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Introductory Note

This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such
as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory,
information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-
Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and
others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets;
Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny;
Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica;
Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone
or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal,
Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan,
Assia Bakali, Atige Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit
Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcin, Arup Kumar Das, Elham
Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian
Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas
Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabasevi¢, Abdullah
Kargin, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki
Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed
Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Thsan, Muhammad Saeed,
Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion
Patrascu, Gabrijela Popovi¢, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra
Rostami, Said Broumi, Saima Anis, Muzafer Sarafevié¢, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya
Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache,
Predrag S. Stanimirovié¢, DragiS$a Stanujki¢, Raman Sundareswaran, Mehmet Sahin, Ovidiu-Ilie Sandru, Abdulkadir
Sengiir, Mohamed Talea, Ferhat Tas, Selguk Topal, Alptekin Ulutas, Ramalingam Udhayakumar, Yunita Umniyati,
J. Vimala, Luige Vladareanu, Stefan Vladutescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun,
Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong
Zhang, Zhirou Ma.

Keywords
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Intuitionistic Fuzzy Parameters; Conventional Optimization Methods; Multiobjective Transportation Problem;
Decision Making; Extenics; Classical Algebra; NeutroAlgebra; AntiAlgebra; NeutroOperation; AntiOperation;
NeutroAxiom; AntiAxiom; Intuitionistic Fuzzy Soft Expert Set; Inclusion Relation; Neutrosophic Rough Set; Multi-
Attribute Group Decision-Making; Multigranulation Neutrosophic Rough Set; Soft Set; Soft Expert Set; Hypersoft
Set; Hypersoft Expert Set; Plithogeny; Plithogenic Set; Plithogenic Logic; Plithogenic Probability; Plithogenic
Statistics; Safire Project; Infinite Velocity; Coulomb Potential; Kurepa function; Smarandache-Kurepa function; 2019
Novel Coronavirus; Deep Transfer Learning; Machine Learning; COVID-19; SARS-CoV-2; Convolutional Neural
Network; Principle of Parsimony; Popperian Epistemology; Post-Empiricism Doctrine; Ockham Optimality Point;
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Abstract In this paper we present the N-norms/N-
conorms in neutrosophic logic and set as extensions of T-
norms/T-conorms in fuzzy logic and set.

Then we show some applications of the neutrosophic logic
to robotics.

Keywords.  N-norm, N-conorm, N-pseudonorm, N-

pseudoconorm, Neutrosophic set, Neutrosophic logic, Robotics

L DEFINITION OF NEUTROSOPHIC SET

Let T, I, F be real standard or non-standard subsets of

10, 1,
withsup T t sup,infT t_inf,
supl i sup,infl i inf,

supF f sup,infF f inf]
andn_sup t sup+ti sup+f sup,
n_inf t infti_inf+f inf.

Let U be a universe of discourse, and M a set included in
U. An element x from U is noted with respect to the set M
as x(T, I, F) and belongs to M in the following way: it is t
true in the set, 1 indeterminate (unknown if it is or not) in
the set, and f false, where t varies in T, i varies in I,
varies in F ([1], [3]).

Statically T, I, F are subsets, but dynamically T, I, F are
functions/operators depending on many known or unknown
parameters.

IL.

In a similar way we define the Neutrosophic L ogic:
A logic in which each proposition x is T true, I
indeterminate, and F false, and we write it x(T,L,F), where
T, I, F are defined above.

DEFINITION OF NEUTROSOPHIC LOGIC

1L

We define a partial order relationship on the
neutrosophic set/logic in the following way:
x(Ty, L1, Fy)  y(Ts, I, Fy) iff (if and only if)
T, T, 1, L,F, F,forecrispcomponents.
And, in general, for subunitary set components:
X(Ty, I, F1) - y(Ty, I, Fy) iff

PARTIAL ORDER

infT; infT,, sup Ty sup T,
infl; infl,, supl; supl,
infF; infF, supF;, supF,.

34

If we have mixed - crisp and subunitary - components,
or only crisp components, we can transform any crisp
component, say “a” with a I [0,1] or al J0, 1'[, into a
subunitary set [a, a]. So, the definitions for subunitary set

components should work in any case.

IV. N-NORM AND N-CONORM

As a generalization of T-norm and T-conorm from the
Fuzzy Logic and Set, we now introduce the N-norms and
N-conor ms for the Neutrosophic Logic and Set.

A. N-norm
No: (JO,1T T0,1°T 10,1°[)*  TO,I'T J0,1°[ J0,1°
Nn (X(ThIlaFl)s Y(Tzslz,Fz)) (NnT(X’Y)s NnI(X’y)3 NHF(X’y)):
where N, T(.,.), NI(.,.), NyF(.,.) are the truth/membership,
indeterminacy, and respectively falsehood/nonmembership
components.

N, have to satisfy, for any X, y, z in the neutrosophic
logic/set M of the universe of discourse U, the following
axioms:

a) Boundary Conditions: Ny(x, 0) 0, N,(x,1) x.

b) Commutativity: Ny(X,y) Nyu(y, X).

¢) Monotonicity: If x y, then Ny(x, z) Ny(y, z).

d) Associativity: Ny(N,, (X, y), z)  Nu(x, Ny(y, 2)).

There are cases when not all these axioms are satisfied, for
example the associativity when dealing with the
neutrosophic normalization after each neutrosophic
operation. But, since we work with approximations, we can
call these N-pseudo-norms, which still give good results in
practice.

N, represent the and operator in neutrosophic logic, and
respectively the intersection operator in neutrosophic set
theory.

Let]J € {T, L, F} be a component.
Most known N-norms, as in fuzzy logic and set the T-
norms, are:
The Algebraic Product N-norm: Ny, ajgebraicJ(X, ¥) X ¥
The Bounded N-Norm: N, poundead(X, ¥y) max{0, x +y
1}
The Default (min) N-norm: N, i, J(X, y) min{x, y}.
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A general example of N-norm would be this.
Let x(Ty, I;, F;) and y(T,, I, F,) be in the neutrosophic
set/logic M. Then:

Nn(X, y) = (Ti\T2, 11Vl FiVF)
where the “/” operator, acting on two (standard or non-
standard) subunitary sets, is a N-norm (verifying the above
N-norms axioms); while the “/” operator, also acting on
two (standard or non-standard) subunitary sets, is a N-
conorm (verifying the below N-conorms axioms).

For example, / can be the Algebraic Product T-norm/N-
norm, so T{/ T, T; T, (herein we have a product of two
subunitary sets — using simplified notation); and / can be
the Algebraic Product T-conorm/N-conorm, so T /T,
T,+T,-T; T, (herein we have a sum, then a product, and
afterwards a subtraction of two subunitary sets).

Or / can be any T-norm/N-norm, and / any T-
conorm/N-conorm from the above and below; for example
the easiest way would be to consider the min for crisp
components (or inf for subset components) and respectively
max for crisp components (or sup for subset components).

If we have crisp numbers, we can at the end
neutrosophically normalize.

B. N-conorm

Ne: (JOI°[ TOIT T01)*  JO,I°[ TOIT 10,17

NC (X(T13115F1)> y(T2sIZsF2)) (NCT(X’Y)a NCI(Xsy)s NCF(Xsy))s
where N, T(.,.), N,I(.,.), NyF(.,.) are the truth/membership,
indeterminacy, and respectively falsehood/nonmembership
components.

N, have to satisfy, for any X, y, z in the neutrosophic
logic/set M of universe of discourse U, the following
axioms:

a) Boundary Conditions: No(x, 1) 1, N.(x,0) x.

b) Commutativity: N. (x,y) N(y, X).

¢) Monotonicity: if x y, then N¢(x, z) N(y, 2).

d) Associativity: N. (N.(X,y),z) N(x, N(y, 2)).

There are cases when not all these axioms are satisfied, for
example the associativity when dealing with the
neutrosophic normalization after each neutrosophic
operation. But, since we work with approximations, we can
call these N-pseudo-conor ms, which still give good results
in practice.

N, represent the or operator in neutrosophic logic, and
respectively the union operator in neutrosophic set theory.

LetJ € {T, I, F} be a component.
Most known N-conorms, as in fuzzy logic and set the T-
conorms, are:
The Algebraic Product N-conorm: N¢ sjgebraic) (X, ¥)
Xy
The Bounded N-conorm: N; poundead(X, y) min{l, x +y}
The Default (max) N-conorm: N; . J(X, y) max{x, y}.
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A general example of N-conorm would be this.

Let x(Ty, I, Fy) and y(T,, I, F,) be in the neutrosophic
set/logic M. Then:

Nn(X, y) = (T1VT2, /Ao, Fi\Fy)

Where — as above - the “/” operator, acting on two
(standard or non-standard) subunitary sets, is a N-norm
(verifying the above N-norms axioms); while the /7
operator, also acting on two (standard or non-standard)
subunitary sets, is a N-conorm (verifying the above N-
conorms axioms).

For example, / can be the Algebraic Product T-norm/N-
norm, so Ty/ T, T; T, (herein we have a product of two
subunitary sets); and / can be the Algebraic Product T-
conorm/N-conorm, so Ty /T, T,+T,-T; T, (herein we have
a sum, then a product, and afterwards a subtraction of two
subunitary sets).

Or / can be any T-norm/N-norm, and / any T-
conorm/N-conorm from the above; for example the easiest
way would be to consider the min for crisp components (or
inf for subset components) and respectively max for crisp
components (or SUp for subset components).

If we have crisp numbers, we can at the end
neutrosophically normalize.

Since the min/max (or inf/sup) operators work the best
for subunitary set components, let’s present their definitions
below. They are extensions from subunitary intervals
{defined in [3]} to any subunitary sets. Analogously we can
do for all neutrosophic operators defined in [3].

Let x(Ty, I}, Fy) and y(T,, I, F,) be in the neutrosophic
set/logic M.

C. More Neutrosophic Operators

Neutr osophic Conjunction/Inter section:
x'y (T, F)),
where inf T,
sup T,
inf I/

min{inf Ty, inf T}
min{sup Ty, sup T,}
max {inf I, inf,}

supl, max{suply, sup I}
infF, max{inf Fy, inf F,}
sup F,  max{sup Fy, sup F,}

Neutrosophic Disjunction/Union:
X /y (T /,I /,F /),
where inf T,
sup T,
ian/

max{inf Ty, inf T,}
max {sup Ty, sup T,}
min{inf I}, inf I}

supl, min{sup I, sup L}
infF, min{inf F, inf F,}
sup F, min{sup Fy, sup F,}

Neutrosophic Negation/Complement:
C(X) (TC31C3FC)9
where Tc  F,
inflc 1-sup [
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Sup IC 1-inf Il
Fe T,
Upon the above Neutrosophic
Conjunction/Intersection, we can define the

Neutrosophic Containment:
We say that the neutrosophic set A is included in the
neutrosophic set B of the universe of discourse U,
iff for any x(Ta, Ia, Fa) I A with x(Tg, Ig, Fg) I B we
have:

infTy, infTg;supTa sup Tg;
infl, inflg;suplsy suplg;
infF, infFg;supF, supFg.
D. Remarks

a) The non-standard unit interval ]0, 17[ is merely
used for philosophical applications, especially
when we want to make a distinction between
relative truth (truth in at least one world) and
absolute truth (truth in all possible worlds), and
similarly for distinction between relative or
absolute falsehood, and between relative or
absolute indeterminacy.

But, for technical applications of neutrosophic logic and set,
the domain of definition and range of the N-norm and N-
conorm can be restrained to the normal standard real unit
interval [0, 1], which is easier to use, therefore:

N ([0,1] [0,1] [0,1])* [0,1] [0,1] [0,1]
and
Ne:([0,17 [0,1] [0,11)° [0,1] [0,1] [0,1].

b) Since in NL and NS the sum of the components (in
the case when T, I, F are crisp numbers, not sets) is
not necessary equal to 1 (so the normalization is
not required), we can keep the final result un-
normalized.

But, if the normalization is needed for special
applications, we can normalize at the end by
dividing each component by the sum all c)
components.
If we work with intuitionistic logic/set (when the
information is incomplete, i.e. the sum of the crisp
components is less than 1, i.e. sub-normalized), or
with paraconsistent logic/set (when the information
overlaps and it is contradictory, i.e. the sum of
crisp components is greater than 1, i.e. over-
normalized), we need to define the neutrosophic
measure of a proposition/set.
If x(T,LF) is a NL/NS, and T,LF are crisp numbers
in [0,1], then the neutr osophic vector norm of
variable/set x is the sum of its components:
Nvector—norm(x) T+I+F.
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Now, if we apply the N, and N, to two
propositions/sets which maybe intuitionistic or
paraconsistent or normalized (i.e. the sum of
components less than 1, bigger than 1, or equal to
1), x and y, what should be the neutrosophic
measure of the results N,(x,y) and N (x,y) ?
Herein again we have more possibilities:
- either the product of neutrosophic measures of
x and y:
Nvector-norm(Nn(X’y)) Nvector-norm(x) Nvector-
norm(y)»
- or their average:
Nvector-norm(Nn(X$y)) (Nvector—norm(x) + Nvector—

norm(Y))/ 2,
- or other function of the initial neutrosophic

measures:

Nvector-norm(Nn(xny)) f(Nveclor-norm(x)a Nvector-
rorm(Y)), Where f(.,.) is a function to be determined
according to each application.

Similarly for Nyector-norm(Ne(X,¥))-

Depending on the adopted neutrosophic vector
norm, after applying each neutrosophic operator
the result is neutrosophically normalized. We’d
like to mention that “neutrosophically
normalizing” doesn’t mean that the sum of the
resulting crisp components should be 1 as in fuzzy
logic/set or intuitionistic fuzzy logic/set, but the
sum of the components should be as above: either
equal to the product of neutrosophic vector norms
of the initial propositions/sets, or equal to the
neutrosophic average of the initial propositions/sets
vector norms, etc.

In conclusion, we neutrosophically normalize the
resulting crisp components T",I',F" by multiplying
each neutrosophic component T',I',F* with S/(
T'+I'+F"), where

S Nvector-norm(Nn(Xsy)) for a N-norm or S Nvector—
norm(Ne(X,Y)) for a N-conorm - as defined above.

If T, I, F are subsets of [0, 1] the problem of

neutrosophic normalization is more difficult.

1) If sup(T)+sup(l)+sup(F) 1, we have an
intuitionistic proposition/set.

it) If inf(T)+inf(D)+inf(F) I, we have a

paraconsistent proposition/set.

If there exist the crisp numbers t €T, i €1,

and f € F such that t+i+f 1, then we can say

that we have a plausble normalized

proposition/set.

But in many such cases, besides the

normalized particular case showed herein, we

also have crisp numbers, say t; €T, i; €1, and

fi € F such that t;+i;+f; 1 (incomplete

iii)
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information) and t, €T, i, €1, and f, € F such
that t,+i,+f, 1 (paraconsistent information).

E. Examplesof Neutrosophic Operatorswhich are N-
norms or N-pseudonorms or, respectively N-conorms
or N-pseudoconorms

We define a binary neutrosophic conjunction

(intersection) operator, which is a particular case of a N-

norm (neutrosophic norm, a generalization of the fuzzy T-

norm):

&®:([afanxl) ~{ai]xe]xo]
G (Y =(TT, L1, +1T,+T1,, FR +Fl,+ R, + BT +Fl,)

The
XAy Y component truth, indeterminacy, and falsehood

neutrosophic conjunction (intersection) operator

values result from the multiplication
(T+1L,+F)(T,+1,+F,)

since we consider in a prudent way T p | p F, where

“p ” is a neutrosophic relationship and means “weaker”,

i.e. the products Tl willgoto |, T;F; willgoto F,and

l;F, will go to F for all i, j € {1,2}, i#j, while of course
the product T, T, will go to T, I;I, will go to I, and F,F, will
go to F (or reciprocally we can say that F prevails in front

of | which prevails in front of T, and this neutrosophic
relationship is transitive):

(Ty I F) (T, I :><Ff
(T, L F) (T, L  F)
(T, I F))
|
(T, I, F,)

So, the truth value is TT,, the indeterminacy value is
I L,+ I T,+Tl, and is
FF+ Fl,+ FET,+ KT+ FEI,. The norm of X Y
is(M+1,+F)(M,+1,+F). Thus, if X and Y are

the false value

normalized, then X VY is also normalized. Of course, the
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reader can redefine the neutrosophic conjunction operator,
depending on application, in a different way, for example in

a more optimistic way, i.e. | p Tp F or T prevails with
respect to | , then we get:

cr kY (TL+TL+TI L RR+FL+RL+ET+F)
Or, the reader can consider the order Tp F p |, etc.

17172

V. ROBOT POSITION CONTROL BASED ON

KINEMATICS EQUATIONS

A robot can be considered as a mathematical relation
of actuated joints which ensures coordinate transformation
from one axis to the other connected as a serial link
manipulator where the links sequence exists. Considering
the case of revolute-geometry robot all joints are rotational
around the freedom ax [4, 5]. In general having a six
degrees of freedom the manipulator mathematical analysis
becomes very complicated. There are two dominant
coordinate systems: Cartesian coordinates and joints
coordinates. Joint coordinates represent angles between
links and link extensions. They form the coordinates where
the robot links are moving with direct control by the
actuators.

i

Fig.1. The robot control through DH transformation.

The position and orientation of each segment of the
linkage structure can be described using Denavit-Hartenberg
[DH] transformation [6]. To determine the D-H
transformation matrix (Fig. 1) it is assumed that the Z-axis
(which is the system’s axis in relation to the motion surface)
is the axis of rotation in each frame, with the following
notations: 0; - joint angled is the joint angle positive in the
right hand sense about jz; & - link length is the length of
the common normal, positive in the direction of (j+1)x ; o; -
twist angled is the angle between j; and (j+1)z, positive in
the right hand sense about the common normal ; d; - offset
distance is the value of j; at which the common normal
intersects jz ; as well if jx and (j+1)x are parallel and in the
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same direction, then ©; 0; (j+1)x - is chosen to be
collinear with the common normal between j; and (j+1)z
[7, 8] . Figure 1 illustrates a robot position control based on
the Denavit-Hartenberg transformation. The robot joint
angles, 0., are transformed in X, - Cartesian coordinates
with D-H transformation. Considering that a point in j,
respectively j+1 is given by:

X X
Y :jP and Y _ j+va (1)
z z
1 1

j j+l
then 'P can be determined in relation to "'P through the
equation :
P oA
where the transformation matrix inH is:
o) —sinG oo +sinj -sing; -0,

P, 2)

jA. _ sind} —oos @ -cos —cos ) -sing; & -sing
1o sind), wsf, d
0 0 0 1

Control through forward kinematics consists of the
transformation of robot coordinates at any given moment,
resulting directly from the measurement transducers of each
axis, to Cartesian coordinates and comparing to the desired
target’s Cartesian coordinates (reference point). The
resulting error is the difference of position, represented in
Cartesian coordinates, which requires changing. Using the
inverted Jacobean matrix ensures the transformation into
robot coordinates of the position error from Cartesian
coordinates, which allows the generating of angle errors for
the direct control of the actuator on each axis.

The control using forward kinematics consists of
transforming the actual joint coordinates, resulting from
transducers, to Cartesian coordinates and comparing them
with the desired Cartesian coordinates. The resulted error is
a required position change, which must be obtained on
every axis. Using the Jacobean matrix inverting it will
manage to transform the change in joint coordinates that
will generate angle errors for the motor axis control.

Figure 2 illustrates a robot position control system
based on the Denavit-Hartenberg transformation. The robot
joint angles, 0., are transformed in X. - Cartesian
coordinates with ~ D-H transformation, where a matrix
results from (1) and (2) with 6; -joint angle, d; -offset
distance, a; - link length, o - twist.

Position and orientation of the end effector with
respect to the base coordinate frame is given by X¢ :

Xe A A A 3)

Position error AX is obtained as a difference between
desired and current position. There is difficulty in
controlling robot trajectory, if the desired conditions are
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specified using position difference AX with continuously

measurement of current position 0, .

Xc=A*1.. A% Actual Position9 i Sensor
(4*4) 0,1 | Signals
Xe=Ar A .. - As
Processing
Jacobian
ROBOT
l SYSTEM
Triangulate
Jacobian
Desired 5 l
XD (6*1)3 X Back- 30 _ Actuators
J(0)- 56, 4 Substitution J'0) - 5 BXe Control

Fig. 2. Robot position control system based on the Denavit-
Hartenberg transformation

The relation, between given by end-effector's position and
orientation considered in Cartesian coordinates and the

robot joint angles 0, , . itis:

X “)
where 6 is vector representing the degrees of freedom of
robot. By differentiating we will have: & 6X6 J(0)

80,, ,, where 6X6 represents differential linear and
angular changes in the end effector at the currently values of

Xs and 8 0 , . represents the differential change of the set
of joint angles. J (0) is the Jacobean matrix in which the
elements a; satisfy the relation: a;; 8 fin/ 360 ji1,
(x.6) where i, ] are corresponding to the dimensions of X
respectively 0. The inverse Jacobian transforms the
Cartesian position 8 X respectively AX in joint angle error

26): 86, , T'® 5 °X,.

fi(0)

10

VI. HYBRID POSITION AND FORCE CONTROL OF

ROBOTS

Hybrid position and force control of industrial robots
equipped with compliant joints must take into consideration
the passive compliance of the system. The generalized arca
where a robot works can be defined in a constraint space
with six degrees of freedom (DOF), with position constrains
along the normal force of this area and force constrains along
the tangents. On the basis of these two constrains there is
described the general scheme of hybrid position and force
control in figure 3. Variables Xc and Fc represent the
Cartesian position and the Cartesian force exerted onto the
environment. Considering Xc and Fc¢ expressed in specific
frame of coordinates, its can be determinate selection
matrices S, and Sg, which are diagonal matrices with 0 and 1
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diagonal elements, and which satisfy relation: S, + S; Iy,
where S, and S; are methodically deduced from kinematics
constrains imposed by the working environment [9, 10].

Position
Close Look

A
x

Position

Transducers
Xpp 0
—> POSITIONCONTROL [ » £
AOp 3O
2o ROBO
Ex3
sws
Se FORCE CONTROL | —»| @
DF Transducers
Force -
Close Look | f

Fig. 3. General structure of hybrid control.

Mathematical equations for the hybrid position-force
control. A system of hybrid position—force control normally
achieves the simultaneous position—force control. In order to
determine the control relations in this situation, AXp — the
measured deviation of Cartesian coordinate command
system is split in two sets: AX™ corresponds to force
controlled component and AX? corresponds to position
control with axis actuating in accordance with the selected
matrixes Sy and S,. If there is considered only positional
control on the directions established by the selection matrix
S, there can be determined the desired end - effector
differential motions that correspond to position control in the
relation: AXp Kp AXP , where Kp is the gain matrix,
respectively desired motion joint on position controlled axis:
ABp  T'(O) AXp[l1,12].

Now taking into consideration the force control on the
other directions left, the relation between the desired joint
motion of end-effector and the force error AXg is given by
the relation: AO g J'I(G) AXg , where the position
error due to force AXg is the motion difference between
AXF— current position deviation measured by the control
system that generates position deviation for force controlled
axis and AXp — position deviation because of desired
residual force. Noting the given desired residual force as Fp
and the physical rigidity Ky, there is obtained the relation:
AXp Kw' Fo.

Thus, AXk can be calculated from the relation: AXg
Ke (AXF — AXp), where Ky is the dimensionless ratio of the
stiffness matrix. Finally, the motion variation on the robot
axis matched to the motion variation of the end-effectors is
obtained through the relation: AO = J'(0) AXe + TI(0)
AXp. Starting from this representation the architecture of the
hybrid position — force control system was developed with
the corresponding coordinate transformations applicable to
systems with open architecture and a distributed and
decentralized structure.
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For the fusion of information received from various
sensors, information that can be conflicting in a certain
degree, the robot uses the fuzzy and neutrosophic logic or set
[3]. In a real time it is used a neutrosophic dynamic fusion,
so an autonomous robot can take a decision at any moment.

CONCLUSION

In this paper we have provided in the first part an
introduction to the neutrosophic logic and set operators and
in the second part a short description of mathematical
dynamics of a robot and then a way of applying
neutrosophic science to robotics. Further study would be
done in this direction in order to develop a robot
neutrosophic control.
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Abstract: In this paper, we define the neutrosophic valued (and generalized or G) metric spaces for
the first time. Besides, we newly determine a mathematical model for clustering the neutrosophic big
data sets using G-metric. Furthermore, relative weighted neutrosophic-valued distance and weighted
cohesion measure, is defined for neutrosophic big data set. We offer a very practical method for data
analysis of neutrosophic big data although neutrosophic data type (neutrosophic big data) are in
massive and detailed form when compared with other data types.

Keywords: G-metric; neutrosophic G-metric; neutrosophic sets; clustering; neutrosophic big data;
neutrosophic logic

1. Introduction and Preliminaries

Neutrosophic Logic is a neonate study area in which each proposition is estimated to have the
proportion (percentage) of truth in a subset T, the proportion of indeterminacy in a subset I, and the
proportion of falsity in a subset F. We utilize a subset of truth (or indeterminacy, or falsity), instead of a
number only, since in many situations we do not have ability to strictly specify the proportions of truth
and of falsity but only approximate them; for instance, a proposition is between 25% and 55% true and
between 65% and 78% false; even worse: between 33% and 48% or 42 and 53% true (pursuant to several
observer), and 58% or between 66% and 73% false. The subsets are not essential intervals, but any sets
(open or closed or half open/half-closed intervals, discrete, continuous, intersections or unions of the
previous sets, etc.) in keeping with the given proposition. Zadeh initiated the adventure of obtaining
meaning and mathematical results from uncertainty situations (fuzzy) [1]. Fuzzy sets brought a
new dimension to the concept of classical set theory. Atanassov introduced intuitionistic fuzzy sets
including membership and non-membership degrees [2]. Neutrosophy was proposed by Smarandache
as a computational approach to the concept of neutrality [3]. Neutrosophic sets consider membership,
non-membership and indeterminacy degrees. Intuitionistic fuzzy sets are defined by the degree
of membership and non-membership and, uncertainty degrees by the 1-(membership degree plus
non-membership degree), while the degree of uncertainty is evaluated independently of the degree of
membership and non-membership in neutrosophic sets. Here, membership, non-membership, and
degree of uncertainty (uncertainty), such as degrees of accuracy and falsity, can be evaluated according
to the interpretation of the places to be used. It depends entirely on the subject area (the universe of
discourse). This reveals a difference between neutrosophic set and intuitionistic fuzzy set. In this sense,
the concept of neutrosophic is a possible solution and representation of problems in various fields.
Two detailed and mathematical fundamental differences between relative truth (IFL) and absolute
truth (NL) are:
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(i) NL can discern absolute truth (truth in all possible worlds, according to Leibniz) from the relative
truth (truth in at least one world) because NL (absolute truth) = 1* while IFL (relative truth) = 1.
This has practice in philosophy (see the Neutrosophy). The standard interval [0, 1] used in IFL
has been extended to the unitary non-standard interval ]~ 0, 1* [ in NL. Parallel earmarks for
absolute or relative falsehood and absolute or relative indeterminacy are permitted in NL.

(ii) Thereis nolimiton T, I, F other than they aresubsetsof ]~ 0, 1* [, thus: 0 <inf T + inf I + inf F
<sup T +supl+supF <3"in NL. This permissiveness allows dialetheist, paraconsistent, and
incomplete information to be described in NL, while these situations cannot be described in IFL
since F (falsehood), T (truth), I (indeterminacy) are restricted either tot +i+ f=1or to ' » P,
if T, I, F are all reduced to the points t, i, f respectively, or tosup T + supI +sup F=1if T, [, F are
subsets of [0, 1] in IFL.

Clustering data is one of the most significant problems in data analysis. Useful and efficient
algorithms are needed for big data. This is even more challenging for neutrosophic data
sets, particularly those involving uncertainty. These sets are elements of some decision-making
problems, [4-8]. Several distances and similarities are used for decision-making problems [9,10].
Algorithms for the clustering big data sets use the distances (metrics). There are some metrics used in
algorithms to analysis neutrosophic data sets: Hamming, Euclidean, etc. In this paper, we examine
clustering of neutrosophic data sets via neutrosophic valued distances.

The bigdata notion is a new label for the giant size of data-both structured and unstructured—that
overflows several sectors on a time-to-time basis. It does not mean overall data are significant and
the significant aspect is to obtain desired specific data interpretation. Big data can be analyzed for
pre-cognition that make possible more consistent decisions and strategic having positions. Doug
Laney [11] sort to make the definition of big data the three Vs and Veracity widespread: (1) Velocity:
This refers to dynamic data and captures data streams in near real-time. Data streams in at an
exceptional speed and must be dealt with in a well-timed mode. (2) Variety: Data comes in all types of
formats—from structured, numeric data in traditional databases to formless materials. On the one
hand, variety denotes to the various sources and types of organized and formless data. Storing data
is made from sources like worksheets and databases. (3) Volume: Organizations gather data from a
range of sources, including social media, business operations, and data from the sensor or machine to
machine. (4) Veracity: It mentions to the biases, noise, and anomaly in data. That corresponds with
the question “Is the data that is being put in storage and extracted meaningful to the problem being
examined?”,

In this paper, we also focus on K-sets cluster algorithm which is a process of analyzing data with
the aim of evaluating neutrosophic big data sets. The K-sets cluster is an unrestrained type of learning
that is used when one wants to utilize unlabeled data, [12]. The goal of the algorithm is to find groups
of data with the number of groups represented by variable K. The algorithm works iteratively to
set-aside each data point obtained to one of the K groups based on the properties obtained. The data
points are clustered according to feature similarity. Instead of identifying groups before examining
patterns, clustering helps to find and analyze naturally occurring groups. “Choosing K” has the goal
of “how the number of groups can be determined”. Each center of a congregation is a collection of
property values describe the groups that emerged. Analysis of centroid feature weights can be used
to qualitatively interpret what kind of group is represented by each cluster. The algorithm finds the
clusters and data set labels for a particular pre-chosen K. To have the number of clusters in the data,
the user must run the K-means clustering algorithm for a range of K values and compare the results.
In general, there is no technique to determine a specific K value, but a precise estimate can be obtained
using the following methods. In general, one of the metrics used to compare the results between the
different K values as the average distance between the data points and their cluster synthesis. As the
number of sets increases, it will always reduce the distance to the data points, while the K increment
will always lower this metric as other criteria, and when K is the same as the number of data points,
reaching zero will be excessive. Thus, this metric cannot be used as a single purpose. Rather, the
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average distance to the center as a function of Kis plotted where the shear rate falls sharply, it can be
used to determine K approximately.

A number of other techniques are available for verification of K, including cross-validation,
information criteria, information theoretical jump method, and G-tools algorithm. In addition,
monitoring the distribution of data points between groups provides information about how the
algorithm splits data for each K. K-sets algorithms base on the measurement of distances of sets.
A distance is a measurement of how far apart each pair of elements of a given set is. Distance
functions in mathematics and many other computational sciences are important concepts. They have
wide usage areas, for example, the goal of quantifying a dissimilarity (or equivalently similarity)
between two objects, sets or set of sets in some sense. However, due to the massive, complicated and
different type data sets today, definitions of distance functions are required to be more generalized and
detailed. For this purpose, we define a novel metric for similarity and distance to give Neutrosophic
Valued-Metric Spaces (NVGMS). We present relative weighted measure definition and finally K-sets
algorithm after given the definition of NVGMS.

Some readers who are unfamiliar with the topic in this paper need to have a natural example to
understand the topic well. There is a need for earlier data in everyday life to give a natural example for
the subject first described in this paper. There is no this type of data (we mean neutrosophic big data)
in any source, but we will give an example of how to obtain and cluster such a data in Section 6 of the
paper. If we encounter a sample of neutrosophic big data in the future, we will present the results with
a visual sample as a technical report. In this paper, we have developed a mathematically powerful
method for the notion of concepts that are still in its infancy.

1.1. G-Metric Spaces

Metric space is a pair of (4, d), where A is a non-empty set and d is a metric which is defined by
a certain distance and the elements of the set A. Some metrics may have different values such as a
complex-valued metric [13,14]. Mustafa and Sims defined G-metric by generalizing this definition [15].
Specifically, fixed point theorems on analysis have been used in G-metric spaces [16,17].

Definition 1. Let A be a non-empty set and d be o metric on A, then if the following conditions hold, the pair
(A, d) is called m metric space. Let x,y,z € A

(1) d(x,y) > 0, (non-negativity)

(2) d(x,y) =0 x =y, (identity)

(3)  d(x,y) =d(y, x), (symmetry)

(4) d(x,z) <d(x,y) +d(y,z) (triangle inequality).

where d : A x A — RTU{0}.

Definition 2. [15] Let A be a non-empty set. A function G : A x A x A — [0, +o0) is called G-distance if it
satisfies the following properties:

(1) G(x,y,z)=0ifandonlyifx =y =z,

(2)  G(x,x,y) # 0 whenever x # vy,

(3) G(x,x,y) <G(x,y,z)forany x,y,z € A, withz #y,

(4) G(x,y,z) =G(x,z,y) =...(symmetric for all elements),

(5) G(x,y,2) < G(x,m,a)+G(ny,z) forallm,x,y,z € A (Rectangular inequality).

The pair (A, G) is called a G-metric space. Moreover, if G-metric has the following property then it
is called symmetric: G(x,x,y) = G(x,y,y),Vx,y € A.
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Example 1. In 3-dimensional Euclidean metric space, one can assume the G-metric space (E3, G) as the
following:
G(x,y,2) =2(|lx x yll + ||z x yll + llx x z[)

where x,y,z € E2 and ||. x .|| represent the norm of the vector product of two vectors in E3. It is obvious that i
satisfies all conditions in the Definition 2 because of the norm has the metric properties, and it is symmetric.

Example 2. Let (A, d) is a metric space. Then
G(x,y,2) =d(x,y) +d(y,z) —d(x,z2)

is a G-metric, where x,y,z € A. The fact that d is a metric indicates that it has triangle inequality. Thus, G is
always positive definite.

Proposition 1. [17] Let (A, G) be a G-metric space then a metric on A can be defined from a G-metric:

de(xy) = Gxxy) + Gxyy)
1.2. Neutrosophic Sets

Neutrosophy is a generalized form of the philosophy of intuitionistic fuzzy logic. In neutrosophic
logic, there is no restriction for truth, indeterminacy, and falsity and they have a unit real interval
value for each element neutrosophic set. These values are independent of each other. Sometimes,
intuitionistic fuzzy logic is not enough for solving some real-life problems, i.e., engineering problems.
So, mathematically, considering neutrosophic elements are becoming important for modelling these
problems. Studies have been conducted in many areas of mathematics and other related sciences
especially computer science since Smarandache made this philosophical definition, [18,19].

Definition 3. Let E be a universe of discourse and A C E. A = {(x,T(x),I(x),F(x)) :x€ E} is
a neutrosophic set or single valued neutrosophic set (SVNS), where Ty, Ia,Fq: A— |70,17[ are the

truth-membership function, the indeterminacy-membership function and the falsity-membership function,
respectively. Here, ~0 < Ta(x) + I4(x) + F4(x) < 3%,

Definition 4. For the SVNS A in E, the triple (T4, 14,Fa) is called the single valued neutrosophic number
(SVNN).

Definition 5. Let n = (T}, I, F,,) be an SVNN, then the score function of n can be given as follow:

where s, € [—1,1].

Definition 6. Let n = (T, I,, F,,) be an SVNN, then the accuracy function of n can be given as follow:

where hy, € [0,1].

Definition 7. Let ny and na be two SVNNs. Then, the ranking of two SVNNSs can be defined as follows:

() If sy, > sn,, then ny > no;
(ID I sy, = su, and hy, > hy,, then ny > ny.
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2. Neutrosophic Valued Metric Spaces

The distance is measured via some operators which are defined in some non-empty sets. In
general, operators in metric spaces have zero values, depending on the set and value.

2.1. Operators

Definition 8. [20,21], Let A be non-empty SVNS and x = (T, I, Ex),y = (T, L, F,) be two SVNNs.
The operations that addition, multiplication, multiplication with scalar & € R, and exponential of SVNNs are
defined as follows, respectively:

x®y = (Ty+ T, — T.T, LI, IF)
xQy =TTy, L + Iy — LI, Fx + F,— EF))
ax = (1—(1— Ty)", I, F¢

x = (Tg,1- (1-R)*1- (1- F)°)

From this definition, we have the following theorems as a result:

Theorem 1. Let x = (Ty, I, Fx) be an SVNN. The neutral element of the additive operator of the set A is
04 =(0,1,1).

Proof. Let x = (Ty, I, Fx) and 04 = (T, Iy, Fo) are two SVNN and using Definition 8 we have

X@OA = <Tx + To — TxTo, IxIO,FxF0> = <Tx/ Ix, Px>

(There is no need to show left-hand side because the operator is commutative in every component).

To compare the neutrosophic values based on a neutral element, we shall calculate the score and
accuracy functions of a neutral element 04 = (0,1, 1), respectively:

24+ Ty—Ih— K
3

so:1+T0—210_F0 = —land hg =

=0
2

Theorem 2. Let x = (Ty, Iy, Fx) be an SVNN. The neutral element of the multiplication operator of the A is
14 ={(1,0,0).

Proof. Letx = (Ty, I, F) and 14 = (Ty, I, F;) are two SVNN and using Definition 8 we have

xOlg =TTy, I+ I — LI, B+ F — FER) = (Ty, I, &)

In addition, score and accuracy functions of the neutral element 14 = (1,0,0) are s; =

Hl—%zllil =land by = zirl%l—llfl =1, respectively. OJ

2.2. Neutrosophic Valued Metric Spaces

In this section, we consider the metric and generalized metric spaces in the neutrosophic meaning.

Definition 9. Ordering in the Definition 6 gives an order relation for elements of the conglomerate SVNN.
Suppose that the mapping d : X x X — A, where X and A are SVNS, satisfies:
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() 04 <d(x,y)and d(x,y) =04 < sy = sy and by = hy forall x,y € X.
(I d(x,y) =d(y,x) forall x,y € X.

Then d is called a neutrosophic valued metric on X, and the pair (X, d) is called neutrosophic
valued metric space. Here, the third condition (triangular inequality) of the metric spaces is not suitable
for SVNS because the addition is not ordinary addition.

Theorem 3. Let (X,d) be a neutrosophic valued metric space. Then, there are relationships among truth,
indeterminacy and falsity values:

() 0<T(xy)—2(xy) —F(x,y) +3and if s = s then 0 < T(x,y) — I(x,y) — F(x,y) + 2.

(I I d(xy) =04 = T(xy) =0,I(xy) =F(xy) =1

() T(x,y)=T(yx) I(x,y) =1y, x), F(x,y) = F(y, x) so, each distance function must be symmetric.

where T(.,.), 1(.,.) and F(.,.) are distances within themselves of the truth, indeterminacy and falsity functions,

respectively.
Proof.
0a<d(xy) < (0,1,1) < (T(xy),I(xy),Fxy))
@ & s0< sqe —1 < LETE) —2Ey) - Fy)

S0-< Fa,yy— 2l (xg) —L(x )3

@ Ay =dx) e Ty),lxy), Fxy) = T0x),1y,2), Fy.x)
= T(xy) =Ty x), 1(xy) = 1(y,2),Flxy) = Fy,x)

Example 3. Let A be non-empty SVNS and x = (Ty, I, Fx),y = (Ty, I, Fy> be two SVNNG. If we define the
metricd : X x X —+ A, as:

A~ |E— )

d(x,y) = (T(y), I(xy), Fooy) = (|- T,[,1 - |- I

then
0 < |L—Ty| - 201~ |L—K|) - (1= [E-F[) +3
=0< |Tx —Ty| + 2| — I| + |Fx — F|
Then it satisfies the first condition.
(II) ~ Since the properties of the absolute value function, this condition is obvious.
So, (X, d) is a neutrosophic-valued metric space.

(1)

3. Neutrosophic Valued G-Metric Spaces

Definition 10. Let X and A be a non-empty SVNS. A function G : X x X x X —+ A is called neutrosophic
valued G-metric if it satisfies the following properties:

(1) G(x,y,z) =04 ifand onlyif x =y =z,

(2)  G(x,x,y) # 04 whenever x # y,

(3) G(x,x,y) <G(x,y,z) forany x,y,z € X, withz # y,
(4 G(x,y,z) =G(x,z,y) =...(symmetric for all elements).

The pair (X, G) is called a neutrosophic valued G-metric space.

Theorem 4. Let (X, G) be a neutrosophic valued G-metric space then, it satisfies followings:
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() Tilosoam) =00 o)== Flnngon) = i

(2) Assumex #y,then T(x,y,z) #0,1(x,y,2) # L,F(x,y,2) # 1.

(3) 0<T(x,y,z)—T(xxy) +2(I(x,x,y) —I(x,y2)+Fxxy)—Fxy,z)
(4) T(x,y,2),1(x,y,2) and F(x,y,z) are symmetric for all elements.

where T(.,.,.), I(,,.,.) and F(.,.,.) are G-distance functions of truth, indeterminacy and falsity values of the
element of the set, respectively.

Proofs are made in a similar way to neutrosophic valued metric spaces.

Example 4. Let X be non-empty SVNS and the G-distance function defined by:

1
Glry.2) = 3(d(xy) ®d(x,2) ®d(y.2)
where d(.,.) is a neutrosophic valued metric. The pair (X, G) is obviously a neutrosophic valued G-metric space
because of d(.,.). Further, it has commutative properties.

4. Relative Weighted Neutrosophic Valued Distances and Cohesion Measures

The relative distance measure is a method used for clustering of data sets, []. We define the
relative weighted distance, which is a more sensitive method for big data sets.

Let x; = (T, Fx;, Iy;) € A(non-empty SVNS),i = 0...1n be SVNNSs. Then neutrosophic weighted
average operator of these SVNNs is defined as:

where y; is weighted for the i th data. For a given a neutrosophic data set W = {wy, wo, w3, ..., w,}
and a neutrosophic valued metric d, we define a relative neutrosophic valued distance for choosing
another reference neutrosophic data and compute the relative neutrosophic valued distance as the
average of the difference of distances for all the neutrosophic data w; € W.

Definition 11. The relative neutrosophic valued distance from a neutrosophic data w; to another neutrosophic
data w; is defined as follows:

Here, since T, I, F values of SVNNs cannot be negative, we can define the expression d (w,-, w]-)ﬁd (w;, wy)
as the distance between these two neutrosophic-valued metrics. Furthermore, the distance of metrics is again
neutrosophic-valued here so, a related neutrosophic-valued distance can be defined as:

d (w;, w;)ed(w;,wy) = (T(w;,w;), 1(w;,w)), F(w;, w;) )={ T (wy, wy), L(wy, wy), F(w;, wy)) @)
= <1 — | T(wy, w;) — (T (w;, wy) — 192 | M1v— |I(w,-,w)-) — I(wi,wk)z‘, 1— ‘P(wi,w}-) ——F(wi,wk)zb
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The difference operator = generally is not a neutrosophic-valued metric (or G-metric). We used some
abbreviations for saving space.

L (d(w; wj)d(w; wy)

‘kaW

d(w;,w;) ey T d(w;, wy)

Wy eEW

(T (s, w,), 1wy, 07), F (03, 107)) 3 (@ (03, 01) © d (103, 702) © .. ©(103,10,))
< w3, w])/ I(wi/ w])' F(ZUi, ZU])>

<L[(T(w;, 1), I(w5,01), F(w;,01)) @ ... & (T (w3, w01), I (w5, 1), Flawy, w1))]
(T(wy, w;), I(w;, w;), F(w;, w;))

%[ = Ty ) = 1T Tws ), 1T Iosw0), 11 P(w,-,woﬂ
ew keWw

¢

= (T (wi, wy), I(w;, wy), F(w;, w})) y
0<l [1— T(wllwk)+ II T(wz/wk)} ’ II I(wi/wk)l/n’ II F(wilwk)l/n>
kEW kew kew
<T I1,F1> (T2112/F2>
— <1 — ’T] (

where Ty, I, Fy and Ty, I, F, are the first, second, and third elements of SVNN in the previous equation,
respectively.

|

-2

Definition 12. The relative weighted neutrosophic valued distance from a neutrosophic data w; to another
neutrosophic data w; is defined as follows:

= Y. X® (d(w,-, w,-)ed(wi, wk))

wkeW
i ARk
=xid (W, wj)e L xad (wi wy)
wy, €W
i1 ki

= xi(T (wy, wy), I(w;, w;), F(wy, w;))
=(xa{T(ws, w1), I{w;, wi), F(w;, w1)) & ... & Xin(T(wy, wn), [(w;, wy), F(w;, wy)))
= (1= (1= T(aws, w)) /"9, 1wy, w0}, Fwy, )5 )
(1 — (1 = T(ws, w))X, I(wy, w1)*, F(wg, w)X2) & ...
O(1 — (1 = T(w;, w,) )X, I(w;, w,, )X, F(w;, w,)X")
\1 ( ww ]))X} I(ww ')Xijrp(wi/ wj)Xij>

— II T1kl I_I I1k/ ]:[1 Fﬂ(

k#rz k#z; k#' i ki
(Ty, I, F1)=(Tp, I, )

1= |T— (-’ 1-|h - 2],

$

~

||

¢

Il

I

i-#2])

where Ty, =1 — (1 — T(w;, wy))X*, T = Iw;, w)**, Fy = F(w;, wi)**.
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Definition 13. The relative weighted neutrosophic valued distance (from a random neutrosophic data w;) to a
neutrosophic data w; is defined as follows:

= ¥ xiRDy (w;l|lwy)
ZU,'GW

= L x Z Xew (d (wi:wj)*"d(wi:wk))l

w,EW w, €W

= ¥ xi| &L Xw< (dwd ))l

w;EW w,EW

Definition 14. The relative weighted neutrosophic valued distance from a neutrosophic data set Wy to another
neutrosophic data set Wy is defined as follows:

RD,(W1|[W2) = Y xx Y xyRDy(xlly)
x€EWq yGWZ

Definition 15. (Weighted cohesion measure between two neutrosophic data) The difference of the relative
weighted neutrosophic-valued distance to w; and the relative weighted neutrosophic-valued distance from w; to
w;j, ie.

]/

Sy

is called the weighted neutrosophic-valued cohesion measure between two neutrosophic data w; and w;. If
Px (W, w;) > Oy (resp. py (wy, w;) < Ow) then w; and w; are said to be cohesive (resp. incohesive). So, the
relative weighted neutrosophic distance from w; and w; is not larger than the relative weighted neutrosophic
distance (from a random neutrosophic data) to w;.

Definition 16. (Weighted cohesion measure between two neutrosophic data sets) Let w; and w; are elements of
the neutrosophic data sets U and 'V, respectively. Then the measure

V) = ) xu Y Xopx(w;,w)) (5)

w, €U w;eV

is called weighted cohesion neutrosophic-valued measure of the neutrosophic data sets U and V.
Definition 17. (Cluster) The non-empty neutrosophic data set W is called a cluster if it is cohesive, i.e.,

p(W, W) > Oy.

5. Clustering via Neutrosophic Valued G-Metric Spaces

In this section, we can cluster neutrosophicbig data thank to defined weighted distance definitions
in Section 4 and G-metric definition.

Definition 18. The neutrosophic valued weighted G-distance from a neutrosophic data w to a neutrosophic big
data set U is defined as follows:

G(w,y,z) = E Xu Z xu(d(w,y) ®d(w,z)=d(y,z)) (6)

yel zel
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Algorithm (K-sets algorithm)

Input: A neutrosophic big data set W = {w, w», ..., wy}, a neutrosophic distance measure d(,,.), and the
number of sets K.
@utput: A partition of neutrosophicsets {Uy,Up, ..., Uk}

1. Initially, choose arbitrarily K disjoint nonempty sets Uy, Uy, . .., Uk as a partition of W.
2. forifrom1ltondo

begin

Compute G(x;, yy, 2k) for each set Uy.

Find the set to which the point x; is closest in terms of G-distance.

Assign point x; to that set.

end
3. Repeat from 2 until there is no further change.

6. Application and Example

We will give an example of the definition of the data that could have this kind of data and fall into
the frame to fit this definition. We can call a data set a big data set if it is difficultand /or voluminous to
define, analyze and visualize a data set. We give a big neutrosophic data example in accordance with
this definition and possible use of G-metric, but it is fictional since there is no real neutrosophic big
dataexample yet. It is a candidate for a good example that one of the current topics, image processing
for big data analysis. Imagine a camera on a circuit board that is able to distinguish colors, cluster all
the tools it can capture in the image and record that data. The camera that can be used for any color
(for example white color vehicle) assigns the following degrees:

() The vehicle is at a certain distance at which the color can be detected, and the truth value of the
portion of the vehicle is determined.

(I) The rate at which the vehicle can be detected by the camera is assigned as the uncertainty value
(the mixed color is the external factors such as the effect of daylight and the color is determined
on a different scale).

(IlT) The rate of not seeing a large part of the vehicle or the rate of out of range of the color is assigned
as the value of falsity.

Thus, data of the camera is clustering via G-metric. This result gives that the numbers according to
the daily quantitiesand colors of vehicles passing by are determined. The data will change continuously
as long as the road is open, and the camera records the data. There will be a neutrosophic data for each
vehicle. So, a Big Neutrosophic Data Clustering will occur.

Here, the weight functions we have defined for the metric can be given 1 value for the main colors
(red-yellow-blue). For other secondary or mixed colors, the color may be given a proportional value
depending on which coloris closer.

A Numerical Toy Example

Take 5 neutrosophic data with their weights are equal to 1 to make a numerical example:
W = {w1(0.6,0.6,0.6), w;(0.8,0.4,0.5), w3(0.5,0.8,0.7),w4(0.9, 0.5,0.6), ws(0.1,0.2,0.7) }

K = 3 disjoint sets can be chosen U; = {wy, wy, ws}, Up = {wy, w3}.
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Then
{0,1,1) {0.2,0.8,0.9) {0.1,0.8,0.9) (0.3,0.9,1.0) (0.5,0.6,0.9)
{(0.2,0.8,0.9) (0,1, 1) (0.3,0.6,0.8) (0.1,0.9,0.9) (0.7,0.8,0.8)
{0.1,0.8,0.9) (0.3,0.6,0.8) (0,1,1) (0.4,0.7,0.9) (0.4,04,1.0)
{(0.3,0.9,1.0) {0.1,0.9,0.9) (0.4,0.7,0.9) {(0,1,1) {(0.2,0.8,0.9)
{(0.5,0.6,0.9) {0.7,0.8,0.8) (0.4,0.4,1.0) (0.2,0.8,0.9) 0,1,1)

where we assume the d(w;, ;) as in Example 3. So, we can compute the G-metrics of the data as in
Equation (3):

G('u)1, Ul) = G(wl,w4,w5) = <0.99,0.90,0.91>

G(w1, Up) = G(wy, wy, w3) = <O.79,0.72, 0.83)

G(wo, Uy) = G(wy, wy, wyg) & G(wp, wy, ws) & G(w,, wy, ws) = (0.9874,0.6027, 0.6707)
G(wg, UZ) = G(ZDQ, Wy, wg) = <O, Ty 1>

G(wg, Ul) = G(w3, wl,w4) & G(w3, wl,w5) (&%) G(w3, Wy, Z()5) = <1,0.4608,0.6707>
G(ws, Up) = G(wsz, wp, w3) =(0,1,1)

G(wg, Uy) = G(wg, wy, ws) = (0.81,0.64,0.91)

G(wy, Up) = G(wy, wp, w3) = (0.97,0.73,0.83)

So, according to the calculations above, w4 belongs to set U and the other data belong to Us.

Here, we have made the data belonging to the clusters according to the fact that the truth values of the
G-metrics are mainly low. If the truth value of G-distance is low, then the data is closer to the set.

7. Conclusions

This paper has introduced many new notions and definitions for clustering neutrosophic big
data and geometric similarity metric of the data. Neutrosophic data sets have density. For example,
sets having indeterminacy density or neutrosophic density and these are adding the more data and
complexity. So, neutrosophic data sets are complex big data sets. Separation and clustering of these
sets are evaluated according to weighted distances. Neutrosophic data sets in the last part of the paper,
K-sets algorithm has been given for neutrosophic big data sets. We hope that the results in this paper
can be applied to other data types like interval neutrosophic big data sets and can be analyzed in
other metric spaces such as neutrosophic complex valued G-metric spaces etc. and can help to solve
problems in other study areas.
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Three possible applications of Neutrosophic Logic
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Abstract

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the
variations surround three parameters called T,LF (truth, indeterminacy, falsehood) which can take a range of values.
This paper shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic.
Once we accept the existence of aether as physical medium, then we can start to ask on what causes matter ejection,
as observed in various findings related to quasars etc. One particular cosmology model known as VMH (variable
mass hypothesis) has been suggested by notable astrophysicists like Halton Arp and Narlikar, and the essence of
VMH model is matter creation processes in various physical phenomena. Nonetheless, matter creation process in
Nature remains a big mystery for physicists, biologists and other science researchers. To this problem Neutrosophic
Logic offers a solution. We also discuss two other possible applications of Neutrosophic Logic. In short,
Neutrosophic Logic may prove useful in offering resolution to long standing conflicts.

Keywords : Neutrosophic Logic, Physical Neutrosophy, aether, matter creation, integrative medicine

1.Introduction

Matter creation process in Nature remains a big mystery for physicists, biologists and other science researchers. To
this problem Neutrosophic Logic offers a solution, along solutions to two other problems, namely the point particle

assumption in Quantum Electrodynamics and also in resolving the old paradigm conflict between Western approach

to medicine and Eastern approach.

In short, Neutrosophic Logic may prove useful in offering resolution to long standing conflicts. See also our previous

papers on this matter. [29-30]
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2. Matter creation pro cesses

Physicists throughout many centuries have debated over the physical existence of aether medium. Since its inception
by Isaac Newton and later on Anton Mesmer (Franz Anton Mesmer 1734 — 1815), many believed that it is needed
because otherwise there is no way to explain interaction at a distance in a vacuum space. We need medium of
interaction, of which has been called by various names, such as: quantum vacuum, zero point field, etc.

Nonetheless, modern physicists would answer: no, it is not needed, especially after Special Relativity theory. Some
would even say that aether has been removed even since Maxwell’sd theory, but it is not true : James Clark Maxwell
initially suggested a mechanical model of aether vortices in his theory [26-28]. Regardless of those debates, both

approaches (with or without assuming aether) are actually resulting in the same empirical results [9].

The famous Michelson-Morley experiments were thought to give null result to aether hypothesis, and historically it
was the basis of Einstein’s STR. Nonetheless, newer discussions proved that the evidence was rather ambiguous, from
MM data itself. Especially after Dayton Miller experiments of aether drift were reported, more and more data came to
support aether hypothesis, although many physicists would prefer a new terms such as physical vacuum or superfluid

vacuum. See [21]-[25].

Once we accept the existence of aether as physical medium, then we can start to ask on what causes matter ejection,
as observed in various findings related to quasars etc. One particular cosmology model known as VMH (variable mass
hypothesis) has been suggested by notable astrophysicists like Halton Arp and Narlikar, and the essence of VMH
model is matter creation processes in various physical phenomena. Nonetheless, matter creation process in Nature
remains a big mystery for physicists, biologists and other science researchers. To this problem Neutrosophic Logic

offers a solution.

Although we can start with an assumption of aecther medium is composed of particle-antiparticle pairs, which can be
considered as a model based on Dirac’s new aether by considering vacuum fluctuation (see Sinha, Sivaram,

Sudharsan.) [5][6] Nonetheless, we would prefer to do a simpler assumption as follows:

Let us assume that under certain conditions that aether can transform using Bose condensation process to become
“unmatter”, a transition phase of material, which then it sublimates into matter (solid, gas, liquid). Unmatter can also

be considered as “pre-physical matter.”

Summarizing our idea, it is depicted in the following block diagram:!

! The matter creation scheme as outlined here is different from Norman & Dunning-Davies’s argument: “Energy may be derived
at a quantum of 0.78 MeV to artificially create the resonant oscillatory condensations of a neutroid, then functioning as a
Poynting vortex to induce a directionalized scalar wave of that quantum toward that vortical receptive surface.” See R.L. Norman
& J. Dunning-Davies, Energy and matter creation: The Poynting Vortex, 2019, vixra.org/1910.0241
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Aether = bose condensation = “unmatter” (pre-physical
matter) = sublimation = ordinary matter/particle

Diagram 1. How aether becomes ordinary matter

Actually the term “unmatter” can be viewed as a solution from perspective of Neutrosophic Logic. A bit of history

of unmatter term may be useful here:

“The word Unmatter’ was coined by one of us (F. Smaranda che) and published in 2004 in three papers on
the subject. Unmatter is formed by combinations of matter and antimatter that bound together, or by long-
range mixture of matter and antimatter forming a weakly-coupled phase. The idea of unparticle was first
considered by F. Smarandache in 2004, 2005 and 2006, when he uploaded a paper on CERN web site and
he published three papers about what he called 'unmatter', which is a new form of matter formed by matter
and antimatter that bind together. Unmatter was introduced in the context of neutrosophy’ (Smarandache,
1995) and parad oxism’ (Smarandache, 1980), which are based on combinations of opposite entities A’ and
antiA’ together with their neutralities neutA’ that are in between.”? See also Smarandache [13].

Nonetheless, in this paper, unmatter is considered as a transition state (pre-physical) from aether to become ordinary
matter/particle, see also [14].

Moreover, superfluid model of dark matter has been discussed by some authors [7].

As one more example/case of our proposed scheme of transition from aether to matter, see a recent paper [18]. See
the illustrations at pages 5 and 6 of [18] regarding the physically observed properties of the Galactic Center (GC),

which are obviously completely different from the imaginary black hole model.

The mapping of the magnetic field structures of the Core is a profile of a torus, as we have previously suggested. Page

5 also illustrates the relation between Sag A and Sag B and the space in between them.

These illustrations are also relevant to matter creation at the galactic scale. Also note the gamma ray distributions in
[18], which are relevant to matter destruction processes. Electrical discharges such as lightning, stars, and galaxies,
all produce gamma rays. Gamma ray resonance dissociates atomic matter back into the aether at the rate of
6,800,000,000 horsepower of energy liberated per gram of matter dissociated per second. And where does all that

energy go? Back into creating new matter. It's a never-ending cycle, and infinitely Universe-wide.

3. Towards QED without renormal ization

2 http://fs.unm.edu/unmatter.htm
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One problem in theoretical physics is how to do away with infinity and divergence in QED without renormalization.

As we know, renormalization group theory was hailed as cure in order to solve infinity problem in QED theory.

For instance, a quote from Richard Feynman goes as follows:

“What the three Nobel Prize winners did, in the words of Feynman, was to get rid of the infinities in the
calculations. The infinities are still there, but now they can be skirted around . . . We have designed a
method for sweeping them under the rug. [19]

And Paul Dirac himself also wrote with similar tune:

“Hence most physicists are very satisfied with the situation. They say: Quantum electrodynamics is a good
theory, and we do not have to worry about it any more. I must say that I am very dissatisfied with the
situation, because this so-called good theory does involve neglecting infinities which appear in its
equations, neglecting them in an arbitrary way. This is just not sensible mathematics. Sensible mathematics
involves neglecting a quantity when it turns out to be small not neglecting it just because it is infinitely
great and you do not want it!”’[20]

Here we submit a viewpoint that the problem begins with assumption of point particle in classical and quantum
electrodynamics. Therefore, a solution shall be sought in developing fluidic Electrodynamics [10], i.e. by using fluid
particle, or perhaps we can call it “fluidicle.” It is hoped that a fluidicle can remove the infinity problem caused by

divergence. And fluidicle can be viewed as a solution from perspective of Neutrosophic Logic.

4. Anoth er a pplication: R esolution to conflicting parad igms in medicine
It is well known by most medicine practitioners, that Western approach to medicine is based on “curing” or “attacking”
a disease, one by one. This is called germ theory: one cure for one disease (Pasteur). On the opposite side, Eastern
medicine is based in particular on ancient wisdom of returning the balance of the body, in other words: to harmonize
our body and our live with nature. Although those two approaches in medicine and healthcare have caused so many
conflicts and misunderstandings, actually it is possible to do a dialogue between them.
From Neutrosophic Logic perspective, a resolution to the above conflicting paradigms can be found in developing
novel approaches which appreciate both traditions in medicine, or we may call such an approach: “curemony,” i.e. by
at the same time curing a disease and restoring balance and returning harmony in one’s body-mind-spirit as a whole.
Although we don’t mention here specific case example, in general speaking we can mention:

a. in HGH therapy, it is known that nutrition can affect the well-being of body [12],

b. inthe same way Epigenetics admits the role of external factors into the genes.

c.  We can also mention that psoriasis —a skin problem- can be related to stress and other emotions, which

suggests a plausible new term: psychodermatology.[11]

All of these examples seem to suggest relational aspect within human being, among mind-body-spirit, just like what
Eastern medicine emphasizes all along. In some literature, such a dialogue between Western and Eastern medicine
approaches can be considered as integrative medicine, but actually it goes far deeper that just “integrative”, it is more

like rethinking the “isolate and solve” attitude of Western scientists, toward more “relational biology.” And the
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concept of systems biology or relational biology have become new terms in recent years. See also recent literatures in
this subject [15][16][17].

Hopefully many more approaches can be developed in the direction as mentioned above.

5. Conclusions

In this paper, we discussed three possible applications of Neutrosophic Logic in the field of matter creation processes
etc. For instance, a redefinition of term “unmatter” is proposed here, where under certain conditions, aether can
transform using Bose condensation process to become “unmatter”, a transition phase of material, which then it
sublimates into matter (solid, gas, liquid). Unmatter can also be considered as “pre-physical matter.” Moreover, a
transition phase between fluid and particle (or fluidicle) is considered necessary in order to solve the “point particle”
assumption which cause the divergence problem in QED. And for the third application of NL, we consider a dialogue
is possible between Eastern and Western approaches to medicine.

Further researches are recommended in the above directions.
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Abstract

Indeterminacy makes the main distinction between fuzzy / intuitionistic fuzzy (and other extensions of fuzzy)
set / logic vs. neutrosophic set / logic, and between classical probability and neutrosophic probability. Also,
between classical statistics vs. neutrosophic and plithogenic statistics, between classical algebraic structures vs.
neutrosophic algebrais structures, between crisp numbers vs. neutrosophic numbers. We present a broad
definition of indeterminacy, various types of indeterminacies, and many practical applications.

Keywords : Indeterminacy, Neutrality, neutA , Neutrosophic Triplets, Types of Indeterminacies, Numerical
Indeterminacy, Literal Indeterminacy, Neutrosophic Number, Quadruple Neutrosophic Number, Refined
Indeterminacy, Subindeterminacies, Null Indeterminacy, Over-/Under-/Off-Indeterminacy, TransIndeterminacies

1. Intro duction

This paper is written after the author received many questions about the concept of Indeterminacy utilized in
the neutrosophic theories (such as Neutrosophic Set / Logic / Probability / Statistics / Measure / Precalculus / Calculus
/ Algebraic Structures), by emails and especially on the very popular websites such as: Researchgate.net,
Academia.edu, Facebook, Twitter, and LinkedIn. And after discussions with Dr. Said Broumi and Dr. Nivetha Martin.

The most general definition, the classification, and many real examples of Indeterminacies from our everyday
life, utilized in the neutrosophic theories and their applications, are presented below in an understandable manner.
“Indeterminacy” should not be taken into the narrow sense of a lexical dictionary, but as something that is in between
the opposites.

Because of dealing with various types of indeterminacies (vague, unclear, uncertain, conflicting, incomplete,
hesitancy, neutrality, unknown, etc.) related to the data or to the procedures employed in our real world, we may
extend by neutrosophication any classical scientific or cultural crisp concept from any field of knowledge to a
corresponding neutrosophic (un-crisp) concept, since in our world more things are indeterminate or partially
indeterminate than completely determinate.
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2. Neutrosophic Triplets

Firstly, let's define the neutrosophic triplets.
Let A be anitem (concept, notion, idea, sentence, theory etc.) and antiA its opposite. In between the
opposites A and antiA , there is a neutral (or indeterminacy) part, denoted by neutA .

The neutA isneither A not antiA ,
or sometimes the neutA is a mixture of partial A and partial antiA .

Of course, we consider the neutrosophic triplets ( A , neutA , antiA )that make sense in the world, and there are
plenty of such triplets in our every day life [1].

3. Examples of Neutrosophic Triplets

» (Friend, Neutral, Enemy)

» (Positive, Zero, Negative)

» (Male, Transgender, Female)

»  (Win, Tie-game, Lose)

» (Small, Medium, Tall)

» (True, Partially-true & Partially-false, False)

»  (True, Indeterminacy, False)

» (Membership, Partially-membership & Partially-nonmembership, Nonmembership)
» (White, Red, Black), etc.

4. Neutrosophic Definition of Ind eterminacy

In neutrosophy, which is a new branch of philosophy, we interpret Indeterminacy in the broadest possible sense,
ie.

Indete rminacy, denoted by neutA ,
is everythi ng that is in betw een the opposites A and antiA .

Instead of this general neutrosophic triplet ( A , neutA , antiA ), the neutrosophic community has been mostly
using the neutrosophic triplet (T, I, F),

where in a broad sense: T  truth (or membership), I indeterminacy (unclear, unknown, vague, uncertain, imprecise,
etc.), F falsehood (or nonmembership), with T, I, F as subsets of the interval [0, 1].

The word Indeterminacy is a generic name for neutA (or the letter “I”). It should not be taken literally (in a
narrow sense) as in a lexical dictionary (such as Webster, Larousse, etc.).

Indeterminacy depends on each application, or problem to solve, and on the experts. That's why there are many types
of Indeterminacies.

In general, Indeterminacy I is not the complement of T and F, since the neutrosophic components T, I, F are
independent from each other.

As amiddle side, neutA isneither A nor antiA , butin between them, or sometimes, a combination of them.
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5. Examples of Indeterminacies

For the neutrosophic triplet (Friend, Neutral, Enemy), the Indeterminacy Neutral (i.e. neither Friend nor Enemy).
For the neutrosophic triplet (Positive, Zero, Negative), the Indeterminacy Zero.

For the neutrosophic triplet (Proton, Neutron, Electron), the Indeterminacy ~Neutron.

For the neutrosophic triplet (Positron, Antineutron, Antiproton), the Indeterminacy Antineutron.

For the neutrosophic triplet (Matter, Unmatter, Antimatter), the Indeterminacy Unmatter (Unmatter is formed by
combinations of matter and antimatter that bound together, or by long-range mixture of matter and antimatter forming
a weakly-coupled phase) [12].

For the neutrosophic triplet (Male, Transgender, Female), the Indeterminacy Transgender (a person whose gender
is unclear, indeterminate).

For the neutrosophic triplet (Win, Tie-game, Lose), the Indeterminacy Tie-game.
For the neutrosophic triplet (Small, Medium, Tall), the Indeterminacy Medium.

For the neutrosophic triplet (True, Partially-true & Partially-false, False), the Indeterminacy Partially-true &
Par tially-false (a combination of the opposites).

For the neutrosophic triplet (True, Indeterminacy, False), the Indeterminacy Indeterminacy.
For the neutrosophic triplet (Membership, Partially-membership & Partially-nonmembership, Nonmembership),
the Indeterminacy Partially-membership & Par tially-nonmembership (a combination of the opposites).

For the neutrosophic triplet (Cause, Neither Cause Nor Effect, Effect), the Indeterminacy Neither Cause Nor
Effect.

For the neutrosophic triplet (White, Red, Black), the Indeterminacy Red.

In Fuzzy Set and Logic, T the truth (or membership), while F 1 — T the falsehood (or nonmembership), while
I 0 is the indeterminacy.

In Intuitionistic Fuzzy Set and Logic, T the truth (or membership), F  the falsehood (or nonmembership), and the
indeterminacy is called hesitancy H 1 -T-F.

In Picture Fuzzy Set and Logic, T the truth (or membership), F  the falsehood (or nonmembership), and the
indeterminacy (I) was split/refined into N  neutrality (or the first subindeterminacy I), and the hesitancy H 1 -T
—F - N (or the second subindeterminacy I»). Therefore: T,I; N, I, H,F. Picture Fuzzy Set and Logic (also called
Inconsistent Intuitionistic Fuzzy Set and Logic, or Ternary Fuzzy Set and Logic)) are particular cases of Refined
Neutrosophic Set and respectively Logic (where T is split/refined into Ty, T, ,Tp; Lis split/refined into I, I,, Iy
and F is split/refined into Fi, F2, ,Fs; with integers p,r, s 0 and at least one of p, r, or sis  2; if some To, o, Fo
occur, it is discarded) [3].

Similarly for other fuzzy extension sets and logics {such as: Pythagorean Fuzzy Set and Logic (also called Atanassov’s
Intuitionistic Fuzzy Set and Logic of second type), g-Rung Orthopair Fuzzy Set and Logic, Fermatean Fuzzy Set and

60



Florentin Smarandache (author and editor) Collected Papers, XllI

Logic, also Spherical Fuzzy Set and Logic, n-HyperSpherical Fuzzy Set and Logic, etc.} [13]. They have either two
components (T and F) or three (T, I, and F), but with the restrictions that 0 T+ F 1 where what’sleft 1 - T—F is
indeterminacy, and respectively 0 T+ 1+ F 1 where what’s left 1 — T—1—F is indeterminacy too.

6. Refined Indetermina cy [3]

In between the opposite A White and antiA  Black, there is a whole spectrum of colors. In this case, the

Indeterminacy neutA is split into many Subindeterminacies: neutAl , neutA2 ,.., neutAn ,forn 2. We
have the following I-refined neutrosophic triplet (where I-refined means refinement with respect to Indeterminacy):
( A ; neutAl , neutA2 ,.., neutAn ; antiA ).

Therefore, the (total) Indeterminacy is the union ( U )of all Subindeterminacies:
neutA neuwtAl U neutA2 U..U neutAn .

7. Example of Refined Ind eterminacy

For the I-refined neutrosophic triplet (White; Yellow, Pink, Red, Blue, Violet; Black), the Indeterminacy Yelow U
Pink U Red U Blue U Violet.

And the subindeterminacies are: neutAl Yellow, neutA2 Pink, neutA3 Red, neutA4 Blue, and
neutAS Violet.

There also is possible to have an infinite I-refined neutrosophic triplet by considering the infinite color spectrum
between White and Black.

8. The Neutrosophic Logic Triplet [1]

The Neutrosophic Logic (NL) truth-value of a proposition P is:

NL(P) (T,I, F), where T the degree of truth of the proposition P;
I the indeterminate-degree of the proposition P to be true or false;
F the degree of falsehood of the proposition P;

or T truth, I indeterminacy, F falsehood. We prefer to use these descriptive notations T, I, F all over for the
neutrosophic components.

9. The Neutrosophic Set Triplet

The Neutrosophic Set (NS) membership-value of an element x with respect to a give set M is:
NS(x) (T,LF),
where
T the degree of membership of the element x with respect to the set M;

I the indeterminate-degree of membership or nonmembership of the element x with
respect to the set M;
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F the degree of nonmembership of the element x with respect to the set M;
or T membership, I indeterminacy, F nonmembership.

10. The Neutrosophic Probability Triplet [4]

The Neutrosophic Probability (NP) of an event A to occur is:

NP(A) ( ch(A), ch(neutA), ch(antiA) ), where:
ch(A) the chance that the event A occurs;
ch(neutd) the indeterminate-chance (not sure, not clear) that the event A occurs or not;
ch(antiA) the chance that the event A does not occur.

In this case, the Indeterminacy  ch(neutA).

11. Indeterminacy in Neutrosop hic Statistics [5, 6]

While the Classical Statistics deals with determinate data, determinate probability distributions, and determinate
inference methods only, the Neutrosophic Statistics may deals with indeterminate data {i.e. data that has some degree
of indeterminacy (unclear, vague, partially unknown, contradictory, incomplete, etc.)}, indeterminate probability
distributions, and indeterminate inference methods {i.e. distributions and inferences that contain some degrees of
indeterminacy as well (for example, instead of crisp arguments and values for the probability distributions and
inference methods, charts, diagrams, algorithms, functions etc. one may deal with inexact or ambiguous arguments
and values)}.

For example:

- The sample’s size or population’s size are not exactly known (for example, the size may be between 200 —
250 individuals).

- Not all individuals may belong 100 to the sample or populations, some may only partially belong (their
degree of belongingness T 1), others may over-belonging (their degree of belongingness T~ 1).

An application:

Upon their work for a factory, John belongs 100 , George 50 (he's a part-timer), and Mary 110
(because she works overtime). John is 40 years old, George 60, and Mary 20. What is the age average of
this company’s workers?
In the classical statistics, where the degree of belongingness to the factory does not count, the age average
is simply: (40 +60 +20)/3 40.
In neutrosophic statistics, where the degree of belongingness does count, one has:
(40 1+60 0.5+20 1.1)/(1+0.5+1.1) 92/2.6 3538.
{In classical statistics, the degree of belongingness was considered T 1 for all workers: but the age
average (40 1+60 1+20 1)/(1+1+1) 120/3 40 is inaccurate, since George’s work of only 50
cannot be the same as Mary’s of 110 .}

- The distribution probability curves may not be crisp or exactly known (as in classical statistics), but
indeterminate functions (with approximations, or vague and conflicting information), or they may be
represented by thick functions (the area between two curves).

62



Florentin Smarandache (author and editor) Collected Papers, XllI

12. When Indeterminacy 0

Let T, I, F belonging to the interval [0, 1] be the neutrosophic components.
If Indeterminacy I 0, the neutrosophic components (T, 0, F) are still more flexible and more general than fuzzy
components and intuitionistic fuzzy components. Because, we get:

- for the fuzzy set and the intuitionistic fuzzy set (they coincide):
T+F 1.

- while for the neutrosophic set:

0 T+F 2,

whence we may have any of these situations:
T+ F 2 (for incomplete information);
T+ F 2 (for complete information);
T+ F 2 (for paraconsistent / conflicting information, coming from independent sources).

Therefore, the neutrosophic set is more flexible and more general than the other sets, no matter the value of
indeterminacy.

13. Classification of Indeterminacies

Since there are many types of indeterminacies, it is possible to define many types of neutrosophic measures in

any field of knowledge.
And, in general, because of dealing with lots of types of indeterminacies, we can extend any classical scientific or
cultural concept from various indeterminate/neutrosophic viewpoints.

(i) There is the Numerical Indeter minacy, as part of the numerical neutrosophic triplet (T, I, F), when 1 isa
numerical subset (interval, hesitant subset, single-valued number, etc.) of [0, 1], and it is used in neutrosophic set,
neutrosophic logic, and neutrosophic probability.

(i1) And the Literal Indeterminacy, wherel 2 I, with T justaletter [7], used in neutrosophic algebraic structures
(such as: neutrosophic group, neutrosophic ring, neutrosophic vector space, etc.) that are built on the sets of the form:

S {a+ bl,withl 2 1, anda,bin M}, where M is a given real or complex set.

The Literal Indeterminacy (I) is also used in neutrosophic calculus and in some neutrosophic graphs and neutrosophic
cognitive maps, when the edge between two vertexes is unknown and it is denoted by a dotted line (meaning
indeterminate edge).

(iii) Tra nsInd etermi nacies, inspired from the transreal numbers [11], some of which are:

(a) Infinite Indeter minacy ( denoted by oo, )

[ =limI" =0,

I . 1

—=lim—=oo,

0 x=0 x
[-o0o=00-1T=Ilim(n-I)=0c0,

X—»00

(b) Null Indeter minacy ( denoted by ¢, )

I .1
—=Ilim—=¢,
o0 X*}OOX
1 1 1
["=—=lim—=—=
1 noo [" o0 ¢1

I
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(iv) Also, the Neutroso phic Number, N d + e. I, where a and b are real or complex numbers introduced
in [7], and they were interpreted as N d + e[1I, where d is the determinate part of the number N, and e[] is the
indeterminate part of the number N in [5].

There are transcendental, irrational etc. numbers that are not well known, they are only partially known and partially
unknown, and they have infinitely many decimals. Not even the most modern supercomputers can compute more than
a few thousands decimals, but the infinitely many left decimals still remain unknown. Therefore, such numbers are
very little known (because only a finite number of decimals are known), and infinitely unknown (because an infinite
number of decimals are unknown).

Let's take \/g 1.7320508..., then an easy example of neutrosophic number capturing (3) is:

N a+bl 1.732+4[0.000010,0.000015] [1.73204, 1.73206], where of coursea 1.732,b 4, and I
[0.000010, 0.000015].

The way of choosing the parameters a, b, I depends on the needed accuracy of the neutrosophic number N, on the
problem to solve, and on the experts.

The neutrosophic number is used in neutrosophic statistics, and in neutrosophic precalculus [8].

(v) In the Qua dru ple Neutro sophic Number, which has the form QN a+ b T+ ¢ I+ d F, where the known
part of QNis a,

and the unknown part of QNisb T+c I+d F,
then the unknown part is split into three subparts:
degree of confidence (1),
degree of indeterminacy between confidence-nonconfidence (I),
and degree of nonconfidence (F).
QN is a four-dimensional vector that can also be written as: QN (a, b, c, d).

T, I, F are herein literal parameters. The multiplication amongst these literal parameters uses the absorbance
(prevalence) law, i.e. one parameter absorbs (includes) another (see [9]).

But in specific applications T, I, F may be numerical too (in general, subsets of [0, 1]).
(vi) The Over-/Under-/Off-Indeterminacy
For OverIndeterminacy we have I 1 within the frame of Neutrosophic Overset;
for UnderIndeterminacy we have I 0 within the Neutrosophic Underset;

and in general for OffIndeterminacy we have sometimes I 1 and other times I 0 within the frame of neutrosophic
Offset.

For your information, there are cases when the degrees of membership, indeterminacy or nonmembership may be
each of them 1 or 0, and these are happening in our real life applications (see [10, 11]).
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Conclusion

We have presented the broad definition of Indeterminacy, then listed various types of indeterminacies used in
neutrosophic set / logic / probability / statistics / measure / precalculus / calculus / algebraic structures, accompanied
by applications in our every day life. Indeterminacy is the main distinction between neutrosophic theories and other
theories.
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Abstract

This study investigates a four-index multiobjective transportation problem (F-
IMOTPs) with uncertain supply and demand coverage. Different echelons having
uncertain parameters’ values are considered. An inter-connected multi-product F-
IMOTPs is assumed for the smooth flow of items, enhancing supply chain reliability
under uncertainty. A mixed-integer multiobjective programming problem that mini-
mizes total transportation costs, time, safety costs, and carbon emissions abatement
is depicted under an intuitionistic fuzzy environment. Further, three different inter-
active approaches, namely extended fuzzy programming approach (EFPA), extended
intuitionistic fuzzy programming approach (EIFPA), and extended neutrosophic pro-
gramming approach (ENPA), are developed to solve the proposed F-IMOTPs model.
Different membership functions elicit each objective’s marginal evaluation. The pro-
posed F-IMOTPs model is implemented in a logistic company and solved using three
interactive approaches that reveal the proposed methods’ validity and applicability.
An ample opportunity to generate the compromise solution is suggested by tuning
various weight parameters. The outcomes are evaluated with practical managerial im-
plications based on the significant fi ndings. Finally, conclusions and future research
scope are addressed based on the proposed work. The discussed F-IMOTPs model
can be merged with and extended by considering inventory and supply chain facilities,
which are not included in this study. Uncertainty among parameters due to random-
ness can be incorporated and tackled with historical data. Besides the proposed
conventional solution methods, various metaheuristic approaches may be applied to
solve the proposed F-IMOTPs model as a future research scope. The strategy advised
is to provide an opportunity to create valuable decision-making policies within India
by helping existing transportation networks, safety features, and imports only if nec-
essary to meet timelines. The reduction in carbon emissions abatement also ensures
less burden on environmental impacts. Thus, any logistics/transportation company
or organization can adopt the distribution management initiatives amongst the supply
and demand points to strengthen and enable the company to handle the uncertain-
ties. Finally, managers or policy-makers can take advantage of the current study
and extract fruitful information and knowledge regarding the optimal distribution
strategies while making decisions. This research work manifests the supply-demand
oriented extension of the integrated F-IMOTPs model design with minimum total
transportation costs, time, safety costs, and carbon emissions abatement under flexi-
ble uncertainty. The practical managerial implications are explored that immensely

support the managers or practitioners to adopt the distribution policies for the PIs to
ensure sustainability in the designed F-IMOTPs model.

Keywords: Intuitionistic fuzzy parameters; Conventional optimization methods;
Neutrosophic set theory; Multiobjective transportation problem.

67



Florentin Smarandache (author and editor) Collected Papers, XllI

1 Introduction

Transportation problem is a special case of linear programming problem. The objective
is to determine the amount that should be transported from each source to each destina-
tion, so that the total transportation cost is minimized. It consists with a linear objective
function and linear constraints. In this article we consider to model multiobjective trans-
portation problem using fuzzy set theory. We face many situations where more than
one conflicting/non-conflicting objectives are to be optimized under a set of well-defined
constraints. In optimization theory, this class of problems is known as multiobjective
programming problems (MOPP) and identified as an important class of optimization
problem. Because of the presence of multiple objective functions, the problems become
harder to obtain a single solution that satisfies each objective function efficiently. Instead,
attempts are taking to obtain the compromised solution sets which satisfy each objective
function marginally. A multiobjective optimization problem (MOOP) refers to obtain a
solution x € G ¢ RE which minimizes an objective function vector f : G — R such
that G denotes the E—dimensional solution space, and R represents the H—dimensional
objective space. Most commonly, the sole target of MOOPs is to determine a set of non-
dominated solution which attains the approximates of Pareto front in the same objective
spaces. Mathematically, MOOPs can be expressed as follows:

MInF() = [/i(€) Q)+ fulO)] € R

Subject to
p(£) <0 (D
q(£)=0
(rl‘ S gl S gsi’ l = [1’2’ an]

where ¢ = [{1,{1,- - - , ] is defined as the decision variables, F({) is the objective vector,
p({) represents the inequality and ¢({) denotes equality constraint vectors, respectively,
{ri and {; are the lower and upper bounds in the decision space of the ¢; variable. The
solutions methods can classified into three broad categories namely classical technique,
fuzzy-based solution approach, and nature-inspired algorithm. In this context we mention
that vector optimization is a subclass of optimization problems with a vector-valued
objective function for a given partial ordering. A multi-objective optimization problem
is a special case of a vector optimization problem. The classical techniques contemplate
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the use of priority information while optimizing the MOOPs. Various methods such as
Weighted sum method, e—Constraint method, Weighted metric method, Benson’s method,
Value function method and Goal programming method. The Weighted sum method is
based on the working principle that the objectives are transformed into a single objective by
multiplying the pre-determined weight. The e—Constraint method resolves the problems
that are encountered while the weighted sum method is applied. It alleviates obtaining the
solution having non-convex objective spaces by solving the single objectives and keeping
the objectives within a well-specified v alue. The weighted metric method considers the
metrics such as [, and [, distance metrics are commonly used in place of the weighted
sum of the objectives. Hence the weighted metric methods convert the multiple objectives
into a single objective. The weighted metric method and the Bensons method are similar
to each other except that the reference solution is obtained as the feasible non-Pareto
optimal solution. The value function methods determine the mathematical value function
U : RM — R, concerning all objectives. The validity of the value function should be
over the whole feasible solution search space. The goal programming technique tries to
search the pre-targeted values of one or more than one objective function at a time. When
no solution attains the pre-specified target values, the task is to determine such a solution
that minimizes deviations from the targets. If a solution with desired target values exists,
then the task is to determine that specific s olution. For more details, visit Das and Jana
[17], Mohan et al. [22] etc.

The fuzzy programming approach (FPA) is basically concerned with maximizing satis-
faction degree for the decision-maker(s) while dealing with multiple objectives simulta-
neously. In last several decades, a tremendous amount of research was presented based
on the fuzzy decision set. The limitation of the fuzzy set has been examined because it
cannot define the non-membership function of the element into the fuzzy s et. The intu-
itionistic fuzzy programming approach (IFPA) is a more flexible and realistic optimization
technique compared to the fuzzy technique because it deals with the membership function
and the non-membership function of the element into a feasible decision set.

Therefore, an efficient algorithm is needed to solve the MOPP. The fuzzy set (FS) was
initially proposed by Zadeh et al. [32], and later on, it was extensively used in multiple
criteria, multiple attributes, and multiobjective decision-making problems. Afterward,
Zimmermann [37] investigated the fuzzy programming technique for the multiobjective
optimization problem, which was based on the membership function for the marginal eval-
uation of each objective function. Therefore, the fuzzy set’s extension was first presented
by Atanassov [15] which is based on more intuition compared to the fuzzy set and termed
as the intuitionistic fuzzy set (IFS). Later on, the potential applications of IFS have been
presented in many decision-making processes and emerged as useful tools while dealing
with uncertainty.

Based on IFS, Angelov [14] first addressed the intuitionistic fuzzy programming approach
(IFPA) for real-life decision-making problems. Peng and Yang [24] also obtained some
useful results based on the Pythagorean fuzzy set for multi-attribute decision-making

69



Florentin Smarandache (author and editor) Collected Papers, XllI

problems. Peng and Selvachandran [23] addressed some well-known results and also
discussed some future direction of research-based Pythagorean fuzzy set. Wan et al.
[30] also presented the Pythagorean fuzzy mathematical optimization technique for multi-
attribute group decision-making problem under the Pythagorean fuzzy scenario. Zhang
and Xu [33] developed a new model for multiple criteria decision-making problem under
Pythagorean fuzzy environment and also proposed a technique for order preference by
similarity to ideal solution (TOPSIS) method to determine the degree of closeness to
the ideal solution. Unlike IFS, the flexible nature of PFS would be immensely adopted
for further research scope. Ye [31] presented a study on multi-attribute decision-making
method with the single-valued neutrosophic hesitant fuzzy information. Zhang et al. [34]
addressed a multiple criteria decision-making problem with the hesitant fuzzy information
regarding the values of different parameters. Zhou and Xu [36] also presented a portfolio
optimization technique under a hesitant fuzzy environment.

Alcantud and Torra [13] have proposed some decomposition theorem and extensions
principle for the hesitant fuzzy set. Bharati [16] suggested a hesitant fuzzy technique to
solve the multiobjective optimization problem. Faizi et al. [18] also discussed multiple
criteria decision-making problems under hesitant fuzzy set theory. Lan et al. [20] extended
the application of hesitant fuzzy set to hesitant preference degree in multiple attribute
decision-making problem. Liu and Luo [21] also proposed a new aggregation operator
based on a neutrosophic hesitant fuzzy set and applied it to multiple attribute decision
making. Zhang [35] also discussed hesitant fuzzy multi-criteria decision-making problem
under the unknown weight information. Akram et al. [10] suggested a novel model based
on the combination of hesitant fuzzy set and N-soft set. The application of hesitant N-soft
set in group decision-making problem is also presented. Alcantud and Santos-Garcia [12]
also performed a study on expanded hesitant fuzzy sets along with the application in group
decision-making problems. Alcantud and Giarlotta [11] also investigated a new model
for group decision-making problems with the aid of necessary and possible hesitant fuzzy
sets.

Nature-inspired algorithms are categorized into three different approaches namely, aggre-
gating functions, population-based approaches and Pareto-based methods. The aggrega-
tion functions convert all the objective functions into a single objective employing some
arithmetical operations. These methods contain the linear aggregation functions, which
make it trivial and not that much impressive. Often, the population-based approaches
are based on the EA’s population to initiates the search. A Vector Evaluated Genetic
Algorithm considered the conventional example of population-based approaches. At each
generation, sub-populations are generated by proportional selection. For example, if the
population size is N and n is the total number of objectives, the sub-population size will
be N/n. The population-based optimization method is straightforward to apply, but the
main difficulty is to find the appropriate selection scheme, which is not based on Pareto-
optimality. Pareto-based methods are the most popular and extensively used techniques,
which are divided into two different generations. The first generation comprises the
fitness sharing, niching combined with Pareto ranking, second generation with elitism.
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Motivation and research contribution

The TPs are well-known in the field of continuous optimization. Various advance mathe-
matical programming models are presented in the literature based on the different
scenarios and assumptions. The best estimation of uncertain parameters is always a
challenging task in TPs because it decides the optimal allocation policies of the products
and determines the optimal transportation cost and other objectives defined in the model.
One more essential issue arising these days is the existence of multiple objectives in the
TPs. More than one commensurable and conflicting objectives are to be optimized, such
as transportation time, carbon emissions, and the transportation cost that addresses TPs
sustainability. Thus, we have presented the F-IMOTPs under an intuitionistic fuzzy
environment. Due to incom-plete, inconsistent, and inappropriate information or
knowledge, the different parameters are represented by intuitionistic fuzzy numbers
comprising the membership grades, cov-ering a wide vagueness. The extended version of
various conventional approaches such as EFPA, EIFPA, and ENPA is developed to solve
the F-IMOTPs. The robustness of the solution approaches has been established with the
help of solution results. The ample opportunity to obtain different solution sets has been
introduced for decision-makers or managers by tuning the feasibility degree (1). The
selection of the best compromise solution set among multiple outcomes has been
determined by the fuzzy TOPSIS ranking method. A numerical study of Indian-based
transportation companies has been done along with the significant findings.

The remaining portion of the article is structured as follows. In Section 2, some definitions,
results and the concept regarding the intuitionistic fuzzy parameters are presented which
will be used in the subsequent sections. Section 3 contains several novel modeling
approaches of F-IMOTP along with the related results. The extended version of solution
approaches are proposed in Section 4. In Section 5, a numerical example is presented to
illustrate the proposed methods. The conclusions and future research scope are given in
Section 6.

2 Preliminaries

In this section we consider some definitions, results and concepts which are used in the
following sections.
Definition 1: [15] (Intuitionistic fuzzy set) Assume that there be a univeral set X. Then,
an intuitionistic fuzzy set (IFS) Y in X is defined by the ordered triplets as follows:

Y = {x, (0, vy(x) [ x € X)
where uy(x) : X — [0, 1] denotes the membership function and v(x) : X — [0, 1] denotes

the non-membership function of the element x € X into the set Y, respectively,
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with the conditions 0 < uy(x) + vy(x) < 1. The value of ¢3(x) = 1 — py(x) — vy(x), is
called the degree of uncertainty of the element x € X to the IFS Y. If ¢7(x) = 0, an IFS
chnages into fuzzy set and becomes Y = {x, py(x), 1 —pp(x) | x € X}.

Definition 2: [5] (Intuitionistic fuzzy number) An IFS Y = {x, uy(x), vy(x)|x € X}is
said to be an intuitionistic fuzzy number iff

1. There exists a real number xo € R for which uy(x) = 1 and vy(x) = 0

2. The membership function g (x) of Y is fuzzy convex and non-membership function
vy(x) of Y is fuzzy concave.

3. Also, uy(x) is upper semi-continuous and vy(x) is lower semi-continuous.
4. The support of Y is depicted as (x € R : vg(x) < 1).

Definition 3: [5] (Triangular intuitionistic fuzzy number) A triangular intuitionistic fuzzy
number (TrIFN) is represented by Y = ((y1,¥2,¥3); (21, ¥2,23)) where z1, y1,¥2,¥3,23 € R
suchthatz; < y; < y; < y3 < z3; and its membership function uy(x) and non-membership
function vy(x) is of the form

X — - X
yl, if y1 <x <y, Y2 , if 71 < x <yy,,
Y2 =1 ¢ Y2 —21 ¢
I, it x =y, 0, it x =y,
py(x) =1 y3—x . Y and vp(x) =1 x -y, . Y
, if yp <x<y3, , if yp <x < z3,
y3—y 3=y
0, if otherwise. 1, if otherwise.

Definition 4: [5] Consider that a TrIFN is given by Y = ((y1,¥2,¥3); (21, y2,23)) Where
21,Y1,¥2,¥3,23 € R such that z; < y; < y» < y3 < z3. Then the parametric form of

Y are u(t) = u(r),u!r)) and v(1) = (V(T), M) Further, u(7) and v(r) are the para-
metric form of TrIFN corresponding to membership and non-membership functions such
that u(t) = y3 —7(y3 = y1), u(@) = y1 = 7(y2 — y1) and v(7) = y2 = (1 = 7)(y2 — 21),

- tively. A TrIFN Y = R Vo, id t
%(_)osny 1ve '[(r]IFNT)f(ZZ31 >0 %ﬁﬁs gﬁclg(}%,, 2, y3r, Z3 are all(p()oél i 131211% ; ’ry 2-23)) is said to

Remark 1: Assume that ¥ = ((y1,y2,3); (21,72,23)) and W = (w1, w2, w3); (v1, w2, v3))
are two TrIFNs. Then addition of Y and W is again a TrIFN.

Y+W=[(1 +wnLy2+way3 +w3);(z1 +vi,y2 + w2, 23 + v3)]
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Remark 2: Consider that Y = ((y1,y2, y3); (21, y2, 23)) be a TrIFN and k € R. Then scaler
multiplication of Y is again a TrIFN.

_ (ky1, kya, kys; kzy, kv, kz3) k>0
k(Y) =19 (kys,kys, kyi;kzs, kys, kz;) k<0
(0,0,0;0,0,0), k=0

Remark 3: The two TrIENs Y = ((y1, y2, v3): (z1, y2, 23)) and W = (w1, wa, w3); (v, wa, v3))
are said to be equal iff y; = wy,y2 = wp,¥3 = W33 21 = V1, Y2=u,, 23 = V3.

Definition 5: [9] (Expected interval and expected value of TrIFNs) Suppose that Y =
((v1,y2,¥3); (21, ¥2,23)) be a TrIFN and EI* and EI” depict the expected intervals for
membership and non-membership functions respectively. Thus, these can be defined as

follows:
EI*Y) = l/o @dk‘r,/o M(T)dk‘l']

! !
= [./0 y3—T()’3—y1)dkT,/0 yi = 7(y2 = y1)dt

EI'(Y) = [/0 @dkT,L v(T)dk‘r]

! |
= [/ 2 —(1 —T)(yz—m)dkT,/ y2 +(1 _T)(Z3_)’2)dk7']
0 0

Moreover, consider that EVA(Y) and EV*(Y) represent the expected values corresponding
to membership and non-membership functions respectively. These can be depicted as

follows: ' I
/0 u(r)dyt + fo u(TdeT  yy + 25 + y3

EVA(Y) = > = ) 2)

1 11—
Jo Y@dit + [ v(D)dir _at2y+2z3
2 - 4
The expected value EV of a TrIFN Y = (1,2, y3); (21, y2, 23)) i given as follows:

EV'(Y) = (3)

EV(Y)=yEVHAY) + (1 - ¢)EV"(Y), where ¢ € [0, 1]

Definition 6: [6] (Accuracy function) The expected value (EV) for TrIFN

Y = ((y1,y2,y3); (21, 2, 23))
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with the help of Egs. (2) and (3) and for ¢ = 0.5 can be represented as follows:

yi+ys+4yr+21 +23
8

EV({Y)=
Thus EV(Y) is also known as accuracy function of Y.

Theorem 1: [26] Suppose that ;17 be a TrIFN. Then for any EV : IF(R) — IR; the
expected value EV(kA) = kEV(A) for all k € R.

Theorem 2: [26] Suppose that Y and W be two TrIFNs. Then the accuracy function
EV : IF(R) — Ris alinear function i.e., EV(Y + kW) = EV(Y) + kEV(W)Vk € R.

Theorem 3: [26] Suppose thatY = ((v1,v2,v3); (21, v2,23)) be a TrIEN. If 71 = y1,23 = y3,

= + 2y +
then EV(Y) = }}14#, represents a defuzzified value of triangular fuzzy number.

Theorem 4: [26] The expected value EV (k) = k, where k € R.

Definition 7: [3] (Neutrosophic set) Suppose x € X denotes the universal discourse. A
neutrosophic set (NS) A in X can be depicted by the truth w4 (x), indeterminacy A4(x) and
a falsity v4(x) membership functions and is expressed as follows:

A = {< x, ua(x), Aa(x), va(x) > |x € X}

where pa(x), 14(x) and v4(x) are real standard or non-standard subsets belong to ]0~, 17,
also given as, ua(x) : X — 07,17, 2a(x) : X —]07,17[, and va(x) : X —]07,17[.
Also, the sum of pa(x), 14(x) and v4(x) is free from all restrictions. Thus, we have

07 < sup pua(x) + A4(x) + sup va(x) < 3*

Definition 8 : [ 3] A NS issaid to be single valued neutrosophic s et A if the following
condition will holds:

A = {< x,ua(x), 2a(x),va(x) > |x € X}

where p4(x), 14(x) and va(x) € [0,1] and O < pa(x) + Aa(x) + va(x) < 3 for each x € X.

Definition 9: [5] The union of two single valued neutrosophic sets A and B is also a single
valued neutrosophic set C, i.e., C = (A U B) with the truth uc(x), indeterminacy A¢(x)
and falsity v¢(x) membership functions as follows:

Hc(x) = max (ua(x), pp(x))
Ac(x) = max (24(x), Ap(x))
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ve(x) = min (va(x), vp(x))

for each x € X.

Definition 10: [5] The intersection of two single valued neutrosophic sets A and B is also
a single valued neutrosophic set C, i.e., C = (A N B) with the truth uc(x), indeterminacy
Ac(x) and falsity v¢(x) membership functions as follows:

pc(x) = min (ua(x), up(x))
Ac(x) = min (A4(x), Ap(x))
ve(x) = max (va(x), vp(x))

for each x € X.

3 Multiobjective transportation problem

Transportation problems (TPs) are concerned with the transporting of different kinds of
products from one place to another to achieve the optimal prescribed objective(s). The
classical transportation model can be defined as follows:

m n
Min Z :ZZCU}CU

i=1 j=1
Subject to

n

Zx,-j:a,-, I = 1,2,3,...,m
j=1

X,’j = bj, ] = 1,2,3,...,71

s

~
l
—_

n
bj, Xij >0, Vi&j
=1

Ngb
82
I

Il
—_

1

Ahmad and Adhami [3] presented the multiobjective transportation model under fuzziness.
The performances of the fuzzy approach are analyzed using the family of the distance
function. Adhami and Ahmad [1] also solved the multiobjective transportation problem
using the interactive fuzzy programming approaches. Singh and Yadav [28] represented
the cost parameter with the triangular intuitionistic fuzzy number, and the ordering of
fuzzy number have used to develop intuitionistic fuzzy modified distribution method with
the help of accuracy function for finding the optimal solution of T Ps. Singh and Yadav [27]
used the ranking function to deal with all uncertain parameters and consequently proposed
an intuitionistic fuzzy method to find the initial basic feasible solution of TPs. Jana [19]
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solved a type-2 intuitionistic fuzzy transportation problem by the ranking function for the
mean interval method by taking all the parameters type-2 intuitionistic fuzzy number.Here,
we propose a new F-IMOTP with k (= 1,2,3,...,K) objectives which are to be optimized
under each m origins having a;(i = 1,2,3,...,m) units of availability and to be transported
among n destinations having b; (j = 1,2,3,...,n) units of demand level. The different cost
associated with the k objectives is represented as c¢;jx. A decision variable x;;, is defined,
which is an unknown quantity and are to be transported from i’ origin to j'* destination
in such a way that the total transportation cost, labor cost, and safety cost is minimum.
The useful notations are summarized in Table 1.

Table 1: Notions and descriptions

Indices Descriptions
i Represents the sources
j Represents the destinations
k Represents the conveyance
g Represents the types of products
Decision variable
xigj . Unit quantity of products
g Bi able such that ¢ = 1 7 Yk >0
Viik Inary variable such that Yijk = 0, xigj L= 0
Parameters
Eigj X Unit transportation cost
P Unit penalty cost
?igj k Unit transportation time
5 The safety factor
yk
scf.”j . Unit safety cost
Eél.]. X Unit carbon emissions cost
a Total availabiltiy
b§ Total demand
,-_g .
e. Total coveyance capacity
B; Total budget
B Desired safety value
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So, the mathematical model for F-IMOTPs can be given as follows (4):

I J K G
Min ZIIF = Z Z Z Z Eigjkxfjk (Transportation cost)
i=1 j=1 k=1 g=1
I K G
ZIF _ 2 .8 S
Min Z," = Z Z Z Z LiYiik (Transportation time)
i=1 j=1 k=1 g=1
I J K G
. SIF _ 8 .8
Min Z3" = Z Z Z Z ¢ Vi (Safety cost)
i=1 j=1 k=1 g=1
I J K G
. SIF _ < (=8 .8 P
MinZ,” = Z Z Z Zpk (Ceijkxijk) (Carbon emissions)
i=1 j=1 k=1 g=1
Subject to

[Me
=
P s}

>~

IA
Sl

i=1,273,..,m

K
= ;gzl e )
K
2
k=1

e
=
<R
~
v
)
\.%

j=123,...n

I K G
DYDY b <, i=123,.,m
ijk i
i=1 j=1 k=1 g=1
I J K G
~£ .8 , _
SV S B, =123
i=1 j=1 k=1 g=1
I J K G
- .8 - _
ZZZZsl]kyl]k>B, i=1,23,...m
i=1 j=1 k=1 g=1
m n
Dlaz b x20 Vi&)
i=1 j=1

where notations (") over different parameters represents the triangular intuitionistic fuzzy
number for all indices’ set.
The equivalent intuitionistic fuzzy multiobjective transprotation problem (4) can be sum-
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marized as follows (5):

Min Z'F(x) = [ZIF(xljk) ZIF(xljk) ZIF(xUk) ZIF(xl_/k)
Subject to
Jj'zlAijxfjk <B, i=hL+1L+2--,D,
jj'zlgijxfjk =B, i=h+1,L+2,---,1.
xfjkzo, i=1,2,J.
where ZliF(x) = 1()1F gk’ V k =1,2,---,4 is the k-th objective function with

trapeziodal intuitiomstlc fuzzy parameters.

With the aid of accuracy function (Theorem 1) which is linear, the intuitionistic fuzzy
programming problem (IFMOPP) (5) can be converted into the following deterministic
MOPP (6):

Subject to
Al].xl]k = Bl/’ l =12--- L, (6)
JJlAylek_B,l:]1+1,11+2,...’12’
]:]Alj ijk B i=bL+1,1Lb+2,---,1.
O ]_1,2"",.].

’ —~ K —~ . ’ _ jg
where Z; (x%,) = EV (z,gF(xfjk)) = XK EV (@) xf V= 1.2 K: B = EV (Bi)
and A;j =EV (ZZJ) foralli =1,2,---,1, j=1,2,---,J are the crisp version of all the
objective functions and parameters.

Of particular interest, we have proven the existence of an ecient solution of the problem
(5) and the convexity property of crisp MOPP (6) in Theorems 5 and 6, respectively.

Definition 13: Assume that X be the set of feasible solution for the crisp MOPP (6). Then
a point x* is said to be an efficient Pareto optimal solution of the crisp MOPP (6) if and
only iff there does not exist any x € X such that, O(x*) > Ok(x), V k=1,2,--- ,4 and
Or(x*) > Oy(x) for all at least one V k = 1,2,---,4. Here, k is the number of objective
function present in the crisp MOPP (6).

Definition 1 4: A pointx € X issaid to be weak Pareto optimal solution for the crisp
MOPP (6) iff there does not exist any x € X such that, O (x*) > Oy (x),Vk=1,2,---,4.
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We prove the following theorem to establish the existence of efficient solution which has
one-one correspondence between MOPP and IFMOPP.

Theorem S5: An efficient solution of the crisp MOPP (6) is also an efficient solution for
the IFMOPP (5).

Proof: Consider that x € X be an efficient solution of the crisp MOPP (6). Then X is also
feasible for the crisp MOPP (6). It means that the following condition will hold:

A x¢ B;, i=12,---,1,

l_/ ljk -l
j=1 Al]xljk—B"9 i:]1+1,11+2,---’12,
Al]xl]k B l:[2+1’[2+2’...,1_

=0, ]-12---,].

Since it is proven that EV is a linear function (Theorem 2), we have

LBV (), 2 BV (B), i= 1201,
LBV (&), <EV(B), i=h+LL+2: b,

EV(A,,)x —EV(B,),1—12+112+2-~,I.
XJZO, j=12,---,J.

Consequently, we have

A,]xlgksB,, i=L+11 +2,-
A,Jx —Bl,l—12+1]2+2 I

le>O ]—12 ,J.

Hence, X is a feasible solution for the IFMOPP (5).
Moreover, since X is an efficient solution for the crisp MOPP (6), there does not exist any
X* = (x§,x5,- -+ ,x;) such that Zy(X*) < Zy(X) ¥V k = 1,2,--- 4 and Z;(X*) < Zi(X)

for at least one k = 1,2,---,4. Thus we have no X* such that Min Zlk(:l EV (Zk(X)) <

Min Y5 EV (Zk(x*)) Vk=12"-,4andMin ¥X EV (Zk(X)) <Min 35 EV (Zk(x*)) vk =
1,2,--- ,4 for atleastone k = 1,2,--- ,4.

Since E'V is alinear function (Theorem 2), we have no X* such that Min Zle EV (Zk (X )) <

Min X EV (Zk(x*)) Vk=12",4andMin ¥X EV (Zk(X)) <Min3X  EV (’z'k(x*)) Vk=

1,2,---,4 for at least one k = 1,2,--- ,4. Thus X is an efficient solution for the IFMOPP
5). [
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We propose the following model which is equivalent the crisp MOPP.

Let Z; and Z, be comonotonic functions, then for any intuitionistic fuzzy parameter Y, we
have _ _ N N
EV [zl ¥) + ZZ(Y)] - EV [zl (Y)] +EV [ZZ(Y)]

For the sake of simplicity, let us consider an auxiliary model (7) which is an equivalent to
the crisp MOPP (6) and can be given as follows:

Min EV [Z(X,Y)] - (EV [zl(x,if)] . EV [zk(x,i/')]) Vk=1,234.
Subject to
]JIA;] x5 2B, i=12 .1,
Aljxljk_B/, i=L+10+2- b,
]JZIA;]xUk B, i=h+1,L+2-,I

X 20, )= 1,2,--- ,J.
(7)
Where EV|-] in auxiliary model (7) represents the expected values (accuracy function) of
the intuitionistic fuzzy parameters.

In Theorem 5, we have already proven the expected value EV efficient solution for the
IFMOPP (5). This concept is obtained by presenting the crisp MOPP (6), which comprise
the expected value of intuitionistic fuzzy uncertain objectives of the IFMOPP (5).
Intuitionally, if the intuitionistic fuzzy uncertain vectors in the auxiliary model (7) degen-
erate into intuitionistic fuzzy parameters, then the following convexity Theorem 6 of the
auxiliary model (7) can be proved.

Theorem 6: Suppose that the function Z(X,Y Y) is differentiable and a convex vector func-
tion with respect to X and Y. Thus, for any given X, X; € X, if Zi(X1,Y) and Z(X,Y)
are comonotonic on intuitionistic fuzzy parameters Y, then the auxiliary model (7) is a
convex programming problem.
Proof: Since, the feasible solution set X is a convex set, intuitionally, it is sufficient to
obtain that the auxiliary model (7) is a convex vector function.
Note that the Z(X, Y) is a convex vector function on X for any given Y, the inequality

z (5X1 +(1-6)Xa, ?) < 6Z(X,Y) + (1 - 6)Z(Xa,Y)
holds for any 6 € [0.1] and X|, X; € X, i.e;

7 (5X1 + (1= 8)Xa, ?) < 6Zu(X1,Y) + (1 = 6)Zu(Xa, Y)
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holds foreach k, 1 < k < 4. _ _ _
By using the assumed condition that Z;(X;,Y) and Z;(X>,Y) are comonotonic on Y, it
follows from Definition 13 that

EV [zk (6X1 + (1= 6)Xs, 7)] < SEV [zk(xl,?)] + (1= 6)EV [zk(xz, 17)] Yk
which implies that

EV [z (6X1 + (1= 6)Xs, ?)] < 6EV [Z(Xl,?)] + (1= 6)EV [Z(Xz, ?)]

The above inequality shows that EV [Z(X, ?)] is a convex vector function. Hence the

auxiliary model (7) is a convex programming problem. Consequently, the crisp MOPP
(6) is also a convex programming problem. Thus Theorem 6 is proved. [

4 Solution approach

4.1 Extended Fuzzy Programming Approach

Based on fuzzy set theory [37], fuzzy programming is developed to solve the multiobjective
optimization problem. The fuzzy programming approach (FPA) deals with the degree
of belongingness (membership function) lying between O to 1. It shows the marginal
evaluation of each objective function into the feasible solution sets. The membership
functions can be defined by a mapping function (say u(Z;) — [0,1]|]4 € [0,1]) that
assigned the values between 0 to 1 to each objective function which shows the decision
makers’ preferences have been fulfilled up to A level of satisfaction. Mathematically, it
can be expressed as follows:

1 if Zk(x) < Ly
p(Zi(x) = § BB L < Z(x) < Uk
0 if Zp(x)> U

where Uy and L are the lower and upper bound for each objective function and obtained
by the minimization and maximization of each objective function individually.

Hence, the mathematical formulation of EFPA to solve the transportation problem can be
represented as below:

Max y(x) =A(a)+(1-2) ( 2:1 Mk(Zk(x)))
Subject to

pik(Zi(x)) = a, (8)
a>0, 0<a<l,

A1€]0,1]

constraints (4)
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where ui(Z(x)) represents the membership degree of k-th objective function and « de-
picts the satisfaction level for each objective function and provides a compromise solution
under the given set of constraints under fuzzy environment.

We prove that the unique optimal solution of LTMFA is efficient.
Theorem 7: A unique optimal solution of problem (8) (LTMFA) is also an efficient solu-
tion for the problem (5).

Proof: Suppose that (¥, @) be a unique optimal solution of problem (8) (LTMFA). Then,
(@) > (a) for any (x, @) feasible to the problem (8) (LTMFA). On the contrary, assume that
(X, @,) is not an efficient solution of the crisp IP-TPP (8). For that, there exists x* (x* # X)
feasible to the crisp IP-TPP (8), such that O,,(x*) < O, (x) for all m = 1,2,--- ,M and
On(x*) < Op(X) for at least one m. i
Therefore, we have 0’1"]:?;’5’" < Ogix_)z'im forallm = 1,2,--- ,M and 0’;}:1_’5’" < Ol'j;x_)z,im
for at least one m.

m(X) =L (%)=L =
O, < ) —
Hence, max ( U —I (<) max .. |~ .

Um_Om(X*)
Un—Ly,

is not unique optimal. Thus, we have arrived at a contradiction with the fact that (X, @) is
the unique optimal solution of (LTMFA). Therefore, it is also an efficient solution for the
problem (5). This completes the proof of Theorem 7. ]

Assume that a* = min( ), this gives (@) < (@) which means that the solution
m

4.2 Extended Intuitionistic Fuzzy Programming Approach

Based on intuitionistic fuzzy set theory [15], intuitionistic fuzzy programming is developed
to solve the multiobjective optimization problem. The intuitionistic fuzzy programming
approach (IFPA) deals with the degree of belongingness (membership function) and
degree of non-belongingness ( non-membership function) simultaneously, lying between
0 to 1. It shows the marginal evaluation of each objective function into the feasible
solution sets. The membership functions can be defined by a mapping function (say
w(Zy),v(Zy) — [0,1] | @,B € [0,1]) that assigned the values between O to 1 to each
objective function which shows the decision makers’ preferences have been fulfilled up to
(a — B) level of satisfaction. Mathematically, it can be expressed as follows:

1 if Zk(x) < Ly
p(Zi(x) = 1 YBD if L < Zu(x) < Uy
0 if Zi(x)> Uy
and
0 if Zk(x) < Ly
WZi(x) = § T if L < Zi(x) < Ui
1 if Zi(x)> U
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Therefore the mathematical formulation of EIFPA to solve the transportation problem can
be represented as below:

Max y(x) = A(a=p)+(1-2) T (u(Ze(x) = vi(Zi(x)))
Subject to
Hi(Zk(x)) 2 a,
vi(Zi(x)) < B, )
a>p 0<a+pB<1,
A €0,1]
constraints (4)

where ui(Zi(x)) and vi(Z(x)) represent the satisfaction and dissatisfaction degrees of
k-th objective function under intuitionistic fuzzy environment. Also, @ = min [z (Z(x))]
and B8 = max [vi(Z(x))] denote the minimum satisfaction and maximum dissatisfaction
degrees of each objectives, respectively. Moreover, (o — ) represents the overall degree
of satisfaction for each objective function and provides a compromise solution under the
given set of constraints.

Theorem 8: A unique optimal solution of problem (9) (LTMFA) is also an efficient solu-
tion for the problem (5).

Proof: Suppose that (%,@,) be a unique optimal solution of problem (9) (LTMFA).
Then, (@ — 8) > (@ — B) for any (x,a, B) feasible to the problem (9) (LTMFA). On the
contrary, assume that (X, a, ﬁ_) is not an efficient solution of the crisp IP-TPP (9). For that,
there exists x* (x* # x) feasible to the crisp IP-TPP (9), such that O,,(x*) < O,,(x) for all
m=12--- M and Oy(x*) < OmE)_E) for at least one m. ) )
Therefore, we have O%Ef_);rfm < Ol"’]mx_)zrim forallm =1,2,---,M and O'Z/(,f—)L_,fm < ngnx_)ii’"
for at least one m.

Hence, max (%) < (<) max (W)
m m ‘m m m m

Suppose that that 8* = max (M), then 8* < (<) S.

Un—Lm
Un=0nl) o Un=Ow®) gorafl sy = 1,2,- - , M and % >

Un—Lm = Un—Ln

In the same manner, we have
U,p—0

m (%)
UL, for at least one m.

Thus. min (45725.7) 2 () min (45,2,).

%’ﬁnx*)), this gives (@ — B) < (@* — B*) which means that the

solution is not unique optimal. Thus, we have arrived at a contradiction with the fact

that ()E, a, B) is the unique optimal solution of (LTMFA). Therefore, it is also an efficient
solution for the problem (5). This completes the proof of Theorem 8. ]

Assume that ¢* = min (
m
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4.3 Extended Neutrosophic Programming Approach

In reality, the characteristic of indeterminacy is the most trivial concern in the decision-
making process. It seldom happens that DM(s) has(have) neutral thoughts about any
specific value about membership degree of the element into feasible decision set. In this
situation, indeterminacy/neutral values are possible to assign it. Inspired with such cases,
Smarandache [29] proposed a set named neutrosophic set (NS), which is the extension of
FS and IFS. The NS deals with an indeterminacy degree of the element into a feasible
decision set. The neutrosophic programming approach (NPA) has been widely used by
researchers. Ahmad et al. [4] have proposed a new computational algorithm based on a
single-valued neutrosophic hesitant fuzzy decision set and applied it to the multiobjective
nonlinear optimization problem of the manufacturing system. Ahmad et al. [6] and
Ahmad et al. [S] have also addressed modified neutrosophic fuzzy optimization technique
for multiobjective programming problem under uncertainty. For more details, please visit
[2? ] Thus, the upper and lower bound for each objective as given below:

Uy = max[Zp(X¥)] and Ly = min[Zx(X")] Vk=1,2,3,...K.
The bounds for k objective function is given as follows:
Ulf = Uy, L]f =Ly for truth membership
U/ = Llit +5, LY = L,‘: for indeterminacy membership

Uy =U;, L{ =L+t for falsity membership

where s and ; € (0, 1) are predetermined real numbers assigned by DM(s).
Hence, the different membership functions can be defined as follows:

1 if Zir(x) < L,’:
pzio) = { A i L < i) < Uf

0 if Zi(x)> U

1 if Zi(x) < LY
o(Zi(x)) = l@’%}ij‘) if LT < Zi(x) < UY

0 if Zi(x)> UY

1 if Zi(x)> U
W) = | G i LY < 70 < U

0 if Zi(x) < L
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Therefore the mathematical formulation of ENPA to solve the transportation problem can
be represented as below:

Max y(x) = a(a=B-y)+ 1= T, (u(Ze(x)) = W(Zi(x)) = vi(Zi(x))
Subject to:
k(Ze(x)) 2 @, o1 (Zi(x)) < B, vi(Zi(x)) <,
a>2p, 0a+p+y <3,
A €[0,1]
constraints (4)
(10)
where (@ + 8 — y) represents the overall degree of satisfaction for each objective function
and provides a compromise solution under the given set of constraints.

Theorem 9: A unique optimal solution of problem (10) (LTMFA) is also an efficient
solution for the problem (5).

Proof: Suppose that (%,@,[3,7) be a unique optimal solution of problem (10) (LTMFA).
Then, (@ — B —¥) > (@ — B — y) forany (x,a, B, ) feasible to the problem (10) (LTMFA).
On the contrary, assume that ()E, a, ,8_, )7) is not an efficient solution of the problem (10).
For that, there exists x* (x* # X) feasible to problem (10), such that O (x*) < Oy (x) for
all k = 1,2,--- ,K and Oy (x*) < Oy(x) for at least one k.

Therefore, we have 0"[5;?;:" < Of](j_)z,fk forall k = 1,2,--- ,K and O’é:i)L_kLk < ij(j_)ilf"
for at least one k.

Ok(x)-Li | - (Ok(f)—Lk)
Hence, ml?x ULt ) < (<) ml?x UL )

Up—Op (x* . _
’{UT"L(:)),theny < (<)7y.

Also, consider that 8* = max (M), then 8* < (<) B.

Suppose that y* = max (

Ur—Ly
In the same manner, we have L% 5 U0k gopaf] g = 1,2, K and %D o
i Ur—Ly Ur—Ly Up—Ly
U’;J%Z(x) for at least one k.
k k
Thus, min (UkUL"L(X)) > (>) min (U’Z]LZ("))
k k—Lk k k—Lk

Ur—0r(x")
Ur—Lg

that the solution is not unique optimal. Thus, we have arrived at a contradiction with the

Assume that o* = rr%(in ( ), this gives (@ — B — ) < (@* — B* — y*) which means

fact that (%, @, 3, ¥) is the unique optimal solution of (LTMFA)). .

4.4 Sensitivity analyses

Three different robust solution approaches have been suggested to solve the proposed F-
IMOTPs. A variety of obtained solution results may not reflect the most appropriate
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technique to solve the F-IMOTPs in a generalized way. To select the most promising
solution techniques and solution sets, it is further presented with the different sensitivity
measures. The following are various criteria to analyze the performances of different
approaches.

Savings compared to baseline solution: The most reasonable compromise solution is
assumed to be a baseline solution for each objective function. The comparison is made
with a different optimal solution which is then selected in terms of more savings (See, [2]).

Co-efficient of variation: It is a relative measure and most suitable method to compare two
series. The size of the measure of dispersion also depends on the size of the measurement.
Thus, it is an appropriate measure of dispersion to compare two series that differ largely
in respect of their means. Moreover, a series or a set of values having a lesser co-ecient
of variation than others is more consistent. It also indicates how much fluctuation is
happening in the existing mean response. The lower value of co-ecient of variation
indicates the more homogeneous and robustness of the data (See, [2, 8]).

Degrees of desirability: The concept of degrees of desirability has been first proposed by
[7, 8]. Linear physical programming [8] is a method that is used to depict the degrees of
desirability (priority) for each objective function of the MOOP. The degree of desirability
is a beneficial and handy tool for assigning the target values (77 ) for the objective function
and categorizing the solutions. By obtaining the individual best and worst solution of each
objective function, the upper and lower bound for target values (7;) can be determined
directly. By using the pay-off matrix (individual best and worst solutions of each objective
function), bound (77 ,,4x) and (77 ;i) can be obtained. These bound provides the reduction
in solvability set which can be denoted as S and mathematically it can be shown expressed
as S = {SIT1 min < T; < Tj max; Y1 =1,2,...,L} where S is a set of parameter values for
which the problem is solvable. Thus, the reduced solvability set can be used for defining
the degree of desirability in the form of linguistic preferences. For more information and
a stepwise procedure, one can visit the research paper by [8].

Stepwise solution algorithm

The stepwise solution procedures for the proposed F-IMOTP can be summarized as
follows:

Step-1. Model the proposed F-IMOTP under uncertainty.

Step-2. Convert each intuitionistic fuzzy parameters involved in F-IMOTP into its crisp
form using the accuracy function (Definition 6).

Step-3. Formulate the model (6) and solve each objective function individually in order
to obtain the best and worst solution.

Step-4. Apply the different solution approach such as EFPA, EIFPA and ENPA discussed
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in Sub-sections (4.1), (4.2) and (4.3) respectively.

Step-5. Solve the final model for F-IMOTP to get the compromise solution at different
feasibility degree A using suitable techniques or some optimizing software packages.
Step-6. Use the snesitivity analysis to analyze the better performance of different solution
techniques at various feasibility degree A and choose the desired compromise solution.

5 Numerical illustration

A logistic company transports two kinds of products from three sources to three different
destinations using two types of conveyances. The relevant data are summarized in Table 2.
The logistic company’s decision-maker intends to find optimal units of different products
that should be transported from various sources to different destinations using the suitable
mode of conveyance, which minimizes the cost and time according to the input parameters,
respectively. We have considered the three different source and destinations using two
conveyances for the shipment of two types products. The decision-maker(s) wants to
determine the optimal shipment policies for which the total transportation cost, time,
safety cost and carbon emissions are minimized by maintaining the resource restrictions.
The transportation problem is coded in AMPL language and solved using solver Knitro
available on NEOS server online facility provided by Wisconsin Institutes for Discovery
at the University of Wisconsin in Madison for solving optimization problems, see [25].
The solution results are summarized in Table 3. From the Table 3, it can be observed that
by tuning the weight parameters between O to 1, various solution results are obtained. Due
to space limitations, the optimal allocation of products among different echelon has not
presented in this paper. The compromise solution for all four objectives has obtained at a
different weight parameter (A).

From Table 3, it can be observed that by using EFPA; the minimum value of all the
objectives are found to be $ 4360.10, 887.644 hrs., $ 88.7644 and 5.97024 mt (metric ton),
at weight parameter A = 0.1 respectively. As for weight parameter A increases, the values
of each objective also reach towards its worst solution, and at 4 = 0.9 the worst values
of each objective are $ 4357.69, 886.239 hrs., $ 88.6283 and 5.96459 mt, which shows
the more consciousness of decision makers towards the uncertainty. Similarly, EIFPA
techniques also yield in different compromise solutions. At A = 0.1, the values of each
objectives by using EIFPA have been found to be $ 4324.70, 868.882 hrs., $ 86.8882 and
5.83967 mt, respectively. As for weight parameter A increases, all the objectives reach
towards their worst solution and at 4 = 0.9, it approaches to $ 4325.80, 870.357 hrs.,
$ 87.0357 and 5.85055 mt, due to supreme importance has been given to risk violation
by decision makers. Furthermore, ENPA technique results in different objective values
at various weight parameter 4. At 4 = 0.1, the magnitude of each objectives have been
obtained as $ 4306.83, 853.027 hrs., $ 85.3027 and 5.7299 mt, respectively. With the
increase in weight parameter A, it has observed that each objective reaches towards their
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worst outcomes which reveals that the decision makers have given more importance to the
risk violation under uncertainty. Moreover, if we perform the comparison among all four
approaches with respect to objective functions then it can be observed that EFPA results in
better outcomes for the second and fourth objective over the other two approaches whereas
EIFPA and ENPA methods yield in better results for first and third objectives for each
weight parameter A respectively. Hence all three approaches are well capable of providing
the best solution for different objectives.

The corresponding achievement degree of each compromise solution has presented in
Table 3. As the weight parameter A is increasing, the values of the membership function
u is decreasing which shows the inverse trade-off between the feasibility degree and
acceptance level of each compromise solution set. Interestingly, each methods EFPA,
EIFPA and ENPA have been assigned with top three ranks at minimum weight parameter
A = 0.1 respectively. All the techniques have outperformed for this presented study over
others. Initial few ranks have assigned to the solution set yielded by ENPA approach
whereas systematic and deserving ranks have allocated to the solution sets obtained by
different methods at each weight parameter A.

The two critical aspects have highlighted that inherently involved in decision-making
processes: (1) violation of risk under uncertainty and (2) balancing the global optimality
of each objective. By applying EIFPA, the budget are found to be decreasing as the weight
parameter A increases. Likewise, EFPA and ENPA techniques also result in the same
declining pattern of the objectives which ensures the potential management of different
products. Hence, from the decision-making point of view, the computational results
cope with all the prime target of the company to survive in the competitive market. An
extensive opportunity to select the most promising compromise solution set is a significant
advantage for the decision makers. The ENPA yield comparatively better compromise
results at different weight parameters. There are ample opportunity to choose the most
desired solution sets based on the decision-makers satisfaction level. Thus the decision-
makers can be reached towards the optimal policies and strategies by adopting the most
desired solution methods and the corresponding results. The Table 4 represents the the
most desirble, desirable and most undesirable values for each objectives based on the
degrees of desirability.
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Table 2: Intuitionistic fuzzy input parameters
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Parameters

Sijk

Cijk

Lijk

SCijk

Ceijk

Product 1

Product 2

(83,85,87;81,85,89),(80,83,86;79,83,87),(86,87,88;85,87,89)
(83,85,87;81,85,89),(81,83,85;80,83,86),(75,78,81;74,78,82)
(83,84,85;82,84,86),(80,82,84;78,82,86),(78,79,80;77,79,81)
(83,84,85:82,84,86),(80,82,84;78,82,86),(76,78,80;75,78,81)
(83,84,85:82,84,86),(80,82,84;78,82,86),(72,75,78:71,75,79)
(84,85,86:83,85,87),(80,83,86:79,83,87),(76,78,80;75,78,81)
(14,15,16;13,15,17),(20,23,25;18,23,28),(16,17,18;15,17,19)
(53,55,57;51,55,59),(70,73,76;69,73,77),(37,38,39;36,38,40)
(53,54,55;52,54,56),(50,52,54;48,52,56),(28,29,30;27,29,31)
(72,74,76;70,74,78),(42,43 ,44;41,43 45),(26,28,30;25,28,31)
(42,44,46;40,44,48),(20,22,24;18,22,26),(44,45,46;43 45 47)
(44,45,46;43,45 47)(52,53,54:50,53,56),(16,18,20;15,18,21)
(3,5.7:2,5,8),(1,2,3:0,2.4),(6,7,8:5,7.9)
(3,5,7:2,5,8),(5,7.9:4,7,10),(5,8,11:4,8,12)
(3.4,5:2,4,6),(3,5,7:2,5.8),(7.9,11;6,9,12)
(3,4,5:2,4,6),(2,4,6:1,4,7),(6,8,10:5,8,11)
(3,4,5:2,4,6), (1,2,3:0,2,4),(4,5,6;3,5.7)
(4,5,6:3,5,7),(3,5,7:2,5,8),(6,8,10;5,8,11)

(0.3,0.5,0.8;0.2,0.5,0.9),(0.1,0.2,0.3:0,0.2,0.4),(0.5,0.7,0.9;0.4,0.7,1.0)
(0.3,0.5,0.7:0.2,0.5,0.8),(0.6,0.7,0.8;0.5,0.7,0.9),(0.6,0.8,1.0;0.5,0.8,1.1)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.4,0.5,0.6;0.3,0.5,0.7),(0.8,0.9,1;0.7,0.9,1.1)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.3,0.4,0.5:0.2,0.4,0.6),(0.6,0.8,1;0.5,0.8,1.1)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.1,0.2,0.3;0,0.2,0.4),(0.3,0.5,0.7;0.2,0.5,0.8)
(0.3,0.5,0.7;0.2,0.5,0.8),(0.3,0.5,0.7:0.2,0.5,0.8),(0.7,0.8.,0.9;0.6,0.8,1)
(0.03,0.05,0.07;0.02,0.05,0.08),(0.01,0.02,0.03;0.0,0.02,0.04),(0.06,0.07,0.08;0.05,0.07,0.09)

(82,84,86:80,84,88),(81,82,83;80,82,84),(74,75,76;73,75,77)
(84,85,86:83,85,87),(80,83,85;78,83,87),(76,78,80;75,78.81)
(84,85,86;83,85,87),(82,83,84:81,83,85),(83,84,85;82,84.86)
(84,85,86;83,85,87),(82,83,84:81,83,85),(86,87,88;85,87.89)
(82,84,86;80,84,88),(81,82,83:80,82,84),(78,79,80;77,79.8 1)
(83,84,85:82,84,86),(80,82,84:78,82,86),(77,79,81;76,79,82)
(42,44,46;40,44.48),(40,42,44:38,42,46),(44,45,46:43 45 ,47)
(24,25,26;23,25,27),(61,63,65;60,63,66),(36,38,40;35,38,41)
(24,25,26;23,25,27),(21,23,25;20,23,26),(12,14,16;11,14,17)
(64,65,66;63,65,67),(42,43,44:41,43 45),(26,27,28;25,27,29)
(12,14,16;11,14,17),(30,32,34:28,32,36),(48,49,50;47,49,51)
(22,24,26;20,24,28),(70,72,74:68,72,76),(38,39,40;37,39,41)
(3.4,5:2.4,6),(2,4,6:0,4,8),(4.,5.6:3,5,7)
(4,5,6:3,5.7),(3,6,9;2,6,10),(7,8.9:6.8.,10)
(2,5,8:1,5,9),(1,2,3:0,2,4),(2,4,6;0,4,8)
(4,5,6:3,5.7) ,(2,4,6;1,4,7), (5.7,9:4,7,10)
(3,4,5:2,4,6),(2,3,4;1,3,5),(7,9,11;6,9,12)
(2,4,6,1,3,7),(5,7,9:4,7,10),(8,9,10;7,9,11)

(0.3,0.4,0.5;0.2,0.4,0.6),(0.2,0.4,0.6:0.1,0.4,0.7),(0.4,0.5,0.6;0.3,0.5,0.8)
(0.4,0.5,0.6;0.3,0.5,0.7),(0.5,0.6,0.7:0.4,0.6,0.8),(0.6,0.8,1;0.5,0.8,1.1)
(0.3,0.5,0.7;0.2,0.5,0.8),(0.1,0.2,0.3;0,0.2,0.4),(0.3,0.4,0.5:0.2,0.4,0.6)

(0.3,0.5,0.7;0.2,0.5,0.8),(0.2,0.4,0.6:0.1,0.4,0.7),(0.5,0.7,0.9:0.4,0.7,1.0)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.2,0.3,0.4:0.1,0.3,0.5),(0.7,0.9,1.1;0.6,0.9,1.2)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.5,0.7,0.9;0.4,0.7,1),(0.8,0.9,1;0.7,0.9,1.1)
(0.03,0.04,0.05;0.02,0.04,0.06),(0.03,0.04,0.05;0.02,0.04,0.06),(0.04,0.05,0.06;0.03,0.05,0.

(0.04,0.05,0.06;0.03,0.05,0.07),(0.06,0.07,0.08;0.05,0.07,0.09),(0.07,0.08,0.09;0.06,0.08,0.1)  (0.03,0.05,0.07;0.02,0.05,0.08),(0.05,0.06,0.07;0.04,0.06,0.08),(0.07,0.08,0.09;0.06,0.08,0
(0.03,0.04,0.05;0.02,0.04,0.06),(0.04,0.05,0.06;0.03,0.05,0.07),(0.07,0.09,0.11;0.06,0.06,0.12)  (0.03,0.05,0.07;0.02,0.05,0.08),(0.01,0.02,0.03;0.0,0.02,0.04),(0.03,0.04,0.05;0.02,0.04,0.C
(0.03,0.04,0.05;0.02,0.04,0.06),(0.03,0.04,0.05;0.02,0.04,0.06),(0.07,0.08,0.09;0.06,0.08,0.1)  (0.03,0.05,0.07;0.02,0.05,0.08),(0.03,0.04,0.05;0.02,0.04,0.06),(0.06,0.07,0.08;0.05,0.07,0.
(0.03,0.04,0.05;0.02,0.04,0.06),(0.01,0.02,0.03;0.0,0.02,0.04),(0.04,0.05,0.06;0.03,0.05,0.07)  (0.03,0.04,0.05;0.02,0.04,0.06),(0.03,0. 05,0.07;0.02,0.05,0.08),(0.07,0.09,0.11;0.06,0.06,0.
(0.04,0.05,0.06;0.03,0.05,0.07),(0.04,0.05,0.06;0.03,0.05,0.07),(0.07,0.08,0.09;0.06,0.08,0.1)  (0.03,0.04,0.05;0.02,0.04,0.06),(0.06,0.07,0.08;0.05,0.07,0.09),(0.07,0.09,0.11;0.06,0.06,0.
a; (206,208,210;205,208,211),(250,252,254;248,252,256),(224,226,228;222,226,230) (252,254,256;250,254,258),(262,264,266;260,264,268),(244,245,246;243,245,247)
(152,154,156;150,154,158),(562,564,566;560,564,568),(540,545,550;535,545,555) (158,159,160;157,159,161),(146,148,150;144,148,152),(123,125,127;122,125,128)
(272,274,276;270,274,278),(255,256,257;254,256,258),(254,255,256;253,255,257) (272,274,276;270,274,278),(765,767,769;764,767,780),(453,455,457,452,455,458)

(82,83,84:81,83,85),(85,87,89;84,87,91),(93,94,95;92,94,96)
(82,84,86:80,84,88),(84,85,86;83,85,87),(92,95,98:91,95,99)
(84,85,86:83,85,87),(65,67,69:64,67,70),(92,94,96:90,94,98)
(22,24,26:20,24,28),(20,24,28:18,24.,30) (34,35,36:33,35,37)
(34,35,36;33,35,37),(33,35,37:32,35,38) (24,25,26;23,25,27)
(0.2,0.4,0.6:0.1,0.4,0.7),(0.3,0.5,0.7:0.2,0.5,0.8)
(2450,2445,2505) (1425,1665,1545) (1565,1685,1425)
5

[e]e}

(73,74,75;72,74,76),(50,52,54:48,52,56),(83,85,87;81,85,89)
(41,45,49;40,45,50),(56,57,58:55,57,59),(74,75,76;73,75,77)
(71,75,79;70,75,80),(85,87,89;84,87,90),(62,63,64:60,63,66)
(65,67,69;64,67,70) (23,24,25:22,24,26),(42,44,46:40,44,48)
(30,35,40;25,35,45) (32,35,38;31,35,39),(44,45,46;43,45,47)
(0.7,0.9,1.1;0.6,0.9,1.2),(0.6,0.8,1.0;0.5,0.8,1.1)
(2450,2445,2505) (1425,1665,1545) (1565,1685,1425)
5
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Table 3: Optimal solutions obtained by different methods

Weight Objective Extended Fuzzy Programming  Extended Intuitionistic Fuzzy Extended Neutrosophic
) values Approach (EFPA) Programming Approach (EIFPA) Programming Approach (ENPA)
1=0.1 Min Z, 4360.1 4324.7 4306.83
Min Z, 887.644 868.882 853.027
Min Z3 88.7644 86.8882 85.3027
Min Z4 5.97024 5.83967 5.7299
1=0.2 Min Z, 4360.09 4358.87 3889.59
Min Z, 887.646 887.751 835.3
Min Z3 88.7646 88.7751 83.53
Min Z4 5.97025 5.97094 5.58824
1=0.3 Min Z, 4357.6 4322.77 4228.76
Min Z, 882.777 870.266 848.714
Min Z3 88.2777 87.0266 84.8714
Min Z,4 5.93873 5.84968 5.69559
1=0.4 Min Z; 4356.27 4313.18 4057.54
Min Z, 883.088 857.292 846.627
Min Z3 88.3088 85.7292 84.6627
Min Z4 5.93522 5.72106 5.67529
A=0.5 Min Z, 4360.19 4337.69 4311.32
Min Z, 887.609 872.949 853.118
Min Z3 88.7609 87.2949 85.3118
Min Z4 5.97005 5.86669 5.731
1=0.6 Min Z, 4359.6 4324.34 3926.1
Min Z, 887.456 868.335 833.667
Min Z3 88.7456 86.8335 83.3667
Min Z4 5.96928 5.83305 5.57907
A=0.7 Min Z, 4349.47 4325.95 4206.61
Min Z, 871.233 870.301 848.91
Min Z3 87.1233 87.0301 84.891
Min Z4 5.87853 5.85014 5.69869
1=0.8 Min Z, 4355.73 4314.35 4146.7
Min Z, 883.183 851.972 834.551
Min Z3 88.3183 85.1972 83.4551
Min Z,4 5.9364 5.70287 5.5971
1=0.9 Min Z, 4357.69 4325.8 4304.75
Min Z, 886.239 870.357 852.007
Min Z3 88.6283 87.0357 85.2007
Min Z4 5.96459 5.85055 5.72234

5.1 Sensitivity analyses

The three different solution sets based on the degree of desirability scenario have been
generated, and the corresponding performances of each solution method under the dif-
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ferent solution sets are also recorded. From Table 5 (solution 1), the EFPA reveals that
transportation cost (T.C) can be reduced by 53.73%, transportation time (T.T) can be low-
ered by 20.69%, safety cost (S.C) can be mitigated by 79.36% and carbon emissions (C.E)
can be mitigated by 79.36% as compared to the baseline solution. Furthermore, EIFPA
technique yield in the reduction of T.C by 55.21%, a significant increment in the T.T by
17.23%, notably decrement in the S.C by 83.81% and C.E by 83.81% as compared to the
baseline solution. Similarly, on applying ENPA technique, it is observed that the T.C can
be reduced by 55.99 %, T.T can be lowered by 23.12 %, S.C can be mitigated by 79.36%
and C.E can be mitigated by 87.45% as compared to the baseline solution. Likewise, from
Table 6 (solution 2), the EFPA technique shows that T.C can be diminished by 55.81 %,
T.T can be increased by 22.77 %, S.C can be mitigated by 79.36% and C.E can be reduced
by 87.15 % as compared to the baseline solution. Furthermore, EIFPA technique results
in the reduction of T.C by 53.63 %, a significant increment in the T.T by 19.56 %, notably
decrement in the S.C by 83.55 % and C.E can be mitigated by 79.36% as compared to the
baseline solution. Similarly, on applying ENPA technique, it is observed that the T.C can
be mitigated by 55.01 %, T.T can be enhanced by 16.63 %, S.C can be reduced by 79.26%
and C.E can be mitigated by 79.36% as compared to the baseline solution. From Table
7 (solution 3), EFPA ensures that T.C can be reduced by 53.77 %; T.T can be enhanced
by 20.96 %, and S.C can be mitigated by 79.43% and C.E can be reduced by 79.36%
as compared to the baseline solution. Furthermore, the EIFPA technique results in the
reduction of T.C by 56.13 %, a significant increment in the T.T by 23.24 %, remarkable
decrement in the S.C by 87.66 % and C.E can be mitigated by 79.36% as compared to the
baseline solution. Similarly, on applying ENPA technique, it is observed that the T.C can
be reduced by 55.01 %, T.T can be enhanced by 16.63 %, S.C can be mitigated by 79.26%
and C.E can be mitigated by 79.36% as compared to the baseline solution.

For solution 1, a comparative study with the co-ecient of variation shows that all the
objective functions are more homogeneous under variation while using ENPA techniques
over others. Similarly, more robust (homogeneous) results of each objective function have
been achieved for solution 2 while using EFPA technique. Furthermore, it is also observed
that all the objective functions are more homogeneous under variation while using the
EIFPA technique for solution 3. The trending behavior of the different techniques has
been depicted in Figure 2 for each solution set. The graphical representation of solution
1 (sub-figure 2a), solution 2 (sub-figure 2b) and solution 3 (sub-figure 2c) by using dif-
ferent techniques reveals the performances of each solution approaches. In addition to the
different solutions set, the behavior of the overall satisfaction level with the co-ecient
of variations has also been shown in Figure 3. The representation of fluctuating behavior
for solution 1 (sub-figure 3a), solution 2 (sub-figure 3b) and solution 3 (sub-figure 3c) by
using different techniques reflects homogeneity or robustness under the v ariation. Finally,
the optimal solution results for three different solution sets have been summarized in Table
8. From Table 8, all the solution sets are under the most desirable zone, which provides
an opportunity to select a better one amongst the best solution sets. Thus these criteria
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(savings compared to baseline solution, CV, and degrees of desirability) for selection of
optimal solution results are proven to be quite helpful tools while dealing with multiple
objective optimization problems. Moreover, the different solutions set, the behavior of the
overall satisfaction level with the weight parameter (1) has also been shown in Figure 1.
The representation of fluctuating behavior for solution 1 (sub-figure 1a), solution 2 (sub-
figure 1b) and solution 3 (sub-figure 1¢) by using different techniques reflects homogeneity

or robustness under the variation.

(a) Proposed EFPA (b) Proposed EIFPA

(c) Proposed ENPA

Figure 1: Overall satisfaction level v/s Weight parameter (1)

Table 4: Degrees of desirability for each objective function

Objective functions Most Desirable (MD) Desirable (D) Most Undesirable (MU)

Minimum Z;(X) (Transportation cost) 4360.19
Minimum Z(X) (Transportation time) 887.609
Minimum Z3(X) (Safety cost) 88.7609
Minimum Z4(X) (Carbon emissions)  5.97005

5230.80 5794.80
901.456 917.739
93.8349 98.4924
9.45924 13.8984

Table 5: Solution 1: (Z; <4360.19, Z, < 887.609, Z3 < 88.7609 and Z4 < 5.97005)

Objective functions EFPA EIFPA ENPA
Baseline solution Solution CV  Solution CV Solution CV
Z1(X) (Transportation cost) 4276.34 4360.10 1.23 4324.70 1.34 4306.83 1.05
Z>(X) (Transportation time) 810.4543 887.644 093 868.882 1.02 853.027 0.91
Z3(X) (Safety cost) 72.8690 88.7644 1.17 86.8882 1.14 85.3027 1.09
Z4(X) (Carbon emissions) 2.03943 597024 1.03 5.83967 1.09 5.7299 1.14
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Table 6: Solution 2: (Z; < 5230.80, Z; < 901.456, Z3z < 93.8349 and Z4 < 9.45924)

Objective functions EFPA EIFPA ENPA
Baseline solution Solution CV  Solution CV Solution CV
Z1(X) (Transportation cost) 4276.349 4360.19 1.39 4337.69 1.84 411.32 1.71
Z>(X) (Transportation time) 810.4543 887.609 0.78 872.949 0.89 853.118 0.98
Z3(X) (Safety cost) 72.8690 88.7609 1.29 87.2949 143 853118 1.67
Z4(X) (Carbon emissions) 2.03943 5.97005 1.11 5.86669 1.17 5.7310 1.23

Table 7: Solution 3: (Z; < 5794.80, Z, < 917.739, Z3z < 98.4924 and Z, < 13.8984)

Objective functions EFPA EIFPA ENPA
Baseline solution Solution CV  Solution CV Solution CV
Z1(X) (Transportation cost) 4276.34 4357.69 1.37 432580 1.17 4304.75 1.49
Z>(X) (Transportation time) 810.4543 886.239 0.98 870.357 0.87 852.007 1.13
Z3(X) (Safety cost) 72.8690 88.6283 1.26 87.0357 1.01 85.2007 1.14
Z4(X) (Carbon emissions)  2.03943 596459 1.21 5.85055 1.11 5.72234 1.25
(a) (Solution 1) (b) (Solution 2) (c) (Solution 3)

Figure 2: Objective functions v/s solution methods

(a) (Solution 1) (b) (Solution 2) (c) (Solution 3)

Figure 3: Co-efficient of variation v/s solution methods
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Table 8: Comparision of optimal solutions with multiple criteria

Different approaches Baseline solution CV  Degree of desirability

Z1:55.01 % | 1.05 4360.19 (MD)
Solution 1 (EFPA) Zy:23.12% | 091 887.609 (MD)
Z3: 87.45% | 1.09 88.7609 (MD)
Zy4: 72.34 % | 1.19 5.97005 (MD)

Z1: 5581 % | 1.39 4360.19 (MD)
Solution 2 (EIFPA)  Z: 16.63 % | 0.78 887.609 (MD)
Z3: 87.15% | 1.29 88.7609 (MD)
Z4: 72.03 % | 1.12 5.97005 (MD)

Z1:56.13 % | 1.17 4360.19 (MD)
Solution 3 (ENPA) Zy: 2324 % | 0.87 887.609 (MD)
Z3: 87.66 % | 1.01 88.7609 (MD)
Z4: 71.89 % | 1.03 5.97005 (MD)

6 Conclusions

In this article we consider various modeling approaches for multiobjective transporta-
tion problem under intuitionistic fuzzy parameters. Minimization of transportation cost,
time, safety cost and carbon-emissions are considered as objective functions under the
supply,demand, capacity, safety and budget constraints. The extended version of various
conventional approaches such as EFPA, EIFPA and ENPA are developed to solve the
MOTPs. The robustness of the solution approaches have been established with the help
of results. At different weight parameter, a set of compromised solution are obtained.
The sensitivity analysis is also performed based on the different criteria such as baseline
solution, CV and degrees of desirability which generates the variaty of solution setsbased
on the satisfaction level of the decision-maker. It is observed that ENPA outperforms oth-
ers. For all the solution approaches, when decision-maker(s) are more concerned about
the vagueness then objective values reaches to its worst and vice-versa. We propose that
the present work can be extended further for multi-level MOPP and applied to different
real-life problems such as supply chain, inventory control and assignment problem as well.
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Abstract . S.Broumi and F.Smarandache introduced the
concept of intuitionistic neutrosophic soft set as an extension
of the soft set theory. In this paper we have applied the
concept of intuitionistic neutrosophic soft set to rings
theory .The notion of intuitionistic neutrosophic soft set over
ring (INSSOR for short ) is introduced and their basic
properties have been investigated.The definitions of
intersection, union, AND, and OR operations over ring
(INSSOR) have also been defined. Finally, we have defined
the product of two intuitionistic neutrosophic soft set over
ring.

Keywords Intuitionistic ~ Neutrosphic ~ Soft  Set,
Intuitionistic Neutrosphic Soft Set over Ring, Soft Set,
Neutrosphic Soft Set

1. Introduction

The theory of neutrosophic set (NS), which is the
generalization of the classical sets, conventional fuzzy set [1],
intuitionistic fuzzy set [2] and interval valued fuzzy set
[3],was introduced by Samarandache [4]. This concept has
recently motivated new research in several directions such as
databases [5,6], medical diagnosis problem [7],decision
making problem [8],topology [9 ],control theory [10]and so
on. We become handicapped to use fuzzy sets, intuitionistic
fuzzy sets or interval valued fuzzy sets when the
indeterministic part of uncertain data plays an important role
to make a decision. In this context some works can be found
in[11,12,13,14].

Another important concept that addresses uncertain
information is the soft set theory originated by
Molodtsov[15]. This concept is free from the
parameterization inadequacy syndrome of fuzzy set theory,
rough set theory, probability theory. Molodtsov has
successfully applied the soft set theory in many different
fields such as smoothness of functions, game theory,
operations research, Riemann integration, Perron integration,
and probability.
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In recent years, soft set theory has been received much
attention since its appearance. There are many papers
devoted to fuzzify the concept of soft set theory which leads
to a series of mathematical models such as fuzzy soft set
[16,17,18,19,20], generalized fuzzy soft set [21,22],
possibility fuzzy soft set [23] and so on. Thereafter ,P.K.Maji
and his coworker[24]introduced the notion of intuitionistic
fuzzy soft set which is based on a combination of the
intuitionistic fuzzy sets and soft set models and studied the
properties of intuitionistic fuzzy soft set. Later, a lot of
extentions of intuitionistic fuzzy soft are appeared such as
generalized intuitionistic fuzzy soft set [25], possibility
Intuitionistic fuzzy soft set [26] and so on. Furthermore, few
researchers have contributed a lot towards neutrosophication
of soft set theory. In [27] P.K.Maji, first proposed a new
mathematical model called “neutrosophic soft set” and
investigate some properties regarding neutrosophic soft
union, neutrosophic soft intersection, complement of a
neutrosophic soft set ,De Morgan’s laws. In 2013, S.Broumi
and F. Smarandache [28]combined the intuitionistic
neutrosophic set and soft set which lead to a new
mathematical model called” intutionistic neutrosophic soft
sets”. They studied the notions of intuitionistic neutrosophic
soft set union, intuitionistic neutrosophic soft set intersection,
complement of intuitionistic neutrosophic soft set and
several other properties of intuitionistic neutrosophic soft set
along with examples and proofs of certain results. S.Broumi
[29]presented the concept of“generalized neutrosophic soft
set” by combining the generalized neutrosophic sets[13]and
soft set models, studied some properties on it, and presented
an application of generalized neutrosophic soft Set in
decision making problem.

The algebraic structure of soft set theories has been
explored in recent years. In [30], Aktas and Cagman gave a
definition of soft groups and compared soft sets to the related
concepts of fuzzy sets and rough sets. Sezgin and Atagiin [33]
defined the notion of normalistic soft groups and corrected
some of the problematic cases in paper by Aktas and Cagman
[30]. Aygunoglu and Aygun [31] introduced the notion of
fuzzy soft groups based on Rosenfeld’s approach [32]and
studied its properties. In 2010, Acar et al. [34] introduced the
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basic notion of soft rings which are actually a parametrized
family of subrings. Ghosh, Binda and Samanta [35]
introduced the notion of fuzzy soft rings and fuzzy soft ideals
and studied some of its algebraic properties. Inan and Ozturk
[36]concurrently studied the notion of fuzzy soft rings and
fuzzy soft ideals but they dealt with these concepts in a more
detailed manner compared to Ghosh et al.[35]. In 2012,
B.P.Varol et al [37]introduced the notion of fuzzy soft ring in
different way and studied several of their basic properties. J.
Zhan et al[38]introduced soft rings related to fuzzy set theory.
G. Selvachandran and A. R. Salleh[39]introduced vague soft
rings and vague soft ideals and studied some of their basic
properties. Z.Zhang [40] introduced intuitionistic fuzzy soft
rings studied the algebraic properties of intuitionistic fuzzy
soft ring. Studies of fuzzy soft rings are carried out by several
researchers but the notion of neutrosophic soft rings is not
studied. So, in this work we first study with the algebraic
properties of intuitionistic neutrosophic soft set in ring
theory. This paper is organized as follows. In section 2 we
gives some known and useful preliminary definitions and
notations on soft set theory, neutrosophic set, intuitionistic
neutrosophic set, intuitionistic neutrosophic soft set and ring
theory. In section 3 we discuss intuitionistic neutrosophic
soft set over ring (INSSOR). In section 4 concludes the

paper.

. Preliminaries

In this section we recapitulate some relevant definitions
viz, soft set, neutrosophic set, intuitionistic neutrosophic set,
intuitionistic neutrosophic soft sets, fuzzy subring for better
understanding of this article.

1. Definition 1

Molodtsov defined the notion of a soft set in the following
way: Let U be an initial universe and E be a set of parameters.
Let ¢(U) denotes the power set of U and A be a non-empty
subset of E. Then a pair (P, A) is called a soft set over U,
where P is a mapping given by P : A — {(U). In other words,
a soft set over U is a parameterized family of subsets of the
universe U. For € € A, P (¢) may be considered as the set of
€ -approximate elements of the soft set (P, A).

. . Definition

Let U be an universe of discourse then the neutrosophic set
A is an object having the form A { x:
Ty (x), In(%), Fo(x) ,x €U}, where the functions T, I, F :
U 10,1 define respectively the degree of membership , the
degree of indeterminacy, and the degree of non-membership
of the element x € X to the set A with the condition.

0 Ta(x) + Ih(x)+ Fa(x) 3". (1)

From philosophical point of view, the neutrosophic set
takes the value from real standard or non-standard subsets
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of 10,1'[.So instead of ] 0,1 [we need to take the
interval[0,1]for technical applications, because ] 0,1 [will be
difficult to apply in the real applications such as in scientific
and engineering problems.

. . Definition 11

An element x of U is called significant with respect to
neutrosophic set A of U if the degree of truth-membership or
falsity-membership or indeterminancy-membership value,
ie., Ta(x) orly(x)or Fo(x)  0.5. Otherwise, we call it
insignificant. ~ Also, for  neutrosophic  set the
truth-membership, indeterminacy-membership and
falsity-membership all can not be significant. We define an
intuitionistic neutrosophic set by

A { xt Ta(x). [p(x) ,Fy(x) ,x €U},where

min { Ty(x) Fa(x) } 0.5,
min { T, (x), [,(X) } 0.5,
min { FpA(X), [,(x)} 0.5, forallx €U,

with the condition 0 Ty (x) + [,(X)+ Fa(x) 2. 2

As an illustration, let us consider the following example.

. . Example

Assume that the universe of discourse U {x,X;,X3},
where x; characterizes the capability, x, characterizes the
trustworthiness and x; indicates the prices of the objects.
Further, It may be assumed that the values of x;, X, and x3 are
in[0,1]and they are obtained from some questionnaires of
some experts. The experts may impose their opinion in three
components viz. the degree of goodness, the degree of
indeterminacy and that of poorness to explain the
characteristics of the objects. Suppose A is an intuitionistic
neutrosophic set ( INS ) of U, such that,

A { x%,03,05,04 , x,,04,02,06, x3,07
0.3,0.5 }, where the degree of goodness of capability is 0.3,
degree of indeterminacy of capability is 0.5 and degree of
falsity of capability is 0.4 etc.

. . Definition

Let U be an initial universe set and A < E be a set of
parameters. Let N(U) denotes the set of all intuitionistic
neutrosophic sets of U. The collection (P, A) is termed to be
the soft intuitionistic neutrosophic set over U, where P is a
mapping given by P: A N(U).

. . Remark

We will denote the intuitionistic neutrosophic soft set
defined over a universe by INSS.
Let us consider the following example.

. . Example
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Let U be the set of blouses under consideration and E is
the set of parameters (or qualities). Each parameter is a
intuitionistic neutrosophic word or sentence involving
intuitionistic neutrosophic words. Consider E  { Bright,
Cheap, Costly, very costly, Colorful, Cotton, Polystyrene,
long sleeve , expensive }. In this case, to define a
intuitionistic neutrosophic soft set means to point out Bright
blouses, Cheap blouses, Blouses in Cotton and so on.
Suppose that, there are five blouses in the universe U given
by, U {by, by, b3, by, bs} and the set of parameters A  {ey,
€,, €3, €4}, Where each e; is a specific criterion for blouses:

e; stands for Bright’,

e, stands for Cheap’,

e stands for costly’,

e, stands for Colorful’,

Suppose that,

P(Bright) { b,,0.5,0.6,0.3 , b,,0.4,0.7,0.2 , b3,0.6,0.
2,0.3 , 14,0.7,0.3,0.2 , b5,0.8,0.2,0.3 }.

P(Cheap) { b,,0.6,0.3,0.5 , b,,0.7,0.4,0.3 , b3,0.8,0.
1,0.2 , b4,0.7,0.1,0.3 , bs5,0.8,0.3,0.4}.

P(Costly) { b1,0.7,0.4,0.3 , b,,0.6,0.1,0.2 , b3,0.7,0.
2,0.5 , b4,0.5,0.2,0.6 , bs,0.7,0.3,0.2 }.
P(Colorful) { b,,0.8,0.1,0.4 , b,;,0.4,0.2,0.6 , b;,0.3,
0.6,0.4 , b,,0.4,0.8,0.5 , b5,0.3,0.5,0.7 }.

. . Definition

For two intuitionistic neutrosophic soft sets (P,A) and
(Q,B) over the common universe U. We say that (P,A) is an
intuitionistic neutrosophic soft subset of (Q,B) if and only if
(i) AcB.

(i))P(e) is an intuitionistic neutrosophic subset of Q(e).
Tp () (%),

Or Tpey(x)  Toey(X), Ipey(®)

FQ(e)(x),Ve S A,X e U.

loey(®)» Fpey(%)

We denote this relationship by (P,A) € (Q,B).

(P,A) is said to be intuitionistic neutrosophic soft super set
of (Q,B) if (Q,B) is an intuitionistic neutrosophic soft subset
of (P,A). We denote it by (P, A) 2 (Q,B).

. . Definition

Two INSSs (P, A) and ( Q, B) over the common universe
U are said to be equal if (P,A) is an intuitionistic
neutrosophic soft subset of (Q,B) and (Q,B) is an
intuitionistic neutrosophic soft subset of (P,A) which can be
denoted by (P,A) (Q,B).

.1 . Definition

Let (P,A) and (Q,B) be two INSSs over the same
universe U. Then the union of (P, A) and (Q, B) is denoted
by (P,A)U (Q, B)’ and is defined by (P,A) U (Q,B) (K,
C), where C A U B and the truth-membership,
indeterminacy-membership and falsity-membership of ( K,
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C) are as follows:
Tp(g)(m),ifs € A — B,
To(ey(m),ife € B- A
max (Tp ¢y (m), Ty()(m)),ife € A N B
Ipy(m),ife € A — B,

Tk ey (m)

IK(e)(m) IQ(E)(m), ife € B-A
min (Ip(g)(m),lQ(E)(m)),lfs € ANnB
Fp(g)(m),ifs € A — B,
FK(s)(m) FQ(E)(m),ifs € B-A 3)
min (Fp(;)(m), Fo()(m)),ife € AN B
.11. Definition

Let (P,A) and (Q,B) be two INSSs over the same
universe U such that A N B 0. Then the intersection of (P,
A) and (Q, B) is denoted by (P,A) N (Q,B)’ and is defined
by (P,A) n (Q,B) (L,C),where C A NB and the
truth-membership,  indeterminacy = membership  and
falsity-membership of (L,C) are related to those of (P,A)
and (Q,B) by:

Tp(g)(m),ife € A — B,

TL(s)(m) TQ(E)(m), ife e B-A
min (Tp(g)(m),TQ(g)(m)),lfs € ANnB
Ip(g)(m),ifs € A — B,
IL(E)(m) IQ(&) (m),ifs € B-A
min (Ipy(m), Iy (m)),ife € AN B
Fp(g)(m),ifs € A — B,
FL(¢)(m) Foee(m),ife € B- A “4)

max (Fp()(m), Fo)(m)),ife € AN B

.1 . Definition

Let (P, A) be a soft set. The set Supp (P,A) {x€A PX)#
@} is called the support of the soft set (P,A). A soft set
(P, A) is non-null if Supp (P, A) #@.

.1 . Definition 1

A fuzzy subset p of aring R is called a fuzzy subring of R
(in Rosenfeld’ sense), if for all x, y € R the following
requirements are met:

p (x-y) = min (u(x), #(y)) and

g (xy) = min (u(x), u(y)) )

. Intuitionistic Neutrosophic Soft Set
over Ring

In this section, we introduce the notions of intuitionistic
neutrosophic soft set over ring and intuitionistic
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neutrosophic soft subring in Rosenfeld’s sense and study
some of their properties related to this notions.

Throughout this paper. Let (R, +, .) be aring . E be a
parameter set and let A € E. For the sake of simplicity , we
will denote the ring (R, +, .) simply as R.

From now on, R denotes a commutative ring and all
intuitionistic neutrosophic soft sets are considered over R.

.1. Definition

Let (P,A) be an intuitionistic neutrosophic soft set. The
set Supp(P,A) {e € A P(e)# O} is called the support of
the intuitionistic neutrosophic soft set (P ,A).An
intuitionistic neutrosophic soft set (P,A) is non-null if Supp
(P,A) 0.

. . Definition

A pair (P,A) is called an intuitionistic neutrosophic soft
set over ring, where P is a mapping given by

P:A - ([0,1] x [0,1] X [0,1]DR, P(e) : R - [0,1] X
[0,1] x [0,1],

P(e) {(x, Ty (), Ipe)(x) , Fpey(x)):x € R} for all

£ EA,

If for all x ,y € R the following condition hold:
(D) Trey(x —y) = Tpey(x) ATpey(¥)
Fpey(x —y) < Fpey(x) V Fpy(y) and

Ipey(x —y) < Ipey(x) V Ipey(y) O)
(2) Tpey(xy) = Tpey(x) ATp) ()
Fpey(xy) < Fpe)(x) V Fp)(y) and
Ipey(xy) < Ipiey(x) V Ipy(¥) (7

. . Definition

For two intuitionistic neutrosophic soft set over ring (P,A)
and (Q ,B), we say that (P ,A) is an intuitionistic
neutrosophic soft subring of (Q,B) and write (P,A) €
(Q.B) if

i) AcSB

(i) foreachx €R ,e € A, Tp()(x) < Tgy(x),

Ipey(x) = Igey(x) , Fpiey(x) = Fgeey(x) . ()

. . Definition

Two intuitionist neutrosophic soft set over ring (P,A) and
(Q,B) are said to be equal if (P,A) € (Q,B) and (Q,B)
c (P.A).

. . Theorem

Let (P,A) and (Q.B) be two intuitionistic neutrosophic
soft over ring R. if P(¢) < Q(¢) for all ¢ € A and A
B, then (P,A) is an intuitionistic neutrosophic soft
subring of (Q,B).
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Proof The proof is straightforward

. . Definition

The union of two intuitionistic neutrosophic soft set over
ring (P,A) and (Q,B) is denoted by (P,A) U (Q.,B) and is
defined by a intuitionistic neutrosophic soft set over ring
H:A U B - ([0,1] x [0,1] x [0,1])® such that for each
e € AUB.

)

=

<X, Tpey(0), Ipey(x), Fpey(x) >if e € A—B
< x,TQ(E)(x), [Q(S)(X) ) FQ(S)(X) > ifS € B—-A
<%, They () V Toe) (1), Ip(ey () Al ey (), Fp(ey () A Fey(x) >,
ife € ANB

————

)
This is denoted by (H,C) (P,A)U (Q,B), where C AUB.

. . Theorem

If (P,A)and (Q,B) are two intuitionistic neutrosophic
soft set over ring R, then , so are (P,A) U (0.B).
Proof. For any ¢ € AUB and x, y € R,we consider the
following cases.
Casel.Let ¢ € A—B .Then,
Taey(x—y) = Tpe(x—y)
= Tpiey(x) ATpey(y)
= Taey(x) ANTre (),
= Tpey(xy)
= Tpiey(x) ATpey(y)
=Taey () AT (),
Igey(x—y) = Ipe(x—y)
< Ipiey(x) V Ipe(y)
=g () V g ),
Iney(xy) = I (xy)

< Ipiey(x) V I5 ()
Igey(x) V Igey (),
Fie(x =) Fpe(x—y)
< Fpey(x) V Fpey()
Fre®) V Fae®),
Frey(xy) Fpe(xy)
< Fpe)(x) V Fpe)(y)
Fpey(x) V Frey ),

Case .Let if ¢ € B— A .Then, analogous to the proof of
case 1, we have

Taey(x —y) = The)(x) AT ()
Tae)(xy) =T () AT ()

Ipe(x —y) < Igey(X) V I ()

The)(xy)

I (xy) <Ige)(x) V g )
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Fre(x—y) < Fre(x) V Fre)

Fre(xy) <Fpe(x) V Fae ()

Case . Let ¢ € AnNB. In this case the proof is
straightforward. thus ,in any cases ,we have

Taey(x—y) 2 Taey(x) ATae ()

Taey(xy) = The(x) AT )

Ine(x —¥) < Ipey(x) V Ige )

Ine)(xy) <) V Ige ()

Fre(x—y) < Fre(x) V Fre)

Fre(xy) < Fpey(x) V Fre®)

Therefore , (P, A)U( @, B) is an intuitionistic neutrosophic
soft set over ring

. . Definition

The intersection of two intuitionistic neutrosophic soft set
over ring (P,A) and (Q,B) is denoted by (P,A) N (Q.,B)
and is defined by an intuitionistic neutrosophic soft set over
ring.

M:A U B - ([0,1] x [0,1] x [0, 1)) such that for each
¢ € A UB.
M(e)
<X, TP(E)(X): Ip(g)(x) ,Fp(g)(x) >ife € A-B
<X, Tge) (), Igey(x) , Fgey(x) > if e € B—A

| <x, TF(:)(’C) A T@(E) (x), I}S(E)(X) A I@(z)(x) , Fp(g)(x) \% F@(z)(x) >,
ife € ANB
)

This is denoted by (M,C) (P,A) N (Q,B), where C
AU B.

. . Theorem

If (P,A) and (Q,B) are two intuitionistic neutrosophic
soft set over ring, then , so are (P,A) A (Q,B).
Proof. The proof is similar to that of Theorem 3.8.

.1 . Definition

Let (P,A) and (Q,B) be two intuitionistic neutrosophic
soft set over ring R. Then , “(P,A) AND (Q,B)” is denoted
by (P,A)A(Q.,B) and is defined by (P,A)A (Q.B)
(N,C) ,where C AxBand H:C — ([0,1]® x [0,1]3)R is
defined as

N, B) Pa)n G(B), forall (a,f) € C.

.11. Theorem

If (P,A) and (Q,B) are two intuitionistic neutrosophic
soft set over ring R, then , so is (P,A)A (Q,B).
Proof. Forall x,y € Rand (o, /) € A x B we have
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Trepx—=Y) Tpay(x—y) A Topy(x—y))
= (Tpey(x) ANTpey()) N (Toipy(ONT o))
(Tp@) CON Tpy(x)) A (Tpey(¥) A Toey()
Ti@p ) A Tyapm®)

Tr@ep®Y) Ty (xy) N Top)(xy))

2(Tp) () ATpey()) N (T CINTg ()
(TryCON Tgipy(x)) N Ty A Ty ()
Trep @) N Trep )

In a similar way ,we have

Inep)x =) < Inep @) V Igep )

In@pY) < Ig@p ) V Ig@p @)

Fyep(x—¥) < Fy@ep(®) V Fyep )

Fyap®xy) < Fyep®) V Fyepn®)

For all x, y € R and (a,f) € C .It follows that
(P,A)A (Q,B) is an intuitionistic neutrosophic soft set over
ring R.

.1 . Definition

Let (P,A) and (Q,B) be two intuitionistic neutrosophic
soft set over ring R. Then , “(P,A) OR (Q,B)” is denoted by
(P ,A) V(Q ,B) and is defined by (P ,A)
V(@.,B) (0,€) ,where C A x B and 0 : C -
([0,1]3 x [0,1]3)F is defined as

O(a, ) P(a)T Q(B), forall (a,B) € C.

.1 . Theorem

If ( P, A) and ( @, B) are two intuitionist neutrosophic
soft set over ring R, then , so are ( P, A)V( Q, B).
Proof. The proof is straightforward.
The following theorem is a generalization of previous
results.

.1 . Theorem

Let ( P, A) be an intuitionist neutrosophic soft set over
ring R, and let {( P,A;)};c; be a nonempty family of
intuitionistic neutrosophic soft set over ring, where I is an
index set .Then , one has the following:

(1) Aje;(P;, A}) is an intuitionistic neutrosophic soft set

over ring R.
()if A; N A; 0, foralli,j € I then Vi (B, A) is
an intuitionistic neutrosophic soft set over ring R.

.1 . Definition

Let (P,A) and (Q,B) be two intuitionistic neutrosophic
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soft set over ring R. Then ,the product of (P,A) and (Q,B)
is defined to be the intuitionistic neutrosophic soft set over
ring (P o @, C) ,where C AU B and
T@ - g)e) ()
Tﬁ(s)(x) lfS € A—B
TQ”(E)(X) lfS €EB-A
Vx:ab{Tf’(e)(a) A TQ(E)(b)} lf € €ANB
Ip(g)(X) lfS € A—B
IQ”(E)(X) lfS €EB-A
/\x:ab{lﬁ(g)(a) VIQ(e)(b)} ifé‘ € AnB

)

Ip o gye)(X)

Fpogye(x)
Fp(g)(X) lfS € A—B

Foe)(x)if e € B—A
Ne=ap{Fpey(@) V Fg(b)} if e € ANB,a,b€R
Forall ¢ € Canda,b € R .This is denoted by (P o Q, C)
(P.A) (Q.B).

.1 . Theorem

If (P,A) and (Q,B) are two intuitionistic neutrosophic
soft set over ring R. Then , sois (P,A)o (Q,B).
Proof. Let (P ,A) and (Q ,B) be two intuitionistic
neutrosophic soft set over ring R. Then ,for any ¢ € AU
B ,and x,y € R, we consider the following cases.
Casel.Let € € A— B. Then,

T (x—Y) Tpe(x—y)
= Tpey(x) NTpy(y)
T+ 0)e) () AT gye) (V)
Tpe)(xy)
= Tpe)(x) ATpe)(¥)
Teog)e) X)) AT o)) (V)
lp.pyo(x—y)  Ipe)(x—y)
< Ipey(x) V Ipy(y)
Iipogye)(®) V 15 o)) (),
Ipeey (xy)
< Ipey(x) V Ip ()
Iip oy ey V 50 0)e)(¥)
Fe.qe)(x—y) Fpey(x—y)
S Fpey(x) V Fpey(¥)
Fipoqye)(0) V Fpo gy ™)

T o 0))(XY)

I g)(e) (xY)

Feoqe(y)  Fpe(xy)
S Fpey(x) V Fpy()
Feope®) V Feaye )
Case . Let ¢ € B—A. Then, analogous to the proof of

case 1,the proof is straightforward.
Case .Let € € AN B. Then,

Tog)e)()  Vizapr (Tre)(@) ATg (b))
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= Viy=aby (Tp(ey(@) ATy (by))
2 Vay=cd (Tp(e) (€) ATy (d))
T o0y (xy)
Similarly ,we have T (5. g))(x¥) = T(5.0)¢) () »and so

T ®y) 2T ()N Ty o)

In a similar way , we prove that

200 () <15 y) () Vo) (W)

and Fp . gye) () < Fpo gy () V Foy) )

Therefore (P,A)o (Q,B) is an intuitionistic neutrosophic
soft set over ring R.

. Conclusion

In this paper we have introduced the concept of
intuitionistic neutrosophic soft set over ring (INSSOR for
short ). We also studied and discussed some properties
related to this concept. The definitions of intersection, union,
AND, and OR operations over ring (INSSOR) have also
been defined. we have defined the product of two
intuitionistic neutrosophic soft set over ring. Finally, it is
hoped that this concept will be useful for the researchers to
further promote and advance the research in neutrosophic
soft set theory.
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r (3a + 1) + (3b + 1)I Conjecture

for Neutrosophic Numbers (Z U I)

W.B. Vasantha Kandasamy, K. Ilanthenral, Florentin Smarandache

W.B. Vasantha Kandasamy, K. Ilanthenral, Florentin Smarandache (2016). Modified Collatz conjecture or

(3a+1)+(3b+1)I Conjecture for Neutrosophic Numb

Abstract: In this paper, a modified form of Collatz con-
jecture for neutrosophic numbers (Z 1) is defined. We
see for any n € (Z v 1) the related sequence using the for-
mula (3a + 1) + (3b + 1)I converges to any one of the 55
elements mentioned in this paper. Using the akin formula

Keywords: Collatz Conjecture, Modified Collatz Conjecture, Ne
1 Introduction

The Collatz conjecture was proposed by Lothar Collatz
in 1937. Till date this conjecture remains open. The 3n — 1
conjecture was proposed by authors [9]. Later in [9] the 3n
* p conjecture; a generalization of Collatz Conjecture was
proposed in 2016 [9].

However, to the best of authors knowledge, no one has
studied the Collatz Conjecture in the context of
neutrosophic numbers (Z U Iy {a-+bl/abeZ > I}
where [ is the neutrosophic element or indeterminancy
introduced by [7]. Several properties about neutrosophic
numbers have been studied. In this paper, authors for the
first time study Collatz Conjecture for neutrosophic
numbers. This paper is organized into three sections.

Section one is introductory. Section two defines /
describes Collatz conjecture for neutrosophic numbers.
Final section gives conclusions based on this study.
Extensive study of Collatz conjecture by researchers can be
found in [1-6]. Collatz conjecture or 3n + 1 conjecture can
be described as for any positive integer n perform the
following operations.

If n is even divide by 2 and get % if % is even divide

by 2 and proceed till 2n—1 is odd.

If n is odd multiply n by 3 and add 1 to it and find
3n + 1. Repeat the process (which has been called Half of
Triple Plus One or HTPO) indefinitely. The conjecture puts
forth the following hypothesis; whatever positive number
one starts with one will always eventually reach 1 after a
finite number of steps.
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of Collatz conjecture viz. (3a— 1) + (3b —1)I the neutro-
sophic numbers converges to any one of the 55 elements
mentioned with appropriate modifications. Thus, it is con-
jectured that every n € (Z w1)has a finite sequence which
converges to any one of the 55 elements.

utrosophic Numbers.

Letn 3, the related sequence is 3n + 1, 10, 5, 16, 8, 4,
2, 1.

Letn 11, the related sequence is 34, 17, 52, 26, 13,
40, 20, 10, 5, 16, 8,4, 2, 1.

Letn 15, the related sequence is 15, 46, 23, 70, 35,
106, 53, 160, 80, 40, 20, 10, 5, 16, 8,4, 2, 1.

In simple notation of mod 2 this conjecture can be

viewed as
% if n= 0 (mod?2)

f(n):{ .
3n+1 if n=1(mod 2)

The total stopping time for very large numbers have
been calculated. The 3n — 1 conjecture is a kin to Collatz
conjecture.

Take any positive integer n. If n is even divide by 2 and

get g if % is odd multiply it by 3 and subtract 1 to i.e. 3n

— 1, repeat this process indefinitely, [9] calls this method as
Half Or Triple Minus One (HOTMO).

The conjecture state for all positive n, the number will
converge to 1 or 5 or 17.

In other words, the 3n — 1 conjecture can be described
as follows.

if n= 0 (mod 2)
if n = 1 (mod 2)

Letn 3,3n-1 8,
Letn 28, 14,7,20, 10, 5.
n 17,50,25,74,37,110, 55, 164, 82,41, 122, 61, 182,91,
272,136, 68, 34, 17.

Several interesting features about the 3n — 1 conjecture
is derived and described explicitly in [9].
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It is pertinent to keep on record in the Coltaz conjecture
3n + 1 if n is taken as a negative number than using 3n + 1
for negative values sequence terminate only at — 1 or — 5 or
— 17. Further the 3n — 1 conjecture for any negative n, the
sequence ends only in — 1.

Thus, for using 3n + 1 any integer positive or negative
the sequence terminates at any one of the values {—17, -5, —
1, 0, 1} and using 3n — 1 the sequence for any integer n
positive or negative terminates at any one of the values {-1,
0,1,5,17;.

2 Collatz Conjecture for the neutrosophic numbers
Zuly

In this section, we introduce the modified form of
Collatz conjecture in case of neutrosophic numbers (Z U I)
{a+bl/a,beZand? 1} where I is the neutrosophic
element or the indeterminancy introduced by [7]. For more
info, please refer to [7].

Now, we will see how elements of (Z U I) behave when
we try to apply the modified form of Collatz conjecture.

The modified formula for Collatz conjecture for
neutrosophic numbersn a+blis (3a+ 1)+ (3b+ 1) ifa

Othen3bl+1 (3b+ 1)listakenifb O then3a+ 1 term
is taken, however iteration is taken the same number of
times foraand bl inn a+bl.

Ifne(ZuUl)isofthe formn a,a e Z then Collatz
conjecture is the same, whenn al,a € I, I> 1 then also
the Collatz conjecture takes the value I; for we say al is even
if ais even and al is odd is a is odd.

For 31, 91, 271, 151, 451, 191, 351, 471, 1051, 1011, 1251
are all odd neutrosophic numbers.

Now 121, 161, 2481, 256l etc. are even neutrosophic
numbers.

The working is instead of adding 1 after multiplying
with 3 we add I after multiplying with 3.

For instance consider n 121, the sequence for n
is as follows:

121, 61, 31, 3 x 3T+ 1

So the element n
at L.

Consider n 2561, the sequence is 2561, 1281, 641, 321,
161, 81, 41, 21, I so converges to L.

Taken 311, 311is odd so the sequence forn 31l is

311, 941, 471, 1421, 711, 2141, 1071, 3221, 1611, 484I,
2421, 1211, 3641, 1821, 911, 2741, 1371, 4121, 2061, 1031,
3101, 1551, 4661, 2331, 7001, 3501, 1751, 526I, 2631, 7901,
3851, 11561, 5781, 2891, 8681, 4341, 2171, 6521, 3261, 1631,
4901, 2451, 736l, 3681, 1841, 92I, 461, 231, 701, 351, 1061,
531, 1601, 801, 401, 201, 101, 51, 161, 81, 41, 21, L.

Letn 451 the sequence is 451, 1361, 681, 341, 171, 521,
261, 131, 401, 201, 101, 51, 161, 81, 41, 21, I.

121

101, 51, 161, 81, 41, 21, L.
121 has a sequence which terminates
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So if n € Z then as usual by the Collatz conjecture the
sequence converges to 1. If n € ZI then by applying the
Collatz conjecture it converges to I. Now if x € (Z U I) that
isx a+ bl how does x converge.

We will illustrate this by an example.

Nowifx a+bl,a,beZ {0};isiteven or odd? We
cannot define or put the element x to be odd or to be even.
Thus to apply Collatz conjecture one is forced to define in a
very different way. We apply the Collatz conjecture
separately for a and for bl, but maintain the number of
iterations to be the same as for that of a + bl. We will
illustrate this situation by some examples.

Consider n 31 + 14 € (Z U I). n is neither odd nor
even. We use (3a + 1) + (3b + 1)I formula in the following
way

31+ 14, 101 + 7, 5T +22, 161 + 11, 81 + 34, 41 + 17,
21+ 52, 1+ 26, 41 + 13, 21 + 40, I + 20, 41 + 10, 21 + 5,
[+16,41+ 8,21 +4,1+2, 41+ 1,21 +4,1+ 2,41 +1,
[+4,1+2.

So the sequence terminates at [ + 2.

Consider n 31 — 14 € (Z U I), n is neither even nor
odd.

The sequence for this n is as follows.

31 - 14, 101 — 7, 51 — 20, 161 — 10, 81 — 5, 41 — 14,
21 - 7, 1 — 20, 41 — 10, 21 — 5, 1 — 14, 41 - 7,
21-20,1-10,41-5,21-14,1-7,41-20,21-10,1-5,
41-14,21-7,1-20,41-10,2I-5, ... ,1-5.

So forn 31— 14 the sequence converges to 2I — 5.

Considern —51-34;—-51-34,-141-17,-71-50, —
201 -25, —-101 -74, -51 -37, —14I, -110, 71 -55,
—20I — 164, —101 — 82, —51 —41, —14I —122, 71 -61,
—201 -182, —10I -91, —51 — 272, —141 -136, —71 — 68,
—201—34,-10I 17, =51 — 50, —141 25, 71— 74, -201 -37,
-10I -110, -5I =55, —141 -164, —71 —-82, 201 —41,
-10I -122, -51 -61, —141 -182, —71 -91, 201 -272,
—101-136, —51 68, —141 -34, —71 —17, -201 =50, —101 -25,
—51-74,-141-37, -71-110, —20I 55, —101 —164, —51 -82,

—141 41, -71 -122, -20I -61, —10I —-182, —5I 91,
—141-272, -71-136, —201 —68, —101 —34, —51— 17. 1)

n —5I-34, converges to —51— 17.

Let n —10I —17, =51 — 50, —141 -25, —71 74,
—20I - 37, —10I -110, —51 — 55, —141 — 164, —71 -82,
—20I — 41, -10I - 122, —51 -61, —141 —182, —71 91,
—20I —272, —10I — 136, —51 — 68, —141 — 34, —71 -17,
— 20I — 50, —101 25, 51 -74, —141 =37, =71 — 110,
=201 — 55, —101 — 164, 51 — 82, —141 — 41, 71 — 122,

—20I — 61, —101 — 182, —51 — 91, —14I — 272, 71 —136,
—201-68,-10I — 34, -51 - 17.

Thus, by using the modified form of Collatz conjecture
for neutrosophic numbers (Z U I) we get the following
collection A of numbers as the limits of finite sequences
after performing the above discussed operations using the
modified formula 3(a+bl)+ 1 +Tor(3a+1)+Bb+ 1I;a,

107



Florentin Smarandache (author and editor)

beZ {0}ifa Othen (3b+ 1)l formulaandifb O then
3a+ 1 formula is used.

A {1,-1,0,L-LL1+[-I+1,-1+L-1-1,-17,-5,
171, -5, 1+ 2,1 -21,-1 -2L, -1 +2[,2-1,2+ 1,2 -1,
2+L-5+L-5+2,-5-17,-5-1,-5-2I, 51 + 1,
Sl+2,-51-2,-51-1,-51-17,-17 - 1, =17 + 1,
171+ 1,-171-1,-17 =21, =17 + 2, =171 + 2, -171 - 2,
1+41,41+1,4-1,41-1,-34 =51, -171-10, — 17 — 101,
—341 - 5, =17 — 201, —171 — 20, — 681 — 5, — 68 — 51,
—51+4,-5+41, 17 +41, -171 +4}.

Thus, the modified 3n + 1 Collatz conjecture for
neutrosophic numbers (Z U T)is 3a+ 1)+ (3b+ 1) I forn

atble(Zul),a,beZ {0}.

Ifa 0 then we use the formula (3b + 1)[ and ifb 0
then use the classical Collatz conjecture formula 3a + 1. It
is conjectured that using (3a+ 1) + (3b+ 1)l where a,b € Z

{0} or3a+1ifb Oor(3b+ 1)lifa 0, formulaeveryn
€ (Z U 1) ends after a finite number of iterations to one and
only one of the 55 elements from the set A given above.
Prove or disprove.

Now the 3n — 1 conjecture for neutrosophic numbers (Z
wl)readsas (3a— 1)+ (3bl —I) wheren a+bl;a,be Z

{0};ifa Othen (3b—1)I 3bl—1Iis used instead of 3n—
lor(3a—1)+(3Bb-1)1L

Ifb 0 then 3a— 1 thatis formula 3n — 1 is used.

Now every n € (Z U I) the sequence converges to using
the modified 3n — 1 Collatz conjecture (3a — 1) +
(3b— I to one of the elements in the set B; where
B {1,0,-1,L 5L 5,17, 171, -1, 1 + 21, 1 — 21, -1 + 21,
“12L1+L,1-2,1+2,-1-2,-1+2,1-1,-1-1,5+1,
5-L5-2L,5+21, -1+ 1,5+ 17,17 -1, 17 + 1, 17 - 21,
17+21, 17+ 5,51 —-1,51-2,51+ 1,51 +2, 171 - 1,
171 -2, 171 + 1, 171 + 2, 17 + 101, 171 + 10, 34 + 31,
341+ 5,17 + 201, 20 + 171, 68 + 51, 681+ 5, 51— 4, 5 — 41,
17-4L,171—4, 41+ 1,41-1,4+1,4-1}.

We will just illustrate how the (3a — 1) + (3b — 1)I
formula functions on (Z U I).

Consider 12 + 171 € (Z U I) the sequence attached to it
is 12+ 171, 6 + 501, 3 + 251, 8 + 741, 4 + 371,2 + 1101, 1 +
551,2+ 1641, 1 +821,2 + 411, 1 + 1221, 2 + 611, 1 + 1821,
24911, 1 +272I,2 + 1361, 1 + 681,2 + 341, 1 + 171, 2 +
501, 1+251,2+ 741, 1 +37L,2+ 1101, 1 + 551, 2 + 164, 1
+82L2+411, 1+ 1221, 2+ 611, 1+ 1821, 2 + 911, 1 + 2721,
2+1361,1+681,2+34L, 1+ 171.

The sequence associated with 12 + 171 terminates at 1
+ 171

Thus, it is conjectured that every n € (Z U I) using the
modified Collatz conjecture 3a— 1)+ 3b—-1);a,b e Z

{0} or3a—1ifb Oor(Bb+ DIifa 0, has a finite
sequence which terminates at only one of the elements from
the set B.
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3 Conclusions

In this paper, the modified form of 3n + 1 Collatz
conjecture for neutrosophic numbers (Z U I) is defined and
described. It is defined analogously as 3a£ 1)+ (3bx 1) I
where a+ bl € (Z U T) witha=0and b= 0.

Ifa 0 the formula reduces to 3b+ 1)[ and ifb 0 the
formula reduces to (3a £ 1).

It is conjectured every n € (Z U I) using the modified
form of Collatz conjecture has a finite sequence which
terminates at one and only element from the set A or B
according as (3a+ 1) + (3b + 1)I formula is used or (3a— 1)
+ (3b — 1)I formula is used respectively. Thus, when a
neutrosophic number is used from (Z U I) the number of
values to which the sequence terminates after a finite
number of steps is increased from 5 in case of 3n =1 Collatz
conjecture to 55 when using (3a £ 1) + (3b £ 1)I the modified
Collatz conjecture.
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Neutrosophic Duplets of {Z,, X } and {Z,,, X }

and Their Properties
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Abstract: The notions of neutrosophy, neutrosophic algebraic structures, neutrosophic duplet and
neutrosophic triplet were introduced by Florentin Smarandache. In this paper, the neutrosophic
duplets of an, qu and Zp1 po...pn AT€ studied. In the case of an and qu, the complete characterization
of neutrosophic duplets are given. In the case of Zy, 5, , only the neutrosophic duplets associated with
pis are provided; i = 1,2,...,n. Some open problems related to neutrosophic duplets are proposed.

Keywords: neutrosophic duplets; semigroup; neutrosophic triplet groups

1. Introduction

Real world data, which are predominately uncertain, indeterminate and inconsistent, were
represented as neutrosophic set by Smarandache [1]. Neutrosophy deals with the existing neutralities
and indeterminacies of the problems. Neutralities in neutrosophic algebraic structures have been
studied by several researchers [1-8]. Wang et al. [9] proposed Single-Valued Neutrosophic Set (SVNS)
to overcome the difficulty faced in relating neutrosophy to engineering discipline and real world
problems. Neutrosophic sets have evolved further as Double Valued Neutrosophic Set (DVNS) [10]
and Triple Refined Indeterminate Neutrosophic Set (TRINS) [11]. Neutrosophic sets are useful in
dealing with real-world indeterminate data, which Intuitionistic Fuzzy Set (IFS) [12] and Fuzzy sets [13]
are incapable of handling accurately [1].

The current trends in neutrosophy and related theories of neutrosophic triplet, related triplet
group, neutrosophic duplet, and duplet set was presented by Smarandache [14]. Neutrosophic duplets
and neutrosophic triplets have been of interest and many have studied them [15-24]. Neutrosophic
duplet semigroup were studied in [19] and the neutrosophic triplet group was introduced in [8].
Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Smarandache.

In the case of neutrosophic duplets, we see ax = a and x = neut(a), where, as in L-fuzzy sets [25]
as per definition is a mapping from A : X — L, L may be semigroup or a poset or a lattice or a Boolean
o-ring; however, neutrosophic duplets are not mapping, more so in our paper algebraic properties of
them are studied for Z, for specific values of n. However, in the case of all structures, the semigroup
or lattice or Boolean o-ring or a poset, there are elements which are neutrosophic duplets. Here,
we mainly analyze neutrosophic duplets in the case of Z,, only number theoretically.

In this paper, we investigate the neutrosophic duplets of {Z,, x }, where p is a prime (odd or
even) and n > 2. Similarly, neutrosophic duplets in the case of Zy; and Zj, p,..p, are studied. It is noted
that the major difference between the neutrals of neutrosophic triplets and that of neutrosophic duplets
is that in the former case they are idempotents and in the latter case they are units. Idempotents in the
neutrosophic duplets are called trivial neutrosophic duplets.

This paper is organized as five sections, Section 1 is introductory in nature and Section 2 provides
the important results of this paper. Neutrosophic duplets in the case of Z,»; p an odd prime are studied
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in Section 3. In Section 4, neutrosophic duplets of Z,; and Zp, ;,...,,, and their properties are analyzed.
Section 5 discusses the conclusions, probable applications and proposes some open problems.

2. Results

The basic definition of neutrosophic duplet is recalled from [8].
Consider U to be the universe of discourse, and D a set in U, which has a well-defined law #.

Definition 1. Consider (a, neut(a)), where a, and neut(a) belong to D. It is said to be a neutrosophic duplet
if it satisfies the following conditions:

1. neut(a) is not the same as the unitary element of D in relation with the law # (if any);
2. a# neut(a) = neut(a) #a = a; and
3. anti(a) & D for which a # anti(a) = anti(a) # a = neut(a).

Here, the neutrosophic duplets of {an, x}, pis a prime (odd or even) and n > 2 are analyzed
number theoretically. Similarly, neutrosophic duplets in the case of Z,; and Zy, ,..p, are studied in
this paper.

The results proved by this study are:

1. The neutrals of all nontrivial neutrosophic duplets are units of {Zyn, x}, {Zp;, x} and
{Zppa.puwr < -

2. If pis a prime in anyone of the semigroups ({Z,, X } or {Zpg, X } or {Zp, p,...p,, X }) as mentioned
in 1, then mp has only p number of neutrals, for the appropriate m.

3. The neutrals of any mp' for a prime p; (m, p) = 1 are obtained and they form a special collection.

3. Neutrosophic Duplets of {Z,:, x } and its Properties

Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Florentin
Smarandache in 2016. Here, we investigate neutrosophic duplets of {Z,, x }, where p is a prime (odd
or even) and n > 2. First, neutrosophic duplets in the case of Z,s and Z;; and their associated number
theoretic properties are explored to provide a better understanding of the theorems proved. Then,
several number theoretical properties are derived.

Example 1. Let S = {Zy4, x } be the semigroup under x modulo 16. Z1¢ has no idempotents. The units of Z1
are {1,3,5,7,9,11,13,15}. The elements which contribute to the neutrosophic duplets are {2,4,6,8,10,12,14}.
The neutrosophic duplet sets under usual product modulo 16 are:

{{2,1},{2,9}},{{4,1}, {4,5},{4,9}, {4, 13} },
{{6,1},{6,9}},{{8,1},{8,3},{8,5},{8,7},{8,9},{8,11},{8,13},{8,15} },
{{10,1},{10,9}}, {{12,1}, {12,5}, {12,9}, {12,13}}, {{14,1}, {14,9}}

The observations made from this example are:

1. Every non-unit of Z14 is a neutrosophic duplet.
Every non-unit divisible by 2, viz. {2,6,10,14}, has only {1,9} as their neutrals.
3. Every non-unit divisible by 4 are 4 and 12, which has {1,5,9,13} as neutrals.

N

The biggest number which divides 16 is 8 and all units act as neutrals in forming neutrosophic duplets.
Thus, A = {1,3,5,7,9,11,13,15}, which forms a group of order 8, yields the 8 neutrosophic duplets; 8 x i = 8
foralli € Aand A forms a group under multiplication modulo 16; and {1,9} and {1,5,9,13} are subgroups
of A.

In view of this, we have the following theorem.

Theorem 1. Let S = {Zpn, x }, be the semigroup under product modulo 2", n > 2.
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(i) The set of units of Sare A = {1,3,5,...,2" — 1}, forms a group under x and |A| = 2"~1.
(ii) The set of all neutrosophic duplets with 2"~ is A; neutrals of 2"~ are A.
(iii)  All elements of the form 2m € Zon (m an odd number) has only the elements {1,2"~1 + 1} to contribute
to neutrosophic duplets (neutrals are 1,2"~1 +1).
(iv) All elements of the form m2' € Zy;1 < t < n—1; m odd has its neutrals from B = {1,2"! +
1 2m i ontt2 o, ot g ontt ot g gt onel g 1420
2n7t+1 4.+ 27171}.

Proof.

(i) Given S = {Zm, x} where n > 2 and S is a semigroup under product modulo 2". A =
{1,3,5,7,...,2" — 1} is a group under product as every element is a unit in S and closure axiom
is true by property of modulo integers and |A| = 2"~!. Hence, Claim (i) is true.

(ii) Now, consider the element 2"~ 1; the set of duplets for 2" is A for 2l =pn-bon-l w3 =
2012 1) =2n 4 2n L =2n=1 . 2n=1(1m); (m is odd) will give only m2"~!. Hence, this proves
Claim (ii).

(iii) Consider 2m € Zyn; we see 2m x 1 = 2m and 2m (2" ! + 1) = m2" + 2m = 2m. (2m,2" "1 + 1) is
a neutrosophic duplet pair; hence, the claim.
(iv) Let m2' € Zyu; clearly, m2' x x = m2! for all x € B.
O

Next, we proceed onto describe the duplet pairsin S = {Z33, % }.

Example 2. Let S = {Z33, x } be a semigroup under product modulo 33. The units of Sare A ={1,2,4,5,7,8,
10,11,13,14,16,17,19,20,22,23,25,26}. Clearly, A forms a group under a product. The non-units of S
are {3,6,9,12,15,18,21,24}. Zero can be included for 0 x x = 0 for all x € S, in particular for x € A.
The duplet pairs related to 3 are By = {{3,1},{3,10},{3,19}}. The duplet pairs related to 6 are By =
{{6,1},{6,10},{6,19} }. The duplet pairs related to 9 are

By = {{9,1},{9,4},{9,7},{9,13},{9,10}, {9, 16},{9,19}, {9,22},{9,25} }.

The neutrosophic duplets of 12 are By = {{12,1},{12,10},{12,19} }. The neutrosophic duplets of 15 are
Bs = {{15,1},{15,10}, {15,19} }. Finally, the neutrosophic duplets of 18 are

Bs = {{18,1},{18,4},{18,7},{18,13},{18,10}, {18,16}, {18,19}, {18,22}, {18,25} }.

The neutrosophic duplets associated with 21 are B; = {{21,1},{21,10},{21,19}} and 24 are Bg =
{{24,1},{24,10}, {24,19} }. Now, the trivial duplet of O, which we take is

By = {{0,1},{0,4},{0,7},{0,13}, {0,101, {0,16}, {0, 19}, {0,22}, {0,251} }.
We see L = {Bo U By U By U.... U Bg} forms a semigroup under product modulo 27 and o(L) = 45.
We have the following result.

Theorem 2. Let S = {Zyn, x }, where p is an odd prime, n > 2 is a semigroup under x, and product modulo
is p". The units of S are denoted by A and non-units of S are denoted by B. The neutrosophic duplets of S
associated with B are groups under product and are subgroups of A. The neutrals of tp® = b € B are of the form
D = {11 14+ pn—s, 14+ pn—s-i-l, 14+ pn—s+2, o1+ pn—lr 14+ pn—s + pn—s+1, 14+ pn—s + pn—s+2’ 1+
Pt S, p T T I <t <mp/ml <s <n.

Proof. Let tp® € Z,n all elements which act as neutrosophic duplets for ¢p® are from the set D. For any
x € D and tp® € Z;s, we see xtp® = tp°; hence, the claim. [J
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It is important to note that S = {Z,, x } has no non-trivial neutrosophic triplets as Z, has no
non-trivial idempotents.
Next, we proceed to finding the neutrosophic duplets of Z,; p and g are distinct primes.

4. Neutrosophic Duplets of Z,; and Z), p, . p,

In this section, we study the neutrosophic duplets of Z,; where p and q are primes. Further, we
see Zp; also has neutrosophic triplets. The neutrosophic triplets in the case of Z;; have already been
characterized in [23]. We find the neutrosophic duplets of Z;,,, p a prime. We find the neutrosophic
duplets and neutrosophic triplets groups of Zy4 in the following.

Example 3. Let S = {Zy4, x } be the semigroup under product modulo 26. The idempotents of S are 13 and 14.
We see 13 is just a trivial neutrosophic triplet, however only 14 contributes to non-trivial neutrosophic triplets.
We now find the neutrosophic duplets of Zpe. The units of Zpe are A = {1,3,5,7,9,11,15,17,19,21, 23,25}
and they act as neutrals of the duplets. The non-units which contribute for neutrosophic duplets are B =
{2,4,6,8,10,12,13,14,16,18,20,22,24}. 0 is the trivial duplet as 0 x x = 0 for all x € A. Consider 2 € B
the pairs of duplets are {2,1},2 x 14 = 2 but 14 cannot be taken as anti(2) = 20 and anti(2) exists so 2 is not
a neutrosophic duplet for (2,14,20) is a neutrosophic triplet group.

Consider 4 € B;{4,1} is a trivial neutrosophic duplet. Then, 4 x 14 = 4 and (4,14,16) are again
a neutrosophic triplet as anti(4) = 16 so 4 is not a neutrosophic duplet. Thus, 16 and 20 are also not
neutrosophic duplets. Consider 6 € B; we see {6,1} is a non-trivial neutrosophic duplet. In addition, (6,14,10)
are neutrosophic triplet groups so 6 and 10 are not non-trivial neutrosophic duplets. Consider 8 € B, (8,14, 18)
is a neutrosophic triplet group. hence 8 and 18 are not neutrosophic duplets. Then, (12,14,12) is also
a neutrosophic triplet group. Thus, 12 is not a neutrosophic duplet. Let 22 € B be such that (22,14,24) is
a neutrosophic triplet group, hence 22 and 24 are not neutrosophic duplets.

Consider 13 € B; we see the neutrals are {1,3,5,7,9,11,15,17,19,21,23,25}. We see the collection of
neutrosophic duplets associated with 13 € Zye happens to yield a semigroup under product if 13 is taken as the
trivial neutrosophic duplets, as it is an idempotent in Zye, and, in all pairs, it is treated as semigroup of order 13,
where (13,1) and (13,13) are trivial neutrosophic duplets.

In view of this, we have the following theorem.

Theorem 3. Let S = {Zyp, X } be a semigroup under product modulo 2p; p an odd prime. This S has only p
and p + 1 to be the idempotents and only p contributes for a neutrosophic duplet collection with all units of Z,
and the collection B = {(p, x)|x € Zyp}, x is a unit in Zy, forms a commutative semigroup of order p which
includes 1 and p which result in the trivial duplets pair (p,1) and (p, p).

Proof. Given S = {Z5,, x } is a semigroup under x and p is an odd prime. We see from [23] p and
p + 1 are idempotents of Zy,. It is proven in [23] that p + 1 acts for the neutrosophic triplet group of
Zyp (formed by elements 2,4, 6, ...,2p — 2) as the only neutral. (p, p, p) is a trivial neutrosophic triplet.
However, Z, has no neutrosophic duplet other than those related with p alone and p x x = p for all x
belonging to the collection of all units of Zy, including 1. If x is a unit in Z,,, two things are essential:
x is odd and x # p. Since x is odd, we see x = 2y + 1 and p(x) = p(2y + 1) = 2yp + p = p, hence
(p, x) is a neutrosophic duplet. The units of Z5, are (p — 1) in number. Further, (p, p) and (p, 1) form
trivial neutrosophic duplets. Thus, the collection of all neutrosophic duplets B = {(p, x) }, x is a unit
and x = p is also taken to form the semigroup of order p and is commutative as the collection of all
odd numbers forms a semigroup under product modulo 2p; hence, the claim. [

It is important and interesting to note that, unlike Z,n, p is a prime and n > 2. We see Z,,, has both
non-trivial neutrosophic triplet groups which forms a classical group [23] as well as has a neutrosophic
duplet which forms a semigroup of order p.

Next, we study the case when Z,, is taken where both p and g are odd primes first by an example.

112



Florentin Smarandache (author and editor) Collected Papers, XllI

Example 4. Let S = {Zy5, X} be a semigroup under product. The idempotents of Zi5 are 10 and 6.
However, 10 does not contribute to non-trivial neutrosophic triplet groups other than {5,10,5}, {10, 10,10}.
The neutrosophic triplet groups associated with 6 are (3,6,12), (12,6,3), (9,6,9) and (6,6, 6). The neutrosophic
duplets of Zy5 are contributed by {5},{10} and {3,12,6,9} in a unique way.

Dy = {{5,1},{5,4},{5,7},{5,13},{5,10}},
D, = {{10,13},{10,7},{10,1}, {10,4}, {10,10}},
Ds = {{3,11},{3,1},{3,6},{12,11},{12,1},{12,6},{6,11},{6,1}, {6,6}, {9,11}, {9,1}, {9,6} }

All three collections of duplets put together is not closed under x; however, Dy and D3 form a semigroup
under product modulo 15. If we want to make Dy a semigroup, we should adjoin the trivial duplets {0,4},
{0,7},{0,13},{0,1},{0,6},{0,10} as well as D,. Further, we see D1 U Dy U D3 is not closed under product.

Thus, the study of Z,; where p and g are odd primes happens to be a challenging problem.
We give the following examples in the case when p = 5and g = 7.

Example 5. Let S = {Z3z5, x} be a semigroup of order 35. The idempotents of Zzs are 15 and 21.
The neutrosophic triplets associated with 15 are {(15,15,15), (5,15, 10), (25,15, 30), (20, 15,20), (30, 15, 25),
(10,15,5)}, a cyclic group of order six. The cyclic group contributed by the neutrosophic triplet groups associated
with 21 is as follows: {(21,21,21),(7,21,28),(28,21,7), (14,21,14) }, which is of order four. The neutrosophic
duplets are tabulated in Table 1. Similarly, the neutrosophic duplets associated with S = {Z1¢s, X } are tabulated
in Table 2.

Table 1. Neutrosophic Duplets of {Z35, x }.

Neutrals for duplets Neutrals for duplets
5,10, 15, 20, 25, 30 7,14,21,28

1,8,15,22,24 1,6,11,16, 21, 26, 31

Table 2. Neutrosophic Duplets of {Z1gs, X }.

Neutrals for duplets Neutrals for duplets
3,6,9,12,18,21, 24,27, 5, 10, 20, 25, 40, 50,
33, 36, 39, 48, 51, 54, 57, 66, 55, 65, 80, 85, 95, 100
69,78, 81, 87,93, 96, 99, 102
1,36,71 1,22,43,64, 84
Neutrals for duplets Neutrals for duplets
7,14, 28,49, 56,77,91, 98 15, 30, 45, 60, 75, 90
1,16, 31, 46, 61, 76, 91 1,8,15,22,29, 36,43, 50,
57,64,71,78,85,92,99
Neutrals for duplets Neutrals for duplets
21,42, 63,84 35,70

1, 6,11 16, 21, 26, 31, 36, 1,4,7,10,13, 16, 19, 22, 25, 28,
41, 46, 51, 56, 61, 66, 71, 31, 34,37, 40, 43, 46, 49, 52, 55,
76, 81, 86, 91, 96, 101 58,61, 64,67,70,73,76,79,

82, 85, 88, 91, 94, 97, 100, 103

Theorem 4. Let {Z,, x } be a semigroup under product modulo n; x € Z,, \ {0} has a neutraly € Z,, \ {0}
or is a non-trivial neutrosophic duplet if and only if x is not unit in Z,,.
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Proof. x € Z, \ {0} is a neutrosophic duplet if x x y = x(mod n) and y is called the neutral of x.
If x2 = x, then we call the pair (x, x) as trivial neutrosophic duplet pair. We see x X y = x, if x is a
unit in Z,, then there exists a z € Z,, such that z x (x x y) =z X x,so thaty = 1 as z x x = 1(mod n);
so y = 1 gives trivial neutrosophic duplets. Thus, x is not a unit if it has to form a non-trivial
neutrosophic duplet pair; x X y = x and y # 1 then if x is a unit we arrive at contradiction; hence, the
theorem. O

Theorem 5. Let S = {Zp;, x} be a semigroup under product modulo pq, p and q distinct odd primes.
There is p number of neutrosophic duplets for every p,2p,3p,...,(q —1)p. Similarly, there is q number of
neutrosophic duplets associated with every q,2q, ... (p — 1)q. The neutrals of sq and tp is given by 1 + nq for
1<t<gq—-1,0<n<p—1andthatofsqisgivenbyl+mp;1<s<p—-1,0<m<gq—-1

Proof. Given {Zy,, x } is a semigroup under product modulo pg (p and q two distinct odd primes).
The neutrals associated with any tp;1 < t < g — 1 is given by the sequence {1+ 4,29 +1,3q +
1,...,(p—1)g+1} forevery tp € {p,2p,..., (g —1)p}. We see, if tp € Z,,,

tp x (14 nq) = tp+tpng

= tp + tnpq = tp(mod pq).

A similar argument for sq completes the proof; hence, the claim. O

Theorem 6. Let S = {Z, p,...p,, X } be the semigroup under product modulo p1py . . . pn, where py,p2, ..., Pn
are n distinct primes. The duplets are contributed by the non-units of S. The neutrosophic duplets associated

with Aj = {pi,2pi, -, (p1P2--- Pic1Piv1--- pn — V)pi} are {1+ (p1p2... pi-1Pit1 - - pn)t} where t =
1,2,...,pi—Landi =1,2,...,n. Thus, every element x; of A; has only p; — 1 number of elements which
neutralizes x;; thus, using each x;, we have p; — 1 neutrosophic duplets.

Proof. Given S = {Zp1 PoerPns x} is a semigroup under product modulo p; ... p,, where p;s are distinct
primes, i = 1,2,...,n. Considering A; = {p;,2pi,..., (p1pP2---Pi-1Pi+1---Pn — 1)pi}, we have to
prove that, for any sp;, sp; X [1 + (p1p2- .- pic1Pis1---pu)t]) =spi; 1 <t < p;_1.

Clearly,

spi X [14 (p1p2--- picapist - - pu)t] = spi+spil(prp2- - picapiva - pn)t]
= spi +st{(p1p2.. . pic1piPit1 .- pn)] = spi
as p1pa...pn = 0(mod (p1p2 - .. pn)). Hence, the claim. [

Thus, for varying t and varying s given in the theorem, we see

{spi, 1+ (p1p2- - Pic1Piz1---Pn)t) }

is a neutrosophic duplet pair 1 <t < p, - 1,1 <s < pip2...pi-1pit1..-pnandi=1,2,...,n.

5. Discussions and Conclusions

This paper studies the neutrosophic duplets in the case Z,», Zy; and Z;,p, . p,. In the case of
Zyn and Zy,, a complete characterization of them is given; however, in the case Z, . p,, only the
neutrosophic duplets associated with p;s are provided; i = 1,2, ... n. Further, the following problems
are left open:

1. For Zy,, p and q odd primes, how many neutrosophic duplet pairs are there?

2. For Zyp, .p,, what are the neutrals of p;p;, pipjpk,-- -, P1P2-- - Pi-1Pi+1 - - - Pn?

3. The study of neutrosophic duplets of Zptl o2 pt”; p1, ..., Pn are distinct primes and ¢; > 1;1 <i <
1 P2 --Pn

n is left open.
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For future research, one can apply the proposed neutrosophic duplets to SVNS, DVNS or TRINS.
These neutrosophic duplets can be applied in problems where neutral elements for a given a in Z» or
Z,q happens to be many. However, the concept of anti(a) does not exist in the case of neutrosophic
duplets. Finally, these neutrosophic duplet collections form a semigroup only when all the trivial
neutrosophic duplet pairs (0, a) for all appropriate a are taken. These neutrosophic duplets from Zn
and Z,,; can be used to model suitable problems where the anti(a) under study does not exist and
many neutrals are needed. This study can be taken up for further development.

Abbreviations
The following abbreviations are used in this manuscript:

SVNS  Single Valued Neutrosophic Sets

DVNS  Double Valued Neutrosophic Sets

TRINS Triple Refined Indeterminate Neutrosophic Sets
IFS Intuitionistic Fuzzy Sets
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Single-Valued Neutrosophic Hyperrings and Single-Valued
Neutrosophic Hyperideals

D. Preethi, S. Rajareega, J. Vimala, Ganeshsree Selvachandran, Florentin Smarandache

D. Preethi, S. Rajareega, J. Vimala, Ganeshsree Selvachandran, Florentin Smarandache (2019). Single-
Valued Neutrosophic Hyperrings and Single-Valued Neutrosophic Hyperideals. Neutrosophic Sets and
Systems 29, 121-128

Abstract. In this paper, we introduced the concepts of Single-valued neutrosophic hyperring and Single-
valued neutrosophic hyperideal. The algebraic properties and structural characteristics of the single-val-

ued neutrosophic hyperrings and hyperideals are investigated and verified.

Keywords: Hyperring, Hyperideal, Single-valued neutrosophic set, Single-valued neutrosophichyper-
ring and Single-valued neutrosophichyperideal.

1 Introduction

Hyperstructure theory was introduced by Marty in 1934 [16]. The concept of hyperring and the
general form of hyperring for introducing the notion of hyperring homomorphism was developed by
Corsini [11]. Vougiouklis [31] coined different type of hyperrings called H,-ring, H,-subring, and left
and right H,-ideal of a H,,-ring, all of which are generalizations of the corresponding concepts related to
hyperrings introduced by Corsini [11].

In general fuzzy sets [34] the grade of membership is represented as a single real number in the
interval [0,1]. The uncertainty in the grade of membership of the fuzzy set model was overcome using
the interval-valued fuzzy set modelintroduced by Turksen [29]. In 1986, Atanassov [8] introduced
intuitionistic fuzzy sets which is a generalization of fuzzy sets. This model was equivalent to interval
valued fuzzy sets in [32]. Intuitionistic fuzzy sets can only handle incomplete information, and not
indeterminate information which commonly exists in real-life [32]. To overcome these problems,
Smarandache introduced the neutrosophic model. Some new trends of neutrosophic theory were
introduced in [1,2,3,4,5,6,7] .Wang et al. [32] introduced the concept of single-valued neutrosophic sets
(SVNSs), whereas Smarandache introduced plithogenic set as generalization of neutrosophic set model
in [13].

The theory of hyperstructures are widely used in various mathematical theories. The study on
fuzzy algebra began by Rosenfeld [17], and this was subsequently expanded to other fuzzy based
models such as intuitionistic fuzzy sets, fuzzy soft sets and vague soft sets. Some of the recent works
related to fuzzy soft rings and ideal, vague soft groups, vague soft rings and vague soft ideals can be
found in [21; 22; 23; 26, 27]. Research on fuzzy algebra led to the development of fuzzy hyperalgebraic
theory. The concept of fuzzy ideals of a ring introduced by Liu [15]. The generalization of the fuzzy
hyperideal introduced by Davvaz[12]. The concepts of fuzzy y-ideal was then introduced by Bharathi
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and Vimala [10], and the fuzzy y-ideal was subsequently expanded in [33]. The hypergroup and
hyperring theory for vague soft sets were developed by Selvachandran et al. in [18,19,20,24,25]

In this paper we develop the theory of single-valued neutrosophic hyperrings and single-valued
neutrosophic hyperideals to furter contribute to the development of the body of knowledge in
neutrosophic hyperalgebraic theory.

2 Preliminaries

Let X be a space of points (objects) with a generic element in X denoted by x.
Definition 2.1. [32] A SVNS Ais a neutrosophic set that is characterized by a truth-membership function
T,(x), an indeterminacy-membership function I,(x), and a falsity-membership function F,(x), where
T, (x), I, (x), F4(x) € [0,1]. This set A can thus be written as

A = {(x, Ty (x), [ (x), Fy(x)): x € U} €Y)
The sum of T, (x), I,(x) and F,(x) must fulfill the condition 0 < T,(x) + I,(x) + F4(x) < 3. For a SVNS
Ain U, the triplet (TA (x), I, (x),F, (x)) is called a single-valued neutrosophic number (SVNN). Let x =
(Ty, I, F;) to represent a SVNN .

Definition 2.2. [32] Let A and B be two SVNSs over a universe U.

(i) A is contained in B, if T, (x) < Tg(x), [,(x) < Iz(x), and F,(x) = Fz(x), for all x € U. This rela-
tionship is denoted as A € B.

ii) A and B are said to be equal if A € B and B € A.

i) A = (x, (Fa(x), 1 — Ih(x), T4(x))), for all x € U.

iv) AU B = (x, (max(T,, Tz), max(ly, Iz), min(F,, F3))), for all x € U.

V) AN B = (x, (min(Ty, Tg), min(ly, Iy), max(F,, Fg))), for all x € U.

Definition 2.3. [16] A hypergroup (H, °) is a set H with an associative hyperoperation (¢) : H X H —
P(H) which satisfiesx e H = Hox = H forall x in H (reproduction axiom) .

Definition 2.4.[12] A hyperstructure (H, o) is called an H,-group if the following axioms hold:
(i) xo(yez)N(xoy)oz# @ forall x,y,z € H, (H,~semigroup)
(ii) xoH=Hox=H forall x in H.

Definition 2.5.[16] A subset K of H is called a subhypergroup if (K, o) isahypergroup.

Definition 2.6.[11]A H,-ring is a multi-valued system (R, +, o) which satisfies the following axioms:

(1) (R, +)isaH,-group,
(if) (R, o)is a H,-semigroup,
(iii) The hyperoperation “o” is weak distributive over the hyperoperation “+”, that is for each

x,y,z€ R the conditions xo (y +2) N ((xoy) + (x°2)) # ¢and (x +y)ozn ((xoz)+ (ye
z)) # ¢ holds true.

Definition 2.7. [11]JA nonempty subset R’ of R is a subhyperring of (R, +, o) if (R, +) is a
subhypergroup of (R, +) and forall x,y,ze R', xoy € P*(R"), where P*(R’) is the set of all non-empty
subsets of R'.

Definition 2.8. [11] Let R be a H,-ring. A nonempty subset I of R is called a left (respectively right) H,-
ideal if the following axioms hold:

(i) (I, +) is a H,-subgroup of (R, +),

(ii) Rol S I(resp. [oR C ).

If I is both a left and right H,-ideal of R, then [ is said to be a H,-ideal of R.
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3 Single-Valued NeutrosophicHyperrings
Throughout this section, we denote the hyperring(R, +, °)by R.

Definition 3.1.Let A be a SVNS over R. A is called a single-valued neutrosophic hyperringover R, if,

(1) a,b € R,min{T,(a), T,(b)} < inf{T,(c): c € a + b}, max{l,(a), (b))} = sup{l,(c):c € a + b}
and max{F,(a), F,(b)} = sup{F,(c):c € a + b}

(ii) x,a €ER, there exists b€ER such that a€x+b and min{T,(x),T (@)} =<
T4(b), max{l,(x), [4(a)} = I4(b) and max{F,(x), F4(a)} = F4(b)

(iii) x,a €R, there exists c€R such that a€c+x and min{T,(x) T,(a)} <
Ta(c) , max{l,(x), [, (a)} = I,(c) and max{F,(x), F4(a)} = Fy(c)

(iv) a,b € R,min{T,(a), T,(b)} < inf{T,(c):c € a o b}, max{l,(a),l,(b)} = sup{l,(c):c € a~ b} and

max{F,(a), F,(b)} = sup{F,(c):c € a° b}

Example 3.2.The family of t-level sets of SVNSs over R is a subhyperring of R is given below:
A ={a € R:Ty(a) = t,I,(a) = t,Fy(a) < t}forallt € [0,1].
Then A is a single-valued neutrosophic hyperring over R.

Theorem 3.3. A is a SVNS over R. Then 4 is a single-valued neutrosophichyperring over R iff 4 is sin-
gle-valued neutrosophic semi hyper group over (R, °) and also a single-valued neutrosophic hyper-
group over (R, +).

Proof. This is obvious by Definition 3.1. [

Theorem 3.4. Let A and B be single-valued neutrosophic hyperrings over R. ThenA N B is a single-val-
ued neutrosophichyperring over R if it is non-null.

Proof. Let A and B are single-valued neutrosophic hyperrings over R.By Definition 3.1, ANB =
{{a, Tynp(@), Lunp (@), Fanp(@)): a € R}, where Tynp(a) = min(TA (@), Ty (a)) anp(a) =
max(l,(a), Is(@)), Fanp (@) = max(F,(a), Fz(a)). Then for all a,b € R, we have the following. We only
prove all the four conditions for the truth membership terms T, Ts. The proof for the I, [z and F, Fp
membership functions obtained in a similar manner.

() min{Tynp(@), Tans(b)} = min{min(T,(a), T5(a)), min(T, (b), T3 (b))}
< min{min(TA (@), T, (b)) , min(TB (a), Ty (b))}
< min{inf{T,(c):c € a + b}, inf{Ty(c):c € a + b}}
< inf{min(TA (c), Ty (c)) i:CEa+ b}
= inf{Ty~5(c):c € a + b}

Similarly, max{l4ng(a), Isnp(b)} = sup{lsng(c):c € a + b} and max{F,nz(a), F4np(b)} = sup{Fsnz(c):c €
a+ b}.
(ii) x,a € R, there exists b € R such that a € x + b. Then it follows that:

min{Tyn(a), Tanp(h)} = min{min(T,(a), Tg(a)) , min(T, (b), Tz (b))}
< min{min(TA (a), T, (b)) , min(TB (a), Ty (b))}
< min(TA (c), Ty (c))
= Tanp(c)
Similarly, max{l4np(a), Lanp(b)} = lanp(c) and max{Fynp(a), Fanp(b)} = Fanp(c).

(iii) It can be easily verified that x,a €R, there exists c€R such that a€c+x &

min{Tynp (%), Tang (@)} < Tynp(c), max{lsnp (x), Ianp(@)} = Iinp(c) and max{Fnp(x), Fynp(a)} =
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Fang(©).

(iv) a € R, min{Typ(a), Tynp(h)} < inf{Tynp(c):c € ao b}, max{lynp(a), [xnp(b)} = sup{lsnp(c):c €
a o b} and max{F,ng(a), F4ng(b)} = sup{Fsnp(c):c € ao b}.

Hence, A N B is single-valued neutrosophichyperring over R. n

Theorem 3.5. Let A be a single-valued neutrosophic hyperring over R. Then for every t € [0,1], 4, # @

is a subhyperring over R.

Proof. Let A be a single-valued neutrosophichyperring over R.  t €[0,1],let a,b € A, . Then
Ty(a), T4(b) = t,14(a),I,(b) < tand Fy(a), F,(b) < t. Since A is a single-valued neutrosophic sub hyper
group of (R, +), we have the following:

inf{T,(c): c € a + b} = min{T,(a), T,(b)} = min{t, t} = ¢,

sup{l,(c):c€a+ b} <t
and
sup{F,(c):c€a+b} <t.

This implies that ¢ € A; and then for every ¢ € a + b, we obtain a + b € A;. As such, for every c € 4,,
we obtain ¢ + A; € A;. Now let a, ¢ € A;. Then T (a), T,(c) = t,I,(a),1,(c) < tand F,(a), F,(c) < t.

Ais a single-valued neutrosophic subhypergroup of (R, +), there exists b € R such that a € ¢ + b and
T, (b) = min(TA(a), TA(C)) >t, I,(b) < max(IA(a),IA(c)) <t F,(b) < max(FA(a),FA(c)) < t, and this im-
plies that b € A,. Therefore, we obtain A; € ¢ + A,. As such, we obtain ¢ + A, = A;. As a result, 4, is a
subhypergroup of (R, +).

Leta,b € A, then Ty(a), T4 (b) = t, I4(a),I,(b) < t and F,(a), F4,(b) < t.Since 4 is a single-valued neutro-
sophic subsemihypergroup of (R, o), then for all a, b € R, we have the following:
inf{T,(c):c € ao b} = min{T,(a), T,(b)} =t

sup{l,(c): c € a o b} < max(I,(a), I,(b)) = ¢,
and
sup{F,(c): c € a o b} < max(Fy(a), Fs(b)) = t.

This implies that c € A; and consequently a o b € A;. Therefore, for every a,b € A, we obtainacb €
P*(R). Hence 4, is a subhyperring over R.

Theorem 3.6. Let A be a single-valued neutrosophic set over R.Then the following statements are equiv-

alent:

i) Ais a single-valued neutrosophic hyperring over R.
(if) t € [0,1], anon-empty A, is a sub hyperring over R.
Proof.

(i) = (it) t €[0,1], by Theorem 3.5, 4, is sub hyperring over R.
(it) = (i) Assume that A, is a subhyperring over R. Let a,b € A, and therefore a + b € A;,. Then for
every ¢ € a + b we have Ty(c) = t,, [,(c) < tpand F4(c) < to, which implies that:

min(T,(a), T,(b)) < inf{Ty(c):c € a + b},

max(I4(a), (b)) = sup{l4(c):c € a + b},

and
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max(FA(a),FA(b)) = sup{F,(c):c € a + b}
Therefore, condition (i) of Definition 3.1 has been verified.
Next, let x,a € A, for every t; € [0,1] which means that there exists b € A;, such that a €xob.
Sinceb € A, we have T,(b) = t;,I,(b) < t; and F,(b) < t;, and thus we have
T,(b) =t = min(TA(a),TA(c)),
L)<t = max(IA(a),IA(c)),
and
Fy(b) < t; = max(F,(a), F4(c)).
Therefore, condition (ii) of Definition 3.1 has been verified. Compliance to condition (iii) of Definition
3.1 can be proven in a similar manner. Thus, 4 is a single-valued neutrosophic subhypergroup of (R, +).
Now since 4; is a subsemihypergroup of the semihypergroup (R, °), we have the following. Let a,b €
A¢, and therefore we have a b € A;,. Thus for every ¢ € ao b, we obtain T,(c) = t;,I4(c) < t, and
F,(c) < t,, and therefore it follows that:
min(TA (a), T, (b)) < inf{T,(c):c € a~ b},
max(I,(a), I4(b)) = sup{l,(c):c € ao b},
and

max(FA(a),FA(b)) > sup{F,(c):c € ao b},

which proves that condition (iv) of Definition 3.1 has been verified. Hence 4 is a single-valued neutro-

sophic hyperring over R.

4 Single-Valued Neutrosophic Hyperideals

Definition 4.1.Let A be a SVNS over R. Then 4 is single-valued neutrosophic left (resp. right)
hyperideal over R, if,

(i) a,b € R,min{T,(a), T,(b)} < inf{T,(c):c € a + b}, max{l,(a), [,(b)} = sup{l,(c):c € a + b}
and max{F,(a), F;,(b)} = sup{F,(c):c € a + b}

(ii) x,a €R, there exists b€R such that a€x+b and min{T,(x),T,(a)} =<
T4(b), max{l,(x), [4(a)} = I4(b) and max{F,(x), F4(a)} = F4(b)

(iii) x,a €ER, there exists c€R such that a€c+x and min{T,(x), T,(a)} <
T4(c), max{l, (x), [4(a)} = I (c) and max{F,(x), F4(a)} = F4(c)

(iv) a,b € R Ty(b) <inf{Ty(c):ic €aob} (resp. T,(a) <inf{Ty(c)ic€a-b} ) I,(b)=

sup{l,(c):c € a o b} (resp. I(a) = sup{l,(c):c € a o b}) and F,(b) = sup{F,(c):c € a o b} (resp.
F,(a) = sup{F,(c):c € ao b})

A is a single-valued neutrosophic left (resp. right) hyperidealof R. From conditions (i), (ii) and (iii) 4 is
a single-valued neutrosophic subhypergroup of (R, +).

Definition 4.2.Let A be a SVNS over R. Then 4 is a single-valued neutrosophic hyper ideal over R, if the
following conditions are satisfied:

(i) a,b € R,min{T,(a), T,(b)} < inf{T,(c):c € a + b}, max{l,(a), ,(b)} = sup{l,(c):c € a + b}
and max{F,(a), F,(b)} = sup{F,(c):c € a + b}

(ii) x,a €ER, there exists b€ER such that a€ex+b and min{T,(x), T (a)} <
T4(b), max{l,(x), [4(a)} = I4(b) and max{F,(x), F4(a)} = F4(b)

(iii) x,a €ER, there exists c€R such that a€c+x and min{T,(x), T,(a)} <
T4(c), max{l, (x), s (@)} = I, (c) and max{F,(x), F4(a)} = F4(c)

(iv) a,b €R, max(TA(a), TA(b)) < inf{T,(c):c€a- b},max(IA (a), 1, (b)) > sup{l,(c):c € a o b}

and max(FA(a),FA(b)) = sup{F,(c):c € a o b}
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From conditions (i), (ii) and (iii) 4 is a single-valued neutrosophic sub hyper group of (R, +). Condition
(iv) indicate both single-valued neutrosophic left hyperideal and single-valued neutrosophic right hy-
perideal. Hence A is a single-valued neutrosophic hyper ideal of R.

Theorem 4.3.Let A be a non-null SVNS over R. 4 is a single-valued neutrosophic hyperideal over R iff
A is a single-valued neutrosophic hyper group over (R, +) and also Ais both a single-valued neutro-
sophic left hyper ideal and a single-valued neutrosophic right hyper ideal of R.

Proof. This is straight forward by Definitions 4.1 and 4.2.

Theorem 4.4.Let Aand B be two single-valued neutrosophic hyper ideals over R. Then 4 N B is a single-
valued neutrosophichyperideal over R if it is non-null.

Proof. Let A and B are single-valued neutrosophic hyper ideals over R.By Definition 4.2, AN B =
{(a, Tynp (@), Lynp (@), Fanp(@)): a € R}, where Tynp(a) = min(TA(a)xTB(a)):IAnB(a) = maX(IA(a): Ig (a))
andF,qg(a) = max(FA(a),FB (a)). Then a,b € R, we have the following. We only prove all the four
conditions for the truth membership terms T}, T. The proof for the I, Iz and F,, F membership func-
tions obtained in a similar manner.

(i) min{Tyns(a), Tanp(b)} = min{min(T,(a), Tp(a)) , min(T, (b), T5 (b))}
< min{min(7,(a), T4(b)) , min(T5(a), Tz (b))}
< min{inf{T,(c): ¢ € a + b}, inf{Tz(c):c € a + b}}
< inf{min(T,(c), T5(c)) : c € a + b}
= inf{T,nz(c): c € a + b}

Similarly, it can be proven that max{l;np(a),l4ng(b)} = sup{lynp(c):ic €Ea+b} and
max{Fynp(a), Fanp(h)} = sup{Fynp(c):c € a + b}.
(ii) x,a € R, there exists b € R such that a € x + b. Then:

min{Tyng(a), T4ng(b)} = min{min(TA (a), Ty (a)) , min(TA (b), Ty (b))}
< min{min(TA (@), T, (b)) , min(TB (a), Ty (b))}
< min(T,(c), Tz(c))

= Tynp(c)
Similarly, max{lynp (@), anp (b)} = Iynp(c) and max{Fyng(a), Fanp(b)} = Fanp(c).
(iii) x,a €ER, there exists c€R such that a€c+x and min{T,ng(x), Tynp(@)} <

Tanp(c), max{lnp (%), Iinp (@)} = Iinp(c) and max{F,np(x), Fang(a)} = F4np(c).

(iv) a € R,max{Tynp(a), Tanp(b)} < inf{T4np(c):c € ao b}, min{lynp(a), lsnp(b)} = sup{lynp(c):c €
a o b} and min{F,,5(a), F4ng ()} = sup{F,,5(c):c € a o b}.

Hence, it is verified that 4 N B is a single-valued neutrosophichyperideal over R.

5. Conclusion

We developed hyperstructure for the SVNS model through several hyperalgebraic structures
such as hyperrings and hyperideals. The properties of these structures were studied and verified. The
future work is on the development of hyperalgebraic theory for Plithogenic sets which is the
generalization of neutrosophic set and also planned to develop some real life applications.
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Abstract

In this paper, we will define the exponential form of a neutrosophic complex number. We have proven some
characteristics and theories, including the conjugate of the exponential form of a neutrosophic complex number,
division of the exponential form of a neutrosophic complex numbers, multiplication of the exponential form of a
neutrosophic complex numbers. In addition, we have given the method of changing from the exponential to the
algebraic form of a complex number.

Keywords : Neutrosophic numbers, neutrosophic complex number, the exponential form of a neutrosophic complex
number.

1. Intro duction

The American scientist and philosopher F. Smarandache came to place the neutrosophic logic in [1-5], and this logic
is as a generalization of the fuzzy logic [6], conceived by L. Zadeh in 1965.

The neutrosophic logic is of great importance in many areas of them, including applications in image processing [7-
8], the field of geographic information systems [9], and possible applications to database [10-11], and have
applications in the medical field [12-15], and in neutrosophic bitopology in [16-18], and in neutrosophic algebra in
[19-23], professor F. Smarandache presented the definition of the standard form of neutrosophic real number and
conditions for the division of two neutrosophic real numbers to exist, he defined the standard form of neutrosophic
complex number [24], and Y. Alhasan presented the properties of the concept of neutrosophic complex numbers
including the conjugate of neutrosophic complex number, division of neutrosophic complex numbers, the inverted
neutrosophic complex number and the absolute value of a neutrosophic complex number and theories related to the
conjugate of neutrosophic complex numbers, and that the product of a neutrosophic complex number by its conjugate
equals the absolute value of number [25].
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This paper aims to study and define the exponential form of a neutrosophic complex number by defining the conjugate
of the exponential form of a neutrosophic complex number, division of the exponential form of the neutrosophic
complex numbers, and multiplication of the exponential form of a neutrosophic complex numbers.

2. Preliminar ies

In this section, we present the basic definitions that are useful in this research.

Definition 2.1 [24]
A neutrosophic number has the standard form:
a+bl
where a, b are real or complex coefficients, and I  indeterminacy, such 0.1 0
I™ =] for all positive integer n.

If the coefficients a and b are real, and then a + bl is called neutrosophic real number.

For example: 5+71

Definition 2.2 [25]
z is a neutrosophic complex number, if it takes the following standard form:
z a+ bl+ci+dil

Where a, b, ¢, d are real coefficients, and I indeterminacy, and i? = —1.

Division of Neutroso phic Real Numbers [24]

(a; +bil) (ay+byI) ?

We denote the result by:
a, + bl
S L —x+yl
a, + b,l
x ﬂ
az
and
azby —aqb;
az(az +bz)
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Definition 2.4 [25]
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Suppose that z a+ bl + ci + dil is a neutrosophic complex number, then the absolute value of a neutrosophic
complex number defined by the following form:

|z| =+/(a + bD)? + (c + dI)?

3. The Polar form of a Neutr osophic Complex Number

In this section, we present and study the exponential form of a neutrosophic complex number.

Definition 3.1

We define the Exponential Form of a Neutrosophic Complex Number as follows:

7 = rei(6+D

where r the Absolute Value of the neutrosophic complex number.

Remark 3.1.1:

From the general form:

Remark 3.1.2:

z a+bl+ci+dil

a+ bl ci+ di
z=r< + )
T r

+1

(a+b1 ,c+d1)
z=r .
r r

r=|z| =/(a+ b2+ (c + dI)?
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»x

Figure 1: The Geometrical Figure

The formula neutrosophically works in the following way:
X  atbl is a neutrosophic number whose determinate part is a and indeterminate part is bl , where I
indeterminacy;
similarly y  c+dI is a neutrosophic number whose determinate partis ¢ and indeterminate partis dI ;
+ I is a neutroosphic angle, whose determinate partis ( theta ) and indeterminate partis I .

Itisabig Theta  (inside the geometrical figure) and small theta in the formulas.
That means that we work with two lengths x and y that are not well-known (they were approximated), and an angle

(Theta) that is not well known either (it was approximated by plus some indeterminacy I).

x a+ bl c + dl
cos(6+1)=;=T, Sin(9+1)=y=

Rl

z = r(cos(G +0)+i-sin(6+ I))

Exponential Form:

7 = rei®+D

Definition 3.2

Trigonometric formula

z=r(cos(0 +1)+isin(6+1))
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4. Prope rties

In this section, we present some important properties of the exponential form.

Multiplying the exponenti al forms of the neutr osophic complex numbers

Suppose that z; , z, are two neutrosophic complex numbers, where

z, = r;e!®171) and z, = r,ei(62*12)

If11+12=1

Definition 4.1

2+ 7y = ryr,ei@1+02+D)

Remark 4.1.1:
72y = rlei(91+11) .rzei(92+12)
7,2, =TTy (ei(91+11) . ei(92+12))

2y 2, = 1y1r,el @102+ 11+ 1)
Il + 12 == 1
Then

2y 2y = rlrzei(91+92“)
Example 4.1.2
. TT . 3T
Ifz, = r,e'@*D and z, = rye'G D
(TT T
243741 i
Zl - ZZ = rlrzel(4' 4 ) = TlT‘Z el(n+l)

Division of the exponenti al form s of neutros ophic complex numbers
Suppose that z; , z, are two neutrosophic complex numbers, where
Z, = rlei(gl'Hl) and Z, = rzei(GZ‘HZ)

Ifll_lz =1

then
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Definition 4.2

é r_l ei(01=62+1)

Z; T
Remark 4.2.1:

Depending on [25]

Whenr 1 we get

0
F=_= € = ¢~i(6+D
7z ei(9+1)
Then
z rlei(91+11)
Zy - r,ei(B2+12)
Z1 rl ei(91+11)
Zy - 7, \el02+12)
AT (e . L
Z, T, ei(62+13)
zZ, T ) )
a_a (61(91”1) . e—l(92+12))
Zz T
11 - 12 = I
Then
21 _ T Lie1-6,+D)
Zz T
Example 4.2.2
. T . 3T
Ifz, = r,e'@*D and z, = rye'G D

BTy () T3 i)

The conjugate of the exponenti al form o f a neutr osophic complex numbers 4.3

Suppose that z is a neutrosophic complex number, where
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7 = rei0+D

We denote the conjugate of a neutrosophic complex number by Z and define it by the following form:

7= Te_i(9+1)
Example 4.3.1
p—C)

Remark 4.4

IfI 0 we will return to the basic formula for the complex number.

7 = rei(6+0)

z =ret®

Conclusion

In this paper, we defined the exponential form of a neutrosophic complex number and demonstrated this with
appropriate proof, and many examples were presented to illustrate the concepts introduced in this paper.

Future Research Directions

As a future work, some special cases related to exponential form can be discussed and benefit from this article in many
engineering sciences, including theories of control and signal processing.
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Abstract

To deal with fluctations in decision-making, fuzzy / neutrosophic numbers are used. The problem having
more fluctuations are difficult to sovle. Thus it is a dire need to define higher order number, also It is a very curious
question by researchers all around the world that how octagonal neutrosophic number can be represented and how to
be graphed? In this research article, the primarily focused on the representation and graphs of octagonal neutrosophic
number. at last, a case study is done using VIKOR method based on octagonal neutrosophic number. These
representations will be helpful in multi-criteria decision making problems in the case that there are large number of
fluctuations. Finally, concluded the present work with future directions.

Keywords : Neutrosophic Number, Octagonal Number, VIKOR Method, MCDM, Uncertainty, Indeterminacy,
Accuracy Function, De-neutrosophication.

1. Intro duction

The theory of uncertainty plays a very important role to solve different issues like modelling in engineering
domain. To deal with uncertainty the first concept was given by [1], extended by [2] named as intuitionistic fuzzy
numbers. In year 1995, Smarandache proposed the idea of neutrosophic set, and the idea was published in 1998 [3],
they have three distinct logic components 1) truthfulness ii) indeterminacy iii) falsity. This idea also has a concept of
hesitation component the research gets a high impact in different research domain. In neutrosophic, truth
membership is noted by T, indeterminacy membership is noted by I, falsity membership is noted by F, These are all
independent and their sum is between 0 T + I + F 3. While when talking about intuitionistic fuzzy sets,
uncertainty depends on the degree of membership and non-membership, but in neutrosophic sets then indeterminacy
factor does not depend on the truth and falsity value. Neutrosophic fuzzy number can describe about the uncertainty,
falsity and hesitation information of real-life problem.

Researchers from different fields developed triangular, trapezoidal and pentagonal neutrosophic numbers,
and presented the notions, properties along with applications in different fields [4-6]. The de-neutrosophication
technique of pentagonal number and its applications are presented by [7-10].

Scientists from different areas investigated the various properties and fluctuations of neutrosophic numbers and
the properties of correlation between these numbers [6-7]. The applications in decision-making in different fields like
phone selection [11-12], games prediction [13], supplier selection [14-16], medical [17], personnel selection [18-19].
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Octagonal neutrosophic number and its types are presented by [20] in his recent work. The graphical
representation and properties are yet to be defined while dealing with the concept of octagonal neutrosophic number
a decision-maker can solve more fluctuations because they have more edges as compare to pentagonal. Table:1
represents different numbers and their applicability.

Edge Para meter Uncerta inty Hesitation Vagueness Fluctua tions
Measurem ent Measurement Measuremen t

Cri sp number

Fuzzy number determinable

Intui tionistic Fuzzy | determinable determinable

number

Neutro sophic determinable determinable determinable determinable
number

Table 1: Fuzzy numbers, their extensions and applicability

1.1 Motivation

From the literature, it is found that octagonal neutrosophic numbers (ONN) their notations, graphs and
properties are not yet defined. Since it is not yet defined so also it will be a question that how and where it can be
applied? For this purpose, is de-neutrosophication important? How should we define membership, indeterminacy and
non-membership functions? From this point of view ONN is a good choice for a decision maker in a practical scenario.

1.2 Novelties
The work contributed in this research is;

Membership, Non-membership and Indeterminacy functions
Graphical Representation of ONN.

De-neutrosophication technique of ONN.

Case study of personnel selection having octagonal fluctuations.

1.3 Struc ture o f Paper

The article is structured as follows as shown in the Figure 1:

eIntroduction ePreliminaries eQOctagonal
Neutrosophic

Number,
Representation

eGraph of

Octagonal
Neutrosophic

Number

and Properties

eDe- eCase Study of eConclusion
neutrsophication Candidate
of ONN into Selection
Neutrosophic

Fuzzy Number

Figure 1: Pictorial view of the structure of the article
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2. Preliminar ies

Definition 2.1: Fuzzy Number [1]

A fuzzy number is generalized form of a real number. It doesn't represent a single value, instead a group of values,
where each entity has its membership value between [0, 1]. Fuzzy number S is a fuzzy set in R if it satisfies the given
conditions.

e Jrelativelyone y € R with us (y) 1.
us (y) is piecewise continuous.
e S should be convex and normal.

Definition 2.2: Neutroso phic Fuzzy Number [3]

Let U be a universe of discourse then the neutrosophic set A is an object having the form

A { xtTy (x),I5(x),Fp (x), ;x€U}

where the functions T, I, F: U [0,1] define respectively the degree of membership, the degree of indeterminacy, and
the degree of non-membership of the element x € X to the set A with the condition. 0 T, (x) + I, (x) + Fa (x)

3.
Definition 2.3: Accura cy Function [21]

Accuracy function is used to convert neutrosophic number NFN into fuzzy number (De-neutrosophication using Ag).
[T+ Ixt+Fy]

A(F) = {x=—="—7—"}
Ap represents the De-neutrosophication of neutrosophic number into fuzzy number.
Definition 2.4: Pentagonal Neutro sophic Number [6]
Pentagonal Neutrosophic Number PNN is defined as,
PNN =([(Q,0,5%,¢):0],[(Q%, 0%, &, %%, e1): W], [(Q% 0% ¢2,4%,€%): 1)
Where 6, ¥, €]0,1].
The truth membership function (6): R [0, 6],

the indeterminacy membership function (¥):. [5,1],

and the falsity membership function ( ):R [ ,1].
3. Octag onal N eutros ophic Number [ONN] Repres entation and Prope rties

In this section, we define ONN, representations and properties along with suitable examples.

Definition 3.1: Side Conditions of Octagonal Neutro sophic Numb er [ONN]
An Octagonal Neutrosophic Number denoted by;

S((Q,0g%e ,06,3):0][QL,0%,¢% !, 1,06%,3Y):W],[(Q% 02 ¢2,9% €2, 2,6%3%): ])should satisfy the
following conditions:

Condition 1:

1. O truth membership function (6;): ® [ 0,1],
2. W indeterminacy membership function (W;):R  [g,1],
3. g falsity membership function ( ;):R [ ,1].
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Condition 2:

1.  ©g: truth membership function is strictly non-decreasing continuous function on the intervals [Q, €].

2. W indeterminacy membership function is strictly non-decreasing continuous function on the intervals
[Q, €].

3. s falsity membership function is strictly non-decreasing continuous function on the intervals [Q?, £2].

Condition 3:

1.  ©g: truth membership function is strictly non-increasing continuous function on the intervals [, 3].

2. Wi indeterminacy membership function is strictly non-increasing continuous function on the intervals
[€1,3].

3. «: falsity membership function is strictly non-increasing continuous function on the intervals [€2,32].

Definition 3.2 : Octagonal Neutro sophic Number [ ONN] A Neutrosophic Number denoted by S is defined as,
S ([(Q0g%¢e ,6,3):0][(QL,0% !¢t et, 1,6%,3Y): W], [(Q%02¢2,¢% €% 2,0%3%): 1)

Where 6, %, €]0,1].

The truth membership function (6;): R [ 0,1],

the indeterminacy membership function (W3):R  [g,1],

and the falsity membership function ( ¢):R [ ,1] are given as:

040 (%) Q<x<l

0, (%) 0<x<g

egz(X) £§<s x <%

B3 (%) v< x<eg
§

B5(x) 1 xX=¢
45 (%) e< x <
B4, (%) <x<0
0:(x) 0 x<s3
0 otherwise
Yoo (x) Ol<x<0?
Py, (%) 0l'< x<gt
Y, (X) ql < x<#t
Pa(x) ¢<ax<et
Wi (x) 3 x = ¢!
Pes(x) gl<x<
‘pgz(X) 1 < x< 61
Yu(x) o6'<x<st
1 otherwise
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50X QP <x<D0?
s1(%) 02< x<¢g
2(%) g < x<%?
s(x) < x<e?

s(x) x = €2
e g2<x< ?
) Z< x< 6?
a® 6t =< x<3?
1 otherwise

Where S ([(@<D<g<v<e< <o6<a)ol[(@'<l'<g<el<el< <o <st)y][(a?<
D?<g?<et<el< 2<6*<3?): 1)

4. Gra phical Repres enta tion of Octa gonal Neutroso phic Number [O NN]

In this section, graphs of truthiness, indeterminacy and falsity function are presented.

Definition 4.1: Octagonal Neutro sophic Number [ONN]

0:0(0) 01<x<0.2
0:,(0) 02< x<03
0:,(0.1) 03< x<04
643(0.1) 04 < x<05

6:(x) 1 x=05

043(1) 05< x<06

0:,(0.1) 06< x<o0.7

6:,(0.1) 0.7< x<08
0 otherwise

Yo (1) 01<x<0.2
Y., (1) 02< x<03
¥Y,,(0.9) 03<x<04
¥Y.5(0.9) 04< x<05

Wi(x) 0 x=05

Y5 (0) 05< x<0.6

¥;,(0.9) 06< x<o0.7

Y,,(0.9) 0.7< x<0.8
1 otherwise

s0(D) 01<x<0.2
(1) 02<x<03
:2(0.9) 03< x<04
+3(0.9) 04 < x<05
(%) 0 x =05
:3(0) 05< x<0.6
:2(0.9) 06< x<o0.7
:1(0.9) 0.7< x<0.8
1 otherwise
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4.1 Graphical Representation of Membership, Non-membership, Indeterminacy and ONN

Graphical Representation of the Trutheness of

12 Octagonal Neutrosophic Number

0,8
0,6
0,4

0,2

0 0,1 0,2 0,3 04 0,5 0,6 0,7 0,8 0,9

Figure 2: Graphical representation of the truthiness of ONN

Figure 3: Graphical representation of the Falsity of ONN
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Graphical Representation of the Indeterminacy of Octagonal

Neutrosophic Number
1,2

0,8
0,6

0,4

0,2

’

Figure 4: Graphical representation of the Indeterminacy of ONN

Figure 5: Graphical representation of the Octagonal Neutrosophic Number
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5. Accura cy Function for De-neutro sophication of Octagonal Neutrosophic Number (ONN)

5.1 De-neutros ophicati on of ONN into Neutroso phic Number

On the way of development of De-neutrosophication technique, we can generate results into neutrosophic number
according to the result of octagonal neutrosophic number and its membership functions.

DTNON (Q+D+q+’¢/+s+ +0+3)
8 b
Inoy — At +0 +el+vt+el+ T4ot4st
D N - ( 8 9
pFroy — (QZ+D2+q2+v2+sz+ 2462432
- 8
D Q+0+g+v+e+ ,63 Q' +0 +e+v +el+ 1+6'+3 Q2 +02+g2+92+e2+ 2+6%+32
Now 8 ’ 8 ’ 8
pTNoy  p'Noy  pFNoy
Dyo, 3 ,

e D™Non represents the de-neutrosophication of trueness of neutrosophic octagonal number into neutrosophic.
e D'Won represents the de-neutrosophication of indeterminacy of neutrosophic octagonal number into
neutrosophic.

e DFNon represents the de-neutrosophication of falsity of neutrosophic octagonal number into neutrosophic.
® Dy, represents the de-neutrosophication of octagonal number into neutrosophic number.

Example 1: In Table: 3 five octagonal neutrosophic numbers ONN are defuzzified into Neutrosophic Number.

Octagonal Neutrosophic Number Dyo,

1](0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8;0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; (0.45,0.55,0.5375)
0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

211(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9;0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; (0.55,0.5375,0.55)
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

31 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9;0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; (0.4625,0.45,0.525)
0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9)

41(0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; (0.45,0.5375,0.55)
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

51 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; (0.55,0.45,0.4625)
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9)

Table 2: De-neutrosophication of ONN into Neutrosophic number using Accuracy Function.

5.2 De-neutros ophicati on of Neutro sophic Number
On the way of development of de-Neutrosophication technique, we can generate results into fuzzy number according

to the result of neutrosophic number.

T I F
D N0N+D N0N+D Noy
3 5

D NOf
Dy, represents the de-neutrosophication of octagonal number into fuzzy number.

Example 2: In Table: 3 five octagonal neutrosophic numbers are defuzzified into Fuzzy.

141



Florentin Smarandache (author and editor) Collected Papers, XllI

Octagonal Neutrosophic Number Doy Dyo,

1 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8;0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; (0.45,0.55,0.5375) 0.5125
0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

2 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9;0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; (0.55,0.5375,0.55) 0.54583
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

3 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9;0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; (0.4625,0.45,0.525) 0.47916
0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9)

4 (0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; (0.45,0.5375,0.55) 0.5125
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

5 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; (0.55,0.45,0.4625) 0.4875
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9)

Table 3: De-neutrosophication of ONN using Accuracy Function.
6. Case Study

To demonstrate the;

e Feasibility
e  Productiveness

of the proposed method, here is the most useful real-life candidate selection problem is presented.

6.1 Problem Formul ation

Suppose we have three candidates which have different degree, experience and number of publications, the thing
which matter the most to select one which have more potential to deal with situation. The potential of person depends
upon degree, experience and number of publications they have. To improve the competitiveness capability, the best
selection plays an important role, and to select the best one. Due to octagonal we can deal with more fluctuations. The
background of formal education comparison also necessary. Same case for experience because it illustrates the
personality and also mention that person is capable to handle the circumstances. Same as publications is also important
for selection. With the concept of octagonal we have more expanse to deal with more edges. Suppose we are talking
about degree we can mention his all necessary degrees with grades.

6.2 Parame ters

Selection is a complex issue, to resolve this problem criteria and alternative plays an important role. Following criteria
and alternatives are considered in this problem formulation.

6.2.1 Alter natives

Candidates are considered as the set of alternatives represented with S=< {,o,v>
6.2.2. Crite ria

Following three criteria are considered for the selection

Degree
Experience
e Publications

6.3 Assumptions

The decision makers {D;, D,, D3, Dy, D5, Dg, D7, Dg} will assign ONN, according to his own interest, knowledge
and experience, to the above-mentioned criteria and alternatives.
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o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate {.

Sr No Criteria Octa gonal N eutros ophic Number (ONN)

| Degree < (0.72,0.35,0.71,0.77,0.41,0.73,0.77,0.81), (0.93,0.83,0.93,0.88,0.94,0.99,0.96,0.90),
g (0.86,0.95,0.99,0.97,0.94,0.93,0.95,0.91) >

2 Experience < (0.75,0.65,0.96,0.54,0.73,0.65,0.83,0.56), (0.75,0.45,0.95,0.38,0.68,0.79,0.57,0.13),
p (0.36,0.59,0.68,0.79,0.47,0.36,0.47,0.95) >

3 Publications (0.74,0.73,0.64,0.75,0.96,0.34,0.85,0.89), (0..35,0.46,0.58,0.79,0.85,0.71,0.64,0.96),

(0.84,0.73,0.85,0.75,0.98,0.84,0.66,0.94)

Table 4(a): ONN by decision makers to each criterion to the candidate ¢.

o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate @.

Sr No Criteria Octa gonal N eutros ophic Number (ONN)
1 Degree < (0.73,0.73,0.94,0.85,0.96,0.74,0.95,0.89), (0.33,0.46,0.59,0.79,0.85,0.79,0.74,0.86),
g (0.48,0.33,0.55,0.75,0.68,0.64,0.36,0.70) >
) Experience < (0.75,0.55,0.96,0.54,0.93,0.65,0.73,0.56), (0.93,0.83,0.83,0.58,0.84,0.69,0.76,0.80),
p (0.66,0.59,0.68,0.99,0.47,0.46,0.87,0.95) >
L .94.,0. .74,0. . .94,0. . .28,0.26,0. . .45,0.61,0.64,0.
3 Publications (0.94,0.93,0.74,0.95,0.96,0.94,0.85,0.99), (0.28,0.26,0.58,0.35,0.45,0.61,0.64,0.36),

(0.28,0.23, 0.25, 0.45, 0.68, 0.44, 0.26, 0.34)

Table 4(b): ONN by decision makers to each criterion to the candidate @.

o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate v.

Sr  No Criteria Octa gonal N eutros ophic Number (ONN)

1 Decree < (0.73,0.83,0.93,0.56,0.95,0.95,0.73,0.88), (0.76,0.95,0.69,0.94,0.94,0.63,0.55,0.61),
g (0.74,0.73,0.85,0.75,0.48,0.34,0.66,0.74) >

) Experience < (0.73,0.65,0.96,0.54,0.63,0.65,0.81,0.59), (0.75,0.45,0.85,0.38,0.78,0.79,0.67,0.13),
P (0.38,0.59,0.68,0.79,0.97,0.36,0.67,0.85) >

3 Publications (0.74,0.73,0.64,0.75,0.96,0.34,0.85,0.89), (0.35,0.44,0.58,0.79,0.75,0.71,0.54,0.96),

(0.74,0.63,0.35,0.35,0.98,0.34,0.28,0.64)

Table 4(c): ONN by decision makers to each criterion to the candidate v.
6.4 VIK OR M ethod

Vikor method is best for solve the problem of multi criteria decision making.it is used to drive on ranking and for
selection of a set of possibilities and solve consolation solution for a problem with aggressive criteria. Opricovic [12]
introduced the idea of Vikor method in 1998. It is related with both positive and the negative ideal solution, it can
change the variable into two or more alternative variables to find out the best compromise solution. By the help of
Vikor method we can put new ideas for group decision making problem under the certain criteria.

Vikor M ethod consist of following steps;
Step 1. Normalization of decision matrix and weight assigning.

Step 2. Now we will calculate the group unity value H; [HF, HY] and the individual regard value S; [S},SY], where;

' L_ct ' U_ct
E sk-s? E sV-s?
L _ t 7 U _ t J
Hi = Wjs——st° Hi = Wijs——st
. t J . i J

J J
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and

L st sy U s{rS)
max max
Si' 1<jsn Wi {(S_—_S_ )} sSSP 1<jen Wy {(Sf_Sf)}
J J J

+

Step 3. Here we will Calculate the comprehensive sorting index W; [Wt, W], where

-~ Hi—H* gi—S*
A S B W) S
W, B ) 3

Now by using algorithm of interval fuzzy number:

L * L_ o*
L H{-H S;-S
Wi =t ) S
H™ —H S™-S
and
U L
wy H; —H*Hl_ )Si—S*
t H™ —H* Ss--s*

Here H* ™nrHF g~ max gl s+ mingl g maxgU parameter is called decision mechanism index, and it lies
between [0,1]. If 0.5, it is the decision making in the light of maximum group benefit (i.e., if is big, group utility
is emphasized); if 0.5, here decision making in accordance with compromise. If 0.5, it is the decision making in
the light of minimum individual regret value. In VIKOR, we take =~ 0.5 generally, that is called compromise makes
maximum group benefit and minimum individual regret value.

Step 4. The rank of fuzzy numbers is S; , W; and H;.

Since S; , W; and H; are all still individual numbers, now to compare the two-interval value we use the possible degree
theory.

Here number of interval number A; [Af , AV], (i 1,2, 3, ,m), the comparison steps are given of these interval
numbers;

(a) For any two intervals numbers A; [A} , AY] and A; [A} , AY], now we will calculate the possible degree
Pij p(A; = Kj) and now we will construct the possible degree matrix p = (p;j)mxm, and the product by
comparison of any two interval numbers A; [A} , AY] and A; [A} , AY], where i,j 1,2,3, .m. Xu [18]
proved that matrix p = (0;j)mxm satisfies (p;; = 0,p;; + (pj;; 1,53 =05 1,2,3, ,m)

The matrix p = (p;j)mxm is called the fuzzy complementary judgement matrix, and we can rank the alternatives as
follow.

(b) The rank of interval numbers A; [A}, AV, (i 1,2,3,,m)
Ranking formula is given below

'Ui = L (Z:’llpu +ﬂ_ 1) ai 172737 ,In

m(m—1) 2
The smaller U, , is the smaller A; [A}, AY] is.

Step 5. Now we will rank the alternatives based on S; , W; and H;(i 1,2,3, ,m).here the smaller of interval number
§; is, and the better alternative x; is. propose as a min {S; | i 1,2,3, ,m} if these two condition are satisfied[16]:
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(i) S(A®) s (AM) 1/(m — 1), where A® called the second alternative with second position in the
ranking list by R ; m is the number of alternatives.
(i1) AMalternative also must be best ranked by {S;or/and R; |1 1,2,3 mj}.

Group Unity Comprensive Rank of Fuzzy Ranking of

Normalization Value Sorting Index Number Alternatives

Figure 6: Flowchart of VIKOR algorithm
6.5 Numerical Analysis

Suppose that U is the universal set. Let HR which is responsible for recruiting and interviewing, and wants to hire a

new candidate in company. Three candidates S=< ¢, @, v > apply for this opportunity, which have different
degrees, experiences and publications. On the base of choice parameters {C; = Dergre, C, = Experience, C; =
Publication} we apply the algorithm to find the potential candidate.

Step 1. Associated Decision Matrix

Candidate={ Candidate= @ Candidate= v
{{C,(0.720.35,071,0.77,041,0.73,077,0.81)  4C,(0.73.0.73,084085.0960.74095,0.89) £, (0.73,0.83,0.93,0.56,0.95,0.95,0.73,0.88) \
(0.93,0.83,093.088 0040990960000  (0.33,0.46,0.59,0.79,0.85,0.79,0.74,0.86) (0.76,0.95,0.69,0.94,0.94.0.63,0.55,0.61)}

(0.86,0.95,0.99,097.094093,095,091)F  (0.48,0.33,0.55,0.75,0.68,0.64,0.36,0.700} (0.74,0.75,0.85,0.75,048, 0 34 0 66,0.74)F -
§0,(0.75.0.65,096,0.54,0.73.0.65,083,0.56)  {C.0.75,0.55,096,054.053,065075,056)  {C,(0.73.0.65,0.96,0.54,0.63,0.65,0.81,0.59)
(0.75,0.430.95,038.0.68.0.79,0.57.0.1%)  (0.93,0.63,0.83,0.58 ,0.34,0.69,0.76,0.80) (0.75.0.43,0.85,0.38,0.78,0.79,0.67,0.13)

(0.36,0.59,0.68,0.79.047,036,047.095))  (0.66,0.59,068,095,047.046087.095)F  (0.38.0.59,0.68,0.79,0.97,0.36,0.67,0.85)}
{C,(0.74,0.73,.0.64,0.75,096,034085,0.89)  {C,(0.54,0.93,0.74,0.95.0.96,0.04.0.85,099)  {C.(0.74,0.73.0.64,0.75,0.96,0.34,0.85,0.89)
{0.35,0.46,0.58,0.79,0.85,0.71,0.64,0.96) (0.28,0.26,0.38,0.35.0.43,0.61.0.64,0.36) (0.35,0.44,0.58,0.79,0.75,0.71.0.54.0.96)

(0.84,0.73,0.85.0.75,0.98.0.84.0.66,0.54)} (028,023,025045068044026034)F  (0.74,0.63,035,0.35098,0.34,0.28 0.6}

De-Neutrosophication of Octagonal Neutrosophic number by,

Q40 et +ot+el+mt +61 43t

Q+D+§+V+s++6+3)
8

(QZ+EI 242402 +e2 +02 +6% +32
8

Doy ( , D!Noy = ( ), DFvoy — 5

The associated neutrosophic matrix is,

(0.65,0.92,0.93) (0.84,0.67,0.56) (0.82,0.88,0.66)
X = (0.70,0.59,0.58) (0.70,0.78,0.70) (0.69,0.60,0.66)
(0.86,0.66,0.82) (0.91,0.44,0.36) (0.73,0.64,0.49)

The associated fuzzy matrix is,
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(0.8333) (0.6900) (0.7866)
X = (0.6233) (0.7266) (0.6500)
(0.7800) (0.5700) (0.6200)

After calculating normalized decision matrix, we determine the positive ideal solution as well as negative ideal
solution

rt {(0.65,0.92,0.93)} r~ {(0.91,0.44,0.36)}

Step 2. Calculate the group utility value as H; [HE,H]and§; [SF,SY]
H, [0.2769,0.2000] H, =[0.1076,0.3846] H, =[0.4230,0.2230]

And S, =[0.1461,0.1615] S, =[0.0384,0.2000] S5 [0.2000,0.1307]

Step 3. Now we will calculate the comprehensive sorting index W; [W, W]

W1 0.0506
W2 0.0275
W3 0.0163

Step 4. Calculation of H; W; and S;

S1 0.2767 H1 0.1088 W1 0.0506

S2  0.2394 H2 0.1165 W2  0.0275

S3  0.2530 H3 0.1066 W3 0.0163

Step 5. Orderi ng of H; ,W; and S;

Order the alternatives, listed by the values Si; Hi and Wi:
S2 0.2394 H3 0.1066 W3 0.0163

S3 0.2530 H1 0.1088 W2 0.0275

S1 0.2767 H2 0.1165 W1 0.0506

According to the ranking S3 is the potential candidate for the company.

7. Conclusion

The concept of octagonal neutrosophic number has sufficient scope of utilization in different studies in various
domain. In this paper, we proposed a new concept of octagonal neutrosophic number ONN, notion and graphical
representation. The de-neutrosophication technique is carried out by implementing accuracy function and following
points were concluded.

e The octagonal neutrosophic number, function and graph add a new tool for modeling different aspects of
daily life issues, science and environment.

e Since this study has not yet been studied yet, the comparative study cannot be done with the
existing methods.
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e Detailed illustrations of truthiness, indeterminacy, falsity and de-neutrosophication techniques will provide
all the required information in one platform to model any real-world problem.

In forthcoming work, authors will define the types Symmetric, Asymmetric, along with their a-cuts. Proposed work
can be used to model different dynamics, of applied sciences, such as MCDM and networking problems, etc.
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NeutroAlgebra & AntiAlgebra vs. Classical Algebra

Florentin Smarandache

Florentin Smarandache (2022). NeutroAlgebra & AntiAlgebra vs. Classical Algebra. Transactions on Fuzzy Sets
and Systems 1(1), 74-79

Abstract. NeutroAlgebra & AntiAlgebra vs. Classical Algebra is a like Realism vs. Idealism. Classical Algebra does not leave
room for partially true axioms nor partially well-defined operations. Our world is full of indeterminate (unclear, conflicting,
unknown, etc.) data.

This paper is a review of the emerging, development, and applications of the NeutroAlgebra and AntiAlgebra [2019-2022]
as generalizations and alternatives of classical algebras.

Keywords and Phrases: Classical Algebra, NeutroAlgebra, AntiAlgebra, NeutroOperation, AntiOperation, NeutroAxiom,
AntiAxiom

1 Introduction

The Classical Algebraic Structures were generalized in 2019 by Smarandache [16] to NeutroAlgebraic Struc-
tures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and
partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose
operations and axioms are totally false} and on 2020 he continued to develop them [18, 20, 17].

The NeutroAlgebras & AntiAlgebras form a new field of research, which is inspired by our real world.
Many researchers from various countries around the world have contributed to this new field, such as F.
Smarandache, A.A.A. Agboola, A. Rezaei, M. Hamidi, M.A. Ibrahim, E.O. Adeleke, H.S. Kim, E. Mo-
hammadzadeh, P.K. Singh, D.S. Jimenez, J.A. Valenzuela Mayorga, M.E. Roja Ubilla, N.B. Hernandez, A.
Salama, M. Al-Tahan, B. Davvaz, Y.B. Jun, R.A. Borzooei, S. Broumi, M. Akram, A. Broumand Saeid, S.
Mirvakilii, O. Anis, S. Mirvakili, etc (See [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

, 23, 24]).

2 Distinctions between Classical Algebraic Structures vs. NeutroAlge-
bras & AntiAlgebras

In classical algebraic structures, all operations are 100% well-defined, and all axioms are 100% true, but in
real life, in many cases, these restrictions are too harsh since in our world we have things that only partially
verify some operations or some laws.

Using the process of NeutroSophication of a classical algebraic structure we produce a NeutroAlgebra,
while the process of AntiSophication of a classical algebraic structure produces an AntiAlgebra.
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3 The neutrosophic triplet (Operation, NeutroOperation, AntiOpera-
tion)

When we define an operation on a given set, it does not automatically mean that the operation is well-defined.
There are three possibilities:

(i) The operation is well-defined (also called inner-defined) for all set’s elements [degree of truth 7' = 1] (as
in classical algebraic structures; this is a classical Operation). Neutrosophically we write: Operation(1,0,0).

(ii) The operation if well-defined for some elements [degree of truth 77, indeterminate for other ele-
ments [degree of indeterminacy I], and outer-defined for the other elements [degree of falsehood F|, where
(T, I, F) is different from (1,0, 0) and from (0,0, 1) (this is a NeutroOperation). Neutrosophically we write:
NeutroOperation(T, I, F).

(iii) The operation is outer-defined for all set’s elements [degree of falsehood F' = 1] (this is an AntiOp-
eration). Neutrosophically we write: AntiOperation(0,0,1).

4 The neutrosophic triplet (Axiom, NeutroAxiom, AntiAxiom)

Similarly for an axiom, defined on a given set, endowed with some operation(s). When we define an axiom
on a given set, it does not automatically mean that the axiom is true for all set elements. We have three
possibilities again:

(i) The axiom is true for all set’s elements (totally true) [degree of truth 7" = 1] (as in classical algebraic
structures; this is a classical Axiom). Neutrosophically we write: Axiom(1,0,0).

(ii) The axiom is true for some elements [degree of truth 77, indeterminate for other elements [degree
of indeterminacy I], and false for other elements [degree of falsehood F], where (T, I, F) is different from
(1,0,0) and from (0,0,1) (this is NeutroAxiom). Neutrosophically we write NeutroAxiom(T', I, F').

(iii) The axiom is false for all set’s elements [degree of falsehood F' = 1](this is AntiAxiom). Neutro-
sophically we write AntiAxiom(0, 0, 1).

5 The neutrosophic triplet (Theorem, NeutroTheorem, AntiTheorem)

In any science, a classical Theorem, defined on a given space, is a statement that is 100% true (i.e. true for all
elements of the space). To prove that a classical theorem is false, it is sufficient to get a single counter-example
where the statement is false.

Therefore, the classical sciences do not leave room for the partial truth of a theorem (or a statement).
But, in our world and our everyday life, we have many more examples of statements that are only partially
true, than statements that are totally true. The NeutroTheorem and AntiTheorem are generalizations and
alternatives of the classical Theorem in any science.

Let’s consider a theorem, stated on a given set, endowed with some operation(s). When we construct the
theorem on a given set, it does not automatically mean that the theorem is true for all set elements. We have
three possibilities again:

(i) The theorem is true for all set’s elements [totally true] (as in classical algebraic structures; this is a
classical Theorem). Neutrosophically we write Theorem(1,0,0).

(ii) The theorem is true for some elements [degree of truth 7, indeterminate for other elements [degree
of indeterminacy I], and false for the other elements [degree of falsehood F|, where (7, I, F) is different from
(1,0,0) and from (0,0,1) (this is a NeutroTheorem). Neutrosophically we write NeutroTheorem(7, I, F').

(iii) The theorem is false for all set’s elements (this is an AntiTheorem). Neutrosophically we write
AntiTheorem(0, 0, 1).
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And similarly, for (Lemma, NeutroLemma, AntiLemma), (Consequence, NeutroConsequence, AntiCon-
sequence), (Algorithm, NeutroAlgorithm, AntiAlgorithm), (Property, NeutroProperty, AntiProperty), etc.

6 The neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra)

(i) An algebraic structure whose all operations are well-defined and all axioms are totally true is called a
classical Algebraic Structure (or Algebra).

(ii) An algebraic structure that has at least one NeutroOperation or one NeutroAxiom (and no AntiOp-
eration and no AntiAxiom) is called a NeutroAlgebraic Structure (or NeutroAlgebra).

(iii) An algebraic structure that has at least one AntiOperation or one Anti Axiom is called an AntiAl-
gebraic Structure (or AntiAlgebra).

Therefore, a neutrosophic triplet is formed: jAlgebra, NeutroAlgebra, AntiAlgebra;, where Algebra can
be any classical algebraic structure, such as a groupoid, semigroup, monoid, group, commutative group, ring,
field, vector space, BCK-Algebra, BCI-Algebra, etc.

7 Theorems and Examples

Theorem 7.1. If a Classical Statement (theorem, lemma, congruence, property, proposition, equality, in-
equality, formula, algorithm, etc.) s totally true in a classical Algebra, then the same Statement in a
NeutroAlgebra maybe be:

e totally true (degree of truth T =1, degree of indeterminacy I =0, and degree of falsehood F' = 0);

e partially true (degree of truth T'), if partial indeterminate (degree of indeterminacy I), and partial
falsehood (degree of falsehood F'), where (T,1,F) ¢ {(1,0,0),(0,0,1)}.

e totally false (degree of falsehood F =1 , degree of truth T =0, and degree of indeterminacy I =0).

Example 7.2. (Examples of Classical Algebra, NeutroAlgebra, and AntiAlgebra)
Let S = {a,b,c} be a set, and a binary law (operation) * defined on S:

x:8% > S.

As in the below Cayley Table:

Then:

1. (S, %) is a Classical Grupoid since the law * is totally (100%) well-defined (classical law), or V z,y €
S, xxy € S.

2. (S, %) is a NeutroSemigroup, since:

(i) the law * is totally well-defined (classical law);

(ii) the associativity law is a NeutroAssociativity, i.e.
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e partially true, because 3 a, b, c € S such that
(axb)xc=cxc=a=ax(bxc)=ax*xa=a,
the degree of truth 7' > 0,
e degree of indeterminacy I = 0 since no indeterminacy exists;
e and partially false, because 3 ¢, ¢, c € S such that
(cxc)xc=axc=a#cx(cxc)=ax*xa=0Dh,
so degree of falsehood F' > 0.

3. (S, %) is an AntiCommutative NeutroSemigroup, since:

(i) the law * is totally well-defined (classical law);

(ii) the associativity is a NeutroAssociativity (as proven above);
(

iii) the commutativity is an AntiCommutativity, since:

Vae,ye s, x*xyFysxx.

Proof.
axb=c#a=bxa,
axc=a#b=cx*a,
bxc=a#c=cxb.
O

Theorem 7.3. If a Classical Statement is false in a classical Algebra, then in a NeutroAlgebra it may be:
(i) either a NeutroStatement, i.e. true (T') for some elements, indeterminate (I) for other elements, and
false (F) for the others, where (T,1,F) is different from (1,0,0) and from (0,0,1);
(ii) or an AntiStatement, i.e. false for the elements.

Theorem 7.4. A Classical Group can be:

(i) either Commutative (the commutative law is true for all elements);

(ii) or NeutroCommutative (the commutative law is true (T') for some elements, indeterminate (I) for
others, and false (F) for the other elements where (T, 1, F) is different from (1,0,0) and from (0,0,1);

(iii) or AntiCommutative (the commutative law is false for all the elements).

Corollary 7.5. The Classical Non-Commutative Group is either NeutroCommutative or AntiCommutative.

Corollary 7.6. The Classical Non-Associative Groupoid is either NeutroAssociative or AntiAssociative.

8 Conclusion

The Classical Structures in science mostly exist in theoretical, abstract, perfect, homogeneous, idealistic
spaces - because in our everyday life almost all structures are NeutroStructures, since they are neither perfect
nor applying to the whole population, and not all elements of the space have the same relations and same
attributes in the same degree (not all elements behave in the same way).

The indeterminacy and partiality, with respect to the space, to their elements, to their relations or their
attributes are not taken into consideration in the Classical Structures. But our Real World is full of structures
with indeterminate (vague, unclear, conflicting, unknown, etc.) data and partialities.

There are exceptions to almost all laws, and the laws are perceived in different degrees by different people
in our every-day life.
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Abstract—In this paper we study fuzzy soft matrix
based on reference function.Firstly, we define some new
operations such as fuzzy soft complement matrix and
trace of fuzzy soft matrix based on reference
function.Then, we introduced some related properties,
and some examples are given. Lastly, we define a new
fuzzy soft matrix decision method based on reference
function.

Index Terms Soft set, fuzzy soft set, fuzzy soft set

based on reference function, fuzzy soft matrix based on
reference function.

.  INTRODUCTION

Fuzzy set theory was proposed by LotfiA.Zadeh!'! in
1965,where each element ( real valued ) [ 0, 1] had a
degree of membership defined on the universe of
discourse X, the theory has been found extensive
application in various field to handle uncertainty.
Therefore,several researches were conducted on the
generalization on the notions of fuzzy sets such as
intuitionistic fuzzy set proposed by Atanassov??),
interval valued fuzzy set ). In the literature we found
many well —known theories to describe uncertainty:
rough set theory!®etc, but all of these theories have
their inherit difficulties as pointed by Molodtsov in his
pioneer work!”. The concept introduced by Molodtsov is
called “soft set theory” which is set valued mapping.
This new mathematical model is free from the
difficulties mentioned above.Since its introduction, the
concept of soft set has gained considerable attention and
Eg]is concept has resulted in a series of work [8, 9104112, 13,

Also as we know, matrices play an important role in
science and technology. However, the classical matrix
theory sometimes fails to solve the problems involving
uncertainties,occurring in an imprecise environment. In
4 Thomason, introduced the fuzzy matrices to represent
fuzzy relation in a system based on fuzzy set theory and

156

discussed about the convergence of powers of fuzzy
matrix. In "' some important results on determinant
of a square fuzzy matrices are discussed .Also,Ragab et
al. 8% presented some properties of the min-max
composition of fuzzy matrices. Later on, several studies
?z%%]some applications of fuzzy matrices are defined in

In 2010,Cagmanet al ') defined soft matrix which is
representation of soft set, to make operations in
theoretical studies in soft set more functional. This
representation has several advantages, it s easy to store
and manipulate matrices and hence the soft sets
represented by themin a computer.

Recently severalresearch have been studied the
connection between soft set and soft matrices | '3'4%2],
Later,Maji et al ! introduced the theory of fuzzy soft
set and applied it to decision making problem. In 2011,
Yang and CJi**!defined fuzzy soft matrix (FSM)
which is very useful in representing and computing the
data involving fuzzy soft sets.

The concept of fuzzy set based on reference function
was first introduced by Baruah!??**! in the following
manner - According to him, to define a fuzzy set, two
functions namely fuzzy membership function and
fuzzy reference function are necessary. Fuzzy
membership value is the difference between fuzzy
membership function and reference function. Fuzzy
membership function and fuzzy membership value are
two different things. In ® *! M.Dhar applied this
concept to fuzzy square matrix and developed some
interesting properties as determinant, trace and so on.
Thereafter, in *%, T.J.Neog, D. K.Sutwere extended this
new concept to soft set theory, introducing a new
concept called “fuzzy soft set based on fuzzy reference
function”. Recently,Neog. T.J, Sut D.K,M.Bora*”’
combinedfuzzy soft set based on reference function with
soft matrices. The paper unfolds as follows. The next
section briefly introduces some definitions related tosoft
set,fuzzy soft set, and fuzzy soft setbased on reference
function. Section 3 presents fuzzy soft complement
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matrix based on reference function. Section
4presentstrace of fuzzy soft matrix based on reference
function..SectionSpresentsnew fuzzy soft matrix theory
in decision making.Conclusions appear in the last
section.

. PRELIMINARIES

In this section first we review some concepts and
definitions of soft set,fuzzy soft set, and fuzzy soft set
based on reference functionfrom [9’12’13’29], which will be
needed in the sequel.

Remark:

For the sake of simplicity we adopt the following notation
of fuzzy soft set based on reference function defined in
our way as: Fuzzy softset based on reference (F, A)¢

To make the difference between the notation (F, A)
defined for classical soft set or its variants as fuzzy soft
set.

2.1.Definition (Sofi Set *3)

Suppose that U is an initial universe set and E is a set
of parameters, let P(U) denotes the power set of U.A
pair(F,E) is called a soft set over U where F is a mapping
given by F: E P(U).Clearly, a soft set is a mapping from
parameters to P(U),and it is not a set, but a parameterized
family of subsets of the universe.

2.2. Example.

Suppose that U {s1,s2,s3,s4} is a set of students and
E {el,e2,e3} is a set of parameters, which stand for
result, conduct and sports performances respectively.
Consider the mapping from parameters set E to the set of
all subsets of power set U.Then soft set (F,E) describes
the character of the students with respect to the given
parameters, for finding the best student of an academic
year.

(F, E) {{result
{sports performances

s1, s3, s4} {conduct
$2,s3,84 }}

sl,s2 }

2.3. Definition (FuzzySoft Set [9, 12] )

Let U be an initial universe set and E be the set of
parameters. Let ACE .A pair (F,A) is called fuzzy soft set
over U where F is a mapping given by F:

A F",whereF"denotes the collection of all fuzzy subsets
of U.

2.4.Example.

Consider the example2.2,in soft set(F,E),if sl is
medium in studies, we cannot expressed with only the
two numbers 0 and I,we can characterize it by a
membership function instead of the crisp number 0 and
1,which associates with each element a real number in the
interval [0,1].Then fuzzy soft set can describe as

(F, A) {Fel) {(s1,0.9), (s2,0.3), (s3,0.8), (s4,0.9)},
F(e2) {(s1,0.8), (s2,0.9), (s3,0.4), (s4,0.3)}},where
A {ele2}.

In the following, Neog et al. 291 showed by an example
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that this definition sometimes gives degenerate cases and
revised the above definition as follows:

2.5 .Definition [29]
Let A (py,1z) {xp(X), (%) s x€U } and B (p3.1y)
{x, U3 (%), Ly (x) ; x€ U } be two fuzzy sets defined
over the same universe U.
Then the operations intersection and union are defined

asA (. i ) N B (pg o py ) {x,
min(; (),k3 () max( k(<) s (x)); x € U } and A
( m > 1 ) U B ( p3 , W ) 1%

max(py (X) ,H3 (X)) ,min( Ky (X),1y(x)); xEU }

2.6.Definition [29]

Let A (py.pz) {% u1(x) , u(x); x€ U } and B
(U3m4) 1% puz(x), pa(x); x €U } be two fuzzy sets
defined over the same universe U.To avoid degenerate
cases we assume that min( p;(x) , pz(x) ) =
max( f,(x) ,uys(x)) forall xe U.

Then the operations intersection and union are defined
as A (W, ) N B (g, ow) {x
min(p (3,15 () smax( ()14 ()5 xE€U } and A
(ug 5 pp ) U B (pz o ue ) {x
max(fy (X) iz (%)) ,min( pp () 1 (x)); x €U}

2.7. Definition[29]

For usual fuzzy setsA (u,0) {x, u(x),0; x€ U }and
B (1, w {x 1,u(x); xeU } defined over the same
univese U, we have A (g, 0) N B (I,n) {x
min((x), 1) ,max(0 ,u(x)); x€U } {x, u(x), u(x); x
€ U }, which is nothing but the null setp and A (u, 0) U
B (1, 1) {x, max(u(x), 1) ,min( 0, u(x)); x€ U }
{x1,0; x € U}, which is nothing but the universal set U.

This means if we define a fuzzy set(A (i, 0))€ ={x,
I, u(x) ; x€ U } it is nothing but the complement
ofA (1, 0) {x u(x),0;x€U }.

2.8. Definition[29]

Let A (py.p) {x, p1(x), p(x); x€U } and B

(H3.tg) % p3(x),pus(x); x€U } be two fuzzy sets
defined over the same universe U.The fuzzy setA

(11,u5)is a subset of the fuzzy set B (us,uy)if forall x €
U, () < ps@)and  py(0) < pp(0).

Two fuzzy setsC {x, pc(x)x €U }and D {x, up(x);
x € U } in the usual definition would be expressed
asC(uc, 0) {x, pe(x), 0; x €U jand D(up, 0) {x
t#p(x),0; x€U }

Accordingly, we have C(u,, 0) € D(up, 0) if for all
X €U, puc(x) < up(x) , which can be obtained by
puttingu, (x)  p4(x) 0in the new definition.

2.9 Defintion [29] (Fuzzy soft matrices (FSMs) based on
reference function)

Let U be an initial universe, E be the set of parameters
and ACE. Let (f;, , E) be fuzzy soft set (FS) over U.
Then a subset of U XE is uniquely defined by R,  {(u,
e); e€ A, u€ f;(e)} which is called a relation form of

(fa » B).
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2.10. Example

Assume that U {u; ,u, ,u3,u, } is a universal setand
E {e;,e,e;,e, ,e5 } be the set of parameters and
A {e;,e;,e5} CE
and

fiten) { u,/(0.7,0) , u,/(0.1,0) , u3/(0.2,0) ,
u,/(0.6,0) }
f1le;) {u;/(0.8,0) , u,/(0.6,0) , u3/(0.1,0) ,
u,/(0.5,0)}
fales) { u;/(0.1,0) , u,/(0.2,0) , u3/(0.7,0) ,
u,/(0.3,0)}

Then the fuzzy soft set (f; , E) is a parameterized
family {f; (e)) , fi(e) »fy(e3) } of all fuzzy soft sets

over U. Then the relation form of (f , E) is written as

TABLE 1.The relation formof (f, , E)

R, e e, €3 e,

u; | (0.7,0) (0.8,0) (0.1,0) (0,0)
u; | (0.1,0) (0.6, 0) 02,0) (0,0)
us [ (02,0) (0.1, 0) (0.7, 0) (0,0)
u, | (0.6,0) (05, 0) (03,0) (0,0)

Hence,the fuzzy soft matrix representing this fuzzy
soft set would be represented as
(0.7,0)(0.8,0)(0.1,0)(0,0)
A [(0.1,0)(0.6,0)(0.2,0)(0,0)‘

(0.2,0)(0.1,0)(0.7,0)(0, 0)
(0.6,0)(0.5,0)(0.3,0)(0, 0)

2.11. Definition[29 ]

We define the membership value matrix corresponding
to the matrix A as MV(A) [6;;(¢c;)] Where 8¢y
pj1(c)- pja(c) i 1,23, ,mandj 1,23 .,n ,where
pj1(c;) and pj,(c;) represent the fuzzy membership
function and fuzzy reference function respectively ofc; in
the fuzzy set F( ¢;).

2.12. Definition [29]

Let the fuzzy soft matrices corresponding to the fuzzy
soft sets (F.,E), and (GE) beA [a;] € FSM, ,
B[ bij Jwhere aj; ( Hj1(ci) > sz(ci)) and bij
(X1(c) >X2(¢) )i 12,3, , m3j 1,23, ,n;Then
Aand Bare called fuzzy soft equal matrices denoted
byA B, ifﬂjl(ci) Xj1(ci) and :ujl(ci) le(ci) for all
ij.

In %) the addition (+)’ operation between two
fuzzy soft matrices is defined as follows

[

2.13. Definition [29]

Let U {cq,c;,c3,.....,Cp } be the universal set and
Ebe the set of parameters given by
E {eycy.e3,.....,e,}.Let the set of all m n fuzzy
soft matrices over Ube FSM,, ..

Let A, BE€FSM,,,, where A [a;lnxn >4y
( Hjl(ci) > ﬂjz(Ci) ) and B [bij]mxn > bij

(xj1(c;) :xj2(c;)).To avoid degenerate cases we assume
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thatmin (p;1(c;) xj1(c;)) =max (p;2(c;).x;2(c;)) for
all iand j .The operation of addition (+)’ between A
and B is defined as A+ B=C ,whereC [c¢;lnxn €

(max (:ujl(ci) szl(Ci))a min (:ujZ(Ci) > ij(ci)))

U

2.14. Example

Let U {cy,c5,c5,c4 } be the universal set and Ebe
the set of parameters given by E {eq,e;,e3 }
We consider the fuzzy soft sets based on reference
function.

(F,E) {F(ey) {(c1,0.3, 0) ),(c3,0.5, 0), (c3, 0.6, 0),
(€4,0.5,0)},F(e;) {(cq,0.7, 0) ),(c,,0.9, 0), (c3, 0.7, 0),
(€4,0.8,0)},F(e3) {(c1,0.6, 0) ),(c,,0.7,0), (c3, 0.7, 0),
(€4,0.3,0)}}.

(G,E) {G(e;) {(c1,0.8, 0) ),(c,,0.7, 0), (c3, 0.5, 0),
(€4,0.4,0)}, G(e,) {(¢1,0.9, 0) ),(c,0.9, 0), (c3, 0.8,
0), (¢4,0.7,0)},G(e3) {(c1,0.5, 0) )(c,,0.9, 0), (cs,
0.6, 0), (4,0.8,0)}}.

The fuzzy soft matrices based on reference
function representing these two fuzzy soft sets are
respectively

(0.3,0)(0.7,0)(0.6,0)] (0.8,0)(0.9,0)(0.5,0)
[(0.5,0)(0.9,0)(0.7,0)|  [(0.7,0)(0.9,0)(0.9,0) |
| (0.6,0)(0.7,0)(0.7,0)|B | (0.5,0)(0.8,0)(0.6,0) |
| 0.5,0)0.8,0)0.3,0)]  1(0.4,0)(0.7,0)(0.8,0) |

(0.7,0)(0.9,0)(0.9,0)
(0.6,0)(0.8,0)(0.7,0)
(0.5,0)(0.8,0)(0.8,0)

(0.8,0)(0.9,0)(0.6,0)
HereA+B ‘

I. FUZZY SOFT COMPLEMENT MATRIX

BASED ON REFERENCE FUNCTION

In this section ,westart by introducing the notion of the
fuzzy soft complement matrix based on reference
function,and we prove some formal properties.

3.1. Definition
Let A [(ai]-,O)]m<n € FSM,, ., according to the

definition in [26], then A°is calledfuzzy soft complement
matrix if A [(1 ,aij)]mxn forall a; €0, 1].

3.2 .Example
Let A [Egz g%ggzgg] be fuzzy soft matrix based on

reference function, then the complement of this matrix is
A [(1,0.7)(1,0.8)
(1,0.1)(1,0.6) I

3.3. Proposition

Let A, B be two fuzzy soft matrix based on fuzzy
reference function .Then
Ay

OICON (1)
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(i)(4° + B)' (A" +(BT)" (2
Pr oof:
To show (i)

(A" Ay

We have, let A € FSM,), ., then
A [(uj1(c) pj2(c)]
A° 1 :H/l(ci)]
A" [1 ,/Ji1(cj)]
For A" [(ﬂn(cj) iz (Cj)],

we have
A (1 alli1(cj)]
Hence (A°)" (AT)¢

The proof of (ii) follows similar lines as above.

3.4. Example

(0.2,0)(0.3,0) (0.5,0)(0.4,0)
Let A [(0.1,0)(0.4,0)]’]3 [(0.6,0)(0.2,0)

(1,0.2)1,0.3)] pe

(1,0.5)(1,0.4)]
(1,0.1)(1,0.4)°

(1,0.6)(1,0.2)

(AC)T [(1 02)(101)]( ),

(1,0.5)(1,0.6) T~NC TNc
(1,03)(1,0.4) ] (A HBY)

(1,0.4)(1,0.2)
2)(1,0.1)
(1, 0. 3)(1,0. 2)]

c c (1,0.2)(1,0.3) c co\T (1,0.2)(1,0.1)
A+ B (1,0.1)(1,0.2)]’ (A +B ) [(1.0.3)(1,0.2)
Then
(A°+ BT (A" +(BT)"-

IV. TRACE OF FUZZY SOFT MATRIXBASED ON
REFERENCE FUNCTION

In this section we extend the concept of trace of fuzzy
square matrix proposed M. Dhar® to fuzzy soft square
matrix based on reference function, and we prove some
formal properties.

4.1. Definition

Let A be a square matrix. Then the trace ofthe matrix A is
denoted by tr A and is defined as:
trA - (max(p;;),min(r; )) G)
where ; stands for the membership functions lying

along the principal diagonal and r;;refers to the reference
function of the corresponding membership functions.

4.2. Proposition

Let A and B be two fuzzy softsquare matrices each of
order n.

Then

tr (A+B) trA+trB @)
pr oof.

We have from the proposed definition of trace of
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fuzzy soft matrices
trA (maxa; ,min 7; )

and )
trB (max b; ,min7; )

then
A+B Cwhere C [¢;]

Following the definition ofaddition of twofuzzy soft
matrices, we have

Cij (max(a” ’ bu) mm( TiioTi ))

According to definition 4.1 the trace of fuzzy soft
matrixbased on reference function would be:

tr(C) [ max {max(a; ,by; )}, min {min(7; .7;)}]
[ max {max(a;),max( b;)} , min {min(7;), mm(n—;)}]
trA+trB,
Conversely,
trA+trB [ max {max(a;) ,max( b;)} , min {(min(r;),
min(7;;))}]
[ max {max(a;;, by), min (min(7;; 7;;)}]
tr(A+B)

hence the resulttrA+trB  tr(A+B)

4.3. Example:

Let us consider the following two fuzzy soft matrices
A and Bbased on reference function for illustration
purposes

(0.3,0)(0.7,0)(0.8,0)

(1,0)(0.2,0)(0.3,0)
{(0 4,0)(0.5,0)(0.3,0)

andB ’(0.8,0)(0.5,0)(0.2,0)}

(0.6,0)(0.1,0)(0.4,0) (0.5,0)(1,0)(0.8,0)

The addition of two soft matrices would be:

(1,0)(0.7,0)(0.8,0)
A+B (0.8,0)(0.5,0)(0.3,0)‘

(0.6,0)(1,0)(0.8,0)

Using the definition of trace of fuzzy soft matrices,
we see the following results:

trA  {max(0.3, 0.5, 0.4), min (0, 0, 0)} (0.5, 0)
trB { max(l, 0.5, 0.8), min (0, 0, 0)} (1, 0)

Thus we have
trA+trB  { max(1, 0.5, 0.8), min (0, 0, 0)} (1,0)

And

tr (A+B) { max(l, 0.5, 0.8), min (0, 0, 0)} (1,0)

Hence the result
trA+trB  tr(A+B)

4.4.Proposition

Let A [a;,7;] € FSM,, ., be fuzzy soft squarematrix
ofordern, if A is ascalarsuchthat0 <A< 1. Then
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tr(A A) Atr(A) ()
proof.

to prove

tr(1 A) AMrA0 <1< 1

we have

tr(A A) { max(Aa; ), min (Ar;)}
A{ max(a; ), min(ry; )}
Atr (A)

4.5. Example

(0.3,0)(0.7,0)(0.8,0)
Let A {(0.4,0)(0.5,0)(0.3,0) andA 0.5

(0.6,0)(0.1,0)(0.4,0)

Then

(0.15,0)(0.35,0)(0.40, 0)
AA | (0.20,0)(0.25,0)(0.15,0)
(0.30,0)(0. 05, 0)(0.20, 0)

tr(A A) { max(0.15, 0.25, 0.20), min ( (0, 0, 0)}
(0.25,0)

Again

trA (0.5,0)

and hence

tr(A A) 0.5 (0.5,0) (0.25,0)

4.6. Proposition:

Let A [ a;,n; ] € FSM,, , be fuzzy soft square
matrices each of ordern .
Then

trA tr(A"),where A is the transpose of A

4.7 .Example
Let A [Eﬁi?:ﬁi&ﬁ:é;ﬁiiﬁ:ijﬁi‘
(0.8,0)(0.3,0)(0.4,0)
Then
tr(A") { max(0.3,0.5, 0.4), min (0, 0, 0)}
(0.5,0)

HencetrA tr( A")

The same result will hold if we consider the complements
of fuzzy soft square matrices.

(1,0.4)(1,0.5)(1,0.3)

(1,0.3)(1,0.7)(1,0.8)
LI,O.G)(I,O. 1), 0.4)‘

trA° {max (1,1, 1), min (0.3, 0.5, 0.4)} (1,0.3)
If we consider another fuzzy soft matriceB:
(1,0)(0.2,0)(0.3,0)

B [(0.8,0)(0.5,0)0.2,0
(0.5,0)(1,0)(0.8,0)

(1,1)(1,0.2)(1,0.3)
B¢ |@0.8)1,0.5)1,02)
(1,0.5)(1,1)(1,0.8)

Then the trace of B¢ will be the following:
tr(B¢) {max(1,1,1),min (1, 0.5,0.8)} (1, 0.5)

Following the definition 2.13 of addition of two fuzzy
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soft matrices based on reference function, we have.

(1,0.3)(1,0.2)(1,0.3)
A +BF€ (1,0.4)(1,0.5)(1,0.2)
(1,0.5)(1,0.1)(1,0.4)

tr (A° +B€) {max(1,1,1),min (0.3, 0.5, 0.4)}
(1,0.3)

V. NEW FUZZY SOFT MATRIX THEORY IN
DECISION MAKING

In this section we adopted the definition of fuzzy
soft matrix decision method proposed by P.
Rajarajeswari,P. Dhanalakshmi in B9 to the case of
fuzzy soft matrix based on reference function in order
to define a new fuzzy soft matrix decision method
based on reference function.

5.1. Definition: (Value Matrix)

Let A [a;,0] € [FSM],,, .Then we define the

value matrix of fuzzy soft matrix A based on
reference function as V(A) [ay [ay -1z ], 11,

2,, .m,j 1,23, ,n, where I [O]an-

5.2. Definition:(Score Matrix)
If A [a;] € FSM,B [b;] € [FSM],,, Then we
define score matrix of A and B as:

sap [dj Jmmwhere [dy] V(A)-V(B)

5.3. Definition:(Total Score)

If A [ a0 ] €lFsMl,,, B[ b;,0 ] €
[FSM],, 4, .Let the corresponding value matrices be
V(A),V(B) and their score matrix issyp [djj Jmwmthen

we define total score for eachc; in U as s; Z]n:l d; .
Methodology and algorithm

Assume that there is a set of
candidates( programmer), U {c;,c,,, ,c,} is aset
of candidates to be recruited by software

development organization in programmer post.Let E
is a set of parameters related to innovative attitude of
the programmer. We construct fuzzy soft set
(F,E)over U represent the selection of candidate by
field expert X,where F is a mapping F:E— F",F" is
the collection of all fuzzy subsets of U. We further
construct another fuzzy soft set (G,E)over Urepresent
the selection of candidate by field expert Y,where G
is a mapping G:E— F* ,F"is the collection of all
fuzzy subsets of U.The matricesA and B
corresponding to the fuzzy softsets (F,E) and (G,E)
are constructed,we compute the complementsand
theirmatrices A¢ and B€ corresponding to (F, E) ¢
and (G, E) ¢ respectively. Compute A+B which is
themaximum membership of selection of candidates
by the judges. Compute A€ + B¢ which is the
maximum membership of non selection of candidates
by the judges. wusingdef (5.1) ,Compute
V(A+B),V( A + B ) S(a+p)ac+p¢) and the total
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score §; for each candidate in U.Finally find §;
max( S; )then conclude that the candidate c¢; has
selected by the judges.If S;has more than one value
the process is repeated by reassessing the parameters.

Now, using definitions 5-1, 5-2 and 5-3 we can
construct a fuzzy soft matrix decision making method
based on reference function by the following
algorithm.

Algorithm

Stepl:Input the fuzzy soft set (F, E), (G,E) and obtain
the fuzzy soft matrices A,B corresponding to
(F,E) and (G, E) respectively.

Step2:Write the fuzzy soft complement set
(F,E) ¢, (G,E) ¢ and obtain the fuzzy soft
matrices A° ,B¢corresponding to (F,E) ¢,and
(G, E) “respectively.

Step3: Compute (A+B),(A°+B¢), V(A+B),V(AS+B¢)
and S (a 4By, A°+B)) -

Stepd: Compute the total score S;for each c;inU.

Step5:Find c; for which max (S;).

Then we conclude that the candidate c;is selected
for the post.

Incase max S;occurs for more than one value, then
repeatthe process by reassessing the parameters.

Case Study

Let (F,E) and (G,E) be two fuzzy soft set based
on reference function representing the selection of
four candidates from the universal set U {cy,c,,C5,C4}
by the experts X,and Y.Let E  {eq,e,,e;} be the set
of parameters which stand for intelligence,innovative
and analysis .

(F,E) {F(ey) {(cq,0.1, 0) ),(c3,0.5, 0), (c3, 0.1, 0),
(c4,0.4,0)},F(e,) {(cq,0.6, 0) ),(c,,0.4, 0), (c3, 0.5, 0),
(€4,0.7,0)},F(e3) {(c1,0.5, 0) ),(c,,0.7, 0), (c3, 0.6, 0),
(c4,0.5,0)}}.

(G,E) {G(e;) {(c1,0.2, 0)),(c;,0.6, 0), (cs, 0.2, 0),
(€4,0.3,0)}, G(e,) {(cy,0.6, 0) ),(c.,0.5, 0), (c3, 0.6,
0, (,,0.8,0)}, ,G(e3) {(c1,0.5, 0) ),(c;,0.8, 0), (c,
0.7, 0), (¢4,0.5,0)}}.

These two fuzzy soft sets based on reference
function are represented by the following fuzzy soft
matrices based on reference function respectively

(0.1,0)(0.6,0)(0.5,0)
[(0.5,0)(0.4,0)(0.7,0)]

(0.2,0.)(0.6,0)(0.5,0)
[ (0.6,0)(0.5,0)(0.8,0) |
[0.1,0)(0.5,0)(0.6,0)[B | (0.2,0)(0.6,0)(0.7,0) |
|(0.4,0)(0.7,0)0.5,0)] |(0.3,0)(0.8,0)0.5,0) |

Then, the fuzzy soft complement matricesbased on
reference function are

(1,0.1)(1,0.6)(1,0.5)]

¢ l@os@onaen| .
A |(1,0.1)(1,0.5)(1,0.6)LB 1(1,0.2)(1,0.6)(1,0.7)|
|(1,0.4)(1,0.7)(1,0.5)] |(1,0.3)(1,0.8)(1,0.5)]

(1,02)(1,0.6)(1,0.5))
[(1,0.6)(1,0.5)(1,0.8)]
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Then the addition matrices are

(0.2,0)(0.6,0) (0.5,0) [(L,0.1)(1,0.6)(1,0.5)
1(0.6,0)(0.5,0) (0.8,0) [(1,0.5)(1,0.4)(1,0.7) |
A+B [0200.6007,0,A B |1,01)10.5)1,06]|
i (0.4,0)(0.8,0) (0.5, 0) i (1,0.3)(1,0.7)(1,0.5) i
0.2 0.6 05 [0.9 04 05 q
{0.6 0.5 08 [0.5 06 03 |
V(A+B) |02 06 07|,V(A°+B°) |o0.9 05 04 |
|0.4 08 05 |o.7 0.3 o.5|

Calculate the score matrix and the total score for
selection

[70.7 02 0 1
0.1 —0.1 05 |
S((A+B).( AC+BE |-07 01 03]
(C )( )) 03 o5 ol
| |
—-0.5
| s |
Totalscore | —o03]|
||

We see that the second candidate has the maximum
value and thus conclude that from both the expert’s
opinion, candidatec,is selected for the post.

VI. CONCLUSIONS

In our work, we have put forward some new
concepts such as complement, trace of fuzzy soft
matrix based on reference function. Some related
properties have been established with example.
Finally an application of fuzzy soft matrix based on
reference function in decision making problem is
given. It s hoped that our work will enhance this
study in fuzzy soft matrix.
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New Operations on Intuitionistic Fuzzy
Soft Sets based on Second Zadeh's
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based on Second Zadeh's logical Operators. International Journal of Information Engineering and Electronic Business

1,25-31; DOL: 10.5815/ijieeb.2014.01.03

Abstract — In this paper, three new operations have
been introduced on intuitionistic fuzzy soft sets. They
are based on Second Zadeh s implication, conjunction
and disjunction operations on intuitionistic fuzzy sets.
Some examples of these operations were given and a
few important properties were also studied.

Index Terms — Second Zadeh s implication, Second
Zadeh s conjunction, Second Zadeh s disjunction,
Intuitionistic fuzzy soft set.

1. Introduction

The concept of the intuitionistic fuzzy (IFS, for short)
was introduced in 1983 by K. Aanassov [1] as an
extension of Zadeh s fuzzy set. All operations, defined
over fuzzy sets were transformed for the case the IFS
case .This concept is capable of capturing the
information that includes some degree of hesitation and
applicable in various fields of research .For example ,
in decision making problems, particularly in the case of
medical diagnosis ,sales analysis ,new product
marketing , financial services, etc. Atanassov et.al [2,3]
have widely applied theory of intuitionistic sets in logic
programming, Szmidt and Kacprzyk [4] in group
decision making, De et al [5] in medical diagnosis etc.
Therefore in various engineering application,
intuitionistic fuzzy sets techniques have been more
popular than fuzzy sets techniques in recent years.
After defining a lot of operations over intuitionistic
fuzzy sets during last ten years [6], in 2011, K.
Atanassov [7] constructed two new operations based
on the First Zadeh s IF-implication [8] which are the
First Zadeh s conjunction and disjunction, after that, in
2013, K.Atanassov[ 9] introduced the second type of
zadeh ,,;s conjunction and disjunction based on the
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Second Zadeh s IF-implication. Later on, S.Broumi et
al. [22] introduced three new operations based on first
Zadeh s implication, conjunction and disjunction
operations on intuitionistic fuzzy soft sets.

Another important concept that addresses uncertain
information is the soft set theory originated by
Molodotsov [10]. This concept is free from the
parameterization inadequacy syndrome of fuzzy set
theory, rough set theory, probability theory. Molodtsov
has successfully applied the soft set theory in many
different fields such as smoothness of functions, game
theory, operations research, Riemann integration,
Perron integration, and probability. In recent years, soft
set theory has been received much attention since its
appearance. There are many papers devoted to fuzzify
the concept of soft set theory which leads to a series of
mathematical models such as fuzzy soft set
[11,12,13,14,15], generalized fuzzy soft set [16,17],
possibility fuzzy soft set [18] and so on. Thereafter,
P.K.Maji and his coworker [19] introduced the notion
of intuitionstic fuzzy soft set which is based on a
combination of the intuitionistic fuzzy sets and soft set
models and studied the properties of intuitionistic
fuzzy soft set. Later, a lot of extensions of intuitionistic
fuzzy soft are appeared such as generalized
intuitionistic ~ fuzzy soft set [20], possibility
intuitionistic fuzzy soft set [21] etc.

In this paper our aim is to extend the three new
operations introduced by K.T. Atanassov to the case of
intuitionistic fuzzy soft and study its properties. This
paper is arranged in the following manner .In section 2,
some basics related to soft set, fuzzy soft set and
intuitionistic fuzzy soft set are presented. These
definitions will help us in the section that will follow.
In section 3, we discuss the three operations of
intuitionistic fuzzy soft such as Second Zadeh s
implication, Second Zadeh s intuitionistic fuzzy
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conjunction and Second Zadeh s intuitionistic fuzzy
disjunction. In section 4, we conclude the paper.

Preliminaries

In this section, some definitions and notions about
soft sets and intutionistic fuzzy soft set are given. These
will be useful in later sections. For more detailed the
reader can see [10, 11, 12, 13, 19].

Let U be an initial universe, and E be the set of all
possible parameters under consideration with respect to
U. The set of all subsets of U, i.e. the power set of U is
denoted by P (U) and the set of all intuitionistic fuzzy
subsets of U is denoted by IF”. Let A be a subset of E.

2.1. Definition.

A pair (F, A) is called a soft set over U, where F is a
mapping given by F: A — P (U).

In other words, a soft set over U is a parameterized
family of subsets of the universe U. For € € A, F (¢)
may be considered as the set of € -approximate elements
of the soft set (F, A).

2.2. Definition

Let U be an initial universe set and E be the set of
parameters. Let IFU denote the collection of all
intuitionistic fuzzy subsets of U. Let A € E pair (F, A)
is called an intuitionistic fuzzy soft set over U where F
is a mapping given by F: A IFU.

2.3. Definition

Let F: A IFU then F is a function defined as F (¢)

{ X, 0 X ,Vpex) :x €U,e €E} where p,
denote the degree of membership and degree of non-
membership respectively.

2.4. Definition.

For two intuitionistic fuzzy soft sets (F, A) and (G, B)
over a common universe U, we say that (F, A) is an
intuitionistic fuzzy soft subset of (G, B) if
(1) Ac Band
(2) F (¢) € G (¢) for all A ie  (H)

(&) (X) s VE(e) (X) (&) (X') for all € € E and
We write (F, A) € (G, B).

2.5. Definition.

Two intuitionitic fuzzy soft sets (F, A) and (G, B)
over a common universe U are said to be soft equal if (F,
A) is a soft subset of (G, B) and (G, B) is a soft subset
of (F, A).

2.6. Definition.

Let U be an initial universe, E be the set of
parameters, and A € E.

(a) (F, A) is called a null intuitionistic fuzzy soft set
(with respect to the parameter set A), denoted by ¢y, if
F (S) @, Wlth Py ((p'A) {( 07 1) ’Vx € U> >

AF}. (D
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(b) (G, A) is called a absolute intuitionistic fuzzy soft
set (with respect to the parameter set A), denoted by
JAfG(e) U, withU, (U, A) {(1,0), U,

Aj. 2

2.7. Definition

Let (F, A) and (G, B) be two IFSSs over the same
universe U. Then the union of (F, A) and (G, B) is
denoted by ,,(F, A) U (G, B) and is defined by (F, A) U
(G, B) (H, C), where C A U B and the truth-
membership, falsity-membership of (H, C) are as
follows:

(e)
v) A-

U} B-
(v 0@ ©®):

{(pey(x), ()
(o), @)

3)
m (ro® ©®),

k i

Where © (X) max(u ) (X), ) (X)) and
5169) v 0@, o)
2.8. Definition

Let (F, A) and (G, B) be two IFSSs over the same
universe U such that A B 0. Then the intersection of
(F, A) and ( G, B) is denoted by ,{ F, A) (G, B) and
isdefinedby (F,A) (G,B) (K, C),whereC A

B and the truth-membership, falsity-membership of
(K, C) are related to those of (F, A) and (G, B) by:

K(e)

{(mrey(®), () U}

{(He ™), () U} -
k{min(up(g) @ (e® ow): U}

“

In the next section, we state and prove some new
operations involving second implication, conjunction
and disjunction of intuitionistic fuzzy soft set.

New Operations on Intuitionistic Fuzzy Soft Sets.

3.1 Second Zadeh’s implication of intuitionistic fuzzy
soft sets.

3.1.1. Definition:

Let (F, A) and (G, B) are two intuitionistic fuzzy soft
set over (U, E). We define the second Zadeh s
intuitionistic fuzzy soft set implication (F, A) =(G, B)

by

(F, A) = (G, B)
fom (Fo® o) U
o® ©em, @)’ '

A. (5)
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3.1.2. Example:

Let (F, A) and (G, B) be two intuitionistic fuzzy soft
set over (U, E) where U {a,b,c}andE {e;,e, }, A
{e;}SE,B {e;} CE.

(F,A) {F(e;) (a, 0.3,0.2),(b,0.2,0.5),(c,04,0.2)}
(G,B) {G(ey) (a,0.4,0.5),(b,0.3,0.5),(c, 0.6,0.1)}
Then

(F,A) - (G, B)
2)i

{(a, 0.3, 0.3), (b, 0.5, 0. 2), (c, 0.4, 0.

3.1.3. Proposition:

Let (F, A), (G, B) and (H, C) are three intuitionistic
fuzzy soft sets over (U, E).
Then the following results hold

i FANGB-MHO=2(F,A)—=H,C)]
[(G,B)—(H,O)]
(i) (F,A)u(GB)— (H,C) 2[(F,A) = H, O ]JuU
[(G,B)—(H,O)]
(iii) (F,A)—>(F,A)¢ (FA)
@iv) (F,A)—=( ) (F,A)¢ where ¢ denote the null
intuitionistic fuzzy soft
(v) With ( ) {(0,1), U, A}
Proof.
H F,A)N(G,B)—HC)
[min ( 5H(x), (5*x)).max( (%),
@@ 1= (o X)), VhE )
ax{(ma (v (), ©@®) (mi (£ eu®), ®) e®)}
min{min((upey(x), ©®), (ma (v @, ©®E), ©®)}
()
[(F,A)—»H, O] [(G,B)—=H,C)]
[ max { H(x), min ( ), (&)} , min
U Fre Omax( (x), &)} ] [ max
{ ©® , mn ( &), HEe ) , min
{ @@ max( ), @©k)}]
[Min {(max v @ B o>, (z)(x))))' (" @®, (1 e®, (E)(x)))}'
Max{min((ure)(x), @V 0@V &), (@ e®, @& @)}

(b)
From (a) and (b) it is clear that (F, A) N (G,B) — (H, C)

[(F,A) = (H,C]n [(G,B)—(H,CO)]
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(i) (F,A)U(G,B)—~ (H,C)

e(@) ,min (5 (%),

(&) (x) ’ vH(s)(x))

[max (o),
@)1= (

(&) (X))}.
©®)}

©@®),
©®),

(max(p (%),
(min(v (),

©@®),

[ ax{(max (v (x),
®®),

{max(n ©®),

(©
[(F,A)—H,C)JU [(G,B)—(H,O)]

[ max { (,(x), min (
{ F(e) (X)a max( (s)(x) ’
{ ©®, mn (&),
max( (5(x), (5())}]

© X)), BuE(x))}, min
©®)) 1 U [ max
H(e) ), min{ fge (),

(1 0@, (E)(x)))}.
@V o® o)}

(v 0@,
(ro@,

®0®, ©®))
O 0@ o))

(m (0@
n {min((upe (%),
(d)
From (c) and (d) it is clear that (F, A) U (G, B) = (H, C)
[(F,A) = (H, C)] U [(G,B) = (H, O)]
(iii) (F,A)—(F,A)¢ (FA)

{max {
(x), max (

@), min ( (»(x), &)}, min{ g

(s)(x)J'lF(s)(x)) }
1O @) mre (X))}

It is shown that the second Zadeh s intuitionistic
fuzzy soft implication generate the complement of
intuitionistic fuzzy soft set.

(iv) the proof is straightforward.
3.1.4. Example:

Let (F, A) , (G,B) and (H, C) be three intuitionistic
fuzzy soft set over (U, E) where U {a, b, c} and E

{elan}sA{el}gE?B{el}gEand
C {e; } CE.

(F,A) {F(e;) (a,0.3,0.2),(b,0.2,0.5),(c,0.4,0.2)}
(G,B) {G(e;) (a, 0.4,0.5),(b,0.3,0.5),(c, 0.6,0.1)}
(H,C) {H(e;) (a, 0.3,0.6),(b,0.4,0.5),(c, 04,0.1)}

Firstly, we have (F, A) N (G, B)
0.2,0.5), (c, 0.4,0.2)}

{(a, 0.3, 0.5), (b,

Then (F, A) n (G,B) —» (H, C) max (max
( ©®, @) mn mn ( Hx ,

(8)(x))’ (s)(x) amin min( (s)(x)> (s)(x)),
max {min ( 5)(%), Uee) (X)), ()
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{(a, 0.5, 0.3), (b, 0.5, 0.2), (c, 0.4, 0.4)}

3.2. Second Zadeh’s Intuitionistic Fuzzy Conjunction
of intuitionistic fuzzy soft sets.

3.2.1. Definition:

Let (F, A) and (G, B) are two intuitionistic fuzzy soft
sets over (U,E) .We define the second Zadeh s
intuitionistic fuzzy conjunction of (F, A) and (G,B) as
the intuitionistic fuzzy soft set (H,C) over (U,E), written
as (F, A)A,, (GB) (H,C) Where C ANB
andvVee(C,xel,

@) min{ o) max( H(x), (&)}
6 (x) max { © (x), min
( (©)] (x) ’ ® (x)) VX E U ’ A (6)

3.2. 2.Example:

LetU {a,b,c}andE {81782783984}9A {ela
esf SE,B {e, 6,33 CE

(F, A) {F(e;) {((a 0.5,0.1), (b, 0.1, 0.8), (c, 0.2,
0.5)}, F(e;) {( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},
F(es) {((a 0.6,0.3),(b,0.1,0.7), (c, 0.9, 0.1)}}

(G,B) {G(ey) {((a 0.2,0.6), (b, 0.7, 0.1), (c, 0.8,
0.1)}, G(ez) {((a, 0.4,0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)},
G(es) {((a,0,0.6),(b,0,0.8), (c,0.1,0.5)}}

Let (F,A)A,, (GB) (H,C),whereC ANB
}

(H, C) {H (e;) {(a, min(0.5, max(0.1,0.2)), max(0.1,
min(0.5, 0.6))), (b, min(0.1, max(0.8,0.7)), max(0.8,
min(0.1, 0.1))), (e, min(0.2, max(0.5,0.8)), max(0.5,
min(0.2, 0.1)))},

{ €1,

H (e;) {(a, min(0.7, max(0.1,0.4)), max(0.1, min(0.7,
0.1))), (b, min(0, max(0.8,0.5)), max(0.8, min(0, 0.3))),
(¢, min(0.3, max(0.5,0.4)), max(0.5, min(0.3, 0.5)))} }

Then ,(H, C) { H (ey) {(a, min(0.5, 0.2), max(0.1,
0.5)), (b, min(0.1, 0.8), max(0.8, 0.1)), (c, min(0.2, 0.8),
max(0.5, 0.1))}, H (e3) {(a, min(0.7, 0.4), max(0.1,
0.1)), (b, min(0, 0.8), max(0, 0.8)), (¢, min(0.3, 0.5),
max (0.5, 0.3))}}

Hence, (H,C) {H(ey) {(a, 0.2,0.5),(b,0.1,0.8), (c,
0.2, 0.5)}, H (e3) {(a, 0.4, 0.1), (b, 0, 0.8), (c, 0.3,
0.5)}}

3.2. 3 Proposition:

Let (F, A), (G, B) and (H, C) are three intuitionistic
fuzzy soft sets over (U, E)
Then the following result hold
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(F,A)A,, (G, B) = (H,C) 2[(F,A) > (H,O)] A

[(G, B) = (H, C)] O]

Proof: let (F, A), (G, B) and (H, C) are three
intuitionistic fuzzy soft set, then

(F,A)A,, (G,B) = (H, C)

(max [max { (5(x), min ( 5H(x), (5H(*)) ,min
{min { H(x), max( ), (HE)}, (H@E}],
min  [min  { @),  max( ©o®

() )},max[max { o min
( ©@®,v65®), @I

Let [(F, A) = (H, O)] A, [(G, B) = (H, O)]

(F, A) - (H, O
(e)(x))], min[

(max [

© (X) ,max(

©(x), min (),
© @) (©E)])

(G, B) = (H, C)]

( ©®, @©®))], mn [
©)])

(max [ (o(x) , min

(%), max (Vg (%),

Then [(F, A) - (H,C)]A [(G, B) — (H, O)]

( min][ max {
max {

™),
e (X)) }1,

© X)) },

&)(x), min (
(e)(%), min (K¢ (%),
max [min[ © x),
(e)(x) )
()] }]

©(*))], min
(£)(x) )]9

(8)(x) ,max(
{ max [ (%), min (
min[ (%) ;max( (g (x),
From (e) and (f) it is clear that

(F,A)R,,(G,B) = (H,C)
[(G,B) = (H, C)]

[(F,A) = (H, O)] A

3.3. The Second Zadeh’s Intuitionistic Fuzzy
Disjunction of Intuitionistic Fuzzy Soft Sets.

3.3.1. Definition:

Let (F, A) and (G, B) are two intuitionistic fuzzy soft
set s over (U, E) .We define the second Zadeh s
intuitionistic fuzzy disjunction of (F, A) and (G, B) as
the intuitionistic fuzzy soft set (H, C) over (U,E),
written as (F, A)V,, (G, B) (H,C) Where C ANB

andVeeA,xeU

@) max( (@), min( ), (X))
(&) (x) min { G (x) ,max
( ©@®, @)}, vxeU, A ®
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3.3. 2. Example:

LetU {a,bc}andE {e;,e;,e3,e4},A {e,
764}QE9B {31,92,93}QE

(F, A) {F(e;) {((a 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2,
0.5)}, F(ez) {( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},
F(ey) {((a, 0.6,0.3), (b,0.1,0.7), (c, 0.9, 0.1)}}

(G, A) {G(ey) {((a 02,0.6), (b, 0.7,0.1), (c, 0.8,

0.1}, G(ey) {((a,04,0.1), (b, 0.5,0.3), (c, 0.4, 0.5)},

G(e3) {((a, 0,0.6),(b,0,0.8),(c,0.1,0.5)}}

Let (F,A)V,, (GB) (H,C),whereC ANB
}

(H,C) {H (eq) {(a, max(0.5, min(0.1, 0.2)), min(0.1,
max(0.5,0.6))), (b, max(0.1, min(0.8, 0.7)), min(0.8,
max(0.1,0.1))), (¢, max(0.2, min(0.5, 0.8)), min(0.5,
max(0.2,0.1))) }, H (ez) {(a, max(0.7, min(0.1, 0.4)),
min(0.1, max(0.7,0.1))), (b, max(0, min(0.8, 0.5)),
min(0.8, max(0, 0.3))), (¢, max(0.3, min(0.5, 0.4)),
min(0.5, max(0.3,0.5)))}}

{ela

Then, (H, C) { H (ey) {(a, max(0.5, 0.1), min(0.1,
0.6)), (b, max(0.1, 0.7), min(0.8, 0.1)), (¢, max(0.2, 0.5),
min(0.5, 0.2))}, H (e3) {(a, max(0.7, 0.1), min(0.1,
0.7)), (b, max(0, 0.5), min(0.8, 0.3)), (c, max(0.3, 0.4),
min(0.5, 0.5))}}.

hence , (H, C) { H (e;) {(a, 0.5, 0.1),(b, 0.7, 0.1),
(c,0.5,0.2)}, H (e3) {(a, 0.7, 0.1),(b, 0.5, 0.3), (c,0.4,
0.5)}}

3.3.3. Proposition:

M) (9.A)A;2 (U A) (9.A)

(i) (9.,A)V,, (U,A) (U, A),where (U,A) {(1,
0, U, A}

(i) (F, A) V2 (@A) (F.A)

Proof

(i Let(p,A)A,, (U, A) (H, A),where forall

A, x € U,we have
(ey(x)  min (0,max(1,1)) min(0,1) 0

(©)(x) max (1,min(0,0)) max(l,0) 1
Therefore (H, A) (0, 1), Foralle e A,x €U
It follows that ((¢ ,A) A,, (U, A) (¢ ,A)

(i) Let(¢,A)V,, (U, A) (H, A),where Forall

A, x € U ,we have
(ey(X) =max (0,min (1,1)) =max (0,1)=1

&y (x)=min (1,max(0, 0)) = min(1, 0) =0
Therefore (H, A) = (1,0),Forall A,x€U
It follows that ((¢ ,A) V,, (U, A) = (U, A)
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(iii) Let(F,A)V,, (¢ ,A) (H, A),where Forall
A, x € U ,we have

X =max () min( (x),0))
=max (U () (%), 0) = Ug) (%)

©X)=min () (x), max(pg (x),1)) =
min( Vg (X),1) =Vgee) (%)

Therefore (H, A) = (L (£ (X) , Vi) (X)), for all
AxelU
It follows that (F, A) V,, (¢, A) = (F, A)

3.3.4. Proposition:

(Fa A) vZ,1 (Ga B) - (Ha C) 2 [(Fa A) - (Ha C)] v

[(G, B) = (H, O)] €))

Proof, the proof is similar as in proposition 3.2.3

3.3.5. Proposition:

(1)
(i) [(F,A) V,, (GBI ( AR

[(F,A) A2 (G,B)]° ( A) ©V,, (G B)
(G B)

(i) [(F,A) ¢A (G ) °I° (F,A) V,5(G,B)
Proof:
(i Let[(F,A)A,, (G,B)]c (H, C),where For all
C, x € U ,we have
[( A A (G, B [ [min
{ @ max( (H(x), () )} ,max
{ (&) (x)9 min ( (&) (x) ’ ()] (x) ) ¢

[ max { (5(x), min ( X), ()}, min

{ (s)(X) ;max( (s)(X)v (s)(X))}]

( A)°Y,,(G B)

(i) Let[(F,A)V,,(G,B)]c (H,C),where For all
C, x € U ,we have

[(F.A) V., (G, B) Ie

[max { (5 (%), min

( (®) ) (e) (x) )}, min { (®) (x) ,max
( @© ), (e) )]
[min { (X)), max ( ((X), (X))}, max

{ (s)(X), min ( (s)(X), (s)(X))}]C

( H°A (GB
(iii) The proof is straightforward.
3.3.6. Proposition:

The following equalities are not valid

I (F.A) Y,,(G,B) (G,B) V,,(F,A)
I (F,A)A,,(G,B) (G.B)A,,(F,A)
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1L [(F,A) A.2(G,B)] A, (K, C)
B)7A,2(K, O)]

[(F.A) V,,(G, B)]V,,(K, C)
B)V,(K, O)]

[(F.A) A,,(G, B)]V,,(K, C)
B)I A, [(G,B) ¥, (K, C)]
[(F.A) V,,(G, B)] A,,(K, C)
B)]V,; [(G,B) A, (K, C)]

(F.A) A, [(G,

Iv. (F.A) V, [(G,

[(F.,A) V,, (G,

VI [(F,A)A,; (G,

3.3.7 .Example :

LetU {a,b,c} and E {eq,e,,e3,e,}, A {e, e, e,4}
E,B {els €2 ) 63} c E

(F, A) {F(e;) {((a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2,
0.5)}, F(ez) {( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},
F(ey) {((a, 0.6,0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}}, (G,
A) {G(e)) {((a 0.2,0.6), (b, 0.7 0.1),(c,0.8,0.1)},
G(ez) {((a,0.4,0.1), (b,0.5,0.3),(c, 0.4,0.5)}, G(es)

{( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}}
Let (F,A)A,, (GB) (H,C),whereC ANB {e,
}
Then (F, A) KZ,Z (G,B) (H,C) {H(eq {(, 0.2,

0.5), (b, 0.1, 0.8), (c, 0.2, 0.5)}, H (e3)
(b, 0,0.8), (c, 0.3, 0.5)} }

{(a, 0.4, 0.1),

For (G, B)A,, (F,A) (K,C),whereK ANB
{e1.ez }

(XK, C) {K(eq) {(a, min (0.2,max (0.6, 0.5)), max (0.6,
min (0.2, 0.1))), (b, min (0.7, max(0.1,0.1)), max (0.1,
min( 0.7, 0.8))), (¢, min (0.8, max(0.1,0.2)), max (0.1,
min (0.8, 0.5)))}, K (ez) {(a, min (0.7 ,max(0.1,0.4)),
max(0.1, min (04, 0.1))), K (e3) {(a, min
(0.7 ,max(0.1,0.4)), max(0.1, min (0.4, 0.1))), (b, min
(0.5, max(0.3,0.)), max(0.3, min (0.5, 0.8))) , (¢, min
(0.5, max(0.3,0.)), max(0.3, min (0.5, 0.8)))

Then, (K, C) { K (ey) {(a, min (0.2, 0.6), max (0.6,
0.1)), (b, min (0.7, 0.1), max (0.1, 0.7)), (¢, min (0.8,
0.2), max (0.1, 0.5))}, K (ez) {(a, min (0.4, 0.4), max
(0.1, 0.1)), (b, min (0.5, 0.3), max (0.3, 0.5)), (¢, min
(0.4, 0.5), max (0.5, 0.4))}}

Hence, (K, C) {K (e;) {(a, 0.2,0.6),(b,0.1,0.7), (c,
0.2,0.5), K (e5) {(a, 0.4, 0.1),(b, 0, 0.5), (c, 0.3, 0.5)}}
Then (G,B)A,, (F,A) (K,C) {K(ey) f{(a 02,

0.6),(b, 0.1, 0.7), (c,0.2, 0.5)},K (e;) {(a, 0.4, 0.1),(b,

0.3, 0.5), (c,0.4, 0.5)}}

It is obviously that (F, A) A, , (G, B) # (G, B) &, , (F,
A)
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. Conclusion

In this paper, We have introduced and extended the
operations of second Zadeh s implication, second
Zadeh s intuitionistic = fuzzy  disjunction  and
second Zadeh s intuitionistic fuzzy conjunction of
intuitionistic fuzzy set that was introduced by
Krassimir Atanasov in relation to the intuitionistic
fuzzy soft set and other related properties with
examples are presented. We hope that the
findings, in this paper will help researchers
enhance the study on the intuitionistic fuzzy soft
set theory.
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New Results of Intuitionistic Fuzzy Soft Set
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Business 2, 47-52; DOI: 10.5815/ijieeb.2014.02.06

Abstract In this paper, three new operations are
introduced on intuitionistic fuzzy soft sets .They are
based on concentration, dilatation and normalization of
intuitionistic fuzzy sets. Some examples of these
operations were given and a few important properties
were also studied.

Index Terms Soft Set, Intuitionistic Fuzzy Soft Set,
Concentration, Dilatation, Normalization.

1. INTRODUCTION

The concept of the intuitionistic fuzzy (IFS, for short)
was introduced in 1983 by K. Aanassov [1] as an
extension of Zadeh s fuzzy set. All operations, defined
over fuzzy sets were transformed for the case the IFS
case .This concept is capable of capturing the
information that includes some degree of hesitation and
applicable in various fields of research. For example, in
decision making problems, particularly in the case of
medical diagnosis, sales analysis, new product
marketing, financial services, etc. Atanassov et.al [2,3]
have widely applied theory of intuitionistic sets in logic
programming, Szmidt and Kacprzyk [4] in group
decision making , De et al [5] in medical diagnosis etc.
Therefore in various engineering application,
intuitionistic fuzzy sets techniques have been more
popular than fuzzy sets techniques in recent years.
Another important concept that addresses uncertain
information is the soft set theory originated by
Molodtsov [6]. This concept is free from the
parameterization inadequacy syndrome of fuzzy set
theory, rough set theory, probability theory. Molodtsov
has successfully applied the soft set theory in many
different fields such as smoothness of functions, game
theory, operations research, Riemann integration, Perron
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integration, and probability. In recent years, soft set
theory has been received much attention since its
appearance. There are many papers devoted to fuzzify
the concept of soft set theory which leads to a series of
mathematical models such as fuzzy soft set [7,8,9,10,11],
generalized fuzzy soft set [12,13], possibility fuzzy soft
set [14] and so on. Thereafter, P.K.Maji and his
coauthor [15] introduced the notion of intuitionistic
fuzzy soft set which is based on a combination of the
intuitionistic fuzzy sets and soft set models and they
studied the properties of intuitionistic fuzzy soft set.
Then, a lot of extensions of intuitionistic fuzzy soft have
appeared such as generalized intuitionistic fuzzy soft set
[16], possibility intuitionistic fuzzy soft set [17] etc.

In this paper our aim is to extend the two operations
defined by Wang et al. [18] on intuitionistic fuzzy set to
the case of intuitionistic fuzzy soft sets, then we define
the concept of normalization of intuitionistic fuzzy soft
sets and we study some of their basic properties.

This paper is arranged in the following manner .In
section 2, some definitions and notions about soft set,
fuzzy soft set, intuitionistic fuzzy soft set and several
properties of them are presented. In section 3, we
discuss the normalization intuitionistic fuzzy soft sets.
In section 4, we conclude the paper.

II. PRELIMINARIES

In this section, some definitions and notions about soft
sets and intutionistic fuzzy soft set are given. These will
be useful in later sections.

Let U be an initial universe, and E be the set of all
possible parameters under consideration with respect to
U. The set of all subsets of U, i.e. the power set of U is
denoted by P(U) and the set of all intuitionistic fuzzy
subsets of U is denoted by IFV. Let A be a subset of E.
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2.1 Definition

A pair (F, A) is called a soft set over U, where F is a
mapping given by F: A— P (U).

In other words, a soft set over U is a parameterized
family of subsets of the universe U. For € € A, F (¢) may
be considered as the set of & -approximate elements of
the soft set (F, A).

2.2 Definition

Let U be an initial universe set and E be the set of
parameters. Let IFU denote the collection of all
intuitionistic fuzzy subsets of U. Let. A € E pair (F, A)
is called an intuitionistic fuzzy soft set over U where F is

a mapping given by F: A IF".
2.3 Defintion
Let F: A IFY then F is a function defined as F (¢)

{ X, Upe)(X) , Vi) (x) :x €U,e € E} where u,v
denote the degree of membership and degree of non-
membership respectively.

2.4 Definition

For two intuitionistic fuzzy soft sets (F , A) and (G, B)
over a common universe U , we say that (F , A) is an
intuitionistic fuzzy soft subset of (G, B) if

(1) AS Band

(2)F(e) € G(e) forall e € A.i.e pp(x) <
He(e) (X) s VE(e) (X) (&) (X') for all € € E and
We write (F, A) € (G, B).

2.5 Definition

Two intuitionistic fuzzy soft sets (F, A) and (G, B)
over a common universe U are said to be soft equal if (F,
A) is a soft subset of (G, B) and (G, B) is a soft subset of
(F, A).

2.6 Definition

Let U be an initial universe, E be the set of parameters,
and A C E.

(a) (F, A) is called a null intuitionistic fuzzy soft set (with
respect to the parameter set A), denoted by @ , if F (a)
forall a € A.

(b) (G, A) is called an absolute intuitionistic fuzzy soft
set (with respect to the parameter set A), denoted by Uy,
if G(e) Uforalle € A.

2.7Definition

Let (F, A) and (G, B) be two IFSSs over the same
universe U. Then the union of (F, A) and (G, B) is
denoted by (F, A) U (G, B) and is defined by (F, A)
(G, B) (H, C), where C A U B and the truth-
membership, falsity-membership of (H, C) are as
follows:
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H(e)
{(pey (), () U}
(e, @ U} B-

k{m (ro® 0®), Fo® ©®):

v},

Where 6 (X) ([l 6 (X), 0) (X)) and
) (v @), @)
2.8 Definition

Let (F, A) and (G, B) be two IFSSs over the same
universe U such that A N B 0. Then the intersection of
(F, A) and ( G, B) is denoted by (F, A) n (G, B) and
is defined by (F, A)n(G,B) (K, C),whereC A

B and the truth-membership, falsity-membership of
(K, C) are related to those of (F, A) and (G, B) by:

K(e)

v}

U} B-
(v 0@ ©®):

{(Hpe (), (o)
{(ne (), (@)

k{m (ll (s)(x), (s)(x)),

v},

III. CONCENTRATION OF INTUITIONISTIC FUZZY SOFT SET
3.1 Definition

The concentration of an intuitionistic fuzzy soft set (F,
A) of universe U, denoted by CON (F, A), and is defined
as a unary operation on IF:

Con: IFY - [FY

Con (F, A)
{Con {F(¢) } { x,
€ Uand e€ A}. where

(g)(x) s 1- (1 (F(s))(x))z

From 0 o), k=<1

and  H(xX)+ k) <1,

we obtain 0 &) ) (X)

-1 (re)™) &)

Con (F, A)€IF", i.e Con (F, A) S (F, A ) this
means that concentration of a intuitionistic fuzzy soft set
leads to a reduction of the degrees of membership.

In the following theorem, The operator Con reveals
nice distributive properties with respect to intuitionistic
union and intersection.
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3.2 Therorem

i Con(F,A)c (F,A)

—
=%

Con((F,A)U(G,B)) Con(F,A)ucCon(G,B)

1. Con((F,A)n (G,B)) Con(F,A)nCon(G,B)

iv. Con((F,A)®(GB)) Con(F,A)® Con(G,B)
V. Con(F,A)®Con(G,B)SCon((F,A)® (G,B))
vii (F,A)< (G,B) Con(F,A)C Con(G,B)

Proof , we prove only (v) ,i.e

O+ - ) e ( @k
(s)(x) (g)(x) (s)(x))z,
(1-1 @ (). (1-(1 ©@))?) = 1-

(I ©@. @)*or puting

2 @b @@ ©@.d vee®
- ( 2,
- ).0-C P=l--cd

The last inequality follows from 0 < a, b,c,d < 1.

Example

LetU {a,b,c}andE {e;,e,,e3,e,},A {eq,
E,B {61962563}QE

(F, A) {F(e;) {((a 05,0.1), (b, 0.1, 0.8), (c, 0.2,
0.5)}, Fez) {( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},
F(ey) {((a, 0.6,0.3),(b,0.1,0.7), (c, 0.9, 0.1)}}

(G, B) {G(ey) {((a 0.2,0.6), (b, 0.7, 0.1), (c, 0.8,
0.1)}, G(ez) {((a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)},
G(es) {((a,0,0.6),(b,0,0.8), (c,0.1,0.5)}}

Con (F, A) { con(F(ey)) { (a, 0.25,0.19), (b, 0.01,
0.96), (c, 0.04, 0.75)}, con(F(e,)) { (a, 0.49, 0.19), (b, 0,
0.96), (¢, 0.09, 0.75) !, con(F(e,)) { ( a, 0.36, 0.51), (b,
0.01, 0.91), (c, 0.81, 0.19) }

Con (G,B) {con(G(ey)) {(a,0.04,0.84), (b, 0.49,
0.19), (c, 0.64, 0.75)?,

con(G(ey)) { (a,0.16,0.19), (b, 0.25,0.51), (c, 0.16,
0.51) }, con(G(ez)) { (a,0,0.84), (b, 0,0.96), (c, 0.01,
0.75) }

(F,A)n(G,B) (H,C) {H(e;) {(a 0.2,0.6),(b,0.1,
0.8), (c, 0.2, 0. 5)}, H (e5) {(a, 0.4, 0.1), (b, 0, 0.8), (c,
0.3,0.5)}}

, €4}

Viii.
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Con (F,A)n (G,B)) {con H(ey) {(a,0.04,0.84),
(b, 0.01, 0.96), (c, 0.04, 0. 75)}, con H(e,) {( a, 0.16,
0.19), (b, 0, 0.96), (c, 0.09, 0. 75)} }

Con (F,A)nCon (G,B) (KC) {con K(eq) {(a,

0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, conK(e;,)
{(a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)} }.

Then

Con ((F,A)N (G,B)) Con(F,A)N Con(G,B)

IV. DILATATION OF INTUITIONISTIC FUZZY SOFT SET
4.1 Definition

The dilatation of an intuitionistic fuzzy soft set (F, A)
of universe U, denoted by DIL (F, A ), and is defined as a
unary operation on IF:

DIL: IFY > IFY
F,A) {x x €Uand €€ A}.

(s)(x), 6) )

DIL(F,A) {DIL {F(¢)}

{ x, ui(s) (x),1-(1 (F(E))(x))i x €Uand €€ A}.
where

From 0 (@(X), (s)(X) < 1,

and (E)OC) + (8)(3() < 1,

we obtain 0 e (x) 1_7(5) ()

0 O (ren®) @
DIL(F, A )eIFY, i.e (F, A)< DIL(F, A ) this
means that dilatation of an intuitionistic fuzzy soft set leads

to an increase of the degrees of membership.
4.2 Theorem
i. (F,A)c DIL(F,A)

ii. DIL((F,A)U(G,B)) DIL(F,A)UDIL(G,B)

fii. DIL((F,A)Nn (G,B)) DIL(F,A)nDIL(G,B)

iv. DIL(F,A)®(G,B)) DIL(F,A)®DIL(GB)
v. DIL(F,A)®DIL(G,B)CSDIL((F,A)® (GB))
vi. CON(DIL(F,A)) (FA)
vii. DIL (CON (F,A) (F,A)

(F,A)S (G,B)=DIL(F,A)< DIL(G,B)
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Proof .we prove only (v), i.e

o so® - @ so® ( ©®

&) (%) @@ o)z,
(1-1 ©())2). (1- (1 ©®)z) 1-
(1 © (). ) (x))z or, putting
a  @@.b e HE).d  (H)
R ( )z,
(1- ( )2). (1- ( )2) < 1-( )z, or
equivalently : a+tb—ab 1,V 1.

The last inequality follows from 0 < a, b,c,d < 1.

Example

LetU {a> b) C} and B { €1,€2,€3, 84}7 A { €1, €3, 64}
EaB {el’ez 7e3}gE

(F, A) { F(e;) {((a 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2,
0.5)}, Fez) {( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},
F(ey) {((a 0.6,0.3),(b,0.1,0.7), (c, 0.9, 0.1)}} and

(G, B) { G(ey) {((a 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8,
0.1)}, G(ez) {((a, 0.4,0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)},
G(es) {((a0,0.6),(b,0,0.8),(c,0.1,0.5)}

DIL(F, A) { DIL(F(ey)) { ( a, 0.70, 0.05), (b, 0.31,
0.55), (c, 0.44, 0.29)}, DIL (F(ey)) { ( a, 0.83, 0.05), (b,
0, 0.55), (c, 0.54, 0.29) }, DIL(F(e,)) { ( a, 0.77, 0.05),
(b, 0.31, 0.45), (c, 0.94, 0.05) } and

DIL (G,B) {DIL (G (ey))
0.05), (c, 0.89, 0.05)},

{(a, 0.44, 0.36), (b, 0.83,

DIL(G(e,)) { ( a, 0.63, 0.05), (b, 0.70, 0.05), (c, 0.63,
0.29) 1, DIL(G(e3)) { (a, 0, 0.36), (b, 0, 0.55), (c, 0.31,
0.29) }

(F,A)n(G,B) (H,C) {H(ey)
0.8), (c, 0.2, 0. 5)}, H (e)
0.3,0.5)}}

{(a, 0.2, 0.6), (b, 0.1,
{(a, 0.4, 0.1), (b, 0, 0.8), (c,

DIL((F,A)n (GB)) {DILH(e;) {(a,0.44,0.36), (b,
0.31, 0.55), (c, 0.44, 0. 29)}, DILH(e,) {( a, 0.63, 0.05),
(b, 0, 0.55), (c, 0.54, 0. 29)} }

DIL(F,A)NDIL(G,B) (KC) {DILK(e;) {(a
0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, DIL K(ez)
{(a,0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}}

Then
DIL(F,A)n (G,B)) DILF,A)nDIL(G,B)
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V. NORMALIZATION OF INTUITIONISTIC FUZZY SOFT SET

In this section, we shall introduce the normalization
operation on intuitionistic fuzzy soft set.

5.1 Definition:

The normalization of an intuitionistic fuzzy soft set ( F,
A) of universe U ,denoted by

NORM (F, A) is defined as:
NORM (F, A) { Norm {F(e)} { x, F(e) (XD,
Fe)(x), x€Uand A}. where
(F(e)) (%) %ﬁx» (F(e)) (%)
(& (X)—(v (:(;(S)) (%)) and
Inf( (X)) # .

Example. Let there are five objects as the universal set
where U {xy, X,, X3, X4, X5} and the set of parameters
as E  {beautiful, moderate, wooden, muddy, cheap,
costly} and Let A {beautiful, moderate, wooden}. Let
the attractiveness of the objects represented by the
intuitionistic fuzzy soft sets (F, A) is given as

F(beautiful) {Xl/(.ﬁ,.4)a Xoi.7, 3)s X3/(.5, 5) X4/8, 2)s
X5/(.9, .1)} s

F(moderate) {Xi/3, 7), Xass, 4y X318, 2)» Xai(3, 7)»
Xs/1,.9)5 and

F(wooden) { Xiya4, 6) Xoi6, 4 X315, 5) Xa/2, 8)
X5/(.3, 47,)} .

Then,
(Brpea (X)) 0.9, (Vrgpe y(x) 0.1 We
have
(F(be y»(x1) g 0.66,
(F(be »*x2) % 0.77,
(F(be »*3) 2—2 0.55,
(Fbea  ))(X4) % 0.88,
(F(bea y»(xs) % 1 and
(Fbea  »(X1) g 0.33,
(Fbea ) (X2) % 0.22,



Florentin Smarandache (author and editor)

(F(be

(F(be

(F(be

Norm(F(

1 (%3)

»(Xa)

y» *s)

0.44

0.11,

) { X1/(.66,33)s X2/(.77, 22)> X3/(.55, .44)>

X4/(.88, .11)> X5/(1, 0) }

(”F (mo
We have

(F(mo
(F(mo
(F(mo
(F(mo
(F(mo
(F(mo
(F(mo
(F(mo
(F(mo
(F(mo

Norm(F(

(Ilp(
have

(F(w
(F(w
(F(
(F(w
(F(

(F(woo

(1) 08,

y»(x1)

»*x2)
y»(x3)
1 (X4)

»*s)

» &)

»*x2)

»(x3)

1 (%4)

y»(xs)

(VF(mo

0375,
0.75,

1,

0375,
0.125 And
0.625,
0.25,

0,

0.625,

0.875.

N { X1/(.375,.625)s X2/(.75, 25)> X3/(1, 0)»
X4/(.375, .625)> X5/(0.125, 0.875) }.

() 0.6,

))(x1)

»*2)

y»(X3)

7 (X4)

» (Xs)

»(X1)

(VF (w

0.66,

1,

0.83,
0.34,
0.5 and

0.34,

)(x) 0.4. We
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(F(woo ) (x2) — 0O,

(Fwoo )n(x3) — 0.17,
(Fowoo  )(xa) — 0.66,
Fw  p(xs) — 05

Norm(F(wooden))  { Xi/.66,34) X211, .0)> X3/(0.83, 0.17)>
X4/(.34, .66)> X5/0.5, 0. 5) 3.

Then, Norm (F, A) {NormF (
F(moderate), Norm F( )}

), Norm

Norm (F,A) { F( ) { Xu66.33) X2/(77, 22)5

X3/(.55, .44)> X4/(.88, .11)> X5/(1,0) ¥, F( ) { X1/(.375,.625)»

X2/(.75, 25)s X3/(1, 0)> X4/(375, .625)> X5/(0.125, 0.875) 1> F( )
{ X1/(.66,34)> X2/(1, .0)> X3/(0.83,0.17)> X4/(.34, .66)> X5/(0.5, 0. 5) }}

Clearly, norm (e (X) Fenx) 1 fori 1,2,
3, 4, 5 which satisfies the property of intuitionistic fuzzy
soft set. Therefore, Norm (F, A) is an intuitionistic fuzzy
soft set.

VI. CONCLUSION

In this paper, we have extended the two operations of
intuitionistic fuzzy set introduced by Wang et al.[ 18] to
the case of intuitionistic fuzzy soft sets. Then we have
introduced the concept of normalization of intuitionistic
fuzzy soft sets and studied several properties of these
operations.
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Mapping on Intuitionistic Fuzzy Soft Expert Sets

Said Broumi, Florentin Smarandache

Said Broumi, Florentin Smarandache (2015). Mapping on Intuitionistic Fuzzy Soft
Expert Sets. Journal of New Results in Science 9, 1-10

Abstract — We introduce the mapping on intuitionistic fuzzy Keywords -
soft expert set and its operations are studied. The basic [ptyitionistic fuzzy soft expert set,
operations of mapping on intuitionistic fuzzy soft expert set intuitionistic fuzzy soft expert images,

theory are defined. intuitionistic fuzzy soft expert inverse
images, mapping on intuitionistic fuzzy
soft expert set

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [16] whose basic component is only a
degree of membership. Atanassov [10] generalized this idea to intuitionistic fuzzy set (IFS
in short) using a degree of membership and a degree of non-membership, under the
constraint that the sum of the two degrees does not exceed one. The conception of IFS can
be viewed as an appropriate /alternative approach in case where available information is
not sufficient to define the impreciseness by the conventional fuzzy set. A detailed
theoretical study may be found in [10]. Later on, many hybrid structures with the concept
of intuitionistic fuzzy sets appeared in [ 32, 33, 34, 35, 36, 37, 38].

Soft set theory [6] was firstly introduced by Molodtsov in 1999 as a general mathematical
tool for dealing with uncertainties which traditional mathematical tools cannot handle and
how soft set theory is free from the parameterization inadequacy syndrome of fuzzy set
theory, rough set theory, probability theory. A soft set is in fact a set-valued map which
gives an approximation description of objects under consideration based on some
parameters. After Molodtsov’s work, Maji et al.[29] introduced the concept of fuzzy soft
set, a more generalized concept, which is a combination of fuzzy set and soft set and
studied its properties and also discussed their properties. Also, Maji et al.[30] devoted the
concept of intuitionistic fuzzy soft sets by combining intuitionistic fuzzy sets with soft sets.
Then, many interesting results of soft set theory have been studied on fuzzy soft sets [22,
23, 27, 28], on intuitionistic fuzzy soft set theory [24, 25, 26, 30], on possibility fuzzy soft
set [34], on generalized fuzzy soft sets [8,39], on generalized intuitionistic fuzzy soft [15,
31,43,44], on possibility intuitionistic fuzzy soft set [17], on possibility vague soft set [11]
and so on. All these research aim to solve most of our real life problems in medical
sciences, engineering, management, environment and social science which involve data
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that are not crisp and precise. Moreover all the models created will deal only with one
expert. To redefine this one expert opinion, Alkhazaleh and Salleh in 2011 [32] defined the
concept of soft expert set in which the user can know the opinion of all the experts in one
model and give an application of this concept in decision making problem. Also, they
introduced the concept of the fuzzy soft expert set [40] as a combination between the soft
expert set and the fuzzy set. Recently, Broumi and Smaranadache [42] introduced, a more
generalized concept, the concept of the intuitionistic fuzzy soft expert set as a combination
between the soft expert set and the intuitionistic fuzzy set and gave the application in
decision making problem. The soft expert models are richer than soft set models since the
soft set models are created with the help of one expert whereas but the soft expert models
are made with the opinions of all experts. Later on, many researchers have worked with the
concept of soft expert sets and their hybrid structures [1,2, 3, 7, 10, 11, 12, 16, 17, 19, 45].
The notion of mapping on soft classes are introduced by Kharal and Ahmad [4]. The same
authors presented the concept of a mapping on classes of fuzzy soft sets [5] and studied the
properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets, and
supported them with examples and counterexamples. In intuitionistic fuzzy environment,
there is no study on mapping on the classes of intuitionistic fuzzy soft expert sets, so there
is a need to develop a new mathematical tool called “Mapping on intuitionistic fuzzy soft
expert set”.

In this paper we introduce the notion of mapping on intuitionistic fuzzy oft expert classes
and study the properties of intuitionistic fuzzy soft expert images and intuitionistic fuzzy
soft expert inverse images of intuitionistic fuzzy soft expert sets. Finally, we give some
examples of mapping on intuitionistic fuzzy soft expert.

Preliminaries

In this section, we will briefly recall the basic concepts of intuitionistic fuzzy sets, soft set,
soft expert sets, fuzzy soft expert sets and intuitionistic fuzzy soft expert set.

Let U be an initial universe set of objects and E the set of parameters in relation to objects
in U. Parameters are often attributes, characteristics or properties of objects. Let P (U)

denote the power set of U and AC E.

.1. Intuitionistic Fuzzy Set
Definition .1  : Let U be an universe of discourse then the intuitionistic fuzzy set A is
an object having the form A { x, u,(x), @4(x) ,x € U},where the functions p, (x),
w,(x): U [0,1] define respectively the degree of membership, and the degree of non-
membership of the element x € X to the set A with the condition.

0 p,(xHoy(x) 1.

For two IFS,

Aps { X, 1, (x), oy (x) x€eX}
and

Brs { x,pg(%), wg(x) x€EX}
Then,

1. A;ps € Biggifand only if

by () = g (0,0, (%) = 05 (x)
2. Ajpg = Bps if and only if,

Ha () Uy (%) ,04(x) ©g(x) foranyx € X,

177



Florentin Smarandache (author and editor) Collected Papers, Xl

3. The complement of Az is denoted by A7-¢ and is defined by
A { X, 0400, (x) xEX}

4. ANB { x, min{pﬂ (x), T (x) }Jmax{m*.,L (x),o5(x)} xeEX}

5. AUB { x, max{pA (x),ug [x]},min{mﬂ (x),05 (x)} xEX)

As an illustration, let us consider the following example.

Example . . Assume that the universe of discourse U {x;,X»,X3x%s}. It may be further
assumed that the values of xi, X,, %3 and xzare in [0, 1] Then, A is an intuitionistic fuzzy
set (IFS) of U, such that,

A { x,,04,06 , x,,03,0.7 , x3020.8 , x,0.2,0.8 }
. .Soft set

Definition

Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set
of U. Consider a nonempty set A, A C E. A pair (K, A) is called a soft set over U, where K
is a mapping givenby K: A P(U).

As an illustration, let us consider the following example.

Example . .Suppose that U is the set of houses under consideration, say U  {hy, h,, . . .,
hs}. Let E be the set of some attributes of such houses, say E  {ey, e, . . ., €s}, where ey, e, .

2 ¢¢ 2 <¢

. ., eg stand for the attributes “beautiful”, “costly”, “in the green surroundings”, “moderate”,
, “cheap”,” expensive”, “wooden” and “very costly” respectively.

In this case, to define a soft set means to point out expensive houses, beautiful houses, and
so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in
the opinion of a buyer, say Thomas, may be defined like this:

A {e1,e2,63,64,85};

K(el) {hz, h3, h5}, K(ez) {hz, h4}, K(e3) {h] }, K(e4) U, K(e5) {h3, hs}

Intuitionistic fuzzy soft sets.
Definition . Let U be an initial universe set and A = E be a set of parameters. Let
IFS(U) denotes the set of all intuitionistic fuzzy subsets of U. The collection (F,A) is
termed to be the intuitionistic fuzzy soft set over U, where F is a mapping given by
F:A — IFS(U).
Example . Let U be the set of houses under consideration and E is the set of parameters.
Each parameter is a word or sentence involving intuitionistic fuzzy words. Consider
E ={beautiful, wooden, costly, very costly, moderate, green surroundings, in good repair, in
bad repair, cheap, expensive}. In this case, to define a intuitionistic fuzzy soft set means to
point out beautiful houses, wooden houses, houses in the green surroundings and so on.
Suppose that, there are five houses in the universe U given byl = {hy,hs,..., hs] and the set
of parameters
A = {ey,e;5,e3, 84},where e, stands for the parameter ‘beautiful', e; stands for the parameter
‘wooden', €3 stands for the parameter "costly' and the parameter esstands for ‘moderate’.
Then the intuitionistic fuzzy set (F,4) is defined as follows:
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i hy h, h; hy hg
(0106] (0.2,0.7)' (0.6,0.2)' (0.7,0.3)" (0.2,0.3)

( )
( hy h, hy hy he )
& )

€1

©2 (0305j (0.2,0.4)' (0.1,0.2)' (0.1,0.3)° (0.3,0.6)
h, h, he h, he
((0.4,0.3)"(0.6,0.3)" (0.2,0.5)" (0.2,0.6) " (0.7,0.3)

(F,A) =4

€3

hy h, Ao h,
k(e4 [(0.1,0.6)"(0.3,0.6) " (0.6,0.4)" (0.4,0.2)° (u5u3]})J

. Soft expert sets

Definition . Let U be a universe set, E be a set of parameters and X be a set of
experts (agents). Let O {1 agree, 0 disagree} be a set of opinions. LetZ E X X X O
andAcZ

A pair (F, E) is called a soft expert set over U, where F is a mapping given by F : A
P(U) and P(U) denote the power set of U.

Definition . An agree- soft expert set (F,A) jover U, is a soft expert subset of
(F,A) defined as :

(F,A); {F(a):a €E x X x{1}}.
Definition . A disagree- soft expert set (F,A) jover U, is a soft expert subset of
(F,A) defined as :

(F,A) ; {F(a):x € EX X X{0}}.
. .Fuzzy Soft expert sets
Definition .1 1 A pair (F, A) is called a fuzzy soft expert set over U, where F is a
mapping given by
F:A IY and IYdenote the set of all fuzzy subsets of U.
. .Intuitionitistic Fuzzy Soft expert sets

Definition .11 Let U { u,u,,u;, ,u,}be a universal set of elements, E {

e,e,,e;, ,e }be auniversal set of parameters X { x,x,,x;, ,x,}be a set of

experts (agents) and O {1 agree, 0 disagree} be a set of opinions. Let Z {E X X
X Q} and A < Z. Then the pair (U, Z) is called a soft universe. Let
F:Z— (IxI)"where (IxI)"denotes the collection of all intuitionistic fuzzy subsets of
U. Suppose F:Z— (IxI)"be a function defined

as:

F(z) F(z)(u,),forall u, eU.

Then F (z) is called an intuitionistic fuzzy soft expert set (IFSES in short ) over the soft
universe (U, Z)

For each z, eZ. F(z) F(z,)(u;)where F(z,) represents the degree of belongingness
and non—belongingness of the elements of U in F(z;). Hence F (z,)can be written as:

F(z,) {( 4 )}, fori 1,2,3, n

F(z 1)( 1) F(Z)( )

where F(z,)(u,) Mg (U)y @, (u;)  with g, (u;) and @y, (u;)  representing

the membership function and non-membership function of each of the elements u, e U

respectively.
Sometimes we write F as (F, Z). If A € Z. we can also have IFSES (F, A).
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. Mapping on Intuitionistic Fuzzy Soft Expert Set.
In this paper, we introduce the notion of a mapping on intuitionistic fuzzy soft expert
classes. Intuitionistic fuzzy soft expert classes are collections of an intuitionistic fuzzy soft
expert sets. We also define and study the properties of an intuitionistic fuzzy soft expert
images and an intuitionistic fuzzy soft expert inverse images of an intuitionistic fuzzy soft
expert sets, and support them with example and theorems.
Definition .1: Let (U, Z)and(Y,Z) be an intuitionistic fuzzy soft expert classes. Let r:
U—Y and .
s: Z— Z be mappings. Then a mapping f- (ff:f] — (Y,Z ) is defined as follows :
For an intuitionistic fuzzy soft expert set (F, A) in [ﬁ:f], f(F, A)is an intuitionistic fuzzy

soft expert set in (¥,Z") . .

f(F, A)( J@) (y) {'V:IIE?"_‘I:_)-}(VE F(ﬂfj] I’f r (}Tj ﬂ,ﬂd = (Jgj:;:ﬂ:‘-w@er
forf €Es(Z)SZ',y €Y and Va €571 (F)NA, f(F, A is called an intuitionistic fuzzy
soft expert image of the intuitionistic fuzzy soft expert set (F, A).
Definition . :Let (U,Z)and(Y,Z) be an intuitionistic fuzzy soft expert classes. Let r:
U—=Y and .
s: Z— Z be mappings. Then amapping f *:(¥,Z) jﬁ] is defined as follows :
For an intuitionistic fuziz_%oft expert set (G, B) in (Y,Z), f~*(G, B) is an intuitionistic
fuzzysoft expert set in (U, Z)
fY(G,B) (a)(u) {DE[S(rxj)[:r(u]) Jifs(a) € B

otherwise
Fora €s *(f)E Z and u € U. f~(G, B) is called an intuitionistic fuzzy soft expert

inverse image of the an intuitionistic fuzzy soft expert set ( F, A).

Example . .LetU {uyuy, us}, Y {¥.¥2.03} andlet AS Z  {(eq, p, 1), (82, p, 0),
(es,p.1)},and A S Z {(ey, p.1), (e2,2.0), (61,9, 1)}.

Suppose that (U, 4) rmd(Y A’) are an intuitionistic fuzzy soft expert classes. Define r: U
— Yands:: A—+ A as follows :

r(uy) ¥y, 1(Uy) V3, r(Us) Y,

s(ey,p, 1) (e2,2.0),s (€2, p, 0) (e1.p.1).s (3, p. 1) (e1,9.1),

Let (F, A) and (G, 4) be two an intuitionistic fuzzy soft experts over U and Y respectively
such that.

Uy Ug Uy Uz
(F, A) {([el,p, 1), { I}4I}6} .u.a,u.4}’(a.3,u.5}}) ([ea,p,l:] { 0.3,0.2) ° .u.5,u.4}’{u.e,u.3}})’
((eg,p,ﬂ),{, L = })}

(0.5.0.3) ' (0.5.0.2) ' (0.6.0.1)

* ! ' ¥a ¥o ¥z ' ' ¥a ¥o ¥s
(G, 4) {{[El’p ' 1]’{(5.3,&1} ' (0.5.04)" {D.a,ﬁ.lj})’([el’q ’ 1]’{(5.5,&4} ' (0.50.3) (n&0.1)" })’

((eﬁ.,p', D],{ ¥1 ’ Va2 , ¥3 ’ D}
? (0.3,0.4) (0.1,05)"(0.1,02)")/)

Then we define the mapping from f*(U,Z) = (¥,Z) as follows :

For an intuitionistic fuzzy soft expert set ( F, A) in (U, Z), (f (F, A), K) is an intuitionistic

fuzzy soft expert set in (Y, Z ) where

K s(A) {(es, p,1),(e2,p.0), (ei, q,l)}. and is obtained as follows:

FEA) (e, 2,1) (1) Vier iy (Vo Fla)) vIE;ua}[vﬂ:EKLE.,L,p,D},LER,p,l}}F[aj)
(0.5,0.3) U (0.3,0.2)
(0.5,0.2)
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SEA) L) 02) Vi) (VaF (@) Vieny(Vaette, p0).epn 1 F(@)
(0.6,0.1) U (0.6, 0.3)
| (0.6, 0.1)
f(F7 A) (elo v 71) (}Fﬂ) VIE?"_‘_I:}'E_:I(VE F(ajj VxE{u.l} [UEEE':Equ;D};I:E;;p,lj 1 F[ﬂf])
(0.5,0.2) U (0.5, 0.4)
(0.5,0.2)
Then

! ¥ ¥ ¥s
J(E,A) (e%, p.l) {{D.s,l}.z} loe0a)” {D.E,D.Z}}
f(F: A) (“32» P :O) (Fi) 1Il""Il;cEr'_"I:;.'._]lfll"'llll'r F(ajj VxE;u.}[VEE{(a.,p,l}} F(aj)

| (0.4,0.6)

f(Fa A) (629 p :O) (}FE) 1II|IIIII:xcE;"'_"I:_jr'zjlfll"'llll'.?: F(ﬂ!jj VxE{u;}[Uer{':a.,p,ﬂ} F(ﬂ!j)
| (0.3,0.5)

f(Fa A) (“32» P :O) (}FE) VxEr'_“(ys}(er F(ﬂ!j] VxE{u.l}[Uer{':E.,p,ﬂ} F(ﬂ!j)
(0.3,0.4)

Then
. ¥a ¥o ¥g
S, A) (g2, 2.0) {.15.4,5.6} '(03,05) " .:u.:a,u.4}}

f(Fv A) (e:i.o q vl) (}Fi) VxEr_“(;;._}(er F(ﬂ!j] VIE;H.}[VEEE':ERJPJ-}} F(ﬂ!j)

_ (0.3,0.2)
f(F,A) (1, q,1) (v2) VEE;—E%;.WE F(@) Viepi(Vaetep F(@))
S(E,A) (e1, 9,1) (¥3) ‘vExEr:*-.:}-s:.Wz F(@)) Ve (Vaettopm F (@)
- (0.5,0.4)
SF,A) (1, 01) {.:u.:;.::. " e0D” .:u.ii.4:.}
G (R 050

! ' ¥a ¥o ¥g ' ' ¥a ¥o ¥g
e 1 )( = 0 { })
{{[ vP :L{I:D.E,.D.E:I ’(D.E.,D.1}’(D.5,D.2}} ( (e2:2.0), (0.4,0.6) '(0.3,0.5) " {0.3.0.4)) 0

((e' g\1) { ¥1 ¥z ¥3 D}
7 (03,0.2) ' (0.6,0.3)° (0.5,0.4)
Next, for the intuitionistic fuzzy soft expert set inverse images, we have the following:

For an intuitionistic fuzzy soft expert set (G, 4) in (Y, Z), (f"* (G, 4), D) is an
intuitionistic fuzzy soft expert set in (U, Z) where
D s 14) {(ewnp, 1), (22, p,0), (g3, p,1)}. and is obtained as follows:

fH(G,B) (e, p. 1) (y) G(s(eyp, 1)) (r(w)) 6((ezp’0))(y) (03,04)F7* (G,
B) (e1,p, 1) (2) G(s(epp, ) )(r(wr)) G((err,0))(s) (0.1,02)

F1(G,B) (e, p, 1) (u3) G[s[el,p,ljjlzr[uaj) G((eg,p,ﬂ])[}rg:] (0.1, 0.5) Then
PGB e [ atsass)

f7H(G,B) (e2,p, 0) (u1) G(s(ezp,0))(r(uy)) G((err,1))01) (0.3,01)
f7H(G.B) (€2.,0) (u2) G (s(e2p,0))(r(wz)) 6((erp,1))(35) (03,0.1)

71 (G,B) (e2,p, 0) (#3) G(s(ez,p,0) )(r(ug)) G((enp,1))(32) (0.5,0.4)

Then

FHGB) (2 0) (oo o o)

{0.3,0.1) ' (0.3,0.1) ' (0.5,0.4)
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fH(G,B)(e5,p,1) () G(s(es,p, 1))(r(wy)) 6((e1q.1))(0n) (0.5,04)f71(G,
B) (e3, p,1) (7)) G(s(esp,1))(r(uy)) G((eq.1))(v;) (0.6,0.1)

FH (G, B) (e3,p,1) (ug) G(s(es,p, 1))(r(u3)) G((e,q.1))(,) (0.5,0.3)

Then

f (G, B) (&3, p,1) {{u.s,ﬂ.n}} ' u:u.e,;.ljn ' -15.5,2.4}}

Hence

(7 (G,4),D)
L'l._ L'lz UE L'l._ L'lz UE
{{ (e1, P, 1), {{c'.a,u-.n}} 'roa,0.2)’ -iu.l,u.s}})’([ez’p’ Dj’{{ﬁ-ﬂaﬁ-l} "(0.301)° 'iD-EaD-‘l}})’

L'l._ L'lz L'IE
([ea,p, 1:]’{(1}.5,0.4} "roen1)’ (D.s,u.ﬂ}}}'

Definition . .Let £ (UZ) = [ET,?] be a mapping and (F, A) and (G, B) a intuitionistic
fuzzy soft expert sets in (U,E). Then forp € Z',}? €Y the union and intersection of
intuitionistic fuzzy soft expert images (F, A) and (G, B) are defined follows :

(FEAVEGB) )B)y) (FAPBVIGB)B)Y).

(FEEAAF(GB))B)y) FEEABWMAFGBIPR).
Definition . .Let f (U,Z) = (Y.Z) be a mapping and (F, A) and (G, B) a
intuitionistic fuzzy soft expert sets in [ﬁ:ﬁ] Then fora € Zu e U the union and

intersection of intuitionistic fuzzy soft expert inverse images (F, A) and (G, B) are defined
follows :

(F2EAVFHEB) )@ FHEA@WT F(6B)@W).
(FEMRFEE) )W 7 FA@WAF (G B)«)().
Theorem . Letf (U,Z) » (ﬁ] be a mapping. Then for intuitionistic fuzzy soft expert
sets (F, A) and (G, B) in the intuitionistic fuzzy soft expert class (ﬁ?fj.

1. f0) O

2. AZD)EY.
. F(EAV(EB)) FE ATVFEGB)

4. f((F,A)A(GB)) fFAAF(GB)

5. If (F,A) = (G,B), Then f(F, A) € f(G,B).
Proof For (1) ,(2) and (5) the proof is trivial , so we just give the proof of (3) and (4).
For p € Z and y € Y, we want to prove that
(FRAVFGB) BNy FEABN) V(G BB
For left hand side, consider f ((F,Ajﬁ(ﬁ, B) )(B)(y) f(H,AU B)(B)(y). Then
F(H,AUB)B)Y) {VXEE—:,:},}(VHH[u]]if r }(y)ands ()N (AUB) # @,

0 N otherwise

Such that H(a) F(a)U G(e) where U denotes intuitionistic fuzzy union.

Considering only the non-trivial case, Then equation 1.1 becomes:

FHAUB)B)Y) Viern(V(F(e) UG(a))) 1,)

For right hand side and by using Definition 3.4, we have

(F(F.0VF(G,B) )B)y)

F(E.A)B)y) VF(G.B)(B)(y)

[VxEr_"':y} [qu s_"':ﬁ}nﬂ.F [:U‘:] ) (X] )1".-"' [UxEr_"':y} [VV:.LEB_"':B}nB F [ﬂ) } [:X] )
1II|IIIIIJcEl."_"l:y]l UuEB_"':E}ﬂI:AUB}(F(ujvﬁ(ujj

(O8]

(L1

182



Florentin Smarandache (author and editor) Collected Papers, Xl

vxEr_“(y}(U[:F(ﬂj ﬁ G[:[lj:]:](]’?))
From equation (1.1) and (1.3) we get (3)
4.For p € Z and y € Y, and using Definition 3.4, we have
F((F,8) R (G,B))B)y)
f(H, AU B)(B)(y)
1Il""Il.acE £ (y) [qus_“':E]'n(AuB} H (U‘j )(X)
Veer2 () (Vaes=2(naur F(2) N G () )(%)
Vier9(Vaee s ancaus F(@) () A G(o) ()

c \/ \/ F(a) | | A \/ v 6(a)
xer H(¥) hess H(EInA xer My} \ass"(FInBE

F((E.A)(B) ¥ A (6B)(B)(¥))

(FE.AR £(GB))B) ()
This gives (4) .
Theorem . .Let f ' [ﬁ:f] — (Y.Z") be a mapping. Then for intuitionijs_thii fuzzy soft
expert sets (F, A) and (G, B) in the intuitionistic fuzzy soft expert class (U, Z).
1) 0
T XEX.
f*((e.AV(G.B)) F1(FAV F(G,B)
FH(F,A)A(GB)) FH(FAAFG,B)
If (F,A) < (G,B), Then f "1(F,A) € f~1(G,B).
Proof. The proof is straightforward.

. Conclusion

In this paper, we studied a mapping on intuitionistic fuzzy soft expert classes and its
properties. We give some illustrative examples of mapping intuitionistic fuzzy soft expert
set. We hope these fundamental results will help the researchers to enhance and promote
the research on intuitionistic fuzzy soft set theory.
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New Operations on Intuitionistic Fuzzy Soft Sets Based
on First Zadeh's Logical Operators

Said Broumi, Pinaki Majumdar, Florentin Smarandache

Said Broumi, Pinaki Majumdar, Florentin Smarandache (2014). New Operations on Intuitionistic
Fuzzy Soft Sets Based on First Zadeh's Logical Operators. Journal of New Results in Science 4, 71-81

Abstract — In this paper , we have defined First Zadeh’s implication , First
Zadeh’s intuitionistic fuzzy conjunction and intuitionistic fuzzy
disjunction of two intuitionistic fuzzy soft sets and some their basic
properties are studied with proofs and examples.

Keywords — Fuzzy sets, Intuitionistic fuzzy sets, Fuzzy soft sets,
Intuitionistic fuzzy soft sets.

1. Introduction

The concept of the intuitionistic fuzzy (IFS , for short ) was introduced in 1983 by Atanassov
[1] as an extension of Zadeh’s fuzzy set. All operations, defined over fuzzy sets were
transformed for the case the IFS case .This concept is capable of capturing the information
that includes some degree of hesitation and applicable in various fields of research .For
example , in decision making problems, particularly in the case of medial of medical diagnosis
,sales analysis ,new product marketing , financial services, etc. Atanassov et.al [2,3] have
widely applied theory of intuitionistic sets in logic programming, Szmidt and Kacprzyk [4]
in group decision making, De et al [5] in medical diagnosis etc. Therefore in various
engineering application, intuitionstic fuzzy sets techniques have been more popular than
fuzzy sets techniques in recent years. After defining a lot of operations over Intuitionstic
fuzzy sets during last ten years [6] ,in 2011, Atanassov [7, 8] constructed two new operations
based on the First Zadeh’s IF-implication which are the first Zadeh’s conjunction and
disjounction, after that, in 2013, Atanassov[ 9] introduced the second type of Zadeh s
conjunction and disjunction based on the Second Zadeh’s IF-implication.
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Another important concept that addresses uncertain information is the soft set theory
originated by Molodtsov [10]. This concept is free from the parameterization inadequacy
syndrome of fuzzy set theory, rough set theory, probability theory. Molodtsov has
successfully applied the soft set theory in many different fields such as smoothness of
functions, game theory, operations research, Riemann integration, Perron integration, and
probability. In recent years, soft set theory has been received much attention since its
appearance. There are many papers devoted to fuzzify the concept of soft set theory which
leads to a series of mathematical models such as fuzzy soft set [11,12,13,14,15], generalized
fuzzy soft set [16,17], possibility fuzzy soft set [18] and so on. Thereafter, Maji and his
coworker [19] introduced the notion of intuitionstic fuzzy soft set which is based on a
combination of the intuitionistic fuzzy sets and soft set models and studied the properties of
intuitionistic fuzzy soft set. Later, a lot of extentions of intuitionistic fuzzy soft are appeared
such as generalized intuitionistic fuzzy soft set [20], possibility Intuitionistic fuzzy soft set
[21] etc.

In this paper, our aim is to extend the three new operations introduced by Atanassov to the
case of intuitionistic fuzzy soft and study its properties. This paper is arranged in the following
manner. In Section 2, some definitions and notion about soft set, fuzzy soft set and
intuitionistic fuzzy soft set and some properties of its. These definitions will help us in later
section . In Section 3, we discusses the three operations of intuitionistic fuzzy soft such as
first Zadeh’s implication, First Zadeh’s intuitionistic fuzzy conjunction and first Zadeh
intuitionistic fuzzy disjunction. Section 4 concludes the paper.

. Preliminaries

In this section, some definitions and notions about soft sets and intutionistic fuzzy soft set are
given. These will be useful in later sections

Let U be an initial universe, and E be the set of all possible parameters under consideration
with respect to U. The set of all subsets of U, i.e. the power set of U is denoted by P(U) and
the set of all intuitionistic fuzzy subsets of U is denoted by IFU . Let A be a subset of E.

Definition .1 .A pair (F, A) is called a soft set over U , where F is a mapping given by F : A
PU).

In other words, a soft set over U is a parameterized family of subsets of the universe U . For e
€ A, F (e) may be considered as the set of e-approximate elements of the soft set (F , A).

Definition . .Let U be an initial universe set and E be the set of parameters. Let IFU denote

the collection of all intuitionistic fuzzy subsets of U. Let . A € E pair (F, A) is called an
intuitionistic fuzzy soft set over U where F is a mapping given by F: A IFY.

Definition . .Let F: A IFY then F is a function defined as

F (8) { X, UF(¢) (X), VFE(e) (x) xelU }

where u , v denote the degree of membership and degree of non-membership respectively.
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Definition . . For two intuitionistic fuzzy soft sets (F , A) and (G, B) over a common
universe U , we say that (F , A) is an intuitionistic fuzzy soft subset of (G, B) if

(1)A<SBand
(2) F (¢) €G(e) for all € € A. i.e tp(e)(x) < pge)(X) , Vre)(X) = Vg () (x) for all € € E and

We write (F,A) € (G, B).
In this case (G, B) is said to be a soft super set of (F , A).

Definition . . Two soft sets (F , A) and (G, B) over a common universe U are said to be soft
equal if (F , A) is a soft subset of (G, B) and (G, B) is a soft subset of (F , A).

Definition . . Let U be an initial universe, E be the set of parameters,and A C E .

(a) (F, A) is called a relative null soft set (with respect to the parameter set A), denoted by
@y, ifF(a) @ foralla€ A.

(b) (G, A) is called a relative whole soft set (with respect to the parameter set A), denoted by
Uy ,ifG(e) Uforalle € A.

Definition . . Let (F, A) and (G, B) be two IFSSs over the same universe U. Then the union
of (F,A) and (G,B) is denoted by (F,A)U(G,B)’ and is defined by (F,A) U (G,B) (H,C),
where C AUB and the truth-membership, falsity-membership of ( H,C) are as follows:

{(upe)(x),vpey(x) : x U} ,ife € A — B,
H(e) {(tee) (), vee(x) : x U} ,ife € B- A
{max(,up(g)(x),,uG(g)(x)),min (VF(S)(X),VG(E)(X)):X U}ife €EANB

Where pye) () max(pe(e) (%), hoe) (%)) and vy (x)  min (Veee) (%), Ve (%))

Definition .. Let (F, A) and (G, B) be two IFSS over the same universe U such that
A B 0. Then the intersection of (F, A) and ( G, B) is denoted by ( F, A) (G, B)’ and is
defined by (F,A) (G,B) (K, C),where C A B and the truth-membership, falsity-
membership of ( K, C) are related to those of (F, A) and (G, B) by:

{(.uF(s)(x);Vp(g)(x) :x U} ,ife € A — B,
K(e) {(Nc(e)(x),vg(g)(x) P X U} ,ife € B-A
{min(up(g)(x),/,tc(g)(x)), max (vF(g)(x),vg(E)(x)):x U}ife € ANB

Where pg(e) (%) min(ppee) (%), fe(e) (%)) and vy (x) max (Ve (%), ve(e) (%))
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. New Operations on Intuitionstic Fuzzy Soft Sets Based on First Zadeh s
Logical Operators

.1 First Zadeh s Implication of Intuitionistic Fuzzy Soft Sets
Definition .1.1.Let (F, A) and (G, B) are two intuitionistic fuzzy soft set s over (U,E) .We
define the First Zadeh’s intuitionistic fuzzy soft set implication (F, A) Z—;(G,B) is defined by
(F, A) > (GB)  [max {vp(e)(x) , min (k) (%) 5 Koy (%))}, min (kre) () , Ve (X))
Proposition .1. . Let (F, A),(G, B)and (H, C) are three intuitionistic fuzzy soft set s over
(U,E). Then the following results hold
@ FEANGB) > HCO 2{F,A)~>HO]n [(G,B) > (HC)]
(i)  (F A UG, B) (H C) 21[(F, A) (H O]V G, B) (H Ol
(i)  (F, A)n(G,B) > (H © 2[F,A) ~ (H OJUI(G,.B)~ (H Ol
@iv) (F,A) = (F, A) ¢ (F,A) ¢
V) FA)= @A) FA)°

Proof.
(1) (F, A)n(G,B) = (H, ©)

{ min (Mp(g) (x) He(e) (x)) max (Vp(e) (), ve(e) (x)) } - (Wne (%) 5 Vu(e (X))
MAX { max (VF(E) (1), V(o) (x)) , min ( min (,uF(E) (x), Koo (x)) Mg (x))},

MIN {min ( Hie) (x), e (x)) VHCE) (x)}

(1)
[(F,A) =~ (H,C)]In [(G,B) = (HC)]

[ max {Vp(e) , min (Up(e) .uH(s))} , Min (Up(g) » VH(e) 1 N
[ max {Vg(e) » min (Uge) > Kue))} > Min (Ugce > Va(e)) |

MIN {max (VF(E) (x), min (,up(s) (O e (x))) , max (vg(g) (x), min (,uG(S) (O My (x)))} )

MAX {min (,up(g) (), Vi) (x)) ,min (,uG(E) (), vy (x))} (2)

From (1) and (2) itisclearthat (F, A) N (G,B) = H,C) 2[(F.,A) = H,O]n
(G.B) 5 (H,0)]

(i1) And (ii1) the proof is similar to (i)

(iv) (F, A) ot (F,A)¢ (F A°

Max {VF(E) (x), min ( Ur(e) (X), Ve (X))} )
MIN{p () (), ey (1)}
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(Vr(e) (%), Upe) (X))

It is shown that the first Zadeh’s intuitionistic fuzzy soft implication generate the
complement of intuitionistic fuzzy soft set.

(v) The proof is straightforward .

Example .1..

(F,A) {F(eq) (a,0.3,0.2)}
(G.B) {G(ey) (a,04,0.5)}
(H,C) {H(e;) (a,0.3.,0.6)}

(F,A)n (G,B) = (H,0)

[max { (max (0.2, min (0.3,0.4)), 0.3}, min min (0.3,0.5),0.6))}  (0.5,0.3)
(F,A)N(G,B) {(a,0.3,0.5)!

. . First Zadeh s Intuitionistic Fuzzy Conjunction of Intuitionistic Fuzzy Soft Set

Definition . .1. Let (F, A) and (G, B) are two intuitionistic fuzzy soft sets over (U,E) .We
define the first Zadeh’s intuitionistic fuzzy conjunction of (F, A) and (G,B) as the intuitionistic
fuzzy soft set (H,C) over (U,E), written as (F, A)A,; (G,B) (H,C). WhereC ANB=#0
andVee(C,xeU,

i) MIN (g (%), toge) (X))
Ve () Max {vee (x) , min(ppe (%), vee (X))}

Example . . .
LetU {a,b,c}andE {91,62,63,84},A {61,62,64}QE,B {61562563}QE

(F,A) {F(e;) {((a 0.5,0.1),(b,0.1,0.8),(c, 0.2, 0.5),
F(ey) {((a, 0.7,0.1), (b, 0, 0.8), (c, 0.3, 0.5)},
Fle,) {((a,0.6,0.3),(b,0.1,0.7), (c, 0.9, 0.1)}}

(G,B) {G(ey) {((a 0.2, 0.6),(b,0.7,0.1),(c,0.8,0.1)},
G(ey) {((a, 0.4,0.1), (b, 0.5,0.3), (c, 0.4, 0.5)},
G(es) {((a,0,0.6), (b, 0,0.8), (c,0.1,0.5)}

Let (F,A)A,(G,B) (H,C),whereC ANB {e; ,e;}

(H,C) {H(e;) {(a, min(0.5,0.2), max(0.1, min(0.5, 0.6)))
(b, min(0.1, 0.7), max(0.8, min(0.1, 0.1)))
(c, min(0.2, 0.8), max(0.5, min(0.2, 0.1)))},
H (e;) {(a, min(0.7, 0.4), max(0.1, min(0.7, 0.1)))
(b, min(0, 0.5), max(0.8, min(0, 0.3)))
(c, min(0.3, 0.4), max(0.5, min(0.3, 0.5)))} }

(H,C) {H(e;) {(a, min(0.5,0.2), max(0.1,0.5)),
(b, min(0.1, 0.7), max(0.8, 0.1)),
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(c, min(0.2, 0.8), max(0.5, 0.1))},
H (e;) {(a, min(0.7, 0.4), max(0.1, 0.1)),

(b, min(0, 0.5), max(0, 0.8)),

(c, min(0.3, 0.4), max(0.5, 0.3))}}

(H,C) {H(e;) {(a, 0.2,0.5),b,0.1,0.8), (c,0.2,0.5),
H(e,) {(a 0.4,0.1),(b,0,0),(c,0.3,0.5)}}

Proposition . . .Let (F, A),(G,B)and (H, C) are three intuitionistic fuzzy soft set s over
(U,E). Then the following result hold

(F, A)/\Zl(GB) y (H,0) 2[(F, A) > (H, CO) 1A I(G, B)~>#H, )]
Proof. Let (F, A) ,(G, B) and (H,C) are three intuitionistic fuzzy soft set ,then
(F, A)Az1 (GB) = (H,C)

Max {max (VF(E) (x), min (,uF(g) (), V6o (x))) , min (min (,uF(S) ) B (x)) By (x))},

MIN {min (,LLF(S) (x), Ko (x)) V() (x)}
(1)

Let[(F, A) > (H,O)JA;1 [(G,B) » (H,O)]

F,A) > HO

MAX {vp(g) (x), min (uF(E) () s by (x))} ,]

MIN {ym) (), vy (x)}

[(G.B) = H, C)]

MAX {ve) (), min (i () iy ()} ]

MIN {15 (), Vi (0}

Then [(F, A) = (H,0) 1%, [(G,B) 22 (H,0)]
MIN (max {vm) (0 min (1500 09, Vi @)} ma (v (0, mim (o0 () b ) )

MAX (min{ier o) C6), Vi 0O}, mim {max (v GO, i (166 00D, iy () ) min (e 00, Vi () )}
2)

From (1) and (2) it is clear that

(F, A)Az1(GB) =~ (H,C) 2[(F,A) > (H O JA,;: [(G.B) > H O]

. The First Zadeh s Intuitionistic Fuzzy Disjunction of Intuitionstic Fuzzy Soft Set
Definition . .1. Let (F, A) and (G, B) are two intuitionistic fuzzy soft set s over (U,E) .We
define the first Zadeh’s intuitionistic fuzzy disjunction of (F, A) and (G,B) as the intuitionistic

fuzzy soft set (H,C) over (U,E), written as (F, A)V,; (G,B) (H,C). Where C ANB=#0
andVe€eA,xeU

Hice) (%) = Max {ppee) (%), min(vee (%) |t ()}
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Vi) ()= Min(vee () , Ve (%)) )

Example ... LetU {a,bc}andE {e;,e;,e3,e,} , A {e;,es,e,} CE,
B {81982583}QE

(F,A) {F(e;) {((a 0.5,0.1),(b,0.1,0.8),(c, 0.2, 0.5,
F(ey) {((a,0.7,0.1), (b, 0, 0.8), (c, 0.3,0.5)},
F(e,) {((a,0.6,0.3),(b,0.1,0.7), (c, 0.9, 0.1)}}

(G,A) {G(e;) {((a 0.2,0.6),(b,0.7,0.1), (c,0.8,0.1),
G(ey) {((a,0.4,0.1),(b,0.5,0.3), (c, 0.4, 0.5)},
G(es) {((a,0,0.6), (b, 0,0.8), (c, 0.1, 0.5)}}

Let (F,A)V,; (GB) (H,C)whereC ANB {e; ,e,}

(H,C) {H(e;) {(a, max(0.5, min(0.1,0.2)), min(0.1, 0.6))
(b, max(0.1, min(0.8, 0.7)), min(0.8, 0.1))
(¢, max(0.2, min(0.5, 0.8)), min(0.5, 0.1)) },
H (e;) {(a, max(0.7, min(0.1, 0.4)), min(0.1, 0.1))
(b, max(0, min(0.8, 0.5)), min(0.8, 0.3))
(c, max(0.3, min(0.5, 0.4)), min(0.5, 0.5))} }

(H,C) {H(ey) {(a, max(0.5,0.1), min(0.1, 0.6)),
(b, max(0.1, 0.7), min(0.8, 0.1)),
(c, max(0.2, 0.5), min(0.5, 0.1))},
H(e;) {(a, max(0.7,0.1), min(0.1, 0.1)),
(b, max(0, 0.5), min(0.8, 0.3)),
(c, max(0.3, 0.4), min(0.5, 0.5))} }

(H,C) {H(ey) {(a 0.5,0.1),(b,0.7,0.1),(c,0.5,0.1)},
H(ey) {(a 0.7,0.1),(b, 0.5,0.3), (c,0.4, 0.5)}}

Proposition . . .

D) @A) K1 (UA) (9.A)
(i) (9.A) V1 (U, A) (U A)
(i) (F,A)7,;(9.A) (FA)

Proof.
(i) Let (¢ ,A) Az1 (U, A) (H, A) ,where Forall e €A, x € U, we have

M@ (x) min(0,1) 0
Vh(e)(x) max (1,min(0,0)) max(1,0) 1

Therefore (H, A) (0,1),Foralle e A,x€U
It follows that ((¢ ,A) A, 1 (U, A) (¢ ,A)

() Let (¢.,A) V,; (U, A) (H, A),where Forall ¢ € A, x € U, we have
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Kuee(x) max (0,min(1,1)) max(0,1) 1
VH(S) (X) mln( 1 ,0) 0

Therefore (H, A) (1,0),Foralle e A,x€U

It follows that ((¢ ,A) A,1 (U, A) (U, A)
(i) Let(F,A)V,;(¢.,A) (H,A),where Foralle € A,x € U, we have

Uue)(x)  max (Upe)(X) ;min (Ve (x), 0))  max (Upe)(x) ,0)  pre(x)
Vh(e)(x) min (Vy)(x) 1) vy (x)

Therefore (H, A)  (Up(e)(X) , Ve (x)) , Foralle e A, x €U
It follows that (F, A)V, ;1 (¢ ,A) (F, A)

Proposition . . .
(F. A) V1 (GB) 7 (H.C) 2[(F,A) -(H. )1V, [(G.B) -(H,C)]

Proof. The proof is similar as in proposition 3.2.3

Proposition . . .
) [(F,A) A1 (G, B)]° (F,A) © Vg, (G,B)F
(i) [(F,A) V;1(G,B)]° (F,A) © Ay (G,B)F

~

(i) [(F,A) © A1 (G,B) “I° (F,A) V,4(G, B)

Proof.
(1) Let [(F,A) A1 (G,B)]° (H, C),where Foralle € C, x € U, we have

c

- MIN{up(e) (%), g (o) (X))},
[(F.,A) A1 (G,B)I°

MAX {VF(S) (x), min ( Hr(e) (%), Ve (e) (x))}

MAX {VF(E) (x), min ( Ur(e) (), Ve (o) (X))} r]

MIN{ttr o) (), ) ()}
(F,A) € V,,(G,B) €

(ii) Let [(F.,A) V,1(G,B)]° (H, C),where Foralle € C,x € U, we have

[(F.A) V,1(G,B) I° MAX {“F<8) G, min ( et (x))} ]
MIN{VF(E) (%), V(e (x)}
MIN{VF(g) (x)’VG(s) (x)}, ]

MAX {ui(g) (x), min ( Vi(e) (), (o) (x))}

(F,A) ¢ Azq (G,B) ©

Cc
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(ii1) The proof is straightforward.
The following equalities are not valid.

(F.A) V21(G,B) (G .B) V,,(F, A)

(F aA) Kz,l(Ga B) ( G >B) Kz,l(Fa A)

[(F.A) A;1(G, B)]A,1(K, C)  (F.A) Ay [(G, B)A,1(K, O)]

[(F.,A) V21(G,B)] V.1 (K, C)  (F.A) V,,[(G,B)V,1(K, O)]

[(F.,A) Az1(G,B)] V1 (K, C)  [(F.A) V;1 (G, B)A,1 [(G,B) Vz; (K, C)]
[(F.,A) Vz1(G,B)] A1 (K, C)  [(F.A) Az1 (G, B)1V,1 [(G,B) Ay (K, C)]

Example .. .LetU {a,bc}andE {e;,e,,e3,e,} , A {e;,eye,} CE,
B {61962763}QE

(F,A) {F(e;) {((a, 0.5,0.1),(b,0.1,0.8),(c, 0.2,0.5),
F(ey) {((a,0.7,0.1), (b, 0, 0.8), (c, 0.3,0.5)},
Fle,) {((a,0.6,0.3),(b,0.1,0.7), (c, 0.9, 0.1)}}

(G,A) {G(e;) {((a 0.2,0.6),(b,0.7,0.1), (c, 0.8,0.1)},
G(ey) {((a,0.4,0.1),(b,0.5,0.3), (c, 0.4, 0.5)},
G(es) {((a,0,0.6), (b, 0,0.8), (c, 0.1, 0.5)}}

Let (F,A)A,;(G,B) (H,C),whereC ANB {e; ,e;}

Then (F, A)A,1 (GB) (H,C) {H(e;) {(a 0.2,0.5),(b,0.1,0.8),(c.0.2,0.5)},
H(e,) {(a 0.4,0.1), (b,0,0),(c,0.3,0.5)}

For (G,B)A,; (F,A) (K,C),where K ANB {e; ,e;}

(K,C) {K(e;) {(a, min (0.2,0.5), max (0.6, min (0.2, 0.1)))
(b, min (0.7, 0.1), max (0.1, min( 0.7, 0.8)))
(c, min (0.8, 0.2), max (0.1, min (0.8, 0.5)))},
K (e;) {(a, min (0.7 0.4), max(0.1, min (0.4, 0.1)))
(b, min (0.5, 0.), max(0.3, min (0.5, 0.8)))
(c, min (0.4, 0.3), max(0.5, min (0.4, 0.5)))}}

(K,C) {K(eq) {(a,min(0.2,0.5), max (0.6, 0.1)),
(b, min (0.7, 0.1), max (0.1, 0.7)),
(c, min (0.8, 0.2), max (0.1, 0.5))},
K (e;) {(a, min (0.4, 0.7), max (0.1, 0.1)),
(b, min (0.5, 0), max (0.3, 0.5)),
(c, min (0.4, 0.3), max (0.5, 0.4))}}

(K,C) {K(e;) {(a 0.2,0.6),(b,0.1,0.7),(c,0.2,0.5),
K (e;) {(a, 0.4,0.1),(b,0,0.5), (c,0.3,0.5)}}

Then (G,B)A,; (F,A) (K,C) {K(e;) {(a 0.2,0.6),(b,0.1,0.7),(c,0.2, 0.5)},
K(e,) {(a, 0.4,0.1),(b,0,0.5),(c,0.3,0.5)}}
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It is obviously that (F, A) A, ; (G,B) # (G, B) A, (F, A)

Conclusion

In this paper, three new operations have been introduced on intuitionistic fuzzy soft sets. They
are based on First Zadeh’s implication, conjunction and disjunction operations on
intuitionistic fuzzy sets. Some examples of these operations were given and a few important
properties were also studied. In our following papers, we will extended the following three
operations such as second zadeh’s IF-implication, second zadeh’s conjunction and second
zadeh’s disjunction to the intuitionistic fuzzy soft set. We hope that the findings, in this paper
will help researcher enhance the study on the intuitionistic soft set theory.
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On neutrosophic refined sets and their applications
in medical diagnosis

Irfan Deli, Said Broumi, Florentin Smarandache

Irfan Deli, Said Broumi, Florentin Smarandache (2015). On neutrosophic refined sets and their applications
in medical diagnosis. Journal of New Theory 6, 88-98

Abstract — In this paper, we present some definitions of neutrosophic refined sets such as; union,
intersection, convex and strongly convex in a new way to handle the indeterminate information and
inconsistent information. Also we have examined some desired properties of neutrosophic refined sets
based on these definitions. Then, we give distance measures of neutrosophic refined sets with
properties. Finally, an application of neutrosophic refined set is given in medical diagnosis problem

(heart disease diagnosis problem) to illustrate the advantage of the proposed approach.

Keywords — Neutrosophic sets, neutrosophic refined sets, distance measures, decision making

1 Introduction

Recently, several theories have been proposed to deal with uncertainty, imprecision
and vagueness. Theory of probability, fuzzy set theory [46], intuitionistic fuzzy sets
[7], rough set theory [27] etc. are consistently being utilized as efficient tools for
dealing with diverse types of uncertainties and imprecision embedded in a system.
However, all these above theories failed to deal with indeterminate and inconsistent
information which exist in beliefs system. In 1995, Smarandache [39] developed a new
concept called neutrosophic set (NS) which generalizes probability set, fuzzy set and
intuitionistic fuzzy set. NS can be described by membership degree, indeterminacy
degree and non-membership degree. This theory and their hybrid structures has
proven useful in many different fields such as control theory [1], databases [3, 2],
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medical diagnosis problem [4], decision making problem [5, 6, 9, 10, 11, 13, 12, 14,
17, 19, 20, 23, 25|, physics [28], topology [24] etc.

Yager [43] firstly introduced a new theory, is called theory of bags, which is a
multiset. Then, the concept of multisets were originally proposed by Blizard [8] and
Calude et al. [15], as useful structures arising in many area of mathematics and
computer sciences such as database queries. Several authors from time to time made
a number of generalization of set theory. Since then, several researcher [18, 26, 35,
36, 37, 41, 42] discuussed more properties on fuzzy multiset. Shinoj and John [38]
made an extension of the concept of fuzzy multisets by an intuitionstic fuzzy set,
which called intuitionstic fuzzy multisets (IFMS). Since then in the study on IFMS
, a lot of excellent results have been achieved by researcher [22, 29, 30, 31, 32, 33,
34]. The concepts of FMS and IFMS fails to deal with indeterminacy. Therefore,
Smarandache[40] give n-valued refined neutrosophic logic and its applications. Then,
Ye and Ye [44] gave single valued neutrosophic sets and operations laws. Ye et al. [45]
presented generalized distance measure and its similarity measures between single
valued neutrosophic multi sets. Also they applied the measure to a medical diagnosis
problem with incomplete, indeterminate and inconsistent information. Chatterjee et
al.[16] developed single valued neutrosophic multi sets in detail.

Combining neutrosophic set models with other mathematical models has at-
tracted the attention of many researchers. Maji et al. presented the concept of
neutrosophic soft set [25] which is based on a combination of the neutrosophic set
and soft set models. Broumi and Smarandache introduced the concept of the intu-
itionistic neutrosophic soft set [9, 12] by combining the intuitionistic neutrosophic
set and soft set.

This paper is arranged in the following manner. In section 2, some definitions and
notion about intuitionstic fuzzy set, intuitionstic fuzzy multisets and neutrosophic
set theory. These definitions will help us in later section. In section 3 we study the
concept of neutrosophic refined (multi) sets and their operations. In section 4, we
present an application of neutrosophic multisets in medical diagnosis. Finally we
conclude the paper.

2 Preliminary

In this section, we give the basic definitions and results of intuitionistic fuzzy set [7],
intuitionistic fuzzy multiset [29] and neutrosophic set theory [39] that are useful for
subsequent discussions.

Definition 2.1. [7] Let E be a universe. An intuitionistic fuzzy set I on E can be
defined as follows:

I={<zu(x),y(x)> ze€FE}

where, pr : E — [0,1] and 7 : E — [0, 1] such that 0 < us(z) + y7(x) < 1 for any
rekb.

Definition 2.2. [29] Let E be a universe. An intuitionistic fuzzy multiset K on F
can be defined as follows:

K = {<z, (uxc(2), pig (), ... i (7)), (Vi (), 7k (@), - vk (@) >0 @ € BY
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where, u}((x),,u%{(x), ,;ﬂ;(m) ;
such that 0 < p(x) + vk (z) < 1
for any x € E.

Here, (uk(z), p3(x), ..., ko (x)) and (v (z),v% (), ...,vL(x)) is the membership
sequence and non-membership sequence of the element x, respectively.

We arrange the membership sequence in decreasing order but the corresponding
non membership sequence may not be in decreasing or increasing order.

E — [0,1] and v (@), 7% (2), ... v (2) « B — [0, 1]
(i=1,2,...,P) and pk(x) < p(z) < ... < pk(x)

Definition 2.3. [39] Let U be a space of points (objects), with a generic element
in U denoted by u. A neutrosophic set (N-set) A in U is characterized by a truth-
membership function T4, an indeterminacy-membership function I4 and a falsity-
membership function Fa. Ta(x), I4(z) and F4(z) are real standard or nonstandard
subsets of [0, 1]. It can be written as

A= {< Uu, (TA(I), IA(x),FA(x)) > el TA(Z‘),IA(I),FA(JJ) € [0, 1]}

There is no restriction on the sum of Ta(x); I4(x) and Fa(z), so 0 < Tu(z) +
Ia(x) 4+ Fa(z) < 3.

Definition 2.4. [21] t-norms are associative, monotonic and commutative two valued
functions ¢ that map from [0, 1] x [0, 1] into [0, 1]. These properties are formulated
with the following conditions: Va,b, ¢, d € [0,1],

1. ¢(0,0) =0 and t(a,1) = t(1,a) = a,

2. If a < ¢ and b < d, then t(a,b) < t(c,d)
3. t(a,b) = t(b,a)

4. t(a,t(b,c)) = t(t(a,b),c)

Definition 2.5. [21] ¢-conorms (s-norm) are associative, monotonic and commuta-
tive two placed functions s which map from [0, 1] x [0, 1] into [0, 1]. These properties
are formulated with the following conditions: Va,b, c,d € [0, 1],

1. s(1,1) =1 and s(a,0) = s(0,a) = a,

2. if a < cand b < d, then s(a,b) < s(c,d)
3. s(a,b) = s(b,a)

4. s(a,s(b,c)) = s(s(a,b),c)

t-norm and t-conorm are related in a sense of lojical duality. Typical dual pairs
of non parametrized t-norm and ¢-conorm are complied below:

1. Drastic product:
[ min{a,b}, max{ab} =1
fu(a,b) = { 0, otherwise

2. Drastic sum: (b} (ab)
max{a,b}, min{ab} =0
sw(a,b) = { 1, otherwise
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3

10.

11.

12.

. Bounded product:

ti1(a,b) = maz{0,a+b— 1}

. Bounded sum:

s1(a,b) = min{l,a + b}

. Einstein product:

fsla,b) = 5= i[Z —y
. Einstein sum:
s1s(a,b) = 1a++al.)b
. Algebraic product:
to(a,b) = a.b

. Algebraic sum:

so(a,b) =a+b—ab

. Hamacher product:

a.b
t b)) = ———
25(a,0) a+b—a.b
Hamacher sum:
(a,b) = a+b—2.ab
525\40) = 1—a.b
Minumum:
ts(a,b) = min{a,b}
Maximum:

s3(a,b) = maz{a,b}

Neutrosophic Refined Sets

In this section, we present some definitions of neutrosophic refined sets with opera-
tions. Also we have examined some desired properties of neutrosophic refined sets
based on these definitions and operations. Some of it is quoted from [29, 32, 38, 39,
40].

In the following, some definition and operatios on intuitionistic fuzzy multiset
defined in [18, 29], we extend this definition to NRS by using [20, 40].

Definition 3.1. [40, 44] Let E be a universe. A neutrosophic refined set (NRS) A
on E can be defined as follows:

L,

where, Th(z), T3(z), ..., T (x) : E — [0,1], I}(z),I3(z),....I[5(x) : E
aﬂ; Fa(x), F3(x), - 7Ff(

R
E — [0,1] such that 0 < T (x)+ 4 (z)+ Fi(z) < 3(i =
< ( ()T

) :
,PYand TX(z) < T3(z) < ... < T¥(x)forany z € E.
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(Iy(x), I3(2),...., 15 () and (F}i(z), F3(z),..., F{(z)) is the truth membership se-
quence, indeterminacy membership sequence and falsity membership sequence of
the element x, respectively. Also, P is called the dimension of NRS A.

In [44] truth membership sequences are increase and other sequences (indetermi-
nacy membership, falsity membership) are not increase or decrease. But throughout
this paper the truth membership sequences, indeterminacy membership sequences ,
falsity membership sequences are not increase or decrease. The set of all Neutro-
sophic refined sets on E is denoted by NRS(E).

Definition 3.2. [44] Let A, B € NRS(E). Then,

1. Ais said to be NM subset of B is denoted by ACB if T%(x) < Th(z), I'y(z) >
Ip(x) Fi(z) = Fy(z),Vr € E.

2. A is said to be neutrosophic equal of B is denoted by A = B if T%(z) = Th(z),
Iy(z) = Ip(2) ,Fi(x) = Fj(z), Vo € E.

3. the complement of A denoted by A® and is defined by

= {< & (Fi(2), Fi(x), ... F{(2)), (1 = Ti(w), 1 = [3(x), ... 1 = I{ (),
(T (), T5(x), ..., TY (x )) > x e E}

In the following, some definitions and operations with properties on neutrosophic
multi set defined in [16, 44, 45], we generalized these definitions.
Definition 3.3. Let A, B € NRS(E). Then,

L If T)(z) =0 and I)(z) = Fj(z) = 1 forall 2 € E and i = 1,2, ..., P then A is
called null ns-set and denoted by .

2. If Th(z) = 1 and I)y(x) = Fi(z) =0 forall z € E and i = 1,2,..., P, then A is
called universal ns-set and denoted by FE.

Definition 3.4. Let A, B € NRS(FE). Then,
1. the union of A and B is denoted by AUB = C, and is defined by

= {< 2, (Te(2), Té(x), ., TE (2), (To(2), 1), ..., 1T (2)),
(Fia ) Fg(x), ... FE (1)) > x € E}

where Tp = s{T}(2), Th(a)}, Ii: = t{I(x), Iylx)} .Fs = t{F}(x), Fy(x)},
Vre Fandt=1,2,..., P.

2. the intersection of A and B is denoted by ANB = D and is defined by

= {<x, (Tp(x), Tj(x), .. Ty (x)), (Ip ( ) (), - Ip(2)),
(Fb(a), F3(2), o FE(2)) > @ € B}

where Tjy = H{T4(x), Ty(2)}, T = s{Iy(x), Iy(x)} .Fh = s{Fi(x), Fi(a)}.
Vre Fandt=1,2,..., P.

Proposition 3.5. Let A, B,C € NRS(E). Then,

1. AUB = BUA and ANB = BNA
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2. AU(BUC) = (AUB)UC and AN(BNC) = (ANB)NC
Proof: The proofs can be easily made.

Proposition 3.6. Let A, B,C' € NRS(E). Then,
1. AUA = A and ANA=A
2. AN® = ® and ANE = A
3. AU® = A and AUE = E
4. AN(BUC) = (ANB)U(ANC) and AU(BNC) = (AUB)N(AUC)
5. (A®)e = A.

Proof. 1t is clear from Definition 3.3-3.4.
Theorem 3.7. Let A, B € NRS(E). Then, De Morgan’s law is valid.

1. (AUB)® = ATiB®
2. (ARB)e = AeTBe

Proof. A, B € NRS(F) is given. From Definition 3.2 and Definition 3.4, we have

1.
(AUB)® = {< w,(S{T};(x% ()}, S{TA( ), Ti(@)}, . s{T4 (2), T (x)}),
(H{Ia (), Ip()} { T4 (2), Tp(2)}, .. {4 (2), I (2)}),
(H{Fa(x), Fp()}, t{FA( ) Fi(@)}, . t{F (2), Fg (2)}) >z € E}*
= {<z. (H{Fa(2), Fp)} t{Fi(2)

(@)}, t{F (2), F (2)})
(1 —t{Iy(x )Jé( )h1 - t{fA(ﬂf)J (@)}, L= t{I{(2), I (x)}),
(s{Ta(x), Tp()}, S{TA( ), Tp()}, oy s{T4 (2), T (2)}) > = € B}
= {<a (H{Fi(@), Fp(a)} {Fi(2), Fy(x)}, ... t{F (2), Fg (2)})
(s{1 = Iy(2), 1 = Ip(x)}, s{1 = [3(2), 1 = Ip(x)}, ..,
s{l = I}(z),1 = Ig(2)}),
(s{Ta(x), Tp(2)}, s{T3(x), T5(2)}, ... s{T4 (2), T (2)}) >: = € B}
= A°NB°

203



Florentin Smarandache (author and editor)

(ANB)* = {< x,(t{Ti(w) ()}, t{TA<x>7T (@)}, T4 (), Tg (2)}),
(s{Ta(x), Ip(2)}, s{T4(2), ()}, ... s{L4 (@), T () }),
(s{FA(2), Fp(@)}, s{FA(2), F§(2)}, ooy s{FA (2), Fg (2)}) > @ € E}°

= {<z.(s{Fi= ) ()}, s{Fi(x), Fp(2)}, S{FA(QJ),F (2)})
(1= s{Ii(z ) p(@)} 1= s{I4(2), Ig(x)}, ... 1 = s{L}(2), I5(2)}),
(H{Ta(x), Tp(x)}, t{TA(fv) ()} t{TA( ) i (2)}) > v € B}

= {<z.(s{Fi= ) ()}, s{Fi(x), Fy(z )} L s{Fy (2), Fi(2)})
({1 = Iy(2), 1 = Ip(x)}, t{1 = Ii(2), 1 — Ig(2)}, o,
{1 = I} (x),1 = I5(x)}),
(H{Ta(), Tp(x)} {TA(2), Ti(2)}, ... tH{T (), T (2)}) >0 = € B}
= A°NB°.

Theorem 3.8. Let P be the power set of all NRS defined in the universe E. Then
(P,N,U) is a distributive lattice.

Proof: The proofs can be easily made by showing properties; idempotency,
commutativity, associativity and distributivity

Definition 3.9. Let E is a real Euclidean space E". Then, a NRS A is convex if
and only if

T(az + (1 = a)y) = Th(z) ATaly), Li(az + (1 = a)y) < Ii(z) V I4(y)
Fi(az + (1 —a)y) < Fy(z) V Fi(y)
forevery v,y € E,a€l andi=1,2,.... P.

Definition 3.10. Let E is a real Euclidean space E™. Then, a NRS A is strongly
convex if and only if

Ty(az + (1 —a)y) > Th(x) ATa(y), Ii(az + (1 = a)y) < Iy(z) V I4(y)
Fi(az + (1 —a)y) < Fi(z) v Fi(y)
for every v,y € E,ael andi=1,2,..., P.

Theorem 3.11. Let A, B € NRS(E). Then, ANB is a convex(strongly convex)
when both A and B are convex(strongly convex).

Proof. Tt is clear from Definition 3.9-3.10.
Definition 3.12. [16] Let A, B € NRS(FE). Then,

1. Hamming distance dgp(A, B) between A and B, defined by;

dup(A,B) = 350, S, (TS () = Thw)| + |1 (i) — Tp(a) |+
| Fa(wi) — Fip(xi)])

2. Normalized hamming distance dygp(A, B) between A and B, defined by;

dyup(AB) = g5 30500 iy (1 Th(@:) = Th(a)| + [Ty (x) — Tp(a) |+
|[FA(s) = Fh()))
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3. Euclidean distance dgp(A, B) between A and B, defined by;

P n

=22

7=1 =1

TA ;)

dgp(A, B) = Tp(w:))* + (Lh(z:) = Ié(wi))z;r

(Fi(x:) = Fp(x))?
4. Normalized euclidean distance dygp(A, B) between A and B, defined by;

O

=1 i=1

) Ti(e2) — Th(e))2 + (T(as) — D)™t
dvep(4, B) (FA(2:) — Fi(x))?

4 Medical Diagnosis Via NRS Theory

In the following, the example on intuitionistic fuzzy multiset given in [18, 31, 33, 38|,
we extend this definition to NRS.

Let P={P;,P5,P3,P,} be a set of patients, D={Viral Fever, Tuberculosis, Ty-
phoid, Throat disease}be a set of diseases and S={Temperature, cough, throat
pain,headache, body pain} be a set of symptoms. In Table I each symptom S; is
described by three numbers: Membership T, non-membership F and indeterminacy

L.
Viral Fever | Tuberculosis Typhoid Throat disease
Temperature | (0.8,0.2,0.1) | (0.3,0.4,0.2) | (0.4,0.6,0.3) | (0.5,0.7,0.1)
Cough (0.2,0.3,0.7) | (0.2,0.5,0.3) | (0.4,0.5,0.4) | (0.8,0.3,0.2)
Throat Pain | (0.3,0.4,0.5) | (0.4,0.4,0.3) | (0.3,0.6,0.4) | (0.6,0.5,0.4)
Headache | (0.5,0.3,0.3) | (0.5,0.2,0.3) | (0.5,0.6,0.2) | (0.4,0.3,0.5)
Body Pain | (0.5,0.2,0.4) | (0.4,0.5,0.3) | (0.6,0.5,0.3) | (0.2,0.6,0.4)

Table I -NRS R: The relation among Symptoms and Diseases

The results obtained different time intervals such as: 8:00 am 12:00 am and 4:00 pm

in a day as Table II;

Temparature Cough Throat pain Headache Body Pain
(0.1,0.3,0.7) (0.3,0.2,0.6) (0.8,0.5,0) (0.3,0.3,0.6) (0.4,0.4,0.4)
Py | (0.2,0.4,0.6) (0.2,0.4,0) (0.7,0.6,0.1) (0.2,0.4,0.7) (0.3,0.2,0.7)
(0.1,0.1,0.9) (0.1,0.3,0.7) (0.8,0.3,0.1) (0.2,0.3,0.6) (0.2,0.3,0.7)
(0.5,0.3,0.3) (0.7,0.3,0.6) (0.8,0.6,0.1) (0.4,0.2,0.6) (0.6,0.2,0.4)
Py | (0.3,0.4,0.5) (0.6,0.4,0.3) (0.6,0.3,0.1) (0.5,0.4,0.7) (0.5,0.4,0.6)
(0.4,0.2,0.6) (0.4,0.1,0.7) (0.7,0.5,0.1) (0.4,0.3,0.6) (0.6,0.3,0.6)
(0.7,0.4,0.6) (0.7,0.2,0.5) (0.5,0.8,0.4) (0.6,0.3,0.4) (0.6,0.3,0.3)
Ps | (0.4,0.5,0.3) (0.6,0.5,0.1) (0.6,0.4,0.4) (0.5,0.3,0.4) (0.6,0.5,0.4)
(0.3,0.3,0.5) (0.4,0.2,0.2) (0.7,0.6,0.3) (0.4,0.4,0.5) (0.6,0.2,0.8)
(0.3,0.4,0.6) (0.5,0.4,0.4) (0.5,0.6,0.31) (0.7,0.4,0.2) (0.3,0.3,0.5)
Ps | (0.6,0.3,0.3) (0.6,0.5,0.3) (0.7,0.5,0.6) (0.4,0.3,0.4) (0.7,0.5,0.2)
(0.4,0.2,0.5) (0.4,0.2,0.2) (0.8,0.5,0.3) (0.3,0.6,0.5) (0.3,0.5,0.4)

Table IT -NRS Q: the relation Beween Patient and Symptoms.
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The normalized Hamming distance between Q and R is computed as;

Viral Fever | Tuberculosis | Typhoid | Throat disease
Py 0.266 0.23 0.28 0.25
Ps 0.213 0.202 0.206 0.19
Ps 0.206 0.173 0.16 0.166
Py 0.22 0.155 0.146 0.157

Table III :The normalized Hamming distance between Q and R

The lowest distance from the table III gives the proper medical diagnosis. Patient P;
suffers from Tuberculosis, Patient P, suffers from Throat diseas, Patient P3 suffers from
Typhoid disease and Patient P suffers from Typhoid

5 Conclusion

In this paper, we firstly defined some definitions on neutrosophic refined sets and investi-
gated some of their basic properties. The concept of neutrosophic refined (NRS) generalizes
the fuzzy multisets and intuitionstic fuzzy multisets. Then, an application of NRS in med-
ical diagnosis is discussed. In the proposed method, we measured the distances of each
patient from each diagnosis by considering the symptoms of that particular disease.
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On Neutrosophic Semi Alpha Open Set

Qays Hatem Imran, F. Smarandache, Riad K. Al-Hamido, R. Dhavaseelan

Qays Hatem Imran, F. Smarandache, Riad K. Al-Hamido, R. Dhavaseelan (2017). On Neutrosophic Semi
Alpha Open Set. Neutrosophic Sets and Systems 18, 37-42

Abstract. In this paper, we presented another concept of neutrosophic open sets called neutrosophic semi-o-open sets
and studied their fundamental properties in neutrosophic topological spaces. We also present neutrosophic semi-
a-interior and neutrosophic semi-a.- closure and study some of their fundamental properties.

Keywords: Neutrosophic semi-a-open sets, neutrosophic semi-a-closed sets, neutrosophic semi-a-interior and neutrosophic semi-o-

closure.

1. Introduction

In 2000, G.B. Navalagi [4] presented the idea of
semi-o.-open sets in topological spaces. The concept of

neutrosophic set was first given by F. Smarandache [2,3].

A.A. Salama and S.A. Alblowi [1] presented the concept of
neutrosophic topological space (briefly NTS ). The
objective of this paper is to present the concept of
neutrosophic semi-a-open sets and study their fundamental
properties in neutrosophic topological spaces. We also
present neutrosophic semi- o -interior and neutrosophic
semi-o.-closure and obtain some of its properties.

2. Preliminaries

Throughout this paper, (U, T) (or simply U) always
mean a neutrosophic topological space. The complement
of a neutrosophic open set (briefly N-OS) is called a neu-
trosophic closed set (briefly N-CS) in (U, T). For a neutro-
sophic set A in a neutrosophic topological space (U, T),
Ncl(A), Nint(A) and A€ denote the neutrosophic clo-
sure of A, the neutrosophic interior of A and the neutro-
sophic complement of A respectively.

Definition 2.1:

A neutrosophic subset A of a neutrosophic topological
space (U, T) is said to be:

(1) A neutrosophic pre-open set (briefly NP-0S) [7] if A S
Nint(Ncl(A)). The complement of a NP-OS is called a
neutrosophic pre-closed set (briefly NP-CS) in (U, T). The

family of all NP-OS (resp. NP-CS) of U is denoted by
NPO(U) (resp. NPC(U)).

(i1)) A neutrosophic semi-open set (briefly NS-0S) [6] if
A S Ncl(Nint(A)). The complement of a NS-O0S is
called a neutrosophic semi-closed set (briefly NS-CS) in
(U, T). The family of all NS-OS (resp. NS-CS) of U is
denoted by NSO(U) (resp. NSC(U)).

(iii) A neutrosophic a-open set (briefly Na-0S) [5] if A S
Nint(Ncl(Nint(A))). The complement of a No-OS is
called a neutrosophic a-closed set (briefly Na-CS) in
(U, T). The family of all Na-0S (resp. Na-CS) of U is
denoted by NaO(U) (resp. NaC(U)).

Definition 2.2:

(1) The neutrosophic pre-interior of a neutrosophic set A of
a neutrosophic topological space (U, T) is the union of all
NP-OS contained in A and is denoted by PNint(A)[7].

(i1) The neutrosophic semi-interior of a neutrosophic set A
of a neutrosophic topological space (U, T) is the union of
all NS-0S contained in A and is denoted by SNint(A)[6].
(ii1) The neutrosophic a-interior of a neutrosophic set A of
a neutrosophic topological space (U, T) is the union of all
Na-0S contained in A and is denoted by aNint(A)[5].

Definition 2.3:

(i) The neutrosophic pre-closure of a neutrosophic set A of
a neutrosophic topological space (U, T) is the intersection
of all NP-CS that contain A and is denoted by PNcl(A)[7].
(i1) The neutrosophic semi-closure of a neutrosophic set A
of a neutrosophic topological space (U,T) 1is the
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intersection of all NS-CS that contain A and is denoted by
SNcl(A)[6].

(ii1) The neutrosophic a-closure of a neutrosophic set A of
a neutrosophic topological space (U, T) is the intersection

of all Na-CS that contain 4 and is denoted by aNcl(A)[5].

Proposition 2.4 [5]:

In a neutrosophic topological space (U,T), then the
following statements hold, and the equality of each
statement are not true:

(i) Every N-OS (resp. N-CS) is a Na-0OS (resp. Na-CS).

(i1) Every Na-0S (resp. Na-CS) is a NS-0OS (resp. NS-CS).
(ii1) Every Na-0S (resp. Na-CS) is a NP-OS (resp. NP-CS).

Proposition 2.5 [5]:
A neutrosophic subset A of a neutrosophic topological
space (U, T) is a Na-OS iff A is a NS-0OS and NP-OS.

Lemma 2.6:

(1) If K is a N-0S, then SNcl(X) = Nint(Ncl(¥)).

(i) If A is a neutrosophic subset of a neutrosophic
topological space (U,T), then SN int(Ncl(rﬂ)) =
Ncl(Nint(Ncl(A))).

Proof: This follows directly from the definition )2.1) and
proposition (2.4).

3. Neutrosophic Semi-a-Open Sets

In this section, we present and study the neutrosophic
semi-a-open sets and some of its properties.

Definition 3.1:

A neutrosophic subset A of a neutrosophic topological
space (U,T) is called neutrosophic semi-a-open set
(briefly NSa-0S) if there exists a Na-OS H in U such that
H S AC Ncl(H) or

equivalently if A € Ncl(aNint(A)). The family of all
NSa-0S of U is denoted by NSaO(U).

Definition 3.2:

The complement of NSa-0S is called a neutrosophic semi-
a-closed set (briefly NSa-CS). The family of all NSa-CS of
U is denoted by NSaC(U).

Proposition 3.3:

It is evident by definitions that in a neutrosophic
topological space (U, T), the following hold:

(1) Every N-OS (resp. N-CS) is a NSa-0S (resp. NSa-CS).
(i1)) Every Na-0S (resp. Na-CS) is a NSa-0S (resp. NSa-
CS).

The converse of the above proposition need not be true as
seen from the following example.

Example 3.4:
LetU ={u}, A ={{u,0.5,0.5,0.4):u € U},
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B = {{u,0.4,0.5,0.8):u € U},C = {{1,0.5,0.6,0.4): u €
UL, D = {(u,0.4,0.6,0.8): u € U}.

Then T = {Oy,A,B,C,D, 1y} is a neutrosophic topology
onU.

() Let # = {(,0.5,0.1,0.3):u € U}, A S H < Ncl(A)
= (u, 0.6, 0.4, 0.2), the neutrosophic set H is a NSa-0S but
is not N-0S. It is clear that H¢ = {{u,0.5,0.9,0.7): u € U}
is a NSa-CS but is not N-CS.

(i) Let X = {(,0.5,0.1,0.2): u € U}, A € K S Ncl(A)
= (u,0.6,0.4,0.2), the neutrosophic set K is a NSa-0S,
K & Nint(Ncl(Nint (X)) =
Nint(Ncl((s,0.5,0.5,0.4))) = Nint((u, 0.6,0.4,0.2)) =
(u,0.5,0.5,0.4), the neutrosophic set X is not Na-0S. It is
clear that K¢ = {(u,0.5,0.9,0.8): u € U} is a NSa-CS but
is not Na-CS.

Remark 3.5:
The concepts of NSa-OS and NP-OS are independent, as
the following examples shows.

Example 3.6:

In example (3.4), then the neutrosophic set H =
{(u,0.5,0.1,0.3):u € U} is a NSa-0S but is not NP-0S,
because H & Nint(Ncl(}[)) = Nint({u, 0.6,0.4,0.2)) =
(u,0.5,0.5,0.4).

Example 3.7:

Let U ={a, b}, A = {{0.4,0.8,0.9),(0.7,0.5,0.3)}, B =
{{0.5,0.8,0.6),(0.8,0.4,0.3)}, C =
{(0.4,0.7,0.9),(0.6,0.4,0.4)}, D =
{(0.5,0.7,0.5),(0.8,0.4,0.6)}.

Then T = {Oy,A,B,C,D, 1y} is a neutrosophic topology
onU.

Then the neutrosophic set X = {(1,1,0.3),(0.7,0.3,0.6)}
is a NP-0OS but is not NSa-0S.

Remark 3.8:

(1) If every N-OS is a N-CS and every nowhere neutrosoph-
ic dense set is N-CS in any neutrosophic topological space
(U, T), then every NSa-0S is a N-OS.

(i1) If every N-OS is a N-CS in any neutrosophic topologi-
cal space (U, T), then every NSa-0S is a No-OS.

Remark 3.9:

(1) It is clear that every NS-OS and NP-OS of any
neutrosophic topological space (U,T) is a NSa-OS (by
proposition (2.5) and proposition (3.3) (ii)).

(i) A NSa-OS in any neutrosophic topological space
(U, T) is a NP-OS if every N-OS of U is a N-CS (from
proposition (2.4) (iii) and remark (3.8) (ii)).

Theorem 3.10:

For any neutrosophic subset A4 of a neutrosophic
topological space (U,T), A € NaO(U) iff there exists a
N-0S # such that H € A S Nint(Ncl(H)).
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Proof: Let A be a Na-0S. Hence A S
Nint(Ncl(Nint(A))), so let H = Nint(A), we get
Nint(A) € A < Nint(Ncl(Nint(A))). Then there exists
a N-0S Nint(A) such that H € A S Nint(Ncl(H)),
where H = Nint(A).

Conversely, suppose that there is a N-OS H such that H <
A S Nint(Ncl(H)).

To prove A € NaO(U).

H € Nint(A) (since Nint(A)
contained in A).

Hence Ncl(H) € Nint(Ncl(A)), then Nint(Ncl(H)) <
Nint(Ncl(Nint(A))).

But H € A € Nint(Ncl(H)) (by hypothesis). Then A S
Nint(Ncl(Nint(A))).

Therefore, A € NaO(U).

is the largest N-OS

Theorem 3.11:

For any neutrosophic subset A of a neutrosophic
topological space (U,T). The following properties are
equivalent:

(i) A € NSaO(U).

(i) There exists a N-OS say H such that H S A C
Ncl(Nint(Ncl(H))).

(iii) A S Ncl(Nint(Ncl(Nint(A)))).

Proof:

(i) = (ii) Let A € NSaO(U). Then there exists K €
NaO(U), such that X € A S Ncl(X). Hence there exists
H N-OS such that ' € K € Nint(Ncl(H)) (by theorem
(3.10)). Therefore, Ncl(H) S Ncl(X) <
Ncl(Nint(Ncl(H))), implies that Ncl(K) S
Ncl(Nint(Ncl(3))). Then 5 € K S A S Nel(K) €
Ncl(Nint(Ncl(#))). Therefore, H € A
Ncl(Nint(Ncl(H))), for some H N-OS.

(i) = (iii) Suppose that there exists a N-OS H such that
H < A S Ncl(Nint(Ncl(H))). We know that

Nint(A) € A. On the other hand, H € Nint(A) (since
Nint(A) is the largest N-OS contained in A). Hence
Ncl(H) € Ncl(Nint(A)), then Nint(Ncl(H)) €
Nint(Ncl(Nint(A))), therefore Ncl(Nint(Ncl(H))) <
Ncl(Nint(Ncl(Nint(A)))).

But A S Ncl(Nint(Ncl(#))) (by hypothesis). Hence
A S Ncl(Nint(Ncl(H))) € Ncl(Nint(Ncl(Nint(A)))),
then A S Ncl(Nint(Ncl(Nint(A)))).

(iii) = (i) Let A S Ncl(Nint(Ncl(Nint(A)))).

To prove A € NSaO(U). Let K = Nint(A); we know
that Nint(A) € A. To prove A S Ncl(Nint(A)).

Since Nint(Ncl(Nint(A))) € Ncl(Nint(A)) . Hence,
Ncl(Nint(Ncl(Nint(A)))) < Ncl(Ncl(Nint(A)))) =
Ncl(Nint(A)). But A S Ncl(Nint(Ncl(Nint(A))))

(by hypothesis). Hence, A S Ncl(Nint(Ncl(Nint(A))))
C Ncl(Nint(A)) = A < Ncl(Nint(A)). Hence, there
exists a N-OS say X, such that KX € A S Ncl(A). On the
other hand, X is a Na-0S (since K is a N-OS). Hence A €
NSaO(W).

Corollary 3.12:
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For any neutrosophic subset A of a neutrosophic
topological space (U,T), the following properties are
equivalent:

(i) A € NSaC(UW).

(ii) There exists a N-CS F such that Nint(Ncl(Nint(F)))
CACEF.

(iii) Nint(Ncl(Nint(Ncl(A)))) € A.

Proof:

(i) = (ii) Let A € NSaC(U), then A° € NSaO(U).
Hence there is H N-OS such that H S A€ C
Ncl(Nint(Ncl(H))) (by theorem (3.11)). Hence

(Ncl(Nint(Ncl(#))))¢ € A € K€,

ie., Nint(Ncl(Nint(H¢))) € A S HE. Let HC=F,
where F is a N-CS in U. Then Nint(Ncl(Nint(F))) ©
A S F, for some F N-CS.

(ii) = (iii) Suppose_that there exists F N-CS such that
Nint (Ncl(Nint(F))) € A S F , but Ncl(A) is the
smallest N - CS containing A . Then Ncl(A) € F, and
therefore: Nint(Ncl Jl)) C Nint(F) =

Ncl Nint(Ncl(cA)b S Ncl(Nint(F)) =
Nint(Ncl(Nint(Ncl(A)))) € Nint(Ncl(Nint(F))) <

A = Nint(Ncl(Nint(Ncl(A)))) € A.

(iii) = (i) Let Nint(Ncl(Nint(Ncl(A)))) € A.

To prove A € NSaC(U), i.e., to prove A€ € NSaO(U).
Then A€ € (Nint(Ncl(Nint(Ncl(A)))))¢
Ncl(Nint(Ncl(Nint(A°)))), but
(Nint(Ncl(Nint(Ncl(A)))))¢
Ncl(Nint(Ncl(Nint(A°)))).
Hence A€ € Ncl(Nint(Ncl(Nint(A°)))), and therefore
A€ € NSaO(U), i.e., A € NSaC(U).

Proposition 3.13:

The union of any family of Na-OS is a Na-0S.

Proof: Let {A;};ca be a family of Na-0S of U.

To prove U;ep A; 1s a Na-0S,

i.e., UiEA‘ﬂi c Nlnt(Ncl(Nmt(Uler‘ll)))

Then A; € Nint(Ncl(Nint(A;))), Vi € A.

Since U;ep Nint(A;) € Nint(U;ep A;) and

Uiea Ncl(A;) S Ncl(Ujep A;) hold for any neutrosophic

topology.

We have Ujep A; € Ujep Nint(Ncl(Nint(A;)))
C Nint(U;ep Ncl(Nint(A;)))
C Nint(Ncl(U;ea(Nint(A;)))
C Nint(Ncl(Nint(U;ep A;))).

Hence U;cp A; is a Na-0S.

Theorem 3.14:

The union of any family of NSa-0S is a NSa-0S.

Proof: Let {A;};cp be a family of NSa-OS. To prove
Uiea A; is a NSa-0S. Since A; € NSaO(U). Then there is
a Na-OS B; such that B; € A; S Ncl(B;), Vi € A. Hence
UieaBi € Uiea A € Uiea Ncl(B;) S Ncl(Uiea By)-

But U;ep B; € NaO(U) (by proposition (3.13)).

Hence Ujep A; € NSaO(U).
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Corollary 3.15:

The intersection of any family of NSa-CS is a NSa-CS.
Proof: This follows directly from the theorem (3.14).

Remark 3.16:

The following diagram shows the relations among the
different types of weakly neutrosophic open sets that were
studied in this section:

NP-0S
NS-0S
N-0S < I Na-0S
y Y T
every nowhere N-dense
set is a N-CS A
O
every N-OS is a N-CS <+>
y

NSa-0S

A

Diagram (3.1)

4. Neutrosophic Semi-a-Interior and Neutrosophic
Semi-a-Closure

We present neutrosophic semi- o -interior and
neutrosophic semi- o -closure and obtain some of its
properties in this section.

Definition 4.1:

The union of all NSa-0S in a neutrosophic topological
space (U, T) contained in A is called neutrosophic semi-
o -interior of A and is denoted by SaNint(A) ,
SaNint(A) = U{B: B < A, Bis a NSa-0S}.

Definition 4.2:

The intersection of all NSa - CS in a neutrosophic
topological space (U,T) containing A is called
neutrosophic semi- o -closure of A and is denoted by
SaNcl(A), SaNcl(A) = N{B: A < B, B is a NSa-CS}.

Proposition 4.3:

Let A be any neutrosophic set in a neutrosophic
topological space (U, T), the following properties are true:
(i) SaNint(A) = A iff A is a NSa-0S.

(ii) SaNcl(A) = A iff A is a NSa-CS.

(iii) SaNint(A) is the largest NSo-0S contained in A.
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(iv) SaNcl(A) is the smallest NSa-CS containing A.
Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let A be any neutrosophic set in a neutrosophic

topological space (U, T), the following properties are true:

(1) SaNint(1y — A) = 1y — (SaNcl(A)),

(i) SaNcl(1y — A) = 1y — (SaNint(A)).

Proof: (i) By definition, SaNcl(A) = N{B: A S B,Bis a

NSa-CS}

1y — (SaNcl(A)) = 1y — N{B: A € B, B is a NSa.-CS}
= U{1ly —B:A € B,BisaNSoa-CS}
=U{H:H S 1y — A, H isa NSa-0S}
= SaNint(1y — A).

(i1) The proof is similar to (i).

Theorem 4.5:

Let A and B be two neutrosophic sets in a neutrosophic
topological space (U, T). The following properties hold:

(i) SaNint(0y) = Oy, SaNint(1y) = 1.

(il) SaNint(A) < A.

(ili) A € B = SaNint(A) € SaNint(B).

(iv) SaNint(ANB) € SaNint(A)NSaNint(B).

(v) SaNint(A)USaNint(B) < SaNint(AUB).

(vi) SaNint(SaNint(A)) = SaNint(A).

Proof: (i), (i), (iii), (iv), (v) and (vi) are obvious.

Theorem 4.6:

Let A and B be two neutrosophic sets in a neutrosophic
topological space (U, T). The following properties hold:

(i) SaNcl(0y) = 0y, SaNcl(1y) = 1y.

(il) A € SaNcl(A).

(iii) A € B = SaNcl(A) € SaNcl(B).

(iv) SaNcl(ANB) € SaNcl(A)NSaNcl(B).

V) SaNcl(A)USaNcl(B) € SaNcl(AUB).

(vi) SaNcl(SaNcl(A)) = SaNcl(A).

Proof: (i) and (ii) are evident.

(iii) By part (ii), B € SaNcl(B). Since A S B, we have
A S SaNcl(B) . But SaNcl(B) is a NSa - CS. Thus
SaNcl(B) is a NSa-CS containing A. Since SaNcl(A) is
the smallest NSa.-CS containing A, we have SaNcl(A) <
SaNcl(B). Hence, A € B = SaNcl(A) € SaNcl(B).
(iv) We know that ANB S A and ANB < B.

Therefore, by part (iii), SaNcl(ANB) € SaNcl(A) and
SaNcl(ANB) € SaNcl(B).

Hence SaNcl(ANB) < SaNcl(A)NSaNcl(B).

(v) Since A € AUB and B € AUB, it follows from part
(iii) that SaNcl(A) € SaNcl(AUB) and SaNcl(B) ©
SaNcl(AUB).

Hence SaNcl(A)USaNcl(B) € SaNcl(AUB).

(vi) Since SaNcl(A) is a NSa-CS, we have by proposition
(4.3) part (ii), SaNcl(SaNcl(A)) = SaNcl(A).

Proposition 4.7:
For any neutrosophic subset <A of a neutrosophic
topological space (U, T), then:
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(i) Nint(A) € aNint(A) € SaNint(A) S SaNcl(A) <
aNcl(A) € Ncl(A).

(ii) Nint(SaNint(A)) = SaNint(Nint(A)) = Nint(A).
(iii) aNint(SaNint(A)) = SaNint(aNint(A)) =
aNint(A).

(iv) Ncl(SaNcl(A)) = SaNcl(Ncl(A)) = Ncl(A).

(v) aNcl(SaNcl(A)) = SeNcl(aNcl(A)) = aNcl(A).
(vi) SaNcl(A) = AUNint(Ncl(Nint(Ncl(A)))).

(vii) SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).
(viii) Nint(Ncl(A)) € SaNint(SaNcl(A)).

Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii).
(ii) To prove Nint(SaNint(A)) = SeNint(Nint(A)) =
Nint(A). Since Nint(A) is a N-OS, then Nint(A) is a
NSa.-0S. Hence Nint(A) = SaNint(Nint(A))

(by proposition (4.3)). Therefore:

Nint(A) = SaNint(Nint(A)).c.ovvveerereeennee. (1)

Since Nint(A) € SaNint(A) = Nint(Nint(A)) S
Nint(SaNint(A)) = Nint(A) < Nint(SaNint(A)).
Also, SaNint(A) € A = Nint(SaNint(A)) <
Nint(A). Hence:

Nint(A) = Nint(SaNint(A)).e.covevveerreonece. )
Therefore by (1) and (2), we get Nint(SaNint(A)) =
SaNint(Nint(A)) = Nint(A).

(iii)To prove aNint(SaNint(cﬂ)) = SaNint(aNint(cﬂ))
= aNint(A). Since aNint(A) is Noa-0S, therefore
aNint(A) is NSa-0S. Therefore by proposition (4.3):
aNint(A) = SaNint(aNIint(A))...c.cowvvrereeres (1)

Now, to prove aNint(A) = aNint(SaNint(cﬂ)). Since
aNint(A) € SaNint(A) = aNint(aNint(A)) <
aNint(SaNint(A)) =

aNint(A) € aNint(SaNint(A)).

Also, SaNint(A) € A = aNint(SaNint(A)) S
aNint(A). Hence:

aNint(A) = aNint(SaNInt(A) )eeeereerereernennes ()
Therefore by (1) and (2), we get aNint(SaNint(A)) =
SaNint(eNint(A)) = aNint(A).

(iv) To prove Ncl(SaNcl(c/l)) = SaNcl(Ncl(c/l)) =
Ncl(A). We know that Ncl(A) is a N-CS, so it is NSa.-CS.
Hence by proposition (4.3), we have:

Ncl(A) = SaNcl(Ncl(A)) v (1)

To prove Ncl(A) = Ncl(SaNcl(c/l)).

Since SaNcl(A) < Ncl(A) (by part (i)).

Then Ncl(SaNcl(A)) € Ncl(Ncl(A)) = Nel(A) =
Ncl(SaNcl(A)) € Ncl(A). Since A S SaNcl(A) <
Ncl(SaNcl(A)), then A S Ncl(SaNcl(A)). Hence
Nel(A) € Nel (Nel(SaNcl(A)) ) = Nel(SaNcl(A))
= Ncl(A) S Ncl(SaNcl(A)) and therefore: Ncl(A) =
Ncl(SaNCL(A)) v )
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Now, by (1) and (2), we get that Ncl(SaNcl(c/l)) =
SaNcl(Ncl(A)).

Hence Ncl(SaNcl(A)) = SaNcl(Ncl(A)) = Ncl(A).
(vii) To prove SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).
Since SaNint(A) € NSa.0(U) = SaNint(A) S
Ncl(Nint(Ncl(Nint(SaNint(A)))))

= Ncl(Nint(Ncl(Nint(A)))) (by part (ii)).

Hence SaNint(A) € Ncl(Nint(Ncl(Nint(A)))), also
SaNint(A) € A. Then:

SaNint(A) € ANNcl(Nint(Ncl(Nint(A))))..oovevenrn. (1
To prove ANNcl(Nint(Ncl(Nint(A)))) is a NSa-0S
contained in A.

It is clear that ANNcl(Nint(Ncl(Nint(A)))) <
Ncl(Nint(Ncl(Nint(A)))) and also it is clear that
Nint(A) € Ncl(Nint(A)) = Nint(Nint(A)) S
Nint(Ncl(Nint(A))) = Nint(A) <
Nint(Ncl(Nint(A))) = Ncl(Nint(A)) <
Ncl(Nint(Ncl(Nint(A))) and Nint(A) € Ncl(Nint(A))
= Nint(A) € Ncl(Nint(Ncl(Nint(A)))) and Nint(A)
€ A = Nint(A) € ANNcl(Nint(Ncl(Nint(A)))).

We get Nint(A) € ANNcl(Nint(Ncl(Nint(A)))) <
Ncl(Nint(Ncl(Nint(A)))).

Hence ANNcl(Nint(Ncl(Nint(A)))) is a NSa-0S (by
proposition (4.3)). Also, ANNcl(Nint(Ncl(Nint(A))))

is contained in A. Then ANNcl(Nint(Ncl(Nint(A))))

C SaNint(A) (since SaNint(A) is the largest NSa-0S
contained in A). Hence:

ANNcl(Nint(Ncl(Nint(A)))) S SaNint(A)............. )
By (1) and (2), SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).
(viii) To prove that Nint(Ncl(A)) S SaNint(SaNcl(cﬂ)).
Since SaNcl(A) is a NSa-CS, therefore
Nint(Ncl(Nint(Ncl(SeNcl(A))))) € SaNcl(A) (by
corollary (3.12)). Hence N int(Ncl(a‘l)) c
Nint(Ncl(Nint(Ncl(A))) € SaNcl(A) (by part (iv)).
Therefore, SaNint (Nint(Ncl(a‘l))) c
SaNint(SaNcl(A)) =

Nint(Ncl(A)) € SeNint(SaNcl(A)) (by part (ii)).

Theorem 4.8:

For any neutrosophic subset A of a neutrosophic
topological space (U,T). The following properties are
equivalent:

(1) A € NSa0(U).

(i) H € A S Ncl(Nint(Ncl(H))), for some N-OS H.
(iii) H € A S SNint(Ncl(H)), for some N-OS H .

(iv) A € SNint(Ncl(Nint(A))).

Proof:

(i) = (ii) Let A € NSoO(U), then A <
Ncl(Nint(Ncl(Nint(A)))) and Nint(A) S A. Hence

H S A S Ncl(Nint(Ncl(H))), where H = Nint(A).
(it) = (iii) Suppose H S A S Ncl(Nint(Ncl(H))), for
some N-OS H.
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But SNint(Ncl(#)) = Ncl(Nint(Ncl(3))) (by lemma
(2.6)).

Then H € A € SNint(Ncl(H)), for some N-OS H .

(iii) = (iv) Suppose that H < A < SNint(Ncl(H)),
for some N-OS H. Since H is a N-OS contained in A.
Then I € Nint(A) = Ncl(H) € Ncl(Nint(A))

= SNint(Ncl(#)) < SNint(Ncl(Nint(A))).

But A € SNint(Ncl(H)) (by hypothesis), then

A S SNint(Ncl(Nint(A))).

(iv) = (i) Let A S SNint(Ncl(Nint(A))). But
SNint(Ncl(Nint(A))) = Ncl(Nint(Ncl(Nint(A))))
(by lemma (2.6)). Hence A € Ncl(Nint(Ncl(Nint(A))))
= A € NSaO ().

Corollary 4.9:

For any neutrosophic subset B of a neutrosophic
topological space (U,T), the following properties are
equivalent:

(i) B € NSaC(1).

(ii) Nint(Ncl(Nint(F))) € B < F, for some F N-CS.

(iii) SNcl(Nint(F)) € B < F, for some F N-CS.

(iv) SNcl(Nint(Ncl(B))) € B.

Proof:

(i) = (ii) Let B € NSaC(U) =
Nint(Ncl(Nint(Ncl(B)))) S B (by corollary (3.12))

and B € Ncl(B). Hence we get
Nint(Ncl(Nint(Ncl(B)))) € B < Ncl(B).

Therefore Nint(Ncl(Nint(F))) € B S F, where F =
Ncl(B).

(ii) = (iii) Let Nint(Ncl(Nint(F))) € B € F, for some
F N-CS. But Nint(Ncl(Nint(F))) = SNcl(Nint(F)) (by
lemma (2.6)). Hence SNcl(Nint(F)) € B € F, for some
F N-CS.

(iii) = (iv) Let SNcl(Nint(F)) € B € F, for some F
N-CS. Since B € F (by hypothesis), hence Ncl(B) & F
= Nint(Ncl(B) € Nint(F) = SNcl(Nint(Ncl(B)))

C SNcl(Nint(F)) € B = SNcl(Nint(Ncl(B))) < B.
(iv) = (i) Let SNcl(Nint(Ncl(B))) € B.

But SNcl(Nint(Ncl(B))) = Nint(Ncl(Nint(Ncl(B))))
(by lemma (2.6)). Hence Nint(Ncl(Nint(Ncl(B)))) €
B = B € NSaC(U).
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5. Conclusion

In this work, we have defined new class of neutro-
sophic open sets called neutrosophic semi-a-open sets and
studied their fundamental properties in neutrosophic topo-
logical spaces. The neutrosophic semi-a-open sets can be
used to derive a new decomposition of neutrosophic continuity,
neutrosophic compactness, and neutrosophic connectedness.
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On Neutrosophic ay-Closed Sets
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Abstract: The aim of this paper is to introduce the concept of ap-closed sets in terms of neutrosophic
topological spaces. We also study some of the properties of neutrosophic ay-closed sets. Further,
we introduce continuity and contra continuity for the introduced set. The two functions and their
relations are studied via a neutrosophic point set.

Keywords: neutrosophic topology; neutrosophic at-closed set; neutrosophic agp-continuous function;
neutrosophic contra a-continuous mappings

1. Introduction

Zadeh [1] introduced and studied truth (t), the degree of membership, and defined the fuzzy
set theory. The falsehood (f), the degree of nonmembership, was introduced by Atanassov [2—4]
in an intuitionistic fuzzy set. Coker [5] developed intuitionistic fuzzy topology. Neutrality (i),
the degree of indeterminacy, as an independent concept, was introduced by Smarandache [6,7] in 1998.
He also defined the neutrosophic set on three components (¢, f,7) = (truth, falsehood, indeterminacy).
The Neutrosophic crisp set concept was converted to neutrosophic topological spaces by Salama et al.
in [8]. This opened up a wide range of investigation in terms of neutosophic topology and its
application in decision-making algorithms. Arokiarani et al. [9] introduced and studied a-open sets
in neutrosophic topoloical spaces. Devi et al. [10-12] introduced a1p-closed sets in general topology,
fuzzy topology, and intutionistic fuzzy topology. In this article, the neutrosophic ay-closed sets are
introduced in neutrosophic topological space. Moreover, we introduce and investigate neutrosophic
ap-continuous and neutrosophic contra ap-continuous mappings.

2. Preliminaries

Let neutrosophic topological space (NTS) be(X, 7). Each neutrosophic set(NS) in (X, 7) is called a
neutrosophic open set (NOS), and its complement is called a neutrosophic open set (NOS).
We provide some of the basic definitions in neutrosophic sets. These are very useful in the sequel.

Definition 1. [6] A neutrosophic set (NS) A is an object of the following form

U = {{x, pu(x),vu(a), wu(x)) : x € X}
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where the mappings uy : X — L vy : X — [, and wy : X — I denote the degree of membership
(namely uy(x)), the degree of indeterminacy (namely vy (x)), and the degree of nonmembership (namely wiy(x))
for each element x € X to the set U, respectively, and 0 < py(x) + vy (x) + wy(x) < 3 foreach a € X.

Definition 2. [6] Let U and V be NSs of the form U = {(a, uy(x),vy(x), wy(x)) : a € X} and
V = {{x,uy(x),vy(x),wy(x)) : x € X}. Then

(i) U C Vifandonly if uy(x) < py(x), vg(x) > vy(x) and wy(x) > wy(x);
(i) U= {{x,vy(x), uy(x),wy(x)) : x € X};
(i) UNV = {(x, uu(x) Apy(x),vy(x) Vy(x),wy(x) Vwy(x)) : x € X};
(iv) UUV = {{x,uy(x) vV py(x),vy(x) Avy(x), wy(x) Awy(x)) : x € X}
We will use the notation U = (x, py, vy, wy) instead of U = {{x, uy(x), vy(x), wy(x)) : x € X}.
The NSs 0~ and 1. are defined by 0 = {(x,0,1,1) : x € X} and 1. = {(x,1,0,0) : x € X}.
Letr,s, t € [0,1] such that r + s+t < 3. A neutrosophic point (NP) p, s ;) is neutrosophic set defined by

i G0 L2

otherwise.

Let f be a mapping from an ordinary set X into an ordinary set Y. If V.= {{y, uv (y), vv (y), wy (y)) :
y € Y}isan NS in'Y, then the inverse image of V under f is an NS defined by

FHV) = {7 ) (), fH ) (), fH wy) (1)) s x € X
The image of NS U = {(y,uu(y),vu(y),wu(y)) : y € Y} under f is an NS defined by
) =, f () (W), f(vu) (v), ) :y € Y} where

), flwu)(y)
sup pu(x), if fH(y) #0
fru)(y) = xef ) .

inf (), if ) £0

fo
otherwise

xe}nf wu(x), if f71(y) #0

otherwise

foreachy €Y.

Definition 3. [8] A neutrosophic topology (NT) in a nonempty set X is a family T of NSs in X satisfying the
following axioms:

(NT1) 0~,1< € T;
(NT2) G1N Gy € Tforany G1,Gy € T;
(NT3) UG; € T for any arbitrary family {G; :i € J} C 1.

Definition 4. [8] Let U be an NS in NTS X. Then
Nint(U) =U{O : Oisan NOS in X and O C U} is called a neutrosophic interior of U;
Ncl(U) =N{O : Oisan NCS in X and O D U} is called a neutrosophic closure of U.

Definition 5. [8] Let p(, s ) be an NP in NTS X. An NS U in X is called a neutrosophic neighborhood (NN)
Of P(r,t) if there exists an NOS V in X such that p(, ;) € V C U.

Definition 6. [9] A subset U of a neutrosophic space (X, ) is called
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1. a neutrosophic pre-open set if U C Nint(Ncl(U)), and a neutrosophic pre-closed set if
Ncl(Nint(U)) C U,

2. a neutrosophic semi-open set if U C Ncl(Nint(U)), and a neutrosophic semi-closed set if
Nint(Ncl(U)) C U,

3. a neutrosophic w-open set if U C Nint(Ncl(Nint(U))), and a neutrosophic a-closed set if
Ncl(Nint(Ncl(U))) C U.

The pre-closure (respectively, semi-closure and a-closure) of a subset U of a neutrosophic space (X, T) is the
intersection of all pre-closed (respectively, semi-closed, a-closed) sets that contain U and is denoted by Npcl(U)
(respectively, Nscl(U) and Nacl(U)).

Definition 7. A subset A of a neutrosophic topological space (X, T) is called

1. a neutrosophic semi-generalized closed (briefly, Nsg-closed) set if Nscl(U) C G whenever U C G and G
is neutrosophic semi-open in (X, T);
2. aneutrosophic Nip-closed set if Nscl(U) C G whenever U C G and G is Nsg-open in (X, T).

3. On Neutrosophic agp-Closed Sets
Definition 8. A neutrosophic aip-closed (Nap-closed) set is defined as if Nypcl(U) C G whenever U C G

and G is an Na-open set in (X, T). Its complement is called a neutrosophic ayp-open (Nap-open) set.

Definition 9. Let U be an NS in NTS X. Then
Naint(U) = U{O : O is an NaypOS in X and O C U} is said to be a neutrosophic ap-interior of U;
Naycl(U) =N{O : O is an NaypCS in X and O O U} is said to be a neutrosophic ap-closure of U.

Theorem 1. All Na-closed sets and N-closed sets are Nap-closed sets.

Proof. Let U be an Na-closed set, then U = Nacl(U). Let U C G, where G is Na-open. Since U is
Na-closed, Nycl(U) C Nacl(U) C G. Thus, U is Nay-closed. [

Theorem 2. Every Nsemi-closed set in a neutrosophic set is an Nup-closed set.

Proof. Let U be an Nsemi-closed set in (X, T), then U = Nscl(U). Let U C G, where G is Na-open in
(X, 7). Since U is Nsemi-closed, Nycl(U) C Nscl(U) C G. This shows that U is Nay-closed set.

The converses of the above theorems are not true, as can be seen by the following counter
example. O

Example 1. Let X = {u, v, w} and neutrosophic sets Gy, Gy, G3, Gy be defined by

G = (x (35 01 02)- (05 01/ 92) (05 05/ 35))
G = (x, (55 05 04)- (a1 05/ 01)- (05 02/ 35))
Gs = (% (55 01 0:4) (a1 01/ 01) (92 02 05))
Gs = (x, (35 55 02)- (05 05/ 92)- (05 05 38))
Gs = (x, (35 05/ 03)- (05 05/ 01 (05 05/ 33))
Ge = (%, (55 013 05) (o1 03/ 01) (95 037 0))
Gr = (x (32 55 03) (a5 05, 02)- (05 03/ 05))-

3
Let T = {0~,Gy, Gy, Gs, Gy, 1.} Here, Gy is an N open set, and Nipcl(Gs) C Gg. Then Gs is
Nap-closed in (X, T) but is not Na-closed; thus, it is not N-closed and Gy is Na-closed in (X, T), but not
Nsemi-closed.
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Theorem 3. Let (X, T) be an NTS and let U € NS(X). If U is an Nap-closed set and U C V C
Nuycl(U), then V is an Nay-closed set.

Proof. Let G be an Na-open set such that V C G. Since U C V, then U C G. But U is Nay-closed,
so Nycl(U) C G, since V C Nycl(U) and Nycl (V) C Nycl(U) and hence Nyl (V) C G. Therefore V
is an Nap-closed set. [J

Theorem 4. Let U be an Nay-open set in X and Nint(U) C V C U, then V is Nay-open.

Proof. Suppose U is Nay-open in X and Nyint(U) C V C U. Then U is Nag-closed and U C V C
Ncl(U). Then U is an Nay-closed set by Theorem 3.5. Hence, V is an Nay-open setin X. [

Theorem 5. An NS U in an NTS (X,7) is an Na-open set if and only ifV C Nypint(U)
whenever V is an Na-closed set and V C U.

Proof. Let U be an Na-open set and let V be an Na-closed set such that V. .C U. Then U C V
and hence Nycl(U) C V, since U is Nay-closed. But Nycl(U) = Nyint(U), so V. C Nyint(U).
Conversely, suppose that the condition is satisfied. Then Nyint(U) C V whenever V is an Na-open
setand U C V. This implies that Nycl(U) C V = G, where G is Na-open and U C G. Therefore, U is
Nuap-closed and hence U is Nayp-open. [

Theorem 6. Let U be an Nap-closed subset of (X, T). Then Nipcl(U) — U does not contain any non-empty
Nuap-closed set.

Proof. Assume that U is an Nay-closed set. Let F be a non-empty Nay-closed set, such that
F C Nycl(U) — U = Nyc(U)NU. ie, F C Nycl(U) and F C U. Therefore, U C F. Since F

is an Nay-open set, Nycl(U) C F = F C (Nycl(U) — U) N (Nycl(U)) C Nycl(U) N Nyl (U).
i.e., F C ¢. Therefore, F is empty. O

Corollary 1. Let U be an Nap-closed set of (X, 7). Then Nipcl(U)-U does not contain anynon-empty
N-closed set.

Proof. The proof follows from the Theorem 3.9. O
Theorem 7. If U is both N-open and Nap-closed, then U is Nip-closed.

Proof. Since U is both an Ny-open and Nay-closed set in X, then Nycl(U) C U. We also have
U C Nycl(U). Thus, Nypcl(U) = U. Therefore, U is an Ni-closed setin X. O

4. On Neutrosophic ap-Continuity and Neutrosophic Contra ay-Continuity

Definition 10. A function f : X — Y is said to be a neutrosophic ayp-continuous (briefly, Nayp-continuous)
function if the inverse image of every open set in Y is an Nap-open set in X.

Theorem 8. Let g : (X, 7) — (Y, 0) be a function. Then the following conditions are equivalent.

(i) g is Nay-continuous;
(i)  The inverse f~1(U) of each N-open set U in Y is Naip-open set in X.

Proof. The proof is obvious, since g~!(U) = ¢~1(U) for each N-open set U of Y. [

Theorem 9. If ¢ : (X, T) — (Y, 0) is an Nap-continuous mapping, then the following statements hold:
(i) g(NayNcl(U)) C Ncl(g(U)), for all neutrosophic sets U in X;
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(i) NayNcl(g='(V)) € g~ (Ncl(V)), for all neutrosophic sets V in Y.

Proof.

(i) Since Ncl(g(U)) is a neutrosophic closed set in Y and g is Nai-continuous, then g~ (Ncl(g(U)))
is Nay-closed in X. Now, since U C ¢~ ' (Ncl(g(U))), Naycl(U) C ¢~ (Ncl(g(U))). Therefore,
g(NaNel(U1)) C Nel(g(U).

(ii) By replacing U with V in (i), we obtain g(Naypcl(¢~1(V))) C Nel(g(g~'(V))) C Nel(V).
Hence, Naycl(g~1(V)) € g (Ncl(V)).

O

Theorem 10. Let g be a function from an NTS (X, T) to an NTS (Y,0). Then the following statements
are equivalent.

(i) g isaneutrosophic ap-continuous function;

(i) For every NP p(, ) € X and each NN U of g(p(,ss)), there exists an Nay-open set V such that
P(rs.t) eVcC gil(u)'

(iii) For every NP p(, s € X and each NN U of g(p(rs ) ), there exists an Naip-open set V such that
P(rst) € Vand g(V) C U.

Proof. (i) = (ii). If p(;ss) isan NP in X and if U is an NN of g(p(, ) ), then there exists an NOS W in
Y such that g(p,s) € W C U. Thus, g is neutrosophic agp-continuous, V = g~ (W) is an NayOset,
and

Pirst) €8 H8(Pusp)) C& W) =V Cg (L)

Thus, (ii) is a valid statement.

(it) = (iii). Let p( ) be an NP in X and let U be an NN of g(p(, ). Then there exists
an NayOset U such that p, ;) € V C ¢~ 1(U) by (ii). Thus, we have Pirst) € Vand g(V) C
¢(¢71(U)) C U. Hence, (iii) is valid.

(iii) = (i). Let V be an NO set in Y and let p(, ;1) € ¢ (V). Then 8(P(rst) € g(g (V) c V.
Since V is an NOS, it follows that V' is an NN of g(p(;.s ) ). Therefore, from (iii), there exists an NayOset
U such that p(, s ;) € U and g(U) C V. This implies that

Pirsp €U C g 1 (g(U)) S g (V).

Therefore, we know that ¢~1(V) is an NagOset in X. Thus, g is neutrosophic aip-continuous. [

Definition 11. A function is said to be a neutrosophic contra ayp-continuous function if the inverse image of
each NOS V in'Y is an NayC set in X.

Theorem 11. Let g: (X, T) — (Y, 0) be a function. Then the following assertions are equivalent:

(i) g isaneutrosophic contra ap-continuous function;
(i) g Y(V)isan N C set in X, for each NOS V in Y.

Proof. (i) = (ii) Let g be any neutrosophic contra aip-continuous function and let V be any NOS in Y.
Then V is an NCS in Y. Based on these assumptions, g~ (V) is an NapOset in X. Hence, g1 (V) is an
NaipCset in X.

The converse of the theorem can be proved in the same way. [J

Theorem 12. Let g : (X,7T) — (Y,0) be a bijective mapping from an NTS(X, T)into an NTS(Y,T).
The mapping g is neutrosophic contra aip-continuous,if Ncl(g(U)) C g(Nawint(U)), for each NS U in X.
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Proof. Let V be any NCS in X. Then NcI(V) = V, and g is onto, by assumption, which shows
that g(Nayint(g~1(V))) 2 Nel(g(g~1(V))) = Nel(V) = V. Hence, g~ (g(Nayint(g~1(V)))) 2
¢~ 1 (V). Since g is an into mapping, we have Nayint(g~1(V)) = ¢~ (g(Nayint(g~1(V)))) 2 g (V).
Therefore, Nayint(¢~1(V)) = ¢~ (V), so g~ (V) is an NayO set in X. Hence, g is a neutrosophic
contra ayp-continuous mapping. U

Theorem 13. Let g : (X, T) — (Y, 0) be a mapping. Then the following statements are equivalent:

(i) g is a neutrosophic contra ap-continuous mapping;

(ii)  foreach NP p, ) in X and NCSV containing g(p ;s ) there existsanNayOset U in X containing
P(rs,) Such that A C f~1(B);

(iii)  foreach NP p, ) in X and NCS V containing p(, s ) there existsanNaypOset U in X containing
P(r,s,p) Such that g(U) C V.

Proof. (i) = (ii) Let g be a neutrosophic contra ai-continuous mapping, let V be any NCS in Y
and let p(, ; ;) be an NP in X and such that g(p(,s4)) € V. Then p(, ;) € ¢ (V) = Nayint(g~1(V)).
Let U = Nagint(g~'(V)). Then U is an NayOset and U = Naint(g~1(V)) C g~ (V).

(ii) = (iii) The results follow from evident relations g(U) C g(¢~*(V)) C V.

(iii) = (i) Let V be any NCS in Y and let p(,,) be an NP in X such that p, ;) € g (V).
Then g(p(rsr) € V. According to the assumption, there exists an NaypOS U in X such that
Prsty € Uand g(U) C V. Hence, p(p € U C ¢ Y (g(U)) € ¢ Y(V). Therefore, Pirsp) €
U = aypint(U) C Nayint(g~'(V)). Since P(rs4) is an arbitrary NP and ¢ (V) is the union of
all NPs in ¢~!(V), we obtain that ¢~(V) C Nayint(¢~'(V)). Thus, g is a neutrosophic contra
Nap-continuous mapping. [

Corollary 2. Let X, Xj and Xp be NTS sets, p1 : X — X1 x Xp and pp : X — Xy x Xj are the
projections of X1 x Xp onto X;, (i = 1,2). If g : X — Xy x Xp is a neutrosophic contra ap-continuous,
then p;g are also neutrosophic contra ap-continuous mapping.

Proof. This proof follows from the fact that the projections are all neutrosophic
continuous functions. [J

Theorem 14. Let ¢ : (Xy,t) — (Y1,0) be a function. If the graph h: X3 —
X1x Y1 of gis neutrosophic contra ap-continuous, then g is neutrosophic contra ap-continuous.

Proof. For every NOS, V in Y; holds g~ (V) = 1 Ag (V) = h~1(1 x V). Since h is a neutrosophic
contra agp-continuous mapping and 1 x V is an NOS in X; x Y1, ¢~'(V) is an NaypCset in Xy, s0 g is a
neutrosophic contra ap-continuous mapping. [
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New Multigranulation Neutrosophic Rough Set
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sym10110578

Abstract: After the neutrosophic set (NS) was proposed, NS was used in many uncertainty problems.
The single-valued neutrosophic set (SVNS) is a special case of NS that can be used to solve real-word
problems. This paper mainly studies multigranulation neutrosophic rough sets (MNRSs) and their
applications in multi-attribute group decision-making. Firstly, the existing definition of neutrosophic
rough set (we call it type-I neutrosophic rough set (NRS) in this paper) is analyzed, and then
the definition of type-II neutrosophic rough set (NRSy;), which is similar to NRS;, is given and
its properties are studied. Secondly, a type-III neutrosophic rough set (NRSyy) is proposed and
its differences from NRSy and NRSyy are provided. Thirdly, single granulation NRSs are extended
to multigranulation NRSs, and the type-I multigranulation neutrosophic rough set (MNRS)) is
studied. The type-II multigranulation neutrosophic rough set (MNRSyy) and type-IIl multigranulation
neutrosophic rough set (MNRSyy) are proposed and their different properties are outlined. We found
that the three kinds of MNRSs generate tcorresponding NRSs when all the NRs are the same. Finally,
MNRSyy; in two universes is proposed and an algorithm for decision-making based on MNRSy is
provided. A car ranking example is studied to explain the application of the proposed model.

Keywords: inclusion relation; neutrosophic rough set; multi-attribute group decision-making
(MAGDM); multigranulation neutrosophic rough set (MNRS); two universes

1. Introduction

Many theories have been applied to solve problems with imprecision and uncertainty. Fuzzy set
(FS) theories [1-3] use the degree of membership to solve the fuzziness. Rough set (RS) theories [4-7]
deal with uncertainty by lower and upper approximation (LUA). Soft set theories [8-10] deal with
uncertainty by using a parametrized set. However, all these theories have their own restrictions.
Smarandache proposed the concept of the neutrosophic set (NS) [11], which was a generalization of
the intuitionistic fuzzy set (IFS). To address real-world uncertainty problems, Wang et al. proposed the
single-valued neutrosophic set (SVNS) [12]. Many theories about neutrosophic sets were studied and
extended single-valued neutrosophic set [13-15]. Zhang et al. [16] analyzed two kinds of inclusion
relations of the NS and then proposed the type-3 inclusion relation of NS. The combinations of the
FS and RS are popular and produce many interesting results [17]. Broumi and Smarandache [18]
combined the RS and NS, then produced a rough NS and studied its qualities. Yang et al. [19] combined
the SVNS and RS, then produced the SVNRS (single-valued neutrosophic rough set) and studied
its qualities.

From the view point of granular computing, the RS uses upper and lower approximations
to solve uncertainty problems, shown by single granularity. However, with the complexity of
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real-word problems, we often encounter multiple relationship concepts. Qian and Liang [20] proposed
a multigranularity rough set (MGRS). Many scholars have generalized MGRS and acquired some
interesting consequences [21-26]. Zhang et al. [27] proposed non-dual MGRSs and investigated
their qualities.

Few articles have been published about the combination of NSs and multigranulation rough
sets. In this paper, we study three kinds of neutrosophic rough sets (NRSs) and multigranulation
neutrosophic rough sets (MNRSs) that are based on three kinds of inclusion relationships of NS
and corresponding union and intersection relationships [11,12,16]. Their different properties are
discussed. We found that MNRSs degenerate to corresponding NRSs when the NRs are the same.
Yang et al. [19] defined the NRS; and considered its properties. Bo et al. [28] proposed MNRS; and
discussed its properties. In this paper, we study NRSy and MNRSy;. We also study NRSy and
MNRSyy, which are based on a type-3 inclusion relationship and corresponding union and intersection
relationships. Finally, we use MNRSy; on two universes to solve multi-attribute group decision-making
(MAGDM) problems.

The structure of this article is as follows: In Section 2, some basic notions and operations of
NRS; and NRSyy are introduced. In Section 3, the definition of NRSyy is proposed and its qualities are
investigated, and the differences between NRS;, NRSy;, and NRSyy are illustrated using an example.
In Section 4, MNRS; and MNRSy; are discussed. In Section 5, MNRSyy is proposed and its differences
from MNRS; and MNRSyy are studied. In Section 6, MNRSy; on two universes is proposed and
an application to solve the MAGDM problem is outlined. Finally, Section 7 provides our conclusions
and outlook.

2. Preliminary

In this chapter, we look back at several basic concepts of type-I NRS, then propose the definition
and properties of type-II NRS.
Definition 1. [12] A single valued neutrosophic set A in X is denoted by:

A = {(x, Ta(x), L (x), Ea(x))|x € X}, M

where TA(x), IA(x), FA(x) € [0, 1] for each point x in X and satisfies the condition 0 < Ta(x) + Ia(x) + Fa(x) < 3.
For convenience, “SVNS” is abbreviated to “NS” later. Here, NS(X) denotes the set of all SVNS in X.

Definition 2. [29] A neutrosophic relation (NR) is a neutrosophic fuzzy subset of X x Y, that is, Vx € X,
yey,

R(.X, y) = (TR/ IR/ FR)/ (2)
where Tr: X x Y — [0, 1], Ig: X x Y — [0, 1], and Fr: X x Y — [0, 1] and satisfies 0 < Tg + Ig + Fr < 3.
NR(X X Y) denotes all the NRs in X x Y.

Definition 3. [19] Suppose (U, R) is a neutrosophic approximation space (NAS). VA € NS(U), the LUA of A,
denoted by R(A) and R(A), is defined as: Vx € U,

R(A) = yQU(RC(x/y) UA(y)), R(A) = ygu(R(x,y) NAY))- ©)

The pair (R(A), R(A)) is called the SVNRS of A. In this paper, we called it type-I neutrosophic rough set
(NRSy). Because the definition of NRS; is based on the type-1 operator of NS, the definition can be written as:

NRS(A) = y;hu(Rc(x/y) Ui A(y)), NRS (A) = ytélu(R(x,y) N A(y))- )
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Proposition 1. [19] Suppose (U, R) is an NAS. VA, B € NS(U), we have:

(1) IfA <y B, then NRS[(A) - NRS](B) and NRS[(A) (-] NRS[(B).
(2) NRS;(An; B) = NRS;(A) "y NRS;(B), NRS[(A U, B) = NRS;(A) Us NRS;(B).
(3) NRS[(A) U NRS[(B) - NRS[(A U1 B), NRS[(A M B) - NRS[(A) My NRS[(B).

According to the NRS;, we can get the definition and properties of NRSyj, which is based on the
type-2 operator of NS.

Definition 4. Suppose (U, R) is an NAS. VA € NS(U), the type-1I LUA of A, is defined as:

NRS;;(4) = M2 (RE(x,y) Uz A(y)), NRS1i(A) = Ua (R(x,y) M2 A(y)) ®)
ye ye

The pair (NRSy1(A), NRS;;(A)) is called NRSy; of A.

Proposition 2. Suppose (U, R) is an NAS. VA, B € NS(U), we have:

(1) IfA Cy B, then NRSU(A) - NRSH(B), NRS]](A) - NRSH(B).
(2) &SU(A Mo B) = &SH(A) Mo &SH(B), NRSH(A Up B) = NRSH(A) Up NRSH(B).
(3)  NRSyi(A) Uy NRSy1(B) € NRSy(A Uy B), NRSp (A My B) Co NRSj(A) M2 NRSyp(B).

Definition 5. [22] Suppose A, B are two NSs, then the Hamming distance between A and B is defined as:

dn(A, B) i{m(m — Tp(i)] + |Ta(x) — In(x)| + [Fa(x) — Fa(x)]}- ©)

3. Type-III NRS

In this chapter, we introduce a new NRS, type-III NRS (NRSy). We provide the differences
between the three kinds of NRSs. The properties of NRSyyj are also given.

Definition 6. Suppose (U, R) is an NAS. VA € NS(U), the type-1II LUA of A, is defined as:

NRS1(A) = yrggu(RC(x,y) Us A(y)), NRSy1(A) = yké?&(R(x/y) N3 A(y))-

The pair (NRS[H(A), NRS[H(A)) is called NRSIH OfA.

Proposition 3. Suppose (U, R) is an NAS. VA, B € NS(U), we have:

(1) IfA §3 B, then NRS[H(A) gg NRSH](B), NRS”[(A) §3 NRSU[(B).
(2)  NRSy;i(AN3B) C3 NRSyji(A) N3 NRS(B), NRSy11(A) Us NRSyy;(B) 3 NRSy; (A Us B).
(3) NRSH[(A M3 B) - NRS[H(A) M3 NRSH[(B), NRS[H(A) Us NRSH](B) Cs NRSH[(A Us B).

Proof. (1) Assume A C3 B,
Case 1: If T4(x) < Tg(x), Fa(x) > Fp(x), then:

TNRs; (4)(X) = y@u[FR(x,y) VTa(y)] < yé\u[FR(x,y) V Tg(y)] = Tnrs,,(8) (%)

Fgrsypa) (%) =V [Tr(x,y) AFa(y)] = y;/u[TR(x/}/) A Fp(y)] = Engrs,;(8) (%)

V
yel
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Hence,
NRS;11(A) C5 NRS;11(B).

Case 2: If T4(x) = Tg(x), Fa(x) > Fp(x), then:

TnRs; (4)(X) = y@u[FR(x/y) VTa(y)] = yé\u[FR(x,y) V Tg(y)] = Tnrs,y () (%)

Frsypa) (%) =V [Tr(x,y) AFa(y)] = y;/u[TR(x,y) AFp(y)] = Engrs,;;(8)(%)-

V
yel
Hence,

NRSy11(A) S5 NRS11(B).

Case 3: suppose Ty (x) = Tp(x), Fa(x) = Fp(x) and I4(x) < Ig(x), then:

TNRs;; (4)(X) = yeAu[FR(x,y) VTa(y)] = yé\u[FR(x,]/) V Tg(y)] = Tnrs,,(8) (%)
Fyrsy(a) () = yevu[TR(x/y) ANFa(y)] = y;/u[TR(x/J/) AN Fp(y)] = Fngs,, () (%)
Ia(y;),  R(xy) S3A(yj) S Awe) ey €U
Inrsyy(a) (%) = 4 Ire(x,y5),  A(y;) Ss RO (x,y))
1, else
Ig(yj), Rif(x,y;) S3B(yj) Ss Bwk), ywyj €U
Ivngs;o8) (%) = Ire(x;),  B(yj) Ss Ri€(x,y;)

1, else

Hence, INRSIU(A)(x) S INRSIU(B) (x) So NRSIH(A) §3 NRSHI(B)
Summing up the above, if A C3 B, then NRSy1;(A) C3 NRSy1(B).
Similarly, we can get NRSj;;(A) C3 NRS(B).

(2) According the Definition 6, we have:

NRSIH(A N3 B) = N3 [Rc(x,y) Us (A N3 B)(y)]

yel
C3 lﬂa (R°(x,y) Us A(y)) | N3 | N3 (R°(x,y) Us B(y))]
yeld yeld

= NRSy11(A) N5 NRS11(B).

Similarly,

NRSH](A) Us NRSH[(B) = LQ%[<RC(X,y) Us A(]/)) Us [yg%l(RC(x,y) Us B(]/))]

C3 N3 [R(x,y) Us (A U3 B)(y)]
yel

= NRS[H(A Us B).

(3) The proof is similar to that of Case 2. [J
Example 1. Define NAS (U, R), where U = {x1, x»} and R is given in Table 1.

Table 1. A neutrosophic relation R.

R X1 X2
X1 (04,0.6,0.7) (0.2,0.2,0.9)
Xp (0.7,0.1,0.4) (0.8,0.8,0.6)
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Suppose A is an NS and A = {(x1, 0.8, 0.2, 0.1), (xp, 0.4, 0.9, 0.5). Then, by Definitions 3, 4 and 6,
we can get:

NRS;(A)(x1) = (0.8,0.8,0.2), NRS;(A)(x2) = (0.6,0.2,0.5),

NRS;(A)(x1) = (0.4,0.6,0.7), NRSI(A)( 2) = (0.7,02,0.4),
NRS;;(A)(x1) = (0.8,0.4,0.2), NRS;(A)(x2) = (0.6,0.9,0.5),
NRS;1(A)(x1) = (0.4,02,0.7), NRSU(A)(xz) = (0.7,0.8,0.4),

NRS[H(A)(Xl) = (0.8, 1,02), NRSH[(A)(JQ) = (0.6,0,0.5),
NRS;17(A)(x1) = (0.4,0.6,0.7), NRS1;1(A)(x2) = (0.7,0.1,0.4).

4. Type-I and Type-II MNRS

We have proposed a kind of multigranulation neutrosophic rough set [30] (we called it type-I
multigranulation neutrosophic rough set in this paper). MNRS; is based on a type-1 operator of NRs.
In this chapter, we define the type-II multigranulation neutrosophic rough set (MNRSy), which is
based on a type-2 operator of NRs.

Definition 7. [28] Suppose U is a non-empty finite universe, and R; (1 <i < m) is a binary NR on U. We call
the tuple ordered set (U, R;) the multigranulation neutrosophic approximation space (MNAS).

Definition 8. [28] Suppose (U, R;) is an MNAS. VA € NS(U), the type-I optimistic LUA of A, represented by
MNRS°(A) and MNRS;’ (A), is defined as:

MNRS,°(A)(x) = g <ﬂ1( i“(x,y) Uq A(l/)))

yel
MNRS,(A)(x) = r'ﬁ <U1 (Ri(x,y) M A(y))>‘
i=1 \yeUu

Then, A is named a definable NS when MNRS;°(A) = MINRS;’ (A). Alternatively, we name the pair
(MNRS °(A), MNRS;" (A)) an optimistic MNRSY.

Definition 9. [30] Suppose (U, R;) is an MNAS. VA € NS(U), the type-I pessimistic LUA of A, represented
by MNRS[P(A) and MNRS;" (A), is defined as:

MNRSP(A)(x) = fnjl (ﬂl (R (x,y) Ur A(V)))

=1 \yeu

yel

MNRS;" (A)(x) = L?(UM i(x,y) ﬂlA(y)))

Similarly, A is named a definable NS when MNRS[P(A) = MNRS;’ (A). Alternatively, we name the
pair (MNRS,”(A), MNRS]" (A)) a pessimistic MNRS;.

Definition 10. Suppose (U, R;) is an MNAS. VA € NS(U), the type-1I optimistic LUA of A, represented by
MNRS;°(A) and MNRS;;" (A), is defined as:

MNRS;;(A) (x) = Uy < M (R (x,y) Ua A<y>>>

MNRS;" (A)(x) = 12 ( Ua (Ri(x,y) Mo A<y>>>.
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Then, A is named a definable NS when MNRS;°(A) = MNRS;[  (A). Alternatively, we name the pair
(MNRS 11°(A), MNRS H"(A)) an optimistic MNRS.

Definition 11. Suppose (U, R;) is an MNAS. VA € NS(U), the type-1I pessimistic LUA of A, represented by
MNRS;P(A) and MNRS;[" (A), is defined as:

MNMMWAxn—wﬁ<ﬂgRﬂnynhA@»)
= ye

MNRS,"(A)(x) = Gz ( Uz (Ri(x,y) M2 A(y))).
i=1\yelu

Similarly, A is named a definable NS when MNRS;?(A) = MNRSy;" (A). Alternatively, we name the
pair (MNRSU”(A),MNRSHP(A)) a pessimistic MNRSy;.

Proposition 4. Suppose (U, R;) is an MNAS. VA, B € NS(U), then:

(1)  MNRS;°(A) = ~ MNRS[;’(~ A), MNRS[;?(A) = ~ MNRS;" (~ A).
(2)  MNRS;°(A) = ~ MNRS};°(~ A), MNRS[;' (A) = ~ MNRS;P(~ A).
(3) MNRS;°(ANy ) = MNRSHU(A) Ny MNRSHO(B), MNRSHP(A M B) = MNRSUP(A) Mo

(4) MNRS[’(AUy B) = MNRS (A) Uy MNRS;;’(B), MNRS[;"(AU; B) = MNRS;"(A) Uy
MNRS;;" (B).

(5) A Cy B= MNRS[°(A) C; MNRS;;°(B), MNRS;;”(A) C; MNRS;;”(B).

(6) A CyB= MNRS[(A) C, MNRS;;’(B), MNRS" (A) Co MNRS;;" (B).

(7). MINRS[°(A) U; MNRS;;°(B) C, MNRS;°(AU; B), MNRS;P(A) U
MNRS;P (AU, B).

(8) MNRS;;"(An, B) C, MNRS ;" (A) Ny, MNRS’(B), MNRS;;" (AN, B) €, MNRS;;" (A) Ny
MNRS;;"(B).

(
MNRS”(B).
(

» MNRS/?(B) <,

Proof. Equations (1), (2), (5), and (6) are obviously according to Definitions 10 and 11. Next, we will
prove Equations (3), (4), (7), and (8).
(3) By Definition 10,

MNRS;°(A Mz B)(x) U2 ﬁ%l(RiC(xr]/) Uz (AMy B)(]/)))

= U [ Mo ((R€(x,9) Ua Ay)) N (R€(x,y) Uz B(y)))
i=1 \yeu

:@@M%MM) m(@ﬁwwww»
= MNRS;/° A( )ﬂz MNRSU B(y)

Similarly, from Definition 11, we can get the following;:
MNRSUP(A My B) = MNRSUP(A) Mo MNRSHP(B).

(4) The proof is similar to that of Equation (3).
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(7) By Definition 10, we can get:
Tyingsy*(aup5)(x) = maxmin{max[Fg, (x,), (max(T(y), Ts(y)))] }

i=1 ye

= i {max{(max(Fr, (x,y), Ta(y))), (max(Fg,(x,), To(4)))])

> max{ {ggilx?éig(max(lf&(x, Y), Ta (]/)))} ’ {rﬁlx%ig(max(&i(x,y), Ty (y)))] }

= max TMU(A)(X)rTw“(B)(x) .

IMNRS”“(AUZB)(X) = m"éxmin{max[(l - IRi(x,y)), (max(Ia(y), s (y)))} }

i=1 yel
— i {ma (nax((1 I, (5,9), 14 0)), (max((1 = I, (2.), 1))
> max{ i (max (1~ I (), 1a(9) |, | (mmax((1 = 1, (5,), 1) |}

= maX<IMNR5”“(A) (%), Imnrs 0 (B) (x)>-

Fuanis,(acsn) (3) = minmax{min[Ty, (x,), (min(Fa(v), Fa(¥)))])
= minmax{min{min(Ty, (x, ), Fa(y))], [min(Te, (5,9), Fa ()]}

< mind [ minmax (mmin Ty, (x,v),E4 (1)) |, |mipma(min(Ty, (), )| }

= min FM‘?(A)(X)’FMO(B)(X) .

Hence, MNRSHO(A) Uo MNRSHO(B) - MNRS”O(A Uo B).

Additionally, according to Definition 11, we can get MNRS/’(A) Uy MNRS;*(B) <
MNRSUP(A Uo B).

(8) The proof is similar to that of Equation (7). O

Remark 1. Note that if the NRs are the same one, then the optimistic (pessimistic) MNRSy degenerates into
NRSy; in Section 2.

5. Type-III MNRS

In this chapter, MNRSyy;, which is based on a type-3 inclusion relation and corresponding union
and intersection relations, is proposed and their characterizations are provided.

Definition 12. Suppose (U, R;) is an MNAS. VA € NS(U), the type-1II optimistic LUA of A, represented by
MNRS;;1°(A) and MNRS 11’ (A), is defined as:

MNRS1;°(A)(x) = Ga ( N3 (Ri(x,¥) Us AW)))

MNRS;; (A)(x) = f% ( Us (Ri(x,y) N3 A(y))) :
i=1 \yeUu

Then, A is named a definable NS when MNRS1°(A) = MNRSIHO(A). Alternatively, we name the
pair (MNRS,1,°(A), MNRS1i1’ (A) ) an optimistic MNRS.

Definition 13. Suppose (U, R;) is an MNAS. VA € NS(U), the type-11I pessimistic LUA of A, represented by
MNRSiP(A) and MNRSIHP(A), is defined as:

MNRS;1P (A)(x) = 6”3 ( N3 (Ri(x,y) Us A(V)))
i=1 \yeu
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MNRS[;" (A)(x) = g’oi (;é:a(Ri(x/y) N3 A(]/)))-

Similarly, A is named a definable NS when MNRS;;;P(A) = MNRS;;’ (A). Alternatively, we name
the pair (MNRSIHP(A), MNRSIHP(A)) a pessimistic MNRSyyy.

Proposition 5. Suppose (U, R;) is an MNAS. VA, B € NS(U), then:

(1)  MNRS;;;°(A) =~ MNRS;;; (~ A), MNRS ;P (A) =~ MNRS;;" (~ A).
(2)  MNRSy’(A) =~ MNRS;;°(~ A), MNRS ;" (A) =~ MNRS ;P (~ A).
(3) A Cz B= MNRS;;°(A) C3 MNRS;;°(B), MNRS ;" (A) C3 MNRS ;" (B).
(4) A Cs3B= MNRS; (A) C3 MNRS;;"(B), MNRS ;" (A) C3 MNRS ;" (B).

(5) MNRSy° (A N3 B) Cs MNRSIHO(A) N3 MNRSIHO(B), MNRSIUP(A N3 B) Gy
MNRSIHP(A) N3 MNRS/* ( )

(6) MNRS[HO(A) Us MNRSH] ( ) - WS[HO(A Us B), WS]UP(A) Us WS[HP(B) -
MNRS;; (AUs B).

(7) MNRS[HD(A) Us MNRS;° ( ) - MNRS[HD(A Us B), MNRSHIP(A) Us MNRSIHP(B) -
MNRS;;” (A Us B).

(8) MNRS;'(AMsB)  C3  MNRSy;°(A) My MNRSy;’(B), MNRS;"(AnsB)  Cs
MNRSIHP< )ﬁgMNRSU] ( )

Proof. Equations (1) and (2) can be directly derived from Definitions 12 and 13. We only provide the
proof of Equations (3)—(8).

(3) Suppose A C3 B, then:

Case 1: If Ta(x) < Tg(x), Fa(x) > Fp(x), then:

Taingrsyo(a) (%) = Vo A (R, (x%,y) V Ta(y)] < VoA [Fr,(%,y) V To(Y)] = Trnrsye () (%)

i=1yel i=1yel
m
Fyingrsyoa) (%) = N yé/ll [Tr,(x,y) AFa(y)] > l/\l yEVU [Tr;(x,¥) AFs(y)] = Frnrs,,0(8)(%)-

Hence, MNRSHIO(A) §3 MNRSIHO(B).
Case 2: If T4(x) = Tg(x), Fa(x) > Fp(x), then:

Trnrsyo(a) (X) = A yé\U [Fr,(x,y) V Ta(y)] = V é\ [Fr,(x,4) V Tg(y)] = Trnrs,,0(8) (%)

m
Fpingrsyoa) (%) = ii\1y¥u [Tr;(x,y) ANFa(y)] > A GV [Tr;(x,¥) A Fs(y)] = Fynrs,,0 () (%)-

Hence, MNRSH]O(A) g?, MNRSIHO(B).
Case 3: suppose Ta(x) = Tp(x), Fa(x) = Fp(x) and [4(x) < Ip(x), then:

m
TrNrs0(a) (X) = A yéu [Fr,(x,y) V Ta(y)] = 1\/1 yé\u [Fr,(x,¥) V Ts(y)] = Taanrs,y0(8) (%)

Faingrs; o a) (%) = AV [Tr,(x,y) AN Fa(y)] > AV [Tr;(x,4) A Fs(y)] = Frnrs,,o(8) (%)

i=1yel i=lyeld
Ta(yj), Rif (%, y5) S3 Aly;) Ss Alye) vy €U
Inngs e (4) (%) = Tre (x,95), Ayj) Ss R (x,95)
0, else
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Is(y;), Ri (x,¥j) Ss B(yj) 3 B(yk), v yj € U
IMNRSIIIU(B)(X) = Ige (X,yj),B(y]') C3 R (X,]/j)
0, else

Hence, IMNRSIU"(A)(X> < IMNRS[””(B) (x) So, MNRSH[O(A) Cs MNRSHIO(B).
Summing up the above, if A C3 B, then MNRS;;°(A) C3 MNRS;1°(B).
Similarly, we can get MNRS;;?(A) C3 MNRS;;?(B).

(4) The proof is similar to that of Equation (3).

(5) From Definition 12, we have:

MNRS;°(ANsB) = U ( N3 (Ri(x,y) Us (A(y) N3 B(J/))))

- Ja N3 ((Ri(x,y) Us A(y)) N3 (Ri*(x,y) Us B(y)))

Cs (613 < N3 (Ri(x,y) Us A(V)))) N3 (ng < N3 (Ri*(x,y) Us B(]/))))
i=1\yel i=1\yelu

= MNRS;°(A) (15 MNRS 11 (B).

Similarly, from Definition 13, we can get MNRS ;1" (A N3 B) C3 MNRS;17(A) N3 MNRSy7 (B).
(6) From Definition 12, we have:

MNRS;;;(A) Us MNRS;,°(B) = ((%13<U3 (Ri(x,y) N3 A(l/)))) Us <03<U3( i(x,y) N3 B(l/))))

i=1 \yeUu yeu

Cs lfigl yLé?J((Ri(x'y) N3 A(y)) Us (Ri(x,y) N3 B(y)))>

Cs M| Us (Ri(x,y) N3 (A(y) Us B(y)))
i=1\yeu

= MNRSH[O(A Us B).

Similarly, from Definition 13, we can get MNRS ;' (A Us B) = MNRS;;;" (A) Us MNRS ;" (B).
(7) From Definition 12, we have:

3

MNRS|;1°(AUs B) = U3 mgu(R,'C<X,]/) Us (A U3 B)(W))
i=1\ye

3

= Us| N3 (Ri"(x,y) Us (A(y) Us B(y)))
i=1\yeu

23&3 ([%( “(x,y) Us A(y)) | U
i=1 yeld

N3 (Ri(x, y)UsB(y))D>
yel
= (513 N (R (x,y) Us Aly >u3 l Ri“(x,y) UsB(y))D
i=1|yel yGU

= MNRSIHO(A) Us MNRSU] (B).

Hence, MNRSIHO(A) Us MNRS[HO(B) Cs MNRSIUO(A Us B).
Additionally, from Definition 13, we can get MNRS;;’(A) U3 MNRSF(B) Cj
MNRSIHP(A Us B).
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(8) From Definition 12, we have:

MNRS;;; (A3 B) =3 ( Us (Ri(x,y) N3 (As B)(y))>

M3

Us (Ri(x,y) N3 B(y))] )

yel

> N3 (lf]%l ytésu(Ri(xfy) M3 B(y))D
= MNRS;;;’(A) N3 MNRS;;;" (B).

= <rrwn3 [Ug (Ri(x,y) N3 A(y))
i=1|yel

Hence, MNRSH]O(A N3 B) Cs MNRS]HO(A) N3 MNRS]UO(B).
Similarly, from Definition 13, we can get MNRS ;1" (A N3 B) C3 MNRS; ;' (A) N3 MNRS;;" (B).

O

Remark 2. Note that if the NRs are the same one, then the optimistic (pessimistic) MINRSyy degenerates into
NRSyy in Section 3.

6. Type-III MNRS in Two Universes with Its Applications
In this chapter, we propose the concept of MNRSyy; in two universes and use it to deal with the

MAGDM problem.

Definition 14. [28] Suppose U, V are two non-empty finite universes, and R; € NS(U x V) (1 <i<m)isa
binary NR. We call (U, V, R;) the MNAS in two universes.

Definition 15. Suppose (U, V, R;) is an MNAS in two universes. YA € NS(V) and x € U, the type-111
optimistic LUA of A in (U, V, R;), represented by MNRS11°(A) and MNRSIHO(A), is defined as:

MNRS;1°(A)(x) = ,m3 ( M3 (Ri(x,y) Us A(y)))
i=1\yeV

MNRS[’ (A)(x) = ,ms ( Us (Ri(x,¥) N3 A(y))).
i=1\yeV

Then, A is named a definable NS in two universes when MNRS1°(A) = MNRS; T (A). Alternatively,
we name the pair (MNRSHI“ (A), MNRSHIO(A)> an optimistic MNRSyyy in two universes.

Definition 16. Suppose (U, V, R;) is an MNAS in two universes. YA € NS(V) and x € U, the type-III
pessimistic LUA of A in (U, V, R;), denoted by MNRSy;? (A) and MNRS ;" (A), is defined as follows:

MNRS;17(A)(x) = ﬁ% ( Ms (R (x,y) Us A(y))>
1=1\ye

MNRS;;" (A)(x) = g31 <y%%/(Ri(x/]/) N3 A(V))) :

Similarly, A is named a definable NS when MNRS;;7(A) = MNRS T (A). Alternatively, we name
the pair (MNRSIHP(A), MNRSIHP(A)) a pessimistic MNRSyyy in two universes.
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Remark 3. Note that if the two domains are the same, then the optimistic (pessimistic) MNRSyy in two
universes degenerates into the optimistic (pessimistic) MNRSyy in a single universe in Section 5.

The MAGDM problem is becoming more and more generally present in our daily life. MAGDM
means to select or rank all the feasible alternatives in various criterions. There are many ways to solve
the MAGDM problem, but we use MNRS to solve it in this paper. Next, we give the basic description
of the considered MAGDM problem.

For the car-ranking question, suppose U = {x1, x, ..., x4} is the decision setand V = {y1, 12, ...,
Ym} is the criteria set in which x; represents “very popular”, x, represents “popular”, x3 represents
“less popular”, ..., x, represents “not popular”, y; represents the vehicle type”, y, represents the
size of the space, y3 represents the ride height, y4 represents quality, and . .. , y,; represents length of
durability. Then, I selection experts make evaluations about the criteria sets according to their own
experiences. Here, the evaluations were shown by NRs. Next, we calculate the degree of popularity
for a given car. Therefore, we need to use MGNRS to solve the above problem. For the MAGDM
problem under a multigranulation neutrosophic environment, the optimistic lower approximation can
be regarded as an optimistic risk decision, and the optimistic upper approximation can be regarded
as an optimistic conservative decision. Additionally, the pessimistic lower approximation can be
regarded as a pessimistic risk decision and the pessimistic upper approximation can be regarded as
a pessimistic conservative decision. According to the distance of neutrosophic sets, we define the
difference function dy(A, B)(x;) = (1/3)(1 Ta(x;) — Tg(x;) | + 114(x;) — Ig(x;) | + | Fa(x;) — Fp(x;)1). We
used the difference function to represent the distance of optimistic (pessimistic) upper and lower
approximation. The smaller the value of the distance is, the better the alternative x; is, because the
risk decision and the conservative decision are close. By comparing the distance value, all alternatives
can be ranked and we can choose the optimal alternative. In this paper, we only used three kinds of
optimistic upper and lower approximation to decision-making.

Next, we show the process of the above car-ranking question based on MGNRSs over two
universes. Let R; € NR(U x V) be NRs from U to V, where V(x;, y;) € U x V, R/(x;, y;) denotes the
degree of popularity for criteria set y; (y; € V). R; can be obtained according to experts’ experience.
Given a car A, according to the unconventional questionnaire (suppose there are three options—*“like”,
“not like”, and “neutral” to choose for each of the criteria sets, and everyone can choose one or more
options), then we can get the popularity of every criterion as described by an NS A in the universe V
according to the questionnaire. By use of the following Algorithm 1, we can determine the degree of
popularity of the given car A.

Algorithm 1 Decision algorithm

Input Multigranulation neutrosophic decision information systems (U, V, R).

Output The degree of popularity of the given car.

Step 1 Computing three kinds of optimistic multigranulation LUA MNRS;°(A), MNRS;’(A),
MNRS;°(A), MNRS[" (A), MNRS;°(A), MNRS ;" (A).

Step 2 Calculate d(MNRS°(x;), MNRS;’ (x;)), d(MNRS;;° (x;), MNRS;" (x;)) and
d(MNRS;1° (x;), MNRS11° (%;))-

Step 3 The best choice is to select x;, (which means that the most welcome degree is x;) if
d(MNRS(x;,), MNRS’ (x)) = min;e(q5,... oyd(MNRS (x;), MNRS" (x;)).

Step 4 If 1 has two or more values, then each x;, will be the best choice. In this case, the car may have two or
more popularities and each x will be regarded as the most possible popularity; otherwise, we use other
methods to make a decision.

Next, we use an example to explain the algorithm.
Let U = {x1, x2, x3, x4} be the decision set, in which x; denotes “very popular”, x, denotes
“popular”, x3 denotes “less popular”, and x4 denotes “not popular”. Let V = {y1, y2, ¥3, y4, y5} be
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criteria sets, in which y; denotes the vehicle type, i, denotes the size of the space, i3 denotes the ride
height, y4 denotes quality, and ys denotes length of durability.
Suppose that Rj, Ry, and R3 are given by three invited experts. They provide their evaluations for

all criteria y; with respect to decision set elements x;. The evaluation Ry, Ry, and Rj are NRs between

attribute set V and decision evaluation set U., that is., there are Ry, Ry, R3 € NR(U x V).

Suppose three experts present their judgment (the neutrosophic relation Ry, Ry, and R3) for the
attribute and decision sets in Tables 2—4:

Table 2. Neutrosophic relation R;.

Rq Y1 Y2 Y3 Ya Ys

X1 (0.8,0.6,0.5) (0.2,0.3,0.9) 0,0,1) (0.7,0.5,0.6) 0,0,1)

X (0.6,0.4,0.6) (0.9,0.3,0.4) (1,0,0) 0,0,1) (0.3,0.6,0.7)

X3 (0.2,0.5,0.9) (0.6,0.7,0.5) (0.8,0.7,0.8) 0,0,1) (1,0,0)

X4 (0.6,0.4,0.7) 0,0,1) 0,0,1) 0.9,0.8,0.1) 0,0,1)
Table 3. Neutrosophic relation R;.

R; Y1 Y2 Y3 Ya Ys

X1 (0.9,0.3,0.6) 0,0,1) 0,0,1) (0.5,0.6,0.5) (0.2,0.3,0.9)

X (0.3,0.7,0.8) (0.7,0.5,0.6) (0.9,0.1,0.1) 0,0,1) (0.4,0.5,0.8)

X3 (0.1,0.6,0.8) (0.3,0.6,0.5) (0.7,0.3,0.6) 0,0,1) (1,0,0)

X4 (0.7,0.5,0.6) 0,0,1) 0,0,1) (1,0,0) 0,0,1)
Table 4. Neutrosophic relation R3.

R3 Y1 Y2 Y3 Ya Ys

X1 (0.6,0.9,0.4) (0.1,0.1,0.8) (0.1,0,0.9) (0.8,04,0.8) 0,0,1)

X (0.5,0.6,0.6) (0.6,0.2,0.7) (1,0,0) 0,0,1) 0,0,1)

X3 (0.1,0.4,0.7) (0.2,0.2,0.7) (0.5,0.7,0.6) 0,0,1) 0.9,0.1,0.2)

X4 (0.6,0.3,0.4) 0,0,1) 0,0,1) (0.7,0.5,0.4) 0,0,1)

Suppose A is a car and each criterion in V is as follows:

Then, we can calculate the three kinds of optimistic LUAs of A as follow:

MNRS[*(A)(x1) = (0.8,1,0.3), MNRS,*(A)(x,) = (0.1,09,0.6),
MNRS/*(A)(x3) = (0.2,08,09), MNRS,*(A)(xs) = (0.7,1,0.3),
MNRS;’ (A)(x1) = (0.7,0.6,0.5), MNRS;" (A)(x2) = (0.3,0.6,0.3),
MNRS;’(A)(x3) = (0.2,0.6,0.8), MNRS;’(A)(x4) = (0.7,0.5,0.4),
MNRSU (A)(xl) (0.8,0.6,0.3), MNRS”O(A)(JCQ) (0.1,0.6,0.6),
MNRS"(A)(x3) = (0.2,0.6,0.9), MNRS’(A) (xs) = (0.7,0.6,0.3),
MNRS;’(A)(x1) = (0.7,0.4,0.5), MNRS; (A)(x2) = (0.3,0.2,0.3),
MNRS;’(A)(x3) = (0.2,0.6,0.8), MNRS;"(A)(x4) = (0.7,0.2,0.4),
MNRSH[O(A) xl) = (0.8,0,0.3) MNRS[[[O(A)(XZ) 0 1,0, 06)
MNRS;1°(A)(x3) = (0.2,09,0.9), MNRS;;;°(A)(x4) = (0 7,0.6,0.3),
MNRS; (A)(x1) = (0.7,1,0.5), m"(fx)( ») = (0.3,0,0.3),
MNRS1;° (A)(x3) = (0.2,0.7,0.8) MNRS1; (A)(x4) = (0.7,0.5,0.4).
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Therefore, we can get:

d(MNRS°(x1), MNRS,’ (x1)) = 0.7/3, d(MNRS’(x2), MNRS,’ (x3)) = 0.8/3,
d(MNRS°(x3), MNRS;’ (x3)) = 0.1, d(MNRS°(x4), MNRS;’ (x4)) = 0.2,
d(MNRS;°(x1), MNRS ;" (x1)) = 0.5/3, d(MNRS;°(x2), MNRS[[ (x2)) =
d(MNRS;°(x3), MNRS[’ (x3)) = 0.1/3, d(MNRS°(x4), MNRS ;" (x4)) = 5/3
d(MNRS11°(x1), MNRS 1" (x1)) = 1.3/3, d(MNRS 11 (x2), MNRS 11 (x2)) = 0.5/3,
d(MNRS;;°(x3), MNRS 11 (x3)) = 0.1, d(MNRS11° (x4), MNRS 1" (x4)) = 0.2/3.

Thus, for the type-I and type-Il MNRS, the optimistic best choice is to select x3, that is, this car
is less popular; for the type-III MNRS, the optimistic best choice is to select x4, that is, this car is
not popular.

7. Conclusions

NRS and MNRS are extensions of the Pawlak rough set theory. In this paper, we analysed the
NRS; and NRSy;, we proposed model NRSyyj, and used an example to outline the differences between
the three kinds of NRS. We gave the definition of MNRSy;, which is based on the type-3 operator
relation of NS, and considered their properties. Furthermore, we proposed MNRSyy in two universes
and we presented an algorithm of the MAGDM problem based on it.

In the future, we will be researching other types of fusions of MGRSs and NSs. We will also study
the applications of concepts in this paper to some algebraic systems (for example, pseudo-BCI algebras,
neutrosophic triplet groups, see [30,31]).
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Abstract

Borzooei, Mohseni Takallo, and Jun recently proposed a new type of set, called True-False Set [1], and they claimed
it is a generalization of Neutrosophic Set [2]. We prove that this assertion is untrue. Actually it’s the opposite, the
True-False Set is a particular case of the Refined Neutrosophic Set..

Keywords : Refined Neutrosophic Set, True-False Set, Neutrosophic Set, Indeterminacy.

1.  Definition of True -False Set [1]
A True-False set (TF-set), on a none-empty set X, is a structure of the form:
Arps = {x; t4(x), T4 (x), fa(x), F4(x)|x € X}; the index “TFS” stands for True-False Set;
where t4: X - [0, 1]; t4 represents the single-valued truth function;

T,: X - I([0,1]), where I([0, 1]) is the set of all subintervals of [0, 1]; T, represents the interval-valued truth

function;
fa:X — [0, 1]; f, represents the single-valued falsehood function;
F,: X — I1(]0,1]); F, represents the interval-valued falsehood function.
It is not clear why two truth-functions and two falsehood-functions are needed for the same element x. There is no
justification.
2. Definition of neutrosophic set [2]

We try to use similar notations and language in order to make easy comparison between the two types of sets.
Let X be a non-empty universe of discourse.

A Neutrosophic Set on X is a structure of the form:

Ans = {x; T4(x), I, (x), F5y(x)|x € X3,
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where Ty, I, Fy: X = P(]70,1%]), where P(]0,1*]) is the set of all standard or nonstandard subsets of the non-

standard interval ]70, 17 [.
3. Distinctions between Tru e-False Set and Neutro sophic Set

1) Clearly P(]70, 1*[) 2 I([0, 1]). From this point of view, the neutrosophic set is larger than the True-False
Set.

P(]70,1%) includes not only strandard subintervals of [0, 1] as I([0, 1]), but any standard subsets of [0, 1].

2) P(]70,1*) also includes non-standard subsets of ]~0,1%[, left and right monads, binads from non-
standard analysis, that help make a distinction between absolute truth (truth in all possible worlds, according to

Leibniz), whose truth-value is T4 (x) = 17, where 1* = 1 4+ &£ > 1 and ¢ is a positive infinitesimal number.
Similarly for absolute / relative indeterminacy and respectively falsehood.

The True-False Set cannot make distinctions between absolute and relative truth/falsehood.

3) Neutrosophic Set is much more complex as structure than the True-False Set; Neutrosophic Set has been
further extended Neutrosophic Overset (where the neutrosophic components could be 1), Neutrosophic Underset
(where the neutrosophic components could be  0), and Neutrosophic Offset (where the neutrosophic components
couldbe 1and 0)in2007 & 2016 ([3], [4]).

4. Tra nsformati on of a Single-Valued N eutro sophic Set to a True-False Set [1]

The authors of [1] considered only the simplest form of the Neutrosophic Set, i.e. when the neutrosophic components
T, I, F are single (crisp) numbers in [0, 1], while the general definition [2] of neutrosophic set stated since 1998 that
T, I, F can be any subsets of [0, 1], or any nonstandard subsets of the non-standard unit interval ]~0, 1*].

They considered the single-valued neutrosophic set:

Ans = {x; Tys(x), Ins(x), Fys(x)|x € X},

where Tys, Iys, Fys: X = [0, 1] are single-valued truth, indeterminacy, and falsehood functions respectively. The
index “NS” stands for Neutrosophic Set (we adjusted their Greek letter notations to Latin ones, in order to exactly

match the common use notations of the neutrosophic set).
They transformed it to a True-False Set in the following way:
t(x) = Tys(x);
f(x) = Fys(x);

[Tys(x), Iys (x)],if Tys (x) < Iys(x);

Trps(x) = {[[Ns(x), Tns ()], if Iys(x) < Tys(x);

[Fns(x), Iys (x)],if Fys () < Ins(x);

Fres(x) = {[INS(X),FNs(x)]'i“NS(x) < Fys(x).

And they formed the following True-False Set:

Arps = {2 t(x), Trps (x), f(X), Frps(X)|x € X} = {{x; Tys (), Trps(x), Fys(x), Fres(x))|x € X}.
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This True-False Set, Arpg, has two truth-functions and two-falsehood functions, but no indeterminacy (neutrality)

function (they removed it).

Transforming the neutrosophic set Ayg into a true-false set Agpg is just a mathematical artifact. It is not proven that

Apys is equivalent to Args. Actually, we’ll prove below that they are not.
Other mathematical transformations can be designed as well, constructing new intervals, or combining the
neutrosophic functions in other ways, etc. But the equivalence, if any, should be proven.

5. Ind etermi nacy (Neutrali ty)

The indeterminacy (neutrality) is the quintessence (the flavor) of neutrosophic set, that stringently distinguishes it

from previous types of sets.

By eliminating the indeterminacy (or neutrality) from the neutrosophic set Ayg, when constructing a true-false set
Arps, the true-false set Arpg becomes defficient, incapable of characterizing the neutrosophic triads of the form
({4), (neutA), (antid)), where (A) is an item (idea, proposition, attribute, concept, etc.), (antiA) is its opposite, and

(neutA) is the neutral between these opposites.

For example, in games we have such triads (where (4) = winning): winning, tie game, loosing .

6. Numer ical Counter-Example of Transformi ng a Single-Valued N eutrosophic set to a True -False Set
Let’s take only one element from a single valued neutrosophic set (for the other elements it will be similar):
xys(0.3,0.4,0.2), hence Tyg(x) = 0.3, Iys(x) = 0.4, Fys(x) = 0.2.
Let’s transform it into a true-false set’s element according to [1]:

x7r5(0.3,[0.3,0.4],0.2,[0.2,0.4]), hence typg(x) = 0.3, Trps(x) =[0.3,0.4], frrs(x) = 0.2, Frps(x) =
[0.2,0.4].

The indeterminacy Iys(x) = 0.4 into the neutrosophic set has been replaced into the true-false set by an interval-value
truth Trpg(x) = [0.3,0.4] and an interval-value falsehood Frpg(x) = [0.2,0.4]. But these are a totally different

results.
If, with respect to an element, the indeterminacy-membership is 0.4, this is not equivalent with element’s truth-
membership be equal to [0.3, 0.4] and its false-membership be equal to [0.2, 0.4].

7. Other Counter -Exampl es

Let x55(0.3, 0.4, 0.2) represent, with respect to the player x in a game where he plays against others, that his degree
of winning (Tys = 0.3), his degree of tie game (Iys = 0.4), and his degree of loosing (Fys = 0.2).

By transforming xys to x7rs(0.3,[0.3,0.4], 0.2, [0.2,0.4]), we get that with respect to the same player x, his degree
of winning is 0.3 or [0.3, 0.4], and his degree of loosing is 0.2 or [0.2, 0.4].
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7.1. Therefore, the true-false set does not provide any degree of “tie game”, so this type of set is incomplete. The

true-false set does not catch the middle side (neutrality, or indeterminacy) in between opposites.

7.2. Another drawback is that TFS increases the imprecision of the truth function: for Tys = 0.3, it gets Trrs
0.3 or [0.3, 0.4], so the truth value becomes vaguer after the TFS transformation.

TFS increases the imprecision of the falsehood function as well: for FNS 0.2, it gets FTFS 0.2 or [0.2, 0.4], so the
falsehood value becomes vaguer after the TFS transformation.

8. The True -False Set is a parti cular case of the Refined Neutro sophic Set

In the Refined Neutrosophic Set (Logic, Probability), T can be split into subcomponents Ty, Ta, ..., Tp, and I into I,
L, ..., I1, and F into Fy, F, ...,Fs, where p,r,s € {0,1,2, , }and p+r+s ne{0,1,2, , }.Byindex O0,of
a neutrosophic component T, I, or F, or any of their subcomponents, we denote the empty set,i.e. To ¢, Io ¢, Fo

¢. The case (To, lo, Fo) is the most degenerated one. See [4].

From (T, I, F), where T, I, F are any subsets of [0, 1], we replace Iy ¢ (empty set), and refine/split T into T, (single-
valued truth component) and T> (as an interval-valued truth component), while F is similarly refined/split into F; (as
a single-valued falsehood component) and F» (as an interval-valued falsehood component). Therefore, we replaced p

2,r 0,ands 2 into the general form of the Refined Neutrosophic Set, and we found the True-False Set (T}, T,
Iy ¢,F, Fy).

9. Conclusion

We proved that the transformation of the Neutrosophic Set into a True-False Set does not give equivalent results by
using several coounter-examples. Also, we proved that the True-False Set is a particular case of Refined Neutrosophic
Set.
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ABSTRACT. In this article, we have introduced the notions of N;X—oz—open
sets, a-interior and o-clogsure operators in neutrosophic biminimal structures.
We investigate some basic properties and theorems of such notions. Also we
have introduced the notion of Nﬁ; x-o-continuous maps and study charac-

terizations of N"fn y--continuous maps by using the a-interior and o-closure
operators in neutrosophic biminimal structures.

1. Introduction

Zadehs [14] Fuzzy set laid the foundation of many theories such as intuition-
istic fuzzy set and neutrosophic set, rough sets etc. Later, researchers developed
K. T. Atanassovs [1] intuitionistic fuzzy set theory in many fields such as differ-
ential equations, topology, computer science and so on. F. Smarandache [12, 13]
found that some objects have indeterminacy or neutral other than membership and
non-membership. So he coined the notion of neutrosophy. Q. H. Imran et al [6]
introduced and studied neutrosophic semi-e-open sets. R. Dhavaseelan et al [2]
introduced and studied neutrosophic a™-continuity. C. Maheswari and S. Chan-
drasekar [8] introduced and studied neutrosophic gh-closed sets and neutrosophic
gh-continuity. Q. H. Imran et al [7] introduced and studied neutrosophic general-
ized alpha generalized continuity. M. H. Page and 3. H. Imran [9] introduced and
studied neutrosophic generalized homeomorphism. The concept of minimal struc-
ture (in short, m-structure) was introduced by V. Popa and T. Noiri [10] in 2000.
Also they introduced the notion of m.-open set and m.-closed set and characterize
those sets using m,-closure and me,-interior operators respectively. Further they
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introduced M-continuous functions and studied some of it is basic properties. S.
Ganesan et al [4] introduced and studied the notion of neutrosophic biminimal
structure spaces and also applications of neutrosophic biminimal structure spaces.
S. Ganesan and F. Smarandache [5] introduced and studied neutrosophic bimini-
mal semi-open sets. The main objective of this study is to introduce a new hybrid
intelligent structure called neutrosophic biminimal a-open set. The significance of
introducing hybrid structures is that the computational techniques, based on any
one of these structures alone, will not always yield the best results but a fusion
of two or more of them can often give better results. The rest of this article is
organized as follows. Some preliminary concepts required in our work are briefly
recalled in section 2. In section 3, the concept of N \-a-open set is investigated
some properties with suitable example.

2. Preliminaries

DEFINITION 2.1. [10] A subfamily m, of the power set p(X) of a nonempty
set X is called a minimal structure (in short, m-structure) on X if § € m, and X €
m,. By (X, m;), we denote a nonempty set X with a minimal structure m, on X
and call it an m-space.

Each member of m,, is said to be m -open (or in short, m-open) and the complement
of an m,-open set is said to be m,-closed (or in short, m-closed).

DEFINITION 2.2. ([12, 13]) A neutrosophic set (in short ns) K on a set X #
() is defined by K = {< a, Px(a), Qx(a), Rx(a) = : a € X} where Pg : X —
[0,1], Qx : X — [0,1] and Rk : X — [0,1] denotes the membership of an object,
indeterminacy and non-membership of an object, for each a € X to K, respectively
and 0 < Px(a) + Qk(a) + Ri(a) < 3 for each a € X.

DEFINITION 2.3. ([11]) Let K = {< a, Px(a), Qx(a), Rx(a) = : a € X} be a
ns.

(1) A ns K is an empty set i.e., K = 0. if 0 is membership of an object and
0 is an indeterminacy and 1 is an non-membership of an object respectively. i.e.,
0~ ={2,(0,0,1): z € X};

(2) A ns K is a universal set i.e., K = 1. if 1 is membership of an object
and 1 is an indeterminacy and 0 is an non-membership of an object respectively.
1o ={,(1,1,0): x € X};

(3) K1UK, =
{avmax{PKl (a), PKz (a‘)}7max{QK1 (a)a QKz (a’)}amin{RKl (a), RKz (a)} tac X}7

(4) K1N Ky =
{a’min{PKl (a)7 P, (CL)}, min{Qfﬁ (a)v @k, (a)}7ma‘r{RK1 (a)7 Rk, (a)} tac X};

(5) KY = {< a, Rg(a), 1 — Qg(a), Px(a) = :a € X}.

DEFINITION 2.4. ([11]) A neutrosophic topology (nt) in Salamas sense on a
nonempty set X is a family 7 of ns in X satisfying three axioms:

(1) Empty set (0.) and universal set (1.) are members