〉, <, 𝑗𝑗 = 1,2, … ,𝑛𝑛. 

𝑓𝑓𝑗𝑗− = �
min𝑅𝑅𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

max𝑅𝑅 𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

𝑓𝑓𝑗𝑗+ = �
max𝑅𝑅𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

min𝑅𝑅 𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

𝑗𝑗 = 1,2, … ,𝑛𝑛. 

Step 8: Calculate the utility measure (𝑆𝑆𝑖𝑖) and regret measure (𝑅𝑅𝑖𝑖)  for the alternative 
as follows:  

𝑆𝑆𝑖𝑖 = �
𝑤𝑤𝑗𝑗�𝑓𝑓𝑗𝑗+ − 𝑓𝑓1𝑗𝑗�
�𝑓𝑓𝑗𝑗+ − 𝑓𝑓𝑗𝑗−�

𝑛𝑛

𝑗𝑗=1

 , 𝑖𝑖 = 1,2, … ,𝑚𝑚 

𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑤𝑤𝑗𝑗�𝑓𝑓𝑗𝑗+ − 𝑓𝑓1𝑗𝑗�
�𝑓𝑓𝑗𝑗+ − 𝑓𝑓𝑗𝑗−�

�  𝑖𝑖 = 1,2, … ,𝑚𝑚 

Here 𝑤𝑤𝑗𝑗,  represents the weight of the combination for each criterion. 

𝑤𝑤𝑗𝑗 = 𝑣𝑣𝑣𝑣𝑗𝑗𝑠𝑠 + (1 − 𝑣𝑣)
(𝑅𝑅𝑖𝑖 − 𝑅𝑅+)
(𝑅𝑅− − 𝑅𝑅+)

 

Where 𝜈𝜈, denotes the relative importance between subjective weights and objective 
weights. It can be any value from 0 to 1, but is usually set to 0.5. 

Step 9: The priority value 𝑄𝑄𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑚𝑚 is applied using the following formulas 
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𝑄𝑄𝑖𝑖 =  𝜈𝜈
(𝑆𝑆𝑖𝑖 − 𝑆𝑆+)
(𝑆𝑆− − 𝑆𝑆+)

+ (1 − 𝜈𝜈)
(𝑅𝑅𝑖𝑖 − 𝑅𝑅+)
(𝑅𝑅− − 𝑅𝑅+)

 

𝑆𝑆+ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑖𝑖 , 𝑆𝑆− = 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑗𝑗  

𝑅𝑅+ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑖𝑖 ,𝑅𝑅− = 𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑗𝑗 

𝜈𝜈, indicates the weight of the strategy of the constraints of the criteria and is usually 
assumed to be 0.5. 

Step 10: Sort 𝑆𝑆𝑖𝑖,𝑅𝑅𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑖𝑖  values by maximum criterion. Sort the sort results by 
descending alternatives. 

Step 11: List the alternatives and find the compromise solution. 

At the minimum value of Q, the best alternative 𝐴𝐴(1)  (top alternative) must satisfy 
the following 2 conditions. 

Condition 1: Acceptable benefits 

𝑄𝑄�𝐴𝐴(2)� − 𝑄𝑄�𝐴𝐴(1)� ≥
1

𝑚𝑚 − 1
 

Here 𝐴𝐴(1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴(2), 𝑄𝑄𝑖𝑖  is also the two best alternatives. 

Condition 2: Acceptable Status 

The best alternatives should be ranked best by 𝑆𝑆𝑖𝑖  and 𝑅𝑅𝑖𝑖.  If one of the above 
conditions is not met, a number of compromise solutions have been proposed: 

1. 𝐴𝐴(1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴(2) alternatives are also acceptable if only stability requirement is 
not achieved; 

2. Alternatives 𝐴𝐴(1),𝐴𝐴(2), … ,𝐴𝐴(𝑢𝑢) are accepted if the advantage condition is not 

met. 𝐴𝐴(𝑢𝑢) for max u 𝑄𝑄�𝐴𝐴(𝑢𝑢)� − 𝑄𝑄�𝐴𝐴(1)� ≥ 1
𝑚𝑚−1

 It is determined by the formula. 

(the positions of these alternatives are close to each other.) 
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4.  Application of Cyber Wars of VIKOR Method for Decision-
Making Problems 

The increase in cyber war threats in the world obliges states to take precautions in 
this regard. Although developed countries have come a long way in this regard, 
there are still many countries that do not take adequate steps in this regard. 
Especially underdeveloped and developing countries, as they are insufficient in 
cyber warfare, can be vulnerable and suffer victimization in case of any cyber-
attack. To prevent this situation, a few developing countries that decided to act have 
taken the models of the countries that have achieved success in this subject to 
examination and have decided to take the model they found suitable for them as an 
example. As a result of the examination, the policies that developed countries have 
already implemented and are considering implementing soon have been taken into 
consideration. Especially developing countries wants to use proposed method 
when choosing a model. The models he can take to are Türkiye model (A1), England 
model (A2), USA model (A3) and Q={𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3}.   It considers four criteria for three 
alternatives: models’ price (C1), usability (C2), speed (C3) and security after buy. 
While making this choice, he consults 3 different cyber warfare experts (DM1, DM2, 
DM3). 

Then we can take a model based on their parameters using Q-fuzzy sets, by 
applying the following algorithm. 

Step 1: Criteria are defined, and measurement scales are created. Compiling the 
perspectives of 3 different decision makers (DM1, DM2, DM3), the student, who 
met with his family, carefully selected the decision makers by considering the cost 
and benefit. Tables 2 and 3 describe the decision makers' perspectives on the weight 
of the criteria and the evaluation of alternatives according to the criteria. 

Table 2 Impact score of the three decision makers on the importance of the criteria 

 C1 C2 C3 C4 
DM1 5 6 5 4 
DM2 6 6 6 4 
DM3 6 5 6 4 
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Table 3 Rating of evaluation of alternatives according to criteria 

  C1 C2 C3 C4 
A1(𝒙𝒙𝟏𝟏,𝒒𝒒𝟏𝟏) DM1 6 6 1 3 

DM2 3 4 2 2 
DM3 5 6 1 3 

A2(𝒙𝒙𝟏𝟏,𝒒𝒒𝟐𝟐) DM1 6 6 7 7 
DM2 6 6 5 7 
DM3 6 6 6 7 

A3(𝒙𝒙𝟏𝟏,𝒒𝒒𝟑𝟑) DM1 3 4 5 4 
DM2 3 3 4 6 
DM3 3 5 4 4 

Step 2 and Step 3: A Direct Relationship Matrix is Constructed in the Q fuzzy set. 
The Language Expressions of Q fuzzy Sets are modified in table 3 to create the Q 
fuzzy set Direct Relationship Matrix (see Table 4). 

Table 4 Q-FS Direct Relationship Matrix 

  C1 C2 C3 C4 
 
A1(𝒙𝒙𝟏𝟏𝒒𝒒𝟏𝟏) 

DM1 0.7 0.7 0 0.1 
DM2 0.1 0.3 0 0 
DM3 0.5 0.7 0 0.1 

 
A2(𝒙𝒙𝟏𝟏𝒒𝒒𝟐𝟐) 

DM1 0.7 0.7 0.9 0.9 
DM2 0.7 0.7 0.5 0.9 
DM3 0.7 0.7 0.7 0.9 

 
A3(𝒙𝒙𝟏𝟏𝒒𝒒𝟑𝟑) 

DM1 0.1 0.3 0.5 0.3 
DM2 0.1 0.1 0.3 0.7 
DM3 0.1 0.5 0.3 0.3 

 

Step 4: Determine the weights of the decision makers. The weights of the decision 
makers are obtained by the following equation: 

𝐷𝐷𝐷𝐷1 = 0.5 ,𝐷𝐷𝐷𝐷2 = 0.2 ,𝐷𝐷𝐷𝐷3 = 0.3 
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Step 5: An aggregated QFS decision matrix is generated. The importance weights 
of the decision makers are shown in Table 5. 

Table 5 Importance weight of decision makers 

 Linguistic Data Impact Score Weight 
DM1 Medium High (0.5) 0.5 
DM2 Medium High (0.2) 0.2 
DM3 Medium (0.3) 0.3 

 

To aggregate the weights of all decision makers, the QFSWA operator is applied. 

𝜇𝜇11 = 1 − ((1 − 0.7)0.5 × (1−0.1)0.2 × (1 − 0.5)0.3) = 0.564 

The remaining calculations are calculated in a similar way. The detailed calculation 
of the aggregated QFS matrix is shown in Table 6. 

Table 6 Aggregate Q-FS matrix 

 C1 C2 C3 C4 
A1 (𝒙𝒙𝟏𝟏𝒒𝒒𝟏𝟏) 0.564 0.645 0 0.081 
A2(𝒙𝒙𝟏𝟏𝒒𝒒𝟐𝟐) 0.7 0.7 0.81 0.9 
A3(𝒙𝒙𝟏𝟏𝒒𝒒𝟑𝟑) 0.1 0.335 0.408 0.409 

 

Step 6: The optimal weight of the criterion is obtained. Linguistic variables are 
shown in Table 2. The overall subjective weight of the criterion is calculated as 
follows: 

𝜇𝜇1 = 1 − ((1− 0.5)0.5 × (1−0.7)0.2 × (1 − 0.7)0.3) = 0.613 

The result of the collective subjective weight calculation is shown in Table 7. 

Table 7 Total subjective weight 

 𝝁𝝁 

C1 0.613 
C2 0.650 
C3 0.613 
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C4 0.3 
The subjective weight of the criterion is calculated and presented as follows: 

𝑠𝑠�𝑥𝑥𝑖𝑖𝑖𝑖� =
𝜇𝜇𝑖𝑖𝑖𝑖
4

 

𝑠𝑠(𝑥𝑥11) =
0.613

4
= 0.153 

The aggregated net matrix is given in Table 8. 

Table 8 Aggregate net matrix 

 C1 C2 C3 C4 
A1(𝒙𝒙𝟏𝟏𝒒𝒒𝟏𝟏) 0.153 0.163 0.153 0.075 
A2(𝒙𝒙𝟏𝟏𝒒𝒒𝟐𝟐) 0.2666 0.2666 0.3178 0.3 
A3(𝒙𝒙𝟏𝟏𝒒𝒒𝟑𝟑) 0.4333 0.3983 0.3476 0.5147 

The criteria evaluation is then normalized as follows. 

𝑃𝑃11 =
0.3959

0.3959 + 0.2666 + 0.4333
= 0.3612 

𝑃𝑃21 =
0.2666

0.3959 + 0.2666 + 0.4333
= 0.2432 

𝑃𝑃31 =
0.4333

0.3959 + 0.2666 + 0.4333
= 0.3954 

𝑃𝑃12 = 0.4528 

𝑃𝑃22 = 0.2193 

𝑃𝑃23 = 0.3277 

𝑃𝑃13 = 0.4803 

𝑃𝑃23 = 0.2481 

𝑃𝑃33 = 0.2714 

𝑃𝑃14 = 0.4034 

𝑃𝑃24 = 0.2196 

𝑃𝑃34 = 0.3768 

Next, entropy 𝐸𝐸𝐸𝐸 is calculated. 
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𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖: 

𝑙𝑙𝑙𝑙𝑃𝑃11 =-1.01832 

𝑙𝑙𝑙𝑙𝑃𝑃21 = −1.4114 

𝑙𝑙𝑙𝑙𝑃𝑃31 = −0.9278 

𝑙𝑙𝑙𝑙𝑃𝑃12 = −0.7923 

𝑙𝑙𝑙𝑙𝑃𝑃22 = −1.5173 

𝑙𝑙𝑙𝑙𝑃𝑃23 = −1.1156 

𝑙𝑙𝑙𝑙𝑃𝑃13 = −0.7333 

𝑙𝑙𝑙𝑙𝑃𝑃23 = −1.3939 

𝑙𝑙𝑙𝑙𝑃𝑃33 = −1.3041 

𝑙𝑙𝑙𝑙𝑃𝑃14 = −0.9078 

𝑙𝑙𝑙𝑙𝑃𝑃24 = −1.5159 

𝑙𝑙𝑙𝑙𝑃𝑃34 = −0.9769 

�𝑃𝑃𝑥𝑥𝑖𝑖𝑞𝑞𝑗𝑗𝑙𝑙𝑙𝑙𝑃𝑃𝑥𝑥𝑖𝑖𝑞𝑞𝑗𝑗 =
𝑚𝑚

𝑖𝑖=1

(0.3612 × −1.01832) + (0.2432 × −1.4114) + (0.3954 × −0.9278) 

= −1.07792 

∴ 𝐸𝐸1 = −�
1
𝑙𝑙𝑙𝑙3

� (−1.07792) = 0.9811 

∴ 𝐸𝐸2 = 0.96218 

∴ 𝐸𝐸3 = 0.95753 

∴ 𝐸𝐸4 = 0.97108 

After that, the distance value is calculated. 

𝑑𝑑𝑑𝑑𝑑𝑑1 = 1 − 0.9811 = 0.0189 

𝑑𝑑𝑑𝑑𝑑𝑑2 = 0.0378 

𝑑𝑑𝑑𝑑𝑑𝑑3 = 0.0424 
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𝑑𝑑𝑑𝑑𝑑𝑑4 = 0.0289 

�𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗 = 0.0189 + 0.0378 + 0.0424 + 0.0289 = 0.128
𝑛𝑛

𝑗𝑗=1

 

Objective weights are calculated. 

𝑤𝑤1𝑜𝑜 =
𝑑𝑑𝑑𝑑𝑑𝑑1
∑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗

=
0.0189
0.128

= 0.1476 

𝑤𝑤2
𝑜𝑜 = 0.2953 

𝑤𝑤3
𝑜𝑜 = 0.3312 

𝑤𝑤4𝑜𝑜 = 0.2257 

The remaining objective weights are calculated similarly. The calculated objective 
weight and subjective weight results are shown in Table 9. 

Table 9 Objective weight and subjective weight of the criteria 

 Subjective weight Objective weight 
C1 0.2571 0.1476 
C2 0.3644 0.2953 
C3 0.3299 0.3312 
C4 0.0483 0.2257 

According to the result of the subjective weight for each criterion, it is seen that 
education (C3) is the most important criterion, and employment opportunity (C4) 
is the least important criterion according to the decision makers. According to the 
analysis of the objective weights of the criteria, we have seen that education (C3) is 
again the most important criterion and transportation (C1) is the least important 
criterion. 

Step 7: The Q fuzzy value of the Positive Ideal Solution (PIS) and the Negative Ideal 
Solution (NIS) is determined. Benefit and Cost criteria are determined. 

Benefit criteria: It is determined as Placement (C2), Education (C3) and Employment 
opportunity (C4), on the other hand Cost criteria; Available as Transport (C1). 

The PIS and NIS in Table 8 are obtained, respectively. PIS and NIS values of all 
criteria are given in Table 10. 
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Table 10 PIS and NIS of all criteria 

 PIS NIS 
C1 0.2666 0.4333 
C2 0.5504 0.2666 
C3 0.6152 0.3178 
C4 0.5510 0.3 

Step 8: The utility measure (𝑆𝑆𝑖𝑖)  and regret measure (𝑅𝑅𝑖𝑖)   are calculated for the 
alternative. 

𝜈𝜈 = 0.5  

𝑤𝑤𝑐𝑐1 = (0.5) × (0.2571) + (1 − 0.5) × 0.1476 = 0.2023 

𝑤𝑤𝑐𝑐2 = 0.3298 

𝑤𝑤𝑐𝑐3 = 0.3305 

𝑤𝑤𝑐𝑐4 = 0.137 

Then, 

𝑆𝑆11 =  
𝑤𝑤𝑐𝑐1‖𝑓𝑓1+ − 𝑓𝑓11‖
‖𝑓𝑓1+ − 𝑓𝑓1−‖

=
‖0.2023(0.2666 − 0.3959)‖

‖0.2666 − 04333‖
= 0.1569 

𝑆𝑆21 = 0 

𝑆𝑆31 = 0.2023 

𝑆𝑆12 = 0 

𝑆𝑆13 = 0 

𝑆𝑆14 = 0 

𝑆𝑆22 = 0.3298 

𝑆𝑆24 = 0.137 

𝑆𝑆32 = 0.1767 

𝑆𝑆34 = 0.0198 

𝑆𝑆23 = 0.3305 

𝑆𝑆33 = 0.2973 
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From here, 

𝑆𝑆𝐴𝐴1 = 0.1569 + 0 + 0 + 0 = 0.1519 

𝑆𝑆𝐴𝐴2 = 0.7973 

𝑆𝑆𝐴𝐴3 = 0.6961 

And 

𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑤𝑤𝑐𝑐1‖𝑓𝑓1+ − 𝑓𝑓11‖
‖𝑓𝑓1+ − 𝑓𝑓1−‖

� 

Table 11 𝑆𝑆𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑖𝑖 values 

  𝑹𝑹𝒊𝒊   𝑹𝑹𝒊𝒊  

C1 0.1569 0.1569 
C2 0.7973 0.3305 
C3 0.6961 0.2973 
C4   

Step 9: Calculate the priority value. 

𝑆𝑆𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚 = 0.1569 

𝑅𝑅𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚 = 0.1569 

𝑆𝑆𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚 = 0.7973 

𝑅𝑅𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚 = 0.3305 

𝑄𝑄𝑖𝑖 = 𝜈𝜈
(𝑆𝑆𝑖𝑖 − 𝑆𝑆+)
(𝑆𝑆− − 𝑆𝑆+)

+ (1 − 𝜈𝜈)
(𝑅𝑅𝑖𝑖 − 𝑅𝑅+)
(𝑅𝑅− − 𝑅𝑅+)

 

𝑄𝑄𝐴𝐴1 = 0 

𝑄𝑄𝐴𝐴2 = 1 

𝑄𝑄𝐴𝐴3 = 0.8253 

Step 10: 𝑆𝑆𝑖𝑖, 𝑅𝑅𝑖𝑖 and 𝑄𝑄𝑖𝑖 are sorted by maximum criteria. 

 

 

Table 12: Calculated of 𝑺𝑺𝒊𝒊, 𝑹𝑹𝒊𝒊 and 𝑸𝑸𝒊𝒊 
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 S Rank R Rank Q Rank 
A1(𝒙𝒙𝟏𝟏𝒒𝒒𝟏𝟏) 0.1569 1 0.1569 1 0 1 
A2(𝒙𝒙𝟏𝟏𝒒𝒒𝟐𝟐) 0.7973 3 0.3305 3 1 3 
A3(𝒙𝒙𝟏𝟏𝒒𝒒𝟑𝟑) 0.6961 2 0.2973 2 0.8253 2 

 

Step 11: Sort alternatives by rank. 

𝐴𝐴2(𝑥𝑥1𝑞𝑞1) > 𝐴𝐴3(𝑥𝑥1𝑞𝑞2) > 𝐴𝐴1(𝑥𝑥1𝑞𝑞3) 

 

5 Conclusions 
The primary focus of the paper is on selecting the optimal model for combating 
cyber warfare, demonstrating the effectiveness of our proposed method in this 
context. The unique advantage of these methods lies in their ability to handle three 
aggregated arguments, as opposed to the conventional two or one, making them 
more sensitive and adaptable to complex situations. This enhanced sensitivity is 
particularly valuable in the dynamic and unpredictable environment of cyber 
warfare, where multiple conflicting factors must be considered simultaneously. 
This approach offers a more scientific and robust framework for addressing 
conflicting attributes, providing a clearer and more reliable decision-making 
process. 
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Abstract 

It becomes even more complex with complex architectural problems, and decision-
making methods are needed, and it is understood how important decision-making 
methods are. While the use of decision-making methods in the field of engineering 
is dominant, their use in the field of architecture is becoming more and more 
widespread. It can be listed as reaching an optimum solution with the targeted and 
designed alternatives with these methods, evolving the design process, allowing 
recycling, controlling these processes, and creating data for architecture in the 
future Clustering plays an important role in data mining, pattern recognition, and 
machine learning. In this section, a new algorithm is proposed based on Effective Q 
- Neutrosophic Soft Sets.  Finally, we illustrate the feasibility of the new method by
an example in architecture.

Keywords: Neutrosophic sets; Effective Q - Neutrosophic Soft Sets, Architecture. 

1. Introduction
Housing has always been more than just a shelter; it serves as a reflection of the 
lifestyle, culture, and preferences of the family, group, or community to which it 
belongs. Moreover, housing is a mirror of the user's personality and worldview, 
evident in its materials, shape, and design. The types of housing, construction 
methods, the number of rooms per person, and the functional spaces within a home 
all contribute to the complexity and uncertainties faced by its inhabitants. In this 
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context, decision-making in architecture becomes a critical process, influencing the 
design and usage of living spaces. To properly describe objects in an environment 
characterized by uncertainty and ambiguity, it is necessary to handle indeterminate 
and incomplete information effectively. In this regard, the concept of intuitionistic 
fuzzy sets, introduced by Atanassov [1], followed by Molodtsov’s work on soft sets 
[2], and neutrosophic logic [3], as well as neutrosophic sets [4,5] by Smarandache, 
has gained significant attention. The term "neutrosophy" refers to the study of 
neutral thought, which distinguishes neutrosophic logic from traditional fuzzy and 
intuitionistic fuzzy logic by introducing the notion of neutrality. Baser and Ulucay 
[56] defined concept of neutrosophic soft energy.  Currently, research on soft set 
theory is progressing rapidly, with extensive literature on Q-fuzzy sets. For 
example, Q-fuzzy soft sets [6–8] and multi Q-fuzzy sets [9–11] have opened up 
many applications [12-17], including the development of multi Q-fuzzy soft expert 
sets [18]. Şahin et al. [19] introduced neutrosophic soft expert sets, and Hassan et al. 
[20] expanded this further with the Q-neutrosophic soft expert set. In 2022, 
Alkhazaleh [21] introduced the concept of the Effective Fuzzy Soft Set (EFSS), which 
was designed to extend the notion of external effectiveness within the framework 
of soft sets. Later, the concept of Effective Fuzzy Soft Expert Sets [22] was proposed, 
incorporating expert opinions into a unified model. Başer and Uluçay [23] further 
defined Effective Q-Fuzzy Soft Expert Sets. In 2023, the Effective Neutrosophic Soft 
Set [24] was introduced and later extended to the generalized Effective 
Neutrosophic Soft Set (ENSS) [25], incorporating the concept of effectiveness across 
three independent membership functions: truth (T), indeterminacy (I), and falsity 
(F). Furthermore, the concept of the Effective Neutrosophic Soft Expert Set [26] was 
introduced, along with associated operations and practical examples. Building on 
this, we develop a new mathematical tool by combining the concept of the Effective 
Neutrosophic Soft Set with the supply set Q—a mathematical framework designed 
to capture the nuances of uncertain information through three distinct membership 
functions representing degrees of truth (T), uncertainty (I), and falsity (F). We 
introduce the Effective Q-Neutrosophic Soft Set, a new concept that enhances the 
framework’s ability to model complex real-world scenarios. This innovative 
approach combines the strengths of both the Effective Neutrosophic Soft Set and the 
Effective Neutrosophic Soft Expert Set, offering a versatile and comprehensive 
representation of uncertainty. 
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These advanced set theories have been successfully applied to various decision-
making problems across multiple domains [27–67]. The aim of this chapter, besides 
the objective evaluation, a decision-making model that can be effective in expressing 
the subjective evaluations within the structure of architecture (mass, spatial, 
semantic, form and experience) has been developed. 

2. Preliminaries 

Definition 1 [4] Let  be a universe of discourse, with a generic element in  

denoted by   then a neutrosophic set (NS)  is an object having the form   

 
where the functions , ,  : → ]−0, 1+[  define respectively the degree of 

membership (or Truth) , the degree of indeterminacy, and the degree of non-
membership (or Falsehood) of the element  to the set  with the condition.  

 
−0 ≤ ≤ 3+ 

Definition 2 [5] A neutrosophic set  is contained in another neutrosophic set  

i.e. if .  

Definition 3 [14] Let  be an initial universe set and  be a set of parameters. 

Consider . Let  denotes the set of all neutrosophic sets of . The collection 

 is termed to be the neutrosophic soft set over , where F is a mapping given 

by . 

Proposition 1 [14] 

For two NSS over the universe  and  be a set of parameters. 

1.    if and only if  

 

 

2.  if and only if 

 
 

3.  
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4.  

 

5.  

 
Definition 4 [11] Let  be unit interval and  be a positive integer. A multi Q -fuzzy 

set  in  and a non-empty set Q is a set of ordered sequences 

 where  

 

The function  is called the membership function of 

multi Q- fuzzy set   and  is called the 

dimension of  The set of all multi Q- fuzzy sets of dimension  in  and Q is 

denoted by  

Definition 5 [20]  is a QNSES over , where  is the mapping 

QNSES such that QNSES is the set of all QNSES over .  

Definition 6 [24] A neutrosophic set Λ in a universe of discourse where Λ : 

  [0,1]   a function, is an effective set.   is a set of effective parameters that 

can change membership and it’s written in the following way;  

 

Definition 7 [24] Let  be an initial universe, be a set of all parameters, be a 

set of effective parameters, be a effective set over and  represent the 

power set of . In this case is called on effective neutrosophic soft set over 

where  is mapping represented by and it may be expressed as 

a collection of ordered pairs; 
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and  membership values for  is 

calculated as  

 

 

 

3. Effective Q- Neutrosophic Soft Sets 

We will now propose the definition of Effective Q-Neutrosophic Soft Sets (EQNSS) 
and some of their properties. Throughout this discussion, let  be the initial 

universe,  be the set of parameters, Q be a set of supplies, and  be the set of 

effective parameters. Let  

Definition 8   is a QNSS over , where  is the mapping QNSS(

) such that QNSS( ) is the set of all QNSS over    

 

For all  and for all , we have: 
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Example 1 Suppose a customer who wants to build a new house wants to get 
feedback from several experts. Let  be the set of houses,  be 

the set of construction companies,   be the set of decision parameters and 

the set of effective parameters is represented by  ={ }. Assume that; 

 

 

Let  be the Q - neutrosophic soft set (QNSS) defined as follows: 

 

 

Then by applying Definition 8 we get, 
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Similarly, when the calculations are continued,  effective Q-neutrosophic 

soft set is found as follows; 
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Definition 9 For two EQNSS  and over , is called an 

effective Q-neutrosophic soft subset of if  

i. , 

ii. is effective Q-neutrosophic soft subset  for all  

Definition 10  Two EQNSS and over  are equal if  is  a  

EQNSS subset of   and  is a EQNSS  subset of    

Definition 11 The complement of a EQNSS   is  

 

such that   a mapping 

 

for each  It is . 

Example 2 Using our previous Example 1, the complement of the EQNSS  

denoted by is given as follows: 

 

Definition 12 The union of two EQNSS  and  over , denoted by 

 

is the EQNSS such that  and the memberships of truth, 

indeterminacy, and falsity of  are respectively as follows: 
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Example 3 Suppose that   and    are two EQNSS over , such that  

 

 

 

Then    where 

 

 

Proposition 2 If  and are three EQNSS over , then 

i. . 

ii. .  

Definition 13 Suppose  and are two EQNSS over the common 

universe . The intersection of  and   is   

 such that  and the memberships of truth, 

indeterminacy and falsity of   are: 
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Example 4 Suppose that   and are two EQNSS over , such that  

 

 

 

 

Then   =   where 

 

Proposition 3 If   and are three EQNSS over , the 

following properties hold true.  

i.  

ii. .  
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Proposition 4 If   and are three EQNSS over , then  

i.

 

ii.

 

Definition 14  If  are two EQNSS over , then 

 is  

 

such that  and memberships of truth, indeterminacy, 

and falsity of of  are as follows:  

 

 

 

where  

Example 5 Suppose that   and   are two EQNSS over , such that  

 

 

 

Then   =  where 
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Definition 15 If  are two EQNSS over , then 

 is 

 

such that  and the memberships of truth, indeterminacy, 

and falsity of  are as follows:  

 

 

 

where  

Example 6 Suppose that    are two EQNSS over , such that  

 

 

 

Then   = where 
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Proposition 5  If  nd  are EQNSS over  then 

i.  

ii.  

4. An Application of EQNSS 

We will now present an application of EQNSS theory to illustrate that this concept 
can be successfully applied to decision-making problems with uncertain 
information. The following algorithm is suggested to solve an effective Q-
neutrosophic soft expert-based decision-making problem below. For comparison 
purposes in this section, an example is used in [28]. 

People both in line with their own actions and needs and the conditions of the living 
space and the environment; It meets the main act of housing in different types of 
housing. The planning and design of the immediate surroundings of the house 
depends on what is expected of it, how it will be used and how it will serve the 
house in it. Answers to these questions should be sought before starting design. As 
everywhere in the world's climate is the main factor that determines the types of 
housing conditions in Turkey. In addition, natural natural conditions such as 
geological structure and vegetation determine the housing types. Economic and 
cultural development in our country reduces the impact of the natural environment 
on housing types. Therefore Ezgi Construction Company wants to build housing in 
four different regions in the site planning. There are three alternatives 

, with two types of qualifications Q  and there are two 

parameters  with  standing for “transportation” and 

“location” respectively and the set of effective parameters is represented by  ={
}.  
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Tables 1 presents the EQNSS. 

The following algorithm may be used to choose the most qualified candidate 
to fill the vacancy.  

1. Input the QNSS  

2. Compute the EQNSS  

3. Compute the EQNSS  . 

4. Determine max .  

Table 1:  

 Q 
      

 

(0.6, 0.3, 0.2) (0.9, 0.2, 0.3) (0.8, 0.3, 0.3) (0.7, 0.1, 
0.1) 

(0.9, 0.6, 0.1) (0.9, 0.2, 0.4) 

 

(0.8, 0.5, 0.1) (1.0, 0.2, 0.2) (0.9, 0.3, 0.1) (0.5, 0.1, 
0.3) 

(0.9, 0.1, 0.3) (0.9, 0.3, 0.5) 

 

      

 

As can be seen, the maximum score is max . So, the best alternative is  

and best qualification is . 

5. Conclusion 

We have introduced the concept of a effective Q -neutrosophic soft set along with 
its operations of equality, union, intersection, OR, and AND. The application of this 
novel concept to a decision-making process is illustrated and compared to those in 
existing literature. It is shown that this proposed concept is more inclusive by 
considering the membership of falsity and indeterminacy, expert, neutrosophy and 
Q -fuzzy. Thus, the proposed approach is shown to be useful in handling realistic 
uncertain problems.  
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6. Future Research Directions 

This study can be extended by using other type of neutrosophic decision making 
approaches, including interval valued neutrosophic soft sets, bipolar neutrosophic 
soft sets. 
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ABSTRACT 

  Modules are one of fundamental and rich algebraic structure with respect to some 
binary operations in the study of algebra. In this paper definition of Symbolic n- 
Pilthogenic R-modules and Symbolic n- Pilthogenic submodules in algebra are 
introduced. Some properties of Symbolic n- Pilthogenic R-modules and Symbolic n- 
Pilthogenic submodules are presented. More precisely, classical modules, ring and 
Symbolic n- Pilthogenic rings are utilized. Consequently, Symbolic n- Pilthogenic 
R- modules which are completely different from the classical modular in the
structural properties are introduced. Also, Symbolic n- Pilthogenic R-module
homomorphism is explained and some definitions and theorems are presented.

Keywords: Neutrosophic sets, Symbolic n- Pilthogenic ring, Symbolic n- 
Pilthogenic R-module, weak Symbolic n- Pilthogenic R-module, strong Symbolic n- 
Pilthogenic R-module, Symbolic n- Pilthogenic R-module homomorphism. 

1.INTRODUCTION

     Neutrosophy is a new branch of philosophy which studies the nature, origin and 
scope of neutralities as well as their interaction with ideational spectra. 
Neutrosophy is the base of neutrosophic logic, which is an extension of fuzzy logic 
in which indeterminacy is included.  
      Florentin Smarandanche introduced the notion of neutrosophy as a new branch 
of philosophy in 1980. After that, he introduced the concept of neutrosophic logic 
and neutrosophic set where each proposition in neutrosophic logic is approximated 
to have the percentage of truth in a subset  the percentage of indeterminacy in a 
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subset  and the percentage of falsity in a subset  so that this neutrosophic logic is 
called an extension of fuzzy logic as well as an extension of intuitionistic fuzzy logic. 
      In fact, neutrosophic set is the generalization of classical set, neutrosophic group 
and neutrosophic ring the generalization of classical group and ring etc. The same 
way neutrosophic R-module is the generalization of classical R-module. By utilizing 
the idea of neutrosophic theory, Vasantha Kanadasamy and Florentin 
Samarandanche [1-2] studied neutrosophic algebraic structures in by inserting an 
indeterminate element  in the algebraic structure and then combining  with 
corresponding binary operation.  
     One of the most attractive concepts for mathematicians is algebraic structures 
due to their analog properties and close relationship with other branches of 
mathematics, such as geometry and matrix theory [3,4]. During the last two years, 
researchers have become interested in studying symbolic n-plithogenic algebraic 
structures.  
These structures were supposed by Smarandache in [5] as novel generalizations of 
classical algebraic structures that have symmetric logical elements combined with 
algebraic elements.  
    Başer and Uluçay [30] defined effective q- fuzzy soft expert sets. Then, Başer and 
Ulucay [59] defined energy of a neutrosophic soft set and its applications to multi-
criteria decision-making problems. These algebraic structures [71-80] have been 
constructed in a manner similar to their analogues using neutrosophic logic, where 
it is possible to clearly see that the method that was used to construct the 
neutrosophic structures [6,7], the split-complex numbers [8,9], and the weak fuzzy 
numbers [10] was used in the extension of algebraic rings by plithogenic sets.  
     For the case of , we find many studies that deal with corresponding 
plithogenic structures. In [11], Merkeci et al. defined the symbolic 2-plithogenic ring 
and studied its elementary properties and substructures, such as AH-ideals, AH-
homomorphisms, and kernels. Laterally, their results were used by Taffach and 
other authors to define and study symbolic 2-plithogenic vector spaces [12], 
symbolic 2-plithogenic modules [13], and symbolic 2-plithogenic number theory 
[14]. A wide review of symbolic 2-plithogenic algebraic structures is provided in 
[15,16]. This is what prompted other researchers to generalize the previous results 
to the symbolic n-plithogenic case. In [17,18], symbolic 3-plithogenic, 4-plithogenic, 
5-plithogenic  rings were handled for the first time by Albasheer and A.Hatip ; then, 
symbolic 3-plithogenic vector spaces, modules, and number theoretical concepts 
were defined and studied (see [19,20,21,22]). Keskin and Başer [29] presented an 
investigation of the Baer–Kaplansky property. These advanced set theories have 
been successfully applied to various extension of fuzzy sets across multiple 
domains [24–70]. 
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    This is what prompted us to follow up the previous scientific efforts and to study 
4-plithogenic rings for the first time by providing basic definitions and proofs that 
describe the algebraic behavior of the elements of these rings. It is noteworthy that 
these new rings will be very useful in more extensive classes of algebraic modules 
and vector spaces, and also cryptographic algorithms. 
    The present paper is devoted to the study of Symbolic n- Pilthogenic R-module. 
More properties of Symbolic n- Pilthogenic R-module will be presented. 
 

2.BACKGROUND 
In this section, we will give some definitions, examples and results that will be 
useful in other sections of the research. 

Definition 1. [2] Let  be a universe.  neutrosophic sets  over  is defined by  

 

where, , and  are called truth-membership function, 
indeterminacy-membership function and falsity- membership function, 
respectively. They are respectively defined by 

 

such that . 

Definition 2. [23]  Let  be a universe. A single valued neutrosophic set (SVN-set) 
over  is a neutrosophic set over , but the truth-membership function , 
indeterminacy-membership function  and falsity- membership function  are 
respectively defined by 

 

Such that . 

Definition 3. [23]  The Plithogenic Numbers (PN) of the form  

 

defined as above are called Plithogenic Numbers. 

Definition 4. [23]   Let’s consider two plithogenic numbers:  

 

 

1. Addition of Plithogenic Numbers:  
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2. Subtraction of Plithogenic Numbers: 
 

3. Scalar Multiplication of Plithogenic Numbers: 
 

4. Multiplication of Plithogenic Numbers 
 

and then one multiplies them, term by term  where  is 
the classical multiplication as in classical algebra, using the above multiplication of 
symbolic plithogenic components. 

As particular case: 

1.  
2.  

3.On Symbolic n- Pilthogenic  and Their Properties 

In this section, we define the Symbolic n- Pilthogenic   and Symbolic n- 
Pilthogenic . Then, we point out that Symbolic n- Pilthogenic 

 has more properties than the classical .  

Definition 5. Let  be any R-module over a commutative ring . The triple  
 is called a weak Symbolic n- Pilthogenic R-module over a ring   

generated by . 

If  is a Symbolic n- Pilthogenic R-module over a refined neutrosophic 
ring  then is called a strong Symbolic n- Pilthogenic R-
module. 

Theorem 6. Every strong Symbolic n- Pilthogenic neutrosophic R-module is a weak 
Symbolic n- Pilthogenic R-module.  

Proof: Suppose that is a strong Symbolic n- Pilthogenic R-module 
over a Symbolic n- Pilthogenic ring  . Since   for 
every ring , it follows that is a weak Symbolic n- Pilthogenic R-
module. 

Theorem 7. Every weak Symbolic n- Pilthogenic R-module is an R-module. 

Proof: If we have   and     then:    
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1.  

 
2.  

 +  

 

3.  
4.                   

Therefore, that  is an R-module. 

Definition 8. Let  be a strong Symbolic n- Pilthogenic R- module over 
a Symbolic n- Pilthogenic ring and let be a nonempty 
subset of . is called a strong Symbolic n- Pilthogenic 
submodule of  if is itself a strong Symbolic n- 
Pilthogenic R- module over . It is essential that contains 
a proper subset which is an R-module. 

Definition 9. Let  be a weak Symbolic n- Pilthogenic R- module over 
a Symbolic n- Pilthogenic ring and let be a nonempty 
subset of . is called a weak Symbolic n- Pilthogenic 
submodule of  if is itself a weak Symbolic n- 
Pilthogenic R- module over . It is essential that contains 
a proper subset which is an R-module. 

Theorem 10. If we have  as a Symbolic n- Pilthogenic R-module over 

a ring  and if we take  as a subset of , 

is a weak Symbolic n- Pilthogenic submodule of if and only if the 

following conditions hold: 

1.  

2. For all    

( )1 2,N I I
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3.  must has a proper subset which is a R- module. 

Corollary 11. If we have  as a Symbolic n- Pilthogenic R-module over 

a ring  and if we take  as a subset of , 

is a weak Symbolic n- Pilthogenic submodule of if and only if the 

following conditions hold: 

1. For all 

   

2.  must has a proper subset which is a R- module. 

Example 12. Let be a weak Symbolic n- Pilthogenic R-module. 

is a weak Symbolic n- Pilthogenic submodule called a trivial weak 

Symbolic n- Pilthogenic submodule.  

Theorem 13. Let be a Symbolic n- Pilthogenic R-module over a ring 

 and let  be a family of Symbolic n- Pilthogenic submodules of 

. Then   is a Symbolic n- Pilthogenic submodule of 

.  

Remark 14. Let be a Symbolic n- Pilthogenic R-module over a ring  

and let  and  be two distinct Symbolic n- Pilthogenic 

submodule of . Generally, is not a 

Symbolic n- Pilthogenic submodule of .  

However, if or  

then 

 is a Symbolic n- Pilthogenic submodule of

. 
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4.Symbolic n- Pilthogenic R- Modules homomorphism 

Definition 15. If we have  and  as two Symbolic n- 

Pilthogenic modules over a ring , a mapping 

  is said to be a Symbolic n- Pilthogenic 

homomorphism module, precisely when:  

1.  for all 

 

2.  

Endomorphism, epimorphism, monomorphism, automorphism, and isomorphism 

of φ have the same definitions as those of the classical cases. 

Definition 16.  Let and be Symbolic n- Pilthogenic R-

modules over  a ring and let  be a Symbolic n- 

Pilthogenic R-module homomorphism then:               

(1) The kernel of   denoted by   is defined by the set  

 

(2) The image of  denoted by   is defined by the set 

 

Example 17. Let be a Symbolic n- Pilthogenic R-module over a ring

. The mapping defined  by  for all 

 is Symbolic n- Pilthogenic R-module homomorphism and   

1.  

2.  

Example 18. The mapping defined by 

R −

R −

ψ kerψ

ψ Imψ
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for all is Symbolic n- Pilthogenic R-module homomorphism. 

Definition 19. Let and be Symbolic n- Pilthogenic R-

modules over  a ring and let  be a Symbolic n- 

Pilthogenic R-module homomorphism then:              : 

1. is not a Symbolic n- Pilthogenic submodule of but a 

submodule of .           

2. is a Symbolic n- Pilthogenic submodule of . 

Proof:     

1. Obviously   but 

   . That is a submodule of M is clear.     

2. Clear.  

5. Conclusion 

In this paper, we defined the Symbolic n- Pilthogenic R-modules and Symbolic n- 
Pilthogenic submodules which are completely different from the classical modules 
and submodules in the structural properties. It was shown that every Symbolic n- 
Pilthogenic R-module is an R-module. Finally, Symbolic n- Pilthogenic R-module 
homomorphism were explained and some definitions and theorems were given and 
many illustrative examples were presented. 
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ABSTRACT 

In regression problems, neutrosophic sets provide a structured way to 
address the uncertainty, indeterminacy, and inconsistency often present in complex 
or incomplete data. Unlike traditional binary frameworks limited to true/false 
values, neutrosophic logic expands the scope of data interpretation by 
incorporating three distinct degrees: truth, indeterminacy, and falsity. This 
approach allows for a more nuanced representation of information, enabling the 
model to better handle ambiguous or conflicting data. By assigning varying degrees 
to these three factors, neutrosophic sets enhance regression analysis, making it more 
robust in scenarios where traditional regression might struggle with data 
imperfections or variability. 

Keywords: Neutrosophic sets, Linear regression, Non-linear regression 

1 INTRODUCTION

Supervised learning is a machine learning technique that involves mapping 
inputs to outputs using sample input-output pairs as a guide. Regression problems 
are considered supervised learning problems. They try to predict outcomes within 
a continuous output, that is, they try to map variables to some continuous function. 
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Given that the world is filled with uncertainties, neutrosophic concepts have been 
increasingly adopted in up-to-date investigations in the fields of machine learning. 
Smarandache introduced the foundational principles of neutrosophic sets in his 
research [1]. Başer and Uluçay [49] defined effective q- fuzzy soft expert sets. Then, 
Başer and Uluçay [45] defined the energy of a neutrosophic soft set and applied it 
to multi-criteria decision-making problems to show its applicability. As research 
increasingly seeks to address the complexities and uncertainties in various fields, 
the integration of neutrosophic logic into statistical analyses, particularly 
regression, offers a promising approach for enhancing predictive modeling [17-50]. 
Regression analysis focuses on examining how a dependent variable is influenced 
by one or more independent variables to predict its future values. Regression is 
commonly applied to continuous numerical data, assessing how independent 
variables impact variations in the dependent variable. Regression problems are 
frequently used across various fields to make predictions or to understand 
relationships between variables. There are two primary types such as Linear 
Regression and Non-linear Regression. Linear Regression used when the dependent 
variable has a linear relationship with independent variables. Non-linear regression 
is used when the connection between dependent and independent variables does 
not follow a linear pattern [2]. Regression analysis serves as an effective method for 
generating forecasts, creating decision support systems, and testing hypotheses in 
scientific research. Neutrosophic statistics, grounded in neutrosophic logic, focus 
on quantifying uncertainty [51-67]. They extend intuitionistic fuzzy sets, making 
them suitable for handling uncertain environments. In this framework, 
neutrosophic statistics facilitate variance and significance testing, even when 
observations fall outside traditional fuzzy boundaries, effectively broadening the 
scope of both classical and fuzzy statistical methods [3]. In comparison, 
neutrosophic regression analysis builds on the same principles of neutrosophic 
logic but focuses on modeling the connection between the target variable and 
predictor variables under conditions of uncertainty and indeterminacy. Unlike 
traditional regression, neutrosophic regression can handle inconsistent or 
incomplete data by assigning truth, indeterminacy, and falsity values to each 
observation. This allows for a more flexible and robust model that accommodates 
ambiguous data, enhancing the predictive accuracy and applicability of regression 
in uncertain contexts. 

Within machine learning, especially when dealing with regression models, 
the precision of data characteristics is crucial. The effectiveness of a regression 
model depends on its capacity to detect relationships and trends in the input data 
[4]. Therefore, ensuring the accuracy of these characteristics is critical for the overall 
prediction process. Additionally, flawed or unreliable data features can severely 
hinder the model's ability to make generalizations, leading to noise that 



Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative 
Algorithmic Approaches 

137 

compromises the integrity of the predictions. Such inaccuracies can result in 
unreliable forecasts and diminished model performance. Even minor discrepancies 
in the input data can propagate through the modeling process, ultimately distorting 
the outcomes and undermining the decision-making process. Thus, meticulous 
attention to the quality of data features is essential for developing robust regression 
models that can produce reliable and valid predictions in various applications. To 
effectively evaluate the performance of these models, it is crucial to rely on 
performance measures, or error metrics, which play a vital role in evaluation 
frameworks. These metrics are defined as logical and mathematical constructs that 
assess the proximity between actual results and predicted outcomes. Among the 
most widely used error metrics in regression analysis are mean square error (MSE), 
root mean square error (RMSE), mean absolute percentage error (MAPE), and mean 
absolute error (MAE) [5]. It has been applied in areas such as neutrosophic simple 
linear regression [6], neutrosophic multiple regression [3], neutrosophic non-linear 
regression [7], neutrosophic fuzzy regression [8], and interval prediction regression 
[9] promising results have been obtained. 

In the rest of the article, the application of single-valued neutrosophic (SVN) 
sets and interval-valued neutrosophic sets to regression analysis is examined, and 
each approaches is examined by dividing them into subheadings. 

 

2 SINGLE-VALUED NEUTROSOPHY FOR REGRESSION MODEL 

A regression model is a statistical method employed to analyze the connection 
between one or more predictor variables and a dependent variable. The main goal 
of regression analysis is to estimate the dependent variable's value using the 
independent variables and to evaluate the strength and type of their 
interrelationships. Regression models are widely used in various fields, including 
economics, biology, engineering, social sciences, and business, for tasks such as 
trend analysis, forecasting, and hypothesis testing. Neutrosophic regression 
analysis is an effective approach for modeling connections between variables and 
for assessing the uncertainty present in the observed data [3]. While determining 
the correlation coefficients of correlation and neutrosophic data in probability 
spaces, the correlation coefficient plays an important role in measuring the strength 
of the linear relationship between two variables. 

A SVN set  each element  in the universe  is denoted by SVN as follows [10]. 
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if we have one input independet variable Y output, Xinput, a intercept, b 
slope, and e residual then regression equation like at the below [11]. 

 

if we have more than one input independent variable equation like at the below. 

 

For a SVN linear regression model, each observation of the dependent variable , 
and the independent variables  is represented by three components: 

  

 

 

To estimate the parameters   , we can use modified optimization 
techniques (neutrosophic least squares) to minimize the neutrosophic error terms 

across truth, indeterminacy, and falsity dimensions. 

Error metrics such as MSE evaluate for neutrosophic real value can be defined like 
  and predicted value can be defined like  for input value 

 

,( ),( )] 

3 THE INTERVAL VALUED NEUTROSOPHY FOR REGRESSION MODEL  

In the realm of neutrosophic statistics, the interval prediction model 
enhances the effectiveness of regression analysis by incorporating the inherent 
uncertainties associated with data and model estimations. Unlike traditional 
regression methods that yield point estimates, the interval prediction model 
acknowledges that real-world phenomena often exhibit variability and imprecision. 
By generating prediction intervals that encompass a range of possible outcomes, 
this model provides a probabilistic framework for understanding the uncertainty 
surrounding predictions [12]. Specifically, the prediction interval is constructed by 
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assessing both the uncertainty in the regression estimates and the variability present 
in the observed data. This dual consideration allows practitioners to express their 
predictions not just as a single value but as a range within which the true value of 
the dependent variable is expected to lie with a specified level of confidence [9]. 
Consequently, the use of neutrosophic interval predictions empowers decision-
makers with a more nuanced understanding of potential outcomes, enabling them 
to account for uncertainties and make more informed choices in various 
applications of machine learning. 

Interval-Valued Neutrosophic Number (IVNN): IVNN is a structure in 
which the truth, uncertainty, and falsity components of an element are each 
expressed as intervals [13]. 

 For these three components, each is defined in a specific interval. For an 
input variable   in the dataset, IVNN representation is given by: 

 

 

 lower and upper bounds for the truth, indeterminacy, and 
falsity intervals, respectively. 

Assume we are building a linear regression model for each components . 
The regression model aims to predict intervals for each component of the output 
based on the input intervals. The regression model can be formulated as [14]: 

 

 

  , , , and  

 ,   

 ,  

 ,  

To evaluate the performance of this interval-valued neutrosophic regression model, 
we define an interval-valued Mean Squared Error (MSE) for each component: 

 



Editors: Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın &N. Merve Şahin 
              
 

140 
 

 

 

 

For prediction interval, it is essential to account for the uncertainty in the 
regression model's predictions and the inherent variability of the data; the interval 
is typically symmetrical, extending a specified amount above and below the 
predicted value, and is determined based on the standard error of the prediction 
and the residual standard deviation that reflects the spread of the model's errors. 
The use of this method is to obtain the result by obtaining a range instead of a 
single floating number obtained from the regression analysis. In many real-life 
examples, the prediction results often actually contain a distribution of 
probabilities within a certain range rather than a single number. Such as the 
probability of recovery from diseases. 

4. Conclusions 

Neutrosophic regression models, both single-valued and interval-valued, offer a 
robust framework for handling uncertainty, indeterminacy, and inconsistency in 
data. These models are particularly valuable in fields where data imperfections are 
prevalent, and more traditional methods struggle to produce accurate predictions. 
As machine learning continues to evolve, incorporating neutrosophic logic into 
regression analysis will play an essential role in enhancing the reliability and 
robustness of predictive models across a variety of industries, from healthcare to 
finance and beyond. In summary, neutrosophic regression provides a flexible and 
powerful framework for modeling relationships between variables under 
uncertainty. By incorporating the three key components of truth, indeterminacy, 
and falsity, this approach offers significant advantages over traditional regression 
methods, especially when dealing with incomplete, conflicting, or imprecise 
interval-valued data. The use of interval-valued neutrosophic sets further enhances 
prediction accuracy by providing a range of possible outcomes rather than a single 
estimate, which is critical for decision-making in uncertain environments. Future 



Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative 
Algorithmic Approaches 

141 

research could focus on integrating neutrosophic regression with modern machine 
learning techniques, further improving its applicability and performance in 
complex, real-world problems. 
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Abstract 

We introduce the concept of an effective neutrosophic soft set, which aims to 
capture the influence on three independent membership functions representing 
degrees of truth (T), indeterminacy (I) and falsity (F). We go further by presenting 
a generalization of the effective Q- neutrosophic soft expert set, which includes the 
incorporation of a degree to signify the potential for an approximate value-set. This 
enhancement contributes to improved efficiency and realism in the concept. 
Notably, this innovative approach leverages the strengths of both the neutrosophic 
soft set and the effective neutrosophic soft expert set. The subsequent sections delve 
into fundamental operations on the generalized effective Q-neutrosophic soft expert 
set, providing clarity through illustrative examples and propositions. 

Keywords: Neutrosophic sets; Effective Q - Neutrosophic Soft expert Sets, Decision-
Making. 

1.Introduction

In this regard, the concept of intuitionistic fuzzy sets, introduced by Atanassov [1], 
followed by Molodtsov’s work on soft sets [2], and neutrosophic logic [3], as well as 
neutrosophic sets [4,5] by Smarandache, has gained significant attention. The term 
"neutrosophy" refers to the study of neutral thought, which distinguishes 
neutrosophic logic from traditional fuzzy and intuitionistic fuzzy logic by 

mailto:vulucay27@gmail.com
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introducing the notion of neutrality. Currently, research on soft set theory is 
progressing rapidly, with extensive literature on Q-fuzzy sets. For example, Q-
fuzzy soft sets [6–8] and multi-Q-fuzzy sets [9–11] have opened up many 
applications [12-17], including the development of multi Q-fuzzy soft expert sets 
[18]. Şahin et al. [19] introduced neutrosophic soft expert sets, and Hassan et al. [20] 
expanded this further with the Q-neutrosophic soft expert set. In 2022, Alkhazaleh 
[21] introduced the concept of the Effective Fuzzy Soft Set (EFSS), which was 
designed to extend the notion of external effectiveness within the framework of soft 
sets. Later, the concept of Effective Fuzzy Soft Expert Sets [22] was proposed, 
incorporating expert opinions into a unified model. Başer and Uluçay [23] further 
defined effective Q-fuzzy soft expert sets. In 2023, the Effective Neutrosophic Soft 
Set [24] was introduced and later extended to the generalized Effective 
Neutrosophic Soft Set (ENSS) [25], incorporating the concept of effectiveness across 
three independent membership functions: truth (T), indeterminacy (I), and falsity 
(F). Furthermore, the concept of the Effective Neutrosophic Soft Expert Set [26] was 
introduced, along with associated operations and practical examples. Building on 
this, we develop a new mathematical tool by combining the concept of the Effective 
Neutrosophic Soft Set with the supply set Q—a mathematical framework designed 
to capture the nuances of uncertain information through three distinct membership 
functions representing degrees of truth (T), uncertainty (I), and falsity (F). We 
introduce the Effective Q-Neutrosophic Soft Expert Set, a new concept that 
enhances the framework’s ability to model complex real-world scenarios. This 
innovative approach combines the strengths of both the Effective Neutrosophic Soft 
Set and the Effective Neutrosophic Soft Expert Set, offering a versatile and 
comprehensive representation of uncertainty. 

Başer and Uluçay [27] defined the energy of a neutrosophic soft set and applied it 
to multi-criteria decision-making problems to show its applicability. Then, these 
advanced set theories have been successfully applied to various decision-making 
problems across multiple domains [28–63]. The aim of this chapter, this research 
advances mathematical models for managing uncertainty, bridging the gap 
between theoretical foundations and practical applications. By introducing a 
comprehensive framework that integrates elements of neutrosophic sets and soft 
expert sets, the study offers a novel approach to addressing uncertainty and 
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ambiguity in decision-making processes, providing valuable insights and practical 
solutions. 

 

2. Preliminaries 

Definition 1 [4] Let  be a universe of discourse, with a generic element in  

denoted by   then a neutrosophic set (NS)  is an object having the form   

 
where the functions , ,  : → ]−0, 1+[  define respectively the degree of 

membership (or Truth) , the degree of indeterminacy, and the degree of non-
membership (or Falsehood) of the element  to the set  with the condition.  

−0 ≤ ≤ 3+ 

Definition 2 [14] Let  be an initial universe set and  be a set of parameters. 

Consider . Let  denotes the set of all neutrosophic sets of . The collection 

 is termed to be the soft neutrosophic set over , where F is a mapping given 

by . 

Definition 3 [5] A neutrosophic set  is contained in another neutrosophic set  

i.e. if .  

Definition 4 [22]  is an initial universe,  is a set of parameters X is a set of experts 

(agents), and O ={agree=1, disagree=0} a set of opinions. Let Ẑ= ×X×O and ⊆ Ẑ. A 

pair  is called a soft expert set over , where  is mapping given by 

 

where  denotes the power set of . 

Definition 5 [19] A pair  is called a neutrosophic soft expert set (NSES) over 

, where  is a mapping given by 

 

where  denotes the power neutrosophic set of .  
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Proposition 1[19] 

For two NSES 

6.    if and only if  

 

   

7.   if and only if 

 
    

8.  

 
9. An agree-NSES, 

 
10. A disagree-NSES, 

 
 

11.  

 

12.  
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Definition 6 [11] Let  be unit interval and  be a positive integer. A multi Q -fuzzy 

set  in  and a non-empty set Q is a set of ordered sequences 

 where  

 

The function  is called the membership function of 

multi Q- fuzzy set   and  is called the 

dimension of   The set of all multi Q- fuzzy sets of dimension  in  and Q is 

denoted by  

Definition 7 [20]   is a QNSES over , where  is the mapping 

QNSES such that QNSES is the set of all QNSES over .  

Definition 8 [24] A neutrosophic set  in a universe of discourse where  :   

[0,1]   a function, is an effective set.   is a set of effective parameters that can change 

membership and it’s written in the following way;  

 

Definition 9 [26] Let  be an initial universe, be a set of all parameters, be a set 

of effective parameters, be a effective set over and  represent the power set 

of . In this case is called on effective neutrosophic soft expert set over 

where  is mapping represented by and it may be expressed as a 
collection of ordered pairs; 

 

and embership values for  is calculated 

as  
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3. Effective Q- Neutrosophic Soft Expert Sets 

We will now propose the definition of effective Q-neutrosophic soft expert sets 
EQNSES, and propose some of its properties. Throughout the discussion,  is the 

initial universe, is the set of parameters, Q be a set of supply,  is the set of effective 

parameters,  is the set of experts, and  a set of 

suggestions. Let  where Ẑ= ×X×O.  

Definition 10   is a QNSES over , where  is the mapping 

QNSES such that QNSES is the set of all QNSES over .  

Definition 11  Let  be an initial universe,  is a QNSES over  be a set of 

all parameters be a set of all parameters, be a set of effective parameters, be a 

effective set over and  represent the power set of  is the set of experts. 

In this case is called on effective q-neutrosophic soft expert set over 

where  is mapping represented by and it  

 

                                   

and embership values for  is 

calculated as ; 
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Example 1 Suppose a customer who wants to build a new house wants to get 
feedback from several experts. Let  be the set of houses,  be 

the set of construction companies,   be the set of decision parameters and 

the set of effective parameters is represented by  ={ }. Let   be the 

set of experts. Assume that; 

 ,  ,   

,  

,   

,  

   

Let  be the neutrosophic expert set (QNSES) defined as follows: 
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Then by applying Definition 11  we get, 

 

 

 

Similarly, when the calculations are continued, the effective Q-neutrosophic soft 
exper set is found as follows; 
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Definition 12 For two EQNSES  and over , is called a 

effective Q-neutrosophic soft expert subset of if  

i. , 

ii. is neutrosophic soft expert subset  for all  

Definition 13  Two EQNSES  and over  are equal if  is  

a  EQNSES subset of   and  is a EQNSES  subset of   

Definition 14 Agree-EQNSES  over  is a EQNSES subset of  

defined as  

 

Example 3 Using our previous Example 1, the agree-EQNSES  over  is 
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Definition 15 A disagree-EQNSES over  is a EQNSES subset of   

defined as  

 

Example 4  Using our previous Example 1, the disagree- EQNSES   over   

is 

  

 

 

 

 

 

Definition 16 The complement of a EQNSES   is  
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such that   a mapping 

 

for each  It is clear that it is  

Example 5 Using our previous Example 1, the complement of the EQNSES  

denoted by  is given  as follows: 

 

 

 

 

 

 

Definition 17 The union of two EQNSES  and  over  , denoted 

by 

 

is the EQNSES such that  and the memberships of truth, 

indeterminacy and falsity of  are respectively as follows:  
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Example 6 Suppose that    and    are two EQNSES over , such that  

 

 

 

 

 

Then    where 

 

 

 

 

Proposition 2 If   and are three EQNSES over , then 
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i. . 

ii. .  

Definition 18 Suppose  and are two EQNSES over the common 

universe . The intersection of and is 

 such that  and the memberships of truth, 

indeterminacy and falsity of   are: 

 

 

 

Example 7 Suppose that   and     are two EQNSES over , such that  

 

 

 

 

Then   =   where 
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Proposition 3 If    and are three EQNSES over , the 

following properties hold true.  

i.  

ii. .  

Proposition 4 If  then  

i.

 

ii.

 

Definition 19 If   are two EQNSES over , then 

 is  

 

such that  and memberships of truth, indeterminacy, 

and falsity of of  are as follows:  

 

 

 

where  
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Example 8 Suppose that   and   are two EQNSES over , such that  

 

 

 

Then    =  where 

 

 

Definition 20 If  and  are two EQNSES over , then  OR 

 is 

 

such that  and the memberships of truth, indeterminacy, 

and falsity of  are as follows:  

 

 

 

where  

Example 9 Suppose that  and   are two EQNSES over , such that  
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Then   = where 

 

 

Proposition 5  If   are EQNSES over  then 

i.  

ii.  

4. An Application of EQNSES 

We will now present an application of EQNSES theory to illustrate that this concept 
can be successfully applied to decision-making problems with uncertain 
information. The following algorithm is suggested to solve a effective Q-
neutrosophic soft expert based decision making problem below. 

Assume that a book selection will be made for mathematics students. There are 
three alternatives , with two types of qualifications Q  and 

there are two parameters  with  standing for “price range” 

and “reviews” respectively and the set of effective parameters is represented by  

={ }. Suppose  is the set of two 

expert faculty members will decide which book to choose. After long discussions, 
the experts construct the QNSES below.  
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 ,  ,  

,  , 

  ,   

,  

 ,  ,  

,   

 

 

 

 

 

 

 

 

Tables 1 presents the agree-EQNSES while Table 2 presents the disagree-
EQNSES by using the mean of each EQNSES. 
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The following algorithm may be used to choose the most qualified candidate 
to fill the vacancy. 

5. Input the QNSES  

6. Compute  the  EQNSES  

7. Find the agree-EQNSES and disagree-EQNSES. 

8. Calculate     for agree-EQNSES. 

9. Calculate     for disagree-EQNSES. 

10. Determine   

11. Determine , for which  = max . If there is has more than a one value of , 

then the college can have alternative choices. 
Table 1: Agree- EQNSES  

Q 
      

 

(0.6,0.1,0.3) (0.8,0.1,0.4) (0.7,0.1,0.3) (0.7,0.2,0.1) (0.7,0.1,0.1) (0.8,0.2,0.4) 

 

(0.8,0.3,0.1) (0.8,0.2,0.4) (0.8,0.2,0.2) (0.8,0.1,0.2) (0.8,0.2,0.1) (0.7,0.1,0.4) 

 

(0.8,0.5,0.1) (1.0,0.2,0.3) (0.9,0.3,0.2) (0.7,0.2,0.3) (0.9,0.1,0.3) (0.7,0.3,0.4) 

 

(0.5,0.3,0.2) (0.9,0.2,0.2) (0.8,0.1,0.2) (0.5,0.0,0.3) (0.7,0.1,0.1) (0.5,0.2,0.2) 

 
  

 
     

        
 

Table 2: Disagree-EQNSES 

Q 
      

 

(0.7,0.2,0.6) (0.6,0.4,0.3) (0.7,0.0,0.5) (0.7,0.4,0.6) (0.7,0.4,0.4) (0.9,0.3,0.2) 

 

(0.7,0.3,0.4) (0.9,0.2,0.4) (0.9,0.3,0.3) (0.8,0.4,0.3) (0.8,0.3,0.2) (0.7,0.1,0.4) 

 

(0.9,0.4,0.4) (1.0,0.4,0.2) (0.9,0.3,0.1) (0.9,0.2,0.2) (0.9,0.2,0.1) (1.0,0.2,0.2) 

 

(0.7,0.2,0.3) (0.9,0.1,0.3) (0.8,0.1,0.3) (0.8,0.1,0.1) (0.8,0.2,0.1) (0.6,0.1,0.2) 
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Table 3:  for   

 

Q 
   

 

1 
   

0.7 0.4 
2 

   

0.4 0.2 
3 

   

0.1 0.05 
4 

   

0.2 0.1 
5 

   

0.6 0.3 
6 

   

-0.8 -0.4 
 

From Tables 1 and 2 we are able to calculate the values of  as in Table 3. 

As can be seen, the maximum score is  = max =0.4 for  . 

5. Conclusion 

We have introduced the concept of an effective Q -neutrosophic soft expert set along 
with its operations of equality, union, intersection, subset, OR, and AND. The 
application of this novel concept to a decision-making process is illustrated and 
compared to those in existing literature. It is shown that this proposed concept is 
more inclusive by considering the membership of falsity and indeterminacy, expert, 
neutrosophy and Q -fuzzy. Thus, the proposed approach is shown to be useful in 
handling realistic uncertain problems.  

6. Future Research Directions 

This study can be extended by using other type of neutrosophic decision-making 
approaches, including bipolar neutrosophic soft sets, interval valued neutrosophic 
soft sets. 
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Abstract 

 In cases where conventional sets are insufficient in use in daily life, we use 
trapezoidal fuzzy multi sets to solve decision-making problems in many areas. 
Hence, The aim of this paper is to investigate how to solve a model selection  
problem with multi-criteria against poverty and hunger by using trapezoidal fuzzy 
multi numbers. For this, we introduce two aggregation methods called trapezoidal 
fuzzy multi generalized weighted Bonferroni arithmetic mean operator and 
trapezoidal fuzzy multi generalized weighted Bonferroni geometric mean operator. 
Later, we investigate their properties and some special cases. Moreover, we 
introduce a process to solve multi-criteria decision making problems with 
trapezoidal fuzzy multi numbers. Then, we apply introduced methods to a model 
selection problem against poverty and hunger. 
Keywords: fuzzy multi sets, trapezoidal fuzzy number, trapezoidal fuzzy multi numbers, 
generalized Bonferroni arithmetic mean, poverty, hunger  

1  Introduction 

 In 1965, fuzzy set theory was proposed by Zadeh [40] as an extension of a classical 
concept of a set for ambiguous information. With the introduction of the theory, he 
offered a new way which makes decision-making process using fuzzy concepts of 
some information more useful. This methodology basically, a fuzzy set is a set that 
has no clearly known boundaries and can only contain elements only in some 
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degree i.e. elements can have a degree of membership determined by appropriate 
functions namely membership functions. These functions are used to determine the 
membership degree of each element in a fuzzy set. In time, a kind of fuzzy sets were 
introduced by Yager [38] which is called multi-fuzzy sets (fuzzy bags). The notion 
presents a new generalization of fuzzy sets. In addition, it gives complete 
information for some problems including situations in which each element has 
different membership values. Miyamoto [17] and Sebastian and Ramakrishnan [24, 
25] expanded and studied detailedly the Yager’s multi-sets and multi-fuzzy sets. 
Since some situations have multi possibility of same or different membership 
values, Ulucay et al. [29] developed trapezoidal fuzzy multi-numbers on real 
number set  . They are expansion of both multi-fuzzy sets and fuzzy numbers 
enabling the recurrent occurrences of any element. Later, many studies have been 
conducted by many scientists. Readers may find the studies about trapezoidal fuzzy 
multi-numbers application of fuzzy logic in different areas and in [1, 4, 8, 10, 11, 15, 
16, 18, 19, 20, 21, 22, 23, 28, 30, 42]. 
The Bonferroni mean (BM), firstly created by Bonferroni [3] is an aggregation 
technique which is useful to aggregate the crisp data. It can see the 
interrelationships among arguments, which plays an important role in multi-
criteria decision-making problems.This is why Yager [39] presented a elaborated 
paper of BM and proposed some generalizations that extend it’s capability. Beliakov 
et al.[2] got the BM more enhanced by handling the interrelation of any three 
aggregated elements instead of any two. However, Xu and Yager [37] introduced 
that the elements are suitable to be aggregated by the BM and generalized BM can 
only take the forms of crisp numbers rather than any other kind of numbers, which 
limits the potential applications of the BM to more enhanced areas and applied the 
BM to intuitionistic fuzzy environment and proposed the intuitionistic fuzzy 
Bonferroni mean (IFBM) and the intuitionistic fuzzy weighted Bonferroni mean 
(IFWBM). Then, they applied the IFWBM to multi criteria decision making. 
Moreover, Xia et al. [34, 35] submitted a generalized weighted Bonferroni mean 
(GWBM), generalized intuitionistic fuzzy weighted Bonferroni mean (GIFWBM) 
and geometric Bonferroni means and discussed their applications in multi-criteria 
decision making. In 2021, Deli [6] extended Bonferroni mean operators to 
generalized trapezoidal hesitant fuzzy numbers and gave their application to 
decision-making problems. Kesen and Deli [15] introduced weighted Bonferroni 
harmonic mean operator on trapezoidal fuzzy multi-numbers in 2022. 
This article have six chapters. In second chapter, we give definition of some basic 
concepts such as fuzzy multi sets, trapezoidal fuzzy multi numbers, hamming 
distance and CRITIC (Criteria Importance Through Intercriteria Correlation) 
method etc. Then, we propose some properties and operations of fuzzy multi sets 
and trapezoidal fuzzy multi numbers. In third chapter, we introduce two 
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aggregation operators which are called trapezoidal fuzzy multi generalized 
weighted Bonferroni arithmetic mean and trapezoidal fuzzy multi generalized 
weighted Bonferroni geometric mean and we give their some properties. In the 
fourth chapter, we give an approach to multi-attribute group decision making 
problem and to see application to multi-attribute group decision making problems. 
At the end of the chapter a numerical example is given. In fifth chapter, we propose 
a comparison table to compare given methods with existing methods. 
 
1.1  Novelty 
 This paper proposes two main novelties as follows:   
    1.  Mathematically, we developed generalized Bonferroni mean operators. In 
normal, Bonferroni mean operators only tackle with the conditions having 
correlations between any two aggregated elements, but not the conditions having 
connections among any three aggregated elements. This is a drawback of these 
operators. In order to solve this issue, generalized Bonferroni mean operators have 
been developed. Moreover, generalized Bonferroni mean operators have been 
extended to TFM-numbers.  
    2.  Politically, we developed two methods to select best model against poverty 
and hunger by considering all policies in the problem. In this aspect, we present a 
new perspective to select and build models for fighting against poverty and 
hunger. Therefore, these methods can be extended and utilised for more complex 
humanitarian problems.  
 
 

2  Preliminary 
 
 In this section, we give some basic concepts of fuzzy set [40], fuzzy number [13] 
and fuzzy multi set [24], fuzzy Bonferroni aggregation operators, trapezoidal fuzzy 
multi numbers etc. For more, readers may look at Deli and Karaaslan [7], Deli [5], 
Torra [26], Torra and Narukawa [27], Wang et al.[31], Wei [32], Xia and Xu [33], Xu 
[36]. 
 
Definition 2.1 [40] Let X  be a non-empty set. A fuzzy set   on X  is defined as:  

= { , ( ) : }x x x Xµ〈 〉 ∈  
where : [0,1]Xµ →  for x X∈ .  
 
Definition 2.2 [41] t -norms are monotonic, commutative and associative functions t  with 
two valued mapping from [0,1] [0,1]×  into [0,1]  and satisfying following conditions:  
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   1.  (0,0) = 0t , 
1 1 1

( ( ),1) = (1, ( )) = ( )t x t x xµ µ µ     

   2.  If 
1 3
( ) ( )x xµ µ≤   and 

2 4
( ) ( )x xµ µ≤  , then 

1 2 3 4
( ( ), ( )) ( ), ( ))t x x t x xµ µ µ µ≤      

   3.  
1 2 2 1

( ( ), ( )) = ( ( ), ( ))t x x t x xµ µ µ µ      

   4.  
1 2 3 1 2 3

( ( ), ( ( ), ( ))) = ( ( ( ), )( ), ( ))t x t x x t t x x xµ µ µ µ µ µ        

  
Definition 2.3 [41] s -norm are monotonic, commutative and associative functions t  with 
two placed mapping from [0,1] [0,1]×  into [0,1]  and satisfying following conditions:   
   1.  

1 1 1
(1,1) = 1, ( ( ),0) = (0, ( )) = ( )s s x s x xµ µ µ     

   2.  if 
1 3
( ) ( )x xµ µ≤   and 

2 4
( ) ( )x xµ µ≤  , then 

1 2 3 4
( ( ), ( )) ( ( ), ( ))s x x s x xµ µ µ µ≤      

   3.  
1 2 2 1

( ( ), ( )) = ( ( ), ( ))s x x s x xµ µ µ µ      

   4.  
1 2 3 1 2 3

( ( ), ( ( ), ( ))) = ( ( ( ), )( ), ( ))s x s x x s s x x xµ µ µ µ µ µ        

  
 t -norm and s -norm are related in a sense of logical duality. Typical dual pairs of 
non-parameterized t -norm and s -norm are complied below: 
  
    1.  Drastic product:  

 
1 2 1 2

1 2

min{ ( ), ( )}, max{ ( ), ( )} = 1

( ( ), ( )) = 0,w

x x x x

t x x otherwise

µ µ µ µ

µ µ







   

   

 
    2.  Drastic sum:  

 
1 2 1 2

1 2

max{ ( ), ( )}, min{ ( ), ( )} = 0

( ( ), ( )) = 1,w

x x x x

s x x otherwise

µ µ µ µ

µ µ







   

   

 
    3.  Bounded product:  
 1 1 2 1 2

( ( ), ( )) = max{0, ( ) ( ) 1}t x x x xµ µ µ µ+ −     

 
    4.  Bounded sum:  
 1 1 2 1 2

( ( ), ( )) = min{1, ( ) ( )}s x x x xµ µ µ µ+     

 
    5.  Einstein product:  

 1 2
1.5 1 2

1 2 1 2

( ). ( )
( ( ), ( )) =

2 [ ( ) ( ) ( ). ( )]

x x
t x x

x x x x

µ µ
µ µ

µ µ µ µ− + −
 

 
   
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    6.  Einstein sum:  

 1 2
1.5 1 2

1 2

( ) ( )
( ( ), ( )) =

1 ( ). ( )

x x
s x x

x x

µ µ
µ µ

µ µ

+

+
 

 
 

 

 
    7.  Algebraic product:  
 2 1 2 1 2

( ( ), ( )) = ( ). ( )t x x x xµ µ µ µ     

 
    8.  Algebraic sum:  
 2 1 2 1 2 1 2

( ( ), ( )) = ( ) ( ) ( ). ( )s x x x x x xµ µ µ µ µ µ+ −       

 
    9.  Hamacher product:  

 1 2
2.5 1 2

1 2 1 2

( ). ( )
( ( ), ( )) =

( ) ( ) ( ). ( )

x x
t x x

x x x x

µ µ
µ µ

µ µ µ µ+ −
 

 
   

 

 
    10.  Hamacher sum:  

 1 2 1 2
2.5 1 2

1 2

( ) ( ) 2. ( ). ( )
( ( ), ( )) =

1 ( ). ( )

x x x x
s x x

x x

µ µ µ µ
µ µ

µ µ

+ −

−
   

 
 

 

 
    11.  Minumum:  
 3 1 2 1 2

( ( ), ( )) = min{ ( ), ( )}t x x x xµ µ µ µ     

 
    12.  Maximum:  
 3 1 2 1 2

( ( ), ( )) = max{ ( ), ( )}s x x x xµ µ µ µ     

 
 
Definition 2.4 [24] Let X  be a non-empty set. A multi-fuzzy set G  on X  is defined as; 
  
 1 2= { , ( ), ( ),..., ( ),... : }i

G G GG x x x x x Xµ µ µ〈 〉 ∈  
 
where : [0,1]i

G Xµ →  for all {1,2,..., }i p∈  and x X∈ .  
 
In the paper, mI , nI  and PI  will be used instead of {1,2,..., }m , {1,2,..., }n  and 
{1,2,..., }P  respectively.  
 
Definition 2.5 [29] Let [0,1]Tη ∈  and 1 2 3 4, , , R∈     such that 1 2 3 4≤ ≤ ≤    . Then, a 
generalized trapezoidal fuzzy number (GTF-number) 1 2 3 4= ( , , , ); TT η〈 〉     is a special 
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fuzzy set on the real number set R. Its membership functions are defined as follows: 
 

1 2 1 1 2

2 3

4 4 3 3 4

( ) / ( ) <

( ) =
( ) / ( ) <

0

T

T
T

T

x x
x

x
x x

otherwise

η
η

µ
η

− − ≤
 ≤ ≤
 − − ≤


    
 

    
 

 
Definition 2.6 [29] Let [0,1]i

Tη ∈  ( )Pi I∈  and 1 2 3 4, , , R∈     such that 1 2 3 4≤ ≤ ≤    . 
Then, a trapezoidal fuzzy multi-number (TFM-number) 1 2

1 2 3 4= ( , , , ); , ,..., P
T T TT η η η〈 〉     is 

a special fuzzy multi-set on the real number set  . Its membership functions are defined as 
follows: 
 

1 2 1 1 2

2 3

4 4 3 3 4

( ) / ( ) <

( ) =
( ) / ( ) <

0

i
T

i
i T
T i

T

x x
x

x
x x

otherwise

η
η

µ
η

 − − ≤
 ≤ ≤


− − ≤


    
 

    
 

 
 
Note that the set of all TFM-number on +  will be denoted by ( )+ .  
 
Definition 2.7 [29] Let 1 2

1 1 2 3 4 1 1 1
= ( , , , ); , ,..., P

T T TT η η η〈 〉    and 
1 2

2 1 2 3 4 2 2 2
= ( , , , ); , ,..., P

T T TT ρ ρ ρ ρ η η η〈 〉  be two TFM-numbers and 0γ ≠  be any real number. 

Then, 
  
1.  1 1 2 2

1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2
= ( ( , ), ( , ), ( , ), ( , )); ( , ), ( , ),..., ( , )p p

T T T T T TT T s s s s s s sρ ρ ρ ρ η η η η η η⊕ 〉     

 
        2.   

 

1 1 2 2
1 1 2 2 3 3 4 4 4 41 2 1 2 1 2

1 1 2 2
1 4 2 3 3 2 4 1 4 41 2 1 2 1 2

1 2

4 4 3 3

( ( ), ( ), ( ), ( )); ( ), ( , ),..., ( , ) ( > 0, > 0)

( ( ), ( ), ( ), ( )); ( , ), ( , ),..., ( , ) ( < 0, > 0)
=

( ( ), ( )

p p
T T T T T T

p p
T T T T T T

t t t t t t t

t t t t t t t
T T

t t

ρ ρ ρ ρ η η η η η η ρ

ρ ρ ρ ρ η η η η η η ρ

ρ ρ

〈 〉

〈 〉
⊗

〈

    

    

  1 1 2 2
2 2 1 1 4 41 2 1 2 1 2

, ( ), ( )); ( , ), ( , ),..., ( , ) ( < 0, < 0)p p
T T T T T Tt t t t tρ ρ η η η η η η ρ






〉



  
 

 
 3.  1 2

1 1 2 3 4 1 1 1
= ( , , , );1 (1 ) ,1 (1 ) ,...,1 (1 ) ( 0)p

T T TT γ γ γγ γ γ γ γ η η η γ〈 − − − − − − 〉 ≥      

 4.  
1 1 1

1 2
1 1 2 3 4( , , , ); ( ) , ( ) ,..., ( ) ( 0)P

T T TT γ γ γ γ γ γ γ γη η η γ= 〈 〉 ≥     
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Definition 2.8 [15]  Let 1 2
1 1 2 3 4 1 1 1

= ( , , , ); , ,..., P
T T TT η η η〈 〉    , 

1 2
2 1 2 3 4 2 2 2

= ( , , , ); , ,..., P
T T TT ρ ρ ρ ρ η η η〈 〉  be two TFM-numbers. The followings hold: 

 
1.  If 1 1< ρ , 2 2< ρ , 3 3< ρ , 4 4< ρ , and 1 1

1 2
<T Tη η , 2 2

1 2
<T Tη η , ..., 

1 2
<P P

T Tη η , then 1 2<T T

. 
2.  If 1 1> ρ , 2 2> ρ , 3 3> ρ , 4 4> ρ , and 1 1

1 2
>T Tη η , 2 2

1 2
>T Tη η , ..., 

1 2
>P P

T Tη η , then 1 2>T T

. 
3.  If 1 1= ρ , 2 2= ρ , 3 3= ρ , 4 4= ρ , and 1 1

1 2
=T Tη η , 2 2

1 2
=T Tη η , ..., 

1 2
=P P

T Tη η , then 1 2=T T

.  
  
Definition 2.9 [29]  Let 1 2

1 1 2 3 4 1 1 1
= ( , , , ); , ,..., P

T T TT η η η〈 〉    , 
1 2

2 1 2 3 4 2 2 2
= ( , , , ); , ,..., P

T T TT ρ ρ ρ ρ η η η〈 〉  be two TFM-numbers. Then, the Hamming distance 

between 1T  and 2T  is defined as follows:  

1 2 1 1 2 21 2 1 2
=1

1( , ) = (| (1 ) (1 ) | | (1 ) (1 ) |
8

p
i i i i
T T T T

i
d T T

p
η η ρ η η ρ+ − + + + − + +∑    

        3 3 4 41 2 1 2
| (1 ) (1 ) | | (1 ) (1 ) |)i i i i

T T T Tη η ρ η η ρ+ − + + + − +   

 
Definition 2.10  [9] Let 1 2

1 2 3 4= ( , , , ); , ,..., P
T T TT η η η〈 〉     be a TFM-number. Value of T  

based on centroid point denoted by ( )Val T  is computed as:  

=1
( )

( ) =

P

i
i

deff T
Val T

P

∑
 

 
where  

32 4
1 4

2 1 4 31 2 3

32 4
1 4

2 1 4 31 2 3

( ) ( )
( ) ( )

( ) = , ( )
( ) ( )
( ) ( )

i i
iT T
T

i pi i
iT T
T

x xx dx x dx x dx

deff T i I
x xdx dx dx

η ηη

η ηη

− −
+ +

− −
∈

− −
+ +

− −

∫ ∫ ∫

∫ ∫ ∫

 

  

 

  

 
   

 
   

 

  
2.1  TFM Bonferroni Means 
 Here, we give two definitions called trapezoidal fuzzy multi Bonferroni arithmetic 
mean and trapezoidal fuzzy multi Bonferroni geometric mean which will be base of 
rest of the paper.  
 
Definition 2.11  [14] Let 1 2= ( , , , ); , ,..., P

i i i i i T T Ti i i
T ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of TFM-

numbers. For any , > 0p q , if  
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1
( , )

1 2
, 1

1( , ,..., ) ( ( ))
.( 1)

n
p q p q p q

n i j
i j
i j

TFMBAM T T T T T
n n

+

=
≠

= ⊗
− ⊕  

then ( , )p qTFMBAM  is called trapezoidal fuzzy multi Bonferroni arithmetic mean.  
 
 
Definition 2.12 [14]  Let 1 2= ( , , , ); , ,..., P

i i i i i T T Ti i i
T ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of TFM-

numbers, 1 2= ( , ,..., )T
nυ υ υ υ  their weight vector, where iυ  indicates the importance degree 

of iT , satisfying > 0iυ  ( ni I∈ ), and 
=1

= 1
n

i
i
υ∑ . For any , > 0p q , If  

1
( , )

1 2
, =1

1( , ,..., ) = ( (( . ) ( . )) )
.( 1)

n
p q p q p q

n i i j j
i j i j

TFMBAM T T T T T
n nυ υ υ +

≠

⊗
− ⊕  

then TFMBAMυ  is called trapezoidal fuzzy multi weighted Bonferroni mean.  
  
Definition 2.13 [14] Let 1 2= ( , , , ); , ,..., P

i i i i i T T Ti i i
T ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of TFM-

numbers. For any , > 0p q . If  

 
1

( , ) .( 1)
1 2

, =1

1( , ,..., ) = (( . . ))
n

p q n n
n i j

i j
i j

TFMBGM T T T p T q T
p q

−

≠

⊕
+ ⊗  (1) 

 then, ( , )p qTFMBGM  is called trapezoidal fuzzy multi Bonferroni geometric mean 
operator.  
 Considering the weight vector of the aggregated arguments, the weighted form is 
also proposed: 
 
Definition 2.14 [14]  Let Let 1 2= ( , , , ); , ,..., P

i i i i i T T Ti i i
T ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of 

TFM-numbers, 1 2= ( , ,..., )T
nυ υ υ υ  their weight vector, where iυ  indicates the importance 

degree of iT , satisfying > 0iυ  ( ni I∈ ), and 
=1

= 1
n

i
i
υ∑ . For any , > 0p q , If  

2
( , ) .( 1)

1 2
, =1,

1( , ,..., ) = ( (( . . ))
n

wp q j n ni
n i j

i j i j
TFMBGM T T T p F q F

p q
υ

υ
−

≠

⊕
+ ⊗  

 
then, ( , )p qTFMBGMυ  is called trapezoidal fuzzy weighted Bonferroni geometric 
mean. 
  
2.2  CRITIC method for determining of weight of criteria 
  CRITIC method which was firstly introduced by Diakoulaki et al. [12] helps to 
decision makers to determine the weight of each criteria by means of values in the 
decision matrix. 
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Let 1 2= { , ,..., }mM M M M  be set of alternatives, 1 2= { , ,..., }nC c c c  be set of attributes 
and ijx  be a values of iM  alternative based on jc  attribute. Then, algorithm of 
CRITIC method is given as; 
Algorithm: 
Step 1 Construct the decision matrix ( )ij mxnx  according to decision makers’ 
preferences as;  

11 12 1

21 22 2

1 2

( ) =

x

x

ij mxn

m m mn

x x x
x x x

x
x x x

 
 
 
 
 
 
 
 





   



 

 
where ijx  ( mi I∈  and nj I∈ ) represents the real numbers. 
 
Step 2 Find normalized decision matrix ( )ij mxnx  of the decision matrix ( )ij mxnx  as;  

11 12 1

21 22 2

1 2

( ) =

x

x

ij mxn

m m mn

x x x
x x x

x
x x x

 
 
 
 
 
 
 
 





   



 

where  
 

{ }min
,

{ } { }max min
=

{ }max
,

{ } { }max min

ij ik
k In

ik ik
k Ik I nn

ij
ik ij

k In

ik ik
k Ik I nn

x x
for benefit attribute

x x
x

x x
for cost attribute

x x

∈

∈∈

∈

∈∈

−

 −

 −


−


 

 
such that  and nj I∈ . 
 
Step 3. Construct the relation-coefficient matrix ( )ij n nr ×  of the normalized decision 

matrix ( )ij mxnx  as;  
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11 12 1

21 22 2

1 2

( ) =

n

n

ij n n

n n nn

r r r
r r r

r
r r r

×

 
 
 
 
 
 
 
 





   



 

where  

=1

2 2

=1 =1

( ).( )
=

( ) . ( )

m

ij j ik k
i

jk m m

ij j ik k
i i

x x x x
r

x x x x

− −

− −

∑

∑ ∑

 

 

 

such that , nj k I∈ . Here, jx  and kx  are arithmetic means of ijx  and ikx , respectively. 
 
Step 4. Find jc  to get information from contrast and conflicts in jth criterion as;  

=1
= (1 )

n

j j jk
k

c rσ −∑  

where  
 

2

=1
( )

=
1

m

ij j
i

j

x x

m
σ

−

−

∑ 

 

 
and jx  is arithmetic mean of ijx  for nj I∈ . 
 
Step 5. Compute weights, denoted by jw  ( )nj I∈  , of jth criterion jc  as;  

=1

= , ( )j
j nn

j
j

c
w j I

c
∈

∑
 

 
2.3  Generalized Bonferroni Means 
 By taking the correlations of any three aggregated elements instead of any two, 
Beliakov et al. [2] defined the Bonferroni means. 
 
Definition 2.15 [2] Let , , 0p q r ≥  and ( )i nF i I∈  be a collection of nonnegative 
numbers. If  

 
1

( , , )
1 2

, , =1

1( , ,..., ) = ( )
.( 1).( 2)

n
p q r p q r p q r

n i j k
i j k
i j k

GBM F F F F F F
n n n

+ +

≠ ≠
− − ∑  (2) 

 then ( , , )p q rGBM  is called a generalized Bonferroni mean (GBM).  
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Definition 2.16  [35] Let , , 0p q r ≥ , ( )i nF i I∈  be a collection of nonnegative numbers, 

1 2= ( , ,..., )T
nυ υ υ υ  be the weight vector of iF  such that > 0iυ  ( )ni I∈  and 

=1
= 1

n

i
i
υ∑ . If  

 
1

( , , )
1 2

, , =1
( , ,..., ) = ( ( ))

n
p q r p q r p q r

n i j k i j k
i j k

GWBM F F F F F Fυυ υ + +∑  (3) 

 then ( , , )p q rGWBM  is called a generalized weighed Bonferroni mean (GWBM).  
  
Note 2.17 [35] if = (1/ ,1/ ,...,1/ )Tn n nυ , then the GWBM converted into the following:  

 
1

( , , )
1 2 3

, , =1

1( , ,..., ) = ( )
n

p q r p q r p q r
n i j k

i j k
RBM F F F F F F

n
+ +∑  (4) 

which is called the revised Bonferroni mean (RBM).  
Theorem 2.18 [35] Let , , 0p q r ≥  and iF  and iG  ( )ni I∈  be two collections of nonnegative 
numbers. GWBM  has some properties as follows:   
1.  ( , , ) (0,0,...,0) = 0p q rGWBM   
2.  ( , , ) ( , ,..., ) = =p q r

iGWBM F F F F if F F foralli .  
3.  ( , , ) ( , , )

1 2 1 2( , ,..., ) ( , ,..., )p q r p q r
n nGWBM F F F GWBM G G G≥  i.e., ( , , )p q rGWBM  is 

monotonic if  
i iF G≥  for all i.  

4.  ( , , )
1 2min{ } ( , ,..., ) max{ }p q r

i n iF GWBM F F F F≤ ≤ . 
 
Remark 2.19 [35] We can get some special cases as the change of the parameters:  
  
    1.  If r = 0, then the ( , , )p q rGWBM  converted into the following:  

 

1
( , ,0)

1 2
, , =1

1

, =1

1

,

( , ,..., ) = ( ( ))

= ( ( ) )

= ( ( ))

n
p q p q p q

n i j k i j
i j k

n n
p q p q

i j i j k
i j k

n
p q p q

i j i j
i j

GWBM F F F F F

F F

F F

υυ υ

υυ υ

υυ

+

+

+

∑

∑ ∑

∑

 (5) 

 which we call a weighted Bonferroni mean (WBM). 
 
    2.  If q = 0 and r = 0, then 
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1
( ,0,0)

1 2
, , =1

1

=1 =1 =1

1

( , ,..., ) = ( )

= ( )

= ( )

n
p p p

n i j k i
i j k

n n n
p p

i i j k
i j k

n
p p

i i
i

GWBM F F F F

F

F

υυ υ

υ υ υ

υ

∑

∑ ∑ ∑

∑

 (6) 

 which is the generalized weighted averaging operator ([39]).  
 
Definition 2.20  [35] Let , , 0p q r ≥ , ( )i nF i I∈  be a collection of nonnegative numbers, 

1 2= ( , ,..., )T
nυ υ υ υ  be the weight vector of iF  such that > 0iυ  ( )ni I∈  and 

=1
= 1

n

i
i
υ∑ . If  

 ( , , )
1 2

, , =1

1( , ,..., ) = ( )
n

p q r i j k
n i j k

i j k
GWBGM F F F pF qF rF

p q r
υ υ υ

⊕ ⊕
+ + ⊗  (7) 

 then ( , , )p q rGWBGM  is called a generalized weighted Bonferroni Geometric mean 
(GWBGM).  
 
Theorem 2.21 [35] Let , , 0p q r ≥  and iF  and iG  ( )ni I∈  be two collections of nonnegative 
numbers. ( , , )p q rGWBGM  has some properties as follows:   
1.  ( , , ) (0,0,...,0) = 0p q rGWBGM   
2.  ( , , ) ( , ,..., ) = =p q r

iGWBGM F F F F if F F foralli .  
3.  ( , , ) ( , , )

1 2 1 2( , ,..., ) ( , ,..., )p q r p q r
n nGWBGM F F F GWBGM G G G≥  i.e., ( , , )p q rGWBGM  is 

monotonic if i iF G≥  for all i.  
4.  ( , , )

1 2min{ } ( , ,..., ) max{ }p q r
i n iF GWBGM F F F F≤ ≤ . 

 
In addition, we can get some special cases as the change of the parameters: 
  
    1.  If r=0 then ( , , )p q rGWBGM  converted into:  

 

( , ,0)
1 2

, , =1

=1

, , =1

, =1

1( , ,..., ) = ( )

1= ( )

1= ( )

n
p q i j k

n i j
i j k

n

i j kn
k

i j
i j k

n
i j

i j
i j

GWBGM F F F pF qF
p q

pF qF
p q

pF qF
p q

υ υ υ

υ υ υ

υ υ

⊕
+

⊕
+

⊕
+

⊗

∑
⊗

⊗

 (8) 

 which is called a weighted Bonferroni geometric mean (WBGM). 
 
    2.  If q=r=0, then 
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( ,0,0)
1 2

, , =1

=1 =1

, , =1

=1

1( , ,..., ) = ( )

1= ( )

=

n
p i j k

n i
i j k

n n

i j kn
j k

i
i j k

n
i

i
i

GWBGM F F F pF
p

pF
p

F

υ υ υ

υ υ υ

υ

⊗

∑ ∑
⊗

⊗

 (9) 

 which is the usual geometric mean.  
  
The aggregation methods given above can only cope with the situations in which 
the elements are given as nonnegative numbers. If the arguments given in other 
forms such as the trapezoidal fuzzy multi numbers, the methods will be formed as 
follows: 
 

3  Generalized Weighted Bonferroni Mean of TFM-
Numbers 
 Both the ( , )p qTFMBAMυ  and the ( , )p qTFMBGMυ  which are given in Definitions 2.12 
and 2.14 only tackle with the conditions in which there are correlations between any 
two aggregated elements, but not the conditions where there are connections among 
any three aggregated elements. In order to get rid of this drawback, motivated by 
Definition 2.16, we extended the generalized Bonferroni mean to trapezoidal fuzzy 
multi environment and proposed the following definition: 
Definition 3.1  Let 1 2= ( , , , ); , ,..., P

i i i i i F F Fi i i
F ρ δ γ η η η〈 〉   be a collection of TFM-numbers, 

1 2= ( , ,..., )T
nυ υ υ υ  their weight vector, where iυ  indicates the importance degree of iF , 

satisfying > 0,iυ  ( ni I∈ ) and 
=1

= 1
n

i
i
υ∑ . For any , , > 0p q r , If  

 
1

( , , )
1 2

, , =1
( , ,..., ) = ( ( ))

n
p q r p q r p q r

n i j k i j k
i j k

TFMGBAM F F F F F Fυ υυ υ + +⊗ ⊗⊕  (10) 

 then ( , , )p q rTFMGBAMυ  is called trapezoidal fuzzy multi generalized weighted 
Bonferroni arithmetic mean. 
 
Remark 3.2 Let 1 2= ( , , , ); , ,..., P

i i i i i F F Fi i i
F ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of TFM-numbers, 

1 2= ( , ,..., )T
nυ υ υ υ  their weight vector, where iυ  indicates the importance degree of iF , 

satisfying > 0,iυ  ( ni I∈ ) and 
=1

= 1
n

i
i
υ∑ . By considering different values of p , q  and r , 

several specific cases of the ( , , )p q rTFMGBAMυ  are obtained as follows:   
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    1.  Especially, if 0r → , then the ( , , )p q rTFMGBAMυ  converted into: 

 

1
( , , )

1 2
0 , , =1

1

, =1=1

1

, =1

( , ,..., ) = ( ( ))lim

= (( ) ( ))

= ( ( ))

n
p q r p q p q

n i j k i j
r i j k

n n
p q p q

k i j i j
i jk

n
p q p q

i j i j
i j

TFMGBAM F F F F F

F F

F F

υ υυ υ

υ υυ

υυ

+

→

+

+

⊗

⊗

⊗

⊕

∑ ⊕

⊕

 (11) 

which is called an trapezoidal fuzzy multi weighted Bonferroni mean (TFMBAMυ ) 
which is given in Definition 2.12.  
 
    2.  Especially, if 0q →  and 0r →  then the ( , , )p q rTFMGBAMυ  converted into:  

 

1
( , , )

1 2
0 0 0 , , =1

1

, , =1

1

=1=1 =1

1

=1

( ( , ,..., )) = (( ( )) )lim lim lim

= ( )

= ( )

= ( )

n
p q r p q p q

n i j k i j
q r q i j k

n
p p

i j k i
i j k

n n n
p p

j k i i
ij k

n
p p

i i
i

TFMGBAM F F F F F

F

F

F

υ υυ υ

υυ υ

υ υ υ

υ

+

→ → →
⊗⊕

⊕

∑ ∑ ⊕

⊕

 (12) 

 which is the generalized trapezoidal fuzzy weighted mean.  
 
 
 Based on the operational laws of TFM-numbers given in Definition 2.7, we can give 
the following theorem: 
 In the following theorem, algebraic product and algebraic sum are used in 
computations. 
  
Theorem 3.3  Let 1 2= ( , , , ); , ,..., P

i i i i i F F Fi i i
F ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of TFM-

numbers and , , > 0p q r , then the aggregated value by using the ( , , )p q rTFMGBAMυ  is also a 
TFM-number and computed as follows:  
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1
( , , )

1 2
, , =1

1

, , =1

1

, , =1

1

, , =1

, ,

( , ,..., ) ( ( ))

((1 (1 ( )) ) ,

(1 (1 ( )) ) ,

(1 (1 ( )) ) ,

(1

n
p q r p q r p q r

n i j k i j k
i j k

n
p q r i j k p q r

i j k
i j k

n
p q r i j k p q r

i j k
i j k

n
p q r i j k p q r

i j k
i j k

i j k

TFMGBAM F F F F F Fυ

υ υ υ

υ υ υ

υ υ υ

υυ υ

ρ ρ ρ

δ δ δ

+ +

+ +

+ +

+ +

= ⊗ ⊗

= 〈 − −

− −

− −

−

⊕

∏

∏

∏

  

1

=1

1
1 1 1

, , =1

1
2 2 2

, , =1

1

, , =1

(1 ( )) ) ;

(1 (1 ( ) ( ) ( ) ) ) ,

(1 (1 ( ) ( ) ( ) ) ) ,...,

(1 (1 ( ) ( ) ( ) ) )

n
p q r i j k p q r

i j k

n
p q r i j k p q r

F F Fi j k
i j k

n
p q r i j k p q r

F F Fi j k
i j k

n
P p P q P r i j k p q r
F F Fi j k

i j k

υ υ υ

υ υ υ

υ υ υ

υ υ υ

γ γ γ

η η η

η η η

η η η

+ +

+ +

+ +

+ +

−

− −

− −

− − 〉

∏

∏

∏

∏
 (13) 
 
 
 
Proof: To proof the Equation (13), we need to use mathematical induction on n .  
 
Firstly, by the operational rules given in Definition 2.7, we get that:  
 ( ) = (1 (1 ) , (1 (1 ) ,p q r p q r p q ri j k i j k

i j k i j k i j k i j kF F F
υ υ υ υ υ υ

υυ υ ρ ρ ρ⊗ ⊗ 〈 − − − −    

                       (1 (1 ) , (1 (1 ) );p q r p q ri j k i j k
i j k i j k

υ υ υ υ υ υ
δ δ δ γ γ γ− − − −  

                            1 1 11 (1 ( ) ( ) ( ) ) ,p q r i j k
F F Fi j k

υ υ υ
η η η− −  

                                  2 2 21 (1 ( ) ( ) ( ) ) , ,p q r i j k
F F Fi j k

υ υ υ
η η η− −   

                            1 (1 ( ) ( ) ( ) )P p P q P r i j k
F F Fi j k

υ υ υ
η η η− − 〉  

   
    1.  When = 2n , we can get:  

 
2

1 1 1 1 1 1
, , =1

( ) = ( )p q r p q r
i j k i j k

i j k
F F F F F Fυυ υ υυυ⊗ ⊗ ⊗ ⊗⊕  

                            1 1 2 1 1 2( )p q rF F Fυυυ⊕ ⊗ ⊗  
                            1 2 1 1 2 1( )p q rF F Fυυ υ⊕ ⊗ ⊗  
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                            2 1 1 2 1 1( )p q rF F Fυ υυ⊕ ⊗ ⊗  
                            1 2 2 1 2 2( )p q rF F Fυυ υ⊕ ⊗ ⊗  
                            2 1 2 2 1 2( )p q rF F Fυ υυ⊕ ⊗ ⊗  
                            2 2 1 2 2 1( )p q rF F Fυ υ υ⊕ ⊗ ⊗  
                            2 2 2 2 2 2( )p q rF F Fυ υ υ⊕ ⊗ ⊗  

                          1 1 1 1 1 1
1 1 1 1 1 1= (1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ〈 − − − −    

                               1 1 1 1 1 1
1 1 1 1 1 1(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                1 1 1 1 1 1
1 1 1

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                2 2 2 1 1 1
1 1 1

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   

                                1 1 1
1 1 1

1 (1 ( ) ( ) ( ) )P p P q P r
F F F

υ υ υη η η− − 〉  

                             1 1 2 1 1 2
1 1 2 1 1 2(1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ⊕〈 − − − −    

                                1 1 2 1 1 2
1 1 2 1 1 2(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                 1 1 1 1 1 2
1 1 2

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                 2 2 2 1 1 2
1 1 2

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   

                                 1 1 2
1 1 2

1 (1 ( ) ( ) ( ) )P p P q P r
F F F

υ υ υη η η− − 〉  

                             1 2 1 1 2 1
1 2 1 1 2 1(1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ⊕〈 − − − −    

                                1 2 1 1 2 1
1 2 1 1 2 1(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                 1 1 1 1 2 1
1 2 1

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                 2 2 2 1 2 1
1 2 1

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   

                                 1 2 1
1 2 1

1 (1 ( ) ( ) ( ) )P p P q P r
F F F

υ υ υη η η− − 〉  

                              2 1 1 2 1 1
2 1 1 2 1 1(1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ⊕〈 − − − −    

                                 2 1 1 2 1 1
2 1 1 2 1 1(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                  1 1 1 2 1 1
2 1 1

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                  2 2 2 2 1 1
2 1 1

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   

                                  2 1 1
2 1 1

1 (1 ( ) ( ) ( ) )P p P q P r
F F F

υ υ υη η η− − 〉  

                              1 2 2 1 2 2
1 2 2 1 2 2(1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ⊕〈 − − − −    

                                 1 2 2 1 2 2
1 2 2 1 2 2(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                  1 1 1 1 2 2
1 2 2

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                  2 2 2 1 2 2
1 2 2

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   
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                                  1 2 2
1 2 2

1 (1 ( ) ( ) ( ) )P p P q P r
F F F

υ υ υη η η− − 〉  

                              2 1 2 2 1 2
2 1 2 2 1 2(1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ⊕〈 − − − −    

                                 2 1 2 2 1 2
2 1 2 2 1 2(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                  1 1 1 2 1 2
2 1 2

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                  2 2 2 2 1 2
2 1 2

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   

                                  2 1 2
2 1 2

1 (1 ( ) ( ) ( ) )P p P q P r
F F F

υ υ υη η η− − 〉  

                              2 2 1 2 2 1
2 2 1 2 2 1(1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ⊕〈 − − − −    

                                 2 2 1 2 2 1
2 2 1 2 2 1(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                  1 1 1 2 2 1
2 2 1

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                  2 2 2 2 2 1
2 2 1

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   

                              2 2 2 2 2 2
2 2 2 2 2 2(1 (1 ) , (1 (1 ) ,p q r p q rυ υ υ υ υ υρ ρ ρ⊕〈 − − − −    

                                 2 2 2 2 2 2
2 2 2 2 2 2(1 (1 ) , (1 (1 ) );p q r p q rυ υ υ υ υ υδ δ δ γ γ γ− − − −  

                                  1 1 1 2 2 2
2 2 2

1 (1 ( ) ( ) ( ) ) ,p q r
F F F

υ υ υη η η− −  

                                  2 2 2 2 2 2
2 2 2

1 (1 ( ) ( ) ( ) ) , ,p q r
F F F

υ υ υη η η− −   

                                  2 2 2
2 2 2

1 (1 ( ) ( ) ( ) )P p P q P r
F F F

υ υ υη η η− − 〉  

                              
12

, , =1

= (1 (1 ( ) )) ,p q r i j k p q r
i j k

i j k

υ υ υ + +〈 − −∏     

                                 
12

, , =1

(1 (1 ( ) )) ,p q r i j k p q r
i j k

i j k

υ υ υ
ρ ρ ρ + +− −∏  

                                 
12

, , =1

(1 (1 ( ) )) ,p q r i j k p q r
i j k

i j k

υ υ υ
δ δ δ + +− −∏  

                                 
12

, , =1

(1 (1 ( ) )) ;p q r i j k p q r
i j k

i j k

υ υ υ
γ γ γ + +− −∏  

                                  
2

1 1 1

, , =1

1 (1 ( ) ( ) ( ) ) ,p q r i j k
F F Fi j k

i j k

υ υ υ
η η η− −∏  

                                
2

2 2 2

, , =1

1 (1 ( ) ( ) ( ) ) , ,p q r i j k
F F Fi j k

i j k

υ υ υ
η η η− −∏   

                                
2

, , =1

1 (1 ( ) ( ) ( ) )P p P q P r i j k
F F Fi j k

i j k

υ υ υ
η η η− − 〉∏  

 
So, when = 2n , the Equation (13) is right. 
 



Editors: Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın &N. Merve Şahin 
              
 

188 
 

    2.  Suppose when =n t , the Equation (13) is right, i.e 
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1 2
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( , ,..., ) = ( )

t p q r
p q r p q r

n i j k i j k
i j k

TFMGBAM F F F F F Fυ υυ υ
+ + 
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(1 (1 ( )) ) ,
t

p q r i j k p q r
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υ υ υ
δ δ δ + +− −∏  
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(1 (1 ( )) ) ;
t

p q r i j k p q r
i j k

i j k

υ υ υ
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1 1 1

, , =1
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t
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υ υ υ
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2 2 2
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i j k
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1
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(1 (1 ( ) ( ) ( ) ) )
t

P p P q P r i j k p q r
F F Fi j k

i j k

υ υ υ
η η η + +− − 〉∏  

 
then, when = 1n t + , we have  

 

1 1
1

, , =1 , , =1
( ) = ( )

t tp q r p q r
p q r p q r

i j k i j k i j k i j k
i j k i j k
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1 1
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1 1
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F F Fυυ υ

+ +

+ +

 
⊕ ⊗ ⊗ 
 
⊕  



Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative 
Algorithmic Approaches 

189 

                                   

1

1 1
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t p q r
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t j k t j k
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F F Fυ υ υ
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 
⊕ ⊗ ⊗ 
 
⊕  
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1 1 1 1 1 1
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F F Fυ υ υ
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 
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by Definition 3.1 and operational laws in Definition 2.7 we get following equalities; 
 

1
1

1 1
1 1 1 1 1 1

=1 =1

( ) = ((1 (1 ( )) ) ,
tt p q r

p q r p q r p q ri t t
i t t i t t i t t

i i

F F F υ υ υυυ υ
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 
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 
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i t t
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1 1
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i t t
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η η η
+ + + +

+ +
− − 〉∏  

 , 
 

1
1

1 1
1 1 1 1 1 1

=1 =1

( ) = ((1 (1 ( )) ) ,
tt p q r

p q r p q r p q rt t k
t t k t t k t t k

k k

F F F υ υ υυ υ υ
+ +

+ ++ +
+ + + + + +

 
⊗ ⊗ 〈 − − 

 
∏⊕     

                                
1

1 1
1 1

=1

(1 (1 ( )) ) ,
t

p q r p q rt t k
t t k

k

υ υ υρ ρ ρ + ++ +
+ +− −∏  

                                
1

1 1
1 1

=1

(1 (1 ( )) ) ,
t

p q r p q rt t k
t t k

k

υ υ υδ δ δ + ++ +
+ +− −∏  

                                
1

1 1
1 1

=1

(1 (1 ( )) ) );
t

p q r p q rt t k
t t k

k

υ υ υγ γ γ + ++ +
+ +− −∏  (18) 

                                ( )
1

1 11 1 1

1 1
=1

(1 1 ( ) ( ) ( ) ) ,
t

t t kp q r p q r
F F Ft t k

k

υ υ υ
η η η + + + +

+ +
− −∏  

                                ( )
1

1 12 2 2

1 1
=1

(1 1 ( ) ( ) ( ) ) , ,
t

t t kp q r p q r
F F Ft t k

k

υ υ υ
η η η + + + +

+ +
− −∏   

                                ( )
1

1 1

1 1
=1

(1 1 ( ) ( ) ( ) )
t

t t kP p P q P r p q r
F F Ft t k

k

υ υ υ
η η η + + + +

+ +
− − 〉∏  

 ,  

   

1
1

1
1 1 1

, =1 , =1

( ) = ((1 (1 ( )) ) ,
tt p q r

p q r p q r i j t p q r
i j t i j t i j t

i j i j

F F F
υ υ υ

υυ υ
+ +

+ + +
+ + +

 
⊗ ⊗ 〈 − − 

 
∏⊕     

                                  
1

1
1

, =1

(1 (1 ( )) ) ,
t

p q r i j t p q r
i j t

i j

υ υ υ
ρ ρ ρ + + +

+− −∏  

                                   
1

1
1

, =1

(1 (1 ( )) ) ,
t

p q r i j t p q r
i j t

i j

υ υ υ
δ δ δ + + +

+− −∏  (19) 

                                   ( )
1

11 1 1

1
, =1

(1 1 ( ) ( ) ( ) ) ,
t i j tp q r p q r

F F Fi j t
i j

υ υ υ

η η η
+ + +

+
− −∏  

                                   ( )
1

12 2 2

1
, =1

(1 1 ( ) ( ) ( ) ) , ,
t i j tp q r p q r

F F Fi j t
i j

υ υ υ

η η η
+ + +

+
− −∏   
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                                   ( )
1

1

1
, =1

(1 1 ( ) ( ) ( ) )
t i j tP p P q P r p q r

F F Fi j t
i j

υ υ υ

η η η
+ + +

+
− − 〉∏  

 ,  

   

1
1

1
1 1 1

, =1 , =1

( ) = ((1 (1 ( )) ) ,
tt p q r

p q r p q r p q ri t k
i t k i t k i t k

i k i k

F F F υ υ υυυ υ
+ +

+ ++
+ + +

 
⊗ ⊗ 〈 − − 

 
∏⊕     

                                   
1

1
1

, =1

(1 (1 ( )) ) ,
t

p q r p q ri t k
i t k

i k

υ υ υρ ρ ρ + ++
+− −∏  

                                   
1

1
1

, =1

(1 (1 ( )) ) ,
t

p q r p q ri t k
i t k

i k

υ υ υδ δ δ + ++
+− −∏  

                                   
1

1
1

, =1

(1 (1 ( )) ) );
t

p q r p q ri t k
i t k

i k

υ υ υγ γ γ + ++
+− −∏  (20) 

                                   ( )
1

11 1 1

1
, =1

(1 1 ( ) ( ) ( ) ) ,
t

i t kp q r p q r
F F Fi t k

i k

υ υ υ
η η η + + +

+
− −∏  

                                   ( )
1

12 2 2

1
, =1

(1 1 ( ) ( ) ( ) ) , ,
t

i t kp q r p q r
F F Fi t k

i k

υ υ υ
η η η + + +

+
− −∏   

                                   ( )
1

1

1
, =1

(1 1 ( ) ( ) ( ) )
t

i t kP p P q P r p q r
F F Fi t k

i k

υ υ υ
η η η + + +

+
− − 〉∏  

 ,  

  

1
1

1
1 1 1

, =1 , =1

( ) = ((1 (1 ( )) ) ,
tt p q r

p q r p q r t j k p q r
t j k t j k t j k

j k j k

F F F
υ υ υ

υ υ υ
+ +

+ + +
+ + +

 
⊗ ⊗ 〈 − − 

 
∏⊕     

                                  
1

1
1

, =1

(1 (1 ( )) ) ,
t

p q r t j k p q r
t j k

j k

υ υ υ
ρ ρ ρ + + +

+− −∏  

                                  
1

1
1

, =1

(1 (1 ( )) ) ,
t

p q r t j k p q r
t j k

j k

υ υ υ
δ δ δ + + +

+− −∏  

                                  
1

1
1

, =1

(1 (1 ( )) ) );
t

p q r t j k p q r
t j k

j k

υ υ υ
γ γ γ + + +

+− −∏  (21) 

                                  ( )
1

11 1 1

1
, =1

(1 1 ( ) ( ) ( ) ) ,
t t j kp q r p q r

F F Ft j k
j k

υ υ υ

η η η
+ + +

+
− −∏  

                                  ( )
1

12 2 2

1
, =1

(1 1 ( ) ( ) ( ) ) , ,
t t j kp q r p q r

F F Ft j k
j k

υ υ υ

η η η
+ + +

+
− −∏   

                                  ( )
1

1

1
, =1

(1 1 ( ) ( ) ( ) )
t t j kP p P q P r p q r

F F Ft j k
j k

υ υ υ

η η η
+ + +

+
− − 〉∏  

 and 
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1
1

1 1 1
1 1 1 1 1 1 1 1 1

, , =1 , , =1

( ) = ((1 (1 ( )) ) ,
tt p q r

p q r p q r p q rt t t
t t t t t t t t t

i j k i j k

F F F υ υ υυ υ υ
+ +

+ ++ + +
+ + + + + + + + +

 
⊗ ⊗ 〈 − − 

 
∏⊕     

                             
1

1 1 1
1 1 1

, , =1

(1 (1 ( )) ) ,
t

p q r p q rt t t
t t t

i j k

υ υ υρ ρ ρ + ++ + +
+ + +− −∏  

                             
1

1 1 1
1 1 1

, , =1

(1 (1 ( )) ) ,
t

p q r p q rt t t
t t t

i j k

υ υ υδ δ δ + ++ + +
+ + +− −∏  

                             
1

1 1 1
1 1 1

, , =1

(1 (1 ( )) ) );
t

p q r p q rt t t
t t t

i j k

υ υ υγ γ γ + ++ + +
+ + +− −∏  (22) 

                             ( )
1

1 1 11 1 1

1 1 1
, , =1

(1 1 ( ) ( ) ( ) ) ,
t

t t tp q r p q r
F F Ft t t

i j k

υ υ υ
η η η + + + + +

+ + +
− −∏  

                             ( )
1

1 1 12 2 2

1 1 1
, , =1

(1 1 ( ) ( ) ( ) ) , ,
t

t t tp q r p q r
F F Ft t t

i j k

υ υ υ
η η η + + + + +

+ + +
− −∏   

                             ( )
1

1 1 1

1 1 1
, , =1

(1 1 ( ) ( ) ( ) )
t

t t tP p P q P r p q r
F F Ft t t

i j k

υ υ υ
η η η + + + + +

+ + +
− − 〉∏  

 
by using Equations (14), (15), (16), (17), (18), (19), (20), (21) and (22), we have 
 

     

1
111

, , =1 , , =1

( ) = ((1 (1 ( )) ) ,
tt p q r

p q r p q r i j k p q r
i j k i j k i j k

i j k i j k

F F F
υ υ υ

υυ υ
++ + +

+ + 
⊗ ⊗ 〈 − − 

 
∏⊕     

                                    
11

, , =1

(1 (1 ( )) ) ,
t

p q r i j k p q r
i j k

i j k

υ υ υ
ρ ρ ρ

+
+ +− −∏  

                                    
11

, , =1

(1 (1 ( )) ) ,
t

p q r i j k p q r
i j k

i j k

υ υ υ
δ δ δ

+
+ +− −∏  

                                    
11

, , =1

(1 (1 ( )) ) );
t

p q r i j k p q r
i j k

i j k

υ υ υ
γ γ γ

+
+ +− −∏  (23) 

                                    ( )
11

1 1 1

, , =1

(1 1 ( ) ( ) ( ) ) ,
t i j kp q r p q r

F F Fi j k
i j k

υ υ υ

η η η
+

+ +− −∏  

                                    ( )
11

2 2 2

, , =1

(1 1 ( ) ( ) ( ) ) , ,
t i j kp q r p q r

F F Fi j k
i j k

υ υ υ

η η η
+

+ +− −∏   

                                    ( )
11

, , =1

(1 1 ( ) ( ) ( ) )
t i j kP p P q P r p q r

F F Fi j k
i j k

υ υ υ

η η η
+

+ +− − 〉∏  

 
Thus, when = 1n t + , Equation (23) is right. So, the Equation (13) is right for all n . 
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By operational laws in Definition 2.7 and the Equations (14), (15), (16), (17), (18), 
(19), (20), (21), (22) and (23), we get finally that:  

 

1

( , , )
1 2

, , =1
( , ,..., ) = ( )

n p q r
p q r p q r

n i j k i j k
i j k

TFMGBAM F F F F F Fυ υυ υ
+ + 

⊗ ⊗ 
 
⊕  

                                
1

, , =1

= ((1 (1 ( )) ) ,
n

p q r i j k p q r
i j k

i j k

υ υ υ + +〈 − −∏     

                                    
1

, , =1

(1 (1 ( )) ) ,
n

p q r i j k p q r
i j k

i j k

υ υ υ
ρ ρ ρ + +− −∏  

                                    
1

, , =1

(1 (1 ( )) ) ,
n

p q r i j k p q r
i j k

i j k

υ υ υ
δ δ δ + +− −∏  

                                    
1

, , =1

(1 (1 ( )) ) );
n

p q r i j k p q r
i j k

i j k

υ υ υ
γ γ γ + +− −∏  

                                    ( )
1

1 1 1

, , =1

(1 1 ( ) ( ) ( ) ) ,
n i j kp q r p q r

F F Fi j k
i j k

υ υ υ

η η η + +− −∏  

                                    ( )
1

2 2 2

, , =1

(1 1 ( ) ( ) ( ) ) , ,
n i j kp q r p q r

F F Fi j k
i j k

υ υ υ

η η η + +− −∏   

                                    ( )
1

, , =1

(1 1 ( ) ( ) ( ) )
n i j kP p P q P r p q r

F F Fi j k
i j k

υ υ υ

η η η + +− − 〉∏  

 
and proof is completed.  
 
 
 In the following proposition, algebraic product and algebraic sum are used in 
computations.  
Proposition 3.4  Let 1 2= ( , , , ); , ,..., P

i i i i i F F Fi i i
F ρ δ γ η η η〈 〉  and 

1 2= ( , , , ); , ,..., P
i i i i i G G Gi i i

G ε ζ θ ς η η η〈 〉  ( )ni I∈  be two collections of TFM-numbers. 
( , , )p q rTFMGBAMυ  also has the following properties:   

    1.   If all =iF F  ( )ni I∈  for all i, then 
 
 ( , , ) ( , , )

1 2( , ,..., ) = ( , ,..., ) =p q r p q r
nTFMGBAM F F F TFMGBAM F F F Fυ υ  

 
    2.   if i iF G≥  for all i, then ( , , )p q rTFMGBAMυ  is monotonic that is, 
 
 ( , , ) ( , , )

1 2 1 2( , ,..., ) ( , ,..., )p q r p q r
n nTFMGBAM F F F TFMGBAM G G Gυ υ≥  
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    3.   Let 1 2( , ,..., )nF F F    be any permutation of 1 2( , ,..., )nF F F  and 1 2( , ,..., )nυ υ υ    be 
weight vector of 1 2( , ,..., )nF F F   . Then,  
 ( , , ) ( , , )

1 2 1 2( , ,..., ) = ( , ,..., )p q r p q r
n nTFMGBAM F F F TFMGBAM F F Fυ υ

    
 
    4.   
 ( , , )

1 2( , ,..., )p q r
nF TFMGBAM F F F Fυ

− +≤ ≤  
where  
 1 2

{ } { } { } { } { } { } { }
= ( { }, { }, { }, { }); { }, { },..., { }max max max max max max max P

i i i i F F Fi i ii I i I i I i I i I i I i In n n n n n n

F ρ δ γ η η η+

∈ ∈ ∈ ∈ ∈ ∈ ∈
〈 〉  

and 
 
 1 2

{ } { } { } { } { } { } { }
= ( { }, { }, { }, { }); { }, { },..., { }min min min min min min min P

i i i i F F Fi i ii I i I i I i I i I i I i In n n n n n n

F ρ δ γ η η η−

∈ ∈ ∈ ∈ ∈ ∈ ∈
〈 〉  

 
Proof   
    1.  Let =iF F  ( )ni I∈  for all i and let 1 2= ( , , , ); , , , P

F F FF ρ δ γ η η η〈 〉 . That is, , 
=iρ ρ , =iδ δ , =iγ γ  and 1 1=F Fi

η η , 2 2=F Fi
η η ,..., =P P

F Fi
η η .  

 ( , , ) ( , , )
1 2( , ,..., ) = ( , ,..., )p q r p q r

nTFMGBAM F F F TFMGBAM F F Fυ υ  

                                =

1

, , =1
( )

n p q r
p q r

i j k
i j k

F F Fυυ υ
+ + 

⊗ ⊗ 
 
⊕  

                                
1

, , =1

= ((1 (1 ( )) ) ,
n

p q r i j k p q r
i j k

i j k

υ υ υ + +〈 − −∏     

                                    
1

, , =1

(1 (1 ( )) ) ,
n

p q r i j k p q r
i j k

i j k

υ υ υ
ρ ρ ρ + +− −∏  

                                    
1

, , =1

(1 (1 ( )) ) ,
n

p q r i j k p q r
i j k

i j k

υ υ υ
δ δ δ + +− −∏  

                                    
1

, , =1

(1 (1 ( )) ) );
n

p q r i j k p q r
i j k

i j k

υ υ υ
γ γ γ + +− −∏  

                                    ( )
1

1 1 1

, , =1

(1 1 ( ) ( ) ( ) ) ,
n

i j kp q r p q r
F F F

i j k

υ υ υ
η η η + +− −∏  

                                    ( )
1

2 2 2

, , =1

(1 1 ( ) ( ) ( ) ) , ,
n

i j kp q r p q r
F F F

i j k

υ υ υ
η η η + +− −∏   

                                    ( )
1

, , =1

(1 1 ( ) ( ) ( ) )
n

i j kP p P q P r p q r
F F F

i j k

υ υ υ
η η η + +− − 〉∏  
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1

, , =1

= ((1 (1 ) ) ,
n

p q r i j k p q r

i j k

υ υ υ+ + + +〈 − −∏   

                                    
1

, , =1

(1 (1 ) ) ,
n

p q r i j k p q r

i j k

υ υ υ
ρ + + + +− −∏  

                                    
1

, , =1

(1 (1 ) ) ,
n

p q r i j k p q r

i j k

υ υ υ
δ + + + +− −∏  

                                    
1

, , =1

(1 (1 ) ) );
n

p q r i j k p q r

i j k

υ υ υ
γ + + + +− −∏  

                                    ( )
1

1

, , =1

(1 1 ( ) ) ,
n

i j kp q r p q r
F

i j k

υ υ υ
η + + + +− −∏  

                                    ( )
1

2

, , =1

(1 1 ( ) ) , ,
n

i j kp q r p q r
F

i j k

υ υ υ
η + + + +− −∏   

                                    ( )
1

, , =1

(1 1 ( ) )
n

i j kP p q r p q r
F

i j k

υ υ υ
η + + + +− − 〉∏  

                                ( )
1

, , =1= ((1 1 ) ,
n

i j kp q r p q r
i j k

υ υ υ+ + + +〈 − − ∑  

                                    ( )
1

, , =1(1 1 ) ,
n

i j kp q r p q r
i j k

υ υ υ
ρ + + + +− − ∑  

                                    ( )
1

, , =1(1 1 ) ,
n

i j kp q r p q r
i j k

υ υ υ
δ + + + +− − ∑  

                                    ( )
1

, , =1(1 1 ) );
n

i j kp q r p q r
i j k

υ υ υ
γ + + + +− − ∑  

                                    ( )
1

1
, , =1(1 1 ( ) ) ,

n

i j kp q r p q r
F i j k

υ υ υ
η + + + +− − ∑  

                                    ( )
1

2
, , =1(1 1 ( ) ) , ,

n

i j kp q r p q r
F i j k

υ υ υ
η + + + +− − ∑   

                                    ( )
1

, , =1(1 1 ( ) )
n

i j kP p q r p q r
F i j k

υ υ υ
η + + + +− − 〉∑  

                                ( )
1

= ((1 1 ) ,p q r p q r+ + + +〈 − − ( )
1

(1 1 ) ,p q r p q rρ + + + +− −  

                                    

                                    ( )
1

(1 1 ) ,p q r p q rδ + + + +− − ( )
1

(1 1 ) );p q r p q r+ + + +− −  

                                    ( )
1

1(1 1 ( ) ) ,p q r p q r
Fη

+ + + +− −  

                                           ( )
1

2(1 1 ( ) ) , ,p q r p q r
Fη

+ + + +− −   
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                                    ( )
1

(1 1 ( ) )P p q r p q r
Fη

+ + + +− − 〉  

                                 1 2= ( , , , ); , , , P
F F Fρ δ γ η η η〈 〉  

                                 = F  
 
 
    2.  Since i iF G≥ , it is obvious that 
 
 , , ,i i i i i i i iε ρ ζ δ θ γ ς≥ ≥ ≥ ≥  (24) 
  
 , , ,p q r p q r p q r p q r p q r p q r p q r p q r

i j k i j k i j k i j k i j k i j k i j k i j kε ε ε ρ ρ ρ ζ ζ ζ δ δ δ θ θ θ γ γ γ ς ς ς⇒ ≥ ≥ ≥ ≥    
 
 1 (1 ) 1 (1 ) ,1 (1 ) 1 (1 ) ,p q r p q r p q r p q ri j k i j k i j k i j k

i j k i j k i j k i j k

υ υ υ υ υ υ υ υ υ υ υ υ
ε ε ε ρ ρ ρ ζ ζ ζ⇒ − − ≤ − − − − ≤ − −    

 
 1 (1 ) 1 (1 ) ,1 (1 ) 1 (1 )p q r p q r p q r p q ri j k i j k i j k i j k

i j k i j k i j k i j k

υ υ υ υ υ υ υ υ υ υ υ υ
δ δ δ θ θ θ γ γ γ ς ς ς− − ≤ − − − − ≤ − −  

 

 
1 1

, , =1 , , =1

(1 (1 ) ) (1 (1 ) ) ,
n n

p q r p q ri j k p q r i j k p q r
i j k i j k

i j k i j k

υ υ υ υ υ υ
ε ε ε+ + + +⇒ − − ≥ − −∏ ∏    

 

 
1 1

, , =1 , , =1

(1 (1 ) ) (1 (1 ) ) ,
n n

p q r p q ri j k p q r i j k p q r
i j k i j k

i j k i j k

υ υ υ υ υ υ
ρ ρ ρ ζ ζ ζ+ + + +− − ≥ − −∏ ∏  

 

 
1 1

, , =1 , , =1

(1 (1 ) ) (1 (1 ) ) ,
n n

p q r p q ri j k p q r i j k p q r
i j k i j k

i j k i j k

υ υ υ υ υ υ
δ δ δ θ θ θ+ + + +− − ≥ − −∏ ∏  

 

 
1 1

, , =1 , , =1

(1 (1 ) ) (1 (1 ) )
n n

p q r p q ri j k p q r i j k p q r
i j k i j k

i j k i j k

υ υ υ υ υ υ
γ γ γ ς ς ς+ + + +− − ≥ − −∏ ∏  

On the other hand similarly we can write that  
 , ,P P P P P P

F G F G F Gi i j j k k
η η η η η η≥ ≥ ≥  

By using operational laws of TFM-numbers: 
 
 ( ) ( ) ( ) ( ) ( ) ( )P p P q P r P p P q P r

F F F G G Gi j k i j k
η η η η η η≥  

 
 (1 ( ) ( ) ( ) ) (1 ( ) ( ) ( ) )P p P q P r P p P q P ri j k i j k

F F F G G Gi j k i j k

υ υ υ υ υ υ
η η η η η η⇒ − ≤ −  
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1 1

, , =1 , , =1

(1 (1 ( ) ( ) ( ) ) ) (1 (1 ( ) ( ) ( ) ) )
n n

P p P q P r P p P q P ri j k p q r i j k p q r
F F F G G Gi j k i j k

i j k i j k

υ υ υ υ υ υ
η η η η η η+ + + +⇒ − − ≥ − −∏ ∏

(25) 

If we consider Equations (24) and (25), we get that and complete the proof: 

( , , ) ( , , )
1 2 1 2( , ,..., ) ( , ,..., )p q r p q r

n nTFMGBAM F F F TFMGBAM G G Gυ υ≥

    3.  Let 1 2( , ,..., )nF F F    be any permutation of 1 2( , ,..., )nF F F  and 1 2( , ,..., )nυ υ υ    be 
weight vector of 1 2( , ,..., )nF F F   . Then, 

( )
1

( , , )
1 2

, , =1
( , ,..., ) =

n p q r
p q r p q r

n i j k i j k
i j k

TFMGBAM F F F F F Fυ υυ υ
+ + 

⊗ ⊗ 
 
⊕

( )
1

, , =1
=

n p q r
p q r

i j k i j k
i j k

F F Fυυ υ
+ + 

⊗ ⊗ 
 
⊕     

( , , )
1 2= ( , ,..., )p q r

nTFMGBAM F F Fυ
  

4. From Proposition (3.4),

( , , ) ( , ,..., ) =p q rTFMGBAM F F F Fυ
− − − −

and  

and from Proposition (3.4) and Definition 2.8, 

( , , ) ( , , )
1 2( , ,..., ) ( , ,..., )p q r p q r

nTFMGBAM F F F TFMGBAM F F Fυ υ
− − − ≤

 and 
( , , ) ( , , )

1 2( , ,..., ) ( , ,..., )p q r p q r
nTFMGBAM F F F TFMGBAM F F Fυ υ

+ + +≤  

Therefore, 
( , , )

1 2( , ,..., )p q r
nF TFMGBAM F F F Fυ

− +≤ ≤  

3.1  Generalized Weighted Bonferroni Geometric Mean of 
Trapezoidal Fuzzy Multi Numbers 
 In this section, we introduce the generalized weighted Bonferroni geometric mean 
and based on that, we give the trapezoidal fuzzy multi generalized weighted 



Editors: Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın &N. Merve Şahin 

198 

Bonferroni geometric mean. 

Definition 3.5 Let 1 2= ( , , , ); , ,..., P
i i i i i F F Fi i i

F ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of TFM-

numbers, 1 2= ( , ,..., )T
nυ υ υ υ  their weight vector, where iυ  indicates the importance degree 

of iF , satisfying > 0iυ  ( ni I∈ ), and 
=1

= 1
n

i
i
υ∑ . For any , , > 0p q r , If 

( , , )
1 2

, , =1

1( , ,..., ) = ( ( ) )
n

p q r i j k
n i j k

i j k
TFMGBGM F F F pF qF rF

p q r
υ υ υ

υ ⊕ ⊕
+ + ⊗  (26) 

 then ( , , )p q rTFMGBGMυ  is called a trapezoidal fuzzy multi weighted Bonferroni 
geometric mean operator. 

 In the following theorem, algebraic product and algebraic sum are used in 
computations.  

Theorem 3.6 Let 1 2= ( , , , ); , ,..., P
i i i i i F F Fi i i

F ρ δ γ η η η〈 〉  ( )ni I∈  be a collection of TFM-

numbers and , , > 0p q r , then aggregated value by using the ( , , )p q rTFMGBGMυ  is also an 
TFM-number and computed as follows:  

( , , )
1 2

, , =1

1

, , =1

1

, , =1

, , =1

1( , ,..., ) = ( ( ) )

(1 (1 [1 (1 ) (1 ) (1 ) ] ) ,

1 (1 [1 (1 ) (1 ) (1 ) ] ) ,

1 (1 [1 (1 ) (

n
p q r i j k

n i j k
i j k

n
p q r i j k p q r

i j k
i j k

n
p q r i j k p q r

i j k
i j k

n
p

i
i j k

TFMGBGM F F F pF qF rF
p q r

υ υ υ

υ

υ υ υ

υ υ υ
ρ ρ ρ

δ

+ +

+ +

⊕ ⊕
+ +

= 〈 − − − − − −

− − − − − −

− − − −

⊗

∏

∏

∏

  

1

1

, , =1

1
1 1 1

, , =1

1
2 2 2

, , =1

1 ) (1 ) ] ) ,

1 (1 [1 (1 ) (1 ) (1 ) ] ) );

1 (1 [1 (1 ) (1 ) (1 ) ] ) ,

1 (1 [1 (1 ) (1 ) (1 ) ] ) ,

q r i j k p q r
j k

n
p q r i j k p q r

i j k
i j k

n
p q r i j k p q r

F F Fi j k
i j k

n
p q r i j k p q r

F F Fi j k
i j k

υ υ υ

υ υ υ

υ υ υ

υ υ υ

δ δ

γ γ γ

η η η

η η η

+ +

+ +

+ +

+ +

− −

− − − − − −

− − − − − −

− − − − − −

∏

∏

∏
1

, , =1

...,

1 (1 [1 (1 ) (1 ) (1 ) ] )
n

P p P q P r i j k p q r
F F Fi j k

i j k

υ υ υ
η η η + +− − − − − − 〉∏

(27)
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Proof: The theorem can be easily done similar to Theorem 3.3. 

Proposition 3.7 Let 1 2= ( , , , ); , ,..., P
i i i i i F F Fi i i

F ρ δ γ η η η〈 〉  and 
1 2= ( , , , ); , ,..., P

i i i i i G G Gi i i
G ε ζ θ ς η η η〈 〉 ( )ni I∈  be two collections of TFM-numbers. 

( , , )p q rTFMGBGMυ  also has the following properties: 

1. If all =iF F  ( )ni I∈  for all i, then 

( , , )
1 2( , ,..., ) =p q r

nTFMGBGM F F F Fυ

2. if i iF G≥  for all i, then 

( , , ) ( , , )
1 2 1 2( , ,..., ) ( , ,..., )p q r p q r

n nTFMGBGM F F F TFMGBGM G G Gυ υ≥  

    3.  Let 1 2( , ,..., )nF F F    be any permutation of 1 2( , ,..., )nF F F  and 1 2( , ,..., )nυ υ υ    be 
weight vector of 1 2( , ,..., )nF F F   . Then, 

( , , ) ( , , )
1 2 1 2( , ,..., ) = ( , ,..., )p q r p q r

n nTFMGBGM F F F TFMGBGM F F Fυ υ
  

    4.  
( , , )

1 2( , ,..., )p q r
nF TFMGBGM F F F Fυ

− +≤ ≤

where 
1 2

{ } { } { } { } { } { } { }
= ( { }, { }, { }, { }); { }, { },..., { }max max max max max max max P

i i i i F F Fi i ii I i I i I i I i I i I i In n n n n n n

F ρ δ γ η η η+

∈ ∈ ∈ ∈ ∈ ∈ ∈
〈 〉  

and 

1 2

{ } { } { } { } { } { } { }
= ( { }, { }, { }, { }); { }, { },..., { }min min min min min min min P

i i i i F F Fi i ii I i I i I i I i I i I i In n n n n n n

F ρ δ γ η η η−

∈ ∈ ∈ ∈ ∈ ∈ ∈
〈 〉  

Proof Items can be proven similar to Proposition 3.4. 

4  Application 
 In this section, we give process to solve decision-making problems given under 
trapezoidal fuzzy-multi environment. Then, we give an application to show 
running of the process. 

Decision Making Process 
Step 1 Present a TFM decision matrix (( ) )ij mxnL  for each group of the criteria, 
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showing results of evaluation based upon the characteristic of the alternative 
1 2= { , ,..., }mM M M M  satisfying the attribute 1 2= { , ,..., }nC c c c  based on linguistic 

terms Table 2 as follows: 

11 12 1

21 22 2

1 2

( ) =

n

n

ij mxn

m m mn

L L L
L L L

L
L L L

 
 
 
 
 
 
 
 





   



 

Step 2 Find a weight vector for each group of the criteria as follows: 

Substep 1 For each TFM decision matrix, construct a matrix (( ))ijx  consisting of real 
numbers by value of TFM-numbers obtain from defuzzification of each element of 
the decision matrix ( )ij mxnL  by using Definition 2.10 as follows: 

11 12 1

21 22 2

1 2

( ) =

x

x

ij mxn

m m mn

x x x
x x x

x
x x x

 
 
 
 
 
 
 
 





   



 

Substep 2 Find the weights of criteria according to criteria in the decision-making 
problem and values in ( )ij mxnD  matrix by using CRITIC method given in Subsection 
2.2: 

1 2= ( , ,..., )nυ υ υ υ  

where 
=1

= 1
n

i
i
υ∑ . 

Step 3 For all i  ( )mi I∈ , find the aggregation values by using Equation (13) (or 
Equation (27)) according to first group of criteria, to get the performance value 
corresponding to the alternative iM , denoted by 1 iL , ( )mi I∈  as follows: 

( , , )
1 1 2= ( , ,..., )( )p q r

i i i in mL TFMGBAM L L L i Iυ ∈  
Step 4 For all i  ( )mi I∈ , find the aggregation values by using Equation (13) (or 
Equation (27)) according to second group of criteria, to get the performance value 
corresponding to the alternative iM , denoted by 2 iL , ( )mi I∈  as follows: 

( , , )
2 1 2= ( , ,..., )( )p q r

i i i in mL TFMGBAM L L L i Iυ ∈

Step 5 Compute the Hamming distance given in Definition 2.9 between 1 iL  and  
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( )mi I∈  
Step 6 Rank the results. The smaller result, the better alternative. 
 
4.1  Numerical Example 
The thread of increasing in poverty and hunger in the world obliges states to take precautions in this 
regard. Although developed countries have come a long way in this regard, even this is no longer a 
problem for them, there are still many countries that do not take adequate steps in this issue. 
Especially underdeveloped countries, as they are insufficient economically, are vulnerable and suffer 
victimization in poverty and hunger. In order to prevent this situation, some countries that decided 
to take action have taken the models of the countries that have achieved success in this subject to 
examination and have decided to take the model they found suitable for them as an example. As a 
result of the examination, the policies that developed countries have already implemented and are 
considering to implement in the near future have been taken into consideration. Countries will 
decide on the choice of model by looking at how well the currently implemented policies lead to the 
policies that are planned to be implemented as next step of precautions against poverty and hunger. 
Models which can be choosen are as follows: 
  
1.  Model of Country 1 ( 1M )  

2.  Model of Country 2 ( 2M )  

3.  Model of Country 3 ( 3M )  

4.  Model of Country 4 ( 4M )  

5.  Model of Country 5 ( 5M )  

6.  Model of Country 6 ( 6M )  
 
Group of policies, according to United Nations, given as follows: 
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Table 2: TFM-numbers of linguistic terms  
 Linguistic terms   TFM-numbers  

Definitely-low(DL)   (0.01,0.05,0.10,0.15);0.1,0.2,0.3,0.4〈 〉   

Too-Low(TL)   (0.05,0.10,0.15,0.20);0.2,0.3,0.4,0.1〈 〉   

Very-Low(VL)   (0.10,0.15,0.15,0.20);0.2,0.4,0.5,0.3〈 〉   

Low(L)   (0.10,0.20,0.20,0.30);0.3,0.4,0.8,0.1〈 〉   

Fairly-low(FL)   (0.15,0.20,0.25,0.30);0.4,0.6,0.2,0.5〈 〉   

Medium(M)   (0.25,0.30,0.35,0.40);0.4,0.5,0.6,0.8〈 〉   

Fairly-high(FH)   (0.30,0.35,0.40,0.45);0.6,0.1,0.8,0.4〈 〉   

High(H)   (0.40,0.45,0.50,0.55);0.8,0.9,0.3,0.6〈 〉   

Very-High(VH)   (0.45,0.55,0.65,0.75);0.7,0.8,0.6,0.3〈 〉   
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Too-High(TH)   (0.50,0.60,0.70,0.80);0.1,0.7,0.8,0.9〈 〉   

Definitely-high(DH)   (0.70,0.80,0.90,1.00);0.7,0.8,0.9,0.2〈 〉   

  
Step 1 Present two TFM decision matrices since there are two groups of the criteria: 
 
Decision Matrix-1 according to first group of the criteria ( 1c , 2c ,..., 7c ): 
  
 

 
                                 

 
Decision Matrix-2 according to second group of the criteria ( 1c , 2c ,..., 9c ): 
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Step 2 Find two weight vectors since we have two decision matrices: 
Substep 1 For each decision matrix, construct a matrix consisting of real numbers 
by value of TFM-numbers obtain from defuzzification of each element of the 
decision matrices given above by using Definition 2.10 as follows: 
Decision matrix for first group of criteria is built as follows: 
 

 
and decision matrix for second group of criteria is built as follows: 
 

 
 Substep 2 Find two weight vectors of criteria according to matrices given above: 
Weight vector of first group of criteria is taken as follows: 
 1 = (0.1524,0.1467,0.0966,0.1513,0.1380,0.1153,0.1993)w  
Weight vector of second group of criteria is taken as follows: 
 2 = (0.1294,0.09084,0.1249,0.0924,0.0896,0.1162,0.1343,0.0923,0.1296)w  
Step 3 Find the aggregation values according to first group of criteria: 
 
Aggregation results of ( , , )

1 2( , ,..., )( )p q r
i i in mTFMGBAM L L L i Iυ ∈  

 
(1,1,1)

1 1 11 12 17= ( , ,..., )L TFMGBAM L L Lυ  
  = 0.1210,0.1350,0.1462,0.1784;0.1960,0.2560,0.2450,0.1510〈 〉   
 Similarly, 

1 2

1 3

1 4

1 5

= 0.1135,0.1350,0.1680,0.2080;0.1370,0.2190,0.2930,0.2950
= 0.1290,0.1450,0.1560,0.1870;0.2210,0.2260,0.3320,0.1120
= 0.1380,0.1660,0.1870,0.2040;0.1990,0.2330,0.3230,0.1920
= 0.1350,0.155

L
L
L
L

〈 〉
〈 〉
〈 〉
〈

1 6

0,0.1550,0.1910;0.1990,0.2330,0.3230,0.1920
= 0.1020,0.1144,0.1450,0.1468;0.1830,0.1840,0.2780,0.1380L

〉
〈 〉
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Step 4 Find the aggregation values according to second group of criteria: 
Aggregation results of ( , , )

1 2( , ,..., )p q r
i i inTFMGBAM L L Lυ  

 (1,1,1)
2 1 11 12 19= ( , ,..., )L TFMGBAM L L Lυ   

= 0.1240,0.1370,0.1570,0.1740);0.1880,0.2020,0.2620,0.1780〈 〉   
 Similarly, 
2 2

2 3

2 4

2 5

= 0.1370,0.1540,0.1740,0.1870;0.1660,0.2040,0.3220,0.1990
= 0.0910,0.1340,0.1470,0.1740;0.1790,0.2000,0.2670,0.1280
= 0.1240,0.1450,0.1680,0.2740;0.1600,0.2370,0.2860,0.2320
= 0.1170,0.147

L
L
L
L

〈 〉
〈 〉
〈 〉
〈

2 6

0,0.1570,0.1600;0.1880,0.2530,0.2360,0.2470
= 0.0680,0.1240,0.1290,0.1380;0.1780,0.2050,0.2020,0.2410L

〉
〈 〉

 

Step 5 Compute the Hamming distance between 1 iL  and 2 iL  6( )i I∈  as follows: 
 For ( , , )

1 2( , ,..., )p q r
i i inTFMGBAM L L Lυ : 

1 1 2 1

1 2 2 2

1 3 2 3

1 4 2 4

1 5 2 5

1 6 2 6

( , ) = 0.0034
( , ) = 0.0108
( , ) = 0.0128
( , ) = 0.0193
( , ) = 0.0100
( , ) = 0.0102

d L L
d L L
d L L
d L L
d L L
d L L

 

Step 6 Rank the results and determine the best alternative: 
 
For ( , , )p q rTFMGBAMυ : 

4 3 2 6 5 1< < < < <M M M M M M  
As seen, the best alternative is 4.M  

5  Comparison Table 
   

Table  3: Some rankings in terms of other methods and proposed methods 
  

     Methods Operator Ranking 
Proposed Method 1 (1,1,1)TFMGBAMυ  1 5 6 2 3 4> > > > >M M M M M M  
Proposed Method 2 (1,1,1)TFMGBGMυ  3 5 1 6 4 2> > > > >M M M M M M  

Method of Kesen and Deli [15] (1,1)
vTFMBHM  1 3 5 2 4> > > >M M M M M  

Method of Deli and Keles [8] ( )i
iS M  5 3 4 1 2> > > >M M M M M  

Method of Ulucay et al. [29] vTFMG  5 3 4 1 2> > > >M M M M M  
Method of Sahin et al. [21] vD  3 5 1 4 2> > > >M M M M M  

Method of Ulucay [28] vS  4 3 1 5 2> > > >M M M M M  
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In Table 3, we gave a brief comparison of introduced operators with some existing 
operators such as weighted Bonferroni harmonic mean operator given by Kesen and 
Deli [15], distance measure operator proposed by Deli and Keles [8], TFM weighted 
geometric operator introduced by Ulucay et al. [29], weighted dice vector similarity 
operator submitted by Sahin et al. [21] and vector similarity operator given by 
Ulucay [28]. Poverty and hunger has been still drawing attention all around the 
world. This is the main reason why we chose the selection of a model against 
poverty and hunger. As for operators we introduced, we used them efficiently on 
the problem. If the comparison table is analyzed, results of the proposed 
aggregation methods presents a new perspective to decision making process and 
generally compatible with the existing methods. Therefore, decision makers can 
easily use proposed methods to solve decision-making problems with multiple 
criteria. 
 

6  Conclusion 
In the paper we introduced two new aggregation methods in TFM-numbers which 
are called trapezoidal fuzzy multi generalized weighted Bonferroni arithmetic 
mean operator and trapezoidal fuzzy multi generalized weighted Bonferroni 
geometric mean operator. Then, we analyze their properties and special cases by 
changing ,p q  and r  values. At the end, firstly we gave a solution process. 
Secondly, we gave numerical example to see application of the operators. 
The paper mainly deals the methods to select the best model for fighting against 
poverty and hunger. These methods can efficiently used for such situations. The 
specific characteristic of these methods is that they deal with the three aggregated 
arguments instead of two or one. This makes these methods more sensitive. This is 
why the application of these methods in fighting against poverty and hunger 
performs well. In the future, new mathematical modelling will be proposed for 
selection problems in many areas which draw attention such as zero waste, artificial 
intelligence, machine learning, deep learning, big data etc. 
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ABSTRACT 

With the increasing collection of data in areas such as healthcare, finance, social 
media, and scientific research, significant challenges arise in machine learning 
applications due to data issues such as noise, missing labels, and inconsistencies. 
This chapter examines neutrosophic theory, which includes truth, uncertainty, and 
falsity, as a framework to effectively manage these challenges. It presents studies 
that demonstrate improved robustness to clustering and classification tasks 
involving uncertain or missing data by integrating neutrosophic principles into 
machine learning models such as Neutrosophic K-Means. The study highlights the 
potential of neutrosophic to significantly advance data preprocessing and 
predictive performance in complex, uncertain environments by demonstrating how 
neutrosophic distance metrics can increase model accuracy compared to traditional 
approaches. 

Keywords: Neutrosophic sets, Dataset, Prediction, Neutrosophic K-Means, 

1 INTRODUCTION

With the rapid advances in technology, an enormous amount of data is being 
collected and accumulated across various fields such as healthcare, finance, social 
media, and scientific research. This real-world data, while highly valuable, often 
comes with a variety of challenges when it comes to utilization in machine learning 
or artificial intelligence models. Common issues include incomplete or missing 
labels, noisy data, inconsistencies, and gaps in the dataset. These challenges make it 
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difficult to derive accurate insights or predictions without appropriate 
preprocessing or handling techniques. In particular, deep learning algorithms—
despite their powerful capacity to model complex patterns in data—can face 
significant issues when learning from noisy or imperfect datasets. These algorithms 
are known to have a strong tendency to memorize the data they are trained on, 
which can lead to overfitting. Overfitting occurs when a model becomes so tailored 
to the training data, including noise and irrelevant patterns, that it fails to generalize 
well to unseen data. Studies exploring deep learning’s response to noisy data have 
found that, even when using advanced techniques such as normalization (which 
scales the data to a consistent range) and dropout (which randomly disables 
neurons during training to prevent co-adaptation), there can still be a significant 
degradation in performance. Despite these regularization techniques, the presence 
of noise in the data continues to hinder the model's ability to effectively generalize, 
leading to substantial loss in performance when applied to real-world tasks. These 
findings highlight the ongoing challenge of developing robust deep learning 
models capable of learning from noisy and imperfect data without overfitting. 

Neutrosophy, a theory developed by Florentin Smarandache to handle 
uncertainty, inconsistency, and incomplete information, introduces three essential 
components: truth (T), indeterminacy (I), and falsehood (F) [1]. Unlike binary logic, 
which assigns values of either true or false, or fuzzy logic, which assigns degrees of 
truth, neutrosophic logic allows for the representation of all three components 
simultaneously, offering a more detailed and flexible attempt to managing real-
world data, which often contains noise, missing values, and contradictions [17-40]. 

The ability to work with uncertain, imprecise, and incomplete data makes 
neutrosophy particularly valuable in various domains. [2] For instance, in datasets 
with high levels of uncertainty, such as those in medical diagnostics, financial 
market analysis, and climate studies, traditional logic systems often fall short due 
to their rigid structure. Neutrosophic logic [41-50], however, provides a more 
versatile framework, which is especially useful when dealing with datasets where 
uncertainty and inconsistency cannot be eliminated but must instead be accounted 
for and managed. Recently, many researchers continued to work rapidly in this 
field. [51-67]. 

In data preprocessing for machine learning applications, the entity of noisy, 
missing, or contradictory information in datasets can reduce the error performance 
of models. To address this, before applying machine learning algorithms, it is 
essential to either cleanse the dataset of errors, inconsistencies, and missing 
information, or mark the uncertain data points, thus preserving the integrity of the 
dataset If deleting uncertain data points leads to the loss of valuable information, 
neutrosophic approaches allow for the retention of these data points by assigning 
them a degree of indeterminacy, rather than excluding them outright. 
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There are several machine learning algorithms that have been adapted to 
work with neutrosophic data, enhancing their ability to handle uncertainty. 
Algorithms such as Neutrosophic K-Means, Neutrosophic K-Nearest Neighbors (N-
KNN), Neutrosophic Decision Trees (N-DT), and Neutrosophic Support Vector 
Machines (N-SVM) extend their traditional counterparts by integrating 
neutrosophic principles. These adaptations allow the algorithms to better classify, 
cluster, and predict outcomes from data with incomplete or contradictory 
information. 

In addition, deep learning models, like Neutrosophic Neural Networks (N-
NN) and Neutrosophic Deep Learning (N-DL), are gaining traction. These models 
can process data where the truth, falsehood, and indeterminacy of information are 
all simultaneously considered, making them more robust for tasks like image 
recognition, signal processing, and natural language processing, especially in 
environments where data is noisy or incomplete. For instance, in healthcare, where 
data can be imprecise or contain contradictory diagnoses, neutrosophic models can 
improve the accuracy of predictions and diagnoses by better handling uncertainty. 

The main goal of applying neutrosophic approaches in machine learning and 
data mining is to extract meaningful patterns, clusters, and relationships from large 
datasets. In this context, clustering algorithms, which fall under the umbrella of 
unsupervised learning, are highly effective. Unlike supervised learning, where data 
is labeled, unsupervised learning algorithms, like neutrosophic clustering, must 
automatically detect the underlying structure in the data. This makes neutrosophic 
clustering especially useful in fields like social media analysis, where user behaviors 
and interactions are dynamic, or in earthquake prediction [3], where sensor data 
may be incomplete or contain noise. For instance, they transformed the error and 
missing data in the occupancy status information for various sectors, including data 
from cameras and other sensors, into neutrosphic sets (NS) in two ways. The first 
method is T(i), F(i), and I(i) for the data representing the i. sample in the dataset, 
while the second method is based on the principle that the i. and j. samples affect 
each other, expressed as T(i,j), F(i,j), and I(i,j). They concluded that using NS is more 
efficient than the other methods they examined [4]. Başer and Uluçay [31] defined 
the energy of a neutrosophic soft set and applied it to multi-criteria decision-making 
problems to show its applicability and effectiveness. And then, Başer and Uluçay 
[35] defined effective q- fuzzy soft expert sets.

Although neutrosophic approaches offer significant theoretical potential, 
their application remains relatively limited, primarily due to the complexity of 
integrating neutrosophic principles into existing machine learning frameworks. 
However, as interest in managing uncertain and imprecise data grows, particularly 
in domains where traditional methods struggle, it is likely that neutrosophic 
methods will see broader adoption. Future research could focus on developing 
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more accessible tools and frameworks for applying neutrosophy in a variety of 
practical applications, and on creating benchmark datasets that highlight the 
advantages of neutrosophic approaches over more traditional methods. This would 
include healthcare, finance, social media, climate studies, earthquake prediction, 
image and signal processing, and uncertainties for many scenarios, as more datasets 
emerge where neutrosophic approaches could be effective in practice. Single-valued 
neutrosophic numbers are used to deal with noisy data in the data preprocessing 
step as they provide a powerful capacity for modeling complex information [5]. 

2 Neutrosophic K-Means 

The K-Means technique can be considered as a data mining and machine 
learning algorithm used to process large amounts of data by clustering or grouping. 
It lies at the intersection between these two fields because it serves the purposes of 
both fields. Neutrosophic K-Nearest Neighbor (KNN) is a version of the K-Nearest 
Neighbor (KNN) algorithm adapted to Neutrosophic logic. While KNN classifies 
by looking at the neighbors of each data point, Neutrosophic KNN makes decisions 
by taking into account the accuracy, uncertainty and error components of each data 
point.  
Truth (T): Represents the degree of truth or certainty about an object. 
Indeterminacy (I): Represents the degree of uncertainty or indeterminacy. 
Falsehood (F): Represents the degree of falsehood or contradiction 

Figure 1: K-Means Algorithm for Neutrosophic Explanation of Components

 
It is used in classification problems and provides more reliable results especially in 
noisy, missing or contradictory data. K-means clustering algorithm is one of the 
widely used algorithms considering its easy-to-understand structure, fast 
convergence and ease of application to ML algorithms [6]. However, since the 
number K must be given as input to the algorithm and the correct choice of K 
directly affects the result, the choice of the K value is very important [7]. 

 
Neutrosophic Distance: Neutrosophic distance is used instead of the classical 
Euclidean distance in KNN. This metric is an effective way to handle and interpret 
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uncertain, imprecise, or contradictory information in various machine learning and 
data analysis applications, especially in fields like medical diagnosis, environmental 
studies, and social sciences, where data uncertainty is common  

Neighbor Selection: The distance between each data point and its neighbors is 
determined according to the accuracy, uncertainty and error components. 

Neutrosophic distance is calculated with a formula based on accuracy, uncertainty 
and error weights. The weights of the components  truth, uncertainty and 
inaccuracy. These weights are usually chosen so that their sum is 1. 

Data points are positioned in three dimensions as accuracy, uncertainty and 
inaccuracy axes. Using Euclidean distance, the weights of the contribution of each 
axis to the distance are calculated and adjusted. This distance determines the 
similarity or difference between two Neutrosophic data points. 

Neutrosophic Distance Formula; Let there be two data points  and . 

 are the neutrosophic components of data point 

 are the components of the cluster center  

The weights of , ,  can be adjusted according to the importance of the 
application, for example, in scenarios where uncertainty is critical, such as spam 
filters [8], the uncertainty coefficient can be increased. Thus helping machine 
learning algorithms work more effectively with uncertain and incomplete data. 

The K-Means algorithm is one of the unsupervised learning methods and is usually 
used to separate similar data in a dataset into groups (clustering) [9].  

Table 1: K-Means algorithm 

Here is the pseudo code of the K-Means algorithm [10]. 
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1. K = number_of_clusters (Determine the number of clusters K) 
2. centroids = randomly select K data_points (Randomly select K cluster centers) 
3. for each data_point: (Assign each data point to the nearest cluster center) 
     find the nearest centroid 
     assign data_point to this cluster 
4. for each cluster: (Calculate new cluster centers for each cluster) 
     calculate the mean of all data_points in the cluster 
    update the centroid 
5. new_assignment = False (Reassign data points to the new cluster centers) 
   for each data_point: 
     find the nearest new centroid 
   if the cluster changed: 
          assign data_point to the new cluster 
          new_assignment = True 
6.  if new_assignment is True: (Repeat iterations until cluster centers do not 
change) 
     go back to step 4 
7.  results = final cluster assignment for each data_point (Once clustering is 
complete, obtain the results) 

 

3 Conclusions 

Deep learning algorithms are prone to memorization and suffer from overfitting, 
especially when learning from noisy data. Research has shown a significant loss in 
performance, despite the use of normalization and dropout techniques [11]. 
Another study [12] examined the problem of noisy label data negatively impacting 
classification performance, concluding that traditional machine learning algorithms 
also struggle with label noise, and dropout alone is insufficient to prevent 
overfitting. Detecting and cleaning erroneous data with various heuristics has been 
proposed as an alternative solution. However, as these existing methods have 
limitations, this remains an open area for further research. Interestingly, many 
studies analyzing machine learning algorithms do not consider neutrosophy as a 
potential solution to these challenges. Nonetheless, there are examples of leveraging 
uncertainty in classification problems. For instance, a study that applied Rough 
Neutrosophic Sets (RNS) in the tourism sector with k-means clustering found that 
identifying essential and non-essential attributes using RNS (though 
computationally intensive) led to improved classification performance [13]. 
Monitoring seismic data and denoising the obtained data is a challenging task. In 
the study where they combined the K-Means method with neutrosophic, they 
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applied it to earthquake datasets in Ecuador. They concluded that it is more 
effective in determining patterns in the data in the presence of data that partially 
belong to more than one cluster and the results are improved [14]. Image data 
consists of pixels, if we think of pixels as a two-dimensional array, we add the values 
of accuracy, inaccuracy and uncertainty to this array for each pixel, thus converting 
the image into a neutrosophic cluster. Clusters are performed iteratively for 
segmentation of the image, and the image is segmented at the point where the 
number of clusters stops increasing. With this method, they achieved better results 
than the traditional K-means [15]. They proposed an optimized NS K-mean to 
increase the performance of the Automatic Vehicle License Plate Recognition 
System. When there are distortions in the acquired image data, traditional license 
plate recognition methods achieved 79% accuracy, while their proposed method 
achieved 92.5% [16]. These examples illustrate how neutrosophy can achieve 
remarkable success in clustering, capturing attention as a valuable addition to 
traditional methods. 
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