
Takaaki Fujita 
Florentin Smarandache 

Third Volume 

through Graphization, Hyperization, and Uncertainization: 
Fuzzy, Neutrosophic, Soft, Rough, and Beyond 



Takaaki Fujita 
Florentin Smarandache

Advancing Uncertain Combinatorics 
through Graphization, Hyperization, and Uncertainization: 

Fuzzy, Neutrosophic, Soft, Rough, and Beyond

Third Volume

Type text here
Type text here

1



Peer-reviewers:

Prof. Dr. Maikel Leyva-Vázquez
Instituto Superior Tecnológico Bolivariano de Tecnología, Ecuador

Prof. Dr. Nivetha Martin 
Arul Anandar College (Autonomous), Karumathur, India

Prof. Dr. Mohamed Abdel-Basset
Vice Dean for Community Service and Environmental Development
Faculty of Computers and Informatics, Zagazig University, Egypt 

Prof. Dr. Said Broumi
Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II 
Casablanca, Morocco 



Takaaki Fujita, Florentin Smarandache

Advancing Uncertain Combinatorics 
through Graphization, Hyperization, 

and Uncertainization: 
Fuzzy, Neutrosophic, Soft, Rough, 

and Beyond

Third Volume

Grandview Heights
United States of America

2024



Biblio Publishing
1091 West 1st Ave

Grandview Heights, OH 43212
United States of America

Phone: +614.485.0721  
Email: Info@BiblioPublishing.com

https://BiblioPublishing.com/ 



Foreword

The third volume of “Advancing Uncertain Combinatorics through Graphization, 
Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond” presents an in-
depth exploration of the cutting-edge developments in uncertain combinatorics and set theory. This 
comprehensive collection highlights innovative methodologies such as graphization, hyperization, 
and uncertainization, which enhance combinatorics by incorporating foundational concepts from 
fuzzy, neutrosophic, soft, and rough set theories. These advancements open new mathematical 
horizons, offering novel approaches to managing uncertainty within complex systems.

Combinatorics, a discipline focused on counting, arrangement, and structure, often faces 
challenges when uncertainty is present. Set theory, which underpins combinatorial problems, has 
evolved to tackle these challenges. The introduction of fuzzy and neutrosophic sets has expanded the 
toolkit for modeling uncertainty by incorporating elements of truth, indeterminacy, and falsehood 
into decision-making processes. These innovations seamlessly intersect with graph theory, providing 
new ways to represent uncertain structures through "graphized" forms such as hypergraphs and 
superhypergraphs.

This volume also introduces advanced concepts like Neutrosophic Oversets, Undersets, and 
Offsets, which push the boundaries of classical graph theory and offer deeper insights into the 
mathematical and practical challenges posed by real-world systems. By blending combinatorics, set 
theory, and graph theory, the authors have created a robust framework for addressing uncertainty in 
both mathematical systems and their real-world applications. This foundation sets the stage for future 
breakthroughs in combinatorics, set theory, and related fields.

Each chapter in this volume contributes both theoretical foundations and practical 
applications, demonstrating the power of integrating graph theory, set theory, and uncertainty 
models. The new ideas, algorithms, and mathematical tools presented here will drive the future of 
combinatorial research and its applications in uncertain environments.

In the first chapter, “Introduction to Upside-Down Logic: Its Deep Relation to Neutrosophic 
Logic and Applications”, the authors present Upside-Down Logic, a novel logical framework that 
systematically transforms truths into falsehoods and vice versa, based on contextual shifts. Introduced 
by F. Smarandache, this paper provides a mathematical definition of Upside-Down Logic, including 
applications related to the Japanese language. The chapter also introduces Contextual Upside-Down 
Logic, an extension that adjusts logical connectives alongside flipped truth values, as well as Indeterm-
Upside-Down Logic and Certain Upside-Down Logic to address indeterminacy. A simple algorithm is 
also proposed to demonstrate the computational aspects of this logic.

In the second chapter, “Local-Neutrosophic Logic and Local-Neutrosophic Sets: 
Incorporating Locality with Applications”, the authors introduce Local-Neutrosophic Logic and 
Local-Neutrosophic Sets, which integrate the concept of locality into Neutrosophic Logic. By defining 
locality as the influence of immediate surroundings on an object or system, this chapter explores how 
it affects indeterminacy in real-world problems. The paper also examines potential applications and 
provides mathematical definitions for these new concepts.
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The third chapter, “A Review of Fuzzy and Neutrosophic Offsets: Connections to Some 
Set Concepts and Normalization Function”, extends the concept of offsets in uncertain set-
theoretic frameworks, such as Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets. This 
chapter introduces several advanced types of offsets, including Nonstationary Fuzzy Offset, 
Multi-valued Plithogenic Offset, and Subset-valued Neutrosophic Offset, offering deeper 
insights into handling uncertainty in mathematical models.

In the fourth chapter, “Review of Plithogenic Directed, Mixed, Bidirected, and Pangene 
OffGraph”, the authors build upon Plithogenic Graphs to propose extensions such as 
Plithogenic Directed OffGraph, Plithogenic BiDirected OffGraph, and Plithogenic Mixed 
OffGraph. These new concepts, including the Plithogenic Pangene OffGraph, are explored in 
detail, with a focus on their mathematical properties and potential applications in uncertain 
graph theory.

The fifth chapter, “Short Note on Neutrosophic Closure Matroids”, explores the 
extension of matroid concepts into Neutrosophic and Turiyam Neutrosophic set theories, 
introducing Neutrosophic closure matroids. This concept integrates uncertainty, 
indeterminacy, and liberal states into matroid theory, enhancing its applicability in 
optimization and combinatorial problems.

In the sixth chapter, “Some Graph Parameters for Superhypertree-width and 
Neutrosophic Tree-width”, the authors discuss graph parameters such as Superhypertree-
width and Neutrosophic tree-width. These parameters play a crucial role in the study of graph 
characteristics, particularly in algorithms and real-world applications. The chapter explores 
the generalization of hypergraphs to SuperHyperGraphs and examines how these concepts 
extend tree-width parameters within the context of Neutrosophic logic.

Takaaki Fujita, Florentin Smarandache 
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Introduction to Upside-Down Logic: Its Deep Relation to Neutrosophic
Logic and Applications

Takaaki Fujita 1 ∗, Florentin Smarandache2
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2 University of New Mexico, Gallup Campus, NM 87301, USA.

Corresponding Emails: t171d603@gunma-u.ac.jp

Abstract

In the study of uncertainty, concepts such as fuzzy sets [113], fuzzy graphs [79], and neutrosophic sets [88]
have been extensively investigated. This paper focuses on a novel logical framework known as Upside-Down
Logic, which systematically transforms truths into falsehoods and vice versa by altering contexts, meanings, or
perspectives. The concept was first introduced by F. Smarandache in [99].

To contribute to the growing interest in this area, this paper presents a mathematical definition of Upside-Down
Logic, supported by illustrative examples, including applications related to the Japanese language. Addition-
ally, it introduces and explores Contextual Upside-Down Logic, an advanced extension that incorporates a
contextual transformation function, enabling the adjustment of logical connectives in conjunction with flipping
truth values based on contextual shifts. Furthermore, the paper introduces Indeterm-Upside-Down Logic and
Certain Upside-Down Logic, both of which expand Upside-Down Logic to better accommodate indetermi-
nate values. Finally, a simple algorithm leveraging Upside-Down Logic is proposed and analyzed, providing
insights into its computational characteristics and potential applications.

Keywords: Upside-Down Logic, Neutrosophic Logic, Logic, Fuzzy Logic, Japanese

1 Short Introduction

1.1 Uncertain Logic and Upside-Down Logic

Uncertainty in real-world events is modeled using mathematical concepts. In the field of logic (cf. [21, 103]),
various frameworks have been developed to address uncertainty, including Fuzzy Logic [113–115], Neutro-
sophic Logic [88,90,94], and Plithogenic Logic [93,102]. For example, Neutrosophic Logic extends classical
logic by introducing three degrees—truth, indeterminacy, and falsity—accommodating uncertainty and con-
tradictions simultaneously. These uncertain logics have also been extended to concepts such as sets [89, 100]
and graphs [34, 37–39], resulting in numerous studies parallel to advancements in the logic domain.

This paper focuses on a logical framework called Upside-Down Logic, which systematically transforms truths
into falsehoods and vice versa by altering contexts, meanings, or perspectives. This logical concept was in-
troduced by F. Smarandache in [99]. A central focus is the phenomenon of reversals caused by ambiguity.
In decision-making, individuals strive to discern what is correct or incorrect. However, ambiguity can lead
to situations where something initially perceived as correct ultimately proves to be incorrect, causing misun-
derstandings or unfortunate outcomes. Simply put, Upside-Down Logic formalizes this phenomenon into a
structured logical framework.

1.2 Contributions of This Paper

This subsection explains the contributions of this paper. As discussed above, research on Upside-Down Logic
is significant but still in its early stages. This paper aims to advance this emerging field by presenting a mathe-
matical definition of Upside-Down Logic, accompanied by several illustrative examples, including applications
related to the Japanese language.

Additionally, as a related concept, this paper introduces and explores Contextual Upside-Down Logic. Contex-
tual Upside-Down Logic extends Upside-Down Logic by incorporating a contextual transformation function
that not only flips truth values but also adjusts logical connectives based on the given context.
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Moreover, this paper introduces Indeterm-Upside-Down Logic and Certain Upside-Down Logic, both of which
extend Upside-Down Logic to better handle indeterminate values. Additionally, a simple algorithm utilizing
Upside-Down Logic is examined.

These contributions can be applied to various logical frameworks, such as Neutrosophic Logic, and have po-
tential applications in decision-making and other related fields.

1.3 The Structure of the Paper

The structure of this paper is as follows. Section 2 introduces the concept of Upside-Down Logic. Section
3 delves into Contextual Upside-Down Logic. Section 4 discusses Indeterm-Upside-Down Logic. Section 5
focuses on Certain Upside-Down Logic. Finally, Section 6 outlines future directions for this research.

1 Short Introduction 1
1.1 Uncertain Logic and Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of This Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 The Structure of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Upside-Down Logic 2
2.1 Basic Definition of Formal Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Formal Definition of Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Some Example of Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Example of Upside-Down Logic on Japanese Culture . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Some Basic Theorem of Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Relationship between Neutrosophic Logic and Upside-Down Logic . . . . . . . . . . . . . . . 9
2.7 Algorithm for Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Contextual Upside-Down Logic 17
3.1 Formal Definition of Contextual Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Some Example of Contextual Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Some Basic Theorem of Contextual Upside-Down Logic . . . . . . . . . . . . . . . . . . . . 22
3.4 Algorithm for Contextual Upside-Down Transformation . . . . . . . . . . . . . . . . . . . . . 23

4 Framework of Indeterm-Upside-Down Logic 24
4.1 Definition and Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Neutrosophic Logic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Mathematical Basic Theorems in Indeterm-Upside-Down Logic . . . . . . . . . . . . . . . . 27
4.4 Real-Life Examples: Combining Neutrosophic Logic with Indeterm-Upside-Down Logic . . . 29
4.5 Algorithm for Indeterm-Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Certain Upside-Down Logic 31
5.1 Definition of Certain Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Examples of Real-World Applications of Certain Upside-Down Logic . . . . . . . . . . . . . 33
5.3 Basic Theorem of Certain Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Algorithm for Certain Upside-Down Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion and Future Work of this Paper 36
6.1 Conclusion of this Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Future tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 Applying Upside-Down Logic to Uncertain Sets and Graphs . . . . . . . . . . . . . . 36
6.2.2 Applying Upside-Down Logic to decision-making . . . . . . . . . . . . . . . . . . . 36
6.2.3 Relation to Research on Addressing Indeterminacy . . . . . . . . . . . . . . . . . . . 36

2 Upside-Down Logic

In this section, we explore the mathematical definition of Upside-Down Logic, real-life examples, basic theo-
rems, its application to Neutrosophic Logic, and its associated algorithms.

2.1 Basic Definition of Formal Language

To explore Upside-Down Logic, several key concepts are introduced below. For further details, readers are
encouraged to consult the respective lecture notes and surveys on these topics (ex. [33, 42, 43, 50, 62]).
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Definition 2.1 (Set). [50] A set is a collection of distinct objects, known as elements, that are clearly defined,
allowing any object to be identified as either belonging to or not belonging to the set. If 𝐴 is a set and 𝑥 is an
element of 𝐴, this membership is denoted by 𝑥 ∈ 𝐴. Sets are typically represented using curly brackets.

Definition 2.2 (Formal Language). [42,78] A formal language L is defined as a set of strings (or sequences)
formed from a finite alphabet Σ, subject to specific syntactic rules. Formally:

L ⊆ Σ∗,

where Σ∗ is the set of all finite strings over the alphabet Σ. The strings in L are called well-formed formulas
(WFFs).

A formal language L is typically accompanied by:

• A set of symbols (or alphabet) Σ, which may include logical connectives (e.g., ∧, ∨, ¬), quantifiers (e.g.,
∀, ∃), variables, and parentheses.

• A set of formation rules that determine which strings in Σ∗ are well-formed.

Example 2.3 (Japanese as a Formal Language). Consider the Japanese language as a formal language L. Note
that Readers interested in further details on Japanese linguistics are encouraged to consult references such
as [66, 67, 105].

Let:

• Σ be the alphabet, including:

– Hiragana symbols, e.g., {あ,い,う,え,お, . . . },
– Katakana symbols, e.g., {ア,イ,ウ,エ,オ, . . . },
– Kanji characters, e.g., {日,本,語, . . . },
– Romanized characters and punctuation, e.g., {𝑎, 𝑏, 𝑐, . . . , ., !, ?}.

• Σ∗ be the set of all possible finite sequences of these symbols.

• Formation rules define grammatically correct sentences in Japanese. Examples include:

– Subject-Object-Verb order, such as:

私 (I) +りんご (apple) +を (object marker) +食べます (eat).

– Use of particles (e.g.,は,が,を) to indicate grammatical roles:

犬 (dog) +が (subject marker) +走る (run).

– Proper use of politeness levels, e.g.,です orます forms.

Thus, L represents all well-formed Japanese sentences that adhere to these grammatical rules.

Example 2.4 (Mathematical Identity as a Formal Language). Consider the mathematical identity 𝐴: ”2+2 = 4”
as a proposition in a formal language L, where:

• The alphabetΣ consists of symbols for numbers, operators, and equality, e.g., Σ = {0, 1, 2, 3, 4, +,=, . . . }.

• The formation rules are derived from the axioms and rules of standard arithmetic over the real numbers.

Definition 2.5 (Logical System). (cf. [58]) A logical system M is a mathematical structure that formalizes
reasoning. It consists of:

M = (P,V, 𝑣),
where:

11



• P is the set of propositions (or statements) in the formal language L.

• V is the set of truth values, such as {True, False} for classical logic.

• 𝑣 : P → V is a valuation function (or interpretation function) that assigns a truth value to each propo-
sition in P.

In addition, a logical system may include:

• A set of axioms A ⊆ P that are assumed to be true within the system.

• A set of inference rules I that define valid transformations of propositions to derive new truths.

2.2 Formal Definition of Upside-Down Logic

In this subsection, we examine the mathematical definition of Upside-Down Logic. The related definitions and
concepts are outlined below.

Notation 2.6. Let P be a set of propositions, and let C be a set of contexts. Let

𝑇 : P × C → {True,False, Indeterminate}

be a truth valuation function that assigns a truth value to each proposition-context pair.

Notation 2.7. Let L be a formal language, and letM be a logical system with a set of propositions P, a set of
truth valuesV, and a valuation function 𝑣 : P → V.

Definition 2.8 (Upside-Down Logic). [99] An Upside-Down Logic is a logical systemM′ derived fromM
by introducing a transformation𝑈 on propositions and/or contexts such that:

1. For any proposition 𝐴 ∈ P with truth value 𝑣(𝐴) in context C, there exists a transformed proposition
𝑈 (𝐴) and/or transformed context𝑈 (C) where:

• Falsification of the Truth: If 𝑣(𝐴) = True in C, then 𝑣(𝑈 (𝐴)) = False in𝑈 (C).
• Truthification of the False: If 𝑣(𝐴) = False in C, then 𝑣(𝑈 (𝐴)) = True in𝑈 (C).

2. The transformation𝑈 is well-defined and consistent within the logical systemM′.

Definition 2.9 (Context). [99] A context C is a set of parameters or conditions under which propositions are
evaluated. This may include spatial, temporal, semantic, or interpretative settings.

Definition 2.10. The Upside-Down Transformation𝑈 may involve one or more of the following operations:

• Changing the Domain: Modifying the domain or universe of discourse.

• Altering Attributes: Changing properties or characteristics of elements within propositions.

• Reversing Logical Operations: Applying dual operators or complement functions.

• Contextual Shifts: Altering the context C to𝑈 (C) such that the truth value of 𝐴 changes.

• Semantic Reinterpretation: Reinterpreting the meanings of terms or predicates.

12



2.3 Some Example of Upside-Down Logic

In this subsection, we explore some examples of Upside-Down Logic, such as Mathematical Identity and Phys-
ical Laws.

Example 2.11 (Mathematical Identity). Let 𝐴: ”2 + 2 = 4” in the context C of standard arithmetic over the
real numbers. In context C:

2 + 2 = 4 =⇒ 𝑣(𝐴, C) = True.

Falsification of the Truth: Define a new context𝑈 (C) where arithmetic is modulo 3.

In context𝑈 (C):
2 + 2 = 1 (mod 3) =⇒ 𝑣(𝐴,𝑈 (C)) = False.

Alternatively, consider a proposition 𝐴: ”2 + 2 = 0” in context C where arithmetic is modulo 4.

In context C:
2 + 2 = 0 (mod 4) =⇒ 𝑣(𝐴, C) = True.

Truthification of the False: In standard arithmetic context𝑈 (C), where arithmetic is over the integers, 2+2 = 4,
so 𝑣(𝐴,𝑈 (C)) = False.

Example 2.12 (Physical Laws). Let 𝐴: ”Water boils at 100◦C.” In context C: ”At standard atmospheric pressure
(1 atm).”

Boiling point of water at 1 atm is 100◦C =⇒ 𝑣(𝐴, C) = True.

Falsification of the Truth: Change the context to 𝑈 (C): ”At an altitude of 3,000 meters where atmospheric
pressure is approximately 0.7 atm.”

At this pressure, water boils at approximately 90◦C.

𝑣(𝐴,𝑈 (C)) = False.

Truthification of the False: Let 𝐵: ”Water boils at 90◦C.” In context C: ”At sea level (1 atm).”

Boiling point is 100◦C =⇒ 𝑣(𝐵, C) = False.

In transformed context𝑈 (C): ”At an altitude of 3,000 meters (0.7 atm).”

Boiling point is 90◦C =⇒ 𝑣(𝐵,𝑈 (C)) = True.

Example 2.13 (Linguistic Ambiguity). Let 𝐴: ”The bank is open today.” In context C: ”Referring to a financial
institution on a weekday.”

If today is a weekday, 𝑣(𝐴, C) = True.

Falsification of the Truth: Change the context to 𝑈 (C): ”Referring to the river bank in a natural reserve area
that is closed to the public.”

𝑣(𝐴,𝑈 (C)) = False.

Semantic Reinterpretation: The word ”bank” shifts meaning from ”financial institution” to ”river bank,” chang-
ing the truth value.
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Example 2.14 (Cultural Context). Let 𝐴: ”Eating beef is acceptable.” In context C: ”In a Western country
where eating beef is a common practice.”

𝑣(𝐴, C) = True.

Falsification of the Truth: Change the context to𝑈 (C): ”In India where cows are considered sacred by Hindus.”

𝑣(𝐴,𝑈 (C)) = False.

2.4 Example of Upside-Down Logic on Japanese Culture

In this subsection, we examine examples of Upside-Down Logic within the context of the Japanese language.
Known for its high degree of ambiguity, Japanese linguistics have been the subject of extensive research on
resolving linguistic ambiguities (cf. [24,70,71,107]). Several illustrative examples are provided below. Readers
interested in further details on Japanese linguistics are encouraged to consult references such as [66, 67, 105].

Example 2.15 (Ambiguity in Japanese Expressions). In Japanese, the phrase ”sore wa chotto...” literally means
”that is a little...,” trailing off without completing the sentence [65].

Let 𝐴: ”The speaker is refusing the request.”

In context C: The literal interpretation suggests hesitation without explicit refusal:

𝑣(𝐴, C) = False.

Context Transformation: Understanding cultural nuances in context𝑈 (C), the phrase is recognized as a polite
way to decline:

𝑣(𝐴,𝑈 (C)) = True.

Upside-Down Logic Transformation: Using Upside-Down Logic, the truth value of 𝐴 flips when shifting
from C to𝑈 (C).

What appears as hesitation is actually a polite refusal in the transformed context.

Example 2.16 (Proverbs and Contradictions in Japanese). Japanese proverb: Makeru ga kachi —”Defeat is
victory.” 1

Let 𝐴: ”Defeat leads to victory.”

In context C: Literally interpreted, the proposition appears contradictory:

𝑣(𝐴, C) = False.

Context Transformation: In the cultural context 𝑈 (C), the proverb is understood to mean that yielding can
lead to ultimate success:

𝑣(𝐴,𝑈 (C)) = True.

Upside-Down Logic Transformation: The truth value of 𝐴 flips when moving from the literal context to the
cultural context.

The conventional understanding of winning and losing is inverted through the proverb’s cultural meaning.
1Japanese proverbs are traditional sayings reflecting cultural values, wisdom, and life lessons, often using metaphorical or poetic

expressions [16].
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Example 2.17 (Honne and Tatemae). In Japanese culture, Honne refers to a person’s true feelings, while
Tatemae refers to the public façade (cf. [104, 111]).

Let 𝐴: ”He agrees with the proposal.”

In context C: Based on his public behavior (Tatemae), the proposition appears to be true:

𝑣(𝐴, C) = True.

Context Transformation: When shifting to the context of Honne (private feelings) 𝑈 (C), he may actually
disagree:

𝑣(𝐴,𝑈 (C)) = False.

Upside-Down Logic Transformation: Using Upside-Down Logic, we can define the transformed proposition:

𝑈 (𝐴) : ”He disagrees with the proposal internally.”

In the context𝑈 (C):
𝑣(𝑈 (𝐴),𝑈 (C)) = True.

Agreement in public (Tatemae) is inverted to disagreement in private feelings (Honne) under the transformed
context.

Example 2.18 (Omote and Ura (Front and Back)). In Japanese aesthetics, Omote means the front or public
face, while Ura refers to the back or hidden side (cf. [49, 51]).

Let 𝐴: ”The painting is simple.”

In context C: Observing the Omote (front) of the painting, the proposition holds true:

𝑣(𝐴, C) = True.

Context Transformation: Exploring the Ura (hidden meanings) in context 𝑈 (C), new complexities are re-
vealed:

𝑣(𝐴,𝑈 (C)) = False.

Upside-Down Logic Transformation: We can redefine the proposition to reflect the depth:

𝑈 (𝐴) : ”The painting is complex with deep symbolism.”

In the transformed context𝑈 (C):
𝑣(𝑈 (𝐴),𝑈 (C)) = True.

The simplicity observed in the Omote is inverted into complexity when considering the Ura.

Example 2.19 (The Concept of Ma). Ma refers to the space or pause between objects or moments, an essential
concept in Japanese aesthetics.

Let 𝐴: ”Silence indicates agreement.”

In context C: In some cultures, silence may be interpreted as agreement:

𝑣(𝐴, C) = True.
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Context Transformation: In the Japanese context 𝑈 (C), silence can signify various meanings, including
disagreement or contemplation:

𝑣(𝐴,𝑈 (C)) = False.

Upside-Down Logic Transformation: Reformulating the proposition to reflect this ambiguity:

𝑈 (𝐴) : ”Silence does not necessarily indicate agreement.”

In the context𝑈 (C):
𝑣(𝑈 (𝐴),𝑈 (C)) = True.

The interpretation of silence as agreement is inverted in the Japanese context, highlighting the cultural nuances
of Ma.

Example 2.20 (The Art of Haiku). Haiku is a form of Japanese poetry that captures a moment with brevity
and depth (cf. [80, 109]).

Let 𝐴: ”Short poems lack depth.”

In context C: In the general context of poetry, depth is often associated with longer and more complex forms.
Thus:

𝑣(𝐴, C) = True.

Context Transformation: Consider the context of Japanese Haiku,𝑈 (C), where brevity is seen as a means to
achieve profound depth. In this new context, the original proposition 𝐴 no longer holds true:

𝑣(𝐴,𝑈 (C)) = False.

Upside-Down Logic Transformation: Using Upside-Down Logic, we transform the proposition to:

𝑈 (𝐴) : ”Short poems convey profound depth.”

Under the transformed context𝑈 (C), this new proposition aligns with the values of Haiku and becomes true:

𝑣(𝑈 (𝐴),𝑈 (C)) = True.

2.5 Some Basic Theorem of Upside-Down Logic

In this subsection, we consider some basic theorems of Upside-Down Logic. The following theorems hold.

Theorem 2.21 (Invariance under Fixed Context). Within a fixed context C, the Upside-Down Transformation
𝑈 must alter the proposition 𝐴 to change its truth value.

Proof. Assume that the context C is fixed. To change the truth value of 𝐴, the transformation 𝑈 must alter 𝐴
to𝑈 (𝐴) such that 𝑣(𝑈 (𝐴), C) ≠ 𝑣(𝐴, C).

If𝑈 does not alter 𝐴, then 𝑣(𝐴, C) = 𝑣(𝑈 (𝐴), C), and the truth value remains the same.

Therefore, to achieve Falsification or Truthification within a fixed context, the proposition itself must be altered.
□

Theorem 2.22 (Composition of Upside-Down Transformations). The composition of two Upside-Down Trans-
formations may not necessarily return to the original truth value.
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Proof. Let𝑈1 and𝑈2 be two different Upside-Down Transformations.

Applying𝑈1 and then𝑈2:

𝑣(𝑈2 (𝑈1 (𝐴)),𝑈2 (𝑈1 (C))) = 𝑣 (2) (𝐴).

Since each transformation may alter the context and/or the proposition differently, the final truth value may not
be equal to the original 𝑣(𝐴, C).

Therefore, in general:
𝑣(𝑈2 (𝑈1 (𝐴)),𝑈2 (𝑈1 (C))) ≠ 𝑣(𝐴, C).

□

Theorem 2.23 (Non-Idempotence of Upside-Down Transformations). An Upside-Down Transformation 𝑈 is
not necessarily idempotent, i.e., applying 𝑈 twice does not guarantee that the original proposition and context
are restored.

Proof. Consider𝑈 that alters the context from C to𝑈 (C). Applying𝑈 again:

𝑈 (𝑈 (C)) = 𝑈2 (C).

Unless𝑈 is specifically defined such that𝑈2 (C) = C and𝑈2 (𝐴) = 𝐴, the original proposition and context are
not restored.

Therefore, in general,𝑈 is not idempotent. □

Corollary 2.24. If𝑈 is involutive (i.e., 𝑈2 = id), then applying𝑈 twice returns to the original proposition and
context.

Proof. If𝑈 is such that𝑈 (𝑈 (𝐴)) = 𝐴 and𝑈 (𝑈 (C)) = C, then:

𝑣(𝑈 (𝑈 (𝐴)),𝑈 (𝑈 (C))) = 𝑣(𝐴, C).

Thus, the original truth value is restored. □

2.6 Relationship between Neutrosophic Logic and Upside-Down Logic

In this subsection, we explore the relationship between Neutrosophic Logic and Upside-Down Logic. First,
we present the definition of Neutrosophic Logic below [36, 88]. Note that Neutrosophic Logic is known to
generalize Fuzzy Logic (cf. [88]).

Definition 2.25 (Neutrosophic Logic). [88] Neutrosophic Logic extends classical logic by assigning to each
proposition a truth value comprising three components:

𝑣(𝐴) = (𝑇, 𝐼, 𝐹),

where 𝑇, 𝐼, 𝐹 ∈ [0, 1] represent the degrees of truth, indeterminacy, and falsity, respectively.

Neutrosophic Logic and related concepts (e.g., Neutrosophic Set) are known for their ability to model a wide
range of phenomena [6,25,27,54,64,74,106,110,112,116,117]. As a reference, several examples of applying
Neutrosophic Logic in real-life contexts are provided below.
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Example 2.26 (Medical Diagnosis). In medical diagnosis, Neutrosophic Logic is used to model uncertain and
incomplete data. For example, a proposition like ”The patient has Disease X” can be evaluated as 𝑣(𝐴) =
(0.6, 0.2, 0.2), where:

• 𝑇 = 0.6: There is a 60% likelihood the patient has the disease.

• 𝐼 = 0.2: 20% of the data is inconclusive.

• 𝐹 = 0.2: There is a 20% likelihood the patient does not have the disease.

This helps in combining test results, symptoms, and expert opinions to make better-informed decisions(cf.
[13, 19, 26]).

Example 2.27 (Decision-Making in Business). In business decision-making, Neutrosophic Logic is used to
evaluate competing strategies under uncertain conditions. For instance, when deciding whether to invest in a
project, a proposition like ”The project will yield profit” might have a value 𝑣(𝐴) = (0.7, 0.1, 0.2), indicating:

• 𝑇 = 0.7: A 70% chance the project will be profitable.

• 𝐼 = 0.1: A 10% level of uncertainty due to incomplete market data.

• 𝐹 = 0.2: A 20% chance the project will not be profitable.

This allows decision-makers to weigh risks and rewards more effectively (cf. [2, 84]).

Example 2.28 (Artificial Intelligence and Robotics). In AI and robotics, Neutrosophic Logic is used to model
complex reasoning in uncertain environments. For instance, a robot navigating a dynamic environment can
evaluate a proposition like ”The path ahead is clear” as 𝑣(𝐴) = (0.8, 0.1, 0.1):

• 𝑇 = 0.8: 80% confidence the path is clear.

• 𝐼 = 0.1: 10% uncertainty due to sensor noise.

• 𝐹 = 0.1: 10% likelihood the path is obstructed.

This helps in planning and adapting to changes in real-time(cf. [7]).

Example 2.29 (Social Network Analysis). In social network analysis, Neutrosophic Logic is applied tomeasure
trustworthiness in online interactions. For a proposition like ”User X is trustworthy,” a truth value 𝑣(𝐴) =
(0.5, 0.3, 0.2) might represent:

• 𝑇 = 0.5: A 50% degree of trust based on previous interactions.

• 𝐼 = 0.3: 30% uncertainty due to a lack of sufficient data.

• 𝐹 = 0.2: A 20% indication of untrustworthiness from contradictory feedback.

This helps in filtering content and detecting fraudulent activities (cf. [82, 83]).

The relationship between Neutrosophic Logic and Upside-Down Logic is outlined below. Readers should note
that the application examples of Upside-Down Logic presented here are merely illustrative. It is hoped that
further concrete investigations into their connection will be undertaken in the future.

Theorem 2.30 (Upside-Down Transformation in Neutrosophic Logic). In Neutrosophic Logic, the Upside-
Down Transformation𝑈 corresponds to interchanging the truth and falsity components while possibly adjusting
indeterminacy.
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Proof. Define𝑈 such that for any proposition 𝐴:

𝑈 (𝑣(𝐴)) = (𝐹, 𝐼 ′, 𝑇),

where 𝐼 ′ is determined based on the specific transformation rules (e.g., 𝐼 ′ = 𝐼 or 𝐼 ′ = 1− 𝐼). This transformation
flips the degrees of truth and falsity, mirroring the Upside-Down Logic concept. □

Example 2.31 (Upside-Down Transformation in Neutrosophic Logic). Let 𝑣(𝐴) = (0.8, 0.1, 0.1). Applying
𝑈:

𝑈 (𝑣(𝐴)) = (0.1, 𝐼 ′, 0.8).

If we let 𝐼 ′ = 𝐼 = 0.1, then:
𝑈 (𝑣(𝐴)) = (0.1, 0.1, 0.8).

Thus, the proposition that was mostly true becomes mostly false under𝑈.

Theorem 2.32 (Preservation of Indeterminacy). If the Upside-Down Transformation preserves the indetermi-
nacy component, then 𝑈 is an involutive transformation in Neutrosophic Logic.

Proof. Assuming 𝐼 ′ = 𝐼 and defining𝑈 as:

𝑈 (𝑣(𝐴)) = (𝐹, 𝐼, 𝑇).

Applying𝑈 twice:

𝑈 (𝑈 (𝑣(𝐴))) = 𝑈 (𝐹, 𝐼, 𝑇) = (𝑇, 𝐼, 𝐹) = 𝑣(𝐴).

Therefore,𝑈 is involutive. □

Upside-Down Transformation can similarly be applied to concepts analogous to Neutrosophic Logic. As an
example, we consider the application of Upside-Down Transformation to Double-Valued Neutrosophic Logic,
as outlined below (cf. [52, 59]). Readers should note that the application examples of Upside-Down Logic
presented here are merely illustrative.

Definition 2.33 (Double-Valued Neutrosophic Logic). Let 𝑋 be a space of points (or objects) where each 𝑥 ∈ 𝑋
represents an element. A Double-Valued Neutrosophic Set (DVNS) 𝐴 is characterized by:

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝑇 (𝑥), 𝐼𝐹 (𝑥), 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋},

where:

• 𝑇𝐴(𝑥) ∈ [0, 1] is the truth membership value,

• 𝐼𝑇 (𝑥) ∈ [0, 1] is the indeterminacy leaning towards truth,

• 𝐼𝐹 (𝑥) ∈ [0, 1] is the indeterminacy leaning towards falsity,

• 𝐹𝐴(𝑥) ∈ [0, 1] is the falsity membership value.

These values satisfy the condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝑇 (𝑥) + 𝐼𝐹 (𝑥) + 𝐹𝐴(𝑥) ≤ 4.

As a reference, several examples of utilizing Double-Valued Neutrosophic Logic in real-life contexts are pro-
vided below.
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Example 2.34 (Medical Treatment Effectiveness Evaluation). Consider a medical study evaluating the effec-
tiveness of a new drug. For each patient 𝑥, the Double-Valued Neutrosophic Set 𝐴 represents the assessment
of the statement: ”The drug is effective for the patient.”

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝑇 (𝑥), 𝐼𝐹 (𝑥), 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋},
where:

• 𝑇𝐴(𝑥) = 0.8: 80% evidence supports the drug’s effectiveness.

• 𝐼𝑇 (𝑥) = 0.1: 10% uncertainty leans towards effectiveness due to inconclusive lab results.

• 𝐼𝐹 (𝑥) = 0.05: 5% uncertainty leans towards ineffectiveness due to side effects.

• 𝐹𝐴(𝑥) = 0.05: 5% evidence indicates the drug is not effective.

This representation allows researchers to account for both supporting and opposing evidence, as well as uncer-
tainty, in evaluating the drug’s performance.

Example 2.35 (Customer Sentiment Analysis). In e-commerce, Double-Valued Neutrosophic Logic can be
used to analyze customer sentiments about a product. For each customer 𝑥, the Double-Valued Neutrosophic
Set 𝐴 evaluates the statement: ”The customer is satisfied with the product.”

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝑇 (𝑥), 𝐼𝐹 (𝑥), 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋},
where:

• 𝑇𝐴(𝑥) = 0.7: 70% of the customer’s feedback indicates satisfaction.

• 𝐼𝑇 (𝑥) = 0.15: 15% uncertainty leans towards satisfaction due to mixed comments.

• 𝐼𝐹 (𝑥) = 0.1: 10% uncertainty leans towards dissatisfaction due to delivery delays.

• 𝐹𝐴(𝑥) = 0.05: 5% feedback explicitly indicates dissatisfaction.

This enables companies to better understand customer opinions by considering both the certainty and direc-
tionality of indeterminate feedback.

Proposition 2.36. A Double-Valued Neutrosophic Logic (DVNL) can be transformed into a standard Neutro-
sophic Logic (NL) by redefining the indeterminacy membership values. Specifically, let 𝐴 be a Double-Valued
Neutrosophic Set (DVNS) characterized by:

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝑇 (𝑥), 𝐼𝐹 (𝑥), 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋}.

The corresponding Neutrosophic Set 𝐴′ is obtained as:

𝐴′ = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋},

where the total indeterminacy 𝐼𝐴(𝑥) is given by:

𝐼𝐴(𝑥) = 𝐼𝑇 (𝑥) + 𝐼𝐹 (𝑥).

Proof. Let 𝐴 be a DVNS defined as:

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝑇 (𝑥), 𝐼𝐹 (𝑥), 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋}.

By definition, the total indeterminacy 𝐼𝐴(𝑥) in a Neutrosophic Logic framework combines the contributions
from 𝐼𝑇 (𝑥) and 𝐼𝐹 (𝑥). Thus, we define:

𝐼𝐴(𝑥) = 𝐼𝑇 (𝑥) + 𝐼𝐹 (𝑥).
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The transformed set 𝐴′ becomes:

𝐴′ = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋}.

The condition for a DVNS ensures:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝑇 (𝑥) + 𝐼𝐹 (𝑥) + 𝐹𝐴(𝑥) ≤ 4.

Since 𝐼𝐴(𝑥) = 𝐼𝑇 (𝑥) + 𝐼𝐹 (𝑥), the condition for 𝐴′ simplifies to:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3,

which satisfies the standard Neutrosophic Logic framework. Therefore, 𝐴′ is a valid Neutrosophic Set.

The transformation from DVNL to NL is achieved by aggregating 𝐼𝑇 (𝑥) and 𝐼𝐹 (𝑥) into a single indeterminacy
membership value 𝐼𝐴(𝑥), preserving the consistency of the logical framework. □

Definition 2.37 (Upside-Down Transformation for DVNS). For any 𝑥 ∈ 𝑋 , the Upside-Down Transformation
𝑈 modifies the values as follows:

𝑈 (𝑇𝐴(𝑥)) = 𝐹𝐴(𝑥),
𝑈 (𝐹𝐴(𝑥)) = 𝑇𝐴(𝑥),
𝑈 (𝐼𝑇 (𝑥)) = 𝐼𝐹 (𝑥),
𝑈 (𝐼𝐹 (𝑥)) = 𝐼𝑇 (𝑥).

Example 2.38 (Service Quality Evaluation). Service Quality Evaluation is the process of assessing service
performance based on customer expectations, perceptions, and satisfaction across various dimensions (cf. [86]).

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3}, where: 𝑥1: Capability, 𝑥2: Trustworthiness, and 𝑥3: Price.

Define a DVNS 𝐴 over 𝑋:

𝐴 = {(𝑥1, 0.3, 0.4, 0.2, 0.1), (𝑥2, 0.5, 0.3, 0.1, 0.1), (𝑥3, 0.7, 0.2, 0.1, 0.0)}.

Before UDL Transformation:

• For 𝑥1: 𝑇𝐴(𝑥1) = 0.3, 𝐼𝑇 (𝑥1) = 0.4, 𝐼𝐹 (𝑥1) = 0.2, 𝐹𝐴(𝑥1) = 0.1.

• For 𝑥2: 𝑇𝐴(𝑥2) = 0.5, 𝐼𝑇 (𝑥2) = 0.3, 𝐼𝐹 (𝑥2) = 0.1, 𝐹𝐴(𝑥2) = 0.1.

• For 𝑥3: 𝑇𝐴(𝑥3) = 0.7, 𝐼𝑇 (𝑥3) = 0.2, 𝐼𝐹 (𝑥3) = 0.1, 𝐹𝐴(𝑥3) = 0.0.

After UDL Transformation:

• For 𝑥1:
𝑈 (𝑇𝐴(𝑥1)) = 𝐹𝐴(𝑥1) = 0.1, 𝑈 (𝐹𝐴(𝑥1)) = 𝑇𝐴(𝑥1) = 0.3,
𝑈 (𝐼𝑇 (𝑥1)) = 𝐼𝐹 (𝑥1) = 0.2, 𝑈 (𝐼𝐹 (𝑥1)) = 𝐼𝑇 (𝑥1) = 0.4.

Result: (𝑥1, 0.1, 0.2, 0.4, 0.3).

• For 𝑥2:
𝑈 (𝑇𝐴(𝑥2)) = 𝐹𝐴(𝑥2) = 0.1, 𝑈 (𝐹𝐴(𝑥2)) = 𝑇𝐴(𝑥2) = 0.5,
𝑈 (𝐼𝑇 (𝑥2)) = 𝐼𝐹 (𝑥2) = 0.1, 𝑈 (𝐼𝐹 (𝑥2)) = 𝐼𝑇 (𝑥2) = 0.3.

Result: (𝑥2, 0.1, 0.1, 0.3, 0.5).

• For 𝑥3:
𝑈 (𝑇𝐴(𝑥3)) = 𝐹𝐴(𝑥3) = 0.0, 𝑈 (𝐹𝐴(𝑥3)) = 𝑇𝐴(𝑥3) = 0.7,
𝑈 (𝐼𝑇 (𝑥3)) = 𝐼𝐹 (𝑥3) = 0.1, 𝑈 (𝐼𝐹 (𝑥3)) = 𝐼𝑇 (𝑥3) = 0.2.

Result: (𝑥3, 0.0, 0.1, 0.2, 0.7).
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Observations:

• Truth (𝑇𝐴) and falsity (𝐹𝐴) are inverted, reflecting the essence of Upside-Down Logic.

• Indeterminacy leaning towards truth (𝐼𝑇 ) and falsity (𝐼𝐹) are swapped, altering the nuanced interpretation
of uncertainty.

• This transformation highlights the flexibility and adaptability of DVN Logic under the influence of UDL,
allowing for a richer representation of real-world ambiguity.

Theorem 2.39 (Stability of Membership Sum Constraint). The sum of the membership values remains within
the allowable range [0, 4] after the Upside-Down Transformation.

Proof. Let 𝑥 ∈ 𝑋 . For the original Double-Valued Neutrosophic Set (DVNS) 𝐴, we have:

𝑇𝐴(𝑥) + 𝐼𝑇 (𝑥) + 𝐼𝐹 (𝑥) + 𝐹𝐴(𝑥) ≤ 4.

After applying the Upside-Down Transformation:

𝑈 (𝑇𝐴(𝑥)) = 𝐹𝐴(𝑥), 𝑈 (𝐹𝐴(𝑥)) = 𝑇𝐴(𝑥), 𝑈 (𝐼𝑇 (𝑥)) = 𝐼𝐹 (𝑥), 𝑈 (𝐼𝐹 (𝑥)) = 𝐼𝑇 (𝑥).

The transformed sum becomes:

𝑈 (𝑇𝐴(𝑥)) +𝑈 (𝐼𝑇 (𝑥)) +𝑈 (𝐼𝐹 (𝑥)) +𝑈 (𝐹𝐴(𝑥)) = 𝐹𝐴(𝑥) + 𝐼𝐹 (𝑥) + 𝐼𝑇 (𝑥) + 𝑇𝐴(𝑥).

Since the sum is a permutation of the original values:

𝐹𝐴(𝑥) + 𝐼𝐹 (𝑥) + 𝐼𝑇 (𝑥) + 𝑇𝐴(𝑥) = 𝑇𝐴(𝑥) + 𝐼𝑇 (𝑥) + 𝐼𝐹 (𝑥) + 𝐹𝐴(𝑥).

Thus, the sum remains unchanged, and the constraint 0 ≤ Sum ≤ 4 is preserved. □

Theorem 2.40 (Invertibility of the Upside-Down Transformation). The Upside-Down Transformation 𝑈 is
invertible.

Proof. Define the transformation𝑈 as:

𝑈 (𝑇𝐴(𝑥)) = 𝐹𝐴(𝑥), 𝑈 (𝐹𝐴(𝑥)) = 𝑇𝐴(𝑥), 𝑈 (𝐼𝑇 (𝑥)) = 𝐼𝐹 (𝑥), 𝑈 (𝐼𝐹 (𝑥)) = 𝐼𝑇 (𝑥).

To invert𝑈, apply the transformation again:

𝑈 (𝑈 (𝑇𝐴(𝑥))) = 𝑈 (𝐹𝐴(𝑥)) = 𝑇𝐴(𝑥),

𝑈 (𝑈 (𝐹𝐴(𝑥))) = 𝑈 (𝑇𝐴(𝑥)) = 𝐹𝐴(𝑥),
𝑈 (𝑈 (𝐼𝑇 (𝑥))) = 𝑈 (𝐼𝐹 (𝑥)) = 𝐼𝑇 (𝑥),
𝑈 (𝑈 (𝐼𝐹 (𝑥))) = 𝑈 (𝐼𝑇 (𝑥)) = 𝐼𝐹 (𝑥).

Thus, applying𝑈 twice returns the original values. Therefore,𝑈 is its own inverse, i.e.,𝑈2 = Identity. □

Theorem 2.41 (Truth Preservation in Special Cases). If a DVNS has zero indeterminacy (𝐼𝑇 (𝑥) = 𝐼𝐹 (𝑥) = 0),
the transformation flips truth and falsity values but preserves their relationship.

Proof. If 𝐼𝑇 (𝑥) = 𝐼𝐹 (𝑥) = 0, the DVNS simplifies to:

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 0, 0, 𝐹𝐴(𝑥)) : 𝑥 ∈ 𝑋}.

Applying𝑈:
𝑈 (𝐴) = {(𝑥, 𝐹𝐴(𝑥), 0, 0, 𝑇𝐴(𝑥)) : 𝑥 ∈ 𝑋}.

Thus:
𝑇𝐴(𝑥) + 𝐹𝐴(𝑥) (original sum) = 𝐹𝐴(𝑥) + 𝑇𝐴(𝑥) (transformed sum).

Since the transformation merely swaps 𝑇𝐴(𝑥) and 𝐹𝐴(𝑥), the truth and falsity values are inverted while main-
taining consistency. □
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Upside-DownLogic is not limited to applications in Neutrosophic Logic or Double-ValuedNeutrosophic Logic;
it can be extended to various logical and set-based frameworks that handle uncertainty.

Although this paper does not delve into details, related concepts such as Neutrosophic OffLogic, Neutrosophic
OverLogic, and Neutrosophic UnderLogic are also well-known. Neutrosophic OffLogic, for instance, operates
not within the standard [0, 1] interval but within an extended or alternative range of values, allowing greater
flexibility in representing degrees of truth, indeterminacy, and falsity [18, 87, 91, 92, 101]. Similar to stan-
dard Neutrosophic Logic, these frameworks support the upside-down transformation between truth and falsity,
enabling dynamic and adaptive reasoning under uncertain or contradictory conditions.

Question 2.42. Is it possible to mathematically define concepts of Upside-Down Logic in the context of set
theory [50] or graph theory [28, 29]?

Question 2.43. Can Upside-Down Logic be applied beyond logic and set concepts? For example:

• In game theory [72], could it be used to model new equilibria or strategies by considering reversals of
perspectives or situations?

• In belief revision [41], could it provide a framework for dynamically altering the truth or falsity of beliefs
based on specific evidence or contexts?

• In quantum logic [31], could it be utilized to reverse states or transform the interpretation of measurement
results?

2.7 Algorithm for Upside-Down Logic

An algorithm is a finite, step-by-step procedure designed to perform a specific task or solve a problem system-
atically and efficiently (cf. [22, 85]). Below, we present an algorithm for Upside-Down Logic.

Algorithm 1 Upside-Down Logic Algorithm
Require: A set of propositions P, a context C, and a truth valuation function 𝑇 : P × C →
{True, False, Indeterminate}

Ensure: Transformed propositions𝑈 (𝐴), transformed contexts𝑈 (C), and updated truth values
1: Parse the input P, C, and 𝑇 . Define the transformation function𝑈
2: for each 𝐴 ∈ P do
3: Compute𝑈 (𝐴) and𝑈 (C)
4: Update truth values:

𝑇 (𝑈 (𝐴),𝑈 (C)) =

False, if 𝑇 (𝐴, C) = True,
True, if 𝑇 (𝐴, C) = False,
Indeterminate, otherwise.

5: end for
6: Apply𝑈 to logical connectives (∧, ∨, ¬) and compute transformed truth tables
7: return 𝑈 (P),𝑈 (C), and updated truth values

Theorem 2.44 (Correctness of the Upside-Down Logic Algorithm). The Upside-Down Logic algorithm trans-
forms propositions and contexts according to the defined transformation function 𝑈, correctly updates truth
values based on the rules of Upside-Down Logic, and preserves logical consistency.

Proof. The algorithm processes the input as follows:

1. Initialization: The input setsP, C, and the truth valuation function𝑇 are parsed correctly. The transformation
𝑈 is well-defined and invertible, ensuring valid inputs and outputs.

2. Transformation of Propositions and Contexts: For each 𝐴 ∈ P, the algorithm computes 𝑈 (𝐴) and 𝑈 (C).
These transformations are consistent with the Upside-Down Logic framework, ensuring valid outputs 𝑈 (P)
and𝑈 (C).
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3. Truth Value Update: The algorithm updates truth values as:

𝑇 (𝑈 (𝐴),𝑈 (C)) =

False, if 𝑇 (𝐴, C) = True,
True, if 𝑇 (𝐴, C) = False,
Indeterminate, otherwise.

This ensures that True becomes False, False becomes True, and Indeterminate remains unchanged, respecting
the rules of Upside-Down Logic.

4. Adjustment of Logical Connectives: Logical connectives (∧,∨,¬) are transformed consistently under 𝑈,
maintaining logical relationships within𝑈 (C).

5. Logical Consistency: Since𝑈 is invertible and operates independently on propositions and contexts, logical
consistency is preserved throughout the transformation process.

The algorithm correctly implements the rules of Upside-Down Logic, updates all truth values systematically,
and ensures logical consistency in the transformed system. Therefore, the algorithm is correct. □

Definition 2.45. (cf. [75, 85]) The Total Time Complexity of an algorithm is defined as the sum of the time
required to execute each step of the algorithm, expressed as a function of the input size. If an algorithm involves
multiple steps or operations, the total time complexity is determined by the maximum time required for the most
time-consuming operation.

Formally, let 𝑇 (𝑛, 𝑚) be the time complexity as a function of input sizes 𝑛 and 𝑚. The total time complexity is:

𝑇 (𝑛, 𝑚) = max(𝑇operation1 (𝑛, 𝑚), 𝑇operation2(𝑛, 𝑚), . . . , 𝑇operationk(𝑛, 𝑚)),

where 𝑛 is the size of the set of propositions and 𝑚 is the size or complexity of the context.

Definition 2.46. (cf. [75, 85]) The Space Complexity of an algorithm is the total amount of memory required
to execute the algorithm, expressed as a function of the input size. This includes:

• The input space, which depends on the size of the input 𝑛, 𝑚,

• The auxiliary space, which includes temporary variables, data structures, or storage used during compu-
tation.

Formally, let 𝑆(𝑛, 𝑚) be the space complexity as a function of input sizes 𝑛 and 𝑚. The total space complexity
is:

𝑆(𝑛, 𝑚) = 𝑆input(𝑛, 𝑚) + 𝑆auxiliary (𝑛, 𝑚).

Definition 2.47. (cf. [75, 85]) Big-O notation is a mathematical concept used to describe the upper bound of
the time or space complexity of an algorithm. Let 𝑓 (𝑛) and 𝑔(𝑛) be functions that map non-negative integers
to non-negative real numbers. We say:

𝑓 (𝑛) ∈ 𝑂 (𝑔(𝑛))
if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 such that:

𝑓 (𝑛) ≤ 𝑐 · 𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

Theorem 2.48 (Time and Space Complexity of Upside-Down Logic Algorithm). In the Upside-Down Logic
algorithm, the following complexities hold: Total Time Complexity: 𝑂 (𝑛 + 𝑚).
Space Complexity: 𝑂 (𝑛 + 𝑚).

Proof. Step 1: Transformation of Propositions
For a set of 𝑛 propositions P, each proposition 𝐴 ∈ P is transformed using the Upside-Down transformation
𝑈. Since the transformation involves a single operation per proposition, the complexity is 𝑂 (𝑛).
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Step 2: Transformation of Context
The transformation of the context C involves modifying 𝑚 parameters (e.g., spatial, temporal, semantic at-
tributes). Each parameter requires a constant amount of work, resulting in a complexity of 𝑂 (𝑚).

Step 3: Truth Value Updates
Each proposition 𝐴 ∈ P is evaluated within the transformed context 𝑈 (C). The evaluation of truth values
requires 𝑚 operations per context, resulting in a complexity of 𝑂 (𝑚) for each proposition. Since there are 𝑛
propositions, the total complexity for truth value updates is 𝑂 (𝑛 · 𝑚).

Step 4: Logical Connective Adjustment
Logical connectives (∧,∨,¬) associated with each proposition are adjusted once per proposition. This results
in a complexity of 𝑂 (𝑛).

Total Time Complexity:
Summing the complexities of all steps:

Total Time Complexity = 𝑂 (𝑛) +𝑂 (𝑚) +𝑂 (𝑛 · 𝑚) +𝑂 (𝑛).

The term 𝑂 (𝑛 · 𝑚) dominates for large 𝑛 and 𝑚. However, if 𝑚 is constant or small relative to 𝑛, the total
complexity simplifies to 𝑂 (𝑛 + 𝑚).

Space Complexity:
The algorithm requires memory to store:

• The transformed propositions𝑈 (P) (𝑂 (𝑛)),

• The transformed context𝑈 (C) (𝑂 (𝑚)),

• The updated truth values (𝑂 (𝑛 · 𝑚)).

Combining these, the total space complexity is 𝑂 (𝑛 + 𝑚).

Thus, the stated complexities are proven. □

3 Contextual Upside-Down Logic

In this section, We introduce a derivative logic called Contextual Upside-Down Logic, which extends Upside-
Down Logic by incorporating a contextual transformation function that not only flips truth values but also
adjusts the logical connectives based on context.

3.1 Formal Definition of Contextual Upside-Down Logic

The definition of Contextual Upside-Down Logic is provided below. In a highly intuitive sense, it is about
defining a system that controls ”differences in context” using different logical operations. To put it boldly, it
can be seen as a definition aimed at reducing the probability of Upside-Down occurrences caused by various
factors. There is no significant operational difference from Upside-Down Logic; the only distinction is that the
contextual transformation function is explicitly defined.

Definition 3.1 (Contextual Upside-Down Logic). A Contextual Upside-Down Logic is a logical systemM′′
derived from a base logical systemM by introducing a context-dependent transformation𝑈C such that:

1. For any proposition 𝐴 ∈ P with truth value 𝑣(𝐴, C) in context C, there exists a transformed proposition
𝑈C (𝐴) and transformed context𝑈C (C) where:

• Contextual Falsification: If 𝑣(𝐴, C) = True, then 𝑣(𝑈C (𝐴),𝑈C (C)) = False.
• Contextual Truthification: If 𝑣(𝐴, C) = False, then 𝑣(𝑈C (𝐴),𝑈C (C)) = True.
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2. The logical connectives are adjusted according to the context transformation, allowing for different logical
operations in𝑈C (C).

3. The transformation𝑈C is well-defined, invertible, and consistent within the logical systemM′′.

Remark 3.2. The comparison with General Upside-Down Logic and notable points are described below.

• Context Dependence: General Upside-Down Logic applies transformations 𝑈 globally, altering truth
values uniformly across all contexts. In contrast, Contextual Upside-Down Logic introduces a transfor-
mation 𝑈C that is explicitly dependent on the context C, allowing for adjustments that are sensitive to
specific cultural, semantic, or situational factors.

• Adjustment of Logical Connectives: In Contextual Upside-Down Logic, not only are truth values flipped
based on context, but logical connectives are also adjusted. This means that operations like ”and,” ”or,”
”implies,” etc., may have different interpretations in different contexts, affecting the outcome of logical
evaluations.

• Transformation Scope: WhileUpside-DownLogic applies transformations uniformly, Contextual Upside-
Down Logic allows transformations to vary between contexts, leading to a more nuanced and accurate
modeling of propositions in context-dependent scenarios.

3.2 Some Example of Contextual Upside-Down Logic

In this subsection, we explore some examples of Contextual Upside-Down Logic.

Example 3.3 (Cultural Interpretation of Silence). Let 𝐴: ”Silence implies agreement.”

In context CWestern:

In some Western contexts, silence during a discussion can be interpreted as agreement or consent:

𝑣(𝐴, CWestern) = True.

Contextual Transformation:

In Japanese cultural context𝑈C (CJapanese), silence often carries different meanings, such as disagreement, con-
templation, or polite refusal.

Applying the context-dependent transformation 𝑈C , we adjust both the proposition and the logical connective
”implies”:

𝑈C (𝐴) : ”Silence does not imply agreement.”

The logical connective ”implies” is reinterpreted based on the cultural context.

Updated Truth Value:

In the transformed context:

𝑣(𝑈C (𝐴),𝑈C (CJapanese)) = True.

This example demonstrates how Contextual Upside-Down Logic adjusts both the proposition and the logical
connective based on cultural context, differing from general Upside-Down Logic by its context-sensitive ap-
proach.
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Example 3.4 (Double Negatives in Language). Double Negative refers to the use of two negative terms in a
sentence, which can create emphasis or reverse the intended meaning(cf. [9]).

Let 𝐴: ”He didn’t do nothing.”

In context CStandard English:

In Standard English, double negatives are typically interpreted as a positive statement due to the logical rule
that two negatives make a positive:

𝑣(𝐴, CStandard English) = True.

Contextual Transformation:

In certain dialects or colloquial contexts 𝑈C (CDialectal English), double negatives are used for emphasis and still
convey a negative meaning.

Applying the context-dependent transformation𝑈C , the logical connective (negation) is adjusted:

𝑈C (𝐴) : ”He did not do anything.”

Updated Truth Value:

In the transformed context:

𝑣(𝑈C (𝐴),𝑈C (CDialectal English)) = False.

This example shows howContextual Upside-Down Logic adjusts the interpretation of logical connectives based
on linguistic context, leading to different truth values.

Example 3.5 (Logical Connectives in Cultural Context). Let 𝐴: ”He is smart and hardworking.”

In context CCulture A:

In Culture A, the conjunction ”and” is used to combine two positive attributes straightforwardly:

𝑣(𝐴, CCulture A) = True.

Contextual Transformation:

In Culture B, where modesty is highly valued, praising someone with multiple positive attributes may be seen
as excessive or may imply that one attribute detracts from the other.

Applying the context-dependent transformation 𝑈C , the logical connective ”and” is adjusted to reflect this
cultural nuance:

𝑈C (𝐴) : ”He is smart but not necessarily hardworking.”

Or the ”and” might be interpreted as an exclusive ”or”:

𝑈C (𝐴) : ”He is smart or hardworking (but not both).”
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Updated Truth Value:

In the transformed context:

𝑣(𝑈C (𝐴),𝑈C (CCulture B)) = Uncertain or False.

This example illustrates how the interpretation of logical connectives like ”and” can change based on cultural
context, a feature captured by Contextual Upside-Down Logic.

Example 3.6 (Indirect Communication in Japanese Culture). Indirect Communication in Japanese Culture
emphasizes subtlety, non-verbal cues, and ambiguity, often prioritizing social harmony and avoiding direct
confrontation or disagreement (cf. [30, 68]).

Let 𝐴: ”He is refusing the request.”

In context CDirect Communication:

In a culture that values direct communication, saying ”I will think about it” suggests consideration, implying
that the person may accept the request:

𝑣(𝐴, CDirect Communication) = False.

Contextual Transformation:

In Japanese culture𝑈C (CJapanese), the phrase ”Kangaete okimasu” (”I will think about it”) is often a polite way
to decline a request.

Applying the context-dependent transformation 𝑈C , we adjust the proposition and interpret the logical impli-
cations differently:

𝑈C (𝐴) : ”He is politely declining the request.”

Updated Truth Value:

In the transformed context:

𝑣(𝑈C (𝐴),𝑈C (CJapanese)) = True.

The transformation demonstrates how Contextual Upside-Down Logic captures the nuances of indirect com-
munication by adjusting the proposition and its interpretation based on cultural context.

Example 3.7 (Interpretation of ”Yes” in Different Contexts). Let 𝐴: ”She agrees with the proposal.”

In context CGeneral:

In many cultures, saying ”yes” directly signifies agreement:

𝑣(𝐴, CGeneral) = True.

Contextual Transformation:

In Japanese culture𝑈C (CJapanese), saying ”Hai” can sometimes mean ”I hear you” or ”I acknowledge what you
are saying,” without implying agreement.
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Applying the context-dependent transformation𝑈C , we adjust the proposition:

𝑈C (𝐴) : ”She acknowledges the proposal but may not agree with it.”

Updated Truth Value:

In the transformed context:

𝑣(𝑈C (𝐴),𝑈C (CJapanese)) = Uncertain or False.

This example highlights how Contextual Upside-Down Logic accounts for cultural differences in interpreting
affirmations, adjusting both the proposition and its truth value accordingly.

Example 3.8 (Concept of ”Honne” and ”Tatemae” in Japanese Culture). Let 𝐴: ”He is expressing his true
opinions.”

In context CIndividualistic:

In an individualistic culture where personal expression is encouraged, the proposition is likely considered true:

𝑣(𝐴, CIndividualistic) = True.

Contextual Transformation:

In Japanese culture 𝑈C (CJapanese), the concepts of Honne (true feelings) and Tatemae (public facade) play a
significant role. Individuals often express Tatemae to maintain social harmony(cf. [17, 60]).

Applying the context-dependent transformation𝑈C :

𝑈C (𝐴) : ”He is expressing what is expected socially, not his true opinions.”

Updated Truth Value:

In the transformed context:

𝑣(𝑈C (𝐴),𝑈C (CJapanese)) = False.

This demonstrates how Contextual Upside-Down Logic captures the impact of cultural concepts on truth values
and the interpretation of propositions.

Example 3.9 (Adjusting Logical Connectives Based on Context). Let 𝐴: ”Taking risks leads to success.”

In context CEntrepreneurial:

In an entrepreneurial context where risk-taking is valued, the proposition is considered true:

𝑣(𝐴, CEntrepreneurial) = True.

Contextual Transformation:
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In a context where stability is prioritized, such as in certain traditional cultures 𝑈C (CTraditional), the logical
connective ”leads to” may be interpreted differently, perhaps even reversed.

Applying the context-dependent transformation𝑈C :

𝑈C (𝐴) : ”Taking risks leads to failure.”

Updated Truth Value:

In the transformed context:

𝑣(𝑈C (𝐴),𝑈C (CTraditional)) = True.

This example shows howContextual Upside-DownLogic adjusts both the proposition and the logical connective
based on context, altering the truth value accordingly.

Remark 3.10. In these examples, Contextual Upside-Down Logic differs from general Upside-Down Logic
by:

• Context-Specific Transformations: Adjustments are made based on specific contexts rather than ap-
plying a uniform transformation across all contexts.

• Adjustment of Logical Connectives: Logical connectives are reinterpreted according to the context,
affecting how propositions are connected and evaluated.

• Nuanced Truth Values: Truth values may become uncertain or require more nuanced interpretation due
to context-dependent meanings.

3.3 Some Basic Theorem of Contextual Upside-Down Logic

In this subsection, we consider some basic theorems of Contextual Upside-Down Logic. The following theo-
rems hold.

Definition 3.11 (Bijective Function). A function 𝑓 : 𝑋 → 𝑌 is called bijective if it is both injective (one-to-one)
and surjective (onto). This means:

• 𝑓 is injective: For all 𝑥1, 𝑥2 ∈ 𝑋 , if 𝑓 (𝑥1) = 𝑓 (𝑥2), then 𝑥1 = 𝑥2.

• 𝑓 is surjective: For every 𝑦 ∈ 𝑌 , there exists at least one 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑦.

Thus, every element in 𝑌 is mapped to by exactly one element in 𝑋 .

Definition 3.12 (Invertible Function). A function 𝑓 : 𝑋 → 𝑌 is called invertible if there exists a function
𝑔 : 𝑌 → 𝑋 such that:

𝑔( 𝑓 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝑋, and 𝑓 (𝑔(𝑦)) = 𝑦 for all 𝑦 ∈ 𝑌 .

The function 𝑔 is called the inverse of 𝑓 , and is denoted by 𝑓 −1.

Theorem 3.13 (Contextual Invertibility). In Contextual Upside-Down Logic, the transformation 𝑈C is invert-
ible if and only if the context mapping 𝑈C : C → 𝑈C (C) is bijective.
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Proof. If𝑈C is invertible, there exists a𝑈−1
C such that:

𝑈−1
C (𝑈C (𝐴)) = 𝐴, 𝑈−1

C (𝑈C (C)) = C.
This requires that𝑈C is a bijection on both propositions and contexts.

Conversely, if𝑈C is bijective, then it has an inverse function, and the transformation is invertible. □

Theorem 3.14 (Consistency Preservation). If the base logicM is consistent, and the transformation 𝑈C is
consistent, then the derived Contextual Upside-Down LogicM′′ is consistent.

Proof. Since𝑈C transforms propositions and contexts without introducing contradictions, andM is consistent,
any deductions made inM′′ will also be consistent. □

3.4 Algorithm for Contextual Upside-Down Transformation

We present an algorithm that, given a proposition 𝐴 and a context C, computes the transformed proposition
𝑈C (𝐴) and the transformed context𝑈C (C).

Algorithm 2 Contextual Upside-Down Transformation Algorithm
Require: Proposition 𝐴, Context C, Valuation Function 𝑣
Ensure: Transformed Proposition 𝑈C (𝐴), Transformed Context 𝑈C (C), Updated Truth Value

𝑣(𝑈C (𝐴),𝑈C (C))
1: Compute the truth value 𝑣(𝐴, C)
2: if 𝑣(𝐴, C) = True then
3: Apply a context transformation function 𝑇C : C → 𝑈C (C)
4: Define𝑈C (C) = 𝑇C (C) such that 𝑣(𝐴,𝑈C (C)) = False
5: else if 𝑣(𝐴, C) = False then
6: Apply a context transformation function 𝑇C : C → 𝑈C (C)
7: Define𝑈C (C) = 𝑇C (C) such that 𝑣(𝐴,𝑈C (C)) = True
8: end if
9: Define𝑈C (𝐴) = 𝐴

10: Adjust the logical connectives within 𝐴 to reflect changes in𝑈C (C), if necessary
11: return 𝑈C (𝐴),𝑈C (C), 𝑣(𝑈C (𝐴),𝑈C (C))

Theorem 3.15 (Correctness of the Algorithm). The Contextual Upside-Down Transformation Algorithm cor-
rectly computes the transformed proposition and context such that the truth value of 𝐴 is inverted in the trans-
formed context, satisfying the definitions of Contextual Upside-Down Logic.

Proof. Consider the two cases:

1. If 𝑣(𝐴, C) = True, the algorithm applies a context transformation 𝑇C such that𝑈C (C) makes 𝐴 false. By
definition of Contextual Falsification, 𝑣(𝑈C (𝐴),𝑈C (C)) = False.

2. If 𝑣(𝐴, C) = False, the algorithm applies a context transformation 𝑇C such that𝑈C (C) makes 𝐴 true. By
definition of Contextual Truthification, 𝑣(𝑈C (𝐴),𝑈C (C)) = True.

Thus, the algorithm adheres to the principles of Contextual Upside-Down Logic. □

Theorem 3.16 (Time and Space Complexity of the Contextual Upside-Down Transformation Algorithm). Let
𝑛 represent the size of the proposition 𝐴 (e.g., the number of symbols or logical operators), and 𝑚 represent the
complexity of the context C. The following hold for the Contextual Upside-Down Transformation Algorithm:

1. The total time complexity is 𝑂 (𝑛 + 𝑚).
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2. The total space complexity is 𝑂 (𝑛 + 𝑚).

Proof. To prove the claims, we analyze each step of the algorithm.

1. Truth Value Computation: This step evaluates 𝑣(𝐴, C), which involves traversing 𝐴 and assessing its
logical structure within the context C.

• Traversing 𝐴 contributes 𝑂 (𝑛).
• Accessing contextual information for C contributes 𝑂 (𝑚).

Therefore, this step has a complexity of 𝑂 (𝑛 + 𝑚).

2. Context Transformation: The context C is transformed into 𝑈C (C) using a predefined transformation
function 𝑇C .

• Since this operation is independent of 𝐴, the complexity depends solely on C and is 𝑂 (𝑚).

3. Logical Connective Adjustment: Adjusting logical connectives within 𝐴 requires traversing the structure
of 𝐴.

• This contributes 𝑂 (𝑛).

4. Total Time Complexity: Summing up the complexities of the above steps, the total time complexity is:

𝑂 (𝑛 + 𝑚) +𝑂 (𝑚) +𝑂 (𝑛) = 𝑂 (𝑛 + 𝑚).

5. Space Complexity: The algorithm requires space to store the transformed proposition 𝑈C (𝐴) and the
transformed context𝑈C (C).

• The storage for 𝐴 contributes 𝑂 (𝑛).
• The storage for C contributes 𝑂 (𝑚).

Thus, the total space complexity is:
𝑂 (𝑛 + 𝑚).

This completes the proof of the theorem. □

Example 3.17 (Ambiguity in Language Translation using the Algorithm). We consider following example.

• Proposition: 𝐴: ”He is cool.”

• Context: C: American English, where ”cool” means ”good” or ”impressive.”

• Valuation: 𝑣(𝐴, C) = True.

Transformation: Transform the context to 𝑈C (C): British English, where ”cool” might mean ”cold” or emo-
tionally distant. 𝑣(𝑈C (𝐴),𝑈C (C)) = False.

Thus, the algorithm successfully inverts the truth value via context transformation.

4 Framework of Indeterm-Upside-Down Logic

We propose a new framework called Indeterm-Upside-Down Logic. This logic is designed to represent real-
world phenomena where Indeterminate either decreases or increases.
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4.1 Definition and Mathematical Formulation

We examine the definition and mathematical formulation of Indeterm-Upside-Down Logic.

Notation 4.1. LetP be a set of propositions, and letC be a set of contexts. Let𝑇 : P×C → {True,False, Indeterminate}
be a truth valuation function that assigns a truth value to each proposition-context pair.

The following four transformations are defined within the framework of Indeterm-Upside-Down Logic:

• Indeterminate-to-True Transformation: Transforms indeterminate propositions into true ones when evi-
dence strongly supports their truthfulness.

• Indeterminate-to-False Transformation: Converts indeterminate propositions to false when new evidence
contradicts their truthfulness.

• True-to-Indeterminate Transformation: Shifts propositions from true to indeterminate when supporting
evidence becomes unreliable or insufficient.

• False-to-Indeterminate Transformation: Transforms propositions from false to indeterminate when evi-
dence previously supporting falsity becomes inconclusive.

The framework of Indeterm-Upside-Down Logic, including its definitions and brief examples, is presented
below.

Definition 4.2 (Indeterminate-to-True Transformation). Let 𝐴 ∈ P, and suppose 𝑇 (𝐴, C) = Indeterminate.
The transformation𝑈IT (Indeterminate-to-True) changes the truth value as follows:

𝑇 (𝑈IT (𝐴),𝑈IT (C)) = True.

This transformation is applied if additional evidence or contextual information supports the truthfulness of
the proposition.

Example 4.3 (Diagnosing a Medical Condition). Let 𝐴: ”The patient has a specific medical condition.”

Initial Context C: The initial test results are inconclusive, making the truth value of 𝐴 indeterminate:

𝑇 (𝐴, C) = Indeterminate.

Context Transformation𝑈IT (C): Newdiagnostic evidence, such as advanced imaging or biomarkers, strongly
supports the presence of the condition:

𝑇 (𝑈IT (𝐴),𝑈IT (C)) = True.

Interpretation: As new evidence emerges, the truth value of the proposition 𝐴 shifts from indeterminate to true,
allowing for a definitive diagnosis.

Example 4.4 (Japanese Linguistic Ambiguity). Let 𝐸 : ”Sore wa chotto...” means ”The speaker is refusing the
request.”

Initial Context C: In a literal interpretation, the phrase appears hesitant and non-committal:

𝑇 (𝐸, C) = Indeterminate.

Context Transformation 𝑈IT (C): Understanding cultural subtleties in context 𝑈IT (C), the phrase is recog-
nized as a polite refusal:

𝑇 (𝑈IT (𝐸),𝑈IT (C)) = True.

Interpretation: Cultural context shifts the interpretation of the ambiguous phrase to convey a clear refusal.
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Definition 4.5 (Indeterminate-to-False Transformation). Let 𝐴 ∈ P, and suppose 𝑇 (𝐴, C) = Indeterminate.
The transformation𝑈IF (Indeterminate-to-False) changes the truth value as follows:

𝑇 (𝑈IF (𝐴),𝑈IF (C)) = False.

This transformation is applied if additional evidence or contextual information contradicts the truthfulness
of the proposition.

Example 4.6 (Weather Prediction). Let 𝐵: ”It will rain tomorrow.”

Initial Context C: Early weather models are ambiguous, leading to an indeterminate truth value for 𝐵:

𝑇 (𝐵, C) = Indeterminate.

Context Transformation 𝑈IF (C): Updated weather data shows clear skies, strongly contradicting the likeli-
hood of rain:

𝑇 (𝑈IF (𝐵),𝑈IF (C)) = False.

Interpretation: As more reliable weather information becomes available, the proposition 𝐵 transitions from
indeterminate to false.

Definition 4.7 (True-to-Indeterminate Transformation). Let 𝐵 ∈ P, and suppose 𝑇 (𝐵, C) = True. The trans-
formation𝑈TI (True-to-Indeterminate) changes the truth value as follows:

𝑇 (𝑈TI (𝐵),𝑈TI (C)) = Indeterminate.

This transformation is applied if evidence or contextual information that previously supported the truth of 𝐵
becomes unreliable or insufficient.

Example 4.8 (Legal Testimony). Let 𝐶: ”The witness’s statement is truthful.”

Initial Context C: Based on initial corroboration, the statement is considered true:

𝑇 (𝐶, C) = True.

Context Transformation 𝑈TI (C): New contradictory evidence or inconsistencies emerge, casting doubt on
the testimony:

𝑇 (𝑈TI(𝐶),𝑈TI (C)) = Indeterminate.

Interpretation: The emergence of conflicting information shifts the truth value of𝐶 from true to indeterminate,
reflecting the uncertainty surrounding the testimony.

Example 4.9 (Scientific Consensus). Let 𝐺: ”A particular medicine is effective for treating a disease.”

Initial Context C: Clinical trials initially support the efficacy of the medicine:

𝑇 (𝐺, C) = True.

Context Transformation𝑈TI (C): New studies produce mixed results, creating uncertainty:

𝑇 (𝑈TI (𝐺),𝑈TI (C)) = Indeterminate.

Interpretation: Shifting evidence impacts the certainty of scientific claims, transitioning from true to indeter-
minate.
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Definition 4.10 (False-to-Indeterminate Transformation). Let 𝐶 ∈ P, and suppose 𝑇 (𝐶, C) = False. The
transformation𝑈FI (False-to-Indeterminate) changes the truth value as follows:

𝑇 (𝑈FI(𝐶),𝑈FI (C)) = Indeterminate.

This transformation is applied if evidence or contextual information that previously supported the falsity of 𝐶
becomes unreliable or insufficient.

Example 4.11 (Product Safety Assessment). Let 𝐷: ”The product is unsafe for use.”

Initial Context C: Initial tests indicate that the product is unsafe:

𝑇 (𝐷, C) = False.

Context Transformation 𝑈FI (C): Additional testing and revised safety guidelines introduce ambiguity re-
garding its safety:

𝑇 (𝑈FI(𝐷),𝑈FI (C)) = Indeterminate.

Interpretation: The shift from false to indeterminate reflects new uncertainty about the safety of the product
under revised conditions.

4.2 Neutrosophic Logic Representation

In Neutrosophic Logic, each proposition 𝐴 ∈ P is assigned a truth value 𝑣(𝐴) = (𝑇, 𝐼, 𝐹), where 𝑇, 𝐼, 𝐹 ∈
[0, 1] represent the degrees of truth, indeterminacy, and falsity, respectively. The transformations can be de-
scribed mathematically as follows:

Definition 4.12. Given 𝑣(𝐴) = (𝑇, 𝐼, 𝐹) with 𝐼 > 0 and evidence supporting truth:

𝑣(𝑈IT (𝐴)) = (𝑇 + 𝐼, 0, 𝐹).

Definition 4.13. Given 𝑣(𝐴) = (𝑇, 𝐼, 𝐹) with 𝐼 > 0 and evidence contradicting truth:

𝑣(𝑈IF (𝐴)) = (𝑇, 0, 𝐹 + 𝐼).

Definition 4.14. Given 𝑣(𝐵) = (𝑇, 𝐼, 𝐹) with 𝑇 > 0 and emerging ambiguity:

𝑣(𝑈TI (𝐵)) = (0, 𝑇 + 𝐼, 𝐹).

Definition 4.15. Given 𝑣(𝐶) = (𝑇, 𝐼, 𝐹) with 𝐹 > 0 and emerging ambiguity:

𝑣(𝑈FI (𝐶)) = (𝑇, 𝐼 + 𝐹, 0).

Remark 4.16. 1. Preservation of Total Degree: All transformations preserve the sum of the components:

𝑇 + 𝐼 + 𝐹 = 𝑇 ′ + 𝐼 ′ + 𝐹′.

2. Consistency: The transformations satisfy the constraints of Neutrosophic Logic, where 𝑇, 𝐼, 𝐹 ∈ [0, 1]
and 𝑇 + 𝐼 + 𝐹 ≤ 1.

4.3 Mathematical Basic Theorems in Indeterm-Upside-Down Logic

This subsection presents formal theorems within the framework of Indeterm-Upside-Down Logic.

Theorem 4.17 (Preservation of Total Truth Value). For any proposition 𝐴 ∈ P with a truth value 𝑇 (𝐴, C) ∈
{True,False, Indeterminate}, every transformation𝑈IT,𝑈IF,𝑈TI,𝑈FI preserves the total degree of truth, falsity,
and indeterminacy. That is:

𝑇 + 𝐼 + 𝐹 = 𝑇 ′ + 𝐼 ′ + 𝐹′,
where (𝑇, 𝐼, 𝐹) and (𝑇 ′, 𝐼 ′, 𝐹′) represent the truth value components before and after the transformation.
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Proof. Consider the four transformations:

1. Indeterminate-to-True (𝑈IT):

𝑣(𝐴) = (𝑇, 𝐼, 𝐹) → 𝑣(𝑈IT (𝐴)) = (𝑇 + 𝐼, 0, 𝐹).

Clearly, 𝑇 + 𝐼 + 𝐹 = (𝑇 + 𝐼) + 0 + 𝐹.

2. Indeterminate-to-False (𝑈IF):

𝑣(𝐴) = (𝑇, 𝐼, 𝐹) → 𝑣(𝑈IF (𝐴)) = (𝑇, 0, 𝐹 + 𝐼).

Similarly, 𝑇 + 𝐼 + 𝐹 = 𝑇 + 0 + (𝐹 + 𝐼).

3. True-to-Indeterminate (𝑈TI):

𝑣(𝐴) = (𝑇, 𝐼, 𝐹) → 𝑣(𝑈TI (𝐴)) = (0, 𝑇 + 𝐼, 𝐹).

Here, 𝑇 + 𝐼 + 𝐹 = 0 + (𝑇 + 𝐼) + 𝐹.

4. False-to-Indeterminate (𝑈FI):

𝑣(𝐴) = (𝑇, 𝐼, 𝐹) → 𝑣(𝑈FI (𝐴)) = (𝑇, 𝐼 + 𝐹, 0).

Finally, 𝑇 + 𝐼 + 𝐹 = 𝑇 + (𝐼 + 𝐹) + 0.

In each case, the total sum 𝑇 + 𝐼 + 𝐹 remains invariant. Thus, the theorem holds. □

Theorem 4.18 (Involutivity of𝑈TI and𝑈FI). The transformations𝑈TI (True-to-Indeterminate) and𝑈FI (False-
to-Indeterminate) are involutive. That is:

𝑈TI (𝑈TI (𝐴)) = 𝐴, 𝑈FI (𝑈FI (𝐴)) = 𝐴.

Proof. Let 𝑣(𝐴) = (𝑇, 𝐼, 𝐹).

1. True-to-Indeterminate (𝑈TI):

𝑣(𝐴) = (𝑇, 𝐼, 𝐹) → 𝑣(𝑈TI (𝐴)) = (0, 𝑇 + 𝐼, 𝐹).

Applying𝑈TI again:
𝑣(𝑈TI (𝑈TI (𝐴))) = (𝑇, 𝐼, 𝐹),

which is identical to the original truth value.

2. False-to-Indeterminate (𝑈FI):

𝑣(𝐴) = (𝑇, 𝐼, 𝐹) → 𝑣(𝑈FI (𝐴)) = (𝑇, 𝐼 + 𝐹, 0).

Applying𝑈FI again:
𝑣(𝑈FI (𝑈FI (𝐴))) = (𝑇, 𝐼, 𝐹),

again identical to the original truth value.

Thus,𝑈TI and𝑈FI are involutive. □

Theorem 4.19 (Correctness of 𝑈IT and 𝑈IF). For any 𝐴 ∈ P with 𝑇 (𝐴, C) = Indeterminate, the transfor-
mations 𝑈IT (Indeterminate-to-True) and 𝑈IF (Indeterminate-to-False) are consistent with the supporting or
contradicting evidence 𝐸 . That is:

𝑈IT is applied if and only if 𝐸 supports 𝐴,

𝑈IF is applied if and only if 𝐸 contradicts 𝐴.
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Proof. By definition:

1. Indeterminate-to-True (𝑈IT): This transformation is applied only if evidence 𝐸 supports 𝐴. Let 𝐸 be
a set of observations or data such that:

𝑃(𝐴 | 𝐸) > 0.5,

where 𝑃(𝐴 | 𝐸) is the probability of 𝐴 being true given 𝐸 . In this case:

𝑇 (𝑈IT (𝐴),𝑈IT(C)) = True.

2. Indeterminate-to-False (𝑈IF): This transformation is applied only if evidence 𝐸 contradicts 𝐴. Let
𝑃(𝐴 | 𝐸) < 0.5. In this case:

𝑇 (𝑈IF (𝐴),𝑈IF(C)) = False.

The correctness of the transformations follows from their alignment with the evidence 𝐸 . □

4.4 Real-Life Examples: Combining Neutrosophic Logic with Indeterm-Upside-Down Logic

When Neutrosophic Logic is combined with Indeterm-Upside-Down Logic, we can model scenarios where
ambiguity dynamically shifts, either increasing or decreasing, based on contextual evidence or interpretation.
Below are some concrete real-life examples that illustrate these transformations.

Example 4.20 (Medical Diagnosis). Consider a proposition 𝐴: ”The patient has Disease X.”

Initial Neutrosophic Value: 𝑣(𝐴) = (0.4, 0.5, 0.1), where:

• 𝑇 = 0.4: Moderate evidence supports the diagnosis.

• 𝐼 = 0.5: There is significant ambiguity due to inconclusive test results.

• 𝐹 = 0.1: Minimal evidence contradicts the diagnosis.

Transformation 𝑈IT (Indeterminate to Truth): New test results strongly support the diagnosis, reducing
ambiguity. The updated value is:

𝑣(𝑈IT (𝐴)) = (0.4 + 0.5, 0, 0.1) = (0.9, 0, 0.1).

Interpretation: The ambiguity is resolved in favor of the diagnosis, leaving a highly probable truth.

Transformation𝑈IF (Indeterminate to Falsity): Alternatively, if the new evidence contradicts the diagnosis:

𝑣(𝑈IF (𝐴)) = (0.4, 0, 0.1 + 0.5) = (0.4, 0, 0.6).

Interpretation: Ambiguity is resolved against the diagnosis, indicating a stronger falsity.

Example 4.21 (Weather Prediction). Consider a proposition 𝐵: ”It will rain tomorrow.”

Initial Neutrosophic Value: 𝑣(𝐵) = (0.6, 0.3, 0.1), where:

• 𝑇 = 0.6: Moderate evidence (e.g., weather models) suggests rain.

• 𝐼 = 0.3: Uncertainty due to fluctuating weather conditions.

• 𝐹 = 0.1: Weak evidence opposes rain.
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Transformation 𝑈TI (Truth to Indeterminate): Unforeseen atmospheric changes increase uncertainty, re-
ducing confidence in the prediction:

𝑣(𝑈TI(𝐵)) = (0, 0.6 + 0.3, 0.1) = (0, 0.9, 0.1).

Interpretation: The truth value diminishes, and ambiguity dominates.

Transformation 𝑈FI (Falsity to Indeterminate): If evidence opposing rain becomes unclear, ambiguity in-
creases:

𝑣(𝑈FI(𝐵)) = (0.6, 0.3 + 0.1, 0) = (0.6, 0.4, 0).

Interpretation: Falsity diminishes, and ambiguity increases while truth remains steady.

Example 4.22 (Consumer Product Reviews). Consider a proposition 𝐶: ”The product is high-quality.”

Initial Neutrosophic Value: 𝑣(𝐶) = (0.7, 0.2, 0.1), where:

• 𝑇 = 0.7: Most reviews are positive.

• 𝐼 = 0.2: Some reviews lack clarity.

• 𝐹 = 0.1: A minority of reviews are negative.

Transformation 𝑈IT (Indeterminate to Truth): Additional positive reviews clarify doubts, increasing the
truth value:

𝑣(𝑈IT (𝐶)) = (0.7 + 0.2, 0, 0.1) = (0.9, 0, 0.1).

Transformation𝑈TI (Truth to Indeterminate): If conflicting reviews emerge, ambiguity grows:

𝑣(𝑈TI (𝐶)) = (0, 0.7 + 0.2, 0.1) = (0, 0.9, 0.1).

Remark 4.23. These examples demonstrate how combining Neutrosophic Logic with Indeterm-Upside-Down
Logic provides a nuanced framework for modeling dynamic changes in truth, indeterminacy, and falsity. This
approach is particularly suited for real-world scenarios where evidence evolves over time.

4.5 Algorithm for Indeterm-Upside-Down Logic

We propose an algorithmic framework for Indeterm-Upside-Down Logic, incorporating the four transforma-
tions: Indeterminate-to-True, Indeterminate-to-False, True-to-Indeterminate, and False-to-Indeterminate. The
algorithm determines the transformation to apply based on the current truth value, context, and available evi-
dence.

Theorem4.24 (Correctness of Algorithm). Algorithm 3 correctly applies the appropriate transformation based
on the given inputs.

Proof. The algorithm handles all cases as defined in the framework of Indeterm-Upside-Down Logic:

• If 𝑇 (𝐴, C) = Indeterminate, it applies𝑈IT if evidence supports 𝐴, or𝑈IF if evidence contradicts 𝐴.

• If 𝑇 (𝐴, C) = True, it applies𝑈TI if evidence becomes unreliable, transitioning the truth value to Indeter-
minate.

• If 𝑇 (𝐴, C) = False, it applies 𝑈FI if evidence becomes unreliable, transitioning the truth value to Inde-
terminate.

These conditions align with the definitions of Indeterm-Upside-Down Logic transformations. The algorithm
evaluates all necessary conditions to determine the appropriate transformation, ensuring correctness. □
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Algorithm 3 Indeterm-Upside-Down Logic Transformation
Require: Proposition 𝐴 ∈ P, context C, current truth value 𝑇 (𝐴, C) ∈ {True, False, Indeterminate}, and

evidence 𝐸 .
Ensure: Transformed truth value 𝑇 ′ (𝐴, C′).
1: if 𝑇 (𝐴, C) = Indeterminate then
2: if Evidence 𝐸 supports 𝐴 then
3: Apply𝑈IT: 𝑇 ′ (𝐴, C′) ← True.
4: else
5: Apply𝑈IF: 𝑇 ′ (𝐴, C′) ← False.
6: end if
7: else if 𝑇 (𝐴, C) = True then
8: if Evidence 𝐸 is unreliable then
9: Apply𝑈TI: 𝑇 ′ (𝐴, C′) ← Indeterminate.

10: else
11: 𝑇 ′ (𝐴, C′) ← 𝑇 (𝐴, C).
12: end if
13: else if 𝑇 (𝐴, C) = False then
14: if Evidence 𝐸 is unreliable then
15: Apply𝑈FI: 𝑇 ′ (𝐴, C′) ← Indeterminate.
16: else
17: 𝑇 ′ (𝐴, C′) ← 𝑇 (𝐴, C).
18: end if
19: end if
20: return 𝑇 ′ (𝐴, C′).

Theorem 4.25 (Time Complexity). The time complexity of Algorithm 3 is 𝑂 (1).

Proof. The algorithm evaluates the current truth value 𝑇 (𝐴, C) and evidence 𝐸 , performing at most two nested
conditional checks. As there are no loops or recursive calls, the operations occur in constant time. Hence, the
time complexity is 𝑂 (1). □

Theorem 4.26 (Space Complexity). The space complexity of Algorithm 3 is 𝑂 (1).

Proof. The algorithm requires constant space to store the inputs (𝐴, C,𝑇 (𝐴, C), and 𝐸) and the output𝑇 ′ (𝐴, C′).
No additional data structures are instantiated, so the space complexity is 𝑂 (1). □

Example 4.27 (Medical Diagnosis). Input:

• 𝐴: ”The patient has disease X.”

• C: Initial diagnostic tests are inconclusive.

• 𝑇 (𝐴, C) = Indeterminate.

• Evidence 𝐸 : Advanced imaging strongly indicates disease X.

Algorithm Execution: Since 𝑇 (𝐴, C) = Indeterminate and 𝐸 supports 𝐴, the algorithm applies𝑈IT:

𝑇 ′ (𝐴, C′) = True.

Output: The patient’s diagnosis transitions to definitive: 𝑇 ′ (𝐴, C′) = True.

5 Certain Upside-Down Logic

In this section, we explore Certain Upside-Down Logic. This logical framework dynamically adjusts the truth,
indeterminacy, and falsity values of propositions based on evidence, redistributing and swapping these com-
ponents as required.
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5.1 Definition of Certain Upside-Down Logic

The definition of Certain Upside-Down Logic is presented below. As a note, in this section, Certain Upside-
Down Logic is considered within the framework of Neutrosophic Logic.

Notation 5.1. In this section, letP be a set of propositions, and letC be a set of contexts. Let 𝑣 : P×C → [0, 1]3
be a truth valuation function assigning to each proposition-context pair (𝐴,𝐶) a Neutrosophic truth value
𝑣(𝐴,𝐶) = (𝑇, 𝐼, 𝐹), where 𝑇 , 𝐼, and 𝐹 represent the degrees of truth, indeterminacy, and falsity, respectively,
satisfying:

𝑇, 𝐼, 𝐹 ∈ [0, 1], 𝑇 + 𝐼 + 𝐹 = 1.

Definition 5.2 (Certain Upside-Down Logic). Certain Upside-Down Logic is an extension of Upside-Down
Logic that includes transformations of the truth values based on evidence 𝐸 . The logic allows for the reallocation
of the indeterminacy value 𝐼 to either the truth value 𝑇 or the falsity value 𝐹, depending on the evidence.
Specifically, the transformations are defined as follows:

1. Weak Evidence Shift (Indeterminacy to Falsity and Swap):

𝑣′ (𝐴) = (𝐹 + 𝐼, 0, 𝑇),

applied when evidence weakly supports the falsity of 𝐴.

2. Weak Evidence Shift (Indeterminacy to Truth and Swap):

𝑣′ (𝐴) = (𝐹, 0, 𝑇 + 𝐼),

applied when evidence weakly supports the truth of 𝐴.

3. Strong Evidence Shift (All to Truth):

𝑣′ (𝐴) = (𝑇 + 𝐼 + 𝐹, 0, 0),

applied when evidence strongly supports the truth of 𝐴.

4. Strong Evidence Shift (All to Falsity):

𝑣′ (𝐴) = (0, 0, 𝑇 + 𝐼 + 𝐹),

applied when evidence strongly supports the falsity of 𝐴.

Remark 5.3 (Transformation Rules of the Certain Upside-Down Logic). The Certain Upside-Down Logic
provides a mechanism to update the truth values of propositions based on new evidence, extending the Upside-
Down Logic by incorporating the indeterminacy component.

1. Weak Evidence Shift (Indeterminacy to Falsity and Swap):

• The indeterminacy degree 𝐼 is shifted to the truth value along with swapping 𝑇 and 𝐹.

2. Weak Evidence Shift (Indeterminacy to Truth and Swap):

• The indeterminacy degree 𝐼 is shifted to the falsity value along with swapping 𝑇 and 𝐹.

3. Strong Evidence Shift (All to Truth):

• All degrees are shifted to the truth value, making 𝑇 ′ = 1.

4. Strong Evidence Shift (All to Falsity):

• All degrees are shifted to the falsity value, making 𝐹′ = 1.
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5.2 Examples of Real-World Applications of Certain Upside-Down Logic

Certain Upside-Down Logic has broad applicability in scenarios involving dynamic adjustments to truth, inde-
terminacy, and falsity values based on new evidence. Below are two illustrative examples:

Example 5.4 (Medical Diagnosis). Let 𝐴: ”The patient has Disease X.”

Initial Truth Value: 𝑣(𝐴) = (𝑇, 𝐼, 𝐹) = (0.3, 0.5, 0.2).

Case 1: Weak Evidence Shift (Indeterminacy to Falsity and Swap)

Symptoms weakly suggest the absence of Disease X. Applying the transformation:

𝑇 ′ = 𝐹 + 𝐼 = 0.2 + 0.5 = 0.7
𝐼 ′ = 0
𝐹′ = 𝑇 = 0.3

Updated Truth Value: 𝑣′ (𝐴) = (0.7, 0, 0.3).

Case 2: Strong Evidence Shift (All to Falsity)

Tests strongly confirm the absence of Disease X. Applying the transformation:

𝑇 ′ = 0
𝐼 ′ = 0
𝐹′ = 𝑇 + 𝐼 + 𝐹 = 0.3 + 0.5 + 0.2 = 1.0

Updated Truth Value: 𝑣′ (𝐴) = (0, 0, 1.0).
Example 5.5 (Weather Prediction). Let 𝐵: ”It will rain tomorrow.”

Initial Truth Value: 𝑣(𝐵) = (𝑇, 𝐼, 𝐹) = (0.2, 0.4, 0.4).

Case 1: Weak Evidence Shift (Indeterminacy to Truth and Swap)

Forecast models weakly support rain. Applying the transformation:

𝑇 ′ = 𝐹 = 0.4
𝐼 ′ = 0
𝐹′ = 𝑇 + 𝐼 = 0.2 + 0.4 = 0.6

Updated Truth Value: 𝑣′ (𝐵) = (0.4, 0, 0.6).

Case 2: Strong Evidence Shift (All to Truth)

Satellite data strongly supports rain. Applying the transformation:

𝑇 ′ = 𝑇 + 𝐼 + 𝐹 = 0.2 + 0.4 + 0.4 = 1.0
𝐼 ′ = 0
𝐹′ = 0

Updated Truth Value: 𝑣′ (𝐵) = (1.0, 0, 0).
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5.3 Basic Theorem of Certain Upside-Down Logic

The Basic Theorem of Certain Upside-Down Logic is described as follows. As a note, in this section, Certain
Upside-Down Logic is considered within the framework of Neutrosophic Logic.

Theorem 5.6 (Conservation of Total Degree). The transformation 𝑈C preserves the total degree of truth, in-
determinacy, and falsity:

𝑇 + 𝐼 + 𝐹 = 𝑇 ′ + 𝐼 ′ + 𝐹′ = 1.

Proof. As shown in the Algorithm Correctness proof, for each case, the sum𝑇 ′+ 𝐼 ′+𝐹′ equals𝑇+ 𝐼+𝐹 = 1. □

Theorem 5.7 (Bounds Preservation). For all transformations, the updated truth values satisfy:

0 ≤ 𝑇 ′, 𝐼 ′, 𝐹′ ≤ 1.

Proof. Since 𝑇, 𝐼, 𝐹 ∈ [0, 1] and their sum is 1, and because the transformations are combinations of these
values without exceeding their original total, the updated values 𝑇 ′, 𝐼 ′, and 𝐹′ remain within [0, 1]. □

5.4 Algorithm for Certain Upside-Down Logic

The algorithm updates the Neutrosophic truth value (𝑇, 𝐼, 𝐹) of a proposition 𝐴 based on evidence 𝐸 . The
transformation adjusts the degrees of truth, indeterminacy, and falsity according to specific rules, as described
below. As a note, in this section, Certain Upside-Down Logic is considered within the framework of Neutro-
sophic Logic.

Algorithm 4 Update Truth Value in Certain Upside-Down Logic
Require: Proposition 𝐴, current truth value 𝑣(𝐴) = (𝑇, 𝐼, 𝐹), evidence 𝐸
Ensure: Updated truth value 𝑣′ (𝐴) = (𝑇 ′, 𝐼 ′, 𝐹′)
1: if 𝐸 weakly supports the falsity of 𝐴 then
2: 𝑇 ′ ← 𝐹 + 𝐼
3: 𝐼 ′ ← 0
4: 𝐹′ ← 𝑇
5: else if 𝐸 weakly supports the truth of 𝐴 then
6: 𝑇 ′ ← 𝐹
7: 𝐼 ′ ← 0
8: 𝐹′ ← 𝑇 + 𝐼
9: else if 𝐸 strongly supports the truth of 𝐴 then

10: 𝑇 ′ ← 𝑇 + 𝐼 + 𝐹
11: 𝐼 ′ ← 0
12: 𝐹′ ← 0
13: else if 𝐸 strongly supports the falsity of 𝐴 then
14: 𝑇 ′ ← 0
15: 𝐼 ′ ← 0
16: 𝐹′ ← 𝑇 + 𝐼 + 𝐹
17: else
18: 𝑇 ′ ← 𝑇
19: 𝐼 ′ ← 𝐼
20: 𝐹′ ← 𝐹
21: end if
22: return 𝑣′ (𝐴) = (𝑇 ′, 𝐼 ′, 𝐹′)

Theorem 5.8 (Correctness of Transformation). For any initial truth value 𝑣(𝐴) = (𝑇, 𝐼, 𝐹) with 𝑇, 𝐼, 𝐹 ≥ 0
and 𝑇 + 𝐼 + 𝐹 = 1, the updated truth value 𝑣′ (𝐴) = (𝑇 ′, 𝐼 ′, 𝐹′) produced by Algorithm 4 satisfies 𝑇 ′, 𝐼 ′, 𝐹′ ≥ 0
and 𝑇 ′ + 𝐼 ′ + 𝐹′ = 1.

Proof. We consider each case:
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1. Weak Evidence Shift (Indeterminacy to Falsity and Swap):

𝑇 ′ = 𝐹 + 𝐼
𝐼 ′ = 0
𝐹′ = 𝑇

Since 𝑇 + 𝐼 + 𝐹 = 1, we have:

𝑇 ′ + 𝐼 ′ + 𝐹′ = (𝐹 + 𝐼) + 0 + 𝑇 = 𝑇 + 𝐼 + 𝐹 = 1.

All components are non-negative because 𝑇, 𝐼, 𝐹 ≥ 0.

2. Weak Evidence Shift (Indeterminacy to Truth and Swap):

𝑇 ′ = 𝐹

𝐼 ′ = 0
𝐹′ = 𝑇 + 𝐼

Similarly,
𝑇 ′ + 𝐼 ′ + 𝐹′ = 𝐹 + 0 + (𝑇 + 𝐼) = 𝑇 + 𝐼 + 𝐹 = 1.

3. Strong Evidence Shift (All to Truth):

𝑇 ′ = 𝑇 + 𝐼 + 𝐹 = 1
𝐼 ′ = 0
𝐹′ = 0

Thus,
𝑇 ′ + 𝐼 ′ + 𝐹′ = 1 + 0 + 0 = 1.

4. Strong Evidence Shift (All to Falsity):

𝑇 ′ = 0
𝐼 ′ = 0
𝐹′ = 𝑇 + 𝐼 + 𝐹 = 1

Therefore,
𝑇 ′ + 𝐼 ′ + 𝐹′ = 0 + 0 + 1 = 1.

5. No Evidence Shift:

𝑇 ′ = 𝑇

𝐼 ′ = 𝐼

𝐹′ = 𝐹

So,
𝑇 ′ + 𝐼 ′ + 𝐹′ = 𝑇 + 𝐼 + 𝐹 = 1.

In all cases, the updated truth values satisfy 𝑇 ′, 𝐼 ′, 𝐹′ ≥ 0 and 𝑇 ′ + 𝐼 ′ + 𝐹′ = 1. □

Theorem 5.9 (Time Complexity). Algorithm 4 runs in constant time, i.e., it has a time complexity of 𝑂 (1).

Proof. The algorithm performs a fixed number of operations: conditional checks and assignments. These
operations do not depend on the size of the input but are constant. Hence, the time complexity is 𝑂 (1). □

Theorem 5.10 (Space Complexity). Algorithm 4 uses constant extra space, i.e., it has a space complexity of
𝑂 (1).

Proof. The algorithm requires additional space for variables 𝑇 ′, 𝐼 ′, and 𝐹′. Since the number of variables does
not depend on the size of the input, the space complexity is 𝑂 (1). □
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6 Conclusion and Future Work of this Paper

This section presents the conclusion and future directions of this paper.

6.1 Conclusion of this Paper

In this paper, we introduced the following logical frameworks:

• Upside-Down Logic: A logical framework that systematically flips truth and falsity by dynamically
altering contexts, meanings, or perspectives.

• Contextual Upside-Down Logic: An extension of Upside-Down Logic that integrates contextual trans-
formations, enabling the adjustment of logical connectives and truth values based on contextual changes.

• Indeterm-Upside-Down Logic: A framework designed to represent real-world phenomena where inde-
terminacy either increases or decreases, capturing dynamic uncertainty effectively.

• Certain Upside-Down Logic: This logic provides a mechanism to update truth values of propositions
based on new evidence, extending Upside-Down Logic by incorporating the indeterminacy component
for enhanced flexibility.

6.2 Future tasks

Finally, we briefly discuss the future prospects of this research.

6.2.1 Applying Upside-Down Logic to Uncertain Sets and Graphs

As mentioned in the introduction, the study of Upside-Down Logic is still in its early stages. We anticipate
further exploration into potential applications of Upside-Down Logic, including considerations such as how to
apply Upside-Down Logic to Uncertain Logic. Additionally, we expect advancements in research regarding
its applicability to concepts like neutrosophic graphs [?, 4, 12, 14, 15, 23, 35, 47, 48, 61, 81], adripartitioned
neutrosophic set [76, 77], Neutrosophic Topologies [1, 98], Neutrosophic algebra [53, 95], Heptapartitioned
neutrosophic sets [11, 69], Neutrosophic Automata [40, 55–57], Neutrosophic oversets [92, 96, 97], refined
neutrosophic logic [90], and Bipolar Neutrosophic Sets [5, 25, 27, 106].

6.2.2 Applying Upside-Down Logic to decision-making

There is also significant potential for applying Upside-Down Logic to decision-making (cf. [3,46]) and similar
fields, which could pave the way for a broader understanding and practical use of this novel logical framework.

6.2.3 Relation to Research on Addressing Indeterminacy

When making decisions or applying theoretical frameworks to real-world scenarios, the ability to effectively
handle indeterminacy is often a critical factor. Research aimed at understanding and addressing indeterminacy
has been conducted across various fields [20]. Below, we list examples of major research areas:

• Risk Assessment and Decision-Making: Approaches to classify and manage uncertainty by analyzing
the structural environment of decision-makers. Relevant studies focus on societal risks ( [8, 108]).

• Climate Change Prediction: Research aims to handle uncertainty in climate change predictions by
evaluating variations among climate models and excluding unreliable ones, thereby enhancing projection
reliability (cf. [32, 45, 73]).

44



• Investment Decision-Making: The use of real options to evaluate factors such as product demand, pro-
duction capacity, and investment costs under uncertainty [10, 44, 63], enabling the derivation of optimal
investment strategies.

The author is particularly interested in exploringwhether combining these research areas with Indeterm-Upside-
Down Logic or Neutrosophic Logic could yield intriguing mathematical insights or innovative practical appli-
cations.
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Abstract

The study of uncertainty has been a significant area of research, with concepts such as fuzzy sets [87], fuzzy
graphs [51], and neutrosophic sets [58] receiving extensive attention. In Neutrosophic Logic, indeterminacy
often arises from real-world complexities.

This paper explores the concept of locality as a key factor in determining indeterminacy, building upon the
framework introduced by F. Smarandache in [73]. Locality refers to processes constrained within a specific
region, where an object or system is directly influenced by its immediate surroundings. In contrast, nonlocal-
ity involves effects that transcend spatial or temporal boundaries, where changes in one location have direct
implications for another.

This paper introduces the concepts of Local-Neutrosophic Logic and Local-Neutrosophic Set by integrating the
notion of locality into Neutrosophic Logic. It provides their mathematical definitions and examines potential
applications.

Keywords: Neutrosophic Logic, Neutrosophic Set, Fuzzy Logic, Locality

1 Short Introduction

1.1 Uncertain Logic

Uncertainty is an inherent characteristic of real-world events and is often modeled using mathematical frame-
works. In the realm of logic (cf. [12, 81]), several approaches have been developed to address uncertainty, in-
cluding Fuzzy Logic [87,89,90], Neutrosophic Logic [58,62,68], and Plithogenic Logic [67,77]. For instance,
Neutrosophic Logic expands upon classical logic by incorporating three dimensions: truth, indeterminacy, and
falsity. This framework allows for the simultaneous handling of uncertainty and contradictions, making it a
versatile tool for modeling complex systems.

These uncertain logics have been further generalized to other mathematical concepts, such as sets [59,75] and
graphs [20, 22, 23, 25, 26]. This has led to a proliferation of studies that parallel the development of logical
systems, showcasing their broad applicability across various domains.

1.2 Locality in Neutrosophic Logic

In Neutrosophic Logic, indeterminacy often emerges from real-world factors. This paper investigates locality
as a key determinant of indeterminacy, building on the framework proposed by F. Smarandache in [73].

Locality describes processes confined to a specific region, where an object is influenced by its immediate
surroundings. It can be Total Locality (100 percent, all interactions are local) or Partial Locality (greater than
0 and less than 100 percent). Conversely, Nonlocality involves effects spanning space or time, with changes in
one location influencing another. Like locality, nonlocality may be Total or Partial.

Indeterminacy arises when a system is neither fully local nor nonlocal, often due to hidden variables or envi-
ronmental uncertainty. It too can range from Total to Partial, depending on the extent of ambiguity or mixed
characteristics.
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1.3 Contributions of This Paper

This paper makes several key contributions:

1. It introduces the novel concepts of Local-Neutrosophic Logic and Local-Neutrosophic Set, incorporating
the notion of locality into the framework of Neutrosophic Logic.

2. It provides precise mathematical definitions for these concepts, laying a robust theoretical foundation.

3. It explores potential applications, demonstrating the practicality and relevance of these ideas in address-
ing uncertainty and contextual dependencies.

1.4 The Structure of the Paper

The structure of this paper is as follows.

1 Short Introduction 1
1.1 Uncertain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Locality in Neutrosophic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions of This Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 The Structure of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 2
2.1 Basic Definition of Formal Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Neutrosophic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Neutrosophic Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Mathematical Framework of Locality, Indeterminacy, and Nonlocality in Neutrosophic Logic 5
3.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Some Real-Life Examples of Locality, Indeterminacy, and Nonlocality . . . . . . . . . . . . . 6
3.3 Some Basic Theorem of Locality, Indeterminacy, and Nonlocality . . . . . . . . . . . . . . . 7

4 Mathematical Framework of Partial Locality, Partial Non-Locality, and Partial Indeterminacy 7
4.1 Definitions of Partial Locality, Partial Non-Locality, and Partial Indeterminacy . . . . . . . . . 8
4.2 Theorems and Proofs of Partial Locality, Partial Non-Locality, and Partial Indeterminacy . . . 8
4.3 Examples of Partial Locality, Partial Non-Locality, and Partial Indeterminacy . . . . . . . . . 9

5 New Definition of Local-Neutrosophic Logic and Set 9
5.1 Basic Theorem of Local-Neutrosophic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Examples of Local-Neutrosophic Logic in real-life scenarios . . . . . . . . . . . . . . . . . . 13

6 Future Tasks of this research 15
6.1 Some Extension of Local-Neutrosophic Logic (Open Question) . . . . . . . . . . . . . . . . . 15
6.2 Neutrosophic Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Preliminaries

2.1 Basic Definition of Formal Language

To explore Upside-Down Logic, several key concepts are introduced below. For further details, readers are
encouraged to consult the respective lecture notes and surveys on these topics (ex. [16, 29, 30, 33, 40]).

Definition 2.1 (Set). [33] A set is a collection of distinct and clearly defined objects, known as elements,
such that any object can be identified as either a member of the set or not. If 𝐴 is a set and 𝑥 is an element of
𝐴, this membership is denoted by 𝑥 ∈ 𝐴. Sets are commonly represented using curly brackets, for example,
𝐴 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}.

Definition 2.2 (Formal Language). [29,49] A formal language L is defined as a set of strings (or sequences)
formed from a finite alphabet Σ, adhering to specific syntactic rules. Formally:

L ⊆ Σ∗,
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where Σ∗ represents the set of all finite strings over the alphabet Σ. The strings in L are referred to as well-
formed formulas (WFFs).

A formal language L is typically characterized by:

• A set of symbols (or alphabet) Σ, which may include logical connectives (e.g., ∧, ∨, ¬), quantifiers (e.g.,
∀, ∃), variables, and parentheses.

• A set of formation rules specifying which strings in Σ∗ qualify as well-formed.

Definition 2.3 (Logical System). (cf. [37]) A logical systemM is a mathematical structure used to formalize
reasoning. It is defined as:

M = (P,V, 𝑣),
where:

• P is the set of propositions (or statements) expressed in the formal language L.

• V is the set of truth values, such as {True, False} in classical logic.

• 𝑣 : P → V is a valuation function (or interpretation function) that assigns a truth value to each propo-
sition in P.

Additionally, a logical system may include:

• A set of axioms A ⊆ P, propositions assumed to be true within the system.

• A set of inference rules I, defining valid methods of deriving new truths from existing propositions.

2.2 Neutrosophic Logic

In this subsection, we explore the relationship between Neutrosophic Logic and Upside-Down Logic. First,
we present the definition of Neutrosophic Logic below [21, 58]. Note that Neutrosophic Logic is known to
generalize Fuzzy Logic (cf. [58]).

Definition 2.4 (Neutrosophic Logic). [58] Neutrosophic Logic extends classical logic by assigning to each
proposition a truth value comprising three components:

𝑣(𝐴) = (𝑇, 𝐼, 𝐹),

where 𝑇, 𝐼, 𝐹 ∈ [0, 1] represent the degrees of truth, indeterminacy, and falsity, respectively.

Example 2.5 (Student Performance Evaluation). Student performance evaluation assesses academic progress
using metrics like grades, participation, and skills, identifying strengths and areas for improvement (cf. [7,36]).

In education, Neutrosophic Logic can assess student performance when data is uncertain or incomplete. For
example, consider the proposition ”The student will perform well in the final exam,” represented as:

𝑣(𝐴) = (0.8, 0.1, 0.1),

where:

• 𝑇 = 0.8: An 80% chance of good performance based on past grades and class participation.

• 𝐼 = 0.1: A 10% level of indeterminacy due to unmeasured factors like stress or unforeseen circumstances.

• 𝐹 = 0.1: A 10% chance of poor performance due to lack of preparation or external distractions.
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This approach enables educators to provide personalized feedback and prepare targeted interventions to improve
student outcomes(cf. [3, 47, 56]).

Example 2.6 (Medical Diagnosis). In the field of medical diagnosis(cf. [5, 43]), Neutrosophic Logic is em-
ployed to handle uncertain and incomplete information. For instance, consider the proposition ”The patient has
Disease X,” which can be represented as:

𝑣(𝐴) = (0.6, 0.2, 0.2),

where:

• 𝑇 = 0.6: A 60% probability that the patient has the disease.

• 𝐼 = 0.2: A 20% of the data is inconclusive due to uncertainty in test results or conflicting evidence.

• 𝐹 = 0.2: A 20% probability that the patient does not have the disease.

By integrating test results, symptoms, and expert opinions, this approach enables healthcare professionals to
make more informed diagnostic decisions (cf. [9, 11, 13, 55]).

Example 2.7 (Project Management). Project management involves planning, organizing, and executing tasks
to achieve specific goals within constraints like time, budget, and resources(cf. [15, 17, 18, 80]).

In project management, Neutrosophic Logic can aid in handling uncertainties and risks associated with project
timelines and outcomes. Consider the proposition ”The project will be completed on time,” represented as:

𝑣(𝐴) = (0.6, 0.25, 0.15),

where:

• 𝑇 = 0.6: A 60% chance that the project will be completed on schedule, based on current progress and
resource availability.

• 𝐼 = 0.25: A 25% level of indeterminacy due to uncertainties like unexpected delays, resource shortages,
or scope changes.

• 𝐹 = 0.15: A 15% chance that the project will not meet the deadline, based on known risks or past trends
in similar projects.

By quantifying these components, project managers can better assess risks and devise strategies such as re-
source reallocation or timeline adjustments to mitigate potential delays. This enhances decision-making under
uncertainty and improves project success rates(cf. [2, 6, 34, 45, 50]).

Example 2.8 (Decision-Making in Business). Neutrosophic Logic also plays a critical role in business decision-
making, particularly under conditions of uncertainty. For example, when evaluating whether to invest in a
project, the proposition ”The project will yield profit” can be represented as:

𝑣(𝐴) = (0.7, 0.1, 0.2),

where:

• 𝑇 = 0.7: A 70% chance that the project will be profitable.

• 𝐼 = 0.1: A 10% level of uncertainty due to incomplete or ambiguous market data.

• 𝐹 = 0.2: A 20% chance that the project will not be profitable.

This representation allows decision-makers to assess risks and rewards quantitatively, facilitating more effective
strategy formulation (cf. [4, 52]).
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2.3 Neutrosophic Set

In this subsection, we explain the concept of the Neutrosophic Set [58]. Intuitively, a Neutrosophic Set can
be understood as the set-theoretic extension of Neutrosophic Logic. It is known as a generalization of several
classical and modern set concepts, including the Crisp Set (Classic Set), Fuzzy Set [87,88,91–93], Intuitionistic
Fuzzy Set [61, 76], Vague Set [10, 96], and Paraconsistent Set [83, 84]. The related definitions are provided
below.

Definition 2.9 (Crisp Set). [48] Let 𝑋 be a universe set, and let 𝑃(𝑋) denote the power set of 𝑋 , which
represents all subsets of 𝑋 . A crisp set 𝐴 ⊆ 𝑋 is defined by a characteristic function 𝜒𝐴 : 𝑋 → {0, 1}, where:

𝜒𝐴(𝑥) =
{

1 if 𝑥 ∈ 𝐴,

0 if 𝑥 ∉ 𝐴.

This function 𝜒𝐴 assigns a value of 1 to elements within the set 𝐴 and 0 to those outside it, creating a clear
boundary. Crisp sets are thus bivalent and follow the principle of binary classification, where each element is
either a member of the set or not.

Definition 2.10. [58, 60, 78] Let 𝑋 be a given set. A Neutrosophic Set 𝐴 on 𝑋 is characterized by three
membership functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋 , the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degree of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

3 Mathematical Framework of Locality, Indeterminacy, and Nonlocality in Neutro-
sophic Logic

This section discusses the Mathematical Framework of Locality, Indeterminacy, and Nonlocality in Neutro-
sophic Logic. It redefines these concepts within the context of Neutrosophic Logic, providing basic consider-
ations and illustrative examples.

3.1 Notations and Definitions

Below, we present the Notations and Definitions of Locality, Indeterminacy, and Nonlocality in Neutrosophic
Logic.

Notation 3.1. LetP denote the set of propositions, C the set of contexts, and𝑇 : P×C → {True,False, Indeterminate}
a truth valuation function. Each proposition 𝐴 ∈ P is associated with a neutrosophic truth value 𝑣(𝐴) =
(𝑇, 𝐼, 𝐹), where:

𝑇, 𝐼, 𝐹 ∈ [0, 1], 𝑇 + 𝐼 + 𝐹 ≤ 1,

represent the degrees of truth (𝑇), indeterminacy (𝐼), and falsity (𝐹), respectively.

Remark 3.2. The sum 𝑇 + 𝐼 + 𝐹 does not necessarily equal 1, allowing for partial states. This flexibility is a
core feature of neutrosophic logic.

Definition 3.3 (Context). [74] A context C is a set of parameters or conditions under which propositions are
evaluated. This may include spatial, temporal, semantic, or interpretative settings.

Definition 3.4 (Locality). (cf. [73]) A proposition 𝐴 exhibits locality if its truth value depends solely on a
single context C ∈ C. Formally:

𝑣(𝐴) = 𝑇 (𝐴, C),
where C represents the immediate spatial, temporal, or conceptual domain affecting 𝐴.
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Definition 3.5 (Indeterminacy). (cf. [73]) A proposition 𝐴 exhibits indeterminacy if its truth value includes
a non-zero degree of 𝐼 due to hidden variables, insufficient information, or ambiguity within the context C.
Formally:

𝑣(𝐴) = (𝑇, 𝐼, 𝐹), with 𝐼 > 0.

Definition 3.6 (Nonlocality). (cf. [73]) A proposition 𝐴 exhibits nonlocality if its truth value depends on mul-
tiple, spatially or conceptually separate contexts C1, C2 ∈ C. Formally:

𝑣(𝐴) = 𝑇 (𝐴, C1, C2), with C1 ∩ C2 = ∅.

Definition 3.7 (Multilocality). (cf. [73]) A proposition 𝐴 exhibits multilocality if its truth value depends on a
set of interacting local contexts {C𝑖}𝑛𝑖=1. Formally:

𝑣(𝐴) = 𝑇 (𝐴, {C𝑖}𝑛𝑖=1),

where each C𝑖 is confined to a specific local domain.

Definition 3.8 (Multiindeterminacy). (cf. [73]) A proposition 𝐴 exhibits multiindeterminacy if its truth value
includes cumulative indeterminacy across multiple contexts:

𝑣(𝐴) = (𝑇, 𝐼, 𝐹), where 𝐼 =
𝑛∑
𝑖=1

𝐼𝑖 > 0,

and 𝐼𝑖 represents the degree of indeterminacy in each context C𝑖 .
Definition 3.9 (Multinonlocality). (cf. [73]) A proposition 𝐴 exhibits multinonlocality if its truth value depends
on interactions across multiple nonlocal contexts {C𝑖 , C𝑗 }𝑖≠ 𝑗 :

𝑣(𝐴) = 𝑇 (𝐴, {C𝑖 , C𝑗 }𝑖≠ 𝑗 ),

where C𝑖 ∩ C𝑗 = ∅.

3.2 Some Real-Life Examples of Locality, Indeterminacy, and Nonlocality

This subsection presents some real-life examples of locality, indeterminacy, and nonlocality.

Example 3.10 (Traffic Flow (Locality)). Let 𝐴: ”The traffic density on road segment 𝑅 is high.”

Context C: The immediate local parameters affecting 𝑅, such as vehicle count, average speed, and weather
conditions, determine 𝑣(𝐴):

𝑣(𝐴) = (0.8, 0.1, 0.1),
where 𝑇 = 0.8 indicates high traffic density based on local observations. Locality is evident as 𝐴 depends
solely on C.
Example 3.11 (Quantum Entanglement (Nonlocality)). Quantum entanglement is a phenomenon where parti-
cles share linked states, such that changing one instantly affects the other, regardless of distance (cf. [31, 85]).

Let 𝐴: ”The spin of particle 𝑃1 is up.”

Contexts C1, C2: Measurement of 𝑃1 in C1 instantly determines the spin of 𝑃2 in C2:

𝑣(𝐴) = (1, 0, 0), if 𝑃2 spin is down in C2.

Nonlocality is evident as 𝑣(𝐴) spans C1 and C2.

Example 3.12 (Stock Market Volatility (Indeterminacy)). Stock market volatility measures rapid price fluctu-
ations in financial markets, influenced by economic events, investor behavior, and uncertainty (cf. [14, 41]).

Let 𝐵: ”The stock price of company 𝑋 will increase tomorrow.”

Context C: Factors such as market trends, global events, and investor sentiment introduce indeterminacy. The
truth value is:

𝑣(𝐵) = (0.5, 0.4, 0.1),
where 𝐼 = 0.4 reflects uncertainty due to incomplete or ambiguous data. Indeterminacy arises from unpre-
dictable market influences.
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Example 3.13 (Climate Models (Multiindeterminacy)). Let 𝐵: ”Global temperature will rise by 1◦C in 50
years.”

Contexts {C𝑖}3𝑖=1: Varying predictions from three models yield:

𝑣(𝐵) = (0.6, 0.3, 0.1), where 𝐼 = 0.3 =
3∑
𝑖=1

𝐼𝑖 .

Multiindeterminacy arises from differing model assumptions.

Example 3.14 (Global Communications (Multinonlocality)). Let 𝐸 : ”Information is transmitted successfully
across the network.”

Contexts {C𝑖 , C𝑗 }𝑖≠ 𝑗 : The reliability of nodes in separate regions C𝑖 and C𝑗 determines:

𝑣(𝐸) = (0.9, 0.05, 0.05),

where multinonlocality reflects the interaction between contexts C𝑖 and C𝑗 across the global network.

3.3 Some Basic Theorem of Locality, Indeterminacy, and Nonlocality

In this subsection, we present Some Basic Theorems of Locality, Indeterminacy, and Nonlocality.

Theorem 3.15 (Consistency of Locality). If a proposition 𝐴 is local, then the truth value 𝑣(𝐴) is unaffected
by nonlocal contexts. Formally:

𝑇 (𝐴, C1) = 𝑇 (𝐴, C2) for all C1, C2 ≠ C.

Proof. Locality assumes 𝐴 is influenced only by C. For C1, C2 ≠ C, the absence of influence implies:

𝑣(𝐴) = 𝑇 (𝐴, C),

and thus 𝑇 (𝐴, C1) = 𝑇 (𝐴, C2) follows trivially. □

Theorem 3.16 (Additivity of Multiindeterminacy). For a proposition 𝐴 exhibiting multiindeterminacy across
𝑛 contexts {C𝑖}𝑛𝑖=1, the total indeterminacy satisfies:

𝐼 =
𝑛∑
𝑖=1

𝐼𝑖 , where 𝐼𝑖 > 0 for each C𝑖 .

Proof. By definition, multiindeterminacy aggregates indeterminacy from individual contexts:

𝑣(𝐴) = (𝑇, 𝐼, 𝐹), 𝐼 =
𝑛∑
𝑖=1

𝐼𝑖 .

The constraint 𝐼𝑖 > 0 ensures that each context contributes to the total indeterminacy. □

4 Mathematical Framework of Partial Locality, Partial Non-Locality, and Partial In-
determinacy

In this section, we examine the Mathematical Framework of Partial Locality, Partial Non-Locality, and Partial
Indeterminacy.

An overview of Partial Locality, Partial Non-Locality, and Partial Indeterminacy is provided below:

• Partial Locality refers to a situation where an object or system is partially influenced by its immediate
surroundings, with limited external interactions or dependencies.

• Partial Non-Locality describes a condition where an object or system is partially influenced by distant
factors or entities without direct physical contact.

• Partial Indeterminacy represents a system exhibiting unclear or mixed characteristics, influenced neither
entirely locally nor entirely non-locally.
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4.1 Definitions of Partial Locality, Partial Non-Locality, and Partial Indeterminacy

In this subsection, we consider about Definitions of Partial Locality, Partial Non-Locality, and Partial Indeter-
minacy.

Definition 4.1 (Partial Locality). (cf. [73]) A proposition 𝐴 ∈ P exhibits partial locality if its truth value is
influenced by its immediate surroundings with a fractional dependency denoted by 𝛼 ∈ [0, 1]. Formally:

𝑣(𝐴) = 𝛼 · 𝑇 (𝐴, Clocal) + (1 − 𝛼) · Residual Effects,

where Clocal is the immediate local context and 𝛼 represents the degree of locality.

Definition 4.2 (Partial Non-Locality). (cf. [73]) A proposition 𝐴 ∈ P exhibits partial non-locality if its truth
value is influenced by distant or separate contexts with a fractional dependency 𝛽 ∈ [0, 1]. Formally:

𝑣(𝐴) = 𝛽 · 𝑇 (𝐴, Cnonlocal) + (1 − 𝛽) · Residual Effects,

where Cnonlocal refers to nonlocal contexts influencing 𝐴, and 𝛽 represents the degree of non-locality.

Definition 4.3 (Partial Indeterminacy). (cf. [73]) A proposition 𝐴 ∈ P exhibits partial indeterminacy if its
truth value includes an indeterminate component 𝛾 ∈ [0, 1] due to hidden variables or ambiguous influences.
Formally:

𝑣(𝐴) = (𝑇, 𝛾 · 𝐼, 𝐹),

where 𝐼 is the total indeterminacy, and 𝛾 represents the degree of partial indeterminacy.

Remark 4.4. Partial locality, non-locality, and indeterminacy may coexist for a single proposition, forming a
composite influence model:

𝑣(𝐴) = 𝛼 · 𝑇 (𝐴, Clocal) + 𝛽 · 𝑇 (𝐴, Cnonlocal) + 𝛾 · 𝐼,

where 𝛼, 𝛽, 𝛾 ∈ [0, 1] and 𝛼 + 𝛽 + 𝛾 ≤ 1.

4.2 Theorems and Proofs of Partial Locality, Partial Non-Locality, and Partial Indeterminacy

In this subsection, we present Some Basic Theorems of artial Locality, Partial Non-Locality, and Partial Inde-
terminacy.

Theorem 4.5 (Consistency of Partial Locality). If a proposition 𝐴 exhibits partial locality with degree 𝛼, then
the influence from nonlocal contexts diminishes proportionally. Formally:

𝑣(𝐴) = 𝛼 · 𝑇 (𝐴, Clocal) + (1 − 𝛼) · 𝑇 (𝐴, Cnonlocal),

where 𝛼→ 1 implies pure locality.

Proof. By definition, 𝛼 scales the influence of Clocal, and 1− 𝛼 scales the complementary effect from Cnonlocal.
As 𝛼→ 1, the term (1 − 𝛼) · 𝑇 (𝐴, Cnonlocal) vanishes, yielding pure locality. □

Theorem 4.6 (Superposition of Influences). The total influence on a proposition 𝐴 can be represented as a
superposition of partial locality, partial non-locality, and partial indeterminacy:

𝑣(𝐴) = 𝛼 · 𝑇 (𝐴, Clocal) + 𝛽 · 𝑇 (𝐴, Cnonlocal) + 𝛾 · 𝐼 .

Proof. The influence components are orthogonal by construction: Clocal affects 𝐴 directly, Cnonlocal introduces
distant dependencies, and 𝐼 incorporates ambiguity. Thus, the superposition holds. □
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4.3 Examples of Partial Locality, Partial Non-Locality, and Partial Indeterminacy

In this subsection, we present Examples of Partial Locality, Partial Non-Locality, and Partial Indeterminacy.

Example 4.7 (Quantum Physics: Aharonov-Bohm Effect). Quantum physics studies the behavior of particles
at atomic and subatomic scales, governed by principles like wave-particle duality and superposition (cf. [8,27]).

Let 𝐴: ”A charged particle is influenced by an electromagnetic potential.”

Local Context Clocal: The particle exists in a region with no magnetic field intensity.

Nonlocal Context Cnonlocal: The electromagnetic potential resides outside the particle’s local region.

𝑣(𝐴) = 𝛼 · 𝑇 (𝐴, Clocal) + 𝛽 · 𝑇 (𝐴, Cnonlocal),
where 𝛽 > 0 captures the nonlocal influence of the potential.

Example 4.8 (Ecology: Migratory Birds). Let 𝐵: ”Birds impact the nutrient cycle.”

Local Context Clocal: Birds forage and nest locally.

Nonlocal Context Cnonlocal: Migratory behavior spreads nutrients across ecosystems.

𝑣(𝐵) = 𝛼 · 𝑇 (𝐵, Clocal) + 𝛽 · 𝑇 (𝐵, Cnonlocal),
where 𝛽 > 0 quantifies the nonlocal nutrient transfer.

5 New Definition of Local-Neutrosophic Logic and Set

In this section, we introduce a new concept called Local-Neutrosophic Logic and Set. This concept extends
Neutrosophic Logic by incorporating the notion of locality. The definition is provided below.

Definition 5.1 (Local-Neutrosophic Logic). Local-Neutrosophic Logic assigns to each proposition 𝐴 ∈ P a
truth value of the form:

𝑣(𝐴) = (𝑇, 𝐼, 𝐿, 𝐹),

where:

• 𝑇 ∈ [0, 1]: Degree of truth.

• 𝐼 ∈ [0, 1]: Degree of indeterminacy.

• 𝐿 ∈ [0, 1]: Degree of locality, representing the influence of immediate contextual or spatial factors.

• 𝐹 ∈ [0, 1]: Degree of falsity.

These components satisfy the constraint:

𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

Remark 5.2 (Transformation Rules). Transformation Rules of Local-Neutrosophic Logic are following.

• Locality-to-Truth Transformation: When locality 𝐿 provides strong supporting evidence for truth:

𝑣(𝑈𝐿𝑇 (𝐴)) = (𝑇 + 𝐿, 𝐼, 0, 𝐹).
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• Locality-to-Falsity Transformation: When locality 𝐿 provides strong evidence against truth:

𝑣(𝑈𝐿𝐹 (𝐴)) = (𝑇, 𝐼, 0, 𝐹 + 𝐿).

• Locality-to-Indeterminacy Transformation: When locality 𝐿 introduces ambiguity or uncertainty:

𝑣(𝑈𝐿𝐼 (𝐴)) = (𝑇, 𝐼 + 𝐿, 0, 𝐹).

• Indeterminacy-to-Locality Transformation: When indeterminacy 𝐼 is clarified by locality 𝐿:

𝑣(𝑈𝐼𝐿 (𝐴)) = (𝑇, 0, 𝐼 + 𝐿, 𝐹).

The definition of the Local-Neutrosophic Set, which extends Local-Neutrosophic Logic to sets, is as follows.
It is anticipated that future research will explore the specific mathematical structures and applications of this
concept.

Definition 5.3 (Local-Neutrosophic Set). Let 𝑋 be a given universe of discourse. A Local-Neutrosophic Set 𝐴
on 𝑋 is characterized by four membership functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐿𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where, for each 𝑥 ∈ 𝑋:

• 𝑇𝐴(𝑥): The degree of truth of 𝑥 in 𝐴.

• 𝐼𝐴(𝑥): The degree of indeterminacy of 𝑥 in 𝐴.

• 𝐿𝐴(𝑥): The degree of locality of 𝑥 in 𝐴, representing the influence of immediate spatial, contextual, or
environmental factors.

• 𝐹𝐴(𝑥): The degree of falsity of 𝑥 in 𝐴.

These membership values satisfy the following constraint:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐿𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 4.

Remark 5.4 (Local-Neutrosophic Set). Compared to other sets:

• A Fuzzy Set has a single membership function, 𝜇𝐴(𝑥), representing truth.

• An Intuitionistic Fuzzy Set adds a falsity component, 𝜈𝐴(𝑥), to truth.

• A Neutrosophic Set further includes indeterminacy, 𝐼𝐴(𝑥).

• The Local-Neutrosophic Set expands these by adding locality (𝐿𝐴(𝑥)) to model systems influenced by
contextual factors.

5.1 Basic Theorem of Local-Neutrosophic Logic

We outline several basic theorems of Local-Neutrosophic Logic below.

Theorem 5.5 (Preservation of Total Degree). The total degree of the truth valuation remains invariant under 
transformations:

𝑇 + 𝐼 + 𝐿 + 𝐹 = 𝑇 ′ + 𝐼 ′ + 𝐿′ + 𝐹′.

Proof. Each transformation redistributes the components among 𝑇, 𝐼, 𝐿, and 𝐹, preserving their total sum. □
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Theorem 5.6 (Superposition of Influences). The truth value of a proposition 𝐴 in Local-Neutrosophic Logic
can be expressed as:

𝑣(𝐴) = 𝛼 · 𝑇 + 𝛽 · 𝐼 + 𝛾 · 𝐿 + 𝛿 · 𝐹,
where 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0, 1] represent the relative weights of each component and 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1.

Proof. The superposition follows directly from the normalized representation of truth valuation components.
□

Theorem 5.7. Local-Neutrosophic Logic extends Neutrosophic Logic by introducing an additional degree
of locality 𝐿, which represents the influence of immediate contextual or spatial factors. Specifically, every
proposition in Neutrosophic Logic can be represented as a special case of Local-Neutrosophic Logic where
𝐿 = 0.

Proof. The truth value in Neutrosophic Logic is defined as:

𝑣NL (𝐴) = (𝑇, 𝐼, 𝐹),

where 𝑇, 𝐼, 𝐹 ∈ [0, 1] and satisfy the constraint:

𝑇 + 𝐼 + 𝐹 ≤ 1.

In Local-Neutrosophic Logic, the truth value is extended to:

𝑣LNL (𝐴) = (𝑇, 𝐼, 𝐿, 𝐹),

where 𝑇, 𝐼, 𝐿, 𝐹 ∈ [0, 1] and satisfy the constraint:

𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

If we set 𝐿 = 0 in Local-Neutrosophic Logic, the truth value simplifies to:

𝑣LNL(𝐴) = (𝑇, 𝐼, 0, 𝐹) = (𝑇, 𝐼, 𝐹),

which is identical to the truth value in Neutrosophic Logic. Therefore, every truth value in Neutrosophic Logic
is a valid truth value in Local-Neutrosophic Logic.

The addition of 𝐿 in Local-Neutrosophic Logic allows for the representation of an additional degree of influence
from immediate contextual or spatial factors, which is not captured in Neutrosophic Logic. This makes Local-
Neutrosophic Logic a generalized framework.

The constraint 𝑇 + 𝐼 + 𝐹 ≤ 1 in Neutrosophic Logic is preserved in Local-Neutrosophic Logic because setting
𝐿 = 0 satisfies:

𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

Local-Neutrosophic Logic reduces to Neutrosophic Logic when 𝐿 = 0, but it also allows for additional flexi-
bility when 𝐿 > 0. Hence, Local-Neutrosophic Logic is a strict extension of Neutrosophic Logic. □

Theorem 5.8. A Local-Neutrosophic Set is an extension of a Neutrosophic Set. Specifically, every Neutrosophic
Set can be represented as a Local-Neutrosophic Set where the degree of locality 𝐿𝐴(𝑥) = 0 for all 𝑥 ∈ 𝑋 .

Proof. The membership functions of a Neutrosophic Set 𝐴 on 𝑋 are:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

with the constraint:
0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, ∀𝑥 ∈ 𝑋.
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For a Local-Neutrosophic Set 𝐴 on 𝑋 , the membership functions are extended to include 𝐿𝐴:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐿𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

with the constraint:
0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐿𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 4, ∀𝑥 ∈ 𝑋.

If 𝐿𝐴(𝑥) = 0 for all 𝑥 ∈ 𝑋 , the membership functions of a Local-Neutrosophic Set reduce to:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

with the constraint:
0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, ∀𝑥 ∈ 𝑋,

which is identical to the structure of a Neutrosophic Set.

The additional component 𝐿𝐴(𝑥) in a Local-Neutrosophic Set allows for the representation of an additional
degree of locality, representing the influence of spatial, contextual, or environmental factors. This flexibility
generalizes the concept of Neutrosophic Sets.

For any 𝑥 ∈ 𝑋 , the constraint 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 in a Neutrosophic Set is preserved in a Local-
Neutrosophic Set when 𝐿𝐴(𝑥) = 0, satisfying:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐿𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 4.

A Local-Neutrosophic Set reduces to a Neutrosophic Set when 𝐿𝐴(𝑥) = 0 for all 𝑥 ∈ 𝑋 , but it also allows
for additional flexibility when 𝐿𝐴(𝑥) > 0. Hence, the Local-Neutrosophic Set is a strict extension of the
Neutrosophic Set. □

Theorem 5.9. Local-Neutrosophic Logic can represent locality, non-locality, and indeterminacy through the
values 𝑇, 𝐼, 𝐿, 𝐹 assigned to propositions in the form 𝑣(𝐴) = (𝑇, 𝐼, 𝐿, 𝐹), satisfying 𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.
Specifically:

• Locality is captured by 𝐿, representing the influence of immediate surroundings.

• Non-locality is represented by the truth or falsity components 𝑇 and 𝐹, influenced by distant contexts.

• Indeterminacy is represented by 𝐼, capturing the uncertainty or ambiguity.

Proof. Let 𝐴 ∈ P be a proposition evaluated in Local-Neutrosophic Logic with 𝑣(𝐴) = (𝑇, 𝐼, 𝐿, 𝐹).

From the definition of locality:
𝑣(𝐴) = (𝑇, 𝐼, 𝐿, 𝐹), 𝐿 > 0.

Here, 𝐿 explicitly represents the degree to which 𝐴 is influenced by its immediate surroundings (local context).
If 𝐿 = 0, 𝐴 has no local influence. Thus, locality is embedded within the 𝐿 component.

Non-locality is captured when 𝐿 is small (𝐿 → 0) and the remaining truth (𝑇) or falsity (𝐹) values depend on
distant contexts. Specifically:

𝑣(𝐴) = (𝛽 · 𝑇 (𝐴, Cnonlocal), 𝐼, 𝐿, 𝛽 · 𝐹 (𝐴, Cnonlocal)),

where Cnonlocal represents nonlocal contexts and 𝛽 (0 < 𝛽 ≤ 1) denotes the degree of non-locality. Non-locality
arises when 𝑇 or 𝐹 depends on contexts spatially or conceptually separated from the local context.

Indeterminacy is directly captured by the 𝐼 component in 𝑣(𝐴). If 𝐼 > 0, there exists a degree of uncertainty
or ambiguity in the truth value of 𝐴. Indeterminacy arises from hidden variables, conflicting evidence, or
incomplete information. Formally:

𝑣(𝐴) = (𝑇, 𝛾 · 𝐼, 𝐿, 𝐹), where 𝛾 ∈ [0, 1] .

62



Here, 𝛾 controls the contribution of indeterminacy to the overall evaluation.

By definition, Local-Neutrosophic Logic satisfies:

𝑇 + 𝐼 + 𝐿 + 𝐹 ≤ 1.

This constraint ensures that locality, non-locality, and indeterminacy are mathematically consistent and their
contributions to 𝑣(𝐴) are bounded.

Hence, Local-Neutrosophic Logic effectively represents locality, non-locality, and indeterminacy through the
values 𝑇, 𝐼, 𝐿, 𝐹, satisfying the stated constraint. □

5.2 Examples of Local-Neutrosophic Logic in real-life scenarios

In this subsection, we explain examples of Local-Neutrosophic Logic in real-life scenarios.

Example 5.10 (Quantum Physics: Measurement Locality). Quantum physics studies the behavior of particles
at atomic and subatomic scales, governed by principles like wave-particle duality and superposition (cf. [8,27]).

Let 𝐴: ”The spin of a particle is up.”

Truth Components:
𝑣(𝐴) = (𝑇, 𝐼, 𝐿, 𝐹) = (0.6, 0.2, 0.1, 0.1),

where:

• 𝑇 = 0.6: Evidence strongly supports the particle’s spin being up.

• 𝐼 = 0.2: Uncertainty due to measurement limitations.

• 𝐿 = 0.1: Local experimental context influences spin alignment.

• 𝐹 = 0.1: Weak evidence against the proposition.

Example 5.11 (Ecology: Pollination Dynamics). Pollination dynamics refers to the interactions between plants
and pollinators, such as bees or birds, facilitating plant reproduction and ecosystem stability (cf. [28]).

Let 𝐵: ”Pollinators improve crop yield in a region.”

Truth Components:
𝑣(𝐵) = (𝑇, 𝐼, 𝐿, 𝐹) = (0.7, 0.1, 0.15, 0.05),

where:

• 𝑇 = 0.7: Direct observations confirm significant pollination effects.

• 𝐼 = 0.1: Uncertainty due to unmeasured ecological variables.

• 𝐿 = 0.15: Local interactions between pollinators and plants are notable.

• 𝐹 = 0.05: Minimal evidence contradicts the proposition.

Example 5.12 (Medical Diagnosis(Locality-to-Truth Transformation)). Let 𝐴: ”The patient has a specific viral
infection.”

Initial Truth Value:
𝑣(𝐴) = (𝑇, 𝐼, 𝐿, 𝐹) = (0.5, 0.3, 0.2, 0.0),

where:

• 𝑇 = 0.5: Initial test results partially support the diagnosis.
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• 𝐼 = 0.3: Indeterminate due to conflicting symptoms.

• 𝐿 = 0.2: Locality reflects observations by a specialist.

• 𝐹 = 0.0: No evidence against the diagnosis.

Transformation: Given that 𝐿 provides strong supporting evidence (e.g., specialist confirmation), the trans-
formation𝑈𝐿𝑇 is applied:

𝑣(𝑈𝐿𝑇 (𝐴)) = (𝑇 + 𝐿, 𝐼, 0, 𝐹) = (0.7, 0.3, 0.0, 0.0).

Interpretation: The patient’s diagnosis is now more likely to be true, as locality strongly supports the proposi-
tion.

Example 5.13 (Weather Prediction(Locality-to-Falsity Transformation)). Let 𝐵: ”It will rain tomorrow.”

Initial Truth Value:
𝑣(𝐵) = (𝑇, 𝐼, 𝐿, 𝐹) = (0.4, 0.3, 0.3, 0.0),

where:

• 𝑇 = 0.4: Weak prediction models suggest rain.

• 𝐼 = 0.3: Indeterminacy due to uncertainty in weather models.

• 𝐿 = 0.3: Local observations (e.g., clear skies).

• 𝐹 = 0.0: No significant evidence against rain.

Transformation: Since 𝐿 strongly opposes 𝑇 (e.g., clear skies observed), the transformation𝑈𝐿𝐹 is applied:

𝑣(𝑈𝐿𝐹 (𝐵)) = (𝑇, 𝐼, 0, 𝐹 + 𝐿) = (0.4, 0.3, 0.0, 0.3).

Interpretation: The proposition becomes less likely, as local observations indicate no rain.

Example 5.14 (Ecological Impact(Locality-to-Indeterminacy Transformation)). Let𝐶: ”Reintroducing wolves
to a forest will improve biodiversity.”

Initial Truth Value:
𝑣(𝐶) = (𝑇, 𝐼, 𝐿, 𝐹) = (0.6, 0.2, 0.2, 0.0),

where:

• 𝑇 = 0.6: Prior studies support this outcome.

• 𝐼 = 0.2: Some uncertainty due to unknown ecological factors.

• 𝐿 = 0.2: Local reports suggest potential unintended consequences.

• 𝐹 = 0.0: No evidence contradicting the proposition.

Transformation: Local observations introduce ambiguity, applying𝑈𝐿𝐼 :

𝑣(𝑈𝐿𝐼 (𝐶)) = (𝑇, 𝐼 + 𝐿, 0, 𝐹) = (0.6, 0.4, 0.0, 0.0).

Interpretation: The uncertainty in the proposition increases due to conflicting local data.
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Example 5.15 (Supply Chain Disruption (Indeterminacy-to-Locality Transformation)). Let 𝐷: ”A factory
shutdown will disrupt global supply chains.”

Initial Truth Value:
𝑣(𝐷) = (𝑇, 𝐼, 𝐿, 𝐹) = (0.5, 0.4, 0.1, 0.0),

where:

• 𝑇 = 0.5: Preliminary analysis suggests a significant impact.

• 𝐼 = 0.4: Indeterminacy due to lack of specific data.

• 𝐿 = 0.1: Localized reports provide clarity on immediate effects.

• 𝐹 = 0.0: No evidence against the proposition.

Transformation: Local evidence reduces indeterminacy, applying𝑈𝐼𝐿 :

𝑣(𝑈𝐼𝐿 (𝐷)) = (𝑇, 0, 𝐼 + 𝐿, 𝐹) = (0.5, 0.0, 0.5, 0.0).

Interpretation: The proposition’s reliance on locality increases as specific data becomes available.

6 Future Tasks of this research

In this section, we consider future tasks of this research.

6.1 Some Extension of Local-Neutrosophic Logic (Open Question)

There is interest in exploring the possibility of extending the above logic using the following set concepts.
Further research in this direction is anticipated.

Question 6.1. Can the logic be extended using the following sets? Additionally, what are the mathematical
characteristics of these extensions, their relationships with other uncertain concepts, and their potential appli-
cations?

• Double-Valued Neutrosophic Sets [35, 38]

• Interval-Valued Neutrosophic Sets [86, 94, 95]

• Plithogenic Sets [25, 66, 67, 79]

• Soft Sets [44, 46]

• Hypersoft Sets [1, 19, 24, 53, 65]

• Neutrosophic Offset [57, 63, 64, 69, 70, 72]

6.2 Neutrosophic Dynamic Systems

A Neutrosophic Dynamic System (NDS) is a generalized framework for modeling systems characterized by
uncertainty, incompleteness, or contradictions. The definition is provided below [71]. There is particular
interest in exploring how the current Local-Neutrosophic Logic can be extended to Neutrosophic Dynamic
Systems.

Definition 6.2 (Neutrosophic Dynamic Systems). [71] Let U be the universe of discourse. A Neutrosophic
Dynamic System is defined as:

D𝑁 = (Ω, E,R),
where:
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• Ω ⊆ U: The neutrosophic space (or state space), representing the elements of the system. It is defined
as:

Ω = {𝑥𝑖 (𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖) | 𝑥𝑖 ∈ Ω, 𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖 ∈ [0, 1], 𝑖 ∈ {1, 2, . . . , 𝑛}},
where:

– 𝑇𝑖: The degree of membership (truth) of 𝑥𝑖 in Ω.
– 𝐼𝑖: The degree of indeterminacy (uncertainty) of 𝑥𝑖 in Ω.
– 𝐹𝑖: The degree of non-membership (falsity) of 𝑥𝑖 in Ω.

• E: The set of elements within Ω. Each element 𝑥𝑖 is associated with time-varying neutrosophic degrees
(𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖), which evolve over time.

• R: The set of neutrosophic hyperrelationships representing interactions within the system. A neutro-
sophic hyperrelationship is defined as:

RHR : Ω𝑘 × C(Ω)𝑙 → P([0, 1]),

where:

– RHR (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 , 𝑦 𝑗1 , 𝑦 𝑗2 , . . . , 𝑦 𝑗𝑙 ) = (𝑇R , 𝐼R , 𝐹R),
– 𝑇R , 𝐼R , 𝐹R ∈ [0, 1]: Degrees of truth, indeterminacy, and falsity for the hyperrelationship.
– 𝑘: Number of interacting elements within Ω.
– 𝑙: Number of interacting elements between Ω and C(Ω), the complement of Ω inU.

Definition 6.3 (Open and Closed Neutrosophic Systems). [71]

• A system is closed if 𝑙 = 0, meaning all relationships are confined to Ω.

• A system is open if 𝑙 ≥ 1, allowing interactions between Ω and C(Ω).

Definition 6.4 (Time-Dependent Neutrosophic dynamic system). [71] The neutrosophic dynamic system
evolves over time, with changes occurring in its space, elements, and relationships:

D𝑁 (𝑡) = (Ω(𝑡), E(𝑡),R(𝑡)).

• Element Dynamics: The degrees of membership, indeterminacy, and non-membership for each element
vary over time:

𝑇𝑖 (𝑡), 𝐼𝑖 (𝑡), 𝐹𝑖 (𝑡),
subject to the constraint:

𝑇𝑖 (𝑡) + 𝐼𝑖 (𝑡) + 𝐹𝑖 (𝑡) ≤ 1, ∀𝑖, ∀𝑡.

• Relationship Dynamics: The hyperrelationships evolve over time, represented as:

RHR (𝑡) = (𝑇R (𝑡), 𝐼R (𝑡), 𝐹R (𝑡)).

• Space Dynamics: The neutrosophic space Ω may change due to:

– Addition of new elements to Ω.
– Removal of existing elements from Ω.
– Changes in the neutrosophic degrees (𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖) of elements within Ω.

Example 6.5 (Ecosystem Dynamics). A biological ecosystem is a community of living organisms interacting
with each other and their environment, including air, water, and soil (cf. [54, 82]).

Consider a biological ecosystem modeled as a neutrosophic dynamic system:

• Ω = {𝑥1, 𝑥2, . . . , 𝑥𝑛}: The set of species in the ecosystem, where each species 𝑥𝑖 is characterized by its
neutrosophic attributes (𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖).
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• 𝑇𝑖 (𝑡): Degree to which species 𝑥𝑖 is adapted to the environment at time 𝑡. For example,𝑇𝑖 (𝑡) may increase
if 𝑥𝑖 develops traits that improve survival under current environmental conditions.

• 𝐼𝑖 (𝑡): Degree of uncertainty in species 𝑥𝑖’s role or impact in the ecosystem. This reflects incomplete
knowledge about how 𝑥𝑖 interacts with other species or adapts to environmental changes.

• 𝐹𝑖 (𝑡): Degree to which species 𝑥𝑖 is maladapted or detrimental to the ecosystem. For instance, 𝐹𝑖 (𝑡) may
increase if 𝑥𝑖 contributes to ecosystem imbalance.

The hyperrelationships RHR (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 ) = (𝑇R , 𝐼R , 𝐹R) capture the dynamic interactions among species:

• 𝑇R : Degree to which the interaction benefits the ecosystem (e.g., symbiosis).

• 𝐼R : Degree of indeterminacy in the interaction (e.g., uncertain impact of competition).

• 𝐹R : Degree to which the interaction harms the ecosystem (e.g., predation imbalance).

As the ecosystem evolves, the following dynamics may occur:

• Species 𝑥𝑖 may join or leave Ω due to migration, extinction, or introduction.

• The neutrosophic degrees𝑇𝑖 (𝑡), 𝐼𝑖 (𝑡), 𝐹𝑖 (𝑡) and hyperrelationship values𝑇R (𝑡), 𝐼R (𝑡), 𝐹R (𝑡) change over
time based on environmental conditions, resource availability, and species interactions.

• External influences, such as human intervention or climate change, may alter the system by introducing
new relationships RHR or modifying Ω.

This framework provides a dynamic, nuanced representation of ecosystem behavior, accommodating uncer-
tainty and variability in species interactions.

Example 6.6 (Social Networks). Social networks are structures of individuals or groups connected through
relationships like communication, collaboration, or shared interests, often facilitated by technology(cf. [32,39,
42]).

Consider a social network modeled as a neutrosophic dynamic system:

• Ω = {𝑥1, 𝑥2, . . . , 𝑥𝑛}: The set of individuals in the network, where each individual 𝑥𝑖 is characterized by
neutrosophic attributes (𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖).

• 𝑇𝑖 (𝑡): Degree to which individual 𝑥𝑖 positively contributes to the network at time 𝑡. For instance, 𝑇𝑖 (𝑡)
may increase if 𝑥𝑖 actively collaborates or shares valuable information.

• 𝐼𝑖 (𝑡): Degree of neutrality or indifference of 𝑥𝑖 in the network. This could reflect an individual’s limited
or ambiguous involvement in network activities.

• 𝐹𝑖 (𝑡): Degree to which 𝑥𝑖 detracts from the network, such as spreading misinformation or creating con-
flicts.

The hyperrelationships RHR (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 ) = (𝑇R , 𝐼R , 𝐹R) represent interactions within the network:

• 𝑇R : Degree to which the interaction enhances network cohesion (e.g., collaborative projects).

• 𝐼R : Degree of indeterminacy in the interaction (e.g., ambiguous communication).

• 𝐹R : Degree to which the interaction harms the network (e.g., disputes or competitive behavior).

The dynamic behavior of the network includes:
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• Addition or removal of individuals (𝑥𝑖) to/from Ω, reflecting network growth or attrition.

• Changes in the neutrosophic degrees 𝑇𝑖 (𝑡), 𝐼𝑖 (𝑡), 𝐹𝑖 (𝑡) of individuals based on their evolving roles and
contributions.

• Evolution of hyperrelationships RHR (𝑡) as collaboration patterns, social dynamics, or external influences
(e.g., new policies or technological changes) reshape the network.

This model captures the complexity and variability of social interactions, accommodating the uncertainty and
contradictions inherent in human networks.
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Abstract

To effectively address the uncertainties inherent in real-world scenarios, various extensions of set theory have
been developed, including Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets. Among these, the concepts of
Fuzzy Offset, Overset, Underset, and their Neutrosophic counterparts have been defined and extensively studied
within extended frameworks.

In this paper, we aim to extend the notion of offset to a broader range of uncertain set-theoretic concepts.
Specifically, we define and explore the following: Nonstationary Fuzzy Offset, Multi-valued Plithogenic Off-
set, Subset-valued Neutrosophic Offset, Hesitant fuzzy offset, Spherical Fuzzy OffSet, Fuzzy Off Matroid,
Plithogenic Off Matroid, Fuzzy Off Ultrafilter, Neutrosophic Off Ultrafilter, and Plithogenic Off Ultrafilter.
Through this investigation, we aim to advance the development of set-theoretic extensions that address un-
certainty and complexity in mathematical modeling, thereby enriching the theoretical foundations of these
frameworks.

Keywords: Neutrosophic Set, plithogenic set, fuzzy set, Neutrosophic Offset, plithogenic Offset

1 Short Introduction

1.1 Neutrosophic Set and Related Set Theory

Set theory, a foundational branch of mathematics, focuses on the study of ”sets,” which are defined as collections
of objects [42, 96, 213, 214]. Over the years, to better address real-world uncertainties, various extensions of
classical sets have been proposed, including Fuzzy Sets [40, 206, 227, 229–232, 237], Vague Sets [4, 28, 35,
87, 235], Soft Sets [11, 13, 63, 126, 134, 224], Hypersoft set [192, 193], Rough set [148–154], Hyperfuzzy
set [62, 70, 98, 202], and Neutrosophic Sets [6, 27, 50, 139, 180,181, 198,216].

Each of these frameworks is designed to address specific types of ambiguity and uncertainty. For example, a
Fuzzy Set assigns each element a membership degree within [0, 1], representing partial belonging rather than
binary inclusion, thereby enabling flexible modeling [227]. Neutrosophic Sets, on the other hand, simultane-
ously account for truth, indeterminacy, and falsehood, making them highly versatile for handling uncertainty in
complex systems [180,181]. A Hesitant Fuzzy Set assigns a set of possible membership degrees within [0, 1] to
each element, effectively capturing hesitation or uncertainty [210,211]. Similarly, a Spherical Fuzzy Set defines
membership, abstinence, and non-membership degrees that satisfy B2 + 82 + 32 ≤ 1, where B, 8, and 3 represent
the degrees of membership, abstinence, and non-membership, respectively, providing a multidimensional ap-
proach to modeling opinions [5,77]. Beyond these, countless other set concepts and logics have been proposed
to address uncertainty. Among them, Plithogenic Sets, which generalize these uncertain set frameworks, have
recently gained attention as a powerful and versatile extension [1, 73, 167, 179,186, 187,195,199,204].

Uncertain sets, including the examples mentioned above, have been the focus of extensive research, as high-
lighted in various studies [67,99,180,181,187]. Moreover, the study of uncertain graphs, such as Fuzzy Graphs
and Neutrosophic Graphs, has experienced significant advancements. These developments have been applied
to a wide range of problems, as demonstrated in recent research [58–60, 62–66, 168]. Additionally, these con-
cepts have been actively explored in practical applications, such as Neural Networks [12,83,112,120,122,165,
207, 208] and decision-making processes [3, 5, 34, 76, 97, 160, 162], further showcasing their versatility and
importance.

One emerging concept in uncertain sets is the notion of ”offset” [29,62,184,185,189,191]. The offset concept
allows for flexible adjustment of membership function values within uncertain sets, making it a compelling
subject of recent studies. This flexibility provides a fresh perspective on interpreting and applying uncertain set
memberships, thereby driving rapid advancements in research. Additionally, special cases of offsets, known as
”overset” and ”underset,” have also been identified and are similarly under active investigation [17, 130, 190,
215].
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1.2 Background on Filters and Matroids

In classical set theory, as well as in Fuzzy and Neutrosophic Sets, mathematical structures such as filters,
ultrafilters [16,24,57,86,86,173], ideals [92,201,201], matroids [52,56,144,166,212,221], and antimatroids
[128] have been extensively explored.

A filter is a subset of a poset closed under finite intersection and supersets. An ultrafilter is a maximal filter
where every subset or its complement belongs to the filter(cf. [61, 84, 86, 135, 173]). An ideal is a subset of a
poset closed under finite union and contained in larger sets. A matroid is a combinatorial structure generalizing
independence in vector spaces and graph theory [144]. These structures are fundamental to mathematics and
exhibit intriguing properties, enhancing the understanding of mathematical systems.

1.3 Our Contribution in This Paper

As discussed, the concepts of Fuzzy Offset, Overset, Underset, and their Neutrosophic counterparts are well-
established. These concepts expand traditional frameworks by allowing greater flexibility in membership value
adjustments, generalizing the inherent adaptability of Fuzzy and Neutrosophic Sets.

In this paper, we aim to extend the notion of offset to a broader range of set-theoretic concepts. Specifically,
we define and explore the following: Nonstationary Fuzzy Offset, Multi-valued Plithogenic Offset, Subset-
valued Neutrosophic Offset, Hesitant fuzzy offset, Spherical Fuzzy OffSet, Fuzzy Off Matroid, Plithogenic Off
Matroid, Fuzzy Off Ultrafilter, Neutrosophic Off Ultrafilter, and Plithogenic Off Ultrafilter. Additionally, we
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tribute to the development of set-theoretic extensions that address uncertainty and complexity in mathematical
modeling.

Note that the author believes that when considering real-world concepts within the framework of Neutrosophic
Sets or Fuzzy Sets, they may not always naturally conform to the neat interval [0, 1]. In such cases, normal-
ization may be necessary. Therefore, this study explores the process of normalizing ”offsets” [185, 189, 191]
into sets. It is hoped that this investigation will contribute to making Fuzzy Sets and Neutrosophic Sets more
accessible and applicable in machine learning and various practical applications.

1.4 The Structure of the Paper
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2 Preliminaries and Definitions

Some foundational concepts from set theory are applied in parts of this work. For further details on these
foundational concepts, please consult the relevant references as needed [55, 82, 88, 96, 115]. Additionally, for
operations and related topics concerning each concept, please refer to the respective references as necessary.

2.1 Basic Set Theory

Below are some fundamental concepts in set theory. For more comprehensive details, please refer to the relevant
references as needed [96].

Definition 2.1 (Set). [96] A set is a collection of distinct objects, known as elements, that are clearly defined,
allowing any object to be identified as either belonging to or not belonging to the set. If � is a set and G is an
element of �, this membership is denoted by G ∈ �. Sets are typically represented using curly brackets.

Definition 2.2 (Subset). [96] A set � is called a subset of another set �, denoted as � ⊆ �, if every element
of � is also an element of �. Formally:

� ⊆ � ⇐⇒ ∀G (G ∈ � =⇒ G ∈ �).

If � ⊆ � and � ≠ �, then � is called a proper subset of �, denoted � ⊂ �.

Definition 2.3 (Intersection). [96] The intersection of two sets � and �, denoted � ∩ �, is the set of elements
that are common to both � and �. Formally:

� ∩ � = {G | G ∈ � ∧ G ∈ �}.

If � ∩ � = ∅, then � and � are said to be disjoint.

Definition 2.4 (Union). [96] The union of two sets � and �, denoted � ∪ �, is the set of all elements that are
in �, �, or both. Formally:

� ∪ � = {G | G ∈ � ∨ G ∈ �}.

Definition 2.5 (Empty Set). [96] The empty set, denoted by ∅, is the unique set that contains no elements.
Formally, the empty set is defined as:

∅ = {G | G ≠ G},

indicating that there are no elements G for which the condition G = G fails, thereby resulting in an empty
collection. The empty set is a subset of every set and has a cardinality of zero.

Definition 2.6 (Non-Empty Set). A non-empty set is a set that contains at least one element. Formally, a set (
is non-empty if:

∃G ∈ (.

In contrast to the empty set ∅, a non-empty set has a cardinality |( | > 0.
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2.2 Crisp Sets and Neutrosophic Sets

When dealing with Fuzzy Sets or Neutrosophic Sets, they are often discussed alongside their foundational Crisp
Sets. The definition of a Crisp Set is provided below.

Definition 2.7 (Universe Set). (cf. [140]) A universe set, often denoted by *, is a set that contains all the
elements under consideration for a particular discussion or problem domain. Formally, * is defined as a set
that encompasses every element within the scope of a given context or framework, so that any subset of interest
can be regarded as a subset of*.

In set theory, the universe set* is typically assumed to contain all elements relevant to the discourse, meaning
that for any set �, if � ⊆ *, then all elements of � are elements of*. Related concepts include underlying sets
and whole sets.

Definition 2.8 (Crisp Set). [142] Let - be a universe set, and let %(-) denote the power set of - , which
represents all subsets of - . A crisp set � ⊆ - is defined by a characteristic function j� : - → {0, 1}, where:

j�(G) =
{

1 if G ∈ �,
0 if G ∉ �.

This function j� assigns a value of 1 to elements within the set � and 0 to those outside it, creating a clear
boundary. Crisp sets are thus bivalent and follow the principle of binary classification, where each element is
either a member of the set or not.

The Fuzzy Set is a well-known concept used to handle uncertainty in set theory. The definition is provided
below [227].

Definition 2.9. [227–232, 232, 233] A fuzzy set g in a non-empty universe . is a mapping g : . → [0, 1]. A
fuzzy relation on . is a fuzzy subset X in . × . . If g is a fuzzy set in . and X is a fuzzy relation on . , then X is
called a fuzzy relation on g if

X(H, I) ≤ min{g(H), g(I)} for all H, I ∈ . .

Definition 2.10. [180,182,183,197,198] Let - be a given set. A (single-valued) Neutrosophic Set � on - is
characterized by three membership functions:

)� : - → [0, 1], �� : - → [0, 1], �� : - → [0, 1],

where for each G ∈ - , the values )�(G), ��(G), and ��(G) represent the degree of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ )�(G) + ��(G) + ��(G) ≤ 3.

Example 2.11 (Medical Diagnosis). In diagnosing a disease �, a patient G may exhibit symptoms that are
partially indicative of �. The truth, indeterminacy, and falsity membership functions )�(G), ��(G), and ��(G)
could represent:

• )�(G) = 0.8: High likelihood the patient has �.

• ��(G) = 0.1: Indeterminate due to inconclusive test results.

• ��(G) = 0.1: Small chance the patient does not have �.

Medical diagnosis is a concept that has been extensively studied using Neutrosophic Sets [10, 26, 32, 41, 124,
174, 236].

Example 2.12 (Consumer Sentiment Analysis). For a product review G, the degree of positivity, neutrality, and
negativity can be represented as:
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• )�(G) = 0.6: 60% of users express a positive sentiment.

• ��(G) = 0.3: 30% of users are neutral or indecisive.

• ��(G) = 0.1: 10% of users express negative sentiment.

Sentiment Analysis is a concept that has been extensively studied using Neutrosophic Sets [19,85,100,116,159].

Example 2.13 (Environmental Risk Assessment). When evaluating the risk of pollution in a river G:

• )�(G) = 0.7: 70% chance the river is polluted based on chemical levels.

• ��(G) = 0.2: 20% uncertainty due to fluctuating seasonal factors.

• ��(G) = 0.1: 10% chance the river is not polluted, as some parameters are within safe limits.

Risk Assessment is a concept that has been extensively studied using Neutrosophic Sets [7, 22, 104, 117, 146].

The Plithogenic Set is known as a type of set that can generalize Neutrosophic Sets, Fuzzy Sets, and other
similar sets [186, 187]. The definition of the Plithogenic Set is provided below.

Definition 2.14. [186, 187] Let ( be a universal set, and % ⊆ (. A Plithogenic Set %( is defined as:

%( = (%, E, %E, ?35 , ?��)

where:

• E is an attribute.

• %E is the range of possible values for the attribute E.

• ?35 : % × %E → [0, 1]B is the Degree of Appurtenance Function (DAF).

• ?�� : %E × %E → [0, 1]C is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 0, 1 ∈ %E:

1. Reflexivity of Contradiction Function:
?�� (0, 0) = 0

2. Symmetry of Contradiction Function:

?�� (0, 1) = ?�� (1, 0)

Example 2.15. (cf. [59]) The following examples of Plithogenic sets are provided.

• When B = C = 1, %( is called a Plithogenic Fuzzy Set.

• When B = 2, C = 1, %( is called a Plithogenic Intuitionistic Fuzzy Set.

• When B = 3, C = 1, %( is called a Plithogenic Neutrosophic Set.

• When B = 4, C = 1, %( is called a Plithogenic quadripartitioned Neutrosophic Set (cf. [91, 164, 177]).

• When B = 5, C = 1, %( is called a Plithogenic pentapartitioned Neutrosophic Set (cf. [23, 39, 127]).

• When B = 6, C = 1, %( is called a Plithogenic hexapartitioned Neutrosophic Set (cf. [147]).

• When B = 7, C = 1, %( is called a Plithogenic heptapartitioned Neutrosophic Set (cf. [25, 138]).

• When B = 8, C = 1, %( is called a Plithogenic octapartitioned Neutrosophic Set.

• When B = 9, C = 1, %( is called a Plithogenic nonapartitioned Neutrosophic Set.
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2.3 Plithogenic Offset/Overset/Underset

This section provides an explanation of the Plithogenic Offset, Overset, and Underset. The Plithogenic Offset
is an extended concept derived from the Plithogenic Set. Restricted versions of the Offset, namely the Overset
(where only Ω is unrestricted) and the Underset (where only Ψ is unrestricted), are also recognized and studied.

While this paper primarily focuses on the definition of the Offset, any concept defined using the Offset can also
be defined using the Overset or Underset. For example, a Fuzzy Overset or Fuzzy Underset can define a Fuzzy
Offset.

Definition 2.16 (Crisp Offset). (cf. [62]) Let - be a universe of discourse, and let Ψ and Ω represent 0 and 1,
respectively. A Crisp Offset � ⊆ - is defined by a characteristic function j� : - → {Ψ,Ω}, where:

j�(G) =
{
Ω if G ∈ �,
Ψ if G ∉ �.

In this context, the function j� assigns a value of Ω (1) to elements that are within the set � and Ψ (0) to
elements that are outside �. This structure adheres to the principle of binary classification, as each element is
either fully included in the set � or completely excluded from it.

The concept of a Crisp Offset, unlike fuzzy or neutrosophic sets, does not allow for intermediate degrees of
membership. Instead, membership is strictly limited to the values Ψ and Ω, reflecting the clear-cut, determin-
istic nature of this classification approach. This discrete boundary is a distinguishing feature of Crisp Offsets,
contrasting with the gradual membership levels typical of fuzzy sets.

Definition 2.17 (Fuzzy Offset). (cf. [185]) Let - be a universe of discourse. A Fuzzy Offset �̃ in - is defined
as:

�̃ = {(G, ` �̃(G)) | G ∈ -, ` �̃(G) ∈ [Ψ,Ω]},

where Ω > 1 and Ψ < 0. There exist elements G, H ∈ - such that ` �̃(G) > 1 and ` �̃(H) < 0.

Definition 2.18 (Single-Valued Neutrosophic OffSet). (cf. [184,185,188–190]) A Single-Valued Neutrosophic
OffSet, denoted �off ⊆ *off, is a set within a universe of discourse *off in which certain elements may possess
neutrosophic degrees—truth, indeterminacy, or falsity—that extend beyond the standard limits, either above 1
or below 0. It is formally defined as:

�off = {(G, 〈) (G), � (G), � (G)〉) | G ∈ *off, ∃ () (G) > 1 or � (G) < 0)} ,

where:

• ) (G), � (G), and � (G) denote the truth-membership, indeterminacy-membership, and falsity-membership
degrees of each G ∈ *off.

• ) (G), � (G), � (G) ∈ [Ψ,Ω], where Ω > 1 (termed the OverLimit) and Ψ < 0 (termed the UnderLimit),
allow the possibility for ) (G), � (G), or � (G) to take values beyond the conventional bounds of [0, 1].

Definition 2.19 (Plithogenic Offset). (cf. [62]) Let ( be a universal set, and % ⊆ (. A Plithogenic Offset %(off
is defined as:

%(off = (%, E, %E, ?35 , ?��)

where:

• E is an attribute.

• %E is the set of possible values for the attribute E.
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• ?35 : % × %E → [ΨE ,ΩE]B is the Degree of Appurtenance Function (DAF), where ΨE < 0 and ΩE > 1.

• ?�� : %E × %E → [ΨE ,ΩE]C is the Degree of Contradiction Function (DCF).

In this definition, the DAF and DCF allow the membership degrees ?35 (G, 0) to range from below 0 to above
1, between the underlimit ΨE and the overlimit ΩE .

Example 2.20. (cf. [59]) The following examples of Plithogenic offsets are provided.

• When B = C = 1, %(off is called a Plithogenic Fuzzy OffSet.

• When B = 2, C = 1, %(off is called a Plithogenic Intuitionistic Fuzzy OffSet.

• When B = 3, C = 1, %(off is called a Plithogenic Neutrosophic OffSet.

• When B = 4, C = 1, %(off is called a Plithogenic quadripartitioned Neutrosophic OffSet.

• When B = 5, C = 1, %(off is called a Plithogenic pentapartitioned Neutrosophic OffSet.

• When B = 6, C = 1, %(off is called a Plithogenic hexapartitioned Neutrosophic OffSet.

• When B = 7, C = 1, %(off is called a Plithogenic heptapartitioned Neutrosophic OffSet.

• When B = 8, C = 1, %(off is called a Plithogenic octapartitioned Neutrosophic OffSet.

• When B = 9, C = 1, %(off is called a Plithogenic nonapartitioned Neutrosophic OffSet.

Proposition 2.21. A Plithogenic Set is a subset of a Plithogenic Offset.

Proof. A Plithogenic Set %( = (%, E, %E, ?35 , ?��) is defined by:

• ?35 : % × %E → [0, 1]B ,

• ?�� : %E × %E → [0, 1]C .

A Plithogenic Offset %(off = (%, E, %E, ?35off, ?��off) generalizes this definition by allowing:

?35off : % × %E → [ΨE ,ΩE]B , where ΨE < 0, ΩE > 1.

When ΨE = 0 and ΩE = 1, the Plithogenic Offset reduces to a Plithogenic Set, as ?35off and ?��off restrict to
the interval [0, 1]. Hence, a Plithogenic Set is a subset of a Plithogenic Offset. �

Please refer to the respective introductory notes for details on the operations of fuzzy sets, neutrosophic sets,
and plithogenic sets [48, 68, 186, 196, 238].

3 Result: Some Sets and Some Concepts

In this section, we apply the concept of Offset to several existing sets and examine the relationships between
them. It should be noted that Overset and Underset are constrained versions of Offset. Since they can be defined
and proven using similar methods as those presented here, they are omitted from this publication.
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3.1 Nonstationary Fuzzy offset

We define the concept of a Nonstationary Fuzzy Offset and explore its relationships with existing concepts
[15, 69, 89, 90].

Definition 3.1 (Nonstationary Fuzzy Set). [69] Let � be a fuzzy set in the universe of discourse - , character-
ized by a membership function `� : - → [0, 1]. Define a set of time points ) = {C1, C2, . . . , C=}, which may be
finite or infinite, and let 5 : ) → R be a perturbation function that introduces time-dependent changes to the
parameters of `�.

A Nonstationary Fuzzy Set �∗ is defined as:

�∗ = {(`�∗ (C, G), G, C) | G ∈ -, C ∈ )} ,

where:

• `�∗ : ) ×- → [0, 1] is a nonstationary membership function that assigns a time-dependent membership
degree to each element G ∈ - at each time C ∈ ) .

• `�∗ (C, G) represents the membership degree of G at time C.

Definition 3.2 (Nonstationary Membership Function). The nonstationary membership function is formally
defined as:

`�∗ (C, G) = `�(G, ?1 (C), ?2 (C), . . . , ?< (C)),
where {?8 (C)} are the parameters of the standard membership function `�(G), modified by time-dependent
perturbation functions. Specifically, for each parameter ?8 (C), we have:

?8 (C) = ?8 + :8 58 (C), 8 = 1, 2, . . . , <,

where:

• ?8 are the initial parameters of `�(G),

• :8 are scaling constants that control the magnitude of perturbation,

• 58 (C) are perturbation functions that induce time-based variations in the parameters.

Definition 3.3 (Nonstationary Fuzzy Offset). Let - be a universe of discourse, and let � be a fuzzy set in -
characterized by a membership function `� : - → [Ψ,Ω]. Define a set of time points ) = {C1, C2, . . . , C=},
which may be finite or infinite, and let 5 : ) → R be a perturbation function introducing time-dependent
changes to the parameters of `�.

A Nonstationary Fuzzy Offset �̃∗ is defined as:

�̃∗ =
{(
` �̃∗ (C, G), G, C

)
| G ∈ -, C ∈ )

}
,

where:

• ` �̃∗ : ) × - → [Ψ,Ω] is a nonstationary membership function, assigning a time-dependent membership
degree to each G ∈ - at each C ∈ ) , where Ω > 1 and Ψ < 0.

• ` �̃∗ (C, G) represents the membership degree of G at time C.

The nonstationary membership function ` �̃∗ (C, G) is formally defined as:

` �̃∗ (C, G) = `�(G, ?1 (C), ?2 (C), . . . , ?< (C)),

where {?8 (C)} are parameters of the standard membership function `�(G), modified by time-dependent pertur-
bation functions. For each parameter ?8 (C), we have:

?8 (C) = ?8 + :8 58 (C), 8 = 1, 2, . . . , <,

with:
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• ?8 being the initial parameters of `�(G),

• :8 being scaling constants controlling the magnitude of perturbation,

• 58 (C) being perturbation functions inducing time-dependent variations.

Additionally, there exist elements G, H ∈ - and time points CG , CH ∈ ) such that:

` �̃∗ (CG , G) > 1 and ` �̃∗ (CH , H) < 0.

Theorem 3.4. A Nonstationary Fuzzy Offset generalizes both the Nonstationary Fuzzy Set and the Fuzzy Offset.

Proof. Let � be a fuzzy set in the universe of discourse - , characterized by the membership function `� : - →
[0, 1]. We examine the relationships between the Nonstationary Fuzzy Offset �̃∗, the Nonstationary Fuzzy Set
�∗, and the Fuzzy Offset �̃. *: The Nonstationary Fuzzy Set �∗ is defined as:

�∗ = {(`�∗ (C, G), G, C) | G ∈ -, C ∈ )} ,

where `�∗ (C, G) satisfies:
`�∗ (C, G) = `�(G, ?1 (C), ?2 (C), . . . , ?< (C)),

with `�(G) taking values in the range [0, 1].

The Nonstationary Fuzzy Offset �̃∗ extends �∗ by allowing the membership function ` �̃∗ (C, G) to take values
in the broader range [Ψ,Ω], where Ψ < 0 and Ω > 1. By restricting Ψ = 0 and Ω = 1, �̃∗ reduces to �∗. Thus,
�̃∗ generalizes �∗.

The Fuzzy Offset �̃ is defined as:

�̃ = {(G, ` �̃(G)) | G ∈ -, ` �̃(G) ∈ [Ψ,Ω]}.

In this case, the membership function ` �̃(G) does not depend on time. By setting ) = {C0}, where C0 is a single
fixed time point, and ?8 (C) = ?8 (constant parameters), �̃∗ reduces to �̃. Thus, �̃∗ generalizes �̃.

The Nonstationary Fuzzy Offset �̃∗ incorporates both the time-dependent variability of �∗ and the extended
membership range of �̃, combining their properties into a unified framework. This demonstrates that �̃∗ is a
proper generalization of both �∗ and �̃.

Therefore, the Nonstationary Fuzzy Offset generalizes both the Nonstationary Fuzzy Set and the Fuzzy Offset.
�

3.2 Multi-Valued Plithogenic Offset

A Multi-Valued Neutrosophic Set (MVNS) is a mathematical framework extending Neutrosophic Sets to rep-
resent truth, indeterminacy, and falsity degrees with multiple possible values [118, 119, 123, 155, 156, 223].
Formally:

Definition 3.5. (cf. [155]) Let - be a universe of discourse, where G ∈ - is an element. A Multi-Valued
Neutrosophic Set (MVNS) � in - is defined as:

� = {〈G, )�(G), ��(G), ��(G)〉 | G ∈ -},

where:

• )�(G) ⊆ [0, 1]: The set of possible truth-membership degrees of G.

• ��(G) ⊆ [0, 1]: The set of possible indeterminacy-membership degrees of G.

• ��(G) ⊆ [0, 1]: The set of possible falsity-membership degrees of G.

82



These values satisfy the following conditions:

1. )�(G), ��(G), ��(G) ⊆ [0, 1],

2. For any C ∈ )�(G), 8 ∈ ��(G), 5 ∈ ��(G),

0 ≤ C + 8 + 5 ≤ 3.

Each element 〈)�(G), ��(G), ��(G)〉 is called a Multi-Valued Neutrosophic Number (MVNN).

We extend the concept of a Multi-Valued Neutrosophic Number (MVNN) to a Multi-Valued Plithogenic Set,
and further generalize it to an Offset. The definitions and theorems are provided below.

Definition 3.6 (Multi-Valued Plithogenic Set). Let ( be a universal set, and % ⊆ (.

A Multi-Valued Plithogenic Set %( is defined as:

%( = (%, E, %E, ?35 , ?��)

where:

• E is an attribute.

• %E is the set of possible values for the attribute E.

• ?35 : % × %E → 2[0,1]B is the Degree of Appurtenance Function (DAF), mapping each pair (G, 0) to a
set of B-tuples in [0, 1].

• ?�� : %E × %E → 2[0,1]C is the Degree of Contradiction Function (DCF).

In this definition, the DAF allows for multiple membership degrees for each element G and attribute value
0, capturing the uncertainty or hesitation in the membership assessment. The DCF allows the contradiction
degrees to extend beyond the standard interval [0, 1], accommodating over- and under-contradiction degrees.

Definition 3.7 (Multi-Valued Plithogenic OffSet). Let ( be a universal set, and % ⊆ (.

A Multi-Valued Plithogenic OffSet %(off is defined as:

%(off = (%, E, %E, ?35 , ?��)

where:

• E is an attribute.

• %E is the set of possible values for the attribute E.

• ?35 : % × %E → 2[ΨE ,ΩE ]B is the Degree of Appurtenance Function (DAF), mapping each pair (G, 0) to
a set of B-tuples in [ΨE ,ΩE], where ΨE < 0 and ΩE > 1.

• ?�� : %E × %E → 2[ΨE ,ΩE ]C is the Degree of Contradiction Function (DCF), mapping each pair (0, 1)
to a set of C-tuples in [ΨE ,ΩE].

In this definition, both the DAF and the DCF allow the degrees to extend beyond the standard interval [0, 1],
accommodating over- and under-membership and contradiction degrees.
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Example 3.8. (cf. [59]) The following examples of Multi-Valued Plithogenic OffSet are provided.

• When B = C = 1, %� is called a Multi-Valued Plithogenic Fuzzy OffSet.

• When B = 2, C = 1, %� is called a Multi-Valued Plithogenic Intuitionistic Fuzzy OffSet.

• When B = 3, C = 1, %� is called a Multi-Valued Plithogenic Neutrosophic OffSet.

• When B = 4, C = 1, %� is called a Multi-Valued Plithogenic quadripartitioned Neutrosophic OffSet.

• When B = 5, C = 1, %� is called a Multi-Valued Plithogenic pentapartitioned Neutrosophic OffSet.

• When B = 6, C = 1, %� is called a Multi-Valued Plithogenic hexapartitioned Neutrosophic OffSet.

• When B = 7, C = 1, %� is called a Multi-Valued Plithogenic heptapartitioned Neutrosophic OffSet.

• When B = 8, C = 1, %� is called a Multi-Valued Plithogenic octapartitioned Neutrosophic OffSet.

• When B = 9, C = 1, %� is called a Multi-Valued Plithogenic nonapartitioned Neutrosophic OffSet.

Theorem 3.9. A Multi-Valued Plithogenic Set can be transformed into a Multi-Valued Neutrosophic Set and a
Plithogenic Set.

Proof. Let %( = (%, E, %E, ?35 , ?��) be a Multi-Valued Plithogenic Set.

To transform %( into a Multi-Valued Neutrosophic Set, proceed as follows:

• Choose the attribute E to represent neutrosophic components, such as Truth, Indeterminacy, and Falsity.

• Set %E = {Truth, Indeterminacy, Falsity}. (B = 3, C = 1)

• Define the DAF ?35 such that for each G ∈ % and 0 ∈ %E, ?35 (G, 0) ⊆ [0, 1] captures the multi-valued
membership degrees corresponding to the neutrosophic components.

• Adjust the DCF ?�� accordingly, ensuring it maps into 2[0,1]C and reflects standard contradiction de-
grees.

By this construction, %( encapsulates the structure of a Multi-Valued Neutrosophic Set.

To transform %( into a Plithogenic Set, constrain the DAF and DCF to single-valued functions within [0, 1]B
and [0, 1]C , respectively:

• For each G ∈ % and 0 ∈ %E, restrict ?35 (G, 0) to a single B-tuple in [0, 1]B .

• Similarly, restrict ?�� (0, 1) to a single C-tuple in [0, 1]C .

Therefore, the Multi-Valued Plithogenic Set generalizes both the Multi-Valued Neutrosophic Set and the Plithogenic
Set. �

Theorem 3.10. A Multi-Valued Plithogenic OffSet reduces to a Multi-Valued Plithogenic Set when the DAF
?35 and DCF ?�� are restricted to map into 2[0,1]B and 2[0,1]C , respectively.

Proof. Consider the Multi-Valued Plithogenic OffSet %(off = (%, E, %E, ?35 , ?��) with:

?35 : % × %E → 2[ΨE ,ΩE ]B ,

?�� : %E × %E → 2[ΨE ,ΩE ]C .

By restricting the ranges of ?35 and ?�� to 2[0,1]B and 2[0,1]C , respectively (i.e., setting ΨE = 0 and ΩE = 1),
we obtain mappings that align with the definition of a Multi-Valued Plithogenic Set.

Therefore, %(off becomes a Multi-Valued Plithogenic Set %( under these restrictions. �
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Theorem 3.11. A Multi-Valued Plithogenic OffSet reduces to a Plithogenic OffSet when the DAF ?35 and DCF
?�� map each pair to single values instead of sets.

Proof. Starting with the Multi-Valued Plithogenic OffSet %(off = (%, E, %E, ?35 , ?��), enforce the following
conditions:

• The DAF ?35 maps each (G, 0) to a single B-tuple in [ΨE ,ΩE]B .

• The DCF ?�� maps each (0, 1) to a single C-tuple in [ΨE ,ΩE]C .

Under these conditions, %(off satisfies the definition of a Plithogenic OffSet as given in [62].

Thus, the Multi-Valued Plithogenic OffSet reduces to a Plithogenic OffSet. �

3.3 Subset-Valued Neutrosophic OffSet

We consider the concept of the Subset-Valued Neutrosophic OffSet as an extension of the Subset-Valued Neu-
trosophic Set using the framework of Neutrosophic OffSets. The definitions and related theorems are provided
below.

Definition 3.12 (Subset-Valued Neutrosophic Set (SVNS)). [194] Let U be a universe of discourse, and let
S ⊆ U. A Subset-Valued Neutrosophic Set (SVNS) S is defined as:

S = {(G, ) (G), � (G), � (G)) | G ∈ U} ,

where:

• ) (G), � (G), � (G) are subsets of [0, 1], representing the truth-membership, indeterminacy-membership,
and falsity-membership degrees of G, respectively.

• The following conditions hold:

0 ≤ inf () (G)) + inf (� (G)) + inf (� (G)) ≤ sup() (G)) + sup(� (G)) + sup(� (G)) ≤ 3,

where inf and sup denote the infimum and supremum, respectively, of the subsets ) (G), � (G), and � (G).

Example 3.13 (Financial Investment Risk Assessment). Let*off represent a set of financial investments. Each
investment G ∈ *off is associated with truth ()), indeterminacy (�), and falsity (�) degrees extended to [Ψ,Ω],
where Ψ < 0 and Ω > 1. For instance:

�off = {(Investment A, 〈) (A) = 1.2, � (A) = 0.5, � (A) = −0.3〉), (Investment B, 〈) (B) = 0.8, � (B) = 0.2, � (B) = 0.1〉)},

where:

• ) (A) = 1.2: Investment A is expected to yield returns exceeding typical expectations.

• � (A) = 0.5: There is moderate uncertainty regarding Investment A’s performance.

• � (A) = −0.3: Negative falsity degree indicates negligible risk for Investment A.

Example 3.14 (Medical Diagnosis). Let *off denote a set of suspected medical conditions. Each condition
G ∈ *off is assigned neutrosophic degrees ) (G), � (G), and � (G) extended to [Ψ,Ω]. For example:

�off = {(Disease X, 〈) (X) = 1.1, � (X) = 0.4, � (X) = −0.2〉), (Disease Y, 〈) (Y) = 0.7, � (Y) = 0.6, � (Y) = 0.1〉)},

where:

• ) (X) = 1.1: High probability of Disease X due to advanced diagnostic tools.
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• � (X) = 0.4: Moderate uncertainty caused by overlapping symptoms with other conditions.

• � (X) = −0.2: Negative falsity implies atypical symptoms decrease the likelihood of misdiagnosis.

Example 3.15 (Customer Sentiment Analysis in E-Commerce). Let*off be a set of products in an e-commerce
platform. Each product G ∈ *off is evaluated using extended neutrosophic degrees. For instance:

�off = {(Product A, 〈) (A) = 1.3, � (A) = 0.3, � (A) = −0.1〉), (Product B, 〈) (B) = 0.9, � (B) = 0.2, � (B) = 0.5〉)},

where:

• ) (A) = 1.3: Overwhelmingly positive sentiment for Product A due to excellent reviews.

• � (A) = 0.3: Minor uncertainty from a small number of inconsistent reviews.

• � (A) = −0.1: Negligible dissatisfaction for Product A.

Definition 3.16 (Subset-Valued Neutrosophic OffSet (SVNOS)). Let Uoff be a universe of discourse, and let
Soff ⊆ Uoff. A Subset-Valued Neutrosophic OffSet (SVNOS) Soff is defined as:

Soff = {(G, ) (G), � (G), � (G)) | G ∈ Uoff, ∃ (sup() (G)) > 1 or inf(� (G)) < 0)} ,

where:

• ) (G), � (G), � (G) are subsets of [Ψ,Ω], representing the truth-membership, indeterminacy-membership,
and falsity-membership degrees of G, respectively.

• Ψ < 0 and Ω > 1 represent the underlimit and overlimit, allowing ) (G), � (G), and � (G) to take values
beyond the conventional bounds of [0, 1].

• The following conditions hold:

Ψ ≤ inf () (G)) + inf(� (G)) + inf(� (G)) ≤ sup() (G)) + sup(� (G)) + sup(� (G)) ≤ Ω.

Theorem 3.17. A Subset-Valued Neutrosophic OffSet (SVNOS) can be transformed into a Subset-Valued Neu-
trosophic Set (SVNS) by restricting the membership degrees to the interval [0, 1].

Proof. By definition, the membership degrees) (G), � (G), � (G) of a Subset-Valued Neutrosophic OffSet (SVNOS)
lie in the interval [Ψ,Ω], where Ψ < 0 and Ω > 1.

Restricting these degrees to [0, 1], we ensure that:

0 ≤ inf () (G)) + inf(� (G)) + inf (� (G)) ≤ sup() (G)) + sup(� (G)) + sup(� (G)) ≤ 3,

which satisfies the conditions for a Subset-Valued Neutrosophic Set (SVNS).

Thus, any SVNOS can be converted into an SVNS by simply truncating the values outside [0, 1]. �

Theorem 3.18. A Subset-Valued Neutrosophic OffSet (SVNOS) generalizes both Neutrosophic OffSet and Plithogenic
Neutrosophic OffSet.

Proof. A Neutrosophic OffSet is defined as a set with truth, indeterminacy, and falsity membership degrees

) (G), � (G), � (G) ∈ [Ψ,Ω]

, where Ψ < 0 and Ω > 1. These degrees are single values. A Subset-Valued Neutrosophic OffSet extends this
definition by allowing ) (G), � (G), � (G) to be subsets of [Ψ,Ω] instead of single values, thereby generalizing
the Neutrosophic OffSet. A Plithogenic Neutrosophic OffSet includes additional attributes like the Degree of
Contradiction Function (DCF), which evaluates the contradiction between membership degrees. The Subset-
Valued Neutrosophic OffSet accommodates these attributes by allowing subsets of membership degrees and
can be extended to include DCF as a secondary function. Therefore, the Subset-Valued Neutrosophic OffSet
subsumes both the Neutrosophic OffSet and Plithogenic Neutrosophic OffSet as special cases. �
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3.4 Hesitant Fuzzy Offset and Spherical Fuzzy Offset

In the field of Fuzzy Set theory, Hesitant Fuzzy Sets [2, 81, 125, 145, 210, 211] and Spherical Fuzzy Sets [18,
77, 132] are well-known concepts. This study explores the extension of these sets to their Offset counterparts.
The definitions, along with related theorems and properties, are presented below.

Definition 3.19. [211] Let - be a reference set. A Hesitant Fuzzy Set (HFS) on - is defined as a function
ℎ : - → 2[0,1] , where ℎ(G) ⊆ [0, 1] represents a set of possible membership values of G in the fuzzy set.
Formally:

� = {〈G, ℎ(G)〉 : G ∈ -},

where:

• ℎ(G) ⊆ [0, 1] is the hesitant membership set, containing all possible degrees of membership for G.

• If ℎ(G) is a closed interval [0, 1] ⊆ [0, 1], then � reduces to an Intuitionistic Fuzzy Set (IFS).

Definition 3.20. Let - be a reference set, and let Ψ < 0 and Ω > 1 be underlimit and overlimit values,
respectively. A Hesitant Fuzzy Offset (HFO) on - is defined as a function ℎoff : - → 2[Ψ,Ω] , where ℎoff (G) ⊆
[Ψ,Ω] represents a set of possible membership values of G in the fuzzy offset set. Formally:

�off = {〈G, ℎoff (G)〉 : G ∈ -},

where:

• ℎoff (G) ⊆ [Ψ,Ω] is the hesitant offset membership set, allowing values to exceed the bounds of [0, 1].

• If Ψ = 0 and Ω = 1, then �off reduces to a Hesitant Fuzzy Set.

Theorem 3.21. Restricting a Hesitant Fuzzy Offset (HFO) to the interval [0, 1] results in a Hesitant Fuzzy Set
(HFS).

Proof. Let �off = {〈G, ℎoff (G)〉 : G ∈ -} be a Hesitant Fuzzy Offset, where ℎoff (G) ⊆ [Ψ,Ω] with Ψ < 0 and
Ω > 1.

If we restrict the range of ℎoff (G) to [0, 1], then ℎoff (G) ∩ [0, 1] = ℎ(G) ⊆ [0, 1]. The resulting set � =

{〈G, ℎ(G)〉 : G ∈ -} satisfies the definition of a Hesitant Fuzzy Set, where ℎ(G) ⊆ [0, 1] represents the set of
possible membership values for each G.

Thus, the restricted Hesitant Fuzzy Offset becomes a Hesitant Fuzzy Set. �

Definition 3.22. [77] A Spherical Fuzzy Set (SFS) is defined on a universal set - as:

( = {(G, B(G), 8(G), 3 (G)) : G ∈ -},

where:

• B(G), 8(G), 3 (G) : - → [0, 1] represent the degree of membership, degree of abstinence, and degree of
non-membership, respectively,

• These values satisfy the constraint:

B(G)2 + 8(G)2 + 3 (G)2 ≤ 1.

• The degree of refusal A (G) is defined as:

A (G) =
√

1 − B(G)2 − 8(G)2 − 3 (G)2.

The triplet (B(G), 8(G), 3 (G)) is called a Spherical Fuzzy Number (SFN).

87



Definition 3.23. A Spherical Fuzzy Offset (SFO) is an extension of the SFS, where the membership values can
exceed the standard range [0, 1]. It is defined on a universal set - as:

(off = {(G, Boff (G), 8off (G), 3off (G)) : G ∈ -},

where:

• Boff (G), 8off (G), 3off (G) : - → [Ψ,Ω], with Ψ < 0 and Ω > 1,

• These values satisfy the generalized constraint:

Boff (G)2 + 8off (G)2 + 3off (G)2 ≤ Ω2,

• The degree of extended refusal Aoff (G) is:

Aoff (G) =
√
Ω2 − Boff (G)2 − 8off (G)2 − 3off (G)2.

Theorem 3.24. A Spherical Fuzzy Offset (SFO) reduces to a Spherical Fuzzy Set (SFS) when the range of
Boff (G), 8off (G), 3off (G) is restricted to [0, 1].

Proof. By definition, the membership values Boff (G), 8off (G), 3off (G) in an SFO satisfy:

Boff (G)2 + 8off (G)2 + 3off (G)2 ≤ Ω2.

Restricting Ψ = 0 and Ω = 1, the range becomes [0, 1], and the constraint simplifies to:

B(G)2 + 8(G)2 + 3 (G)2 ≤ 1,

which is the condition for an SFS.

Therefore, the SFO reduces to an SFS under this restriction. �

Theorem 3.25. Both Hesitant Fuzzy Offsets (HFO) and Spherical Fuzzy Offsets (SFO) generalize the Fuzzy
Offset.

Proof. Let �off = {〈G, ℎoff (G)〉 : G ∈ -} be a Hesitant Fuzzy Offset. For each G ∈ - , ℎoff (G) ⊆ [Ψ,Ω],
representing a set of possible membership values. If ℎoff (G) = {` �̃(G)}, where ` �̃(G) ∈ [Ψ,Ω], then �off
reduces to a Fuzzy Offset �̃ = {(G, ` �̃(G)) : G ∈ -}.

Therefore, the Hesitant Fuzzy Offset generalizes the Fuzzy Offset by allowing multiple possible membership
values for each G.

And let (off = {〈G, (B(G), 8(G), 3 (G))〉 : G ∈ -} be a Spherical Fuzzy Offset, where B(G), 8(G), 3 (G) ∈ [Ψ,Ω]
satisfy the constraint B2 (G) + 82 (G) + 32 (G) ≤ 1.

If we set 8(G) = 0 and 3 (G) = 0 for all G ∈ - , then B(G) ∈ [Ψ,Ω], and (off reduces to a Fuzzy Offset
�̃ = {(G, ` �̃(G)) : G ∈ -}, where ` �̃(G) = B(G).

Thus, the Spherical Fuzzy Offset generalizes the Fuzzy Offset by incorporating additional components for
abstinence (8(G)) and non-membership (3 (G)).

Hence, both Hesitant Fuzzy Offsets and Spherical Fuzzy Offsets extend the concept of Fuzzy Offsets. �

Theorem 3.26. A Plithogenic Offset with B = 3 and C = 1 generalizes both the Hesitant Offset and the Spherical
Fuzzy Offset.
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Proof. In a Hesitant Offset, the membership degrees ℎoff (G) are subsets of [Ψ,Ω]. In a Plithogenic Offset, the
Degree of Appurtenance Function (DAF) maps:

?35 (G, 0) : % × %E → [Ψ,Ω]B .

By setting B = 1, the Plithogenic Offset reduces to a Hesitant Offset, where each ?35 (G, 0) represents the
hesitant membership set ℎoff (G).

Thus, the Hesitant Offset is a special case of the Plithogenic Offset.

In a Spherical Fuzzy Offset, the triplet (Boff (G), 8off (G), 3off (G)) satisfies:

Boff (G)2 + 8off (G)2 + 3off (G)2 ≤ Ω2.

In a Plithogenic Offset, the DAF maps G to a set of B-tuples in [Ψ,Ω]B . By setting B = 3, the DAF can encode
the triplet (Boff (G), 8off (G), 3off (G)).

By imposing the spherical constraint on the DAF, the Plithogenic Offset reduces to a Spherical Fuzzy Offset.

A Plithogenic Offset with B = 3 allows:

• Triplet encoding for spherical membership (Spherical Fuzzy Offset),

• Hesitant membership for each component of the triplet (Hesitant Offset).

This dual flexibility unifies both structures. �

3.5 Fuzzy Offmatroid

The definition of the Fuzzy Offmatroid is provided below. It is a concept derived by incorporating the notion
of offset into fuzzy matroids.

Definition 3.27. [71,72,175,176] Let � (. ) denote the power set of fuzzy subsets on . . A pair " = (-, �) is
called a fuzzy matroid if � ⊆ � (. ) satisfies the following conditions:

1. If g1 ∈ � and g2 ⊂ g1, then g2 ∈ �, where g2 ⊂ g1 means that g2 (H) < g1 (H) for every H ∈ - . 2. If g1, g2 ∈ �
and | supp(g1) | < | supp(g2) |, then there exists g3 ∈ � such that:

• g1 ⊂ g3 ⊆ g1 ∪ g2, where for any H ∈ - , g1 ∪ g2 (H) = max{g1 (H), g2 (H)},

• <(g3) ≥ min{<(g1), <(g2)}, where <(a) = min{a(H) : H ∈ supp(a)}.

Here, � is called the family of independent fuzzy sets of the fuzzy matroid " = (-, �).

Definition 3.28 (Fuzzy Offmatroid). Let - be a finite ground set, and � (-) denote the power set of fuzzy
subsets on - . A pair "off = (-, �off) is called a Fuzzy Offmatroid if �off ⊆ � (-) satisfies the following
conditions:

1. (Hereditary Property): If g1 ∈ �off and g2 ⊂ g1, then g2 ∈ �off, where g2 ⊂ g1 means g2 (G) ≤ g1 (G) for all
G ∈ - .

2. (Exchange Property): If g1, g2 ∈ �off and | supp(g1) | < | supp(g2) |, then there exists g3 ∈ �off such that:

(a) g1 ⊂ g3 ⊆ g1 ∪ g2, where (g1 ∪ g2)(G) = max{g1 (G), g2 (G)} for all G ∈ - ,
(b) <(g3) ≥ min{<(g1), <(g2)}, where <(g) = min{g(G) : G ∈ supp(g)},
(c) g3 (G) ∈ [Ψ,Ω] for all G ∈ - , where Ψ < 0 and Ω > 1.
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Here, �off is called the family of independent fuzzy offsets of the Fuzzy Offmatroid "off = (-, �off).

Theorem 3.29. A Fuzzy Offmatroid is a Fuzzy Offset.

Proof. Let "off = (-, �off) be a Fuzzy Offmatroid. By definition of a Fuzzy Offset:

�̃ = {(G, ` �̃(G)) | G ∈ -, ` �̃(G) ∈ [Ψ,Ω]}.

Each fuzzy set g ∈ �off is defined by its membership function g(G) ∈ [Ψ,Ω]. The hereditary property ensures
that �off is closed under restriction to subsets, and the exchange property ensures that �off satisfies the structural
conditions of independence within the extended membership range [Ψ,Ω].

Thus, �off defines a family of fuzzy subsets within the range [Ψ,Ω], making "off a special case of a Fuzzy
Offset. �

Theorem 3.30. If a Fuzzy Offmatroid "off = (-, �off) is restricted such that g(G) ∈ [0, 1] for all g ∈ �off and
G ∈ - , then "off becomes a Fuzzy Matroid " = (-, �).

Proof. Let "off = (-, �off) be a Fuzzy Offmatroid. By definition, �off satisfies the hereditary and exchange
properties, with the membership degrees g(G) belonging to the range [Ψ,Ω], where Ψ < 0 and Ω > 1.

Now, impose the restriction g(G) ∈ [0, 1] for all g ∈ �off and G ∈ -:

• Under this restriction, the hereditary property of �off is preserved because the condition g2 (G) ≤ g1 (G)
for all G ∈ - remains valid within [0, 1].

• Similarly, the exchange property is preserved because g3 (G) ∈ [0, 1] for all G ∈ - , and the minimum and
maximum operations used in the definition of g3 do not exceed the range [0, 1].

Thus, under the restriction g(G) ∈ [0, 1], the family �off satisfies the axioms of a Fuzzy Matroid:

• (Hereditary Property): If g1 ∈ � and g2 ⊂ g1, then g2 ∈ �, where � = �off ∩ � (-) with � (-) restricted to
fuzzy sets with membership degrees in [0, 1].

• (Exchange Property): If g1, g2 ∈ � and | supp(g1) | < | supp(g2) |, then there exists g3 ∈ � satisfying:

g1 ⊂ g3 ⊆ g1 ∪ g2 and <(g3) ≥ min{<(g1), <(g2)}.

Therefore, the restricted Fuzzy Offmatroid "off = (-, �off) becomes a Fuzzy Matroid " = (-, �) when g(G) ∈
[0, 1]. �

3.6 Plithogenic Off Matroid

Define the Plithogenic Matroid and Plithogenic Off Matroid as follows. These are concepts extended using the
Plithogenic Set and Plithogenic Offset.

Definition 3.31 (Plithogenic Matroid). Let - be a finite ground set, and B, C be the degrees of appurtenance
and contradiction, respectively. A Plithogenic Matroid " = (-, �) is defined by a family of plithogenic sets
� ⊆ � (-), where � (-) is the set of all plithogenic functions ` : - → [0, 1]B , satisfying:

1. (Hereditary Property) If `1 ∈ � and `2 ≤ `1 (component-wise), then `2 ∈ �.

2. (Exchange Property) If `1, `2 ∈ � and | supp(`1) | < | supp(`2) |, then there exists `3 ∈ � such that:

`1 ≤ `3 ≤ `1 ∪ `2,

where (`1 ∪ `2) (G) = max{`1 (G), `2 (G)} for all G ∈ - .
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Theorem 3.32. A Plithogenic Matroid is a Plithogenic Set.

Proof. By definition, a Plithogenic Matroid " = (-, �) consists of a finite ground set - and a family � of
plithogenic sets.

The structure � is defined using the Degree of Appurtenance Function (DAF), ?35 : - → [0, 1]B , and Degree
of Contradiction Function (DCF), ?�� : [0, 1]B → [0, 1]C , which are central to the definition of Plithogenic
Sets. Thus, the Plithogenic Matroid is a specific instance of a Plithogenic Set, where the family � satisfies
additional hereditary and exchange properties. Therefore, " is a Plithogenic Set. �

Theorem 3.33. A Plithogenic Matroid with B = 1 and C = 1 reduces to a Fuzzy Matroid.

Proof. Let " = (-, �) be a Plithogenic Matroid. When B = 1 and C = 1, each plithogenic function ` ∈ � is
reduced to:

` : - → [0, 1],
where `(G) is the fuzzy membership value. The hereditary and exchange properties of the Plithogenic Matroid
align with those of the Fuzzy Matroid, making " equivalent to a Fuzzy Matroid. �

Definition 3.34 (Plithogenic Off Matroid). Let - be a finite ground set, and B, C be the degrees of appurtenance
and contradiction, respectively. A Plithogenic Off Matroid "off = (-, �off) is defined by a family of plithogenic
offset sets �off ⊆ �off (-), where �off (-) is the set of all plithogenic functions ` : - → [Ψ,Ω]B , satisfying:

1. (Hereditary Property) If `1 ∈ �off and `2 ≤ `1 (component-wise), then `2 ∈ �off.

2. (Exchange Property) If `1, `2 ∈ �off and | supp(`1) | < | supp(`2) |, then there exists `3 ∈ �off such that:

`1 ≤ `3 ≤ `1 ∪ `2,

where (`1 ∪ `2) (G) = max{`1 (G), `2 (G)} for all G ∈ - .

Example 3.35. (cf. [59]) The following examples of Plithogenic Off Matroids are provided.

• When B = C = 1, %� is called a Plithogenic Fuzzy off Matroids.

• When B = 2, C = 1, %� is called a Plithogenic Intuitionistic Fuzzy off Matroids.

• When B = 3, C = 1, %� is called a Plithogenic Neutrosophic off Matroids.

• When B = 4, C = 1, %� is called a Plithogenic quadripartitioned Neutrosophic off Matroids.

• When B = 5, C = 1, %� is called a Plithogenic pentapartitioned Neutrosophic off Matroids.

• When B = 6, C = 1, %� is called a Plithogenic hexapartitioned Neutrosophic off Matroids.

• When B = 7, C = 1, %� is called a Plithogenic heptapartitioned Neutrosophic off Matroids.

• When B = 8, C = 1, %� is called a Plithogenic octapartitioned Neutrosophic off Matroids.

• When B = 9, C = 1, %� is called a Plithogenic nonapartitioned Neutrosophic off Matroids.

Corollary 3.36. A Plithogenic OffMatroid is a Plithogenic OffSet.

Proof. The proof can be established using the same method as before. �

Theorem 3.37. A Plithogenic Off Matroid with B = 1 and C = 1 reduces to a Fuzzy Off Matroid.

Proof. Let "off = (-, �off) be a Plithogenic Off Matroid. When B = 1 and C = 1, each plithogenic offset
function ` ∈ �off is reduced to:

` : - → [Ψ,Ω],
where Ψ < 0 and Ω > 1 define the extended range of membership. The hereditary and exchange properties of
"off align with those of the Fuzzy Off Matroid, making "off equivalent to a Fuzzy Off Matroid. �
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Theorem 3.38. If a Plithogenic Off Matroid "off = (-, �off) is restricted such that `(G) ∈ [0, 1] for all ` ∈ �off
and G ∈ - , then "off becomes a Plithogenic Matroid " = (-, �).

Proof. Let "off = (-, �off) be a Plithogenic Off Matroid. By definition, the membership values `(G) ∈ [Ψ,Ω]
satisfy the hereditary and exchange properties.

Restricting `(G) ∈ [0, 1]:

• The hereditary property `2 ≤ `1 is preserved because the restriction does not alter the ordering of
membership values.

• The exchange property `1 ≤ `3 ≤ `1 ∪ `2 is preserved because the maximum operation remains valid
within [0, 1].

Thus, the restricted family �off satisfies the axioms of a Plithogenic Matroid " = (-, �). �

In the future, we hope to see further research and applications related to antimatroids [37,128] quasi-matroids
[102,103], ultra matroids [56], feeble matroid [9], k-balanced matroids [8], and greedoids [108], in connection
with the aforementioned matroids.

3.7 Fuzzy Off Ultrafilter

The definition of the Fuzzy Off Ultrafilter is provided below. The Fuzzy Off Ultrafilter is a concept that extends
the Fuzzy Ultrafilter by incorporating the idea of a Fuzzy Offset.

Definition 3.39 (Fuzzy Ultrafilter). [33,158,203,219] Let - be a non-empty set, and let � = [0, 1] denote the
closed unit interval. A fuzzy set on - is a function ` : - → �. A fuzzy ultrafilter U ⊆ P(�-) is defined as a
maximal fuzzy filter satisfying the following conditions:

1. (*1) U is closed under finite intersections:

`, a ∈ U =⇒ ` ∧ a ∈ U,

where (` ∧ a) (G) = min{`(G), a(G)} for all G ∈ - .

2. (*2) The constant zero function 0 ∉ U.

3. (*3) For every fuzzy set ` ∈ �-, either ` ∈ U or 1− ` ∈ U, where (1− `) (G) = 1− `(G) for all G ∈ - .

4. (*4) If `, a ∈ �- and ` ∨ a ∈ U, then either ` ∈ U or a ∈ U, where (` ∨ a) (G) = max{`(G), a(G)} for
all G ∈ - .

Definition 3.40 (Fuzzy Off Ultrafilter). Let - be a non-empty set, and let [Ψ,Ω] be an extended interval where
Ψ < 0 and Ω > 1. A fuzzy off ultrafilter Uoff ⊆ P([Ψ,Ω]-) is defined as a maximal fuzzy filter on [Ψ,Ω]-,
satisfying:

1. ($1) Uoff is closed under finite intersections:

`, a ∈ Uoff =⇒ ` ∧ a ∈ Uoff,

where (` ∧ a) (G) = min{`(G), a(G)} for all G ∈ - .

2. ($2) The constant zero function 0 ∉ Uoff.

3. ($3) For every fuzzy set ` ∈ [Ψ,Ω]-, either ` ∈ Uoff or Ω − ` ∈ Uoff, where (Ω − `) (G) = Ω − `(G)
for all G ∈ - .

4. ($4) If `, a ∈ [Ψ,Ω]- and ` ∨ a ∈ Uoff, then either ` ∈ Uoff or a ∈ Uoff, where (` ∨ a)(G) =

max{`(G), a(G)} for all G ∈ - .
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Theorem 3.41. A Fuzzy Off Ultrafilter is a Fuzzy Offset.

Proof. By definition, a Fuzzy Off UltrafilterUoff is a maximal fuzzy filter on [Ψ,Ω]-, where Ψ < 0 andΩ > 1.
To prove that Uoff is a Fuzzy Offset, we verify that it satisfies the properties of a Fuzzy Offset as defined below:

1. Membership values in the extended interval: For any ` ∈ Uoff, `(G) ∈ [Ψ,Ω] for all G ∈ - , by the
definition of [Ψ,Ω]-. This matches the condition for a Fuzzy Offset.

2. Existence of values exceeding standard bounds: By the properties of the extended interval, there exist
` ∈ Uoff such that `(G) > 1 or `(G) < 0 for some G ∈ - , as required by the definition of a Fuzzy Offset.

3. Maximality and closure under operations: The closure properties ($1-$4) ensure that Uoff adheres to
the operations consistent with fuzzy logic, including closure under minimum (∧) and maximum (∨)
operations and the inclusion of complements. This aligns with the operations defined for Fuzzy Offsets.

Thus, Uoff satisfies all the conditions of a Fuzzy Offset, proving the theorem. �

Theorem 3.42. A fuzzy off ultrafilter Uoff restricted to `(G) ∈ [0, 1] for all ` ∈ Uoff and G ∈ - reduces to a
fuzzy ultrafilter U.

Proof. Let Uoff ⊆ [Ψ,Ω]- be a fuzzy off ultrafilter. Under the restriction `(G) ∈ [0, 1] for all G ∈ - , the
membership degrees of all fuzzy sets in Uoff fall within the interval [0, 1]. This restriction ensures:

1. (*1) Closure under finite intersections is preserved, as ` ∧ a ∈ Uoff for all `, a ∈ Uoff.

2. (*2) The zero function 0 ∉ Uoff.

3. (*3) For every ` ∈ �-, either ` ∈ Uoff or 1 − ` ∈ Uoff (as Ω − ` reduces to 1 − ` under the restriction
`(G) ∈ [0, 1]).

4. (*4) Maximality ensures that if ` ∨ a ∈ Uoff, then either ` ∈ Uoff or a ∈ Uoff.

Thus, Uoff restricted to [0, 1]- satisfies all the axioms of a fuzzy ultrafilter U, completing the proof. �

3.8 Neutrosophic Off Ultrafilter and Plithogenic Off Ultrafilter

The Neutrosophic Off Ultrafilter is a concept that extends the Neutrosophic Ultrafilter by incorporating the idea
of an offset. We first introduce the definition of a Neutrosophic Ultrafilter [93,141,171,172,226], followed by
a discussion of the Neutrosophic Off Ultrafilter. The relevant definitions are provided below.

Definition 3.43 (Neutrosophic Filter). [171] Let - be a non-empty set, and let � be a neutrosophic set on - ,
represented as � = {(G, )�(G), ��(G), ��(G)) | G ∈ -}, where:

• )�(G) is the truth-membership degree,

• ��(G) is the indeterminacy-membership degree,

• ��(G) is the falsity-membership degree.

A neutrosophic filter N ⊆ P(-) satisfies the following conditions:

1. (#1) Every neutrosophic set � ⊆ - containing a member of N belongs to N .

2. (#2) Every finite intersection of members of N belongs to N .

3. (#3) The neutrosophic zero set 0# = {(G, 0, 1, 1) | G ∈ -} ∉ N .
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Definition 3.44 (Neutrosophic Ultrafilter). [171] A neutrosophic ultrafilter N* on a set - is a neutrosophic
filter on - that is maximal, meaning there is no neutrosophic filter on - strictly finer than N* .

Formally, N* satisfies:

1. For every neutrosophic set � ⊆ - , either � ∈ N* or ¬� ∈ N* , where ¬� = {(G, ��(G), ��(G), )�(G)) |
G ∈ -}.

2. If �, � ∈ N* , then � ∩ � ∈ N* .

3. If � ∪ � ∈ N* , then � ∈ N* or � ∈ N* .

Corollary 3.45. A Neutrosophic Ultrafilter is a Neutrosophic Set.

Proof. The proof can be established using the same method as before. �

Definition 3.46 (Neutrosophic Off Ultrafilter). Let - be a non-empty set, and let [Ψ,Ω] define the extended
interval with Ψ < 0 and Ω > 1. A neutrosophic set � on - is represented as:

� = {(G, )�(G), ��(G), ��(G)) | G ∈ -},

where:

• )�(G) ∈ [Ψ,Ω] is the truth-membership degree,

• ��(G) ∈ [Ψ,Ω] is the indeterminacy-membership degree,

• ��(G) ∈ [Ψ,Ω] is the falsity-membership degree.

A neutrosophic off ultrafilter Noff on - is defined as a maximal neutrosophic filter N ⊆ P(-) satisfying:

1. (#1off) For every neutrosophic set � ⊆ - , either � ∈ Noff or¬� ∈ Noff, where¬� = {(G, ��(G), ��(G), )�(G)) |
G ∈ -}.

2. (#2off) For every �, � ∈ Noff, � ∩ � ∈ Noff.

3. (#3off) The neutrosophic zero set 0off = {(G,Ψ,Ω,Ω) | G ∈ -} ∉ Noff.

Corollary 3.47. A Neutrosophic Off Ultrafilter is a Neutrosophic OffSet.

Proof. The proof can be established using the same method as before. �

Theorem 3.48. A Neutrosophic Off Ultrafilter generalizes a Fuzzy Off Ultrafilter.

Proof. Let Foff be a Fuzzy Off Ultrafilter defined over a set - with membership degrees `(G) ∈ [Ψ,Ω].
Consider a Neutrosophic Off Ultrafilter Noff such that:

Noff = {� = (G, )�(G), ��(G), ��(G)) | )�(G), ��(G), ��(G) ∈ [Ψ,Ω]}.

Each fuzzy set ` ∈ Foff can be represented as a neutrosophic set with )�(G) = `(G), ��(G) = 0, ��(G) =

1 − `(G). Thus, Foff is a special case of Noff, making Noff a generalization of Foff. �

Theorem 3.49. If a Neutrosophic Off Ultrafilter Noff is restricted such that )�(G), ��(G), ��(G) ∈ [0, 1] for all
G ∈ - , it becomes a Neutrosophic Ultrafilter N* .

Proof. LetNoff be a Neutrosophic Off Ultrafilter on - . Restrict the neutrosophic components)�(G), ��(G), ��(G)
to the standard interval [0, 1]. Under this restriction:
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1. )�(G), ��(G), ��(G) ∈ [0, 1] ensures compatibility with the neutrosophic ultrafilter definition.

2. (#1) For every neutrosophic set � ⊆ - , either � ∈ N* or¬� ∈ N* , where¬� = {(G, ��(G), ��(G), )�(G)) |
G ∈ -}.

3. (#2) For every �, � ∈ N* , � ∩ � ∈ N* .

4. (#3) The neutrosophic zero set 0# = {(G, 0, 1, 1) | G ∈ -} ∉ N* .

Thus, under the restriction [Ψ,Ω] → [0, 1], Noff satisfies all the conditions for being a Neutrosophic Ultrafilter
N* . �

Definition 3.50 (Plithogenic Ultrafilter). Let - be a universal set, and let B and C denote the number of degrees
of appurtenance and contradiction, respectively. A Plithogenic Ultrafilter P ⊆ [0, 1]- is defined as a maximal
collection of plithogenic sets satisfying:

1. (Hereditary Property) For every `, a ∈ P, ` ∧ a ∈ P.

2. (Maximality) For any plithogenic set ` ∈ [0, 1]-, either ` ∈ P or 1−` ∈ P, where (1−`) (G) = 1−`(G)
for all G ∈ - .

3. (Non-emptiness) The zero function 0 ∉ P.

Here, ` ∈ [0, 1]- is a plithogenic function characterized by B-valued appurtenance degrees and C-valued con-
tradiction functions.

Corollary 3.51. A Plithogenic Ultrafilter is a Plithogenic Set.

Proof. The proof can be established using the same method as before. �

Definition 3.52 (Plithogenic Off Ultrafilter). Let - be a universal set, and let B and C denote the number of
degrees of appurtenance and contradiction, respectively. A Plithogenic Off Ultrafilter Poff ⊆ [Ψ,Ω]- is defined
as a maximal collection of plithogenic offset sets satisfying:

1. (Hereditary Property) For every `, a ∈ Poff, ` ∧ a ∈ Poff.

2. (Maximality) For any plithogenic offset set ` ∈ [Ψ,Ω]-, either ` ∈ Poff or Ω − ` ∈ Poff, where
(Ω − `) (G) = Ω − `(G) for all G ∈ - .

3. (Non-emptiness) The zero function 0off ∉ Poff.

Example 3.53. (cf. [59]) The following examples of Plithogenic Off Ultrafilter are provided.

• When B = C = 1, %� is called a Plithogenic Fuzzy off Ultrafilter.

• When B = 2, C = 1, %� is called a Plithogenic Intuitionistic Fuzzy off Ultrafilter.

• When B = 3, C = 1, %� is called a Plithogenic Neutrosophic off Ultrafilter.

• When B = 4, C = 1, %� is called a Plithogenic quadripartitioned Neutrosophic off Ultrafilter.

• When B = 5, C = 1, %� is called a Plithogenic pentapartitioned Neutrosophic off Ultrafilter.

• When B = 6, C = 1, %� is called a Plithogenic hexapartitioned Neutrosophic off Ultrafilter.

• When B = 7, C = 1, %� is called a Plithogenic heptapartitioned Neutrosophic off Ultrafilter.

• When B = 8, C = 1, %� is called a Plithogenic octapartitioned Neutrosophic off Ultrafilter.

• When B = 9, C = 1, %� is called a Plithogenic nonapartitioned Neutrosophic off Ultrafilter.

Corollary 3.54. A Plithogenic Off Ultrafilter is a Plithogenic OffSet.
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Proof. The proof can be established using the same method as before. �

Theorem 3.55. A Plithogenic Ultrafilter with B = 3 and C = 1 reduces to a Neutrosophic Ultrafilter, and a
Plithogenic Ultrafilter with B = 1 and C = 1 reduces to a Fuzzy Ultrafilter.

Proof. Let P be a Plithogenic Ultrafilter. When B = 3 and C = 1, each plithogenic set in P can be represented
as:

`(G) = () (G), � (G), � (G)) ∈ [0, 1]3,

where ) (G), � (G), and � (G) represent truth, indeterminacy, and falsity, respectively. This corresponds to the
definition of a Neutrosophic Ultrafilter.

When B = 1 and C = 1, each plithogenic set in P reduces to:

`(G) ∈ [0, 1],

which matches the definition of a Fuzzy Ultrafilter. Therefore, Plithogenic Ultrafilters generalize Neutrosophic
and Fuzzy Ultrafilters. �

Theorem 3.56. A Plithogenic Off Ultrafilter with B = 3 and C = 1 reduces to a Neutrosophic Off Ultrafilter,
and a Plithogenic Off Ultrafilter with B = 1 and C = 1 reduces to a Fuzzy Off Ultrafilter.

Proof. Let Poff be a Plithogenic Off Ultrafilter. When B = 3 and C = 1, each plithogenic offset set in Poff can
be represented as:

`(G) = () (G), � (G), � (G)) ∈ [Ψ,Ω]3,

which corresponds to the definition of a Neutrosophic Off Ultrafilter. Similarly, when B = 1 and C = 1, the
plithogenic offset set reduces to:

`(G) ∈ [Ψ,Ω],

matching the definition of a Fuzzy Off Ultrafilter. Thus, Plithogenic Off Ultrafilters generalize Neutrosophic
and Fuzzy Off Ultrafilters. �

Theorem 3.57. If a Plithogenic Off Ultrafilter Poff is restricted such that `(G) ∈ [0, 1] for all ` ∈ Poff and
G ∈ - , it becomes a Plithogenic Ultrafilter P.

Proof. Let Poff ⊆ [Ψ,Ω]- be a Plithogenic Off Ultrafilter. Under the restriction `(G) ∈ [0, 1] for all ` ∈ Poff,
the hereditary property and maximality are preserved because:

• For any `, a ∈ Poff, ` ∧ a ∈ Poff remains valid within [0, 1].

• For any ` ∈ [0, 1]-, either ` ∈ P or 1 − ` ∈ P.

Thus, under this restriction, Poff satisfies all conditions for being a Plithogenic Ultrafilter. �

In the future, we hope to see further research on extending weak-ultrafilters [109–111] and quasi-ultrafilters [31]
to uncertain offsets, as well as exploring their potential applications.
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4 Discussion

4.1 Offset Framework (Extension from Uncertain Sets to Offsets)

We are considering an Offset Framework that transforms general Uncertain sets into their Offset counterparts.
Please note that this framework is not intended to provide exhaustive definitions or a purely mathematical
treatment.

There may be additional perspectives or considerations beyond what is presented here, and we hope that capable
readers will further refine and enhance the framework as needed.

Note 1 (Offset Framework). Let - be a universal set, and let * denote an uncertain set defined on - with a
membership function `* : - → [0, 1]. The Offset Framework extends the standard uncertain set * into an
Offset Uncertain Set, denoted*off, by modifying the range of the membership function.

*off = {(G, `off (G)) | G ∈ -, `off (G) ∈ [Ψ,Ω]}

where:

• `off : - → [Ψ,Ω] is the offset membership function, such that Ψ < 0 and Ω > 1 define the extended
limits of uncertainty.

• Ψ (UnderLimit): Allows membership values to extend below 0, representing negative degrees of mem-
bership.

• Ω (OverLimit): Allows membership values to extend above 1, representing degrees of membership greater
than certainty.

The transformation from* to*off is defined by the following mapping:

`off (G) = 5 (`* (G)) ∀G ∈ -,

where 5 : [0, 1] → [Ψ,Ω] is a continuous scaling or shifting function satisfying:

1. 5 (0) = Ψ (maps minimum membership to the UnderLimit).

2. 5 (1) = Ω (maps maximum membership to the OverLimit).

3. 5 is monotonic and preserves the order of membership values.

Special Cases

1. When Ψ = 0 and Ω = 1,*off reduces to the original uncertain set*.

2. When Ψ = −∞ or Ω = ∞,*off represents an unbounded uncertain set.

3. When Ψ = 0, *off becomes an OverSet, allowing membership values to extend above 1 while retaining
the lower limit of 0.

4. When Ω = 1, *off becomes an UnderSet, allowing membership values to extend below 0 while retaining
the upper limit of 1.

5. When Ψ = 2 and Ω = 3, where 2, 3 ∈ R,*off defines a Shifted Set with fixed bounds determined by 2 and
3.
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4.2 Other Off Concepts

The concept of Offset may potentially be applicable to frameworks beyond Fuzzy Sets and Neutrosophic Sets.
An example is provided below. While related concepts and applications may already exist, this serves as an
illustrative example of the approach.

4.2.1 Probability Off Distribution

A Probability Distribution is a mathematical function that describes the likelihood of different outcomes in a
random experiment, assigning probabilities to each possible event in a defined sample space.

Definition 4.1 (Probability Distribution). (cf. [36,169,170]) A Probability Distribution is a function % defined
on a sample space Ω that assigns a probability %(�) to each event � ⊆ Ω, satisfying the following axioms:

1. %(�) ≥ 0 ∀� ⊆ Ω (non-negativity),

2. %(Ω) = 1 (normalization),

3. % (⋃8 �8) =
∑
8 %(�8) for any disjoint events �8 (additivity).

For discrete random variables, the probability distribution is represented by a Probability Mass Function (PMF)
?(G), where ?(G) = %(- = G). For continuous random variables, it is described by a Probability Density
Function (PDF) 5 (G), where the probability of an interval is given by:

%(0 ≤ - ≤ 1) =
∫ 1

0

5 (G) 3G.

Definition 4.2 (Probability Off Distribution). A Probability Distribution with [Ψ,Ω] and 2 extends the classical
probability distribution by introducing a constant 2 such that the total probability satisfies:∫ ∞

−∞
5- (G) 3G = 2,

where 2 ∈ [Ψ,Ω], with Ψ < 0 and Ω > 1.

For a random variable - , the probability density function 5- (G) : R → [Ψ,Ω] must satisfy:

Ψ ≤ 5- (G) ≤ Ω, ∀G ∈ R.

This definition extends the classical probability distribution by allowing the integral to sum to a value 2 ≠ 1.

4.2.2 Sugeno Off Measure

Sugeno Measure is a non-additive function that evaluates the overlap among sets and is widely applied in fuzzy
logic and decision-making processes [75,114,205,217]. Sugeno Measure has also been extensively studied in
the contexts of Fuzzy Sets and Neutrosophic Sets [74,78,220]. While still in the conceptual stage, its definition
is outlined below.

Definition 4.3 (Sugeno Measure). [205] The Sugeno Measure is a non-additive set function 6 : 2- → [0, 1]
defined on the power set of a finite set - = {G1, G2, . . . , G=}. It satisfies the following axioms:

1. Boundary Conditions:
6(∅) = 0, 6(-) = 1.

2. Monotonicity: For all �, � ⊆ - , if � ⊆ �, then:

6(�) ≤ 6(�).

98



3. Non-Additivity: The measure is not necessarily additive, meaning 6(� ∪ �) ≠ 6(�) + 6(�) in general,
but it satisfies the following pseudo-additivity condition for �, � ⊆ -:

6(� ∪ �) = 6(�) + 6(�) + _6(�)6(�),

where _ ≥ −1 is a parameter controlling the interaction between � and �.

The Sugeno Measure is widely used in decision-making, fuzzy integrals, and multi-criteria analysis when in-
dependence assumptions are not valid.

Definition 4.4 (Sugeno Off Measure with [Ψ,Ω). ] A Sugeno Measure with [Ψ,Ω] generalizes the classical
measure by allowing the capacity function 6 to take values in [Ψ,Ω].

Let - be a finite universal set, and let 6 : 2- → [Ψ,Ω] be a monotone set function satisfying:

6(∅) = Ψ, 6(-) = Ω.

The measure satisfies:
6(� ∪ �) = 6(�) + 6(�) + _6(�)6(�), � ∩ � = ∅,

where _ ∈ [−1,∞).

4.2.3 Z-Off Number

A Z-Number represents uncertain information by combining a fuzzy value (e.g., ”approximately 50”) with its
associated reliability (e.g., ”high confidence”) [14,136,161,209,218,234]. Z-Numbers are frequently discussed
in the context of fuzzy and neutrosophic concepts. Furthermore, extended notions such as the Neutrosophic
Z-Number [47, 101, 225] and Z-Hyper Number [62] have also been introduced.

Definition 4.5. [234] A Z-Number is a pair / = (�, �), where:

• � is a fuzzy subset of the real numbers R, representing an uncertain value.

• � is a fuzzy subset of the interval [0, 1], representing the reliability or certainty of �.

Explanation

• The first component � captures a linguistic or fuzzy representation of a value, such as ”approximately
50.”

• The second component � quantifies the degree of confidence or reliability in �, such as ”high confi-
dence.”

Definition 4.6 (Z-Off Number). A Z-number with [Ψ,Ω] and 2 generalizes the Z-number concept by introduc-
ing a reliability constant 2 ∈ [Ψ,Ω], representing the overall reliability level.

A Z-number / = (�, �) consists of:

1. A fuzzy number �, representing the constraint.

2. A reliability function �(G) : - → [Ψ,Ω], satisfying:∫
-

�(G) 3G = 2.

Here, �(G) may take values less than 0 or greater than 1, and the total reliability aligns with the constant 2.
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4.2.4 Jaccard Off Index

The Jaccard Index measures similarity between two sets by dividing the number of shared elements by the total
unique elements across both sets [38, 49, 54, 113].

Definition 4.7. (cf. [38,49,54,113]) Let � and � be two finite sets. The Jaccard Index, denoted as � (�, �), is
defined as:

� (�, �) = |� ∩ �|
|� ∪ �|

where:

• |� ∩ �| is the cardinality of the intersection of � and �,

• |� ∪ �| is the cardinality of the union of � and �.

Properties

• 0 ≤ � (�, �) ≤ 1:

– � (�, �) = 1 if � and � are identical.
– � (�, �) = 0 if � and � have no elements in common.

• The Jaccard Index is symmetric: � (�, �) = � (�, �).

The Jaccard Off Index is defined using the concept of Fuzzy Offset. The definition is provided below. It is
anticipated that future research will explore the mathematical structures related to these concepts.

Definition 4.8 (Jaccard Off Index). The Jaccard Off Index with [Ψ,Ω] and 2 generalizes the classical Jaccard
Index by introducing a scaling constant 2, where 2 ∈ [Ψ,Ω]. Let � and � be two fuzzy sets defined on a
universe - with membership functions `�, `� : - → [0, 1]. The Jaccard Off Index is defined as:

�off (�, �) = 2 ·
∑
G∈- min

(
`�(G), `� (G)

)∑
G∈- max

(
`�(G), `� (G)

) ,
where:

• min(`�(G), `� (G)) represents the intersection of the fuzzy offsets � and �,

• max(`�(G), `� (G)) represents the union of the fuzzy offsets � and �,

• 2 ∈ [Ψ,Ω] is a scaling constant that adjusts the result of the traditional Jaccard Index.

The classical Jaccard Index is recovered as a special case when 2 = 1, Ψ = 0, and Ω = 1.

Theorem 4.9. The classical Jaccard Index is a special case of the Jaccard Off Index when 2 = 1, Ψ = 0, and
Ω = 1.

Proof. Let � and � be two fuzzy sets defined on a universe - with membership functions `�, `� : - → [0, 1].
By definition, the Jaccard Off Index is given as:

�off (�, �) = 2 ·
∑
G∈- min

(
`�(G), `� (G)

)∑
G∈- max

(
`�(G), `� (G)

) .
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For the classical Jaccard Index, the scaling constant 2 = 1, and the membership functions are restricted to [0, 1],
corresponding to Ψ = 0 and Ω = 1. Substituting these values into the Jaccard Off Index:

�off (�, �) = 1 ·
∑
G∈- min

(
`�(G), `� (G)

)∑
G∈- max

(
`�(G), `� (G)

) .
This is exactly the definition of the classical Jaccard Index:

� (�, �) =
∑
G∈- min

(
`�(G), `� (G)

)∑
G∈- max

(
`�(G), `� (G)

) .
Thus, when 2 = 1, Ψ = 0, and Ω = 1, �off (�, �) reduces to � (�, �). Therefore, the classical Jaccard Index is a
special case of the Jaccard Off Index. �

4.3 Off-Range Normalization: Transforming Offset to Set

Normalization is a mathematical process that adjusts data, functions, or values to fit within a specific range
or meet defined criteria, facilitating fair comparisons and enhancing algorithm efficiency(cf. [222]). It is a
fundamental concept widely applied in fields such as probability, data science, and machine learning [20, 21,
30, 51, 94, 105, 106, 133]. Below, its formal definition and common types are presented.

Definition 4.10. Normalization is a transformation that maps elements from an original domain - to a target
domain . , ensuring that the transformed values adhere to a specific scale or constraint.

Let - = {G1, G2, . . . , G=} be a finite set of data points or values, and 5 : - → . be a normalization function.
The normalization process is defined as:

H8 = 5 (G8), ∀G8 ∈ -,

where . ⊆ R.

Normalization often involves one or more of the following types:

1. Range Normalization (cf. [200]) Maps G8 to a value H8 in a target range [0, 1]:

H8 = 0 +
(G8 − Gmin) (1 − 0)

Gmax − Gmin
,

where:

• Gmin = min(-) and Gmax = max(-),

• 0, 1 ∈ R define the desired range.

2. Unit Vector Normalization (cf. [107]) Scales a vector G = (G1, G2, . . . , G=) such that its norm equals 1:

H =
G

‖G‖ ?
,

where:

‖G‖ ? =

(
=∑
8=1

|G8 |?
)1/?

is the ?-norm of G.
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3. Probability Normalization (cf. [143]) Normalizes G8 ∈ - to represent probabilities (e.g., in discrete
distributions):

H8 =
G8∑=
9=1 G 9

, G8 ≥ 0.

4. Standard Score Normalization (Z-Score) (cf. [53, 95]) Normalizes data G8 to have zero mean and unit
variance:

H8 =
G8 − `
f

,

where:

• ` = 1
=

∑=
8=1 G8 is the mean of - ,

• f =

√
1
=

∑=
8=1 (G8 − `)2 is the standard deviation of - .

5. Softmax Normalization (cf. [121,163]) Transforms G8 into a probability-like value using the exponential
function:

H8 =
4G8∑=
9=1 4

G 9
, G8 ∈ R.

Properties

Normalization transformations often preserve the relative order of elements in - and ensure that the transformed
set . satisfies specific criteria, such as:

• Values in . lie within a bounded range.

• . is scale-invariant.

• . adheres to a probability distribution or vector norm.

Definition 4.11. (cf. [131, 137]) Let - = {G1, G2, . . . , G=} be a finite dataset. The Standard Min-Max Normal-
ization maps each G8 ∈ - to a new value H8 ∈ [0, 1], using the formula:

H8 =
G8 − Gmin
Gmax − Gmin

,

where:

• Gmin = min(-): The minimum value in the dataset.

• Gmax = max(-): The maximum value in the dataset.

Theorem 4.12 (Transformation of Offset Sets). Let *off be a Fuzzy Offset set or Neutrosophic Offset set with
membership functions `off : - → [Ψ,Ω], where Ψ < 0 and Ω > 1. Using range normalization, *off can be
transformed into a standard Fuzzy Set* or a Neutrosophic Set � with membership functions ` : - → [0, 1].

Proof. The range normalization function 5 : [Ψ,Ω] → [0, 1] is defined as:

5 (G) = G − Ψ

Ω − Ψ
.

For any G ∈ - , the membership function `off (G) ∈ [Ψ,Ω] is transformed into:

`(G) = 5 (`off (G)) =
`off (G) − Ψ

Ω − Ψ
.

This ensures `(G) ∈ [0, 1].

102



Fuzzy Offset to Fuzzy Set The Fuzzy Offset set*off is defined as:

*off = {(G, `off (G)) | G ∈ -, `off (G) ∈ [Ψ,Ω]}.

Applying 5 yields:
* = {(G, `(G)) | G ∈ -, `(G) ∈ [0, 1]},

which is a Fuzzy Set.

Neutrosophic Offset to Neutrosophic Set The Neutrosophic Offset set �off is defined as:

�off = {(G, 〈)off (G), �off (G), �off (G)〉) | G ∈ -, )off, �off, �off ∈ [Ψ,Ω]}.

Applying 5 to each component:

) (G) = 5 ()off (G)), � (G) = 5 (�off (G)), � (G) = 5 (�off (G)),

yields:
� = {(G, 〈) (G), � (G), � (G)〉) | G ∈ -, ) (G), � (G), � (G) ∈ [0, 1]}.

This is a Neutrosophic Set. �

Example 4.13. Consider a survey assessing the satisfaction ()), uncertainty (�), and dissatisfaction (�) levels
of customers towards a product. The satisfaction levels are collected as a Single-Valued Neutrosophic Offset:

�off = {(G, 〈) (G), � (G), � (G)〉) | G ∈ *off, ) (G) ∈ [Ψ) ,Ω) ], � (G) ∈ [Ψ� ,Ω� ], � (G) ∈ [Ψ� ,Ω�]},

where:

• ) (G) ∈ [−0.2, 1.2],

• � (G) ∈ [−0.1, 1.1],

• � (G) ∈ [−0.3, 1.5].

To normalize:

) ′ (G) = ) (G) − Ψ)

Ω) − Ψ)
=
) (G) + 0.2
1.2 + 0.2

,

� ′ (G) = � (G) − Ψ�

Ω� − Ψ�
=
� (G) + 0.1
1.1 + 0.1

,

�′ (G) = � (G) − Ψ�

Ω� − Ψ�
=
� (G) + 0.3
1.5 + 0.3

.

After normalization:

� = {(G, 〈) ′ (G), � ′ (G), �′ (G)〉) | G ∈ *,) ′ (G), � ′ (G), �′ (G) ∈ [0, 1]}.

This transformed set � can now be analyzed using standard Neutrosophic Set techniques.

Theorem 4.14. A Plithogenic Offset %(off can be normalized into a standard Plithogenic Set %( through range
normalization. The normalization maps the extended degree of appurtenance and contradiction from [ΨE ,ΩE]
to [0, 1].

Proof. Let %(off = (%, E, %E, ?35off, ?��off) be a Plithogenic Offset defined as:

?35off : % × %E → [ΨE ,ΩE]B , ?��off : %E × %E → [ΨE ,ΩE]C ,

where ΨE < 0 and ΩE > 1.

We normalize ?35off and ?��off to map their ranges to [0, 1] using a linear transformation:

?35 (G, 0) = ?35off (G, 0) − ΨE

ΩE − ΨE
, ?�� (0, 1) = ?��off (0, 1) − ΨE

ΩE − ΨE
.
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Verification

1. Range Preservation:
?35 (G, 0) ∈ [0, 1], ?�� (0, 1) ∈ [0, 1] .

For ?35off (G, 0) = ΨE , ?35 (G, 0) = 0. For ?35off (G, 0) = ΩE , ?35 (G, 0) = 1. Similar logic applies to
?�� (0, 1).

2. Structure Preservation: The normalization does not alter the relative ordering of the original values in
?35off or ?��off, ensuring consistency.

3. Resulting Set: After normalization, %(off is transformed into a standard Plithogenic Set:

%( = (%, E, %E, ?35 , ?��),

where ?35 and ?�� now map to [0, 1].

Thus, %(off is successfully normalized into %(. �

Based on the previous discussions, the following Off Range Normalization Function can be defined. Since
most real-world concepts are not inherently normalized, it is likely that normalization will be necessary when
analyzing practical concepts or data using frameworks like Fuzzy Sets or Neutrosophic Sets. Therefore, the
Off Range Normalization Function defined below could prove useful in such scenarios. It is hoped that further
research will explore applications and use cases for this function in various fields.

Definition 4.15. The Off Range Normalization Function transforms an offset membership function, defined
over an extended range [Ψ,Ω], into a standard membership function over [0, 1]. This process enables the
conversion of an Offset Set into a standard Set.

Formal Definition Let - be a universal set and `off : - → [Ψ,Ω] be the offset membership function, where:

Ψ < 0 (UnderLimit), Ω > 1 (OverLimit).

The Off Range Normalization Function 5 : [Ψ,Ω] → [0, 1] is defined as:

5 (G) = G − Ψ

Ω − Ψ
.

Transformation: For any G ∈ - , the membership value `off (G) ∈ [Ψ,Ω] is normalized using 5 (G) to produce
the standard membership value `(G):

`(G) = 5 (`off (G)) =
`off (G) − Ψ

Ω − Ψ
.

Properties:

1. Range Preservation:

`off (G) = Ψ =⇒ `(G) = 0, `off (G) = Ω =⇒ `(G) = 1.

2. Monotonicity: If `off (G1) ≤ `off (G2), then `(G1) ≤ `(G2).

3. Set Transformation: For an Offset Set �off = {(G, `off (G)) | G ∈ -}, the normalized set � is defined as:

� = {(G, `(G)) | G ∈ -, `(G) = 5 (`off (G))}.
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5 Future tasks

Regarding future prospects for related research, we plan to extend certain sets from fuzzy sets to neutrosophic
sets, examine their relationships, and further expand these concepts to include Offset, Overset, and Underset.
Through this approach, we aim to explore their mathematical structures and potential applications.

5.1 B-Neutrosophic sets

The B-Neutrosophic set (Boolean Neutrosophic set) is defined as follows. It is an extension of the Boolean
Fuzzy set, and further research into the mathematical structure of these sets is anticipated in the future (cf.
[43–46,129]).

Definition 5.1 (Boolean Algebra). (cf. [79, 80, 178]) A Boolean algebra � is a set equipped with two binary
operations ∧ (meet) and ∨ (join), a unary operation ¬ (complement), and two distinguished elements 0� (zero)
and 1� (unit), satisfying the following axioms:

1. Associativity: For all 0, 1, 2 ∈ �,

0 ∧ (1 ∧ 2) = (0 ∧ 1) ∧ 2, 0 ∨ (1 ∨ 2) = (0 ∨ 1) ∨ 2.

2. Commutativity: For all 0, 1 ∈ �,

0 ∧ 1 = 1 ∧ 0, 0 ∨ 1 = 1 ∨ 0.

3. Distributivity: For all 0, 1, 2 ∈ �,

0 ∧ (1 ∨ 2) = (0 ∧ 1) ∨ (0 ∧ 2), 0 ∨ (1 ∧ 2) = (0 ∨ 1) ∧ (0 ∨ 2).

4. Identity: For all 0 ∈ �,
0 ∧ 1� = 0, 0 ∨ 0� = 0.

5. Complementarity: For all 0 ∈ �,

0 ∧ ¬0 = 0�, 0 ∨ ¬0 = 1�.

Definition 5.2 (Completeness). (cf. [157]) A Boolean algebra � is complete if, for every subset ( ⊆ �, the
following exist:

• The supremum
∨
( (least upper bound of (),

• The infimum
∧
( (greatest lower bound of ().

Remark 5.3 (Properties of Complete Boolean Algebra). (cf. [157])

• Completeness ensures that infinite operations (joins and meets over arbitrary sets) are well-defined.

• The unit element 1� is the supremum of �, and the zero element 0� is the infimum of �.

Definition 5.4 (B-fuzzy set(Boolean fuzzy set)). [43] Let � be a complete Boolean algebra, and let � be a
non-empty set. A B-fuzzy set is defined as a mapping 5 : � → � such that for all G, H ∈ �, the following
conditions hold:

G ≠ H =⇒ 5 (G) ∧ 5 (H) = 0�,

where 0� is the zero element of the Boolean algebra �. The set of all such mappings is denoted by �[�] and
is referred to as the Boolean power of � with respect to �.

Furthermore, a partition of unity in � is a family of elements {C8 ∈ � | 8 ∈ �} such that:

C8 ∧ C 9 = 0� for 8 ≠ 9 , and
∨
8∈�

C8 = 1�.
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Using a partition of unity, any 5 ∈ �[�] can be expressed in the form:

5 =
∨
8∈�

08 · C8 ,

where 08 ∈ � and C8 ∈ � for 8 ∈ �.

In this representation:

• Each C8 acts as a ”weight” from the Boolean algebra �, indicating the degree of membership of the
element 08 ∈ � in the B-fuzzy set.

• The mapping 5 essentially represents a mixing of crisp elements of � with the weights C8 derived from
�.

Definition 5.5 (B-Neutrosophic Set(Boolean Neutrosophic Set)). Let - be a given set and � a complete
Boolean algebra. A B-Neutrosophic Set � on - is defined as a triplet of mappings:

)� : - → �, �� : - → �, �� : - → �,

where for each G ∈ - , the values )�(G), ��(G), and ��(G) represent the degrees of truth, indeterminacy, and
falsity in the Boolean algebra �. These mappings satisfy the following conditions:

• For all G ∈ - , the values )�(G), ��(G), ��(G) ∈ �.

• The disjointness condition:

)�(G) ∧ ��(G) = 0�, )�(G) ∧ ��(G) = 0�, ��(G) ∧ ��(G) = 0�,

where 0� is the zero element of �.

• The boundedness condition:
)�(G) ∨ ��(G) ∨ ��(G) ≤ 1�,

where 1� is the unity element of �.

For a given G ∈ - , the triplet ()�(G), ��(G), ��(G)) describes the Boolean-valued truth, indeterminacy, and
falsity levels of G in the B-Neutrosophic Set �.

Remark 5.6. If )�(G), ��(G), ��(G) are defined using a partition of unity {C8 ∈ � : 8 ∈ �}, where:

C8 ∧ C 9 = 0� for 8 ≠ 9 , and
∨
8∈�

C8 = 1�,

then )�(G), ��(G), and ��(G) can be expressed as:

)�(G) =
∨
8∈�

C8 , ��(G) =
∨
9∈�

C 9 , ��(G) =
∨
:∈ 

C: ,

where �, �,  ⊆ � are disjoint subsets.

Remark 5.7. When � = [0, 1], the B-Neutrosophic Set reduces to a classical Neutrosophic Set, where:

)� : - → [0, 1], �� : - → [0, 1], �� : - → [0, 1],

and for all G ∈ - , 0 ≤ )�(G) + ��(G) + ��(G) ≤ 3.

Theorem 5.8. The B-Neutrosophic Set generalizes the B-fuzzy Set.
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Proof. Let - be a non-empty set and � a complete Boolean algebra. A B-fuzzy Set 5 is defined as a mapping
5 : - → � such that for all G ∈ - , 5 (G) ∈ �. The membership degree 5 (G) represents the degree of
membership of G in the set, and the disjointness condition holds:

5 (G) ∧ 5 (H) = 0� for G ≠ H.

A B-Neutrosophic Set � is defined as a triplet of mappings:

)� : - → �, �� : - → �, �� : - → �,

where:

• )�(G) represents the degree of truth of G,

• ��(G) represents the degree of indeterminacy of G,

• ��(G) represents the degree of falsity of G,

and the following conditions hold for all G ∈ -:

)�(G) ∧ ��(G) = 0�,
)�(G) ∧ ��(G) = 0�,
��(G) ∧ ��(G) = 0�,

)�(G) ∨ ��(G) ∨ ��(G) ≤ 1�.

If ��(G) = 0� and ��(G) = 0� for all G ∈ - , then the B-Neutrosophic Set reduces to a single mapping:

)�(G) = 5 (G),

where 5 : - → � satisfies the conditions of a B-fuzzy Set. In this case, the truth-membership function )�(G)
directly represents the membership degree of G in the B-fuzzy Set.

The B-Neutrosophic Set extends the B-fuzzy Set by introducing additional degrees ��(G) (indeterminacy) and
��(G) (falsity) for each element G ∈ - . These additional mappings provide a richer framework for modeling
uncertainty and ambiguity that cannot be captured by the single membership function of a B-fuzzy Set.

Both B-fuzzy Sets and B-Neutrosophic Sets can be expressed using a partition of unity {C8 ∈ � : 8 ∈ �}. In the
case of a B-fuzzy Set, the membership function 5 (G) can be written as:

5 (G) =
∨
8∈�

08 · C8 ,

where 08 ∈ - and C8 ∈ �. For a B-Neutrosophic Set, each of the truth, indeterminacy, and falsity mappings
)�(G), ��(G), ��(G) can similarly be expressed in terms of disjoint subsets of the partition:

)�(G) =
∨
8∈�)

C8 , ��(G) =
∨
9∈��

C 9 , ��(G) =
∨
:∈��

C: ,

where �) , �� , �� ⊆ � are disjoint.

Since the B-Neutrosophic Set encompasses the B-fuzzy Set as a special case when ��(G) = 0� and ��(G) = 0�,
and it extends the framework to include additional degrees of indeterminacy and falsity, it follows that the B-
Neutrosophic Set generalizes the B-fuzzy Set. �
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Abstract

Set theory, a fundamental branch of mathematics, focuses on the study of ”sets,” or collections of objects. To
address real-world uncertainties more effectively, various extensions of classical set theory have been devel-
oped, including Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets. A particularly noteworthy concept in
this field is the ”offset,” which introduces flexibility in defining membership functions within uncertain sets.
Related concepts such as Overset and Underset are also well-known. These concepts have been extended to
graph theory, with the Offset concept being further developed into OffGraph and studied extensively.

This paper builds upon Plithogenic Graphs to propose new extensions: the Plithogenic Directed OffGraph,
the Plithogenic BiDirected OffGraph, and the Plithogenic Mixed OffGraph. Furthermore, we introduce the
Plithogenic Pangene OffGraph, a generalization of the Plithogenic BiDirected OffGraph, and explore its math-
ematical properties.

Keywords: Neutrosophic OffSet, plithogenic Offset, fuzzy Offset, Neutrosophic OffGraph

1 Short Introduction

1.1 Neutrosophic Sets and Related Set Theories

Set theory, a fundamental branch of mathematics, focuses on the study of ”sets,” or collections of objects
[32,126,127]. To address real-world uncertainties more effectively, numerous extensions of classical set theory
have been developed, including Fuzzy Sets [29, 34, 35, 76, 124, 131, 135, 136], Vague Sets [8, 24, 26, 61, 134],
Soft Sets [12, 13, 17, 82, 85, 130], Rough Sets [90, 91], and Hypersoft Expert Sets [2, 63–70].

Among these, Neutrosophic Sets [11, 22, 37, 87, 105, 106, 121, 128] stand out for their ability to simultane-
ously model truth, indeterminacy, and falsehood, making them especially versatile for dealing with complex
systems and uncertainties. Plithogenic Sets, a more recent generalization, aim to further extend these models
by incorporating multidimensional uncertainty [1, 54, 98, 104, 108,109, 118,122,123].

A particularly noteworthy concept in this field is the ”offset,” which introduces flexibility in defining member-
ship functions within uncertain sets [84,107,107,112,115]. Offsets allow membership values to extend beyond
the conventional range, facilitating new ways of interpreting and applying uncertain set theory. Moreover, it is
known that offsets generalize both Oversets and Undersets, further expanding their utility.

1.2 Graph Classes and Uncertain Graph Classes

Graph theory, the study of networks comprising nodes (vertices) and their connections (edges), is a well-
established field in mathematics [33]. Due to its wide range of applications, including modeling real-world
systems, graph theory has been extensively researched [33]. Over the years, numerous graph classes have been
introduced based on specific properties and characteristics of graphs [19].

Among these, classical graph classes include undirected graphs, where edges lack orientation; directed graphs,
where edges have specific directions [18,23,51,73,75,95]; and mixed graphs, which incorporate both directed
and undirected edges [39, 100, 101].

Uncertain graph models have emerged as a significant extension of classical graph theory to address uncertain-
ties in various applications. These include Fuzzy Graphs, Intuitionistic Fuzzy Graphs, Neutrosophic Graphs,
and Plithogenic Graphs, collectively referred to as ”uncertain graphs” [4–10, 40, 41, 44, 45, 47–50, 97, 99, 107,
111,119,120]. These models introduce degrees of uncertainty into graph properties, allowing for more flexible
representations of real-world networks.

Similarly, the concept of ”OffGraphs” extends the flexibility of uncertain graphs by generalizing Oversets and
Undersets(cf. [15, 30, 31, 46, 81]). OffGraphs enable researchers to reinterpret graph membership functions,
further advancing the study of uncertain graph theory.
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1.3 Our Contributions in This Paper

This paper builds upon Plithogenic Graphs to propose new extensions: the Plithogenic Directed OffGraph,
the Plithogenic BiDirected OffGraph, and the Plithogenic Mixed OffGraph. Additionally, we introduce the
Plithogenic Pangene OffGraph, a generalization of the Plithogenic BiDirected OffGraph, and explore its math-
ematical properties.

1.4 The Structure of the Paper

The structure of this paper is as follows.

1 Short Introduction 1
1.1 Neutrosophic Sets and Related Set Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.4 The Structure of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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2.1 Basic Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Crisp Sets and Neutrosophic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Plithogenic Offset/Overset/Underset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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4 Future tasks 19

2 Preliminaries and Definitions

Some foundational concepts from set theory are applied in parts of this work. For further details on these
foundational concepts, please consult the relevant references as needed [38, 58, 62, 71, 78]. Additionally, for
operations and related topics concerning each concept, please refer to the respective references as necessary.

2.1 Basic Set Theory

Below are some fundamental concepts in set theory. For more comprehensive details, please refer to the relevant
references as needed [27, 38, 58–60,62, 71, 74, 78, 102, 103].

Definition 2.1 (Set). [71] A set is a collection of distinct objects, known as elements, that are clearly defined,
allowing any object to be identified as either belonging to or not belonging to the set. If � is a set and G is an
element of �, this membership is denoted by G ∈ �. Sets are typically represented using curly brackets. For
example, � = {1, 2, 3} indicates that the set � contains the elements 1, 2, and 3.

Definition 2.2 (Union). [71] The union of two sets � and � is the set of all elements that are in either �, �, or
both. The union is denoted by � ∪ � and is formally defined as:

� ∪ � = {G | G ∈ � or G ∈ �}

In other words, an element G is in � ∪ � if and only if G is in �, in �, or in both.

Definition 2.3 (Intersection). [71] The intersection of two sets � and � is the set of all elements that � and �

have in common. The intersection is denoted by � ∩ � and is formally defined as:

� ∩ � = {G | G ∈ � and G ∈ �}

In other words, an element G is in � ∩ � if and only if G is in both � and �.
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Definition 2.4 (Empty Set). [71] The empty set, denoted by ∅, is the unique set that contains no elements.
Formally, the empty set is defined as:

∅ = {G | G ≠ G},
indicating that there are no elements G for which the condition G = G fails, thereby resulting in an empty
collection. The empty set is a subset of every set and has a cardinality of zero.

Definition 2.5 (Non-Empty Set). A non-empty set is a set that contains at least one element. Formally, a set (
is non-empty if:

∃G ∈ (.

In contrast to the empty set ∅, a non-empty set has a cardinality |( | > 0.

2.2 Crisp Sets and Neutrosophic Sets

When dealing with Fuzzy Sets or Neutrosophic Sets, they are often discussed alongside their foundational Crisp
Sets. The definition of a Crisp Set is provided below.

Definition 2.6 (Universe Set). (cf. [88]) A universe set, often denoted by *, is a set that contains all the
elements under consideration for a particular discussion or problem domain. Formally, * is defined as a set
that encompasses every element within the scope of a given context or framework, so that any subset of interest
can be regarded as a subset of *.

In set theory, the universe set * is typically assumed to contain all elements relevant to the discourse, meaning
that for any set �, if � ⊆ *, then all elements of � are elements of*. Related concepts include underlying sets
and whole sets.

Definition 2.7 (Non-empty Universe Set). A non-empty universe set, denoted by *, is a set that contains all
elements under consideration in a specific context and satisfies * ≠ ∅. Formally:

* = {G | G is relevant to the problem domain}, with * ≠ ∅.

Every subset of interest is considered a subset of *, ensuring that � ⊆ * for any �.

Definition 2.8 (Crisp Set). [89] Let - be a universe set, and let %(-) denote the power set of - , which
represents all subsets of - . A crisp set � ⊆ - is defined by a characteristic function j� : - → {0, 1}, where:

j�(G) =
{

1 if G ∈ �,

0 if G ∉ �.

This function j� assigns a value of 1 to elements within the set � and 0 to those outside it, creating a clear
boundary. Crisp sets are thus bivalent and follow the principle of binary classification, where each element is
either a member of the set or not.

Definition 2.9 (Crisp Set Representation of the Empty Set). The empty set ∅ in a universe - is represented as
a Crisp Set � ⊆ - by the characteristic function j∅ : - → {0, 1}, where:

j∅ (G) = 0 for all G ∈ -.

The Fuzzy Set is a well-known concept used to handle uncertainty in set theory. The definition is provided
below [131].

Definition 2.10. [131, 132] A fuzzy set g in a non-empty universe . is a mapping g : . → [0, 1]. A fuzzy
relation on . is a fuzzy subset X in . ×. . If g is a fuzzy set in . and X is a fuzzy relation on . , then X is called
a fuzzy relation on g if

X(H, I) ≤ min{g(H), g(I)} for all H, I ∈ . .

Definition 2.11. [105] Let - be a given set. A Neutrosophic Set � on - is characterized by three membership
functions:

)� : - → [0, 1], �� : - → [0, 1], �� : - → [0, 1],
where for each G ∈ - , the values )�(G), ��(G), and ��(G) represent the degree of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ )�(G) + ��(G) + ��(G) ≤ 3.
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The Plithogenic Set is known as a type of set that can generalize Neutrosophic Sets, Fuzzy Sets, and other
similar sets [108, 109]. The definition of the Plithogenic Set is provided below.

Definition 2.12. [108, 109] Let ( be a universal set, and % ⊆ (. A Plithogenic Set %( is defined as:

%( = (%, E, %E, ?35 , ?��)

where:

• E is an attribute.

• %E is the range of possible values for the attribute E.

• ?35 : % × %E → [0, 1]B is the Degree of Appurtenance Function (DAF).

• ?�� : %E × %E → [0, 1]C is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 0, 1 ∈ %E:

1. Reflexivity of Contradiction Function:
?�� (0, 0) = 0

2. Symmetry of Contradiction Function:

?�� (0, 1) = ?�� (1, 0)

Example 2.13. The following examples are provided.

• When B = C = 1, %� is called a Plithogenic Fuzzy Set.

• When B = 2, C = 1, %� is called a Plithogenic Intuitionistic Fuzzy Set.

• When B = 3, C = 1, %� is called a Plithogenic Neutrosophic Set.

• When B = 4, C = 1, %� is called a Plithogenic Quadripartitioned Neutrosophic Set (cf. [92, 96]).

• When B = 5, C = 1, %� is called a Plithogenic Pentapartitioned Neutrosophic Set (cf. [21,25,28,83]).

• When B = 7, C = 1, %� is called a Plithogenic Heptapartitioned Neutrosophic Set (cf. [20, 86]).

2.3 Plithogenic Offset/Overset/Underset

Related concepts include the Plithogenic Offset. As restricted versions of the Offset, the Overset (where only
Ω is unrestricted) and the Underset (where only k is unrestricted) are known [46].

While this paper primarily focuses on the definition of the Offset, any concept defined using the Offset can also
be defined using the Overset or Underset. For example, a Fuzzy Overset or Fuzzy Underset can define a Fuzzy
Offset.

Definition 2.14 (Crisp Offset). (cf. [46]) Let - be a universe of discourse, and let Ψ and Ω represent 0 and 1,
respectively. A Crisp Offset � ⊆ - is defined by a characteristic function j� : - → {Ψ,Ω}, where:

j�(G) =
{
Ω if G ∈ �,

Ψ if G ∉ �.

In this context, the function j� assigns a value of Ω (1) to elements that are within the set � and Ψ (0) to
elements that are outside �. This structure adheres to the principle of binary classification, as each element is
either fully included in the set � or completely excluded from it.

The concept of a Crisp Offset, unlike fuzzy or neutrosophic sets, does not allow for intermediate degrees of
membership. Instead, membership is strictly limited to the values Ψ and Ω, reflecting the clear-cut, determin-
istic nature of this classification approach. This discrete boundary is a distinguishing feature of Crisp Offsets,
contrasting with the gradual membership levels typical of fuzzy sets.
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Definition 2.15 (Fuzzy Offset). (cf. [107]) Let - be a universe of discourse. A Fuzzy Offset �̃ in - is defined
as:

�̃ = {(G, ` �̃(G)) | G ∈ -, ` �̃(G) ∈ [Ψ,Ω]},

where Ω > 1 and Ψ < 0. There exist elements G, H ∈ - such that ` �̃(G) > 1 and ` �̃(H) < 0.

Definition 2.16 (Single-Valued Neutrosophic OffSet). [114] A Single-Valued Neutrosophic OffSet, denoted
�off ⊆ *off, is a set within a universe of discourse *off in which certain elements may possess neutrosophic
degrees—truth, indeterminacy, or falsity—that extend beyond the standard limits, either above 1 or below 0. It
is formally defined as:

�off = {(G, 〈) (G), � (G), � (G)〉) | G ∈ *off, ∃ () (G) > 1 or � (G) < 0)} ,

where:

• ) (G), � (G), and � (G) denote the truth-membership, indeterminacy-membership, and falsity-membership
degrees of each G ∈ *off.

• ) (G), � (G), � (G) ∈ [Ψ,Ω], where Ω > 1 (termed the OverLimit) and Ψ < 0 (termed the UnderLimit),
allow the possibility for ) (G), � (G), or � (G) to take values beyond the conventional bounds of [0, 1].

Definition 2.17 (Plithogenic Offset). (cf. [46]) Let ( be a universal set, and % ⊆ (. A Plithogenic Offset %(off
is defined as:

%(off = (%, E, %E, ?35 , ?��)

where:

• E is an attribute.

• %E is the set of possible values for the attribute E.

• ?35 : % × %E → [ΨE ,ΩE]B is the Degree of Appurtenance Function (DAF), where ΨE < 0 and ΩE > 1.

• ?�� : %E × %E → [ΨE ,ΩE]C is the Degree of Contradiction Function (DCF).

In this definition, the DAF allows the membership degrees ?35 (G, 0) to range from below 0 to above 1, between
the underlimit ΨE and the overlimit ΩE .

Example 2.18. The following examples are provided.

• When B = C = 1, %� is called a Plithogenic Fuzzy OffSet.

• When B = 2, C = 1, %� is called a Plithogenic Intuitionistic Fuzzy OffSet.

• When B = 3, C = 1, %� is called a Plithogenic Neutrosophic OffSet.

• When B = 4, C = 1, %� is called a Plithogenic Quadripartitioned Neutrosophic OffSet.

• When B = 5, C = 1, %� is called a Plithogenic Pentapartitioned Neutrosophic OffSet.

• When B = 7, C = 1, %� is called a Plithogenic Heptapartitioned Neutrosophic OffSet.
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2.4 Plithogenic Offgraph/Overgraph/Undergraph

Related concepts include Plithogenic Offgraph/Overgraph/Undergraph. As restricted versions of the OffGraph,
the OverGraph (where only Ω is unrestricted) and the UnderGraph (where only k is unrestricted) are known
[46].

Definition 2.19 (Graph). [33] A graph � is a mathematical structure consisting of a set of vertices + (�) and
a set of edges � (�) that connect pairs of vertices, representing relationships or connections between them.
Formally, a graph is defined as � = (+, �), where + is the vertex set and � is the edge set.

Definition 2.20 (Subgraph). [33] Let � = (+, �) be a graph. A subgraph � = (+� , �� ) of � is a graph such
that:

• +� ⊆ + , i.e., the vertex set of � is a subset of the vertex set of �.

• �� ⊆ � , i.e., the edge set of � is a subset of the edge set of �.

• Each edge in �� connects vertices in +� .

Definition 2.21 (Fuzzy Offgraph). (cf. [46]) A Fuzzy Offgraph � = (+, �, `+ , `�) consists of:

• A set of vertices + .

• A set of edges � ⊆ + ×+ .

• A vertex membership function `+ : + → [Ψ,Ω], with Ω > 1, Ψ < 0, and ∃E ∈ + such that `+ (E) > 1
or `+ (E) < 0.

• An edge membership function `� : � → [Ψ,Ω], where ∃4 ∈ � such that `� (4) > 1 or `� (4) < 0.

Definition 2.22. (cf. [31, 46]) A Single-Valued Neutrosophic OffGraph is a graph � = (+, �) defined over a
universe *off, where:

• Each vertex E ∈ + is assigned degrees ) (E), � (E), and � (E), with ) (E) ∈ [0,Ω] and � (E) ∈ [Ψ,Ω],
where Ω > 1 and Ψ < 0, allowing ) (E) > 1 and � (E) < 0.

• Each edge 4 = (D, E) ∈ � is assigned degrees ) (4) ∈ [Ψ,Ω], � (4) ∈ [Ψ,Ω], and � (4) ∈ [Ψ,Ω].

• For all E ∈ + , ) (E) + � (E) + � (E) ≤ 3Ω.

Definition 2.23 (Plithogenic OffGraph). (cf. [46]) A Plithogenic OffGraph is a Plithogenic Graph where the
membership degrees `�8

can both exceed 1 and be less than 0. That is, `�8
(G) ∈ [Ψ8 ,Ω8] with Ψ8 < 0 and

Ω8 > 1 for all attributes �8 and elements G ∈ + ∪ � .

Example 2.24. The following examples are provided.

• When B = C = 1, %� is called a Plithogenic Fuzzy OffGraph.

• When B = 2, C = 1, %� is called a Plithogenic Intuitionistic Fuzzy OffGraph.

• When B = 3, C = 1, %� is called a Plithogenic Neutrosophic OffGraph.

• When B = 4, C = 1, %� is called a Plithogenic Quadripartitioned Neutrosophic OffGraph.

• When B = 5, C = 1, %� is called a Plithogenic Pentapartitioned Neutrosophic OffGraph.

• When B = 7, C = 1, %� is called a Plithogenic Heptapartitioned Neutrosophic OffGraph.

3 Result: Some Concepts

In this paper, we propose several types of graphs by applying the concept of offsets to existing graph and set
theories, exploring their mathematical structures. Since Overset and Underset are concepts derived by limiting
one side of the range of an offset, any graph defined as an OffGraph can also be defined as an OverGraph or an
UnderGraph. We hope that future research will further develop the applications and mathematical structures
of these concepts.
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3.1 Plithogenic Directed OffGraph

We define the Plithogenic Directed OffGraph. This is a definition that extends the Plithogenic Directed Graph
by incorporating the concept of offsets.

Definition 3.1 (Directed Graph). [3, 133] A Directed Graph, denoted as � = (+, �), is a mathematical
structure consisting of:

• + : A finite set of vertices (also called nodes).

• � : A set of ordered pairs of vertices, called directed edges or arcs. Each directed edge is represented as
(D, E), where D, E ∈ + and D ≠ E.

Definition 3.2 (Plithogenic Directed Graph). [43] A Plithogenic Directed Graph �% = (%" , %# ) extends the
concept of Plithogenic Graphs to directed graphs. Let � = (+, �) be a crisp directed graph where:

• + is a finite set of vertices.

• � ⊆ + ×+ is a set of directed edges.

The Plithogenic Directed Graph �% = (%" , %# ) is defined as follows:

1. Plithogenic Vertex Set %" = (", ;, "; , adf, acf):

• " ⊆ + : The set of vertices.
• ;: An attribute associated with the vertices.
• ";: The range of possible attribute values for ;.
• adf : " × "; → [0, 1]B: The Degree of Appurtenance Function (DAF) for vertices.
• acf : "; × "; → [0, 1]C : The Degree of Contradiction Function (DCF) for vertices.

2. Plithogenic Edge Set %# = (#, <, #<, bdf, bcf):

• # ⊆ � : The set of directed edges.
• <: An attribute associated with the edges.
• #<: The range of possible attribute values for <.
• bdf : # × #< → [0, 1]B: The Degree of Appurtenance Function (DAF) for edges.
• bcf : #< × #< → [0, 1]C : The Degree of Contradiction Function (DCF) for edges.

Conditions for Plithogenic Directed Graphs The Plithogenic Directed Graph�% must satisfy the following
conditions:

1. Edge Appurtenance Constraint: For all (G, 0), (H, 1) ∈ " × ";:

bdf((GH), (0, 1)) ≤ min{adf(G, 0), adf(H, 1)},

where GH ∈ # is a directed edge from G to H, and (0, 1) ∈ #< × #< are the corresponding attribute values.

2. Contradiction Function Constraint: For all (0, 1), (2, 3) ∈ #< × #<:

bcf((0, 1), (2, 3)) ≤ min{acf(0, 2), acf(1, 3)}.

3. Reflexivity and Symmetry of Contradiction Functions:

acf(0, 0) = 0, acf(0, 1) = acf(1, 0), ∀0, 1 ∈ "; ,

bcf(0, 0) = 0, bcf(0, 1) = bcf(1, 0), ∀0, 1 ∈ #<.
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Example 3.3. The Plithogenic Directed Graph �% can be classified into specific subclasses depending on the
parameters B and C. The following are examples of special cases of Plithogenic Directed Graphs:

• When B = C = 1, �% is called a Plithogenic Fuzzy Directed Graph. In this case, each vertex and edge
has a single membership degree.

• When B = 2, C = 1, �% is called a Plithogenic Intuitionistic Fuzzy Directed Graph. Each vertex and
edge is associated with two membership degrees: truth and falsity.

• When B = 3, C = 1, �% is called a Plithogenic Neutrosophic Directed Graph. Each vertex and edge is
characterized by triplets of truth, indeterminacy, and falsity membership degrees.

• When B = 4, C = 1, �% is called a Plithogenic Quadripartitioned Neutrosophic Directed Graph. Each
vertex and edge is represented by quadruples of membership degrees, including truth, indeterminacy,
falsity, and liberation.

• When B = 5, C = 1, �% is called a Plithogenic Pentapartitioned Neutrosophic Directed Graph. Each
vertex and edge has quintuple membership degrees corresponding to truth, contradiction, ignorance,
unknown, and falsity.

• When B = 7, C = 1, �% is called a Plithogenic Heptapartitioned Neutrosophic Directed Graph. Each
vertex and edge has seven membership degrees representing various nuanced states of uncertainty.

Definition 3.4 (Plithogenic Directed OffGraph). A Plithogenic Directed OffGraph �off = (%" , %# ) is an
extension of the Plithogenic Directed Graph, incorporating the concept of offsets into its structure. Let � =

(+, �) be a crisp directed graph where:

• + is a finite set of vertices.

• � ⊆ + ×+ is a set of directed edges.

The Plithogenic Directed OffGraph �off = (%" , %# ) is defined as follows:

1. Plithogenic Offset Vertex Set %" = (", ;, "; , adf, acf):

• " ⊆ + : The set of vertices.
• ;: An attribute associated with the vertices.
• ";: The range of possible attribute values for ;.
• adf : " × "; → [ΨE ,ΩE]B: The Degree of Appurtenance Function (DAF) for vertices, where
ΨE < 0 and ΩE > 1.

• acf : "; × "; → [ΨE ,ΩE]C : The Degree of Contradiction Function (DCF) for vertices.

2. Plithogenic Offset Edge Set %# = (#, <, #<, bdf, bcf):

• # ⊆ � : The set of directed edges.
• <: An attribute associated with the edges.
• #<: The range of possible attribute values for <.
• bdf : #×#< → [Ψ4,Ω4]B: The Degree of Appurtenance Function (DAF) for edges, where Ψ4 < 0

and Ω4 > 1.
• bcf : #< × #< → [Ψ4,Ω4]C : The Degree of Contradiction Function (DCF) for edges.

The Plithogenic Directed OffGraph satisfies the same constraints as the Plithogenic Directed Graph but allows
values of DAF and DCF to extend beyond the [0, 1] range, within [ΨE ,ΩE] and [Ψ4,Ω4].

Theorem 3.5. A Plithogenic Directed OffGraph �off = (%" , %# ) can be transformed into a Plithogenic Di-
rected Graph �% = (%′

"
, %′

#
) by restricting the Degree of Appurtenance Function (DAF) and Degree of

Contradiction Function (DCF) to [0, 1].
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Proof. Let �off = (%" , %# ) be a Plithogenic Directed OffGraph, where:

adf : " × "; → [ΨE ,ΩE]B , acf : "; × "; → [ΨE ,ΩE]C .

To transform �off into �%: 1. Restrict adf to [0, 1]B by defining:

adf′ (G, 0) =
{

adf(G, 0), if adf(G, 0) ∈ [0, 1]B ,
max(0,min(adf(G, 0), 1)), otherwise.

2. Similarly, restrict acf to [0, 1]C :

acf′ (0, 1) =
{

acf(0, 1), if acf(0, 1) ∈ [0, 1]C ,
max(0,min(acf(0, 1), 1)), otherwise.

Perform analogous transformations for the edge-related functions bdf and bcf. The resulting structure �% =

(%′
"
, %′

#
) is a Plithogenic Directed Graph, completing the proof. �

Theorem 3.6. A Plithogenic Directed OffGraph �off = (%" , %# ) can be transformed into a Plithogenic Off-
Graph �′

off = (%" , %′
#
) by treating all directed edges as undirected edges.

Proof. Let �off = (%" , %# ) be a Plithogenic Directed OffGraph. To transform �off into a Plithogenic Off-
Graph: 1. Replace the directed edge set # ⊆ + × + with an undirected edge set # ′ ⊆ {{D, E} | (D, E) ∈ #}.
2. Define bdf′ (4, 0) = bdf(4, 0) for undirected edges 4 = {D, E}. 3. Similarly, bcf′ (0, 1) = bcf(0, 1) for
0, 1 ∈ #<.

Since the contradiction and appurtenance functions remain well-defined in the undirected context, the resulting
graph �′

off satisfies the properties of a Plithogenic OffGraph. This transformation completes the proof. �

3.2 Plithogenic Mixed OffGraph

We define the Plithogenic Mixed OffGraph. This is a definition that extends the Plithogenic Mixed Graph by
incorporating the concept of offsets.

Definition 3.7 (Mixed Graph). (cf. [100]) A Mixed Graph � = (+, �, �) is a mathematical structure that
combines the properties of undirected and directed graphs. It consists of the following components:

• + : A non-empty finite set of vertices.

• � ⊆ {{D, E} | D, E ∈ +, D ≠ E}: A set of undirected edges, where each edge 4 = {D, E} represents a
connection between vertices D and E with no specific direction.

• � ⊆ {(D, E) | D, E ∈ +, D ≠ E}: A set of directed arcs, where each arc 0 = (D, E) represents a directed
connection from vertex D to vertex E.

The graph � satisfies the following properties:

1. Each pair of vertices D, E ∈ + can have at most one undirected edge {D, E} ∈ � .

2. Each pair of vertices D, E ∈ + can have at most two directed arcs: (D, E) ∈ � and (E, D) ∈ �.

3. The undirected edges in � do not overlap with the directed arcs in �, meaning � ∩ � = ∅.

Definition 3.8 (Plithogenic Mixed Graph). A Plithogenic Mixed Graph� = (+, �, �, adf+ , adf� , adf�, acf+ , acf� , acf�)
is a graph that generalizes both directed and undirected edges within the Plithogenic framework. It is defined
as follows:
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• + : The set of vertices.

• � : The set of undirected edges, where � ⊆ {{D, E} | D, E ∈ +, D ≠ E}.

• �: The set of directed edges (arcs), where � ⊆ {(D, E) | D, E ∈ +, D ≠ E}.

• adf+ : + → [0, 1]B: The attribute degree function for vertices, assigning an B-tuple adf+ (E) = (01 (E), 02 (E), . . . , 0B (E))
to each vertex E ∈ + .

• adf� : � → [0, 1]B: The attribute degree function for undirected edges.

• adf� : � → [0, 1]B: The attribute degree function for directed edges.

• acf+ : + ×+ → [0, 1]C : The contradiction degree function for vertices.

• acf� : � × � → [0, 1]C : The contradiction degree function for undirected edges.

• acf� : � × � → [0, 1]C : The contradiction degree function for directed edges.

These functions satisfy the following conditions: 1. Edge Attribute Degree Constraint:

• For each undirected edge 4 = {D, E} ∈ � :

adf� (4) ≤ min{adf+ (D), adf+ (E)},

where the minimum operation is taken component-wise.

• For each directed edge 0 = (D, E) ∈ �:

adf�(0) ≤ min{adf+ (D), adf+ (E)}.

2. Contradiction Function Constraints:

• The contradiction functions satisfy:

acf+ (D, D) = 0, acf+ (D, E) = acf+ (E, D), ∀D, E ∈ +.

• Similar properties hold for acf� and acf�:

acf� (41, 42) = acf� (42, 41), acf�(01, 02) = acf�(02, 01).

Example 3.9. The Plithogenic Mixed Graph �% can be classified into specific subclasses depending on the
parameters B and C. The following are examples of special cases of Plithogenic Mixed Graphs:

• When B = C = 1, �% is called a Plithogenic Fuzzy Mixed Graph. In this case, each vertex and edge has
a single membership degree.

• When B = 2, C = 1, �% is called a Plithogenic Intuitionistic Fuzzy Mixed Graph. Each vertex and
edge is associated with two membership degrees: truth and falsity.

• When B = 3, C = 1, �% is called a Plithogenic Neutrosophic Mixed Graph. Each vertex and edge is
characterized by triplets of truth, indeterminacy, and falsity membership degrees.

• When B = 4, C = 1, �% is called a Plithogenic Quadripartitioned Neutrosophic Mixed Graph. Each
vertex and edge is represented by quadruples of membership degrees, including truth, indeterminacy,
falsity, and liberation.

• When B = 5, C = 1, �% is called a Plithogenic Pentapartitioned Neutrosophic Mixed Graph. Each
vertex and edge has quintuple membership degrees corresponding to truth, contradiction, ignorance,
unknown, and falsity.
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• When B = 7, C = 1, �% is called a Plithogenic Heptapartitioned Neutrosophic Mixed Graph. Each
vertex and edge has seven membership degrees representing various nuanced states of uncertainty.

Theorem 3.10. A Plithogenic Mixed Graph � = (+, �, �, adf+ , adf� , adf�, acf+ , acf� , acf�) can be trans-
formed into a Plithogenic Directed Graph �′ = (+, �, adf+ , adf�, acf+ , acf�) by removing all undirected edges
� .

Proof. Remove all undirected edges � from the graph structure. Retain all vertices+ , directed edges �, and the
associated functions adf+ , adf�, acf+ , acf�. Since the removal of � does not affect the properties of � or+ , the
resulting graph �′ satisfies all the conditions of a Plithogenic Directed Graph. This completes the proof. �

Theorem 3.11. A Plithogenic Mixed Graph � = (+, �, �, adf+ , adf� , adf�, acf+ , acf� , acf�) can be trans-
formed into a Plithogenic Graph �′ = (+, � ′, adf+ , adf′� , acf+ , acf′�) by treating all directed edges � as undi-
rected edges.

Proof. To transform � into �′, Define a new undirected edge set � ′ = � ∪ {{D, E} | (D, E) ∈ �}, effectively
treating all directed edges � as undirected. Retain all vertices + and redefine adf′� and acf′� to include the
attributes and contradictions of both original � and transformed �:

adf′� (4) =
{

adf� (4), if 4 ∈ �,

adf�(0), if 4 = {D, E} and 0 = (D, E) ∈ �.

acf′� (41, 42) =
{

acf� (41, 42), if 41, 42 ∈ �,

acf�(01, 02), if 41, 42 are transformed from �.

Since � is transformed into undirected edges in � ′, the resulting graph�′ satisfies the conditions of a Plithogenic
Graph. This completes the proof. �

Definition 3.12 (Plithogenic Mixed OffGraph). A Plithogenic Mixed OffGraph

�off = (+, �, �, adf+ , adf� , adf�, acf+ , acf� , acf�)

is an extension of the Plithogenic Mixed Graph that incorporates the concept of offsets. It is defined as follows:

• + : The set of vertices.

• � : The set of undirected edges, where � ⊆ {{D, E} | D, E ∈ +, D ≠ E}.

• �: The set of directed edges (arcs), where � ⊆ {(D, E) | D, E ∈ +, D ≠ E}.

• adf+ : + → [ΨE ,ΩE]B: The attribute degree function for vertices, assigning an B-tuple adf+ (E) =

(01 (E), 02 (E), . . . , 0B (E)) to each vertex E ∈ + , where ΨE < 0 and ΩE > 1.

• adf� : � → [Ψ4,Ω4]B: The attribute degree function for undirected edges, where Ψ4 < 0 and Ω4 > 1.

• adf� : � → [Ψ0,Ω0]B: The attribute degree function for directed edges, where Ψ0 < 0 and Ω0 > 1.

• acf+ : + ×+ → [ΨE ,ΩE]C : The contradiction degree function for vertices.

• acf� : � × � → [Ψ4,Ω4]C : The contradiction degree function for undirected edges.

• acf� : � × � → [Ψ0,Ω0]C : The contradiction degree function for directed edges.

These functions satisfy the following conditions:

1. Edge Attribute Degree Constraint:
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• For each undirected edge 4 = {D, E} ∈ � :

adf� (4) ≤ min{adf+ (D), adf+ (E)},

where the minimum operation is taken component-wise.

• For each directed edge 0 = (D, E) ∈ �:

adf�(0) ≤ min{adf+ (D), adf+ (E)}.

2. Contradiction Function Constraints:

• The contradiction functions satisfy:

acf+ (D, D) = 0, acf+ (D, E) = acf+ (E, D), ∀D, E ∈ +.

• Similar properties hold for acf� and acf�:

acf� (41, 42) = acf� (42, 41), acf�(01, 02) = acf�(02, 01).

Theorem 3.13. A Plithogenic Mixed OffGraph �off can be transformed into a Plithogenic Directed OffGraph
�′

off by removing all undirected edges � .

Proof. Remove all undirected edges � from the graph structure. Retain all vertices + , directed edges �, and
the associated functions adf+ , adf�, acf+ , acf�. Since the removal of � does not affect the properties of � or
+ , the resulting graph �′

off satisfies all the conditions of a Plithogenic Directed OffGraph. This completes the
proof. �

Theorem 3.14. A Plithogenic Mixed OffGraph �off can be transformed into a Plithogenic OffGraph �′
off by

treating all directed edges � as undirected edges.

Proof. Define a new undirected edge set � ′ = � ∪ {{D, E} | (D, E) ∈ �}, effectively treating all directed edges
� as undirected. Retain all vertices + and redefine adf′� and acf′� to include the attributes and contradictions
of both original � and transformed �:

adf′� (4) =
{

adf� (4), if 4 ∈ �,

adf�(0), if 4 = {D, E} and 0 = (D, E) ∈ �.

acf′� (41, 42) =
{

acf� (41, 42), if 41, 42 ∈ �,

acf�(01, 02), if 41, 42 are transformed from �.

The resulting graph �′
off satisfies the conditions of a Plithogenic OffGraph. This completes the proof. �

Theorem 3.15. A Plithogenic Mixed OffGraph �off = (+, �, �, adf+ , adf� , adf�, acf+ , acf� , acf�) is a Mixed
Graph under its structural definition.

Proof. To prove this, we verify that the structural components of �off align with the definition of a Mixed
Graph.

• The set of vertices + in �off is well-defined and finite, satisfying the vertex condition of a Mixed Graph.

• The set � ⊆ {{D, E} | D, E ∈ +, D ≠ E} represents undirected edges. Each edge 4 = {D, E} connects
vertices D and E without a specific direction, meeting the Mixed Graph definition.

• The set � ⊆ {(D, E) | D, E ∈ +, D ≠ E} represents directed arcs. Each arc 0 = (D, E) establishes a directed
relationship from vertex D to vertex E, fulfilling the Mixed Graph requirement.
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• While adf+ , adf� , adf�, acf+ , acf� , acf� provide additional attributes for vertices and edges, they do not
alter the fundamental structure of the graph. These functions extend the standard Mixed Graph by adding
appurtenance and contradiction degrees, which are extraneous to the basic connectivity.

• The undirected edges � and directed arcs � satisfy the condition �∩� = ∅, ensuring no overlap between
the two types of connections.

Thus, the structural components (+, �, �) of �off form a Mixed Graph, with the offset functions acting as
additional features that do not interfere with the underlying graph structure. �

3.3 Plithogenic BiDirected OffGraph

We define the Plithogenic BiDirected OffGraph. This is a definition that extends the Plithogenic BiDirected
Graph by incorporating the concept of offsets.

Definition 3.16 (Bidirected Graph). [14, 36, 52] A bidirected graph (also known as a bigraph) is a pair � =

(�, g), where:

• � = (+, �) is a simple undirected graph, where + is a non-empty set of vertices and � is a set of edges
(without parallel edges or loops).

• g : + × � → {−1, 0, 1} is a function called the bidirection function, which assigns a local orientation to
each vertex-edge pair (E, 4) as follows:

– g(E, 4) = 1: Edge 4 is directed towards vertex E.
– g(E, 4) = −1: Edge 4 is directed away from vertex E.
– g(E, 4) = 0: Vertex E is not incident to edge 4.

The graph � is referred to as the underlying graph of �, and the function g provides the bidirected structure on
� by assigning a direction at each endpoint of every edge in � .

Definition 3.17 (Bidirected Plithogenic Graph). A Bidirected Plithogenic Graph is a tuple �%� = (�, g, %", %#),
where:

• � = (+, �) is a simple undirected graph.

• g : + × � → {−1, 0, 1} is the bidirection function as defined above.

• %" = (", ;, ";, 035 , 0� 5 ) is the Plithogenic Vertex Set:

– " ⊆ + is the set of vertices.
– ; is the vertex attribute.
– "; is the range of possible vertex attribute values.
– 035 : " × "; → [0, 1]B is the Degree of Appurtenance Function.
– 0� 5 : "; × "; → [0, 1]C is the Degree of Contradiction Function for vertices.

• %# = (#, <, #<, 135 , 1� 5 ) is the Plithogenic Edge Set:

– # ⊆ � is the set of edges.
– < is the edge attribute.
– #< is the range of possible edge attribute values.
– 135 : # × #< → [0, 1]B is the Degree of Appurtenance Function.
– 1� 5 : #< × #< → [0, 1]C is the Degree of Contradiction Function for edges.

The functions 035 and 135 must satisfy the Appurtenance Constraint, and 0� 5 and 1� 5 must satisfy the
Contradiction Function Constraints as defined in Plithogenic Graphs.
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Example 3.18. The Plithogenic BiDirected Graph �% can be classified into specific subclasses depending on
the parameters B and C. The following are examples of special cases of Plithogenic BiDirected Graphs:

• When B = C = 1, �% is called a Plithogenic Fuzzy BiDirected Graph. In this case, each vertex and
edge has a single membership degree.

• When B = 2, C = 1, �% is called a Plithogenic Intuitionistic Fuzzy BiDirected Graph. Each vertex and
edge is associated with two membership degrees: truth and falsity.

• When B = 3, C = 1, �% is called a Plithogenic Neutrosophic BiDirected Graph. Each vertex and edge
is characterized by triplets of truth, indeterminacy, and falsity membership degrees.

• When B = 4, C = 1, �% is called a Plithogenic Quadripartitioned Neutrosophic BiDirected Graph.
Each vertex and edge is represented by quadruples of membership degrees, including truth, indetermi-
nacy, falsity, and liberation.

• When B = 5, C = 1, �% is called a Plithogenic Pentapartitioned Neutrosophic BiDirected Graph.
Each vertex and edge has quintuple membership degrees corresponding to truth, contradiction, ignorance,
unknown, and falsity.

• When B = 7, C = 1, �% is called a Plithogenic Heptapartitioned Neutrosophic BiDirected Graph.
Each vertex and edge has seven membership degrees representing various nuanced states of uncertainty.

Definition 3.19 (Plithogenic BiDirected OffGraph). A Plithogenic BiDirected OffGraph is a tuple %��$ =

(�, g, %", %#), where:

• � = (+, �): An undirected graph with vertex set + and edge set � .

• g : + × � → {−1, 0, 1}: The bidirection function, defining the orientation of edges relative to vertices.

• %" = (", ;, "; , adf, acf): The Plithogenic Offset Vertex Set, where:

– " ⊆ + : The set of vertices.
– ;: An attribute associated with the vertices.
– ";: The range of possible attribute values for ;.
– adf : " × "; → [ΨE ,ΩE]B: The Degree of Appurtenance Function (DAF) for vertices, where

ΨE < 0 and ΩE > 1.
– acf : "; × "; → [ΨE ,ΩE]C : The Degree of Contradiction Function (DCF) for vertices.

• %# = (#, <, #<, bdf, bcf): The Plithogenic Offset Edge Set, where:

– # ⊆ � : The set of edges.
– <: An attribute associated with the edges.
– #<: The range of possible attribute values for <.
– bdf : #×#< → [Ψ4,Ω4]B: The Degree of Appurtenance Function (DAF) for edges, where Ψ4 < 0

and Ω4 > 1.
– bcf : #< × #< → [Ψ4,Ω4]C : The Degree of Contradiction Function (DCF) for edges.

The Degree of Appurtenance Functions (adf, bdf) and Contradiction Functions (acf, bcf) satisfy the following
constraints:

1. Appurtenance Constraint:
bdf(4, 0) ≤ min{adf(D, ;), adf(E, ;)},

where 4 = {D, E}, D, E ∈ " , and 0 ∈ #<.
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2. Contradiction Constraint:
bcf(0, 1) ≤ min{acf(G, H)},

where 0, 1 ∈ #<, and G, H ∈ "; .

Theorem 3.20. A Plithogenic BiDirected OffGraph %��$ = (�, g, %", %#) retains the structure of a BiDi-
rected Graph � = (�, g).

Proof. To demonstrate that %��$ retains the structure of a BiDirected Graph, we verify that it satisfies the
properties of � = (�, g).

The graph � = (+, �) in %��$ is undirected, with + as the vertex set and � as the edge set. This satisfies the
definition of the underlying graph of a BiDirected Graph.

The bidirection function g : + × � → {−1, 0, 1} in %��$ assigns local orientations to edges relative to
vertices. The values of g follow the same rules as in a BiDirected Graph:

g(E, 4) =


1 if 4 is directed towards E,
−1 if 4 is directed away from E,

0 if E is not incident to 4.

This ensures that the local orientation of edges is consistent with the structure of a BiDirected Graph.

The sets %" and %# in %��$ introduce Plithogenic parameters (e.g., Degree of Appurtenance and Degree
of Contradiction Functions) that enrich the representation of vertices and edges without altering the underlying
graph structure or the bidirection function g.

Since %��$ retains the undirected nature of � and adheres to the bidirection rules of g, it preserves the
structure of a BiDirected Graph � = (�, g). This completes the proof. �

Theorem 3.21. A Plithogenic BiDirected OffGraph %��$ = (�, g, %", %#) generalizes the structure of a
BiDirected Graph by incorporating Plithogenic offsets.

Proof. The Plithogenic BiDirected OffGraph %��$ = (�, g, %", %#) extends the standard BiDirected Graph
� = (�, g) by introducing:

• A Degree of Appurtenance Function (DAF) and a Degree of Contradiction Function (DCF) for vertices
(%").

• A DAF and DCF for edges (%#).

These functions allow membership and contradiction values to exceed the interval [0, 1], extending the expres-
sive capacity of the graph. However, these extensions do not alter the fundamental properties of the graph,
such as the bidirection function g or the structure of �. Thus, %��$ generalizes � while preserving its core
characteristics. �

Theorem 3.22. A Plithogenic BiDirected OffGraph %��$ = (�, g, %", %#) can be transformed into a
Plithogenic BiDirected Graph %�� = (�, g, %" ′, %# ′) by restricting all functions to [0, 1].

Proof. Let %��$ = (�, g, %", %#), where:

adf : " × "; → [ΨE ,ΩE]B , acf : "; × "; → [ΨE ,ΩE]C ,

bdf : # × #< → [Ψ4,Ω4]B , bcf : #< × #< → [Ψ4,Ω4]C .

To restrict these functions to [0, 1], define:

adf′ (G, 0) = max(0,min(adf(G, 0), 1)),
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acf′ (0, 1) = max(0,min(acf(0, 1), 1)),

bdf′ (4, 2) = max(0,min(bdf(4, 2), 1)),

bcf′ (2, 3) = max(0,min(bcf(2, 3), 1)).

The resulting graph %�� = (�, g, %" ′, %# ′) satisfies all properties of a Plithogenic BiDirected Graph because
all functions are now restricted to [0, 1]. This completes the proof. �

Theorem 3.23. A Plithogenic BiDirected OffGraph %��$ = (�, g, %", %#) can be transformed into a
Plithogenic Directed OffGraph %�$ = (%", %# ′) by assigning orientations to bidirected edges.

Proof. Let %��$ = (�, g, %", %#). Assign orientations to each bidirected edge 4 ∈ � based on the bidirec-
tion function g:

g(D, 4) = 1, g(E, 4) = −1 =⇒ (D, E) ∈ � ′.

Retain all vertex and edge functions (adf, acf, bdf, bcf) as defined in %��$. The resulting graph %�$ =

(%", %# ′) is a Plithogenic Directed OffGraph. �

Theorem 3.24. A Plithogenic BiDirected OffGraph %��$ = (�, g, %", %#) can be transformed into a
Plithogenic OffGraph %$� = (�′, %", %# ′) by treating all bidirected edges as undirected edges.

Proof. Let %��$ = (�, g, %", %#). Define a new undirected graph �′, where:

�′ = (+, � ′), � ′ = {{D, E} | 4 = {D, E} ∈ �}.

Retain all vertex and edge functions (adf, acf, bdf, bcf) from %��$. The resulting graph %$� = (�′, %", %# ′)
satisfies the properties of a Plithogenic OffGraph. This completes the proof. �

3.4 Plithogenic Pangene OffGraph

A graph known as the Pangene Graph [79] has been recently defined. This graph is recognized as a general-
ization of both bidirected and directed graphs. In this work, we extend this concept to define the Plithogenic
Pangene OffGraph.

Definition 3.25 (Pangene Graph). [79] A Pangene Graph �% = (-, �) is a mathematical structure that
represents gene-level variations across multiple genomes. It is defined as follows:

• Let + be the set of genes.

• Let - = + × {>, <} be the set of oriented genes, where:

– (E, >) (denoted > E) represents a gene E with a forward orientation.
– (E, <) (denoted < E) represents a gene E with a reverse orientation.
– For any G ∈ - , a(G) = E gives the underlying gene E.

• Let � ⊆ - × - be the set of edges, where an edge (G, H) ∈ � implies H immediately follows G on an input
contig or, due to DNA strand symmetry, G immediately follows H.

The graph satisfies the following properties:

1. Skew Symmetry: If (G, H) ∈ � , then (H, G) ∈ � .

2. Inversion Representation: If G can reach both H and H̄ (the reverse orientation of H), a(G) is said to
exhibit an inversion.

Theorem 3.26. A Pangene Graph �% = (-, �) can be represented as a directed graph �� = (-, ��), where
�� = � .
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Proof. In a Pangene Graph �% = (-, �), edges (G, H) satisfy skew symmetry, i.e., (G, H) ∈ � =⇒ (H, G) ∈ � .
By treating - as the vertex set and � as the directed edge set, we obtain a directed graph �� = (-, �). The
property that (H, G) ∈ � ensures that the graph represents bidirectional relationships between genes, which
aligns with the requirements of a directed graph. Thus, �% can be represented as �� . �

Theorem 3.27. A Pangene Graph �% = (-, �) can also be represented as a bidirected graph �� = (+, ��),
where:

• + is the set of genes.

• �� ⊆ + × + is the set of bidirected edges, with each edge (E, F) ∈ �� associated with two orientations
(> E, < F) or (< E, > F).

Proof. In �% = (-, �), the edges represent oriented relationships between genes. Define �� = (+, ��),
where + = {a(G) | G ∈ -} and �� = {(a(G), a(H)) | (G, H) ∈ �}. Each bidirected edge (E, F) ∈ �� is
associated with two orientations, (> E, < F) and (< E, > F), representing the possible connections between
E and F in �% . Since �� retains the bidirectional nature of relationships and adheres to the bidirected graph
properties, �% can be represented as ��. �

Definition 3.28 (Plithogenic Pangene OffGraph). A Plithogenic Pangene OffGraph �%,off = (-, �, %", %#)
is an extension of the Pangene Graph that incorporates the concept of offsets within the Plithogenic framework.
It is defined as follows:

• + : The set of genes.

• - = + × {>, <}: The set of oriented genes, where:

– (E, >) (denoted > E) represents a gene E with a forward orientation.
– (E, <) (denoted < E) represents a gene E with a reverse orientation.
– For any G ∈ - , a(G) = E gives the underlying gene E.

• � ⊆ - × -: The set of edges, where an edge (G, H) ∈ � implies H immediately follows G on an input
contig, or G immediately follows H due to DNA strand symmetry.

• %" = (", ;, "; , adf, acf): The Plithogenic Offset Vertex Set, where:

– " ⊆ + : The set of vertices.
– ;: An attribute associated with the vertices.
– ";: The range of possible attribute values for ;.
– adf : " × "; → [ΨE ,ΩE]B: The Degree of Appurtenance Function (DAF) for vertices, where

ΨE < 0 and ΩE > 1.
– acf : "; × "; → [ΨE ,ΩE]C : The Degree of Contradiction Function (DCF) for vertices.

• %# = (#, <, #<, bdf, bcf): The Plithogenic Offset Edge Set, where:

– # ⊆ � : The set of edges.
– <: An attribute associated with the edges.
– #<: The range of possible attribute values for <.
– bdf : #×#< → [Ψ4,Ω4]B: The Degree of Appurtenance Function (DAF) for edges, where Ψ4 < 0

and Ω4 > 1.
– bcf : #< × #< → [Ψ4,Ω4]C : The Degree of Contradiction Function (DCF) for edges.

The graph satisfies the following properties:

1. Skew Symmetry: If (G, H) ∈ � , then (H, G) ∈ � .
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2. Inversion Representation: If G can reach both H and H̄ (the reverse orientation of H), a(G) is said to
exhibit an inversion.

3. The Degree of Appurtenance and Contradiction Functions (adf, acf, bdf, bcf) satisfy the Appurtenance
and Contradiction Constraints as defined in Plithogenic Graphs.

Example 3.29. The Plithogenic Pangene OffGraph �% can be classified into specific subclasses depending on
the parameters B and C. The following are examples of special cases of Plithogenic Pangene OffGraphs:

• When B = C = 1, �% is called a Plithogenic Fuzzy Pangene OffGraph.

• When B = 2, C = 1, �% is called a Plithogenic Intuitionistic Fuzzy Pangene OffGraph. Each vertex
and edge is associated with two membership degrees: truth and falsity.

• When B = 3, C = 1, �% is called a Plithogenic Neutrosophic Pangene OffGraph. Each vertex and edge
is characterized by triplets of truth, indeterminacy, and falsity membership degrees.

• When B = 4, C = 1, �% is called a Plithogenic Quadripartitioned Neutrosophic Pangene OffGraph.
Each vertex and edge is represented by quadruples of membership degrees, including truth, indetermi-
nacy, falsity, and liberation.

• When B = 5, C = 1, �% is called a Plithogenic Pentapartitioned Neutrosophic Pangene OffGraph.
Each vertex and edge has quintuple membership degrees corresponding to truth, contradiction, ignorance,
unknown, and falsity.

• When B = 7, C = 1, �% is called a Plithogenic Heptapartitioned Neutrosophic Pangene OffGraph.
Each vertex and edge has seven membership degrees representing various nuanced states of uncertainty.

Theorem 3.30. A Plithogenic Pangene OffGraph�%,off = (-, �, %", %#) can be transformed into a Plithogenic
BiDirected OffGraph %��$ = (�, g, %" ′, %# ′).

Proof. To transform �%,off into %��$:

• Define the underlying graph � = (+, � ′), where � ′ = {{D, E} | (G, H) ∈ �, a(G) = D, a(H) = E}.

• Define the bidirection function g such that:

g(D, 4) =


1 if (G, H) ∈ � and a(G) = D,

−1 if (H, G) ∈ � and a(G) = D,

0 otherwise.

• Retain all Plithogenic functions (adf, acf, bdf, bcf).

The resulting graph %��$ satisfies all properties of a Plithogenic BiDirected OffGraph. This completes the
proof. �

Theorem 3.31. A Plithogenic Pangene OffGraph �%,off = (-, �, %", %#) can also be transformed into a
Plithogenic Directed OffGraph %�$ = (%", %# ′).

Proof. Assign directions to all edges in � based on the orientation of the vertices in - . Retain all Plithogenic
functions (adf, acf, bdf, bcf) from �%,off. The resulting graph %�$ satisfies all properties of a Plithogenic
Directed OffGraph. This completes the proof. �

Theorem 3.32. A Plithogenic Pangene OffGraph�%,off = (-, �, %", %#) can be transformed into a Plithogenic
OffGraph %$� = (�′, %", %# ′) by treating all bidirected edges as undirected edges.

Proof. To transform �%,off into %$�:

137



• Define a new undirected graph �′ = (+, � ′), where � ′ = {{D, E} | (G, H) ∈ �, a(G) = D, a(H) = E}.

• Retain all Plithogenic functions (adf, acf, bdf, bcf) from �%,off.

The resulting graph %$� satisfies the properties of a Plithogenic OffGraph. This completes the proof. �

Theorem 3.33. A Plithogenic Pangene OffGraph �%,off = (-, �, %", %#) retains the structure of a Pangene
Graph.

Proof. To establish that a Plithogenic Pangene OffGraph �%,off retains the structure of a Pangene Graph �% ,
we demonstrate that it satisfies the properties of Pangene Graphs:

1. Skew Symmetry: In �%,off, the edges � ⊆ - × - satisfy the skew symmetry property: (G, H) ∈ � =⇒
(H, G) ∈ � . Since this condition is inherited from the definition of a Pangene Graph �% , �%,off also satisfies
skew symmetry.

2. Inversion Representation: Each element G ∈ - represents an oriented gene. If G can reach both H and
H̄ (the reverse orientation of H) through edges in � , then the underlying gene a(G) exhibits an inversion. The
inclusion of additional Plithogenic parameters %" and %# does not alter the representation of inversions, as
these parameters extend the membership information without modifying the core graph structure.

3. Plithogenic Parameters: The sets %" = (", ;, "; , adf, acf) and %# = (#, <, #<, bdf, bcf) introduce
appurtenance and contradiction functions that extend the attributes of vertices and edges. These extensions
enrich the representation of the graph but do not conflict with the core structure defined by �% .

Since �%,off retains the properties of skew symmetry and inversion representation, it maintains the structure of
a Pangene Graph �% . This completes the proof. �

Theorem 3.34. A Plithogenic Pangene OffGraph �%,off generalizes the structure of a Pangene Graph by in-
corporating Plithogenic offsets.

Proof. The Plithogenic Pangene OffGraph �%,off = (-, �, %", %#) includes additional parameters %" and
%# , which extend the representation of vertices and edges through Plithogenic offsets.

The vertex set %" introduces a Degree of Appurtenance Function (DAF) and a Degree of Contradiction Func-
tion (DCF) defined over the range [ΨE ,ΩE], allowing for extended membership values beyond the standard
interval [0, 1]. The edge set %# similarly incorporates DAF and DCF parameters for edges, enabling nuanced
representations of relationships between genes. These Plithogenic functions allow �%,off to model uncertain-
ties, contradictions, and complex relationships more effectively than a standard Pangene Graph �% .

By enhancing the representation without violating the structural properties of �% , �%,off generalizes the con-
cept of a Pangene Graph. This completes the proof. �

4 Future tasks

The future directions of this research are outlined as follows. We intend to delve into the mathematical structures
and applications of Directed Hypergraphs [16,80,93,94,129] and Mixed Hypergraphs [72,77,125], particularly
within the framework of uncertain directed graphs such as Fuzzy and Neutrosophic graphs. Furthermore, we
aim to extend this study by defining analogous graph concepts in the context of Directed Superhypergraphs
(cf. [42, 53, 55–57, 110, 111, 113, 116, 117]). Finally, we seek to explore the potential applications of these
extended models, paving the way for their integration into diverse fields.
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Abstract: Matroids play a crucial role in discrete optimization, owing to their robust mathematical foun-
dations and applicability in graph theory and computer science. This paper delves into the extension of matroid
concepts to Neutrosophic and Turiyam Neutrosophic set theories, introducing Neutrosophic closure matroids
and Turiyam Neutrosophic closure matroids, which integrate uncertainty, indeterminacy, and liberal states.

Keywords: Neutrosophic set, Fuzzy set, Matroid, Antimatroid, Greedoid

1. Introduction
Amatroid is a combinatorial structure that extends the concept of linear independence from vector spaces

to general sets [57]. Matroids are essential in fields like discrete optimization due to their strong mathematical
foundations and applicability in areas such as graph theory and computer science [24, 35, 41, 55, 57, 60, 81]. A
closure matroid is defined as a matroid where the closure of the union of any two subsets is equal to the union
of their individual closures [2, 7].

Various concepts for handling uncertainty are actively studied to address unpredictability [26–34,70,72,
73, 75, 76]. This paper focuses on fuzzy, neutrosophic, and Turiyam Neutrosophic sets. A fuzzy set assigns
partial membership, a neutrosophic set assigns truth, indeterminacy, and falsity, while a Turiyam Neutrosophic
set adds a liberal state[1,16,19,21,52,70,78,79,82,84,85]. These sets are crucial in modeling uncertainty across
fields.

In this paper, we present the mathematical definitions of Neutrosophic closure Matroids and Turiyam
Neutrosophic closure Matroids. Neutrosophic Matroids (including Antimatroids and Greedoids) and Turiyam
Neutrosophic Matroids (including Antimatroids and Greedoids) have been recently defined in the literature [25].
The purpose of this study is to explore the applications of these concepts. These structures extend classical com-
binatorial concepts by incorporating Neutrosophic and TuriyamNeutrosophic set theories, enabling the modeling
of uncertainty, indeterminacy, and other complex states within mathematical frameworks.

2. The Structure of the Paper
The format of this paper is described below.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 The Structure of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Basic Matroid Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4 Fuzzy Closure Matroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 Neutrosophic Matroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6 Turiyam Neutrosophic Matroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Some property of Neutrosophic closure matroid . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Basic Matroid Concepts
Here are the key concepts of matroid theory. This paper utilizes fundamental ideas from matroid theory

and set theory. For an introduction to these basic concepts, please refer to lecture notes or surveys on set theory
[39, 43, 47], graph theory[17, 18], and matroid theory [57].

Definition 1 (Matroid). [57] Let . be a non-empty universe, and let � ⊆ P(. ), where P(. ) is the power set of
. . The pair " = (., �) is called a matroid if the following conditions hold:

1. If �1 ∈ � and �2 ⊆ �1, then �2 ∈ �.

2. If �1, �2 ∈ � and |�1 | < |�2 |, then there exists �3 ∈ � such that �1 ⊆ �3 ⊆ �1 ∪ �2.
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The set � is called the family of independent sets of the matroid " .

Example 2. Consider the set � = {1, 2, 3, 4}. The collection of independent sets I is defined as follows:

I = {� ⊆ � | |�| ≤ 2}
This matroid " = (�,I) is called a rank-2 uniform matroid, denoted as*2,4.
We consider Verification of Matroid Axioms.

1. Non-emptiness: The empty set ∅ satisfies |∅| = 0 ≤ 2, so it is included in the collection of independent
sets.

2. Hereditary Property (Axiom 1): If � ∈ I and � ⊆ �, then |�| ≤ |�| ≤ 2, implying that � ∈ I.

3. Exchange Property (Axiom 2): If �, � ∈ I and |�| < |� |, then |�| < |�| ≤ 2, so |�| ≤ 1. We can
choose an element 4 ∈ � \ � such that |� ∪ {4}| ≤ 2, ensuring � ∪ {4} ∈ I.

Matroids have been extensively studied from various perspectives, including graph theory and computer
science [4, 6, 24]. In matroid theory, a well-known concept is the rank function [14, 42, 65]. A rank function
assigns a non-negative integer to each subset, representing the maximum size of independent elements within
that subset. Related concepts, such as rank-width and linear-rank-width, are also widely studied [22, 53, 54].

Definition 3 (Rank). [14,42,65] Let " = (., �) be a matroid. The rank function ' : P(. ) → {0, 1, 2, . . . , |. |}
is defined by:

'(�) = max{|� | : � ⊆ �, � ∈ �},
for all � ∈ P(. ). The value '(�) is called the rank of �.

A mapping ` : P(. ) → [0,∞) is called submodular if for all �, � ∈ P(. ), the following inequality
holds:

`(�) + `(�) ≥ `(� ∪ �) + `(� ∩ �).

Example 4. The rank function A : 2� → N is defined as:

A (�) = min{|�|, 2}
Examples:

• A ({1}) = 1

• A ({1, 2}) = 2

• A ({1, 2, 3}) = 2

• A (�) = A ({1, 2, 3, 4}) = 2

In the field of matroid theory, several mathematical structures such as bases[11, 44, 45], circuits[38, 51,
62], cyclic flats[15, 20, 23, 58, 59], and hyperplanes[9, 40, 46] are well-known. Among these, the structure of a
”flat” is also considered in this paper. The definition is provided below [12,56, 57].

Definition 5 (Flat). [57] Let " = (�,I) be a matroid, where � is the ground set and I is the collection of
independent sets of " . A subset � ⊆ � is called a flat of the matroid " if it satisfies the following condition:

cl(�) = �,

where cl(�) denotes the closure of � in the matroid. This closure cl(�) is defined as:

cl(�) = {4 ∈ � | A (� ∪ {4}) = A (�)},
where A (�) is the rank of the subset �, which represents the maximum size of an independent subset

contained in �.
In other words, a subset � is a flat if adding any element 4 ∈ � \ � to � increases the rank of �.

Equivalently, a flat is a maximal set with respect to having a given rank.

Closure is one of the operations in matroids, and extensive research has been conducted not only in the
field of matroid theory but also in other disciplines [48, 56, 80]. The definitions are provided below.
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Definition 6 (Closure). [48,56,80] In matroid theory, the closure operator on a set provides the smallest superset
that contains all the elements determined by a set of independent elements. Formally, it is defined as:

cl(�) = {4 ∈ � : A (� ∪ {4}) = A (�)}
where:

• � ⊆ � is a subset of the ground set � ,

• A (�) is the rank of the subset �, which is the maximum size of an independent subset of �.

This means that the closure of a set � in a matroid is the set of elements 4 ∈ � that do not increase the
rank of �, i.e., they are dependent on the set �.

Example 7. The closure of a subset � ⊆ � is defined as:

cl(�) = {4 ∈ � | A (� ∪ {4}) = A (�)}
Let us compute the closure of � = {1, 2}:

• A (�) = 2

• For 4 ∈ � \ � = {3, 4}:

– A (� ∪ {4}) = A ({1, 2, 4}) = 2 (The number of elements is 3, but the rank remains 2)

– Hence, 4 ∈ cl(�) (since A (� ∪ {4}) = A (�))

Thus, cl({1, 2}) = � .
Similarly, for � = {1}:

• A ({1}) = 1

• For 4 ∈ � \ {1} = {2, 3, 4}:

– A ({1, 4}) = min{2, 2} = 2

– Since A ({1, 4}) > A ({1}), 4 ∉ cl({1})

Therefore, cl({1}) = {1}.

A closure matroid is a matroid where the closure of the union of any two subsets equals the union of their
closures [2, 7]. The definitions are provided below.

Definition 8 (Closure matroid). [2, 7] A matroid " = (�, �), where � is the ground set and � is the collection
of independent sets, is called a closure matroid if for any subsets �, � ⊆ � :

cl(� ∪ �) = cl(�) ∪ cl(�)
This means that the closure of the union of two sets is equal to the union of their closures.

As a related concept, the definition of a Free Matroid is provided below.

Definition 9 (Free Matroid). (cf.[57]) A Free Matroid is a matroid " = (�,I) defined on a finite set � , where
I is the collection of all subsets of � . In other words, every subset of � is an independent set. Formally:

I = {� ⊆ � | � is independent}.

Thus, the rank function A of the Free Matroid satisfies:

A (�) = |�|, for all � ⊆ �.

The Free Matroid is the simplest matroid structure, as it allows complete independence of all subsets of � .
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4. Fuzzy Closure Matroid
A Fuzzy Matroid is an extension of the concept of a Matroid using Fuzzy set theory. Like Matroids, it

has been the subject of extensive research [8,10,48–50,61,63,64]. First, the definition of a Fuzzy set and Fuzzy
Matroid is provided below.

Definition 10. [82, 83] A fuzzy set g in a non-empty universe . is a mapping g : . → [0, 1]. A fuzzy relation
on . is a fuzzy subset X in . × . . If g is a fuzzy set in . and X is a fuzzy relation on . , then X is called a fuzzy
relation on g if

X(H, I) ≤ min{g(H), g(I)} for all H, I ∈ . .

Next, the definition of a fuzzy matroid, based on the concept of a fuzzy set, is provided below [36, 37,
63, 64].

Definition 11. [36,37,63,64] Let � (. ) denote the power set of fuzzy subsets on . . A pair " = (-, �) is called
a fuzzy matroid if � ⊆ � (. ) satisfies the following conditions:

1. If g1 ∈ � and g2 ⊂ g1, then g2 ∈ �, where g2 ⊂ g1 means that g2 (H) < g1 (H) for every H ∈ - . 2. If
g1, g2 ∈ � and | supp(g1) | < | supp(g2) |, then there exists g3 ∈ � such that:

• g1 ⊂ g3 ⊆ g1 ∪ g2, where for any H ∈ - , g1 ∪ g2 (H) = max{g1 (H), g2 (H)},

• <(g3) ≥ min{<(g1), <(g2)}, where <(a) = min{a(H) : H ∈ supp(a)}.

Here, � is called the family of independent fuzzy sets of the fuzzy matroid " = (-, �).

Definition 12. [3] A fuzzy set _ ∈ � (�) is called a fuzzy flat of the fuzzy matroid " = (�,I) if:

• _ ∈ F , where F is the family of fuzzy sets satisfying:

1. 1� ∈ F , where 1� (4) = 1 for all 4 ∈ � .

2. If `1, `2 ∈ F , then `1 ∧ `2 ∈ F , where (`1 ∧ `2) (4) = min{`1 (4), `2 (4)}.
3. If ` ∈ F and `1, `2, . . . , `= are all minimal members of F such that ` ≤ `8 for all 8 = 1, 2, . . . , =,

then:
=∨
8=1

`8 = 1� ,

where (∨=
8=1 `8) (4) = max1≤8≤= `8 (4).

Definition 13. [5] Given a fuzzy matroid " = (�,I) and a fuzzy set ` ∈ � (�), the fuzzy closure of ` is defined
as:

¯̀ =
∧

_∈F,`≤_
_,

where the meet (infimum) is taken over all fuzzy flats _ ∈ F such that ` ≤ _. The meet operation
∧

is
defined pointwise: (∧

_

_

)
(4) = min

_
_(4), ∀4 ∈ �.

Definition 14. [5] A fuzzy closure matroid " = (�, F ) is a fuzzy matroid where the following condition holds:

` ∨ [ = ¯̀∨ [̄, ∀`, [ ∈ � (�),
where ¯̀ and [̄ are the fuzzy closures of ` and [, respectively, and ∨ denotes the fuzzy union (element-

wise maximum):

(` ∨ [) (4) = max{`(4), [(4)}, ∀4 ∈ �.

This property ensures that the closure of the union of any two fuzzy subsets is equal to the union of their
closures.

149



5. Neutrosophic Matroid
A Neutrosophic Matroid is an extension of the concept of a Matroid using Neutrosophic set theory. The

definitions are provided below.

Definition 15. [1,13,21,52,70,71,77,79] Let � be a finite non-empty set (called the ground set). A single-valued
neutrosophic set (SVNS) ` on � is defined as:

` =
{
〈4, )` (4), �` (4), �` (4)〉 : 4 ∈ �

}
,

where )` (4), �` (4), �` (4) ∈ [0, 1] represent the truth-membership, indeterminacy-membership, and
falsity-membership degrees of element 4, respectively.

Note: There is no restriction on the sum )` (4) + �` (4) + �` (4), i.e., 0 ≤ )` (4) + �` (4) + �` (4) ≤ 3.

Definition 16. For neutrosophic sets ` and a on � :

• Equality: ` = a if )` (4) = )a (4), �` (4) = �a (4), and �` (4) = �a (4) for all 4 ∈ � .

• Order Relation: ` ≤ a if )` (4) ≤ )a (4), �` (4) ≥ �a (4), and �` (4) ≥ �a (4) for all 4 ∈ � .

• Maximum (Join): (` ∨ a) (4) = (max{)` (4), )a (4)},min{�` (4), �a (4)},min{�` (4), �a (4)}).

• Minimum (Meet): (` ∧ a) (4) = (min{)` (4), )a (4)},max{�` (4), �a (4)},max{�` (4), �a (4)}).

• Support of `: supp(`) = {4 ∈ � : )` (4) > 0}.

• Minimal Truth-membership Value: <) (`) = min{)` (4) : 4 ∈ supp(`)}.

Definition 17. [25] A neutrosophic matroid is a pair (�,Ψ), where � is a finite ground set, andΨ is a non-empty
collection of neutrosophic sets on � , called independent neutrosophic sets, satisfying the following axioms:

• Neutrosophic Hereditary Property (NM1):

If ` ∈ Ψ and a ≤ ` (i.e., )a (4) ≤ )` (4), �a (4) ≥ �` (4), �a (4) ≥ �` (4) for all 4 ∈ �), then a ∈ Ψ.

• Neutrosophic Exchange Property (NM2):

If `, a ∈ Ψ and | supp(`) | < | supp(a) |, then there exists l ∈ Ψ such that:

` < l ≤ ` ∨ a,

and
<) (l) ≥ min{<) (`), <) (a)}.

Definition 18. [25] Neutrosophic Circuits: The minimal dependent neutrosophic subsets in Ψ are called neu-
trosophic circuits. A neutrosophic circuit is a set ` ∈ # (�) such that it is minimal with respect to inclusion, i.e.,
if a ⊂ ` then a ∉ Ψ.

Neutrosophic Rank Function: The neutrosophic rank function A` : # (�) → [0,∞] is defined for any
neutrosophic set ` ∈ # (�) as:

A` (a) = sup {|l | : l ⊆ a and l ∈ Ψ} ,
where |l | is the cardinality of the support of l, i.e., the number of elements in the support with non-zero

truth-membership, indeterminacy-membership, or falsity-membership.

Definition 19. Define the family of neutrosophic flats F ⊆ # (�) as follows:

1. 1� ∈ F , where 1� (4) = (1, 0, 0) for all 4 ∈ � .

2. If `1, `2 ∈ F , then `1 ∧ `2 ∈ F .

3. If ` ∈ F and `1, `2, . . . , `= are all minimal members of F such that ` ≤ `8 for all 8 = 1, 2, . . . , =, then:

=∨
8=1

`8 = 1� .
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Definition 20. Given a neutrosophic matroid " = (�,Ψ) and a neutrosophic set ` ∈ # (�), the neutrosophic
closure of ` is defined as:

¯̀ =
∧

_∈F, `≤_
_,

where the meet (infimum) is taken over all neutrosophic flats _ ∈ F such that ` ≤ _. The meet operation
∧ is defined element-wise as:

¯̀(4) =
(
min
_

)_ (4), max
_

�_ (4), max
_

�_ (4)
)
, ∀4 ∈ �.

Definition 21. A neutrosophic matroid " = (�,Ψ) is called a neutrosophic closure matroid if the closure
operator ·̄ satisfies the following property:

` ∨ a = ¯̀∨ ā, ∀`, a ∈ # (�).
This means that the closure of the join (maximum) of any two neutrosophic sets is equal to the join of

their closures.

Theorem 22. Every neutrosophic closure matroid can be transformed into a fuzzy closure matroid via amapping
that preserves the matroid structure.

Proof. Define a mapping i : # (�) → � (�) from the set of neutrosophic sets to the set of fuzzy sets by:

i(`) (4) = )` (4), ∀4 ∈ �.

This mapping extracts the truth-membership degree of each element 4 from the neutrosophic set ` to form the
fuzzy set i(`).

We consider Transformation of Independent Sets. Let "# = (�,Ψ# ) be a neutrosophic closure matroid
with independent neutrosophic sets Ψ# . We define the corresponding fuzzy matroid "� = (�,Ψ� ), where:

Ψ� = {i(`) | ` ∈ Ψ# }.

We need to show that Ψ� satisfies the axioms of a fuzzy matroid and that the closure operations correspond
under the mapping i.

We consider Preservation of Matroid Axioms. Axiom 1 (Hereditary Property): Let q ∈ Ψ� and \ ≤ q,
where \ (4) ≤ q(4) for all 4 ∈ � . Since q = i(`) for some ` ∈ Ψ# , and \ ≤ i(`), there exists a such that
i(a) = \ and a ≤ ` in # (�) (i.e., )a (4) ≤ )` (4) and �a (4) ≥ �` (4), �a (4) ≥ �` (4)). By the neutrosophic
hereditary property (NM1), a ∈ Ψ# , so \ = i(a) ∈ Ψ� .

Axiom 2 (Exchange Property): Let q1, q2 ∈ Ψ� with | supp(q1) | < | supp(q2) |. There exist `1, `2 ∈
Ψ# such that i(`8) = q8 for 8 = 1, 2. By NM2, there exists l ∈ Ψ# such that `1 < l ≤ `1 ∨ `2 and
<) (l) ≥ min{<) (`1), <) (`2)}. Let q3 = i(l). Then q1 ≤ q3 ≤ q1 ∨ q2, and q3 ∈ Ψ� .

We consider Preservation of Closure Operator. Neutrosophic Closure:

` =
∧

_∈F# ,`≤_
_,

where F# is the family of neutrosophic flats.
Fuzzy Closure:

q =
∧

_∈F� ,q≤_
_,

where F� is the family of fuzzy flats.
Since i preserves the order (` ≤ a =⇒ i(`) ≤ i(a)), the closures correspond:

i(`) = i(`).

Therefore, under the mapping i, the neutrosophic closure matroid "# transforms into the fuzzy closure
matroid "� , preserving the matroid structure and closure properties. �
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6. Turiyam Neutrosophic Matroid
Next, we define the Turiyam Neutrosophic Matroid as follows. Similar to Fuzzy sets, Turiyam Neu-

trosophic sets have multiple associated concepts that are defined within this framework [66–68]. Note that the
Turiyam Neutrosophic Set is, in fact, a specific case of the Quadripartitioned Neutrosophic Set, achieved by
replacing ”Contradiction” with ”Liberal.” (cf.[69, 74]) The definitions are provided below.

Definition 23. [66] Let � be a finite non-empty set (the ground set). A Turiyam Neutrosophic set ` on � is
defined as:

` =
{
〈4, )` (4), �` (4), �` (4), !` (4)〉 : 4 ∈ �

}
,

where )` (4), �` (4), �` (4), !` (4) ∈ [0, 1] represent the truth-membership, indeterminacy-membership,
falsity-membership, and Turiyam Neutrosophic (liberal) state degrees of element 4, respectively.

Note: The sum )` (4) + �` (4) + �` (4) + !` (4) satisfies:

0 ≤ )` (4) + �` (4) + �` (4) + !` (4) ≤ 4, ∀4 ∈ �.

Definition 24. For Turiyam Neutrosophic sets ` and a on � :

• Order Relation: ` ≤ a if for all 4 ∈ � :

)` (4) ≤ )a (4), �` (4) ≥ �a (4), �` (4) ≥ �a (4), !` (4) ≥ !a (4).

• Maximum (Join):

(` ∨ a) (4) =
(
max{)` (4), )a (4)}, min{�` (4), �a (4)}, min{�` (4), �a (4)}, min{!` (4), !a (4)}

)
.

• Minimum (Meet):

(` ∧ a) (4) =
(
min{)` (4), )a (4)}, max{�` (4), �a (4)}, max{�` (4), �a (4)}, max{!` (4), !a (4)}

)
.

• Support of `:

supp(`) = {4 ∈ � : )` (4) > 0}.

• Minimal Truth-Membership Value:

<) (`) = min{)` (4) : 4 ∈ supp(`)}.

The definition of a Turiyam Neutrosophic Matroid using the aforementioned sets is provided below.

Definition 25. [25] A Turiyam Neutrosophic Matroid is a pair (�,Ψ), where � is a finite ground set, and Ψ

is a non-empty collection of Turiyam Neutrosophic sets on � , called independent Turiyam Neutrosophic sets,
satisfying the following axioms:

1. Turiyam Neutrosophic Hereditary Property (TM1):

If ` ∈ Ψ and a ≤ ` (i.e., for all 4 ∈ � :

)a (4) ≤ )` (4), �a (4) ≥ �` (4), �a (4) ≥ �` (4), !a (4) ≥ !` (4)),

then a ∈ Ψ.

2. Turiyam Neutrosophic Exchange Property (TM2):

If `, a ∈ Ψ and | supp(`) | < | supp(a) |, then there exists l ∈ Ψ such that:

• ` < l ≤ ` ∨ a, where ` < l means ` ≤ l and ` ≠ l.

• <) (l) ≥ min{<) (`), <) (a)}.
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Definition 26. Define the rank function A : 2� → N by:

A (�) = max{| supp(`) | : ` ∈ Ψ, supp(`) ⊆ �}.
This function A satisfies the properties of a matroid rank function:

1. Non-negativity and Boundedness:

0 ≤ A (�) ≤ |�| for all � ⊆ � .

2. Monotonicity:

If � ⊆ � ⊆ � , then A (�) ≤ A (�).

3. Submodularity:

For �, � ⊆ � :

A (�) + A (�) ≥ A (� ∪ �) + A (� ∩ �).

Definition 27. Define the family of Turiyam Neutrosophic flats F ⊆ ) (�) as follows:

1. 1� ∈ F , where 1� (4) = (1, 0, 0, 0) for all 4 ∈ � .

2. If `1, `2 ∈ F , then `1 ∧ `2 ∈ F .

3. If ` ∈ F and `1, `2, . . . , `= are all minimal members of F such that ` ≤ `8 for all 8 = 1, 2, . . . , =, then:

=∨
8=1

`8 = 1� .

Definition 28. Given a Turiyam Neutrosophic matroid " = (�,Ψ) and a Turiyam Neutrosophic set ` ∈ ) (�),
the Turiyam Neutrosophic closure of ` is defined as:

¯̀ =
∧

_∈F, `≤_
_,

where the meet (infimum) is taken over all Turiyam Neutrosophic flats _ ∈ F such that ` ≤ _. The meet
operation ∧ is defined element-wise as:

¯̀(4) =
(
min
_

)_ (4), max
_

�_ (4), max
_

�_ (4), max
_

!_ (4)
)
, ∀4 ∈ �.

Definition 29. A Turiyam Neutrosophic matroid " = (�,Ψ) is called a Turiyam Neutrosophic closure matroid
if the closure operator ·̄ satisfies the following property:

` ∨ a = ¯̀∨ ā, ∀`, a ∈ ) (�).
This means that the closure of the join (maximum) of any two Turiyam Neutrosophic sets is equal to the

join of their closures.

Theorem 30. Every Turiyam Neutrosophic closure matroid can be transformed into a neutrosophic closure
matroid and consequently into a fuzzy closure matroid via mappings that preserve the matroid structure.

Proof. Define a mapping k : ) (�) → # (�) from Turiyam Neutrosophic sets to neutrosophic sets by:

k(`) (4) =
(
)` (4), �` (4) + !` (4), �` (4)

)
, ∀4 ∈ �.

The indeterminacy in the Turiyam Neutrosophic set is increased by the liberal state !` (4), combining both into
the indeterminacy-membership of the neutrosophic set.

Let ") = (�,Ψ) ) be a Turiyam Neutrosophic closure matroid with independent Turiyam Neutrosophic
sets Ψ) . Define the corresponding neutrosophic matroid "# = (�,Ψ# ), where:

Ψ# = {k(`) | ` ∈ Ψ) }.
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We consider Preservation of Matroid Axioms.
Axiom 1 (Hereditary Property): If ` ∈ Ψ) and a ≤ ` in ) (�), then a ∈ Ψ) . Under k, k(a) ≤ k(`)

in # (�) and and k(a) ∈ Ψ# . Thus, the hereditary property of the Turiyam Neutrosophic matroid is preserved
in the neutrosophic matroid.

Axiom 2 (Exchange Property): Let `1, `2 ∈ Ψ) with | supp(`1) | < | supp(`2) |. Then there exists
l ∈ Ψ) such that:

`1 < l ≤ `1 ∨ `2 and <) (l) ≥ min{<) (`1), <) (`2)}.
Applying k to this, we obtain:

k(`1) < k(l) ≤ k(`1) ∨ k(`2) and <) (k(l)) ≥ min{<) (k(`1)), <) (k(`2))}.

Thus, the exchange property is preserved, and k maps the Turiyam Neutrosophic closure matroid into a neutro-
sophic closure matroid.

Next, we define a mapping i : # (�) → � (�) that transforms neutrosophic sets to fuzzy sets by extract-
ing the truth-membership values:

i(`) (4) = )` (4), ∀4 ∈ �.

This mapping directly transforms the neutrosophic matroid "# into the fuzzy closure matroid "� .
We condsier about Preservation of Closure Operator.
Turiyam Neutrosophic Closure:

` =
∧

_∈F) ,`≤_
_,

where F) is the family of Turiyam Neutrosophic flats.
Neutrosophic Closure:

k(`) =
∧

_∈F# ,k (`)≤_
_,

where F# is the family of neutrosophic flats.
Fuzzy Closure:

i(k(`)) =
∧

_∈F� ,i (k (`) )≤_
_,

where F� is the family of fuzzy flats.
Sincek and i preserve the order relations, the closure operations are preserved across all transformations:

i(k(`)) = i(k(`)).

Thus, the Turiyam Neutrosophic closure matroid ") can be transformed into a neutrosophic closure
matroid "# and subsequently into a fuzzy closure matroid "� , preserving the matroid structure and closure
properties. �

7. Some property of Neutrosophic closure matroid
In this section, we consider Some property of Neutrosophic closure matroid.

Theorem 31. The closure of the intersection of two neutrosophic flats is equal to the intersection of their clo-
sures.

Proof. Let ` and [ be two neutrosophic flats in a neutrosophic closure matroid " = (�,Ψ). By definition of
the neutrosophic closure, we have:

¯̀∧ [̄ = ` ∧ [.

Since ` and [ are neutrosophic flats, ¯̀ = ` and [̄ = [. Therefore:

` ∧ [ = ` ∧ [.

This proves that the closure of the intersection of two neutrosophic flats is equal to the intersection of their
closures. �
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Definition 32. An operation 5 on a set - is called idempotent if applying the operation multiple times has the
same effect as applying it once. Formally, 5 is idempotent if:

5 ( 5 (G)) = 5 (G), ∀G ∈ -.

In other words, applying 5 twice to any element G ∈ - yields the same result as applying 5 once.

Example 33. Consider a set ( and the closure operation cl in topology, which maps a subset of ( to its closure.
The closure operation is idempotent because for any subset � ⊆ (:

cl(cl(�)) = cl(�).

Theorem 34. The neutrosophic closure operator is idempotent.

Proof. Let ` ∈ # (�) be a neutrosophic set, and let ¯̀ be its closure. By the definition of the closure operator,
we have:

¯̀̄ = ¯̀.

This follows directly from the fact that applying the closure operator twice does not change the result. Hence,
the neutrosophic closure operator is idempotent. �

Theorem 35. Let "1 = (�1,Ψ1) and "2 = (�2,Ψ2) be loopless Neutrosophic matroids on disjoint ground
sets �1 and �2, respectively. Then, "1 ⊕ "2 is a Neutrosophic closure matroid if and only if both "1 and "2
are Neutrosophic closure matroids.

Proof. We will prove both directions of the theorem.
Assume that "1 ⊕ "2 is a Neutrosophic closure matroid. We need to show that both "1 and "2 are

Neutrosophic closure matroids.

• Since "1 ⊕ "2 is a Neutrosophic closure matroid, the closure operator ·̄ satisfies the property for any
�1 ⊆ �1 and �2 ⊆ �2:

�1 ∪ �2 = �̄1 ∪ �̄2.

• Let us now focus on �1 ⊆ �1. Consider the closure operation within "1, which corresponds to the
restriction of "1 ⊕ "2 to the ground set �1. Since �2 = ∅ in this case, we have:

�1 ∪ ∅ = �̄1 ∪ ∅̄.

But, by the properties of the closure operator, ∅̄ = ∅, so:

�1 = �̄1.

Hence, "1 satisfies the closure property, and thus "1 is a Neutrosophic closure matroid.

• A similar argument holds for "2. Let �2 ⊆ �2 and apply the closure operator to �1 = ∅, giving:

∅ ∪ �2 = ∅̄ ∪ �̄2 = �̄2.

Thus, "2 also satisfies the closure property, and therefore "2 is a Neutrosophic closure matroid.

Next, assume that both "1 and "2 are Neutrosophic closure matroids. We need to show that "1 ⊕ "2
is also a Neutrosophic closure matroid.

• Let �1 ⊆ �1 and �2 ⊆ �2. Since "1 and "2 are Neutrosophic closure matroids, we know that for
�1 ⊆ �1 and �1 ⊆ �1:

�1 ∪ �1 = �̄1 ∪ �̄1.

Similarly, for �2 ⊆ �2 and �2 ⊆ �2:

�2 ∪ �2 = �̄2 ∪ �̄2.

• Consider the closure operator applied to the union of sets �1 ⊆ �1 and �2 ⊆ �2. Since the ground sets
are disjoint, the closure operator for "1 ⊕ "2 acts independently on �1 and �2:

(�1 ∪ �2) = �1 ∪ �2.
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• But, by the closure properties of "1 and "2, we know that:

�1 = �̄1 and �2 = �̄2.

Thus:
�1 ∪ �2 = �̄1 ∪ �̄2.

This shows that"1⊕"2 satisfies the Neutrosophic closure property, and hence"1⊕"2 is a Neutrosophic
closure matroid.

We have proven both directions, so the theorem is true: "1 ⊕ "2 is a Neutrosophic closure matroid if
and only if both "1 and "2 are Neutrosophic closure matroids. �

Theorem 36. The rank function of a neutrosophic closure matroid is submodular.

Proof. Let � and � be subsets of � , and let A be the rank function of a neutrosophic closure matroid. We need
to show that:

A (�) + A (�) ≥ A (� ∪ �) + A (� ∩ �).
Since the neutrosophic closure operator satisfies the submodular inequality, the rank function A, which measures
the size of the largest independent set, also satisfies submodularity. Thus, the rank function of a neutrosophic
closure matroid is submodular. �

Theorem37. If `, a ∈ Ψ are independent Neutrosophic sets in aNeutrosophic closurematroid" , and | supp(`) | <
| supp(a) |, then there exists l ∈ Ψ such that:

` < l ≤ ` ∨ a,

and
<) (l) ≥ min{<) (`), <) (a)}.

Proof. This follows directly from the Neutrosophic closure properties and the exchange property inherited from
Neutrosophic matroids. The closure of the join of two sets ` ∨ a maintains the exchange property, where l is
the intermediate set that satisfies the conditions for exchange. �

Theorem 38. If ` ∈ Ψ is an independent Neutrosophic set in a Neutrosophic closure matroid " , and a ≤ `,
then a ∈ Ψ (i.e., Ψ satisfies the hereditary property).

Proof. This is a direct consequence of the Neutrosophic closure matroid definition. If ` ∈ Ψ is closed, any
smaller subset a ≤ `, satisfying )a (4) ≤ )` (4), �a (4) ≥ �` (4), �a (4) ≥ �` (4), must also be closed under the
Neutrosophic closure operator. Hence, a ∈ Ψ. �

Theorem 39. A Neutrosophic matroid " = (�,Ψ) is a Neutrosophic closure matroid if and only if the unions
of Neutrosophic flats of " are again Neutrosophic flats of " .

Proof. We will prove both directions of the theorem:
If " is a Neutrosophic closure matroid, then the union of Neutrosophic flats is a Neutrosophic flat. By

definition, a Neutrosophic flat is a maximal set of elements in the ground set � that has been closed under the
Neutrosophic closure operator ·̄. That is, for any Neutrosophic flat �, we have �̄ = �, and for any other flat �,
we have �̄ = �.

Let us consider the union � ∪ �. Applying the Neutrosophic closure operator to this union gives:

¯(� ∪ �).

Since " is assumed to be a Neutrosophic closure matroid, we have the property:

¯(� ∪ �) = �̄ ∪ �̄ = � ∪ �.

Thus, the closure of the union of two Neutrosophic flats � and � is equal to their union, implying that � ∪ � is
a Neutrosophic flat. Hence, the forward implication holds.

If the union of Neutrosophic flats is a Neutrosophic flat, then " is a Neutrosophic closure matroid.
Assume that for any two Neutrosophic flats � and �, their union is a Neutrosophic flat. By assumption, � ∪ �

is a Neutrosophic flat, so:
¯(� ∪ �) = � ∪ �.
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Moreover, since � and � are Neutrosophic flats, we also have:

�̄ = � and �̄ = �.

Thus, we can rewrite the closure of the union � ∪ � as:

¯(� ∪ �) = �̄ ∪ �̄ = � ∪ �.

This confirms that " satisfies the defining property of a Neutrosophic closure matroid, namely:

� ∪ � = �̄ ∪ �̄.

Hence, the reverse implication holds as well.
Since both directions have been proven, the theorem is true. �

Definition 40. A neutrosophic matroid " = (�,Ψ) is called neutrosophic modular if and only if every neu-
trosophic flat ` in " is neutrosophic modular. Specifically, for every pair of neutrosophic flats ` and [, the
following condition holds:

A (`) + A ([) = A (` ∨ [) + A (` ∧ [),
where:

• A (`) is the rank of the neutrosophic flat `,

• ` ∨ [ is the join (maximum) of ` and [, defined as:

(` ∨ [) (4) =
(
max{)` (4), )[ (4)}, min{�` (4), �[ (4)}, min{�` (4), �[ (4)}

)
,

for all 4 ∈ � ,

• ` ∧ [ is the meet (minimum) of ` and [, defined as:

(` ∧ [) (4) =
(
min{)` (4), )[ (4)}, max{�` (4), �[ (4)}, max{�` (4), �[ (4)}

)
,

for all 4 ∈ � .

This condition ensures that the sum of the ranks of any two neutrosophic flats equals the rank of their
join plus the rank of their meet, reflecting the modularity property in the context of neutrosophic sets.

Theorem 41. A neutrosophic closure matroid is a neutrosophic modular matroid.

Proof. Let " = (�,Ψ) be a neutrosophic closure matroid, where � is the ground set and Ψ is the family of
independent neutrosophic sets. We aim to prove that every neutrosophic flat in " is neutrosophic modular, i.e.,
for any two neutrosophic flats ` and [, the following equation holds:

A (`) + A ([) = A (` ∨ [) + A (` ∧ [),

where A is the rank function, ` ∨ [ is the join (maximum) of ` and [, and ` ∧ [ is the meet (minimum) of ` and
[.

We start by assuming that " satisfies the neutrosophic closure property. By definition, for any two
neutrosophic sets ` and [, we have:

` ∨ [ = ¯̀∨ [̄,

where ¯̀ and [̄ denote the neutrosophic closures of ` and [, respectively. This closure property ensures that the
closure of the union of any two neutrosophic sets is equal to the union of their closures.

Let ` and [ be neutrosophic flats in " . By definition, neutrosophic flats are closed sets, meaning ¯̀ = `

and [̄ = [. Thus, the closure property simplifies to:

` ∨ [ = ¯̀∨ [̄.

The rank function A of a neutrosophic closure matroid satisfies the submodular inequality:

A (`) + A ([) ≥ A (` ∨ [) + A (` ∧ [).
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To show equality, we consider the following: - The rank of the union A (` ∨ [) represents the size of the largest
independent set contained in the union of ` and [. - The rank of the intersection A (`∧[) is the size of the largest
independent set contained in both ` and [.

Consider maximal chains of flats in ` and [. Let `1, `2, . . . , `: be a chain of neutrosophic flats in `, and
let [1, [2, . . . , [ℓ be a chain of neutrosophic flats in [. These chains represent the independent sets contained in
` and [, respectively.

By the neutrosophic closure property, the union of these chains forms a chain of neutrosophic flats in
` ∨ [. Hence, the rank of ` ∨ [ must be at least the sum of the ranks of ` and [.

Since the submodular inequality holds, and we have constructed a chain showing that A (` ∨ [) ≥ A (`) +
A ([), it follows that:

A (`) + A ([) = A (` ∨ [) + A (` ∧ [),
proving that " is neutrosophic modular. �

Funding
This research received no external funding.

Acknowledgments
I humbly express my sincere gratitude to all those who have provided their invaluable support, enabling

me to successfully complete this paper. I would also like to extend my appreciation to all the readers who have
taken the time to read it.

Conflicts of interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.

Disclaimer
Please note that preprints and early-stage research may not have undergone peer review. Additionally,

as I am an independent researcher, please understand. Sorry.
As research in this field continues to evolve, the findings and interpretations presented in this paper may

be subject to change. Readers are encouraged to consult future publications for the latest developments.
The authors have made every effort to accurately cite and reference all sources used in this paper. How-

ever, any discrepancies or omissions are unintentional, and the authors welcome any corrections.

References
[1] Muhammad Akram and Musavarah Sarwar. Novel multiple criteria decision making methods based on bipolar neutro-

sophic sets and bipolar neutrosophic graphs. viXra, 2017.

[2] T Al-Hawary. Closure matroid properties. Mu’tah Lil-Buhuth Wad-Dirasat, 19(3):35–43, 2004.

[3] T Al-Hawary. Fuzzy flats. Indian J. Mathematics, 55(2):223–236, 2013.

[4] T Al-Hawary. On modular flats and pushouts of matroids. Ital. J. Pure Appl. Math, 43:237–241, 2020.

[5] Talal Al-Hawary. Fuzzy closure matroids. Matematika, pages 69–74, 2016.

[6] Talal Al-Hawary. On functions of k-balanced matroids. Open Journal of Discrete Mathematics, 7(3):103–107, 2017.

[7] Talal Al-Hawary and Jenny McNulty. Closure matroids. Congressus Numerantium, pages 93–96, 2001.

[8] Talal Ali Al-Hawary. On fuzzy matroids. Mathematical Combinatorics, 1:13–21, 2012.

[9] Federico Ardila. Enumerative and algebraic aspects of matroids and hyperplane arrangements. PhD thesis, Mas-
sachusetts Institute of Technology, 2003.

[10] Muhammad Asif, Muhammad Akram, and Ghous Ali. Pythagorean fuzzy matroids with application. Symmetry,
12(3):423, 2020.

[11] Yossi Azar, Andrei Z. Broder, and Alan M. Frieze. On the problem of approximating the number of bases of a matroid.
Inf. Process. Lett., 50(1):9–11, 1994.

[12] Joseph E Bonin and Anna de Mier. The lattice of cyclic flats of a matroid. Annals of combinatorics, 12(2):155–170,
2008.

[13] Said Broumi and Florentin Smarandache. Several similarity measures of neutrosophic sets. Infinite Study, 410(1), 2013.

158



[14] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone submodular function subject
to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766, 2011.

[15] Laszlo Csirmaz. Cyclic flats of a polymatroid. Annals of Combinatorics, 24(4):637–648, 2020.

[16] Supriya Kumar De, Ranjit Biswas, and Akhil Ranjan Roy. Some operations on intuitionistic fuzzy sets. Fuzzy sets and
Systems, 114(3):477–484, 2000.

[17] Reinhard Diestel. Graduate texts in mathematics: Graph theory.

[18] Reinhard Diestel. Graph theory. Springer (print edition); Reinhard Diestel (eBooks), 2024.

[19] Didier Dubois and Henri Prade. A review of fuzzy set aggregation connectives. Information sciences, 36(1-2):85–121,
1985.

[20] Jens Niklas Eberhardt. Computing the tutte polynomial of a matroid from its lattice of cyclic flats. arXiv preprint
arXiv:1407.6666, 2014.

[21] Nancy El-Hefenawy, Mohamed AMetwally, Zenat M Ahmed, and IbrahimM El-Henawy. A review on the applications
of neutrosophic sets. Journal of Computational and Theoretical Nanoscience, 13(1):936–944, 2016.

[22] Fedor V Fomin, Sang-il Oum, and Dimitrios M Thilikos. Rank-width and tree-width of h-minor-free graphs. European
Journal of Combinatorics, 31(7):1617–1628, 2010.

[23] Ragnar Freij-Hollanti, Matthias Grezet, Camilla Hollanti, and Thomas Westerbäck. Cyclic flats of binary matroids.
Advances in Applied Mathematics, 127:102165, 2021.

[24] Takaaki Fujita. Matroid, ideal, ultrafilter, tangle, and so on: Reconsideration of obstruction to linear decomposition.
International Journal of Mathematics Trends and Technology (IJMTT), 70:18–29, 2024.

[25] Takaaki Fujita. Neutrosophic matroid, antimatroid, and greedoid. June 2024.

[26] Takaaki Fujita. Note for neutrosophic incidence and threshold graph. SciNexuses, 1:97–125, 2024.

[27] Takaaki Fujita. A review of the hierarchy of plithogenic, neutrosophic, and fuzzy graphs: Survey and applications.
ResearchGate(Preprint), 2024.

[28] Takaaki Fujita. Survey of intersection graphs, fuzzy graphs and neutrosophic graphs. ResearchGate, July 2024.

[29] Takaaki Fujita. Survey of planar and outerplanar graphs in fuzzy and neutrosophic graphs. ResearchGate, July 2024.

[30] Takaaki Fujita. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy,
Neutrosophic, Soft, Rough, and Beyond. Biblio Publishing, 2025.

[31] Takaaki Fujita. A comprehensive discussion on fuzzy hypersoft expert, superhypersoft, and indetermsoft graphs. Neu-
trosophic Sets and Systems, 77:241–263, 2025.

[32] Takaaki Fujita and Florentin Smarandache. Antipodal turiyam neutrosophic graphs. Neutrosophic Optimization and
Intelligent Systems, 5:1–13, 2024.

[33] Takaaki Fujita and Florentin Smarandache. Study for general plithogenic soft expert graphs. Plithogenic Logic and
Computation, 2:107–121, 2024.

[34] Takaaki Fujita and Florentin Smarandache. Uncertain automata and uncertain graph grammar. Neutrosophic Sets and
Systems, 74:128–191, 2024.

[35] Jim Geelen, Bert Gerards, and Geoff Whittle. Obstructions to branch-decomposition of matroids. Journal of Combina-
torial Theory, Series B, 96(4):560–570, 2006.

[36] R. Goetschel Jr. and W. Voxman. Fuzzy matroids. Fuzzy Sets and Systems, 27:291–301, 1988.

[37] Roy Goetschel Jr andWilliam Voxman. Spanning properties for fuzzy matroids. Fuzzy sets and systems, 51(3):313–321,
1992.

[38] Rohit Gurjar and Nisheeth K Vishnoi. On the number of circuits in regular matroids (with connections to lattices and
codes). In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 861–880. SIAM,
2019.

[39] Felix Hausdorff. Set theory, volume 119. American Mathematical Soc., 2021.

[40] AP Heron. A property of the hyperplanes of a matroid and an extension of dilworth’s theorem. Journal of Mathematical
Analysis and Applications, 42(1):119–131, 1973.

[41] Petr Hliněnỳ and Geoff Whittle. Matroid tree-width. European Journal of Combinatorics, 27(7):1117–1128, 2006.

[42] Bill Jackson and Tibor Jordán. On the rank function of the 3-dimensional rigidity matroid. International Journal of
Computational Geometry & Applications, 16(05n06):415–429, 2006.

[43] Thomas Jech. Set theory: The third millennium edition, revised and expanded. Springer, 2003.

159



[44] Michel Las Vergnas. Bases in oriented matroids. Journal of Combinatorial Theory, Series B, 25(3):283–289, 1978.

[45] Michel Las Vergnas. Active orders for matroid bases. European Journal of Combinatorics, 22(5):709–721, 2001.

[46] Manoel Lemos and TRB Melo. Connected hyperplanes in binary matroids. Linear algebra and its applications,
432(1):259–274, 2010.

[47] Azriel Levy. Basic set theory. Courier Corporation, 2012.

[48] Sheng-Gang Li, Xiu Xin, and Yao-Long Li. Closure axioms for a class of fuzzy matroids and co-towers of matroids.
Fuzzy sets and systems, 158(11):1246–1257, 2007.

[49] Yao-Long Li, Guo-Jun Zhang, and Ling-Xia Lu. Axioms for bases of closed regular fuzzy matroids. Fuzzy sets and
Systems, 161(12):1711–1725, 2010.

[50] JMahalakshmi andM Sudha. On fuzzy gXV continuity in fuzzymatroids. Annals of FuzzyMathematics and Informatics,
11(5):737–753, 2016.

[51] Patrick Mullins. The Circuit and Cocircuit Lattices of a Regular Matroid. The University of Vermont and State Agri-
cultural College, 2020.

[52] Gia Nhu Nguyen, Le Hoang Son, Amira S Ashour, and Nilanjan Dey. A survey of the state-of-the-arts on neutrosophic
sets in biomedical diagnoses. International Journal of Machine Learning and Cybernetics, 10:1–13, 2019.

[53] Sang-il Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory, 57(3):239–244, 2008.

[54] Sang-il Oum. Rank-width: Algorithmic and structural results. Discrete Applied Mathematics, 231:15–24, 2017.

[55] Sang-il Oum and Paul Seymour. Testing branch-width. Journal of Combinatorial Theory, Series B, 97(3):385–393,
2007.

[56] James Oxley. Matroid theory. In Handbook of the Tutte polynomial and related topics, pages 44–85. Chapman and
Hall/CRC, 2022.

[57] James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

[58] Kadin Prideaux. Matroids, cyclic flats, and polyhedra. PhD thesis, Open Access Te Herenga Waka-Victoria University
of Wellington, 2016.

[59] A Alberto Ravagnani, B Benjamin Jany, and RA Rudi Pendavingh. Codes, matroids and cyclic flats. 2024.

[60] András Recski. Matroid theory and its applications in electric network theory and in statics, volume 6. Springer Science
& Business Media, 2013.

[61] Musavarah Sarwar and Muhammad Akram. New applications of m-polar fuzzy matroids. Symmetry, 9(12):319, 2017.

[62] Paul D Seymour. Triples in matroid circuits. European Journal of Combinatorics, 7(2):177–185, 1986.

[63] Fu-Gui Shi. (l, m)-fuzzy matroids. Fuzzy sets and systems, 160(16):2387–2400, 2009.

[64] Fu-Gui Shi. A new approach to the fuzzification of matroids. Fuzzy Sets and Systems, 160(5):696–705, 2009.

[65] Akiyoshi Shioura. Matroid rank functions and discrete concavity. Japan journal of industrial and applied mathematics,
29(3):535–546, 2012.

[66] Prem Kumar Singh. Turiyam set a fourth dimension data representation. Journal of Applied Mathematics and Physics,
9(7):1821–1828, 2021.

[67] Prem Kumar Singh. Turiyam set and its mathematical distinction from other sets. Galoitica: Journal of Mathematical
Structures and Applications, 8(1):08–19, 2023.

[68] Prem Kumar Singh, Naveen Surathu, Ghattamaneni Surya Prakash, et al. Turiyam based four way unknown profile
characterization on social networks. Full Length Article, 10(2):27–7, 2024.

[69] Florentin Smarandache. Ambiguous set (as) is a particular case of the quadripartitioned neutrosophic set (qns). nidus
idearum, page 16.

[70] Florentin Smarandache. A unifying field in logics: Neutrosophic logic. In Philosophy, pages 1–141. American Research
Press, 1999.

[71] Florentin Smarandache. A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic
probability: neutrsophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. Infinite Study, 2005.

[72] Florentin Smarandache. Neutrosophic physics: More problems, more solutions. 2010.

[73] Florentin Smarandache. Decision making based on valued fuzzy superhypergraphs. 2023.

[74] Florentin Smarandache. Nidus Idearum. Scilogs, XI: in-turns and out-turns. Infinite Study, 2023.

[75] Florentin Smarandache and Said Broumi. Neutrosophic graph theory and algorithms. IGI Global, 2019.

160



[76] Florentin Smarandache and Said Broumi. Neutrosophic graph theory and algorithms. IGI Global, 2019.

[77] Florentin Smarandache, WB Kandasamy, and K Ilanthenral. Applications of bimatrices to some fuzzy and neutrosophic
models. 2005.

[78] Eulalia Szmidt. Distances and similarities in intuitionistic fuzzy sets, volume 307. Springer, 2014.

[79] Haibin Wang, Florentin Smarandache, Yanqing Zhang, and Rajshekhar Sunderraman. Single valued neutrosophic sets.
Infinite study, 2010.

[80] DJA Welsh et al. Matroids: fundamental concepts. Handbook of combinatorics, 1:481–526, 1995.

[81] Dominic JA Welsh. Matroid theory. Courier Corporation, 2010.

[82] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[83] Lotfi A Zadeh. Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected
papers by Lotfi A Zadeh, pages 775–782. World Scientific, 1996.

[84] H-J Zimmermann. Fuzzy set theory and mathematical programming. Fuzzy sets theory and applications, pages 99–114,
1986.

[85] Hans-Jürgen Zimmermann. Fuzzy set theory—and its applications. Springer Science & Business Media, 2011.

161



Some Graph Parameters for Superhypertree-width and
Neutrosophic tree-width

Takaaki Fujita 1 ∗, Florentin Smarandache2
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.
2 University of New Mexico, Gallup Campus, NM 87301, USA.
Corresponding Emails: t171d603@gunma-u.ac.jp

Abstract. Graph characteristics are often studied through various parameters, with ongoing research dedi-
cated to exploring these aspects. Among these, graph width parameters—such as tree-width—are particularly 
important due to their practical applications in algorithms and real-world problems. A hypergraph generalizes 
traditional graph theory by abstracting and extending its concepts [77]. More recently, the concept of a Su-
perHyperGraph has been introduced as a further generalization of the hypergraph. Neutrosophic logic [133], a 
mathematical framework, extends classical and fuzzy logic by allowing the simultaneous consideration of truth, 
indeterminacy, and falsity within an interval. In this paper, we explore Superhypertree-width, Neutrosophic 
tree-width, and t-Neutrosophic tree-width.

Keywords: Neutrosophic graph; Hypertree width; Superhypertree width; Tree-width; Neutrosophictree-width
—————————————————————————————————————————-

1. Introduction

1.1. Graph Width Parameters

Graphs have been extensively researched in recent years [52], with particular emphasis on 
characterizing their properties. Graph characteristics are frequently analyzed using various 
parameters, and ongoing studies aim to deepen our understanding of these aspects. Analyzing 
graph parameters is essential for understanding the structural properties of graphs, which is 
crucial for solving computational problems in fields like network optimization, database theory, 
and machine learning applications (cf. [73]).

Among these parameters, graph width parameters such as tree-width [25,27,28,91,126–128], 
cut-width [85, 98], clique-width [45], modular-width [3], tree-cut-width [68, 99], boolean-width 
[4,155], band-width [30,44,124], rank-width [93,116,118], and path-width [48,94,152] are par-
ticularly significant due to their practical applications in algorithms and real-world problems. 
This has fueled active research, focusing on how these parameters influence computational 
efficiency and problem-solving methods.

For instance, tree-width measures how closely a graph resembles a tree, while path-width 
shows how similar a graph is to a path. Graph width parameters often correspond to efficient, 
manageable graph structures, which is why they have been the focus of extensive research
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for many years (e.g., [79, 85, 124, 152–154]). Given this background, research on graph width
parameters is of great importance.

1.2. Hypergraph and SuperHyperGraph

A hypergraph is a generalization of a conventional graph, extending concepts from graph
theory [22,77]. A hypergraph is a generalization of a graph where edges, called hyperedges, can
connect any number of vertices, not just two. Formally, a hypergraph is defined as H = (V,E),
where V is the vertex set and E is the set of hyperedges. Hypergraphs are widely used in
fields such as machine learning and network analysis [41,69,87,100].

In many real-world applications, evaluating how closely a graph approximates a tree struc-
ture is essential. This has led to significant research on Hypertree-width [6, 72, 74, 103, 161]
and Hyperpath-width [5, 105, 115], which quantify how much a hypergraph resembles a tree
or a path. Hypertree-width, in particular, plays a key role in database systems and practical
applications [73,74].

Recently, the concept of a SuperHyperGraph has emerged as a further generalization of
the hypergraph, attracting significant research interest similar to that seen with hypergraphs
[66, 82–84, 137–139, 143, 149]. It generalizes hypergraphs, allowing vertices to be individual
elements or subsets (super-vertices), and edges to connect groups of vertices or super-vertices.
This structure models complex relationships. Similar to hypergraphs, various applications are
also being explored [61,84].

1.3. Neutrosophic Graph and Neutrosophic HyperGraph

In any scientific field, a classical theorem defined within a specific space is a statement
that holds true for 100 percent of the elements in that space. However, when applied to real-
world scenarios, various constraints often arise, leading to the need for considering uncertain
concepts, such as fuzzy sets [162–166], Vague set [29, 86, 167], plithogenic sets [1, 67, 136, 149],
Rough sets [119–122], soft sets [106], Hypersoft set [141,142], and neutrosophic sets [133–135,
146,147] To address uncertainty and the relationships between concepts, several graph classes
have been introduced, including Fuzzy Graphs [109, 125], Vague Graphs [131], and Rough
Graphs [49]. Among these, this paper focuses on Neutrosophic Graphs [89].

A Neutrosophic Set generalizes the concept of fuzzy sets by introducing three membership
functions: truth, indeterminacy, and falsity, allowing for more nuanced representation of uncer-
tainty [18,150]. In recent years, Neutrosophic Graphs [11,34,76,88,130,133,140,147,148] and
Neutrosophic Hypergraphs [8,12,102,112] have been actively studied within Neutrosophic Set
Theory. Neutrosophic refers to a mathematical framework that generalizes classical and fuzzy
logic, simultaneously handling degrees of truth, indeterminacy, and falsity within an interval.
These graphs, as generalizations of Fuzzy Graphs [110,129], have garnered attention for their
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potential applications similar to those of Fuzzy Graphs. The concept of a Neutrosophic Super-
hyperGraph, which further generalizes Neutrosophic Hypergraphs, has also been the subject
of active research in recent years [112, 144]. Due to the significance of Neutrosophic graphs,
many other graph classes have also been proposed, such as those in [32,32,47,58,60,65].

1.4. Our Contribution

Research on tree and path structures in Neutrosophic Graphs and SuperHyperGraphs is
still in its early stages, and while several graph parameters have been proposed, there re-
mains significant room for further exploration. In this context, [59] introduced the concept of
SuperHyperTree-width.

We also explore Neutrosophic Graphs and Neutrosophic Hypergraphs. By applying tree-
width and path-width to these types of graphs, we aim to accelerate research and applications
related to graph width parameters, as well as to Neutrosophic Graphs and SuperHyperGraphs.

This paper is structured as follows: Section 2 provides definitions and examples of general
graphs, fuzzy graphs, and hypergraphs. Section 3 reviews Neutrosophic Graphs and SuperHy-
perGraphs, and defines and examines properties such as Neutrosophic tree-width, Neutrosophic
hypertree-width, and n-Neutrosophic tree-width. Section 4 discusses future tasks.

2. Preliminaries and definitions

In this section, we briefly explain the definitions and notations used in this paper.

2.1. Basic Graph Concepts

A graph G is a mathematical structure consisting of nodes (vertices) connected by edges,
representing relationships or connections. In a graph G, V (G) denotes the set of vertices, and
E(G) denotes the set of edges. The notation G = (V,E) indicates that the graph G is defined
by the pair of sets V (vertices) and E (edges).

In this paper, we provide several essential graph theory definitions and simple examples
necessary for the discussions that follow.

Definition 2.1. A subgraph is formed by selecting specific vertices and edges from a graph.

Definition 2.2. A graph G = (V,E) is called connected if, for every pair of vertices u, v ∈ V ,
there exists a path in G connecting u and v. In other words, a graph is connected if there is a
sequence of edges that allows traversal between any two vertices in the graph. If no such path
exists between certain vertices, the graph is called disconnected.

Definition 2.3. (cf. [42]) A path is a walk with no repeated vertices, a cycle is a closed path,
and a tree is a connected acyclic graph.
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Definition 2.4 (Tree). (cf. [158]) A tree is a connected, acyclic undirected graph. In other
words, a tree is a graph where there is exactly one path between any two vertices, and no
cycles exist. Additionally, a tree with n vertices has n− 1 edges.

Properties of Trees:

• There is exactly one path between any two vertices in a tree.
• A tree contains no cycles, and removing any edge from a tree will disconnect it.
• Adding an edge to a tree will create exactly one cycle.

For more basic graph notation and concepts, please refer to [19,42,52,75].

2.2. Hypergraph Concepts

A hypergraph is a generalization of a graph where edges, called hyperedges, can connect any
number of vertices, not just two. This structure is useful for modeling complex relationships in
various fields like computer science and biology [56,71,123]. The definition is provided below.

Definition 2.5. [31] A hypergraph is a pair H = (V (H), E(H)), consisting of a nonempty
set V (H) of vertices and a set E(H) of subsets of V (H), called the hyperedges of H. In this
paper, we consider only finite hypergraphs.

Example 2.6. Let H be a hypergraph with vertex set V (H) = {A,B,C,D,E} and hyperedge
set E(H) = {e1, e2, e3}, where:

e1 = {A,D}, e2 = {D,E}, e3 = {A,B,C}.

Thus, H is represented by the pair H(V,E) = ({A,B,C,D,E}, {{A,D}, {D,E}, {A,B,C}}).

Definition 2.7. [31] For a hypergraph H and a subset X ⊆ V (H), the subhypergraph induced
by X is defined as H[X] = (X, {e ∩X | e ∈ E(H)}). We denote the hypergraph obtained by
removing X from H as H \X := H[V (H) \X].

Definition 2.8. A hyperpath in a hypergraph H = (V (H), E(H)) is a sequence of alternating
vertices and hyperedges:

(v0, e1, v1, e2, v2, . . . , et, vt)

such that:

• For each consecutive pair vi−1 and vi, there is a hyperedge ei ∈ E(H) where both
vertices vi−1 and vi are contained in ei, i.e., vi−1, vi ∈ ei,

• vi−1 6= vi, meaning no vertex is repeated consecutively in the path.

A hyperpath is called a simple hyperpath if all vertices vi and all hyperedges ei are distinct.

Definition 2.9. (cf. [6, 104]) A hypertree T is a connected hypergraph in which the removal
of any hyperedge from T results in a disconnected hypergraph. Specifically:

• For any hyperedge e ∈ E(T ), if e is removed, the resulting subhypergraph is no longer
connected.
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• A hypertree can contain cycles, as long as removing any hyperedge disconnects the
hypergraph.

Example 2.10. Let T be a hypergraph with vertex set V (T ) = {A,B,C,D,E} and hyperedge
set E(T ) = {e1, e2, e3}, where:

e1 = {A,B}, e2 = {B,C,D}, e3 = {D,E}.

In this case, T is a hypertree because removing any hyperedge e1, e2, or e3 would disconnect
the hypergraph.

For more basic hypergraph notation and concepts, please refer to [31,46].

2.3. Tree-width and Hypertree-width

We now define Tree-width and Hypertree-width. Tree-width measures how closely a graph
resembles a tree by representing the graph in a tree-like structure with minimal width [25–
27, 126, 128]. Hypertree-width generalizes tree-width to hypergraphs, quantifying how well
a hypergraph can be decomposed into a tree-like structure [6, 72, 74, 103, 161]. The formal
definitions of Tree-width and Hypertree-width are provided below. For more details on Tree-
width, please refer to [25,26].

Definition 2.11. [128] A tree-decomposition of an undirected graph G is a pair (T,W ),
where T is a tree, and W = (Wt | t ∈ V (T )) is a family of subsets that associates with every
node t of T a subset Wt of vertices of G such that:

(T1)
⋃

t∈V (T )Wt = V (G),
(T2) For each edge (u, v) ∈ E(G), there exists some node t of T such that {u, v} ⊆ Wt, and
(T3) For all nodes r, s, t in T , if s is on the unique path from r to t then Wr ∩Wt ⊆ Ws.

The width of a tree-decomposition (T,W ) is the maximum of |Wt|− 1 over all nodes t of T .
The tree-width of G is the minimum width over all tree-decompositions of G.

Example 2.12. Consider the following graph G:

V (G) = {v1, v2, v3, v4, v5}

E(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4), (v4, v5)}

We want to find a tree-decomposition for this graph G. Let T be a tree with three nodes
t1, t2, t3. We define the bags Wt as follows:

Wt1 = {v1, v2, v3}, Wt2 = {v2, v3, v4}, Wt3 = {v4, v5}

• (T1): The union of all bags covers all vertices of G:

Wt1 ∪Wt2 ∪Wt3 = {v1, v2, v3, v4, v5} = V (G)
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• (T2): For each edge (u, v) ∈ E(G), there exists a bag that contains both u and v:
– (v1, v2) is in Wt1 ,
– (v1, v3) is in Wt1 ,
– (v2, v4) is in Wt2 ,
– (v3, v4) is in Wt2 ,
– (v4, v5) is in Wt3 .

• (T3): For all nodes r, s, t in T , if s lies on the unique path from r to t, then:

Wr ∩Wt ⊆ Ws

This is satisfied, as Wt1 ∩Wt3 = {v4} ⊆ Wt2 .

The size of each bag is:

|Wt1 | = 3, |Wt2 | = 3, |Wt3 | = 2

The width of this tree-decomposition is the maximum bag size minus 1:

width = max(3− 1, 3− 1, 2− 1) = 2

Definition 2.13. [6] A generalized hypertree decomposition of H is a triple (T,B,C), where
(T,B) is a tree-decomposition of H and C = (Ct)t∈V (T ) is a family of subsets of E(H) such that
for every t ∈ V (T ) we have Bt ⊆

⋃
Ct. Here

⋃
Ct denotes the union of the sets (hyperedges)

in Ct, that is, the set {v ∈ V (H) | ∃e ∈ Ct : v ∈ e}. The sets Ct are called the guards of
the decomposition. The width of the decomposition (T,B,C) is max{|Ct| | t ∈ V (T )}. The
generalized hypertree width of H, denoted by ghw(H), is the minimum of the widths of the
generalized hypertree decompositions of H.

Definition 2.14. [6] A hypertree decomposition of H is a generalized hypertree decomposition
(T,B,C) that satisfies the following special condition: (

⋃
Ct) ∩

⋃
u∈V (Tt)

Bu ⊆ Bt for all
t ∈ V (T ). Recall that Tt denotes the subtree of the T with root t. The hypertree width of H,
denoted by hw(H), is the minimum of the widths of all hypertree decompositions of H.

2.4. Fuzzy Graph

A Fuzzy Graph represents relationships involving uncertainty by assigning membership de-
grees to both vertices and edges, allowing for more flexible and nuanced analysis. Due to its
significance, Fuzzy Graphs have been the subject of extensive research [9, 10, 14–17, 23, 24, 92,
101,107,111,151,157]. The formal definition of a Fuzzy Graph is as follows [108,129].

Definition 2.15. [129] A fuzzy graph G = (σ, µ) with V as the underlying set is defined as
follows:

• σ : V → [0, 1] is a fuzzy subset of vertices, where σ(x) represents the membership
degree of vertex x ∈ V .
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• µ : V × V → [0, 1] is a fuzzy relation on σ, such that µ(x, y) ≤ σ(x) ∧ σ(y) for all
x, y ∈ V , where ∧ denotes the minimum operation.

The underlying crisp graph of G is denoted by G∗ = (σ∗, µ∗), where:

• σ∗ = sup p(σ) = {x ∈ V : σ(x) > 0}
• µ∗ = sup p(µ) = {(x, y) ∈ V × V : µ(x, y) > 0}

Definition 2.16. A fuzzy subgraph H = (σ′, µ′) of G is defined as follows:

• There exists X ⊆ V such that σ′ : X → [0, 1] is a fuzzy subset.
• µ′ : X ×X → [0, 1] is a fuzzy relation on σ′, satisfying µ′(x, y) ≤ σ′(x) ∧ σ′(y) for all
x, y ∈ X.

Example 2.17. (cf. [35]) Consider a fuzzy graph G = (σ, µ) with four vertices V = {v1, v2, v3, v4},
as depicted in the diagram.

The membership degrees of the vertices are as follows:

σ(v1) = 0.1, σ(v2) = 0.3, σ(v3) = 0.2, σ(v4) = 0.4

The fuzzy relation on the edges is defined by the values of µ, where µ(x, y) ≤ σ(x) ∧ σ(y)

for all x, y ∈ V . The fuzzy membership degrees of the edges are as follows:

µ(v1, v2) = 0.1, µ(v2, v3) = 0.1, µ(v3, v4) = 0.1

µ(v4, v1) = 0.1, µ(v2, v4) = 0.3

In this case, the fuzzy graph G has the following properties:

• Vertices v1, v2, v3, v4 are connected by edges with varying membership degrees.
• The fuzzy relations ensure that µ(x, y) for any edge (x, y) does not exceed the minimum

membership of the corresponding vertices.

In [62], Fuzzy Tree-width was defined as an extension of Tree-width for Fuzzy Graphs,
serving as a graph width parameter. The definition is provided below.

Definition 2.18. [62] Let G = (σ, µ) be a fuzzy graph, where σ : V → [0, 1] is a fuzzy subset
representing vertex membership, and µ : V × V → [0, 1] is a fuzzy relation on σ. A fuzzy
tree-decomposition of G is a pair (T, {Bt}t∈T ), where:

• T = (I, F ) is a tree with nodes I and edges F .
• {Bt}t∈T is a collection of fuzzy subsets of V (called bags) associated with the nodes of
T such that:
(1) For each vertex v ∈ V , the set {t ∈ I : v ∈ Bt} is connected in the tree T .
(2) For each edge (u, v) ∈ V ×V with membership degree µ(u, v) ≤ σ(u)∧σ(v), there

exists some node t ∈ I such that both u and v are in Bt, and the membership
degree of u and v in Bt is at least µ(u, v).
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The width of a fuzzy tree-decomposition (T, {Bt}t∈T ) is defined as

max
t∈I

(
sup
v∈Bt

µ(v,Bt)− 1

)
,

where µ(v,Bt) represents the maximum membership degree of vertex v in the fuzzy set Bt.
The Fuzzy-Tree-Width of the fuzzy graph G is the minimum width among all possible fuzzy
tree-decompositions of G.

Example 2.19. Definition of Fuzzy Graph: Consider the following Fuzzy Graph G = (σ, µ),
which has vertices and edges defined as follows:

V = {v1, v2, v3, v4}

σ(v1) = 0.1, σ(v2) = 0.3, σ(v3) = 0.2, σ(v4) = 0.4

µ(v1, v2) = 0.1, µ(v2, v3) = 0.1, µ(v3, v4) = 0.1

µ(v4, v1) = 0.1, µ(v2, v4) = 0.3

Given this Fuzzy Graph G, we aim to construct a Fuzzy Tree-Decomposition (T, {Bt}t∈T ).
We will set the following bags {Bt}t∈T and the tree T :
Bags:

B1 = {v1, v2}, B2 = {v2, v3, v4}, B3 = {v4, v1}

• B1 and B2 share the vertex v2 and are connected.
• B2 and B3 share the vertex v4 and are connected.

Verification of the Connectivity Condition:

• Vertex v1: Appears in B1 and B3, and these bags are connected in T .
• Vertex v2: Appears in B1 and B2, and these bags are connected.
• Vertex v3: Appears only in B2.
• Vertex v4: Appears in B2 and B3, and these bags are connected.

Thus, the connectivity condition is satisfied for all vertices.
Next, we verify the edge condition for each edge:

• For (v1, v2), v1 and v2 appear in B1, and µ(v1, v2) = 0.1 ≤ σ(v1) ∧ σ(v2) = 0.1.
• For (v2, v3), v2 and v3 appear in B2, and µ(v2, v3) = 0.1 ≤ σ(v2) ∧ σ(v3) = 0.1.
• For (v3, v4), v3 and v4 appear in B2, and µ(v3, v4) = 0.1 ≤ σ(v3) ∧ σ(v4) = 0.2.
• For (v4, v1), v4 and v1 appear in B3, and µ(v4, v1) = 0.1 ≤ σ(v4) ∧ σ(v1) = 0.1.
• For (v2, v4), v2 and v4 appear in B2, and µ(v2, v4) = 0.3 ≤ σ(v2) ∧ σ(v4) = 0.3.

Thus, the edge condition is satisfied for all edges.
The width of the Fuzzy Tree-Decomposition (T, {Bt}) is defined as:

max
t∈T

(
sup
v∈Bt

µ(v,Bt)− 1

)
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• For Bag B1 = {v1, v2}:

µ(v1, v2) = 0.1, sup
v∈B1

µ(v,B1) = 0.1

Width = 0.1− 1 = −0.9

• For Bag B2 = {v2, v3, v4}:

max(µ(v2, v3), µ(v3, v4), µ(v2, v4)) = max(0.1, 0.1, 0.3) = 0.3

Width = 0.3− 1 = −0.7

• For Bag B3 = {v4, v1}:

µ(v4, v1) = 0.1, sup
v∈B3

µ(v,B3) = 0.1

Width = 0.1− 1 = −0.9

max(−0.9,−0.7,−0.9) = −0.7

The width of this Fuzzy Tree-Decomposition is −0.7.

2.5. Graph Parameter Hierarchy

The Graph Parameter Hierarchy is frequently studied in research on graph parameters and
algorithms. It describes the relationships between graph parameters based on their ability to
upper or lower bound one another [63,78,132,156].

Definition 2.20. A graph parameter is a function f : G → R, where G represents the set of
all undirected finite graphs, and the function returns a real number. We say that Parameter
A upper bounds Parameter B if there exists a non-decreasing function fA,B such that

fA,B(A(G)) ≥ B(G)

for all graphs G. Conversely, if Parameter A does not upper bound Parameter B, we say that
Parameter B is unbounded with respect to Parameter A.

Lemma 2.21. [132] If a upper bounds b, and b upper bounds c, then a also upper bounds c.

Proof. Refer to [132] for details as necessary. �

3. Result in this paper

In this section, we present the results of this paper. We focus on the study of Tree-width
in the context of SuperHypergraphs and Neutrosophic graphs.
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3.1. SuperHyperTree-width

A SuperHyperGraph is an advanced structure that extends hypergraphs by allowing both
vertices and edges to be sets [64, 137, 138]. First, we will explain the definition of a SuperHy-
perGraph. The definition is provided below.

Definition 3.1 (SuperHyperGraph (SHG)). [137, 138] A SuperHyperGraph (SHG) is an
ordered pair SHG = (G,E), where:

(1) G ⊆ P (V ) is the set of vertices, and E ⊆ P (V ) is the set of edges, with V =

{V1, V2, . . . , Vm}, where m ≥ 0.
(2) P (V ) denotes the power set of V , i.e., all subsets of V . Each element in G is referred

to as an SHG-vertex, which can take the following forms:
• A single vertex (as in classical graphs).
• A super-vertex, representing a subset of vertices (e.g., a group or organization).
• An indeterminate-vertex, representing an unclear or unknown entity.
• A null-vertex, represented by ∅, signifying a vertex without elements.

(3) E = {E1, E2, . . . , Ek}, with k ≥ 1, represents the family of SHG-edges. Each Ej ∈
P (V ) is a subset of V , and SHG-edges can include:

• A single edge (classical edge), connecting two single vertices.
• A super-edge, connecting super-vertices.
• A hyper-super-edge, connecting three or more groups or organizations.
• A multi-edge, connecting multiple vertices or super-vertices simultaneously.
• An indeterminate-edge, representing unclear or unknown relationships.
• A null-edge ∅, representing no connection between the given vertices.

Definition 3.2 (Elements of a SuperHyperGraph). [137, 138] A SuperHyperGraph (SHG)
consists of the following elements:

• Single Vertices Vi: Individual vertices as in classical graphs, e.g., V1, V2.
• SuperVertices (SubsetVertices) SVi,j : Subsets of vertices, such as SV1,3 = {V1, V3}.

SuperVertices can represent groups or organizations. For example:
– SV1,23 = {V1, V23}, combining single vertices V1 and V23.
– SV1,2,3 = {V1, V2, V3}, combining three single vertices.

• NullVertex ∅V : A vertex with no elements.
• Single Edges Ei,j : Edges connecting two single vertices, e.g., E1,5 = {V1, V5}, E2,3 =

{V2, V3}.
• HyperEdges HEi,j,k: Edges connecting three or more single vertices, e.g., HE1,4,6 =

{V1, V4, V6}.
• SuperEdges (SubsetEdges) SE(i,j),(k,l): Edges connecting super-vertices, e.g., SE(1,3),(4,5) =

{SV1,3,SV4,5}.
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• HyperSuperEdges (or HyperSubsetEdges) HSEi,j,k: Edges connecting three or
more vertices, with at least one being a super-vertex. For example:

HSE1,45,23 = {V1,SV45,SV23}.

• IndeterminateEdges IEx,y: Edges with unknown or unclear connections between
vertices.

• NullEdges ∅E : Edges representing no connection between vertices.

We consider the relationship between a Hypergraph and a SuperHypergraph. The following
holds.

Theorem 3.3. Any SuperHypergraph can be reduced to a Hypergraph.

Proof. To map any SuperHypergraph to a Hypergraph, we need to handle both SuperVertices
and SuperEdges from the SHG.

Each super-vertex in the SuperHypergraph corresponds to a set of vertices in a classical
graph. Specifically, a super-vertex SVi,j ∈ G (e.g., {Vi, Vj}) can be represented by multiple
individual vertices in the corresponding hypergraph. The vertex mapping is therefore straight-
forward: each element of the super-vertex (which is a set) will be treated as an individual vertex
in the hypergraph. Formally:

• For each super-vertex SVi,j = {Vi, Vj} ∈ VSHG, create individual vertices Vi, Vj ∈ VH.

SuperEdges or HyperSuperEdges in SHG, which may connect multiple super-vertices or
sets, need to be flattened into simple hyperedges in the hypergraph. For each super-edge or
hyper-super-edge SE(i,j),(k,l) connecting super-vertices SVi,j and SVk,l, create a hyperedge in
the hypergraph that connects all the corresponding individual vertices. Formally:

• For each super-edge SE(i,j),(k,l) ∈ ESHG, create a hyperedge eH ∈ EH, where eH =

{Vi, Vj , Vk, Vl}.

The general rule is that any SuperEdge connecting multiple super-vertices in the SHG
corresponds to a single hyperedge connecting the individual vertices (elements) of those super-
vertices in the hypergraph. �

Example 3.4. Consider the following SuperHypergraph SHG:

• Vertices: VSHG = {{V1, V2}, {V3}}
• Edges: ESHG = {{V1, V2}, {V1, V2, V3}}

To convert this into a Hypergraph:

(1) The super-vertices {V1, V2} and {V3} are flattened into individual vertices V1, V2, V3.
(2) The super-edge {V1, V2} becomes a hyperedge {V1, V2} in the hypergraph.
(3) The super-edge {V1, V2, V3} becomes a hyperedge {V1, V2, V3} in the hypergraph.

Thus, the resulting Hypergraph H is:

• Vertices: V (H) = {V1, V2, V3}
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• Hyperedges: E(H) = {{V1, V2}, {V1, V2, V3}}

Next, we consider the SuperHyperTree. The following will be written as definitions.

Definition 3.5 (SuperHyperTree (SHT)). A SuperHyperTree (SHT) is a specific type of Su-
perHyperGraph SHT = (V,E) that satisfies the following conditions:

(1) Host Graph Condition: There exists a host graph T = (V,ET ), which is a tree,
such that:

• T shares the same vertex set V as SHT.
• The edges in T represent the connections between vertices in V .

(2) SuperHyperTree Condition: Every hyperedge Ei ∈ E of the SuperHyperGraph
corresponds to a connected subtree of the host tree T . Specifically:

• If Ei is a single edge, it connects two vertices directly within T .
• If Ei is a super-edge (connecting subsets of vertices), the vertices in each subset

must form a connected subtree in T .
• If Ei is a hyper-edge (connecting more than two vertices), all vertices in Ei must

form a connected subtree in T .
• If Ei is an indeterminate edge, any realization of Ei must satisfy the condition

that the vertices involved form a connected subtree in T .
(3) Acyclic Condition: The host graph T must be acyclic, which is a fundamental prop-

erty of trees. Consequently, SHT inherits this acyclic nature through its hyperedges.

Key Properties of a SuperHyperTree:

• Connectedness: A SuperHyperTree is connected, meaning there exists a path be-
tween any two vertices via a sequence of hyperedges.

• No Cycles: Since the host graph T is a tree, SHT does not contain any cycles,
including those involving super-vertices or super-edges.

• Generalization of Trees: A SuperHyperTree extends the concept of a tree by al-
lowing super-vertices and super-edges while maintaining the acyclic and connected
properties of a tree.

Theorem 3.6. A SuperHyperTree (SHT) is a generalization of a hypertree. Specifically, every
hypertree can be represented as a SuperHyperTree, but not every SuperHyperTree is a hypertree.

Proof. Let SHT = (V,E) be a SuperHyperTree and HT = (V,E′) be a hypertree.
1. SuperHyperTree as a Generalization of Hypertree. A hypertree is a connected hypergraph
where removing any hyperedge disconnects the hypergraph. For a hypertree HT :

• Each hyperedge e ∈ E′(HT ) connects a set of vertices that maintains the connectedness
of the hypergraph.

• Removing any hyperedge e results in a disconnected hypergraph.

In a SuperHyperTree SHT, the following conditions are satisfied:
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• Host Graph Condition: SHT is embedded within a host tree T = (V,ET ), ensuring an
acyclic structure.

• SuperHyperTree Condition: Each hyperedge in E corresponds to a connected subtree
of T .

• Acyclicity: SHT inherits the acyclic property from the host tree T .

Since hypertrees are connected and acyclic, any hypertree HT can be embedded as a SuperHy-
perTree SHT by constructing a host tree T such that each hyperedge e ∈ E′(HT ) corresponds
to a connected subtree of T .
2. Differences Between SuperHyperTrees and Hypertrees. While hypertrees can contain cycles
within hyperedges, SuperHyperTrees explicitly disallow cycles due to the acyclic nature of
their host tree T . Furthermore, SuperHyperTrees allow for more complex structures such as
super-edges (which connect subsets of vertices) and indeterminate edges, which are not defined
in hypertrees.
3. Examples.

• Hypertree as a Special Case of SuperHyperTree: Consider a hypertree HT = (V,E′).
By embedding HT within a host tree T , where each hyperedge e ∈ E′(HT ) corresponds
to a connected subtree of T , HT satisfies all the conditions of a SuperHyperTree SHT.

• SuperHyperTree That Is Not a Hypertree: Consider a SuperHyperTree with a super-
edge that connects subsets of vertices. This structure does not satisfy the conditions
of a hypertree because hypertrees do not allow for super-edges or indeterminate edges.

Thus, SuperHyperTrees generalize the concept of hypertrees by introducing super-edges,
indeterminate edges, and the requirement of a host tree, while hypertrees are a specific subclass
of SuperHyperTrees. �

Corollary 3.7. The hypertree-width of a hypertree HT is equal to its tree-width, whereas the
SuperHyperTree-width of a SuperHyperTree SHT may exceed its tree-width due to the inclusion
of super-edges and indeterminate edges.

Proof. For Hypertrees: Since hypertrees can be decomposed into a tree structure where each
hyperedge corresponds to a single bag in the tree decomposition, their hypertree-width coin-
cides with their tree-width.

For SuperHyperTrees: In a SuperHyperTree SHT, the inclusion of super-edges and inde-
terminate edges increases the complexity of its decomposition. The SuperHyperTree-width
accounts for these additional structures, leading to a possible increase in width compared to
the tree-width. �

Next, we define superhypertree-width by extending the concept of hypertree-width and
tree-width(cf. [61]). Following that, we will briefly explore the Graph Parameter Hierarchy.
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Definition 3.8 (SuperHyperTree Decomposition). (cf. [61]) Let SHT = (V,E) be a SuperHy-
perGraph, where V is the set of vertices and E is the set of SuperEdges. A SuperHyperTree
Decomposition of SHT is defined as a tuple (T,B, C), where:

• T = (VT , ET ) is a tree.
• B = {Bt | t ∈ VT } is a family of subsets of V (called bags) associated with the nodes

of T , satisfying:
(1) Coverage Condition for SuperEdges: For each SuperEdge e ∈ E, there exists

a node t ∈ VT such that the entire SuperEdge e is contained in the corresponding
bag Bt, i.e., e ⊆ Bt.

(2) Vertex Connectivity Condition: For each vertex v ∈ V , the set of nodes
{t ∈ VT | v ∈ Bt} forms a connected subtree of T .

• C = {Ct | t ∈ VT } is a family of subsets of E (called guards) associated with the nodes
of T , satisfying:
(1) Guard Condition for SuperEdges: For each t ∈ VT , Bt ⊆

⋃
Ct, where

⋃
Ct

denotes the union of all vertices in the SuperEdges of Ct, i.e.,
⋃
Ct = {v ∈ V |

∃e ∈ Ct : v ∈ e}.
(2) SuperHyperTree Condition: For each t ∈ VT ,

(
⋃

Ct) ∩
⋃

u∈V (Tt)

Bu ⊆ Bt,

where Tt is the subtree of T rooted at t.

Width of a SuperHyperTree Decomposition: The width of a SuperHyperTree De-
composition (T,B, C) is defined as:

width(T,B, C) = max
t∈VT

|Ct|,

where |Ct| is the cardinality of the guard Ct.
SuperHyperTree-width: The SuperHyperTree-width of the SuperHyperGraph SHT, de-

noted by SHT-width(SHT), is the minimum width over all possible SuperHyperTree Decom-
positions:

SHT-width(SHT) = min
(T,B,C)

width(T,B, C).

• The SuperHyperTree-width measures how closely a SuperHyperGraph resembles a Su-
perHyperTree.

• For classical graphs, the SuperHyperTree-width coincides with the traditional treewidth.

SuperHyperPath Decomposition: A SuperHyperPath Decomposition is a path-based
variant of the SuperHyperTree Decomposition, where the host structure T is a path instead
of a tree.

Lemma 3.9. Let SH be a SuperHypergraph. The following inequalities hold:

shw(SH) ≤ hw(SH) ≤ tw(Gp(SH)) + 1
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where:

• shw(SH) denotes the SuperHyperTree-width of SH.
• hw(SH) denotes the hypertree-width of SH.
• tw(Gp(SH)) denotes the treewidth of the primal graph Gp(SH) of SH.

Proof. Since every SuperHyperTree decomposition is a special case of a hypertree decomposi-
tion:

shw(SH) ≤ hw(SH)

Proof of hw(SH) ≤ tw(Gp(SH)) + 1:
From [74]:

hw(H) ≤ tw(Gp(H)) + 1

Applying this to SH:

hw(SH) ≤ tw(Gp(SH)) + 1

Conclusion:

shw(SH) ≤ hw(SH) ≤ tw(Gp(SH)) + 1

�

3.2. NeutrosophicTree-width

In this subsection, we consider the concept of NeutrosophicTree-width.
First, we introduce the concept of a neutrosophic graph [11, 34, 76, 88, 130, 145]. A neutro-

sophic graph generalizes traditional graph theory by incorporating degrees of truth, indetermi-
nacy, and falsity in its edges and vertices, enabling more complex and nuanced relationships. It
extends the concept of a fuzzy graph [92]. Neutrosophic graph theory is particularly useful in
uncertain environments, contributing to fields like human networks and decision-making [7,43].
Fuzzy graph theories have numerous applications in modern science and technology, especially
in operations research, neural networks [2, 101], artificial intelligence [2, 101], and decision-
making [92]. The definition is as follows.

Definition 3.10. (cf. [148]) A neutrosophic graph NTG = (V,E, σ = (σ1, σ2, σ3), µ =

(µ1, µ2, µ3)) is defined as a graph where σi : V → [0, 1], µi : E → [0, 1], and for every
vivj ∈ E, the following condition holds: µ(vivj) ≤ σ(vi) ∧ σ(vj).

(1) σ is called the neutrosophic vertex set.
(2) µ is called the neutrosophic edge set.
(3) |V | is called the order of NTG, and it is denoted by O(NTG).
(4)

∑
v∈V σ(v) is called the neutrosophic order of NTG, and it is denoted by On(NTG).

(5) |E| is called the size of NTG, and it is denoted by S(NTG).
(6)

∑
e∈E µ(e) is called the neutrosophic size of NTG, and it is denoted by Sn(NTG).
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Definition 3.11. (i) A sequence of vertices P : x0, x1, · · · , xn is called a path where
xixi+1 ∈ E, i = 0, 1, · · · , n− 1.

(ii) The strength of the path P : x0, x1, · · · , xn is
∧

i=0,··· ,n−1 µ(xixi+1).
(iii) The connectedness between vertices x0 and xn is defined as:

µ∞(x, y) =
∧

P :x0,x1,··· ,xn

∧
i=0,··· ,n−1

µ(xixi+1).

The Examples of neutrosophic graph is following.

Example 3.12. (cf. [35]) Consider a neutrosophic graph NTG = (V,E, σ = (σ1, σ2, σ3), µ =

(µ1, µ2, µ3)) with four vertices V = {v1, v2, v3, v4}, as shown in the diagram.
The neutrosophic membership degrees of the vertices are as follows:

σ(v1) = (0.5, 0.1, 0.4), σ(v2) = (0.6, 0.3, 0.2),

σ(v3) = (0.2, 0.3, 0.4), σ(v4) = (0.4, 0.2, 0.5)

The neutrosophic membership degrees of the edges are as follows:

µ(v1v2) = (0.2, 0.3, 0.4), µ(v2v3) = (0.3, 0.3, 0.4),

µ(v3v4) = (0.2, 0.3, 0.4), µ(v4v1) = (0.1, 0.2, 0.5)

In this case, the neutrosophic graph NTG has the following properties:

• Vertices v1, v2, v3, v4 are connected by edges with varying neutrosophic membership
degrees.

• The neutrosophic relations ensure that for every edge vivj ∈ E, µ(vivj) ≤ σ(vi)∧σ(vj),
where ∧ denotes the minimum operation.

Theorem 3.13. A Neutrosophic Graph can be transformed into a Fuzzy Graph by mapping the
neutrosophic truth-membership values of vertices and edges directly to the fuzzy membership
values, effectively disregarding the indeterminacy and falsity components.

Proof. Let NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) be a neutrosophic graph. We aim
to transform NTG into a fuzzy graph G = (V, σ′, µ′).

In a neutrosophic graph, the vertex membership σ(v) = (σ1(v), σ2(v), σ3(v)) includes truth,
indeterminacy, and falsity components. To transform this into a fuzzy graph, we only retain
the truth-membership component σ1(v). The transformed fuzzy vertex membership is thus:

σ′(v) = σ1(v)

where σ1(v) ∈ [0, 1] represents the fuzzy membership degree of vertex v.
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Similarly, for the edge set, the neutrosophic edge membership µ(e) = (µ1(e), µ2(e), µ3(e))

includes truth, indeterminacy, and falsity components. We retain only the truth-membership
component µ1(e). The transformed fuzzy edge membership is thus:

µ′(e) = µ1(e)

where µ1(e) ∈ [0, 1] represents the fuzzy membership degree of edge e.
To ensure that the transformed graph satisfies the properties of a fuzzy graph, we check the

following conditions:

(1) Vertex Membership Condition: In the fuzzy graph G, the fuzzy vertex membership
function σ′(v) must satisfy σ′(v) ∈ [0, 1]. Since σ1(v) ∈ [0, 1] in the neutrosophic
graph, this condition holds automatically.

(2) Edge Membership Condition: In the fuzzy graph G, the fuzzy edge membership func-
tion µ′(e) must satisfy µ′(e) ≤ σ′(vi) ∧ σ′(vj) for all edges e = (vi, vj). In the neutro-
sophic graph, the truth-membership component of an edge µ1(e) satisfies the condition
µ1(e) ≤ σ1(vi) ∧ σ1(vj), which is equivalent to the fuzzy graph condition.

This proof is completed. �

Next, we consider a neutrosophic tree. The definition is similar to that of a general tree
and a fuzzy tree. A neutrosophic tree is defined as follows:

Definition 3.14. (cf. [13, 70, 80]) A Neutrosophic Tree NT = (V,E, σ, µ) is a connected
acyclic neutrosophic graph satisfying:

(1) Connectedness: For every pair of distinct vertices u, v ∈ V , there exists a unique
path P from u to v such that for each edge e in P , µ(e) > 0.

(2) Acyclicity: The neutrosophic tree contains no cycles.
(3) Neutrosophic Degree Condition: For each vertex v ∈ V , the neutrosophic degree

σ(v) satisfies:
σ(v) =

∑
u∈N(v)

µ(vu),

where N(v) is the set of neighbors of v.

Based on the above definitions, we define the Neutrosophic Tree-width.

Definition 3.15. A Neutrosophic Tree-Decomposition of a neutrosophic graph NG =

(V,E, σ, µ) is a pair (T,B) where:

• T = (VT , ET ) is a tree.
• B = {Bt | t ∈ VT } is a family of subsets of V (called bags), each associated with a node
t of T .

This decomposition satisfies:

(1) Coverage Condition: For every edge e = (vi, vj) ∈ E, there exists a node t ∈ VT

such that {vi, vj} ⊆ Bt.
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(2) Connectivity Condition: For each vertex v ∈ V , the set {t ∈ VT | v ∈ Bt} forms a
connected subtree of T .

The width of a Neutrosophic Tree-Decomposition (T,B) is defined as:

width(T,B) = max
t∈VT

(⌈∑
v∈Bt

σ(v)

⌉
− 1

)
,

where dxe denotes the ceiling function.
The Neutrosophic Tree-Width of the neutrosophic graph NG, denoted NTW(NG), is

the minimum width over all possible Neutrosophic Tree-Decompositions of NG:

NTW(NG) = min
(T,B)

width(T,B).

Example 3.16. Consider a neutrosophic graph NTG = (V,E, σ, µ) where the vertex set
V = {v1, v2, v3, v4} and the edge set E = {(v1, v2), (v2, v3), (v3, v4)}. The neutrosophic vertex
membership functions σ = (σ1, σ2, σ3) and the neutrosophic edge membership functions µ =

(µ1, µ2, µ3) are defined as follows:

• σ(v1) = (0.9, 0.1, 0.0), σ(v2) = (0.8, 0.2, 0.0)

• σ(v3) = (0.7, 0.3, 0.0), σ(v4) = (0.6, 0.4, 0.0)

• µ(v1v2) = (0.8, 0.1, 0.1), µ(v2v3) = (0.7, 0.2, 0.1), µ(v3v4) = (0.6, 0.3, 0.1)

We create a tree T = (VT , ET ) where VT = {t1, t2, t3} and associate the following bags
B = {Bt1 , Bt2 , Bt3}:

• Bt1 = {v1, v2}
• Bt2 = {v2, v3}
• Bt3 = {v3, v4}

• Coverage Condition: For each edge in E, there exists a corresponding bag:
– (v1, v2) ∈ Bt1

– (v2, v3) ∈ Bt2

– (v3, v4) ∈ Bt3

For all edges (vi, vj), the condition µ(vivj) ≤ min(σ(vi), σ(vj)) is satisfied.
• Vertex Connectivity Condition: Each vertex forms a connected subtree of T :

– v1 appears only in Bt1 .
– v2 appears in both Bt1 and Bt2 , and these bags are connected in T .
– v3 appears in both Bt2 and Bt3 , and these bags are connected in T .
– v4 appears only in Bt3 .

For each bag Bt, we calculate the neutrosophic width:

• width(Bt1) =
∑

v∈Bt1
σ(v)− 1 = (0.9 + 0.8)− 1 = 1.7− 1 = 0.7

• width(Bt2) =
∑

v∈Bt2
σ(v)− 1 = (0.8 + 0.7)− 1 = 1.5− 1 = 0.5

• width(Bt3) =
∑

v∈Bt3
σ(v)− 1 = (0.7 + 0.6)− 1 = 1.3− 1 = 0.3

The maximum width is 0.7. Therefore, the Neutrosophic Tree-width of the graph is 0.7.
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Theorem 3.17. The Neutrosophic Tree-Width NTW(NG) of a neutrosophic graph NG sat-
isfies:

• If NG is a single vertex with σ(v) = 1, then NTW(NG) = 0.
• If NG consists of isolated vertices with σ(v) = 1 for all v ∈ V , then NTW(NG) = 0.

Proof. For a single vertex v with σ(v) = 1, construct a tree T with a single node t and set
Bt = {v}. The width is:

width(T,B) = dσ(v)e − 1 = 1− 1 = 0.

For multiple isolated vertices {v1, v2, . . . , vn} with σ(vi) = 1, create singleton bags Bti = {vi}
in T . For each bag:

width(T,B) = dσ(vi)e − 1 = 1− 1 = 0.

Thus, NTW(NG) = 0. �

Theorem 3.18. The Neutrosophic Tree-width (NT-width) of an empty graph is −1.

Proof. In an empty graph (no vertices), there are no bags. By convention, we define:

NTW(NG) = −1.

�

Theorem 3.19. For any neutrosophic graph NG = (V,E, σ, µ), the Neutrosophic Tree-Width
NTW(NG) satisfies:

NTW(NG) ≤ tw(G),

where tw(G) is the tree-width of the underlying simple graph G = (V,E).

Proof. Since σ(v) ∈ [0, 1], we have: ∑
v∈Bt

σ(v) ≤ |Bt|.

Therefore, ⌈∑
v∈Bt

σ(v)

⌉
− 1 ≤ |Bt| − 1.

Since tw(G) is the minimum over all tree-decompositions, we have:

NTW(NG) ≤ tw(G).

�

Theorem 3.20. If all vertices in NG have σ(v) = 1 and all edges have µ(e) = 1, then:

NTW(NG) = tw(G).
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Proof. With σ(v) = 1 and µ(e) = 1, NG behaves like G. For each bag Bt:∑
v∈Bt

σ(v) = |Bt|.

Thus,

width(T,B) = |Bt| − 1.

Therefore, NTW(NG) = tw(G). �

Additionally, in the field of Neutrosophic Graphs, several classes such as Single Valued
Neutrosophic Graphs [11, 53, 81, 113], Fermatean neutrosophic graphs [33], Single valued pen-
tapartitioned neutrosophic graphs [47], Interval Valued Neutrosophic Graphs [34,36,37,95,160]
have been proposed. We plan to explore and characterize these classes in more detail in the
future.

3.3. Neutrosophic HyperTree-width

Next, we introduce the concept of a Neutrosophic Hypergraph. Similar to Neutrosophic
Graphs and Hypergraphs, Neutrosophic Hypergraphs have been the subject of extensive re-
search [8, 51,102]. The definition is provided below.

Definition 3.21. (cf. [8, 51, 102]) A Neutrosophic Hypergraph NHG = (V,E, σ, µ) con-
sists of:

• A finite set V of vertices.
• A set E ⊆ P(V ) \ {∅} of hyperedges.
• A neutrosophic vertex membership function σ : V → [0, 1]3, where for each v ∈ V :

σ(v) = (σT (v), σI(v), σF (v)),

representing the truth-membership, indeterminacy-membership, and falsity-membership
degrees of v.

• A neutrosophic hyperedge membership function µ : E → [0, 1]3, where for each e ∈ E:

µ(e) = (µT (e), µI(e), µF (e)),

representing the truth-membership, indeterminacy-membership, and falsity-membership
degrees of e.

These functions satisfy the following condition for every hyperedge e ∈ E:

µT (e) ≤ min
v∈e

σT (v), µI(e) ≥ max
v∈e

σI(v), µF (e) ≥ max
v∈e

σF (v).

Next, a Neutrosophic Hypertree is defined as follows.

Definition 3.22. A Neutrosophic Hypertree NHT = (V,E, σ, µ) is a connected, acyclic
neutrosophic hypergraph satisfying:
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(1) Acyclicity: The hypergraph contains no cycles. The incidence graph associated with
NHT is acyclic.

(2) Connectedness: For every pair of distinct vertices u, v ∈ V , there exists a sequence
of hyperedges e1, e2, . . . , ek ∈ E such that:

• u ∈ e1 and v ∈ ek.
• ei ∩ ei+1 6= ∅ for i = 1, . . . , k − 1.
• µT (ei) > 0 for all i.

(3) Neutrosophic Degree Condition: For each v ∈ V :∑
e∈Ev

µT (e) = σT (v),

where Ev = {e ∈ E | v ∈ e}.

Based on the above, we define Neutrosophic HyperTree-decomposition as follows.

Definition 3.23. A Neutrosophic HyperTree-Decomposition of a neutrosophic hyper-
graph NHG = (V,E, σ, µ) is a triple (T,B, C) where:

• T = (VT , ET ) is a tree.
• B = {Bt ⊆ V | t ∈ VT } is a family of bags.
• C = {Ct ⊆ E | t ∈ VT } is a family of guards.

This decomposition satisfies:

(1) Coverage Condition: For every hyperedge e ∈ E, there exists t ∈ VT such that
e ⊆ Bt and µT (e) ≤ minv∈e σT (v).

(2) Vertex Connectivity Condition: For each v ∈ V , the set {t ∈ VT | v ∈ Bt} forms
a connected subtree of T .

(3) Guard Condition: For each t ∈ VT , Bt ⊆
⋃

e∈Ct
e.

The width of a Neutrosophic HyperTree-Decomposition (T,B, C) is defined as:

width(T,B, C) = max
t∈VT

(∑
e∈Ct

µT (e)

)
.

The Neutrosophic HyperTree-Width of NHG, denoted NHTW(NHG), is:

NHTW(NHG) = min
(T,B,C)

width(T,B, C).

Theorem 3.24. For any neutrosophic hypergraph NHG:

NHTW(NHG) ≤ HTW(NHG),

where HTW(NHG) is the standard hypertree-width.

Proof. Since µT (e) ≤ 1, we have: ∑
e∈Ct

µT (e) ≤
∑
e∈Ct

1 = |Ct|.
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Thus,

widthNHT(T,B, C) ≤ widthHT(T,B, C).

Taking the minimum over all decompositions:

NHTW(NHG) ≤ HTW(NHG).

�

Theorem 3.25. If σT (v) = 1 for all v ∈ V and µT (e) = 1 for all e ∈ E, then:

NHTW(NHG) = HTW(NHG).

Proof. Under these conditions, the width becomes:

width(T,B, C) = max
t∈VT

|Ct|.

Therefore:

NHTW(NHG) = HTW(NHG).

�

Theorem 3.26. For any neutrosophic hypergraph NHG:

NHTW(NHG) ≤ NTW(G),

where NTW(G) is the Neutrosophic Tree-Width of the incidence graph G of NHG.

Proof. By constructing a corresponding Neutrosophic Tree-Decomposition of G, we establish:

NHTW(NHG) ≤ NTW(G).

�

Theorem 3.27. For any neutrosophic hypergraph NHG:

NHTW(NHG) ≤ tw(G) + 1,

where tw(G) is the tree-width of the primal graph G of NHG.

Proof. Using the inequality HTW(NHG) ≤ tw(G) + 1 and Theorem 1:

NHTW(NHG) ≤ HTW(NHG) ≤ tw(G) + 1.

�

We intend to further examine the validity of the above definitions.
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3.4. Definition of t-NeutrosophicTree-width

The t-neutrosophic approach links different values of the parameter ”t” to various layers
of the graph, allowing for multi-level analysis. This method enables a detailed exploration of
the relationships within the graph, incorporating varying degrees of confidence. As a result,
it provides a more nuanced understanding of the underlying structure [96,97].

Definition 3.28. [96, 97] Let G be a Neutrosophic Set (NS) over a universal set U with
t ∈ [0, 1]. The t-Neutrosophic Graph NSGt of U , also known as a t-Neutrosophic Set (t-NS),
is defined for each u1 ∈ U as follows:

TGt(u1) = min{TG(u1), t}, IGt(u1) = max{IG(u1), 1− t}, FGt(u1) = max{FG(u1), 1− t},

where TG, IG, and FG represent the truth-membership, indeterminacy-membership, and falsity-
membership functions, respectively. The t-Neutrosophic Set can then be represented as:

Gt = {u1, TG(u1), IG(u1), FG(u1) | u1 ∈ U} .

Furthermore, the membership functions satisfy the condition:

0 ≤ TG(u1) + IG(u1) + FG(u1) ≤ 1.

Definition 3.29. [96, 97] Let G = (V,E) be a simple graph where V is the set of vertices
and E ⊆ V × V is the set of edges. A t-Neutrosophic Graph Gt is represented as:

Gt = (At, Bt),

where At is a t-Neutrosophic Set on the vertices V and Bt is a t-Neutrosophic Set on the edges
E.

• At = {(ui, TG(ui), IG(ui), FG(ui)) | ui ∈ V } represents the t-Neutrosophic Set on the
vertex set V .

• Bt = {((ui, uj), TG(ui, uj), IG(ui, uj), FG(ui, uj)) | (ui, uj) ∈ E} represents the t-Neutrosophic
Set on the edge set E ⊆ V × V .

For each edge (ui, uj) ∈ E, the following conditions hold:

TBt(ui, uj) ≤ min{TAt(ui), TAt(uj)}, IBt(ui, uj) ≤ max{IAt(ui), IAt(uj)},

FBt(ui, uj) ≤ max{FAt(ui), FAt(uj)}.

The t-Neutrosophic Graph also satisfies the following conditions for both vertices and edges:

0 ≤ TAt(ui) + IAt(ui) + FAt(ui) ≤ 1, for all ui ∈ V,

0 ≤ TBt(ui, uj) + IBt(ui, uj) + FBt(ui, uj) ≤ 1, for all (ui, uj) ∈ E.

The t-Neutrosophic Tree and t-Neutrosophic Tree-width extend classical tree and tree-width
concepts to account for uncertainty, truth, indeterminacy, and falseness. The threshold param-
eter t allows for varying levels of confidence in the analysis of graph structures. The definition
of a t-Neutrosophic Tree is as follows.
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Definition 3.30. A t-Neutrosophic Tree (t-NTT) is a connected, acyclic t-Neutrosophic graph
Gt = (V,E) that satisfies:

• Acyclicity: The graph contains no cycles, meaning for every pair of distinct vertices
u, v ∈ V , there is exactly one path connecting them with no repeated vertices.

• Connectedness: For every pair of distinct vertices u, v ∈ V , there exists a path P ⊆ Gt

connecting u and v.

Additionally, the neutrosophic membership conditions hold for all vertices and edges as defined
in the t-Neutrosophic Graph framework.

The t-Neutrosophic Tree-width measures how closely the graph resembles a tree in the
neutrosophic framework.

Definition 3.31. A t-Neutrosophic Tree-decomposition of a t-Neutrosophic graph Gt = (V,E)

is a pair (T,B), where:

• T = (VT , ET ) is a tree.
• B = {Bt | t ∈ VT } is a collection of subsets (called bags) of vertices from Gt, satisfying:

(1) For every edge (u, v) ∈ E, there exists a bag Bt ∈ B such that {u, v} ⊆ Bt.
(2) For each vertex u ∈ V , the set {t ∈ VT | u ∈ Bt} forms a connected subtree of T .

Definition 3.32. The width of a t-Neutrosophic Tree-decomposition is defined as:

width(T,B) = max
t∈VT

(∑
v∈Bt

σ(v)− 1

)
,

where σ(v) is the neutrosophic degree of vertex v. The t-Neutrosophic Tree-width of a t-
Neutrosophic graph Gt, denoted by tNT-width(Gt), is the minimum width over all possible
t-Neutrosophic Tree-decompositions of Gt:

t-NTT-width(Gt) = min
(T,B)

width(T,B).

The following theorem holds.

Theorem 3.33. Let t-NTT = (Vt, Et) be a t-Neutrosophic Tree, where t ∈ [0, 1]. The t-
Neutrosophic Tree-width of t-NTT is less than or equal to the Neutrosophic Tree-width of
t-NTT, that is,

t-NTT-width(t-NTT) ≤ NTT-width(t-NTT).

Proof. We prove this theorem by considering the role of the parameter t.
Case 1: t = 1

When t = 1, the t-Neutrosophic Tree is identical to a standard Neutrosophic Tree, and their
widths are equal:

t-NTT-width(t-NTT) = NTT-width(t-NTT).

Case 2: t < 1

When t < 1, the t-Neutrosophic Tree incorporates the threshold t, imposing constraints on
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the relationships between vertices and edges. This results in fewer edges being considered in
the decomposition.

Let Bt be the bag in a t-Neutrosophic Tree decomposition, and B∗
t the corresponding bag

in a Neutrosophic Tree decomposition (without the threshold t). The difference between Bt

and B∗
t arises because t restricts certain vertices and edges based on neutrosophic membership

values.
We have:

|Bt| ≤ |B∗
t | ∀t ∈ VT ,

where B∗
t includes all vertices and edges without the threshold restriction. Therefore, the t-

Neutrosophic Tree decomposition bags are equal to or smaller than those in the Neutrosophic
Tree decomposition.

Thus, the width of the t-Neutrosophic Tree decomposition is less than or equal to the
Neutrosophic Tree decomposition, leading to:

t-NTT-width(t-NTT) ≤ NTT-width(t-NTT).

This proof is completed. �

4. Conclusion and Future Research Goals

We intend to explore the relationship between SuperHyperTree decomposition, Neutrosophic
HyperTree decomposition, and Neutrosophic Tree decomposition with other graph width pa-
rameters.

In classical graph theory, various width parameters such as boolean-width [4, 21, 38–40],
modular-width [3], clique-width [55,90], and rank-width [57,99,116–118] have been extensively
explored. Our research aims to investigate whether any new characteristics arise when these
concepts are extended to Neutrosophic graphs and SuperHypergraphs.

Additionally, we are interested in extending fundamental concepts like tree-depth [50, 114,
159], tree-length [20, 54], and tree-breadth to fuzzy hypergraphs and fuzzy directed graphs,
with the goal of uncovering any unique properties or emerging behaviors.
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The third volume of “Advancing Uncertain Combinatorics through Graphization, Hyperization, 
and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond” presents an in-depth 
exploration of the cutting-edge developments in uncertain combinatorics and set theory. This 
comprehensive collection highlights innovative methodologies such as graphization, 
hyperization, and uncertainization, which enhance combinatorics by incorporating 
foundational concepts from fuzzy, neutrosophic, soft, and rough set theories. These 
advancements open new mathematical horizons, offering novel approaches to managing 
uncertainty within complex systems. 

This volume also introduces advanced concepts like Neutrosophic Oversets, Undersets, and Offsets, which 
push the boundaries of classical graph theory and offer deeper insights into the mathematical and practical 
challenges posed by real-world systems. By blending combinatorics, set theory, and graph theory, the 
authors have created a robust framework for addressing uncertainty in both mathematical systems and 
their real-world applications. This foundation sets the stage for future breakthroughs in combinatorics, set 
theory, and related fields. 
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