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Introductory Note 

This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such 
as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, 
information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-
Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and 
others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; 
Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; 
Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; 
Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone 
or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, 
Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, 
Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit 
Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham 
Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian 
Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas 
Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah 
Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki 
Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed 
Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, 
Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion 
Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra 
Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya 
Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, 
Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir 
Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, 
J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun,
Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong
Zhang, Zhirou Ma.

Keywords 

Neutrosophy; Neutrosophic Logic; Neutrosophic Sets; Neutrosophic Topology; Neutrosophic Hypergraphs; 
Intuitionistic Fuzzy Parameters; Conventional Optimization Methods; Multiobjective Transportation Problem; 
Decision Making; Extenics; Classical Algebra; NeutroAlgebra; AntiAlgebra; NeutroOperation; AntiOperation; 
NeutroAxiom; AntiAxiom; Intuitionistic Fuzzy Soft Expert Set; Inclusion Relation; Neutrosophic Rough Set; Multi-
Attribute Group Decision-Making; Multigranulation Neutrosophic Rough Set; Soft Set; Soft Expert Set; Hypersoft 
Set; Hypersoft Expert Set; Plithogeny; Plithogenic Set; Plithogenic Logic; Plithogenic Probability; Plithogenic 
Statistics; Safire Project; Infinite Velocity; Coulomb Potential; Kurepa function; Smarandache-Kurepa function; 2019 
Novel Coronavirus; Deep Transfer Learning; Machine Learning; COVID-19; SARS-CoV-2; Convolutional Neural 
Network; Principle of Parsimony; Popperian Epistemology; Post-Empiricism Doctrine; Ockham Optimality Point; 
Belief Function; Dezert-Smarandache Theory; Neutrosophic Probability; Importance Discounting Factors. 
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Applications of Neutrosophic Logic to Robotics: An Introduction  

Abstract— In this paper we present the N-norms/N-
conorms in neutrosophic logic and set as extensions of T-
norms/T-conorms in fuzzy logic and set. 
Then we show some applications of the neutrosophic logic 
to robotics. 

Keywords: N-norm, N-conorm, N-pseudonorm, N-
pseudoconorm, Neutrosophic set, Neutrosophic logic, Robotics 

I.  DEFINITION OF NEUTROSOPHIC SET

  Let T, I, F be real standard or non-standard subsets of 
]-0, 1+[,  
with sup T = t_sup, inf T = t_inf, 
sup I  = i_sup, inf I  = i_inf,  
sup F = f_sup, inf F = f_inf,  
and n_sup = t_sup+i_sup+f_sup,  
n_inf  = t_inf+i_inf+f_inf. 
  Let U be a universe of discourse, and M a set included in 
U. An element x from U is noted with respect to the set M
as x(T, I, F) and belongs to M in the following way: it is t%
true in the set, i% indeterminate (unknown if it is or not) in
the set, and f% false, where t varies in T, i varies in I, f
varies in F ([1], [3]).
  Statically T, I, F are subsets, but dynamically T, I, F are 
functions/operators depending on many known or unknown 
parameters. 

II. DEFINITION OF NEUTROSOPHIC LOGIC

In a similar way we define the Neutrosophic Logic: 
A logic in which each proposition x is T% true, I% 
indeterminate, and F% false, and we write it x(T,I,F), where 
T, I, F are defined above. 

III. PARTIAL ORDER

We define a partial order relationship on the 
neutrosophic set/logic in the following way: 

x(T1, I1, F1) ≤ y(T2, I2, F2) iff (if and only if) 
T1 ≤ T2, I1 ≥ I2, F1 ≥ F2 for crisp components. 

 And, in general, for subunitary set components: 
x(T1, I1, F1) ≤ y(T2, I2, F2) iff  

  inf T1 ≤ inf T2, sup T1 ≤ sup T2, 
 inf I1 ≥ inf I2, sup I1 ≥ sup I2,  
 inf F1 ≥ inf F2, sup F1 ≥ sup F2. 

      If we have mixed - crisp and subunitary - components, 
or only crisp components, we can transform any crisp 
component, say “a” with a Î  [0,1] or a Î ]-0, 1+[, into a 
subunitary set [a, a]. So, the definitions for subunitary set 
components should work in any case. 

IV. N-NORM AND N-CONORM

As a generalization of T-norm and T-conorm from the
Fuzzy Logic and Set, we now introduce the N-norms and 
N-conorms for the Neutrosophic Logic and Set.

A. N-norm
Nn: ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2 → ]-0,1+[ × ]-0,1+[ × ]-0,1+[ 
Nn (x(T1,I1,F1), y(T2,I2,F2)) = (NnT(x,y), NnI(x,y), NnF(x,y)), 
where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 
indeterminacy, and respectively falsehood/nonmembership 
components. 

Nn have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of the universe of discourse U, the following 
axioms: 
a) Boundary Conditions: Nn(x, 0) = 0, Nn(x, 1) = x.
b) Commutativity: Nn(x, y) = Nn(y, x).
c) Monotonicity: If x ≤ y, then Nn(x, z) ≤ Nn(y, z).
d) Associativity: Nn(Nn (x, y), z) = Nn(x, Nn(y, z)).

There are cases when not all these axioms are satisfied, for 
example the associativity when dealing with the 
neutrosophic normalization after each neutrosophic 
operation. But, since we work with approximations, we can 
call these N-pseudo-norms, which still give good results in 
practice. 

Nn represent the and operator in neutrosophic logic, and 
respectively the intersection operator in neutrosophic set 
theory. 

Let J ∈{T, I, F} be a component. 
Most known N-norms, as in fuzzy logic and set the T-
norms, are: 
• The Algebraic Product N-norm: Nn−algebraicJ(x, y) = x · y
• The Bounded N-Norm: Nn−boundedJ(x, y) = max{0, x + y −
1}
• The Default (min) N-norm: Nn−minJ(x, y) = min{x, y}.

Florentin Smarandache, Luige Vlădăreanu (2011). Applications of neutrosophic logic to robotics: An introduction. 
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A general example of N-norm would be this. 
Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M.  Then: 

Nn(x, y) = (T1/\T2, I1\/I2, F1\/F2) 
where the “/\” operator, acting on two (standard or non-
standard) subunitary sets, is a N-norm (verifying the above 
N-norms axioms); while the “\/” operator, also acting on
two (standard or non-standard) subunitary sets, is a N-
conorm (verifying the below N-conorms axioms).

  For example, /\ can be the Algebraic Product T-norm/N-
norm, so T1/\T2 = T1·T2 (herein we have a product of two 
subunitary sets – using simplified notation); and \/ can be 
the Algebraic Product T-conorm/N-conorm, so T1\/T2 = 
T1+T2-T1·T2 (herein we have a sum, then a product, and 
afterwards a subtraction of two subunitary sets). 

 Or /\ can be any T-norm/N-norm, and \/ any T-
conorm/N-conorm from the above and below; for example 
the easiest way would be to consider the min for crisp 
components (or inf for subset components) and respectively 
max for crisp components (or sup for subset components). 

  If we have crisp numbers, we can at the end 
neutrosophically normalize. 

B. N-conorm
Nc: ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2 → ]-0,1+[ × ]-0,1+[ × ]-0,1+[ 
 Nc (x(T1,I1,F1), y(T2,I2,F2)) = (NcT(x,y), NcI(x,y), NcF(x,y)), 
where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 
indeterminacy, and respectively falsehood/nonmembership 
components. 

Nc have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of universe of discourse U, the following 
axioms: 
a) Boundary Conditions: Nc(x, 1) = 1, Nc(x, 0) = x.
b) Commutativity: Nc (x, y) = Nc(y, x).
c) Monotonicity: if x ≤ y, then Nc(x, z) ≤ Nc(y, z).
d) Associativity: Nc (Nc(x, y), z) = Nc(x, Nc(y, z)).

There are cases when not all these axioms are satisfied, for 
example the associativity when dealing with the 
neutrosophic normalization after each neutrosophic 
operation. But, since we work with approximations, we can 
call these N-pseudo-conorms, which still give good results 
in practice. 

Nc represent the or operator in neutrosophic logic, and 
respectively the union operator in neutrosophic set theory. 

Let J ∈{T, I, F} be a component. 
Most known N-conorms, as in fuzzy logic and set the T-
conorms, are: 
• The Algebraic Product N-conorm: Nc−algebraicJ(x, y) = x + y
− x · y
• The Bounded N-conorm: Nc−boundedJ(x, y) = min{1, x + y}
• The Default (max) N-conorm: Nc−maxJ(x, y) = max{x, y}.

A general example of N-conorm would be this. 
Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M.  Then: 

Nn(x, y) = (T1\/T2, I1/\I2, F1/\F2) 
Where – as above - the “/\” operator, acting on two 
(standard or non-standard) subunitary sets, is a N-norm 
(verifying the above N-norms axioms); while the “\/” 
operator, also acting on two (standard or non-standard) 
subunitary sets, is a N-conorm (verifying the above N-
conorms axioms). 
     For example, /\ can be the Algebraic Product T-norm/N-
norm, so T1/\T2 = T1·T2 (herein we have a product of two 
subunitary sets); and \/ can be the Algebraic Product T-
conorm/N-conorm, so T1\/T2 = T1+T2-T1·T2 (herein we have 
a sum, then a product, and afterwards a subtraction of two 
subunitary sets). 
     Or /\ can be any T-norm/N-norm, and \/ any T-
conorm/N-conorm from the above; for example the easiest 
way would be to consider the min for crisp components (or 
inf for subset components) and respectively max for crisp 
components (or sup for subset components). 
      If we have crisp numbers, we can at the end 
neutrosophically normalize. 

      Since the min/max (or inf/sup) operators work the best 
for subunitary set components, let’s present their definitions 
below. They are extensions from subunitary intervals 
{defined in [3]} to any subunitary sets. Analogously we can 
do for all neutrosophic operators defined in [3]. 
      Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M. 

C. More Neutrosophic Operators
Neutrosophic Conjunction/Intersection: 

x/\y=(T/\,I/\,F/\), 
where inf T/\ = min{inf T1, inf T2} 

   sup T/\ = min{sup T1, sup T2} 
   inf I/\ = max{inf I1, inf I2} 
   sup I/\ = max{sup I1, sup I2} 
   inf F/\ = max{inf F1, inf F2} 
   sup F/\ = max{sup F1, sup F2} 

Neutrosophic Disjunction/Union: 
x\/y=(T\/,I\/,F\/), 
where inf T\/ = max{inf T1, inf T2} 

   sup T\/ = max{sup T1, sup T2} 
   inf I\/ = min{inf I1, inf I2} 
   sup I\/ = min{sup I1, sup I2} 
   inf F\/ = min{inf F1, inf F2} 
   sup F\/ = min{sup F1, sup F2} 

Neutrosophic Negation/Complement: 
C(x) = (TC,IC,FC),  
where TC = F1 

 inf IC = 1-sup I1 
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   sup IC = 1-inf I1 
 FC = T1 

Upon the above Neutrosophic 
Conjunction/Intersection, we can define the 

Neutrosophic Containment: 
We say that the neutrosophic set A is included in the 
neutrosophic set B of the universe of discourse U, 
 iff for any x(TA, IA, FA) Î A with x(TB, IB, FB) Î B we 
have: 
inf TA ≤ inf TB ; sup TA ≤ sup TB;  
inf IA ≥ inf IB ; sup IA ≥  sup IB;  
inf FA ≥  inf FB ; sup FA ≥  sup FB. 

D. Remarks
a) The non-standard unit interval ]-0, 1+[ is merely

used for philosophical applications, especially
when we want to make a distinction between
relative truth (truth in at least one world) and
absolute truth (truth in all possible worlds), and
similarly for distinction between relative or
absolute falsehood, and between relative or
absolute indeterminacy.

But, for technical applications of neutrosophic logic and set, 
the domain of definition and range of the N-norm and N-
conorm can be restrained to the normal standard real unit 
interval [0, 1], which is easier to use, therefore: 

Nn: ( [0,1] × [0,1] × [0,1] )2 → [0,1] × [0,1] × [0,1] 
and 

  Nc: ( [0,1] × [0,1] × [0,1] )2 → [0,1] × [0,1] × [0,1]. 

b) Since in NL and NS the sum of the components (in
the case when T, I, F are crisp numbers, not sets) is
not necessary equal to 1 (so the normalization is
not required), we can keep the final result un-
normalized.
But, if the normalization is needed for special
applications, we can normalize at the end by
dividing each component by the sum all
components.
If we work with intuitionistic logic/set (when the
information is incomplete, i.e. the sum of the crisp
components is less than 1, i.e. sub-normalized), or
with paraconsistent logic/set (when the information
overlaps and it is contradictory, i.e. the sum of
crisp components is greater than 1, i.e. over-
normalized), we need to define the neutrosophic
measure of a proposition/set.
If x(T,I,F) is a NL/NS, and T,I,F are crisp numbers
in [0,1], then the neutrosophic vector norm of
variable/set x is the sum of its components:

   Nvector-norm(x) = T+I+F. 

Now, if we apply the Nn and Nc to two 
propositions/sets which maybe intuitionistic or 
paraconsistent or normalized (i.e. the sum of 
components less than 1, bigger than 1, or equal to 
1), x and y, what should be the neutrosophic 
measure of the results Nn(x,y) and Nc(x,y) ? 
Herein again we have more possibilities: 
- either the product of neutrosophic measures of

x and y:
Nvector-norm(Nn(x,y)) = Nvector-norm(x)·Nvector-

norm(y),
- or their average:

Nvector-norm(Nn(x,y)) = (Nvector-norm(x) + Nvector-

norm(y))/2,
- or other function of the initial neutrosophic

measures:

Nvector-norm(Nn(x,y)) = f(Nvector-norm(x), Nvector-

norm(y)), where f(.,.) is a function to be determined 
according to each application. 

Similarly for Nvector-norm(Nc(x,y)). 
Depending on the adopted neutrosophic vector 
norm, after applying each neutrosophic operator 
the result is neutrosophically normalized. We’d 
like to mention that “neutrosophically 
normalizing” doesn’t mean that the sum of the 
resulting crisp components should be 1 as in fuzzy 
logic/set or intuitionistic fuzzy logic/set, but the 
sum of the components should be as above: either 
equal to the product of neutrosophic vector norms 
of the initial propositions/sets, or equal to the 
neutrosophic average of the initial propositions/sets 
vector norms, etc. 
In conclusion, we neutrosophically normalize the 
resulting crisp components T`,I`,F` by multiplying 
each neutrosophic component T`,I`,F` with S/( 
T`+I`+F`), where  
S= Nvector-norm(Nn(x,y)) for a N-norm or S= Nvector-

norm(Nc(x,y)) for a N-conorm - as defined above. 

c) If T, I, F are subsets of [0, 1] the problem of
neutrosophic normalization is more difficult.
i) If sup(T)+sup(I)+sup(F) < 1, we have an

intuitionistic proposition/set.
ii) If inf(T)+inf(I)+inf(F) > 1, we have a

paraconsistent proposition/set.
iii) If there exist the crisp numbers t ∈T, i ∈ I,

and f ∈F such that t+i+f =1, then we can say
that we have a plausible normalized
proposition/set.
But in many such cases, besides the
normalized particular case showed herein, we
also have crisp numbers, say t1 ∈T, i1 ∈ I, and
f1 ∈ F such that t1+i1+f1 < 1 (incomplete
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information) and t2 ∈T, i2 ∈I, and f2∈F such 
that t2+i2+f2 > 1 (paraconsistent information). 

E. Examples of Neutrosophic Operators which are N-
norms or N-pseudonorms or, respectively N-conorms
or N-pseudoconorms

We define a binary neutrosophic conjunction 
(intersection) operator, which is a particular case of a N-
norm (neutrosophic norm, a generalization of the fuzzy T-
norm): 

[ ] [ ] [ ]( ) [ ] [ ] [ ]2
: 0,1 0,1 0,1 0,1 0,1 0,1

N

TIFc × × → × ×

( )1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

TIFc x y TT I I IT TI FF FI FT FT FI= + + + + + +
. 
The neutrosophic conjunction (intersection) operator 

Nx y∧  component truth, indeterminacy, and falsehood 
values result from the multiplication 

( ) ( )1 1 1 2 2 2T I F T I F+ + ⋅ + +
since we consider in a prudent way T I Fp p , where 
“p ” is a neutrosophic relationship and means “weaker”, 
i.e. the products i jT I  will go to I , i jT F  will go to F , and

i jI F  will go to F for all i, j ∈{1,2}, i ≠ j, while of course
the product T1T2 will go to T,  I1I2 will go to I, and F1F2 will 
go to F (or reciprocally we can say that F  prevails in front
of I  which prevails in front of T , and this neutrosophic 
relationship is transitive): 

(T1        

 (T2       I2     F2) 

So, the truth value is 1 2TT , the indeterminacy value is 

1 2 1 2 1 2I I I T T I+ +  and the false value is 

1 2 1 2 1 2 2 1 2 1F F F I FT F T F I+ + + + . The norm of Nx yÙ
is ( ) ( )1 1 1 2 2 2T I F T I F+ + × + + . Thus, if x  and y  are 

normalized, then Nx yÙ  is also normalized. Of course, the 

reader can redefine the neutrosophic conjunction operator, 
depending on application, in a different way, for example in 
a more optimistic way, i.e. I T Fp p  or T  prevails with 
respect to I , then we get: 

( )1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

ITFc x y TT TI TI I I FF FI FT FT FI= + + + + + +
Or, the reader can consider the order T F Ip p , etc. 

V. ROBOT POSITION CONTROL BASED ON
KINEMATICS EQUATIONS 

A robot can be considered as a mathematical relation 
of actuated joints which ensures coordinate transformation 
from one axis to the other connected as a serial link 
manipulator where the links sequence exists. Considering 
the case of revolute-geometry robot all joints are rotational 
around the freedom ax [4, 5]. In general having a six 
degrees of freedom the manipulator mathematical analysis 
becomes very complicated. There are two dominant 
coordinate systems: Cartesian coordinates and joints 
coordinates. Joint coordinates represent angles between 
links and link extensions. They form the coordinates where 
the robot links are moving with direct control by the 
actuators.  

Fig.1. The robot control  through DH transformation. 

The position and orientation of each segment of the 
linkage structure can be described using Denavit-Hartenberg 
[DH] transformation [6]. To determine the D-H 
transformation matrix (Fig. 1) it is assumed that the Z-axis 
(which is the system’s axis in relation to the motion surface) 
is the axis of rotation in each frame, with the following 
notations: θj  - joint angled is the joint angle positive in the 
right hand sense  about jZ ; aj - link length is the length of 
the common normal, positive in the direction of (j+1)X  ; αj - 
twist angled is the angle between jZ  and  (j+1)Z, positive in 
the right hand sense about the common normal ;  dj   - offset 
distance is the value of  jZ  at which the common normal 
intersects jZ ; as well  if  jX  and (j+1)X are parallel and in the 

  (T1    I1  F1) 

(T2   I2  F2) 

(T1    I1      F1) 

(T2    I2      F2) 

(T1    I1           F1) 
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same direction, then  θj = 0 ; (j+1)X - is chosen to be 
collinear with the common normal between jZ  and  (j+1)Z 
[7, 8] . Figure 1 illustrates a robot position control based on 
the Denavit-Hartenberg transformation. The robot joint 
angles, θc, are transformed in Xc - Cartesian coordinates 
with D-H transformation. Considering that a point in j, 
respectively j+1 is given by: 

P
Z
Y
X

j

j

=

1

 and 1

11

j

j

X
Y

P
Z

+

+

=
' 

 (1) 

 

then jP can be determined in relation to j+1P through the 
equation :  

jP = jAj+1 ⋅   j+1P, (2) 

where the transformation matrix jAj+1  is: 
cos sin cos sin sin cos
sin cos cos cos sin sin    +1 0 sin cos
0 0 0 1

j j j j j j j

j j j j j j j

j j j

a

ajA j d

θ θ α θ α α

θ θ α θ α α

θ θ

− ⋅ + ⋅ ⋅⎡ ⎤
⎢ ⎥− ⋅ − ⋅ ⋅⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  . 

Control through forward kinematics consists of the 
transformation of robot coordinates at any given moment, 
resulting directly from the measurement transducers of each 
axis, to Cartesian coordinates and comparing to the desired 
target’s Cartesian coordinates (reference point). The 
resulting error is the difference of position, represented in 
Cartesian coordinates, which requires changing. Using the 
inverted Jacobean matrix ensures the transformation into 
robot coordinates of the position error from Cartesian 
coordinates, which allows the generating of angle errors for 
the direct control of the actuator on each axis.  

The control using forward kinematics consists of 
transforming the actual joint coordinates, resulting from 
transducers, to Cartesian coordinates and comparing them 
with the desired Cartesian coordinates. The resulted error is 
a required position change, which must be obtained on 
every axis. Using the Jacobean matrix inverting it will 
manage to transform the change in joint coordinates that 
will generate angle errors for the motor axis control.  

Figure 2 illustrates a robot position control system 
based on the Denavit-Hartenberg transformation. The robot 
joint angles, θc, are transformed in  Xc - Cartesian 
coordinates with   D-H transformation, where a matrix 
results from (1) and (2) with θj -joint angle, dj -offset 
distance, a j - link length, αj  - twist.  

Position and orientation of the end effector with 
respect to the base coordinate frame is given by  XC  :  

XC = A1 · A2 · A3 · .........  · A6  (3) 

 Position error ∆X is obtained as a difference between 
desired and current position. There is difficulty in 
controlling robot trajectory, if the desired conditions are 

specified using position difference ∆X  with continuously 
measurement of current position θ1,2,.....6. 

X =A* ...A*
(4*4)

C 1 6

Desired 
XD (6*1)

Processing
Jacobian

Triangulate
Jacobian

ROBOT
SYSTEM

Back-
Substitution

Actual Position   i

  I (6*1)

X Actuators
Control

Sensor
Signals

J-1(θ) · δ 6X6J ( θ ) · δ θ1,2,.....6

XC = A1 · A2 ... · A6

Fig. 2. Robot position control system based on the Denavit-
Hartenberg transformation 

The relation, between given by end-effector's position and 
orientation considered in Cartesian coordinates and the 
robot joint angles θ1,2,.....6, it is : 

xi = f i (θ) (4) 

where  θ  is vector representing the degrees of freedom of 
robot. By differentiating we will have: δ 6X6 =  J ( θ ) ·
δ θ1,2,.....6 , where δ 6X6 represents differential linear and
angular changes in the end effector at the currently values of 
X6  and δ θ1,2,.....6 represents the differential change of the set 
of joint angles.  J (θ) is the Jacobean matrix in which the 
elements aij  satisfy the relation: aij  =  δ   f i-1 /  δ  θ  j-1 , 
(x.6)  where  i, j are corresponding to the dimensions of  x 
respectively θ. The inverse Jacobian transforms the 
Cartesian position δ6X6 respectively ∆X  in joint angle error
(∆θ):  δ θ 1,2,...6  =  J-1(θ)  ·  δ  6X6 .

VI. HYBRID POSITION AND FORCE CONTROL OF
ROBOTS 

Hybrid position and force control of industrial robots 
equipped with compliant joints must take into consideration 
the passive compliance of the system. The generalized area 
where a robot works can be defined in a constraint space 
with six degrees of freedom (DOF), with position constrains 
along the normal force of this area and force constrains along 
the tangents. On the basis of these two constrains there is 
described the general scheme of hybrid position and force 
control in figure 3. Variables XC and FC represent the 
Cartesian position and the Cartesian force exerted onto the 
environment. Considering XC and FC expressed in specific 
frame of coordinates, its can be determinate selection 
matrices Sx and Sf, which are diagonal matrices with 0 and 1 
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diagonal elements, and which satisfy relation: Sx  +  Sf  = Id , 
where Sx and Sf are methodically deduced from kinematics 
constrains imposed by the working environment [9, 10].  

S X POSITION CONTROL
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i

Fig. 3. General structure of hybrid control. 

Mathematical equations for the hybrid position-force 
control. A system of hybrid position–force control normally 
achieves the simultaneous position–force control. In order to 
determine the control relations in this situation, ∆XP – the 
measured deviation of Cartesian coordinate command 
system is split in two sets: ∆XF corresponds to force 
controlled component and ∆XP corresponds to position 
control with axis actuating in accordance with the selected 
matrixes Sf and Sx. If there is considered only positional 
control on the directions established by the selection matrix 
Sx there can be determined the desired end - effector 
differential motions that correspond to position control in the 
relation: ∆XP  = KP ∆XP , where KP is the gain matrix, 
respectively desired motion joint on position controlled axis: 
∆θ P  =  J-1(θ)  ·  ∆XP [11, 12]. 

Now taking into consideration the force control on the 
other directions left, the relation between the desired joint 
motion of end-effector and the force error ∆XF is given by 
the relation:  ∆θ F  =  J-1(θ)  ·  ∆XF , where the position 
error due to force ∆XF  is the motion difference between 
∆XF– current position deviation measured by the control 
system that generates position deviation for force controlled 
axis and ∆XD – position deviation because of desired 
residual force. Noting the given desired residual force as FD 
and the physical rigidity KW there is obtained the relation: 
∆XD = KW

-1 · FD .   
Thus, ∆XF can be calculated from the relation: ∆XF  = 

KF (∆XF – ∆XD), where KF is the dimensionless ratio of the 
stiffness matrix. Finally, the motion variation on the robot 
axis matched to the motion variation of the end-effectors is 
obtained through the relation: ∆θ =  J-1(θ) ∆XF  +  J-1(θ) 
∆XP. Starting from this representation the architecture of the 
hybrid position – force control system was developed with 
the corresponding coordinate transformations applicable to 
systems with open architecture and a distributed and 
decentralized structure.   

For the fusion of information received from various 
sensors, information that can be conflicting in a certain 
degree, the robot uses the fuzzy and neutrosophic logic or set 
[3]. In a real time it is used a neutrosophic dynamic fusion, 
so an autonomous robot can take a decision at any moment. 

CONCLUSION

In this paper we have provided in the first part an 
introduction to the neutrosophic logic and set operators and 
in the second part a short description of mathematical 
dynamics of a robot and then a way of applying 
neutrosophic science to robotics. Further study would be 
done in this direction in order to develop a robot 
neutrosophic control. 
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Clustering Neutrosophic Data Sets and Neutrosophic 
Valued Metric Spaces 

Ferhat Ta�, Sel�uk Topal, Florentin Smarandache

Abstract: In this paper, we define the neutrosophic valued (and generalized or G) metric spaces for 

the first time. Besides, we newly determine a mathematical model for clustering the neutrosophic big 

data sets using G-metric. Furthermore, relative weighted neutrosophic-valued distance and weighted 

cohesion measure, is defined for neutrosophic big data set. We offer a very practical method for data 

analysis of neutrosophic big data although neutrosophic data type (neutrosophic big data) are in 

massive and detailed form when compared with other data types. 

Keywords: G-metric; neutrosophic G-metric; neutrosophic sets; clustering; neutrosophic big data; 

neutrosophic logic 

1. Introduction and Preliminaries

Neutrosophic Logic is a neonate study area in which each proposition is estimated to have the 

proportion (percentage) of truth in a subset T, the proportion of indeterminacy in a subset I, and the 

proportion of falsity in a subset F. We utilize a subset of truth (or indeterminacy, or falsity), instead of a 

number only, since in many situations we do not have ability to strictly specify the proportions of truth 

and of falsity but only approximate them; for instance, a proposition is between 25% and 55% true and 

between 65% and 78% false; even worse: between 33% and 48% or 42 and 53% true (pursuant to several 

observer), and 58% or between 66% and 73% false. The subsets are not essential intervals, but any sets 

(open or closed or half open/half-closed intervals, discrete, continuous, intersections or unions of the 

previous sets, etc.) in keeping with the given proposition. Zadeh initiated the adventure of obtaining 

meaning and mathematical results from uncertainty situations (fuzzy) [l]. Fuzzy sets brought a 

new dimension to the concept of classical set theory. Atanassov introduced intuitionistic fuzzy sets 

including membership and non-membership degrees [2]. Neutrosophy was proposed by Smarandache 

as a computational approach to the concept of neutrality [3]. Neutrosophic sets consider membership, 

non-membership and indeterminacy degrees. Intuitionistic fuzzy sets are defined by the degree 

of membership and non-membership and, uncertainty degrees by the 1-(membership degree plus 

non-membership degree), while the degree of uncertainty is evaluated independently of the degree of 

membership and non-membership in neutrosophic sets. Here, membership, non-membership, and 

degree of uncertainty (uncertainty), such as degrees of accuracy and falsity, can be evaluated according 

to the interpretation of the places to be used. It depends entirely on the subject area (the universe of 

discourse). This reveals a difference between neutrosophic set and intuitionistic fuzzy set. In this sense, 

the concept of neutrosophic is a possible solution and representation of problems in various fields. 

Two detailed and mathematical fundamental differences between relative truth (IFL) and absolute 

truth (NL) are: 

Ferhat Taș, Selçuk Topal, Florentin Smarandache (2018). Clustering Neutrosophic Data Sets and Neutrosophic 
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(i) NL can discern absolute truth (truth in all possible worlds, according to Leibniz) from the relative
truth (truth in at least one world) because NL (absolute truth) = 1 + while IFL (relative truth) = 1.
This has practice in philosophy (see the Neutrosophy). The standard interval [O, ll used in IFL
has been extended to the unitary non-standard interval 1- 0, 1 + [ in NL. Parallel earmarks for
absolute or relative falsehood and absolute or relative indeterminacy are permitted in NL.

(ii) There is no limit on T, I, F other than they are subsets of 1- 0, 1 + [, thus: -o::; inf T + inf I+ inf F
::; sup T + sup I+ sup F ::; 3+ in NL. This permissiveness allows dialetheist, paraconsistent, and
incomplete information to be described in NL, while these situations cannot be described in IFL
since F (falsehood), T (truth), I (indeterminacy) are restricted either to t+ i + f = 1 or to t2 + f2 ::; 1,
if T, I, Fare all reduced to the points t, i, f respectively, or to sup T + sup I+ sup F = 1 if T, I, Fare
subsets of (0, 11 in IFL.

Clustering data is one of the most significant problems in data analysis. Useful and efficient
algorithms are needed for big data. This is even more challenging for neutrosophic data 
sets, particularly those involving uncertainty. These sets are elements of some decision-making 
problems, [4-81. Several distances and similarities are used for decision-making problems [9,101. 
Algorithms for the clustering big data sets use the distances (metrics). There are some metrics used in 
algorithms to analysis neutrosophic data sets: Hamming, Euclidean, etc. In this paper, we examine 
clustering of neutrosophic data sets via neutrosophic valued distances. 

The big data notion is a new label for the giant size of data-both structured and unstructured-that 
overflows several sectors on a time-to-time basis. It does not mean overall data are significant and 
the significant aspect is to obtain desired specific data interpretation. Big data can be analyzed for 
pre-cognition that make possible more consistent decisions and strategic having positions. Doug 
Laney (111 sort to make the definition of big data the three Vs and Veracity widespread: (1) Velocity: 
This refers to dynamic data and captures data streams in near real-time. Data streams in at an 
exceptional speed and must be dealt with in a well-timed mode. (2) Variety: Data comes in all types of 
formats-from structured, numeric data in traditional databases to formless materials. On the one 
hand, variety denotes to the various sources and types of organized and formless data. Storing data 
is made from sources like worksheets and databases. (3) Volume: Organizations gather data from a 
range of sources, including social media, business operations, and data from the sensor or machine to 
machine. (4) Veracity: It mentions to the biases, noise, and anomaly in data. That corresponds with 
the question "Is the data that is being put in storage and extracted meaningful to the problem being 
examined?1'. 

In this paper, we also focus on K-sets cluster algorithm which is a process of analyzing data with 
the aim of evaluating neutrosophic big data sets. The K-sets cluster is an unrestrained type of learning 
that is used when one wants to utilize unlabeled data, [121. The goal of the algorithm is to find groups 
of data with the number of groups represented by variable K. The algorithm works iteratively to 
set-aside each data point obtained to one of the K groups based on the properties obtained. The data 
points are clustered according to feature similarity. Instead of identifying groups before examining 
patterns, clustering helps to find and analyze naturally occurring groups. "Choosing K" has the goal 
of "how the number of groups can be determined". Each center of a congregation is a collection of 
property values describe the groups that emerged. Analysis of centroid feature weights can be used 
to qualitatively interpret what kind of group is represented by each cluster. The algorithm finds the 
clusters and data set labels for a particular pre-chosen K. To have the number of clusters in the data, 
the user must run the K-means clustering algorithm for a range of K values and compare the results. 
In general, there is no technique to determine a specific K value, but a precise estimate can be obtained 
using the following methods. In general, one of the metrics used to compare the results between the 
different K values as the average distance between the data points and their cluster synthesis. As the 
number of sets increases, it will always reduce the distance to the data points, while the K increment 
will always lower this metric as other criteria, and when K is the same as the number of data points, 
reaching zero will be excessive. Thus, this metric cannot be used as a single purpose. Rather, the 
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average distance to the center as a function of K is plotted where the shear rate falls sharply, it can be 
used to determine K approximately. 

A number of other techniques are available for verification of K, including cross-validation, 
information criteria, information theoretical jump method, and G-tools algorithm. In addition, 
monitoring the distribution of data points between groups provides information about how the 
algorithm splits data for each K. K-sets algorithms base on the measurement of distances of sets. 
A distance is a measurement of how far apart each pair of elements of a given set is. Distance 
functions in mathematics and many other computational sciences are important concepts. They have 
wide usage areas, for example, the goal of quantifying a dissimilarity ( or equivalently similarity) 
between two objects, sets or set of sets in some sense. However, due to the massive, complicated and 
different type data sets today, definitions of distance functions are required to be more generalized and 
detailed. For this purpose, we define a novel metric for similarity and distance to give Neutrosophic 
Valued-Metric Spaces (NVGMS). We present relative weighted measure definition and finally K-sets 

algorithm after given the definition of NVGMS. 
Some readers who are unfamiliar with the topic in this paper need to have a natural example to 

understand the topic well. There is a need for earlier data in everyday life to give a natural example for 
the subject first described in this paper. There is no this type of data (we mean neutrosophic big data) 

in any source, but we will give an example of how to obtain and cluster such a data in Section 6 of the 
paper. If we encounter a sample of neutrosophic big data in the future, we will present the results with 

a visual sample as a technical report. In this paper, we have developed a mathematically powerful 
method for the notion of concepts that are still in its infancy. 

1.1. G-Metric Spaces 

Metric space is a pair of (A, d), where A is a non-empty set and d is a metric which is defined by 
a certain distance and the elements of the set A. Some metrics may have different values such as a 
complex-valued metric (13,14]. Mustafa and Sims defined G-metric by generalizing this definition (15]. 
Specifically, fixed point theorems on analysis have been used in G-metric spaces (16,17]. 

Definition 1. Let A be a non-empty set and d be a metric on A, then if the following conditions hold, the pair 
(A, d) is called a metric space. Let x, y, z E A 

(1) d(x,y) � 0,(non-negativity)

(2) d (x, y) = 0 ¢:;, x = y 1 ( identity)
(3) d(x,y) =d(y,x),(symmetry)

(4) d(x,z)::; d(x,y) +d(y,z) (triangle inequality).

where d : A x A ➔ R+ U {O}. 

Definition 2. [15] Let A be a non-empty set. A function G : A x A x A ➔ [O, +oo) is called G-distance if it 
satisfies the following properties: 

(1) G(x,y,z) =Oifand onlyifx=y=z,

(2) G(x,x, y) -/:: 0 whenever x -/= y,

(3) G(x,x,y)::; G(x,y,z)for any x,y,z E A,with z -/=y,

(4) G(x,y,z) = G(x,z,y) = . . .  (symmetric for all elements),

(5) G(x, y, z) ::; G(x, a, a) + G(a, y, z) for all a, x, y,z E A (Rectangular inequality).

The pair (A, G) is called a G-metric space. Moreover, if G-metric has the following property then it 
is called symmetric: G(x, x, y) = G(x, y, y), \Ix, y E A. 
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Example 1. In 3--dimensional Euclidean metric space, one can assume the G-metric space ( E3
, G) as the 

following: 
G(x,y,z) = 2(llx x yll + llz x yll + llx x zll) 

where x, y, z E E3 and 11- x -11 represent the norm of the vector product of two vectors in E3
. It is obvious that it 

satisfies all conditions in the Definition 2 because of the norm has the metric properties, and it is symmetric. 

Example 2. Let (A, d) is a metric space. Then 

G(x,y,z) = d(x,y) +d(y,z) -d(x,z) 

is a G-metric, where x, y, z E A. The fact that dis a metric indicates that it has triangle inequality. Thus, G is 
always positive definite. 

Proposition 1. [17] Let (A, G) be a G-metric space then a metric on A can be defined from a G-metric: 

dc(x,y) = G(x,x,y) + G(x,y,y) 

1.2. Neutrosophic Sets 

Neutrosophy is a generalized form of the philosophy of intuitionistic fuzzy logic. In neutrosophic 
logic, there is no restriction for truth, indeterminacy, and falsity and they have a unit real interval 
value for each element neutrosophic set. These values are independent of each other. Sometimes, 
intuitionistic fuzzy logic is not enough for solving some real-life problems, i.e., engineering problems. 
So, mathematically, considering neutrosophic elements are becoming important for modelling these 
problems. Studies have been conducted in many areas of mathematics and other related sciences 
especially computer science since Smarandache made this philosophical definition, [18,19]. 

Definition 3. Let E be a universe of discourse and A <:;; E. A = { (x, T(x), I (x), F(x)) : x E E} is 
a neutrosophic set or single valued neutrosophic set (SVNS), where TA,IA,FA: A-t ro,1+[ are the 
truth-membership function, the indeterminacy-membership function and the falsity-membership function, 
respectively. Here, -o � TA (x) + IA (x) + FA (x) � 3+ _ 

Definition 4. For the SVNS A in E, the triple (TA, IA,FA) is called the single valued neutrosophic number 
(SVNN). 

Definition 5. Let n = (Tn, In, Fn; be an SVNN, then the score function of n can be given as follow: 

where sn E [-1,1]. 

Definition 6. Let n = (Tn, In,Fn) be an SVNN, then the accuracy function of n can be given as follow: 

where hn E [O, l]. 

Definition 7. Let n1 and n2 be two SVNNs. Then, the ranking of two SVNNs can be defined as follows: 

(I) If Sn1 > Sn2, then n1 > n2;
(II) If Sn1 

= Sn2 
and hn

1 2:: hn
2, then n1 2:: nz.

(1) 

(2)
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2. Neutrosophic Valued Metric Spaces

The distance is measured via some operators which are defined in some non-empty sets. In 
general, operators in metric spaces have zero values, depending on the set and value. 

2.1. Operators 

Definition 8. [20,21], Let A be non-empty SVNS and x = (Tx,Ix,Fx),y = (T
y
,I

y
J

y) be two SVNNs. 
The operations that addition, multiplication, multiplication with scalar a: E JR+, and exponential of SVNNs are 
defined as fo llows

1 respec tively: 

x ffi y = (Tx + T
y 

- TxT
y
, Ix i

y
, FxF

y
) 

x 0 y = (TxT
y
, Ix + I

y 
- Ix i

y
Jx + F

y 
- FxF

y
; 

a:x = (1 - (1 - Tx)'X, I�,F;) 
x� = (T;, 1- (1- Ixf, 1 - (1- fxf) 

From this definition, we have the following theorems as a result: 

Theorem 1. Let x = (Tx, Ix, Fx) be an SVNN. The neutral element of the additive operator of the set A is 
0A = (0, 1, 1). 

Proof. Let x = (Tx, Ix, Fx) and 0A = (To, Io, Fo) are two SVNN and using Definition 8 we have 

x ffi 0A = (Tx + To - TxTo, Ixlo,FxFo) = (Tx, Ix, Fx) 
⇒ (To,Io,Fo) = (0,1,1) =0A 

(There is no need to show left-hand side because the operator is commutative in every component). 

To compare the neutrosophic values based on a neutral element, we shall calculate the score and 
accuracy functions of a neutral element 0 A = ( 0, 1, 1), respectively: 

_ 1 + To - 2Io - Fo _ l d h _ 2 + To - Io - Fo _ so - ------ - - an o - ------ - 0
2 3 

Theorem 2. Let x = (Tx, Ix, Fx) be an SVNN. The neutral element of the mul tiplication operator of the A is 
l A = (1,0,0). 

Proof. Let x = (Tx, Ix, Fx) and l A = (T1, Ji, F1) are two SVNN and using Definition 8 we have 

x 0 l A = (TxT1, Ix+ Ji - Ixfi, Fx + F1 - FxF1) = (Tx, Ix, Fx) 
⇒ (T1,Ji,F1) = (1,0,0) = l A 

In addition, score and accuracy functions of the neutral element l A 

l+T1 -iI1 -F1 = 1 and h1 = z+T12/1-F1 = 1, respectively. D

2.2. Neutrosophic Valued Metric Spaces 

(1, 0, 0) are s1 

In this section, we consider the metric and generalized metric spaces in the neutrosophic meaning. 

Definition 9. Ordering in the Definition 6 gives an order relation for elements of the conglomerate SVNN. 
Suppose that the mapping d : X x X--+ A, where X and A are SVNS1 satisfies: 
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(I) OA S d(x, y) and d(x, y) = OA ¢:? Sx = Sy and hx = hy for all x, y E X.
(II) d(x, y) = d(y,x) for all x, y E X.

Then d is called a neutrosophic valued metric on X, and the pair ( X, d) is called neutrosophic 
valued metric space. Here, the third condition (triangular inequality) of the metric spaces is not suitable 
for SVNS because the addition is not ordinary addition. 

Theorem 3. Let ( X, d) be a neutrosophic valued metric space. Then, there are relationships among truth, 
indeterminacy and falsity values: 

(I) 0 < T(x, y) - 2I(x, y) - F(x, y) + 3 and if s0 = sd then O < T(x, y) - I(x, y) - F(x, y) + 2. 
(II) If d(x,y) = OA ¢:? T(x,y) = O,I(x,y) = F(x,y) = 1.

(III) T(x,y) = T(y,x),I(x,y) = I(y,x),F(x,y) = F(y,x) so,each distancefunction must be symmetric.

where T(., .), I ( ., .) and F(., .) are distances within themselves of the truth, indeterminacy and falsity Junctions, 
respectively. 

Proof. 

(I) 

(II) 

OA < d(x,y) ¢:? (0, 1, 1) < (T(x,y), I(x,y),F(x,y)) 
< 1 < 1 + T(x,y) - 2l(x,y) - F(x,y)

¢:? so sd ¢:? - 2 

¢:? 0 < T(x, y) - 2I(x, y) - F(x, y) + 3 
d(x,y) = d(y,x) ¢:? (T(x,y),I(x,y),F(x,y)) = (T(y,x),I(y,x),F(y,x)) 0

¢:? T(x,y) = T(y,x),I(x,y) = I(y,x),F(x,y) = F(y,x) 

Example 3. Let A be non-empty SVNS and x = (Tx, Ix,Fx), y = (Ty, Iy, Fy) be two SVNNs. If we define the 
metric d : X x X --+ A, as: 

then 

(I) 

d(x,y) = {T(x,y),I(x,y),F(x,y)) = ([Tx -Ty[,l - [Ix -Iy[, 1- [fx -fy [) 

0 < [ Tx - Ty [ - 2 ( 1 - [ Ix - Iy [) - ( 1 - [ fx - Fy [) + 3 
⇒ 0 < [ Tx - Ty] + 2] Ix - Iy ] + ] fx - Fy]

Then it satisfies the first condition.
(II) Since the properties of the absolute value Junction, this condition is obvious.

So, (X, d) is a neutrosophic-valued metric space.

3. Neutrosophic Valued G-Metric Spaces

Definition 10. Let X and A be a non-empty SVNS. A function G : X x X x X --+ A is called neutrosophic 
valued G-metric if it satisfies the following properties: 

(1) G(x,y,z) =OAi/and only if x=y=z,
(2) G(x,x,y) -I- OA whenever x -I- y,
(3) G(x,x, y) s G(x, y,z) for any x, y,z E X, with z -I- y,
(4) G(x,y,z) = G(x,z,y) = ... (symmetric for all elements).

The pair (X, G) is called a neutrosophic valued G-metric space. 

Theorem 4. Let (X, G) be a neutrosophic valued G-metric space then, it satisfies followings: 
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(1) T(x,x,x) = O,I(x,x,x) = F(x,x,x) = l.

(2) Assume x i= y ,  then T(x, y, z) i= 0, I(x, y, z) i= 1, F(x, y, z) i= l.

(3) 0 < T(x,y,z) -T(x,x,y) + 2(I(x,x,y) - I(x,y,z)) +F(x,x,y)-F(x,y,z)
(4) T(x, y, z), I (x, y, z) and F(x, y,z) are symmetric for all elements.

where T(., ., .), I(.,.,.) and F(., ., .) are G-distance Junctions of truth, indeterminacy and falsity values of the 
element of the set, respectively. 

Proofs are made in a similar way to neutrosophic valued metric spaces. 

Example 4. Let X be non-empty SVNS and the G-distance function defined by: 

1 G(x,y,z) = 3(d(x,y) €fJ d(x,z) $ d(y,z))

where d(., .) is a neutrosophic valued metric. The pair (X, G) is obviously a neutrosophic valued G-metric space 
because of d(., .). Further1 it has commutative properties. 

4. Relative Weighted Neutrosophic Valued Distances and Cohesion Measures

The relative distance measure is a method used for clustering of data sets, []. We define the 
relative weighted distance, which is a more sensitive method for big data sets. 

Let Xi = (Tx;, Fx,, Ix,} E A(non-empty SVNS), i = 0 ... n be SVNNs. Then neutrosophic weighted
average operator of these SVNNs is defined as: 

where Xi is weighted for the i th data. For a given a neutrosophic data set W = { w1, Wz, w3, .. . , Wn} 

and a neutrosophic valued metric d, we define a relative neutrosophic valued distance for choosing
another reference neutrosophic data and compute the relative neutrosophic valued distance as the 
average of the difference of distances for all the neutrosophic data wi E W.

Definition 11. The relative neutrosophic valued distance from a neutrosophic data w; to another neutrosophic 
data w

j 
is defined as follows: 

Here, since T, I, F values of SVNNs cannot be negative, we can define the expression d ( wi, w j) +-d ( wi, wk) 
as the distance between these two neutrosaphic-valued metrics. Furthermore, the distance of metrics is again 
neutrosophic-valued here so, a related neutrosophic-valued distance can be defined as: 

d(w;, wj)-<e--d(w;, wk) = (T(w;, wj), I(w;, wj),F(w;, wj) )➔(T(w;, wk), I(w;, wk),F(w;, wk)) 
= \ 1 - lr(w;,wj) - (T(w,,wk) - 1)

2 I, 1 - lr(w;, wj) - I(w,,wdl, 1 - lf(w;, wj) - F(w;, wkf I) (3)
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The difference operator..,. generally is not a neutrosophic-valued metric (or G-metric). We used some abbreviations for saving space. 
= ¾ L (d(wi,wj)...-d(wi,wk)) wkEW =d(wi,w1)...-¾ L d(wi,wk) wkEW 
= (T( wi, w1), I( wi, w1),F( wi, w1) )...-¾ (d (wi, w1) EB d(wi, w2) EB ... EB d (wi, Wn)) 
= (T(wi, w1), I(wi, w1),F(wi, w1)) 
-.,.¾[ (T( wi, w1 ), I( wi, w1 ), F( wi, w1); EB ... EB (T( wi, w1), I( wi, w1), F(wi, w1);] 
= (T(wi, w1), I(wi, w1),F(wi, w1)) 
_,,_¼[/ L T(wi,wk)- IT T(wi,wk), IT I(wi,wk), IT F(wi,wk))]

\kEW kEW kEW kEW 

= (T(wi, w1), I(wi, w1),F(wi, w1)) 
..,./ 1-[1- L T(wi,wk)+ IT T(wi,wk)] l /n, IT I(wi,wk)11n, IT F(wi,wk)l /n ) 

\ kEW kEW kEW kEW 
= (T1, Ji, F1 )+-(T2, Jz,F2) 
= (1 - IT1 -(T2 - 1)2 1, 1- IIi - 1z2 1, 1- IF1 -Fz2 1)

where T1 , Ii, F1 and T2, Iz, F2 are the first, second, and third elements of SVNN in the previous equation,respectively. 
Definition 12. The relative weighted neutrosophic valued distance from a neutrosophic data Wi to another neutrosophic data w1 is defined as follows: 

= L Xw(d(wi,wj)-... d(wi,wk)) wkEW 
i'Ff,f#H=k =Xijd(wi,wf)...- L Xikd(wi,wk)wkEW 

i#f,f##k 

= Xij(T(wi, Wj), I(wi, Wj), F(wi, w1)) ...-(Xil (T( Wi, W1 ), I ( Wi, W1 ),F( Wi, W1)) EB ... EB Xin (T(wi, Wn), I ( Wi, Wn), F(wi, Wn)))
= I 1 - (1 - T(w· w ·) )x;, I(w · w ·)Xii F(w· w·)Xii) 

\ 
t, j , 1, j , i, j 

...-( (l-(l- T(wi,w1))Xi1,I(wi,w1)Xil,F(wi,w1)Xi1 )EB ... ) EB(l - (1-T(wi,wn))Xin,J(wi,wn)Xin,F(wi,wn)Xin)
= / 1 -(1-T(w· W·))Xij I(w· w,)Xij F(w· w,)Xij) 

\ 
1' } , 11 / ,  ti / 

(n~ n ~  n ~ n~).... r: T ik - IT. T ik, IT. 1 ik, IT. Fik 
k=l k=l k=l k=l k,fi,j k,f,,j k ,fi,J k,f,,j 

= (T1,JiJ1) .... (T2,I2,F2) 
= (1-IT1-(T2- 1)2 1,1-11i-1z2 1,1-IF1-Fz2 1) 

~ ~ ~where T ik = 1 - (1 - T( wi, wk) )Xik, I ik = I ( wi, wk)Xik, F ik = F( wi, wk)Xik. 
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Definition 13. The relative weighted neutrosophic valued distance (from a random neutrosophic data w;) to a neutrosophic data wi is defined as follows: 
I: x;RDx (w; llwi) 

w,EW 

= L X1 L Xw(d(w;, wj).,.d(w;, wk))] 
w,EW wkEW 

L Xi L xw(is(dij,d1k) )] 
w,EW wkEW 

Definition 14. The relative weighted neutrosophic valued distance from a neutrosophic data set W1 to another neutrosophic data set W2 is defined as follows: 
RDx(W1 IIW2) = L Xx L XyRDx(xlly) 

xEW1 yEW2 

Definition 15. (Weighted cohesion measure between two neutrosophic data) The difference of the relative weighted neutrosophic-valued distance to wi and the relative weighted neutrosophic-valued distance from w; to Wj, i.e., 
(4) 

is called the weighted neutrosophic-valued cohesion measure between two neutrosophic data w; and wr If 
Px(w;, wi) 2". Ow(resp . Px(w;, wi) �Ow) then W; and wi are said to be cohesive (resp. incohesive). So, the relative weighted neutrosophic distance from w; and Wj is not larger than the relative weighted neutrosophic 
distance (from a random neutrosophic data) to wr 
Definition 16. (Weighted cohesion measure between two neutrosophic data sets) Let w; and wi are elements of the neutrosophic data sets U and V, respectively. Then the measure 

Px(U, V) = L Xu L XvPx(w;, wj) (5) 
w,EU WjEV

is called weighted cohesion neutrosophic-valued measure of the neutrosophic data sets U and V 
Definition 17. (Cluster) The non-empty neutrosophic data set W is called a cluster if it is cohesive, i.e., p(W, W) 2': Ow.

5. Clustering via Neutrosophic Valued G-Metric Spaces

In this section, we can cluster neutrosophic big data thank to defined weighted distance definitions 
in Section 4 and G-metric definition. 

Definition 18. The neutrosophic valued weighted G-distance from a neutrosophic data w to a neutrosophic big 
data set U is defined as follows: 

G(w,y,z) = L Xu L Xu(d(w,y) Ef) d(w,z)-d(y,z)) (6) 
yEU zEU 
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Algorithm (K-sets algorithm) 

Input: A neutrosophic big data set W = { w1, w2, .•• , Wn}, a neutrosophic distance measure d(.1.)1 and the 
number of sets K.

Output: A partition of neutrosophic sets {U1, U2, ... , UK}. 

1. Initially, choose arbitrarily K disjoint nonempty sets U1, U2, ... , UK as a partition of W.

2. for i from 1 to n do 
begin

Compute G(xi, Yk, zk) for each set Uk.
Find the set to which the point Xi is closest in terms of G-distance.
Assign point Xi to that set.
end

3. Repeat from 2 until there is no further change.

6. Application and Example

We will give an example of the definition of the data that could have this kind of data and fall into 
the frame to fit this definition. We can call a data set a big data set if it is difficult and/ or voluminous to 
define, analyze and visualize a data set. We give a big neutrosophic data example in accordance with 
this definition and possible use of G-metric, but it is fictional since there is no real neutrosophic big 
data example yet. It is a candidate for a good example that one of the current topics, image processing 
for big data analysis. Imagine a camera on a circuit board that is able to distinguish colors, cluster all 
the tools it can capture in the image and record that data. The camera that can be used for any color 
(for example white color vehicle) assigns the following degrees: 

(I) The vehicle is at a certain distance at which the color can be detected, and the truth value of the
portion of the vehicle is determined.

(II) The rate at which the vehicle can be detected by the camera is assigned as the uncertainty value
(the mixed color is the external factors such as the effect of daylight and the color is determined
on a different scale).

(III) The rate of not seeing a large part of the vehicle or the rate of out of range of the color is assigned
as the value of falsity.

Thus, data of the camera is clustering via G-metric. This result gives that the numbers according to
the daily quantities and colors of vehicles passing by are determined. The data will change continuously 
as long as the road is open, and the camera records the data. There will be a neutrosophic data for each 
vehicle. So, a Big Neutrosophic Data Clustering will occur. 

Here, the weight functions we have defined for the metric can be given 1 value for the main colors 
(red-yellow-blue). For other secondary or mixed colors, the color may be given a proportional value 
depending on which color is closer. 

A Numerical Toy Example 

Take 5 neutrosophic data with their weights are equal to 1 to make a numerical example: 

W = { Wt (0.6, 0.6, 0.6), Wz (0.8, 0.4, 0.5), W3(0.5, 0.8, 0.7), W4 (0.9, 0.5, 0.6), Ws(0.1, 0.2, 0.7)} 

K = 3 disjoint sets can be chosen Ut = { Wt, W4, w5}, U2 = { Wz, w3}. 
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Then 

(0,1,1) 
(0.2,0.8,0.9) 
(0.1,0.8,0.9) 
(0.3,0.9, 1.0) 
(0.5,0.6,0.9) 

(0.2, 0.8, 0.9) 
(0, 1, 1) 

(0.3, 0.6, 0.8) 
(0.1, 0.9, 0.9) 
(0.7, 0.8, 0.8) 

(0.1,0.8,0.9) 
(0.3, 0.6, 0.8) 

(0, 1, 1) 
(0.4,0.7,0.9) 
(0.4, 0. 4, 1.0) 

(0.3, 0.9, 1.0) 
(0.1, 0.9, 0.9) 
(0.4, 0.7, 0.9) 

(0,1,1) 
( 0.2, 0.8, 0.9) 

(0.5, 0.6, 0.9) 
(0.7, 0.8, 0.8) 
(0.4,0.4, 1.0) 

(0.2, 0.8, 0.9) 
(0,1,1) 

where we assume the d(w;, wj) as in Example 3. So, we can compute the G-metrics of the data as in 
Equation (3): 

G(w1, U1) = G(w1, w4, ws) = (0.99,0.90,0.91) 
G(w1,U2) = G(w1,w2,w3) = (0.79,0.72,0.83) 
G(w2, U1) = G(w2, W1, W4) EB G(w2, W1, ws) EB G(w2, W4, ws) = (0.9874,0.6027, 0.6707) 
G(wz, U2) = G(wz, wz, w3) = (0, 1, 1) 
G(w3,U1) = G(w3,W1,W4) EB G(w3,W1,Ws) EB G(w3,W4,Ws) = (1,0.4608,0.6707) 
G(w3, U2) = G(w3, Wz, W3) = (0, 1, 1) 
G(w4, U1) = G(w4, w1, ws) = (0.81,0.64,0.91) 
G(w4,U2) = G(w4,W2,w3) = (0.97,0.73,0.83) 

So, according to the calculations above, w4 belongs to set U1 and the other data belong to Uz . 
Here, we have made the data belonging to the clusters according to the fact that the truth values of the 
G-metrics are mainly low. If the truth value of G-distance is low, then the data is closer to the set.

7. Conclusions

This paper has introduced many new notions and definitions for clustering neutrosophic big 
data and geometric similarity metric of the data. Neutrosophic data sets have density. For example, 
sets having indeterminacy density or neutrosophic density and these are adding the more data and 
complexity. So, neutrosophic data sets are complex big data sets. Separation and clustering of these 
sets are evaluated according to weighted distances. Neutrosophic data sets in the last part of the paper, 
K-sets algorithm has been given for neutrosophic big data sets. We hope that the results in this paper 
can be applied to other data types like interval neutrosophic big data sets and can be analyzed in 
other metric spaces such as neutrosophic complex valued G-metric spaces etc. and can help to solve 
problems in other study areas.
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Abst ra ct 

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the 
variations surround three parameters called T,I,F (truth, indeterminacy, falsehood) which can take a range of values. 
This paper shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic. 
Once we accept the existence of aether as physical medium, then we can start to ask on what causes matter ejection, 
as observed in various findings related to quasars etc. One particular cosmology model known as VMH (variable 
mass hypothesis) has been suggested by notable astrophysicists like Halton Arp and Narlikar, and the essence of 
VMH model is matter creation processes in various physical phenomena. Nonetheless, matter creation process in 
Nature remains a big mystery for physicists, biologists and other science researchers. To this problem Neutrosophic 
Logic offers a solution. We also discuss two other possible applications of Neutrosophic Logic. In short, 
Neutrosophic Logic may prove useful in offering resolution to long standing conflicts. 

Keywords : Neutrosophic Logic, Physical Neutrosophy, aether, matter creation, integrative medicine 

1.Int roduct ion

Matter creation process in Nature remains a big mystery for physicists, biologists and other science researchers. To 

this problem Neutrosophic Logic offers a solution, along solutions to two other problems, namely the point particle 

assumption in Quantum Electrodynamics and also in resolving the old paradigm conflict between Western approach 

to medicine and Eastern approach. 

In short, Neutrosophic Logic may prove useful in offering resolution to long standing conflicts. See also our previous 

papers on this matter. [29-30] 

Victor Christianto, Robert N. Boyd, Florentin Smarandache (2020). Three possible applications of 
Neutrosophic Logic in Fundamental and Applied Sciences. International Journal of Neutrosophic Science 1(2), 
90-95; DOI: 10.5281/zenodo.3692037

Victor Christianto, Robert N. Boyd, Florentin Smarandache 

Three possible applications of Neutrosophic Logic 
in Fundamental and Applied Sciences
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2. Matter creation pro cesses

Physicists throughout many centuries have debated over the physical existence of aether medium. Since its inception

by Isaac Newton and later on Anton Mesmer (Franz Anton Mesmer 1734 – 1815), many believed that it is needed

because otherwise there is no way to explain interaction at a distance in a vacuum space. We need medium of

interaction, of which has been called by various names, such as: quantum vacuum, zero point field, etc.

Nonetheless, modern physicists would answer: no, it is not needed, especially after Special Relativity theory. Some

would even say that aether has been removed even since Maxwell’sd theory, but it is not true : James Clark Maxwell

initially suggested a mechanical model of aether vortices in his theory [26-28]. Regardless of those debates, both

approaches (with or without assuming aether) are actually resulting in the same empirical results [9].

The famous Michelson-Morley experiments were thought to give null result to aether hypothesis, and historically it 

was the basis of Einstein’s STR. Nonetheless, newer discussions proved that the evidence was rather ambiguous, from 

MM data itself. Especially after Dayton Miller experiments of aether drift were reported, more and more data came to 

support aether hypothesis, although many physicists would prefer a new terms such as physical vacuum or superfluid 

vacuum. See [21]-[25]. 

Once we accept the existence of aether as physical medium, then we can start to ask on what causes matter ejection, 

as observed in various findings related to quasars etc. One particular cosmology model known as VMH (variable mass 

hypothesis) has been suggested by notable astrophysicists like Halton Arp and Narlikar, and the essence of VMH 

model is matter creation processes in various physical phenomena. Nonetheless, matter creation process in Nature 

remains a big mystery for physicists, biologists and other science researchers. To this problem Neutrosophic Logic 

offers a solution.  

Although we can start with an assumption of aether medium is composed of particle-antiparticle pairs, which can be 

considered as a model based on Dirac’s new aether by considering vacuum fluctuation (see Sinha, Sivaram, 

Sudharsan.) [5][6] Nonetheless, we would prefer to do a simpler assumption as follows: 

Let us assume that under certain conditions that aether can transform using Bose condensation process to become 

“unmatter”, a transition phase of material, which then it sublimates into matter (solid, gas, liquid). Unmatter can also 

be considered as “pre-physical matter.” 

Summarizing our idea, it is depicted in the following block diagram:1 

1 The matter creation scheme as outlined here is different from Norman & Dunning-Davies’s argument: “Energy may be derived 
at a quantum of 0.78 MeV to artificially create the resonant oscillatory condensations of a neutroid, then functioning as a 
Poynting vortex to induce a directionalized scalar wave of that quantum toward that vortical receptive surface.” See R.L. Norman 
& J. Dunning-Davies, Energy and matter creation: The Poynting Vortex, 2019, vixra.org/1910.0241 
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Actually the term “unmatter” can be viewed as a solution from perspective of Neutrosophic Logic. A bit of history 

of unmatter term may be useful here: 

“The word ‘Unmatter’ was coined by one of us (F. Smaranda che) and published in 2004 in three papers on 
the subject. Unmatter is formed by combinations of matter and antimatter that bound together, or by long-
range mixture of matter and antimatter forming a weakly-coupled phase. The idea of unpart icle was first 
considered by F. Smarandache in 2004, 2005 and 2006,  when he uploaded a paper on CERN web site and 
he published three papers about what he called 'unmatter', which is a new form of matter formed by matter 
and antimatter that bind together. Unmatter was introduced in the context of ‘neutrosophy’ (Smarandache, 
1995) and ‘parad oxism’ (Smaran dache, 1980), which are based on combinations of opposite entities ‘A’  and 
‘antiA’ together with their neutra lities ‘neutA’ that are in between.”2 See also Smarandache [13]. 

Nonetheless, in this paper, unmatter is considered as a transition state (pre-physical) from aether to become ordinary 

matter/particle, see also [14]. 

Moreover, superfluid model of dark matter has been discussed by some authors [7].  

As one more example/case of our proposed scheme of transition from aether to matter, see a recent paper [18]. See 

the illustrations at pages 5 and 6 of [18] regarding the physically observed properties of the Galactic Center (GC), 

which are obviously completely different from the imaginary "black hole" model.  

The mapping of the magnetic field structures of the Core is a profile of a torus, as we have previously suggested. Page 

5 also illustrates the relation between Sag A and Sag B and the space in between them.  

These illustrations are also relevant to matter creation at the galactic scale. Also note the gamma ray distributions in 

[18], which are relevant to matter destruction processes. Electrical discharges such as lightning, stars, and galaxies, 

all produce gamma rays. Gamma ray resonance dissociates atomic matter back into the aether at the rate of 

6,800,000,000 horsepower  of energy liberated per gram of matter dissociated per second. And where does all that 

energy go? Back into creating new matter. It's a never-ending cycle, and infinitely Universe-wide. 

3. Towards QED without renormal ization

2 http://fs.unm.edu/unmatter.htm 

 

Aether  bose condensation  “unmatter” (pre-physical 
matter)  sublimation  ordinary matter/particle 

Diagram 1. How aether becomes ordinary matter 
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One problem in theoretical physics is how to do away with infinity and divergence in QED without renormalization. 

As we know, renormalization group theory was hailed as cure in order to solve infinity problem in QED theory.  

For instance, a quote from Richard Feynman goes as follows: 

“What the three Nobel Prize winners did, in the words of Feynman, was "to get rid of the infinities in the 
calculations. The infinities are still there, but now they can be skirted around . . . We have designed a 
method for sweeping them under the rug."[19] 

And Paul Dirac himself also wrote with similar tune: 

“Hence most physicists are very satisfied with the situation. They say: "Quantum electrodynamics is a good 
theory, and we do not have to worry about it any more." I must say that I am very dissatisfied with the 
situation, because this so-called "good theory" does involve neglecting infinities which appear in its 
equations, neglecting them in an arbitrary way. This is just not sensible mathematics. Sensible mathematics 
involves neglecting a quantity when it turns out to be small—not neglecting it just because it is infinitely 
great and you do not want it!”[20] 

Here we submit a viewpoint that the problem begins with assumption of point particle in classical and quantum 

electrodynamics. Therefore, a solution shall be sought in developing fluidic Electrodynamics [10], i.e. by using fluid 

particle, or perhaps we can call it “fluidicle.” It is hoped that a fluidicle can remove the infinity problem caused by 

divergence. And fluidicle can be viewed as a solution from perspective of Neutrosophic Logic. 

4. Anoth er a ppli cation: R esolut ion to conflicting parad igms in medicine

It is well known by most medicine practitioners, that Western approach to medicine is based on “curing” or “attacking”

a disease, one by one. This is called germ theory: one cure for one disease (Pasteur). On the opposite side, Eastern

medicine is based in particular on ancient wisdom of returning the balance of the body, in other words: to harmonize

our body and our live with nature. Although those two approaches in medicine and healthcare have caused so many

conflicts and misunderstandings, actually it is possible to do a dialogue between them.

From Neutrosophic Logic perspective, a resolution to the above conflicting paradigms can be found in developing

novel approaches which appreciate both traditions in medicine, or we may call such an approach: “curemony,” i.e. by

at the same time curing a disease and restoring balance and returning harmony in one’s body-mind-spirit as a whole.

Although we don’t mention here specific case example, in general speaking we can mention:

a. in HGH therapy, it is known that nutrition can affect the well-being of body [12],

b. in the same way Epigenetics admits the role of external factors into the genes.

c. We can also mention that psoriasis –a skin problem- can be related to stress and other emotions, which

suggests a plausible new term: psychodermatology.[11]

All of these examples seem to suggest relational aspect within human being, among mind-body-spirit, just like what 

Eastern medicine emphasizes all along. In some literature, such a dialogue between Western and Eastern medicine 

approaches can be considered as integrat ive medicine, but actually it goes far deeper that just “integrative”, it is more 

like rethinking the “isolate and solve” attitude of Western scientists, toward more “relational biology.” And the 
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concept of systems biology or relational biology have become new terms in recent years. See also recent literatures in 

this subject [15][16][17]. 

Hopefully many more approaches can be developed in the direction as mentioned above. 

5. Conclusions

In this paper, we discussed three possible applications of Neutrosophic Logic in the field of matter creation processes 

etc. For instance, a redefinition of term “unmatter” is proposed here, where under certain conditions, aether can 

transform using Bose condensation process to become “unmatter”, a transition phase of material, which then it 

sublimates into matter (solid, gas, liquid). Unmatter can also be considered as “pre-physical matter.” Moreover, a 

transition phase between fluid and particle (or fluidicle) is considered necessary in order to solve the “point particle” 

assumption which cause the divergence problem in QED. And for the third application of NL, we consider a dialogue 

is possible between Eastern and Western approaches to medicine.

Further researches are recommended in the above directions.
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Florentin Smarandache

Abst ract

      Indeterminacy makes the main distinction between fuzzy / intuitionistic fuzzy (and other extensions of fuzzy) 
set / logic vs. neutrosophic set / logic, and between classical probability and neutrosophic probability. Also, 
between classical statistics vs. neutrosophic and plithogenic statistics, between classical algebraic structures vs. 
neutrosophic algebrais structures, between crisp numbers vs. neutrosophic  numbers. We present a broad 
definition of indeterminacy, various types of indeterminacies, and many practical applications. 

Keywords : Indeterminacy, Neutrality, <neutA>, Neutrosophic Triplets, Types of Indeterminacies, Numerical 
Indeterminacy, Literal Indeterminacy, Neutrosophic Number, Quadruple Neutrosophic Number, Refined 
Indeterminacy, Subindeterminacies, Null Indeterminacy, Over-/Under-/Off-Indeterminacy, TransIndeterminacies 

1. Intro duction

This paper is written after the author received many questions about the concept of "Indeterminacy" utilized in
the neutrosophic theories (such as Neutrosophic Set / Logic / Probability / Statistics / Measure / Precalculus / Calculus 
/ Algebraic Structures), by emails and especially on the very popular websites such as: Researchgate.net, 
Academia.edu, Facebook, Twitter, and LinkedIn. And after discussions with Dr. Said Broumi and Dr. Nivetha Martin. 

The most general definition, the classification, and many real examples of Indeterminacies from our everyday 
life, utilized in the neutrosophic theories and their applications, are presented below in an understandable manner. 
“Indeterminacy” should not be taken into the narrow sense of a lexical dictionary, but as something that is in between 
the opposites. 

Because of dealing with various types of indeterminacies (vague, unclear, uncertain, conflicting, incomplete, 
hesitancy, neutrality, unknown, etc.) related to the data or to the procedures employed in our real world, we may 
extend by neutrosophication any classical scientific or cultural crisp concept from any field of knowledge to a 
corresponding neutrosophic (un-crisp) concept, since in our world more things are indeterminate or partially 
indeterminate than completely determinate. 

Indeterminacy in Neutrosophic Theories and their Applications

Florentin Smarandache (2021). Indeterminacy in Neutrosophic Theories and their Applications. International 
Journal of Neutrosophic Science 15(2), 89-97; DOI:10.5281/zenodo.5295819
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Firstly, let's define the neutrosophic triplets.    
Let <A>  be an item (concept, notion, idea, sentence, theory etc.) and < antiA> its opposite. In between the 
opposites < A>  and < antiA>, there is a neutral (or indeterminacy) part, denoted by < neutA> .  

The <neut A>  is neither <A>  not <a ntiA>,  

or sometimes the < neutA> is a mixture of partial <A>  and partial <ant iA>. 

Of course, we consider the neutrosophic triplets (<A>, <neut A>, <antiA>) that make sense in the world, and there are 
plenty of such triplets in our every day life [1]. 

3. Examples of Neutrosophic Triplets

 (Friend, Neutral, Enemy)

 (Positive, Zero, Negative)

 (Male, Transgender, Female)

 (Win, Tie-game, Lose)

 (Small, Medium, Tall)

 (True, Partially-true & Partially-false, False)

 (True, Indeterminacy, False)

 (Membership, Partially-membership & Partially-nonmembership, Nonmembership)

 (White, Red, Black),  etc.

4. Neutrosophic Definition of Ind eterminacy 

In neutrosophy, which is a new branch of philosophy, we interpret Indeterminacy in the broadest possible sense,
i.e.

Indete rmi nacy , deno ted by  <neut A>,  

is everythi ng that is in betw een the o pposites <A> and <antiA>. 

Instead of this general neutrosophic triplet (< A> , <neutA>, < antiA>), the neutrosophic community has been mostly 
using the neutrosophic triplet (T, I, F), 

where in a broad sense: T =  truth (or membership), I = indeterminacy (unclear, unknown, vague, uncertain, imprecise, 
etc.), F = falsehood (or nonmembership), with T, I, F as subsets of the interval [0, 1]. 

The word "Indeterminacy" is a generic name for <neutA> (or the letter “I” ). It should not be taken literally (in a 
narrow sense) as in a lexical dictionary (such as Webster, Larousse, etc.).   

Indeterminacy depends on each application, or problem to solve, and on the experts. That's why there are many types 
of Indeterminacies. 

In general, Indeterminacy I is not the complement of T and F, since the neutrosophic components T, I, F are 
independent from each other. 

As a middle side, <neut A>  is neither <A> nor <anti A>, but in between them, or sometimes, a combination of them. 

2. Neutrosophic Triplets

Florentin Smarandache (author and editor) Collected Papers, XIII

59



5. Examples of Indeterminacies

For the neutrosophic triplet (Fri end, Neutral, Enemy), the Indeterminacy = Neutral (i.e. neither Friend nor Enemy). 

For the neutrosophic triplet (Positive, Zero, Negative), the Indeterminacy = Zero. 

For the neutrosophic triplet (Prot on, Neutron, Electron), the Indeterminacy = Neutron. 

For the neutrosophic triplet (Positron, Antineutron, Antiproton), the Indeterminacy = Antineutron. 

For the neutrosophic triplet (Matter, Unmatter, Antimatter), the Indeterminacy = Unmatter (Unmatter is formed by 
combinations of matter and antimatter that bound together, or by long-range mixture of matter and antimatter forming 
a weakly-coupled phase) [12].  

For the neutrosophic triplet (Male, Transgender, Female), the Indeterminacy = Transgender (a person whose gender 
is unclear, indeterminate).  

For the neutrosophic triplet (Win, Tie-game, Lose), the Indeterminacy = Tie-game. 

For the neutrosophic triplet (Small, Medium, Tall), the Indeterminacy = Medium. 

For the neutrosophic triplet (True, Part ially-true & Partially-false, False), the Indeterminacy = Partially-true & 
Par tially-false (a combination of the opposites). 

For the neutrosophic triplet (True, Indeterminacy, False), the Indeterminacy = Indeterminacy. 

For the neutrosophic triplet (Membership, Partially-membership & Partially-nonmembership, Nonmembership), 

the Indeterminacy = Partially-membership & Par tially-nonmembership (a combination of the opposites). 

For the neutrosophic triplet (Cause, Neither Cause Nor Effect, Effect), the Indeterminacy = Neither Cause Nor 
Effect. 

For the neutrosophic triplet (White, Red, Black), the Indeterminacy = Red. 

In Fuzzy Set and Logic, T = the truth (or membership), while F = 1  – T = the falsehood (or nonmembership), while 
I = 0  is the indeterminacy. 

In Intuitionistic Fuzzy Set and Logic, T = the truth (or membership), F =  the falsehood (or nonmembership), and the 
indeterminacy is called hesitancy H =  1 – T – F. 

In Picture Fuzzy Set and Logic, T =  the truth (or membership), F =  the falsehood (or nonmembership), and the 
indeterminacy (I) was split/refined into N =  neutrality (or the first subindeterminacy I1), and the hesitancy H = 1 – T 
– F -  N (or the second subindeterminacy I2). Therefore: T, I1 = N, I2 =  H, F.  Picture Fuzzy Set and Logic (also called
Inconsistent Intuitionistic Fuzzy Set and Logic, or Ternary Fuzzy Set and Logic)) are particular cases of Refined
Neutrosophic Set and respectively Logic (where T is split/refined into T1, T2, …, Tp; I is split/refined into I1, I2, …, Ir;
and F is split/refined into F1, F2, …, Fs; with integers p, r, s ≥ 0 and at least one of p, r, or s is ≥ 2; if some T0, I0, F0
occur, it is discarded) [3].

Similarly for other fuzzy extension sets and logics {such as: Pythagorean Fuzzy Set and Logic (also called Atanassov’s 
Intuitionistic Fuzzy Set and Logic of second type), q-Rung Orthopair Fuzzy Set and Logic, Fermatean Fuzzy Set and 
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Logic, also Spherical Fuzzy Set and Logic,  n-HyperSpherical Fuzzy Set and Logic, etc.} [13]. They have either two 
components (T and F) or three (T, I, and F), but with the restrictions that 0 ≤ T + F ≤ 1 where what’s left 1 – T – F is 
indeterminacy, and respectively 0 ≤ T + I + F ≤ 1 where what’s left 1 – T – I – F is indeterminacy too. 

6. Refined Indetermina cy [3]

In between the opposite <A>  = White and <an tiA>  = Black, there is a whole spectrum of colors. In this case, the 
Indeterminacy <neutA> is split into many Subindeterminacies: <neutA1>,  <neut A2> , ..., <neutAn> , for n ≥ 2. We 
have the following I-refined neutrosophic triplet (where "I-refined" means refinement with respect to Indeterminacy): 
(< A> ;  <neut A1> , <neutA2>, ..., <neutAn>;  < antiA>). 

Therefore, the (total) Indeterminacy is the union ( U )of all Subindeterminacies: 

<neutA> =  <neutA1> U <neutA2> U ... U < neutAn> . 

7. Example of Refined Ind eterminacy 

For the I-refined neutrosophic triplet (White;  Yellow, Pink, Red, Blue, Violet;  Black), the Indeterminacy = Yellow U 
Pink U Red U Blue U Violet. 

And the subindeterminacies are: <neutA1> = Yellow, <neutA2> =   Pink, < neutA3>  = Red, <neutA4> =  Blue, and 
< neutA5> =  Violet. 

There also is possible to have an infinite I-refined neutrosophic triplet by considering the infinite color spectrum 
between White and Black. 

8. The Neutrosophic Logic Triplet [1]

The Neutrosophic Logic (NL) truth-value of a proposition P is: 

NL(P) = (T, I, F), where T = the degree of truth of the proposition P; 

 I = the indeterminate-degree of the proposition P to be true or false; 

 F = the degree of falsehood of the proposition P; 

or T = truth, I = indeterminacy, F = falsehood. We prefer to use these descriptive notations T, I, F all over for the 
neutrosophic components.      

9. The Neutrosophic Set Triplet

The Neutrosophic Set (NS) membership-value of an element x with respect to a give set M is: 

NS(x) =  (T, I, F), 

where 

T = the degree of membership of the element x with respect to the set M; 

I = the indeterminate-degree of membership or nonmembership of the element x with 
respect to the set M; 
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F = the degree of nonmembership of the element x with respect to the set M;  

or T = membership, I = indeterminacy, F = nonmembership. 

10. The Neutrosophic Probabilit y Triplet [4]

The Neutrosophic Probability (NP) of an event A to occur is: 

NP(A) = ( ch(A), ch(neutA), ch(antiA) ), where:  

 ch(A) =  the chance that the event A occurs; 

 ch(neutA) =  the indeterminate-chance (not sure, not clear) that the event A occurs or not; 

 ch(antiA) =  the chance that the event A does not occur. 

In this case, the Indeterminacy =  ch(neutA). 

11. Indeterminacy in Neutrosophic Statistics [5, 6]

While the Classical Statistics deals with determinate data, determinate probability distributions, and determinate
inference methods only, the Neutrosophic Statistics may deals with indeterminate data  {i.e. data that has some degree 
of indeterminacy (unclear, vague, partially unknown, contradictory, incomplete, etc.)}, indeterminate probability 
distributions, and indeterminate inference methods {i.e. distributions and inferences that contain some degrees of 
indeterminacy as well (for example, instead of crisp arguments and values for the probability distributions and 
inference methods, charts, diagrams, algorithms, functions etc. one may deal with inexact or ambiguous arguments 
and values)}. 

For example: 

- The sample’s size or population’s size are not exactly known (for example, the size may be between 200 –
250 individuals).

- Not all individuals may belong 100% to the sample or populations, some may only partially belong (their
degree of belongingness T <  1), others may over-belonging (their degree of belongingness T > 1).

An application: 

Upon their work for a factory, John belongs 100%, George 50% (he's a part-timer), and Mary 110% 
(because she works overtime). John is 40 years old, George 60, and Mary 20. What is the age average of 
this company’s workers? 
In the classical statistics, where the degree of belongingness to the factory does not count, the age average 
is simply:  (40 + 60 + 20) / 3 = 40. 
In neutrosophic statistics, where the degree of belongingness does count, one has: 
(40×1 + 60×0.5 + 20×1.1) / (1 + 0.5 + 1.1) = 92 / 2.6 ≈ 35.38. 
{In classical statistics, the degree of belongingness was considered T = 1 for all workers: but the age 
average (40×1 + 60×1 + 20×1) / (1+1+1) = 120 / 3 = 40 is inaccurate, since George’s work of only 50% 
cannot be the same as Mary’s of 110%.} 

- The distribution probability curves may not be crisp or exactly known (as in classical statistics), but
indeterminate functions (with approximations, or vague and conflicting information), or they may be
represented by thick functions (the area between two curves).
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     Let T, I, F belonging to the interval [0, 1]  be the neutrosophic components. 
If Indeterminacy I =  0, the neutrosophic components (T, 0, F) are still more flexible and more general than fuzzy 
components and intuitionistic fuzzy components. Because, we get: 

- for the fuzzy set and the intuitionistic fuzzy set (they coincide):
T + F =  1. 

- while for the neutrosophic set:
  0 ≤ T + F ≤ 2, 

whence we may have any of these situations: 
T + F <  2 (for incomplete information); 
T + F =  2 (for complete information); 
T + F >  2 (for paraconsistent / conflicting information, coming from independent sources). 
    Therefore, the neutrosophic set is more flexible and more general than the other sets, no matter the value of 
indeterminacy.  

13. Classification of Indeterminacies

Since there are many types of indeterminacies, it is possible to define many types of neutrosophic measures in
any field of knowledge. 
And, in general, because of dealing with lots of types of indeterminacies, we can extend any classical scientific or 
cultural concept from various indeterminate/neutrosophic viewpoints.  

(i) There is the Numerical Indeter minacy, as part of the numerical neutrosophic triplet (T,  I, F), when "I" is a
numerical subset (interval, hesitant subset, single-valued number, etc.) of [0, 1] , and it is used in neutrosophic set, 
neutrosophic logic, and neutrosophic probability. 

 (ii) And the Literal  Indetermina cy, where I^2 = I, with "I" just a letter [7], used in neutrosophic algebraic structures
(such as: neutrosophic group, neutrosophic ring, neutrosophic vector space, etc.) that are built on the sets of the form: 

S =  {a + bI, with I^2 = I, and a, b in M}, where M is a given real or complex set. 

The Literal Indeterminacy (I) is also used in neutrosophic calculus and in some neutrosophic graphs and neutrosophic 
cognitive maps, when the edge between two vertexes is unknown and it is denoted by a dotted line (meaning 
indeterminate edge). 

(iii) Tra nsInd etermi nacies, inspired from the transreal numbers [11], some of which are:

(a) Infinite Indeter minacy ( denoted by I ) 

lim n
In

I I


  

0
lim

0 Ix

I I
x

  

lim( ) Ix
I I n I


      

(b) Null Indeter minacy ( denoted by I )

lim Ix

I I
x




 


 

1 1 1lim Inn
I

I
I I



 
   


 

12. When Indeterminacy = 0
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(iv) Also, the Neutroso phic Number , N = d + e. I, where a and b are real or complex numbers introduced
in [7], and they were interpreted as N =  d +  e�I, where d is the determinate part of the number N, and e�I is the 
indeterminate part of the number N in [5]. 

There are transcendental, irrational etc. numbers that are not well known, they are only partially known and partially 
unknown, and they have infinitely many decimals. Not even the most modern supercomputers can compute more than 
a few thousands decimals, but the infinitely many left decimals still remain unknown.  Therefore, such numbers are 
very little known (because only a finite number of decimals are known), and infinitely unknown (because an infinite 
number of decimals are unknown). 

Let's take 3 = 1.7320508..., then an easy example of neutrosophic number capturing √(3) is: 

N = a +  b·I =  1.732 + 4·[0.000010, 0.000015] = [1.73204, 1.73206] , where of course a = 1 .732, b =  4, and I = 
[0.000010, 0.000015]. 

The way of choosing the parameters a, b, I depends on the needed accuracy of the neutrosophic number N, on the 
problem to solve, and on the experts. 

The neutrosophic number is used in neutrosophic statistics, and in neutrosophic precalculus [8]. 

(v) In the Qua dru ple Neutro sophic Number , which has the form QN = a +  b·T +  c·I +  d·F, where the known
part of QN is a,  

and the unknown part of QN is b·T + c·I + d ·F, 

 then the unknown part is split into three subparts: 

 degree of confidence (T),  

 degree of indeterminacy between confidence-nonconfidence (I), 

 and degree of nonconfidence (F). 

QN is a four-dimensional vector that can also be written as: QN = (a, b, c, d). 

T, I, F are herein literal parameters. The multiplication amongst these literal parameters uses the absorbance 
(prevalence) law, i.e. one parameter absorbs (includes) another (see [9]). 

But in specific applications T, I, F may be numerical too (in general, subsets of [0, 1]). 

(vi) The Over-/Under-/Off-Indeterminacy 

    For OverIndeterminacy we have I >  1 within the frame of Neutrosophic Overset; 

for UnderIndeterminacy we have I < 0 within the Neutrosophic Underset; 

and in general for OffIndeterminacy we have sometimes I >  1 and other times I <  0 within the frame of neutrosophic 
Offset. 

    For your information, there are cases when the degrees of membership, indeterminacy or nonmembership may be 
each of them > 1 or < 0, and these are happening in our real life applications (see [10, 11]). 
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 Conclusion 

     We have presented the broad definition of Indeterminacy, then listed various types of indeterminacies used in 
neutrosophic set / logic / probability / statistics / measure / precalculus / calculus / algebraic structures, accompanied 
by applications in our every day life. Indeterminacy is the main distinction between neutrosophic theories and other 
theories.  
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Abstract

This study investigates a four-index multiobjective transportation problem (F-
IMOTPs) with uncertain supply and demand coverage. Different echelons having 
uncertain parameters’ values are considered. An inter-connected multi-product F-
IMOTPs is assumed for the smooth flow of items, enhancing supply chain reliability 
under uncertainty. A mixed-integer multiobjective programming problem that mini-
mizes total transportation costs, time, safety costs, and carbon emissions abatement 
is depicted under an intuitionistic fuzzy environment. Further, three different inter-
active approaches, namely extended fuzzy programming approach (EFPA), extended 
intuitionistic fuzzy programming approach (EIFPA), and extended neutrosophic pro-
gramming approach (ENPA), are developed to solve the proposed F-IMOTPs model. 
Different membership functions elicit each objective’s marginal evaluation. The pro-
posed F-IMOTPs model is implemented in a logistic company and solved using three 
interactive approaches that reveal the proposed methods’ validity and applicability. 
An ample opportunity to generate the compromise solution is suggested by tuning 
various weight parameters. The outcomes are evaluated with practical managerial im-
plications based on the significant fi ndings. Finally, conclusions and future research 
scope are addressed based on the proposed work. The discussed F-IMOTPs model 
can be merged with and extended by considering inventory and supply chain facilities, 
which are not included in this study. Uncertainty among parameters due to random-
ness can be incorporated and tackled with historical data. Besides the proposed 
conventional solution methods, various metaheuristic approaches may be applied to 
solve the proposed F-IMOTPs model as a future research scope. The strategy advised 
is to provide an opportunity to create valuable decision-making policies within India 
by helping existing transportation networks, safety features, and imports only if nec-
essary to meet timelines. The reduction in carbon emissions abatement also ensures 
less burden on environmental impacts. Thus, any logistics/transportation company 
or organization can adopt the distribution management initiatives amongst the supply 
and demand points to strengthen and enable the company to handle the uncertain-
ties. Finally, managers or policy-makers can take advantage of the current study 
and extract fruitful information and knowledge regarding the optimal distribution 
strategies while making decisions. This research work manifests the supply-demand 
oriented extension of the integrated F-IMOTPs model design with minimum total 
transportation costs, time, safety costs, and carbon emissions abatement under flexi-
ble uncertainty. The practical managerial implications are explored that immensely

Firoz Ahmad, Florentin Smarandache, Arup Kumar Das

Neutrosophical fuzzy modeling and optimization 
approach for multiobjective four-index 

transportation problem

Firoz Ahmad, Florentin Smarandache, Arup Kumar Das (2022). Neutrosophical fuzzy modeling and 
optimization approach for multiobjective four-index transportation problem. Indian Statistical 
Institute, 31

support the managers or practitioners to adopt the distribution policies for the PIs to 
ensure sustainability in the designed F-IMOTPs model.

Keywords: Intuitionistic fuzzy parameters; Conventional optimization methods; 
Neutrosophic set theory; Multiobjective transportation problem.
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1 Introduction
Transportation problem is a special case of linear programming problem. The objective
is to determine the amount that should be transported from each source to each destina-
tion, so that the total transportation cost is minimized. It consists with a linear objective
function and linear constraints. In this article we consider to model multiobjective trans-
portation problem using fuzzy set theory. We face many situations where more than
one conflicting/non-conflicting objectives are to be optimized under a set of well-defined
constraints. In optimization theory, this class of problems is known as multiobjective
programming problems (MOPP) and identified as an important class of optimization
problem. Because of the presence of multiple objective functions, the problems become
harder to obtain a single solution that satisfies each objective function efficiently. Instead,
attempts are taking to obtain the compromised solution sets which satisfy each objective
function marginally. A multiobjective optimization problem (MOOP) refers to obtain a
solution x ∈ G ⊂ RE which minimizes an objective function vector f : G → RH such
that G denotes the E−dimensional solution space, and RH represents the H−dimensional
objective space. Most commonly, the sole target of MOOPs is to determine a set of non-
dominated solution which attains the approximates of Pareto front in the same objective
spaces. Mathematically, MOOPs can be expressed as follows:

Min
ζ∈Rn

F(ζ) = [ f1(ζ), f2(ζ), · · · , fm(ζ)] ∈ Rm

Subject to
p(ζ) ≤ 0
q(ζ) = 0
ζri ≤ ζi ≤ ζsi, i = [1,2, · · · ,n]

(1)

where ζ = [ζ1, ζ1, · · · , ζn] is defined as the decision variables, F(ζ) is the objective vector, 
p(ζ) represents the inequality and q(ζ) denotes equality constraint vectors, respectively, 
ζri and ζsi are the lower and upper bounds in the decision space of the ζi variable. The 
solutions methods can classified into three broad categories namely classical technique, 
fuzzy-based solution approach, and nature-inspired algorithm. In this context we mention 
that vector optimization is a subclass of optimization problems with a vector-valued 
objective function for a given partial ordering. A multi-objective optimization problem 
is a special case of a vector optimization problem. The classical techniques contemplate
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the use of priority information while optimizing the MOOPs. Various methods such as 
Weighted sum method, ε−Constraint method, Weighted metric method, Benson’s method, 
Value function method and Goal programming method. The Weighted sum method is 
based on the working principle that the objectives are transformed into a single objective by 
multiplying the pre-determined weight. The ε−Constraint method resolves the problems 
that are encountered while the weighted sum method is applied. It alleviates obtaining the 
solution having non-convex objective spaces by solving the single objectives and keeping 
the objectives within a well-specified v alue. The weighted metric method considers the 
metrics such as lp and l∞ distance metrics are commonly used in place of the weighted 
sum of the objectives. Hence the weighted metric methods convert the multiple objectives 
into a single objective. The weighted metric method and the Bensons method are similar 
to each other except that the reference solution is obtained as the feasible non-Pareto 
optimal solution. The value function methods determine the mathematical value function 
U : RM → R, concerning all objectives. The validity of the value function should be 
over the whole feasible solution search space. The goal programming technique tries to 
search the pre-targeted values of one or more than one objective function at a time. When 
no solution attains the pre-specified target values, the task is to determine such a solution 
that minimizes deviations from the targets. If a solution with desired target values exists, 
then the task is to determine that specific s olution. For more details, visit Das and Jana 
[17], Mohan et al. [22] etc.
The fuzzy programming approach (FPA) is basically concerned with maximizing satis-
faction degree for the decision-maker(s) while dealing with multiple objectives simulta-
neously. In last several decades, a tremendous amount of research was presented based 
on the fuzzy decision set. The limitation of the fuzzy set has been examined because it 
cannot define the non-membership function of the element into the fuzzy s et. The intu-
itionistic fuzzy programming approach (IFPA) is a more flexible and realistic optimization 
technique compared to the fuzzy technique because it deals with the membership function 
and the non-membership function of the element into a feasible decision set. 
Therefore, an efficient algorithm is needed to solve the MOPP. The fuzzy set (FS) was 
initially proposed by Zadeh et al. [32], and later on, it was extensively used in multiple 
criteria, multiple attributes, and multiobjective decision-making problems. Afterward, 
Zimmermann [37] investigated the fuzzy programming technique for the multiobjective 
optimization problem, which was based on the membership function for the marginal eval-
uation of each objective function. Therefore, the fuzzy set’s extension was first presented 
by Atanassov [15] which is based on more intuition compared to the fuzzy set and termed 
as the intuitionistic fuzzy set (IFS). Later on, the potential applications of IFS have been 
presented in many decision-making processes and emerged as useful tools while dealing 
with uncertainty.
Based on IFS, Angelov [14] first addressed the intuitionistic fuzzy programming approach 
(IFPA) for real-life decision-making problems. Peng and Yang [24] also obtained some 
useful results based on the Pythagorean fuzzy set for multi-attribute decision-making
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problems. Peng and Selvachandran [23] addressed some well-known results and also 
discussed some future direction of research-based Pythagorean fuzzy set. Wan et al.
[30] also presented the Pythagorean fuzzy mathematical optimization technique for multi-
attribute group decision-making problem under the Pythagorean fuzzy scenario. Zhang 
and Xu [33] developed a new model for multiple criteria decision-making problem under 
Pythagorean fuzzy environment and also proposed a technique for order preference by 
similarity to ideal solution (TOPSIS) method to determine the degree of closeness to 
the ideal solution. Unlike IFS, the flexible nature of PFS would be immensely adopted 
for further research scope. Ye [31] presented a study on multi-attribute decision-making 
method with the single-valued neutrosophic hesitant fuzzy information. Zhang et al. [34] 
addressed a multiple criteria decision-making problem with the hesitant fuzzy information 
regarding the values of different parameters. Zhou and Xu [36] also presented a portfolio 
optimization technique under a hesitant fuzzy environment.
Alcantud and Torra [13] have proposed some decomposition theorem and extensions 
principle for the hesitant fuzzy set. Bharati [16] suggested a hesitant fuzzy technique to 
solve the multiobjective optimization problem. Faizi et al. [18] also discussed multiple 
criteria decision-making problems under hesitant fuzzy set theory. Lan et al. [20] extended 
the application of hesitant fuzzy set to hesitant preference degree in multiple attribute 
decision-making problem. Liu and Luo [21] also proposed a new aggregation operator 
based on a neutrosophic hesitant fuzzy set and applied it to multiple attribute decision 
making. Zhang [35] also discussed hesitant fuzzy multi-criteria decision-making problem 
under the unknown weight information. Akram et al. [10] suggested a novel model based 
on the combination of hesitant fuzzy set and N-soft set. The application of hesitant N-soft 
set in group decision-making problem is also presented. Alcantud and Santos-García [12] 
also performed a study on expanded hesitant fuzzy sets along with the application in group 
decision-making problems. Alcantud and Giarlotta [11] also investigated a new model 
for group decision-making problems with the aid of necessary and possible hesitant fuzzy 
sets.
Nature-inspired algorithms are categorized into three different approaches namely, aggre-
gating functions, population-based approaches and Pareto-based methods. The aggrega-
tion functions convert all the objective functions into a single objective employing some 
arithmetical operations. These methods contain the linear aggregation functions, which 
make it trivial and not that much impressive. Often, the population-based approaches 
are based on the EA’s population to initiates the search. A Vector Evaluated Genetic 
Algorithm considered the conventional example of population-based approaches. At each 
generation, sub-populations are generated by proportional selection. For example, if the 
population size is N and n is the total number of objectives, the sub-population size will 
be N/n. The population-based optimization method is straightforward to apply, but the 
main difficulty is to find the appropriate selection scheme, which is not based on Pareto-
optimality. Pareto-based methods are the most popular and extensively used techniques, 
which are divided into two different generations. The first generation comprises the 
fitness sharing, niching combined with Pareto ranking, second generation with elitism.
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Motivation and research contribution
The TPs are well-known in the field of continuous optimization. Various advance mathe-
matical programming models are presented in the literature based on the different 
scenarios and assumptions. The best estimation of uncertain parameters is always a 
challenging task in TPs because it decides the optimal allocation policies of the products 
and determines the optimal transportation cost and other objectives defined in the model. 
One more essential issue arising these days is the existence of multiple objectives in the 
TPs. More than one commensurable and conflicting objectives are to be optimized, such 
as transportation time, carbon emissions, and the transportation cost that addresses TPs 
sustainability. Thus, we have presented the F-IMOTPs under an intuitionistic fuzzy 
environment. Due to incom-plete, inconsistent, and inappropriate information or 
knowledge, the different parameters are represented by intuitionistic fuzzy numbers 
comprising the membership grades, cov-ering a wide vagueness. The extended version of 
various conventional approaches such as EFPA, EIFPA, and ENPA is developed to solve 
the F-IMOTPs. The robustness of the solution approaches has been established with the 
help of solution results. The ample opportunity to obtain different solution sets has been 
introduced for decision-makers or managers by tuning the feasibility degree (λ). The 
selection of the best compromise solution set among multiple outcomes has been 
determined by the fuzzy TOPSIS ranking method. A numerical study of Indian-based 
transportation companies has been done along with the significant findings.
The remaining portion of the article is structured as follows. In Section 2, some definitions, 
results and the concept regarding the intuitionistic fuzzy parameters are presented which 
will be used in the subsequent sections. Section 3 contains several novel modeling 
approaches of F-IMOTP along with the related results. The extended version of solution 
approaches are proposed in Section 4. In Section 5, a numerical example is presented to 
illustrate the proposed methods. The conclusions and future research scope are given in 
Section 6.

2 Preliminaries
In this section we consider some definitions, results and concepts which are used in the 
following sections.
Definition 1: [15] (Intuitionistic fuzzy set) Assume that there be a univeral set X . Then, 
an intuitionistic fuzzy set (IFS) Ỹ  in X is defined by the ordered triplets as follows:

Ỹ  = {x, µỸ (x), νỸ (x) | x ∈ X}
where µỸ (x) : X → [0, 1] denotes the membership function and νỸ (x) : X → [0, 1] denotes 

the non-membership function of the element x ∈ X into the set Ỹ , respectively,
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with the conditions 0 ≤ µỸ (x) + νỸ (x) ≤ 1. The value of φỸ (x) = 1 − µỸ (x) − νỸ (x), is
called the degree of uncertainty of the element x ∈ X to the IFS Ỹ . If φỸ (x) = 0, an IFS
chnages into fuzzy set and becomes Ỹ = {x, µỸ (x), 1 − µỸ (x) | x ∈ X}.

Definition 2: [5] (Intuitionistic fuzzy number) An IFS Ỹ = {x, µỸ (x), νỸ (x) | x ∈ X} is
said to be an intuitionistic fuzzy number iff

1. There exists a real number x0 ∈ IR for which µỸ (x) = 1 and νỸ (x) = 0.

2. The membership function µỸ (x) of Ỹ is fuzzy convex and non-membership function
νỸ (x) of Ỹ is fuzzy concave.

3. Also, µỸ (x) is upper semi-continuous and νỸ (x) is lower semi-continuous.

4. The support of Ỹ is depicted as
(
x ∈ IR : νỸ(x) ≤ 1

)
.

Definition 3: [5] (Triangular intuitionistic fuzzy number) A triangular intuitionistic fuzzy
number (TrIFN) is represented by Ỹ = ((y1, y2, y3); (z1, y2, z3)) where z1, y1, y2, y3, z3 ∈ IR
such that z1 ≤ y1 ≤ y2 ≤ y3 ≤ z3; and itsmembership function µỸ (x) and non-membership
function νỸ (x) is of the form

µỸ (x) =



x − y1
y2 − y1

, if y1 < x < y2,

1, if x = y2,
y3 − x
y3 − y2

, if y2 < x < y3,

0, if otherwise.

and νỸ (x) =



y2 − x
y2 − z1

, if z1 < x < y2, ,

0, if x = y2,
x − y2
z3 − y2

, if y2 < x < z3,

1, if otherwise.

Definition 4: [5] Consider that a TrIFN is given by Ỹ = ((y1, y2, y3); (z1, y2, z3)) where
z1, y1, y2, y3, z3 ∈ IR such that z1 ≤ y1 ≤ y2 ≤ y3 ≤ z3. Then the parametric form of( ) ( )
Ỹ  are u(τ) = u(τ), u(τ) and v(τ) = v(τ), v(τ) . Further, u(τ) and v(τ) are the para-
metric form of TrIFN corresponding to membership and non-membership functions such 
that u(τ) = y3 − τ(y3 − y1), u(τ) = y1 − τ(y2 − y1) and v(τ) = y2 − (1 − τ)(y2 − z1),
v(τ) = y2 + (1 − τ)(z3 − y2) respectively. A TrIFN Ỹ  = ((y1, y2, y3); (z1, y2, z3)) is said to be positive TrIFN if z1 > 0 and hence y1, y2, y3, z3 are all positive numbers.

Remark 1: Assume that Ỹ  = ((y1, y2, y3); (z1, y2, z3)) and W̃ = ((w1, w2, w3); (v1, w2, v3)) 
are two TrIFNs. Then addition of Ỹ  and W̃ is again a TrIFN.

Ỹ  + W̃ = [(y1 + w1, y2 + w2, y3 + w3) ; (z1 + v1, y2 + w2, z3 + v3)]

6
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Remark 2: Consider that Ỹ = ((y1, y2, y3); (z1, y2, z3)) be a TrIFN and k ∈ IR. Then scaler
multiplication of Ỹ is again a TrIFN.

k(Ỹ ) =

(ky1, ky2, ky3; kz1, ky2, kz3) k > 0
(ky3, ky2, ky1; kz3, ky2, kz1) k < 0
(0,0,0; 0,0,0), k = 0

Remark3: The twoTrIFNs Ỹ = ((y1, y2, y3); (z1, y2, z3)) andW̃ = ((w1,w2,w3); (v1,w2, v3))
are said to be equal iff y1 = w1, y2 = w2, y3 = w3; z1 = v1, y2=w2, z3 = v3.

Definition 5: [9] (Expected interval and expected value of TrIFNs) Suppose that Ỹ =
((y1, y2, y3); (z1, y2, z3)) be a TrIFN and EI µ and EIν depict the expected intervals for
membership and non-membership functions respectively. Thus, these can be defined as
follows:

EI µ(Ỹ ) =
[∫ 1

0
u(τ)dkτ,

∫ 1

0
u(τ)dkτ

]
=

[∫ 1

0
y3 − τ(y3 − y1)dkτ,

∫ 1

0
y1 − τ(y2 − y1)dkτ

]

EIν(Ỹ ) =
[∫ 1

0
v(τ)dkτ,

∫ 1

0
v(τ)dkτ

]
=

[∫ 1

0
y2 − (1 − τ)(y2 − z1)dkτ,

∫ 1

0
y2 + (1 − τ)(z3 − y2)dkτ

]
Moreover, consider that EV µ(Ỹ ) and EV ν(Ỹ ) represent the expected values corresponding
to membership and non-membership functions respectively. These can be depicted as
follows:

EV µ(Ỹ ) =

∫ 1
0 u(τ)dkτ +

∫ 1
0 u(τ)dkτ

2
=

y1 + 2y2 + y3
4

(2)

EV ν(Ỹ ) =

∫ 1
0 v(τ)dkτ +

∫ 1
0 v(τ)dkτ

2
=

z1 + 2y2 + z3
4

(3)

The expected value EV of a TrIFN Ỹ = ((y1, y2, y3); (z1, y2, z3)) is given as follows:

EV(Ỹ ) = ψEV µ(Ỹ ) + (1 − ψ)EV ν(Ỹ ), where ψ ∈ [0, 1]

Definition 6: [6] (Accuracy function) The expected value (EV) for TrIFN

Ỹ = ((y1, y2, y3); (z1, y2, z3))
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with the help of Eqs. (2) and (3) and for ψ = 0.5 can be represented as follows:

EV(Ỹ ) =
y1 + y3 + 4y2 + z1 + z3

8

Thus EV(Ỹ ) is also known as accuracy function of Ỹ .

Theorem 1: [26] Suppose that Ỹ be a TrIFN. Then for any EV : IF(IR) → IR; the
expected value EV(k Ã) = kEV(Ã) for all k ∈ IR.

Theorem 2: [26] Suppose that Ỹ and W̃ be two TrIFNs. Then the accuracy function
EV : IF(IR) → IR is a linear function i.e., EV(Ỹ + kW̃) = EV(Ỹ ) + kEV(W̃)∀k ∈ IR.

Theorem 3: [26] Suppose that Ỹ = ((y1, y2, y3); (z1, y2, z3)) be a TrIFN. If z1 = y1, z3 = y3,
then EV(Ỹ ) =

y1 + 2y2 + y3
4

, represents a defuzzified value of triangular fuzzy number.

Theorem 4: [26] The expected value EV(k) = k, where k ∈ IR.

Definition 7: [3] (Neutrosophic set) Suppose x ∈ X denotes the universal discourse. A
neutrosophic set (NS) A in X can be depicted by the truth µA(x), indeterminacy λA(x) and
a falsity νA(x) membership functions and is expressed as follows:

A = {< x, µA(x), λA(x), νA(x) > |x ∈ X}

where µA(x), λA(x) and νA(x) are real standard or non-standard subsets belong to ]0−,1+[,
also given as, µA(x) : X →]0−,1+[, λA(x) : X →]0−,1+[, and νA(x) : X →]0−,1+[.
Also, the sum of µA(x), λA(x) and νA(x) is free from all restrictions. Thus, we have

0− ≤ sup µA(x) + λA(x) + sup νA(x) ≤ 3+

Definition 8 : [3] A  NS i s said t o be s ingle valued neutrosophic s et A  i f t he following 
condition will holds:

A = {< x, µA(x), λA(x), νA(x) > |x ∈ X}

where µA(x), λA(x) and νA(x) ∈ [0, 1] and 0 ≤ µA(x) + λA(x) + νA(x) ≤ 3 for each x ∈ X .

Definition 9: [5] The union of two single valued neutrosophic sets A and B is also a single 
valued neutrosophic set C, i.e., C = (A ∪ B) with the truth µC(x), indeterminacy λC(x) 
and falsity νC(x) membership functions as follows:

µC(x) = max (µA(x), µB(x))

λC(x) = max (λA(x), λB(x))
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νC(x) = min (νA(x), νB(x))

for each x ∈ X .
Definition 10: [5] The intersection of two single valued neutrosophic sets A and B is also
a single valued neutrosophic set C, i.e., C = (A ∩ B) with the truth µC(x), indeterminacy
λC(x) and falsity νC(x) membership functions as follows:

µC(x) = min (µA(x), µB(x))

λC(x) = min (λA(x), λB(x))

νC(x) = max (νA(x), νB(x))

for each x ∈ X .

3 Multiobjective transportation problem
Transportation problems (TPs) are concerned with the transporting of different kinds of
products from one place to another to achieve the optimal prescribed objective(s). The
classical transportation model can be defined as follows:

Min Z =
m∑

i=1

n∑
j=1

ci j xi j

Subject to
n∑

j=1
xi j = ai, i = 1,2,3, ...,m

m∑
i=1

xi j = b j, j = 1,2,3, ...,n

m∑
i=1

ai =

n∑
j=1

b j, xi j ≥ 0, ∀i & j

Ahmad and Adhami [3] presented the multiobjective transportation model under fuzziness. 
The performances of the fuzzy approach are analyzed using the family of the distance 
function. Adhami and Ahmad [1] also solved the multiobjective transportation problem 
using the interactive fuzzy programming approaches. Singh and Yadav [28] represented 
the cost parameter with the triangular intuitionistic fuzzy number, and the ordering of 
fuzzy number have used to develop intuitionistic fuzzy modified distribution method with 
the help of accuracy function for finding the optimal solution of TPs. Singh and Yadav [27] 
used the ranking function to deal with all uncertain parameters and consequently proposed 
an intuitionistic fuzzy method to find the initial basic feasible solution of TPs. Jana [19]
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solved a type-2 intuitionistic fuzzy transportation problem by the ranking function for the
mean interval method by taking all the parameters type-2 intuitionistic fuzzy number.Here,
we propose a new F-IMOTP with k (= 1,2,3, ...,K) objectives which are to be optimized
under each m origins having ai(i = 1,2,3, ...,m) units of availability and to be transported
among n destinations having b j( j = 1,2,3, ...,n) units of demand level. The different cost
associated with the k objectives is represented as ci j k . A decision variable xi j k is defined,
which is an unknown quantity and are to be transported from ith origin to j th destination
in such a way that the total transportation cost, labor cost, and safety cost is minimum.
The useful notations are summarized in Table 1.

Table 1: Notions and descriptions

Indices Descriptions

i Represents the sources
j Represents the destinations
k Represents the conveyance
g Represents the types of products

Decision variable

xgi j k Unit quantity of products

y
g

i j k Binary variable such that ygi j k =

{
1, xgi j k > 0
0, xgi j k = 0

Parameters

c̃gi j k Unit transportation cost
p̃gk Unit penalty cost
t̃gi j k Unit transportation time
s̃gi j k The safety factor
s̃cgi j k Unit safety cost
c̃egi j k Unit carbon emissions cost
ãg

i Total availabiltiy
b̃gj Total demand
ẽgi Total coveyance capacity
B j Total budget
B Desired safety value
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So, the mathematical model for F-IMOTPs can be given as follows (4):

Min Z̃ IF
1 =

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

c̃gi j k xgi j k (Transportation cost)

Min Z̃ IF
2 =

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

t̃gi j k y
g

i j k (Transportation time)

Min Z̃ IF
3 =

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

s̃cgi j k y
g

i j k (Sa f ety cost)

Min Z̃ IF
4 =

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

p̃gk
(
c̃egi j k xgi j k

)
(Carbon emissions)

Subject to
I∑

i=1

J∑
j=1

K∑
k=1

G∑
g=1

xgi j k ≤ ãg
i , i = 1,2,3, ...,m

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

xgi j k ≥ b̃gj , j = 1,2,3, ...,n

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

xgi j k ≤ ẽgi , i = 1,2,3, ...,m

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

c̃gi j k xgi j k ≤ B j, j = 1,2,3, ...,n

I∑
i=1

J∑
j=1

K∑
k=1

G∑
g=1

s̃gi j k y
g

i j k > B, i = 1,2,3, ...,m

m∑
i=1

ãi ≥

n∑
j=1

b̃ j, xi j ≥ 0, ∀i & j

(4)

where notations ( .̃ ) over different parameters represents the triangular intuitionistic fuzzy
number for all indices’ set.
The equivalent intuitionistic fuzzy multiobjective transprotation problem (4) can be sum-
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marized as follows (5):

Min Z̃ IF(x) =
[
Z̃ IF

1 (x
g

i j k), Z̃
IF
2 (x

g

i j k), Z̃
IF
3 (x

g

i j k), Z̃
IF
4 (x

g

i j k)

]
Subject to ∑J

j=1 Ãi j x
g

i j k ≥ B̃i, i = 1,2, · · · , I1,∑J
j=1 Ãi j x

g

i j k ≤ B̃i, i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 Ãi j x

g

i j k = B̃i, i = I2 + 1, I2 + 2, · · · , I .
xgi j k ≥ 0, j = 1,2, · · · , J .

(5)

where Z̃ IF
k (x) =

∑4
k=1 (·)

IF xgi j k, ∀ k = 1,2, · · · ,4 is the k-th objective function with
trapeziodal intuitionistic fuzzy parameters.
With the aid of accuracy function (Theorem 1) which is linear, the intuitionistic fuzzy
programming problem (IFMOPP) (5) can be converted into the following deterministic
MOPP (6):

Min Z
′

(xgi j k) =
[
Z
′

1(x
g

i j k), Z
′

2(x
g

i j k), Z
′

3(x
g

i j k), Z
′

4(x
g

i j k)

]
Subject to ∑J

j=1 A
′

i j x
g

i j k ≥ B
′

i , i = 1,2, · · · , I1,∑J
j=1 A

′

i j x
g

i j k ≤ B
′

i , i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 A

′

i j x
g

i j k = B
′

i , i = I2 + 1, I2 + 2, · · · , I .
xgi j k ≥ 0, j = 1,2, · · · , J .

(6)

where Z
′

k(x
g

i j k) = EV
(
Z̃ IF

k (x
g

i j k)

)
=

∑K
k=1 EV

(
c̃i j k

)
xgi j k, ∀ k = 1,2, · · · ,K; B

′

i = EV
(
B̃i

)
and A

′

i j = EV
(
Ãi j

)
, for all i = 1,2, · · · , I, j = 1,2, · · · , J are the crisp version of all the

objective functions and parameters.

Of particular interest, we have proven the existence of an ecient solution of the problem 
(5) and the convexity property of crisp MOPP (6) in Theorems 5 and 6, respectively.

Definition 13: Assume that X be the set of feasible solution for the crisp MOPP (6). Then 
a point x∗ is said to be an efficient or Pareto optimal solution of the crisp MOPP (6) if and 
only iff there does not exist any x ∈ X such that, Ok (x∗) ≥ Ok (x), ∀ k = 1, 2, · · · , 4 and 
Ok (x∗) > Ok (x) for all at least one ∀ k = 1, 2, · · · , 4. Here, k is the number of objective 
function present in the crisp MOPP (6).

Definition 1 4: A  p oint x ∗ ∈  X  is said to be weak Pareto optimal solution for the crisp 
MOPP (6) iff there does not exist any x ∈ X such that, Ok (x∗) ≥ Ok (x), ∀ k = 1, 2, · · · , 4.
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We prove the following theorem to establish the existence of efficient solution which has
one-one correspondence between MOPP and IFMOPP.

Theorem 5: An efficient solution of the crisp MOPP (6) is also an efficient solution for
the IFMOPP (5).

Proof: Consider that x ∈ X be an efficient solution of the crisp MOPP (6). Then X is also
feasible for the crisp MOPP (6). It means that the following condition will hold:∑J

j=1 A
′

i j x
g

i j k ≥ B
′

i , i = 1,2, · · · , I1,∑J
j=1 A

′

i j x
g

i j k ≤ B
′

i , i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 A

′

i j x
g

i j k = B
′

i , i = I2 + 1, I2 + 2, · · · , I .
xgi j k ≥ 0, j = 1,2, · · · , J .

Since it is proven that EV is a linear function (Theorem 2), we have∑J
j=1 EV

(
Ãi j

)
xgi j k ≥ EV

(
B̃i

)
, i = 1,2, · · · , I1,∑J

j=1 EV
(
Ãi j

)
xgi j k ≤ EV

(
B̃i

)
, i = I1 + 1, I1 + 2, · · · , I2,∑J

j=1 EV
(
Ãi j

)
xgi j k = EV

(
B̃i

)
, i = I2 + 1, I2 + 2, · · · , I .

x j ≥ 0, j = 1,2, · · · , J .

Consequently, we have ∑J
j=1 Ãi j x

g

i j k ≤ B̃i, i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 Ãi j x

g

i j k = B̃i, i = I2 + 1, I2 + 2, · · · , I .
xgi j k ≥ 0, j = 1,2, · · · , J .

Hence, X is a feasible solution for the IFMOPP (5).
Moreover, since X is an efficient solution for the crisp MOPP (6), there does not exist any
X∗ =

(
x∗1, x

∗
2, · · · , x

∗
n
)
such that Zk(X∗) ≤ Zk(X) ∀ k = 1,2, · · · ,4 and Zk(X∗) < Zk(X)

for at least one k = 1,2, · · · ,4. Thus we have no X∗ such that Min
∑K

k=1 EV
(
Z̃k(X)

)
≤

Min
∑K

k=1 EV
(
Z̃k(X∗)

)
∀ k = 1,2, · · · ,4 andMin

∑K
k=1 EV

(
Z̃k(X)

)
< Min

∑K
k=1 EV

(
Z̃k(X∗)

)
∀ k =

1,2, · · · ,4 for at least one k = 1,2, · · · ,4.
SinceEV is a linear function (Theorem2), we have no X∗ such thatMin

∑K
k=1 EV

(
Z̃k(X)

)
≤

Min
∑K

k=1 EV
(
Z̃k(X∗)

)
∀ k = 1,2, · · · ,4 andMin

∑K
k=1 EV

(
Z̃k(X)

)
< Min

∑K
k=1 EV

(
Z̃k(X∗)

)
∀ k =

1,2, · · · ,4 for at least one k = 1,2, · · · ,4. Thus X is an efficient solution for the IFMOPP
(5).
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We propose the following model which is equivalent the crisp MOPP.

Let Z1 and Z2 be comonotonic functions, then for any intuitionistic fuzzy parameter Ỹ , we
have

EV
[
Z1(Ỹ ) + Z2(Ỹ )

]
= EV

[
Z1(Ỹ )

]
+ EV

[
Z2(Ỹ )

]
For the sake of simplicity, let us consider an auxiliary model (7) which is an equivalent to
the crisp MOPP (6) and can be given as follows:

Min EV
[
Z(X,Ỹ )

]
=

(
EV

[
Z1(X,Ỹ )

]
, ...,EV

[
Zk(X,Ỹ )

] )
∀ k = 1,2,3,4.

Subject to ∑J
j=1 A

′

i j x
g

i j k ≥ B
′

i , i = 1,2, · · · , I1,∑J
j=1 A

′

i j x
g

i j k ≤ B
′

i , i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 A

′

i j x
g

i j k = B
′

i , i = I2 + 1, I2 + 2, · · · , I .
xgi j k ≥ 0, j = 1,2, · · · , J .

(7)
Where EV[·] in auxiliary model (7) represents the expected values (accuracy function) of
the intuitionistic fuzzy parameters.

In Theorem 5, we have already proven the expected value EV efficient solution for the
IFMOPP (5). This concept is obtained by presenting the crisp MOPP (6), which comprise
the expected value of intuitionistic fuzzy uncertain objectives of the IFMOPP (5).
Intuitionally, if the intuitionistic fuzzy uncertain vectors in the auxiliary model (7) degen-
erate into intuitionistic fuzzy parameters, then the following convexity Theorem 6 of the
auxiliary model (7) can be proved.

Theorem 6: Suppose that the function Z(X,Ỹ ) is differentiable and a convex vector func-
tion with respect to X and Ỹ . Thus, for any given X1, X2 ∈ X , if Zk(X1,Ỹ ) and Zk(X2,Ỹ )
are comonotonic on intuitionistic fuzzy parameters Ỹ , then the auxiliary model (7) is a
convex programming problem.

Proof: Since, the feasible solution set X is a convex set, intuitionally, it is sufficient to
obtain that the auxiliary model (7) is a convex vector function.
Note that the Z(X,Ỹ ) is a convex vector function on X for any given Ỹ , the inequality

Z
(
δX1 + (1 − δ)X2,Ỹ

)
5 δZ(X1,Ỹ ) + (1 − δ)Z(X2,Ỹ )

holds for any δ ∈ [0.1] and X1, X2 ∈ X , i.e;

Zk

(
δX1 + (1 − δ)X2,Ỹ

)
5 δZk(X1,Ỹ ) + (1 − δ)Zk(X2,Ỹ )
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holds for each k, 1 ≤ k ≤ 4.
By using the assumed condition that Zk(X1,Ỹ ) and Zk(X2,Ỹ ) are comonotonic on Ỹ , it
follows from Definition 13 that

EV
[
Zk

(
δX1 + (1 − δ)X2,Ỹ

)]
5 δEV

[
Zk(X1,Ỹ )

]
+ (1 − δ)EV

[
Zk(X2,Ỹ )

]
, ∀ k;

which implies that

EV
[
Z

(
δX1 + (1 − δ)X2,Ỹ

)]
5 δEV

[
Z(X1,Ỹ )

]
+ (1 − δ)EV

[
Z(X2,Ỹ )

]
The above inequality shows that EV

[
Z(X,Ỹ )

]
is a convex vector function. Hence the

auxiliary model (7) is a convex programming problem. Consequently, the crisp MOPP
(6) is also a convex programming problem. Thus Theorem 6 is proved.

4 Solution approach

4.1 Extended Fuzzy Programming Approach
Based on fuzzy set theory [37], fuzzy programming is developed to solve themultiobjective
optimization problem. The fuzzy programming approach (FPA) deals with the degree
of belongingness (membership function) lying between 0 to 1. It shows the marginal
evaluation of each objective function into the feasible solution sets. The membership
functions can be defined by a mapping function (say µ(Zk) → [0,1]|λ ∈ [0,1]) that
assigned the values between 0 to 1 to each objective function which shows the decision
makers’ preferences have been fulfilled up to λ level of satisfaction. Mathematically, it
can be expressed as follows:

µ(Zk(x)) =


1 i f Zk(x) < Lk
Uk−Zk (x)

Uk−Lk
i f Lk ≤ Zk(x) ≤ Uk

0 i f Zk(x) > Uk

where Uk and Lk are the lower and upper bound for each objective function and obtained
by the minimization and maximization of each objective function individually.

Hence, the mathematical formulation of EFPA to solve the transportation problem can be
represented as below:

Max ψ(x) = λ (α) + (1 − λ)
(∑4

k=1 µk(Zk(x))
)

Subject to
µk(Zk(x)) ≥ α,
α ≥ 0, 0 ≤ α ≤ 1,
λ ∈ [0,1]
constraints (4)

(8)
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where µk(Zk(x)) represents the membership degree of k-th objective function and α de-
picts the satisfaction level for each objective function and provides a compromise solution
under the given set of constraints under fuzzy environment.

We prove that the unique optimal solution of LTMFA is efficient.
Theorem 7: A unique optimal solution of problem (8) (LTMFA) is also an efficient solu-
tion for the problem (5).

Proof: Suppose that (x̄, ᾱ) be a unique optimal solution of problem (8) (LTMFA). Then,
(ᾱ) > (α) for any (x, α) feasible to the problem (8) (LTMFA). On the contrary, assume that
(x̄, ᾱ, ) is not an efficient solution of the crisp IP-TPP (8). For that, there exists x∗ (x∗ , x̄)
feasible to the crisp IP-TPP (8), such that Om(x∗) ≤ Om(x̄) for all m = 1,2, · · · ,M and
Om(x∗) < Om(x̄) for at least one m.
Therefore, we have Om(x∗)−Lm

Um−Lm
≤

Om(x̄)−Lm

Um−Lm
for allm = 1,2, · · · ,M and Om(x∗)−Lm

Um−Lm
< Om(x̄)−Lm

Um−Lm

for at least one m.
Hence, max

m

(
Om(x∗)−Lm

Um−Lm

)
≤ (<) max

m

(
Om(x̄)−Lm

Um−Lm

)
= ᾱ.

Assume that α∗ = min
m

(
Um−Om(x∗)

Um−Lm

)
, this gives (ᾱ) < (α∗) which means that the solution

is not unique optimal. Thus, we have arrived at a contradiction with the fact that (x̄, ᾱ) is
the unique optimal solution of (LTMFA). Therefore, it is also an efficient solution for the
problem (5). This completes the proof of Theorem 7.

4.2 Extended Intuitionistic Fuzzy Programming Approach
Based on intuitionistic fuzzy set theory [15], intuitionistic fuzzy programming is developed
to solve the multiobjective optimization problem. The intuitionistic fuzzy programming
approach (IFPA) deals with the degree of belongingness (membership function) and
degree of non-belongingness ( non-membership function) simultaneously, lying between
0 to 1. It shows the marginal evaluation of each objective function into the feasible
solution sets. The membership functions can be defined by a mapping function (say
µ(Zk), ν(Zk) → [0,1] | α, β ∈ [0,1]) that assigned the values between 0 to 1 to each
objective function which shows the decision makers’ preferences have been fulfilled up to
(α − β) level of satisfaction. Mathematically, it can be expressed as follows:

µ(Zk(x)) =


1 i f Zk(x) < Lk
Uk−Zk (x)

Uk−Lk
i f Lk ≤ Zk(x) ≤ Uk

0 i f Zk(x) > Uk

and

ν(Zk(x)) =


0 i f Zk(x) < Lk
Zk (x)−Lk

Uk−Lk
i f Lk ≤ Zk(x) ≤ Uk

1 i f Zk (x) > Uk 

16
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Therefore the mathematical formulation of EIFPA to solve the transportation problem can
be represented as below:

Max ψ(x) = λ (α − β) + (1 − λ)
∑K

k=1 (µk(Zk(x)) − νk(Zk(x)))
Subject to

µk(Zk(x)) ≥ α,
νk(Zk(x)) ≤ β,
α ≥ β, 0 ≤ α + β ≤ 1,
λ ∈ [0,1]
constraints (4)

(9)

where µk(Zk(x)) and νk(Zk(x)) represent the satisfaction and dissatisfaction degrees of
k-th objective function under intuitionistic fuzzy environment. Also, α = min [µk(Zk(x))]
and β = max [νk(Zk(x))] denote the minimum satisfaction and maximum dissatisfaction
degrees of each objectives, respectively. Moreover, (α − β) represents the overall degree
of satisfaction for each objective function and provides a compromise solution under the
given set of constraints.

Theorem 8: A unique optimal solution of problem (9) (LTMFA) is also an efficient solu-
tion for the problem (5).

Proof: Suppose that
(
x̄, ᾱ, β̄

)
be a unique optimal solution of problem (9) (LTMFA).

Then,
(
ᾱ − β̄

)
> (α − β) for any (x, α, β) feasible to the problem (9) (LTMFA). On the

contrary, assume that
(
x̄, ᾱ, β̄

)
is not an efficient solution of the crisp IP-TPP (9). For that,

there exists x∗ (x∗ , x̄) feasible to the crisp IP-TPP (9), such that Om(x∗) ≤ Om(x̄) for all
m = 1,2, · · · ,M and Om(x∗) < Om(x̄) for at least one m.
Therefore, we have Om(x∗)−Lm

Um−Lm
≤

Om(x̄)−Lm

Um−Lm
for allm = 1,2, · · · ,M and Om(x∗)−Lm

Um−Lm
< Om(x̄)−Lm

Um−Lm

for at least one m.
Hence, max

m

(
Om(x∗)−Lm

Um−Lm

)
≤ (<) max

m

(
Om(x̄)−Lm

Um−Lm

)
.

Suppose that that β∗ = max
m

(
Um−Om(x∗)

Um−Lm

)
, then β∗ ≤ (<) β̄.

In the samemanner, we have Um−Om(x∗)
Um−Lm

≥
Um−Om(x̄)

Um−Lm
for allm = 1,2, · · · ,M and Um−Om(x∗)

Um−Lm
>

Um−Om(x̄)
Um−Lm

for at least one m.

Thus, min
m

(
Um−Om(x∗)

Um−Lm

)
≥ (>) min

m

(
Um−Om(x̄)

Um−Lm

)
.

Assume that α∗ = min
m

(
Um−Om(x∗)

Um−Lm

)
, this gives

(
ᾱ − β̄

)
< (α∗ − β∗) which means that the

solution is not unique optimal. Thus, we have arrived at a contradiction with the fact
that

(
x̄, ᾱ, β̄

)
is the unique optimal solution of (LTMFA). Therefore, it is also an efficient

solution for the problem (5). This completes the proof of Theorem 8.
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4.3 Extended Neutrosophic Programming Approach
In reality, the characteristic of indeterminacy is the most trivial concern in the decision-
making process. It seldom happens that DM(s) has(have) neutral thoughts about any
specific value about membership degree of the element into feasible decision set. In this
situation, indeterminacy/neutral values are possible to assign it. Inspired with such cases,
Smarandache [29] proposed a set named neutrosophic set (NS), which is the extension of
FS and IFS. The NS deals with an indeterminacy degree of the element into a feasible
decision set. The neutrosophic programming approach (NPA) has been widely used by
researchers. Ahmad et al. [4] have proposed a new computational algorithm based on a
single-valued neutrosophic hesitant fuzzy decision set and applied it to the multiobjective
nonlinear optimization problem of the manufacturing system. Ahmad et al. [6] and
Ahmad et al. [5] have also addressed modified neutrosophic fuzzy optimization technique
for multiobjective programming problem under uncertainty. For more details, please visit
[2? ] Thus, the upper and lower bound for each objective as given below:

Uk = max[Zk(X k)] and Lk = min[Zk(X k)] ∀ k = 1,2,3, ...,K .

The bounds for k objective function is given as follows:

Uµ
k = Uk, Lµ

k = Lk f or truth membership

Uσ
k = Lµ

k + sk, Lσk = Lµ
k f or indeterminacy membership

Uν
k = Uµ

k , Lνk = Lµ
k + tk f or f alsity membership

where sk and tk ∈ (0,1) are predetermined real numbers assigned by DM(s).
Hence, the different membership functions can be defined as follows:

µk(Zk(x)) =


1 i f Zk(x) < Lµ

k
UT
k
−Zk (x)

Uµ
k
−Lµ

k

i f Lµ
k ≤ Zk(x) ≤ Uµ

k

0 i f Zk(x) > Uµ
k

σk(Zk(x)) =


1 i f Zk(x) < Lσk
Uσ
k
−Zk (x)

Uσ
k
−Lσ

k
i f Lσk ≤ Zk(x) ≤ Uσ

k

0 i f Zk(x) > Uσ
k

νk(Zk(x)) =


1 i f Zk(x) > Uν

k
Zk (x)−Lν

k

Uν
k
−Lν

k
i f Lνk ≤ Zk(x) ≤ Uν

k

0 i f Zk(x) < Lνk
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Therefore the mathematical formulation of ENPA to solve the transportation problem can
be represented as below:

Max ψ(x) = λ (α − β − γ) + (1 − λ)
∑K

k=1 (µk(Zk(x)) − λk(Zk(x)) − νk(Zk(x)))
Subject to:

µk(Zk(x)) ≥ α, σk(Zk(x)) ≤ β, νk(Zk(x)) ≤ γ,
α ≥ β, 0 ≤ α + β + γ ≤ 3,
λ ∈ [0,1]
constraints (4)

(10)
where (α + β − γ) represents the overall degree of satisfaction for each objective function
and provides a compromise solution under the given set of constraints.

Theorem 9: A unique optimal solution of problem (10) (LTMFA) is also an efficient
solution for the problem (5).

Proof: Suppose that
(
x̄, ᾱ, β̄, γ̄

)
be a unique optimal solution of problem (10) (LTMFA).

Then,
(
ᾱ − β̄ − γ̄

)
> (α − β − γ) for any (x, α, β, γ) feasible to the problem (10) (LTMFA).

On the contrary, assume that
(
x̄, ᾱ, β̄, γ̄

)
is not an efficient solution of the problem (10).

For that, there exists x∗ (x∗ , x̄) feasible to problem (10), such that Ok(x∗) ≤ Ok(x̄) for
all k = 1,2, · · · ,K and Ok(x∗) < Ok(x̄) for at least one k.
Therefore, we have Ok (x∗)−Lk

Uk−Lk
≤

Ok (x̄)−Lk

Uk−Lk
for all k = 1,2, · · · ,K and Ok (x∗)−Lk

Uk−Lk
< Ok (x̄)−Lk

Uk−Lk

for at least one k.
Hence, max

k

(
Ok (x∗)−Lk

Uk−Lk

)
≤ (<) max

k

(
Ok (x̄)−Lk

Uk−Lk

)
.

Suppose that γ∗ = max
k

(
Uk−Ok (x∗)

Uk−Lk

)
, then γ∗ ≤ (<) γ̄.

Also, consider that β∗ = max
k

(
Uk−Ok (x∗)

Uk−Lk

)
, then β∗ ≤ (<) β̄.

In the same manner, we have Uk−Ok (x∗)
Uk−Lk

≥
Uk−Ok (x̄)

Uk−Lk
for all k = 1,2, · · · ,K and Uk−Ok (x∗)

Uk−Lk
>

Uk−Ok (x̄)
Uk−Lk

for at least one k.

Thus, min
k

(
Uk−Ok (x∗)

Uk−Lk

)
≥ (>) min

k

(
Uk−Ok (x̄)

Uk−Lk

)
.

Assume that α∗ = min
k

(
Uk−Ok (x∗)

Uk−Lk

)
, this gives

(
ᾱ − β̄ − γ̄

)
< (α∗ − β∗ − γ∗) which means

that the solution is not unique optimal. Thus, we have arrived at a contradiction with the 

fact that 
(
x̄, ᾱ, β̄, γ̄

) 
is the unique optimal solution of (LTMFA). 

4.4 Sensitivity analyses
Three different robust solution approaches have been suggested to solve the proposed F-
IMOTPs. A variety of obtained solution results may not reflect the most appropriate

19
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technique to solve the F-IMOTPs in a generalized way. To select the most promising 
solution techniques and solution sets, it is further presented with the different sensitivity 
measures. The following are various criteria to analyze the performances of different 
approaches.

Savings compared to baseline solution: The most reasonable compromise solution is 
assumed to be a baseline solution for each objective function. The comparison is made 
with a different optimal solution which is then selected in terms of more savings (See, [2]).

Co-efficient of variation: It is a relative measure and most suitable method to compare two 
series. The size of the measure of dispersion also depends on the size of the measurement. 
Thus, it is an appropriate measure of dispersion to compare two series that differ largely 
in respect of their means. Moreover, a series or a set of values having a lesser co-ecient 
of variation than others is more consistent. It also indicates how much fluctuation is 
happening in the existing mean response. The lower value of co-ecient of variation 
indicates the more homogeneous and robustness of the data (See, [2, 8]).

Degrees of desirability: The concept of degrees of desirability has been first proposed by 
[7, 8]. Linear physical programming [8] is a method that is used to depict the degrees of 
desirability (priority) for each objective function of the MOOP. The degree of desirability 
is a beneficial and handy tool for assigning the target values (Tl ) for the objective function 
and categorizing the solutions. By obtaining the individual best and worst solution of each 
objective function, the upper and lower bound for target values (Tl ) can be determined 
directly. By using the pay-off matrix (individual best and worst solutions of each objective 
function), bound (Tl max) and (Tl min) can be obtained. These bound provides the reduction 
in solvability set which can be denoted as S′ and mathematically it can be shown expressed 
as S′ = {S |Tl min ≤ Tl ≤ Tl max; ∀l = 1, 2, ..., L} where S is a set of parameter values for 
which the problem is solvable. Thus, the reduced solvability set can be used for defining 
the degree of desirability in the form of linguistic preferences. For more information and 
a stepwise procedure, one can visit the research paper by [8].

Stepwise solution algorithm
The stepwise solution procedures for the proposed F-IMOTP can be summarized as 
follows:
Step-1. Model the proposed F-IMOTP under uncertainty.
Step-2. Convert each intuitionistic fuzzy parameters involved in F-IMOTP into its crisp 
form using the accuracy function (Definition 6).
Step-3. Formulate the model (6) and solve each objective function individually in order 
to obtain the best and worst solution.
Step-4. Apply the different solution approach such as EFPA, EIFPA and ENPA discussed
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in Sub-sections (4.1), (4.2) and (4.3) respectively.
Step-5. Solve the final model for F-IMOTP to get the compromise solution at different 
feasibility degree λ using suitable techniques or some optimizing software packages. 
Step-6. Use the snesitivity analysis to analyze the better performance of different solution 
techniques at various feasibility degree λ and choose the desired compromise solution.

5 Numerical illustration
A logistic company transports two kinds of products from three sources to three different 
destinations using two types of conveyances. The relevant data are summarized in Table 2. 
The logistic company’s decision-maker intends to find optimal units of different products 
that should be transported from various sources to different destinations using the suitable 
mode of conveyance, which minimizes the cost and time according to the input parameters, 
respectively. We have considered the three different source and destinations using two 
conveyances for the shipment of two types products. The decision-maker(s) wants to 
determine the optimal shipment policies for which the total transportation cost, time, 
safety cost and carbon emissions are minimized by maintaining the resource restrictions. 
The transportation problem is coded in AMPL language and solved using solver Knitro 
available on NEOS server online facility provided by Wisconsin Institutes for Discovery 
at the University of Wisconsin in Madison for solving optimization problems, see [25]. 
The solution results are summarized in Table 3. From the Table 3, it can be observed that 
by tuning the weight parameters between 0 to 1, various solution results are obtained. Due 
to space limitations, the optimal allocation of products among different echelon has not 
presented in this paper. The compromise solution for all four objectives has obtained at a 
different weight parameter (λ).
From Table 3, it can be observed that by using EFPA; the minimum value of all the 
objectives are found to be $ 4360.10, 887.644 hrs., $ 88.7644 and 5.97024 mt (metric ton), 
at weight parameter λ = 0.1 respectively. As for weight parameter λ increases, the values 
of each objective also reach towards its worst solution, and at λ = 0.9 the worst values 
of each objective are $ 4357.69, 886.239 hrs., $ 88.6283 and 5.96459 mt, which shows 
the more consciousness of decision makers towards the uncertainty. Similarly, EIFPA 
techniques also yield in different compromise solutions. At λ = 0.1, the values of each 
objectives by using EIFPA have been found to be $ 4324.70, 868.882 hrs., $ 86.8882 and 
5.83967 mt, respectively. As for weight parameter λ increases, all the objectives reach 
towards their worst solution and at λ = 0.9, it approaches to $ 4325.80, 870.357 hrs.,
$ 87.0357 and 5.85055 mt, due to supreme importance has been given to risk violation 
by decision makers. Furthermore, ENPA technique results in different objective values 
at various weight parameter λ. At λ = 0.1, the magnitude of each objectives have been 
obtained as $ 4306.83, 853.027 hrs., $ 85.3027 and 5.7299 mt, respectively. With the 
increase in weight parameter λ, it has observed that each objective reaches towards their
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worst outcomes which reveals that the decision makers have given more importance to the 
risk violation under uncertainty. Moreover, if we perform the comparison among all four 
approaches with respect to objective functions then it can be observed that EFPA results in 
better outcomes for the second and fourth objective over the other two approaches whereas 
EIFPA and ENPA methods yield in better results for first and t hird objectives for each 
weight parameter λ respectively. Hence all three approaches are well capable of providing 
the best solution for different objectives.
The corresponding achievement degree of each compromise solution has presented in 
Table 3. As the weight parameter λ is increasing, the values of the membership function 
µ is decreasing which shows the inverse trade-off between the feasibility degree and 
acceptance level of each compromise solution set. Interestingly, each methods EFPA, 
EIFPA and ENPA have been assigned with top three ranks at minimum weight parameter 
λ = 0.1 respectively. All the techniques have outperformed for this presented study over 
others. Initial few ranks have assigned to the solution set yielded by ENPA approach 
whereas systematic and deserving ranks have allocated to the solution sets obtained by 
different methods at each weight parameter λ.
The two critical aspects have highlighted that inherently involved in decision-making 
processes: (1) violation of risk under uncertainty and (2) balancing the global optimality 
of each objective. By applying EIFPA, the budget are found to be decreasing as the weight 
parameter λ increases. Likewise, EFPA and ENPA techniques also result in the same 
declining pattern of the objectives which ensures the potential management of different 
products. Hence, from the decision-making point of view, the computational results 
cope with all the prime target of the company to survive in the competitive market. An 
extensive opportunity to select the most promising compromise solution set is a significant 
advantage for the decision makers. The ENPA yield comparatively better compromise 
results at different weight parameters. There are ample opportunity to choose the most 
desired solution sets based on the decision-makers satisfaction level. Thus the decision-
makers can be reached towards the optimal policies and strategies by adopting the most 
desired solution methods and the corresponding results. The Table 4 represents the the 
most desirble, desirable and most undesirable values for each objectives based on the 
degrees of desirability.
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Table 2: Intuitionistic fuzzy input parameters

Parameters Product 1 Product 2

s̃i j k (83,85,87;81,85,89),(80,83,86;79,83,87),(86,87,88;85,87,89) (82,84,86;80,84,88),(81,82,83;80,82,84),(74,75,76;73,75,77)
(83,85,87;81,85,89),(81,83,85;80,83,86),(75,78,81;74,78,82) (84,85,86;83,85,87),(80,83,85;78,83,87),(76,78,80;75,78,81)
(83,84,85;82,84,86),(80,82,84;78,82,86),(78,79,80;77,79,81) (84,85,86;83,85,87),(82,83,84;81,83,85),(83,84,85;82,84,86)
(83,84,85;82,84,86),(80,82,84;78,82,86),(76,78,80;75,78,81) (84,85,86;83,85,87),(82,83,84;81,83,85),(86,87,88;85,87,89)
(83,84,85;82,84,86),(80,82,84;78,82,86),(72,75,78;71,75,79) (82,84,86;80,84,88),(81,82,83;80,82,84),(78,79,80;77,79,81)
(84,85,86;83,85,87),(80,83,86;79,83,87),(76,78,80;75,78,81) (83,84,85;82,84,86),(80,82,84;78,82,86),(77,79,81;76,79,82)

c̃i j k (14,15,16;13,15,17),(20,23,25;18,23,28),(16,17,18;15,17,19) (42,44,46;40,44,48),(40,42,44;38,42,46),(44,45,46;43,45,47)
(53,55,57;51,55,59),(70,73,76;69,73,77),(37,38,39;36,38,40) (24,25,26;23,25,27),(61,63,65;60,63,66),(36,38,40;35,38,41)
(53,54,55;52,54,56),(50,52,54;48,52,56),(28,29,30;27,29,31) (24,25,26;23,25,27),(21,23,25;20,23,26),(12,14,16;11,14,17)
(72,74,76;70,74,78),(42,43,44;41,43,45),(26,28,30;25,28,31) (64,65,66;63,65,67),(42,43,44;41,43,45),(26,27,28;25,27,29)
(42,44,46;40,44,48),(20,22,24;18,22,26),(44,45,46;43,45,47) (12,14,16;11,14,17),(30,32,34;28,32,36),(48,49,50;47,49,51)
(44,45,46;43,45,47)(52,53,54;50,53,56),(16,18,20;15,18,21) (22,24,26;20,24,28),(70,72,74;68,72,76),(38,39,40;37,39,41)

t̃i j k (3,5,7;2,5,8),(1,2,3;0,2,4),(6,7,8;5,7,9) (3,4,5;2,4,6),(2,4,6;0,4,8),(4,5,6;3,5,7)
(3,5,7;2,5,8),(5,7,9;4,7,10),(5,8,11;4,8,12) (4,5,6;3,5,7),(3,6,9;2,6,10),(7,8,9;6,8,10)
(3,4,5;2,4,6),(3,5,7;2,5,8),(7,9,11;6,9,12) (2,5,8;1,5,9),(1,2,3;0,2,4),(2,4,6;0,4,8)
(3,4,5;2,4,6),(2,4,6;1,4,7),(6,8,10;5,8,11) (4,5,6;3,5,7) ,(2,4,6;1,4,7), (5,7,9;4,7,10)
(3,4,5;2,4,6), (1,2,3;0,2,4),(4,5,6;3,5,7) (3,4,5;2,4,6),(2,3,4;1,3,5),(7,9,11;6,9,12)
(4,5,6;3,5,7),(3,5,7;2,5,8),(6,8,10;5,8,11) (2,4,6;1,3,7),(5,7,9;4,7,10),(8,9,10;7,9,11)

s̃ci j k (0.3,0.5,0.8;0.2,0.5,0.9),(0.1,0.2,0.3;0,0.2,0.4),(0.5,0.7,0.9;0.4,0.7,1.0) (0.3,0.4,0.5;0.2,0.4,0.6),(0.2,0.4,0.6;0.1,0.4,0.7),(0.4,0.5,0.6;0.3,0.5,0.8)
(0.3,0.5,0.7;0.2,0.5,0.8),(0.6,0.7,0.8;0.5,0.7,0.9),(0.6,0.8,1.0;0.5,0.8,1.1) (0.4,0.5,0.6;0.3,0.5,0.7),(0.5,0.6,0.7;0.4,0.6,0.8),(0.6,0.8,1;0.5,0.8,1.1)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.4,0.5,0.6;0.3,0.5,0.7),(0.8,0.9,1;0.7,0.9,1.1) (0.3,0.5,0.7;0.2,0.5,0.8),(0.1,0.2,0.3;0,0.2,0.4),(0.3,0.4,0.5;0.2,0.4,0.6)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.3,0.4,0.5;0.2,0.4,0.6),(0.6,0.8,1;0.5,0.8,1.1) (0.3,0.5,0.7;0.2,0.5,0.8),(0.2,0.4,0.6;0.1,0.4,0.7),(0.5,0.7,0.9;0.4,0.7,1.0)
(0.3,0.4,0.5;0.2,0.4,0.6),(0.1,0.2,0.3;0,0.2,0.4),(0.3,0.5,0.7;0.2,0.5,0.8) (0.3,0.4,0.5;0.2,0.4,0.6),(0.2,0.3,0.4;0.1,0.3,0.5),(0.7,0.9,1.1;0.6,0.9,1.2)
(0.3,0.5,0.7;0.2,0.5,0.8),(0.3,0.5,0.7;0.2,0.5,0.8),(0.7,0.8,0.9;0.6,0.8,1) (0.3,0.4,0.5;0.2,0.4,0.6),(0.5,0.7,0.9;0.4,0.7,1),(0.8,0.9,1;0.7,0.9,1.1)

c̃ei j k (0.03,0.05,0.07;0.02,0.05,0.08),(0.01,0.02,0.03;0.0,0.02,0.04),(0.06,0.07,0.08;0.05,0.07,0.09) (0.03,0.04,0.05;0.02,0.04,0.06),(0.03,0.04,0.05;0.02,0.04,0.06),(0.04,0.05,0.06;0.03,0.05,0.07)
(0.04,0.05,0.06;0.03,0.05,0.07),(0.06,0.07,0.08;0.05,0.07,0.09),(0.07,0.08,0.09;0.06,0.08,0.1) (0.03,0.05,0.07;0.02,0.05,0.08),(0.05,0.06,0.07;0.04,0.06,0.08),(0.07,0.08,0.09;0.06,0.08,0.1)
(0.03,0.04,0.05;0.02,0.04,0.06),(0.04,0.05,0.06;0.03,0.05,0.07),(0.07,0.09,0.11;0.06,0.06,0.12) (0.03,0.05,0.07;0.02,0.05,0.08),(0.01,0.02,0.03;0.0,0.02,0.04),(0.03,0.04,0.05;0.02,0.04,0.06)
(0.03,0.04,0.05;0.02,0.04,0.06),(0.03,0.04,0.05;0.02,0.04,0.06),(0.07,0.08,0.09;0.06,0.08,0.1) (0.03,0.05,0.07;0.02,0.05,0.08),(0.03,0.04,0.05;0.02,0.04,0.06),(0.06,0.07,0.08;0.05,0.07,0.09)
(0.03,0.04,0.05;0.02,0.04,0.06),(0.01,0.02,0.03;0.0,0.02,0.04),(0.04,0.05,0.06;0.03,0.05,0.07) (0.03,0.04,0.05;0.02,0.04,0.06),(0.03,0. 05,0.07;0.02,0.05,0.08),(0.07,0.09,0.11;0.06,0.06,0.12)
(0.04,0.05,0.06;0.03,0.05,0.07),(0.04,0.05,0.06;0.03,0.05,0.07),(0.07,0.08,0.09;0.06,0.08,0.1) (0.03,0.04,0.05;0.02,0.04,0.06),(0.06,0.07,0.08;0.05,0.07,0.09),(0.07,0.09,0.11;0.06,0.06,0.12)

ãi (206,208,210;205,208,211),(250,252,254;248,252,256),(224,226,228;222,226,230) (252,254,256;250,254,258),(262,264,266;260,264,268),(244,245,246;243,245,247)
(152,154,156;150,154,158),(562,564,566;560,564,568),(540,545,550;535,545,555) (158,159,160;157,159,161),(146,148,150;144,148,152),(123,125,127;122,125,128)
(272,274,276;270,274,278),(255,256,257;254,256,258),(254,255,256;253,255,257) (272,274,276;270,274,278),(765,767,769;764,767,780),(453,455,457;452,455,458)

b̃ j (82,83,84;81,83,85),(85,87,89;84,87,91),(93,94,95;92,94,96) (73,74,75;72,74,76),(50,52,54;48,52,56),(83,85,87;81,85,89)
(82,84,86;80,84,88),(84,85,86;83,85,87),(92,95,98;91,95,99) (41,45,49;40,45,50),(56,57,58;55,57,59),(74,75,76;73,75,77)
(84,85,86;83,85,87),(65,67,69;64,67,70),(92,94,96;90,94,98) (71,75,79;70,75,80),(85,87,89;84,87,90),(62,63,64;60,63,66)

ẽi (22,24,26;20,24,28),(20,24,28;18,24,30) (34,35,36;33,35,37) (65,67,69;64,67,70) (23,24,25;22,24,26),(42,44,46;40,44,48)
(34,35,36;33,35,37),(33,35,37;32,35,38) (24,25,26;23,25,27) (30,35,40;25,35,45) (32,35,38;31,35,39),(44,45,46;43,45,47)

p̃k (0.2,0.4,0.6;0.1,0.4,0.7),(0.3,0.5,0.7;0.2,0.5,0.8) (0.7,0.9,1.1;0.6,0.9,1.2),(0.6,0.8,1.0;0.5,0.8,1.1)
B j (2450,2445,2505) (1425,1665,1545) (1565,1685,1425) (2450,2445,2505) (1425,1665,1545) (1565,1685,1425)
B 5 5
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Table 3: Optimal solutions obtained by different methods

Weight Objective Extended Fuzzy Programming Extended Intuitionistic Fuzzy Extended Neutrosophic
(λ) values Approach (EFPA) Programming Approach (EIFPA) Programming Approach (ENPA)

λ=0.1 Min Z1 4360.1 4324.7 4306.83
Min Z2 887.644 868.882 853.027
Min Z3 88.7644 86.8882 85.3027
Min Z4 5.97024 5.83967 5.7299

λ=0.2 Min Z1 4360.09 4358.87 3889.59
Min Z2 887.646 887.751 835.3
Min Z3 88.7646 88.7751 83.53
Min Z4 5.97025 5.97094 5.58824

λ=0.3 Min Z1 4357.6 4322.77 4228.76
Min Z2 882.777 870.266 848.714
Min Z3 88.2777 87.0266 84.8714
Min Z4 5.93873 5.84968 5.69559

λ=0.4 Min Z1 4356.27 4313.18 4057.54
Min Z2 883.088 857.292 846.627
Min Z3 88.3088 85.7292 84.6627
Min Z4 5.93522 5.72106 5.67529

λ=0.5 Min Z1 4360.19 4337.69 4311.32
Min Z2 887.609 872.949 853.118
Min Z3 88.7609 87.2949 85.3118
Min Z4 5.97005 5.86669 5.731

λ=0.6 Min Z1 4359.6 4324.34 3926.1
Min Z2 887.456 868.335 833.667
Min Z3 88.7456 86.8335 83.3667
Min Z4 5.96928 5.83305 5.57907

λ=0.7 Min Z1 4349.47 4325.95 4206.61
Min Z2 871.233 870.301 848.91
Min Z3 87.1233 87.0301 84.891
Min Z4 5.87853 5.85014 5.69869

λ=0.8 Min Z1 4355.73 4314.35 4146.7
Min Z2 883.183 851.972 834.551
Min Z3 88.3183 85.1972 83.4551
Min Z4 5.9364 5.70287 5.5971

λ=0.9 Min Z1 4357.69 4325.8 4304.75
Min Z2 886.239 870.357 852.007
Min Z3 88.6283 87.0357 85.2007
Min Z4 5.96459 5.85055 5.72234

5.1 Sensitivity analyses
The three different solution sets based on the degree of desirability scenario have been 
generated, and the corresponding performances of each solution method under the dif-
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ferent solution sets are also recorded. From Table 5 (solution 1), the EFPA reveals that 
transportation cost (T.C) can be reduced by 53.73%, transportation time (T.T) can be low-
ered by 20.69%, safety cost (S.C) can be mitigated by 79.36% and carbon emissions (C.E) 
can be mitigated by 79.36% as compared to the baseline solution. Furthermore, EIFPA 
technique yield in the reduction of T.C by 55.21%, a significant increment in the T.T by 
17.23%, notably decrement in the S.C by 83.81% and C.E by 83.81% as compared to the 
baseline solution. Similarly, on applying ENPA technique, it is observed that the T.C can 
be reduced by 55.99 %, T.T can be lowered by 23.12 %, S.C can be mitigated by 79.36%
and C.E can be mitigated by 87.45% as compared to the baseline solution. Likewise, from 
Table 6 (solution 2), the EFPA technique shows that T.C can be diminished by 55.81 %, 
T.T can be increased by 22.77 %, S.C can be mitigated by 79.36% and C.E can be reduced 
by 87.15 % as compared to the baseline solution. Furthermore, EIFPA technique results 
in the reduction of T.C by 53.63 %, a significant increment in the T.T by 19.56 %, notably 
decrement in the S.C by 83.55 % and C.E can be mitigated by 79.36% as compared to the 
baseline solution. Similarly, on applying ENPA technique, it is observed that the T.C can 
be mitigated by 55.01 %, T.T can be enhanced by 16.63 %, S.C can be reduced by 79.26%
and C.E can be mitigated by 79.36% as compared to the baseline solution. From Table 
7 (solution 3), EFPA ensures that T.C can be reduced by 53.77 %; T.T can be enhanced 
by 20.96 %, and S.C can be mitigated by 79.43% and C.E can be reduced by 79.36%
as compared to the baseline solution. Furthermore, the EIFPA technique results in the 
reduction of T.C by 56.13 %, a significant increment in the T.T by 23.24 %, remarkable 
decrement in the S.C by 87.66 % and C.E can be mitigated by 79.36% as compared to the 
baseline solution. Similarly, on applying ENPA technique, it is observed that the T.C can 
be reduced by 55.01 %, T.T can be enhanced by 16.63 %, S.C can be mitigated by 79.26%
and C.E can be mitigated by 79.36% as compared to the baseline solution.
For solution 1, a comparative study with the co-ecient of variation shows that all the 
objective functions are more homogeneous under variation while using ENPA techniques 
over others. Similarly, more robust (homogeneous) results of each objective function have 
been achieved for solution 2 while using EFPA technique. Furthermore, it is also observed 
that all the objective functions are more homogeneous under variation while using the 
EIFPA technique for solution 3. The trending behavior of the different techniques has 
been depicted in Figure 2 for each solution set. The graphical representation of solution 
1 (sub-figure 2a), solution 2  (sub-figure 2b) and solution 3 (sub-figure 2c)  by using dif-
ferent techniques reveals the performances of each solution approaches. In addition to the 
different solutions set, the behavior of the overall satisfaction level with the co-ecient 
of variations has also been shown in Figure 3. The representation of fluctuating behavior 
for solution 1 (sub-figure 3a), solution 2 (sub-figure 3b) and solution 3 (sub-figure 3c) by 
using different techniques reflects homogeneity or robustness under the variation. Finally, 
the optimal solution results for three different solution sets have been summarized in Table 
8. From Table 8, all the solution sets are under the most desirable zone, which provides 
an opportunity to select a better one amongst the best solution sets. Thus these criteria
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(savings compared to baseline solution, CV, and degrees of desirability) for selection of
optimal solution results are proven to be quite helpful tools while dealing with multiple
objective optimization problems. Moreover, the different solutions set, the behavior of the
overall satisfaction level with the weight parameter (λ) has also been shown in Figure 1.
The representation of fluctuating behavior for solution 1 (sub-figure 1a), solution 2 (sub-
figure 1b) and solution 3 (sub-figure 1c) by using different techniques reflects homogeneity
or robustness under the variation.

(a) Proposed EFPA (b) Proposed EIFPA (c) Proposed ENPA

Figure 1: Overall satisfaction level v/s Weight parameter (λ)

Table 4: Degrees of desirability for each objective function

Objective functions Most Desirable (MD) Desirable (D) Most Undesirable (MU)

Minimum Z1(X) (Transportation cost) 4360.19 5230.80 5794.80
Minimum Z2(X) (Transportation time) 887.609 901.456 917.739
Minimum Z3(X) (Safety cost) 88.7609 93.8349 98.4924
Minimum Z4(X) (Carbon emissions) 5.97005 9.45924 13.8984

Table 5: Solution 1: (Z1 ≤ 4360.19, Z2 ≤ 887.609, Z3 ≤ 88.7609 and Z4 ≤ 5.97005)

Objective functions EFPA EIFPA ENPA

Baseline solution Solution CV Solution CV Solution CV

Z1(X) (Transportation cost) 4276.34 4360.10 1.23 4324.70 1.34 4306.83 1.05
Z2(X) (Transportation time) 810.4543 887.644 0.93 868.882 1.02 853.027 0.91
Z3(X) (Safety cost) 72.8690 88.7644 1.17 86.8882 1.14 85.3027 1.09
Z4(X) (Carbon emissions) 2.03943 5.97024 1.03 5.83967 1.09 5.7299 1.14
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Table 6: Solution 2: (Z1 ≤ 5230.80, Z2 ≤ 901.456, Z3 ≤ 93.8349 and Z4 ≤ 9.45924)

Objective functions EFPA EIFPA ENPA

Baseline solution Solution CV Solution CV Solution CV

Z1(X) (Transportation cost) 4276.349 4360.19 1.39 4337.69 1.84 411.32 1.71
Z2(X) (Transportation time) 810.4543 887.609 0.78 872.949 0.89 853.118 0.98
Z3(X) (Safety cost) 72.8690 88.7609 1.29 87.2949 1.43 85.3118 1.67
Z4(X) (Carbon emissions) 2.03943 5.97005 1.11 5.86669 1.17 5.7310 1.23

Table 7: Solution 3: (Z1 ≤ 5794.80, Z2 ≤ 917.739, Z3 ≤ 98.4924 and Z4 ≤ 13.8984)

Objective functions EFPA EIFPA ENPA

Baseline solution Solution CV Solution CV Solution CV

Z1(X) (Transportation cost) 4276.34 4357.69 1.37 4325.80 1.17 4304.75 1.49
Z2(X) (Transportation time) 810.4543 886.239 0.98 870.357 0.87 852.007 1.13
Z3(X) (Safety cost) 72.8690 88.6283 1.26 87.0357 1.01 85.2007 1.14
Z4(X) (Carbon emissions) 2.03943 5.96459 1.21 5.85055 1.11 5.72234 1.25

(a) (Solution 1) (b) (Solution 2) (c) (Solution 3)

Figure 2: Objective functions v/s solution methods

(a) (Solution 1) (b) (Solution 2) (c) (Solution 3)

Figure 3: Co-efficient of variation v/s solution methods

27
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Table 8: Comparision of optimal solutions with multiple criteria

Different approaches Baseline solution CV Degree of desirability

Z1: 55.01 % ↓ 1.05 4360.19 (MD)
Solution 1 (EFPA) Z2: 23.12 % ↓ 0.91 887.609 (MD)

Z3: 87.45 % ↓ 1.09 88.7609 (MD)
Z4: 72.34 % ↓ 1.19 5.97005 (MD)

Z1: 55.81 % ↓ 1.39 4360.19 (MD)
Solution 2 (EIFPA) Z2: 16.63 % ↓ 0.78 887.609 (MD)

Z3: 87.15 % ↓ 1.29 88.7609 (MD)
Z4: 72.03 % ↓ 1.12 5.97005 (MD)

Z1: 56.13 % ↓ 1.17 4360.19 (MD)
Solution 3 (ENPA) Z2: 23.24 % ↓ 0.87 887.609 (MD)

Z3: 87.66 % ↓ 1.01 88.7609 (MD)
Z4: 71.89 % ↓ 1.03 5.97005 (MD)

time, safety cost and carbon-emissions are considered as objective functions under the
supply,demand, capacity, safety and budget constraints. The extended version of various
conventional approaches such as EFPA, EIFPA and ENPA are developed to solve the
MOTPs. The robustness of the solution approaches have been established with the help
of results. At different weight parameter, a set of compromised solution are obtained.
The sensitivity analysis is also performed based on the different criteria such as baseline
solution, CV and degrees of desirability which generates the variaty of solution setsbased
on the satisfaction level of the decision-maker. It is observed that ENPA outperforms oth-
ers. For all the solution approaches, when decision-maker(s) are more concerned about
the vagueness then objective values reaches to its worst and vice-versa. We propose that
the present work can be extended further for multi-level MOPP and applied to different
real-life problems such as supply chain, inventory control and assignment problem as well.
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Intuitionistic Neutrosphic Soft Set over Rings 

Said Broumi, Florentin Smarandache, Pabitra Kumar Maji

Abstract . S.Broumi and F.Smarandache introduced the 
concept of intuitionistic neutrosophic soft set as an extension 
of the soft set theory. In this paper we have applied the 
concept of intuitionistic neutrosophic soft set to rings 
theory .The notion of intuitionistic neutrosophic soft set over 
ring (INSSOR for short ) is introduced and their basic 
properties have been investigated.The definitions of 
intersection, union, AND, and OR operations over ring 
(INSSOR) have also been defined. Finally, we have defined 
the product of two intuitionistic neutrosophic soft set over 
ring.  

Keywords Intuitionistic Neutrosphic Soft Set, 
Intuitionistic Neutrosphic Soft Set over Ring, Soft Set, 
Neutrosphic Soft Set 

1. Introduction
The theory of neutrosophic set (NS), which is the

generalization of the classical sets, conventional fuzzy set [1], 
intuitionistic fuzzy set [2] and interval valued fuzzy set 
[3],was introduced by Samarandache [4]. This concept has 
recently motivated new research in several directions such as 
databases [5,6], medical diagnosis problem [7],decision 
making problem [8],topology [9 ],control theory [10]and so 
on. We become handicapped to use fuzzy sets, intuitionistic 
fuzzy sets or interval valued fuzzy sets when the 
indeterministic part of uncertain data plays an important role 
to make a decision. In this context some works can be found 
in [11,12,13,14].  

Another important concept that addresses uncertain 
information is the soft set theory originated by 
Molodtsov[15]. This concept is free from the 
parameterization inadequacy syndrome of fuzzy set theory, 
rough set theory, probability theory. Molodtsov has 
successfully applied the soft set theory in many different 
fields such as smoothness of functions, game theory, 
operations research, Riemann integration, Perron integration, 
and probability. 

In recent years, soft set theory has been received much 
attention since its appearance. There are many papers 
devoted to fuzzify the concept of soft set theory which leads 
to a series of mathematical models such as fuzzy soft set 
[16,17,18,19,20], generalized fuzzy soft set [21,22], 
possibility fuzzy soft set [23] and so on. Thereafter ,P.K.Maji 
and his coworker[24]introduced the notion of intuitionistic 
fuzzy soft set which is based on a combination of the 
intuitionistic fuzzy sets and soft set models and studied the 
properties of intuitionistic fuzzy soft set. Later, a lot of 
extentions of intuitionistic fuzzy soft are appeared such as 
generalized intuitionistic fuzzy soft set [25], possibility 
Intuitionistic fuzzy soft set [26] and so on. Furthermore, few 
researchers have contributed a lot towards neutrosophication 
of soft set theory. In [27] P.K.Maji, first proposed a new 
mathematical model called “neutrosophic soft set” and 
investigate some properties regarding neutrosophic soft 
union, neutrosophic soft intersection, complement of a 
neutrosophic soft set ,De Morgan’s laws. In 2013, S.Broumi 
and F. Smarandache [28]combined the intuitionistic 
neutrosophic set and soft set which lead to a new 
mathematical model called” intutionistic neutrosophic soft 
sets”. They studied the notions of intuitionistic neutrosophic 
soft set union, intuitionistic neutrosophic soft set intersection, 
complement of intuitionistic neutrosophic soft set and 
several other properties of intuitionistic neutrosophic soft set 
along with examples and proofs of certain results. S.Broumi 
[29]presented the concept of“generalized neutrosophic soft
set” by combining the generalized neutrosophic sets[13]and
soft set models, studied some properties on it, and presented
an application of generalized neutrosophic soft Set in
decision making problem.

The algebraic structure of soft set theories has been 
explored in recent years. In [30], Aktas and Cagman gave a 
definition of soft groups and compared soft sets to the related 
concepts of fuzzy sets and rough sets. Sezgin and Atagün [33] 
defined the notion of normalistic soft groups and corrected 
some of the problematic cases in paper by Aktas and Cagman 
[30]. Aygunoglu and Aygun [31] introduced the notion of 
fuzzy soft groups based on Rosenfeld’s approach [32]and 
studied its properties. In 2010, Acar et al. [34] introduced the 
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basic notion of soft rings which are actually a parametrized 
family of subrings. Ghosh, Binda and Samanta [35] 
introduced the notion of fuzzy soft rings and fuzzy soft ideals 
and studied some of its algebraic properties. Inan and Ozturk 
[36]concurrently studied the notion of fuzzy soft rings and
fuzzy soft ideals but they dealt with these concepts in a more
detailed manner compared to Ghosh et al.[35]. In 2012,
B.P.Varol et al [37]introduced the notion of fuzzy soft ring in
different way and studied several of their basic properties. J.
Zhan et al[38]introduced soft rings related to fuzzy set theory.
G. Selvachandran and A. R. Salleh[39]introduced vague soft
rings and vague soft ideals and studied some of their basic
properties. Z.Zhang [40] introduced intuitionistic fuzzy soft
rings studied the algebraic properties of intuitionistic fuzzy
soft ring. Studies of fuzzy soft rings are carried out by several
researchers but the notion of neutrosophic soft rings is not
studied. So, in this work we first study with the algebraic
properties of intuitionistic neutrosophic soft set in ring
theory. This paper is organized as follows. In section 2 we
gives some known and useful preliminary definitions and
notations on soft set theory, neutrosophic set, intuitionistic
neutrosophic set, intuitionistic neutrosophic soft set and ring
theory. In section 3 we discuss intuitionistic neutrosophic
soft set over ring (INSSOR). In section 4 concludes the
paper.

2. Preliminaries
In this section we recapitulate some relevant definitions

viz, soft set, neutrosophic set, intuitionistic neutrosophic set, 
intuitionistic neutrosophic soft sets, fuzzy subring for better 
understanding of this article. 

2.1. Definition [15] 

Molodtsov defined the notion of a soft set in the following 
way: Let U be an initial universe and E be a set of parameters. 
Let 𝜁𝜁(U) denotes the power set of U and A be a non-empty 
subset of E. Then a pair (P, A) is called a soft set over U, 
where P is a mapping given by P : A → 𝜁𝜁(U). In other words, 
a soft set over U is a parameterized family of subsets of the 
universe U. For 𝜀𝜀 ∈ A, P (𝜀𝜀) may be considered as the set of 
𝜀𝜀 -approximate elements of the soft set (P, A). 

2.2. Definition [4] 

Let U be an universe of discourse then the neutrosophic set 
A is an object having the form A={<x: 
TA (x), IA (x), FA (𝐱𝐱)>,x ∈U}, where the functions T, I, F : 
U→]−0,1+[define respectively the degree of membership , the 
degree of indeterminacy, and the degree of non-membership 
of the element x ∈ X to the set A with the condition.  

−0 ≤ TA (x) + IA (x)+ FA (x)≤ 3+.  (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 

of ]−0,1+[.So instead of ]−0,1+[we need to take the 
interval[0,1]for technical applications, because ]−0,1+[will be 
difficult to apply in the real applications such as in scientific 
and engineering problems.  

2.3. Definition [11] 

An element x of U is called significant with respect to 
neutrosophic set A of U if the degree of truth-membership or 
falsity-membership or indeterminancy-membership value, 
i.e.,  TA (x)  or IA (x) or FA (𝐱𝐱)  ≤ 0.5. Otherwise, we call it
insignificant. Also, for neutrosophic set the
truth-membership, indeterminacy-membership and
falsity-membership all can not be significant. We define an
intuitionistic neutrosophic set by

A={<x: TA (x), IA (x) , FA (𝐱𝐱) >,x ∈U},where 

min { TA (x), FA (𝐱𝐱) } ≤ 0.5, 

min { TA (x), IA (x) } ≤ 0.5, 

min { FA (𝐱𝐱) , IA (x)} ≤ 0.5, for all x ∈ U, 

with the condition 0 ≤ TA (x) + IA (x)+ FA (x) ≤ 2.    (2) 

As an illustration, let us consider the following example. 

2.4. Example 

Assume that the universe of discourse U={x1,x2,x3}, 
where x1 characterizes the capability, x2 characterizes the 
trustworthiness and x3 indicates the prices of the objects. 
Further, It may be assumed that the values of x1, x2 and x3 are 
in[0,1]and they are obtained from some questionnaires of 
some experts. The experts may impose their opinion in three 
components viz. the degree of goodness, the degree of 
indeterminacy and that of poorness to explain the 
characteristics of the objects. Suppose A is an intuitionistic 
neutrosophic set ( INS ) of U, such that, 

A = {< 𝑥𝑥1,0.3, 0.5, 0.4 >,< 𝑥𝑥2,0.4, 0.2, 0.6>, < 𝑥𝑥3, 0.7, 
0.3, 0.5 >}, where the degree of goodness of capability is 0.3, 
degree of indeterminacy of capability is 0.5 and degree of 
falsity of capability is 0.4 etc.  

2.5. Definition [28] 

Let U be an initial universe set and A ⊂ E be a set of 
parameters. Let N(U) denotes the set of all intuitionistic 
neutrosophic sets of U. The collection (P, A) is termed to be 
the soft intuitionistic neutrosophic set over U, where P is a 
mapping given by P: A → N(U). 

2.6. Remark 

We will denote the intuitionistic neutrosophic soft set 
defined over a universe by INSS. 

Let us consider the following example. 

2.7. Example 
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Let U be the set of blouses under consideration and E is 
the set of parameters (or qualities). Each parameter is a 
intuitionistic neutrosophic word or sentence involving 
intuitionistic neutrosophic words. Consider E = { Bright, 
Cheap, Costly, very costly, Colorful, Cotton, Polystyrene, 
long sleeve , expensive }. In this case, to define a 
intuitionistic neutrosophic soft set means to point out Bright 
blouses, Cheap blouses, Blouses in Cotton and so on. 
Suppose that, there are five blouses in the universe U given 
by, U = {b1, b2, b3, b4, b5} and the set of parameters A = {e1, 
e2, e3, e4}, where each ei is a specific criterion for blouses: 
e1 stands for ‘Bright’, 
e2 stands for ‘Cheap’, 
e3 stands for ‘costly’, 
e4 stands for ‘Colorful’, 
Suppose that, 
P(Bright)={<b1,0.5,0.6,0.3>,<b2,0.4,0.7,0.2>,<b3,0.6,0.
2,0.3>,<b4,0.7,0.3,0.2>,<b5,0.8,0.2,0.3>}. 
P(Cheap)={<b1,0.6,0.3,0.5>,<b2,0.7,0.4,0.3>,<b3,0.8,0.
1,0.2>,<b4,0.7,0.1,0.3> ,<b5,0.8,0.3,0.4}.  
P(Costly)={<b1,0.7,0.4,0.3>,<b2,0.6,0.1,0.2>,<b3,0.7,0.
2,0.5>,< b4,0.5,0.2,0.6 > ,< b5,0.7,0.3,0.2 >}.  
P(Colorful)={<b1,0.8,0.1,0.4>,<b2,0.4,0.2,0.6>,<b3,0.3,
0.6,0.4>,<b4,0.4,0.8,0.5> ,< b5,0.3,0.5,0.7 >}.  

2.8. Definition [28] 

For two intuitionistic neutrosophic soft sets (P,A) and 
(Q,B) over the common universe U. We say that (P,A) is an 
intuitionistic neutrosophic soft subset of (Q,B) if and only if 
(i) A ⊂ B.
(ii)P(e) is an intuitionistic neutrosophic subset of Q(e).
TP(e)(x),

Or TP(e)(x)  ≤ TQ(e)(x) , IP(e)(x)  ≥ IQ(e)(x) , FP(e)(x)≥ 

FQ(e)(x), ∀e ∈ A, x ∈ U.  

We denote this relationship by (P,A) ⊆ (Q,B). 

(P,A) is said to be intuitionistic neutrosophic soft super set 
of (Q,B) if (Q,B) is an intuitionistic neutrosophic soft subset 
of (P,A). We denote it by (P, A) ⊇ (Q,B). 

2.9. Definition [28] 

Two INSSs ( P, A ) and ( Q, B ) over the common universe 
U are said to be equal if (P,A) is an intuitionistic 
neutrosophic soft subset of (Q,B) and (Q,B) is an 
intuitionistic neutrosophic soft subset of (P,A) which can be 
denoted by (P,A) = (Q,B ). 

2.10. Definition [28] 

Let (P,A) and (Q,B) be two INSSs over the same 
universe U. Then the union of (P, A) and (Q, B) is denoted 
by ‘(P,A) ∪ (Q , B)’ and is defined by (P,A) ∪ (Q,B)=(K, 
C), where C=A ∪ B and the truth-membership, 
indeterminacy-membership and falsity-membership of ( K, 

C) are as follows:

TK(𝜀𝜀)(m)=�
TP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
TQ (𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

max(TP(𝜀𝜀)(m), TQ (𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B
 

IK(𝜀𝜀)(m) =�
IP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
IQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (IP(𝜀𝜀)(m), IQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

� 

FK(𝜀𝜀)(m) =�
FP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
FQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (FP(𝜀𝜀)(m), FQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

�(3) 

2.11. Definition[28] 

Let (P,A) and (Q,B) be two INSSs over the same 
universe U such that A ∩ B≠0. Then the intersection of (P, 
A) and ( Q, B) is denoted by ‘(P,A) ∩ (Q,B)’ and is defined
by (P,A) ∩  (Q,B) = (L,C),where C =A ∩ B and the
truth-membership, indeterminacy membership and
falsity-membership of (L,C) are related to those of (P,A)
and (Q,B) by:

TL(𝜀𝜀)(m) =�
TP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
TQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (TP(𝜀𝜀)(m), TQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B
 

IL(𝜀𝜀)(m) =�
IP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
IQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (IP(𝜀𝜀)(m), IQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

� 

FL(𝜀𝜀)(m) =�
FP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
FQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

max (FP(𝜀𝜀)(m), FQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

�(4) 

2.12. Definition [27] 

Let (P, A) be a soft set. The set Supp (P,A) = {x ∈ A | P (x)≠ 
∅} is called the support of the soft set (P,A). A soft set 
(P, A) is non-null if Supp (P, A) ≠∅. 

2.13. Definition [41] 

A fuzzy subset 𝜇𝜇 of a ring R is called a fuzzy subring of R 
(in Rosenfeld’ sense), if for all x, y ∈  R the following 
requirements are met:  

𝜇𝜇 (x-y) ≥ min (𝜇𝜇(x), 𝜇𝜇(𝑦𝑦)) and 
𝜇𝜇 (xy) ≥ min (𝜇𝜇(x), 𝜇𝜇(𝑦𝑦))    (5) 

3. Intuitionistic Neutrosophic Soft Set
over Ring
In this section, we introduce the notions of intuitionistic

neutrosophic soft set over ring and intuitionistic 
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neutrosophic soft subring in Rosenfeld’s sense and study 
some of their properties related to this notions. 

Throughout this paper. Let (R, + , .) be a ring . E be a 
parameter set and let A ⊆ E. For the sake of simplicity , we 
will denote the ring (R, +, .) simply as R. 

From now on, R denotes a commutative ring and all 
intuitionistic neutrosophic soft sets are considered over R. 

3.1. Definition 
Let (𝑃𝑃�,A) be an intuitionistic neutrosophic soft set. The 

set Supp(𝑃𝑃�,A) = { 𝜀𝜀 ∈ A |𝑃𝑃�(𝜀𝜀)≠ ∅} is called the support of 
the intuitionistic neutrosophic soft set (𝑃𝑃� ,A).An 
intuitionistic neutrosophic soft set (𝑃𝑃�,A) is non-null if Supp 
(𝑃𝑃�,A) ≠∅. 

3.2. Definition 

A pair (𝑃𝑃�,A) is called an intuitionistic neutrosophic soft 
set over ring, where 𝑃𝑃� is a mapping given by 
𝑃𝑃� :A → ([0,1] × [0 ,1] × [0 ,1])𝑅𝑅 , 𝑃𝑃�(𝜀𝜀) : R → [0,1] ×

[0, 1] × [0 ,1], 
𝑃𝑃�(𝜀𝜀)= �(𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥)): 𝑥𝑥 ∈ 𝑅𝑅 � for all 

𝜀𝜀 ∈ A, 

If for all x ,y ∈ R the following condition hold: 
(1) 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) ,

𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) and
𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) (6) 

(2) 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) ,
𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) and
𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) (7) 

3.3. Definition 

For two intuitionistic neutrosophic soft set over ring (𝑃𝑃�,A) 
and (𝑄𝑄� ,B), we say that (𝑃𝑃� ,A) is an intuitionistic 
neutrosophic soft subring of (𝑄𝑄� ,B) and write (𝑃𝑃� ,A) ⊆
 (𝑄𝑄� ,B)  if  

(i) A ⊆ B
(ii) for each x ∈ 𝑅𝑅 , 𝜀𝜀 ∈ A, 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ≤  𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥),

𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ≥  𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) , 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ≥  𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) . (8)

3.4. Definition 

Two intuitionist neutrosophic soft set over ring (𝑃𝑃�,A) and 
(𝑄𝑄� ,B) are said to be equal if (𝑃𝑃�,A) ⊆  (𝑄𝑄� ,B) and (𝑄𝑄� ,B) 
⊆  (𝑃𝑃�,A). 

3.5. Theorem 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
soft over ring R. if 𝑃𝑃�(𝜀𝜀) ≤  𝑄𝑄�(𝜀𝜀) for all 𝜀𝜀 ∈ A and A ⊂
 B, then (𝑃𝑃� ,A)  is an intuitionistic neutrosophic soft 
subring of (𝑄𝑄� ,B). 

Proof The proof is straightforward 

3.6. Definition 

The union of two intuitionistic neutrosophic soft set over 
ring (𝑃𝑃�,A) and (𝑄𝑄� ,B) is denoted by (𝑃𝑃�,A) ⋃�  (𝑄𝑄� ,B) and is 
defined by a intuitionistic neutrosophic soft set over ring 

𝐻𝐻�:A ⋃ B → ([0, 1] × [0, 1] × [0, 1])𝑅𝑅  such that for each 
𝜀𝜀 ∈ A ⋃ B. 

𝐻𝐻�(𝜀𝜀)= 

⎩
⎪
⎨

⎪
⎧ < 𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ,  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B

< 𝑥𝑥,𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥),  𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,  𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A
< 𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) >,

𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B

� 

    (9) 

This is denoted by (𝐻𝐻�,𝐶𝐶)=(𝑃𝑃�,A)⋃ �(𝑄𝑄� ,B), where C= A⋃B. 

3.7. Theorem 

If  (𝑃𝑃�,A) and  (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring R, then , so are  (𝑃𝑃�,A) ⋃�  (𝑄𝑄� ,B) . 
Proof. For any 𝜀𝜀 ∈ A⋃B and x, y ∈ R,we consider the 
following cases. 
Case 1. Let 𝜀𝜀 ∈  A − B .Then, 
𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

  ≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
    = 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) 
≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

     =𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 
𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
   =𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) 

≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

    =𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦)=𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

    =𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥)=𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) 

≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

=𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

Case 2. Let 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A .Then, analogous to the proof of 
case 1, we have 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 
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𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

Case 3. Let 𝜀𝜀 ∈  A ∩ B . In this case the proof is 
straightforward. thus ,in any cases ,we have 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

Therefore , (𝑃𝑃�, A)⋃�( 𝑄𝑄� , B) is an intuitionistic neutrosophic 
soft set over ring 

3.8. Definition 

The intersection of two intuitionistic neutrosophic soft set 
over ring (𝑃𝑃�,A) and (𝑄𝑄� ,B) is denoted by (𝑃𝑃�,A) ∩� (𝑄𝑄� ,B) 
and is defined by an intuitionistic neutrosophic soft set over 
ring.  

𝑀𝑀�:A ⋃ B → ([0, 1] × [0, 1] × [0, 1])𝑅𝑅  such that for each 
𝜀𝜀 ∈ A ⋃ B. 

𝑀𝑀�(𝜀𝜀)= 

⎩
⎪
⎨

⎪
⎧ < 𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B

< 𝑥𝑥,𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A
< 𝑥𝑥,  𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨ 𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) >,

𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B

�

(10) 

This is denoted by (𝑀𝑀� ,𝐶𝐶)= (𝑃𝑃�,A) ∩� (𝑄𝑄� ,B), where C = 
A⋃ B . 

3.9. Theorem 

If (𝑃𝑃�,A) and (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring, then , so are (𝑃𝑃�,A) ∩� (𝑄𝑄� ,B). 
Proof. The proof is similar to that of Theorem 3.8. 

3.10. Definition 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
soft set over ring R. Then , “(𝑃𝑃�,A) AND (𝑄𝑄� ,B)” is denoted 
by (𝑃𝑃� ,A)⋀ � (𝑄𝑄� ,B) and is defined by (𝑃𝑃� ,A) ⋀ � (𝑄𝑄� ,B)= 
(𝑁𝑁�,𝐶𝐶) ,where C= A×B and 𝐻𝐻�:C → ([0,1]3 × [0, 1]3 )𝑅𝑅  is 
defined as 

𝑁𝑁�(𝛼𝛼,𝛽𝛽) = 𝑃𝑃�(𝛼𝛼) ∩  𝑄𝑄�(𝛽𝛽) , for all (𝛼𝛼,𝛽𝛽)  ∈ C. 

3.11. Theorem 

If (𝑃𝑃�,A) and (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring R, then , so is (𝑃𝑃�,A)⋀ � (𝑄𝑄� ,B). 
Proof. For all x, y ∈ R and (𝛼𝛼,𝛽𝛽)  ∈ A x B we have  

𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥 − 𝑦𝑦) = (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥 − 𝑦𝑦) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥 − 𝑦𝑦)) 

 ≥ (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦)) ⋀ (𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

= (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)) ⋀ (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

= 𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ⋀ 𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥𝑥𝑥) = (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥𝑥𝑥) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥𝑥𝑥)) 

≥(𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦)) ⋀ (𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

= (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)) ⋀ (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

=𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ⋀ 𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

In a similar way ,we have  

𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼N�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥𝑥𝑥) ≤ 𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥𝑥𝑥) ≤ 𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

For all x, y ∈  R and (𝛼𝛼,𝛽𝛽)  ∈  C .It follows that 
(𝑃𝑃�,A)∧� (𝑄𝑄� ,B) is an intuitionistic neutrosophic soft set over 
ring R. 

3.12. Definition 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
soft set over ring R. Then , “(𝑃𝑃�,A) OR (𝑄𝑄� ,B)” is denoted by 
(𝑃𝑃� ,A) ∨ �(𝑄𝑄� ,B) and is defined by (𝑃𝑃� ,A) 
∨ �(𝑄𝑄� ,B)= (𝑂𝑂� ,𝐶𝐶)  ,where C= A ×  B and 𝑂𝑂�  : C → 
([0,1]3 × [0, 1]3 )𝑅𝑅 is defined as 

𝑂𝑂�(𝛼𝛼,𝛽𝛽) = 𝑃𝑃�(𝛼𝛼)∪� 𝑄𝑄�(𝛽𝛽) , for all (𝛼𝛼,𝛽𝛽)  ∈ C. 

3.13. Theorem 

If ( 𝑃𝑃�, A) and ( 𝑄𝑄� , B) are two intuitionist neutrosophic 
soft set over ring R, then , so are ( 𝑃𝑃�, A)∨�( 𝑄𝑄� , B). 
Proof. The proof is straightforward. 
The following theorem is a generalization of previous 
results. 

3.14. Theorem 

Let ( 𝑃𝑃�, A) be an intuitionist neutrosophic soft set over 
ring R, and let {( 𝑃𝑃�𝑖𝑖 ,𝐴𝐴𝑖𝑖)}𝑖𝑖∈𝐼𝐼  be a nonempty family of 
intuitionistic neutrosophic soft set over ring, where I is an 
index set .Then , one has the following: 

(1) ⋀ (𝑃𝑃�𝑖𝑖 ,𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼  is an intuitionistic neutrosophic soft set
over ring R.

(2) if 𝐴𝐴𝑖𝑖  ∩  𝐴𝐴𝑗𝑗  = 0 ,for all i, j ∈ I ,then ⋁ (𝑃𝑃�𝑖𝑖 ,  𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼  is
an intuitionistic neutrosophic soft set over ring R.

3.15. Definition 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
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soft set over ring R. Then ,the product of (𝑃𝑃�,A) and (𝑄𝑄� ,B) 
is defined to be the intuitionistic neutrosophic soft set over 
ring (𝑃𝑃� ∘ 𝑄𝑄� , C) ,where C= A∪ B and 
𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) 

=�
 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B
𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A

 ⋁ {𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ∧ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑏𝑏)}𝑥𝑥=𝑎𝑎𝑎𝑎  𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B
� (11) 

𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) =�
 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B
𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A

 ⋀ {𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ∨ 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑏𝑏)}𝑥𝑥=𝑎𝑎𝑎𝑎  𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B
� 

𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) 

=�
 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B
𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A

 ⋀ {𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ∨ 𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑏𝑏)}𝑥𝑥=𝑎𝑎𝑎𝑎  𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B , a , b ∈ 𝑅𝑅
� 

For all 𝜀𝜀 ∈ C and a , b ∈ R .This is denoted by (𝑃𝑃� ∘ 𝑄𝑄� , C) 
= (𝑃𝑃�,A)∘ (𝑄𝑄� ,B). 

3.16. Theorem 

If (𝑃𝑃�,A) and (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring R. Then , so is (𝑃𝑃�,A) ∘ (𝑄𝑄� ,B) . 
Proof. Let (𝑃𝑃� ,A) and (𝑄𝑄� ,B) be two intuitionistic 
neutrosophic soft set over ring R. Then ,for any 𝜀𝜀 ∈  A ∪
B ,and x ,y ∈ R, we consider the following cases. 
Case 1. Let 𝜀𝜀 ∈  A − B. Then, 
𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
    =𝑇𝑇(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦), 

𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) 
≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

    =𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 
𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
    =𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦), 

𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) 
≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

    = 𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 
≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

    =𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦), 
𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥) = 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑥𝑥) 

≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
= 𝐹𝐹(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

Case 2. Let 𝜀𝜀 ∈  B − A. Then, analogous to the proof of 
case 1,the proof is straightforward. 
Case 3. Let 𝜀𝜀 ∈  A ∩ B. Then, 

𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)= ⋁ (𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ⋀ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑏𝑏))𝑥𝑥=𝑎𝑎𝑎𝑎  

≥ ⋁ (𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ⋀ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑏𝑏𝑏𝑏))𝑥𝑥𝑥𝑥=𝑎𝑎𝑎𝑎𝑎𝑎  

≥ ⋁ (𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑐𝑐) ⋀ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑑𝑑))𝑥𝑥𝑥𝑥=𝑐𝑐𝑐𝑐  

= 𝑇𝑇(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥) 

Similarly ,we have 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≥ 𝑇𝑇(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) , and so 

𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥)  ≥ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

In a similar way , we prove that 

𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨ 𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦)

and 𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑥𝑥) ≤ 𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨ 𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

Therefore (𝑃𝑃� ,A)∘ (𝑄𝑄� ,B) is an intuitionistic neutrosophic 
soft set over ring R. 

4. Conclusion
In this paper we have introduced the concept of 

intuitionistic neutrosophic soft set over ring (INSSOR for 
short ). We also studied and discussed some properties 
related to this concept. The definitions of intersection, union, 
AND, and OR operations over ring (INSSOR) have also 
been defined. we have defined the product of two 
intuitionistic neutrosophic soft set over ring. Finally, it is 
hoped that this concept will be useful for the researchers to 
further promote and advance the research in neutrosophic 
soft set theory.  
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Modified Collatz conjecture or (3a + 1) + (3b + 1)I Conjecture 

for Neutrosophic Numbers 〈Z ∪ I〉  

Abstract: In this paper, a modified form of Collatz con-
jecture for neutrosophic numbers Z  I is defined. We 
see for any n  Z  I the related sequence using the for-
mula (3a + 1) + (3b + 1)I converges to any one of the 55 
elements mentioned in this paper. Using the akin formula 

of Collatz conjecture viz. (3a 1) + (3b 1)I the neutro-
sophic numbers converges to any one of the 55 elements 
mentioned with appropriate modifications. Thus, it is con-
jectured that every n  Z  I has a finite sequence which 
converges to any one of the 55 elements. 

Keywords: Collatz Conjecture, Modified Collatz Conjecture, Neutrosophic Numbers.

1 Introduction 

The Collatz conjecture was proposed by Lothar Collatz 
in 1937. Till date this conjecture remains open. The 3n – 1 
conjecture was proposed by authors [9]. Later in [9] the 3n 
 p conjecture; a generalization of Collatz Conjecture was 
proposed in 2016 [9]. 

However, to the best of authors knowledge, no one has 
studied the Collatz Conjecture in the context of 
neutrosophic numbers Z  I = {a + bI / a, b  Z; I2 = I} 
where I is the neutrosophic element or indeterminancy 
introduced by [7]. Several properties about neutrosophic 
numbers have been studied. In this paper, authors for the 
first time study Collatz Conjecture for neutrosophic 
numbers. This paper is organized into three sections. 

Section one is introductory. Section two defines / 
describes Collatz conjecture for neutrosophic numbers. 
Final section gives conclusions based on this study. 
Extensive study of Collatz conjecture by researchers can be 
found in [1-6]. Collatz conjecture or 3n + 1 conjecture can 
be described as for any positive integer n perform the 
following operations.  

If n is even divide by 2 and get n
2

if n
2

 is even divide 

by 2 and proceed till t

n
2

is odd. 

If n is odd multiply n by 3 and add 1 to it and find 
3n + 1. Repeat the process (which has been called Half of 
Triple Plus One or HTPO) indefinitely. The conjecture puts 
forth the following hypothesis; whatever positive number 
one starts with one will always eventually reach 1 after a 
finite number of steps. 

Let n = 3, the related sequence is 3n + 1, 10, 5, 16, 8, 4, 
2, 1. 

Let n = 11, the related sequence is 34, 17, 52, 26, 13, 
40, 20, 10, 5, 16, 8, 4, 2, 1. 

Let n = 15, the related sequence is 15, 46, 23, 70, 35, 
106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. 

In simple notation of mod 2 this conjecture can be 
viewed as  

n if n 0 (mod 2)2f (n)
3n 1 if n 1 (mod 2)

 
 

 

. 

The total stopping time for very large numbers have 
been calculated. The 3n – 1 conjecture is a kin to Collatz 
conjecture. 

Take any positive integer n. If n is even divide by 2 and 

get n
2

if n
2

 is odd multiply it by 3 and subtract 1 to i.e. 3n 

– 1, repeat this process indefinitely, [9] calls this method as
Half Or Triple Minus One (HOTMO).

The conjecture state for all positive n, the number will 
converge to 1 or 5 or 17. 

In other words, the 3n – 1 conjecture can be described 
as follows. 

n if n 0 (mod 2)
f (n) 2

if n 1 (mod 2)3n 1




 
 

Let n = 3, 3n – 1 = 8, 4, 2, 1. 
Let n = 28, 14, 7, 20, 10, 5. 
n = 17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 
272, 136, 68, 34, 17. 

Several interesting features about the 3n – 1 conjecture 
is derived and described explicitly in [9]. 
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It is pertinent to keep on record in the Coltaz conjecture 
3n + 1 if n is taken as a negative number than using 3n + 1 
for negative values sequence terminate only at – 1 or – 5 or 
– 17. Further the 3n – 1 conjecture for any negative n, the
sequence ends only in – 1.

Thus, for using 3n + 1 any integer positive or negative 
the sequence terminates at any one of the values {–17, –5, –
1, 0, 1} and using 3n – 1 the sequence for any integer n 
positive or negative terminates at any one of the values {–1, 
0, 1, 5, 17}. 

2 Collatz Conjecture for the neutrosophic numbers 

Z  I

In this section, we introduce the modified form of 
Collatz conjecture in case of neutrosophic numbers Z  I 
= {a + bI / a, b  Z and I2 = I} where I is the neutrosophic 
element or the indeterminancy introduced by [7]. For more 
info, please refer to [7]. 

Now, we will see how elements of Z  I behave when 
we try to apply the modified form of Collatz conjecture. 

The modified formula for Collatz conjecture for 
neutrosophic numbers n = a + bI is (3a + 1) + (3b + 1)I; if a 
= 0 then 3bI + I = (3b + 1)I is taken if b = 0 then 3a + 1 term 
is taken, however iteration is taken the same number of 
times for a and bI in n = a + bI. 

If n  Z  I is of the form n = a, a  Z then Collatz 
conjecture is the same, when n = aI, a  I, I2 = I then also 
the Collatz conjecture takes the value I; for we say aI is even 
if a is even and aI is odd is a is odd. 

For 3I, 9I, 27I, 15I, 45I, 19I, 35I, 47I, 105I, 101I, 125I 
are all odd neutrosophic numbers. 

Now 12I, 16I, 248I, 256I etc. are even neutrosophic 
numbers. 

The working is instead of adding 1 after multiplying 
with 3 we add I after multiplying with 3. 

For instance consider n = 12I, the sequence for n = 12I 
is as follows: 

12I, 6I, 3I, 3  3I + I = 10I, 5I, 16I, 8I, 4I, 2I, I. 
So the element n = 12I has a sequence which terminates 

at I. 
Consider n = 256I, the sequence is 256I, 128I, 64I, 32I, 

16I, 8I, 4I, 2I, I so converges to I. 
Take n = 31I, 31I is odd so the sequence for n = 31I is 
31I, 94I, 47I, 142I, 71I, 214I, 107I, 322I, 161I, 484I, 

242I, 121I, 364I, 182I, 91I, 274I, 137I, 412I, 206I, 103I, 
310I, 155I, 466I, 233I, 700I, 350I, 175I, 526I, 263I, 790I, 
385I, 1156I, 578I, 289I, 868I, 434I, 217I, 652I, 326I, 163I, 
490I, 245I, 736I, 368I, 184I, 92I, 46I, 23I, 70I, 35I, 106I, 
53I, 160I, 80I, 40I, 20I, 10I, 5I, 16I, 8I, 4I, 2I, I. 

Let n = 45I the sequence is 45I, 136I, 68I, 34I, 17I, 52I, 
26I, 13I, 40I, 20I, 10I, 5I, 16I, 8I, 4I, 2I, I. 

So if n  Z then as usual by the Collatz conjecture the 
sequence converges to 1. If n  ZI then by applying the 
Collatz conjecture it converges to I. Now if x  Z  I that 
is x = a + bI how does x converge.  

We will illustrate this by an example. 
Now if x = a + bI, a, b  Z \ {0}; is it even or odd? We 

cannot define or put the element x to be odd or to be even. 
Thus to apply Collatz conjecture one is forced to define in a 
very different way. We apply the Collatz conjecture 
separately for a and for bI, but maintain the number of 
iterations to be the same as for that of a + bI. We will 
illustrate this situation by some examples. 

Consider n = 3I + 14  Z  I. n is neither odd nor 
even. We use (3a + 1) + (3b + 1)I formula in the following 
way 

3I + 14, 10I + 7, 5I + 22, 16I + 11, 8I + 34, 4I + 17, 
2I + 52, I + 26, 4I + 13, 2I + 40, I + 20, 4I + 10, 2I + 5, 
I + 16, 4I + 8, 2I + 4, I + 2, 4I + 1, 2I + 4, I + 2, 4I +1, 
I + 4, I + 2.  

So the sequence terminates at I + 2. 
Consider n = 3I – 14  Z  I, n is neither even nor 

odd. 
The sequence for this n is as follows. 
3I – 14, 10I – 7, 5I – 20, 16I – 10, 8I – 5, 4I – 14, 

2I – 7, I – 20, 4I – 10, 2I – 5, I – 14, 4I – 7, 
2I – 20, I – 10, 4I – 5, 2I – 14, I – 7, 4I – 20, 2I – 10, I – 5, 
4I – 14, 2I – 7, I – 20, 4I – 10, 2I – 5, ... , I  5. 

So for n = 3I – 14 the sequence converges to 2I – 5. 
Consider n = – 5I – 34; – 5I – 34, –14I –17, –7I – 50, –

20I –25, –10I –74, –5I –37, –14I, –110, –7I –55, 
–20I – 164, –10I – 82, –5I –41, –14I –122, –7I –61,
–20I –182, –10I –91, –5I – 272, –14I –136, –7I – 68,
–20I – 34, –10I –17, –5I – 50, –14I –25, –7I – 74, –20I –37,
–10I –110, –5I –55, –14I –164, –7I –82, –20I –41,
–10I –122, –5I –61, –14I –182, –7I –91, –20I –272,
–10I –136, –5I –68, –14I –34, –7I –17, –20I –50, –10I –25,
–5I –74, –14I –37, –7I –110, –20I –55, –10I –164, –5I –82,
–14I –41, –7I –122, –20I –61, –10I –182, –5I –91,
–14I –272, –7I –136, –20I –68, –10I –34, –5I – 17.  (1) 

n = – 5I – 34, converges to –5I – 17. 
Let n = –10I –17, –5I – 50, –14I –25, –7I –74, 

–20I – 37, –10I –110, –5I – 55, –14I – 164, –7I –82,
–20I – 41, –10I – 122, –5I –61, –14I –182, –7I –91,
–20I –272, –10I – 136, –5I – 68, –14I – 34, –7I –17,
– 20I – 50, –10I –25, –5I –74, –14I –37, –7I – 110,
–20I – 55, –10I – 164, –5I – 82, –14I – 41, 7I – 122,
–20I – 61, –10I – 182, –5I – 91, –14I – 272, –7I –136,
–20I –68, –10I – 34, –5I – 17.

Thus, by using the modified form of Collatz conjecture 
for neutrosophic numbers Z  I we get the following 
collection A of numbers as the limits of finite sequences 
after performing the above discussed operations using the 
modified formula 3(a + bI) + 1 + I or (3a + 1) + (3b + 1)I; a, 
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b  Z \ {0} if a = 0 then (3b + 1)I formula and if b = 0 then 
3a + 1 formula is used. 

A = {1, –1, 0, I, –I, 1 + I, –I + 1, –1 + I, –1 – I, –17, –5, 
–17I, –5I, 1 + 2I, 1 – 2I, –1 – 2I, –1 + 2I, 2 – I, 2 + I, –2 – I,
–2 + I, –5 + I, –5 + 2I, –5 – 17I, –5 – I, –5 – 2I, –51 + 1,
–5I + 2, –5I – 2, –5I – 1, –5I – 17, –17 – I, –17 + I,
–17I + 1, –17I – 1, –17 – 2I, –17 + 2I, –17I + 2, –17I – 2,
1 + 4I, 4I + 1, 4  I, 4I  1, 34 5I, 17I 10,  17 – 10I,
34I  5, 17  20I, 17I – 20,  68I – 5,  68 – 5I,
 5I + 4,  5 + 4I, 17 + 4I, 17I +4}.

Thus, the modified 3n + 1 Collatz conjecture for 
neutrosophic numbers Z  I is (3a + 1) + (3b + 1) I for n 
= a + bI  Z  I, a, b  Z \ {0}. 

If a = 0 then we use the formula (3b + 1)I and if b = 0 
then use the classical Collatz conjecture formula 3a + 1. It 
is conjectured that using (3a + 1) + (3b + 1)I where a, b  Z 
\ {0} or 3a + 1 if b = 0 or (3b + 1)I if a = 0, formula every n 
 Z  I ends after a finite number of iterations to one and 
only one of the 55 elements from the set A given above. 
Prove or disprove. 

Now the 3n – 1 conjecture for neutrosophic numbers Z 
 I reads as (3a – 1) + (3bI – I) where n = a + bI; a, b  Z 
\ {0}; if a = 0 then (3b – 1)I = 3bI – I is used instead of 3n – 
1 or (3a – 1) + (3b – 1) I. 

If b = 0 then 3a – 1 that is formula 3n – 1 is used. 
Now every n  Z  I the sequence converges to using 

the modified 3n – 1 Collatz conjecture (3a – 1) + 
(3b – 1)I to one of the elements in the set B; where  
B = {1, 0, –1, I, 5I, 5, 17, 17I, –I, 1 + 2I, 1 – 2I, –1 + 2I, 
–1 –2I, 1 + I, I – 2, I + 2, –I –2, –I + 2, I – 1, –I – 1, 5 + I,
5 – I, 5 – 2I, 5 + 2I, –I + 1, 5 + 17I, 17 – I, 17 + I, 17 – 2I,
17 + 2I, 17 + 5I, 5I – 1, 5I – 2, 5I + 1, 5I + 2, 17I – 1,
17I – 2, 17I + 1, 17I + 2, 17 + 10I, 17I + 10, 34 + 5I,
34I + 5, 17 + 20I, 20 + 17I, 68 + 5I, 68I + 5, 5I – 4, 5 – 4I,
17 – 4I, 17I – 4, –4I + 1, –4I – 1, –4 + I, –4 – I }.

We will just illustrate how the (3a – 1) + (3b – 1)I 
formula functions on Z  I. 

Consider 12 + 17I  Z  the sequence attached to it 
is 12 + 17I, 6 + 50I, 3 + 25I, 8 + 74I, 4 + 37I, 2 + 110I, 1 + 
55I, 2 + 164I, 1 + 82I, 2 + 41I, 1 + 122I, 2 + 61I, 1 + 182I, 
2 + 91I, 1 + 272I, 2 + 136I, 1 + 68I, 2 + 34I, 1 + 17I, 2 + 
50I, 1 + 25I, 2 + 74I, 1 + 37I, 2 + 110I, 1 + 55I, 2 + 164I, 1 
+ 82I, 2 + 41I, 1 + 122I, 2 + 61I, 1 + 182I, 2 + 91I, 1 + 272I,
2 + 136I, 1 + 68I, 2 + 34I, 1 + 17I.

The sequence associated with 12 + 17I terminates at 1 
+ 17I.

Thus, it is conjectured that every n  Z  I using the
modified Collatz conjecture (3a – 1) + (3b – 1)I; a, b  Z 
\ {0} or 3a – 1 if b = 0 or (3b + 1)I if a = 0, has a finite 
sequence which terminates at only one of the elements from 
the set B. 

3 Conclusions

In this paper, the modified form of 3n ± 1 Collatz 
conjecture for neutrosophic numbers Z  is defined and 
described. It is defined analogously as (3a ± 1) + (3b ± 1) I 
where a + bI  Z  with a  0 and b  0. 

If a = 0 the formula reduces to (3b ± 1)I and if b = 0 the 
formula reduces to (3a ± 1). 

It is conjectured every n  Z  using the modified 
form of Collatz conjecture has a finite sequence which 
terminates at one and only element from the set A or B 
according as (3a + 1) + (3b + 1)I formula is used or (3a – 1) 
+ (3b – 1)I formula is used respectively. Thus, when a
neutrosophic number is used from Z  the number of
values to which the sequence terminates after a finite
number of steps is increased from 5 in case of 3n 1 Collatz
conjecture to 55 when using (3a  1) + (3b  1)I the modified
Collatz conjecture.
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Neutrosophic Duplets of {Zpn, ×} and {Zpq, ×} 

and Their Properties

W.B.  Vasantha Kandasamy, Ilanthenral Kandasamy, Florentin Smarandache

Abstract: The notions of neutrosophy, neutrosophic algebraic structures, neutrosophic duplet and 
neutrosophic triplet were introduced by Florentin Smarandache. In this paper, the neutrosophic
duplets of Zpn , Zpq and Zp1 p2...pn are studied. In the case of Zpn and Zpq, the complete characterization 
of neutrosophic duplets are given. In the case of Zp1...pn , only the neutrosophic duplets associated with 
pis are provided; i = 1, 2, . . . , n. Some open problems related to neutrosophic duplets are proposed.

Keywords: neutrosophic duplets; semigroup; neutrosophic triplet groups

1. Introduction

Real world data, which are predominately uncertain, indeterminate and inconsistent, were
represented as neutrosophic set by Smarandache [1]. Neutrosophy deals with the existing neutralities
and indeterminacies of the problems. Neutralities in neutrosophic algebraic structures have been
studied by several researchers [1–8]. Wang et al. [9] proposed Single-Valued Neutrosophic Set (SVNS)
to overcome the difficulty faced in relating neutrosophy to engineering discipline and real world
problems. Neutrosophic sets have evolved further as Double Valued Neutrosophic Set (DVNS) [10]
and Triple Refined Indeterminate Neutrosophic Set (TRINS) [11]. Neutrosophic sets are useful in
dealing with real-world indeterminate data, which Intuitionistic Fuzzy Set (IFS) [12] and Fuzzy sets [13]
are incapable of handling accurately [1].

The current trends in neutrosophy and related theories of neutrosophic triplet, related triplet
group, neutrosophic duplet, and duplet set was presented by Smarandache [14]. Neutrosophic duplets
and neutrosophic triplets have been of interest and many have studied them [15–24]. Neutrosophic
duplet semigroup were studied in [19] and the neutrosophic triplet group was introduced in [8].
Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Smarandache.

In the case of neutrosophic duplets, we see ax = a and x = neut(a), where, as in L-fuzzy sets [25]
as per definition is a mapping from A : X → L, L may be semigroup or a poset or a lattice or a Boolean
σ-ring; however, neutrosophic duplets are not mapping, more so in our paper algebraic properties of
them are studied for Zn for specific values of n. However, in the case of all structures, the semigroup
or lattice or Boolean σ-ring or a poset, there are elements which are neutrosophic duplets. Here,
we mainly analyze neutrosophic duplets in the case of Zn only number theoretically.

In this paper, we investigate the neutrosophic duplets of {Zpn ,×}, where p is a prime (odd or
even) and n ≥ 2. Similarly, neutrosophic duplets in the case of Zpq and Zp1 p2 ...pn are studied. It is noted
that the major difference between the neutrals of neutrosophic triplets and that of neutrosophic duplets
is that in the former case they are idempotents and in the latter case they are units. Idempotents in the
neutrosophic duplets are called trivial neutrosophic duplets.

This paper is organized as five sections, Section 1 is introductory in nature and Section 2 provides
the important results of this paper. Neutrosophic duplets in the case of Zpn ; p an odd prime are studied

W.B. Vasantha Kandasamy, Ilanthenral Kandasamy, Florentin Smarandache (2018). Neutrosophic Duplets 
of {Zpn, x} and {Zpq, x} and Their Properties. Symmetry, 10, 345; DOI: 10.3390/sym10080345
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in Section 3. In Section 4, neutrosophic duplets of Zpq and Zp1 p2 ...pn , and their properties are analyzed.
Section 5 discusses the conclusions, probable applications and proposes some open problems.

2. Results

The basic definition of neutrosophic duplet is recalled from [8].
Consider U to be the universe of discourse, and D a set in U, which has a well-defined law #.

Definition 1. Consider 〈a, neut(a)〉, where a, and neut(a) belong to D. It is said to be a neutrosophic duplet
if it satisfies the following conditions:

1. neut(a) is not the same as the unitary element of D in relation with the law # (if any);
2. a# neut(a) = neut(a) # a = a; and
3. anti(a) /∈ D for which a # anti(a) = anti(a) # a = neut(a).

Here, the neutrosophic duplets of {Zpn ,×}, p is a prime (odd or even) and n ≥ 2 are analyzed
number theoretically. Similarly, neutrosophic duplets in the case of Zpq and Zp1 p2 ...pn are studied in
this paper.

The results proved by this study are:

1. The neutrals of all nontrivial neutrosophic duplets are units of {Zpn ,×}, {Zpq,×} and
{Zp1 p2 ...pn ,×}.

2. If p is a prime in anyone of the semigroups ({Zpn ,×} or {Zpq,×} or {Zp1 p2 ...pn ,×}) as mentioned
in 1, then mp has only p number of neutrals, for the appropriate m.

3. The neutrals of any mpt for a prime p; (m, p) = 1 are obtained and they form a special collection.

3. Neutrosophic Duplets of {Zpn ,×} and its Properties

Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Florentin
Smarandache in 2016. Here, we investigate neutrosophic duplets of {Zpn ,×}, where p is a prime (odd
or even) and n ≥ 2. First, neutrosophic duplets in the case of Z24 and Z33 and their associated number
theoretic properties are explored to provide a better understanding of the theorems proved. Then,
several number theoretical properties are derived.

Example 1. Let S = {Z16,×} be the semigroup under × modulo 16. Z16 has no idempotents. The units of Z16

are {1, 3, 5, 7, 9, 11, 13, 15}. The elements which contribute to the neutrosophic duplets are {2, 4, 6, 8, 10, 12, 14}.
The neutrosophic duplet sets under usual product modulo 16 are:

{{2, 1}, {2, 9}}, {{4, 1}, {4, 5}, {4, 9}, {4, 13}},
{{6, 1}, {6, 9}}, {{8, 1}, {8, 3}, {8, 5}, {8, 7}, {8, 9}, {8, 11}, {8, 13}, {8, 15}},
{{10, 1}, {10, 9}}, {{12, 1}, {12, 5}, {12, 9}, {12, 13}}, {{14, 1}, {14, 9}}

The observations made from this example are:

1. Every non-unit of Z16 is a neutrosophic duplet.
2. Every non-unit divisible by 2, viz. {2, 6, 10, 14}, has only {1, 9} as their neutrals.
3. Every non-unit divisible by 4 are 4 and 12, which has {1, 5, 9, 13} as neutrals.

The biggest number which divides 16 is 8 and all units act as neutrals in forming neutrosophic duplets.
Thus, A = {1, 3, 5, 7, 9, 11, 13, 15}, which forms a group of order 8, yields the 8 neutrosophic duplets; 8× i = 8
for all i ∈ A and A forms a group under multiplication modulo 16; and {1, 9} and {1, 5, 9, 13} are subgroups
of A.

In view of this, we have the following theorem.

Theorem 1. Let S = {Z2n ,×}, be the semigroup under product modulo 2n, n ≥ 2.
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(i) The set of units of S are A = {1, 3, 5, . . . , 2n − 1}, forms a group under × and |A| = 2n−1.
(ii) The set of all neutrosophic duplets with 2n−1 is A; neutrals of 2n−1 are A.

(iii) All elements of the form 2m ∈ Z2n (m an odd number) has only the elements {1, 2n−1 + 1} to contribute
to neutrosophic duplets (neutrals are 1, 2n−1 + 1).

(iv) All elements of the form m2t ∈ Z2n ; 1 < t < n − 1; m odd has its neutrals from B = {1, 2n−t +

1, 2n−t+1 + 1, 2n−t+2 + 1, . . . , 2n−1 + 1, 2n−t + 2n−t+1 + 1, . . . , 2n−t + 2n−1 + 1, . . . , 1 + 2n−t +

2n−t+1 + . . . + 2n−1}.

Proof.

(i) Given S = {Z2n ,×} where n ≥ 2 and S is a semigroup under product modulo 2n. A =

{1, 3, 5, 7, . . . , 2n − 1} is a group under product as every element is a unit in S and closure axiom
is true by property of modulo integers and |A| = 2n−1. Hence, Claim (i) is true.

(ii) Now, consider the element 2n−1; the set of duplets for 2n−1 is A for 2n−1 × 1 = 2n−1; 2n−1 × 3 =

2n−1[2 + 1] = 2n + 2n−1 = 2n−1, . . . , 2n−1(m); (m is odd) will give only m2n−1. Hence, this proves
Claim (ii).

(iii) Consider 2m ∈ Z2n ; we see 2m× 1 = 2m and 2m(2n−1 + 1) = m2n + 2m = 2m. (2m, 2n−1 + 1) is
a neutrosophic duplet pair; hence, the claim.

(iv) Let m2t ∈ Z2n ; clearly, m2t × x = m2t for all x ∈ B.

Next, we proceed onto describe the duplet pairs in S = {Z33 ,×}.

Example 2. Let S = {Z33 ,×} be a semigroup under product modulo 33. The units of S are A = {1, 2, 4, 5, 7, 8,
10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26}. Clearly, A forms a group under a product. The non-units of S
are {3, 6, 9, 12, 15, 18, 21, 24}. Zero can be included for 0× x = 0 for all x ∈ S, in particular for x ∈ A.
The duplet pairs related to 3 are B1 = {{3, 1}, {3, 10}, {3, 19}}. The duplet pairs related to 6 are B2 =

{{6, 1}, {6, 10}, {6, 19}}. The duplet pairs related to 9 are

B3 = {{9, 1}, {9, 4}, {9, 7}, {9, 13}, {9, 10}, {9, 16}, {9, 19}, {9, 22}, {9, 25}}.

The neutrosophic duplets of 12 are B4 = {{12, 1}, {12, 10}, {12, 19}}. The neutrosophic duplets of 15 are
B5 = {{15, 1}, {15, 10}, {15, 19}}. Finally, the neutrosophic duplets of 18 are

B6 = {{18, 1}, {18, 4}, {18, 7}, {18, 13}, {18, 10}, {18, 16}, {18, 19}, {18, 22}, {18, 25}}.

The neutrosophic duplets associated with 21 are B7 = {{21, 1}, {21, 10}, {21, 19}} and 24 are B8 =

{{24, 1}, {24, 10}, {24, 19}}. Now, the trivial duplet of 0, which we take is

B0 = {{0, 1}, {0, 4}, {0, 7}, {0, 13}, {0, 10}, {0, 16}, {0, 19}, {0, 22}, {0, 25}}.

We see L = {B0 ∪ B1 ∪ B2 ∪ . . . ∪ B8} forms a semigroup under product modulo 27 and o(L) = 45.

We have the following result.

Theorem 2. Let S = {Zpn ,×}, where p is an odd prime, n ≥ 2 is a semigroup under ×, and product modulo
is pn. The units of S are denoted by A and non-units of S are denoted by B. The neutrosophic duplets of S
associated with B are groups under product and are subgroups of A. The neutrals of tps = b ∈ B are of the form
D = {1, 1 + pn−s, 1 + pn−s+1, 1 + pn−s+2, . . . , 1 + pn−1, 1 + pn−s + pn−s+1, 1 + pn−s + pn−s+2, . . . , 1 +

pn−1 + pn−s, . . . 1 + pn−s + . . . + pn−1}; 1 ≤ t < m, p/m; 1 < s < n.

Proof. Let tps ∈ Zpn all elements which act as neutrosophic duplets for tps are from the set D. For any
x ∈ D and tps ∈ Zps , we see xtps = tps; hence, the claim.
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It is important to note that S = {Zpn ,×} has no non-trivial neutrosophic triplets as Zpn has no
non-trivial idempotents.

Next, we proceed to finding the neutrosophic duplets of Zpq; p and q are distinct primes.

4. Neutrosophic Duplets of Zpq and Zp1 p2 ...pn

In this section, we study the neutrosophic duplets of Zpq where p and q are primes. Further, we
see Zpq also has neutrosophic triplets. The neutrosophic triplets in the case of Zpq have already been
characterized in [23]. We find the neutrosophic duplets of Z2p, p a prime. We find the neutrosophic
duplets and neutrosophic triplets groups of Z26 in the following.

Example 3. Let S = {Z26,×} be the semigroup under product modulo 26. The idempotents of S are 13 and 14.
We see 13 is just a trivial neutrosophic triplet, however only 14 contributes to non-trivial neutrosophic triplets.
We now find the neutrosophic duplets of Z26. The units of Z26 are A = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
and they act as neutrals of the duplets. The non-units which contribute for neutrosophic duplets are B =

{2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24}. 0 is the trivial duplet as 0× x = 0 for all x ∈ A. Consider 2 ∈ B
the pairs of duplets are {2, 1}, 2× 14 = 2 but 14 cannot be taken as anti(2) = 20 and anti(2) exists so 2 is not
a neutrosophic duplet for (2, 14, 20) is a neutrosophic triplet group.

Consider 4 ∈ B; {4, 1} is a trivial neutrosophic duplet. Then, 4× 14 = 4 and (4, 14, 16) are again
a neutrosophic triplet as anti(4) = 16 so 4 is not a neutrosophic duplet. Thus, 16 and 20 are also not
neutrosophic duplets. Consider 6 ∈ B; we see {6, 1} is a non-trivial neutrosophic duplet. In addition, (6, 14, 10)
are neutrosophic triplet groups so 6 and 10 are not non-trivial neutrosophic duplets. Consider 8 ∈ B, (8, 14, 18)
is a neutrosophic triplet group. hence 8 and 18 are not neutrosophic duplets. Then, (12, 14, 12) is also
a neutrosophic triplet group. Thus, 12 is not a neutrosophic duplet. Let 22 ∈ B be such that (22, 14, 24) is
a neutrosophic triplet group, hence 22 and 24 are not neutrosophic duplets.

Consider 13 ∈ B; we see the neutrals are {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}. We see the collection of
neutrosophic duplets associated with 13 ∈ Z26 happens to yield a semigroup under product if 13 is taken as the
trivial neutrosophic duplets, as it is an idempotent in Z26, and, in all pairs, it is treated as semigroup of order 13,
where (13, 1) and (13, 13) are trivial neutrosophic duplets.

In view of this, we have the following theorem.

Theorem 3. Let S = {Z2p,×} be a semigroup under product modulo 2p; p an odd prime. This S has only p
and p + 1 to be the idempotents and only p contributes for a neutrosophic duplet collection with all units of Z2p
and the collection B = {(p, x)|x ∈ Z2p}, x is a unit in Z2p forms a commutative semigroup of order p which
includes 1 and p which result in the trivial duplets pair (p, 1) and (p, p).

Proof. Given S = {Z2p,×} is a semigroup under × and p is an odd prime. We see from [23] p and
p + 1 are idempotents of Z2p. It is proven in [23] that p + 1 acts for the neutrosophic triplet group of
Z2p (formed by elements 2, 4, 6, . . . , 2p− 2) as the only neutral. (p, p, p) is a trivial neutrosophic triplet.
However, Z2p has no neutrosophic duplet other than those related with p alone and p× x = p for all x
belonging to the collection of all units of Z2p including 1. If x is a unit in Z2p, two things are essential:
x is odd and x 6= p. Since x is odd, we see x = 2y + 1 and p(x) = p(2y + 1) = 2yp + p = p, hence
(p, x) is a neutrosophic duplet. The units of Z2p are (p− 1) in number. Further, (p, p) and (p, 1) form
trivial neutrosophic duplets. Thus, the collection of all neutrosophic duplets B = {(p, x)}, x is a unit
and x = p is also taken to form the semigroup of order p and is commutative as the collection of all
odd numbers forms a semigroup under product modulo 2p; hence, the claim.

It is important and interesting to note that, unlike Zpn , p is a prime and n ≥ 2. We see Z2p has both
non-trivial neutrosophic triplet groups which forms a classical group [23] as well as has a neutrosophic
duplet which forms a semigroup of order p.

Next, we study the case when Zpq is taken where both p and q are odd primes first by an example.
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Example 4. Let S = {Z15,×} be a semigroup under product. The idempotents of Z15 are 10 and 6.
However, 10 does not contribute to non-trivial neutrosophic triplet groups other than {5, 10, 5}, {10, 10, 10}.
The neutrosophic triplet groups associated with 6 are (3, 6, 12), (12, 6, 3), (9, 6, 9) and (6, 6, 6). The neutrosophic
duplets of Z15 are contributed by {5}, {10} and {3, 12, 6, 9} in a unique way.

D1 = {{5, 1}, {5, 4}, {5, 7}, {5, 13}, {5, 10}},
D2 = {{10, 13}, {10, 7}, {10, 1}, {10, 4}, {10, 10}},

D3 = {{3, 11}, {3, 1}, {3, 6}, {12, 11}, {12, 1}, {12, 6}, {6, 11}, {6, 1}, {6, 6}, {9, 11}, {9, 1}, {9, 6}}

All three collections of duplets put together is not closed under ×; however, D2 and D3 form a semigroup
under product modulo 15. If we want to make D1 a semigroup, we should adjoin the trivial duplets {0, 4},
{0, 7}, {0, 13}, {0, 1}, {0, 6}, {0, 10} as well as D2. Further, we see D1 ∪ D2 ∪ D3 is not closed under product.

Thus, the study of Zpq where p and q are odd primes happens to be a challenging problem.
We give the following examples in the case when p = 5 and q = 7.

Example 5. Let S = {Z35,×} be a semigroup of order 35. The idempotents of Z35 are 15 and 21.
The neutrosophic triplets associated with 15 are {(15, 15, 15), (5, 15, 10), (25, 15, 30), (20, 15, 20), (30, 15, 25),
(10, 15, 5)}, a cyclic group of order six. The cyclic group contributed by the neutrosophic triplet groups associated
with 21 is as follows: {(21, 21, 21), (7, 21, 28), (28, 21, 7), (14, 21, 14)}, which is of order four. The neutrosophic
duplets are tabulated in Table 1. Similarly, the neutrosophic duplets associated with S = {Z105,×} are tabulated
in Table 2.

Table 1. Neutrosophic Duplets of {Z35,×}.

Neutrals for duplets Neutrals for duplets
5, 10, 15, 20, 25, 30 7, 14, 21, 28

1, 8, 15, 22, 24 1, 6, 11, 16, 21, 26, 31

Table 2. Neutrosophic Duplets of {Z105,×}.

Neutrals for duplets Neutrals for duplets
3, 6, 9, 12, 18, 21, 24, 27, 5, 10, 20, 25, 40, 50,

33, 36, 39, 48, 51, 54, 57, 66, 55, 65, 80, 85, 95, 100
69, 78, 81, 87, 93, 96, 99, 102

1, 36, 71 1, 22, 43, 64, 84

Neutrals for duplets Neutrals for duplets
7, 14, 28, 49, 56, 77, 91, 98 15, 30, 45, 60, 75, 90

1, 16, 31, 46, 61, 76, 91 1, 8, 15, 22, 29, 36, 43, 50,
57, 64, 71, 78, 85, 92, 99

Neutrals for duplets Neutrals for duplets
21, 42, 63, 84 35, 70

1, 6, 11 16, 21, 26, 31, 36, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28,
41, 46, 51, 56, 61, 66, 71, 31, 34, 37, 40, 43, 46, 49, 52, 55,

76, 81, 86, 91, 96, 101 58, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103

Theorem 4. Let {Zn,×} be a semigroup under product modulo n; x ∈ Zn \ {0} has a neutral y ∈ Zn \ {0}
or is a non-trivial neutrosophic duplet if and only if x is not unit in Zn.
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Proof. x ∈ Zn \ {0} is a neutrosophic duplet if x × y = x(mod n) and y is called the neutral of x.
If x2 = x, then we call the pair (x, x) as trivial neutrosophic duplet pair. We see x× y = x, if x is a
unit in Zn, then there exists a z ∈ Zn such that z× (x× y) = z× x, so that y = 1 as z× x = 1(mod n);
so y = 1 gives trivial neutrosophic duplets. Thus, x is not a unit if it has to form a non-trivial
neutrosophic duplet pair; x× y = x and y 6= 1 then if x is a unit we arrive at contradiction; hence, the
theorem.

Theorem 5. Let S = {Zpq,×} be a semigroup under product modulo pq, p and q distinct odd primes.
There is p number of neutrosophic duplets for every p, 2p, 3p, . . . , (q− 1)p. Similarly, there is q number of
neutrosophic duplets associated with every q, 2q, . . . (p− 1)q. The neutrals of sq and tp is given by 1 + nq for
1 ≤ t ≤ q− 1, 0 ≤ n ≤ p− 1 and that of sq is given by 1 + mp; 1 ≤ s ≤ p− 1, 0 ≤ m ≤ q− 1.

Proof. Given {Zpq,×} is a semigroup under product modulo pq (p and q two distinct odd primes).
The neutrals associated with any tp; 1 ≤ t ≤ q − 1 is given by the sequence {1 + q, 2q + 1, 3q +

1, . . . , (p− 1)q + 1} for every tp ∈ {p, 2p, . . . , (q− 1)p}. We see, if tp ∈ Zpq,

tp× (1 + nq) = tp + tpnq
= tp + tnpq = tp(mod pq).

A similar argument for sq completes the proof; hence, the claim.

Theorem 6. Let S = {Zp1 p2 ...pn ,×} be the semigroup under product modulo p1 p2 . . . pn, where p1, p2, . . . , pn

are n distinct primes. The duplets are contributed by the non-units of S. The neutrosophic duplets associated
with Ai = {pi, 2pi, . . . , (p1 p2 . . . pi−1 pi+1 . . . pn − 1)pi} are {1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t} where t =

1, 2, . . . , pi − 1; and i = 1, 2, . . . , n. Thus, every element xi of Ai has only pi − 1 number of elements which
neutralizes xi; thus, using each xi, we have pi − 1 neutrosophic duplets.

Proof. Given S = {Zp1 p2 ...pn ,×} is a semigroup under product modulo p1 . . . pn, where pis are distinct
primes, i = 1, 2, . . . , n. Considering Ai = {pi, 2pi, . . . , (p1 p2 . . . pi−1 pi+1 . . . pn − 1)pi}, we have to
prove that, for any spi, spi × [1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t] = spi; 1 ≤ t ≤ pi−1.

Clearly,

spi × [1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t] = spi + spi[(p1 p2 . . . pi−1 pi+1 . . . pn)t]

= spi + st[(p1 p2 . . . pi−1 pi pi+1 . . . pn)] = spi

as p1 p2 . . . pn = 0(mod (p1 p2 . . . pn)). Hence, the claim.

Thus, for varying t and varying s given in the theorem, we see

{spi, (1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t)}

is a neutrosophic duplet pair 1 ≤ t ≤ pi − 1; 1 ≤ s ≤ p1 p2 . . . pi−1 pi+1 . . . pn and i = 1, 2, . . . , n.

5. Discussions and Conclusions

This paper studies the neutrosophic duplets in the case Zpn , Zpq and Zp1 p2 ...pn . In the case of
Zpn and Zpq, a complete characterization of them is given; however, in the case Zp1 ...pn , only the
neutrosophic duplets associated with pis are provided; i = 1, 2, . . . n. Further, the following problems
are left open:

1. For Zpq, p and q odd primes, how many neutrosophic duplet pairs are there?
2. For Zp1 ...pn , what are the neutrals of pi pj, pi pj pk, . . . , p1 p2 . . . pi−1 pi+1 . . . pn?
3. The study of neutrosophic duplets of Z

p
t1
1 pt2

2 ...ptn
n

; p1, . . . , pn are distinct primes and ti ≥ 1; 1 ≤ i ≤
n is left open.
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For future research, one can apply the proposed neutrosophic duplets to SVNS, DVNS or TRINS.
These neutrosophic duplets can be applied in problems where neutral elements for a given a in Zpn or 
Zpq happens to be many. However, the concept of anti(a) does not exist in the case of neutrosophic 
duplets. Finally, these neutrosophic duplet collections form a semigroup only when all the trivial 
neutrosophic duplet pairs (0, a) for all appropriate a are taken. These neutrosophic duplets from Zpn

and Zpq can be used to model suitable problems where the anti(a) under study does not exist and 
many neutrals are needed. This study can be taken up for further development.

Abbreviations

The following abbreviations are used in this manuscript:

SVNS Single Valued Neutrosophic Sets
DVNS Double Valued Neutrosophic Sets
TRINS Triple Refined Indeterminate Neutrosophic Sets
IFS Intuitionistic Fuzzy Sets
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Abstract. In this paper, we introduced the concepts of Single-valued neutrosophic hyperring and Single-

valued neutrosophic hyperideal. The algebraic properties and structural characteristics of the single-val-

ued neutrosophic hyperrings and hyperideals are investigated and verified.

Keywords: Hyperring, Hyperideal, Single-valued neutrosophic set, Single-valued neutrosophichyper-
ring and Single-valued neutrosophichyperideal. 

1 Introduction 

Hyperstructure theory was introduced by Marty in 1934 [16]. The concept of hyperring and the 

general form of hyperring for introducing the notion of hyperring homomorphism was developed by 

Corsini [11]. Vougiouklis [31] coined different type of hyperrings called 𝐻𝑣-ring, 𝐻𝑣-subring, and left 

and right 𝐻𝑣-ideal of a 𝐻𝑣-ring, all of which are generalizations of the corresponding concepts related to 

hyperrings introduced by Corsini [11].   

In general fuzzy sets [34] the grade of membership is represented as a single real number in the 

interval [0,1]. The uncertainty in the grade of membership of the fuzzy set model was overcome using 

the interval-valued fuzzy set modelintroduced by Turksen [29]. In 1986, Atanassov [8] introduced 

intuitionistic fuzzy sets which is a generalization of fuzzy sets. This model was equivalent to interval 

valued fuzzy sets in [32]. Intuitionistic fuzzy sets can only handle incomplete information, and not 

indeterminate information which commonly exists in real-life [32]. To overcome these problems, 

Smarandache introduced the neutrosophic model. Some new trends of neutrosophic theory were 

introduced in [1,2,3,4,5,6,7] .Wang et al. [32] introduced the concept of single-valued neutrosophic sets 

(SVNSs), whereas Smarandache introduced plithogenic set as generalization of neutrosophic set model 

in [13].  

The theory of hyperstructures are widely used in various mathematical theories. The study on 

fuzzy algebra began by Rosenfeld [17], and this was subsequently expanded to other fuzzy based 

models such as intuitionistic fuzzy sets, fuzzy soft sets and vague soft sets. Some of the recent works 

related to fuzzy soft rings and ideal, vague soft groups, vague soft rings and vague soft ideals can be 

found in [21; 22; 23; 26, 27]. Research on fuzzy algebra led to the development of fuzzy hyperalgebraic 

theory. The concept of fuzzy ideals of a ring introduced by Liu [15]. The generalization of the fuzzy 

hyperideal introduced by Davvaz[12]. The concepts of fuzzy 𝛾-ideal was then introduced by Bharathi 
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and Vimala [10], and the fuzzy 𝛾 -ideal was subsequently expanded in [33]. The hypergroup and 

hyperring theory for vague soft sets were developed by Selvachandran et al. in [18,19,20,24,25] 

In this paper we develop the theory of single-valued neutrosophic hyperrings and single-valued 

neutrosophic hyperideals to furter contribute to the development of the body of knowledge in 

neutrosophic hyperalgebraic theory. 

2 Preliminaries 

Let 𝑋 be a space of points (objects) with a generic element in 𝑋 denoted by 𝑥. 

Definition 2.1. [32] A SVNS 𝐴is a neutrosophic set that is characterized by a truth-membership function 

𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-membership function 𝐹𝐴(𝑥), where 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1]. This set 𝐴 can thus be written as 
𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑈}.                                                        (1) 

The sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) must fulfill the condition 0 ≤ 𝑇𝐴(𝑥) +  𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. For a SVNS 

𝐴 in 𝑈, the triplet (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) is called a single-valued neutrosophic number (SVNN). Let 𝑥 =

(𝑇𝑥, 𝐼𝑥 , 𝐹𝑥) to represent a SVNN . 

Definition 2.2. [32]  Let 𝐴 and 𝐵 be two SVNSs over a universe 𝑈. 

(i) 𝐴 is contained in 𝐵, if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≤ 𝐼𝐵(𝑥), and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥), for all 𝑥 ∈ 𝑈. This rela-

tionship is denoted as 𝐴 ⊆ 𝐵.

(ii) 𝐴 and 𝐵 are said to be equal if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.

(iii) 𝐴𝑐 = 〈𝑥, (𝐹𝐴(𝑥), 1 − 𝐼𝐴(𝑥), 𝑇𝐴(𝑥))〉, for all 𝑥 ∈ 𝑈.

(iv) 𝐴 ∪ 𝐵 = (𝑥, (max(𝑇𝐴, 𝑇𝐵), max(𝐼𝐴, 𝐼𝐵), min(𝐹𝐴, 𝐹𝐵))), for all 𝑥 ∈ 𝑈.

(v) 𝐴 ∩ 𝐵 = (𝑥, (min(𝑇𝐴 , 𝑇𝐵), min(𝐼𝐴, 𝐼𝐵), max(𝐹𝐴, 𝐹𝐵))), for all 𝑥 ∈ 𝑈.

Definition 2.3. [16] A hypergroup 〈𝐻, ∘〉  is a set  𝐻  with an associative hyperoperation (∘) ∶ 𝐻 × 𝐻 →

𝑃(𝐻)  which satisfies 𝑥 ∘ 𝐻 = 𝐻 ∘ 𝑥 = 𝐻  for all  𝑥  in  𝐻 (reproduction axiom) . 

Definition 2.4.[12] A hyperstructure 〈𝐻, ∘〉 is called an  𝐻𝑣-group  if the following axioms hold: 

(i) 𝑥 ∘ (𝑦 ∘ 𝑧) ∩ (𝑥 ∘ 𝑦) ∘ 𝑧 ≠ ∅   for all   𝑥, 𝑦, 𝑧  𝜖  𝐻, (𝐻𝑣-semigroup)

(ii) 𝑥 ∘ 𝐻 = 𝐻 ∘ 𝑥 = 𝐻  for all  𝑥  in  𝐻.

Definition 2.5.[16] A subset  𝐾  of  𝐻  is called a  subhypergroup  if  〈𝐾, ∘〉  is a hypergroup. 

Definition 2.6.[11]A  𝐻𝜈-ring  is a multi-valued system (𝑅, +, ∘) which satisfies the following axioms: 

(i) (𝑅, +) is a 𝐻𝜈-group,

(ii) (𝑅, ∘) is a 𝐻𝜈-semigroup,

(iii) The hyperoperation “∘” is weak distributive over the hyperoperation “+”, that is for each

𝑥, 𝑦, 𝑧 𝜖 𝑅   the conditions 𝑥 ∘ (𝑦 + 𝑧) ∩ ((𝑥 ∘ 𝑦) + (𝑥 ∘ 𝑧))  ≠  𝜙 and (𝑥 + 𝑦) ∘ 𝑧 ∩ ((𝑥 ∘ 𝑧) + (𝑦 ∘

𝑧))  ≠  𝜙 holds true.

Definition 2.7. [11]A nonempty subset 𝑅′  of 𝑅  is a subhyperring of (𝑅, +, ∘)  if (𝑅′, +)  is a 

subhypergroup of (𝑅, +) and for all 𝑥, 𝑦, 𝑧 𝜖  𝑅′, 𝑥 ∘ 𝑦  𝜖  𝑃∗(𝑅′), where 𝑃∗(𝑅′) is the set of all non-empty 

subsets of 𝑅′. 

Definition 2.8. [11] Let 𝑅 be a 𝐻𝑣-ring. A nonempty subset 𝐼 of 𝑅 is called a left (respectively right) 𝐻𝑣-

ideal if the following axioms hold: 

(i) (𝐼, +) is a 𝐻𝑣-subgroup of (𝑅, +),

(ii) 𝑅 ∘ 𝐼 ⊆ 𝐼(resp.  𝐼 ∘ 𝑅 ⊆ 𝐼).

If  𝐼  is both a left and right  𝐻𝑣-ideal  of  𝑅,  then  𝐼  is said to be a 𝐻𝑣-ideal  of  𝑅.
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3 Single-Valued NeutrosophicHyperrings 

Throughout this section, we denote the hyperring(𝑅, +, ∘)by 𝑅. 

Definition 3.1.Let 𝐴 be a SVNS over 𝑅. 𝐴 is called a single-valued neutrosophic hyperringover 𝑅, if , 

(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤
𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 

(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤
𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 

(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  and
max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}

Example 3.2.The family of 𝑡-level sets of SVNSs over 𝑅 is a subhyperring of 𝑅 is given below: 

𝐴𝑡 = {𝑎 ∈ 𝑅: 𝑇𝐴(𝑎) ≥ 𝑡, 𝐼𝐴(𝑎) ≥ 𝑡, 𝐹𝐴(𝑎) ≤ 𝑡},for all 𝑡 ∈ [0, 1]. 

Then 𝐴 is a single-valued neutrosophic hyperring over 𝑅. 

Theorem 3.3. 𝐴 is a SVNS over 𝑅. Then 𝐴 is a single-valued neutrosophichyperring over 𝑅 iff 𝐴 is sin-
gle-valued neutrosophic semi hyper group over (𝑅, ∘) and also a single-valued neutrosophic hyper-
group over (𝑅, +).  

Proof. This is obvious by Definition 3.1. ∎ 

Theorem 3.4. Let 𝐴 and 𝐵 be single-valued neutrosophic hyperrings over 𝑅. Then𝐴 ∩ 𝐵 is a single-val-
ued neutrosophichyperring over 𝑅 if it is non-null.  

Proof. Let 𝐴  and 𝐵  are single-valued neutrosophic hyperrings over 𝑅. By Definition 3.1, 𝐴 ∩ 𝐵 =
{〈𝑎, 𝑇𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑎)〉: 𝑎 ∈ 𝑅}, where 𝑇𝐴∩𝐵(𝑎) = min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , 𝐼𝐴∩𝐵(𝑎) =
max(𝐼𝐴(𝑎), 𝐼𝐵(𝑎)) , 𝐹𝐴∩𝐵(𝑎) = max(𝐹𝐴(𝑎), 𝐹𝐵(𝑎)). Then for all 𝑎, 𝑏 ∈ 𝑅, we have the following. We only 
prove all the four conditions for the truth membership terms 𝑇𝐴, 𝑇𝐵 . The proof for the 𝐼𝐴 , 𝐼𝐵 and 𝐹𝐴, 𝐹𝐵 
membership functions obtained in a similar manner.  

(i) min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))}

≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

 ≤ min{inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , inf{𝑇𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}} 

        ≤ inf{min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) : 𝑐 ∈ 𝑎 + 𝑏} 

= inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}  and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 + 𝑏}. 

(ii) Ɐ𝑥, 𝑎 ∈ 𝑅, there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑥 + 𝑏. Then it follows that:

min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))}

≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

≤ min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) 

       = 𝑇𝐴∩𝐵(𝑐) 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ 𝐹𝐴∩𝐵(𝑐). 

(iii) It can be easily verified that Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  &

min{𝑇𝐴∩𝐵(𝑥), 𝑇𝐴∩𝐵(𝑎)} ≤ 𝑇𝐴∩𝐵(𝑐), max{𝐼𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑎)} ≥ 𝐼𝐴∩𝐵(𝑐)  and max{𝐹𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑎)} ≥
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𝐹𝐴∩𝐵(𝑐). 

(iv) Ɐ 𝑎 ∈ 𝑅, min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} ≤ inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 ∘ 𝑏} and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}.

Hence, 𝐴 ∩ 𝐵 is single-valued neutrosophichyperring over 𝑅.   ∎ 

Theorem 3.5. Let 𝐴 be a single-valued neutrosophic hyperring over 𝑅. Then for every 𝑡 ∈ [0, 1], 𝐴𝑡 ≠ ∅ 

is a subhyperring over 𝑅. 

Proof. Let 𝐴 be a single-valued neutrosophichyperring over 𝑅.  Ɐ 𝑡 ∈ [0, 1], let 𝑎, 𝑏 ∈ 𝐴𝑡 . Then

𝑇𝐴(𝑎), 𝑇𝐴(𝑏) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑏) ≤ 𝑡and 𝐹𝐴(𝑎), 𝐹𝐴(𝑏) ≤ 𝑡. Since 𝐴 is a single-valued neutrosophic sub hyper 

group of (𝑅, +), we have the following: 

inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≥ min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≥ min{𝑡, 𝑡} = 𝑡, 

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≤ 𝑡, 

and 

sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≤ 𝑡. 

This implies that 𝑐 ∈ 𝐴𝑡 and then for every 𝑐 ∈ 𝑎 + 𝑏, we obtain 𝑎 + 𝑏 ⊆ 𝐴𝑡. As such, for every 𝑐 ∈ 𝐴𝑡, 

we obtain 𝑐 + 𝐴𝑡 ⊆ 𝐴𝑡. Now let 𝑎, 𝑐 ∈ 𝐴𝑡. Then 𝑇𝐴(𝑎), 𝑇𝐴(𝑐) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑐) ≤ 𝑡and 𝐹𝐴(𝑎), 𝐹𝐴(𝑐) ≤ 𝑡. 

𝐴 is a single-valued neutrosophic subhypergroup of (𝑅, +), there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑐 + 𝑏 and 

𝑇𝐴(𝑏) ≥ min(𝑇𝐴(𝑎), 𝑇𝐴(𝑐)) ≥ 𝑡, 𝐼𝐴(𝑏) ≤ max(𝐼𝐴(𝑎), 𝐼𝐴(𝑐)) ≤ 𝑡, 𝐹𝐴(𝑏) ≤ max(𝐹𝐴(𝑎), 𝐹𝐴(𝑐)) ≤ 𝑡, and this im-

plies that 𝑏 ∈ 𝐴𝑡. Therefore, we obtain 𝐴𝑡 ⊆ 𝑐 + 𝐴𝑡. As such, we obtain 𝑐 + 𝐴𝑡 = 𝐴𝑡. As a result, 𝐴𝑡 is a 

subhypergroup of (𝑅, +). 

Let 𝑎, 𝑏 ∈ 𝐴𝑡 ,then 𝑇𝐴(𝑎), 𝑇𝐴(𝑏) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑏) ≤ 𝑡 and 𝐹𝐴(𝑎), 𝐹𝐴(𝑏) ≤ 𝑡.Since 𝐴 is a single-valued neutro-

sophic subsemihypergroup of (𝑅, ∘), then for all 𝑎, 𝑏 ∈ 𝑅, we have the following: 

inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≥ min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} = 𝑡, 

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≤ max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) = 𝑡, 

and 

sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≤ max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) = 𝑡. 

This implies that 𝑐 ∈ 𝐴𝑡  and consequently 𝑎 ∘ 𝑏 ∈ 𝐴𝑡 . Therefore, for every 𝑎, 𝑏 ∈ 𝐴𝑡  we obtain 𝑎 ∘ 𝑏 ∈

𝑃∗(𝑅). Hence 𝐴𝑡 is a subhyperring over 𝑅.

Theorem 3.6. Let 𝐴 be a single-valued neutrosophic set over 𝑅.Then the following statements are equiv-

alent: 

(i) 𝐴is a single-valued neutrosophic hyperring over 𝑅.

(ii) Ɐ𝑡 ∈ [0, 1], a non-empty 𝐴𝑡 is a sub hyperring over 𝑅.

Proof.

(𝑖) ⟹ (𝑖𝑖) Ɐ 𝑡 ∈ [0, 1], by Theorem 3.5, 𝐴𝑡 is sub hyperring over 𝑅.

(𝑖𝑖) ⟹ (𝑖) Assume that 𝐴𝑡  is a subhyperring over 𝑅. Let 𝑎, 𝑏 ∈ 𝐴𝑡  and therefore 𝑎 + 𝑏 ⊆ 𝐴𝑡0
. Then for

every 𝑐 ∈ 𝑎 + 𝑏 we have 𝑇𝐴(𝑐) ≥ 𝑡0, 𝐼𝐴(𝑐) ≤ 𝑡0and 𝐹𝐴(𝑐) ≤ 𝑡0, which implies that:

min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏}, 

max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏}, 

and 
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max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Therefore, condition (i) of Definition 3.1 has been verified.  

Next, let 𝑥, 𝑎 ∈ 𝐴𝑡1
 for every 𝑡1 ∈ [0, 1]  which means that there exists 𝑏 ∈ 𝐴𝑡1

 such that 𝑎 ∈ 𝑥 ∘ 𝑏 . 

Since𝑏 ∈ 𝐴𝑡1
, we have 𝑇𝐴(𝑏) ≥ 𝑡1, 𝐼𝐴(𝑏) ≤ 𝑡1 and 𝐹𝐴(𝑏) ≤ 𝑡1, and thus we have

𝑇𝐴(𝑏) ≥ 𝑡1 = min(𝑇𝐴(𝑎), 𝑇𝐴(𝑐)), 

𝐼𝐴(𝑏) ≤ 𝑡1 = max(𝐼𝐴(𝑎), 𝐼𝐴(𝑐)), 

and 

𝐹𝐴(𝑏) ≤ 𝑡1 = max(𝐹𝐴(𝑎), 𝐹𝐴(𝑐)). 

Therefore, condition (ii) of Definition 3.1 has been verified. Compliance to condition (iii) of Definition 

3.1 can be proven in a similar manner. Thus, 𝐴 is a single-valued neutrosophic subhypergroup of (𝑅, +). 

Now since 𝐴𝑡 is a subsemihypergroup of the semihypergroup (𝑅, ∘), we have the following. Let 𝑎, 𝑏 ∈

𝐴𝑡2
 and therefore we have 𝑎 ∘ 𝑏 ∈ 𝐴𝑡2

.  Thus for every 𝑐 ∈ 𝑎 ∘ 𝑏 , we obtain 𝑇𝐴(𝑐) ≥ 𝑡2, 𝐼𝐴(𝑐) ≤ 𝑡2  and

𝐹𝐴(𝑐) ≤ 𝑡2, and therefore it follows that: 

min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

and 

max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

which proves that condition (iv) of Definition 3.1 has been verified. Hence 𝐴 is a single-valued neutro-

sophic hyperring over 𝑅. 

4 Single-Valued Neutrosophic Hyperideals 

Definition 4.1.Let 𝐴 be a SVNS over 𝑅. Then 𝐴 is single-valued neutrosophic left (resp. right) 
hyperideal over 𝑅, if , 

(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤
𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 

(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤
𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 

(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, 𝑇𝐴(𝑏) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  (resp. 𝑇𝐴(𝑎) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ), 𝐼𝐴(𝑏) ≥
sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} (resp. 𝐼𝐴(𝑎) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}) and 𝐹𝐴(𝑏) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  (resp. 
𝐹𝐴(𝑎) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}) 

𝐴 is a single-valued neutrosophic left (resp. right) hyperidealof 𝑅.  From conditions (i), (ii) and (iii) 𝐴 is 

a single-valued neutrosophic subhypergroup of (𝑅, +).  

Definition 4.2.Let 𝐴 be a SVNS over 𝑅. Then 𝐴 is a single-valued neutrosophic hyper ideal over 𝑅, if the 
following conditions are satisfied: 

(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤
𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 

(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤
𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 

(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, max(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 
and max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 
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From conditions (i), (ii) and (iii) 𝐴 is a single-valued neutrosophic sub hyper group of (𝑅, +). Condition 
(iv) indicate both single-valued neutrosophic left hyperideal and single-valued neutrosophic right hy-
perideal. Hence 𝐴 is a single-valued neutrosophic hyper ideal of 𝑅.

Theorem 4.3.Let 𝐴 be a non-null SVNS over 𝑅. 𝐴 is a single-valued neutrosophic hyperideal over 𝑅 iff 
𝐴 is a single-valued neutrosophic hyper group over (𝑅, +) and also 𝐴is both a single-valued neutro-
sophic left hyper ideal and a single-valued neutrosophic right hyper ideal of 𝑅.  

Proof. This is straight forward by Definitions 4.1 and 4.2. 

Theorem 4.4.Let 𝐴and 𝐵 be two single-valued neutrosophic hyper ideals over 𝑅. Then 𝐴 ∩ 𝐵 is a single-
valued neutrosophichyperideal over 𝑅 if it is non-null.  

Proof. Let 𝐴  and 𝐵  are single-valued neutrosophic hyper ideals over 𝑅. By Definition 4.2, 𝐴 ∩ 𝐵 =
{〈𝑎, 𝑇𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑎)〉: 𝑎 ∈ 𝑅}, where 𝑇𝐴∩𝐵(𝑎) = min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , 𝐼𝐴∩𝐵(𝑎) = max(𝐼𝐴(𝑎), 𝐼𝐵(𝑎)) 
and𝐹𝐴∩𝐵(𝑎) = max(𝐹𝐴(𝑎), 𝐹𝐵(𝑎)). Then Ɐ 𝑎, 𝑏 ∈ 𝑅, we have the following. We only prove all the four
conditions for the truth membership terms 𝑇𝐴, 𝑇𝐵 . The proof for the 𝐼𝐴 , 𝐼𝐵 and 𝐹𝐴, 𝐹𝐵 membership func-
tions obtained in a similar manner.   
(i) min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))}

  ≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

  ≤ min{inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , inf{𝑇𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}} 

 ≤ inf{min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) : 𝑐 ∈ 𝑎 + 𝑏} 

 = inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Similarly, it can be proven that max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}  and 

max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}. 

(ii) Ɐ𝑥, 𝑎 ∈ 𝑅, there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑥 + 𝑏. Then:

min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))}

 ≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

≤ min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) 

       = 𝑇𝐴∩𝐵(𝑐) 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ 𝐹𝐴∩𝐵(𝑐). 

(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴∩𝐵(𝑥), 𝑇𝐴∩𝐵(𝑎)} ≤

𝑇𝐴∩𝐵(𝑐), max{𝐼𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑎)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑎)} ≥ 𝐹𝐴∩𝐵(𝑐).

(iv) Ɐ 𝑎 ∈ 𝑅, max{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} ≤ inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , min{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 ∘ 𝑏} and min{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}.

Hence, it is verified that 𝐴 ∩ 𝐵 is a single-valued neutrosophichyperideal over 𝑅. 

5. Conclusion

We developed hyperstructure for the SVNS model through several hyperalgebraic structures 

such as hyperrings and hyperideals. The properties of these structures were studied and verified. The 

future work is on the development of hyperalgebraic theory for Plithogenic sets which is the 

generalization of neutrosophic set and also planned to develop some real life applications. 
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Abst ract

In this paper, we will define the exponential form of a neutrosophic complex number. We have proven some 
characteristics and theories, including the conjugate of the exponential form of a neutrosophic complex number, 
division of the exponential form of a neutrosophic complex numbers, multiplication of the exponential form of a 
neutrosophic complex numbers. In addition, we have given the method of changing from the exponential to the 
algebraic form of a complex number. 

Keywords : Neutrosophic numbers, neutrosophic complex number, the exponential form of a neutrosophic complex 
number. 

1. Intro duction

The American scientist and philosopher F. Smarandache came to place the neutrosophic logic in [1-5], and this logic 
is as a generalization of the fuzzy logic [6], conceived by L. Zadeh in 1965. 

The neutrosophic logic is of great importance in many areas of them, including applications in image processing [7-
8], the field of geographic information systems [9], and possible applications to database [10-11], and have 
applications in the medical field [12-15], and in neutrosophic bitopology in [16-18], and in neutrosophic algebra in 
[19-23], professor F. Smarandache presented the definition of the standard form of neutrosophic real number and 
conditions for the division of two neutrosophic real numbers to exist, he defined the standard form of neutrosophic 
complex number [24],  and Y. Alhasan presented the properties of the concept of neutrosophic complex numbers 
including the conjugate of neutrosophic complex number, division of neutrosophic complex numbers, the inverted 
neutrosophic complex number and the absolute value of a neutrosophic complex number and theories related to the 
conjugate of neutrosophic complex numbers, and that the product of a neutrosophic complex number by its conjugate 
equals the absolute value of number [25]. 

Riad K. Al-Hamido, Mayas Ismail, Florentin Smarandache

Riad K. Al-Hamido, Mayas Ismail, Florentin Smarandache (2020). The Polar form of a Neutrosophic Complex 
Number. International Journal of Neutrosophic Science 10(1), 36-44; DOI: 10.5281/zenodo.4001132 36

The Polar form of a Neutrosophic Complex Number
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 This paper aims to study and define the exponential form of a neutrosophic complex number by defining the conjugate 
of the exponential form of a neutrosophic complex number, division of the exponential form of the  neutrosophic 
complex numbers, and multiplication of the exponential form of a neutrosophic complex numbers. 

2. Pre liminar ies

In this section, we present the basic definitions that are useful in this research. 

Definit ion 2.1 [24] 

  A neutrosophic number has the standard form: 

a + b� 

where a, b are real or complex coefficients, and I =  indeterminacy, such 0.I = 0  

�� = � for all positive integer n. 

If the coefficients a and b are real, and then a + b� is called neutrosophic real number. 

For example: 5+7I 

Definit ion 2.2 [25]

z is a neutrosophic complex number, if it takes the following standard form: 

z = a +  bI +  ci + diI  

 Where a, b, c, d are real coefficients, and I= indeterminacy, and �� = −1.

 Division of Neutroso phic Real Numbers  [24]

(�� + ���) ÷ (��+ ���) = ?

We denote the result by: 

��  + ��I

�� +  ��I
= x +  yI 

� = ��

��

and

� = ���� � ����

��(�� � ��)
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Suppose that z = a +  bI +  ci + diI is a neutrosophic complex number, then the absolute value of a neutrosophic 
complex number defined by the following form:

|�| = �(� + ��)� + (� + ��)� 

3. The Polar f orm of a Neutr osophic Complex Number

In this section, we present and study the exponential form of a neutrosophic complex number. 

Definit ion 3.1 

We define the Exponential Form of a Neutrosophic Complex Number as follows: 

� = ���(���) 

neutrosophic complex number. thealue of Absolute Vhere r the w 

Remark 3.1.1:

From the general form: 

z = a +  bI +  ci + diI

� = � �
 a +  b� 

�
+

ci +  di�

�
� 

� = � �
 a +  b� 

�
+ � ∙

c +  d�

�
� 

Remark 3.1.2:

� = |�| = �(� + ��)� + (� + ��)� 

Definit ion 2.4 [25]  
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Figure 1: The Geometrical Figure 

The formula neutrosophically works in the following way: 
x = a+bI is a neutrosophic number whose determinate part is "a" and indeterminate part is "bI", where I = 
indeterminacy; 
similarly y = c+dI is a neutrosophic number whose determinate part is "c" and indeterminate part is "dI"; 
Θ = θ + I is a neutroosphic angle, whose determinate part is Θ ("theta") and indeterminate part is "I". 

It is a big "Theta" Θ (inside the geometrical figure) and small "theta" θ in the formulas. 

That means that we work with two lengths x and y that are not well-known (they were approximated), and an angle Θ 
(Theta) that is not well known either (it was approximated by θ plus some indeterminacy I). 

cos(� + �) =
�

�
=

 a +  b� 

�
, sin (� + �) =

�

�
=

c +  d�

�

� = �����(� + �) + � ∙ ���(� + �)� 

orm:FExponential  

� = ���(���) 

Definit ion 3.2

Trigonometric formula 

� = �(cos(� + �) + � ���(� + �)) 
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4. Prope rt ies

In this section, we present some important properties of the exponential form. 

Multiplying the exponenti al form s of the  neutr osophic complex numbers

Suppose that �� ,  �� are two neutrosophic complex numbers, where

 �� = ����(�����) and �� = ����(�����) 

�� + �� = �If  

Definit ion 4.1 

�� ∙ �� = ������(�������) 

Remark 4.1.1:

�� ∙ �� = ����(�����) ∙ ����(�����) 

�� ∙ �� = �������(�����) ∙ ��(�����)� 

�� ∙ �� = ������(�����������) 

�� + �� = � 

Then 

�� ∙ �� = ������(�������) 

Example 4.1.2

If �� = ����(
�

�
��) and �� = ����(

��

�
��)

�� ∙ �� = �������
�
�

��
�
�

��� = ���� ��(���) 

Division of the exponenti al form s of neutros ophic  complex numbers 

Suppose that �� ,  �� are two neutrosophic complex numbers, where

 �� = ����(�����) and �� = ����(�����) 

�� − �� = �If  

then
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��

��

=
��

��

 ��(�������) 

Remark 4.2.1:

Depending on [25]

� ∙ �̅ = |�|� = �� 

When r =1 we get    => 

�̅ =
1

�
=

��

��(�+�)
= �−�(�+�) 

Then

��

��

=
����(�����)

����(�����)

��

��

=
��

��

 �
��(�����)

��(�����)
� 

��

��

=
��

��

 ���(�����) ∙
1

��(�����)
� 

��

��

=
��

��

 ���(�����) ∙ ���(�����)� 

�� − �� = � 

Then 

��

��

=
��

��

 ��(�������) 

Example 4.2.2

If �� = ����(
�

�
��) and �� = ����(

��

�
��)

��

��

=
��

��

���
�
�

��
�
�

��� =
��

��

 ����
�
�

���

4.3 of the exponenti al form o f a neutr osophic complex numbers The conjugate

Suppose that z is a neutrosophic complex number, where 

Definit ion 4.2
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� = ���(���) 

and define it by the following form: �̅We denote the conjugate of a neutrosophic complex number by  

�̅ = ����(���) 

Example 4.3.1

� = ����
�
�

���

�̅ = � ����
�
�

��� 

Remark  4.4

 If I =0 we will return to the basic formula for the complex number.

� = ���(���) 

� = ���(�) 

Conclusion

In this paper, we defined the exponential form of a neutrosophic complex number and demonstrated this with 
appropriate proof, and many examples were presented to illustrate the concepts introduced in this paper. 

Future Research Direc tions

As a future work, some special cases related to exponential form can be discussed and benefit from this article in many 
engineering sciences, including theories of control and signal processing. 
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Abst ract  

To deal with fluctations in decision-making, fuzzy / neutrosophic numbers are used. The problem having 
more fluctuations are difficult to sovle. Thus it is a dire need to define higher order number, also It is a very curious 
question by researchers all around the world that how octagonal neutrosophic number can be represented and how to 
be graphed? In this research article, the primarily focused on the representation and graphs of octagonal neutrosophic 
number. at last,  a case study is  done using  VIKOR method based on octagonal neutrosophic number. These 
representations will be helpful in multi-criteria decision making problems in the case that there are large number of 
fluctuations. Finally, concluded the present work with future directions. 

Keywords : Neutrosophic Number, Octagonal Number, VIKOR Method, MCDM, Uncertainty, Indeterminacy, 
Accuracy Function, De-neutrosophication. 

1. Intro duction

 The theory of uncertainty plays a very important role to solve different issues like modelling in engineering 
domain. To deal with uncertainty the first concept was given by [1], extended by [2] named as intuitionistic fuzzy 
numbers. In year 1995, Smarandache proposed the idea of neutrosophic set, and the idea was published in 1998 [3], 
they have three distinct logic components i) truthfulness ii) indeterminacy iii) falsity. This idea also has a concept of 
hesitation component the research gets a high impact in different research domain. In neutrosophic, truth 
membership is noted by �, indeterminacy membership is noted by �,  falsity membership is noted by	�, These are all 
independent and their sum is between 0≤ T + I + F ≤ 3. While when talking about intuitionistic fuzzy sets, 
uncertainty depends on the degree of membership and non-membership, but in neutrosophic sets then indeterminacy 
factor does not depend on the truth and falsity value. Neutrosophic fuzzy number can describe about the uncertainty, 
falsity and hesitation information of real-life problem.   

Researchers from different fields developed triangular, trapezoidal and pentagonal neutrosophic numbers, 
and presented the notions, properties along with applications in different fields [4-6]. The de-neutrosophication 
technique of pentagonal number and its applications are presented by [7-10].  

Scientists from different areas investigated the various properties and fluctuations of neutrosophic numbers and 
the properties of correlation between these numbers [6-7]. The applications in decision-making in different fields like 
phone selection [11-12], games prediction [13], supplier selection [14-16], medical [17], personnel selection [18-19]. 

Octagonal Neutrosophic Number: Its Different 
Representations, Properties, Graphs and De-neutrosophication 

with the application of Personnel Selection

Muhammad Saqlain, Florentin Smarandache 

Muhammad Saqlain, Florentin Smarandache (2020). Octagonal Neutrosophic Number: Its Different 
Representations, Properties, Graphs and De-neutrosophication with the application of Personnel Selection. 
International Journal of Neutrosophic Science, 8(1), 19-33; DOI: 10.5281/zenodo.3900315
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Octagonal neutrosophic number and its types are presented by [20] in his recent work. The graphical 
representation and properties are yet to be defined while dealing with the concept of octagonal neutrosophic number 
a decision-maker can solve more fluctuations because they have more edges as compare to pentagonal. Table:1 
represents different numbers and their applicability. 

Edge Para meter Uncerta int y 
Measurem ent 

Hesita tion  
Measurement

Vagueness  
Measuremen t 

Fluctua tions 

Cri sp number       * *          * *   

Fuzzy number determinable  *  *   *  

Intui tionistic Fuzzy 
number  

determinable determinable        * *         

Neutro sophic 
number 

determinable determinable determinable determinable 

Table 1: Fuzzy numbers, their extensions and applicability 

1.1 Motivation 

From the literature, it is found that octagonal neutrosophic numbers (ONN) their notations, graphs and 
properties are not yet defined. Since it is not yet defined so also it will be a question that how and where it can be 
applied? For this purpose, is de-neutrosophication important?  How should we define membership, indeterminacy and 
non-membership functions? From this point of view ONN is a good choice for a decision maker in a practical scenario. 

1.2 Novelties  

The work contributed in this research is; 

 Membership, Non-membership and Indeterminacy functions
 Graphical Representation of ONN.
 De-neutrosophication technique of ONN.
 Case study of personnel selection having octagonal fluctuations.

1.3 Struc ture o f Paper 

The article is structured as follows as shown in the Figure 1: 

Figure 1: Pictorial view of the structure of the article 

•Introduction

Section 1

•Preliminaries 

Section 2

•Octagonal 
Neutrosophic 

Number, 
Representation 
and Properties

Section 3

•Graph of
Octagonal 

Neutrosophic 
Number

Section 4

•De-
neutrsophication 

of ONN into 
Neutrosophic 
Fuzzy Number

Section 5

•Case Study of 
Candidate 
Selection

Section 6

•Conclusion

Section 7
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2. Pre liminar ies

Definit ion 2.1: Fuzzy Number [1]

A fuzzy number is generalized form of a real number. It doesn't represent a single value, instead a group of values, 
where each entity has its membership value between [0, 1]. Fuzzy number �̅  is a fuzzy set in R if it satisfies the given 
conditions. 

 ∃ relatively one � ∈ 	� with ��̅ (y) = 1.
 ��̅ (y)  is piecewise continuous.
 �̅ should be convex and normal.

Definit ion 2.2: Neutroso phic Fuzzy Number  [3] 

Let U be a universe of discourse then the neutrosophic set A is an object having the form  
A = {< x: T� (�), I�(�), F� (�),	>; x ∈ U} 
where the functions T,	I,	F : U→ [0,1] define respectively the degree of membership, the degree of indeterminacy, and 
the degree of non-membership of the element x ∈ X to the set A with the condition. 0 ≤T� (�) +	 I� (�) + F� (�)	 ≤ 
3.    
Definit ion 2.3: Accura cy Fun ction [21] 

Accuracy function is used to convert neutrosophic number NFN into fuzzy number (De-neutrosophication using ��).  
A(F) = {	� =

[��������]	

�
	}  

�� represents the De-neutrosophication of neutrosophic number into fuzzy number. 

Definit ion 2.4:  Pent agonal Neutro sophic Numb er [6] 

 Pentagonal Neutrosophic Number PNN is defined as, 

��� = 〈[(	Ω , �, ᶓ, ⱴ, ε):Ө], [(Ω�, �	�, ᶓ�, ⱴ�, ε�):Ψ ], [(Ω�, �	�, ᶓ�, ⱴ�, ε�):� ]	〉 

Where Ө,	Ψ  ,	�  ∈ [0,1]. 

The truth membership function (Ө): ℝ  → [	0, б],  

the indeterminacy membership function (Ψ ):.  → [ᵹ	,1],  

and the falsity membership function ( � ):ℝ→ [ � 		,1]. 

3. Octag onal Neutros ophic Number [ONN] Repres enta tion and Prope rt ies

In this section, we define ONN, representations and properties along with suitable examples. 

Definit ion 3.1: Side Conditions of Octagona l Neutro sophic Numb er [ONN] 

An Octagonal Neutrosophic Number denoted by; 

	��  〈[(	Ω , �, ᶓ, ⱴ, ε, � , ό, з):Ө], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):Ψ ], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):� ]	〉	should satisfy the 
following conditions: 

Condi tion 1:  

1. Өŝ: truth membership function (Өŝ): ℝ→ [	0,1],
2. Ψŝ: indeterminacy membership function (Ψŝ):ℝ→ [ᵹ	,1],
3. � ŝ:	falsity membership function (� ŝ):ℝ→ [ � 		,1].
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Condi tion 2:  

1. Өŝ: truth membership function is strictly non-decreasing continuous function on the intervals [Ω , ε].
2. Ψŝ: indeterminacy membership function is strictly non-decreasing continuous function on the intervals

[Ω�, ε�].
3. � ŝ:	falsity membership function is strictly non-decreasing continuous function on the intervals [Ω�, ε�].

Condi tion 3:  

1. Өŝ: truth membership function is strictly non-increasing continuous function on the intervals [ε, з].
2. Ψŝ: indeterminacy membership function is strictly non-increasing continuous function on the intervals

[ε�, з�].
3. � ŝ:	falsity membership function is strictly non-increasing continuous function on the intervals [ε�, з�].

Definit ion 3.2 : Octagonal Neutro sophic Number [ ONN] A Neutrosophic Number denoted by	��  is defined as, 

��=〈[(	Ω , �, ᶓ, ⱴ, ε, � , ό, з):Ө], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):Ψ ], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):� ]	〉 

Where Ө,	Ψ  ,	�  ∈ [0,1].  

The truth membership function (Өŝ): ℝ→ [	0,1],  

the indeterminacy membership function (Ψŝ):ℝ→ [ᵹ	,1],  

and the falsity membership function ( � ŝ):ℝ→ [ � 		,1] are given as: 

Өŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
Өŝ�(x)	 	Ω ≤ � < �	

Өŝ�(x)	 	� ≤ 	� < ᶓ

Өŝ�(x)	 	ᶓ≤ 	� < ⱴ

Өŝ�(x)	 	ⱴ ≤ 	� < ε
б	 	� = ε

Өŝ�(x)	 	ε≤ 	� < �

Өŝ�(x)	 � ≤ 	� < ό

Өŝ�(x)	 	ό ≤ 	� < з
0	 	��ℎ������	

Ψŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
Ψŝ�(x)	 	Ω� ≤ � < �	�

Ψ ŝ�(x)	 	�	� ≤ 	� < ᶓ�

Ψ ŝ�(x)	 	ᶓ� ≤ 	� < ⱴ�

Ψŝ�(x)	 	ⱴ� ≤ 	� < ε�

ᵹ	 	� = ε�

Ψŝ�(x)	 	ε� ≤ 	� < � �

Ψ ŝ�(x)	 � � ≤ 	� < 	 ό�

Ψŝ�(x)	 	ό� ≤ 	� < з�

1	 	��ℎ������	
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� ŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
� ŝ�(x)	 	Ω� ≤ � < �	�

� ŝ�(x)	 	�	� ≤ 	� < ᶓ�

� ŝ�(x)	 	ᶓ� ≤ 	� < ⱴ�

� ŝ�(x)	 	ⱴ� ≤ 	� < ε�

� 	� = ε�

� ŝ�(x)	 	ε� ≤ 	� < � �

� ŝ�(x)	 � � ≤ 	� < 	ό�

� ŝ�(x)	 	ό� ≤ 	� < з�

1	 	��ℎ������	

Where ��=〈[(	Ω < � < ᶓ< ⱴ < ε< � < ό < з):Ө], ��Ω1 < �	1 < ᶓ1 < ⱴ1 < ε1 < � 1 < ό1 < з1�:Ψ �, [�Ω2 <

�	2 < ᶓ2 < ⱴ2 < ε2 < � 2 < ό2 < з2�:� ]	〉 

4. Gra phical Repres enta tion of Octa gonal Neutroso phic Number [O NN]

In this section, graphs of truthiness, indeterminacy and falsity function are presented. 

Definit ion 4.1: Octagonal Neutro sophic Number [ONN] 

Өŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

Өŝ�(0)			 		0.1 ≤ � < 0.2	

Өŝ�(0)		 			0.2 ≤ 	� < 0.3

Өŝ�(0.1)	 		0.3 ≤ 	� < 0.4

Өŝ�(0.1)			 		0.4 ≤ 	� < 0.5
1		 		� = 0.5

Өŝ�(1)		 			0.5 ≤ 	� < 0.6

Өŝ�(0.1)	 		0.6 ≤ 	� < o. 7

Өŝ�(0.1)	 		0.7 ≤ 	� < 0.8
0		 		��ℎ������	

Ψ ŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
Ψŝ�(1)		 	0.1 ≤ � < 0.2

Ψ ŝ�(1)			 		0.2 ≤ 	� < 0.3

Ψ ŝ�(0.9)		 		0.3 ≤ 	� < 0.4

Ψŝ�(0.9)	 		0.4 ≤ 	� < 0.5
0		 		� = 0.5

Ψ ŝ�(0)			 		0.5 ≤ 	� < 0.6
Ψŝ�(0.9)			 		0.6 ≤ 	� < o. 7

Ψŝ�(0.9)	 		0.7 ≤ 	� < 0.8
1		 		��ℎ������	

� ŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

� ŝ�(1)		 		0.1 ≤ � < 0.2

� ŝ�(1)		 		0.2 ≤ 	� < 0.3

� ŝ�(0.9)			 		0.3 ≤ 	� < 0.4

� ŝ�(0.9)	 		0.4 ≤ 	� < 0.5
0		 		� = 0.5

� ŝ�(0)		 	0.5 ≤ 	� < 0.6
� ŝ�(0.9)	 			0.6 ≤ 	� < o. 7

� ŝ�(0.9)	 		0.7 ≤ 	� < 0.8
1			 		��ℎ������	
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4.1 Graphical Representation of Membership, Non-membership, Indeterminacy and ONN 

Figure 2: Graphical representation of the truthiness of ONN 

Figure 3: Graphical representation of the Falsity of ONN 
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Figure 4: Graphical representation of the Indeterminacy of ONN 

Figure 5: Graphical representation of the Octagonal Neutrosophic Number 
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5. Accura cy Function for De-neutro sophication of Octagonal Neutrosophic Number ( ONN)

5.1 De-neut ros ophicati on of ONN into  Neutroso phic Number

On the way of development of De-neutrosophication technique, we can generate results into neutrosophic number 
according to the result of octagonal neutrosophic number and its membership functions. 

�����=(����ᶓ�ⱴ���� �ό�з
�

), 

����� = (
����	��ᶓ��ⱴ������ ��ό��з�

�
), 

����� = (�
���	��ᶓ��ⱴ������ ��ό��з�

�
)  

����
= �

Ω + � + ᶓ+ ⱴ+ ε+ � , ό, з

�
	,
Ω� + �	� + ᶓ� + ⱴ� + ε� + � � + ό� + з�

�
,
Ω� + �	� + ᶓ� + ⱴ� + ε� + � � + ό� + з�

�
� 

����=�
����+�

����+�
����

�
 , 

 �����  represents the de-neutrosophication of trueness of neutrosophic octagonal number into neutrosophic.
 �����  represents the de-neutrosophication of indeterminacy of neutrosophic octagonal number into

neutrosophic.
 �����  represents the de-neutrosophication of falsity of neutrosophic octagonal number into neutrosophic.
 ����

 represents the de-neutrosophication of octagonal number into neutrosophic number.

Exam ple 1:  In Table: 3 five octagonal neutrosophic numbers ONN are defuzzified into Neutrosophic Number. 

Octagonal Neutrosophic Number ���� 
1 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8;0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 

0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 
(0.45,0.55,0.5375) 

2 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9;0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.55,0.5375,0.55) 

3 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9;0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.4625,0.45,0.525) 

4 (0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.45,0.5375,0.55) 

5 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9) 

(0.55,0.45,0.4625) 

Table 2: De-neutrosophication of ONN into Neutrosophic number using Accuracy Function. 

5.2 De-neut ros ophicati on of Neutro sophic Number 

On the way of development of de-Neutrosophication technique, we can generate results into fuzzy number according 
to the result of neutrosophic number. 

����=�
������

������
����

�
  ,

���� represents the de-neutrosophication of octagonal number into fuzzy number. 

Example 2:  In Table: 3 five octagonal neutrosophic numbers are defuzzified into Fuzzy. 
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Octagonal  Neutrosophic Number ���� ���� 
1 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8;0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 

0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 
(0.45,0.55,0.5375) 0.5125 

2 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9;0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.55,0.5375,0.55) 0.54583 

3 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9;0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.4625,0.45,0.525) 0.47916 

4 (0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.45,0.5375,0.55) 0.5125 

5 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9) 

(0.55,0.45,0.4625) 0.4875 

Table 3: De-neutrosophication of ONN using Accuracy Function. 

6. Case Stud y

To demonstrate the; 

 Feasibility
 Productiveness

of the proposed method, here is the most useful real-life candidate selection problem is presented. 

6.1 Problem Formul ation 

Suppose we have three candidates which have different degree, experience and number of publications, the thing 
which matter the most to select one which have more potential to deal with situation. The potential of person depends 
upon degree, experience and number of publications they have. To improve the competitiveness capability, the best 
selection plays an important role, and to select the best one. Due to octagonal we can deal with more fluctuations. The 
background of formal education comparison also necessary. Same case for experience because it illustrates the 
personality and also mention that person is capable to handle the circumstances. Same as publications is also important 
for selection. With the concept of octagonal we have more expanse to deal with more edges. Suppose we are talking 
about degree we can mention his all necessary degrees with grades.  

6.2 Parame ters  

Selection is a complex issue, to resolve this problem criteria and alternative plays an important role. Following criteria 
and alternatives are considered in this problem formulation. 

6.2.1  Alter natives 

Candidates are considered as the set of alternatives represented with �� =	< �,�, � > 

6.2.2. Crite ria  

Following three criteria are considered for the selection 

 Degree
 Experience
 Publications

6.3 Assumptions

The decision makers {Ɗ1, Ɗ2, Ɗ3, Ɗ4, Ɗ5, Ɗ�, Ɗ�, Ɗ�} will assign ONN, according to his own interest, knowledge 
and experience, to the above-mentioned criteria and alternatives. 
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o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate �.

Sr #  No Cri ter ia Octa gonal Neutros ophic Number  (ONN) 

1 Degree < (0.72,0.35,0.71,0.77,0.41,0.73,0.77,0.81), (0.93,0.83,0.93,0.88	,0.94,0.99,0.96,0.90), 
(0.86,0.95,0.99,0.97,0.94,0.93,0.95,0.91) > 

2 Experience < (0.75,0.65,0.96,0.54,0.73,0.65,0.83,0.56), (0.75,0.45,0.95,0.38,0.68,0.79,0.57,0.13),  
(0.36,0.59,0.68,0.79,0.47,0.36,0.47,0.95)	> 

3 Publications < (0.74,0.73,0.64,0.75,0.96,0.34,0.85,0.89), (0..35,0.46,0.58,0.79,0.85,0.71,0.64,0.96),  
  (0.84,0.73,0.85,0.75,0.98,0.84,0.66,0.94)>   

Table 4(a): ONN by decision makers to each criterion to the candidate �. 

o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate �.

Sr #  No Cri ter ia Octa gonal Neutros ophic Number (ONN) 
1 Degree < (0.73,0.73,0.94,0.85,0.96,0.74,0.95,0.89), (0.33,0.46,0.59,0.79	,0.85,0.79,0.74,0.86), 

(0.48,0.33,0.55,0.75,0.68,0.64,0.36,0.70) > 

2 Experience < (0.75,0.55,0.96,0.54,0.93,0.65,0.73,0.56), (0.93,0.83,0.83,0.58,0.84,0.69,0.76,0.80),  
(0.66,0.59,0.68,0.99,0.47,0.46,0.87,0.95)	> 

3 Publications < (0.94,0.93,0.74,0.95,0.96,0.94,0.85,0.99), (0.28,0.26,0.58,0.35,0.45,0.61,0.64,0.36),  
  (0.28,0.23, 0.25, 0.45, 0.68, 0.44, 0.26, 0.34)>  

Table 4(b): ONN by decision makers to each criterion to the candidate	�. 

o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate 	�.

Sr #  No Cri ter ia Octa gonal Neutros ophic Number (ONN) 

1 Degree < (0.73,0.83,0.93,0.56,0.95,0.95,0.73,0.88), (0.76,0.95,0.69,0.94,0.94,0.63,0.55,0.61), 
(0.74,0.73,0.85,0.75,0.48,0.34,0.66,0.74) > 

2 Experience < (0.73,0.65,0.96,0.54,0.63,0.65,0.81,0.59), (0.75,0.45,0.85,0.38,0.78,0.79,0.67,0.13),  
(0.38,0.59,0.68,0.79,0.97,0.36,0.67,0.85)	> 

3 Publications < (0.74,0.73,0.64,0.75,0.96,0.34,0.85,0.89), (0.35,0.44,0.58,0.79,0.75,0.71,0.54,0.96),  
  (0.74,0.63,0.35,0.35,0.98,0.34,0.28,0.64)>   

Table 4(c): ONN by decision makers to each criterion to the candidate 	�. 

6.4 VIKOR M ethod  

Vikor method is best for solve the problem of multi criteria decision making.it is used to drive on ranking and for 
selection of a set of possibilities and solve consolation solution for a problem with aggressive criteria. Opricovic [12] 
introduced the idea of Vikor method in 1998. It is related with both positive and the negative ideal solution, it can 
change the variable into two or more alternative variables to find out the best compromise solution. By the help of 
Vikor method we can put new ideas for group decision making problem under the certain criteria.  

Vikor M ethod consist of following steps; 

Step 1 .  Normalization of decision matrix and weight assigning. 

Step 2.  Now we will calculate the group unity value ���=[���, ���] and the individual regard value ���=[���, ���], where; 

��
� = � ��

��
����

�

��
����

�

.

�

 ,  ��� = � ��

��
����

�

��
����

�
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and 

��
�= �� ��

���
����

�

��
����

��������
���   , ���= �� ��

���
����

�

��
����

��������
���  

Step 3 . Here we will Calculate the comprehensive sorting index ���=[��
�,��

�], where 

���=σ �����
∗

��	��∗
+(1- σ)	 �

����
∗

��	��∗

Now by using algorithm of interval fuzzy number: 

��
�=σ��

���∗

��	��∗
+(1- σ)	 ��

���∗

��	��∗

and 

��
�=σ��

���∗

��	��∗
+(1- σ)	 ��

���∗

��	��∗

Here �∗= 	�			
��� ��

� , ��= 	�			
��� ��

�  , �∗= 	�			
��� ��

� , �∗= 	�			
��� ��

�  . Parameter σ is called decision mechanism index, and it lies 
between [0,1]. If σ >0.5, it is the decision making in the light of maximum group benefit (i.e., if σ is big, group utility 
is emphasized); if σ=0.5, here decision making in accordance with compromise. If σ <0.5, it is the decision making in 
the light of minimum individual regret value. In VIKOR, we take σ =0.5 generally, that is called compromise makes 
maximum group benefit and minimum individual regret value. 

Step 4 .   The rank of fuzzy numbers is ��� , ���	���	���. 

Since ���  , ���	���	���  are all still individual numbers, now to compare the two-interval value we use the possible degree 
theory. 

Here number of interval number Α��= [Α��  , Α��], (i=1,2, 3,…,m), the comparison steps are given of these interval 
numbers; 

(a) For any two intervals numbers Α��=[Α��  , Α��] and Α��=[Α��  , Α��], now we will calculate the possible degree
���=	�(Α�� ≥ Α��) and now we will construct the possible degree matrix   � = (���)�×�, and the product by
comparison of any two interval numbers Α��=[Α��  , Α��] and Α��=[Α��  , Α��], where i,j=1,2,3,….,m. Xu [18]
proved that matrix  � = (���)�×� satisfies (��� ≥ 0, ��� + (���=1,	��� = 0.5 (i,j=1,2,3,…,m)

The matrix � = (���)�×�  is called the fuzzy complementary judgement matrix, and we can rank the alternatives as 
follow. 

(b) The rank of interval numbers Α��= [Α��  , Α��], (i=1,2,3,,m)
Ranking formula is given below

  �� =
�

�(���)
�� ���

�

���
+

�

�
− 1� ,i=1,2,3,…,m 

The smaller   �� , is the smaller Α��= [Α��  , Α��] is. 

Step 5.  Now we will rank the alternatives based on ���  , ���	���	���(i=1,2,3,…,m).here the smaller of interval number  
��� is, and the better alternative �� is. propose as a min {��� ∣ i=1,2,3,…,m} if these two condition are satisfied[16]: 
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(i) � (Α(�))−� (Α(�))≥ 1∕ (	� − 1), where Α(�) called the second alternative with second position in the
ranking list by ℛ	; �	is the number of alternatives.

(ii) Α(�)alternative also must be best ranked by {����� ���⁄ ℛ� ∣ I =1,2, 3…m}.

Figure 6: Flowchart of VIKOR algorithm 

6.5 Numeri cal Analysi s 

Suppose that U is the universal set. Let HR which is responsible for recruiting and interviewing, and wants to hire a 
new candidate in company. Three candidates �� =	< �,�, � > apply for this opportunity, which have different 
degrees, experiences and publications. On the base of choice parameters {ℂ� = Dergre, ℂ� = Experience, ℂ� =

Publication} we apply the algorithm to find the potential candidate.     

Step 1 .  Associated Decision Matrix 

De-Neutrosophication of Octagonal Neutrosophic number by, 

�����=(����ᶓ�ⱴ�����ό�з
�

), ����� = (
����	��ᶓ��ⱴ��������ό��з�

�
), ����� = (�

���	��ᶓ��ⱴ��������ό��з�

�
)    

The associated neutrosophic matrix is, 

� = �

(0.65,0.92,0.93)		 		(0.84,0.67,0.56)	 	(0.82,0.88,0.66)

(0.70,0.59,0.58)		 		(0.70,0.78,0.70)	 	(0.69,0.60,0.66)

(0.86,0.66,0.82	)	 	(0.91,0.44,0.36)		 		(0.73,0.64,0.49)

� 

The associated fuzzy matrix is, 

Ranking of 
Alternatives

Rank of Fuzzy 
Number

Comprensive 
Sorting Index

Group Unity 
Value

Normalization

Florentin Smarandache (author and editor) Collected Papers, XIII

145



� = �

(0.8333)	 	(0.6900)	 	(0.7866)
(0.6233)	 	(0.7266)	 	(0.6500)

(0.7800	)	 	(0.5700)	 	(0.6200)

� 

After calculating normalized decision matrix, we determine the positive ideal solution as well as negative ideal 
solution   

��={(0.65,0.92,0.93)}		  ��={(0.91,0.44,0.36)} 

Step 2 .   Calculate the group utility value as ���= [���, ���] and ���= [���, ���] 

���= [0.2769,0.2000]   ��� =[0.1076,0.3846]  ��� =[0.4230,0.2230] 

And ��� =[0.1461,0.1615]  ��� =[0.0384,0.2000]  ���= [0.2000,0.1307] 

Step 3 .  Now we will calculate the comprehensive sorting index ���= [��
�,��

�] 

W1 = 0.0506 

W2 = 0.0275 

W3 = 0.0163 

Step 4 .  Calcul ation of �� ,��	���	�� 

S1 = 0.2767 H1 = 0.1088 W1 = 0.0506 

S2 = 0.2394 H2 = 0.1165 W2 = 0.0275 

S3 = 0.2530 H3 = 0.1066 W3 = 0.0163 

Step 5 .  Orderi ng of �� ,��	���	�� 

Order the alternatives, listed by the values Si; Hi and Wi: 

S2 = 0.2394     H3 = 0.1066     W3 = 0.0163 

S3 = 0.2530     H1 = 0.1088     W2 = 0.0275 

S1 = 0.2767     H2 = 0.1165      W1 = 0.0506 

According to the ranking S3 is the potential candidate for the company. 

7. Conclusion

The concept of octagonal neutrosophic number has sufficient scope of utilization in different studies in various 
domain. In this paper, we proposed a new concept of octagonal neutrosophic number ONN, notion and graphical 
representation. The de-neutrosophication technique is carried out by implementing accuracy function and following 
points were concluded.  

 The octagonal neutrosophic number, function and graph add a new tool for modeling different aspects of
daily life issues, science and environment.

 Since this study has not yet been studied yet, the comparative study cannot be done with the

existing methods.
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 Detailed illustrations of truthiness, indeterminacy, falsity and de-neutrosophication techniques will provide
all the required information in one platform to model any real-world problem.

In forthcoming work, authors will define the types Symmetric, Asymmetric, along with their �-cuts. Proposed work 
can be used to model different dynamics, of applied sciences, such as MCDM and networking problems, etc. 
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NeutroAlgebra & AntiAlgebra vs. Classical Algebra
Florentin Smarandache

..

Abstract. NeutroAlgebra & AntiAlgebra vs. Classical Algebra is a like Realism vs. Idealism. Classical Algebra does not leave
room for partially true axioms nor partially well-defined operations. Our world is full of indeterminate (unclear, conflicting,
unknown, etc.) data.

This paper is a review of the emerging, development, and applications of the NeutroAlgebra and AntiAlgebra [2019-2022]
as generalizations and alternatives of classical algebras.

Keywords and Phrases: Classical Algebra, NeutroAlgebra, AntiAlgebra, NeutroOperation, AntiOperation, NeutroAxiom,
AntiAxiom

1 Introduction

The Classical Algebraic Structures were generalized in 2019 by Smarandache [16] to NeutroAlgebraic Struc-
tures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and
partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose
operations and axioms are totally false} and on 2020 he continued to develop them [18, 20, 17].

The NeutroAlgebras & AntiAlgebras form a new field of research, which is inspired by our real world.
Many researchers from various countries around the world have contributed to this new field, such as F.
Smarandache, A.A.A. Agboola, A. Rezaei, M. Hamidi, M.A. Ibrahim, E.O. Adeleke, H.S. Kim, E. Mo-
hammadzadeh, P.K. Singh, D.S. Jimenez, J.A. Valenzuela Mayorga, M.E. Roja Ubilla, N.B. Hernandez, A.
Salama, M. Al-Tahan, B. Davvaz, Y.B. Jun, R.A. Borzooei, S. Broumi, M. Akram, A. Broumand Saeid, S.
Mirvakilii, O. Anis, S. Mirvakili, etc (See [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]).

2 Distinctions between Classical Algebraic Structures vs. NeutroAlge-
bras & AntiAlgebras

In classical algebraic structures, all operations are 100% well-defined, and all axioms are 100% true, but in
real life, in many cases, these restrictions are too harsh since in our world we have things that only partially
verify some operations or some laws.

Using the process of NeutroSophication of a classical algebraic structure we produce a NeutroAlgebra,
while the process of AntiSophication of a classical algebraic structure produces an AntiAlgebra.

..
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3 The neutrosophic triplet (Operation, NeutroOperation, AntiOpera-
tion)

When we define an operation on a given set, it does not automatically mean that the operation is well-defined.
There are three possibilities:

(i) The operation is well-defined (also called inner-defined) for all set’s elements [degree of truth T = 1] (as
in classical algebraic structures; this is a classical Operation). Neutrosophically we write: Operation(1, 0, 0).

(ii) The operation if well-defined for some elements [degree of truth T ], indeterminate for other ele-
ments [degree of indeterminacy I], and outer-defined for the other elements [degree of falsehood F ], where
(T, I, F ) is different from (1, 0, 0) and from (0, 0, 1) (this is a NeutroOperation). Neutrosophically we write:
NeutroOperation(T, I, F ).

(iii) The operation is outer-defined for all set’s elements [degree of falsehood F = 1] (this is an AntiOp-
eration). Neutrosophically we write: AntiOperation(0, 0, 1).

4 The neutrosophic triplet (Axiom, NeutroAxiom, AntiAxiom)

Similarly for an axiom, defined on a given set, endowed with some operation(s). When we define an axiom
on a given set, it does not automatically mean that the axiom is true for all set elements. We have three
possibilities again:

(i) The axiom is true for all set’s elements (totally true) [degree of truth T = 1] (as in classical algebraic
structures; this is a classical Axiom). Neutrosophically we write: Axiom(1, 0, 0).

(ii) The axiom is true for some elements [degree of truth T ], indeterminate for other elements [degree
of indeterminacy I], and false for other elements [degree of falsehood F ], where (T, I, F ) is different from
(1, 0, 0) and from (0, 0, 1) (this is NeutroAxiom). Neutrosophically we write NeutroAxiom(T, I, F ).

(iii) The axiom is false for all set’s elements [degree of falsehood F = 1](this is AntiAxiom). Neutro-
sophically we write AntiAxiom(0, 0, 1).

5 The neutrosophic triplet (Theorem, NeutroTheorem, AntiTheorem)

In any science, a classical Theorem, defined on a given space, is a statement that is 100% true (i.e. true for all
elements of the space). To prove that a classical theorem is false, it is sufficient to get a single counter-example
where the statement is false.

Therefore, the classical sciences do not leave room for the partial truth of a theorem (or a statement).
But, in our world and our everyday life, we have many more examples of statements that are only partially
true, than statements that are totally true. The NeutroTheorem and AntiTheorem are generalizations and
alternatives of the classical Theorem in any science.

Let’s consider a theorem, stated on a given set, endowed with some operation(s). When we construct the
theorem on a given set, it does not automatically mean that the theorem is true for all set elements. We have
three possibilities again:

(i) The theorem is true for all set’s elements [totally true] (as in classical algebraic structures; this is a
classical Theorem). Neutrosophically we write Theorem(1, 0, 0).

(ii) The theorem is true for some elements [degree of truth T ], indeterminate for other elements [degree
of indeterminacy I], and false for the other elements [degree of falsehood F ], where (T, I, F ) is different from
(1, 0, 0) and from (0, 0, 1) (this is a NeutroTheorem). Neutrosophically we write NeutroTheorem(T, I, F ).

(iii) The theorem is false for all set’s elements (this is an AntiTheorem). Neutrosophically we write
AntiTheorem(0, 0, 1).
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And similarly, for (Lemma, NeutroLemma, AntiLemma), (Consequence, NeutroConsequence, AntiCon-
sequence), (Algorithm, NeutroAlgorithm, AntiAlgorithm), (Property, NeutroProperty, AntiProperty), etc.

6 The neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra)

(i) An algebraic structure whose all operations are well-defined and all axioms are totally true is called a
classical Algebraic Structure (or Algebra).

(ii) An algebraic structure that has at least one NeutroOperation or one NeutroAxiom (and no AntiOp-
eration and no AntiAxiom) is called a NeutroAlgebraic Structure (or NeutroAlgebra).

(iii) An algebraic structure that has at least one AntiOperation or one Anti Axiom is called an AntiAl-
gebraic Structure (or AntiAlgebra).

Therefore, a neutrosophic triplet is formed: ¡Algebra, NeutroAlgebra, AntiAlgebra¿, where Algebra can
be any classical algebraic structure, such as a groupoid, semigroup, monoid, group, commutative group, ring,
field, vector space, BCK-Algebra, BCI-Algebra, etc.

7 Theorems and Examples

Theorem 7.1. If a Classical Statement (theorem, lemma, congruence, property, proposition, equality, in-
equality, formula, algorithm, etc.) is totally true in a classical Algebra, then the same Statement in a
NeutroAlgebra maybe be:

• totally true (degree of truth T = 1, degree of indeterminacy I = 0, and degree of falsehood F = 0);

• partially true (degree of truth T ), if partial indeterminate (degree of indeterminacy I), and partial

falsehood (degree of falsehood F ), where (T, I, F ) /∈ {(1, 0, 0), (0, 0, 1)}.

• totally false (degree of falsehood F = 1 , degree of truth T = 0, and degree of indeterminacy I = 0).

Example 7.2. (Examples of Classical Algebra, NeutroAlgebra, and AntiAlgebra)

Let S = {a, b, c} be a set, and a binary law (operation) ∗ defined on S:

∗ : S2 → S.

As in the below Cayley Table:

∗ a b c

a a c a
b a b a
c b c a

Then:

1. (S, ∗) is a Classical Grupoid since the law ∗ is totally (100%) well-defined (classical law), or ∀ x, y ∈
S, x ∗ y ∈ S.

2. (S, ∗) is a NeutroSemigroup, since:

(i) the law ∗ is totally well-defined (classical law);

(ii) the associativity law is a NeutroAssociativity, i.e.
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• partially true, because ∃ a, b, c ∈ S such that

(a ∗ b) ∗ c = c ∗ c = a = a ∗ (b ∗ c) = a ∗ a = a,

the degree of truth T > 0,

• degree of indeterminacy I = 0 since no indeterminacy exists;

• and partially false, because ∃ c, c, c ∈ S such that

(c ∗ c) ∗ c = a ∗ c = a ̸= c ∗ (c ∗ c) = a ∗ a = b,

so degree of falsehood F > 0.

3. (S, ∗) is an AntiCommutative NeutroSemigroup, since:
(i) the law ∗ is totally well-defined (classical law);
(ii) the associativity is a NeutroAssociativity (as proven above);
(iii) the commutativity is an AntiCommutativity, since:

∀ x, y ∈ S, x ∗ y ̸= y ∗ x.

Proof.
a ∗ b = c ̸= a = b ∗ a,
a ∗ c = a ̸= b = c ∗ a,
b ∗ c = a ̸= c = c ∗ b.

□
Theorem 7.3. If a Classical Statement is false in a classical Algebra, then in a NeutroAlgebra it may be:

(i) either a NeutroStatement, i.e. true (T ) for some elements, indeterminate (I) for other elements, and
false (F ) for the others, where (T, I, F ) is different from (1, 0, 0) and from (0, 0, 1);

(ii) or an AntiStatement, i.e. false for the elements.

Theorem 7.4. A Classical Group can be:
(i) either Commutative (the commutative law is true for all elements);
(ii) or NeutroCommutative (the commutative law is true (T ) for some elements, indeterminate (I) for

others, and false (F ) for the other elements where (T, I, F ) is different from (1, 0, 0) and from (0, 0, 1);
(iii) or AntiCommutative (the commutative law is false for all the elements).

Corollary 7.5. The Classical Non-Commutative Group is either NeutroCommutative or AntiCommutative.

Corollary 7.6. The Classical Non-Associative Groupoid is either NeutroAssociative or AntiAssociative.

8 Conclusion

The Classical Structures in science mostly exist in theoretical, abstract, perfect, homogeneous, idealistic
spaces - because in our everyday life almost all structures are NeutroStructures, since they are neither perfect
nor applying to the whole population, and not all elements of the space have the same relations and same
attributes in the same degree (not all elements behave in the same way).

The indeterminacy and partiality, with respect to the space, to their elements, to their relations or their
attributes are not taken into consideration in the Classical Structures. But our Real World is full of structures
with indeterminate (vague, unclear, conflicting, unknown, etc.) data and partialities.

There are exceptions to almost all laws, and the laws are perceived in different degrees by different people
in our every-day life.
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On Fuzzy Soft Matrix Based on Reference Function 

Abstract—In this paper we study fuzzy soft matrix 
based on reference function.Firstly, we define some new 
operations such as fuzzy soft complement matrix and 
trace of fuzzy soft matrix based on reference 
function.Then, we introduced some related properties, 
and some examples are given. Lastly, we define a new 
fuzzy soft matrix decision method based on reference 
function. 

Index Terms—Soft set, fuzzy soft set, fuzzy soft set 
based on reference function, fuzzy soft matrix based on 
reference function. 

I. INTRODUCTION

Fuzzy set theory was proposed by LotfiA.Zadeh[1] in  
1965,where each element ( real valued ) [ 0, 1] had  a 
degree of membership  defined on the universe of 
discourse X, the theory has been found extensive 
application in various field to handle uncertainty. 
Therefore,several researches were conducted on the 
generalization on the notions of fuzzy  sets such as 
intuitionistic fuzzy set proposed by Atanassov[2,3], 
interval valued fuzzy set[5 ]. In the literature we found 
many well –known theories to describe uncertainty: 
rough set theory[6]..etc, but all of these theories have 
their inherit  difficulties as pointed by Molodtsov in his 
pioneer work[7].The concept introduced by Molodtsov is 
called “soft set theory” which is set valued  mapping. 
This new mathematical model is free from the 
difficult ies mentioned above.Since its introduction, the 
concept of soft set has gained considerable attention and 
this concept has resulted in a series of work [8, 9,10,11,12, 13, 

14]. 
Also as we know, matrices play an  important ro le in  

science and technology. However, the classical matrix 
theory sometimes fails to  solve the problems involving 
uncertainties,occurring in an  imprecise environment. In  
[4] Thomason, introduced the fuzzy matrices to represent
fuzzy relat ion in a system based on fuzzy set theory and

discussed about the convergence of powers of fuzzy  
matrix. In  [15,16,17],some important results on determinant 
of a square fuzzy matrices are discussed .Also,Ragab et 
al. [18,19] presented some properties of the min-max 
composition of fuzzy matrices. Later on, several studies 
and some applications of fuzzy  matrices are defined in  
[20,21].

In 2010,Cagmanet al [13] defined soft matrix which is  
representation of soft set, to make operations in 
theoretical studies in soft set more functional. Th is 
representation has several advantages, it‘s easy to store 
and manipulate matrices and hence the soft sets 
represented by them in a computer. 

Recently severalresearch have been studied the 
connection between soft set and soft matrices [ 13,14,22]. 
Later,Maji et al [9 ] introduced the theory of fuzzy soft 
set and applied it to decision making problem. In 2011, 
Yang and C.Ji[22],defined fuzzy soft matrix  (FSM) 
which is very useful in representing and computing the 
data involving fuzzy soft sets. 

The concept of fuzzy set based on reference function 
was first introduced by Baruah[23,24,25] in the following 
manner  -  According  to him, to define  a fuzzy set,  two  
functions  namely  fuzzy  membership function and 
fuzzy reference function  are necessary.  Fuzzy  
membership value is the difference between fuzzy  
membership function and reference function. Fuzzy  
membership function and fuzzy membership value are 
two different things. In [26, 27] M.Dhar applied this 
concept to fuzzy square matrix and developed some 
interesting properties as determinant, trace and so on. 
Thereafter, in  [28], T.J.Neog, D. K.Sutwere extended this 
new concept to soft set theory, introducing a new 
concept called “fuzzy  soft set based on fuzzy reference 
function”. Recently,Neog . T.J, Sut  D. K,M.Bora[29] 
combinedfuzzy soft set based on reference function with 
soft matrices. The paper unfolds as follows. The next  
section briefly  introduces some definit ions related tosoft 
set,fuzzy soft set, and fuzzy soft setbased on reference 
function. Section 3 presents fuzzy soft complement 

Said Broumi, Florentin Smarandache, Mamoni Dhar (2013). On Fuzzy Soft Matrix Based on 
Reference Function. International Journal of Information Engineering and Electronic Business 2, 
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matrix based on reference function. Sect ion 
4presentstrace of fuzzy soft matrix based on reference 
function..Section5presentsnew fuzzy soft matrix theory 
in decision making.Conclusions appear in the last 
section. 

II. PRELIMINARIES

In this section first  we review  some concepts and 
definitions of soft set,fuzzy soft set, and fuzzy soft set 
based on reference functionfrom [9,12,13,29], which will be 
needed in the sequel. 
Remark: 
For the sake of simplicity we adopt the following notation 
of fuzzy soft set based on reference function defined in 
our way as: Fuzzy soft set based on reference =(F, A)rf  

To make the difference between the notation (F, A) 
defined for classical soft set or its variants as fuzzy soft 
set. 

2.1.Definition (Soft Set [13]) 
Suppose that U is an initial universe set and E is a set 

of parameters, let P(U) denotes the power set of U.A 
pair(F,E) is called a soft set over U where F is a mapping 
given by F: E→P(U).Clearly, a soft set is a mapping from 
parameters to P(U),and it is not a set, but a parameterized 
family of subsets of the universe. 

2.2. Example. 
Suppose that U={s1,s2,s3,s4} is a set of students and 

E={e1,e2,e3} is a set of parameters, which stand for 
result, conduct and sports performances respectively. 
Consider the mapping from parameters set E to the set of 
all subsets of power set U.Then soft set (F,E) describes 
the character of the students with respect to the given 
parameters, for finding the best student of an academic 
year. 

(F, E) = {{result = s1, s3, s4} {conduct = s1,s2 } 
{sports performances = s2,s3,s4 }} 

2.3. Definition (FuzzySoft Set [9, 12] ) 
Let U be an initial universe set and E be the set of 

parameters. Let A⊆E .A pair (F,A) is called fuzzy soft set 
over  U where F is a mapping given by F: 
A→Fu ,whereFudenotes the collection of all fuzzy subsets 
of U. 

2.4.Example. 
Consider the example2.2,in soft set(F,E),if s1  is 

medium in studies, we cannot expressed with only the 
two numbers 0 and 1,we can characterize it by a 
membership function  instead of the crisp number 0 and 
1,which associates with each element a real number in the 
interval [0,1].Then fuzzy soft set can describe as  

(F, A)={F(e1) = {(s1,0.9), (s2,0.3), (s3,0.8), (s4,0.9)}, 
F(e2) = {(s1,0.8), (s2,0.9), (s3,0.4), (s4,0.3)}},where 
A={ e1,e2}. 

In the following, Neog et al. [29] showed by an example 

that this definition sometimes gives degenerate cases and 
revised the above definition as follows: 

2.5 .Definition [29] 
Let A (μ1 ,μ2)={x,μ1(x) , μ2(x) ; x ∈ U } and B (μ3 ,μ4) 

={x, μ3(x), μ4(x)  ; x ∈ U } be two fuzzy sets defined 
over the same universe U. 

Then the operations intersection and union are defined 
asA ( μ1 , μ2 ) ⋂  B ( μ3 , μ4 )= {x, 
min(μ1(x),μ3(x)) ,max( μ2(x)  ,μ4(x)) ; x ∈ U } and A 
( μ1 , μ2 ) ⋃  B ( μ3 , μ4 )= {x,  
max(μ1(x) ,μ3(x)) ,min( μ2(x),μ4(x)) ; x ∈ U } 

2.6.Definition [29] 
Let A (𝜇𝜇1 ,𝜇𝜇2)={x, 𝜇𝜇1(𝑥𝑥)  , 𝜇𝜇2(𝑥𝑥) ; x ∈  U } and B 

(𝜇𝜇3,𝜇𝜇4)={x, 𝜇𝜇3(𝑥𝑥) , 𝜇𝜇4(𝑥𝑥) ; x ∈ U } be two fuzzy sets 
defined over the same universe U.To avoid degenerate 
cases we assume that min( 𝜇𝜇1(𝑥𝑥)  , 𝜇𝜇3(𝑥𝑥)  ) ≥  
max( 𝜇𝜇2(𝑥𝑥) ,𝜇𝜇4(𝑥𝑥)) for all x∈ U. 

Then the operations intersection and union are defined 
as A ( μ1 , μ2 ) ⋂  B ( μ3 , μ4 )= {x,  
min(μ1(x),μ3(x)) ,max( μ2(x) ,μ4(x)) ; x ∈ U } and A 
( 𝜇𝜇1 , 𝜇𝜇2 ) ⋃  B ( 𝜇𝜇3 , 𝜇𝜇4 )= {x,  
max(𝜇𝜇1(𝑥𝑥) ,𝜇𝜇3(𝑥𝑥)) ,min( 𝜇𝜇2(𝑥𝑥) ,𝜇𝜇4(𝑥𝑥)) ; x ∈ U } 

2.7. Definition[29] 
For usual fuzzy setsA (𝜇𝜇, 0)={x, 𝜇𝜇(𝑥𝑥),0 ; x ∈ U }and  

B (1, 𝜇𝜇)={x, 1 , 𝜇𝜇(𝑥𝑥) ; x ∈ U } defined over the same 
universe U, we have A ( 𝜇𝜇 ,   0 ) ⋂  B (1, 𝜇𝜇 )= {x, 
min((𝑥𝑥), 1 ) ,max(0 ,𝜇𝜇(𝑥𝑥)) ; x ∈ U }= {x, 𝜇𝜇(𝑥𝑥), 𝜇𝜇(𝑥𝑥) ; x 
∈ U }, which is nothing but the null set𝜑𝜑 and A (𝜇𝜇, 0 ) ⋃ 
B (1, 𝜇𝜇)= {x, max(𝜇𝜇(𝑥𝑥), 1) ,min( 0, 𝜇𝜇(𝑥𝑥)) ; x ∈ U } = 
{x,1, 0 ; x ∈ U }, which is nothing but the universal set U. 

This means if we define a fuzzy set(A (𝜇𝜇 , 0) )𝒄𝒄 ={x, 
1, 𝜇𝜇(𝑥𝑥)  ; x ∈  U } it is nothing but the complement  
ofA (𝜇𝜇, 0)={x, 𝜇𝜇(𝑥𝑥) ,0 ; x ∈ U }. 

2.8. Definition[29] 
Let A (𝜇𝜇1,𝜇𝜇2)={x,   𝜇𝜇1(𝑥𝑥) , 𝜇𝜇2(𝑥𝑥) ; x ∈ U } and B 

(𝜇𝜇3,𝜇𝜇4)={x,   𝜇𝜇3(𝑥𝑥) , 𝜇𝜇4(𝑥𝑥) ; x ∈ U } be two fuzzy sets 
defined over the same universe U.The fuzzy setA 
(𝜇𝜇1,𝜇𝜇2)is a subset of the fuzzy set B (𝜇𝜇3,𝜇𝜇4)if  for all x ∈ 
U ,  𝜇𝜇1(𝑥𝑥) ≤ 𝜇𝜇3(𝑥𝑥) and    𝜇𝜇4(𝑥𝑥) ≤ 𝜇𝜇2(𝑥𝑥). 

Two fuzzy setsC={x,  𝜇𝜇𝐶𝐶(𝑥𝑥)x ∈ U }and D={x,  𝜇𝜇𝐷𝐷(𝑥𝑥); 
x ∈  U } in the usual definition would be expressed 
asC(𝜇𝜇𝐶𝐶, 0)={x,  𝜇𝜇𝐶𝐶(𝑥𝑥) , 0; x ∈ U }and D (𝜇𝜇𝐷𝐷, 0) ={x,  
𝜇𝜇𝐷𝐷(𝑥𝑥),0; x ∈ U } 

Accordingly, we have C(𝜇𝜇𝐶𝐶, 0) ⊆ D(𝜇𝜇𝐷𝐷, 0) if for all 
x ∈ U, 𝜇𝜇𝐶𝐶(𝑥𝑥) ≤ 𝜇𝜇𝐷𝐷(𝑥𝑥) , which can be obtained by 
putting𝜇𝜇2(𝑥𝑥) = 𝜇𝜇4(𝑥𝑥)=0 in the new definition. 

2.9 .Defintion [29] (Fuzzy soft matrices (FSMs) based on 
reference function) 

Let U be an initial universe, E be the set of parameters 
and A ⊆ E. Let (𝑓𝑓𝐴𝐴  , E) be fuzzy soft set (FS) over U. 
Then a subset of U ×E is uniquely defined by  𝑅𝑅𝐴𝐴   = {(u, 
e); e ∈  A, u∈ 𝑓𝑓𝐴𝐴(𝑒𝑒)} which is called a relation form of 
(𝑓𝑓𝐴𝐴  , E). 
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2.10. Example 
Assume that U ={u1  ,u2  ,u3  ,u4  } is a universal setand 

E ={ e1  , e ,e3  ,e4  ,e5  }  be the set of parameters and 
A={e1  ,e2  ,e3  } ⊆ E 
and 

𝑓𝑓𝐴𝐴(𝑒𝑒1) ={ 𝑢𝑢1 (0.7 , 0)⁄ , 𝑢𝑢2 (0.1 , 0)⁄ , 𝑢𝑢3 (0.2 , 0)⁄  ,
𝑢𝑢4 (0.6 ,0)⁄  } 
𝑓𝑓𝐴𝐴 (𝑒𝑒2 ) ={ 𝑢𝑢1 (0.8 ,0)⁄  , 𝑢𝑢2 (0.6 , 0)⁄  , 𝑢𝑢3 (0.1 , 0)⁄  ,
𝑢𝑢4 (0.5 , 0)⁄  } 
𝑓𝑓𝐴𝐴 (𝑒𝑒3 ) ={ 𝑢𝑢1 (0.1 ,0)⁄ , 𝑢𝑢2 (0.2 ,0)⁄  , 𝑢𝑢3 (0.7 , 0)⁄  ,
𝑢𝑢4 (0.3 , 0)⁄  } 

Then the fuzzy soft set (𝑓𝑓𝐴𝐴  , E) is a parameterized 
family {𝑓𝑓𝐴𝐴 (𝑒𝑒1) , 𝑓𝑓𝐴𝐴 (𝑒𝑒2)  ,𝑓𝑓𝐴𝐴 (𝑒𝑒3 ) } of all fuzzy soft sets 
over U. Then the relation form of (𝑓𝑓𝐴𝐴  , E) is written as 

TABLE 1.The relation form of (𝑓𝑓𝐴𝐴  , E) 

Hence,the fuzzy soft matrix representing this fuzzy 
soft set would  be represented as 

A =�
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎,𝟎𝟎)
(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎,𝟎𝟎)
(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎,𝟎𝟎)

�

2.11. Definition[29 ] 
We define the membership value matrix corresponding 

to the matrix A as MV(A) =[ 𝛿𝛿𝑗𝑗𝑗𝑗 (𝑐𝑐𝑖𝑖 )] Where 𝛿𝛿(𝐴𝐴)𝑖𝑖𝑖𝑖  = 
𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖)- 𝜇𝜇𝑗𝑗2(𝑐𝑐𝑖𝑖)  i= 1,2,3,…,m and j =1,2,3…..,n  ,where 
𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖)  and 𝜇𝜇𝑗𝑗2(𝑐𝑐𝑖𝑖) represent the fuzzy membership 
function and fuzzy reference function respectively of𝑐𝑐𝑖𝑖  in 
the fuzzy set F( 𝑒𝑒𝑗𝑗 ). 

2.12. Definition [29] 
Let the fuzzy soft matrices corresponding to the fuzzy 

soft sets (F,E), and (G,E) beA=[ aij ]  ∈ FSMm ×n  , 
B=[ bij ]where aij = ( μj1(ci ) , μj2(ci ) )  and  bij  
=(χj1(ci ) ,χj2(ci )  ),i =1,2,3,…, m ;j =1,2,3,…,n ;Then  
Aand  Bare called fuzzy soft equal  matrices denoted 
byA=B, if 𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖) = 𝜒𝜒𝑗𝑗1(𝑐𝑐𝑖𝑖) and 𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖) = 𝜒𝜒𝑗𝑗1(𝑐𝑐𝑖𝑖)  for all 
i,j. 

In [13], the ‘add it ion  (+)’ operation  between two  
fuzzy  soft matrices is defined  as fo llows 

2.13. Definition [29] 
Let U={𝑐𝑐1 ,𝑐𝑐2 ,𝑐𝑐3 ,… . . , 𝑐𝑐𝑚𝑚 } be the un iversal set and  

Ebe the set  of parameters g iven  by  
E={𝑒𝑒1,𝑐𝑐2 ,𝑒𝑒3 ,… . . , 𝑒𝑒𝑛𝑛}.Let  the set  of all  m× n fuzzy  
soft matrices over U be  FSM𝑚𝑚 ×𝑛𝑛 . 

Let A , B ∈ FSMm ×n  ,where A= [𝑎𝑎𝑖𝑖𝑖𝑖 ]𝑚𝑚×𝑛𝑛   , 𝑎𝑎𝑖𝑖𝑖𝑖 = 
( 𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖) , 𝜇𝜇𝑗𝑗2(𝑐𝑐𝑖𝑖) ) and B= [𝑏𝑏𝑖𝑖𝑖𝑖 ]𝑚𝑚×𝑛𝑛 ,  𝑏𝑏𝑖𝑖𝑖𝑖  
=(𝜒𝜒𝑗𝑗1(𝑐𝑐𝑖𝑖) ,𝜒𝜒𝑗𝑗2(𝑐𝑐𝑖𝑖)).To avoid degenerate cases we assume 

thatmin (𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖) ,𝜒𝜒𝑗𝑗1(𝑐𝑐𝑖𝑖))  ≥max (𝜇𝜇𝑗𝑗2(𝑐𝑐𝑖𝑖),𝜒𝜒𝑗𝑗2(𝑐𝑐𝑖𝑖)) for 
all i and  j .The operat ion  o f  ‘add it ion  (+)’ between  A  
and B is defined   as A+ B=C ,where C= [𝑐𝑐𝑖𝑖𝑖𝑖 ]𝑚𝑚 ×𝑛𝑛   ,𝑐𝑐𝑖𝑖𝑖𝑖  
=(max (𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖) ,𝜒𝜒𝑗𝑗1(𝑐𝑐𝑖𝑖)), min (𝜇𝜇𝑗𝑗2(𝑐𝑐𝑖𝑖) ,  𝜒𝜒𝑗𝑗2(𝑐𝑐𝑖𝑖)) ) 

2.14. Example 

Let U={𝑐𝑐1 ,𝑐𝑐2 ,𝑐𝑐3 ,𝑐𝑐4  }  be the un iversal set and Ebe 
the set of parameters g iven by  E={𝑒𝑒1,𝑒𝑒2 ,𝑒𝑒3  } 
We cons ider the fuzzy  soft  sets based  on reference 
funct ion. 

(F,E)={F(𝑒𝑒1)={(𝑐𝑐1 ,0.3, 0) ),(𝑐𝑐2 ,0.5, 0), (𝑐𝑐3 , 0.6, 0), 
(𝑐𝑐4 ,0.5,0)},F(𝑒𝑒2)={(𝑐𝑐1 ,0.7, 0) ),(𝑐𝑐2 ,0.9, 0), (𝑐𝑐3 , 0.7, 0),  
(𝑐𝑐4 ,0.8,0)},F(𝑒𝑒3)={(𝑐𝑐1 ,0.6, 0) ),(𝑐𝑐2 ,0.7, 0), (𝑐𝑐3 , 0.7, 0),  
(𝑐𝑐4 ,0.3,0)}}. 

(G,E)={G(𝑒𝑒1)={(𝑐𝑐1 ,0.8, 0) ),(𝑐𝑐2 ,0.7, 0), (𝑐𝑐3 , 0.5, 0),  
(𝑐𝑐4 ,0.4,0)}, G(𝑒𝑒2)={(𝑐𝑐1 ,0.9, 0) ),(𝑐𝑐2 ,0.9, 0), (𝑐𝑐3 , 0.8, 
0), (𝑐𝑐4 ,0.7,0)},G( 𝑒𝑒3 )={(𝑐𝑐1 ,0.5, 0) ),(𝑐𝑐2 ,0.9, 0), (𝑐𝑐3 , 
0.6, 0), (𝑐𝑐4 ,0.8,0)}}. 

The fuzzy  soft matrices based on reference 
funct ion representing  these two  fuzzy soft  sets are 
respect ively  

A  =

⎢
⎢
⎢
⎢
⎡
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
,B =

⎢
⎢
⎢
⎢
⎡
(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
 

HereA+B =�

(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

�

III. FUZZY SOFT COMPLEMENT MATRIX 
BASED ON REFERENCE FUNCTION

In this section ,westart by introducing the notion of  the 
fuzzy soft complement matrix based on reference 
function,and we prove some formal properties. 

3.1. Definition 
Let A= �(aij , 0)�

m ×n
∈ FSMm ×n   according to the

definition in [26], then Ac is calledfuzzy soft complement 
matrix if Ac  = �(1 , aij )�m ×n

  for all aij ∈ [0 , 1].

3.2 .Example 

Let A =�(0.7, 0)(0.8,0)
(0.1, 0)(0.6,0)� be fuzzy soft matrix based on

reference function, then the complement of this matrix is 
𝐴𝐴𝑐𝑐  =�(1, 0.7)(1, 0.8)

(1, 0.1)(1, 0.6)�. 

3.3. Proposition 
Let A, B be two fuzzy soft matrix based on fuzzy 

reference function .Then 

(i)(𝐴𝐴𝑐𝑐 )𝑇𝑇   = (𝐴𝐴𝑇𝑇 )𝑐𝑐   (1)

𝑅𝑅𝐴𝐴 e1  e2  e3  e4  
u1 (0.7, 0) (0.8, 0) (0.1, 0) (0, 0) 
u2  (0.1, 0) (0.6, 0) (0.2, 0) (0, 0) 
u3  (0.2, 0) (0.1, 0) (0.7, 0) (0, 0) 
u4  (0.6, 0) (0.5, 0) (0.3, 0) (0, 0) 
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(ii)(𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐)𝑇𝑇  = (𝐴𝐴𝑇𝑇 )𝑐𝑐  +(𝐵𝐵𝑇𝑇 )𝑐𝑐  (2) 

Proof: 
To show (i) 
(𝐴𝐴𝑐𝑐 )𝑇𝑇   = (𝐴𝐴𝑇𝑇 )𝑐𝑐  

We have, let A ∈ 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚×𝑛𝑛 , then 
A= [(𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖) ,𝜇𝜇𝑗𝑗2(𝑐𝑐𝑖𝑖)] 
𝐴𝐴𝑐𝑐  = [1 ,𝜇𝜇𝑗𝑗1(𝑐𝑐𝑖𝑖)] 

(𝐴𝐴𝑐𝑐 )𝑇𝑇  = [1 ,𝜇𝜇𝑖𝑖1(𝑐𝑐𝑗𝑗 )] 
For 𝐴𝐴𝑇𝑇  = [(𝜇𝜇𝑖𝑖1(𝑐𝑐𝑗𝑗 ) ,𝜇𝜇𝑖𝑖2(𝑐𝑐𝑗𝑗 )], 

we have 
(𝐴𝐴𝑇𝑇 )𝑐𝑐  = [1 ,𝜇𝜇𝑖𝑖1(𝑐𝑐𝑗𝑗 )] 

Hence (𝐴𝐴𝑐𝑐 )𝑇𝑇   = (𝐴𝐴𝑇𝑇 )𝑐𝑐  

The proof of (ii) follows similar lines as above. 

3.4. Example 
Let A=�(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)

(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)�, B=�(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)� 

𝐴𝐴𝑐𝑐  =�(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟒𝟒)�, 𝐵𝐵

𝑐𝑐=�(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟒𝟒)
(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟐𝟐)� 

(𝐴𝐴𝑐𝑐 )𝑇𝑇 =�(1, 0.2)(1,0.1)
(1, 0.3)(1,0.4)�, (𝐵𝐵

𝑐𝑐 )𝑇𝑇=�(1, 0.5)(1, 0.6)
(1, 0.4)(1, 0.2)�, (𝐴𝐴

𝑇𝑇 )𝑐𝑐 +(𝐵𝐵𝑇𝑇)𝑐𝑐=
�(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟏𝟏)
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟐𝟐)� 

𝐴𝐴𝑐𝑐  + 𝐵𝐵𝑐𝑐 = �(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟐𝟐)�, (𝐴𝐴

𝑐𝑐 + 𝐵𝐵𝑐𝑐)𝑇𝑇 = �(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟏𝟏)
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟐𝟐)� 

Then  
(𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐)𝑇𝑇  = (𝐴𝐴𝑇𝑇 )𝑐𝑐  +(𝐵𝐵𝑇𝑇 )𝑐𝑐. 

IV. TRACE OF FUZZY SOFT MATRIXBASED ON 
REFERENCE FUNCTION 

In this section we extend the concept of trace of fuzzy  
square matrix proposed M. Dhar[26] to fuzzy soft square  
matrix based on reference function, and we prove some 
formal properties. 

4.1. Definition 
Let A be a square matrix. Then the trace ofthe matrix A is 
denoted by tr A and is defined as: 

trA= (max(𝜇𝜇𝑖𝑖𝑖𝑖),min(𝑟𝑟𝑖𝑖𝑖𝑖 ))  (3)  

where μii stands for the membership functions lying 
along the principal diagonal and rii refers to the reference  
function  of  the  corresponding  membership  functions. 

4.2. Proposition 
Let  A and B be two fuzzy softsquare matrices each of 
order  n. 
Then  
tr (A+B) =t rA+ trB  (4)  

proof. 
We have fro m the p roposed  defin it ion  o f trace o f 

fuzzy soft matrices  
trA= (max 𝑎𝑎𝑖𝑖𝑖𝑖  ,min 𝑟𝑟𝑖𝑖𝑖𝑖  ) 

and 
trB= (max 𝑏𝑏𝑖𝑖𝑖𝑖  ,min 𝑟𝑟𝑖𝑖𝑖𝑖′  ) 

then 
A+B= C where C=[𝑐𝑐𝑖𝑖𝑖𝑖 ] 

Following the defin it ion  o f add it ion of twofuzzy  soft  
matrices, we have 

𝐶𝐶𝑖𝑖𝑖𝑖= (max(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖),min(𝑟𝑟𝑖𝑖𝑖𝑖 ,𝑟𝑟𝑖𝑖𝑖𝑖′ )) 

According to definition 4.1 the trace of fuzzy soft 
matrixbased on reference function would be: 

tr (C)  = [  max {max( 𝑎𝑎𝑖𝑖𝑖𝑖  , 𝑏𝑏𝑖𝑖𝑖𝑖   ) }, min {min( 𝑟𝑟𝑖𝑖𝑖𝑖  ,𝑟𝑟𝑖𝑖𝑖𝑖′ )}] 
=  [ max {max(𝑎𝑎𝑖𝑖𝑖𝑖 ) ,max( 𝑏𝑏𝑖𝑖𝑖𝑖)} , min {min(𝑟𝑟𝑖𝑖𝑖𝑖 ), min(𝑟𝑟𝑖𝑖𝑖𝑖′ )}] 
= trA+trB, 
Conversely, 
trA+trB = [ max {max(𝑎𝑎𝑖𝑖𝑖𝑖 ) ,max( 𝑏𝑏𝑖𝑖𝑖𝑖)} , min {(min(𝑟𝑟𝑖𝑖𝑖𝑖 ), 
min(𝑟𝑟𝑖𝑖𝑖𝑖′ ))}] 
 = [ max {max(𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖), min (min(𝑟𝑟𝑖𝑖𝑖𝑖 ,𝑟𝑟𝑖𝑖𝑖𝑖′ )}] 
=tr(A+B) 
hence the resulttrA+trB =tr(A+B) 

4.3. Example: 

Let us consider  the  following  two fuzzy soft  matrices 
A and Bbased on reference function for illustration 
purposes 

A =�
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)
(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)

�andB= �
(𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎 .𝟑𝟑,𝟎𝟎)

(𝟎𝟎 .𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟏𝟏,𝟎𝟎)(𝟎𝟎 .𝟖𝟖,𝟎𝟎)

�

The addition of two soft matrices would be: 

A+B =�
(𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

�

Using  the defin it ion  of trace of fuzzy  soft  matrices, 
we see the following results: 

tr A = { max(0.3, 0.5, 0.4), min (0, 0, 0)}=(0.5 , 0) 
tr B  = {  max(1, 0.5, 0.8), min (0, 0, 0)}=(1 , 0) 

Thus we have 

trA+trB = { max(1, 0.5, 0.8) , min (0, 0, 0)}=(1 , 0) 

And  
tr (A+B) = {  max(1, 0.5, 0.8) , min (0, 0, 0)}= (1, 0) 

Hence the result 
trA+trB =tr(A+B) 

4.4.Proposition 
Let A= [𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖 ] ∈ FSM𝑚𝑚 ×𝑛𝑛 be fuzzy soft squarematrix 
of order n, if 𝜆𝜆  is a scalar such that 0  ≤ 𝜆𝜆 ≤    1 . Then  
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tr(𝜆𝜆 A)= 𝜆𝜆 tr(A)  (5)  

proof. 
to prove 
tr(𝜆𝜆 A)   =  𝜆𝜆trA0  ≤ 𝜆𝜆 ≤   1 
we have 
tr(𝜆𝜆 A) ={  max(𝜆𝜆𝑎𝑎𝑖𝑖𝑖𝑖  ), min  (𝜆𝜆𝑟𝑟𝑖𝑖𝑖𝑖 )} 
=𝜆𝜆{  max(𝑎𝑎𝑖𝑖𝑖𝑖  ), min(𝑟𝑟𝑖𝑖𝑖𝑖 )} 
= 𝜆𝜆tr (A) 

4.5. Example 

Let A =�
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)
(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)

�and 𝜆𝜆 =0.5 

Then 

𝜆𝜆A =�
(𝟎𝟎.𝟏𝟏𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟑𝟑𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟒𝟒𝟒𝟒,𝟎𝟎)
(𝟎𝟎.𝟐𝟐𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟐𝟐𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟏𝟏𝟏𝟏,𝟎𝟎)
(𝟎𝟎.𝟑𝟑𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟎𝟎𝟎𝟎,𝟎𝟎)(𝟎𝟎.𝟐𝟐𝟐𝟐,𝟎𝟎)

�

tr(𝜆𝜆 A) = {  max(0.15, 0.25, 0.20), min ( (0, 0, 0)} 
= (0.25,0) 
Again 
tr A=(0.5,0) 
and hence  
tr(𝜆𝜆 A) =0.5 (0.5, 0) = (0.25,0) 

4.6. Proposition: 
Let A=[ 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖 ]  ∈ FSM𝑚𝑚 ×𝑛𝑛 be fuzzy soft square 
matrices each of order n . 
Then  

trA=tr(𝐴𝐴𝑡𝑡 ),where𝐴𝐴𝑡𝑡  is the transpose of A 

4.7.Example 

Let 𝐴𝐴𝑡𝑡  =�
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)
(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)

�

Then  
tr(𝐴𝐴𝑡𝑡 )= { max(0.3, 0.5, 0.4) , min (0, 0, 0)} 
=(0.5, 0) 
HencetrA=tr( 𝐴𝐴𝑡𝑡 ) 

The same result will hold if we consider the complements 
of fuzzy soft square matrices. 

𝐴𝐴𝑐𝑐   =�
(𝟏𝟏 ,𝟎𝟎.𝟑𝟑)(𝟏𝟏 ,𝟎𝟎.𝟕𝟕)(𝟏𝟏,𝟎𝟎.𝟖𝟖)
(𝟏𝟏 ,𝟎𝟎.𝟒𝟒)(𝟏𝟏 ,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏 ,𝟎𝟎.𝟔𝟔)(𝟏𝟏 ,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟒𝟒)

�

tr 𝐴𝐴𝑐𝑐  ={max (1, 1, 1), min (0.3, 0.5, 0.4)}=(1, 0.3) 
If we consider another fuzzy soft matriceB: 

B =�
(𝟏𝟏 ,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)

(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎 .𝟐𝟐,𝟎𝟎)
(𝟎𝟎 .𝟓𝟓,𝟎𝟎)(𝟏𝟏 ,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

� 

𝐵𝐵𝑐𝑐  =�
(𝟏𝟏,𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)

(𝟏𝟏,𝟎𝟎.𝟖𝟖)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟐𝟐)
(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟖𝟖)

�

Then the trace of 𝐵𝐵𝑐𝑐 will be the following: 
tr(𝐵𝐵𝑐𝑐)={max(1,1,1),min (1, 0.5, 0.8)}=(1, 0.5) 

Following the definition 2.13 of addition of two fuzzy 

soft matrices based on reference function, we have. 

𝐴𝐴𝑐𝑐   +𝐵𝐵𝑐𝑐    =�
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏,𝟎𝟎.𝟒𝟒)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟐𝟐)
(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟒𝟒)

�

tr (𝐴𝐴𝑐𝑐   +𝐵𝐵𝑐𝑐) ={max(1,1,1),min (0.3, 0.5, 0.4)} 
= (1, 0.3) 

V. NEW FUZZY SOFT MATRIX THEORY IN
DECISION MAKING 

In th is section we adopted  the defin it ion o f fuzzy  
soft matrix decis ion method proposed by P. 
Rajarajes wari,P. Dhanalaks hmi in [30] to the case of 
fuzzy  soft matrix based on  reference funct ion  in o rder 
to define a new fuzzy soft matrix decis ion method  
based on reference funct ion . 

5.1. Definition: (Value Matrix) 
Let  A=[ aij , 0 ] ∈ [FSM] m ×n .Then  we define the 

value matrix of fuzzy  soft  matrix A  based  on  
reference funct ion  as V(A)=[ aij ] =[ aij  - rij ], i=1, 
2, ,….,m , j= 1,2,3,…, n, where rij   = [0] m ×n . 

5.2. Definition:(Score Matrix) 
If A=[ aij ]  ∈  FSM,B=[ bij ]  ∈ [FSM] m ×n .Then we 

define score matrix of A and B as : 

sA ,B =[dij ]mxn where [dij ]=V(A)-V(B) 

5.3. Definition:(Total Score) 
If A=[ aij , 0 ]  ∈ [FSM] m ×n ,B=[ bij , 0 ]  ∈

[FSM] m ×n .Let  the corresponding value matrices be  
V(A),V(B) and their score matrix is sA,B =[dij ]mxnthen 
we define total score fo r eachci  in U as si =∑ dij

n
j=1 . 

Methodology  and  algorithm  
Assume that there is a set o f 

candidates( p rogrammer), U={c1  , c2 , ,…,cn } is a set  
of cand idates to be recru ited by software 
development  organizat ion in p rogrammer post.Let E 
is a set of parameters related to innovat ive att itude o f 
the programmer. We construct fuzzy soft set  
(F,E)over U represent the select ion  o f cand idate by  
field expert X,where F is a mapping  F:E→ Fu ,Fu  is  
the collection o f all fuzzy  subsets of U. We further 
construct another fuzzy  soft set (G,E)over Urepresent  
the select ion o f cand idate by  field  expert Y,where G 
is a mapping  G:E→ 𝐹𝐹𝑢𝑢   ,𝐹𝐹𝑢𝑢 is the co llection  of all 
fuzzy subsets of U.The matricesA and  B 
corresponding to the fuzzy  softsets (F,E) and  (G,E)  
are constructed,we compute the complementsand  
theirmatrices 𝐴𝐴𝑐𝑐  and 𝐵𝐵𝑐𝑐 corresponding to  (F, E) 𝑐𝑐  
and (G, E) 𝑐𝑐 respectively . Compute A+B which is 
themaximum membersh ip o f select ion  of cand idates 
by the judges.  Compute 𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐 which is the 
maximum membership  o f non  selection  o f cand idates 
by the judges. us ingdef (5.1) ,Compute 
V(A+B),V( 𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐  ) 𝑠𝑠((𝐴𝐴+𝐵𝐵),( 𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐 )) and the total 
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score 𝑆𝑆𝑖𝑖 for each  cand idate in  U.Finally  find 𝑆𝑆𝑗𝑗 = 
max( 𝑆𝑆𝑖𝑖 ),then  conclude that  the cand idate 𝑐𝑐𝑗𝑗 has  
selected  by  the judges.If 𝑆𝑆𝑗𝑗has more than one value 
the process is repeated  by reassessing the parameters. 

Now, us ing defin it ions 5-1, 5-2 and 5-3 we can  
construct a  fuzzy  soft  matrix decis ion making  method  
based on reference funct ion by the fo llowing  
algorithm. 

Algori thm 

Step1 :Input the fuzzy  soft set (F, E), (G,E) and  obtain  
the fuzzy soft matrices A ,B  corresponding  to  
(F,E) and (G, E) respectively. 

Step2:W rite the fuzzy  soft complement set  
(F, E) c , (G, E) c and obtain  the fuzzy soft  
matrices Ac  , Bc corresponding   to (F, E) c ,and  
(G, E) c respect ively. 

Step3:Compute (A+B),(Ac +Bc),  V(A+B),V( Ac +Bc  ) 
and s((A +B),( Ac + Bc )) . 

Step4:Compute the total score Si for each  ci inU. 
Step5:Find ci  fo r which max ( Si ) . 

Then we conclude that  the cand idate 𝑐𝑐𝑖𝑖 is selected  
for the post. 

Incase max 𝑆𝑆𝑖𝑖occurs for more than  one value, then 
repeatthe process by reassessing the parameters. 

Case S tudy  

Let  (F,E) and (G,E) be two  fuzzy soft set based 
on reference funct ion representing the select ion o f 
four cand idates from the un iversal set U= {c1 ,c2 ,c3 ,c4} 
by the experts X,and Y.Let  E = {e1, e2 ,e3} be the set  
of parameters which stand fo r intelligence,innovat ive 
and analysis . 

(F,E)={F(𝑒𝑒1)={(𝑐𝑐1 ,0.1, 0) ),(𝑐𝑐2 ,0.5, 0), (𝑐𝑐3 , 0.1, 0), 
(𝑐𝑐4 ,0.4,0)},F(𝑒𝑒2)={(𝑐𝑐1 ,0.6, 0) ),(𝑐𝑐2 ,0.4, 0), (𝑐𝑐3 , 0.5, 0),  
(𝑐𝑐4 ,0.7,0)},F(𝑒𝑒3)={(𝑐𝑐1 ,0.5, 0) ),(𝑐𝑐2 ,0.7, 0), (𝑐𝑐3 , 0.6, 0),  
(𝑐𝑐4 , 0.5, 0)}}. 

(G,E)={G(𝑒𝑒1)={(𝑐𝑐1 ,0.2, 0) ),(𝑐𝑐2 ,0.6, 0), (𝑐𝑐3 , 0.2, 0),  
(𝑐𝑐4 ,0.3,0)}, G(𝑒𝑒2)={(𝑐𝑐1 ,0.6, 0) ),(𝑐𝑐2 ,0.5, 0), (𝑐𝑐3 , 0.6, 
0), (𝑐𝑐4 ,0.8,0)}, ,G(𝑒𝑒3)={(𝑐𝑐1 ,0.5, 0) ),(𝑐𝑐2 ,0.8, 0), (𝑐𝑐3 , 
0.7, 0), (𝑐𝑐4 ,0.5,0)}}. 

These two fuzzy soft sets based on reference 
funct ion are represented by the following  fuzzy soft  
matrices based on  reference funct ion  respect ively  

A =
⎢
⎢
⎢
⎢
⎡
(𝟎𝟎 .𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)
(𝟎𝟎 .𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎 .𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎 .𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
B=

⎢
⎢
⎢
⎢
⎡
(𝟎𝟎.𝟐𝟐,𝟎𝟎. )(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)
(𝟎𝟎 .𝟔𝟔,𝟎𝟎)(𝟎𝟎 .𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)
(𝟎𝟎 .𝟐𝟐,𝟎𝟎)(𝟎𝟎 .𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎 .𝟑𝟑,𝟎𝟎)(𝟎𝟎 .𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
 

Then, the fuzzy soft complement  matricesbased on 
reference funct ion  are 

𝐴𝐴𝑐𝑐=
⎢
⎢
⎢
⎢
⎡
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟓𝟓)
(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟒𝟒)(𝟏𝟏,𝟎𝟎.𝟕𝟕)
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟔𝟔)
(𝟏𝟏,𝟎𝟎.𝟒𝟒)(𝟏𝟏,𝟎𝟎.𝟕𝟕)(𝟏𝟏,𝟎𝟎.𝟓𝟓)

⎥
⎥
⎥
⎥
⎤
,𝐵𝐵𝑐𝑐=

⎢
⎢
⎢
⎢
⎡
(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟓𝟓)
(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟖𝟖)
(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟕𝟕)
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟖𝟖)(𝟏𝟏,𝟎𝟎.𝟓𝟓)

⎥
⎥
⎥
⎥
⎤

Then the add it ion matrices are 

A+B=
⎢
⎢
⎢
⎢
⎡
(0.2, 0)(0.6, 0)(0.5, 0)
(0.6, 0)(0.5, 0)(0.8, 0)
(0.2, 0)(0.6, 0)(0.7, 0)
(0.4, 0)(0.8, 0)(0.5, 0)

⎥
⎥
⎥
⎥
⎤
,𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐 =

⎢
⎢
⎢
⎢
⎡
(1, 0.1)(1, 0.6)(1, 0.5)
(1, 0.5)(1, 0.4)(1, 0.7)
(1, 0.1)(1, 0.5)(1, 0.6)
(1, 0.3)(1, 0.7)(1, 0.5)

⎥
⎥
⎥
⎥
⎤
 

V(A+B) =
⎢
⎢
⎢
⎢
⎡
𝟎𝟎.𝟐𝟐     𝟎𝟎.𝟔𝟔    𝟎𝟎.𝟓𝟓  
𝟎𝟎.𝟔𝟔   𝟎𝟎.𝟓𝟓    𝟎𝟎.𝟖𝟖  
𝟎𝟎.𝟐𝟐    𝟎𝟎.𝟔𝟔    𝟎𝟎.𝟕𝟕

 𝟎𝟎.𝟒𝟒    𝟎𝟎.𝟖𝟖    𝟎𝟎.𝟓𝟓 
⎥
⎥
⎥
⎥
⎤
 ,V(𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐) =

⎢
⎢
⎢
⎢
⎡
𝟎𝟎.𝟗𝟗     𝟎𝟎.𝟒𝟒   𝟎𝟎.𝟓𝟓  
𝟎𝟎.𝟓𝟓     𝟎𝟎.𝟔𝟔    𝟎𝟎.𝟑𝟑   
𝟎𝟎.𝟗𝟗    𝟎𝟎.𝟓𝟓    𝟎𝟎.𝟒𝟒
 𝟎𝟎.𝟕𝟕    𝟎𝟎.𝟑𝟑    𝟎𝟎.𝟓𝟓 

⎥
⎥
⎥
⎥
⎤
 

Calcu late the score matrix and the total score for 
select ion  

𝑠𝑠( (𝐴𝐴+𝐵𝐵),( 𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐 )) = 
⎢
⎢
⎢
⎢
⎡
−𝟎𝟎.𝟕𝟕       𝟎𝟎.𝟐𝟐     𝟎𝟎
𝟎𝟎.𝟏𝟏   − 𝟎𝟎.𝟏𝟏     𝟎𝟎.𝟓𝟓  
−𝟎𝟎.𝟕𝟕      𝟎𝟎.𝟏𝟏     𝟎𝟎.𝟑𝟑
−𝟎𝟎.𝟑𝟑   𝟎𝟎.𝟓𝟓      𝟎𝟎

⎥
⎥
⎥
⎥
⎤

Total score =
⎢
⎢
⎢
⎢
⎡
−𝟎𝟎.𝟓𝟓
𝟎𝟎.𝟓𝟓  
−𝟎𝟎.𝟑𝟑
𝟎𝟎.𝟐𝟐

⎥
⎥
⎥
⎥
⎤

We see that the second candidate has the maximum 
value and thus conclude that from both the expert’s 
opinion, candidate𝑐𝑐2is selected for the post. 

VI. CONCLUSIONS

In our work, we have put  fo rward  some new 
concepts such as complement , t race o f fuzzy  soft  
matrix based on reference function . Some related  
properties have been  established with example. 
Finally an applicat ion of fuzzy soft matrix based on  
reference funct ion in decis ion making p roblem is 
given . It ‘s hoped  that ou r work will enhance th is 
study in fuzzy  soft matrix. 
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Abstract — In this paper, three new operations have 
been introduced on intuitionistic fuzzy soft sets. They 
are based on Second Zadeh‟s implication, conjunction 
and disjunction operations on intuitionistic fuzzy sets. 
Some examples of these operations were given and a 
few important properties were also studied. 

Index Terms — Second Zadeh‟s implication, Second 
Zadeh‟s conjunction, Second Zadeh‟s disjunction, 
Intuitionistic fuzzy soft set. 

1. Introduction

The concept of the intuitionistic fuzzy (IFS, for short)
was introduced in 1983 by K. Aanassov [1] as an 
extension of Zadeh‟s fuzzy set. All operations, defined 
over fuzzy sets were transformed for the case the IFS 
case .This concept is capable of capturing the 
information that includes some degree of hesitation and 
applicable in various fields of research .For example , 
in decision making problems, particularly in the case of 
medical diagnosis ,sales analysis  ,new product 
marketing , financial services, etc. Atanassov et.al  [2,3] 
have widely applied theory of intuitionistic sets in logic 
programming, Szmidt and Kacprzyk [4] in group 
decision making, De et al [5] in medical diagnosis etc. 
Therefore in various engineering application, 
intuitionistic fuzzy sets techniques have been more 
popular than fuzzy sets techniques in recent years. 
After defining a lot of operations over intuitionistic 
fuzzy sets during last ten years [6], in 2011, K. 
Atanassov [7] constructed two new operations based 
on the First Zadeh‟s IF-implication [8] which are the 
First Zadeh‟s conjunction and disjunction, after that, in 
2013, K.Atanassov[ 9] introduced the second type of 
zadeh „s conjunction and disjunction based on the 

Second Zadeh‟s IF-implication. Later on, S.Broumi et 
al. [22] introduced three new operations based on first 
Zadeh‟s implication, conjunction and disjunction 
operations on intuitionistic fuzzy soft sets. 

Another important concept that addresses uncertain 
information is the soft set theory originated by 
Molodotsov [10]. This concept is free from the 
parameterization inadequacy syndrome of fuzzy set 
theory, rough set theory, probability theory. Molodtsov 
has successfully applied the soft set theory in many 
different fields such as smoothness of functions, game 
theory, operations research, Riemann integration, 
Perron integration, and probability. In recent years, soft 
set theory has been received much attention since its 
appearance. There are many papers devoted to fuzzify 
the concept of soft set theory which leads to a series of 
mathematical models such as fuzzy soft set 
[11,12,13,14,15], generalized fuzzy soft set [16,17], 
possibility fuzzy soft set [18] and so on. Thereafter, 
P.K.Maji and his coworker [19] introduced the notion 
of intuitionstic fuzzy soft set which is based on a 
combination of the intuitionistic fuzzy sets and soft set 
models and studied the properties of intuitionistic 
fuzzy soft set. Later, a lot of extensions of intuitionistic 
fuzzy soft are appeared such as generalized 
intuitionistic fuzzy soft set [20], possibility 
intuitionistic fuzzy soft set [21] etc. 

In this paper our aim is to extend the three new 
operations introduced by K.T. Atanassov to the case of 
intuitionistic fuzzy soft and study its properties. This 
paper is arranged in the following manner .In section 2, 
some basics related to soft set, fuzzy soft set and 
intuitionistic fuzzy soft set are presented. These 
definitions will help us in the section that will follow. 
In section 3, we discuss the three operations of 
intuitionistic fuzzy soft such as Second Zadeh‟s 
implication, Second Zadeh‟s intuitionistic fuzzy 
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conjunction and Second Zadeh‟s intuitionistic fuzzy 
disjunction. In section 4, we conclude the paper. 

2. Preliminaries

In this section, some definitions and notions about
soft sets and intutionistic fuzzy soft set are given. These 
will be useful in later sections. For more detailed the 
reader can see [10, 11, 12, 13, 19]. 

Let U be an initial universe, and E be the set of all 
possible parameters under consideration with respect to 
U. The set of all subsets of U, i.e. the power set of U is
denoted by P (U) and the set of all intuitionistic fuzzy
subsets of U is denoted by IFU. Let A be a subset of E.

2.1. Definition. 

A pair (F, A) is called a soft set over U, where F is a 
mapping given by F: A   P (U). 

In other words, a soft set over U is a parameterized 
family of subsets of the universe U. For     A, F ( ) 
may be considered as the set of   -approximate elements 
of the soft set (F, A). 

2.2. Definition 

Let U be an initial universe set and E be the set of 
parameters. Let IFU denote the collection of all 
intuitionistic fuzzy subsets of U. Let A    E pair (F, A) 
is called an intuitionistic fuzzy soft set over U where F 
is a mapping given by F: A→ IFU. 

2.3. Definition 

Let  F: A→ IFU  then  F is a function defined as  F ( ) 
={ x,  ( )( ) ,    ( )( ) :            +   where    , 
denote the degree of  membership and degree of non-
membership respectively. 

2.4. Definition. 

For two intuitionistic fuzzy soft sets (F, A) and (G, B) 
over a common universe U, we say that (F, A) is an 
intuitionistic fuzzy soft subset of (G, B) if 
(1) A   B and
(2) F (  )   G (  ) for all A. i.e ( )( )  

( )( ) ,   ( )( ) ( )( ) for all     E and 
We write (F, A)   (G, B). 

2.5. Definition. 

Two intuitionitic fuzzy soft sets (F, A) and (G, B) 
over a common universe U are said to be soft equal if (F, 
A) is a soft subset of (G, B) and (G, B) is a soft subset
of (F, A).

2.6. Definition. 

Let U be an initial universe, E be the set of 
parameters, and A   E. 

(a) (F, A) is called a null intuitionistic fuzzy soft set
(with respect to the parameter set A), denoted by   , if
F ( ) =    , with   =  (   ) = {( 0, 1) ,      U, ,
A }.  

   

 (1) 

(b) (G, A) is called a absolute intuitionistic fuzzy soft
set (with respect to the parameter set A), denoted by

 ,if G( ) = U, with   =(U, A)= {( 1, 0) , U ,
A }.             (2) 

2.7. Definition 

Let (F, A) and (G, B) be two IFSSs over the same 
universe U. Then the union of (F, A) and (G, B) is 
denoted by „(F, A) ∪ (G, B)‟ and is defined by (F, A) ∪
(G, B) = (H, C), where C= A ∪ B and the truth-
membership, falsity-membership of (H, C) are as 
follows:  

( )=

{

*(  ( )( ) ( )( )  )    –  

*(  ( )( ) ( )( )  }    –  

{ ( ( )( ) ( )( ))  ( ( )( ) ( )( ))   }  
 (3) 

Where ( )( )  =    ( ( )( ) ( )( ))  and 
( )( ) = ( ( )( ) ( )( )) 

2.8. Definition 

Let (F, A) and (G, B) be two IFSSs over the same 
universe U such that A ∩ B≠0. Then the intersection of 
(F, A) and ( G, B) is denoted by „( F, A) ∩ (G, B)‟ and 
is defined by ( F, A ) ∩ ( G, B ) = ( K, C),where C =A 
∩B and the truth-membership, falsity-membership of 
( K, C ) are related to those of (F, A) and (G, B) by:  

 ( )

=

{

*(  ( )( ) ( )( )  +  

*(  ( )( ) ( )( )  }  –  

{   (  ( ) ( )) ( ( )( ) ( )( ))   }  

    (4) 

In the next section, we state and prove some new 
operations involving second implication, conjunction 
and disjunction of intuitionistic fuzzy soft set. 

3. New Operations on Intuitionistic Fuzzy Soft Sets.

3.1 Second Zadeh’s implication of intuitionistic fuzzy 
soft sets. 

3.1.1. Definition: 

Let (F, A) and (G, B) are two intuitionistic fuzzy soft 
set over (U, E). We define the second Zadeh‟s 
intuitionistic fuzzy soft set implication (F, A) → (G, B) 
by 

(F, A) →  (G, B) = 

[
{ ( )( ) ( ( )( ) ( )( ))}  

{ ( )( ) ( ( )( )  ( )( ))}
]   , U,

A.    (5)
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3.1.2. Example: 

Let (F, A) and (G, B) be two intuitionistic fuzzy soft 
set over (U, E) where U = {a, b, c} and E = {  ,    } , A 
={    }   E, B={    }   E . 

(F, A) = {F (  ) = (a, 0.3, 0.2), (b, 0.2, 0.5), (c, 0.4, 0.2)} 

(G, B) = {G (  ) = (a, 0.4, 0.5), (b, 0.3, 0.5), (c, 0.6, 0.1)} 

Then 

(F, A) →  (G, B) = {(a, 0.3, 0.3), (b, 0.5, 0. 2), (c, 0.4, 0. 
2)} 

3.1.3. Proposition: 

Let (F, A), (G, B) and (H, C) are three intuitionistic 
fuzzy soft sets over (U, E). 

Then the following results hold 

(i) (F, A)   (G,B) →  (H, C)   [(F , A) →  (H, C) ]
[(G , B) →  (H, C) ]

(ii) (F, A) ∪ (G,B) →   (H, C)    [(F , A) →  (H, C) ] ∪
[(G , B) →  (H, C) ]

(iii) (F, A) → (   )   = (   )
(iv) (F, A) → ( ) =(   )     where   denote the null 

intuitionistic fuzzy soft 
(v) With ( ) ={( 0, 1) , U , A } 

Proof. 

(i) (F, A)   (G,B) →  (H, C)

=[ min ( ( )( )  ( )( )) ,max ( ( )( ) 

( )( )) ] → ( ( ) ( ) ,   ( )( )) 

=[
  {(  ( ( )( ) ( )( )) (  ( ( )( )  ( )( )) ( )( ))} 

   {   ((  ( )( )  ( )( )) (  ( ( )( )  ( )( ))  ( )( ))}
]

(a) 

[(F, A) →  (H, C) ]  [(G , B) →  (H, C) ] 
= [ max { ( )( ), min ( ( )( ), ( )( ))} , min 
{  ( )  (x),max( ( )( ) , ( )( ) )} ]  [ max 
{ ( )( ) , min ( ( )( ) ,  ( ) )} , min 
{ ( )( ) ,max( ( )( )  , ( )( ))} ] 

= 

[
   {(   ( ( )( )  ( ( )( )  ( )( ))))  ( ( )( )  ( ( )( )  ( )( )))}  

   {   ((  ( )( )  ( ( )( )  ( )( ))) ( ( )( )  ( ( )( )  ( )( )))}
]

(b) 
From (a) and (b) it is clear that (F, A)   (G,B) →  (H, C) 

 [(F, A) →  (H, C)]    [(G , B) →  (H, C) ] 

(ii) (F, A) ∪ (G,B) →  (H, C)

= [ max ( ( )( ), ( )( )) ,min ( ( )( ), 
( )( )) ] → ( ( ) ( ) ,   ( )( )) 

=[   {(   ( ( )( ) ( )( )) (   ( ( )( )  ( )( )) ( )( ))} 

{   ( ( )( )  ( )( ) ) (   ( ( )( )  ( )( ))  ( )( ))}
] 

(c) 
[(F , A) →  (H, C) ] ∪  [(G , B) →  (H, C) ] 

=[ max { ( )( ) , min ( ( )( ) ,   ( )( ) )}, min 
{  ( )  (x), max( ( )( ) , ( )( ) )}] ∪  [ max 
{ ( )( ) , min ( ( )( ) ,  ( ) )}, min{   ( )( ) , 
max( ( )( ), ( )( ))}] 

= 
[

 {( ( ( )( )  ( ( )( )  ( )( ))))  ( ( )( )  ( ( )( )  ( )( )))}  

  {   ((  ( )( )  ( ( )( ) ( )( ))) ( ( )( )  ( ( )( )  ( )( )))}
] 

(d) 
From (c) and (d) it is clear that (F, A) ∪ (G, B) →  (H, C) 

 [(F, A) →  (H, C)] ∪  [(G, B) →  (H, C)] 

(iii) (F, A) → (   )   = (   )

= {max { ( )( ), min ( ( )( ), ( )( ))}, min {  ( )

(x), max ( ( )( ),  ( )( ))}} 

={ ( ( )( ),   ( )( ))}. 

It is shown that the second Zadeh‟s intuitionistic 
fuzzy soft implication generate the complement of 
intuitionistic fuzzy soft set. 

(iv) the proof is straightforward.

3.1.4. Example: 

Let (F, A) , (G,B) and (H, C) be three intuitionistic 
fuzzy soft set  over (U, E) where U={a, b, c} and E 
={   ,    }, A ={    }   E, B={    }    E and 
C={    }   E. 

(F, A)= {F (  ) = (a, 0.3, 0.2), (b, 0.2, 0.5), (c, 0.4, 0.2)} 

(G, B)= {G (  ) = (a, 0.4, 0.5), (b, 0.3, 0.5), (c, 0.6, 0.1)} 

(H, C)= {H (  ) = (a, 0.3, 0.6), (b, 0.4, 0.5), (c, 0.4, 0.1)} 

Firstly, we have (F, A)   (G, B) = {(a, 0.3, 0.5), (b, 
0.2, 0.5), (c, 0.4, 0.2)} 

Then (F, A)   (G,B) →  (H, C) =[max { (max 
( ( )( ) , ( )( ) ), min[ min ( ( )( )  , 

( )( )) , ( )( ) ] }, min { min ( ( )( ) , ( )( )), 
max {min ( ( )( ),   ( )( )), ( )( )}}] 
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= {(a, 0.5, 0.3), (b, 0.5, 0.2), (c, 0.4, 0.4)} 

3.2. Second Zadeh’s Intuitionistic Fuzzy Conjunction 
of intuitionistic fuzzy soft sets. 

3.2.1. Definition: 

Let (F, A) and (G, B) are two intuitionistic fuzzy soft 
sets over (U,E) .We define the second Zadeh‟s 
intuitionistic fuzzy conjunction of (F, A) and (G,B) as 
the intuitionistic fuzzy soft set (H,C) over (U,E), written 
as  (F, A)  ̃    (G,B) =(H ,C) Where  C = A   B  
and       C, x   U, 

( )( ) =  min { ( )( ) ,max( ( )( ) , ( )( ))} 
( )( )=  max { ( )( ), min 

( ( )( ) , ( )( ))} ,      U , A    (6) 

3.2. 2.Example: 

Let U={a, b, c} and E ={   ,    ,    ,   } , A ={    , 
,   }   E, B ={   ,    ,   }   E 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 
0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 
F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, B) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 
0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Let  (F, A)  ̃    (G,B)  =(H ,C) ,where C = A   B = {   , 
 } 

(H, C)={H (  ) ={(a, min(0.5, max(0.1,0.2)), max(0.1, 
min(0.5, 0.6))), (b, min(0.1, max(0.8,0.7)), max(0.8, 
min(0.1, 0.1))), (c, min(0.2, max(0.5,0.8)), max(0.5, 
min(0.2, 0.1)))}, 

H (  ) ={(a, min(0.7, max(0.1,0.4)), max(0.1, min(0.7, 
0.1))), (b, min(0, max(0.8,0.5)), max(0.8, min(0, 0.3))), 
(c, min(0.3, max(0.5,0.4)), max(0.5, min(0.3, 0.5)))}} 

Then ,(H, C)= { H (  )= {(a, min(0.5, 0.2), max(0.1, 
0.5)), (b, min(0.1, 0.8), max(0.8, 0.1)), (c, min(0.2, 0.8), 
max(0.5, 0.1))}, H (  )= {(a, min(0.7, 0.4), max(0.1, 
0.1)), (b, min(0, 0.8), max(0, 0.8)), (c, min(0.3, 0.5), 
max(0.5, 0.3))}} 

Hence, (H, C) = {H (  ) = {(a, 0.2, 0.5), (b, 0.1, 0.8), (c, 
0.2, 0.5)}, H (  ) = {(a, 0.4, 0.1), (b, 0, 0.8), (c, 0.3, 
0.5)}} 

3.2. 3 Proposition: 

Let (F, A), (G, B) and (H, C) are three intuitionistic 
fuzzy soft sets over (U, E) 

Then the following result hold 

(F, A)  ̃    (G, B) →   (H, C)    [(F, A) →  (H, C)]  ̃
[(G, B) →  (H, C)]        (7) 

Proof: let (F, A), (G, B) and (H, C) are three 
intuitionistic fuzzy soft set, then  

(F, A)  ̃    (G, B) →  (H, C) 

= (max [max { ( )( ), min ( ( )( ) , ( )( ))},min 
{min { ( )( ) , max( ( )( ), ( )( ))}, ( )( )}] , 
min [min { ( )( ) , max( ( )( ) , 

( )( ) )},max[max { ( )( ) , min 
( ( )( ) ,   ( )( ))}, ( )( )]]) 

Let [(F, A) →  (H, C)]  ̃    [(G, B) →  (H, C)] 

(F, A) →  (H, C) = (max [ ( )( ) , min ( ( )( ) , 

( )( ))], min[ ( )( ) ,max( ( )( ), ( )( ))] ) 

[(G, B) →  (H, C)] = (max [ ( )( ) , min 
( ( )( ) , ( )( ))], min [ ( )( ) , max (  ( )( ) , 

( )( ))] ) 

Then [(F, A) →  (H, C)]  ̃  [(G, B) →  (H, C)] 

=( min[ max { ( )( ), min ( ( )( ) , ( )( )) }, 
max { ( )( ), min (  ( )( ), ( )( )) }], 

max [min[ ( )( )  ,max( ( )( ) , ( )( ) )], min 
{ max [ ( )( ) , min ( ( )( ) , ( )( ) )], 
min[ ( )( ) ,max( ( )( ),  ( )( ))] }] 
From (e) and (f) it is clear that 

(F, A)  ̃    (G, B) →  (H, C)  [(F, A) →  (H, C)]  ̃
[(G, B) →  (H, C)] 

3.3. The Second Zadeh’s Intuitionistic Fuzzy 
Disjunction of Intuitionistic Fuzzy Soft Sets. 

3.3.1. Definition: 

Let  (F, A) and (G, B) are two intuitionistic fuzzy soft 
set s over (U, E) .We define the second Zadeh‟s 
intuitionistic  fuzzy disjunction of (F, A) and (G, B) as 
the intuitionistic fuzzy soft set (H, C) over (U,E), 
written as (F, A)  ̃   (G, B) =(H ,C) Where  C = A   B 

 and       A , x   U 

( )( ) = max ( ( )( ), min ( ( )( ) , ( )( ))) 
( )( )= min { ( )( ) ,max 

( ( )( ) , ( )( ))} ,      U , A  (8)
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3.3. 2. Example: 

Let U={a, b,c} and E ={    ,    ,    ,   } , A ={    , 
,   }   E, B={    ,    ,   }   E 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 
0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 
F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, A) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 
0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 
Let  (F, A)  ̃   (G,B)  =(H ,C),where C = A   B = {   , 

} 

(H, C)={H (  ) ={(a, max(0.5, min(0.1, 0.2)),  min(0.1, 
max(0.5,0.6))), (b, max(0.1, min(0.8, 0.7)), min(0.8, 
max(0.1,0.1))), (c, max(0.2, min(0.5, 0.8)), min(0.5, 
max(0.2,0.1))) }, H (  ) ={(a, max(0.7, min(0.1, 0.4)), 
min(0.1, max(0.7,0.1))), (b, max(0, min(0.8, 0.5)), 
min(0.8, max(0, 0.3))), (c, max(0.3, min(0.5, 0.4)), 
min(0.5, max(0.3,0.5)))}} 

Then, (H, C)= { H (  )= {(a, max(0.5, 0.1), min(0.1, 
0.6)), (b, max(0.1, 0.7), min(0.8, 0.1)), (c, max(0.2, 0.5), 
min(0.5, 0.2))}, H (  )= {(a, max(0.7, 0.1), min(0.1, 
0.7)), (b, max(0, 0.5), min(0.8, 0.3)), (c, max(0.3, 0.4), 
min(0.5, 0.5))}}. 

hence , (H, C)= { H (  )= {(a, 0.5, 0.1),(b, 0.7, 0.1), 
(c,0.5, 0.2)}, H (  )= {(a, 0.7, 0.1),(b, 0.5, 0.3), (c,0.4, 
0.5)}} 

3.3.3. Proposition: 

(i) (  ,A)  ̃    (U, A) = (  ,A)
(ii) (  ,A)  ̃    (U, A) = (U, A) ,where (   ) ={( 1,

0) , U , A } 
(iii) (F, A)  ̃    (  ,A) = (F,A)

Proof 

(i) Let (  ,A)  ̃    (U, A) =(H, A) ,where  for all
A, x   U ,we have

( )( ) = min ( 0 ,max(1,1)) = min(0,1) = 0 

( )( )= max ( 1 ,min ( 0, 0) ) = max (1 , 0) = 1 

Therefore (H, A) = (0, 1), For all     A, x   U 

It follows that ((  ,A)  ̃    (U, A) = (  ,A) 

(ii) Let (  ,A)  ̃    (U, A) =(H, A) ,where  For all
A, x   U ,we have

( )( ) = max (0 ,min ( 1, 1) ) =max (0 ,1)= 1 

( )( )= min (1 ,max(0, 0)) = min(1, 0) =0  

Therefore (H, A) = (1, 0), For all  A, x   U 

It follows that ((  ,A)  ̃    (U, A) = (U, A) 

(iii) Let (F, A)  ̃    (  ,A) =(H, A) ,where  For all
A, x   U ,we have

( )( ) = max ( ( )( ) ,min ( ( )( ), 0) ) 

=max ( ( )( ), 0) =   ( )( ) 

( )( )= min ( ( )( ), max(  ( )( ),1)) = 

min(   ( )( ),1) =  ( )( ) 

Therefore (H, A) = ( ( )( ) ,   ( )( )), for all 

A, x   U 
It follows that (F, A)  ̃    ( , A) = (F, A) 

3.3.4. Proposition: 

(F, A)  ̃    (G, B) →  (H, C)   [(F, A) →  (H, C)]  ̃
[(G, B) →  (H, C)]          (9) 

Proof, the proof is similar as in proposition 3.2.3 

3.3.5. Proposition: 

(i) [( , A)   ̃    (G, B) ]c =(  )     ̃    (  ) 
(ii) [( , A)   ̃    (G, B) ]c =(  )     ̃ (  ) 

(iii) [(   )     ̃ ( )   ]c = ( , A)   ̃   (G, B) 

Proof: 

(i) Let [(  ,A)  ̃    (G, B) ]c =(H, C) ,where  For all
C, x   U ,we have

[(  ,A)  ̃  (G, B) ]c= [min 
{ ( )( )  ,max( ( )( ) , ( )( ) )} ,max 
{ ( )( ), min ( ( )( ) , ( )( )})]c 

= [ max { ( )( ), min ( ( )( ) , ( )( ))}, min 
{ ( )( ) ,max( ( )( ) , ( )( ))}] 

= (  )     ̃    (   ) 

(ii) Let [(  ,A)  ̃   (G, B) ]c =(H, C) ,where  For all
C, x   U ,we have

[(   ,A)  ̃   (G, B) ]c = [max { ( )( ) , min 
( ( )( )  , ( )( ) )}, min { ( )( )  ,max 
( ( )( ) , ( )( ))}] 

= [min { ( )( ), max ( ( )( ) , ( )( ))}, max 
{ ( )( ), min ( ( )( ) , ( )( ))}]c 

= (  )     ̃ (   ) 

(iii) The proof is straightforward.

3.3.6. Proposition: 

The following equalities are not valid 

I. (  ,A)   ̃   (G, B) = (   ,B)   ̃   (F, A)
II. (  ,A)  ̃   (G, B) = (   ,B)  ̃   (F, A)
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III. [(  ,A)   ̃   (G, B)]  ̃   (K, C)  = (   ,A)   ̃    [(G,
B)  ̃   (K, C)]

IV. [(  ,A)   ̃   (G, B)]  ̃   (K, C)  = (   ,A)   ̃    [(G,
B)  ̃   (K, C)]

V. [(  ,A)   ̃   (G, B)]  ̃   (K, C)  = [(   ,A)   ̃    (G,
B)]  ̃   ,(   )   ̃    (K, C)]

VI. [(  ,A)   ̃   (G, B)]  ̃   (K, C)  = [(   ,A)  ̃    (G,
B)]  ̃   ,(   )   ̃    (K, C)]

3.3.7 .Example : 

Let U={a, b, c} and E ={  ,    ,    ,   }, A ={  ,   ,   } 
 E, B={  ,    ,   }   E 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 
0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 
F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}}, (G, 
A) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)},
G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, G(  )
={(  ( a ,  0 ,  0 .6 ) ,  (b ,  0 ,  0 .8 ) ,  ( c ,  0 .1 ,  0 .5 )}}

Let (F, A)  ̃    (G,B)  =(H ,C) ,where C = A   B = {   , 
 } 

Then (F, A)  ̃    (G, B) = (H, C) = {H (  ) = {(a, 0.2, 
0.5), (b, 0.1, 0.8), (c, 0.2, 0.5)}, H (  ) = {(a, 0.4, 0.1), 
(b, 0, 0.8), (c, 0.3, 0.5)}} 

For (G, B)  ̃    (F, A) = (K, C), where K = A   B = 
{   ,   } 

(K, C)={K (  ) ={(a, min (0.2,max (0.6, 0.5)), max (0.6, 
min (0.2, 0.1))), (b, min (0.7, max(0.1,0.1)), max (0.1, 
min( 0.7, 0.8))), (c, min (0.8, max(0.1,0.2)), max (0.1, 
min (0.8, 0.5)))}, K (  ) ={(a, min (0.7 ,max(0.1,0.4)), 
max(0.1, min (0.4, 0.1))), K (   ) ={(a, min 
(0.7 ,max(0.1,0.4)), max(0.1, min (0.4, 0.1))), (b, min 
(0.5, max(0.3,0.)), max(0.3, min (0.5, 0.8))) , (c, min 
(0.5, max(0.3,0.)), max(0.3, min (0.5, 0.8))) 

Then, (K, C)= { K (  )= {(a, min (0.2, 0.6), max (0.6, 
0.1)), (b, min (0.7, 0.1), max (0.1, 0.7)), (c, min (0.8, 
0.2), max (0.1, 0.5))}, K (  )= {(a, min (0.4, 0.4), max 
(0.1, 0.1)), (b, min (0.5, 0.3), max (0.3, 0.5)), (c, min 
(0.4, 0.5), max (0.5, 0.4))}} 

 Hence, (K, C) = { K (  )= {(a, 0.2, 0.6),(b, 0.1, 0.7), (c, 
0.2, 0.5)}, K (  )= {(a, 0.4, 0.1),(b, 0, 0.5), (c, 0.3, 0.5)}} 
Then  (G, B)  ̃    (F, A)  = (K, C) = { K (  )= {(a, 0.2, 
0.6),(b, 0.1, 0.7), (c,0.2, 0.5)},K (  )= {(a, 0.4, 0.1),(b, 
0.3, 0.5), (c,0.4, 0.5)}} 

It is obviously that (F, A)  ̃    (G, B)   (G, B)  ̃    (F, 
A) 

In this paper, We have introduced and extended the 
operations of second Zadeh‟s implication, second 
Zadeh‟s intuitionistic fuzzy disjunction and 
second Zadeh‟s intuitionistic fuzzy conjunction of 
intuitionistic fuzzy set that was introduced by 
Krassimir Atanasov in relation to the intuitionistic 
fuzzy soft set and other related properties with 
examples are presented. We hope that the 
findings, in this paper will help researchers 
enhance the study on the intuitionistic fuzzy soft 
set theory. 
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Abstract—In this paper, three new operations are 
introduced on intuitionistic fuzzy soft sets .They are 
based on concentration, dilatation and normalization of 
intuitionistic fuzzy sets. Some examples of these 
operations were given and a few important properties 
were also studied. 

Index Terms—Soft Set, Intuitionistic Fuzzy Soft Set, 
Concentration, Dilatation, Normalization. 

I. INTRODUCTION

The concept of the intuitionistic fuzzy (IFS, for short) 
was introduced in 1983 by K. Aanassov [1] as an 
extension of Zadeh‘s fuzzy set. All operations, defined 
over fuzzy sets were transformed for the case the IFS 
case .This concept is capable of capturing the 
information that includes some degree of hesitation and 
applicable in various fields of research. For example, in 
decision making problems, particularly in the case of 
medical diagnosis,  sales analysis, new product 
marketing, financial services, etc. Atanassov et.al [2,3] 
have widely applied theory of intuitionistic sets in logic 
programming, Szmidt and Kacprzyk [4] in group 
decision making , De  et al [5] in medical diagnosis etc. 
Therefore in various engineering application, 
intuitionistic fuzzy sets techniques have been more 
popular than fuzzy sets techniques in recent years. 
Another important concept that addresses uncertain 
information is the soft set theory originated by 
Molodtsov [6].  This concept is  free from the 
parameterization inadequacy syndrome of fuzzy set 
theory, rough set theory, probability theory. Molodtsov 
has successfully applied the soft set theory in many 
different fields such as smoothness of functions, game 
theory, operations research, Riemann integration, Perron 

integration, and probability. In recent years, soft set 
theory has been received much attention since its 
appearance. There are many papers devoted to fuzzify 
the concept of soft set theory which leads to a series of 
mathematical models such as fuzzy soft set [7,8,9,10,11], 
generalized fuzzy soft set [12,13], possibility fuzzy soft 
set [14] and so on. Thereafter, P.K.Maji and his 
coauthor [15] introduced the notion of intuitionistic 
fuzzy soft set which is based on a combination of the 
intuitionistic fuzzy sets and soft set models and they 
studied the properties of intuitionistic fuzzy soft set. 
Then, a lot of extensions of intuitionistic fuzzy soft have 
appeared such as generalized intuitionistic fuzzy soft set 
[16], possibility intuitionistic fuzzy soft set [17] etc. 

In this paper our aim is to extend the two operations 
defined by Wang et al. [18] on intuitionistic fuzzy set to 
the case of intuitionistic fuzzy soft sets, then we define 
the concept of normalization of intuitionistic fuzzy soft 
sets and we study some of their basic properties. 

This paper is arranged in the following manner .In 
section 2, some definitions and notions about soft set, 
fuzzy soft set, intuitionistic fuzzy soft set and several 
properties of them are presented. In section 3, we 
discuss the normalization intuitionistic fuzzy soft sets. 
In section 4, we conclude the paper. 

II. PRELIMINARIES

In this section, some definitions and notions about soft 
sets and intutionistic fuzzy soft set are given. These will 
be useful in later sections. 

Let U be an initial universe, and E be the set of all 
possible parameters under consideration with respect to 
U. The set of all subsets of U, i.e. the power set of U is
denoted by P(U) and the set of all intuitionistic fuzzy
subsets of U is denoted by IFU. Let A be a subset of E.
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2.1 Definition 

A pair (F, A) is called a soft set over U, where F is a 
mapping given by F: A  P (U). 

In other words, a soft set over U is a parameterized 
family of subsets of the universe U. For     A, F ( ) may 
be considered as the set of   -approximate elements of 
the soft set (F, A). 

2.2 Definition 

Let U be an initial universe set and E be the set of 
parameters. Let IFU denote the collection of all 
intuitionistic fuzzy subsets of U. Let. A    E pair (F, A) 
is called an intuitionistic fuzzy soft set over U where F is 
a mapping given by F: A→ IFU. 

2.3 Defintion 

Let F: A→ IFU  then  F is a function defined as  F ( ) 
={ x,   ( )( ) ,   ( )( ) :           +   where    ,   
denote the degree of  membership and degree of non-
membership respectively. 

2.4 Definition 

For two intuitionistic fuzzy soft sets (F , A) and (G, B) 
over a common universe U , we say that (F , A) is an 
intuitionistic fuzzy soft subset of (G, B) if 

(1) A   B and
(2) F ( )   G( ) for all     A. i.e   ( )( )  

  ( )( ) ,   ( )( ) ( )( ) for all     E and 
We write (F, A)   (G, B). 

2.5 Definition 

Two intuitionistic fuzzy soft sets (F, A) and (G, B) 
over a common universe U are said to be soft equal if (F, 
A) is a soft subset of (G, B) and (G, B) is a soft subset of
(F, A).

2.6 Definition 

Let U be an initial universe, E be the set of parameters, 
and A   E. 
(a) (F, A) is called a null intuitionistic fuzzy soft set (with
respect to the parameter set A), denoted by   , if F (a) = 

for all a   A. 
(b) (G, A) is called an absolute intuitionistic fuzzy soft
set (with respect to the parameter set A), denoted by   ,
if G(e) = U for all e   A.

2.7Definition 

Let (F, A) and (G, B) be two IFSSs over the same 
universe U. Then the union of (F, A) and (G, B) is 
denoted by ‗(F, A)   (G, B)‘ and is defined by (F, A)  
(G, B) = (H, C), where C=A     B and the truth-
membership, falsity-membership of (H, C) are as 
follows: 

 ( )

=

{

*(  ( )( ) ( )( )  +  

*(  ( )( ) ( )( )  }    –  

{ ( ( )( ) ( )( ))  ( ( )( ) ( )( ))   }  

Where ( )( )  = ( ( )( ) ( )( )) and 
( )( ) = ( ( )( ) ( )( )) 

2.8 Definition 

Let (F, A) and (G, B) be two IFSSs over the same 
universe U such that A   B≠0. Then the intersection of 
(F, A) and ( G, B) is denoted by ‗( F, A)   (G, B)‘ and 
is defined by ( F, A )   ( G, B ) = ( K, C),where C =A 

B and the truth-membership, falsity-membership of 
( K, C ) are related to those of (F, A) and (G, B) by:  

 ( )

=

{

*(  ( )( ) ( )( )  +  

*(  ( )( ) ( )( )  }    –  

{ ( ( )( ) ( )( ))  ( ( )( ) ( )( ))   }  

III. CONCENTRATION OF INTUITIONISTIC FUZZY SOFT SET

3.1 Definition

The concentration of an intuitionistic fuzzy soft set (F, 
A) of universe U, denoted by CON (F, A), and is defined
as a unary operation on IFU:

Con: IFU   IFU 

Con (F, A) = 
{Con {F( ) } = {<x,  ( )( ) , 1- ( ( ( ))( ))

   > |
∈ U and  ∈ A}. where 

From 0 ( )( ), ( )( )   1 

and ( )( ) + ( )( )   1, 

we obtain 0 ( )( ) ( )( ) 

 1- ( ( ( ))( )) ( )( ) 

 Con (F, A)   IFU, i.e Con (F, A)    (F, A ) this 
means that concentration of a intuitionistic fuzzy soft set 
leads to a reduction of the degrees of membership. 

In the following theorem, The operator ―Con ―reveals 
nice distributive properties with respect to intuitionistic 
union and intersection. 
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3.2 Therorem 

i. Con ( F, A )    ( F, A )

ii. Con (( F, A )   ( G,B )) = Con ( F, A )   Con ( G, B )

iii. Con (( F, A )    ( G,B )) = Con ( F, A )   Con ( G, B )

iv. Con (( F, A )   ( G,B ))=  Con ( F, A )   Con ( G,B )

v. Con ( F, A )   Con ( G, B )   Con (( F, A )   ( G,B ))

vi. ( F, A )    ( G, B )  Con ( F, A )    Con( G, B ) 

Proof , we prove only (v) ,i.e 

( )( ) + ( )( ) - ( )( ) ( )( ) ( ( )( )

( )( ) ( )( ) ( )( ))
 , 

(1- ( ( ) ( ))
 ). (1- ( ( )( ))

  )   1- 
( ( )( ) ( )( ))

  or, putting 

a= ( )( ), b= ( )( ), c = ( )( ), d =   ( )( ) 

+ - ( ) , 

(1- ( ) ) . (1- ( ) )    1- (     )

The last inequality follows from 0   a, b, c, d   1. 

Example 

Let U={a, b, c} and E ={   ,    ,    ,   } , A ={   , ,   } 
 E, B={   ,    ,   }   E 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 
0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 
F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, B) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 
0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Con ( F, A )={ con(F(  )) ={ ( a, 0.25, 0.19), (b, 0.01, 
0.96), (c, 0.04, 0.75)}, con(F(  ))={ ( a, 0.49, 0.19), (b, 0, 
0.96), (c, 0.09, 0.75) }, con(F(  ))={ ( a, 0.36, 0.51), (b, 
0.01, 0.91), (c, 0.81, 0.19) } 

Con ( G, B )={ con(G(  ))={ ( a, 0.04, 0.84), (b, 0.49, 
0.19), (c, 0.64, 0.75)}, 

con(G(  ))={ ( a, 0.16, 0.19), (b, 0.25, 0.51), (c, 0.16, 
0.51) }, con(G(  ))={ ( a, 0, 0.84), (b, 0, 0.96), (c, 0.01, 
0.75) } 

(F, A)   (G, B) = (H, C) = {H (  ) ={( a, 0.2, 0.6), (b, 0.1, 
0.8), (c, 0.2, 0. 5)}, H (  ) ={( a, 0.4, 0.1), (b, 0, 0.8), (c, 
0.3, 0. 5)}} 

Con (( F, A )    ( G,B ))= {con H(  ) ={( a, 0.04, 0.84), 
(b, 0.01, 0.96), (c, 0.04, 0. 75)}, con H(  ) ={( a, 0.16, 
0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}} 

Con ( F, A )   Con (G, B ) =(K,C) ={con K(  ) ={( a, 
0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, conK(  ) 
={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}}. 

Then 

Con (( F, A )    ( G,B )) = Con ( F, A )   Con ( G, B ) 

IV. DILATATION OF INTUITIONISTIC FUZZY SOFT SET

4.1 Definition 

The dilatation of an intuitionistic fuzzy soft set (F, A) 
of universe U, denoted by DIL (F, A ), and is defined as a 
unary operation on IFU: 

DIL: IFU   IFU 

(F, A)= {<x, ( )( ), ( )( )  > |     U and    A}. 

DIL( F, A ) ={ DIL {F( ) } = 

{<x,  
 ( )
 ( ), 1- ( ( ( ))( ))   > |    U and    A}. 

where 
From 0 ( )( ), ( )( )   1, 

and ( )( ) + ( )( )   1, 

we obtain 0 ( )( )  ( )
( )

0 ( ( ( ))( )) ( )( ) 

 DIL( F, A )   IFU, i.e ( F, A )    DIL( F, A ) this 
means that dilatation of an intuitionistic fuzzy soft set leads 
to an increase of the degrees of membership. 

4.2 Theorem 

i. ( F, A )    DIL( F, A )

ii. DIL (( F, A )   ( G, B )) = DIL ( F, A )   DIL ( G, B )

iii. DIL (( F, A )    ( G, B )) = DIL( F, A )   DIL ( G, B )

iv. DIL(( F, A )   ( G, B ))=  DIL ( F, A )   DIL ( G,B )

v. DIL ( F, A )   DIL ( G, B )   DIL (( F, A )   ( G,B ))

vi. CON ( DIL (F, A) ) = (F,A)

vii. DIL ( CON (F, A) = (F,A)

viii. ( F, A )    ( G, B )   DIL ( F, A )    DIL( G, B )
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Proof .we prove only (v), i.e 

 ( )
( ) + 

 ( )
( ) - 

 ( )
( )

 ( )
( ) ( ( )( )

( )( ) ( )( ) ( )( )) , 

(1- ( ( )( )) ). (1- ( ( )( ))  ) 1-

( ( )( ) ( )( ))  or, putting 

a= ( )( ), b= ( )( ), c = ( )( ), d = ( )( ) 

+ - ( ) , 
(1- ( ) ). (1- ( ) )   1- ( ) , or 

equivalently : a+ b – a b  1 ,√  1. 

The last inequality follows from 0   a, b,c,d   1. 

Example 

Let U={a, b, c} and E ={   ,    ,    ,   }, A ={   ,   ,   } 
 E, B={   ,    ,   }   E 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 
0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 
F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} and 

(G, B) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 
0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

DIL( F, A )={ DIL(F(  ))={ ( a, 0.70, 0.05), (b, 0.31, 
0.55), (c, 0.44, 0.29)}, DIL (F(  ))={ ( a, 0.83, 0.05), (b, 
0, 0.55), (c, 0.54, 0.29) }, DIL(F(  ))={ ( a, 0.77, 0.05), 
(b, 0.31, 0.45), (c, 0.94, 0.05) } and 

DIL (G, B) = {DIL (G (  )) = {(a, 0.44, 0.36), (b, 0.83, 
0.05), (c, 0.89, 0.05)}, 

DIL(G(  )) ={ ( a, 0.63, 0.05), (b, 0.70, 0.05), (c, 0.63, 
0.29) }, DIL(G(  ))={ ( a, 0, 0.36), (b, 0, 0.55), (c, 0.31, 
0.29) } 

(F, A)   (G, B) = (H, C) = {H (  ) = {(a, 0.2, 0.6), (b, 0.1, 
0.8), (c, 0.2, 0. 5)}, H (  ) = {(a, 0.4, 0.1), (b, 0, 0.8), (c, 
0.3, 0. 5)}} 

DIL (( F, A )    ( G,B ))= {DILH(  ) ={( a, 0.44, 0.36), (b, 
0.31, 0.55), (c, 0.44, 0. 29)}, DILH(  ) ={( a, 0.63, 0.05), 
(b, 0, 0.55), (c, 0.54, 0. 29)}} 

DIL ( F, A )   DIL ( G, B ) =( K,C) ={ DIL K(  ) ={( a, 
0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, DIL K(  ) 
={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}} 

Then 

DIL (( F, A )    ( G,B )) = DIL( F, A )   DIL ( G, B ) 

V. NORMALIZATION OF INTUITIONISTIC FUZZY SOFT SET

In this section, we shall introduce the normalization
operation on intuitionistic fuzzy soft set. 

5.1 Definition: 

The normalization of an intuitionistic fuzzy soft set ( F, 
A ) of universe U ,denoted by 

NORM (F, A) is defined as: 

NORM (F, A) ={ Norm {F( )} = {<x, ( ( ))( ), 
( ( ))( ),  > |    U and  A}. where 

( ( ))( )  = ( )( )

( ( )( ))
 and ( ( ))( )  = 

( )( ) ( ( )( ))

( ( )( ))
 and 

Inf ( ( )( ))   0. 

Example. Let there are five objects as the universal set 
where U = {x1, x2, x3, x4, x5} and the set of parameters 
as E = {beautiful, moderate, wooden, muddy, cheap, 
costly} and Let A = {beautiful, moderate, wooden}. Let 
the attractiveness of the objects represented by the 
intuitionistic fuzzy soft sets (F, A) is given as  

F(beautiful)={x1/(.6,.4), x2/(.7, .3), x3/(.5, .5), x4/(.8, .2), 
x5/(.9, .1)}, 

F(moderate)={x1/(.3, .7), x2/(6, .4), x3/(.8, .2), x4/(.3, .7), 
x5/(1, .9)} and 

F(wooden) ={ x1/(.4, .6), x2/(.6, .4), x3/(.5, .5), x4/(.2, .8), 
x5/(.3, .7,)}. 

Then, 

(  (   )( )) = 0.9, (  (  )( ) = 0.1. We 
have 

( (  ))(  ) =    
   

 = 0.66, 

( (  ))(  ) =    
   

 = 0.77, 

( (  ))(  ) =    
   

 = 0.55, 

( (   ))(  ) =    
   

  =0.88, 

( (   ))(  ) =    
   

 = 1 and 

( (   ))(  ) =    
   

 = 0.33, 

( (   ))(  ) =    
   

 = 0.22, 
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( (  ))(  ) =  = 0.44 

( (  ))(  ) =  = 0.11, 

( (  ))(  ) =  = 0. 

Norm(F( )) ={ x1/(.66,.33), x2/(.77, .22), x3/(.55, .44), 
x4/(.88, .11), x5/(1, 0) }. 

(  (  )( )) = 0.8, (  (  )( ) = 0.2. 
We have 

( (  ))(  ) =  = 0.375, 

( (  ))(  ) =  = 0.75, 

( (  ))(  ) =  = 1, 

( (  ))(  ) =   =0.375, 

( (  ))(  ) =  = 0.125 And 

( (  ))(  ) =  = 0.625, 

( (  ))(  ) =  = 0.25, 

( (  ))(  ) =  = 0, 

( (  ))(  ) =   = 0.625, 

( (  ))(  ) =  = 0.875. 

Norm(F( )) ={ x1/(.375,.625), x2/(.75, .25), x3/(1, 0), 
x4/(.375, .625), x5/(0.125, 0.875) }. 

(  ( )( )) = 0.6, (  ( )( ) = 0.4. We 
have 

( ( ))(  ) =  = 0.66, 

( ( ))(  ) =  = 1, 

( ( ))(  ) =  = 0.83, 

( ( ))(  ) =  = 0.34, 

( ( ))(  ) =  = 0.5 and 

( (   ))(  ) =  = 0.34, 

( (   ))(  ) =  = 0, 

( (   ))(  ) =  = 0.17, 

( (   ))(  ) =  = 0.66, 

( ( ))(  ) =  = 0.5. 

Norm(F(      )) ={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17), 
x4/(.34, .66), x5/(0.5, 0. 5) }. 

Then, Norm (F, A) = {Norm F ( ), Norm 
F(        ), Norm F( )} 

Norm (F,A)={ F( ) ={ x1/(.66,.33), x2/(.77, .22), 
x3/(.55, .44), x4/(.88, .11), x5/(1, 0) }, F( )={ x1/(.375,.625), 
x2/(.75, .25), x3/(1, 0), x4/(.375, .625), x5/(0.125, 0.875) }, F( ) 
={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17), x4/(.34, .66), x5/(0.5, 0. 5) }} 

Clearly,        ( ( ))( ) + ( ( ))( ) = 1, for i = 1, 2, 
3, 4, 5 which satisfies the property of intuitionistic fuzzy 
soft set. Therefore, Norm (F, A) is an intuitionistic fuzzy 
soft set. 

VI. CONCLUSION

In this paper, we have extended the two operations of 
intuitionistic fuzzy set introduced by Wang et al.[ 18] to 
the case of intuitionistic fuzzy soft sets. Then we have 
introduced the concept of normalization of intuitionistic 
fuzzy soft sets and studied several properties of these 
operations. 
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Mapping on Intuitionistic Fuzzy Soft Expert Sets 

Abstract – We introduce the mapping on intuitionistic fuzzy 
soft expert set and its operations are studied. The basic 
operations of mapping on intuitionistic fuzzy soft expert set 
theory are defined. 

Keywords -  
Intuitionistic fuzzy soft expert set, 
intuitionistic fuzzy soft expert images, 
intuitionistic fuzzy soft expert inverse 
images, mapping on intuitionistic fuzzy 
soft expert set  

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [16] whose basic component is only a 
degree of membership. Atanassov [10] generalized this idea to intuitionistic fuzzy set (IFS 
in short) using a degree of membership and a degree of non-membership, under the 
constraint that the sum of the two degrees does not exceed one. The conception of IFS can 
be viewed as an appropriate /alternative approach in case where available information is 
not sufficient to  define the impreciseness by the conventional fuzzy set. A detailed 
theoretical study may be found in [10]. Later on, many hybrid structures with the concept 
of intuitionistic fuzzy sets appeared in [ 32, 33, 34, 35, 36, 37, 38]. 
Soft set theory [6] was firstly introduced by Molodtsov in 1999 as a general mathematical 
tool for dealing with uncertainties which traditional mathematical tools cannot handle and 
how soft set theory is free from the parameterization inadequacy syndrome of fuzzy set 
theory, rough set theory, probability theory.  A soft set is in fact a set-valued map which 
gives an approximation description of objects under consideration based on some 
parameters.  After Molodtsov’s work, Maji et al.[29] introduced the concept of fuzzy soft 
set, a more generalized concept, which is a combination of fuzzy set and soft set and 
studied its properties and also discussed their properties. Also, Maji et al.[30] devoted the 
concept of intuitionistic fuzzy soft sets by combining intuitionistic fuzzy sets with soft sets. 
Then, many interesting results of soft set theory have been studied on fuzzy soft sets [22, 
23, 27, 28], on intuitionistic fuzzy soft set theory [24, 25, 26, 30], on possibility fuzzy soft 
set [34], on generalized fuzzy soft sets [8,39], on generalized intuitionistic fuzzy soft [15, 
31,43,44], on possibility intuitionistic fuzzy soft set [17], on possibility vague soft set [11] 
and so on. All these research aim to solve most of our real life problems in medical 
sciences, engineering, management, environment and social  science which involve data 

Said Broumi, Florentin Smarandache (2015). Mapping on Intuitionistic Fuzzy Soft 
Expert Sets. Journal of New Results in Science 9, 1-10
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that are not crisp and precise. Moreover all the models created will deal only with one 
expert. To redefine this one expert opinion, Alkhazaleh and Salleh in 2011 [32] defined the 
concept of soft expert set in which the user can know the opinion of all the experts in one 
model and give an application of this concept in decision making problem. Also, they 
introduced the concept of the fuzzy soft expert set [40] as a combination between the soft 
expert set and the fuzzy set. Recently, Broumi and Smaranadache [42] introduced, a more 
generalized concept, the concept of the intuitionistic fuzzy soft expert set as a combination 
between the soft expert set and the intuitionistic fuzzy set and gave the application in 
decision making problem. The soft expert models are richer than soft set models since the 
soft set models are created with the help of one expert whereas but the soft expert models 
are made with the opinions of all experts. Later on, many researchers have worked with the 
concept of soft expert sets and their hybrid structures [1,2, 3, 7, 10, 11, 12, 16, 17, 19, 45]. 
The notion of mapping on soft classes are introduced by Kharal and Ahmad [4]. The same 
authors presented the concept of a mapping on classes of fuzzy soft sets [5] and studied the 
properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets, and 
supported them with examples and counterexamples. In intuitionistic fuzzy environment, 
there is no study on mapping on the classes of intuitionistic fuzzy soft expert sets, so there 
is a need to develop a new mathematical tool called “Mapping on  intuitionistic fuzzy soft 
expert set”. 
In this paper we introduce the notion of mapping on intuitionistic fuzzy oft expert classes 
and study the properties of intuitionistic fuzzy soft expert images and intuitionistic fuzzy 
soft expert inverse images of intuitionistic fuzzy soft expert sets. Finally, we give some 
examples of mapping on intuitionistic fuzzy soft expert. 

2    Preliminaries 

In this section, we will briefly recall the basic concepts of intuitionistic fuzzy sets, soft set, 
soft expert sets, fuzzy soft expert sets and intuitionistic fuzzy soft expert set. 
Let U be an initial universe set of objects and E the set of parameters in relation to objects 
in U. Parameters are often attributes, characteristics or properties of objects. Let P (U) 
denote the power set of U and A E. 

2.1. Intuitionistic Fuzzy Set 
Definition 2.1 [8]: Let U be an universe of discourse then the intuitionistic fuzzy set A is 
an object having the form A = {< x, , >,x  U},where the functions , 

 : U→[0,1] define respectively the degree of membership, and the degree of non-
membership of the element x  X to the set A with the condition.  

0  ≤ + ≤1. 
For two IFS, 

= {<x, , > |  } 
and 

= {<x, , > |  } 
Then, 

1. if and only if

2. , 

 =  ,  =  for any . 
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3. The complement of  is denoted by  and is defined by 

= {<x, |  } 

4. A B = {<x, min max >:  } 

5. A B = {<x, max min >:  } 

As an illustration, let us consider the following example. 

Example 2.2. Assume that the universe of discourse U={x1,x2,x3, }. It may be further 
assumed that the values of x1, x2,  and are in [0, 1] Then,  A is an intuitionistic fuzzy 
set (IFS) of U, such that, 

A= {< x1, 0.4, 0.6>, < x2, 0.3, 0.7>, < x3, 0.2,0.8>,< , 0.2,0.8>} 
2.2.Soft set 
Definition 2.3 [4]  
Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set 
of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft set over U, where K 
is a mapping given by K : A → P(U).  
As an illustration, let us consider the following example. 
Example 2.4 .Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., 
h5}. Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . 
. ., e8 stand for the attributes “beautiful”, “costly”, “in the green surroundings”, “moderate”, 
, “cheap”,” expensive”, “wooden” and “very costly” respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and 
so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in 
the opinion of a buyer, say Thomas, may be defined like this:  
A={e1,e2,e3,e4,e5};  
K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}.  

2.3 Intuitionistic fuzzy soft sets. 
Definition 2.5 [28] Let  be an initial universe set and  be a set of parameters. Let 
IFS(U) denotes the set of all intuitionistic fuzzy  subsets of . The collection  is 
termed to be the intuitionistic fuzzy soft set over , where  is a mapping given by 

. 
Example 2.6 Let U be the set of houses under consideration and E is the set of parameters. 
Each parameter is a word or sentence involving intuitionistic fuzzy words. Consider 

{beautiful, wooden, costly, very costly, moderate, green surroundings, in good repair, in 
bad repair, cheap, expensive}. In this case, to define a intuitionistic fuzzy soft set means to 
point out beautiful houses, wooden houses, houses in the green surroundings and so on. 
Suppose that, there are five houses in the universe  given by  and the set 
of parameters 

,where  stands for the parameter `beautiful',  stands for the parameter 
`wooden',  stands for the parameter `costly' and the parameter stands for `moderate'. 
Then the intuitionistic fuzzy set  is defined as follows: 
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2.4. Soft expert sets 
Definition 2.7[30] Let U be  a  universe set, E be a set of parameters and X   be  a  set  of  
experts (agents). Let O= {1=agree, 0=disagree}  be a set of opinions.  Let Z= E  X  O 
and A  Z 
A pair (F, E) is called a soft expert set over U, where F is a mapping given by F : A → 
P(U) and P(U) denote the power set of U. 

Definition 2.8 [30] An agree- soft expert set over U, is a soft expert subset of 
( ,A) defined as : 

 = {F( ):  E  X {1}}. 
Definition 2.9 [30] A disagree- soft expert set over U, is a soft expert subset of 
( ,A) defined as : 

= {F( ):  E  X {0}}. 
2.5.Fuzzy Soft expert sets 
Definition 2.10 [31] A pair (F, A) is called a fuzzy soft expert set over U, where F is a 
mapping given by  
                           F : A→ , and  denote the set of all fuzzy subsets of  U. 
2.6.Intuitionitistic Fuzzy Soft expert sets 
Definition  2.11 [40]    Let  U=   { 1u , 2u , 3u ,…, nu } be  a  universal  set  of  elements, E={

1e , 2e , 3e ,…, me } be a universal  set of  parameters, X={ 1x , 2x , 3x ,…, ix } be a set of  
experts (agents)  and O= {1=agree, 0=disagree} be a set of  opinions.  Let  Z= { E X 

Q }  and  A   Z. Then  the  pair (U, Z)  is  called  a  soft universe.  Let 
where  denotes the collection of all intuitionistic fuzzy subsets of 

U.    Suppose   be a function defined  
as: 

)(zF = F(z)( iu ), for all iu U. 
Then )(zF   is called an intuitionistic fuzzy soft expert set (IFSES in short ) over the soft 
universe (U, Z)          
For  each iz Z. )(zF = F( iz )( iu ) where F( iz )  represents  the degree of belongingness 
and non-belongingness  of  the  elements  of  U  in F( iz ). Hence  )( izF can be written as:

)( izF ={( 
))(( 11

1

uzF
u

),….,( 
))(( ii

i

uzF
u

)}, for i=1,2,3,…n 

where  F( iz )( iu ) = < )iF(z ( iu ), )iF(z ( iu )> with )iF(z ( iu ) and )iF(z ( iu )   representing  
the  membership function and non-membership function of each of the elements iu U   
respectively. 
Sometimes we write  as ( , Z). If A  Z. we can also have  IFSES ( , A). 
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3. Mapping on Intuitionistic Fuzzy Soft Expert Set.
In this paper, we introduce the notion of a mapping on intuitionistic fuzzy soft expert 
classes. Intuitionistic fuzzy soft expert classes are collections of an intuitionistic fuzzy soft 
expert sets. We also define and study the properties of an intuitionistic fuzzy soft expert 
images and an intuitionistic fuzzy soft expert inverse images of an intuitionistic fuzzy soft 
expert sets, and support them with example and theorems. 
Definition 3.1: Let   be an intuitionistic fuzzy soft expert classes. Let r: 
U Y and 
s: Z  be mappings. Then a mapping     f:  is defined as follows : 
For an intuitionistic fuzzy soft expert set (F, A) in ,  f (F, A) is  an intuitionistic fuzzy 
soft expert set in 

f(F, A)( ) (y) =

for  s( Z) , y  Y and ,  f (F, A) is called an intuitionistic fuzzy 
soft expert image of the intuitionistic fuzzy soft expert  set (F, A). 
Definition 3.2 :Let  be an intuitionistic fuzzy soft expert classes. Let r: 
U Y and 
s: Z  be mappings. Then a mapping     :   is defined as follows : 
For an intuitionistic fuzzy soft expert set (G, B) in ,  ( , B) is  an intuitionistic 
fuzzysoft expert set in 

( , B)  ( ) (u) =

For   and u  U.  ( , B)  is called an intuitionistic fuzzy soft expert 
inverse image of the an intuitionistic fuzzy soft expert  set ( F, A). 
Example 3.3. Let U={ ,  , }, Y={ , , } and let A  Z = {( , p, 1), ( , p, 0), 
( , p,1)}, and  ={( , ,1), ( , ,0), ( , ,1)}. 
Suppose that  are an intuitionistic fuzzy soft expert classes. Define  r : U 

 Y and s: : A  as follows : 
r( ) = ,  r( ) = , r( ) = , 
s ( , p, 1) = ( , ,0) , s ( , p, 0) = ( , ,1), s ( , p, 1) = ( , ,1), 
Let (F, A) and (G, ) be two an intuitionistic fuzzy soft experts over U and Y respectively 
such that. 

(F, A) = , , 

, 

(G, ) = , , 

Then  we define the mapping from  f:  as follows : 
 For an intuitionistic fuzzy soft expert set ( F, A) in ( U, Z), (f (F, A), K) is  an intuitionistic 
fuzzy soft expert set in (Y, ) where  
K= s(A)={( , ,1), ( , ,0), ( , ,1)}. and is obtained as follows: 
f (F, A) ( , ,1) ( ) =  = 

= 
= (0.5, 0.2)    
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f (F, A) ( , ,1) ( ) =  = 
= 
= (0.6, 0.1) 

f (F, A) ( , ,1) ( ) =  = 
=
= (0.5, 0.2) 

Then       
f (F, A) ( , ,1) = 

f (F, A) ( , ,0) ( ) =  = 
= 

f (F, A) ( , ,0) ( ) =  = 
= ) 

f (F, A) ( , ,0) ( ) =  = 
= 

Then       
f (F, A) (( , ,0)= 

f (F, A) ( , ,1) ( ) =  = 
= 

f (F, A) ( , ,1) ( ) =  = 
= 

f (F, A) ( , ,1) ( ) =  = 
= 

Then       
f (F, A) (( , ,1)= 
Hence 

= , , 

Next, for the intuitionistic fuzzy soft expert set inverse images, we have the following: 
For an intuitionistic fuzzy soft expert set (G, ) in ( Y, ), ( (G, ), D) is  an 
intuitionistic fuzzy soft expert set in (U, ) where  
D= ( )= {( , p, 1), ( , p, 0), ( , p,1)}. and is obtained as follows: 

 (G, B) ( , p, 1) ( ) =  =  =  (G, 
B) ( , p, 1) ( ) =  =  =

 (G, B) ( , p, 1) ( ) =  = =(0.1, 0.5)   Then      
 (G, B) ( , p, 1) = 

 (G, B) ( , p, 0) ( ) =  =  =
 (G, B) ( , p, 0) ( ) =  =  =
 (G, B) ( , p, 0) ( ) =  = =(0.5, 0.4)  

Then       
 (G, B) ( , p, 0)= 
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 (G, B) ( , p,1) ( ) =  =  =  (G, 
B) ( , p,1)  ( ) =  =  =

 (G, B) ( , p,1) ( ) =  = =(0.5, 0.3)  
Then       

 (G, B) ( , p,1)= 
Hence 

= , ,

. 

Definition 3.4.Let  f:  be a mapping and (F, A) and  (G, B) a intuitionistic 
fuzzy soft expert sets in . Then for ,  the union and intersection of 
intuitionistic fuzzy soft expert images (F, A) and (G, B) are defined follows : 

( )(y) = ( )(y) ( )(y). 

( )(y) = ( )(y) ( )(y). 

Definition 3.5.Let  f: be a mapping and (F, A) and  (G, B) a 
intuitionistic fuzzy soft expert sets in . Then for , , the union and 
intersection of intuitionistic fuzzy soft  expert inverse images (F, A) and (G, B) are defined 
follows : 

( )(u) = ( )(u) ( )(u). 

( )(u) = ( )(u) ( )(u). 

Theorem 3.6 Let f:  be a mapping. Then for  intuitionistic fuzzy soft expert 
sets (F, A)  and (G, B) in the intuitionistic fuzzy soft expert class . 

1. f( )=
2. f( ) .
3. =
4. =
5. If , Then . 

Proof For (1) ,(2) and (5) the proof is trivial , so we just give the proof of (3) and (4). 
For  and y , we want to prove that 

( )(y) = ( )(y) ( )(y) 

For left hand side, consider ( )(y) = ( )(y). Then 

( )(y)=  (1,1) 

Such that   =  where  denotes intuitionistic fuzzy union. 
Considering only the non-trivial case, Then equation 1.1 becomes: 

( )(y) = (1,2) 
For right hand side and by using Definition 3.4, we have 

( )(y) 
= ( )(y) ( )(y) 

=  
=   
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= (1,3) 
From equation  (1.1) and (1.3) we get (3) 
4. For  and y , and using Definition 3.4, we have 

( )(y) 
= ( )(y) 
= (x) 
= (x) 
=

=
=
This gives (4) 
Theorem 3.7.Let :  be a mapping. Then for  intuitionistic fuzzy soft 
expert sets (F, A)  and (G, B) in the intuitionistic fuzzy soft expert class . 

 ( )=  
 ( ) . 

=
=

If , Then . 
Proof. The proof is straightforward. 

6. Conclusion

In this paper, we studied a mapping on intuitionistic fuzzy soft expert classes and its 
properties. We give some illustrative examples of mapping intuitionistic fuzzy soft expert 
set. We hope these fundamental results will help the researchers to enhance and promote 
the research on intuitionistic fuzzy soft set theory. 
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New Operations on Intuitionistic Fuzzy Soft Sets Based 
on First  Zadeh's Logical  Operators 

Abstract – In this paper , we have defined First Zadeh’s implication , First 
Zadeh’s intuitionistic fuzzy conjunction and intuitionistic fuzzy 
disjunction of two intuitionistic fuzzy soft sets and some their basic 
properties are studied with proofs and examples.

Keywords – Fuzzy sets, Intuitionistic fuzzy sets, Fuzzy soft sets, 
Intuitionistic fuzzy soft sets. 

1. Introduction

The concept of the intuitionistic fuzzy (IFS , for short ) was  introduced in 1983 by Atanassov 
[1] as an extension of Zadeh’s  fuzzy set. All operations, defined over fuzzy sets were
transformed for the case the IFS case .This concept is capable of capturing the information
that includes some degree of hesitation and applicable in various fields of research .For
example , in decision making problems, particularly in the case of medial of medical diagnosis
,sales analysis  ,new product marketing , financial services, etc.  Atanassov et.al  [2,3] have
widely applied theory of intuitionistic sets in logic programming, Szmidt and Kacprzyk [4]
in group decision making, De et al [5] in medical diagnosis etc. Therefore in various
engineering application, intuitionstic fuzzy sets techniques have been more popular than
fuzzy sets techniques in recent years. After defining a lot  of operations  over Intuitionstic
fuzzy sets during last ten years [6] ,in 2011, Atanassov [7, 8] constructed two new operations
based on the First Zadeh’s IF-implication which are the first Zadeh’s conjunction and
disjounction, after that, in 2013,  Atanassov[ 9] introduced the second type of Zadeh ‘s
conjunction and disjunction based on the Second Zadeh’s IF-implication.

Said Broumi, Pinaki Majumdar, Florentin Smarandache (2014). New Operations on Intuitionistic 
Fuzzy Soft Sets Based on First Zadeh's Logical Operators. Journal of New Results in Science 4, 71-81
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Another important concept that addresses uncertain information is the soft set theory 
originated by Molodtsov [10]. This concept is  free from the parameterization inadequacy 
syndrome of fuzzy set theory, rough set theory, probability theory. Molodtsov has 
successfully applied the soft set theory in many different fields such as smoothness of 
functions, game theory, operations research, Riemann integration, Perron integration, and 
probability. In recent years, soft set theory  has been  received much attention since its 
appearance. There are many papers devoted to fuzzify the concept of soft set theory which 
leads to a series of mathematical models such as fuzzy soft set [11,12,13,14,15], generalized 
fuzzy soft set [16,17], possibility fuzzy soft set [18] and so on. Thereafter, Maji and his 
coworker [19] introduced the notion of intuitionstic fuzzy soft set which is based on a 
combination of the intuitionistic fuzzy sets and soft set models and studied  the properties of 
intuitionistic fuzzy soft set. Later, a lot of extentions of intuitionistic fuzzy soft are appeared 
such as generalized intuitionistic fuzzy soft set [20], possibility Intuitionistic fuzzy soft set 
[21] etc.

In this paper, our aim is to extend the three new operations introduced by Atanassov to the 
case of intuitionistic fuzzy soft and study its properties. This paper is arranged in the following 
manner. In Section 2, some definitions and notion  about soft set, fuzzy  soft set and 
intuitionistic fuzzy soft set and some properties of its. These definitions will help us in later 
section . In Section 3, we discusses the three operations of intuitionistic fuzzy soft such as 
first Zadeh’s implication, First Zadeh’s intuitionistic fuzzy conjunction and first Zadeh 
intuitionistic  fuzzy disjunction. Section 4 concludes the paper. 

2. Preliminaries

In this section, some definitions and notions about soft sets and intutionistic fuzzy soft set are 
given. These will be useful in later sections 

Let U  be an initial universe, and E be the set of all possible parameters under consideration 
with respect to  U. The set of all subsets of U, i.e. the power set of U  is denoted by  P(U) and 
the set of all  intuitionistic  fuzzy subsets of  U  is denoted by IFU . Let A be  a subset of E. 

Definition 2.1 .A pair (F , A) is called a soft set over U , where F is a mapping given by F : A  
P (U ). 

In other words, a soft set over U is a parameterized family of subsets of the universe U . For e 
∈ A, F (e) may be considered as the set of e-approximate elements of the soft set (F , A). 

Definition 2.2. Let  U  be an initial universe set and  E  be the set of parameters. Let  IFU denote 
the collection of all intuitionistic fuzzy subsets of  U. Let . A ⊆  E pair (F,  A) is called an 
intuitionistic fuzzy soft set over U where F is a mapping given by F: A→ IFU . 

Definition 2.3. Let  F: A→ IFU  then  F is a function defined as  

F (𝜀) ={ x, 𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥) : 𝑥 𝜀 𝑈 } 

where  𝜇 , 𝜈 denote the degree of  membership and degree of non-membership respectively. 
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Definition 2.4 . For two intuitionistic fuzzy soft sets (F , A) and (G, B) over a common 
universe U , we say that (F , A) is an intuitionistic fuzzy soft subset of (G, B) if 

(1) A ⊆ B and
(2) F (𝜀) ⊆G(𝜀) for all 𝜀 ∈ A. i.e 𝜇𝐹(𝜀)(𝑥) ≤ 𝜇𝐺(𝜀)(𝑥) , 𝜈𝐹(𝜀)(𝑥) ≥ 𝜈𝐺(𝜀)(𝑥) for all 𝜀 ∈ E and

We write (F,A) ⊆ (G, B). 

In this case (G, B) is said to be a soft super set of (F , A). 

Definition 2.5. Two soft sets (F , A) and (G, B) over a common universe U are said to be soft 
equal if (F , A) is a soft subset of (G, B) and (G, B) is a soft subset of (F , A). 

Definition 2.6. Let U be an initial universe, E be the set of parameters, and A  ⊆ E . 

(a) (F , A) is called a relative null soft set (with respect to the parameter set A), denoted by
∅𝐴, if F (a) = ∅ for all a ∈ A.

(b) (G, A) is called a relative whole soft set (with respect to the parameter set A), denoted by
𝑈𝐴  ,if G(e) = U for all e ∈ A.

Definition 2.7. Let (F, A) and (G, B) be two IFSSs over the same universe U. Then the union 
of (F,A) and (G,B) is denoted by ‘(F,A)∪(G,B)’ and is defined by (F,A) ∪ (G,B)=(H,C), 
where C=A∪B and the truth-membership, falsity-membership of ( H,C) are as follows:  

𝐻(𝜀)  ={
{(𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥) ∶ 𝑥  𝑈}   , if 𝜀 ∈  A −  B,

{(𝜇𝐺(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥) ∶ 𝑥  𝑈}    , if 𝜀 ∈  B –  A

{max(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)),min (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)): 𝑥  𝑈}if 𝜀 ∈  A ∩  B

Where 𝜇𝐻(𝜀)(𝑥) = max(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) and 𝜈𝐻(𝜀)(𝑥) = min (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)) 

Definition 2.8.  Let (F, A) and (G, B) be two IFSS over the same universe U such that 
A ∩ B ≠ 0. Then the intersection of (F, A) and ( G, B) is denoted by ‘( F, A) ∩ (G, B)’ and is 
defined by ( F, A ) ∩( G, B ) = ( K, C),where C =A ∩B and the truth-membership, falsity-
membership of ( K, C ) are related to those of (F, A) and (G, B) by:  

𝐾(𝜀)  ={
{(𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥) ∶ 𝑥  𝑈}   , if 𝜀 ∈  A −  B,

{(𝜇𝐺(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥) ∶ 𝑥  𝑈}    , if 𝜀 ∈  B –  A

{min(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)),max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)): 𝑥  𝑈}if 𝜀 ∈  A ∩  B

Where 𝜇𝐾(𝜀)(𝑥) = min(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) and 𝜈𝐾(𝜀)(𝑥) =max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)) 
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3. New Operations on Intuitionstic Fuzzy Soft Sets Based on First  Zadeh's
Logical  Operators

3.1 First Zadeh’s Implication  of Intuitionistic Fuzzy Soft Sets 

Definition 3.1.1. Let  (F, A) and (G, B) are two intuitionistic fuzzy soft set s over (U,E) .We 
define the First Zadeh’s intuitionistic fuzzy soft set implication  (F, A) 

𝑧,1
→ (G,B) is defined by

(F, A) 
𝑧,1
→  (G,B) = [ max {𝜈𝐹(𝜀)(𝑥)  , min (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥))} , min (𝜇𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥))

Proposition 3.1.2.  Let  (F, A) ,(G, B) and  (H, C) are three  intuitionistic fuzzy soft set s over 
(U,E). Then the following results hold 

(i) (F, A) ∩ (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∩  [(G , B) 

𝑧,1
→  (H, C) ]

(ii) (F, A) ∪ (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∪  [(G , B) 

𝑧,1
→  (H, C) ]

(iii) (F, A) ∩(G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∪  [(G , B) 

𝑧,1
→  (H, C) ]

(iv) (F, A) 
𝑧,1
→ (F, A) 𝑐 = (F, A) 𝑐

(v) (F, A) 
𝑧,1
→ (𝜑, A) =(F, A) 𝑐

Proof. 
(i) (F, A) ∩ (G,B) 

𝑧,1
→   (H, C)

=   { 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))  }  
𝑧,1
→   (𝜇𝐻(𝜀)(𝑥)  , 𝜈𝐻(𝜀)(x))

    = [
MAX { max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)) , min( 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , 𝜈𝐻(𝜀)(𝑥)}

]

 (1) 
[(F , A) 

𝑧,1
→  (H, C) ] ∩  [(G , B) 

𝑧,1
→  (H, C) ]

= [ max {𝜈𝐹(𝜀)  , min (𝜇𝐹(𝜀) , 𝜇𝐻(𝜀))} , min (𝜇𝐹(𝜀) , 𝜈𝐻(𝜀)) ] ∩
[ max {𝜈𝐺(𝜀)  , min (𝜇𝐺(𝜀) , 𝜇𝐻(𝜀))} , min (𝜇𝐺(𝜀) , 𝜈𝐻(𝜀)) ] 

=    [
MIN {max (𝜈𝐹(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥))) , max (𝜈𝐺(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥)))} ,

MAX {𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)) , 𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥))}
]  (2) 

From (1) and  (2)  it is clear that       (F, A) ∩ (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∩

[(G , B) 
𝑧,1
→  (H, C) ]

(ii) And (iii)  the proof is similar to (i)

(iv) (F, A) 
𝑧,1
→ (F, A) 𝑐 = (F, A) 𝑐

=[
Max {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥))} ,

MIN{𝜇𝐹(𝜀)(𝑥), 𝜇𝐹(𝜀)(𝑥)}
]
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= (𝜈𝐹(𝜀)(𝑥), 𝜇𝐹(𝜀)(𝑥)) 

It is shown that  the first Zadeh’s  intuitionistic fuzzy soft implication  generate the 
complement of intuitionistic fuzzy soft set. 

(v) The proof  is straightforward .

Example 3.1.3. 
(F ,A) = {F(𝑒1) = (a , 0.3 , 0.2)} 
(G ,B) = {G(𝑒1) = (a , 0.4 , 0.5)} 
(H ,C) = {H(𝑒1) = (a , 0.3 , 0.6)} 

(F, A) ∩ (G,B) 
𝑧,1
→   (H, C)  =

[max { (max (0.2, min (0.3,0.4)) , 0.3 } , min { min (0.3,0.5), 0.6))} =   (0.5, 0.3 ) 
(F, A) ∩ (G,B) ={(a ,0.3 ,0.5)} 

3.2. First Zadeh’s Intuitionistic Fuzzy Conjunction of Intuitionistic Fuzzy Soft Set 

Definition 3.2.1. Let  (F, A) and (G, B) are two intuitionistic fuzzy soft sets over (U,E) .We 
define the  first Zadeh’s intuitionistic  fuzzy conjunction of (F, A) and (G,B) as the intuitionistic 
fuzzy soft set (H,C) over (U,E), written as  (F, A) ∧̃𝑧,1 (G,B)  =(H ,C). Where C = A ∩ B ≠ ∅ 
and ∀ 𝜀 ∈ C, x ∈ U, 

𝜇𝐻(𝜀)(𝑥) = 𝑀𝐼𝑁(𝜇𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥)) 
𝜈𝐻(𝜀)(𝑥)=  𝑀𝑎𝑥 {𝜈𝐹(𝜀)(𝑥) ,𝑚𝑖𝑛(𝜇𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥))} 

Example 3.2. 2. 
Let U={a, b, c} and E ={ 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4} , A ={ 𝑒1 , 𝑒2, 𝑒4} ⊆ E, B={ 𝑒1 , 𝑒2 , 𝑒3} ⊆ E 

(F, A) ={ F(𝑒1) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, 
              F(𝑒2) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},  
              F(𝑒4) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, B) ={ G(𝑒1) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, 
              G(𝑒2) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
              G(𝑒3) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Let  (F, A) ∧̃𝑧 (G,B)  =(H ,C) ,where C = A ∩ B = { 𝑒1  , 𝑒2 } 

(H, C)={H (𝑒1) ={(a, min(0.5, 0.2), max(0.1, min(0.5, 0.6))) 
(b, min(0.1, 0.7), max(0.8, min(0.1, 0.1))) 
(c, min(0.2, 0.8), max(0.5, min(0.2, 0.1)))}, 

             H (𝑒2) ={(a, min(0.7, 0.4), max(0.1, min(0.7, 0.1))) 
(b, min(0, 0.5), max(0.8, min(0, 0.3))) 
(c, min(0.3, 0.4), max(0.5, min(0.3, 0.5)))}} 

(H, C)= { H (𝑒1)= {(a, min(0.5, 0.2), max(0.1, 0.5)), 
(b, min(0.1, 0.7), max(0.8, 0.1)), 
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(c, min(0.2, 0.8), max(0.5, 0.1))}, 
              H (𝑒2)= {(a, min(0.7, 0.4), max(0.1, 0.1)), 

(b, min(0, 0.5), max(0, 0.8)), 
(c, min(0.3, 0.4), max(0.5, 0.3))}} 

(H, C)= { H (𝑒1)= {(a, 0.2, 0.5),(b, 0.1, 0.8), (c,0.2, 0.5)}, 
               H (𝑒2)= {(a, 0.4, 0.1), (b, 0, 0), (c, 0.3, 0.5)}} 

Proposition 3.2. 3. Let  (F, A) ,(G, B) and  (H, C) are three  intuitionistic fuzzy soft set s over 
(U,E). Then the following result hold 

(F, A) ∧̃𝑧,1 (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∧̃𝑧,1  [(G , B) 

𝑧,1
→  (H, C) ]

Proof. Let    (F, A) ,(G, B) and (H,C) are three intuitionistic fuzzy soft set ,then 
(F, A) ∧̃𝑧,1 (G,B) 

𝑧,1
→   (H, C)  =

[
Max {max (𝜈𝐹(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥))) , min (𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥)) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , 𝜈𝐻(𝜀)(𝑥)}
]        

 (1) 

Let [(F , A) 
𝑧,1
→  (H, C) ] ∧̃𝑧,1  [(G , B) 

𝑧,1
→  (H, C) ]

(F , A) 
𝑧,1
→  (H, C) =[

MAX {𝜈𝐹(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)}
] 

[(G , B) 
𝑧,1
→  (H, C)] = [

MAX {𝜈𝐺(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝜇𝐺(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)}
] 

Then [(F , A) 
𝑧,1
→  (H, C) ] ∧̃𝑧,1  [(G , B) 

𝑧,1
→  (H, C) ] =

[
MIN (𝑚𝑎𝑥 {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥))} ,𝑚𝑎𝑥 {𝜈𝐺(𝜀)(𝑥),𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥), 𝜇𝐻(𝜀)(𝑥))}) ,

MAX  (min{𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)} , min {𝑚𝑎𝑥 (𝜈𝐺(𝜀)(𝑥),𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥), 𝜇𝐻(𝜀)(𝑥))) ,𝑚𝑖𝑛(𝜇𝐺(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥) )})
]

 (2) 
From (1)  and (2) it is clear that  

(F, A) ∧̃𝑧,1(G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∧̃𝑧,1    [(G , B) 

𝑧,1
→  (H, C) ]

3. 3. The  First Zadeh’s Intuitionistic  Fuzzy Disjunction of Intuitionstic Fuzzy Soft Set

Definition 3.3.1. Let  (F, A) and (G, B) are two intuitionistic fuzzy soft set s over (U,E) .We 
define the first  Zadeh’s intuitionistic  fuzzy disjunction of (F, A) and (G,B) as the intuitionistic 
fuzzy soft set (H,C) over (U,E), written as  (F, A) ∨̃𝑧,1 (G,B)  =(H ,C). Where  C = A ∩ B ≠ ∅ 
and ∀ 𝜀 ∈ A , x ∈ U 

𝜇𝐻(𝜀)(𝑥) =  𝑀𝑎𝑥 {𝜇𝐹(𝜀)(𝑥),𝑚𝑖𝑛(𝜈𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥))} 
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𝜈𝐻(𝜀)(𝑥)=  𝑀𝑖𝑛(𝜈𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥)) ) 

Example 3.3.2.  Let U={a, b,c} and E ={ 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4} , A ={ 𝑒1 , 𝑒2, 𝑒4} ⊆ E, 
B={ 𝑒1 , 𝑒2 , 𝑒3} ⊆ E 

(F, A) ={ F(𝑒1) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, 
              F(𝑒2) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},  
              F(𝑒4) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, A) ={ G(𝑒1) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, 
              G(𝑒2) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
              G(𝑒3) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Let  (F, A) ∨̃𝑧,1 (G,B)  =(H ,C),where C = A ∩ B = { 𝑒1  , 𝑒2 } 

(H, C)={H (𝑒1) ={(a, max(0.5, min(0.1, 0.2)),  min(0.1, 0.6)) 
           (b, max(0.1, min(0.8, 0.7)), min(0.8, 0.1)) 

(c, max(0.2, min(0.5, 0.8)), min(0.5, 0.1)) }, 
             H (𝑒2) ={(a, max(0.7, min(0.1, 0.4)),  min(0.1, 0.1)) 

(b, max(0, min(0.8, 0.5)), min(0.8, 0.3)) 
(c, max(0.3, min(0.5, 0.4)), min(0.5, 0.5))}} 

(H, C)= { H (𝑒1)= {(a, max(0.5, 0.1), min(0.1, 0.6)), 
(b, max(0.1, 0.7), min(0.8, 0.1)), 
(c, max(0.2, 0.5), min(0.5, 0.1))}, 

              H (𝑒2)= {(a, max(0.7, 0.1), min(0.1, 0.1)), 
(b, max(0, 0.5), min(0.8, 0.3)), 
(c, max(0.3, 0.4), min(0.5, 0.5))}} 

(H, C)= { H (𝑒1)= {(a, 0.5, 0.1),(b, 0.7, 0.1), (c,0.5, 0.1)}, 
               H (𝑒2)= {(a, 0.7, 0.1),(b, 0.5, 0.3), (c,0.4, 0.5)}} 

Proposition 3.3.3. 
(i) (𝜑 ,A)  ∧̃𝑧,1 (U, A) = (𝜑 ,A)
(ii) (𝜑 ,A)  ∨̃𝑧,1 (U, A) = (U, A)
(iii) (F, A) ∨̃𝑧,1 (𝜑 ,A)  = (F,A)

Proof. 
(i) Let  (𝜑 ,A)  ∧̃𝑧,1 (U, A) =(H, A) ,where  For all 𝜀 ∈ A , x ∈ U, we have

𝜇𝐻(𝜀)(𝑥) =min ( 0 ,1) = 0 
𝜈𝐻(𝜀)(𝑥)= max ( 1 ,min ( 0, 0) ) =max (1 , 0)= 1 

Therefore (H, A)= (0 ,1) , For all 𝜀 ∈ A , x ∈ U 

It follows that ((𝜑 ,A)  ∧̃𝑧,1 (U, A) = (𝜑 ,A)   

(ii) Let  (𝜑 ,A)  ∨̃𝑧,1 (U, A) =(H, A) ,where  For all 𝜀 ∈ A , x ∈ U, we have

Florentin Smarandache (author and editor) Collected Papers, XIII

193



𝜇𝐻(𝜀)(𝑥) = max ( 0 ,min ( 1, 1) ) =max (0 ,1)= 1 
𝜈𝐻(𝜀)(𝑥)= min ( 1 ,0) = 0 

Therefore (H, A) = (1,0) , For all 𝜀 ∈ A , x ∈ U 

It follows that ((𝜑 ,A)  ∧̃𝑧,1 (U, A) = (U, A) 

(iii) Let (F, A) ∨̃𝑧,1 (𝜑 ,A)  =(H, A) ,where  For all 𝜀 ∈ A , x ∈ U, we have

𝜇𝐻(𝜀)(𝑥) = max (𝜇𝐹(𝜀)(𝑥) ,min (𝜈𝐹(𝜀)(𝑥), 0) ) = max (𝜇𝐹(𝜀)(𝑥)  , 0) = 𝜇𝐹(𝜀)(𝑥) 
𝜈𝐻(𝜀)(𝑥)= min (𝜈𝐻(𝜀)(𝑥) ,1) = 𝜈𝐻(𝜀)(𝑥) 

Therefore (H, A)   = (𝜇𝐹(𝜀)(𝑥) , 𝜈𝐻(𝜀)(𝑥)) , For all 𝜀 ∈ A , x ∈ U 

It follows that (F, A) ∨̃𝑧,1 (𝜑 ,A)  =(F, A) 

Proposition 3.3.4.  
(F, A) ∨̃𝑧,1 (G,B) 

𝑧
→
,1
   (H, C)  ⊇ [(F , A) 

𝑧
→
,1
  (H, C) ] ∨̃𝑧,1 [(G , B) 

𝑧
→
,1
  (H, C) ]

Proof.  The proof is similar as in proposition 3.2.3 

Proposition 3.3.5. 
(i) [(𝐹, A)  ∧̃𝑧,1 (G, B) ]c =(𝐹, A)  𝑐  ∨̃𝑧,1 (𝐺 , B)𝑐
(ii) [(𝐹, A)  ∨̃𝑧,1 (G, B) ]c =(𝐹, A)  𝑐  ∧̃𝑧,1  (𝐺 , B)𝑐
(iii) [(𝐹, A)  𝑐  ∧̃𝑧,1  (𝐺 , B)  𝑐]c = (𝐹, A)  ∨̃𝑧,1(G, B)

Proof. 
(i) Let  [(𝐹 ,A)  ∧̃𝑧,1 (G, B) ]c =(H, C) ,where  For all 𝜀 ∈ C , x ∈ U, we have

 [(𝐹 ,A)  ∧̃𝑧,1 (G, B) ]c = [
MIN{𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)},

MAX {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))}
]

𝑐

= [
MAX {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))} ,

MIN{𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)}
] 

= (𝐹 , A)  𝑐  ∨̃𝑧,1 (𝐺 , B)  𝑐 

(ii) Let  [(𝐹 ,A)  ∨̃𝑧,1(G, B) ]c =(H, C) ,where  For all 𝜀 ∈ C , x ∈ U , we have

[(𝐹 ,A)  ∨̃𝑧,1(G, B) ]c = [
MAX {𝜇𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜈𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥))} ,

MIN{𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)}
]

   =  [
MIN{𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)},

MAX {𝜇𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜈𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥))}
]

𝑐

 = (𝐹 , A)  𝑐  ∧̃𝑧,1  (𝐺 , B)  𝑐 
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(iii) The proof is straightforward.

The following equalities are not valid. 

(𝐹 ,A)  ∨̃𝑧,1(G, B) = ( 𝐺 ,B)  ∨̃𝑧,1(F, A) 
(𝐹 ,A)  ∧̃𝑧,1(G, B) = ( 𝐺 ,B)  ∧̃𝑧,1(F, A) 
[(𝐹 ,A)  ∧̃𝑧,1(G, B)] ∧̃𝑧,1(K, C)  = ( 𝐹 ,A)  ∧̃𝑧,1 [(G, B) ∧̃𝑧,1(K, C)] 
[(𝐹 ,A)  ∨̃𝑧,1(G, B)] ∨̃𝑧,1(K, C)  = ( 𝐹 ,A)  ∨̃𝑧,1 [(G, B) ∨̃𝑧,1(K, C)] 
[(𝐹 ,A)  ∧̃𝑧,1(G, B)] ∨̃𝑧,1(K, C)  = [( 𝐹 ,A)  ∨̃𝑧,1 (G, B)] ∧̃𝑧,1 [(𝐺, 𝐵)  ∨̃𝑧,1 (K, C)] 
[(𝐹 ,A)  ∨̃𝑧,1(G, B)] ∧̃𝑧,1(K, C)  = [( 𝐹 ,A)  ∧̃𝑧,1 (G, B)] ∨̃𝑧,1 [(𝐺, 𝐵)  ∧̃𝑧,1 (K, C)] 

Example 3.3.6. Let U={a, b,c} and E ={ 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4} , A ={ 𝑒1 , 𝑒2, 𝑒4} ⊆ E, 
B={ 𝑒1 , 𝑒2 , 𝑒3} ⊆ E 

(F, A) ={ F(𝑒1) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, 
              F(𝑒2) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},  
              F(𝑒4) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, A) ={ G(𝑒1) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, 
              G(𝑒2) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
              G(𝑒3) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Let  (F, A) ∧̃𝑧,1 (G,B)  =(H ,C) ,where C = A ∩ B = { 𝑒1  , 𝑒2 } 

Then  (F, A) ∧̃𝑧,1 (G,B)  = (H, C)= { H (𝑒1) = {(a, 0.2, 0.5), (b, 0.1, 0.8), (c,0.2, 0.5)}, 
               H (𝑒2)= {(a, 0.4, 0.1), (b, 0, 0), (c,0.3, 0.5)}} 

For  (G, B) ∧̃𝑧,1 (F, A)  = (K, C) ,where  K = A ∩ B = { 𝑒1  , 𝑒2 } 

(K, C)={K (𝑒1) ={(a, min (0.2, 0.5), max (0.6, min (0.2, 0.1))) 
(b, min (0.7, 0.1), max (0.1, min( 0.7, 0.8))) 
(c, min (0.8, 0.2), max (0.1, min (0.8, 0.5)))}, 

             K (𝑒2) ={(a, min (0.7 0.4), max(0.1, min (0.4, 0.1))) 
(b, min (0.5, 0.), max(0.3, min (0.5, 0.8))) 
(c, min (0.4, 0.3), max(0.5, min (0.4, 0.5)))}} 

(K, C)= { K (𝑒1)= {(a, min (0.2, 0.5), max (0.6, 0.1)), 
(b, min (0.7, 0.1), max (0.1, 0.7)), 
(c, min (0.8, 0.2), max (0.1, 0.5))}, 

             K (𝑒2)= {(a, min (0.4, 0.7), max (0.1, 0.1)), 
(b, min (0.5, 0), max (0.3, 0.5)), 
(c, min (0.4, 0.3), max (0.5, 0.4))}} 

(K, C)= { K (𝑒1)= {(a, 0.2, 0.6),(b, 0.1, 0.7), (c,0.2, 0.5)}, 
               K (𝑒2)= {(a, 0.4, 0.1),(b, 0, 0.5), (c,0.3, 0.5)}} 

Then  (G, B) ∧̃𝑧,1 (F, A)  = (K, C) = { K (𝑒1)= {(a, 0.2, 0.6),(b, 0.1, 0.7), (c,0.2, 0.5)}, 
               K (𝑒2)= {(a, 0.4, 0.1),(b, 0, 0.5), (c,0.3, 0.5)}} 

Florentin Smarandache (author and editor) Collected Papers, XIII

195



It is obviously that (F, A) ∧̃𝑧,1 (G,B) ≠ (G, B) ∧̃𝑧,1 (F, A) 

Conclusion 

In this paper, three new operations have been introduced on intuitionistic fuzzy soft sets. They 
are based on First Zadeh’s  implication, conjunction and disjunction operations on 
intuitionistic fuzzy sets. Some examples of these operations were given and a few important 
properties were also studied. In our following papers, we will extended the following three 
operations such as second zadeh’s IF-implication, second zadeh’s conjunction and second 
zadeh’s disjunction to the intuitionistic fuzzy soft set. We hope that the findings, in this paper 
will help researcher enhance the study on the intuitionistic soft set theory. 
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Abstract − In this paper, we present some definitions of neutrosophic refined sets such as; union, 
intersection, convex and strongly convex in a new way to handle the indeterminate information and 
inconsistent information. Also we have examined some desired properties of neutrosophic refined sets 
based on these definitions. Then, we give distance measures of neutrosophic refined sets with 
properties. Finally, an application of neutrosophic refined set is given in medical diagnosis problem 
(heart disease diagnosis problem) to illustrate the advantage of the proposed approach.

Keywords − Neutrosophic sets, neutrosophic refined sets, distance measures, decision making

1 Introduction

Recently, several theories have been proposed to deal with uncertainty, imprecision
and vagueness. Theory of probability, fuzzy set theory [46], intuitionistic fuzzy sets
[7], rough set theory [27] etc. are consistently being utilized as efficient tools for
dealing with diverse types of uncertainties and imprecision embedded in a system.
However, all these above theories failed to deal with indeterminate and inconsistent
information which exist in beliefs system. In 1995, Smarandache [39] developed a new
concept called neutrosophic set (NS) which generalizes probability set, fuzzy set and
intuitionistic fuzzy set. NS can be described by membership degree, indeterminacy
degree and non-membership degree. This theory and their hybrid structures has
proven useful in many different fields such as control theory [1], databases [3, 2],

On neutrosophic refined sets and their applications 
in medical diagnosis

Irfan Deli, Said Broumi, Florentin Smarandache
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medical diagnosis problem [4], decision making problem [5, 6, 9, 10, 11, 13, 12, 14,
17, 19, 20, 23, 25], physics [28], topology [24] etc.

Yager [43] firstly introduced a new theory, is called theory of bags, which is a
multiset. Then, the concept of multisets were originally proposed by Blizard [8] and
Calude et al. [15], as useful structures arising in many area of mathematics and
computer sciences such as database queries. Several authors from time to time made
a number of generalization of set theory. Since then, several researcher [18, 26, 35,
36, 37, 41, 42] discuussed more properties on fuzzy multiset. Shinoj and John [38]
made an extension of the concept of fuzzy multisets by an intuitionstic fuzzy set,
which called intuitionstic fuzzy multisets (IFMS). Since then in the study on IFMS
, a lot of excellent results have been achieved by researcher [22, 29, 30, 31, 32, 33,
34]. The concepts of FMS and IFMS fails to deal with indeterminacy. Therefore,
Smarandache[40] give n-valued refined neutrosophic logic and its applications. Then,
Ye and Ye [44] gave single valued neutrosophic sets and operations laws. Ye et al. [45]
presented generalized distance measure and its similarity measures between single
valued neutrosophic multi sets. Also they applied the measure to a medical diagnosis
problem with incomplete, indeterminate and inconsistent information. Chatterjee et
al.[16] developed single valued neutrosophic multi sets in detail.

Combining neutrosophic set models with other mathematical models has at-
tracted the attention of many researchers. Maji et al. presented the concept of
neutrosophic soft set [25] which is based on a combination of the neutrosophic set
and soft set models. Broumi and Smarandache introduced the concept of the intu-
itionistic neutrosophic soft set [9, 12] by combining the intuitionistic neutrosophic
set and soft set.

This paper is arranged in the following manner. In section 2, some definitions and
notion about intuitionstic fuzzy set, intuitionstic fuzzy multisets and neutrosophic
set theory. These definitions will help us in later section. In section 3 we study the
concept of neutrosophic refined (multi) sets and their operations. In section 4, we
present an application of neutrosophic multisets in medical diagnosis. Finally we
conclude the paper.

2 Preliminary

In this section, we give the basic definitions and results of intuitionistic fuzzy set [7],
intuitionistic fuzzy multiset [29] and neutrosophic set theory [39] that are useful for
subsequent discussions.

Definition 2.1. [7] Let E be a universe. An intuitionistic fuzzy set I on E can be
defined as follows:

I = {< x, µI(x), γI(x) >: x ∈ E}
where, µI : E → [0, 1] and γI : E → [0, 1] such that 0 ≤ µI(x) + γI(x) ≤ 1 for any
x ∈ E.

Definition 2.2. [29] Let E be a universe. An intuitionistic fuzzy multiset K on E
can be defined as follows:

K = {< x, (µ1
K(x), µ2

K(x), ..., µP
K(x)), (γ1

K(x), γ2
K(x), ..., γP

K(x)) >: x ∈ E}
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where, µ1
K(x), µ2

K(x), ..., µP
K(x) : E → [0, 1] and γ1

K(x), γ2
K(x), ..., γP

K(x) : E → [0, 1]
such that 0 ≤ µi

K(x) + γi
K(x) ≤ 1(i = 1, 2, ..., P ) and µ1

K(x) ≤ µ2
K(x) ≤ ... ≤ µP

K(x)
for any x ∈ E.

Here, (µ1
K(x), µ2

K(x), ..., µP
K(x)) and (γ1

K(x), γ2
K(x), ..., γP

K(x)) is the membership
sequence and non-membership sequence of the element x, respectively.

We arrange the membership sequence in decreasing order but the corresponding
non membership sequence may not be in decreasing or increasing order.

Definition 2.3. [39] Let U be a space of points (objects), with a generic element
in U denoted by u. A neutrosophic set (N-set) A in U is characterized by a truth-
membership function TA, an indeterminacy-membership function IA and a falsity-
membership function FA. TA(x), IA(x) and FA(x) are real standard or nonstandard
subsets of [0, 1]. It can be written as

A = {< u, (TA(x), IA(x), FA(x)) >: x ∈ E, TA(x), IA(x), FA(x) ∈ [0, 1]}.
There is no restriction on the sum of TA(x); IA(x) and FA(x), so 0 ≤ TA(x) +

IA(x) + FA(x) ≤ 3.

Definition 2.4. [21] t-norms are associative, monotonic and commutative two valued
functions t that map from [0, 1] × [0, 1] into [0, 1]. These properties are formulated
with the following conditions: ∀a, b, c, d ∈ [0, 1],

1. t(0, 0) = 0 and t(a, 1) = t(1, a) = a,

2. If a ≤ c and b ≤ d, then t(a, b) ≤ t(c, d)

3. t(a, b) = t(b, a)

4. t(a, t(b, c)) = t(t(a, b), c)

Definition 2.5. [21] t-conorms (s-norm) are associative, monotonic and commuta-
tive two placed functions s which map from [0, 1]× [0, 1] into [0, 1]. These properties
are formulated with the following conditions: ∀a, b, c, d ∈ [0, 1],

1. s(1, 1) = 1 and s(a, 0) = s(0, a) = a,

2. if a ≤ c and b ≤ d, then s(a, b) ≤ s(c, d)

3. s(a, b) = s(b, a)

4. s(a, s(b, c)) = s(s(a, b), c)

t-norm and t-conorm are related in a sense of lojical duality. Typical dual pairs
of non parametrized t-norm and t-conorm are complied below:

1. Drastic product:

tw(a, b) =

{
min{a, b}, max{ab} = 1
0, otherwise

2. Drastic sum:

sw(a, b) =

{
max{a, b}, min{ab} = 0
1, otherwise
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3. Bounded product:
t1(a, b) = max{0, a + b− 1}

4. Bounded sum:
s1(a, b) = min{1, a + b}

5. Einstein product:

t1.5(a, b) =
a.b

2− [a + b− a.b]

6. Einstein sum:

s1.5(a, b) =
a + b

1 + a.b

7. Algebraic product:
t2(a, b) = a.b

8. Algebraic sum:
s2(a, b) = a + b− a.b

9. Hamacher product:

t2.5(a, b) =
a.b

a + b− a.b

10. Hamacher sum:

s2.5(a, b) =
a + b− 2.a.b

1− a.b

11. Minumum:
t3(a, b) = min{a, b}

12. Maximum:
s3(a, b) = max{a, b}

3 Neutrosophic Refined Sets

In this section, we present some definitions of neutrosophic refined sets with opera-
tions. Also we have examined some desired properties of neutrosophic refined sets
based on these definitions and operations. Some of it is quoted from [29, 32, 38, 39,
40].

In the following, some definition and operatios on intuitionistic fuzzy multiset
defined in [18, 29], we extend this definition to NRS by using [20, 40].

Definition 3.1. [40, 44] Let E be a universe. A neutrosophic refined set (NRS) A
on E can be defined as follows:

A = {< x, (T 1
A(x), T 2

A(x), ..., T P
A (x)), (I1

A(x), I2
A(x), ..., IP

A (x)),
(F 1

A(x), F 2
A(x), ..., F P

A (x)) >: x ∈ E}

where, T 1
A(x), T 2

A(x), ..., T P
A (x) : E → [0, 1], I1

A(x), I2
A(x), ..., IP

A (x) : E → [0, 1]
and F 1

A(x), F 2
A(x), ..., F P

A (x) : E → [0, 1] such that 0 ≤ T i
A(x)+I i

A(x)+F i
A(x) ≤ 3(i =

1, 2, ..., P ) and T 1
A(x) ≤ T 2

A(x) ≤ ... ≤ T P
A (x) for any x ∈ E. (T 1

A(x), T 2
A(x), ..., T P

A (x)),
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(I1
A(x), I2

A(x), ..., IP
A (x)) and (F 1

A(x), F 2
A(x), ..., F P

A (x)) is the truth membership se-
quence, indeterminacy membership sequence and falsity membership sequence of
the element x, respectively. Also, P is called the dimension of NRS A.

In [44] truth membership sequences are increase and other sequences (indetermi-
nacy membership, falsity membership) are not increase or decrease. But throughout
this paper the truth membership sequences, indeterminacy membership sequences ,
falsity membership sequences are not increase or decrease. The set of all Neutro-
sophic refined sets on E is denoted by NRS(E).

Definition 3.2. [44] Let A,B ∈ NRS(E). Then,

1. A is said to be NM subset of B is denoted by A⊆̃B if T i
A(x) ≤ T i

B(x), I i
A(x) ≥

I i
B(x) ,F i

A(x) ≥ F i
B(x), ∀x ∈ E.

2. A is said to be neutrosophic equal of B is denoted by A = B if T i
A(x) = T i

B(x),
I i
A(x) = I i

B(x) ,F i
A(x) = F i

B(x), ∀x ∈ E.

3. the complement of A denoted by Aec and is defined by

Aec = {< x, (F 1
A(x), F 2

A(x), ..., F P
A (x)), (1− I1

A(x), 1− I2
A(x), ..., 1− IP

A (x)),
(T 1

A(x), T 2
A(x), ..., T P

A (x)) >: x ∈ E}

In the following, some definitions and operations with properties on neutrosophic
multi set defined in [16, 44, 45], we generalized these definitions.

Definition 3.3. Let A,B ∈ NRS(E). Then,

1. If T i
A(x) = 0 and I i

A(x) = F i
A(x) = 1 for all x ∈ E and i = 1, 2, ..., P then A is

called null ns-set and denoted by Φ̃.

2. If T i
A(x) = 1 and I i

A(x) = F i
A(x) = 0 for all x ∈ E and i = 1, 2, ..., P , then A is

called universal ns-set and denoted by Ẽ.

Definition 3.4. Let A,B ∈ NRS(E). Then,

1. the union of A and B is denoted by A∪̃B = C1 and is defined by

C = {< x, (T 1
C(x), T 2

C(x), ..., T P
C (x)), (I1

C(x), I2
C(x), ..., IP

C (x)),
(F 1

C(x), F 2
C(x), ..., F P

C (x)) >: x ∈ E}

where T i
C = s{T i

A(x), T i
B(x)}, I i

C = t{I i
A(x), I i

B(x)} ,F i
C = t{F i

A(x), F i
B(x)},

∀x ∈ E and i = 1, 2, ..., P .

2. the intersection of A and B is denoted by A∩̃B = D and is defined by

D = {< x, (T 1
D(x), T 2

D(x), ..., T P
D (x)), (I1

D(x), I2
D(x), ..., IP

D(x)),
(F 1

D(x), F 2
D(x), ..., F P

D (x)) >: x ∈ E}

where T i
D = t{T i

A(x), T i
B(x)}, I i

D = s{I i
A(x), I i

B(x)} ,F i
D = s{F i

A(x), F i
B(x)},

∀x ∈ E and i = 1, 2, ..., P .

Proposition 3.5. Let A,B,C ∈ NRS(E). Then,

1. A∪̃B = B∪̃A and A∩̃B = B∩̃A
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2. A∪̃(B∪̃C) = (A∪̃B)∪̃C and A∩̃(B∩̃C) = (A∩̃B)∩̃C

Proof: The proofs can be easily made.

Proposition 3.6. Let A,B,C ∈ NRS(E). Then,

1. A∪̃A = A and A∩̃A = A

2. A∩̃Φ = Φ̃ and A∩̃E = A

3. A∪̃Φ = A and A∪̃E = Ẽ

4. A∩̃(B∪̃C) = (A∩̃B)∪̃(A∩̃C) and A∪̃(B∩̃C) = (A∪̃B)∩̃(A∪̃C)

5. (Aec)ec = A.

Proof. It is clear from Definition 3.3-3.4.

Theorem 3.7. Let A,B ∈ NRS(E). Then, De Morgan’s law is valid.

1. (A∪̃B)ec = Aec∩̃Bec

2. (A∩̃B)ec = Aec∪̃Bec

Proof. A,B ∈ NRS(E) is given. From Definition 3.2 and Definition 3.4, we have

1.

(A∪̃B)ec = {< x, (s{T 1
A(x), T 1

B(x)}, s{T 2
A(x), T 2

B(x)}, ..., s{T P
A (x), T P

B (x)}),
(t{I1

A(x), I1
B(x)}, t{I2

A(x), I2
B(x)}, ..., t{IP

A (x), IP
B (x)}),

(t{F 1
A(x), F 1

B(x)}, t{F 2
A(x), F 2

B(x)}, ..., t{F P
A (x), F P

B (x)}) >: x ∈ E}ec
= {< x, (, t{F 1

A(x), F 1
B(x)}, t{F 2

A(x), F 2
B(x)}, ..., t{F P

A (x), F P
B (x)})

(1− t{I1
A(x), I1

B(x)}, 1− t{I2
A(x), I2

B(x)}, ..., 1− t{IP
A (x), IP

B (x)}),
(s{T 1

A(x), T 1
B(x)}, s{T 2

A(x), T 2
B(x)}, ..., s{T P

A (x), T P
B (x)}) >: x ∈ E}

= {< x, (, t{F 1
A(x), F 1

B(x)}, t{F 2
A(x), F 2

B(x)}, ..., t{F P
A (x), F P

B (x)})
(s{1− I1

A(x), 1− I1
B(x)}, s{1− I2

A(x), 1− I2
B(x)}, ...,

s{1− IP
A (x), 1− IP

B (x)}),
(s{T 1

A(x), T 1
B(x)}, s{T 2

A(x), T 2
B(x)}, ..., s{T P

A (x), T P
B (x)}) >: x ∈ E}

= Aec∩̃Bec.
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2.

(A∩̃B)ec = {< x, (t{T 1
A(x), T 1

B(x)}, t{T 2
A(x), T 2

B(x)}, ..., t{T P
A (x), T P

B (x)}),
(s{I1

A(x), I1
B(x)}, s{I2

A(x), I2
B(x)}, ..., s{IP

A (x), IP
B (x)}),

(s{F 1
A(x), F 1

B(x)}, s{F 2
A(x), F 2

B(x)}, ..., s{F P
A (x), F P

B (x)}) >: x ∈ E}ec
= {< x, (, s{F 1

A(x), F 1
B(x)}, s{F 2

A(x), F 2
B(x)}, ..., s{F P

A (x), F P
B (x)})

(1− s{I1
A(x), I1

B(x)}, 1− s{I2
A(x), I2

B(x)}, ..., 1− s{IP
A (x), IP

B (x)}),
(t{T 1

A(x), T 1
B(x)}, t{T 2

A(x), T 2
B(x)}, ..., t{T P

A (x), T P
B (x)}) >: x ∈ E}

= {< x, (, s{F 1
A(x), F 1

B(x)}, s{F 2
A(x), F 2

B(x)}, ..., s{F P
A (x), F P

B (x)})
(t{1− I1

A(x), 1− I1
B(x)}, t{1− I2

A(x), 1− I2
B(x)}, ...,

t{1− IP
A (x), 1− IP

B (x)}),
(t{T 1

A(x), T 1
B(x)}, t{T 2

A(x), T 2
B(x)}, ..., t{T P

A (x), T P
B (x)}) >: x ∈ E}

= Aec∩̃Bec.

Theorem 3.8. Let P be the power set of all NRS defined in the universe E. Then
(P, ∩̃, ∪̃) is a distributive lattice.

Proof: The proofs can be easily made by showing properties; idempotency,
commutativity, associativity and distributivity

Definition 3.9. Let E is a real Euclidean space En. Then, a NRS A is convex if
and only if

T i
A(ax + (1− a)y) ≥ T i

A(x) ∧ TA(y), I i
A(ax + (1− a)y) ≤ I i

A(x) ∨ I i
A(y)

F i
A(ax + (1− a)y) ≤ F i

A(x) ∨ F i
A(y)

for every x, y ∈ E, a ∈ I and i = 1, 2, ..., P .

Definition 3.10. Let E is a real Euclidean space En. Then, a NRS A is strongly
convex if and only if

T i
A(ax + (1− a)y) > T i

A(x) ∧ TA(y), I i
A(ax + (1− a)y) < I i

A(x) ∨ I i
A(y)

F i
A(ax + (1− a)y) < F i

A(x) ∨ F i
A(y)

for every x, y ∈ E, a ∈ I and i = 1, 2, ..., P .

Theorem 3.11. Let A,B ∈ NRS(E). Then, A∩̃B is a convex(strongly convex)
when both A and B are convex(strongly convex).

Proof. It is clear from Definition 3.9-3.10.

Definition 3.12. [16] Let A,B ∈ NRS(E). Then,

1. Hamming distance dHD(A,B) between A and B, defined by;

dHD(A,B) =
∑P

j=1

∑n
i=1( |T j

A(xi)− T j
B(xi)|+ |Ij

A(xi)− Ij
B(xi)|+

|F j
A(xi)− F j

B(xi)|)

2. Normalized hamming distance dNHD(A,B) between A and B, defined by;

dNHD(A,B) = 1
3nP

∑P
j=1

∑n
i=1( |T j

A(xi)− T j
B(xi)|+ |Ij

A(xi)− Ij
B(xi)|+

|F j
A(xi)− F j

B(xi)|)
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3. Euclidean distance dED(A,B) between A and B, defined by;

dED(A,B) =
P∑

j=1

n∑
i=1

√
(T j

A(xi)− T j
B(xi))

2 + (Ij
A(xi)− Ij

B(xi))
2+

(F j
A(xi)− F j

B(xi))
2

4. Normalized euclidean distance dNED(A, B) between A and B, defined by;

dNED(A,B) =
1

3n.P

P∑
j=1

n∑
i=1

√
(T j

A(xi)− T j
B(xi))

2 + (Ij
A(xi)− Ij

B(xi))
2+

(F j
A(xi)− F j

B(xi))
2

4 Medical Diagnosis Via NRS Theory

In the following, the example on intuitionistic fuzzy multiset given in [18, 31, 33, 38],
we extend this definition to NRS.

Let P={P1,P2,P3,P4} be a set of patients, D={Viral Fever, Tuberculosis, Ty-
phoid, Throat disease}be a set of diseases and S={Temperature, cough, throat
pain,headache, body pain} be a set of symptoms. In Table I each symptom Si is
described by three numbers: Membership T, non-membership F and indeterminacy
I.

Viral Fever Tuberculosis Typhoid Throat disease
Temperature (0.8,0.2,0.1) (0.3,0.4,0.2) (0.4,0.6,0.3) (0.5,0.7,0.1)

Cough (0.2,0.3,0.7) (0.2,0.5,0.3) (0.4,0.5,0.4) (0.8,0.3,0.2)
Throat Pain (0.3,0.4,0.5) (0.4,0.4,0.3) (0.3,0.6,0.4) (0.6,0.5,0.4)
Headache (0.5,0.3,0.3) (0.5,0.2,0.3) (0.5,0.6,0.2) (0.4,0.3,0.5)
Body Pain (0.5,0.2,0.4) (0.4,0.5,0.3) (0.6,0.5,0.3) (0.2,0.6,0.4)

Table I -NRS R: The relation among Symptoms and Diseases

The results obtained different time intervals such as: 8:00 am 12:00 am and 4:00 pm
in a day as Table II;

Temparature Cough Throat pain Headache Body Pain

P1

(0.1, 0.3, 0.7)
(0.2, 0.4, 0.6)
(0.1, 0.1, 0.9)

(0.3, 0.2, 0.6)
(0.2, 0.4, 0)

(0.1, 0.3, 0.7)

(0.8, 0.5, 0)
(0.7, 0.6, 0.1)
(0.8, 0.3, 0.1)

(0.3, 0.3, 0.6)
(0.2, 0.4, 0.7)
(0.2, 0.3, 0.6)

(0.4, 0.4, 0.4)
(0.3, 0.2, 0.7)
(0.2, 0.3, 0.7)

P2

(0.5, 0.3, 0.3)
(0.3, 0.4, 0.5)
(0.4, 0.2, 0.6)

(0.7, 0.3, 0.6)
(0.6, 0.4, 0.3)
(0.4, 0.1, 0.7)

(0.8, 0.6, 0.1)
(0.6, 0.3, 0.1)
(0.7, 0.5, 0.1)

(0.4, 0.2, 0.6)
(0.5, 0.4, 0.7)
(0.4, 0.3, 0.6)

(0.6, 0.2, 0.4)
(0.5, 0.4, 0.6)
(0.6, 0.3, 0.6)

P3

(0.7, 0.4, 0.6)
(0.4, 0.5, 0.3)
(0.3, 0.3, 0.5)

(0.7, 0.2, 0.5)
(0.6, 0.5, 0.1)
(0.4, 0.2, 0.2)

(0.5, 0.8, 0.4)
(0.6, 0.4, 0.4)
(0.7, 0.6, 0.3)

(0.6, 0.3, 0.4)
(0.5, 0.3, 0.4)
(0.4, 0.4, 0.5)

(0.6, 0.3, 0.3)
(0.6, 0.5, 0.4)
(0.6, 0.2, 0.8)

P4

(0.3, 0.4, 0.6)
(0.6, 0.3, 0.3)
(0.4, 0.2, 0.5)

(0.5, 0.4, 0.4)
(0.6, 0.5, 0.3)
(0.4, 0.2, 0.2)

(0.5, 0.6, 0.31)
(0.7, 0.5, 0.6)
(0.8, 0.5, 0.3)

(0.7, 0.4, 0.2)
(0.4, 0.3, 0.4)
(0.3, 0.6, 0.5)

(0.3, 0.3, 0.5)
(0.7, 0.5, 0.2)
(0.3, 0.5, 0.4)

Table II -NRS Q: the relation Beween Patient and Symptoms.
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The normalized Hamming distance between Q and R is computed as;

Viral Fever Tuberculosis Typhoid Throat disease
P1 0.266 0.23 0.28 0.25
P2 0.213 0.202 0.206 0.19
P3 0.206 0.173 0.16 0.166
P4 0.22 0.155 0.146 0.157

Table III :The normalized Hamming distance between Q and R

The lowest distance from the table III gives the proper medical diagnosis. Patient P1

suffers from Tuberculosis, Patient P2 suffers from Throat diseas, Patient P3 suffers from
Typhoid disease and Patient P4 suffers from Typhoid

5 Conclusion

In this paper, we firstly defined some definitions on neutrosophic refined sets and investi-
gated some of their basic properties. The concept of neutrosophic refined (NRS) generalizes
the fuzzy multisets and intuitionstic fuzzy multisets. Then, an application of NRS in med-
ical diagnosis is discussed. In the proposed method, we measured the distances of each
patient from each diagnosis by considering the symptoms of that particular disease.
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In this paper, we presented another concept of neutrosophic open sets called neutrosophic semi-α open sets 
and studied their fundamental properties in neutrosophic topological spaces. We also present neutrosophic semi-
α interior and neutrosophic semi-α  closure and study some of their fundamental properties.

. 
Neutrosophic semi-α open sets, neutrosophic semi-α closed sets, neutrosophic semi-α interior and neutrosophic semi-α  

closure. 

In 2000, G.B. Navalagi [4] presented the idea of 
semi α open sets in topological spaces. The concept of 
"neutrosophic set" was first given by F. Smarandache [2,3]. 
A.A. Salama and S.A. Alblowi [1] presented the concept of 
neutrosophic topological space (briefly ). The 
objective of this paper is to present the concept of 
neutrosophic semi-α-open sets and study their fundamental 
properties in neutrosophic topological spaces. We also 
present neutrosophic semi- α -interior and neutrosophic 
semi-α-closure and obtain some of its properties. 

Throughout this paper,  (or simply ) always 
mean a neutrosophic topological space. The complement 
of a neutrosophic open set (briefly ) is called a neu-
trosophic closed set (briefly - ) in . For a neutro-
sophic set  in a neutrosophic topological space , 

,  and  denote the neutrosophic clo-
sure of , the neutrosophic interior of  and the neutro-
sophic complement of  respectively. 

  
A neutrosophic subset  of a neutrosophic topological 
space  is said to be: 
(i) A neutrosophic pre open set (briefly - ) [7] if 

. The complement of a -  is called a
neutrosophic pre closed set (briefly - ) in . The

family of all  (resp. ) of  is denoted by 
 (resp. ). 

(ii) A neutrosophic semi open set (briefly - ) [6] if
. The complement of a -  is

called a neutrosophic semi closed set (briefly - ) in
. The family of all  (resp. ) of  is

denoted by  (resp. ).
(iii) A neutrosophic open set (briefly - ) [5] if 

. The complement of a -  is
called a neutrosophic closed set (briefly - ) in

. The family of all  (resp. - ) of  is
denoted by  (resp. ).

(i) The neutrosophic pre interior of a neutrosophic set  of
a neutrosophic topological space  is the union of all

-  contained in  and is denoted by [7].
(ii) The neutrosophic semi interior of a neutrosophic set 
of a neutrosophic topological space  is the union of
all -  contained in  and is denoted by [6].
(iii) The neutrosophic interior of a neutrosophic set  of
a neutrosophic topological space  is the union of all

-  contained in  and is denoted by [5].

(i) The neutrosophic pre closure of a neutrosophic set  of
a neutrosophic topological space  is the intersection
of all that contain  and is denoted by [7].
(ii) The neutrosophic semi closure of a neutrosophic set 
of a neutrosophic topological space  is the

On Neutrosophic Semi Alpha Open Set

Qays Hatem Imran, F. Smarandache, Riad K. Al-Hamido, R. Dhavaseelan

Qays Hatem Imran, F. Smarandache, Riad K. Al-Hamido, R. Dhavaseelan (2017). On Neutrosophic Semi 
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intersection of all  that contain  and is denoted by 
[6]. 

(iii) The neutrosophic closure of a neutrosophic set  of
a neutrosophic topological space  is the intersection
of all  that contain  and is denoted by [5].

  
In a neutrosophic topological space , then the 
following statements hold, and the equality of each 
statement are not true:
(i) Every -  (resp. ) is a -  (resp. - ).
(ii) Every -  (resp. - ) is a -  (resp. - ).
(iii) Every -  (resp. - ) is a -  (resp. - ).

A neutrosophic subset  of a neutrosophic topological 
space  is a -  iff  is a  and . 

(i) If  is a - , then .
(ii) If  is a neutrosophic subset of a neutrosophic
topological space , then 

.
 This follows directly from the definition )2.1) and

proposition (2.4).

In this section, we present and study the neutrosophic 
semi open sets and some of its properties. 

A neutrosophic subset  of a neutrosophic topological 
space  is called neutrosophic semi open set 
(briefly ) if there exists a   in  such that 

 or  
equivalently if . The family of all 

 of  is denoted by . 

The complement of  is called a neutrosophic semi
closed set (briefly ). The family of all  of 
 is denoted by .

  
It is evident by definitions that in a neutrosophic 
topological space , the following hold:
(i) Every -  (resp. ) is a  (resp. ).
(ii) Every  (resp. ) is a  (resp.

).

The converse of the above proposition need not be true as 
seen from the following example. 

  
Let 

.  
Then  is a neutrosophic topology
on . 
(i) Let , 

, the neutrosophic set  is a  but
is not . It is clear that 
is a  but is not .
(ii) Let , 

, the neutrosophic set  is a ,

, the neutrosophic set  is not α . It is
clear that  is a  but
is not α .

The concepts of  and  are independent, as 
the following examples shows. 

 
In example (3.4), then the neutrosophic set 

 is a  but is not , 
because 

. 

 
Let , , 

, 
, 
.  

Then  is a neutrosophic topology
on .  
Then the neutrosophic set  
is a  but is not α . 

(i) If every  is a  and every nowhere neutrosoph-
ic dense set is in any neutrosophic topological space

, then every  is a .
(ii) If every  is a in any neutrosophic topologi-
cal space , then every  is a .

(i) It is clear that every  and  of any
neutrosophic topological space  is a  (by
proposition (2.5) and proposition (3.3) (ii)).
(ii) A  in any neutrosophic topological space

 is a  if every  of  is a  (from
proposition (2.4) (iii) and remark (3.8) (ii)).

For any neutrosophic subset  of a neutrosophic 
topological space ,  iff there exists a 

  such that .
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Let  be a . Hence 
, so let , we get 

. Then there exists 
a   such that , 
where . 
Conversely, suppose that there is a   such that 

.  
To prove . 

 (since  is the largest  
contained in ). 
Hence , then 

. 
But  (by hypothesis). Then 

.  
Therefore, .

For any neutrosophic subset  of a neutrosophic 
topological space . The following properties are 
equivalent:
(i) .
(ii) There exists a - say  such that 

.
(iii) .

 Let . Then there exists 
, such that . Hence there exists

  such that  (by theorem
(3.10)). Therefore,

, implies that 
. Then 
. Therefore, 
, for some  .

 Suppose that there exists a   such that
. We know that

. On the other hand,  (since
 is the largest  contained in ). Hence

, then 
, therefore

.
But  (by hypothesis). Hence

,
then .

 Let .
To prove . Let ; we know
that . To prove .
Since . Hence,

. But 
(by hypothesis). Hence, 

 . Hence, there
exists a  say , such that . On the
other hand,  is a  (since  is a ). Hence 

.

For any neutrosophic subset  of a neutrosophic 
topological space , the following properties are 
equivalent:
(i) .
(ii) There exists a   such that 

.
(iii) .

 Let , then .
Hence there is   such that 

 (by theorem (3.11)). Hence
,

i.e., . Let ,
where  is a  in . Then 

, for some  .
 Suppose that there exists   such that

, but  is the
smallest  containing . Then , and
therefore:  

.
 Let .

To prove , i.e., to prove .
Then 

, but

.
Hence , and therefore

, i.e., .

The union of any family of  is a .
Let  be a family of  of .

To prove  is a ,
i.e., .
Then , .
Since  and

 hold for any neutrosophic
topology.
We have 

.
Hence  is a .

The union of any family of  is a .
Let  be a family of . To prove
 is a . Since . Then there is

a   such that , . Hence
.

But  (by proposition (3.13)).
Hence .
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The intersection of any family of  is a .
This follows directly from the theorem (3.14).

The following diagram shows the relations among the 
different types of weakly neutrosophic open sets that were 
studied in this section: 

We present neutrosophic semi- α -interior and 
neutrosophic semi- α -closure and obtain some of its 
properties in this section. 

  
The union of all α  in a neutrosophic topological 
space  contained in  is called neutrosophic semi-
α -interior of  and is denoted by α ,

α is a α .

The intersection of all α  in a neutrosophic 
topological space  containing  is called 
neutrosophic semi- α -closure of  and is denoted by 

α , α is a α . 

  
Let  be any neutrosophic set in a neutrosophic 
topological space , the following properties are true: 
(i) α iff  is a α .
(ii) α  iff  is a α .
(iii) α  is the largest α  contained in .

(iv) α  is the smallest α  containing .
(i), (ii), (iii) and (iv) are obvious.

  
Let  be any neutrosophic set in a neutrosophic 
topological space , the following properties are true:  
(i) α α ,
(ii) α α .

 (i) By definition, α is a
α

α is a α
is a α

is a α
α .

(ii) The proof is similar to (i).

  
Let  and  be two neutrosophic sets in a neutrosophic 
topological space . The following properties hold: 
(i) α , α .
(ii) α .
(iii)  α α .
(iv) α α α .
(v) α α α .
(vi) α α α .

 (i), (ii), (iii), (iv), (v) and (vi) are obvious.

  
Let  and  be two neutrosophic sets in a neutrosophic 
topological space . The following properties hold: 
(i) α , α .
(ii) α .
(iii)  α α .
(iv) α α α .
(v) α α α .
(vi) α α α .

 (i) and (ii) are evident.
(iii) By part (ii), α . Since , we have

α . But α  is a α . Thus
α  is a α containing . Since α  is

the smallest α  containing , we have α
α . Hence,  α α .

(iv) We know that  and .
Therefore, by part (iii), α α  and

α α .
Hence α α α .
(v) Since  and , it follows from part
(iii) that α α  and α

α .
Hence α α α .
(vi) Since α  is a α , we have by proposition
(4.3) part (ii), α α α .

For any neutrosophic subset  of a neutrosophic 
topological space , then:

  

 

 

 

every nowhere dense 
set is a  

every  is a  
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(i) α α α
α .
(ii) α α .
(iii) α α α α
α .
(iv) α α .
(v) α α α α α .
(vi) α .
(vii) α .
(viii) α α .

We shall prove only (ii), (iii), (iv), (vii) and (viii).
(ii) To prove α α

. Since  is a , then  is a
α . Hence α

(by proposition (4.3)). Therefore:
α ......................(1) 

Since α
α α . 

Also, α α
. Hence: 

α ......................(2) 
Therefore by (1) and (2), we get α

α . 
(iii)To prove α α α α

α . Since α  is α , therefore
α  is α . Therefore by proposition (4.3):
α α α ......................(1) 
Now, to prove α α α . Since 
α α α α
α α  
α α α . 
Also, α α α
α . Hence: 
α α α ......................(2) 
Therefore by (1) and (2), we get α α

α α α . 
(iv) To prove α α

. We know that  is a , so it is α .
Hence by proposition (4.3), we have:

α ......................(1) 
To prove α .  
Since α  (by part (i)). 
Then α

α . Since α
α  then  α . Hence 

α α  
α  and therefore: 

α ....................................(2) 

Now, by (1) and (2), we get that α
α . 

Hence α α . 
(vii) To prove α .
Since α α α

α
  (by part (ii)).

Hence α , also
α . Then:
α .............(1) 

To prove  is a α
contained in .  
It is clear that 

 and also it is clear that 

 

 and  
 and  

.  
We get 

. 
Hence  is a α  (by 
proposition (4.3)). Also,  
is contained in . Then  

α  (since α  is the largest α
contained in ). Hence: 

α .............(2) 
By (1) and (2), α .   
(viii) To prove that α α .
Since α  is a α , therefore

α α  (by
corollary (3.12)). Hence 

α  (by part (iv)).
Therefore, α

α α  
α α  (by part (ii)). 

For any neutrosophic subset  of a neutrosophic 
topological space . The following properties are 
equivalent:
(i) α .
(ii) , for some .
(iii) , for some .
(iv) .

 Let α , then 
 and . Hence

, where .
 Suppose , for

some .
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But   (by lemma 
(2.6)). 
Then , for some . 

 Suppose that , 
for some . Since  is a  contained in . 
Then  

 . 
But   (by hypothesis), then 
 . 

 Let . But 
  

(by lemma (2.6)). Hence  
α .     

For any neutrosophic subset  of a neutrosophic 
topological space , the following properties are 
equivalent:
(i) α .
(ii) , for some  .
(iii) , for some  .
(iv) .

 Let α  
 (by corollary (3.12))

and . Hence we get
.

Therefore , where 
.

 Let , for some
 . But   (by

lemma (2.6)). Hence , for some
 .

 Let , for some 
. Since  (by hypothesis), hence 

 
 .

 Let .
But 
(by lemma (2.6)). Hence 

α .

In this work, we have defined new class of neutro-
sophic open sets called neutrosophic semi-α-open sets and 
studied their fundamental properties in neutrosophic topo-
logical spaces. The neutrosophic semi-α-open sets can be 
used to derive a new decomposition of neutrosophic continuity, 
neutrosophic compactness, and neutrosophic connectedness.
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On Neutrosophic αψ-Closed Sets

Mani Parimala, Florentin Smarandache, Saeid Jafari, Ramalingam UdhayakumarID

Abstract: The aim of this paper is to introduce the concept of αψ-closed sets in terms of neutrosophic 
topological spaces. We also study some of the properties of neutrosophic αψ-closed sets. Further, 
we introduce continuity and contra continuity for the introduced set. The two functions and their 
relations are studied via a neutrosophic point set.

Keywords: neutrosophic topology; neutrosophic αψ-closed set; neutrosophic αψ-continuous function; 
neutrosophic contra αψ-continuous mappings

1. Introduction

Zadeh [1] introduced and studied truth (t), the degree of membership, and defined the fuzzy
set theory. The falsehood (f), the degree of nonmembership, was introduced by Atanassov [2–4]
in an intuitionistic fuzzy set. Coker [5] developed intuitionistic fuzzy topology. Neutrality (i),
the degree of indeterminacy, as an independent concept, was introduced by Smarandache [6,7] in 1998.
He also defined the neutrosophic set on three components (t, f , i) = (truth, f alsehood, indeterminacy).
The Neutrosophic crisp set concept was converted to neutrosophic topological spaces by Salama et al.
in [8]. This opened up a wide range of investigation in terms of neutosophic topology and its
application in decision-making algorithms. Arokiarani et al. [9] introduced and studied α-open sets
in neutrosophic topoloical spaces. Devi et al. [10–12] introduced αψ-closed sets in general topology,
fuzzy topology, and intutionistic fuzzy topology. In this article, the neutrosophic αψ-closed sets are
introduced in neutrosophic topological space. Moreover, we introduce and investigate neutrosophic
αψ-continuous and neutrosophic contra αψ-continuous mappings.

2. Preliminaries

Let neutrosophic topological space (NTS) be(X, τ). Each neutrosophic set(NS) in (X, τ) is called a
neutrosophic open set (NOS), and its complement is called a neutrosophic open set (NOS).

We provide some of the basic definitions in neutrosophic sets. These are very useful in the sequel.

Definition 1. [6] A neutrosophic set (NS) A is an object of the following form

U = {〈x, µU(x), νU(a), ωU(x)〉 : x ∈ X}

Mani Parimala, Florentin Smarandache, Saeid Jafari, Ramalingam Udhayakumar (2018). 
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where the mappings µU : X → I, νU : X → I, and ωU : X → I denote the degree of membership
(namely µU(x)), the degree of indeterminacy (namely νU(x)), and the degree of nonmembership (namely ωU(x))
for each element x ∈ X to the set U, respectively, and 0 ≤ µU(x) + νU(x) + ωU(x) ≤ 3 for each a ∈ X.

Definition 2. [6] Let U and V be NSs of the form U = {〈a, µU(x), νU(x), ωU(x)〉 : a ∈ X} and
V = {〈x, µV(x), νV(x), ωV(x)〉 : x ∈ X}. Then

(i) U ⊆ V if and only if µU(x) ≤ µV(x), νU(x) ≥ νV(x) and ωU(x) ≥ ωV(x);
(ii) U = {〈x, νU(x), µU(x), ωU(x)〉 : x ∈ X};
(iii) U ∩V = {〈x, µU(x) ∧ µV(x), νU(x) ∨ νV(x), ωU(x) ∨ωV(x)〉 : x ∈ X};
(iv) U ∪V = {〈x, µU(x) ∨ µV(x), νU(x) ∧ νV(x), ωU(x) ∧ωV(x)〉 : x ∈ X}.

We will use the notation U = 〈x, µU , νU , ωU〉 instead of U = {〈x, µU(x), νU(x), ωU(x)〉 : x ∈ X}.
The NSs 0∼ and 1∼ are defined by 0∼ = {〈x, 0, 1, 1〉 : x ∈ X} and 1∼ = {〈x, 1, 0, 0〉 : x ∈ X}.

Let r, s, t ∈ [0, 1] such that r + s + t ≤ 3. A neutrosophic point (NP) p(r,s,t) is neutrosophic set defined by

p(r,s,t)(x) =

{
(r, s, t)(x) i f x = p
(0, 1, 1) otherwise.

Let f be a mapping from an ordinary set X into an ordinary set Y. If V = {〈y, µV(y), νV(y), ωV(y)〉 :
y ∈ Y} is an NS in Y, then the inverse image of V under f is an NS defined by

f−1(V) = {
〈

x, f−1(µV)(x), f−1(νV)(x), f−1(ωV)(x)
〉

: x ∈ X}.

The image of NS U = {〈y, µU(y), νU(y), ωU(y)〉 : y ∈ Y} under f is an NS defined by
f (U) = {〈y, f (µU)(y), f (νU)(y), f (ωU)(y)〉 : y ∈ Y} where

f (µU)(y) =

 sup
x∈ f−1(y)

µU(x), i f f−1(y) 6= 0

0 otherwise

f (νU)(y) =

 inf
x∈ f−1(y)

νU(x), i f f−1(y) 6= 0

1 otherwise

f (ωU)(y) =

 inf
x∈ f−1(y)

ωU(x), i f f−1(y) 6= 0

1 otherwise

for each y ∈ Y.

Definition 3. [8] A neutrosophic topology (NT) in a nonempty set X is a family τ of NSs in X satisfying the
following axioms:

(NT1) 0∼, 1∼ ∈ τ;
(NT2) G1 ∩ G2 ∈ τ for any G1, G2 ∈ τ;
(NT3) ∪Gi ∈ τ for any arbitrary family {Gi : i ∈ J} ⊆ τ.

Definition 4. [8] Let U be an NS in NTS X. Then
Nint(U) = ∪{O : O is an NOS in X and O ⊆ U} is called a neutrosophic interior of U;
Ncl(U) = ∩{O : O is an NCS in X and O ⊇ U} is called a neutrosophic closure of U.

Definition 5. [8] Let p(r,s,t) be an NP in NTS X. An NS U in X is called a neutrosophic neighborhood (NN)
of p(r,s,t) if there exists an NOS V in X such that p(r,s,t) ∈ V ⊆ U.

Definition 6. [9] A subset U of a neutrosophic space (X, τ) is called
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1. a neutrosophic pre-open set if U ⊆ Nint(Ncl(U)), and a neutrosophic pre-closed set if
Ncl(Nint(U)) ⊆ U,

2. a neutrosophic semi-open set if U ⊆ Ncl(Nint(U)), and a neutrosophic semi-closed set if
Nint(Ncl(U)) ⊆ U,

3. a neutrosophic α-open set if U ⊆ Nint(Ncl(Nint(U))), and a neutrosophic α-closed set if
Ncl(Nint(Ncl(U))) ⊆ U.

The pre-closure (respectively, semi-closure and α-closure) of a subset U of a neutrosophic space (X, τ) is the
intersection of all pre-closed (respectively, semi-closed, α-closed) sets that contain U and is denoted by Npcl(U)

(respectively, Nscl(U) and Nαcl(U)).

Definition 7. A subset A of a neutrosophic topological space (X, τ) is called

1. a neutrosophic semi-generalized closed (briefly, Nsg-closed) set if Nscl(U) ⊆ G whenever U ⊆ G and G
is neutrosophic semi-open in (X, τ);

2. a neutrosophic Nψ-closed set if Nscl(U) ⊆ G whenever U ⊆ G and G is Nsg-open in (X, τ).

3. On Neutrosophic αψ-Closed Sets

Definition 8. A neutrosophic αψ-closed (Nαψ-closed) set is defined as if Nψcl(U) ⊆ G whenever U ⊆ G
and G is an Nα-open set in (X, τ). Its complement is called a neutrosophic αψ-open (Nαψ-open) set.

Definition 9. Let U be an NS in NTS X. Then
Nαψint(U) = ∪{O : O is an NαψOS in X and O ⊆ U} is said to be a neutrosophic αψ-interior of U;
Nαψcl(U) = ∩{O : O is an NαψCS in X and O ⊇ U} is said to be a neutrosophic αψ-closure of U.

Theorem 1. All Nα-closed sets and N-closed sets are Nαψ-closed sets.

Proof. Let U be an Nα-closed set, then U = Nαcl(U). Let U ⊆ G, where G is Nα-open. Since U is
Nα-closed, Nψcl(U) ⊆ Nαcl(U) ⊆ G. Thus, U is Nαψ-closed.

Theorem 2. Every Nsemi-closed set in a neutrosophic set is an Nαψ-closed set.

Proof. Let U be an Nsemi-closed set in (X, τ), then U = Nscl(U). Let U ⊆ G, where G is Nα-open in
(X, τ). Since U is Nsemi-closed, Nψcl(U) ⊆ Nscl(U) ⊆ G. This shows that U is Nαψ-closed set.

The converses of the above theorems are not true, as can be seen by the following counter
example.

Example 1. Let X = {u, v, w} and neutrosophic sets G1, G2, G3, G4 be defined by

G1 =
〈

x, ( u
0.3 , v

0.4 , w
0.2), (

u
0.5 , v

0.1 , w
0.2), (

u
0.2 , v

0.5 , w
0.6)
〉

G2 =
〈

x, ( u
0.6 , v

0.3 , w
0.4), (

u
0.1 , v

0.5 , w
0.1), (

u
0.3 , v

0.2 , w
0.5)
〉

G3 =
〈

x, ( u
0.6 , v

0.4 , w
0.4), (

u
0.1 , v

0.1 , w
0.1), (

u
0.2 , v

0.2 , w
0.5)
〉

G4 =
〈

x, ( u
0.3 , v

0.3 , w
0.2), (

u
0.5 , v

0.5 , w
0.2), (

u
0.3 , v

0.5 , w
0.6)
〉

G5 =
〈

x, ( u
0.3 , v

0.3 , w
0.3), (

u
0.5 , v

0.5 , w
0.4), (

u
0.3 , v

0.5 , w
0.3)
〉

G6 =
〈

x, ( u
0.6 , v

0.4 , w
0.5), (

u
0.1 , v

0.3 , w
0.1), (

u
0.3 , v

0.3 , w
0.4)
〉

G7 =
〈

x, ( u
0.2 , v

0.3 , w
0.3), (

u
0.5 , v

0.5 , w
0.2), (

u
0.3 , v

0.3 , w
0.5)
〉
.

Let τ = {0∼, G1, G2, G3, G4, 1∼}. Here, G6 is an Nα open set, and Nψcl(G5) ⊆ G6. Then G5 is
Nαψ-closed in (X, τ) but is not Nα-closed; thus, it is not N-closed and G7 is Nαψ-closed in (X, τ), but not
Nsemi-closed.
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Theorem 3. Let (X, τ) be an NTS and let U ∈ NS(X). I f U is an Nαψ-closed set and U ⊆ V ⊆
Nψcl(U), then V is an Nαψ-closed set.

Proof. Let G be an Nα-open set such that V ⊆ G. Since U ⊆ V, then U ⊆ G. But U is Nαψ-closed,
so Nψcl(U) ⊆ G, since V ⊆ Nψcl(U) and Nψcl(V) ⊆ Nψcl(U) and hence Nψcl(V) ⊆ G. Therefore V
is an Nαψ-closed set.

Theorem 4. Let U be an Nαψ-open set in X and Nψint(U) ⊆ V ⊆ U, then V is Nαψ-open.

Proof. Suppose U is Nαψ-open in X and Nψint(U) ⊆ V ⊆ U. Then U is Nαψ-closed and U ⊆ V ⊆
Nψcl(U). Then U is an Nαψ-closed set by Theorem 3.5. Hence, V is an Nαψ-open set in X.

Theorem 5. An NS U in an NTS (X, τ) is an Nαψ-open set i f and only i f V ⊆ Nψint(U)

whenever V is an Nα-closed set and V ⊆ U.

Proof. Let U be an Nαψ-open set and let V be an Nα-closed set such that V ⊆ U. Then U ⊆ V
and hence Nψcl(U) ⊆ V, since U is Nαψ-closed. But Nψcl(U) = Nψint(U), so V ⊆ Nψint(U).
Conversely, suppose that the condition is satisfied. Then Nψint(U) ⊆ V whenever V is an Nα-open
set and U ⊆ V. This implies that Nψcl(U) ⊆ V = G, where G is Nα-open and U ⊆ G. Therefore, U is
Nαψ-closed and hence U is Nαψ-open.

Theorem 6. Let U be an Nαψ-closed subset of (X, τ). Then Nψcl(U)−U does not contain any non-empty
Nαψ-closed set.

Proof. Assume that U is an Nαψ-closed set. Let F be a non-empty Nαψ-closed set, such that
F ⊆ Nψcl(U) − U = Nψcl(U) ∩ U. i.e., F ⊆ Nψcl(U) and F ⊆ U. Therefore, U ⊆ F. Since F
is an Nαψ-open set, Nψcl(U) ⊆ F ⇒ F ⊆ (Nψcl(U) − U) ∩ (Nψcl(U)) ⊆ Nψcl(U) ∩ Nψcl(U).
i.e., F ⊆ φ. Therefore, F is empty.

Corollary 1. Let U be an Nαψ-closed set of (X, τ). Then Nψcl(U)-U does not contain anynon-empty
N-closed set.

Proof. The proof follows from the Theorem 3.9.

Theorem 7. If U is both Nψ-open and Nαψ-closed, then U is Nψ-closed.

Proof. Since U is both an Nψ-open and Nαψ-closed set in X, then Nψcl(U) ⊆ U. We also have
U ⊆ Nψcl(U). Thus, Nψcl(U) = U. Therefore, U is an Nψ-closed set in X.

4. On Neutrosophic αψ-Continuity and Neutrosophic Contra αψ-Continuity

Definition 10. A function f : X → Y is said to be a neutrosophic αψ-continuous (briefly, Nαψ-continuous)
function if the inverse image of every open set in Y is an Nαψ-open set in X.

Theorem 8. Let g : (X, τ)→ (Y, σ) be a function. Then the following conditions are equivalent.

(i) g is Nαψ-continuous;
(ii) The inverse f−1(U) of each N-open set U in Y is Nαψ-open set in X.

Proof. The proof is obvious, since g−1(U) = g−1(U) for each N-open set U of Y.

Theorem 9. If g : (X, τ)→ (Y, σ) is an Nαψ-continuous mapping, then the following statements hold:

(i) g(NαψNcl(U)) ⊆ Ncl(g(U)), for all neutrosophic sets U in X;
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(ii) NαψNcl(g−1(V)) ⊆ g−1(Ncl(V)), for all neutrosophic sets V in Y.

Proof.

(i) Since Ncl(g(U)) is a neutrosophic closed set in Y and g is Nαψ-continuous, then g−1(Ncl(g(U)))

is Nαψ-closed in X. Now, since U ⊆ g−1(Ncl(g(U))), Nαψcl(U) ⊆ g−1(Ncl(g(U))). Therefore,
g(NαψNcl(U)) ⊆ Ncl(g(U)).

(ii) By replacing U with V in (i), we obtain g(Nαψcl(g−1(V))) ⊆ Ncl(g(g−1(V))) ⊆ Ncl(V).
Hence, Nαψcl(g−1(V)) ⊆ g−1(Ncl(V)).

Theorem 10. Let g be a function from an NTS (X, τ) to an NTS (Y, σ). Then the following statements
are equivalent.

(i) g is a neutrosophic αψ-continuous function;
(ii) For every NP p(r,s,t) ∈ X and each NN U of g(p(r,s,t)), there exists an Nαψ-open set V such that

p(r,s,t) ∈ V ⊆ g−1(U).

(iii) For every NP p(r,s,t) ∈ X and each NN U of g(p(r,s,t)), there exists an Nαψ-open set V such that
p(r,s,t) ∈ V and g(V) ⊆ U.

Proof. (i)⇒ (ii). If p(r,s,t) is an NP in X and if U is an NN of g(p(r,s,t)), then there exists an NOS W in
Y such that g(p(r,s,t)) ∈W ⊂ U. Thus, g is neutrosophic αψ-continuous, V = g−1(W) is an NαψOset,
and

p(r,s,t) ∈ g−1(g(p(r,s,t))) ⊆ g−1(W) = V ⊆ g−1(U).

Thus, (ii) is a valid statement.
(ii) ⇒ (iii). Let p(r,s,t) be an NP in X and let U be an NN of g(p(r,s,t)). Then there exists

an NαψOset U such that p(r,s,t) ∈ V ⊆ g−1(U) by (ii). Thus, we have p(r,s,t) ∈ V and g(V) ⊆
g(g−1(U)) ⊆ U. Hence, (iii) is valid.

(iii) ⇒ (i). Let V be an NO set in Y and let p(r,s,t) ∈ g−1(V). Then g(p(r,s,t)) ∈ g(g−1(V)) ⊂ V.
Since V is an NOS, it follows that V is an NN of g(p(r,s,t)). Therefore, from (iii), there exists an NαψOset
U such that p(r,s,t) ∈ U and g(U) ⊆ V. This implies that

p(r,s,t) ∈ U ⊆ g−1(g(U)) ⊆ g−1(V).

Therefore, we know that g−1(V) is an NαψOset in X. Thus, g is neutrosophic αψ-continuous.

Definition 11. A function is said to be a neutrosophic contra αψ-continuous function if the inverse image of
each NOS V in Y is an NαψC set in X.

Theorem 11. Let g : (X, τ)→ (Y, σ) be a function. Then the following assertions are equivalent:

(i) g is a neutrosophic contra αψ-continuous function;
(ii) g−1(V) is an Nαψ C set in X, for each NOS V in Y.

Proof. (i)⇒ (ii) Let g be any neutrosophic contra αψ-continuous function and let V be any NOS in Y.
Then V is an NCS in Y. Based on these assumptions, g−1(V) is an NαψOset in X. Hence, g−1(V) is an
NαψCset in X.

The converse of the theorem can be proved in the same way.

Theorem 12. Let g : (X, τ) → (Y, σ) be a bijective mapping f rom an NTS(X, T)into an NTS(Y, T).
The mapping g is neutrosophic contra αψ-continuous, i f Ncl(g(U)) ⊆ g(Nαψint(U)), f or each NS U in X.
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Proof. Let V be any NCS in X. Then Ncl(V) = V, and g is onto, by assumption, which shows
that g(Nαψint(g−1(V))) ⊇ Ncl(g(g−1(V))) = Ncl(V) = V. Hence, g−1(g(Nαψint(g−1(V)))) ⊇
g−1(V). Since g is an into mapping, we have Nαψint(g−1(V)) = g−1(g(Nαψint(g−1(V)))) ⊇ g−1(V).
Therefore, Nαψint(g−1(V)) = g−1(V), so g−1(V) is an NαψO set in X. Hence, g is a neutrosophic
contra αψ-continuous mapping.

Theorem 13. Let g : (X, τ)→ (Y, σ) be a mapping. Then the f ollowing statements are equivalent:

(i) g is a neutrosophic contra αψ-continuous mapping;
(ii) f or each NP p(r,s,t) in X and NCS V containing g(p(r,s,t)) there existsanNαψOset U in X containing

p(r,s,t) such that A ⊆ f−1(B);

(iii) f or each NP p(r,s,t) in X and NCS V containing p(r,s,t) there existsanNαψOset U in X containing
p(r,s,t) such that g(U) ⊆ V.

Proof. (i) ⇒ (ii) Let g be a neutrosophic contra αψ-continuous mapping, let V be any NCS in Y
and let p(r,s,t) be an NP in X and such that g(p(r,s,t)) ∈ V. Then p(r,s,t) ∈ g−1(V) = Nαψint(g−1(V)).
Let U = Nαψint(g−1(V)). Then U is an NαψOset and U = Nαψint(g−1(V)) ⊆ g−1(V).

(ii)⇒ (iii) The results follow from evident relations g(U) ⊆ g(g−1(V)) ⊆ V.
(iii) ⇒ (i) Let V be any NCS in Y and let p(r,s,t) be an NP in X such that p(r,s,t) ∈ g−1(V).

Then g(p(r,s,t)) ∈ V. According to the assumption, there exists an NαψOS U in X such that
p(r,s,t) ∈ U and g(U) ⊆ V. Hence, p(r,s,t) ∈ U ⊆ g−1(g(U)) ⊆ g−1(V). Therefore, p(r,s,t) ∈
U = αψint(U) ⊆ Nαψint(g−1(V)). Since p(r,s,t) is an arbitrary NP and g−1(V) is the union of
all NPs in g−1(V), we obtain that g−1(V) ⊆ Nαψint(g−1(V)). Thus, g is a neutrosophic contra
Nαψ-continuous mapping.

Corollary 2. Let X, X1 and X2 be NTS sets, p1 : X → X1 × X2 and p2 : X → X1 × X2 are the
projections of X1 × X2 onto Xi, (i = 1, 2). If g : X → X1 × X2 is a neutrosophic contra αψ-continuous,
then pig are also neutrosophic contra αψ-continuous mapping.

Proof. This proof follows from the fact that the projections are all neutrosophic
continuous functions.

Theorem 14. Let g : (X1, τ) → (Y1, σ) be a f unction. I f the graph h: X1 →
X1× Y1 o f g is neutrosophic contra αψ-continuous, then g is neutrosophic contra αψ-continuous.

Proof. For every NOS, V in Y1 holds g−1(V) = 1 ∧ g−1(V) = h−1(1 × V). Since h is a neutrosophic
contra αψ-continuous mapping and 1 × V is an NOS in X1 × Y1, g−1(V) is an NαψCset in X1, so g is a 
neutrosophic contra αψ-continuous mapping.
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Abstract: After the neutrosophic set (NS) was proposed, NS was used in many uncertainty problems.
The single-valued neutrosophic set (SVNS) is a special case of NS that can be used to solve real-word
problems. This paper mainly studies multigranulation neutrosophic rough sets (MNRSs) and their
applications in multi-attribute group decision-making. Firstly, the existing definition of neutrosophic
rough set (we call it type-I neutrosophic rough set (NRSI) in this paper) is analyzed, and then
the definition of type-II neutrosophic rough set (NRSII), which is similar to NRSI, is given and
its properties are studied. Secondly, a type-III neutrosophic rough set (NRSIII) is proposed and
its differences from NRSI and NRSII are provided. Thirdly, single granulation NRSs are extended
to multigranulation NRSs, and the type-I multigranulation neutrosophic rough set (MNRSI) is
studied. The type-II multigranulation neutrosophic rough set (MNRSII) and type-III multigranulation
neutrosophic rough set (MNRSIII) are proposed and their different properties are outlined. We found
that the three kinds of MNRSs generate tcorresponding NRSs when all the NRs are the same. Finally,
MNRSIII in two universes is proposed and an algorithm for decision-making based on MNRSIII is
provided. A car ranking example is studied to explain the application of the proposed model.

Keywords: inclusion relation; neutrosophic rough set; multi-attribute group decision-making
(MAGDM); multigranulation neutrosophic rough set (MNRS); two universes

1. Introduction

Many theories have been applied to solve problems with imprecision and uncertainty. Fuzzy set
(FS) theories [1–3] use the degree of membership to solve the fuzziness. Rough set (RS) theories [4–7]
deal with uncertainty by lower and upper approximation (LUA). Soft set theories [8–10] deal with
uncertainty by using a parametrized set. However, all these theories have their own restrictions.
Smarandache proposed the concept of the neutrosophic set (NS) [11], which was a generalization of
the intuitionistic fuzzy set (IFS). To address real-world uncertainty problems, Wang et al. proposed the
single-valued neutrosophic set (SVNS) [12]. Many theories about neutrosophic sets were studied and
extended single-valued neutrosophic set [13–15]. Zhang et al. [16] analyzed two kinds of inclusion
relations of the NS and then proposed the type-3 inclusion relation of NS. The combinations of the
FS and RS are popular and produce many interesting results [17]. Broumi and Smarandache [18]
combined the RS and NS, then produced a rough NS and studied its qualities. Yang et al. [19] combined
the SVNS and RS, then produced the SVNRS (single-valued neutrosophic rough set) and studied
its qualities.

From the view point of granular computing, the RS uses upper and lower approximations
to solve uncertainty problems, shown by single granularity. However, with the complexity of
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real-word problems, we often encounter multiple relationship concepts. Qian and Liang [20] proposed
a multigranularity rough set (MGRS). Many scholars have generalized MGRS and acquired some
interesting consequences [21–26]. Zhang et al. [27] proposed non-dual MGRSs and investigated
their qualities.

Few articles have been published about the combination of NSs and multigranulation rough
sets. In this paper, we study three kinds of neutrosophic rough sets (NRSs) and multigranulation
neutrosophic rough sets (MNRSs) that are based on three kinds of inclusion relationships of NS
and corresponding union and intersection relationships [11,12,16]. Their different properties are
discussed. We found that MNRSs degenerate to corresponding NRSs when the NRs are the same.
Yang et al. [19] defined the NRSI and considered its properties. Bo et al. [28] proposed MNRSI and
discussed its properties. In this paper, we study NRSII and MNRSII. We also study NRSIII and
MNRSIII, which are based on a type-3 inclusion relationship and corresponding union and intersection
relationships. Finally, we use MNRSIII on two universes to solve multi-attribute group decision-making
(MAGDM) problems.

The structure of this article is as follows: In Section 2, some basic notions and operations of
NRSI and NRSII are introduced. In Section 3, the definition of NRSIII is proposed and its qualities are
investigated, and the differences between NRSI, NRSII, and NRSIII are illustrated using an example.
In Section 4, MNRSI and MNRSII are discussed. In Section 5, MNRSIII is proposed and its differences
from MNRSI and MNRSII are studied. In Section 6, MNRSIII on two universes is proposed and
an application to solve the MAGDM problem is outlined. Finally, Section 7 provides our conclusions
and outlook.

2. Preliminary

In this chapter, we look back at several basic concepts of type-I NRS, then propose the definition
and properties of type-II NRS.

Definition 1. [12] A single valued neutrosophic set A in X is denoted by:

A = {(x, TA(x), IA(x), FA(x))|x ∈ X }, (1)

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X and satisfies the condition 0≤ TA(x) + IA(x) + FA(x) ≤ 3.
For convenience, “SVNS” is abbreviated to “NS” later. Here, NS(X) denotes the set of all SVNS in X.

Definition 2. [29] A neutrosophic relation (NR) is a neutrosophic fuzzy subset of X × Y, that is, ∀x ∈ X,
y ∈ Y,

R(x, y) = (TR, IR, FR), (2)

where TR: X × Y→ [0, 1], IR: X × Y→ [0, 1], and FR: X × Y→ [0, 1] and satisfies 0 ≤ TR + IR + FR ≤ 3.
NR(X × Y) denotes all the NRs in X × Y.

Definition 3. [19] Suppose (U, R) is a neutrosophic approximation space (NAS). ∀A ∈ NS(U), the LUA of A,
denoted by R(A) and R(A), is defined as: ∀x ∈ U,

R(A) = ∩
y∈U

(Rc(x, y) ∪ A(y)), R(A) = ∪
y∈U

(R(x, y) ∩ A(y)). (3)

The pair
(

R(A), R(A)
)

is called the SVNRS of A. In this paper, we called it type-I neutrosophic rough set
(NRSI). Because the definition of NRSI is based on the type-1 operator of NS, the definition can be written as:

NRSI(A) = ∩1
y∈U

(Rc(x, y) ∪1 A(y)), NRSI(A) = ∪1
y∈U

(R(x, y) ∩1 A(y)). (4)
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Proposition 1. [19] Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆1 B, then NRSI(A) ⊆1 NRSI(B) and NRSI(A) ⊆1 NRSI(B).
(2) NRSI(A ∩1 B) = NRSI(A) ∩1 NRSI(B), NRSI(A ∪1 B) = NRSI(A) ∪1 NRSI(B).
(3) NRSI(A) ∪1 NRSI(B) ⊆1 NRSI(A ∪1 B), NRSI(A ∩1 B) ⊆1 NRSI(A) ∩1 NRSI(B).

According to the NRSI, we can get the definition and properties of NRSII, which is based on the
type-2 operator of NS.

Definition 4. Suppose (U, R) is an NAS. ∀A ∈ NS(U), the type-II LUA of A, is defined as:

NRSI I(A) = ∩2
y∈U

(Rc(x, y) ∪2 A(y)), NRSI I(A) = ∪2
y∈U

(R(x, y) ∩2 A(y)) (5)

The pair
(

NRSI I(A), NRSI I(A)
)

is called NRSII of A.

Proposition 2. Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆2 B, then NRSI I(A) ⊆2 NRSI I(B), NRSI I(A) ⊆2 NRSI I(B).
(2) NRSI I(A ∩2 B) = NRSI I(A) ∩2 NRSI I(B), NRSI I(A ∪2 B) = NRSI I(A) ∪2 NRSI I(B).
(3) NRSI I(A) ∪2 NRSI I(B) ⊆2 NRSI I(A ∪2 B), NRSI I(A ∩2 B) ⊆2 NRSI I(A) ∩2 NRSI I(B).

Definition 5. [22] Suppose A, B are two NSs, then the Hamming distance between A and B is defined as:

dN(A, B) =
n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|}. (6)

3. Type-III NRS

In this chapter, we introduce a new NRS, type-III NRS (NRSIII). We provide the differences
between the three kinds of NRSs. The properties of NRSIII are also given.

Definition 6. Suppose (U, R) is an NAS. ∀A ∈ NS(U), the type-III LUA of A, is defined as:

NRSI I I(A) = ∩3
y∈U

(Rc(x, y) ∪3 A(y)), NRSI I I(A) = ∪3
y∈U

(R(x, y) ∩3 A(y)).

The pair
(

NRSI I I(A), NRSI I I(A)
)

is called NRSIII of A.

Proposition 3. Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆3 B, then NRSI I I(A) ⊆3 NRSI I I(B), NRSI I I(A) ⊆3 NRSI I I(B).
(2) NRSI I I(A ∩3 B) ⊆3 NRSI I I(A) ∩3 NRSI I I(B), NRSI I I(A) ∪3 NRSI I I(B) ⊆3 NRSI I I(A ∪3 B).
(3) NRSI I I(A ∩3 B) ⊆3 NRSI I I(A) ∩3 NRSI I I(B), NRSI I I(A) ∪3 NRSI I I(B) ⊆3 NRSI I I(A ∪3 B).

Proof. (1) Assume A ⊆3 B,
Case 1: If TA(x) < TB(x), FA(x) ≥ FB(x), then:

TNRSI I I(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] ≤ ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSI I I(B)(x)

FNRSI I I(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] ≥ ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSI I I(B)(x).
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Hence,
NRSI I I(A) ⊆3 NRSI I I(B).

Case 2: If TA(x) = TB(x), FA(x) > FB(x), then:

TNRSI I I(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] = ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSI I I(B)(x)

FNRSI I I(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] ≥ ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSI I I(B)(x).

Hence,
NRSI I I(A) ⊆3 NRSI I I(B).

Case 3: suppose TA(x) = TB(x), FA(x) = FB(x) and IA(x) ≤ IB(x), then:

TNRSI I I(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] = ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSI I I(B)(x)

FNRSI I I(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] = ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSI I I(B)(x)

INRSI I I(A)(x) =


IA
(
yj
)
, Rc(x, yj

)
⊆3 A

(
yj
)
⊆3 A(yk), yk, yj ∈ U

IRc
(
x, yj

)
, A

(
yj
)
⊆3 Rc(x, yj

)
1, else

IMNRSI I I
o(B)(x) =


IB
(
yj
)
, Ri

c(x, yj
)
⊆3 B

(
yj
)
⊆3 B(yk), yk, yj ∈ U

IRi
c
(
x, yj

)
, B

(
yj
)
⊆3 Ri

c(x, yj
)

1, else
.

Hence, INRSI I I(A)(x) ≤ INRSI I I(B)(x). So NRSI I I(A) ⊆3 NRSI I I(B).
Summing up the above, if A ⊆3 B, then NRSI I I(A) ⊆3 NRSI I I(B).
Similarly, we can get NRSI I I(A) ⊆3 NRSI I I(B).
(2) According the Definition 6, we have:

NRSI I I(A ∩3 B) = ∩3
y∈U

[Rc(x, y) ∪3 (A ∩3 B)(y)]

⊆3

[
∩3

y∈U
(Rc(x, y) ∪3 A(y))

]
∩3

[
∩3

y∈U
(Rc(x, y) ∪3 B(y))

]
= NRSI I I(A) ∩3 NRSI I I(B).

Similarly,

NRSI I I(A) ∪3 NRSI I I(B) =

[
∩3

y∈U
(Rc(x, y) ∪3 A(y))

]
∪3

[
∩3

y∈U
(Rc(x, y) ∪3 B(y))

]
⊆3 ∩3

y∈U
[Rc(x, y) ∪3 (A ∪3 B)(y)]

= NRSI I I(A ∪3 B).

(3) The proof is similar to that of Case 2. �

Example 1. Define NAS (U, R), where U = {x1, x2} and R is given in Table 1.

Table 1. A neutrosophic relation R.

R x1 x2

x1 (0.4, 0.6, 0.7) (0.2, 0.2, 0.9)
x2 (0.7, 0.1, 0.4) (0.8, 0.8, 0.6)
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Suppose A is an NS and A = {(x1, 0.8, 0.2, 0.1), (x2, 0.4, 0.9, 0.5). Then, by Definitions 3, 4 and 6,
we can get:

NRSI(A)(x1) = (0.8, 0.8, 0.2), NRSI(A)(x2) = (0.6, 0.2, 0.5),
NRSI(A)(x1) = (0.4, 0.6, 0.7), NRSI(A)(x2) = (0.7, 0.2, 0.4),

NRSI I(A)(x1) = (0.8, 0.4, 0.2), NRSI I(A)(x2) = (0.6, 0.9, 0.5),
NRSI I(A)(x1) = (0.4, 0.2, 0.7), NRSI I(A)(x2) = (0.7, 0.8, 0.4),
NRSI I I(A)(x1) = (0.8, 1, 0.2), NRSI I I(A)(x2) = (0.6, 0, 0.5),

NRSI I I(A)(x1) = (0.4, 0.6, 0.7), NRSI I I(A)(x2) = (0.7, 0.1, 0.4).

4. Type-I and Type-II MNRS

We have proposed a kind of multigranulation neutrosophic rough set [30] (we called it type-I
multigranulation neutrosophic rough set in this paper). MNRSI is based on a type-1 operator of NRs.
In this chapter, we define the type-II multigranulation neutrosophic rough set (MNRSII), which is
based on a type-2 operator of NRs.

Definition 7. [28] Suppose U is a non-empty finite universe, and Ri (1 ≤ i ≤ m) is a binary NR on U. We call
the tuple ordered set (U, Ri) the multigranulation neutrosophic approximation space (MNAS).

Definition 8. [28] Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-I optimistic LUA of A, represented by
MNRSI

o(A) and MNRSI
o
(A), is defined as:

MNRSI
o(A)(x) =

m
∪1
i=1

(
∩1

y∈U
(Ri

c(x, y) ∪1 A(y))

)

MNRSI
o
(A)(x) =

m
∩1
i=1

(
∪1

y∈U
(Ri(x, y) ∩1 A(y))

)
.

Then, A is named a definable NS when MNRSI
o(A) = MNRSI

o
(A). Alternatively, we name the pair(

MNRSI
o(A), MNRSI

o
(A)

)
an optimistic MNRSI.

Definition 9. [30] Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-I pessimistic LUA of A, represented
by MNRSI

p(A) and MNRSI
p
(A), is defined as:

MNRSI
p(A)(x) =

m
∩1
i=1

(
∩1

y∈U
(Ri

c(x, y) ∪1 A(y))

)

MNRSI
p
(A)(x) =

m
∪1
i=1

(
∪1

y∈U
(Ri(x, y) ∩1 A(y))

)
.

Similarly, A is named a definable NS when MNRSI
p(A) = MNRSI

p
(A). Alternatively, we name the

pair
(

MNRSI
p(A), MNRSI

p
(A)

)
a pessimistic MNRSI.

Definition 10. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-II optimistic LUA of A, represented by
MNRSI I

o(A) and MNRSI I
o
(A), is defined as:

MNRSI I
o(A)(x) =

m
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

)

MNRSI I
o
(A)(x) =

m
∩2
i=1

(
∪2

y∈U
(Ri(x, y) ∩2 A(y))

)
.
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Then, A is named a definable NS when MNRSI I
o(A) = MNRSI I

o
(A). Alternatively, we name the pair(

MNRSI I
o(A), MNRSI I

o
(A)

)
an optimistic MNRSII.

Definition 11. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-II pessimistic LUA of A, represented by
MNRSI I

p(A) and MNRSI I
p
(A), is defined as:

MNRSI I
p(A)(x) =

m
∩2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

)

MNRSI I
p
(A)(x) =

m
∪2
i=1

(
∪2

y∈U
(Ri(x, y) ∩2 A(y))

)
.

Similarly, A is named a definable NS when MNRSI I
p(A) = MNRSI I

p
(A). Alternatively, we name the

pair
(

MNRSI I
p(A), MNRSI I

p
(A)

)
a pessimistic MNRSII.

Proposition 4. Suppose (U, Ri) is an MNAS. ∀A, B ∈ NS(U), then:

(1) MNRSI I
o(A) = ∼ MNRSI I

o
(∼ A), MNRSI I

p(A) = ∼ MNRSI I
p
(∼ A).

(2) MNRSI I
o
(A) = ∼ MNRSI I

o(∼ A), MNRSI I
p
(A) = ∼ MNRSI I

p(∼ A).
(3) MNRSI I

o(A ∩2 B) = MNRSI I
o(A) ∩2 MNRSI I

o(B), MNRSI I
p(A ∩2 B) = MNRSI I

p(A) ∩2

MNRSI I
p(B).

(4) MNRSI I
o
(A ∪2 B) = MNRSI I

o
(A) ∪2 MNRSI I

o
(B), MNRSI I

p
(A ∪2 B) = MNRSI I

p
(A) ∪2

MNRSI I
p
(B).

(5) A ⊆2 B⇒ MNRSI I
o(A) ⊆2 MNRSI I

o(B), MNRSI I
p(A) ⊆2 MNRSI I

p(B) .

(6) A ⊆2 B⇒ MNRSI I
o
(A) ⊆2 MNRSI I

o
(B), MNRSI I

p
(A) ⊆2 MNRSI I

p
(B) .

(7) MNRSI I
o(A) ∪2 MNRSI I

o(B) ⊆2 MNRSI I
o(A ∪2 B), MNRSI I

p(A) ∪2 MNRSI I
p(B) ⊆2

MNRSI I
p(A ∪2 B).

(8) MNRSI I
o
(A ∩2 B) ⊆2 MNRSI I

o
(A) ∩2 MNRSI I

o
(B), MNRSI I

p
(A ∩2 B) ⊆2 MNRSI I

p
(A) ∩2

MNRSI I
p
(B).

Proof. Equations (1), (2), (5), and (6) are obviously according to Definitions 10 and 11. Next, we will
prove Equations (3), (4), (7), and (8).

(3) By Definition 10,

MNRSI I
o(A ∩2 B)(x) =

m
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 (A ∩2 B)(y))

)

=
n
∪2
i=1

(
∩2

y∈U
((Ri

c(x, y) ∪2 A(y)) ∩ (Ri
c(x, y) ∪2 B(y)))

)

=

(
n
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

))
∩2

(
n
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 B(y))

))
= MNRSI I

o A(x) ∩2 MNRSI I
oB(y).

Similarly, from Definition 11, we can get the following:

MNRSI I
p(A ∩2 B) = MNRSI I

p(A) ∩2 MNRSI I
p(B).

(4) The proof is similar to that of Equation (3).
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(7) By Definition 10, we can get:

TMNRSI I
o(A∪2B)(x) =

m
max
i=1

min
y∈U

{
max[FRi (x, y), (max(TA(y), TB(y)))]

}
=

m
max
i=1

min
y∈U

{
max[(max(FRi (x, y), TA(y))), (max(FRi (x, y), TB(y)))]

}
≥ max

{[
m

max
i=1

min
y∈U

(max(FRi (x, y), TA(y)))
]

,
[

m
max
i=1

min
y∈U

(max(FRi (x, y), TB(y)))
]}

= max
(

TMNRSI I
o(A)(x), TMNRSI I

o(B)(x)
)

.

IMNRSI I
o(A∪2 B)(x) =

m
max
i=1

min
y∈U

{
max

[(
1− IRi (x, y)

)
, (max(IA(y), IB(y)))

]}
=

m
max
i=1

min
y∈U

{
max

[(
max

((
1− IRi (x, y)

)
, IA(y)

))
,
(
max

((
1− IRi (x, y)

)
, IB(y)

))]}
≥ max

{[
m

max
i=1

min
y∈U

(
max

((
1− IRi (x, y)

)
, IA(y)

))]
,
[

m
max
i=1

min
y∈U

(
max

((
1− IRi (x, y)

)
, IB(y)

))]}
= max

(
IMNRSI I

o(A)(x), IMNRSI I
o(B)(x)

)
.

FMNRSI I
o(A∪2B)(x) =

m
min
i=1

max
y∈U

{
min[TRi (x, y), (min(FA(y), FB(y)))]

}
=

m
min
i=1

max
y∈U

{
min[min(TRi (x, y), FA(y))], [min(TRi (x, y), FB(y))]

}
≤ min

{[
m

min
i=1

max
y∈U

(min(TRi (x, y), FA(y)))
]

,
[

m
min
i=1

max
y∈U

(min(TRi (x, y), FB(y)))
]}

= min
(

FMNRSI I
o(A)(x), FMNRSI I

o(B)(x)
)

.

Hence, MNRSI I
o(A) ∪2 MNRSI I

o(B) ⊆2 MNRSI I
o(A ∪2 B).

Additionally, according to Definition 11, we can get MNRSI I
p(A) ∪2 MNRSI I

p(B) ⊆2

MNRSI I
p(A ∪2 B).

(8) The proof is similar to that of Equation (7). �

Remark 1. Note that if the NRs are the same one, then the optimistic (pessimistic) MNRSII degenerates into
NRSII in Section 2.

5. Type-III MNRS

In this chapter, MNRSIII, which is based on a type-3 inclusion relation and corresponding union
and intersection relations, is proposed and their characterizations are provided.

Definition 12. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-III optimistic LUA of A, represented by
MNRSI I I

o(A) and MNRSI I I
o
(A), is defined as:

MNRSI I I
o(A)(x) =

m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

)

MNRSI I I
o
(A)(x) =

m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

)
.

Then, A is named a definable NS when MNRSI I I
o(A) = MNRSI I I

o
(A). Alternatively, we name the

pair
(

MNRSI I I
o(A), MNRSI I I

o
(A)

)
an optimistic MNRSIII.

Definition 13. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-III pessimistic LUA of A, represented by
MNRSI I I

p(A) and MNRSI I I
p
(A), is defined as:

MNRSI I I
p(A)(x) =

m
∩3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

)
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MNRSI I I
p
(A)(x) =

m
∪3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

)
.

Similarly, A is named a definable NS when MNRSI I I
p(A) = MNRSI I I

p
(A). Alternatively, we name

the pair
(

MNRSI I I
p(A), MNRSI I I

p
(A)

)
a pessimistic MNRSIII.

Proposition 5. Suppose (U, Ri) is an MNAS. ∀A, B ∈ NS(U), then:

(1) MNRSI I I
o(A) =∼ MNRSI I I

o
(∼ A), MNRSI I I

p(A) =∼ MNRSI I I
p
(∼ A).

(2) MNRSI I I
o
(A) =∼ MNRSI I I

o(∼ A), MNRSI I I
p
(A) =∼ MNRSI I I

p(∼ A).
(3) A ⊆3 B⇒ MNRSI I I

o(A) ⊆3 MNRSI I I
o(B), MNRSI I I

p(A) ⊆3 MNRSI I I
p(B) .

(4) A ⊆3 B⇒ MNRSI I I
o
(A) ⊆3 MNRSI I I

o
(B), MNRSI I I

p
(A) ⊆3 MNRSI I I

p
(B) .

(5) MNRSI I I
o(A ∩3 B) ⊆3 MNRSI I I

o(A) ∩3 MNRSI I I
o(B), MNRSI I I

p(A ∩3 B) ⊆3

MNRSI I I
p(A) ∩3 MNRSI I I

p(B).

(6) MNRSI I I
o
(A) ∪3 MNRSI I I

o
(B) ⊆3 MNRSI I I

o
(A ∪3 B), MNRSI I I

p
(A) ∪3 MNRSI I I

p
(B) ⊆3

MNRSI I I
p
(A ∪3 B).

(7) MNRSI I I
o(A) ∪3 MNRSI I I

o(B) ⊆3 MNRSI I I
o(A ∪3 B), MNRSI I I

p(A) ∪3 MNRSI I I
p(B) ⊆3

MNRSI I I
p(A ∪3 B).

(8) MNRSI I I
o
(A ∩3 B) ⊆3 MNRSI I I

o
(A) ∩3 MNRSI I I

o
(B), MNRSI I I

p
(A ∩3 B) ⊆3

MNRSI I I
p
(A) ∩3 MNRSI I I

p
(B).

Proof. Equations (1) and (2) can be directly derived from Definitions 12 and 13. We only provide the
proof of Equations (3)–(8).

(3) Suppose A ⊆3 B, then:
Case 1: If TA(x) < TB(x), FA(x) ≥ FB(x), then:

TMNRSI I I
o(A)(x) =

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TA(y)

]
≤

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSI I I

o(B)(x)

FMNRSI I I
o(A)(x) =

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FA(y)

]
≥

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSI I I

o(B)(x).

Hence, MNRSI I I
o(A) ⊆3 MNRSI I I

o(B).
Case 2: If TA(x) = TB(x), FA(x) > FB(x), then:

TMNRSI I I
o(A)(x) =

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TA(y)

]
=

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSI I I

o(B)(x)

FMNRSI I I
o(A)(x) =

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FA(y)

]
≥

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSI I I

o(B)(x).

Hence, MNRSI I I
o(A) ⊆3 MNRSI I I

o(B).
Case 3: suppose TA(x) = TB(x), FA(x) = FB(x) and IA(x) ≤ IB(x), then:

TMNRSI I I
o(A)(x) =

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TA(y)

]
=

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSI I I

o(B)(x)

FMNRSI I I
o(A)(x) =

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FA(y)

]
≥

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSI I I

o(B)(x)

IMNRSI I I
o(A)(x) =


IA
(
yj
)
, Ri

c(x, yj
)
⊆3 A

(
yj
)
⊆3 A(yk), yk, yj ∈ U

IRi
c
(
x, yj

)
, A
(
yj
)
⊆3 Ri

c(x, yj
)

0, else
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IMNRSI I I
o(B)(x) =


IB
(
yj
)
, Ri

c(x, yj
)
⊆3 B

(
yj
)
⊆3 B(yk), yk, yj ∈ U

IRi
c
(
x, yj

)
, B
(
yj
)
⊆3 Ri

c(x, yj
)

0, else
.

Hence, IMNRSI I I
o(A)(x) ≤ IMNRSI I I

o(B)(x). So, MNRSI I I
o(A) ⊆3 MNRSI I I

o(B).
Summing up the above, if A ⊆3 B, then MNRSI I I

o(A) ⊆3 MNRSI I I
o(B).

Similarly, we can get MNRSI I I
p(A) ⊆3 MNRSI I I

p(B).
(4) The proof is similar to that of Equation (3).
(5) From Definition 12, we have:

MNRSI I I
o(A ∩3 B) =

m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A(y) ∩3 B(y)))

)

⊆3
m
∪3
i=1

(
∩3

y∈U
((Ri

c(x, y) ∪3 A(y)) ∩3 (Ri
c(x, y) ∪3 B(y)))

)

⊆3

(
m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

))
∩3

(
m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

))
= MNRSI I I

o(A) ∩3 MNRSI I I
o(B).

Similarly, from Definition 13, we can get MNRSI I I
p(A ∩3 B) ⊆3 MNRSI I I

p(A) ∩3 MNRSI I I
p(B).

(6) From Definition 12, we have:

MNRSI I I
o
(A) ∪3 MNRSI I I

o
(B) =

(
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

))
∪3

(
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 B(y))

))

⊆3
m
∩3
i=1

(
∪3

y∈U
((Ri(x, y) ∩3 A(y)) ∪3 (Ri(x, y) ∩3 B(y)))

)

⊆3
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A(y) ∪3 B(y)))

)
= MNRSI I I

o
(A ∪3 B).

Similarly, from Definition 13, we can get MNRSI I I
p
(A ∪3 B) = MNRSI I I

p
(A) ∪3 MNRSI I I

p
(B).

(7) From Definition 12, we have:

MNRSI I I
o(A ∪3 B) =

m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A ∪3 B)(y))

)

=
m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A(y) ∪3 B(y)))

)

⊇3
m
∪3
i=1

(([
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

]
∪3

[
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

]))

=

(
m
∪3
i=1

[
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

])
∪3

(
m
∪3
i=1

[
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

])
= MNRSI I I

o(A) ∪3 MNRSI I I
o(B).

Hence, MNRSI I I
o(A) ∪3 MNRSI I I

o(B) ⊆3 MNRSI I I
o(A ∪3 B).

Additionally, from Definition 13, we can get MNRSI I I
p(A) ∪3 MNRSI I I

p(B) ⊆3

MNRSI I I
p(A ∪3 B).
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(8) From Definition 12, we have:

MNRSI I I
o
(A ∩3 B) =

m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A ∩3 B)(y))

)

=
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A(y) ∩3 B(y)))

)

⊆3
m
∩3
i=1

([
∪2

y∈U
(Ri(x, y) ∩3 A(y))

]
∩3

[
∪3

y∈U
(Ri(x, y) ∩3 B(y))

])

=

(
m
∩3
i=1

[
∪3

y∈U
(Ri(x, y) ∩3 A(y))

])
∩3

(
m
∩3
i=1

[
∪3

y∈U
(Ri(x, y) ∩3 B(y))

])
= MNRSI I I

o
(A) ∩3 MNRSI I I

o
(B).

Hence, MNRSI I I
o
(A ∩3 B) ⊆3 MNRSI I I

o
(A) ∩3 MNRSI I I

o
(B).

Similarly, from Definition 13, we can get MNRSI I I
p
(A ∩3 B) ⊆3 MNRSI I I

p
(A) ∩3 MNRSI I I

p
(B).

�

Remark 2. Note that if the NRs are the same one, then the optimistic (pessimistic) MNRSIII degenerates into
NRSIII in Section 3.

6. Type-III MNRS in Two Universes with Its Applications

In this chapter, we propose the concept of MNRSIII in two universes and use it to deal with the
MAGDM problem.

Definition 14. [28] Suppose U, V are two non-empty finite universes, and Ri ∈ NS(U × V) (1 ≤ i ≤ m) is a
binary NR. We call (U, V, Ri) the MNAS in two universes.

Definition 15. Suppose (U, V, Ri) is an MNAS in two universes. ∀A ∈ NS(V) and x ∈ U, the type-III
optimistic LUA of A in (U, V, Ri), represented by MNRSI I I

o(A) and MNRSI I I
o
(A), is defined as:

MNRSI I I
o(A)(x) =

m
∪3
i=1

(
∩3

y∈V
(Ri

c(x, y) ∪3 A(y))

)

MNRSI I I
o
(A)(x) =

m
∩3
i=1

(
∪3

y∈V
(Ri(x, y) ∩3 A(y))

)
.

Then, A is named a definable NS in two universes when MNRSI I I
o(A) = MNRSI I I

o
(A). Alternatively,

we name the pair
(

MNRSI I I
o(A), MNRSI I I

o
(A)

)
an optimistic MNRSIII in two universes.

Definition 16. Suppose (U, V, Ri) is an MNAS in two universes. ∀A ∈ NS(V) and x ∈ U, the type-III
pessimistic LUA of A in (U, V, Ri), denoted by MNRSI I I

p(A) and MNRSI I I
p
(A), is defined as follows:

MNRSI I I
p(A)(x) =

m
∩3
i=1

(
∩3

y∈V
(Ri

c(x, y) ∪3 A(y))

)

MNRSI I I
p
(A)(x) =

m
∪3
i=1

(
∪3

y∈V
(Ri(x, y) ∩3 A(y))

)
.

Similarly, A is named a definable NS when MNRSI I I
p(A) = MNRSI I I

p
(A). Alternatively, we name

the pair
(

MNRSI I I
p(A), MNRSI I I

p
(A)

)
a pessimistic MNRSIII in two universes.
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Remark 3. Note that if the two domains are the same, then the optimistic (pessimistic) MNRSIII in two
universes degenerates into the optimistic (pessimistic) MNRSIII in a single universe in Section 5.

The MAGDM problem is becoming more and more generally present in our daily life. MAGDM
means to select or rank all the feasible alternatives in various criterions. There are many ways to solve
the MAGDM problem, but we use MNRS to solve it in this paper. Next, we give the basic description
of the considered MAGDM problem.

For the car-ranking question, suppose U = {x1, x2, . . . , xn} is the decision set and V = {y1, y2, . . . ,
ym} is the criteria set in which x1 represents “very popular”, x2 represents “popular”, x3 represents
“less popular”, . . . , xn represents “not popular”, y1 represents the vehicle type”, y2 represents the
size of the space, y3 represents the ride height, y4 represents quality, and . . . , ym represents length of
durability. Then, l selection experts make evaluations about the criteria sets according to their own
experiences. Here, the evaluations were shown by NRs. Next, we calculate the degree of popularity
for a given car. Therefore, we need to use MGNRS to solve the above problem. For the MAGDM
problem under a multigranulation neutrosophic environment, the optimistic lower approximation can
be regarded as an optimistic risk decision, and the optimistic upper approximation can be regarded
as an optimistic conservative decision. Additionally, the pessimistic lower approximation can be
regarded as a pessimistic risk decision and the pessimistic upper approximation can be regarded as
a pessimistic conservative decision. According to the distance of neutrosophic sets, we define the
difference function dN(A, B)(xi) = (1/3)(|TA(xi) − TB(xi)| + |IA(xi) − IB(xi)| + |FA(xi) − FB(xi)|). We
used the difference function to represent the distance of optimistic (pessimistic) upper and lower
approximation. The smaller the value of the distance is, the better the alternative xi is, because the
risk decision and the conservative decision are close. By comparing the distance value, all alternatives
can be ranked and we can choose the optimal alternative. In this paper, we only used three kinds of
optimistic upper and lower approximation to decision-making.

Next, we show the process of the above car-ranking question based on MGNRSs over two
universes. Let Rl ∈ NR(U × V) be NRs from U to V, where ∀(xi, yj) ∈ U × V, Rl(xi, yj) denotes the
degree of popularity for criteria set yj (yj ∈ V). Rl can be obtained according to experts’ experience.
Given a car A, according to the unconventional questionnaire (suppose there are three options—“like”,
“not like”, and “neutral” to choose for each of the criteria sets, and everyone can choose one or more
options), then we can get the popularity of every criterion as described by an NS A in the universe V
according to the questionnaire. By use of the following Algorithm 1, we can determine the degree of
popularity of the given car A.

Algorithm 1 Decision algorithm

Input Multigranulation neutrosophic decision information systems (U, V, R).
Output The degree of popularity of the given car.
Step 1 Computing three kinds of optimistic multigranulation LUA MNRSI

o(A), MNRSI
o
(A),

MNRSI I
o(A), MNRSI I

o
(A), MNRSI I I

o(A), MNRSI I I
o
(A).

Step 2 Calculate d(MNRSI
o(xi), MNRSI

o
(xi)), d(MNRSI I

o(xi), MNRSI I
o
(xi)) and

d(MNRSI I I
o(xi), MNRSI I I

o
(xi)).

Step 3 The best choice is to select xh (which means that the most welcome degree is xh) if
d(MNRSo(xh), MNRSo

(xh)) = mini∈{1,2,··· ,n}d(MNRSo(xi), MNRSo
(xi)).

Step 4 If h has two or more values, then each xh will be the best choice. In this case, the car may have two or
more popularities and each xk will be regarded as the most possible popularity; otherwise, we use other
methods to make a decision.

Next, we use an example to explain the algorithm.
Let U = {x1, x2, x3, x4} be the decision set, in which x1 denotes “very popular”, x2 denotes

“popular”, x3 denotes “less popular”, and x4 denotes “not popular”. Let V = {y1, y2, y3, y4, y5} be
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criteria sets, in which y1 denotes the vehicle type, y2 denotes the size of the space, y3 denotes the ride
height, y4 denotes quality, and y5 denotes length of durability.

Suppose that R1, R2, and R3 are given by three invited experts. They provide their evaluations for
all criteria yj with respect to decision set elements xi. The evaluation R1, R2, and R3 are NRs between
attribute set V and decision evaluation set U., that is., there are R1, R2, R3 ∈ NR(U × V).

Suppose three experts present their judgment (the neutrosophic relation R1, R2, and R3) for the
attribute and decision sets in Tables 2–4:

Table 2. Neutrosophic relation R1.

R1 y1 y2 y3 y4 y5

x1 (0.8, 0.6, 0.5) (0.2, 0.3, 0.9) (0, 0, 1) (0.7, 0.5, 0.6) (0, 0, 1)
x2 (0.6, 0.4, 0.6) (0.9, 0.3, 0.4) (1, 0, 0) (0, 0, 1) (0.3, 0.6, 0.7)
x3 (0.2, 0.5, 0.9) (0.6, 0.7, 0.5) (0.8, 0.7, 0.8) (0, 0, 1) (1, 0, 0)
x4 (0.6, 0.4, 0.7) (0, 0, 1) (0, 0, 1) (0.9, 0.8, 0.1) (0, 0, 1)

Table 3. Neutrosophic relation R2.

R2 y1 y2 y3 y4 y5

x1 (0.9, 0.3, 0.6) (0, 0, 1) (0, 0, 1) (0.5, 0.6, 0.5) (0.2, 0.3, 0.9)
x2 (0.3, 0.7, 0.8) (0.7, 0.5, 0.6) (0.9, 0.1, 0.1) (0, 0, 1) (0.4, 0.5, 0.8)
x3 (0.1, 0.6, 0.8) (0.3, 0.6, 0.5) (0.7, 0.3, 0.6) (0, 0, 1) (1, 0, 0)
x4 (0.7, 0.5, 0.6) (0, 0, 1) (0, 0, 1) (1, 0, 0) (0, 0, 1)

Table 4. Neutrosophic relation R3.

R3 y1 y2 y3 y4 y5

x1 (0.6, 0.9, 0.4) (0.1, 0.1, 0.8) (0.1, 0, 0.9) (0.8, 0.4, 0.8) (0, 0, 1)
x2 (0.5, 0.6, 0.6) (0.6, 0.2, 0.7) (1, 0, 0) (0, 0, 1) (0, 0, 1)
x3 (0.1, 0.4, 0.7) (0.2, 0.2, 0.7) (0.5, 0.7, 0.6) (0, 0, 1) (0.9, 0.1, 0.2)
x4 (0.6, 0.3, 0.4) (0, 0, 1) (0, 0, 1) (0.7, 0.5, 0.4) (0, 0, 1)

Suppose A is a car and each criterion in V is as follows:

A = {(y1, 0.9, 0.2, 0.2), (y2, 0.2, 0.7, 0.8), (y3, 0, 1, 0.3), (y4, 0.7, 0.6, 0.3), (y5, 0.1, 0.8, 0.9)}.

Then, we can calculate the three kinds of optimistic LUAs of A as follow:

MNRSI
o(A)(x1) = (0.8, 1, 0.3), MNRSI

o(A)(x2) = (0.1, 0.9, 0.6),
MNRSI

o(A)(x3) = (0.2, 0.8, 0.9), MNRSI
o(A)(x4) = (0.7, 1, 0.3),

MNRSI
o
(A)(x1) = (0.7, 0.6, 0.5), MNRSI

o
(A)(x2) = (0.3, 0.6, 0.3),

MNRSI
o
(A)(x3) = (0.2, 0.6, 0.8), MNRSI

o
(A)(x4) = (0.7, 0.5, 0.4),

MNRSI I
o(A)(x1) = (0.8, 0.6, 0.3), MNRSI I

o(A)(x2) = (0.1, 0.6, 0.6),
MNRSI I

o(A)(x3) = (0.2, 0.6, 0.9), MNRSI I
o(A)(x4) = (0.7, 0.6, 0.3),

MNRSI I
o
(A)(x1) = (0.7, 0.4, 0.5), MNRSI I

o
(A)(x2) = (0.3, 0.2, 0.3),

MNRSI I
o
(A)(x3) = (0.2, 0.6, 0.8), MNRSI I

o
(A)(x4) = (0.7, 0.2, 0.4),

MNRSI I I
o(A)(x1) = (0.8, 0, 0.3), MNRSI I I

o(A)(x2) = (0.1, 0, 0.6),
MNRSI I I

o(A)(x3) = (0.2, 0.9, 0.9), MNRSI I I
o(A)(x4) = (0.7, 0.6, 0.3),

MNRSI I I
o
(A)(x1) = (0.7, 1, 0.5), MNRSI I I

o
(A)(x2) = (0.3, 0, 0.3),

MNRSI I I
o
(A)(x3) = (0.2, 0.7, 0.8) MNRSI I I

o
(A)(x4) = (0.7, 0.5, 0.4).
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Therefore, we can get:

d(MNRSI
o(x1), MNRSI

o
(x1)) = 0.7/3, d(MNRSI

o(x2), MNRSI
o
(x2)) = 0.8/3,

d(MNRSI
o(x3), MNRSI

o
(x3)) = 0.1, d(MNRSI

o(x4), MNRSI
o
(x4)) = 0.2,

d(MNRSI I
o(x1), MNRSI I

o
(x1)) = 0.5/3, d(MNRSI I

o(x2), MNRSI I
o
(x2)) = 0.3,

d(MNRSI I
o(x3), MNRSI I

o
(x3)) = 0.1/3, d(MNRSI I

o(x4), MNRSI I
o
(x4)) = 0.5/3,

d(MNRSI I I
o(x1), MNRSI I I

o
(x1)) = 1.3/3, d(MNRSI I I

o(x2), MNRSI I I
o
(x2)) = 0.5/3,

d(MNRSI I I
o(x3), MNRSI I I

o
(x3)) = 0.1, d(MNRSI I I

o(x4), MNRSI I I
o
(x4)) = 0.2/3.

Thus, for the type-I and type-II MNRS, the optimistic best choice is to select x3, that is, this car 
is less popular; for the type-III MNRS, the optimistic best choice is to select x4, that is, this car is 
not popular.

7. Conclusions

NRS and MNRS are extensions of the Pawlak rough set theory. In this paper, we analysed the
NRSI and NRSII, we proposed model NRSIII, and used an example to outline the differences between 
the three kinds of NRS. We gave the definition of MNRSIII, which is based on the type-3 operator 
relation of NS, and considered their properties. Furthermore, we proposed MNRSIII in two universes 
and we presented an algorithm of the MAGDM problem based on it.

In the future, we will be researching other types of fusions of MGRSs and NSs. We will also study 
the applications of concepts in this paper to some algebraic systems (for example, pseudo-BCI algebras, 
neutrosophic triplet groups, see [30,31]).
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Abst ract

Borzooei, Mohseni Takallo, and Jun recently proposed a new type of set, called True-False Set [1], and they claimed 
it is a generalization of Neutrosophic Set [2]. We prove that this assertion is untrue. Actually it’s the opposite, the 
True-False Set is a particular case of the Refined Neutrosophic Set..  

Keywords : Refined Neutrosophic Set, True-False Set, Neutrosophic Set, Indeterminacy. 

1. Definit ion of True -False Set [1]

A True-False set (TF-set), on a none-empty set X, is a structure of the form: 

���� = {�; ��(�), ��(�), ��(�), ��(�)|� ∈ �}; the index “TFS” stands for True-False Set; 

where ��: � → [0, 1]; �� represents the single-valued truth function; 

��: � → �([0, 1]), where �([0, 1]) is the set of all subintervals of [0, 1]; �� represents the interval-valued truth 

function; 

��: � → [0, 1]; �� represents the single-valued falsehood function; 

��: � → �([0, 1]); �� represents the interval-valued falsehood function. 

It is not clear why two truth-functions and two falsehood-functions are needed for the same element �. There is no 

justification. 

2. Definition of neut rosophic  set [2]

We try to use similar notations and language in order to make easy comparison between the two types of sets. 

Let � be a non-empty universe of discourse. 

A Neutrosophic Set on � is a structure of the form: 

��� = {�; ��(�), ��(�), ��(�)|� ∈ �}, 

True-False Set is a particular case of the Refined 
Neutrosophic Set

Florentin Smarandache, Said Broumi

Florentin Smarandache, Said Broumi (2020). True-False Set is a particular case of the Refined Neutrosophic Set. 
International Journal of Neutrosophic Science 12(1), 9-12; DOI: 10.5281/zenodo.4247831
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where ��, ��, ��: � → �(]�0, 1�[), where �(]�0, 1�[) is the set of all standard or nonstandard subsets of the non-

standard interval ]�0, 1�[. 

3. Distinct ions between Tru e-False Set and Neutro sophic Set

1) Clearly �(]�0, 1�[) ⊋ �([0, 1]). From this point of view, the neutrosophic set is larger than the True-False

Set. 

�(]�0, 1�[) includes not only strandard subintervals of [0, 1] as �([0, 1]), but any standard subsets of [0, 1]. 

2) �(]�0, 1�[) also includes non-standard subsets of ]�0, 1�[, left and right monads, binads from non-

standard analysis, that help make a distinction between absolute truth (truth in all possible worlds, according to 

Leibniz), whose truth-value is ��(�) = 1�, where 1� = 1 + � > 1 and � is a positive infinitesimal number.  

Similarly for absolute / relative indeterminacy and respectively falsehood. 

The True-False Set cannot make distinctions between absolute and relative truth/falsehood. 

3) Neutrosophic Set is much more complex as structure than the True-False Set; Neutrosophic Set has been
further extended Neutrosophic Overset (where the neutrosophic components could be > 1), Neutrosophic Underset 
(where the neutrosophic components could be < 0), and Neutrosophic Offset (where the neutrosophic components 
could be > 1 and < 0) in 2007 & 2016 ([3], [4]). 

4. Tra nsformati on of a Single-Valued N eutro sophic Set to a True -False Set [1]

The authors of [1] considered only the simplest form of the Neutrosophic Set, i.e. when the neutrosophic components 
T, I, F are single (crisp) numbers in [0, 1], while the general definition [2] of neutrosophic set stated since 1998 that 
T, I, F can be any subsets of [0, 1], or any nonstandard subsets of the non-standard unit interval ]�0, 1�[. 

They considered the single-valued neutrosophic set: 

��� = {�; ���(�), ���(�), ���(�)|� ∈ �}, 

where ��� , ���, ���: � → [0, 1] are single-valued truth, indeterminacy, and falsehood functions respectively. The 

index “NS” stands for Neutrosophic Set (we adjusted their Greek letter notations to Latin ones, in order to exactly 

match the common use notations of the neutrosophic set). 

They transformed it to a True-False Set in the following way: 

�(�) = ���(�); 

�(�) = ���(�); 

����(�) = �
[���(�), ���(�)], if ���(�) ≤ ���(�);
[���(�), ���(�)], if ���(�) ≤ ���(�);

 

����(�) = �
[���(�), ���(�)], if ���(�) ≤ ���(�);
[���(�), ���(�)], if ���(�) ≤ ���(�).

 

And they formed the following True-False Set: 

���� = {�; �(�), ����(�), �(�), ����(�)|� ∈ �} = {〈�; ���(�), ����(�), ���(�), ����(�)〉|� ∈ �}. 
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This True-False Set, ����, has two truth-functions and two-falsehood functions, but no indeterminacy (neutrality) 

function (they removed it).  

Transforming the neutrosophic set ���  into a true-false set ���� is just a mathematical artifact. It is not proven that 

��� is equivalent to ����. Actually, we’ll prove below that they are not. 

Other mathematical transformations can be designed as well, constructing new intervals, or combining the 

neutrosophic functions in other ways, etc. But the equivalence, if any, should be proven. 

5. Ind etermi nacy (Neutrali ty)

The indeterminacy (neutrality) is the quintessence (the flavor) of neutrosophic set, that stringently distinguishes it 

from previous types of sets. 

By eliminating the indeterminacy (or neutrality) from the neutrosophic set ��� , when constructing a true-false set 

����, the true-false set ���� becomes defficient, incapable of characterizing the neutrosophic triads of the form 

(〈�〉, 〈neut�〉, 〈anti�〉), where 〈�〉 is an item (idea, proposition, attribute, concept, etc.), 〈anti�〉 is its opposite, and 

〈neut�〉 is the neutral between these opposites. 

For example, in games we have such triads (where 〈�〉 = winning): <winning, tie game, loosing>. 

6. Numer ical Coun ter -Example of Tra nsformi ng a Single-Valued N eutrosophic set to a True -False Set

Let’s take only one element from a single valued neutrosophic set (for the other elements it will be similar): 

���(0.3, 0.4, 0.2), hence ���(�) = 0.3, ���(�) = 0.4, ���(�) = 0.2. 

Let’s transform it into a true-false set’s element according to [1]: 

����(0.3, [0.3, 0.4], 0.2, [0.2, 0.4]), hence ����(�) = 0.3, ����(�) = [0.3, 0.4], ����(�) = 0.2, ����(�) =

[0.2, 0.4]. 

The indeterminacy ���(�) = 0.4 into the neutrosophic set has been replaced into the true-false set by an interval-value 

truth ����(�) = [0.3, 0.4] and an interval-value falsehood ����(�) = [0.2, 0.4]. But these are a totally different 

results. 

If, with respect to an element, the indeterminacy-membership is 0.4, this is not equivalent with element’s truth-

membership be equal to [0.3, 0.4] and its false-membership be equal to [0.2, 0.4]. 

7. Other Counter -Exampl es

Let ���(0.3, 0.4, 0.2) represent, with respect to the player � in a game where he plays against others, that his degree 

of winning (��� = 0.3), his degree of tie game (��� = 0.4), and his degree of loosing (��� = 0.2). 

By transforming ��� to ����(0.3, [0.3, 0.4], 0.2, [0.2, 0.4]), we get that with respect to the same player �, his degree 

of winning is 0.3 or [0.3, 0.4], and his degree of loosing is 0.2 or [0.2, 0.4]. 
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    7.1. Therefore, the true-false set does not provide any degree of “tie game”, so this type of set is incomplete. The 

true-false set does not catch the middle side (neutrality, or indeterminacy) in between opposites. 

    7.2. Another drawback is that TFS increases the imprecision of the truth function: for TNS = 0.3, it gets TTFS 

= 0.3 or [0.3, 0.4], so the truth value becomes vaguer after the TFS transformation. 

TFS increases the imprecision of the falsehood function as well: for FNS = 0.2, it gets FTFS = 0.2 or [0.2, 0.4], so the 
falsehood value becomes vaguer after the TFS transformation.  

8. The True -False Set is a parti cular case of the Refined Neutro sophic Set

In the Refined Neutrosophic Set (Logic, Probability), T can be split into subcomponents T1, T2, ..., Tp, and I into I1, 

I2, ..., Ir, and F into F1, F2, ...,Fs, where p, r, s ∊ {0, 1, 2, …, ∞} and   p + r + s = n ∊ {0, 1, 2, …, ∞}. By index = 0, of 

a neutrosophic component T, I, or F, or any of their subcomponents, we denote the empty set, i.e. T0 =  �, I0 =  �, F0 

=  �. The case (T0, I0, F0) is the most degenerated one. See [4]. 

From (T, I, F), where T, I, F are any subsets of [0, 1], we replace I0 = � (empty set), and refine/split T into T1 (single-

valued truth component) and T2 (as an interval-valued truth component), while F is similarly refined/split into F1 (as 

a single-valued falsehood component) and F2 (as an interval-valued falsehood component).  Therefore, we replaced p 

= 2, r = 0, and s = 2 into the general form of the Refined Neutrosophic Set, and we found the True-False Set (T1, T2, 

I0 = �, F1, F2). 

9. Conclusion

We proved that the transformation of the Neutrosophic Set into a True-False Set does not give equivalent results by 
using several coounter-examples.  Also, we proved that the True-False Set is a particular case of Refined Neutrosophic 
Set. 
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introduced M-continuous functions and studied some of it is basic properties. S.
Ganesan et al [4] introduced and studied the notion of neutrosophic biminimal
structure spaces and also applications of neutrosophic biminimal structure spaces.
S. Ganesan and F. Smarandache [5] introduced and studied neutrosophic bimini-
mal semi-open sets. The main objective of this study is to introduce a new hybrid
intelligent structure called neutrosophic biminimal α-open set. The significance of
introducing hybrid structures is that the computational techniques, based on any
one of these structures alone, will not always yield the best results but a fusion
of two or more of them can often give better results. The rest of this article is
organized as follows. Some preliminary concepts required in our work are briefly
recalled in section 2. In section 3, the concept of N j

mX -α-open set is investigated
some properties with suitable example.

2. Preliminaries

Definition 2.1. [10] A subfamily mx of the power set ℘(X) of a nonempty
set X is called a minimal structure (in short, m-structure) on X if ∅ ∈ mx and X ∈
mx. By (X, mx), we denote a nonempty set X with a minimal structure mx on X
and call it an m-space.
Each member ofmx is said to bemx-open (or in short, m-open) and the complement
of an mx-open set is said to be mx-closed (or in short, m-closed).

Definition 2.2. ([12, 13]) A neutrosophic set (in short ns) K on a set X ̸=
∅ is defined by K = {≺ a, PK(a), QK(a), RK(a) ≻ : a ∈ X} where PK : X →
[0,1], QK : X → [0,1] and RK : X → [0,1] denotes the membership of an object,
indeterminacy and non-membership of an object, for each a ∈ X to K, respectively
and 0 6 PK(a) + QK(a) + RK(a) 6 3 for each a ∈ X.

Definition 2.3. ([11]) Let K = {≺ a, PK(a), QK(a), RK(a) ≻ : a ∈ X} be a
ns.

(1) A ns K is an empty set i.e., K = 0∼ if 0 is membership of an object and
0 is an indeterminacy and 1 is an non-membership of an object respectively. i.e.,
0∼ = {x, (0, 0, 1) : x ∈ X};

(2) A ns K is a universal set i.e., K = 1∼ if 1 is membership of an object
and 1 is an indeterminacy and 0 is an non-membership of an object respectively.
1∼ = {x, (1, 1, 0) : x ∈ X};

(3) K1 ∪K2 =

{a,max{PK1(a), PK2(a)},max{QK1(a), QK2(a)},min{RK1(a), RK2(a)} : a ∈ X};
(4) K1 ∩K2 =

{a,min{PK1(a), PK2(a)},min{QK1(a), QK2(a)},max{RK1(a), RK2(a)} : a ∈ X};
(5) KC = {≺ a, RK(a), 1 − QK(a), PK(a) ≻ : a ∈ X}.

Definition 2.4. ([11]) A neutrosophic topology (nt) in Salamas sense on a
nonempty set X is a family τ of ns in X satisfying three axioms:

(1) Empty set (0∼) and universal set (1∼) are members of τ ;
(2) K1 ∩ K2 ∈ τ where K1, K2 ∈ τ ;
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(3) ∪Kδ ∈ τ for every {Kδ : δ ∈ ∆} 6 τ .

Each ns in nt are called neutrosophic open sets. Its complements are called neu-
trosophic closed sets.

Definition 2.5. ([4]) Let X be a nonempty set and N1
mX , N2

mX be nms on
X. A triple (X, N1

mX , N2
mX) is called a neutrosophic biminimal structure space (in

short, nbims)

Definition 2.6. [4] Let (X, N1
mX , N2

mX) be a nbims and S be any neutrosophic
set. Then

(1) Every S ∈ N j
mX is open and its complement is closed,

respectively, for j = 1, 2.
(2) Nmclj(S) = min {L : L is N j

mX -closed set and L > S},
respectively, for j = 1, 2.

(3) Nmintj(S) = max {T : T is N j
mX -open set and T 6 S},

respectively, for j = 1, 2.

Proposition 2.1 ([4]). Let (X, N1
mX , N2

mX) be a nbims and A 6 X. Then

(1) Nmintj(0∼) = 0∼
(2) Nmintj(1∼) = 1∼
(3) Nmintj(A) 6 A.
(4) If A 6 B, then Nmintj(A) 6 Nmintj(B).

(5) A is N j
mX-open if and only if Nmintj(A) = A.

(6) Nmintj( Nmintj(A)) = Nmintj(A).
(7) Nmclj(X − A) = X− Nmintj(A) and Nmintj(X− A) = X − Nmclj(A).
(8) Nmclj(0∼) = 0∼
(9) Nmclj(1∼) = 1∼
(10) A 6 Nmclj(A).
(11) If A 6 B, then Nmclj(A) 6 Nmclj(B).

(12) F is N j
mX-closed if and only if Nmclj(F) = F.

(13) Nmclj(Nmclj(A)) = Nmclj(A).

Definition 2.7. ([4]) Let (X, N1
mX , N2

mX) be a nbims and A be a subset of
X. Then A is N1

mXN2
mX -closed if and only if Nmcl1(A) = A and Nmcl2(A) = A.

Proposition 2.2 ([4]). Let N1
mX and N2

mX be nms on X satisfying (Union
Property). Then A is a N1

mXN2
mX-closed subset of a nbims (X, N1

mX , N2
mX) if

and only if A is both N1
mX-closed and N2

mX-closed.

Proposition 2.3 ([4]). Let (X, N1
mX , N2

mX) be a nbims. If A and B are
N1

mXN2
mX-closed subsets of (X, N1

mX , N2
mX), then A ∧ B is N1

mXN2
mX-closed.

Proposition 2.4 ([4]). Let (X, N1
mX , N2

mX) be a nbims. If A and B are
N1

mXN2
mX-open subsets of (X, N1

mX , N2
mX), then A ∨ B is N1

mXN2
mX-open.

Definition 2.8. ([5]) A map f : (X,N1
mX , N2

mX) → (Y,N1
mY , N

2
mY ) is called

N j
mX -continuous map if and only if f−1(V ) ∈ N j

mX -open whenever V ∈ N j
mY .
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Theorem 2.1 ([5]). Let f : X → Y be a map on two nbims (X, N1
mX , N2

mX)
and (Y, N1

mY , N
2
mY ). Then the following statements are equivalent:

(1) Identity map from (X, N1
mX , N2

mX) to (Y, N1
mY , N

2
mY ) is a nbims map.

(2) Any constant map which map from (X, N1
mX , N2

mX) to (Y, N1
mY , N

2
mY )

is a nbims map.

Definition 2.9. ([5]) Let (X, N1
mX , N2

mX) be a nbims and A 6 X. A subset

A of X is called an N1
mXN2

mX -semi-open (in short, N j
mX -semi-open) set if A 6

Nmclj(Nmintj(A)), respectively, for j = 1, 2.

The complement of an N j
mX -semi-open set is called an N j

mX -semi-closed set.

Definition 2.10. ([5]) A map f : (X,N1
mX , N2

mX) → (Y,N1
mY , N

2
mY ) is called

N j
mX -semi-continuous map if and only if f−1(V ) ∈ N j

mX -semi-open whenever V ∈
N j

mY .

3. N1
mXN2

mX-α-open sets

Definition 3.1. Let (X, N1
mX , N2

mX) be a nbims and A 6 X. A subset A of

X is called an N1
mXN2

mX -α-open (in short, N j
mX -α-open) set if

A 6 Nmintj(Nmclj(Nmintj(A))), respectively, for j = 1, 2.

The complement of an N j
mX -α-open set is called an N j

mX -α-closed set.

Remark 3.1. Let (X, NmX) be a nms and A 6 X. A is called an Nm-α-open
set [3] if A 6 Nmint(Nmcl(Nmint(A))). If the nms NmX is a topology, clearly an

N j
mX -α-open set is Nm-α-open.

From Definition of 3.1, obviously the following statement are obtained.

Lemma 3.1. Let (X, N1
mX , N2

mX) be a nbims. Then

(1) Every N j
mX-open set is N j

mX-α-open.

(2) A is an N j
mX-α-open set if and only if A 6 Nmintj(Nmclj(Nmintj(A))).

(3) Every N j
mX-closed set is N j

mX-α-closed.

(4) A is an N j
mX-α-closed set if and only if Nmclj(Nmintj(Nmclj(A))) 6 A.

Theorem 3.1. Let (X, N1
mX , N2

mX) be a nbims. Any union of N j
mX-α-open

sets is N j
mX-α-open.

Proof. Let Aδ be an N j
mX -α-open set for δ ∈ ∆. From Definition 3.1 and

Proposition 2.1(4), it follows

Aδ 6 Nmintj(Nmclj(Nmintj(Aδ))) 6 Nmintj(Nmclj(Nmintj(
∪
Aδ))).

This implies ∪
Aδ 6 Nmintj(Nmclj(Nmintj(

∪
Aδ))).

Hence
∪
Aδ is an N j

mX -α-open set. �
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Remark 3.2. Let (X, N1
mX , N2

mX) be a nbims. The intersection of any two

N j
mX -α-open sets may not be N j

mX -α-open set as shown in the next example.

Example 3.1. Let X = {a, b, c} with

N1
mX = {0∼, U, 1∼}, (N1

mX)C = {1∼, V, 0∼} and

N2
mX = {0∼, O, 1∼}, (N2

mX)C = {1∼, P, 0∼}
where

U = ≺ (0.7, 0.4, 0.9), (0, 0.8, 0.2), (0.4, 0.6, 0.7)≻
O = ≺ (0.5, 0.6, 0.8), (0.2, 0.4, 0.6), (0.7, 0.5, 0)≻
V = ≺ (0.9, 0.6, 0.7), (0.2, 0.2, 0), (0.7, 0.4, 0.4)≻
P = ≺ (0.8, 0.4, 0.5), (0.6, 0.2, 0.2), (0, 0.5, 0.3)≻

We know that

0∼ = {≺ x, 0, 0, 1 ≻ : x ∈ X}, 1∼ = {≺ x, 1, 1, 0 ≻ : x ∈ X}
and

0C∼ = {≺ x, 1, 1, 0 ≻ : x ∈ X}, 1C∼ = {≺ x, 0, 0, 1 ≻ : x ∈ X}.
Now we define the two N j

mX -α-open sets as follows:

R1 = ≺ (0.7, 0.5, 0.6), (0.4, 0.8, 0.2), (0.8, 0.7, 0.5)≻
R2 = ≺ (0.6, 0.3, 0.4), (0, 0.2, 0.1), (0.6, 0.6, 0.4)≻

Here Nmintj(Nmclj(Nmintj(R1))) = 0∼ and Nmintj(Nmclj(Nmintj(R2))) = 0∼.

But R1 ∧ R2 = ≺ (0.6, 0.3, 0.6), (0, 0.2, 0.2), (0.6, 0.6, 0.5)≻ is not a N j
mX -α-open

set in X. �

Proposition 3.1. Let (X, N1
mX , N2

mX) be a nbims. If A is a N j
mX-α-open

set then it is a N j
mX-semi-open set.

Proof. The proof is straightforward from the definitions. �

Definition 3.2. Let (X, N1
mX , N2

mX) be a nbims and S be any neutrosophic
set. Then

(1) Every S ∈ N j
mX is α-open and its complement is α-closed, respectively,

for j = 1, 2.
(2) Nmαclj(S) = min{L : LisN j

mX -α-closed set and L > S}, respectively,
for j = 1, 2.

(3) Nmαintj(S) = max{T : TisN j
mX -α-open set and T 6 S}, respectively,

for j = 1, 2.

Theorem 3.2. Let (X,N1
mX , N2

mX) be a nbims and A 6 X. Then:

(1) Nmαintj(0∼) = 0∼;
(2) Nmαintj(1∼) = 1∼;
(3) Nmαintj(A) 6 A;
(4) If A 6 B, then Nmαintj(A) 6 Nmαintj(B);

(5) A is N j
mX − α-open if and only if Nmαintj(A) = A;

(6) Nmαintj(Nmαintj(A)) = Nmαintj(A);
(7) Nmαclj(X −A) = X −Nmαintj(A).
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Proof. (1), (2), (3), (4) Obvious.
(5) It follows from Theorem 3.1.
(6) It follows from (5).
(7) For A 6 X, we have

X −Nmαintj(A) = X −max{U : U 6 A,U is N j
mX − α− open}

= min{X − U : U 6 A,U isN j
mX − α− open}

= min{XU : X −A 6 X − U, U isN j
mX − α− open} = Nmαclj(X −A). �

Theorem 3.3. Let (X, N1
mX , N2

mX) be a nbims and A 6 X. Then:

(1) Nmαclj(0∼) = 0∼;
(2) Nmαclj(1∼) = 1∼;
(3) A 6 Nmαclj(A);
(4) If A 6 B, then Nmαclj(A) 6 Nmαclj(B);

(5) F is N j
mX-α-closed if and only if Nmαclj(F ) = F ;

(6) Nmαclj(Nmαclj(A)) = Nmαclj(A);
(7) Nmαintj(X −A) = X −Nmαclj(A).

Proof. It is similar to the proof of Theorem 3.2. �

Theorem 3.4. Let (X, N1
mX , N2

mX) be a nbims and A 6 X. Then:

(1) x ∈ Nmαclj(A) if and only if A ∩ V ̸= ∅ for every N j
mX − α-open set V

containing x.
(2) x ∈ Nmαintj(A) if and only if there exists an N j

mX − α-open set U such
that U 6 A.

Proof. (1) Suppose there is an N j
mX − α-open set V containing x such that

A∩V = ∅. Then X−V is an N j
mX −α-closed set such that A 6 X−V , x /∈ X−V .

This implies x /∈ Nmαclj(A). The reverse relation is obvious.
(2) Obvious. �

Lemma 3.2. Let (X, N1
mX , N2

mX) be a nbims and A 6 X. Then

(1) Nmclj(Nmintj(Nmclj(A))) 6 Nmclj(Nmintj(Nmclj(Nmαclj(A))) 6
Nmαclj(A).

(2) Nmαintj(A) 6 Nmintj(Nmclj(Nmintj(Nmαintj(A)))) 6
Nmintj(Nmclj(Nmintj(A))).

Proof. (1) For A 6 X, by Theorem 3.3, Nmαclj(A) is an N j
mX − α-closed

set. Hence from Lemma 3.1, we have

Nmclj(Nmintj(Nmclj(A))) 6 Nmclj(Nmintj(Nmclj(Nmαclj(A)))) 6 Nmαclj(A).

(2) It is similar to the proof of (1). �

Definition 3.3. A map f : (X,N1
mX , N2

mX) → (Y,N1
mY , N

2
mY ) is called

N j
mX − α-continuous map if and only if f−1(V ) ∈ N j

mX − α-open whenever V ∈
N j

mY .
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Theorem 3.5. (1) Every N j
mX-continuous is N j

mX-α-continuous but the con-
versely.

(2) Every N j
mX-α-continuous is N j

mX-semi-continuous but not conversely.

Proof. (1) The proof follows from Lemma 3.1 (1).
(2) The proof follows from Proposition 3.1. �
Theorem 3.6. Let f : X → Y be a map on two nbims (X, N1

mX , N2
mX) and

(Y, N1
mY , N

2
mY ). Then the following statements are equivalent:

(1) f is N j
mX-α-continuous.

(2) f−1(V) is an N j
mX-α-open set for each N j

mX-open set V in Y.

(3) f−1(B) is an N j
mX-α-closed set for each N j

mX-closed set B in Y.
(4) f(Nmαclj(A)) 6 Nmclj(f(A)) for A 6 X.
(5) Nmαclj(f

−1(B)) 6 f−1(Nmclj(B)) for B 6 Y .
(6) f−1(Nmintj(B)) 6 Nmαintj(f

−1(B)) for B 6 Y .

Proof. (1) ⇒ (2) Let V be an N j
mX -open set in Y and x ∈ f−1(V). By hy-

pothesis, there exists an N j
mX -α-open set Ux containing x such that f(U) 6 V.

This implies x ∈ Ux 6 f−1(V) for all x ∈ f−1(V). Hence by Theorem 3.1, f−1(V) is

N j
mX -α-open.
(2) ⇒ (3) Obvious.
(3) ⇒ (4) For A 6 X, f−1(Nmclj(f(A))) = f−1(min{F 6 Y : f(A) 6 F

and F is N j
mX -closed}) = min{f−1(F ) 6 X : A 6 f−1(F ) and F is N j

mX − α-

closed} > min{K 6 X : A 6 K and K is N j
mX − α-closed} = Nmαclj(A). Hence

f(Nmαclj(A)) 6 Nmclj(f(A)).
(4) ⇒ (5) For A 6 X, from (4), it follows

f(Nmαclj(f
−1(A))) 6 Nmclj(f(f

−1(A))) 6 Nmclj(A).

Hence, we get (5).
(5) ⇒ (6) For B 6 Y , from Nmintj(B) = Y − Nmclj(Y − B) and (5), it

follows f−1(Nmintj(B)) = f−1(Y −Nmclj(Y −B)) = X − f−1(Nmclj(Y −B)) 6
X −Nmαclj(f

−1(Y −B)) = Nmαintj(f
−1(B)). Hence (6) is obtained.

(6) ⇒ (1) Let x ∈ X and V an N j
mX -open set containing f(x). Then from (6)

and Proposition 2.1, it follows

x ∈ f−1(V ) = f−1(Nmintj(V )) 6 Nmαintj(f
−1(V )).

So from Theorem 3.4, we can say that there exists anN j
mX−α-open set U containing

x such that x ∈ U 6 f−1(V ). Hence, f is N j
mX − α-continuous. �

Theorem 3.7. Let f : X → Y be a map on two nbims (X, N1
mX , N2

mX) and
(Y, N1

mY , N
2
mY ). Then the following statements are equivalent:

(1) f is N j
mX-α-continuous.

(2) f−1(V) 6 Nmclj(Nmintj(f
−1(V))) for each N j

mX-open set V in Y.

(3) Nmclj(Nmintj(Nmclj(f
−1(F)))) 6 f−1(F) for each N j

mX-closed set F in
Y.
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(4) f(Nmclj(Nmintj(Nmclj(A))) 6 Nmclj(f(A)) for A 6 X.
(5) Nmclj(Nmintj(Nmclj(f

−1(B)))) 6 f−1(Nmclj(B)) for B 6 Y.
(6) f−1(Nmintj(B)) 6 Nmintj(Nmclj(Nmintj(f

−1(B)))) for B 6 Y.

Proof. (1) ⇔ (2) It follows from Theorem 3.6 and Definition of N j
mX -α-open

sets.
(1) ⇔ (3) It follows from Theorem 3.6 and Lemma 3.1.
(3) ⇒ (4) Let A 6 X. Then from Theorem 3.6(4) and Lemma 3.2, it follows

Nmclj(Nmintj(Nmclj(A))) 6 Nmαclj(A)) 6 f−1(Nmclj(f(A))). Hence

f(Nmclj(Nmintj(Nmclj(A)))) 6 Nmclj(f(A)).

(4) ⇒ (5) Obvious.
(5) ⇒ (6) From (5) and Proposition 2.1, it follows: f−1(Nmintj(B)) = f−1(Y

− Nmclj(Y − B)) = X −f−1(Nmclj(Y − B)) 6 X − Nmclj(Nmintj(Nmclj(f
−1(Y

− B)))) = Nmintj(Nmclj(Nmintj(f
−1(B)))). Hence, (6) is obtained.

(6) ⇒ (1) Let V be an N j
mX -open set in Y. Then by (6) and Proposition

2.1, we have f−1(V) = f−1(Nmintj(V)) 6 Nmintj(Nmclj(Nmintj(f
−1(V)))). This

implies f−1(V) is an N j
mX -α-open set. Hence by (2), f is N j

mX -α-continuous. �

4. Conclusion

Neutrosophic set is a general formal framework, which generalizes the con-
cept of classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set, and
interval intuitionistic fuzzy set. Since the world is full of indeterminacy, the neu-
trosophic biminimal structures found its place into contemporary research world.
This article can be further developed into several possible such as Geographical
Information Systems (GIS) field including remote sensing, object reconstruction
from airborne laser scanner, real time tracking, routing applications and modeling
cognitive agents. In GIS there is a need to model spatial regions with indetermi-
nate boundary and under indeterminacy. Hence this N j

mX -α-open set can also be
extended to a neutrosophic spatial region.
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On Neutrosophic Generalized Semi Generalized Closed Sets 

Abstract 

The article considers a new generalization of closed sets in neutrosophic topological space. This 

generalization is called neutrosophic ℊ𝑠ℊ-closed set. Moreover, we discuss its essential features in 

neutrosophic topological spaces. Furthermore, we extend the research by displaying new related 

definitions such as neutrosophic ℊ𝑠ℊ-closure and neutrosophic ℊ𝑠ℊ-interior and debating their powerful 

characterizations and relationships.

Keywords: 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆, 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆, 𝑁𝑒𝑢ℊ𝑠ℊ-closure and 𝑁𝑒𝑢ℊ𝑠ℊ-interior. 

1. Introduction

The neutrosophic set theory was contributed by Smarandache in [1,2]. The neutrosophic topological 

space (simply 𝑁𝑒𝑢𝒯𝒮) was offered by Salama et al. in [3]. The definition of semi--open sets in 

neutrosophic topological spaces was displayed by Imran et al. in [4]. The neutrosophic generalized 

homeomorphism was submitted by PAGE et al. in [5]. The class of generalized neutrosophic closed sets 

was given by Dhavaseelan et al. in [6]. The concepts of neutrosophic generalized 𝛼ℊ-closed sets and 

neutrosophic generalized 𝛼ℊ-continuous functions were provided by Imran et al. in [7]. The objective of 

this article is to show the sense of neutrosophic ℊ𝑠ℊ-closed set (briefly 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆) and investigate their 

main characteristics in 𝑁𝑒𝑢𝑇𝑆. Moreover, we argue neutrosophic ℊ𝑠ℊ-closure (in word 𝑁𝑒𝑢ℊ𝑠ℊ-closure) 

and neutrosophic ℊ𝑠ℊ-interior (fleetingly 𝑁𝑒𝑢ℊ𝑠ℊ-interior) with revealing several of their vital spots. 

Qays Hatem Imran, Ali H. M. Al-Obaidi, Florentin Smarandache, Said Broumi 

Qays Hatem Imran, Ali H. M. Al-Obaidi, Florentin Smarandache, Said Broumi (2022). On Neutrosophic 
Generalized Semi Generalized Closed Sets. International Journal of Neutrosophic Science 18(3), 10-20; DOI: 
10.54216/IJNS.18030101
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2. Preliminaries

In this work,  𝔘, 𝜁  (or simply 𝔘) always mean 𝑁𝑒𝑢𝒯𝒮. Let 𝔓 be a neutrosophic set in a 𝑁𝑒𝑢𝒯𝒮  𝔘, 𝜁 , we 

denote the neutrosophic closure, the neutrosophic interior, and the neutrosophic complement of 𝔓 by 

𝑁𝑒𝑢𝐶𝑙(𝔓), 𝑁𝑒𝑢𝐼𝑛𝑡(𝔓) and 𝔓𝑐 = 1𝑁𝑒𝑢 −𝔓, respectively.  

Definition 2.1: [3]  

The family 𝜁 of neutrosophic subsets of a non-empty neutrosophic set 𝔘 ≠ ∅ is called a neutrosophic 

topology (in short, 𝑁𝑒𝑢𝒯) on 𝔘 if it satisfies the below axioms: 

(i) 0𝑁𝑒𝑢 , 1𝑁𝑒𝑢 ∈ 𝜁,

(ii) 𝔓1⨅𝔓2 ∈ 𝜁 being 𝔓1 , 𝔓2 ∈ 𝜁,

(iii) ⨆𝔓𝑖 ∈ 𝜁 for arbitrary family {𝔓𝑖 |𝑖 ∈ 𝛬} ⊑ 𝜁.
In this case, we signified 𝑁𝑒𝑢𝒯𝒮 by  𝔘, 𝜁  or 𝔘. Moreover, the neutrosophic set in 𝜁 is named neutrosophic

open (in short, 𝑁𝑒𝑢𝑂𝑆). Furthermore, for any 𝑁𝑒𝑢𝑂𝑆 𝔓, then 𝔓𝑐  is titled neutrosophic closed set

(briefly, 𝑁𝑒𝑢𝐶𝑆) in 𝔘.

Definition 2.2: 

Let 𝔓 be a neutrosophic subset of a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then it is called to be: 

(i) a neutrosophic semi-open set and denoted by 𝑁𝑒𝑢𝑠𝑂𝑆 if 𝔓 ⊑ 𝑁𝑒𝑢𝐶𝑙(𝑁𝑒𝑢𝐼𝑛𝑡 𝔓 ). [8]

(ii) a neutrosophic semi-closed set and denoted by 𝑁𝑒𝑢𝑠𝐶𝑆 if 𝑁𝑒𝑢𝐼𝑛𝑡(𝑁𝑒𝑢𝐶𝑙 𝔓 ) ⊑ 𝔓. The intersection of

entire 𝑁𝑒𝑢𝑠𝐶𝑆𝑠, including 𝔓 is named a neutrosophic semi-closure, and it is symbolized by

𝑁𝑒𝑢𝑠𝐶𝑙(𝔓).[8]

(iii) a neutrosophic 𝛼-open set and denoted by 𝑁𝑒𝑢𝛼𝑂𝑆 if 𝔓 ⊑ 𝑁𝑒𝑢𝐼𝑛𝑡(𝑁𝑒𝑢𝐶𝑙(𝑁𝑒𝑢𝐼𝑛𝑡 𝔓 )). [9]

(iv) a neutrosophic 𝛼-closed set and denoted by 𝑁𝑒𝑢𝛼𝐶𝑆 if 𝑁𝑒𝑢𝑐𝐶𝑙(𝑁𝑒𝑢𝐼𝑛𝑡(𝑁𝑒𝑢𝐶𝑙 𝔓 )) ⊑ 𝔓. The

intersection of the whole 𝑁𝑒𝑢𝛼𝐶𝑆𝑠 including 𝔓 is named neutrosophic 𝛼-closure, and it is symbolized

by 𝑁𝑒𝑢𝛼𝐶𝑙(𝔓).[9]

Definition 2.3:  

Let 𝔓 be a neutrosophic subset of a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), and let 𝔐 be a a 𝑁𝑒𝑢𝑂𝑆 in (𝔘, 𝜁) such that 𝔓 ⊑ 𝔐 then 𝔓 

is called to be: 

(i) a neutrosophic generalized closed set, and it is denoted by 𝑁𝑒𝑢ℊ𝐶𝑆 if 𝑁𝑒𝑢𝐶𝑙(𝔓) ⊑ 𝔐. The

complement of a 𝑁𝑒𝑢ℊ𝐶𝑆 is a 𝑁𝑒𝑢ℊ𝑂𝑆 in (𝔘, 𝜁). [10]

(ii) a neutrosophic 𝛼ℊ-closed set, and it is denoted by 𝑁𝑒𝑢𝛼ℊ𝐶𝑆 if 𝑁𝑒𝑢𝛼𝐶𝑙(𝔓) ⊑ 𝔐. The complement of a

𝑁𝑒𝑢𝛼ℊ𝐶𝑆 is a 𝑁𝑒𝑢𝛼ℊ𝑂𝑆 in (𝔘, 𝜁). [11]

(iii) a neutrosophic ℊ𝛼-closed set, and it is denoted by 𝑁𝑒𝑢ℊ𝛼𝐶𝑆 if 𝑁𝑒𝑢𝛼𝐶𝑙(𝔓) ⊑ 𝔐. The complement of a

𝑁𝑒𝑢ℊ𝛼𝐶𝑆 is a 𝑁𝑒𝑢ℊ𝛼𝑂𝑆 in (𝔘, 𝜁). [12]

(iv) a neutrosophic 𝑠ℊ-closed set, and it is denoted by 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 if 𝑁𝑒𝑢𝑠𝐶𝑙(𝔓) ⊑ 𝔐. The complement of a

𝑁𝑒𝑢𝑠ℊ𝐶𝑆 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 in (𝔘, 𝜁). [13]

(v) a neutrosophic ℊ𝑠-closed set, and it is denoted by 𝑁𝑒𝑢ℊ𝑠𝐶𝑆 if 𝑁𝑒𝑢ℊ𝐶𝑙(𝔓) ⊑ 𝔐. The complement of a

𝑁𝑒𝑢ℊ𝑠𝐶𝑆 is a 𝑁𝑒𝑢ℊ𝑠𝑂𝑆 in (𝔘, 𝜁). [14]

Proposition 2.4:[9,10]  

In a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then the next arguments stand, and the opposite of every argument is not valid: 

(i) Each 𝑁𝑒𝑢𝑂𝑆 (resp. 𝑁𝑒𝑢𝐶𝑆) is a 𝑁𝑒𝑢𝛼𝑂𝑆 (resp. 𝑁𝑒𝑢𝛼𝐶𝑆).

(ii) Each 𝑁𝑒𝑢𝑂𝑆 (resp. 𝑁𝑒𝑢𝐶𝑆) is a 𝑁𝑒𝑢ℊ𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝐶𝑆).
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(iii) Each 𝑁𝑒𝑢𝛼𝑂𝑆 (resp. 𝑁𝑒𝑢𝛼𝐶𝑆) is a 𝑁𝑒𝑢𝑠𝑂𝑆 (resp. 𝑁𝑒𝑢𝑠𝐶𝑆).

Proposition 2.5:[11,12]  

In a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then the next arguments stand, and the opposite of every argument is not valid: 

(i) Each 𝑁𝑒𝑢ℊ𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝐶𝑆) is a 𝑁𝑒𝑢𝛼ℊ𝑂𝑆 (resp. 𝑁𝑒𝑢𝛼ℊ𝐶𝑆).

(ii) Each 𝑁𝑒𝑢𝛼𝑂𝑆 (resp. 𝑁𝑒𝑢𝛼𝐶𝑆) is a 𝑁𝑒𝑢ℊ𝛼𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝛼𝐶𝑆).

(iii) Each 𝑁𝑒𝑢ℊ𝛼𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝛼𝐶𝑆) is a 𝑁𝑒𝑢𝛼ℊ𝑂𝑆 (resp. 𝑁𝑒𝑢𝛼ℊ𝐶𝑆).

Proposition 2.6:[13-15]  

In a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then the next arguments stand, and the opposite of every argument is not valid: 

(i) Each 𝑁𝑒𝑢ℊ𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝐶𝑆) is a 𝑁𝑒𝑢ℊ𝑠𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝑠𝐶𝑆).

(ii) Each 𝑁𝑒𝑢𝑠𝑂𝑆 (resp. 𝑁𝑒𝑢𝑠𝐶𝑆) is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 (resp. 𝑁𝑒𝑢𝑠ℊ𝐶𝑆).

(iii) Each 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 (resp. 𝑁𝑒𝑢𝑠ℊ𝐶𝑆) is a 𝑁𝑒𝑢ℊ𝑠𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝑠𝐶𝑆).

(iv) Each 𝑁𝑒𝑢ℊ𝛼𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝛼𝐶𝑆) is a 𝑁𝑒𝑢ℊ𝑠𝑂𝑆 (resp. 𝑁𝑒𝑢ℊ𝑠𝐶𝑆).

3. Neutrosophic Generalized 𝒔𝓰-Closed Sets

In this sector, we present and analyse the neutrosophic generalized 𝑠ℊ-closed sets and some of their 

features. 

Definition 3.1: 

Suppose that 𝔓 is a neutrosophic set in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) and assume that 𝔐 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 in (𝔘, 𝜁) where 

𝔓 ⊑ 𝔐. The set 𝔓 is termed as a neutrosophic generalized 𝑠ℊ-closed set, and it is signified by 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 if 

𝑁𝑒𝑢𝐶𝑙(𝔓) ⊑ 𝔐. The collection of all 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆𝑠 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) is signified by 𝑁𝑒𝑢ℊ𝑠ℊ𝐶(𝔘). 

Theorem 3.2:  

In a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), the subsequent arguments are valid: 

(i) Each 𝑁𝑒𝑢𝐶𝑆 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆.

(ii) Each 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 is a 𝑁𝑒𝑢ℊ𝐶𝑆.

Proof:

(i) Let 𝑁𝑒𝑢𝐶𝑆 𝔓 and 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 𝔐 be in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) where 𝔓 ⊑ 𝔐. Then 𝑁𝑒𝑢𝐶𝑙 𝔓 = 𝔓 ⊑ 𝔐. Therefore 𝔓

is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆.

(ii) Let 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 𝔓 and 𝑁𝑒𝑢𝑂𝑆 𝔐 be in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) where 𝔓 ⊑ 𝔐. Because each 𝑁𝑒𝑢𝑂𝑆 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆,

we get 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔐. Consequently, 𝔓 is a 𝑁𝑒𝑢ℊ𝐶𝑆. 

The reverse of the above theorem is inaccurate, as displayed in the subsequent instances.

Example 3.3:  

Suppose that 𝔘 = {𝓊1 , 𝓊2} is a set and assume that 𝜁 = {0𝑁𝑒𝑢 , 𝔓1 , 𝔓2 , 1𝑁𝑒𝑢 } is a 𝑁𝑒𝑢𝒯 defined on 𝔘. 

Suppose that we have the sets 𝔓1 =  𝓊,  0.6,0.7 ,  0.1,0.1 , (0.4,0.2) and 

𝔓2 =  𝓊,  0.1,0.2 ,  0.1,0.1 , (0.8,0.8)  are given. Then the neutrosophic set 

𝔓3 =  𝓊,  0.2,0.2 ,  0.1,0.1 , (0.6,0.7)  is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. However, this latter set is not a 𝑁𝑒𝑢𝐶𝑆. 

Example 3.4:  

Suppose that 𝔘 = {𝓊1 , 𝓊2 , 𝓊3} is a set and assume that 𝜁 = {0𝑁𝑒𝑢 , 𝔓1 , 𝔓2 , 1𝑁𝑒𝑢 } is a 𝑁𝑒𝑢𝒯 defined on 𝔘. 

Suppose that we have the following sets 𝔓1 =  𝓊,  0.5,0.5,0.4 ,  0.7,0.5,0.5 , (0.4,0.5,0.5)  and 𝔓2 =
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 𝓊,  0.3,0.4,0.4 ,  0.4,0.5,0.5 , (0.3,0.4,0.6)  are given. Then the neutrosophic set 

𝔓3 =  𝓊,  0.4,0.6,0.5 ,  0.4,0.3,0.5 , (0.5,0.6,0.4)  is a 𝑁𝑒𝑢ℊ𝐶𝑆. However, this latter set is not a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. 

Theorem 3.5:  

In a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), the subsequent arguments are valid: 

(i) Each 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 is a 𝑁𝑒𝑢𝛼ℊ𝐶𝑆.

(ii) Each 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 is a 𝑁𝑒𝑢ℊ𝛼𝐶𝑆.

(iii) Each 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 is a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆.

(iv) Each 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 is a 𝑁𝑒𝑢ℊ𝑠𝐶𝑆.

Proof:

(i) Let 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 𝔓 and 𝑁𝑒𝑢𝑂𝑆 𝔐 be in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) where 𝔓 ⊑ 𝔐. Because each 𝑁𝑒𝑢𝑂𝑆 is a 𝑁𝑒𝑢𝛼ℊ𝐶𝑆,

we get 𝑁𝑒𝑢𝛼𝐶𝑙(𝔓) ⊑ 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔐. The latter implies 𝑁𝑒𝑢𝛼𝐶𝑙(𝔓) ⊑ 𝔐. Consequently, 𝔓 is a 𝑁𝑒𝑢𝛼𝑔𝐶𝑆.

(ii) Let 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 𝔓 and 𝑁𝑒𝑢𝛼𝑂𝑆 𝔐 be in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) where 𝔓 ⊑ 𝔐. Because each 𝑁𝑒𝑢𝛼𝑂𝑆 is a 𝑁𝑒𝑢𝑠𝑂𝑆,

which is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆, we get 𝑁𝑒𝑢𝛼𝐶𝑙(𝔓) ⊑ 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔐. The latter implies 𝑁𝑒𝑢𝛼𝐶𝑙(𝔓) ⊑ 𝔐.

Consequently, 𝔓 is a 𝑁𝑒𝑢ℊ𝛼𝐶𝑆.

(iii) Let 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 𝔓 and 𝑁𝑒𝑢𝑠𝑂𝑆 𝔐 be in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) where 𝔓 ⊑ 𝔐. Because each 𝑁𝑒𝑢𝑠𝑂𝑆 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆,

we get 𝑁𝑒𝑢𝑠𝐶𝑙(𝔓) ⊑ 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔐. The latter implies 𝑁𝑒𝑢𝑠𝐶𝑙(𝔓) ⊑ 𝔐. Consequently, 𝔓 is a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆.

(iv) Let 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 𝔓 and 𝑁𝑒𝑢𝑂𝑆 𝔐 be in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) where 𝔓 ⊑ 𝔐. Because each 𝑁𝑒𝑢𝑂𝑆 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆,

we get 𝑁𝑒𝑢𝑠𝐶𝑙(𝔓) ⊑ 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔐. That implies 𝑁𝑒𝑢𝑠𝐶𝑙(𝔓) ⊑ 𝔐. Consequently, 𝔓 is a 𝑁𝑒𝑢ℊ𝑠𝐶𝑆. 

The reverse of the above theorem is inaccurate, as displayed in the subsequent instances.

Example 3.6: 

Let 𝔘 = {𝓊1 , 𝓊2} be a set and assume that 𝜁 = {0𝑁𝑒𝑢 , 𝔓1 , 𝔓2 , 1𝑁𝑒𝑢 } is a 𝑁𝑒𝑢𝒯 defined on 𝔘. Suppose that we 

have the following sets 𝔓1 =  𝓊,  0.5,0.6 ,  0.3,0.2 , (0.4,0.1)  and 𝔓2 =  𝓊,  0.4,0.4 ,  0.4,0.3 , (0.5,0.4)  are 

given. Then the neutrosophic set 𝔓3 =  𝓊,  0.5,0.4 ,  0.4,0.4 , (0.4,0.5)  is a 𝑁𝑒𝑢𝛼ℊ𝐶𝑆 and hence 𝑁𝑒𝑢ℊ𝛼𝐶𝑆 

but not a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. 

Example 3.7:  

Let 𝔘 = {𝓊1 , 𝓊2} and let 𝜁 = {0𝑁𝑒𝑢 , 𝔓1 , 1𝑁𝑒𝑢 } be a 𝑁𝑒𝑢𝒯 on 𝔘. Take 𝔓1 =  𝓊,  0.3,0.4,0.6 ,  0.6,0.6,0.4  . 

Then the neutrosophic set 𝔓2 =  𝓊,  0.3,0.2,0.5 ,  0.6,0.6,0.8   is a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 but not a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. 

Example 3.8: 

Let 𝔘 = {𝓊1 , 𝓊2} and let 𝜁 = {0𝑁𝑒𝑢 , 𝔓1 , 1𝑁𝑒𝑢 } be a 𝑁𝑒𝑢𝒯 on 𝔘. Where 𝔓1 =  𝓊,  0.3,0.2,0.3 ,  0.8,0.6,0.7  . 

Then the neutrosophic set 𝔓2 =  𝓊,  0.3,0.2,0.6 ,  0.8,0.9,0.8   is a 𝑁𝑒𝑢ℊ𝑠𝐶𝑆. However, this latter set is not a 

𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. 

Remark 3.9:  

The 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 are independent of 𝑁𝑒𝑢𝛼𝐶𝑆 and 𝑁𝑒𝑢𝑠𝐶𝑆. 

Definition 3.10: 

A neutrosophic subset 𝔓 of a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) is called a neutrosophic generalized 𝑠ℊ-open set (in short, 

𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆) iff 1𝑁𝑒𝑢 −𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. The collection of entire 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆𝑠 of a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) is signified by 

𝑁𝑒𝑢ℊ𝑠ℊ𝑂(𝔘). 

Proposition 3.11: 

Let 𝔓 be a 𝑁𝑒𝑢𝑂𝑆 in 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then this set 𝔓 is 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in the space (𝔘, 𝜁). 
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Proof:  

Let 𝔓 be a 𝑁𝑒𝑢𝑂𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then 1𝑁𝑒𝑢 −𝔓 is a 𝑁𝑒𝑢𝐶𝑆 in (𝔘, 𝜁). According to theorem (3.2), point 

(i), 1𝑁𝑒𝑢 −𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. Therefore, 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in (𝔘, 𝜁).  

Proposition 3.12:  

Let 𝔓 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then this set 𝔓 is 𝑁𝑒𝑢ℊ𝑂𝑆 in the space (𝔘, 𝜁). 

Proof:  

Let 𝔓 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then 1𝑁𝑒𝑢 −𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in (𝔘, 𝜁). According to theorem (3.2), 

point (ii), 1𝑁𝑒𝑢 − 𝔓 is a 𝑁𝑒𝑢ℊ𝐶𝑆. Therefore, 𝔓 is a 𝑁𝑒𝑢ℊ𝑂𝑆 in (𝔘, 𝜁).  

Theorem 3.13:  

In a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), the subsequent arguments are valid: 

(i) Each 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 is a 𝑁𝑒𝑢𝛼ℊ𝑂𝑆 and 𝑁𝑒𝑢ℊ𝛼𝑂𝑆.

(ii) Each 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 and 𝑁𝑒𝑢ℊ𝑠𝑂𝑆.

Proof:

Similar to above proposition. 

Proposition 3.14:  

If 𝔓 and 𝔔 are 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆𝑠 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then 𝔓⨆𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. 

Proof:  

Let 𝔓 and 𝔔 be two 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆𝑠 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) and let 𝔐 be any 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 in 𝔘 such that 𝔓 ⊑ 𝔐 and 

𝔔 ⊑ 𝔐. Then we have 𝔓⨆𝔔 ⊑ 𝔐. Since 𝔓 and 𝔔 are 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆𝑠 in 𝔘, 𝑁𝑒𝑢𝐶𝑙(𝔓) ⊑ 𝔐 and 𝑁𝑒𝑢𝐶𝑙(𝔔) ⊑ 𝔐. 

Now, 𝑁𝑒𝑢𝐶𝑙 𝔓⨆𝔔 = 𝑁𝑒𝑢𝐶𝑙(𝔓)⨆𝑁𝑒𝑢𝐶𝑙(𝔔) ⊑ 𝔐 and so 𝑁𝑒𝑢𝐶𝑙 𝔓⨆𝔔 ⊑ 𝔐. Hence 𝔓⨆𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in 

𝔘.  

Proposition 3.15:  

If 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓 does not include non-empty 𝑁𝑒𝑢𝐶𝑆 in (𝔘, 𝜁). 

Proof:  

Let 𝔓 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) and let 𝔉 be any 𝑁𝑒𝑢𝐶𝑆 in (𝔘, 𝜁) such that 𝔉 ⊑ 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓. Since 

𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆, we have 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 1𝑁𝑒𝑢 −𝔉. This implies 𝔉 ⊑ 1𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑙(𝔓). Then 𝔉 ⊑

𝑁𝑒𝑢𝐶𝑙 𝔓 ⨅(1𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑙 𝔓 ) = 0𝑁𝑒𝑢 . Thus, 𝔉 = 0𝑁𝑒𝑢 . Hence 𝑁𝑒𝑢𝐶𝑙 𝔓 − 𝔓 does not include non-empty 

𝑁𝑒𝑢𝐶𝑆 in (𝔘, 𝜁).  

Proposition 3.16:  

A neutrosophic set 𝔓 is 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) iff 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓 does not include non-empty 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 

in (𝔘, 𝜁). 

Proof:  

Let 𝔓 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) and let ℜ be any 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 in (𝔘, 𝜁) such that ℜ ⊑ 𝑁𝑒𝑢𝐶𝑙 𝔓 − 𝔓. 

Since 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆, we have 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 1𝑁𝑒𝑢 −ℜ. This implies ℜ ⊑ 1𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑙(𝔓). Then ℜ ⊑

𝑁𝑒𝑢𝐶𝑙 𝔓 ⨅(1𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑙 𝔓 ) = 0𝑁𝑒𝑢 . Thus, ℜ is empty. 

Conversely, suppose that 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓 does not include non-empty 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 in (𝔘, 𝜁). Let 𝔓 ⊑ 𝔐 and 𝔐 

is 𝑁𝑒𝑢𝑠ℊ𝑂𝑆. If 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔐 then 𝑁𝑒𝑢𝐶𝑙 𝔓 ⨅(1𝑁𝑒𝑢 −𝔐) is non-empty. Since 𝑁𝑒𝑢𝐶𝑙 𝔓  is 𝑁𝑒𝑢𝐶𝑆 and 

1𝑁𝑒𝑢 − 𝔐 is 𝑁𝑒𝑢𝑠ℊ𝐶𝑆, we have 𝑁𝑒𝑢𝐶𝑙 𝔓 ⨅(1𝑁𝑒𝑢 −𝔐) is not empty 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 of 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓, which is a 

contradiction. Therefore 𝑁𝑒𝑢𝐶𝑙 𝔓 ⋢ 𝔐. Hence 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆.  
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Proposition 3.17:  

If 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) and 𝔓 ⊑ 𝔔 ⊑ 𝑁𝑒𝑢𝐶𝑙(𝔓), then 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in (𝔘, 𝜁). 

Proof:  

Assume the set 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁). Suppose the set 𝔐 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 in  (𝔘, 𝜁) where 𝔔 ⊑ 𝔐. 

So, 𝔓 ⊑ 𝔐. Because 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆, it observes that 𝑁𝑒𝑢𝐶𝑙(𝔓) ⊑ 𝔐. Currently, 𝔔 ⊑ 𝑁𝑒𝑢𝐶𝑙(𝔓) suggests 

𝑁𝑒𝑢𝐶𝑙(𝔔) ⊑ 𝑁𝑒𝑢𝐶𝑙(𝑁𝑒𝑢𝐶𝑙(𝔓)) = 𝑁𝑒𝑢𝐶𝑙(𝔓). Thus, 𝑁𝑒𝑢𝐶𝑙(𝔔) ⊑ 𝔐. Hence 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆.  

Proposition 3.18:  

Let 𝔓 ⊑ 𝔇 ⊑ 𝔘 and if 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in 𝔘 then 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 relative to 𝔇. 

Proof:  

𝔓 ⊑ 𝔇⨅𝔐 where 𝔐 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 in 𝔘. Then 𝔓 ⊑ 𝔐 and hence 𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔐. 

This implies that 𝔇⨅𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔇⨅𝔐. Thus 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 relative to 𝔇.  

Proposition 3.19:  

If 𝔓 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 and a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then 𝔓 is a 𝑁𝑒𝑢𝐶𝑆 in (𝔘, 𝜁). 

Proof:  

Suppose that 𝔓 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 and a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then 𝑁𝑒𝑢𝐶𝑙(𝔓) ⊑ 𝔓 and since 𝔓 ⊑

𝑁𝑒𝑢𝐶𝑙(𝔓). Thus, 𝑁𝑒𝑢𝐶𝑙 𝔓 = 𝔓. Hence 𝔓 is a 𝑁𝑒𝑢𝐶𝑆.  

Theorem 3.20:  

For each 𝓊 ∈ 𝔘 either  𝓊,  0.1,0.1   is a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 or 1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in 𝔘. 

Proof:  

If  𝓊,  0.1,0.1   is not a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 in 𝔘 then 1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   is not a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 and the only 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 

containing 1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   is the space 𝔘 itself. Therefore 𝑁𝑒𝑢𝐶𝑙 1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   ⊑ 1𝑁𝑒𝑢  and so 

1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in 𝔘. 

Proposition 3.21:  

If 𝔓 and 𝔔 are 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆𝑠 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), then 𝔓⨅𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆. 

Proof:  

Let 𝔓 and 𝔔 be 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆𝑠 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁). Then 1𝑁𝑒𝑢 −𝔓 and 1𝑁𝑒𝑢 −𝔔 are 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆𝑠. By proposition 

(3.14),  1𝑁𝑒𝑢 − 𝔓 ⨆(1𝑁𝑒𝑢 −𝔔) is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. Since  1𝑁𝑒𝑢 −𝔓 ⨆(1𝑁𝑒𝑢 − 𝔔) = 1𝑁𝑒𝑢 − (𝔓⨅𝔔). Hence 𝔓⨅𝔔 

is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆.  

Theorem 3.22:  

A neutrosophic set 𝔓 is 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 iff 𝔕 ⊑ 𝑁𝑒𝑢𝐼𝑛𝑡(𝔓) where 𝔕 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 and 𝔕 ⊑ 𝔓. 

Proof:  

Suppose that 𝔕 ⊑ 𝑁𝑒𝑢𝐼𝑛𝑡(𝔓) where 𝔕 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 and 𝔕 ⊑ 𝔓. Then 1𝑁𝑒𝑢 −𝔓 ⊑ 1𝑁𝑒𝑢 −𝔕 and 1𝑁𝑒𝑢 − 𝔕 

is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 by theorem (3.13) part (ii). Now, 𝑁𝑒𝑢𝐶𝑙(1𝑁𝑒𝑢 − 𝔓) = 1𝑁𝑒𝑢 −𝑁𝑒𝑢𝐼𝑛𝑡(𝔓) ⊑ 1𝑁𝑒𝑢 − 𝔕. Then 

1𝑁𝑒𝑢 − 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. Hence 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆. 

Conversely, let 𝔓 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 and 𝔕 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 and 𝔕 ⊑ 𝔓. Then 1𝑁𝑒𝑢 −𝔓 ⊑ 1𝑁𝑒𝑢 − 𝔕. Since 

1𝑁𝑒𝑢 − 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 and 1𝑁𝑒𝑢 −𝔕 is a 𝑁𝑒𝑢𝑠ℊ𝑂𝑆, we have 𝑁𝑒𝑢𝐶𝑙(1𝑁𝑒𝑢 − 𝔓) ⊑ 1𝑁𝑒𝑢 −𝔕. Then 𝔕 ⊑

𝑁𝑒𝑢𝐼𝑛𝑡(𝔓).  

Theorem 3.23:  

If 𝔓 ⊑ 𝔔 ⊑ 𝔘 where 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 relative to 𝔔 and 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in 𝔘, then 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in 𝔘. 
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Proof: 

Let 𝔉 be a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 in 𝔘 and suppose that 𝔉 ⊑ 𝔓. Then 𝔉 = 𝔉⨅𝔔 is a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 in 𝔔. But 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 

relative to 𝔔. Therefore 𝔉 ⊑ 𝑁𝑒𝑢𝐼𝑛𝑡𝔔(𝔓). Since 𝑁𝑒𝑢𝐼𝑛𝑡𝔔(𝔓) is a 𝑁𝑒𝑢𝑂𝑆 relative to 𝔔. We have 𝔉 ⊑

𝔐⨅𝔔 ⊑ 𝔓, for some 𝑁𝑒𝑢𝑂𝑆 𝔐 in 𝔘. Since 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in 𝔘, we have 𝔉 ⊑ 𝑁𝑒𝑢𝐼𝑛𝑡(𝔔) ⊑ 𝔔. Therefore 

𝔉 ⊑ 𝑁𝑒𝑢𝐼𝑛𝑡(𝔔)⨅𝔐 ⊑ 𝔔⨅𝔐 ⊑ 𝔓. It follows that 𝔉 ⊑ 𝑁𝑒𝑢𝐼𝑛𝑡(𝔓). Thus, 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in 𝔘.  

Theorem 3.24:  

If 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) and 𝑁𝑒𝑢𝐼𝑛𝑡(𝔓) ⊑ 𝔔 ⊑ 𝔓, then 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in (𝔘, 𝜁). 

Proof:  

Suppose that 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) and 𝑁𝑒𝑢𝐼𝑛𝑡(𝔓) ⊑ 𝔔 ⊑ 𝔓. Then 1𝑁𝑒𝑢 − 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 and 

1𝑁𝑒𝑢 − 𝔓 ⊑ 1𝑁𝑒𝑢 − 𝔔 ⊑ 𝑁𝑒𝑢𝐶𝑙(1𝑁𝑒𝑢 −𝔓). Then 1𝑁𝑒𝑢 − 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 by proposition (3.17). Hence, 𝔔 is 

a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆.  

Theorem 3.25:  

For a neutrosophic subset 𝔓 of a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), the following statements are equivalent: 

(i) 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆.

(ii) 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓 contains no non-empty 𝑁𝑒𝑢𝑠ℊ𝐶𝑆.

(iii) 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆.

Proof:

Follows from proposition (3.16) and proposition (3.18). 

Remark 3.26:  

The subsequent illustration reveals the relative among the diverse kinds of 𝑁𝑒𝑢𝐶𝑆: 

4. Neutrosophic 𝓰𝒔𝓰-Closure and Neutrosophic 𝓰𝒔𝓰-Interior

We present neutrosophic ℊ𝑠ℊ-closure and neutrosophic ℊ𝑠ℊ-interior and obtain some of its properties in 

this section. 

𝑁𝑒𝑢𝐶𝑆 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 

𝑁𝑒𝑢𝛼ℊ𝐶𝑆 

𝑁𝑒𝑢ℊ𝐶𝑆 

𝑁𝑒𝑢ℊ𝛼𝐶𝑆 

𝑁𝑒𝑢𝑠ℊ𝑂𝑆 

𝑁𝑒𝑢𝛼𝐶𝑆 

+ 

𝑁𝑒𝑢𝑠𝐶𝑆 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 𝑁𝑒𝑢ℊ𝑠𝐶𝑆 

Fig. 3.1 
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Definition 4.1:  

The intersection of all 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆𝑠 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) containing 𝔓 is called neutrosophic ℊ𝑠ℊ-closure of 𝔓 

and is denoted by 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(𝔓). 

Definition 4.2:  

The union of all 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆𝑠 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) contained in 𝔓 is called neutrosophic ℊ𝑠ℊ-interior of 𝔓 and is 

denoted by 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 . 

Proposition 4.3:  

Let 𝔓 be any neutrosophic set in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁). Then the following properties hold: 

(i) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 = 𝔓 iff 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆.

(ii) 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(𝔓) = 𝔓 iff 𝔓 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆.

(iii) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓  is the largest 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆 contained in 𝔓.

(iv) 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(𝔓) is the smallest 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 containing 𝔓.

Proof:

(i), (ii), (iii) and (iv) are obvious. 

Proposition 4.4:  

Let 𝔓 be any neutrosophic set in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁). Then the following properties hold: 

(i) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 1𝑁𝑒𝑢 −𝔓 = 1𝑁𝑒𝑢 − (𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ),

(ii) 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 1𝑁𝑒𝑢 −𝔓 = 1𝑁𝑒𝑢 − (𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 ).

Proof:

(i) By definition, 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 = ⨅{𝔔:𝔓 ⊑ 𝔔, 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆}

1𝑁𝑒𝑢 − (𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ) = 1𝑁𝑒𝑢 −⨅{𝔔: 𝔓 ⊑ 𝔔, 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆}

 = ⨆{1𝑁𝑒𝑢 − 𝔔: 𝔓 ⊑ 𝔔, 𝔔 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆} 

 = ⨆{𝔐:𝔐 ⊑ 1𝑁𝑒𝑢 − 𝔓,𝔐 is a 𝑁𝑒𝑢ℊ𝑠ℊ𝑂𝑆} 

 = 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 1𝑁𝑒𝑢 − 𝔓 . 

(ii) The evidence is analogous to (i). 

Theorem 4.5:  

Let 𝔓 and 𝔔 be two neutrosophic sets in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁). Then the following properties hold: 

(i) 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(0𝑁𝑒𝑢 ) = 0𝑁𝑒𝑢 , 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(1𝑁𝑒𝑢 ) = 1𝑁𝑒𝑢 .

(ii) 𝔓 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 .

(iii) 𝔓 ⊑ 𝔔 ⟹ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 .

(iv) 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨅𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨅𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 .

(v) 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨆𝔔 = 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 .

(vi) 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ) = 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 .

Proof:

(i) and (ii) are obvious.

(iii) By part (ii), 𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 . Since 𝔓 ⊑ 𝔔, we have 𝔓 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 . But 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔  is a

𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆. Thus 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔  is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 containing 𝔓. Since 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(𝔓) is the smallest 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆

containing 𝔓, we have 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 .

(iv) We know that 𝔓⨅𝔔 ⊑ 𝔓 and 𝔓⨅𝔔 ⊑ 𝔔. Therefore, by part (iii), 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨅𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓  and

𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨅𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 . Hence 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨅𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨅𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 .

(v) Since 𝔓 ⊑ 𝔓⨆𝔔 and 𝔔 ⊑ 𝔓⨆𝔔, it follows from part (iii) that 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨆𝔔  and

𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨆𝔔 . Hence 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨆𝔔 ………… (1) 
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Since 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓  and 𝑁𝑒𝑢ℊ𝑠ℊC𝑙 𝔔  are 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆𝑠, 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔  is also 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 by 

proposition (3.14). Also 𝔓 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓  and 𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔  implies that 

𝔓⨆𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 . Thus 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔  is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 containing 𝔓⨆𝔔. 

Since 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨆𝔔  is the smallest 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 containing 𝔓⨆𝔔, we have 

𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨆𝔔 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 …………. (2) 

From (1) and (2), we have 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓⨆𝔔 = 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔔 . 

(vi) Since 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓  is a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆, we have by proposition (4.3) part (ii), 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙(𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 )

= 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑙 𝔓 . 

Theorem 4.6:  

Let 𝔓 and 𝔔 be two neutrosophic sets in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁). Then the following properties hold: 

(i) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡(0𝑁𝑒𝑢 ) = 0𝑁𝑒𝑢 , 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡(1𝑁𝑒𝑢 ) = 1𝑁𝑒𝑢 .

(ii) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 ⊑ 𝔓.

(iii) 𝔓 ⊑ 𝔔 ⟹ 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 ⊑ 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔔 .

(iv) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓⨅𝔔 = 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 ⨅𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔔 .

(v) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓⨆𝔔 ⊒ 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 ⨆𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔔 .

(vi) 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡(𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 ) = 𝑁𝑒𝑢ℊ𝑠ℊ𝐼𝑛𝑡 𝔓 .

Proof:

(i), (ii), (iii), (iv), (v) and (vi) are obvious. 

Definition 4.7:  

A 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) is called a neutrosophic 𝑇1
2
-space (in short, 𝑁𝑒𝑢𝑇1

2
-space) if each 𝑁𝑒𝑢ℊ𝐶𝑆 in this space is a

𝑁𝑒𝑢𝐶𝑆. 

Definition 4.8:  

A 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) is called a neutrosophic 𝑇ℊ𝑠ℊ-space (in short, 𝑁𝑒𝑢𝑇ℊ𝑠ℊ-space) if each 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in this space 

is a 𝑁𝑒𝑢𝐶𝑆. 

Proposition 4.9: 

Every 𝑁𝑒𝑢𝑇1
2
-space is a 𝑁𝑒𝑢𝑇ℊ𝑠ℊ-space.

Proof:  

Let (𝔘, 𝜁) be a 𝑁𝑒𝑢𝑇1
2
-space and let 𝔓 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in 𝔘. Then 𝔓 is a 𝑁𝑒𝑢ℊ𝐶𝑆, by theorem (3.2) part (ii).

Since (𝔘, 𝜁) is a 𝑁𝑒𝑢𝑇1
2
-space, then 𝔓 is a 𝑁𝑒𝑢𝐶𝑆 in 𝔘. Hence (𝔘, 𝜁) is a  𝑁𝑒𝑢𝑇ℊ𝑠ℊ-space. 

Theorem 4.10:  

For a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁), the following statements are equivalent: 

(i) (𝔘, 𝜁) is a 𝑁𝑒𝑢𝑇ℊ𝑠ℊ-space.

(ii) Every singleton of a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁) is either 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 or 𝑁𝑒𝑢𝑂𝑆.

Proof:

(i) ⟹(ii) Assume that for some 𝓊 ∈ 𝔘 the neutrosophic set  𝓊,  0.1,0.1   is not a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁).

Then the only 𝑁𝑒𝑢𝑠ℊ𝑂𝑆 containing 1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   is the space 𝔘 itself and 1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   is a

𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in (𝔘, 𝜁). By assumption 1𝑁𝑒𝑢 −  𝓊,  0.1,0.1   is a 𝑁𝑒𝑢𝐶𝑆 in (𝔘, 𝜁) or equivalently  𝓊,  0.1,0.1   is

a 𝑁𝑒𝑢𝑂𝑆.
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(ii) ⟹(i) Let 𝔓 be a 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 in (𝔘, 𝜁) and let 𝓊 ∈ 𝑁𝑒𝑢𝐶𝑙(𝔓). By assumption  𝓊,  0.1,0.1   is either

𝑁𝑒𝑢𝑠ℊ𝐶𝑆 or 𝑁𝑒𝑢𝑂𝑆.

Case(1). Suppose  𝓊,  0.1,0.1   is a 𝑁𝑒𝑢𝑠ℊ𝐶𝑆. If 𝓊 ∉ 𝔓 then 𝑁𝑒𝑢𝐶𝑙 𝔓 −𝔓 contains a non-empty 𝑁𝑒𝑢𝑠ℊ𝐶𝑆

𝓊,  0.1,0.1   which is a contradiction to proposition (3.18). Therefore 𝓊 ∈ 𝔓.

Case(2). Suppose  𝓊,  0.1,0.1   is a 𝑁𝑒𝑢𝑂𝑆. Since 𝓊 ∈ 𝑁𝑒𝑢𝐶𝑙 𝔓 ,  𝓊,  0.1,0.1  ⨅𝔓 ≠ 0𝑁𝑒𝑢  and therefore

𝑁𝑒𝑢𝐶𝑙 𝔓 ⊑ 𝔓 or equivalently 𝔓 is a 𝑁𝑒𝑢𝐶𝑆 in a 𝑁𝑒𝑢𝒯𝒮(𝔘, 𝜁). 

5. Conclusion

The concept of 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 identified utilizing 𝑁𝑒𝑢𝑠ℊ𝐶𝑆 constructs a neutrosophic topology and sits 

between the concept of 𝑁𝑒𝑢𝐶𝑆 and the concept of 𝑁𝑒𝑢ℊ𝐶𝑆. The 𝑁𝑒𝑢ℊ𝑠ℊ𝐶𝑆 can be used to derive a new 

decomposition of 𝑁𝑒𝑢ℊ𝑠ℊ-continuity and new 𝑁𝑒𝑢ℊ𝑠ℊ-separation axioms. 
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Introduction to the IndetermSoft Set and IndetermHyperSoft Set 

Florentin Smarandache 

Abstract: In this paper one introduces for the first time the IndetermSoft Set, as extension of the 

classical (determinate) Soft Set, that deals with indeterminate data, and similarly the HyperSoft Set 

extended to IndetermHyperSoft Set, where ‘Indeterm’ stands for ‘Indeterminate’ (uncertain, conflicting, 

not unique outcome). They are built on an IndetermSoft Algebra that is an algebra dealing with 

IndetermSoft Operators resulted from our real world. Afterwards, the corresponding Fuzzy / 

Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension IndetermSoft Set & 

IndetermHyperSoft Set are presented together with their applications. 

Keywords: Soft Set; HyperSoft Set; IndetermSoft Set; IndetermHyperSoft Set; IndetermSoft Operators; 

IndetermSoft Algebra. 

1. Introduction

The classical Soft Set is based on a determinate function (whose values are certain, and unique), 

but in our world there are many sources that, because of lack of information or ignorance, provide 

indeterminate (uncertain, and not unique – but hesitant or alternative) information. 

They can be modelled by operators having some degree of indeterminacy due to the imprecision 

of our world. 

The paper recalls the definitions of the classical Soft Set and HyperSoft Set, then shows the 

distinction between determinate and indeterminate soft functions. 

The neutrosophic triplets <Function, NeutroFunction, AntiFunction> and <Operator, NeutroOperator, 

AntiOperator> are brought into discussion, as parts of the <Algebra, NeutroAlgebra, AntiAlgebra> 

(Smarandache, 2019). 

Similarly, distinctions between determinate and indeterminate operators are taken into 

consideration.  

Afterwards, an IndetermSoft Algebra is built, using a determinate soft operator (joinAND), and 

three indeterminate soft operators (disjoinOR, exclussiveOR, NOT), whose properties are further on 

studied.  

IndetermSoft Algebra and IndetermHyperSoft Algebra are subclasses of the IndetermAlgebra. 

The IndetermAlgebra is introduced as an algebra whose space or operators have some degree of 

indeterminacy ( I > 0 ), and it is a subclass of the NeutroAlgebra.  

It was proved that the IndetermSoft Algebra and IndetermHyperSoft Algebra are non-Boolean 

Algebras, since many Boolean Laws fail. 

Florentin Smarandache (2022). Introduction to the IndetermSoft Set and IndetermHyperSoft Set. Neutrosophic 
Sets and Systems 50, 629-650
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Let U  be a universe of discourse, H a non-empty subset of U, with P(𝐻) the powerset of 𝐻, and a 

an attribute, with its set of attribute values denoted by A. Then the pair (F, 𝐻), where 𝐹: 𝐴 → 𝑃(𝐻), is 

called a Classical Soft Set over 𝐻. 

Molodtsov [1] has defined in 1999 the Soft Set, and Maji [2] the Neutrosophic Soft Set in 2013. 

3. Definition of the Determinate (Classical) Soft Function

The above function 𝐹: 𝐴 → 𝑃(𝐻) , where for each , ( ) ( ),x A f x P H   and f(x) is certain and

unique, is called a Determinate (Classical) Function. 

4. Definition of the IndetermSoft Function

One introduces it for the first time. Let 𝑈 be a universe of discourse, H a non-empty subset of 𝑈,

and P(𝐻) the powerset of 𝐻. Let a be an attribute, and  𝐴 be a set of this attribute values. 

A function 𝐹: 𝐴 → 𝑃(𝐻) is called an IndetermSoft Function if: 

i. the set A has some indeterminacy;

ii. or P(H) has some indeterminacy;

iii. or there exist at least an attribute value v A , such that F(v) = indeterminate (unclear,

uncertain, or not unique);

iv. or any two or all three of the above situations.

The IndetermSoft Function has some degree of indeterminacy, and as such it is a particular case of 

the NeutroFunction [6, 7], defined in 2014 – 2015, that one recalls below. 

5. <Function, NeutroFunction, AntiFunction>

We have formed the above neutrosophic triplet [10, 11]. 

i. (Classical) Function, which is a function well-defined (inner-defined) for all elements in

its domain of definition, or (T, I, F) = (1,0,0).

ii. NeutroFunction (or Neutrosophic Function), which is a function partially well-defined

(degree of truth T), partially indeterminate (degree of indeterminacy I), and partially

outer-defined (degree of falsehood F) on its domain of definition, where

( , , ) {(1,0,0),(0,0,1)}T I F  .

iii. AntiFunction, which is a function outer-defined for all the elements in its domain of

definition, or (T, I, F) = (0, 0, 1).

6. Applications of the Soft Set

A detective must find the criminal(s) out of a crowd of suspects. He uses the testimonies of several 

witnesses. 

Let the crowd of suspects be the set S = {s1, s2, s3, s4, s5} { } , where { } is the empty (null)

element, and the attribute c = criminal, 

which has two attribute-values C = {yes, no}. 

i. Let the function 1 : ( )F C P S→ , where ( )P S  is the powerset of S, represent the

information provided by the witness W1. 

For example,  

F1(yes) = s3, which means that, according to the witness W1, the suspect s3 is the criminal, 

and F1(no) = s4, which similarly means, according to the witness W1, that the suspect s4 is not the 

criminal. 

These are determined (exact) information, provided by witness W1, therefore this is a classical Soft 

Set. 

2. Definition of Classical Soft Set

Florentin Smarandache (author and editor) Collected Papers, XIII

262



ii. Further on, let the function 2 : ( )F C P S→ , where ( )P S  is the powerset of S, represent the

information provided by the witness W2. 

For example, 

F2(yes) = { } , the null-element, which means that according to the witness W2, none of the suspects

in the set S is the criminal. This is also a determinate information as in classical Soft Set. 

7. Indeterminate Operator as Extension of the Soft Set

iii. Again, let the function 3 : ( )F C P S→ , where ( )P S  is the powerset of S, represent the

information provided by the witness W3. 

This witness is not able to provide a certain and unique information, but some indeterminate 

(uncertain, not unique but alternative) information. 

For example: 

F3(yes) = NOT(s2) 

and F3(no) = s3 OR s4 

The third source (W3) provides indeterminate (unclear, not unique) information, 

since NOT(s2) means that s2 is not the criminal, then consequently:  either one, or two, or more suspects 

from the remaining set of suspects {s1, s3, s4, s5} may be the criminal(s), or { } (none of the remaining

suspects is the criminal), whence one has:  
1 2 3 4 4
4 4 4 4 1 2 16C C C C+ + + + = = possibilities (alternatives, or outcomes), resulted from a single input, 

to chose from, where 
m
nC means combinations of n elements taken into groups of m elements, for

integers  0 m n  . 

Indeterminate information again, since: 

 s3 OR s4 means: either {s3 yes, and s4 no}, or {s3 no, and s4 yes}, or {s3 yes, and s4 yes}, 

therefore 3 possible (alternatives) outcomes to chose from. 

Thus, 
3 : ( )F C P S→ is an Indeterminate Soft Function (or renamed/contracted as IndetermSoft 

Function). 

8. Indeterminate Attribute-Value Extension of the Soft Set

Let’s extend the previous Applications of the Soft Set  with the crowd of suspects being the set S = 

{s1, s2, s3, s4, s5} { } , where { } is the empty (null) element, and the attribute c = criminal, but the

attribute c has this time three attribute-values K = {yes, no, maybe}, as in the new branch of philosophy, 

called neutrosophy, where between the opposites <A> = yes, and <antiA> = no, there is the 

indeterminacy (or neutral) <neutA> = maybe. 

And this is provided by witness W4 and defined as: 

4 : ( )F K P S→

For example: F4(maybe) = s5, which means that the criminal is maybe s5. 

There also is some indeterminacy herein as well because the attribute-value “maybe” means 

unsure, uncertain. 

One can transform this one into a Fuzzy (or Intuitionistic Fuzzy, or Neutrosophic, or other Fuzzy-

Extension) Soft Sets in the following ways: 

F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(some appurtenance degree) 

or 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(some non-appurtenance degree) 

Let’s consider the bellow example. 

Fuzzy Soft Set as: 
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F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(0.6), or the chance that s5 be a criminal is 

60%; 

Intuitionistic Fuzzy Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(0.6, 0.3), or the chance that s5 be a criminal 

is 60%, and chance that s5 not be a criminal is 30%; 

Neutrosophic Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(yes) = s5(0.6, 0.2, 0.3), or the chance that s5 is a 

criminal is 60%, indeterminate-chance of criminal-noncriminal is 20%, and chance that s5 not be a 

criminal is 30%. 

   And similarly for other Fuzzy-Extension Soft Set. 

Or, equivalently, employing the attribute-value “no”, one may consider: 

Fuzzy Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(0.4), or the chance that s5 is not a criminal is 

40%; 

Intuitionistic Fuzzy Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(0.3, 0.6), or the chance that s5 is not a 

criminal is 30%, and chance that s5 is a criminal is 60%; 

Neutrosophic Soft Set as: 

F4(maybe) = s5 is approximately equivalent to F4(no) = s5(0.3, 0.2, 0.6), or the chance that s5 is not a 

criminal is 30%, indeterminate-chance of criminal-noncriminal is 20%, and chance that s5 is a criminal is 

60%. 

   And similarly for other Fuzzy-Extension Soft Set. 

9. HyperSoft Set

Smarandache has extended in 2018 the Soft Set to the HyperSoft Set [3, 4] by transforming the 

function F from a uni-attribute function into a multi-attribute function. 

9.1. Definition of HyperSoft Set 

Let 𝒰 be a universe of discourse, H a non-empty set included in U, and P(𝐻) the powerset of 𝐻. Let 

𝑎1, 𝑎2, … 𝑎𝑛, where 𝑛 ≥ 1, be 𝑛 distinct attributes, whose corresponding attribute values are respectively 

the sets 𝐴1, 𝐴2, … , 𝐴𝑛, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}. Then the pair (𝐹, 𝐴1 × 𝐴2 × …× 𝐴𝑛), 

where 𝐴1 × 𝐴2 × …× 𝐴𝑛 represents a Cartesian product, with  

𝐹: 𝐴1 × 𝐴2 × …× 𝐴𝑛 → 𝑃(𝐻) 

is called a HyperSoft Set. 

For example,  

let 

1 2 1 2( , ,..., ) ...n ne e e A A A   

then 

1 2( , ,..., ) ( )nF e e e G P H=  .

9.2. Classification of HyperSoft Sets 

With respect to the types of sets, such as: classical, fuzzy, intuitionistic fuzzy, neutrosophic, 

plithogenic, and all other fuzzy-extension sets, one respectively gets: the Crisp HyperSoft Set, Fuzzy 

HyperSoft Set, Intuitionistic Fuzzy HyperSoft Set, Neutrosophic HyperSoft Set, Plithogenic HyperSoft 

Set, and all other fuzzy-extension HyperSoft Sets [3, 5-9]. 
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The HyperSoft degrees of T = truth, I = indeterminacy, F = falsehood, H = hesitancy, N = neutral 

etc. assigned to these Crisp HyperSoft Set, Fuzzy HyperSoft Set, Intuitionistic Fuzzy HyperSoft Set, 

Neutrosophic HyperSoft Set, Plithogenic HyperSoft Set, and all other fuzzy-extension HyperSoft Sets 

verify the same conditions of inclusion and inequalities as in their corresponding fuzzy and fuzzy- 

extension sets. 

9.3. Applications of HyperSoft Set and its corresponding Fuzzy / Intuitionistic Fuzzy / Neutrosophic HyperSoft 

Set 

Let H = {h1, h2, h3, h4} be a set of four houses, and two attributes:  

s = size, whose attribute values are S = {small, medium, big},  

and l = location, whose attribute values are L = {central, peripherical}. 

Then : ( )F S L P H → is a HyperSoft Set. 

i. For example, F(small, peripherical) = {h2, h3}, which means that the houses that are small

and peripherical are h2 and h3.

ii. A Fuzzy HyperSoft Set may assign some fuzzy degrees, for example:

F(small, peripherical) = {h2(0.7), h3(0.2)}, which means that with respect to the attributes’ values small 

and peripherical all together, h2 meets the requirements of being both small and peripherical in a fuzzy 

degree of 70%, while h3 in a fuzzy degree of 20%. 

iii. Further on, a Intuitionistic Fuzzy HyperSoft Set may assign some intuitionistic fuzzy

degrees, for example:

F(small, peripherical) = {h2(0.7, 0.1), h3(0.2, 0.6)}, which means that with respect to the attributes’ 

values small and peripherical all together, h2 meets the requirements of being both small and peripherical 

in a intuitionistic fuzzy degree of 70%, and does not meet it in a intuitionistic fuzzy degree of 10%;  and 

similarly for h3. 

iv. Further on, a Neutrosophic HyperSoft Set may assign some neutrosophic degrees, for

example:

F(small, peripherical) = {h2(0.7, 0.5, 0.1), h3(0.2, 0.3, 0.6)}, which means that with respect to the 

attributes’ values small and peripherical all together, h2 meets the requirements of being both small and 

peripherical in a neutrosophic degree of 70%, the indeterminate-requirement in a neutrosophic degree 

of 50%, and does not meet the requirement in a neutrosophic degree of 10%.  And similarly, for h3. 

v. In the same fashion for other fuzzy-extension HyperSoft Sets.

10. Operator, NeutroOperator, AntiOperator

Let U be a universe of discourse and H a non-empty subset of U.

Let 1n  be an integer, and   be an operator defined as: 

: nH H →
Let’s take a random n-tuple 1 2( , ,..., ) n

nx x x H . 

There are three possible cases: 

i. 1 2( , ,..., )nx x x H  and 1 2( , ,..., )nx x x is a determinate (clear, certain, unique) output; 

this is called degree of well-defined (inner-defined), or degree of Truth (T). 

ii. 1 2( , ,..., )nx x x is an indeterminate (unclear, uncertain, undefined, not unique) output;

this is called degree of Indeterminacy (I). 

iii. 1 2( , ,..., )nx x x U H  − ; this is called degree of outer-defined (since the output is 

outside of H), or degree of Falsehood (F). 

Consequently, one has a Neutrosophic Triplet of the form 

<Operator, NeutroOperator, AntiOperator> 
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defined as follows [12, 13, 14]: 

10.1. (Classical) Operator 

For any n-tuple 1 2( , ,..., ) n
nx x x H , one has 1 2( , ,..., )nx x x H  and 1 2( , ,..., )nx x x  is a 

determinate (clear, certain, unique) output. Therefore (T, I, F) = (1, 0, 0). 

10.2. NeutroOperator 

There are some n-tuples 1 2( , ,..., ) n
nx x x H  such that 1 2( , ,..., )nx x x H  and 1 2( , ,..., )nx x x

are determinate (clear, certain, unique) outputs (degree of truth T); 

other n-tuples 1 2( , ,..., ) n
ny y y H such that 1 2( , ,..., )ny y y H  and 1 2( , ,..., )ny y y are

indeterminate (unclear, uncertain, not unique) output (degree of indeterminacy I); 

and other n-tuples 1 2( , ,..., ) n
nz z z H such that 1 2( , ,..., )nz z z U H  − (degree of falsehood F); 

where ( , , ) {(1,0,0),(0,0,1)}T I F   that represent the first (Classical Operator), and respectively

the third case (AntiOperator). 

10.3. AntiOperator 

For any n-tuple 1 2( , ,..., ) n
nx x x H , one has 1 2( , ,..., )nx x x U H  − . Therefore

(T, I, F) = (0, 0, 1). 

11. Particular Cases of Operators

11.1. Determinate Operator 

A Determinate Operator is an operator whose degree of indeterminacy I = 0, 

while the degree of truth T = 1 and degree of falsehood F = 0. 

Therefore, only the Classical Operator is a Determinate Operator. 

11.2. IndetermOperator 

As a subclass of the above NeutroOperator, there is the IndetermOperator (Indeterminate Operator), 

which is an operator that has some degree of indeterminacy (I > 0). 

12. Applications of the IndetermOperators to the Soft Sets

Let H be a set of finite number of houses (or, in general, objects, items, etc.):

𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} ∪ {∅}, 1 ≤ 𝑛 < ∞, 

where h1 = house1, h2 = house2, etc. 

and ∅ is the empty (or null) element (no house). 

13. Determinate and Indeterminate Soft Operators

Let us define four soft operators on 𝐻.

13.1. joinAND 

joinAND, or put together, denoted by ⩓, defined as: 

𝑥 ⩓ y = x and y, or put together x and y; herein the conjunction “and” has the common sense from 

the natural language. 
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𝑥 ⩓ y = {𝑥, 𝑦} is a set of two objects. 

For example:  

h1 ⩓ h2 = house1 ⩓ house2 = house1 and house2  

= put together house1 and house2 = {house1, house2} = {h1, h2}. 

joinAND is a Determinate Soft Operator since one gets one clear (certain) output. 

13.2. disjoinOR 

disjoinOR, or separate in parts, denoted by ⩔, defined as: 

𝑥 disjoinOR 𝑦 =  𝑥 ⩔ y = {𝑥}, or {𝑦}, or both {𝑥, 𝑦}  

      = x, or y, or both x and y; 

herein, similarly, the disjunction “or” (and the conjunction “and” as well) have the common sense 

from the natural language. 

But there is some indeterminacy (uncertainty) to choose among three alternatives. 

For example:  

h1 ⩔ h2 = house1 ⩔ house2 = house1, or house2, or both houses together {house1 and house2}. 

disjoinOR is an IndetermSoft Operator, since it does not have a clear unique output, but three 

possible alternative outputs to choose from. 

13.3. exclusiveOR 

exclusiveOR, meaning either one, or the other; it is an IndetermSoft Operator (to choose among 

two alternatives). 

h1 ⩔E h2 = either h1, or h2, and no both {h1, h2}. 

13.4. NOT 

NOT, or no, or sub-negation/sub-complement, denoted by ⫬, where 

NOT(ℎ) = ⫬ ℎ = 𝑛𝑜 ℎ, in other words all elements from 𝐻, except h, either single elements, or two 

elements, …, or 𝑛 − 1 elements from 𝐻 − {ℎ}, or the empty element ∅. 

The “not” negation has the common sense from the natural language; when we say “not John” that 

means “someone else” or “many others”. 

13.4.1. Theorem 1 

Let the cardinal of the set H-{h} be |H – {h}| = m ≥ 1. 

Then ( ) { , ( { })}NOT h x x P H h=  −  and the cardinal |NOT(h)| = 2n-1.

Proof: 

Because NOT(ℎ) means all elements from 𝐻, except h, 

either by single elements, or by two elements, …, or by 𝑛 − 1 elements from 𝐻 − {ℎ}, or the empty 

element ∅, then one obtains: 

𝐶𝑛−1
1 + 𝐶𝑛−1

2 +⋯+ 𝐶𝑛−1
𝑛−1 + 1 = (2𝑛−1 − 1) + 1 = 2𝑛−1 possibilities (alternatives to h).

The NOT operator has as output a multitude of sub-negations (or sub-complements). 

NOT is also an IndetermSoft Operator. 

13.4.2. Example 

Let 𝐻 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}  

Then,  

NOT(x1) = ⫬ 𝑥1 = either 𝑥2, or 𝑥3, or 𝑥4, 

or {𝑥2, 𝑥3}, or {𝑥2, 𝑥4}, or {𝑥3, 𝑥4}, 
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or {𝑥2, 𝑥3, 𝑥4}, 

or ∅; 

therefore 𝐶3
1 + 𝐶3

2 + 𝐶3
3 + 1 = 3 + 3 + 1 + 1 = 8 = 23 possibilities/alternatives.

Graphic representations: 

Or another representation (equivalent to the above) is below: 

2

3

4

2 3
1

2 4

3 4

2 3 4

{ , }
{ , }
{ , }
{ , , }

x
x
x
x x

x
x x
x x
x x x









 = 







The NOT operator is equivalent to (2𝑛−1 − 1) OR disjunctions (from the natural language).  

14. Similarities between IndetermSoft Operators and Classical Operators

(i) joinAND is similar to the classical logic AND operator (∧) in the following way.

Let A, B, C be propositions, where 𝐶 = 𝐴 ∧ 𝐵.

Then the proposition C is true, if both: A = true, and B = true.

(ii) disjoinOR is also similar to the classical logic OR operator (∨) in the following way.

Let A, B, D be propositions, where 𝐷 = 𝐴 ∨ 𝐵.

Then the proposition D is true if:

either A = true, 

or B = true,  

or both A = true and B = true 

(therefore, one has three possibilities). 

(iii) exclusiveOR is also similar to the classical logic exclusive OR operator (∨E) in the following

way. 

Let A, B, D be propositions, where D = A ∨E B 

Then the proposition D is true if: 

either A = true, 

or B = true, 

and not both A and B are true simultaneously 

(therefore, one has two possibilities). 

(iv) NOT resembles the classical set, or complement operator (¬), in the following way.

Florentin Smarandache (author and editor) Collected Papers, XIII

268



Let A, B, C, D be four sets, whose intersections two by two are empty, from the universe of 

discourse 𝒰 = 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷. 

Then ¬𝐴 = 𝑁𝑜𝑡𝐴 = 𝒰 ∖ 𝐴 = the complement of A with respect to 𝒰. 

While ¬𝐴 has only one exact output (𝒰 ∖ 𝐴) in the classical set theory, the NOT operator ⫬ 𝐴 has 8 

possible outcomes: either the empty set (∅), or B, or C, or D, or {𝐵, 𝐶}, or {𝐵, 𝐷}, or {𝐶, 𝐷}, or or {𝐵, 𝐶, 𝐷}. 

15. Properties of Operators

Let 𝑥, 𝑦, 𝑧 ∈ H(⩓,⩔, ⩔E, ⫬).

15.1. Well-Defined Operators 

Let consider the set 𝐻 closed under these four operators: H(⩓,⩔, ⩔E, ⫬). 

Therefore, for any 𝑥, 𝑦 ∈ 𝐻 one has:  

𝑥 ⩓ y ∈ H(⩓,⩔, ⩔E, ⫬), because {𝑥, 𝑦} ∈ H(⩓,⩔, ⩔E, ⫬),  

and 𝑥 ⩔ y ∈ H(⩓,⩔, ⩔E, ⫬), because each of {𝑥}, {𝑦}, {𝑥, 𝑦} ∈ H(⩓,⩔, ⩔E, ⫬), 

also x ⩔E y ∈ H(⩓,⩔, ⩔E, ⫬), because each of {𝑥}, {𝑦} ∈ H(⩓,⩔, ⩔E, ⫬), 

Then the NOT operator is also well-defined because it is equivalent to a multiple of disjoinOR 

operators. 

Thus: 

⩓ : 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 

⩔ : 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 

⩔E: 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 

⫬ : 𝐻 → H(⩓,⩔, ⩔E, ⫬) 

15.2. Commutativity 

𝑥 ⩓ y = 𝑦 ⩓ 𝑥, and 𝑥 ⩔ 𝑦 = 𝑦 ⩔ 𝑥, and x ⩔E y =  y ⩔E x 

Proof 

𝑥 ⩓ y = {𝑥, 𝑦} = {𝑦, 𝑥} = 𝑦 ⩓ x  

𝑥 ⩔ 𝑦 = ({𝑥}, or {𝑦}, or {𝑥, 𝑦}) = ({𝑦} or {𝑥}, or {𝑦, 𝑥}) = 𝑦 ⩔ 𝑥 

x ⩔E y = (either {x}, or {y}, but not both x and y) = 

= (either {y}, or {x}, but not both y and x) = y ⩔E x. 

15.3. Associativity 

𝑥 ⩓ (𝑦 ⩓ 𝑧) = (𝑥 ⩓ 𝑦) ⩓ 𝑧, 

and 𝑥 ⩔ (𝑦 ⩔ 𝑧) = (x ⩔ y) ⩔ z, and x ⩔E  ( y ⩔E z = ( x ⩔E  y ) ⩔E z 

Proof 

𝑥 ⩓ (𝑦 ⩓ 𝑧) = {𝑥, 𝑦 ⩓ 𝑧} = {𝑥, {𝑦, 𝑧}} 

= {𝑥, 𝑦, 𝑧} = {{𝑥, 𝑦}, 𝑧} 

= (𝑥 ⩓ y) ⩓ z. 

𝑥 ⩔ (𝑦 ⩔ 𝑧) = (x ⩔ y) ⩔ z 

𝑥 or (𝑦 or 𝑧) = 𝑥 or {

𝑦
𝑧

𝑦 or 𝑧
  = 𝑥 or 

{

𝑦
𝑧

𝑦 or 𝑧 {

𝑦
𝑧

{𝑦, 𝑧}
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= 

{

𝑥 or 𝑦 = {

𝑥
𝑦

{𝑥, 𝑦}

𝑥 or 𝑧 =  {

𝑥
𝑧

{𝑥, 𝑧}

{

𝑥 or 𝑦
𝑥 or 𝑧

𝑥 or {𝑦, 𝑧} = {

𝑥
{𝑦, 𝑧}

{𝑥, 𝑦, 𝑧}

=  𝑥, 𝑦, 𝑧, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

(𝑥 or 𝑦) or 𝑧 = {

𝑥
𝑦

{𝑥, 𝑦}
 or 𝑧 =

{

𝑥 or 𝑧 {

𝑥
𝑧

{𝑥, 𝑧}

𝑦 or 𝑧 {

𝑦
𝑧

{𝑦, 𝑧}

{𝑥, 𝑧} or 𝑧 {
{𝑥, 𝑦}
𝑧

{𝑥, 𝑦, 𝑧}

=  𝑥, 𝑦, 𝑧, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

Therefore, (x or y) or z = x or (y or z) = x, y, z, {x, y}, {y, z}, {z, x}, {x, y, z} with 23 − 1 = 8 − 1 = 7 

possibilities. 

x ⩔E  ( y ⩔E z ) = 

either x, or ( y⩔E z ), and no both x and ( y ⩔E z ) = either x, or (y, or z, and no both y and z), and no both x 

and (either y or z) = either x, or y, or z, and no both {y, z}, and (no x and no (either y or z)) =  either x, or y, or z, 

and no {y, z}, no {x, y}, no {x, z} = ( x ⩔E   y) ⩔E z 

15.4. Distributivity of joinAND over disjoinOR and exclusiveOR 

𝑥 ⩓ (𝑦 ⩔ 𝑧) = (x ⩓ y) ⩔ (x ⩓ z) 

P roof 

𝑥 ⩓ (𝑦 ⩔ 𝑧) = 𝑥 and (𝑦 or 𝑧) = 𝑥 and (𝑦, or 𝑧, or {𝑦, 𝑧})  

= x and y, or x and z, or x and {𝑦, 𝑧} 

= {𝑥, 𝑦}, or {𝑥, 𝑧}, or {𝑥, 𝑦, 𝑧} 

= {𝑧, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑧}. 

(𝑥 ⩓ 𝑦) ⩔ (𝑥 ⩓ 𝑧) = {𝑥, 𝑦}  

or {𝑥, 𝑧} = {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑥, 𝑧} = {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑧}. 

x ⩓ ( y ⩔E z ) = x and ( either y, or z, and no both {y, z}) = either x and y, or x and z, 

 and x and no both {y, z} = either {x, y}, or {x, z}, and {x, no { y, z} } = 

= either {x, y}, or {x, z}, and no {x, y, z} =  (x ⩓ y) ⩔E (x ⩓ z) 

15.5. No distributivity of disjoinOR and exclusiveOR over joinAND 

𝑥 ⩔ (𝑦 ⩓ 𝑧) ≠ (x ⩔ y) ⩓ (𝑥 ⩔ 𝑧)  

𝑥 ⩔ (𝑦 ⩓ 𝑧) = 𝑥 or (𝑦 and 𝑧) = 𝑥 𝑜𝑟 {𝑦, 𝑧} =  𝑥, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧} 

But 

(𝑥 ⩔ 𝑦) ⩓ (𝑥 ⩔ 𝑧) = (𝑥, 𝑦, {𝑥, 𝑦}) and (𝑥, 𝑧, {𝑥, 𝑧}) 

= {𝑥, 𝑥}, {𝑥, 𝑧}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑦, 𝑥}, {𝑥, 𝑦, 𝑧}, {𝑥, 𝑦}, {𝑥, 𝑦, 𝑧}, {𝑥, 𝑦, 𝑧} 

=  𝑥, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

Whence in general 𝑥, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧} ≠ 𝑥, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 
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While in classical Boolean Algebra the distribution of or over and is valid: 

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧). 

x ⩔E (y ⩓ z) = either x, or {y, z}, and no {x, y, z} 

 (x⩔E y) ⩓ (𝑥⩔E y) = (either x, or y, and no {x, y}) and (either x, or z, and no {x, z}) 

15.6. Idempotence 

𝑥 ⩓ 𝑥 = {𝑥, 𝑥} = 𝑥  

𝑥 ⩔ 𝑥 = either 𝑥, or 𝑥, or {𝑥, 𝑥} 

= 𝑥, or 𝑥, or 𝑥 

= 𝑥. 

x ⩔E x = either x, or x, and no {x, x} = impossible. 

15.6.1. Theorem 2 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ (𝐻,⩓,⩔, ⫬), for 𝑛 ≥ 2. Then: 

(i) 𝑥1 ⩓ 𝑥2 ⩓ …⩓ 𝑥𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛},

and 

(ii) 𝑥1 ⩔ 𝑥2 ⩔ …⩔ 𝑥𝑛 = 𝑥1, 𝑥2, … , 𝑥𝑛,

{𝑥1, 𝑥2}, {𝑥1, 𝑥3}, …, {𝑥𝑛−1, 𝑥𝑛},

{𝑥1, 𝑥2, 𝑥3}, …

… … … … … …

{𝑥1, 𝑥2, … , 𝑥𝑛−1}, …

{𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛}.

There are: 𝐶𝑛
1 + 𝐶𝑛

2 +⋯+ 𝐶𝑛
𝑛−1 + 𝐶𝑛

𝑛 = 2𝑛 − 1 possibilities/alternatives.

The bigger is n, the bigger the indeterminacy.

(iii) x1 ⩔E  x2 ⩔E …⩔E  xn = 𝑥1, 𝑥2, … , 𝑥𝑛 =

= either x1, or x2, …, or xn,

  and no two or more variables be true simultaneously. 

There are: 𝐶𝑛
1 = 𝑛 possibilities.

The bigger is n, the bigger the indeterminacy due to many alternatives. 

Proof 

(i) The joinAND equality is obvious.

(ii) The disjoinOR outputs from the fact that for the disjunction of n proposition to be true, it is

enough to have at least one which is true. As such, we may have only one proposition true, or only two 

propositions true, and so on, only 𝑛 − 1 propositions true, up to all 𝑛 propositions true.  

(iii) It is obvious.

15.7. The classical Boolean Absorption Law1 

𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 does not work in this structure, since 𝑥 ⩓ (𝑥 ⩔ 𝑦) ≠ 𝑥. 

Proof 

𝑥 ⩓ (𝑥 ⩔ 𝑦)   = 𝑥 and (𝑥 or 𝑦) 

= x and {

𝑥
𝑦

{𝑥, 𝑦}

= {𝑥, 𝑥} or {𝑥, 𝑦} or {𝑥, 𝑥, 𝑦} 

= x or {𝑥, 𝑦} or {𝑥, 𝑦} 

= x or {𝑥, 𝑦} 
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= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑥, 𝑦}
= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑦}
 = {

𝑥
{𝑥, 𝑦} ≠ 𝑥.

But this one work:  

𝑥 ⩓ (x ⩔E  y) = x and (either x, or y, and no {x, y} ) = 

     = (x and x), or (x and y), and (x and no{x, y}) = x. 

15.8. The classical Boolean Absorption Law2 

𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 does not work in this structure, since 𝑥 ⩔ (𝑥 ⩓ 𝑦) ≠ 𝑥. 

Proof 

𝑥 ⩓ (𝑥 ⩔ 𝑦) = 𝑥 and (𝑥 or 𝑦) 

x or (x and y) = x or {𝑥, 𝑦} 

= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑥, 𝑦}
= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑦}
 

= {
𝑥

{𝑥, 𝑦} ≠ 𝑥.

But this one work:  

x ⩔E (x ⩓ y ) = (either x), or {x, y}, and (no {x, y}) = x. 

15.9. Annihilators and Identities for IndetermSoft Algebra 

While 0 is an annihilator for conjunction ∧  in the classical Boolean Algebra, 𝑥 ∧ 0 = 0 , in 

IndetermSoft Algebra ∅ is an identity for ⩓, while for the others it does not work. 

Proof 

𝑥 ⩓ ∅ = 𝑥 and ∅ 

= x and nothing 

= x put together with nothing 

= x. 

15.10. ∅ is neither an identity, nor an annihilator for disjoinOR nor for exclusiveOR 

While 0 is an identity for the ∨ in the classical Boolean Algebra, 𝑥 ∨ 0 = 𝑥 in IndetermAlgebra ∅ is 

neither an identity, nor an annihilator. 

Proof 

𝑥 ⩔ ∅ = 𝑥, or ∅ (nothing), or {𝑥, ∅} 

= x, or ∅, or x 

= x, or ∅. 

x ⩔E ∅ = either x, or ∅, and no {x, ∅}. 

15.11. The negation of ∅ has multiple solutions 

While in the classical Boolean Algebra the negation of 0 is 1 (one solution only), ¬0 = 1, in 

IndetermAlgebra the negation of ∅ has multiple solutions. 

Proof 

⫬ ∅ = 𝑁𝑂𝑇(∅), 

 = not nothing 

 = one or more elements from the set that the operator ⫬ is defined upon. 

Example 

Let 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅. 

Then, ⫬ ∅ = 𝑥1, or 𝑥2, or 𝑥3, or {𝑥1, 𝑥2}, or {𝑥1, 𝑥3}, or {𝑥2, 𝑥3}, or {𝑥1, 𝑥2, 𝑥3}, 
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therefore 7 alternative solutions. 

15.12. The Double Negation is invalid on IndetermSoft Algebra 

While in the classical Boolean Algebra the Double Negation Law is valid: ¬(¬𝑥) = 𝑥 , in 

IndetermAlgebra it is not true: 

In general, ⫬ (⫬ 𝑥) ≠ 𝑥. 

Proof 

A counter-example: 

Let 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅. 

⫬ 𝑥1 = what is not 𝑥1 or does not contain 𝑥1 

= 𝑥2, 𝑥3, { 𝑥2, 𝑥3}, ∅. 

Thus one has 4 different values of the negation of 𝑥1. 

Let us choose ⫬ 𝑥1 = 𝑥2; then ⫬ (⫬ 𝑥1) = 𝑥2 = (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) ≠ 𝑥1. 

Similarly for taking other values of ⫬ 𝑥1. 

Let 𝐻 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∪ ∅, 𝑛 ≥ 2. Let 𝑥 ∈ 𝐻. 

Minimum and Maximum elements with respect to the relation of inclusion are: 

∅ = the empty (null) element 

and respectively 

𝑥1 ⩓ 𝑥2 ⩓ …⩓ 𝑥𝑛

notation
= {𝑥1, 𝑥2, … , 𝑥𝑛} = 𝐻, 

but in the Boolean Algebra they are 0 and 1 respectively. 

15.13. The whole set H is an annihilator for joinAND 

While in the classical Boolean Algebra the identity for ∧ is 1, since 𝑥 ∧ 1 = 𝑥, in the IndetermSoft 

Algebra for ⩓ there is an annihilator H, since 𝑥 ⩓ 𝐻 = 𝐻, since 𝑥 ⩓ 𝐻 = {𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥} = 𝐻, because 𝑥 ∈

𝐻 so x is one of 𝑥1, 𝑥2, … , 𝑥𝑛. 

16. The maximum (H) is neither annihilator nor identity

While in the classical Boolean Algebra the annihilator for ∨  is 1, because 𝑥 ∨ 1 = 1 , in the

IndetermSoft Algebra for ⩔ the maximum H is neither annihilator nor identity, 

𝑥 ⩔ 𝐻 = 𝑥 or 𝐻 = 𝑥, H, {𝑥, 𝐻} = 𝑥, 𝐻, 𝐻 = 𝑥,𝐻. 

x ⩔E  H = either x, or H, and (no x and no H). 

17. Complementation1

In the classical Boolean Algebra, Complementation1 is: 𝑥 ∧ ¬𝑥 = 0.

In the IndetermSoft Algebra, 𝑥 ⩓ (⫬ 𝑥) ≠ ∅, and 𝑥 ⩓ (⫬ 𝑥) ≠ 𝐻. 

Counter-Example 

𝑀 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅  

⫬ 𝑥1 = 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅  

𝑥1 ⩓ (⫬ 𝑥1) = 𝑥1 ⩓ (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = 

= (𝑥1 and 𝑥2)  or (𝑥1 or 𝑥3) 

or (𝑥1 and {𝑥2, 𝑥3}) 

or (𝑥1 and ∅) =  

= (𝑥1, {𝑥1, 𝑥2}, {𝑥1, 𝑥3}, {𝑥1, 𝑥2, 𝑥3}) ≠ ∅ ≠ 𝑀. 
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In the classical Boolean Algebra, Complementation2 is: 𝑥 ∨ ¬𝑥 = 1. 

In the IndetermSoft Algebra, 𝑥 ⩔⫬ 𝑥 ≠ 𝐻, and 𝑥 ⩔⫬ 𝑥 ≠ ∅. 

Counter-Example 

The above 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅ 

and ⫬ 𝑥1 = 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅, then 

𝑥1 ⩔⫬ 𝑥1 = 𝑥1 ⩔ (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = {

𝑥1
𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅ 

𝑥1, 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅

= 𝑥1, or (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅), or (𝑥1, 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) 

    which is different from H and from ∅. 

And: 

𝑥1 ⩔E  ⫬ 𝑥1 = 𝑥1 ⩔E (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = 
1

2 3 2 3, ,{ , },
x

x x x x 

 
 
 

and no 1 2 3 2 3( , , ,{ , }, )x x x x x  ,

which is different from H and from ∅. 

19. De Morgan Law1 in the IndetermSoft Algebra

De Morgan Law1 from Classical Boolean Algebra is:

¬(𝑥 ∨ 𝑦) = (¬𝑥) ∧ (¬𝑦)  

is also true in the IndetermSoft Algebra: 

⫬ (𝑥 ⩔ 𝑦) = (⫬ 𝑥) ⩓ (⫬ 𝑦) 

Proof 

⫬ (𝑥 ⩔ 𝑦) =⫬ (𝑥, or 𝑦, or {𝑥 and 𝑦}) 

=⫬ 𝑥, and ⫬ 𝑦, and ⫬ {𝑥1 and y} 

=⫬ 𝑥1, and ⫬ 𝑦, and (⫬ 𝑥, or ⫬ y) 

=⫬ 𝑥, and ⫬ 𝑦  

= (⫬ 𝑥) ⩓ (⫬ 𝑦). 

Example 

𝑀 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅  

⫬ (𝑥1 ⩔ 𝑥2)      =⫬ (𝑥1, or 𝑥2, or {𝑥1 and 𝑥2}) 

=⫬ 𝑥1, and ⫬ 𝑥2, and (⫬ 𝑥1 or ⫬ 𝑥2) 

=⫬ 𝑥1, and ⫬ 𝑥2  

= (⫬ 𝑥1) ⩓ (⫬ 𝑥2). 

⫬ 𝑥1 = (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)  

⫬ 𝑥2 = (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅)  
(⫬ 𝑥1) ⩓ (⫬ 𝑥2) = (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) ⩓ (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 

= 𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅. 

20. De Morgan Law2 in the IndetermSoft Algebra

De Morgan Law2 in the classical Boolean Algebra is

¬(𝑥 ∧ 𝑦) = (¬𝑥) ∨ (¬𝑦)  

is also true in the new structure called IndetermSoft Algebra: 

⫬ (𝑥 ⩓ 𝑦) = (⫬ 𝑥) ⩔ (⫬ 𝑦) 

Proof 

⫬ (𝑥 ⩓ 𝑦) =⫬ ({𝑥 and 𝑦}) = ⫬ 𝑥, or ⫬ 𝑦, 𝑜𝑟 {⫬ 𝑥, 𝑎𝑛𝑑 ⫬ 𝑦} = (⫬ 𝑥) ⩔ (⫬ 𝑦) 

Example 

⫬ (𝑥1 ⩓ 𝑥2)      =⫬ ({𝑥1, 𝑥2}) 

= (⫬ 𝑥1, 𝑜𝑟 ⫬ 𝑥2, or (⫬ 𝑥1 and ⫬ 𝑥2)) 

= (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = 

18. Complementation2
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or (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) 

or (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 

or (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) = 

= (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅)  
(⫬ 𝑥1) ⩔ (⫬ 𝑥2) =⫬ 𝑥1, or ⫬ 𝑥2, or (⫬ 𝑥1 ⩓ ⫬ 𝑥2) = 

(𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)  

or (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 

or (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) 

= (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) 

= ⫬ (𝑥1 ⩓ 𝑥2) 

* 

This IndetermSoft Algebra is not a Boolean Algebra because many of Boolean Laws do not work, 

such as: 

• Identity for ⩓

• Identity for ⩔

• Identity for ⩔E

• Annihilator for ⩓

• Annihilator for ⩔

• Annihilator for ⩔E

• Absorption1 [𝑥 ⩓ (𝑥 ⩔ 𝑦) = x]

• Absorption2 [𝑥 ⩔ (𝑥 ⩓ 𝑦) = x]

• Double Negation

• Complementation1 [𝑥 ⩓ ⫬ 𝑥 = ∅]

• Complementation2 { [𝑥 ⩔ ⫬ 𝑥 = 𝐻] and [x ⩔E  ⫬ 𝑥 = 𝐻] }

21. Practical Applications of Soft Set and IndetermSoft Set

Let 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4} a set of four houses, and the attribute a = color, whose values are

A = {white, green, blue, red}. 

21.1. Soft Set 

The function 

𝐹: 𝐴 → 𝒫(𝐻)  

where 𝒫(𝐻) is the powerset of H, 

is called a classical Soft Set. 

For example, 

F (white) = ℎ3, i.e. the house ℎ3 is painted white; 

F (green) = {ℎ1, ℎ2}, i.e. both houses ℎ1 and ℎ2 are painted green; 

F (blue) = ℎ4, i.e. the house ℎ4 is painted blue; 

F (red) = ∅, i.e. no house is painted red. 

Therefore, the information about the houses’ colors is well-known, certain. 

21.2. IndetermSoft Set 

But there are many cases in our real life when the information about the attributes’ values of the 

objects (or items – in general) is unclear, uncertain. 

That is why we need to extend the classical (Determinate) Soft Set to an Indeterminate Soft Set. 

The determinate (exact) soft function 

𝐹: 𝐴 → 𝒫(𝐻)  
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is extended to an indeterminate soft function 

𝐹: 𝐴 → 𝐻(⩓, ⩔, ⩔E, ⫬),  

where (⩓, ⩔, ⩔E, ⫬) is a set closed under ⩓, ⩔, ⩔E, and ⫬, and f(x) is not always determinate. 

For example, 

F (white) = ℎ3 ⩔ ℎ4,  

means the houses ℎ3 or ℎ4 are white, but we are not sure which one, 

whence one has three possibilities/outcomes/alternatives: 

either ℎ3 is white (and ℎ4 is not), 

or ℎ4 is white (and ℎ3 is not), 

or both ℎ3 and ℎ4 are white. 

This is an indeterminate information. 

We may also simply write: 

F (white) = {

ℎ3
ℎ4

{ℎ3, ℎ4}

or F(white) = ℎ3, ℎ4, {ℎ3, ℎ4},  

where {ℎ3, ℎ4} means {ℎ3 and ℎ4}, 

that we read as: either ℎ3, or ℎ4, or {ℎ3 and ℎ4}. 

Another example: 

F(blue) = ⫬ ℎ2, or the house ℎ2 is not blue, 

therefore other houses amongst {ℎ1, ℎ3, ℎ4} may be blue, 

or no house (∅) may be blue. 

This is another indeterminate information. 

The negation of ℎ2 (denoted as NOT(ℎ2) = ⫬ ℎ2) is not equal to the classical complement of 𝐶(ℎ2) 

of the element h2 with respect to the set 𝐻, since 

𝒞(ℎ2) = 𝐻 ∖ {ℎ2} = {ℎ1, ℎ3, ℎ4}, 

but ⫬ ℎ2 may be any subset of 𝐻 ∖ {ℎ2}, or any sub-complement of 𝐶(ℎ2), 

again many (in this example 8) possible outcomes to choose from: 

⫬ ℎ2         = ℎ1, ℎ3, ℎ4, {ℎ1, ℎ3}, {ℎ1, ℎ4}, {ℎ3, ℎ4}, {ℎ1, ℎ3, ℎ4}, ∅ = 

= either ℎ1, or ℎ3, or ℎ4, 

  or {ℎ1 and ℎ3}, {ℎ1 and ℎ4}, {ℎ3 and ℎ4}, 

  or {ℎ1 and ℎ3 and ℎ4}, 

  or ∅ (null element, i.e. no other house is blue). 

The negation (⫬ ℎ2) produces a higher degree of indeterminacy than the previous unions: (ℎ3 ⩔ ℎ4) 

and respectively (h3 ⩔E h4). 

The intersection (⩓) is a determinate (certain) operator. 

For example, 

F (green) = ℎ1 ⩓ ℎ2, which is equal to {ℎ1, ℎ2}, i.e. ℎ1 and ℎ2 put together, {ℎ1 and ℎ2}. 

A combination of these operators may occur, so the indeterminate (uncertain) soft function 

becomes more complex. 

Example again. 

F (green) = ℎ1 ⩓ (⫬ ℎ4), where of course ⫬ ℎ4 ≠ ℎ1, which means that: 

the house ℎ1 is green, 

and other houses amongst {ℎ2, ℎ3} may be blue, 

or ∅ (no other house is blue). 

ℎ1 ⩓ (⫬ ℎ4)   = ℎ1 and (NOTℎ4) 

  = ℎ1 and (ℎ1, ℎ2, ℎ3, {ℎ1, ℎ2}, {ℎ1, ℎ3}, {ℎ2, ℎ3}, {ℎ1, ℎ2, ℎ3}, ∅) 

  [one cuts ℎ1 since ⫬ ℎ4 suppose to be different from ℎ1] 
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  = ℎ1 and (ℎ2, ℎ3, {ℎ2, ℎ3}, ∅) 

  = (ℎ1 and ℎ2) or (ℎ1 and ℎ3) 

or (ℎ1 and {ℎ2, ℎ3}) 

or ∅ 

 = (ℎ1 and ℎ2) or (ℎ1 and ℎ3) or (ℎ1 and ℎ2 and ℎ3) or ∅ 

notation
=

 {ℎ1, ℎ2}, {ℎ1, ℎ3}, {ℎ1, ℎ2, ℎ3}, ∅. 

Thus, 4 possibilities.

22. Definitions of <Algebra, NeutroAlgebra, AntiAlgebra>

Let 𝒰 be a universe of discourse, and 𝐻 a non-empty set included in 𝒰. Also, H is endowed with

some operations and axioms. 

22.1. Algebra 

An algebraic structure whose all operations are well-defined, and all axioms are totally true, is 

called a classical Algebraic Structure (or Algebra). Whence (T, I, F) = (1, 0, 0). 

22.2. NeutroAlgebra 

If at least one operation or one axiom has some degree of truth (T), some degree of indeterminacy 

(I), and some degree of falsehood (F), where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}, and no other operation or 

axiom is totally false (F = 1), then this is called a NeutroAlgebra. 

22.3. AntiAlgebra 

An algebraic structure that has at least one operation that is totally outer-defined (F = 1) or at least 

one axiom that is totally false (F = 0), is called AntiAlgebra.  

23. Definition of IndetermAlgebra

We introduce now for the first time the concept of IntermAlgebra (= Indeterminate Algebra), as a

subclass of NeutroAlgebra. 

IndetermAlgebra results from real applications, as it will be seen further. 

Let 𝒰 be a universe of discourse, and 𝐻 a non-empty set included in 𝒰. 

If at least one operation or one axiom has some degree of indeterminacy ( I > 0 ), the degree of 

falsehood F = 0, and all other operations and axioms are totally true, then 𝐻 is an IndetermAlgebra. 

24. Definition of IndetermSoft Algebra

The set H(⩓, ⩔, ⩔E, ⫬) closed under the following operators:

joinAND (denoted by ⩓), which is a determinate operator; 

disjoinOR (denoted by ⩔), which is an indeterminate operator; 

exclusiveOR (denoted by ⩔E), which is an indeterminate operator, 

and sub-negation/sub-complement NOT (denoted by ⫬), which is an indeterminate operator; 

is called an IndetermSoft Algebra. 

The IndetermSoft Algebra extends the classical Soft Set Algebra. 

The IndetermSoft Algebra is a particular case of the IndetermAlgebra, and of the NeutroAlgebra. 

The operator joinAND 

⩓:𝐻2 ⟶ H(⩓, ⩔, ⩔E, ⫬) 
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is determinate (in the classical sense): 

∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, 𝑥 ⩓ 𝑦 = 𝑥 joinAND 𝑦 = {𝑥, 𝑦} ∈ 𝐻(⩓, ⩔, ⩔E, ⫬) 

therefore, the aggregation of x and y by using the operator ⩓ gives a clear and unique output, i.e. 

the classical set of two elements: {𝑥, 𝑦}. 

But the operator disjoinOR 

⩔:𝐻2 ⟶ H(⩓, ⩔, ⩔E, ⫬) 

is indeterminate because: 

∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, 𝑥 ⩔ 𝑦 = 𝑥 disjoinOR 𝑦 = {

either 𝑥
or 𝑦

or both {𝑥 and 𝑦}
 = {

𝑥
𝑦

{𝑥, 𝑦}

Thus, the aggregation of x and y by using the operator ⩔ gives an unclear output, with three 

possible alternative solutions (either x, or y, or {𝑥 and 𝑦}). 

The exclusiveOR operator is also indeterminate: 

∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, x ⩔E y = 𝑥 exclusiveOR 𝑦 = either x, or y, and no {x, y}, 

therefore two possible solutions: 

⩔E: 𝐻2 ⟶ H(⩓,⩔, ⩔E, ⫬). 

Similarly, the operator sub-negation / sub-complement NOT 

⫬:𝐻 ⟶ H(⩓, ⩔, ⩔E, ⫬) 

is indeterminate because of many elements 𝑥 ∈ 𝐻,  

    NOT(x) =  ⫬ 𝑥 = a part of the complement of x with respect to H 

  =  a subset of 𝐻 ∖ {𝑥}. 

But there are many subsets of 𝐻 ∖ {𝑥}, therefore there is an unclear (uncertain, ambiguous) output, 

with multiple possible alternative solutions. 

25. Definition of IndetermSoft Set

Let U  be a universe of discourse, H a non-empty subset of U, and H(⩓, ⩔, ⩔E, ⫬) the IndetermSoft

Algebra generated by closing the set H under the operators ⩓, ⩔, ⩔E, and ⫬. 

Let a be an attribute, with its set of attribute values denoted by A. Then the pair 

(F, A), where 𝐹: 𝐴 → H(⩓,⩔, ⩔E, ⫬),  is called an IndetermSoft Set over 𝐻. 

26. Fuzzy / Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension / IndetermSoft Set

One may associate fuzzy / intuitionistic fuzzy / neutrosophic etc. degrees and extend the

IndetermSoft Set to some Fuzzy / Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension / 

IndetermSoft Set. 

26.1. Applications of (Fuzzy/ Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension ) IndetermSoft Set 

Let H = {h1, h2, h3, h4} be a set of four houses, and the IndetermSoft Algebra generated by closing the 

set H under the previous soft operators, H(⩓, ⩔, ⩔E, ⫬). 

Let the attribute c = color, and its attribute values be the set C = {white, green, blue}. 

The IndetermSoft Function F : A → H(⩓, ⩔, ⩔E, ⫬) forms an IndetermSoft Set.

Let an element h H , and one denotes by:

( )d h = any type of degree (either fuzzy, or intuitionistic fuzzy, or neutrosophic, or any other

fuzzy-extension) of the element h. 

We extend the soft operators ⩓, ⩔, ⩔E, ⫬  by assigning some degree  0(.) [0,1]pd  , where:

p = 1 for classical and fuzzy degree, p = 2 for intuitionistic fuzzy degree, p = 3 for neutrosophic 

degree, and so on p = n for n-valued refined neutrosophic degree, to the elements involved in the 
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operators, where , ,    represent the conjunction, disjunction, and negation respectively of these

degrees in their corresponding fuzzy-extension sets or logics. 

For examples: 

i. From F(white) = h1 ⩓ h2 as in IndetermSoft Set, one extends to:

F(white) = 1 1( )h d ⩓ 2 2( )h d , which means the degree (chance) that h1 be white is 1d and the degree 

(chance) that h2 be white is 2d , whence: 

F(white) = 1 1( )h d ⩓ 2 2( )h d = 1 2 1 2{ , }( )h h d d

As such, the degree of both houses {h1, h2} = {h1 and h2} be white is 1 2d d . 

ii. Similarly, F(white) = 1 1( )h d
⩔ 2 2( )h d

= {h1 or h2} 1 2( )d d
, 

or the degree of at least one house {h1 or h2} be white is 1 2( )d d
. 

iii. F(white) = 1 1( )h d
⩔E 2 2( )h d

= 

      = { h1 and (no h2)}, or { (no h1) and h2 }, and { (no h1) and (no h2) } 

      = ( either h1 is white, or h2 is white, and [no both {h1, h2}] are white simultaneously ) has the 

degree of 1 2 1 2( ) ( )d d d d − 
. 

iv. F(white) =  (⫬h1)(𝑑1
° ), which means that the degree (chance) for h1 not to be white is 𝑑1

° .

(⫬ h1 = NOT(h1) = either h2, or h3, or h4,

      or {h2, h3}, {h2, h4}, {h3, h4}, 

     or {h2, h3, h4}, 

     or   (no house). 

There are 8 alternatives, thus NOT(h1) is one of them. 

Let’s assume that NOT(h1) = {h3, h4}. Then the degree of both houses {h3, h4} be white is ¬𝑑1
° . 

27. Definition of IndetermHyperSoft Set

Let U  be a universe of discourse, H a non-empty subset of U, and H(⩓, ⩔, ⩔E, ⫬) the IndetermSoft

Algebra generated by closing the set H under the operators ⩓, ⩔, ⩔E, and ⫬. 

Let 𝑎1, 𝑎2, … 𝑎𝑛 , where 𝑛 ≥ 1, be 𝑛  distinct attributes, whose corresponding attribute values are 

respectively the sets 𝐴1, 𝐴2, … , 𝐴𝑛, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}. Then the pair (𝐹, 𝐴1 ×

𝐴2 × …× 𝐴𝑛), where 𝐴1 × 𝐴2 × …× 𝐴𝑛 represents a Cartesian product, with  

𝐹: 𝐴1 × 𝐴2 × …× 𝐴𝑛 → H(⩓, ⩔, ⩔E, ⫬), is called an IndetermHyperSoft Set. 

Similarly, one may associate fuzzy / intuitionistic fuzzy / neutrosophic etc. degrees and extend the 

IndetermHyperSoft Set to some Fuzzy / Intuitionistic Fuzzy / Neutrosophic etc. IndetermHyperSoft Set. 

28. Applications of the IndetermHyperSoft Set

Let’s again  𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4} be a set of four houses, and the attribute c = color, whose values are

C = {white, green, blue, red}, and another attribute p = price, whose values are P = {cheap, expensive}. 

The function 

𝐹: 𝐶𝑃 → 𝒫(𝐻)  

where 𝒫(𝐻) is the powerset of H, is a HyperSoft Set. 

𝐹: 𝐶 × 𝑃 → H(⩓, ⩔, ⩔E, ⫬), is called an IndetermHyperSoft Set. 

Examples:  

F(white, cheap) = h2⩔ h4 

F(green, expensive) = h1 ⩔E h2 

F(red, expensive) = ⫬ h3 
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For a Neutrosophic IndetermHyperSoft Set one has neutrosophic degrees, for example: 

F(white, cheap) = h2(0.4, 0.2, 0.3)⩔ h4 (0.5, 0.1, 0.4) 

In the same way as above (Section 26.1), one extends the HyperSoft operators ⩓, ⩔, ⩔E, ⫬  by 

assigning some degree 
0(.) [0,1]pd  , where: p = 1 for classical and fuzzy degree, p = 2 for

intuitionistic fuzzy degree, p = 3 for neutrosophic degree, and so on p = n for n-valued refined 

neutrosophic degree, to the elements involved in the operators, where , ,    represent the

conjunction, disjunction, and negation respectively of these degrees in their corresponding fuzzy-

extension sets or logics. 

29. Definition of Neutrosophic Triplet Commutative Group

Let 𝒰 be a universe of discourse, and (𝐻,∗) a non-empty set included in 𝒰, where * is a binary

operation (law) on 𝐻. 

(i) The operation * on 𝐻 is well-defined, associative, and commutative.

(ii) For each element 𝑥 ∈ 𝐻 there exist an element 𝑦 ∈ 𝐻, called the neutral of x, such that y is

different from the unit element (if any), with 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 = 𝑥, and there exist an element 

𝑧 ∈ 𝐻,  called the inverse of x, such that 𝑥 ∗ 𝑧 = 𝑧 ∗ 𝑥 = 𝑦, then 〈𝑥, 𝑦, 𝑧〉 is called a neutrosophic 

triplet. 

Then (𝐻, ∗) is Neutrosophic Triplet Commutative Group. 

In general, a Neutrosophic Triplet Algebra is different from a Classical Algebra. 

29.1. Theorem 3 

The joinAND Algebra (𝐻, ⩓)  and the disjoinOR Algebra (𝐻, ⩔)  are Neutrosophic Triplet 

Commutative Groups. 

Proof 

We have previously proved that the operators ⩓ and ⩔ are each of them: well-defined, associative, 

and commutative. 

We also proved that the two operators are idempotent: 

∀𝑥 ∈ 𝐻, 𝑥 ⩓ 𝑥 = 𝑥 and 𝑥 ⩔ 𝑥 = 𝑥. 

Therefore, for (𝐻,⩓) and respectively (𝐻,⩔) one has neutrosophic triplets of the form: 〈𝑥, 𝑥, 𝑥〉. 

30. Enriching the IndetermSoft Set and IndetermHyperSoft Set

The readers are invited to extend this research, since more determinate and indeterminate soft

operators may be added to the IndetermSoft Algebra or IndetermHyperSoft Algebra, resulted from, or 

needed to, various real applications - as such one gets stronger soft and hypersoft structures.  

A few suggestions: 

F(white) = at least k houses; 

or F(white) = at most k houses; 

or F(green, small) = between k1 and k2 houses; 

where k, k1 and k2 are positive integers, with k1 ≤ k2. 

Etc. 

31. Conclusions

The indeterminate soft operators, presented in this paper, have resulted from our real-world

applications. An algebra closed under such operators was called an indeterminate soft algebra. 
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IndetermSoft Set and IndetermHyperSoft Set, and their corresponding Fuzzy / Intuitionistic Fuzzy 

/ Neutrosophic forms, constructed on this indeterminate algebra, are introduced for the first time as 

extensions of the classical Soft Set and HyperSoft Set. 

Many applications and examples are showed up. 
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Introducción a los conjuntos IndetermSoft 
e IndetermHyperSoft 

Florentin Smarandache

Resumen: En este artículo se presenta por primera vez el Conjunto IndetermSoft, como extensión del Soft Set 
clásico (determinado), que opera con datos indeterminados, y de manera similar el Conjunto HyperSoft 
extendido al Conjunto IndetermHyperSoft, donde 'Indeterm' significa 'Indeterminado' (resultado incierto, 
conflictivo, no único). Están construidos sobre un Álgebra IndetermSoft que es un álgebra que trata con 
Operadores IndetermSoft resultantes de nuestro mundo real. Posteriormente, se presentan los Conjuntos 
IndetermSoft e IndetermHyperSoft y sus extensiones Difusa/Intuicionista Difusa/Neutrosófica y otras 
extensiones difusas así como sus aplicaciones. 

Palabras clave: Soft Set; conjunto HyperSoft; Conjunto IndetermSoft; Conjunto IndetermHyperSoft; 
Operadores IndetermSoft; Álgebra IndetermSoft. 

Abstract: This paper presents for the first time the IndetermSoft Set, as an extension of the classical 
(determinate) Soft Set, which operates on indeterminate data, and similarly the HyperSoft Set extended to the 
IndetermHyperSoft Set, where 'Indeterm' means 'Indeterminate' (uncertain, conflicting, non-unique result). They 
are built on an IndetermSoft Algebra which is an algebra dealing with IndetermSoft Operators resulting from our 
real world. Subsequently, the IndetermSoft and IndetermHyperSoft Sets and their Fuzzy/Fuzzy 
Intuitionistic/Neutrosophic and other fuzzy extensions and their applications are presented. 

Keywords: Soft Set; HyperSoft set; IndetermSoft set; IndetermHyperSoft set; IndetermSoft operators; 

IndetermSoft algebra. 

1. Introducción

El Soft Set clásico se basa en una función determinada (cuyos valores son ciertos y únicos), pero en nuestro
mundo hay muchas fuentes que, por falta de información o ignorancia, proporcionan información indeterminada 
(incierta y no única, sino vacilante o alternativa). 

Pueden ser modelados por operadores que tengan cierto grado de indeterminación debido a la imprecisión de 
nuestro mundo. 

Florentin Smarandache (2022). Introducción a los conjuntos IndetermSoft e IndetermHyperSoft Sets. 
Neutrosophic Computing and Machine Learning 22, 1-22
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El artículo menciona las definiciones de los Conjuntos Soft e HyperSoft clásicos, luego muestra la distinción 
entre funciones suaves determinadas e indeterminadas.   

Las tripletas neutrosóficas <Función, NeutroFunción, AntiFunción> y <Operador, NeutroOperador, 
AntiOperador> se discuten como partes del <Álgebra, NeutroÁlgebra, AntiÁlgebra> (Smarandache, 2019). 

De manera similar, se toman en consideración las distinciones entre operadores determinados e 
indeterminados. 

Posteriormente, se construye un Álgebra IndetermSoft, utilizando un operador suave determinado (joinAND), 
y tres operadores suaves indeterminados (disjoinOR, exclussiveOR, NOT), cuyas propiedades se estudian más 
adelante. 

Las Álgebras IndetermSoft e IndetermHyperSoft son subclases del IndetermÁlgebra. 
El IndetermÁlgebra se presenta como un álgebra cuyo espacio u operadores tienen algún grado de 

indeterminación (I > 0), y es una subclase de NeutroÁlgebra. 
Se demostró que el Álgebra IndetermSoft y el Álgebra IndetermHyperSoft son Álgebras no Booleanas, ya que 

muchas Leyes Booleanas no se cumplen. 

2. Definición de Soft Set Clásico

Sea U un universo de discurso, H un subconjunto no vacío de U, con P(𝐻) el conjunto potencia de 𝐻, y a un 
atributo, con su conjunto de valores de atributos denotados por A. Entonces el par (F, 𝐻), donde 𝐹: 𝐴 → 𝑃(𝐻), se 
llama Soft Set clásico sobre 𝐻. 

Molodtsov [1] definió el Soft Set en 1999, y Maji [2] el Soft Set Neutrosófico en 2013. 

3. Definición de la Función Suave Determinada (Clásica)

La función anterior 𝐹: 𝐴 → 𝑃(𝐻), donde para cada , ( ) ( ),x A f x P H  y f(x) es cierta y única, se llama 
Función Determinada (Clásica). 

4. Definición de la Función IndetermSoft

Se presenta por primera vez. Sea 𝑈 un universo de discurso, H un subconjunto no vacío de 𝑈 y P(𝐻) el 
conjunto potencia de 𝐻. Sea a un atributo, y sea 𝐴 un conjunto de valores de este atributo. 

Una función 𝐹: 𝐴 → 𝑃(𝐻) se llama Función IndetermSoft si: 

i. el conjunto A tiene alguna indeterminación;
ii. o P(H) tiene alguna indeterminación;

iii. o existe al menos un valor de atributo v A , tal que F(v) = indeterminado (poco claro,
incierto o no único);

iv. o cualquiera de las dos o las tres situaciones anteriores.
La Función IndetermSoft tiene cierto grado de indeterminación, y como tal es un caso particular de la 

NeutroFunción [6, 7], definida en 2014 – 2015, que se recuerda a continuación.  

5. <Función, NeutroFunción, AntiFunción>

Se ha formado la tripleta neutrosófica anterior [10, 11]. 

i. Función (clásica), que es una función bien definida (definida internamente) para todos los
elementos en su dominio de definición, o (T, I, F) = (1, 0, 0).

ii. NeutroFunción (o función neutrosófica), que es una función parcialmente bien definida
(grado de verdad T), parcialmente indeterminada (grado de indeterminación I) y
parcialmente definida externamente (grado de falsedad F) en su dominio de definición,
donde ( , , ) {(1,0,0), (0,0,1)}T I F  .
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iii. Antifunción, que es una función definida externamente para todos los elementos en su
dominio de definición, o (T, I, F) = (0, 0, 1).

6. Aplicaciones del Soft Set

Un detective debe encontrar a los criminales entre una multitud de sospechosos. Para ello utiliza los 
testimonios de varios testigos. 

Sea S = {s1, s2, s3, s4, s5} { }  el conjunto de la multitud de sospechosos, dónde{ } es el elemento vacío 
(nulo), y c el atributo criminal, que tiene dos valores de atributo C = {sí, no}. 

i. La función 1 : ( )F C P S→ , dónde ( )P S es el conjunto potencia de S, representa la 

información proporcionada por el testigo W1. 
Por ejemplo, 
F1 (sí) = s3, lo que significa que, según el testigo W1, el sospechoso s3 es el criminal, 
y F1(no) = s4, lo que significa igualmente, según el testigo W1, que el sospechoso s4 no es el criminal. 
Estas son informaciones determinadas (exactas), provistas por el testigo W1, por lo que se trata de un Soft Set 

clásico. 
ii. Más adelante, la función 2 : ( )F C P S→ , dónde ( )P S es el conjunto potencia de S,

representa la información proporcionada por el testigo W2.
Por ejemplo, 
F2(sí) ={ } , el elemento nulo, lo que significa que, según el testigo W2, ninguno de los sospechosos del 

conjunto S es el criminal. Esta es también una información determinada como en el Soft Set clásico. 

7. Operador indeterminado como extensión del Soft Set

iii. Nuevamente, la función 3 : ( )F C P S→ , dónde ( )P S es el conjunto potencia de S, 

representa la información proporcionada por el testigo W3. 
Este testigo no puede proporcionar una información cierta y única, sino una información indeterminada 

(incierta, no única sino alternativa). 
Por ejemplo: 
F3(sí) = NOT(s2) 
y F3(no) = s3 OR s4 
La tercera fuente (W3) proporciona información indeterminada (poco clara, no única), dado que NOT(s2) 

significa que s2 no es el criminal, entonces, en consecuencia: uno, dos o más sospechosos del conjunto restante de 
sospechosos {s1, s3, s4, s5} pueden ser el (los) criminal(es), o{ } (ninguno de los sospechosos restantes es el 
criminal), de donde se tiene: 

1 2 3 4 4
4 4 4 4 1 2 16C C C C+ + + + = = posibilidades (alternativas o resultados), resultantes de una sola entrada, para 

elegir, donde m
nC significa combinaciones de n elementos tomados en grupos de m elementos, para números 

enteros 0 m n  . 
Información indeterminada de nuevo, ya que: 
s3 OR s4  significa: {s3 sí, y s4 no}, o {s3 no, y s4 sí}, o {s3 sí, y s4 sí}, 
por lo tanto, 3 posibles resultados (alternativos) de donde elegir. 
De este modo, 3 : ( )F C P S→ es una función suave indeterminada (o renombrada/contratada como función 

suave indeterminada). 
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8. Extensión de valor de atributo indeterminado del Soft Set

Para extender las aplicaciones anteriores del Soft Set, siendo la multitud de sospechosos el conjunto S = {s1, s2, 
s3, s4, s5} { } , donde{ } es el elemento vacío (nulo), y el atributo c = criminal, pero el atributo c tiene esta vez  

tres valores de atributo K = {sí, no, tal vez}, como en la nueva rama de la filosofía, llamada Neutrosofía, donde 
entre los opuestos <A> = sí, y <antiA> = no, existe la indeterminación (o neutral) <neutA> = tal vez. 

Y esto lo proporciona el testigo W4 y se define como: 
4 : ( )F K P S→

Por ejemplo: F4(tal vez) = s5, lo que significa que el criminal es tal vez s5. 
También hay cierta indeterminación aquí porque el valor del atributo "tal vez" significa algo inseguro o 

incierto. 
Se puede transformar este en un Soft Set Difuso (o Intuicionista Difuso, o Neutrosófico, u otra extensión 

Difusa) de las siguientes maneras: 
F4(quizás) = s5 es aproximadamente equivalente a F4(sí) = s5 (algún grado de pertenencia) 
o 
F4(quizás) = s5 es aproximadamente equivalente a F4(no) = s5 (algún grado de no pertenencia) 
Considerando el siguiente ejemplo. 
El Soft Set Difuso como: 
F4(quizás) = s5 es aproximadamente equivalente a F4(sí) = s5(0,6), o la probabilidad de que s5 sea un criminal 

es del 60%; 
El Soft Set Intuicionista Difuso como: 
F4(quizás) = s5 es aproximadamente equivalente a F4(sí) = s5(0,6, 0,3), o la probabilidad de que s5 sea un 

criminal es del 60 %, y la probabilidad de que s5 no sea un criminal es del 30 %; 
El Soft Set Neutrosófico como: 
F4(quizás) = s5 es aproximadamente equivalente a F4(sí) = s5(0.6, 0.2, 0.3), o la posibilidad de que s5 sea un 

criminal es del 60 %, la posibilidad indeterminada de que no sea un criminal es del 20 % y la posibilidad de que s5 
no sea un criminal es 30%. 

Y de manera similar para otros Soft Sets de Extensión Difusa. 
O, de manera equivalente, empleando el valor de atributo “no”, se puede considerar: 
El Soft Set Difuso como: 
F4(quizás) = s5 es aproximadamente equivalente a F4(no) = s5(0.4), o la probabilidad de que s5 no sea un 

criminal es del 40%; 
El Soft Set Intuicionista Difuso como: 
F4(quizás) = s5 es aproximadamente equivalente a F4(no) = s5(0.3, 0.6), o la probabilidad de que s5 no sea un 

criminal es del 30 %, y la probabilidad de que s5 sea un criminal es del 60 %; 
El Soft Set Neutrosófico como: 
F4(quizás) = s5es aproximadamente equivalente a F4(no) = s5(0.3, 0.2, 0.6), o la probabilidad de que s5 no sea 

un criminal es del 30%, la probabilidad indeterminada de criminal-no criminal es del 20% y la probabilidad de 
que s5 sea un criminal es 60%. 

Y de manera similar para otros Soft Sets de Extensión Difusa. 

9. Conjunto HyperSoft

Smarandache extendió en 2018 el Soft Set al Conjunto HyperSoft [3, 4] transformando la función F de una 
función uni-atributo en una función multi-atributo. 
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9.1. Definición de Conjunto HyperSoft 

Sea 𝒰 un universo de discurso, H un conjunto no vacío incluido en U, y P(𝐻) el conjunto potencia de 𝐻. Sea 
𝑎1, 𝑎2, … 𝑎𝑛, donde 𝑛 ≥ 1, n atributos distintos, cuyos valores de atributo correspondientes sean respectivamente 
los conjuntos 𝐴1, 𝐴2, … , 𝐴𝑛 , con 𝐴𝑖 ∩ 𝐴𝑗 = ∅  para 𝑖 ≠ 𝑗  y 𝑖, 𝑗 ∈ {1, 2,… , 𝑛} . Entonces el par (𝐹, 𝐴1 × 𝐴2 ×
…× 𝐴𝑛), donde 𝐴1 × 𝐴2 × …× 𝐴𝑛 representa un producto Cartesiano, con 

𝐹: 𝐴1 × 𝐴2 × …× 𝐴𝑛 → 𝑃(𝐻) 
se llama Conjunto HyperSoft. 
Por ejemplo, 
sea 

1 2 1 2( , ,..., ) ...n ne e e A A A     
entonces 

1 2( , ,..., ) ( )nF e e e G P H=  .

9.2. Clasificación de conjuntos HyperSoft 

Con respecto a los tipos de conjuntos, tales como: clásico, difuso, intuicionista difuso, neutrosófico, 
plitogénico y todos los demás conjuntos de extensión difusa, se tienen respectivamente: Conjunto HyperSoft 
Clásico, Conjunto HyperSoft Difuso, Conjunto HyperSoft Intuicionista Difuso, Conjunto HyperSoft Neutrosófico, 
Conjunto HyperSoft plitogénico y todos los demás conjuntos HyperSoft de extensión difusa [3, 5-9]. 

Los grados HyperSoft de T = verdad, I = indeterminación, F = falsedad, H = indecisión, N = neutralidad, etc. 
asignados a estos Conjuntos HyperSoft Clásicos, Conjuntos HyperSoft Difusos, Conjuntos HyperSoft 
Intuicionista Difusos, Conjuntos HyperSoft Neutrosóficos, Conjuntos HyperSoft Plitogénicos y todos los demás 
conjuntos HyperSoft de extensión difusa verifican las mismas condiciones de inclusión y desigualdades que en 
sus correspondientes conjuntos difusos y de extensión difusa. 

9.3. Aplicaciones de Conjunto HyperSoft y su correspondiente Conjunto HyperSoft Difuso / 

Intuicionista Difuso / Neutrosofico. 

Sea H = {h1, h2, h3, h4} un conjunto de cuatro casas y dos atributos: 
s= tamaño, cuyos valores de atributo son S = {pequeña, mediana, grande}, 
y l = ubicación, cuyos valores de atributo son L = {central, periférica}. 
Entonces : ( )F S L P H → es un Conjunto HyperSoft. 

i. Por ejemplo, F(pequeña, periférica) = {h2, h3}, lo que significa que las casas que son pequeñas
y periféricas son h2 y h3.

ii. Un Conjunto HyperSoft Difuso puede asignar algunos grados difusos, por ejemplo:
F(pequeña, periférica) = {h2(0.7), h3(0.2)}, lo que significa que con respecto a los valores de
los atributos pequeña y periférica en conjunto, h2 cumple con los requisitos de ser tanto
pequeña como periférica en un grado difuso del 70%, mientras que h3 en un grado difuso del
20%.

iii. Subsecuentemente, un Conjunto HyperSoft Intuicionista Difuso puede asignar algunos grados
intuicionistas difusos, por ejemplo:
F(pequeña, periférica) = {h2(0.7, 0.1), h3(0.2, 0.6)}, lo que significa que con respecto a los
valores de los atributos pequeña y periférica en conjunto, h2 cumple con los requisitos de ser
tanto pequeña como periférica en un grado difuso intuicionista del 70%, y no lo cumple en un
grado difuso intuicionista del 10%; y de manera similar para h3.

iv. Asimismo, un Conjunto HyperSoft Neutrosófico puede asignar algunos grados neutrosóficos,
por ejemplo:
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F(pequeña, periférica) = {h2(0.7, 0.5, 0.1), h3(0.2, 0.3, 0.6)}, lo que significa que con respecto 
a los valores de los atributos pequeña y periférica en conjunto, h2 cumple con los requisitos de 
ser pequeña y periférica en un grado neutrosófico del 70%, el requisito indeterminado en un 
grado neutrosófico del 50%, y no cumple el requerimiento en un grado neutrosófico del 10%. 
Y de manera similar, para h3. 

v. Del mismo modo para otros Conjuntos HyperSoft de extensión difusa.

10. Operador, NeutroOperador, AntiOperador

Sea U un universo de discurso y H un subconjunto no vacío de U. 
Sea 1n  un número entero, y un operador definido como: 

: nH H →  
Tomando una n-tupla aleatoria 1 2( , , ..., ) n

nx x x H . 

Hay tres casos posibles: 

i. 1 2( , , ..., )nx x x H  y 1 2( , ,..., )nx x x es una salida determinada (clara, cierta, única); 

esto se llama grado bien definido (definido internamente), o grado de Verdad (T). 
ii. 1 2( , ,..., )nx x x es una salida indeterminada (poco clara, incierta, indefinida, no única); 

esto se llama grado de Indeterminación (I). 
iii. 1 2( , , ..., )nx x x U H  − ; esto se denomina grado de definición externa (ya que la 

salida está fuera de H), o grado de falsedad (F). 
En consecuencia, se tiene una Tripleta Neutrosófica de la forma 

<Operador, NeutroOperador, AntiOperador> 
definida como sigue [12, 13, 14]: 

10.1. Operador (clásico) 

Para cualquier n-tupla 1 2( , , ..., ) n
nx x x H , se tiene que 1 2( , , ..., )nx x x H  y 1 2( , ,..., )nx x x es una 

salida determinada (clara, cierta, única). Por lo tanto (T, I, F) = (1, 0, 0). 

10.2. NeutroOperador 

Hay algunas n-tuplas 1 2( , , ..., ) n
nx x x H tales que 1 2( , , ..., )nx x x H  y 1 2( , ,..., )nx x x son salidas

determinadas (claras, ciertas, únicas) (grado de verdad T); 
otras n-tuplas 1 2( , , ..., ) n

ny y y H tales que 1 2( , , ..., )ny y y H  y 1 2( , ,..., )ny y y son salidas 

indeterminadas (poco claras, inciertas, no únicas) (grado de indeterminación I); 
y otras n-tuplas 1 2( , , ..., ) n

nz z z H tales que 1 2( , , ..., )nz z z U H  − (grado de falsedad F); 

donde ( , , ) {(1,0,0), (0,0,1)}T I F  que representan respectivamente el primer (Operador Clásico) y el 
tercer caso (AntiOperador). 

10.3. AntiOperador 

Para cualquier n-tupla 1 2( , , ..., ) n
nx x x H , se tiene 1 2( , , ..., )nx x x U H  − . Por lo tanto 

(V, I, F)= (0, 0, 1). 
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11. Casos Particulares de Operadores

11.1. Operador determinado 

Un Operador Determinado es un operador cuyo grado de indeterminación I = 0, mientras que el grado de 
verdad T = 1 y el grado de falsedad F = 0. 

Por tanto, sólo el Operador Clásico es un Operador Determinado. 

11.2. IndetermOperator 

Como subclase del NeutroOperator anterior, existe el IndetermOperator (Operador indeterminado), que es un 
operador que tiene cierto grado de indeterminación (I > 0). 

12. Aplicaciones de los IndetermOperators a los Soft Sets

Sea H un conjunto de número finito de casas (o, en general, objetos, artículos, etc.): 
𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} ∪ {∅}, 1 ≤ 𝑛 < ∞, 
donde h1 = casa1, h2 = casa2, etc. 
y ∅ es el elemento vacío (o nulo) (ninguna casa). 

13. Operadores Soft determinados e indeterminados

Se definen cuatro operadores Soft en 𝐻. 

13.1. joinAND 

joinAND, o juntos, denotado por ⩓, definido como: 
𝑥 ⩓ y = x e y, o sumando x e y; aquí la conjunción “and” tiene el sentido común del lenguaje natural. 
𝑥 ⩓ y = {𝑥, 𝑦} es un conjunto de dos objetos. 
Por ejemplo: 
h1⩓ h2 = casa1 ⩓ casa2 = casa1 y casa2  
= juntar casa1 y casa2 = {casa1, casa2} = {h1, h2}. 
joinAND es un Operador Soft Determinado ya que se obtiene una salida clara (cierta). 

13.2. disjoinOR 

disjoinOR, o separados en partes, denotado por ⩔, definido como: 
𝑥 disjoinOR 𝑦 =  𝑥 ⩔ y = {𝑥}, o {𝑦}, o ambos{𝑥, 𝑦} 

= x, o y, o ambos x e y; 
aquí, igualmente, la disyunción “or” (y la conjunción “and” también) tienen el sentido común del lenguaje 

natural.  
Pero existe cierta indeterminación (incertidumbre) para elegir entre tres alternativas. 
Por ejemplo: 
h1⩔ h2 = casa1⩔ casa2 = casa1, o casa2, o ambas casas juntas {casa1 y casa2}. 
disjoinOR es un Operador IndetermSoft, ya que no tiene una salida única clara, sino tres posibles salidas 

alternativas a elegir. 

13.3. exclusiveOR 

exclusiveOR, que significa uno u el otro; es un Operador IndetermSoft (a elegir entre dos alternativas). 
h1⩔E h2 = ya sea h1 o h2, y no ambos {h1, h2}. 
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13.4. NOT 

NOT, o no, o subnegación/subcomplemento, indicado por ⫬ , donde 
NOT(ℎ) =⫬ ℎ = 𝑛𝑜 ℎ, en otras palabras, todos los elementos de 𝐻, excepto h, ya sea elementos individuales, o 

dos elementos, …, o 𝑛 − 1 elementos de 𝐻 − {ℎ}, o el elemento vacío ∅. 
La negación del “no” tiene el sentido común del lenguaje natural; cuando se dice “no Juan” eso significa 

“alguien más” o “muchos otros”. 

13.4.1. Teorema 1 

Sea |H – {h}| = m ≥ 1 el cardinal del conjunto H-{h}. 
Entonces ( ) { , ( { })}NOT h x x P H h=  − y el cardinal |NOT(h)| = 2n-1. 
Prueba: 
Ya que NOT(𝐻) significa todos los elementos de 𝐻, excepto h, 
ya sea por elementos simples, o por dos elementos, …, o por 𝑛 − 1 elementos de 𝐻 − {ℎ}, o el elemento vacío 

∅, entonces se obtiene: 
𝐶𝑛−1
1 + 𝐶𝑛−1

2 +⋯+ 𝐶𝑛−1
𝑛−1 + 1 = (2𝑛−1 − 1) + 1 = 2𝑛−1 posibilidades (alternativas de h). 

El operador NOT tiene como salida una multitud de subnegaciones (o subcomplementos). 
NOT también es un Operador IndetermSoft. 

13.4.2. Ejemplo 

Sea 𝐻 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} 
Entonces, 
NOT(x1) = ⫬ 𝑥1 = ya sea 𝑥2, o 𝑥3, o 𝑥4, 

o {𝑥2, 𝑥3}, o {𝑥2, 𝑥4}, o {𝑥3, 𝑥4},
o {𝑥2, 𝑥3, 𝑥4},
o ∅;

por lo tanto 𝐶31 + 𝐶32 + 𝐶33 + 1 = 3 + 3 + 1 + 1 = 8 = 23 posibilidades/alternativas. 
Representaciones gráficas: 

U otra representación (equivalente a la anterior) es la siguiente: 

2

3

4

2 3
1

2 4

3 4

2 3 4

{ , }
{ , }
{ , }
{ , , }

x
x
x
x x

x
x x
x x
x x x









 = 






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El operador NOT es equivalente a (2𝑛−1 − 1) disyunciones OR (del lenguaje natural). 

14. Similitudes entre Operadores IndetermSoft y Operadores Clásicos

(i) joinAND es similar al operador AND lógico clásico (∧) de la siguiente manera.
Sean A, B, C proposiciones, donde 𝐶 = 𝐴 ∧ 𝐵.
Entonces la proposición C es verdadera, si ambos: A = verdadero y B = verdadero.
(ii) disjoinOR también es similar al operador lógico clásico OR (∨) de la siguiente manera.
Sean A, B, D proposiciones, donde 𝐷 = 𝐴 ∨ 𝐵.
Entonces la proposición D es verdadera si:

ya sea A = verdadero, 
o B = verdadero,
o ambos A = verdadero y B = verdadero

(por lo tanto, se tienen tres posibilidades). 
(iii) exclusiveOR también es similar al operador OR exclusivo de lógica clásica (∨E) de la siguiente manera.
Sean A, B, D proposiciones, donde D = A ∨E B
Entonces la proposición D es verdadera si:

ya sea A = verdadero, 
o B = verdadero,
y tanto A como B no son verdaderos simultáneamente

(por lo tanto, se tienen dos posibilidades). 
(iv) NOT se parece al operador de conjunto clásico, o complemento (¬), de la siguiente manera.
Sean A, B, C, D cuatro conjuntos, cuyas intersecciones de dos en dos son vacías, del universo del discurso 𝒰 =

𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷. 
Entonces ¬𝐴 = 𝑁𝑜𝑡𝐴 = 𝒰 ∖ 𝐴 =  el complemento de A con respecto a 𝒰. 
Si bien tiene solo una salida exacta (𝒰 ∖ 𝐴) en la teoría clásica de conjuntos, el operador NOT (⫬ 𝐴) tiene 8 

resultados posibles: el conjunto vacío (∅), o B, o C, o D, o {𝐵, 𝐶}, o {𝐵,𝐷}, o {𝐶, 𝐷}, o {𝐵, 𝐶, 𝐷}. 

15. Propiedades de los Operadores

Sea 𝑥, 𝑦, 𝑧 ∈ H(⩓,⩔, ⩔E, ⫬).

15.1. Operadores bien definidos 

Considerando el conjunto 𝐻 cerrado bajo estos cuatro operadores: H(⩓,𝐻⩔, ⩔E,⫬). 
Por lo tanto, para cualquier 𝑥, 𝑦 ∈ 𝐻 se tiene: 
𝑥 ⩓ y ∈ H(⩓,⩔, ⩔E, ⫬), ya que {𝑥, 𝑦} ∈ H(⩓,⩔, ⩔E, ⫬), 
y 𝑥 ⩔ y ∈ H(⩓,⩔, ⩔E, ⫬), ya que cada {𝑥}, {𝑦}, {𝑥, 𝑦} ∈ H(⩓,⩔, ⩔E, ⫬), 
además x ⩔E y ∈ H(⩓,⩔, ⩔E, ⫬), ya que cada {𝑥}, {𝑦} ∈ H(⩓,⩔, ⩔E, ⫬), 

Entonces el operador NOT también está bien definido porque es equivalente a un múltiplo de los operadores 
disjoinOR. 

De este modo: 
⩓ : 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 
⩔ : 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 
⩔E: 𝐻2 → H(⩓,⩔, ⩔E, ⫬) 
⫬ : 𝐻 → H(⩓,⩔, ⩔E, ⫬) 
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15.2. Conmutatividad 

𝑥 ⩓ y = 𝑦 ⩓ 𝑥, y 𝑥 ⩔ 𝑦 = 𝑦 ⩔ 𝑥, y x ⩔E y =  y ⩔E x 
Prueba
𝑥 ⩓ y = {𝑥, 𝑦} = {𝑦, 𝑥} = 𝑦 ⩓ x

𝑥 ⩔ 𝑦 = ({𝑥}, o {𝑦}, o {𝑥, 𝑦}) = ({𝑦} o {𝑥}, o {𝑦, 𝑥}) = 𝑦 ⩔ 𝑥 
x ⩔E y = (ya sea {x}, o {y}, pero no ambos x e y) = 
= (ya sea {y}, o {x}, pero no ambos y y x) = y ⩔E x. 

15.3. Asociatividad 

𝑥 ⩓ (𝑦 ⩓ 𝑧) = (𝑥 ⩓ 𝑦) ⩓ 𝑧, 
y 𝑥 ⩔ (𝑦 ⩔ 𝑧) = (x ⩔ y) ⩔ z, y x ⩔E  ( y ⩔E z = ( x ⩔E  y ) ⩔E z 

Prueba 
𝑥 ⩓ (𝑦 ⩓ 𝑧) = {𝑥, 𝑦 ⩓ 𝑧} = {𝑥, {𝑦, 𝑧}}

= {𝑥, 𝑦, 𝑧} = {{𝑥, 𝑦}, 𝑧}

= (𝑥 ⩓ y) ⩓ z. 

𝑥 ⩔ (𝑦 ⩔ 𝑧) = (x ⩔ y) ⩔ z

𝑥 o (𝑦 o 𝑧) = 𝑥 o{
𝑦
𝑧

𝑦 o 𝑧
=  𝑥 𝑜

{

𝑦
𝑧

𝑦 o 𝑧 {

𝑦
𝑧

{𝑦, 𝑧}

= 

{

𝑥 o 𝑦 = {

𝑥
𝑦

{𝑥, 𝑦}

𝑥 o 𝑧 =  {

𝑥
𝑧

{𝑥, 𝑧}

{

𝑥 o 𝑦
𝑥 o 𝑧

𝑥 o {𝑦, 𝑧} = {

𝑥
{𝑦, 𝑧}

{𝑥, 𝑦, 𝑧}

=  𝑥, 𝑦, 𝑧, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

(𝑥 o 𝑦) o 𝑧 = {

𝑥
𝑦

{𝑥, 𝑦}
o 𝑧 =

{

𝑥 o 𝑧 {

𝑥
𝑧

{𝑥, 𝑧}

𝑦 o 𝑧 {

𝑦
𝑧

{𝑦, 𝑧}

{𝑥, 𝑧} o 𝑧 {

{𝑥, 𝑦}
𝑧

{𝑥, 𝑦, 𝑧}

=  𝑥, 𝑦, 𝑧, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}. 

Por lo tanto, (x o y) o z = x o (y o z) = x, y, z, {x, y}, {y, z}, {z, x}, {x, y, z} con 23 − 1 = 8 − 1 = 7 
posibilidades. 

x ⩔E  ( y ⩔E z ) = 
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ya sea x, o ( y⩔E z ), y no ambos x y ( y ⩔E z ) = ya sea x, o (y, o z, y no ambos y y z), y no ambos x y (no y o z) 
= ya sea x, o y, o z, y no ambos {y, z}, y (no x y no (no y o z)) =  ya sea x, o y, o z, y no {y, z}, no {x, y}, no {x, z} = 
( x ⩔E   y) ⩔E z 

15.4. Distributividad de joinAND con respecto a disjoinOR y exclussiveOR 

𝑥 ⩓ (𝑦 ⩔ 𝑧) = (x ⩓ y) ⩔ (x ⩓ z)

Prueba

𝑥 ⩓ (𝑦 ⩔ 𝑧) = 𝑥 y (𝑦 o 𝑧) = 𝑥 y (𝑦, or 𝑧, or {𝑦, 𝑧})

= x e y, o x y z, o x y {𝑦, 𝑧} 
= {𝑥, 𝑦}, o {𝑥, 𝑧}, o {𝑥, 𝑦, 𝑧} 
= {𝑧, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑧}. 
(𝑥 ⩓ 𝑦) ⩔ (𝑥 ⩓ 𝑧) = {𝑥, 𝑦}

o {𝑥, 𝑧} = {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑥, 𝑧} = {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑧}.

x ⩓ ( y ⩔E z ) = x y ( ya sea y, o z, y no ambos {y, z}) = ya sea x e y, o x y z,
y x y no ambos {y, z} = ya sea {x, y}, o {x, z}, y {x, no {y, z} } =

= ya sea {x, y}, o {x, z}, y no {x, y, z} = (x ⩓ y) ⩔E (x ⩓ z)

15.5. No distributividad de disjoinOR y exclussiveOR con respecto a joinAND

𝑥 ⩔ (𝑦 ⩓ 𝑧) ≠ (x ⩔ y) ⩓ (𝑥 ⩔ 𝑧)

𝑥 ⩔ (𝑦 ⩓ 𝑧) = 𝑥 o (𝑦 y 𝑧) = 𝑥 𝑜 {𝑦, 𝑧} =  𝑥, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}

Pero
(𝑥 ⩔ 𝑦) ⩓ (𝑥 ⩔ 𝑧) = (𝑥, 𝑦, {𝑥, 𝑦}) y (𝑥, 𝑧, {𝑥, 𝑧})
= {𝑥, 𝑥}, {𝑥, 𝑧}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑦, 𝑥}, {𝑥, 𝑦, 𝑧}, {𝑥, 𝑦}, {𝑥, 𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}
=  𝑥, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}.
De donde en general 𝑥, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧} ≠ 𝑥, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}.
Mientras que en el Álgebra Booleana clásica la distribución de or con respecto a and es válida:

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧).

x ⩔E (y ⩓ z) = ya sea x, o {y, z}, y no {x, y, z} 
 (x ⩔E y) ⩓ (𝑥⩔E y) = (ya sea x, o y, y no {x, y}) y (no x, o z, y no {x, z}) 

15.6. Idempotencia 

𝑥 ⩓ 𝑥 = {𝑥, 𝑥} = 𝑥

𝑥 ⩔ 𝑥 = ya sea 𝑥, o 𝑥, o {𝑥, 𝑥} 
= 𝑥, o 𝑥, o 𝑥 
= 𝑥. 
x ⩔E x = ya sea x, o x, y no {x, x} = imposible. 

15.6.1. Teorema 2 

Sea 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ (𝐻,⩓,⩔,⫬), para 𝑛 ≥ 2. Entonces:
(i) 𝑥1 ⩓ 𝑥2 ⩓ …⩓ 𝑥𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛},
y
(ii) 𝑥1 ⩔ 𝑥2 ⩔ …⩔ 𝑥𝑛 = 𝑥1, 𝑥2, … , 𝑥𝑛 ,
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{𝑥1, 𝑥2}, {𝑥1, 𝑥3}, …, {𝑥𝑛−1, 𝑥𝑛}, 
{𝑥1, 𝑥2, 𝑥3}, … 
… … … … … … 
{𝑥1, 𝑥2, … , 𝑥𝑛−1}, … 
{𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛}. 
Existen: 𝐶𝑛1 + 𝐶𝑛2 +⋯+ 𝐶𝑛𝑛−1 + 𝐶𝑛𝑛 = 2𝑛 − 1 posibilidades/alternativas. 
Cuanto mayor es n, mayor es la indeterminación. 
((iii) x1 ⩔E  x2 ⩔E …⩔E  xn = 𝑥1, 𝑥2, … , 𝑥𝑛 = 

= ya sea x1, o x2, …, o xn, 
       y no dos o más variables sean verdaderas simultáneamente. 

Existen: 𝐶𝑛1 = 𝑛 posibilidades. 
Cuanto mayor sea n, mayor es la indeterminación por haber muchas alternativas. 
Prueba 
(i) La igualdad joinAND es obvia.
(ii) La disjoinOR resulta del hecho de que para que la disyunción de n proposiciones sea verdadera, basta con

tener al menos una que sea verdadera. Como tal, se puede tener solo una proposición verdadera, o solo dos 
proposiciones verdaderas, y así sucesivamente, solo 𝑛 − 1  proposiciones verdaderas, hasta todas las n 
proposiciones verdaderas. 

(iii) Es obvio.

15.7. Ley clásica de Absorción Booleana 1 

𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 no funciona en esta estructura, ya que 𝑥 ⩓ (𝑥 ⩔ 𝑦) ≠ 𝑥. 
Prueba 
𝑥 ⩓ (𝑥 ⩔ 𝑦)   = 𝑥 y (𝑥 o 𝑦)

= x y{
𝑥
𝑦

{𝑥, 𝑦}

= {𝑥, 𝑥} o {𝑥, 𝑦} o {𝑥, 𝑥, 𝑦} 
= x o {𝑥, 𝑦} o {𝑥, 𝑦} 
= x o {𝑥, 𝑦} 

= {
𝑥

{𝑥, 𝑦}

{𝑥, 𝑥, 𝑦}
= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑦}
 = {

𝑥
{𝑥, 𝑦} ≠ 𝑥.

Pero esto si funciona: 
𝑥 ⩓ (x ⩔E  y) = x y (ya sea x, o y, y no {x, y}) = 

 = (x y x), o (x e y), y (x y no {x, y}) = x. 

15.8. Ley clásica de Absorción Booleana 2 

𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 no funciona en esta estructura, ya que 𝑥 ⩔ (𝑥 ⩓ 𝑦) ≠ 𝑥. 
Prueba 
𝑥 ⩓ (𝑥 ⩔ 𝑦) = 𝑥 y (𝑥 o 𝑦)

x or (x e y) = x or {𝑥, 𝑦} 

= {
𝑥

{𝑥, 𝑦}

{𝑥, 𝑥, 𝑦}
= {

𝑥
{𝑥, 𝑦}

{𝑥, 𝑦}

= {
𝑥

{𝑥, 𝑦} ≠ 𝑥.

Pero esto si es válido:  
x ⩔E (x ⩓ y ) = (ya sea x), o {x, y}, y (no {x, y}) = x. 
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15.9. Aniquiladores e Identidades para el Álgebra IndetermSoft 

Mientras que 0 es un aniquilador para la conjunción  ∧ en el Álgebra Booleana clásica, 𝑥 ∧ 0 = 0 , en el 
Álgebra IndetermSoft ∅ es una identidad para ⩓, mientras que para los demás no funciona. 

Prueba 
𝑥 ⩓ ∅ = 𝑥 y ∅ 

= x y nada 
= x junto con nada 
= x. 

15.10. ∅ no es una identidad, ni un aniquilador para disjoinOR ni para exclusiveOR 

Mientras que 0 es una identidad para el ∨ en el álgebra booleana clásica, 𝑥 ∨ 0 = 𝑥, en IndetermÁlgebra, ∅ no 
es ni una identidad ni un aniquilador. 

Prueba 
𝑥 ⩔ ∅ = 𝑥, o (nada), o ∅{𝑥, ∅} 

= x, o ∅, or x 
= x, o ∅.      

x ⩔E ∅ = ya sea x, o ∅, y no {x, ∅}. 

15.11. La negación de ∅ tiene múltiples soluciones 

Mientras que en el álgebra booleana clásica la negación de 0 es 1 (una sola solución), ¬0 = 1,  en 
IndetermAlgebra  la negación de ∅ tiene múltiples soluciones. 

Prueba 
⫬ ∅ = 𝑁𝑂𝑇(∅), 
 = no nada 

  = uno o más elementos del conjunto sobre el que se define el operador ⫬. 
Ejemplo 
Sea 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅. 
Entonces, ⫬ ∅ = 𝑥1, o 𝑥2, o 𝑥3, o {𝑥1, 𝑥2}, o {𝑥1, 𝑥3}, o {𝑥2, 𝑥3}, o {𝑥1, 𝑥2, 𝑥3}, 
por lo tanto 7 soluciones alternativas. 

15.12. La Doble Negación no es válida en el Algebra IndetermSoft 

Mientras que en el Álgebra Booleana clásica es válida la Ley de la Doble Negación: ¬(¬𝑥) = 𝑥 , en el 
IndetermÁlgebra no ocurre así: 

En general, ⫬ (⫬ 𝑥) ≠ 𝑥. 
Prueba 
Un contraejemplo: 
Sea 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅. 
⫬ 𝑥1 = lo que no es 𝑥1o no contiene 𝑥1 

=  𝑥2, 𝑥3, { 𝑥2, 𝑥3}, ∅. 
Así se tienen 4 valores diferentes de la negación de 𝑥1. 
Eligiendo ⫬ 𝑥1 = 𝑥2; entonces ⫬ (⫬ 𝑥1) = 𝑥2 = (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) ≠ 𝑥1. 
De manera similar para tomar otros valores de ⫬ 𝑥1. 
Sea 𝐻 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∪ ∅, 𝑛 ≥ 2. Sea 𝑥 ∈ 𝐻. 
Elementos mínimos y máximos con respecto a la relación de inclusión son: 
∅ = el elemento vacío (nulo) y respectivamente 
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𝑥1 ⩓ 𝑥2 ⩓ …⩓ 𝑥𝑛

notation
= {𝑥1, 𝑥2, … , 𝑥𝑛} = 𝐻,

pero en el Álgebra Booleana son 0 y 1 respectivamente. 

15.13. Todo el conjunto H es un aniquilador para joinAND 

Mientras que en el Álgebra Booleana clásica la identidad para ∧ es 1, ya que 𝑥 ∧ 1 = 𝑥 , en el Álgebra 
IndetermSoft para ⩓ hay un aniquilador H, ya que 𝑥 ⩓ 𝐻 = 𝐻, dado que 𝑥 ⩓ 𝐻 = {𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥} = 𝐻, porque 
𝑥 ∈ 𝐻 entonces x es uno de 𝑥1, 𝑥2, … , 𝑥𝑛. 

16. El máximo (H) no es ni aniquilador ni identidad

Mientras que en el Álgebra Booleana clásica el aniquilador para ∨ es 1, porque 𝑥 ∨ 1 = 1, en el Álgebra
IndetermSoft para ⩔ el máximo H no es ni aniquilador ni identidad, 

𝑥 ⩔ 𝐻 = 𝑥 o 𝐻 = 𝑥, H, {𝑥,𝐻} = 𝑥,𝐻, 𝐻 = 𝑥, 𝐻. 
x ⩔E  H = ya sea x, o H, y (no x y no H). 

17. Complementación1

En el Álgebra Booleana clásica, Complementación1 es: 𝑥 ∧ ¬𝑥 = 0. 
En el Álgebra IndetermSoft, 𝑥 ⩓ (⫬ 𝑥) ≠ ∅, y 𝑥 ⩓ (⫬ 𝑥) ≠ 𝐻. 

Contraejemplo 
𝑀𝑀 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅  
⫬ 𝑥1 = 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅  
𝑥1 ⩓ (⫬ 𝑥1) = 𝑥1 ⩓ (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = 

= (𝑥1 y 𝑥2) o (𝑥1 o 𝑥3)
o (𝑥1 y {𝑥2, 𝑥3})
o (𝑥1 y ∅) =

= (𝑥1, {𝑥1, 𝑥2}, {𝑥1, 𝑥3}, {𝑥1, 𝑥2, 𝑥3}) ≠ ∅ ≠ 𝑀.

18. Complementación2

En el Álgebra Booleana clásica, Complementación2 es: 𝑥 ∨ ¬𝑥 = 1. 
En el Álgebra IndetermSoft, 𝑥 ⩔⫬ 𝑥 ≠ 𝐻, y 𝑥 ⩔⫬ 𝑥 ≠ ∅. 
Contraejemplo 
Lo anterior 𝐻 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅ 

y ⫬ 𝑥1 = 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅ entonces 

𝑥1 ⩔⫬ 𝑥1 = 𝑥1 ⩔ (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) = {

𝑥1
𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅ 

𝑥1, 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅

= 𝑥1, or (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅), or (𝑥1, 𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) 
lo cual es diferente de H y de ∅. 
Y: 

𝑥1⩔E⫬ 𝑥1=𝑥1⩔E(𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)=
1

2 3 2 3, ,{ , },
x

x x x x 

 
 
 

y no 1 2 3 2 3( , , ,{ , }, )x x x x x  ,

lo cual es diferente de H y de ∅. 

19. Primera Ley de De Morgan en el Álgebra IndetermSoft

La Primera Ley de De Morgan del álgebra booleana clásica es:
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¬(𝑥 ∨ 𝑦) = (¬𝑥) ∧ (¬𝑦)

eso también es cierto en el Álgebra IndetermSoft: 
⫬ (𝑥 ⩔ 𝑦) = (⫬ 𝑥) ⩓ (⫬ 𝑦)

Prueba 
⫬ (𝑥 ⩔ 𝑦) =⫬ (𝑥, o 𝑦, o {𝑥 e 𝑦})

=⫬ 𝑥, y ⫬ 𝑦, y ⫬ {𝑥1 e y} 
=⫬ 𝑥1, y ⫬ 𝑦, y (⫬ 𝑥, o ⫬ y) 
=⫬ 𝑥, y ⫬ 𝑦

= (⫬ 𝑥) ⩓ (⫬ 𝑦). 
Ejemplo 
𝑀 = {𝑥1, 𝑥2, 𝑥3} ∪ ∅  
⫬ (𝑥1 ⩔ 𝑥2)      =⫬ (𝑥1, o 𝑥2, o {𝑥1 y 𝑥2}) 

=⫬ 𝑥1, y ⫬ 𝑥2, y (⫬ 𝑥1 or ⫬ 𝑥2) 
=⫬ 𝑥1, y ⫬ 𝑥2  
= (⫬ 𝑥1) ⩓ (⫬ 𝑥2). 

⫬ 𝑥1 = (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)  
⫬ 𝑥2 = (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅)  
(⫬ 𝑥1) ⩓ (⫬ 𝑥2) = (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) ⩓ (𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 

=𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅.

20. Segunda Ley de De Morgan en el Álgebra IndetermSoft

La Segunda ley de De Morgan en el álgebra booleana clásica es

¬(𝑥 ∧ 𝑦) = (¬𝑥) ∨ (¬𝑦)

también es cierto en la nueva estructura llamada Álgebra IndetermSoft: 

⫬ (𝑥 ⩓ 𝑦) = (⫬ 𝑥) ⩔ (⫬ 𝑦)

Prueba
⫬ (𝑥 ⩓ 𝑦) =⫬ ({𝑥 e 𝑦}) = ⫬ 𝑥, o ⫬ 𝑦, 𝑜 {⫬ 𝑥, 𝑒 ⫬ 𝑦} =  (⫬ 𝑥) ⩔ (⫬ 𝑦)

Ejemplo 
⫬ (𝑥1 ⩓ 𝑥2)      =⫬ ({𝑥1, 𝑥2}) 

= (⫬ 𝑥1, 𝑜 ⫬ 𝑥2, o (⫬ 𝑥1 y ⫬ 𝑥2)) 
= (𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)= 
o(𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅) 
o(𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 
o(𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) =
= (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅) 

(⫬ 𝑥1) ⩔ (⫬ 𝑥2) =⫬ 𝑥1, o⫬ 𝑥2  o (⫬ 𝑥1 ⩓ ⫬ 𝑥2) = 
(𝑥2, 𝑥3, {𝑥2, 𝑥3}, ∅)  
o(𝑥1, 𝑥3, {𝑥1, 𝑥3}, ∅) 
o(𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅)
= (𝑥1, 𝑥2, 𝑥3, {𝑥1, 𝑥3}, {𝑥2, 𝑥3}, ∅)

=⫬ (𝑥1 ⩓ 𝑥2) 
* 

Este Álgebra IndetermSoft no es un Álgebra Booleana porque muchas de las Leyes Booleanas no se cumplen, 
como por ejemplo: 
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• Identidad para ⩓
• Identidad para ⩔
• Identidad para ⩔E

• Aniquilador para ⩓
• Aniquilador para ⩔
• Aniquilador para ⩔E

• Absorción1 [𝑥 ⩓ (𝑥 ⩔ 𝑦) = x]
• Absorción2 [𝑥 ⩔ (𝑥 ⩓ 𝑦) = x]
• Doble negación
• Complementación1 [𝑥 ⩓ ⫬ 𝑥 = ∅]

• Complementación2 { [𝑥 ⩔ ⫬ 𝑥 = 𝐻] y [x ⩔E  ⫬ 𝑥 = 𝐻] }

21. Aplicaciones prácticas del Soft Set e IndetermSoft Set

Sea 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4} un conjunto de cuatro casas, y el atributo a = color, cuyos valores son 
A = {blanco, verde, azul, rojo}. 

21.1. Conjunto Soft 

La función 
𝐹: 𝐴 → 𝒫(𝐻)

donde 𝒫(𝐻) es el conjunto potencia de H, se llama Soft Set clásico. 
Por ejemplo, 
F(blanco) = ℎ3, es decir, la casa ℎ3 está pintada de blanco; 
F(verde) = {ℎ1, ℎ2}, es decir, ambas casas ℎ1 y ℎ2 están pintadas de verde; 
F(azul) = ℎ4, es decir, la casa ℎ4 está pintada de azul; 
F(rojo) = ∅, es decir, ninguna casa está pintada de rojo. 
Por lo tanto, la información sobre los colores de las casas es conocida, cierta. 

21.2. Conjunto IndetermSoft 

Pero hay muchos casos en nuestra vida real cuando la información sobre los valores de los atributos de los 
objetos (o artículos, en general) es poco clara, incierta. 

Es por eso que se necesita extender el Soft Set clásico (Determinado) a un Soft Set Indeterminado. 
La función suave determinada (exacta) 
𝐹: 𝐴 → 𝒫(𝐻)

se extiende a una función suave indeterminada 
𝐹: 𝐴 → 𝐻(⩓,⩔, ⩔E,⫬),  
dónde (⩓,⩔, ⩔E,⫬) es un conjunto cerrado bajo ⩓,⩔, ⩔E, y ⫬, y f(x) no siempre está determinada. 
Por ejemplo, 
F(blanco) = ℎ3 ⩔ ℎ4, 
significa que las casas ℎ3 o ℎ4 son blancas, pero no hay certeza de cuál, 
de donde uno tiene tres posibilidades/resultados/alternativas: 

o ℎ3es blanco (y ℎ4 no lo es),
o ℎ4 es blanco (y ℎ3 no lo es),
o ambos ℎ3 y ℎ4 son blancos.

Esta es una información indeterminada. 
También se puede simplemente escribir: 

F (blanco)={
ℎ3
ℎ4

{ℎ3, ℎ4}
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o F(blanco) = ℎ3, ℎ4, {ℎ3, ℎ4} ,
donde {ℎ3, ℎ4} significa {ℎ3 y ℎ4},
que se lee como: o ℎ3, o ℎ4, o {ℎ3 y ℎ4}.

Otro ejemplo: 
F(azul) = ⫬ ℎ2, o la casa ℎ2 no es azul, 
por lo tanto, otras casas entre {ℎ1, ℎ3, ℎ4} pueden ser azules, 

o ninguna casa (∅) puede ser azul.
Esta es otra información indeterminada. 
La negación de ℎ2 (denotada como NOT(ℎ2) no es igual al complemento clásico de 𝐶(ℎ2) del elemento h2 con 

respecto al conjunto 𝐻, ya que 
𝒞(ℎ2) = 𝐻 ∖ {ℎ2} = {ℎ1, ℎ3, ℎ4}, 

pero puede ser cualquier subconjunto de 𝐻 ∖ {ℎ2}, o cualquier subcomplemento de 𝐶(ℎ2), 
de nuevo muchos posibles resultados (en este ejemplo 8) para elegir: 

⫬ ℎ2   = ℎ1, ℎ3, ℎ4,{ℎ1, ℎ3}, {ℎ1, ℎ4}, {ℎ3, ℎ4}, {ℎ1, ℎ3, ℎ4}, ∅ =
= ya sea  ℎ1o ℎ3 o ℎ4, 

o {ℎ1 y ℎ3}, 𝑜 {ℎ1 y ℎ4}, 𝑜 {ℎ3 y ℎ4}
o {ℎ1 y ℎ3 y ℎ4},

o ∅ (elemento nulo, es decir, ninguna otra casa es azul).

La negación (⫬ ℎ2) produce un mayor grado de indeterminación que las uniones anteriores: (ℎ3 ⩔ ℎ4) y 
respectivamente (h3⩔E h4). 

La intersección (⩓) es un operador determinado (cierto). 

Por ejemplo, 
F(verde) = ℎ1 ⩓ ℎ2, que es igual a {ℎ1, ℎ2}, es decir, juntos, {ℎ1, ℎ2}ℎ1 y ℎ2{ℎ1 and ℎ2}. 
Puede ocurrir una combinación de estos operadores, por lo que la función suave indeterminada (incierta) se 

vuelve más compleja. 

Otro ejemplo. 
F(verde) = ℎ1 ⩓ (⫬ ℎ4), donde por supuesto ⫬ ℎ4 ≠ ℎ1, lo que significa que: 
la casa ℎ1es verde, 
y otras casas entre {ℎ2, ℎ3} pueden ser azules, 
o ∅ (ninguna otra casa es azul).
ℎ1 ⩓ (⫬ ℎ4)  = ℎ1y (NOTℎ4) 

=  ℎ1y (ℎ1, ℎ2, ℎ3, {ℎ1, ℎ2}, {ℎ1, ℎ3}, {ℎ2, ℎ3}, {ℎ1, ℎ2, ℎ3}, ∅) 
[ℎ1se quita ya que ⫬ ℎ4 se supone que es diferente de ℎ1] 

= ℎ1y(ℎ2, ℎ3, {ℎ2, ℎ3}, ∅) 
= (ℎ1 y ℎ2)o(ℎ1 y ℎ3) 

o(ℎ1 y {ℎ2, ℎ3}) 
o∅ 

= (ℎ1 y ℎ2) o (ℎ1 y ℎ3)o (ℎ1 y ℎ2 y ℎ3), ∅ 
notation

=
{ℎ1, ℎ2}, {ℎ1, ℎ3}, {ℎ1, ℎ2, ℎ3}, ∅ 

De este modo, hay 4 posibilidades. 
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22. Definiciones de <Álgebra, NeutroÁlgebra, AntiÁlgebra>

Sea 𝒰 un universo de discurso, y 𝐻 un conjunto no vacío incluido en 𝒰. Además, H está dotado de algunas
operaciones y axiomas. 

22.1. Álgebra 

Una estructura algebraica cuyas operaciones están bien definidas y todos los axiomas son totalmente ciertos se 
denomina estructura algebraica clásica (o álgebra). De donde (T, I, F) = (1, 0, 0). 

22.2. NeutroÁlgebra 

Si al menos una operación o un axioma tiene algún grado de verdad (T), algún grado de indeterminación (I) y 
algún grado de falsedad (F), donde (V, I, F) ∉  {(1, 0, 0), (0, 0, 1)} , y ninguna otra operación o axioma es 
totalmente falso (F = 1), entonces esto se llama NeutroÁlgebra. 

22.3. AntiAlgebra 

Una estructura algebraica que tiene al menos una operación que está totalmente definida externamente (F = 1) 
o al menos un axioma que es totalmente falso (F = 0), se llama AntiAlgebra.

23. Definición de IndetermÁlgebra

Se introduce ahora por primera vez el concepto de IntermAlgebra (= Álgebra Indeterminada), como una
subclase de NeutroAlgebra. 

IndetermAlgebra se obtiene de aplicaciones reales, como se verá más adelante. 
Sea 𝒰 un universo de discurso, y 𝐻 un conjunto no vacío incluido en 𝒰. 
Si al menos una operación o un axioma tiene algún grado de indeterminación (I>0), el grado de falsedad F = 

0, y todas las demás operaciones y axiomas son totalmente ciertos, entonces 𝐻 es un Álgebra Indeterminada.

24. Definición de Álgebra IndetermSoft

El conjunto H(⩓,⩔, ⩔E,⫬) cerrado mediante los siguientes operadores: 
joinAND (denotado por ⩓), que es un operador determinado; 
disjoinOR(denotado por ⩔), que es un operador indeterminado; 
exclussiveOR (denotado por ⩔E), que es un operador indeterminado, 
y subnegación/subcomplemento NOT (indicado por ⫬), que es un operador indeterminado; 
entonces se llama Álgebra IndetermSoft. 
El Álgebra IndetermSoft amplía el Álgebra clásica de Soft Sets. 
El Álgebra IndetermSoft es un caso particular de IndetermÁlgebra, y de NeutroÁlgebra. 
El operador joinAND 

⩓: 𝐻2 ⟶ H(⩓,⩔, ⩔E,⫬) 
es determinado (en el sentido clásico): 
∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, 𝑥 ⩓ 𝑦 = 𝑥 unionAND (𝑦 = 𝑥𝑦 = {𝑥, 𝑦} ∈ 𝐻⩓,⩔, ⩔E,⫬) 
por lo tanto, la agregación de x e y utilizando el operador ⩓ da un resultado claro y único, es decir, el conjunto 

clásico de dos elementos: {𝑥, 𝑦} 
Pero el operador disjoinOR 
⩔: 𝐻2 ⟶H(⩓,⩔, ⩔E,⫬) 
es indeterminado porque: 

∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, disjoinOR 𝑦 = {
ya sea 𝑥
o 𝑦

o ambos {𝑥 e 𝑦}
{

𝑥
𝑦

{𝑥, 𝑦}
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Por lo tanto, la agregación de x e y usando el operador ⩔ da un resultado poco claro, con tres posibles 
soluciones alternativas (ya sea x, o y, o {𝑥 e 𝑦}). 

El operador exclussiveOR también es indeterminado: 
∀𝑥, 𝑦 ∈ 𝐻, 𝑥 ≠ 𝑦, 𝑥 ≠ 𝑦⩔e y exclussiveOR ya sea x, o y, y no {x, y}, 
por lo tanto dos posibles soluciones: 
⩔E:𝐻2 ⟶H(⩓,⩔, ⩔E,⫬). 
De manera similar, el operador subnegación/subcomplemento NOT 
⫬:𝐻 ⟶H(⩓,⩔, ⩔E,⫬) 
es indeterminado debido a muchos elementos 𝑥 ∈ 𝐻, 
NOT(x)= = x = una parte del complemento de x con respecto a H⫬ 𝑥 

= un subconjunto de 𝐻 ∖ {𝑥}. 
Pero hay muchos subconjuntos de 𝐻 ∖ {𝑥}, por lo tanto, hay una salida poco clara (incierta, ambigua), con 

múltiples soluciones alternativas posibles. 

25. Definición de Conjunto IndetermSoft

Sea U un universo de discurso, H un subconjunto no vacío de U, y H(⩓,⩔, ⩔E,⫬) el Álgebra IndetermSoft
generada al cerrar el conjunto H bajo los operadores ⩓,⩔, ⩔E, y ⫬. 

Sea a un atributo, con su conjunto de valores de atributos denotados por A. Entonces el par 
(F, A), donde 𝐹: 𝐴 → H(⩓,⩔, ⩔E,⫬), se llama Conjunto IndetermSoft sobre 𝐻. 

26. Conjunto IndetermSoft Difuso/Intuicionista Difuso/Neutrosófico/y otras extensiones difusas

Se pueden asociar grados difusos/intuicionistas difusos/neutrosóficos, etc. y extender el Conjunto
IndetermSoft a Conjunto IndetermSoft Difuso/Intuicionista Difuso/Neutrosófico/y otras extensiones difusas. 

26.1. Aplicaciones del conjunto IndetermSoft (Difuso/Intuicionista Difuso/Neutrósofico/y otras 
extensiones difusas) 

Sea H = {h1, h2, h3, h4} un conjunto de cuatro casas, y el Álgebra IndetermSoft generada al cerrar el conjunto 
H mediante los operadores suaves anteriores, H(⩓,⩔, ⩔E,⫬). 

Sea el atributo c = color, y sus valores de atributo sean el conjunto C = {blanca, verde, azul}. 
La función IndetermSoft F : A→ H(⩓,⩔, ⩔E,⫬) forma un Conjunto IndetermSoft. 
Sea un elemento h H , y se denota por: 

( )d h = cualquier tipo de grado (ya sea difuso, o intuicionista difuso, o neutrosófico, o cualquier otra 
extensión difusa) del elemento h. 

Se extienden los operadores suaves ⩓, ⩔, ⩔E,⫬ asignando algún grado 0 (.) [0,1]pd  , dónde: 
p = 1 para el grado clásico y difuso, p = 2 para el grado difuso intuicionista, p = 3 para el grado neutrosófico, y 

así sucesivamente p = n para el grado neutrosófico refinado de valor n, hasta los elementos involucrados en los  

operadores, donde , ,    representan la conjunción, la disyunción y la negación, respectivamente, de estos 
grados en sus correspondientes conjuntos o lógicas de extensión difusa. 

Por ejemplo: 
i. De F(blanco) = h1⩓h2  como en el conjunto IndetermSoft, se extiende a:

F(blanca) = 1 1( )h d ⩓ 2 2( )h d , lo que significa que el grado (oportunidad) de que h1 sea blanco es 1d y el 

grado (oportunidad) de que h2 sea blanca es 2d , de donde: 

F(blanca) = 1 1( )h d ⩓ 2 2( )h d = 1 2 1 2{ , }( )h h d d
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Como tal, el grado en que ambas casas {h1, h2} = {h1 y h2} sean blancas es 1 2d d . 

ii. Similarmente, F(blanca) = 1 1( )h d
⩔ 2 2( )h d = {h1 o h2} 1 2( )d d ,

o el grado de al menos una casa {h1 o h2} sea blanca es 1 2( )d d . 

iii. F(blanca) = 1 1( )h d
⩔E 2 2( )h d = 

 = { h1 y (no h2)}, o o { (no h1) y h2 }, y { (no h1) y (no h2) } 
= (h1 es blanco, o h2 es blanco, y [no ambos {h1, h2}] son blancos simultáneamente) tiene el grado de

1 2 1 2( ) ( )d d d d −  . 
iv. F(blanca) = (⫬h1)(𝑑1° ), lo que significa que el grado (probabilidad) de que h1 no sea blanco

es (⫬ h1 = NO(h1) = ya sea h2, o h3, o h4, 
o {h2, h3}, {h2, h4}, {h3, h4},
o {h2, h3, h4},
o (ninguna casa). 

Hay 8 alternativas, por lo que NOT(h1) es una de ellas. 
Suponiendo que NOT(h1) = {h3, h4}. Entonces el grado de que ambas casas {h3, h4} sean blancas es ¬𝑑1° . 

27. Definición de conjunto IndetermHyperSoft

Sea U un universo de discurso, H un subconjunto no vacío de U y H(⩓,⩔, ⩔E,⫬) el Álgebra IndetermSoft
generado al cerrar el conjunto H bajo los operadores ⩓,⩔, ⩔E, y ⫬. 

Sea 𝑎1, 𝑎2, … 𝑎𝑛 , donde 𝑛 ≥ 1,  n atributos distintos, cuyos valores de atributo correspondientes sean 
respectivamente los conjuntos 𝐴1, 𝐴2, … , 𝐴𝑛 , con 𝐴𝑖 ∩ 𝐴𝑗 = ∅  para 𝑖 ≠ 𝑗,  y 𝑖, 𝑗 ∈ {1, 2,… , 𝑛} . Entonces el par 
(𝐹, 𝐴1 × 𝐴2 × …× 𝐴𝑛), donde 𝐴1 × 𝐴2 × …× 𝐴𝑛 representa un producto cartesiano, con 

𝐹: 𝐴1 × 𝐴2 × …× 𝐴𝑛 → H(⩓,⩔, ⩔E,⫬), se denomina Conjunto IndetermHyperSoft. 
De manera similar, se puede asociar grados difusos/intuicionistas difusos/neutrosóficos, etc. y extender el 

Conjunto IndetermHyperSoft a algún Conjunto IndetermHyperSoft Difuso/Intuicionista Difuso/Neutrosófico, etc. 

28. Aplicaciones del Conjunto IndetermHyperSoft

Sea nuevamente 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4} un conjunto de cuatro casas, y el atributo c = color, cuyos valores son C 
= {blanca, verde, azul, roja}, y otro atributo p = precio, cuyos valores son P = {barata, cara}. 

La función 
𝐹: 𝐶𝑃 → 𝒫(𝐻)  
donde 𝒫(𝐻) es el conjunto potencia de H, es un Conjunto HyperSoft. 
𝐹: 𝐶 × 𝑃 → H(⩓, ⩔, ⩔E, ⫬), se denomina Conjunto IndetermHyperSoft. 
Ejemplos: 
F(blanca, barata) = h2⩔h4 

F(verde, cara) = h1⩔Eh2 

F(roja, cara) = h3 ⫬ 

Para un conjunto IndetermHyperSoft Neutrosófico se tienen grados neutrosóficos, por ejemplo: 
F(blanco, barato) = h2(0.4, 0.2, 0.3)⩔ h4 (0.5, 0.1, 0.4) 
De la misma manera que arriba (Sección 26.1), se extienden los operadores de HyperSoft ⩓, ⩔, ⩔E, ⫬  

asignando algún grado 0 (.) [0,1]pd  , donde: p = 1 para grado clásico y difuso, p = 2 para grado difuso 
intuicionista, p = 3 para grado neutrosófico, y así sucesivamente p = n para grado neutrosófico refinado de n-
valor, a los elementos involucrados en los operadores, donde , ,   representan la conjunción, la disyunción y la 
negación, respectivamente, de estos grados en sus correspondientes conjuntos o lógicas de extensión difusa. 
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29. Definición de Grupo Conmutativo de Tripleta Neutrosófica

Sea 𝒰 un universo de discurso, y (𝐻,∗) un conjunto no vacío incluido en 𝒰, donde * es una operación binaria
(ley) sobre 𝐻. 

(i) La operación * sobre 𝐻 es bien definida, asociativa y conmutativa.
(ii) Para cada elemento 𝑥 ∈ 𝐻 existe un elemento 𝑦 ∈ 𝐻 , llamado neutro de x, tal que y es diferente del

elemento unidad (si lo hay), con 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 = 𝑥, y existe un elemento 𝑧 ∈ 𝐻, llamado el inverso de x, tal que 
𝑥 ∗ 𝑧 = 𝑧 ∗ 𝑥 = 𝑦, entonces a 〈𝑥, 𝑦, 𝑧〉 se le llama tripleta neutrosófica. 

Entonces (𝐻, ∗) es el Grupo Conmutativo de Tripleta Neutrosófica. 
En general, el Álgebra de Tripleta Neutrosófica es diferente del Álgebra Clásica. 

29.1. Teorema 3 

El Álgebra de join AND (𝐻, ⩓) y el Álgebra de disjoinOR (𝐻, ⩔), son Grupos Conmutativos de Tripleta 
Neutrosófica. 

Prueba 
Anteriormente se ha probado que los operadores ⩓ y ⩔ son cada uno de ellos: bien definidos, asociativos y 

conmutativos. 
También se probó que los dos operadores son idempotentes: 
∀𝑥 ∈ 𝐻, 𝑥 ⩓ 𝑥 = 𝑥 y 𝑥 ⩔ 𝑥 = 𝑥. 
Por lo tanto, para (𝐻,⩓) y (𝐻,⩔) respectivamente se tienen tripletas neutrosóficas de la forma: 〈𝑥, 𝑥, 𝑥〉. 

30. Enriquecimiento de los Conjuntos IndetermSoft e IndetermHyperSoft

Se invita a los lectores a ampliar esta investigación, ya que se pueden agregar más operadores suaves
determinados e indeterminados a las Álgebras IndetermSoft o IndetermHyperSoft, resultantes de (o necesarios 
para) varias aplicaciones reales, y como tal, se obtienen estructuras Soft e HyperSoft más fuertes. 

Algunas sugerencias: 
F(blanca) = al menos k casas; 
o F(blanca) = como mucho k casas;
o F(verde, pequeña) = entre k1 y k2 casas;
donde k, k1 y k2 son números enteros positivos, con k1 ≤ k2.
Etc.

31. Conclusiones

Los operadores suaves indeterminados, presentados en este documento, son el resultado de aplicaciones de
nuestro mundo real. Un álgebra definida mediante tales operadores se denominaba álgebra suave indeterminada. 

Los conjuntos IndetermSoft e IndetermHyperSoft, y sus correspondientes formas Difusa/Intuicionista 
Difusa/Neutrosófica, construidas sobre esta álgebra indeterminada, se presentan por primera vez como 
extensiones de los Conjuntos Soft e HyperSoft clásicos. 

Se muestran muchas aplicaciones y ejemplos. 
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Abstract.: Soft set deals with single set of attributes whereas its extension
hypersoft set deals with multi attribute-valued disjoint sets corresponding
to distinct attributes. Many researchers have created some models based
on soft set to solve problems in decision-making, but most of these models
deal with only one expert. This causes a problem with the users, especially
with those who use questionnaires in their work. Therefore we present a
novel model hypersoft expert set which not only addresses this limitation
of soft-like models with the emphasis on the opinion of all experts but
also resolves the inadequacy of soft set for attribute-valued disjoint sets
corresponding to distinct attributes. In this study, the existing concept
of hypersoft expert set is modified and some fundamental properties i.e.
subset, not set and equal set, whole set, absolute set, relative null set,
relative absolute set; results i.e. commutative, associative, distributive and
De’ Morgan’s Laws and set-theoretic operations i.e. complement, union
intersection, restricted union, extended intersection, AND, and OR are
developed. An algorithm is proposed to solve decision-making problem
and applied to recruitment process for hiring ”right person for the right
job”.

Key Words: Soft Set, Soft Expert Set, Hypersoft Set, Hypersoft Expert Set, Recruitment
Process.

1. INTRODUCTION

Molodtsov [22] conceptualized soft set (s-set) as it deals with the single approximate 
functions. The s-set also regarded as a new parameterized family of subsets of the universe 
of discourse as it transforms the single attribute-valued set into subsets of the universe 
of discourse. Chen et al. [9] introduced the parameter reduction of s-set and applied in
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application of different areas. Maji et al. [20] worked on s-set and initiated its different
characteristics like equality, union and intersection of two or more s-sets, null and abso-
lute s-sets and some generalized operations especially AND and OR. They also verified
certain results as well. After introducing fundamentals of s-sets, Maji [21] applied success-
fully this theory in decision-making problems (DMPs) by giving its an application using
rough mathematics. Ali et al. [7] developed characteristics like restricted union, intersec-
tion, difference and extended intersection. Babitha et al. [8] introduced some relations and
functions on s-set. Fatimah et al. [11] developed N-soft sets and discussed their decision-
making algorithms with applications. Akram et al. [2] have made great contributions by
introducing group like methods using hesitant N-soft sets with numerical cases in DMPs.
Deli [10] introduced the concept of convexity using structures of s-set and fuzzy soft set
(fs-set). He proved some important results by using operations like union, intersection and
complement. Later on Majeed [19] introduced the concept of convex hull and cone for
s-set to meet the demand of computational geometry with uncertain and vague informa-
tion. Rahman et al. [24, 25] introduced the concept of (m, n)-convexity cum concavity by
defining first and second senses on s-set. They discussed the various properties of convex-
ity cum concavity under fs-set and s-set. The s-set has been constructed for the opinion
of single expert in a single model. But certain circumstances demand opinions of more
than one experts using single model. To address this scarcity, soft expert set (se-set) has
been constructed. Alkhazaleh et al. [3] converted successfully the structure of s-set to se-
set by combining s-set and expert set. They characterized its necessary characteristics i.e.
complement, intersection, AND, OR etc., and successfully applied the concept in DMPs.
Alkhazaleh et al. [4, 5, 6] extended the work of se-set and developed the theories of soft
multi sets and possibility fuzzy s-set to adequate their already proposed structures for other
scenarios. Ihsan et al. [12, 13] extended the work of convexity cum concavity on se-set,
fuzzy se-set and discussed its several properties with numerical cases.

1.1. Research Gap and Motivation. Following points are provided to explain the re-
search gap and motivation behind the choice of proposed structure:

(1) The s-set is usually useful for single argument approximate functions but it fails
when functions are of multi-argument nature. To solve this kind of issue, Smaran-
dache took initiative and brought about a new type of model hypersoft set (hs-set).
Smarandache [38] made extension of s-set by introducing hs-set. He made use
of multi-attribute valued functions in replace of single attribute-valued functions.
Saeed et al. [36] introduced several fundamentals of hs-set for its applicability in
various other fields of study. Abbas et al. [1] introduced basic notions of of hs-
set points and discussed its certain properties in topological structures. They also
verified certain results with the help of examples. Rahman et al. [26] developed
the hybrids of hs-set with different structures and discussed its theoretic opera-
tions with generalized results. Rahman et al. [28] introduced decision-making
application based on neutrosophic parameterized hypersoft set theory. Rahman et
al. [29] conceptualized possibility neutrosophic hypersoft sets with application in
diagnosis of heart diseases. Rahman et al. [30] introduced new structure of bijec-
tive hypersoft set with application in decision-making. Rahman et al. [31] applied
decision-making application based on aggregations of complex fuzzy hypersoft
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set and developed interval-valued complex fuzzy hypersoft set. Rahman et al. [32]
also presented decision-making algorithmic approaches based on parameteriza-
tion of neutrosophic set under hypersoft set environment with fuzzy, intuitionistic
fuzzy and neutrosophic settings. Rahman et al. [33] worked on decision-making
algorithmic techniques based on aggregation operations and similarity measures
of possibility intuitionistic fuzzy hypersoft sets. Rahman et al. [34] made use of
theoretical and analytical approach to the conceptual framework of convexity cum
concavity on fuzzy hypersoft sets with some generalized properties. Rahman et al.
[35] introduced the multi-attribute decision-support system based on aggregations
of interval-valued complex neutrosophic hypersoft set. Saqlain et al. [37] gave
the idea of aggregation operators for neutrosophic hypersoft set. Yolcu & Öztürk
[39] introduced the concept of fuzzy hypersoft set with its fundamental operators
and applied them in decision-making. Yolcu et al. [40] also conceptualized in-
tuitionistic fuzzy hypersoft set and discussed its applications in decision-making
problems. Öztürk & Yolcu [23] redefined the operations of neutrosophic hypersoft
topological spaces and discussed its basic properties.

(2) It can be viewed that the s-set like models deal with opinion of only single expert.
But in real life, there are certain situations where we need different opinions of
different experts in one model. To tackle this situation, se-set has been developed.
However, there are also certain situations when features are farther classified into
their relevant numerical-characteristics disjoint sets. Ihsan et al. [27] made exten-
sion of hs-set and introduced a new structure called hypersoft expert set (hse-set)
and then the researchers [14, 15, 16, 17] made contributions by developing fuzzy
hse-set, single valued neutrosophic hse-set and bijective hse-set respectively with
applications in DMPs.

(3) Having motivation from [3, 36], fundamentals of hse-set are developed and a new
method is adopted to explain an application in DMPs.

The paper is written in this order: section 2 has definitions of s-sets, se-set and hs-set. Sec-
tion 3 contains the basic notions of hse-set with properties. Section 4 contains a numerical
case of of main structure in DMPs. In section 5 conclusion has been described.

2. PRELIMINARIES

In first part of the paper, some necessary definitions are described from the literature
to support the main study. Now some important symbols are mentioned that will be used
throughout the paper: P (Ω̃) for the power set of Ω̃ (universe of discourse), ` for the col-
lection of parameters, s for the collection of experts and ð for the set of conclusions,
T = `×s× ð with S ⊆ T.

Definition 1. [22]
A soft set is a collection of pairs (ΥM ,`) with ΥM is a mapping defined by ΥM : ` →
P (Ω̃) where ` is a set of parameters.

Definition 2. [20]
The union of two s-sets (Γ1,Æ1) and (Γ2,Æ2) over Ω̃ is a s-set (Γ3,Æ3) with Æ3

.
=
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Æ1 ∪Æ2, and ∀ o ∈ Æ3,

Γ3(o) =

 Γ1(o)
Γ2(o)

Γ1(o) ∪ Γ2(o)

; o ∈ Æ1 \Æ2

; o ∈ Æ2 \Æ1

; o ∈ Æ1 ∩Æ2.

Definition 3. [2]
The intersection of two s-sets (~Θ1,Æ1) and (~Θ2,Æ2) is a s-set (~Θ3,Æ3) with Æ3

.
=

Æ1 ∪Æ2, for all o ∈ Æ3,

~Θ3(o) =


~Θ1(o)
~Θ2(o)

~Θ1(o) ∪ ~Θ2(o)

; o ∈ Æ1 \Æ2

; o ∈ Æ2 \Æ1

; o ∈ Æ1 ∩Æ2.

Definition 4. [10]
A collection of pairs (}A,S) is called a soft expert set over Ω̃ with }A is a mapping given
by }A : S → P (Ω̃) where S ⊆ T = `×s×ð and ` stands for set of parameters, s is the
set of experts and ð is the set of conclusions. For simplicity, {0 = agree, 1 = disagree}
is being used as of set of conclusion.

Definition 5. [10]
A soft expert set (œ̈1, ø̆) will be subset of (œ̈2, æ̆) over Ω̃, if œ̈1 ⊆ œ̈2, ∀ o ∈ ø̆, œ̈1(o) ⊆
œ̈2(o). Moreover (œ̈2, æ̆) is a superset of (œ̈1, ø̆).

Definition 6. [38]
Supposef1,f2,f3, ...,fα, forα ≥ 1, beα disjoint attributes, while the setsL1,L2,L3, ...,Lα,
are corresponding attribute valued sets with Lm ∩ Ln = ∅ for m 6= n and m,n ∈
{1, 2, 3, ..., α}. Then the pair (η,G) while G = L1×L2×L3×...×Lα and η : G→ P (Ω̃)

is called a hypersoft set over Ω̃.

3. FUNDAMENTALS OF HYPERSOFT EXPERT SET

In this section, the definition of hypersoft expert set and its fundamental properties (sub-
set, equal set, not set, complement of a set, relative complement,relative null set, relative
whole set, agree and disagree set etc.) are presented with examples.

Definition 7. [14] Hypersoft Expert set (hse-set): A pair( Ψ︸︷︷︸,S) is named as a hypersoft

expert set over Ω̃ with Ψ︸︷︷︸ : S → P (Ω̃) where S ⊆ T = = × s × ð; = = =1 ×
=2 ×=3 × ....×=n with =1,=2,=3, ...,=n are disjoint attributes sets corresponding to n
disjoint attributes ∂1, ∂2, ∂3, ..., ∂n; s represents the set of experts and ð represents the set
of conclusion.

Example 3.1. Assume that a multi-national manufacturing company plans to assess its
manufactured items through external evaluators. Let Ω̃ = {v1, v2, v3, v4} be a set of items
and Λ1 = {g11, g12}, Λ2 = {g21, g22}, Λ3 = {g31, g32}, be disjoint parametric valued sets
for distinct attributes g1= simple to utilize, g2= nature, g3= modest. Now Λ = Λ1×Λ2×Λ3

Λ =

{
η1 = (g11, g21, g31), η2 = (g11, g21, g32), η3 = (g11, g22, g31), η4 = (g11, g22, g32),

η5 = (g12, g21, g31), η6 = (g12, g21, g32), η7 = (g12, g22, g31), η8 = (g12, g22, g32)

}
.
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Now Π = Λ×Υ× Γ

Π =



(η1, q, 0), (η1, s, 1), (η1, t, 0), (η1, t, 1), (η1, u, 0), (η1, u, 1), (η8, s, 0),

(η2, s, 0), (η2, s, 1), (η2, t, 0), (η2, t, 1), (η2, u, 0), (η2, u, 1), (η8, s, 1),

(η3, s, 0), (η3, s, 1), (η3, t, 0), (η3, t, 1), (η3, u, 0), (η3, u, 1), (η8, t, 0),

(η4, s, 0), (η4, s, 1), (η4, t, 0), (η4, t, 1), (η4, u, 0), (η4, u, 1), (η8, t, 1),

(η5, s, 0), (η5, s, 1), (η5, t, 0), (η5, t, 1), (η5, u, 0), (η5, u, 1), (η8, u, 0),

(η6, s, 0), (η6, s, 1), (η6, t, 0), (η6, t, 1), (η6, u, 0), (η6, u, 1), (η8, u, 1)

(η7, s, 0), (η7, s, 1), (η7, t, 0), (η7, t, 1), (η7, u, 0), (η7, u, 1),


.

Let

z =


(η1, q, 0), (η1, s, 1), (η1, t, 0), (η1, t, 1), (η1, u, 0), (η1, u, 1),

(η3, s, 0), (η3, s, 1), (η3, t, 0), (η3, t, 1), (η3, u, 0), (η3, u, 1),

(η5, s, 0), (η5, s, 1), (η5, t, 0), (η5, t, 1), (η5, u, 0), (η5, u, 1)


be a subset of Π and Υ = {s, t, u} represents a set of specialists and Γ= {0 = agree, 1 =
disagree} represents a set of conclusion. Following are the approximations of prescribed
attributes with respect to selected evaluators:
f1 = f(η1, s, 1) = {v1, v2, v4},f2 = f(η1, t, 1) = {v3, v4},f3 = f(η1, u, 1) =
{v3, v4}, f4 = f(η3, s, 1) = {v4},f5 = f(η3, t, 1) = {v1, v3},
f6 = f(η3, u, 1) = {v1, v2, v4}, f7 = f(η5, s, 1) = {v3, v4},f8 = f(η5, t, 1) =
{v1, v2},f9 = f(η5, u, 1) = {v4},
f10 = f(η1, s, 0) = {v3},f11 = f(η1, t, 0) = {v2, v3},f12 = f(η1, u, 0) = {v1, v2},
f13 = f(η3, s, 0) = {v1, v2, v3},f14 = f(η3, t, 0) = {v2, v4},f15 = f(η3, u, 0) =
{v3}, f16 = f(η5, s, 0) = {v1, v2},f17 = f(η5, t, 0) = {v3, v4},f18 = f(η5, u, 0) =
{v1, v2, v3}.
The hypersoft expert set is

(f,z) =



((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) , ((η1, u, 1), {v3, v4}) ,
((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) , ((η3, u, 1), {v1, v2, v4}) ,
((η5, s, 1), {v3, v4}) , ((η5, t, 1), {v1, v2}) , ((η5, u, 1), {v4}) ,
((η1, s, 0), {v3}) , ((η1, t, 0), {v2, v3}) , ((η1, u, 0), {v1, v2}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4}) , ((η3, u, 0), {v3})
((η5, s, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) , ((η5, u, 0), {v1, v2, v3})


.

Definition 8. Hypersoft Expert Subset
A hse-set (f1,z) ⊆ (f2,k) over Ω̃, if
(i) z ⊆ k, (ii) ∀ o ∈ z,f1(o) ⊆ f2(o) and shown by (f1,z) ⊆ (f2,k).

Example 3.2. Considering Example 3.1, suppose

Æ1 =
{

(η1, s, 1), (η3, s, 0), (η1, t, 1), (η3, t, 1), (η3, t, 0), (η1, u, 0), (η3, u, 1)
}

Æ2 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1), (η1, t, 1), (η3, t, 1),

(η5, t, 0), (η3, t, 0), (η1, u, 0), (η3, u, 1), (η5, u, 1)

}
.
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⇒ Æ1 ⊂ Æ2. Suppose (f1,Æ1) and (f2,Æ2) be two hse-sets

(f1,Æ1) =


((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) ,
((η3, t, 1), {v1, v3}) , ((η3, u, 1), {v1, v2}) ,
((η1, u, 0), {v1}) , ((η3, s, 0), {v1, v2}) ,
((η3, t, 0), {v2, v4})



(f2,Æ2) =


((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) ,
((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) ,
((η5, u, 1), {v4}) , ((η3, u, 1), {v1, v2, v4}) ,
((η1, u, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4})


⇒ (f1,Æ1) ⊆ (f2,Æ2).

Definition 9. Two hse-sets (f1, δ1) and (f2, δ2) will be equal if (f1, δ1) ⊆ (f2, δ2) and
(f2, δ2) ⊆ (f1, δ1).

Definition 10. The NOT set of Π = Λ×Υ× Γ denoted by ∼ Λ, is shown as ∼ Λ = {(∼
oi, aj , vk)∀i, j, k} with ∼ oi is not oi.

Definition 11. Let (f,z) be a hse-set, then its compliment is defined by (f,z)c = (fc,∼
z) such that fc : ∼ z→ P (Ω̃) is represented by fc(0) = Ω̃− f(∼ o), for o ∈∼ z.

Example 3.3. We can find the compliment of hse-set in Example 3.1, as

(f,z)c =



((∼ η1, s, 1), {v3}) , ((∼ η1, t, 1), {v2, v3}) , ((∼ η1, u, 1), {v1, v2}) ,
((∼ η3, s, 1), {v1, v2, v3}) , ((∼ η3, t, 1), {v2, v4}) , ((∼ η3, u, 1), {v1, v2, v4}) ,
((∼ η5, s, 1), {v1, v2}) , ((∼ η5, t, 1), {v3, v4}) , ((∼ η5, u, 1), {v1, v2, v3}) ,
((∼ η1, s, 0), {v1, v2, v4}) , ((∼ η1, t, 0), {v1, v4}) , ((∼ η1, u, 0), {v1, v2}) ,
((∼ η3, s, 0), {v4}) , ((∼ η3, t, 0), {v1, v3}) , ((∼ (η3, u, 0), {v3})
((∼ η5, s, 0), {v3, v4}) , ((∼ η5, t, 0), {v1, v3}, ) , ((∼ η5, u, 0), {v4})


.

Definition 12. Let (f,z) is a hse-set, then its relative compliment is (f,z)∗ = (f∗,z)

with f∗ : z→ P (Ω̃), as well as f∗(o) = Ω̃− f(o) for all o ∈ z.

Example 3.4. We can find the relative compliment of hse-set in Example 3.1, as

(f,z)∗ =



((η1, s, 1), {v3}) , ((η1, t, 1), {v2, v3}) , ((η1, u, 1), {v1, v2}) ,
((η3, s, 1), {v1, v2, v3}) , ((η3, t, 1), {v2, v4}) , ((η3, u, 1), {v1, v2, v4}) ,
((η5, s, 1), {v1, v2}) , ((η5, t, 1), {v3, v4}) , ((η5, u, 1), {v1, v2, v3}) ,
((η1, s, 0), {v1, v2, v4}) , ((η1, t, 0), {v1, v4}) , ((η1, u, 0), {v1, v2}) ,
((η3, s, 0), {v4}) , ((η3, t, 0), {v1, v3}) , (((η3, u, 0), {v3})
((η5, s, 0), {v3, v4}) , ((η5, t, 0), {v1, v3}, ) , ((η5, u, 0), {v4})


.

Definition 13. Suppose (f,z) be a hse-set, then the following properties hold:
(1) ((f,z)c)c = (f,z)
(2) ((f,z)∗)∗ = (f,z)
(3) ((f1,z1)Ω̃)c = (f1,z1)Φ = ((f1,z1)Ω̃)∗ with z1 ⊆ z.
(4) ((f1,z1)Φ)c = (f1,z1)Ω̃ = ((f1,z1)Φ)∗ with z1 ⊆ z.

Definition 14. A hse-set (f,z1) is called a relative null hse-set with respect to z1 ⊂ z,
denoted by (f,z1)Ω̃ , if f(o) = ∅, ∀ o ∈ z1.

Florentin Smarandache (author and editor) Collected Papers, XIII

309



Example 3.5. Taking Example 3.2, if
(f,z1)Ω̃ = {((η1, s, 1), ∅), ((η1, t, 1), ∅), ((η1, u, 1), ∅)}, where z1 ⊆ z.

Definition 15. A hse-set (f,z2) is called a relative whole hse-set with respect toz2 ⊂ z,
denoted by (f,z2)Ω̃ , if f(o) = Ω̃, ∀ o ∈ z2.

Example 3.6. Taking Example 3.2, if
(f,z2)Ω̃ = {((η2, s, 1), Ω̃), ((η2, t, 1), Ω̃), ((η2, u, 1), Ω̃)}, where z2 ⊆ z.

Definition 16. A hse-set (f,z) is called absolute whole hse-set shown by (f,z)Ω̃ , if
f(o) = Ω̃, ∀ o ∈ z.

Example 3.7. Taking Example 3.2, if (f,z)Ω̃ =
(

(η1, s, 1), Ω̃
)
,
(

(η1, t, 1), Ω̃
)
,
(

(η1, u, 1), Ω̃
)
,
(

(η3, s, 1), Ω̃
)
,
(

(η3, t, 1), Ω̃
)
,
(

(η3, u, 1), Ω̃
)
,(

(η5, s, 1), Ω̃
)
,
(

(η5, t, 1), Ω̃
)
,
(

(η5, u, 1), Ω̃
)
,
(

(η1, s, 0), Ω̃
)
,
(

(η1, t, 0), Ω̃
)
,
(

(η1, u, 0), Ω̃
)
,(

(η3, s, 0), Ω̃
)
,
(

(η3, t, 0), Ω̃
)
,
(

(η3, u, 0), Ω̃
)(

(η5, s, 0), Ω̃
)
,
(

(η5, t, 0), Ω̃
)
,
(

(η5, u, 0), Ω̃
)

 .

Proposition 3.8. Suppose (f1,z1)Ω̃, (f2,z2)Ω̃, (f3,z3)Ω̃, be three hse-sets over Ω̃,
then following properties hold:

(1) (f1,z1) ⊂ (f2,z2)Ω̃
(2) (f1,z1)Φ ⊂ (f1,z1)
(3) (f1,z1) ⊂ (f1,z1)
(4) If (f1,z1) ⊂ (f2,z2), and (f2,z2) ⊂ (f3,z3), then (f1,z1) ⊂ (f3,z3)
(5) If (f1,z1) = (f2,z2), and (f2,z2) = (f3,z3), then (f1,z1) = (f3,z3).

Definition 17. An Agree-hse-set (f,z)ag is a hse-subset of (f,z) and is characterized as
(f,z)ag = {fag(o) : o ∈ Λ×Υ× {1}}.

Example 3.9. We can find Agree-hse-set using Example 3.1, we get

(f,z) =

 ((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) , ((η1, u, 1), {v3, v4}) ,
((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) , ((η3, u, 1), {v1, v2, v4}) ,
((η5, s, 1), {v3, v4}) , ((η5, t, 1), {v1, v2}) , ((η5, u, 1), {v4})

 .

Definition 18. A Disagree-hse-set (f,z)dag over Ω̃, is a hse-subset of (f,z) and is char-
acterized as (f,z)dag = {fdag(o) : o ∈ Λ×Υ× {0}}.

Example 3.10. We can find Disagree-hse-set in Example 3.1,

(f,z) =

 ((η1, s, 0), {v3}, ) , ((η1, t, 0), {v2, v3}) , ((η1, u, 0), {v1, v2}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4}) , ((η3, u, 0), {v3}) ,
((η5, s, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) , ((η5, u, 0), {v1, v2, v3})

 .

Proposition 3.11. Consider a hse-subset (f,z) on Ω̃, then following properties hold:

(1) ((f,z)c)c = (f,z)
(2) (f,z)cag = (f,z)dag
(3) (f,z)cdag = (f,z)ag .
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Definition 19. The union of (f1,z) and (f2,k) over Ω̃ is (f3,i) with i = z ∪ k,
defined as

f3(o) =

 f1(o)
f2(o)

f1(o) ∪ f2(o)

; o ∈ z− k
; o ∈ k−z
; o ∈ z ∩ k.

Example 3.12. Taking Example 3.1, and two sets

Æ1 =

{
(η1, s, 1), (a3, s, 0), (a3, s, 1), (η1, t, 1), (a3, t, 1),

(a5, t, 0), (a3, t, 0), (η1, u, 0), (a3, u, 1), (a5, u, 1)

}
Æ2 =

{
(η1, s, 1), (a3, s, 0), (a3, s, 1), (η1, t, 1), (a3, t, 1), (a5, t, 0), (a3, t, 0), (η1, u, 0), (a3, u, 1)

}
.

Consider two two hse-sets (f1,Æ1) and (f2,Æ2) on Ω̃

(f1,Æ1) =

 ((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η3, t, 1), {v1, v3}) ,
((η3, u, 1), {v1, v2}) , ((η1, u, 0), {v1}) , ((η3, s, 0), {v1, v2}) ,
((η3, t, 0), {v2, v4})


(f2,Æ2) =

 ((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) , ((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) ,
((η5, u, 1), {v4}) , (((η3, u, 1), {v1, v2, v4}) ((η1, u, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4})

 .

Then (f1,Æ1) ∪ (f2,Æ2) = (f3,Æ3) ((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) , ((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) ,
((η5, u, 1), {v4}) , ((η3, u, 1), {v1, v2, v4}) , ((η1, u, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4})

 .

Definition 20. Restricted Union of two hse-sets (f1,Æ1), (f2,Æ2) over Ω̃ is (f3,Œ)
with Œ = Æ1 ∩Æ2, defined as f3(o) = f1(o) ∪R f2(o) for all o ∈ Æ1 ∩Æ2.

Example 3.13. Dealing Example 3.1 with two sets

Æ1 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1), (η1, t, 1), (η3, t, 1),

(η5, t, 0), (η3, t, 0), (η1, u, 0), (η3, u, 1), (η5, u, 1)

}

Æ2 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1), (η1, t, 1), (η3, t, 1),

(η5, t, 0), (η3, t, 0), (η1, u, 0), (η3, u, 1)

}
.

Consider two hse-sets

(f1,Æ1) =


((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η3, t, 1), {v1, v3}) ,
((η3, u, 1), {v1, v2}) , ((η1, u, 0), {v1}) , ((η3, s, 0), {v1, v2}) ,
((η3, t, 0), {v2, v4}) , ((η5, u, 1), {v4}) , ((η5, t, 0), {v3})
((η3, s, 1), {v3, v4})


(f2,Æ2) =


((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) ,
((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) ,
((η3, u, 1), {v1, v2, v4}) ((η1, u, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4})

 .
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Then (f1,Æ1) ∪R (f2,Æ2) = (f3,Œ)

(f3,Œ) =


((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) ,
((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) ,
((η3, u, 1), {v1, v2, v4}) ,
((η1, u, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4})

 .

Proposition 3.14. Consider three hse-sets (f1,Æ1),(f2,Æ2) and (f3,Æ3) on Ω̃, then
(1) (f1,Æ1) ∪ (f2,Æ2) = (f2,Æ2) ∪ (f1,Æ1)
(2) ((f1,Æ1) ∪ (f2,Æ2)) ∪ (f3,Æ3) = (f1,Æ1) ∪ ((f2,Æ2) ∪ (f3,Æ3)).

Definition 21. The intersection of (f1,Æ1) and (f2,Æ2) over Ω̃ is (f3,Œ) with Œ =
Æ1 ∩Æ2, defined as f3(o) = f1(o) ∩ f2(o) for all o ∈ Æ1 ∩Æ2.

Example 3.15. Dealing Example 3.1, and following two sets

Æ1 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1), (η1, t, 1), (η3, t, 1),

(η5, t, 0), (η3, t, 0), (η1, u, 0), (η3, u, 1), (η5, u, 1)

}

Æ2 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1), (η1, t, 1), (η3, t, 1),

(η5, t, 0), (η3, t, 0), (η1, u, 0), (η3, u, 1)

}
.

Consider two hse-sets over Ω̃, then

(f1,Æ1) =


((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η3, t, 1), {v1, v3}) ,
((η3, u, 1), {v1, v2}) , ((η1, u, 0), {v1}) , ((η3, s, 0), {v1, v2}) ,
((η3, t, 0), {v2, v4}) , ((η5, u, 1), {v4}) , ((η5, t, 0), {v3})
((η3, s, 1), {v3, v4})


(f2,Æ2) =


((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1, v4}) ,
((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) , (((η3, u, 1), {v1, v2, v4})
((η1, u, 0), {v1, v2}) , ((η5, t, 0), {v3, v4}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4})

 .

Then (f1,Æ1) ∩ (f2,Æ2) = (f3,Æ3) ((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η3, t, 1), {v1, v3}) , ((η3, u, 1), {v1, v2}) ,
((η1, u, 0), {v1}) , ((η3, s, 0), {v1, v2}) , ((η3, t, 0), {v2, v4}) , ((η3, s, 1), {v4})
((η5, t, 0), {v3}) ,

 .

Definition 22. Extended intersection of two hse-sets (f1,z) and (f2,k) is (f3,i) with
i = z ∪ k, and

f3(o) =

 f1(o)
f2(o)

f1(o) ∩ f2(o)

; o ∈ z− k
; o ∈ k−z
; o ∈ z ∩ k.

Example 3.16. By utilizing Example 3.1,and with two sets

Æ1 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1), (η1, t, 1), (η3, t, 1),

(η5, t, 0), (η3, t, 0), (η1, u, 0), (η3, u, 1), (η5, u, 1)

}
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Æ2 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1), (η1, t, 1), (η3, t, 1),

(η5, t, 0), (η3, t, 0), (η1, u, 0), (η3, u, 1)

}
Suppose (f1,Æ1) and (f2,Æ2) are two hse-sets

(f1,Æ1) =


((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η3, t, 1), {v1, v3}) ,
((η3, u, 1), {v1, v2}) , ((η1, u, 0), {v1}) , ((η3, s, 0), {v1, v2}) ,
((η3, t, 0), {v2, v4}) , ((η5, u, 1), {v4}) , ((η5, t, 0), {v3})
((η3, s, 1), {v3, v4})


(f2,Æ2) =


((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η5, t, 0), {v3, v4}) ,
((η3, s, 1), {v4}) , ((η3, t, 1), {v1, v3}) ,
((η3, u, 1), {v1, v2, v4}) ((η1, u, 0), {v1, v2}) ,
((η3, s, 0), {v1, v2, v3}) , ((η3, t, 0), {v2, v4})


Then (f1,Æ1) ∩E (f2,Æ2) = (f3,i) ((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η3, t, 1), {v1, v3}) , ((η3, u, 1), {v1, v2}) ,

((η1, u, 0), {v1}) , ((η3, s, 0), {v1, v2}) , ((η3, t, 0), {v2, v4}) , ((η5, t, 0), {v3}) ,
((η5, u, 1), {v4}) , ((η3, s, 1), {v4})

 .

Proposition 3.17. Consider three hse-sets (f1,Æ1),(f2,Æ2) and (f3,Æ3) over Ω̃, then

(1) (f1,Æ1) ∩ (f2,Æ2) = (f2,Æ2) ∩ (f1,Æ1)
(2) ((f1,Æ1) ∩ (f2,Æ2)) ∩ (f3,Æ3) = (f1,Æ1) ∩ ((f2,Æ2) ∩ (f3,Æ3)).

Proposition 3.18. Consider three hse-sets (f1,Æ1),(f2,Æ2) and (f3,Æ3) over Ω̃, then

(1) (f1,Æ1) ∪ ((f2,Æ2) ∩ (f3,Æ3)) = ((f1,Æ1) ∪ ((f2,Æ2)) ∩ ((f1,Æ1) ∪
(f3,Æ3))

(2) (f1,Æ1) ∩ ((f2,Æ2) ∪ (f3,Æ3)) = ((f1,Æ1) ∩ ((f2,Æ2)) ∪ ((f1,Æ1) ∩
(f3,Æ3)).

Definition 23. Let (f1,Æ1) and (f2,Æ2) are two hse-sets then (f1,Æ1) AND (f2,Æ2)
shown as (f1,Æ1)∧(f2,Æ2) and can be defined as (f1,Æ1)∧(f2,Æ2) = (f3,Æ1×Æ2),
with f3(β, γ) = f1(β) ∩ f2(γ),∀(β, γ) ∈ Æ1 ×Æ2.

Example 3.19. Taking Example 3.1, let two sets
Æ1 =

{
(η1, s, 1), (η1, t, 1), (η3, s, 1), (η3, s, 0)

}
, Æ2 =

{
(η1, s, 1), (η3, s, 0), (η3, s, 1)

}
.

Consider two hse-sets

(f1,Æ1) =
{

((η1, s, 1), {v1, v2}) , ((η1, t, 1), {v1}) , ((η3, s, 1), {v4}) , ((η3, s, 0), {v1, v2}) ,
}

and
(f2,Æ2) =

{
((η1, s, 1), {v1, v2, v4}) , ((η3, s, 0), {v1, v2, v3})

}
Then (f1,Æ1) ∧ (f2,Æ2) = (f3,Æ1 ×Æ2)

(((η1, s, 1), (η1, s, 1)), {v1, v2}), (((η1, s, 1), (η3, s, 0)), {v1, v2}) ,
(((η1, t, 1), (η1, s, 1)), {v1}), (((η1, t, 1), (η3, s, 0)), {v1}) ,
(((η3, s, 1), (η1, s, 1)), {v4}), (((η3, s, 1), (η3, s, 0)), φ) ,
(((η3, s, 0), (η1, s, 1)), {v1, v2}), (((η3, s, 0), (η3, s, 0)), {v1, v2}) ,

 .
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Definition 24. Consider two hse-sets (f1,Æ1) and (f2,Æ2) , then (f1,Æ1) OR (f2,Æ2)
shown as (f1,Æ1) ∨ (f2,Æ2) can be defined as (f1,Æ1) ∨ (f2,Æ2) = (f3,Æ1 ×Æ2),
with f3(β, γ) = f1(β) ∪ f2(γ),∀(β, γ) ∈ Æ1 ×Æ2.

Example 3.20. Dealing Example 3.1, and with sets
Æ1 =

{
(η1, s, 1), (η1, t, 1), (a3, s, 1), (a3, s, 0)

}
, Æ2 =

{
(η1, s, 1), (a3, s, 0), (a3, s, 1)

}
.

Consider two hse-sets

(f1,Æ1) =
{

((a1, s, 1), {v1, v2}) , ((a1, t, 1), {v1}) , ((a3, s, 1), {v4}) , ((a3, s, 0), {v1, v2})
}

and
(f2,Æ2) =

{
((a1, s, 1), {v1, v2, v4}) , ((a3, s, 0), {v1, v2, v3})

}
Then (f1,Æ1) ∨ (f2,Æ2) = (f3,Æ1 ×Æ2)

(((a1, s, 1), (a1, s, 1)), {v1, v2, v4}), (((a1, s, 1), (a3, s, 0)), {v1, v2, v3}) ,
(((a1, t, 1), (a1, s, 1)), {v1, v2, v4}), (((a1, t, 1), (a3, s, 0)), {v1, v2}) ,
(((a3, s, 1), (a1, s, 1)), {v1, v2, v4}), (((a3, s, 1), (a3, s, 0)), {v1, v2, v3, v4}) ,
(((a3, s, 0), (a1, s, 1)), {v1, v2, v4}), (((a3, s, 0), (a3, s, 0)), {v1, v2, v3}) .

 .

Definition 25. Restricted Difference of two hse-sets (∂1,Æ1) and (∂2,Æ2) over Ω̃, shown
by (∂1,Æ1) \R (f2,Æ2)), is a hse-set (∂3,Æ3) with Æ3 = Æ1 ∩Æ2

∂3(o) = ∂1(o)\∂2(o) for o ∈ Æ3.

Example 3.21. Dealing Example 3.1, and with sets
Æ1 =

{
(η1, s, 1), (η1, t, 1), (a3, s, 1), (a3, s, 0)

}
, Æ2 =

{
(η1, s, 1), (a3, s, 0)

}
.

Consider two hse-sets (f1,Æ1) and (f2,Æ2), then

(f1,Æ1) =
{

((a1, s, 1), {v1, v2, v4}) , ((a1, t, 1), {v1}) , ((a3, s, 1), {v4}) , ((a3, s, 0), {v1, v2, v3}) ,
}

(f2,Æ2) =
{

((a1, s, 1), {v1, v2}) , ((a3, s, 0), {v1, v2})
}
.

(f1,Æ1) \R (f2,Æ2)) = (f3,Æ3)

(f3,Æ3) =
{

((a1, s, 1), {v4}) , ((a3, s, 0), {v3})
}
.

Definition 26. Restricted Symmetric Difference of two hse-sets (f1,Æ1) and (f2,Æ2)

on Ω̃, shown by (f1,Æ1) F (f2,Æ2)), is a hse-set (f3,Æ3) characterized by (f3,Æ3)
= {((f1,Æ1) ∪R (f2,Æ2))�R((f1,Æ1) ∩ (f2,Æ2))}.

Example 3.22. Dealing Example 3.1, with sets
Æ1 =

{
(η1, s, 1), (η1, t, 1), (η3, s, 1), (η3, s, 0)

}
, Æ2 =

{
(η1, s, 1), (η3, s, 0)

}
.

Consider three hse-sets (f1,Æ1) and (f2,Æ2) over Ω̃, then

(f1,Æ1) =

{
((η1, s, 1), {v1, v2, v4}) , ((η1, t, 1), {v1}) ,
((η3, s, 1), {v4}) , ((η3, s, 0), {v1, v2, v3}) ,

}
(f2,Æ2) =

{
((η1, s, 1), {v1, v2}) , ((η3, s, 0), {v1, v2})

}
(f1,Æ1) ∪R (f2,Æ2) = ((η1, s, 1), {v1, v2, v4}) , ((η3, s, 0), {v1, v2, v3}), and
{(f1,Æ1) ∩ (f2,Æ2)} = {((η1, s, 1), {v1, v2}) , ((η3, s, 0), {v1, v2})}
then (f3,Æ3) = {((η1, s, 1), {v4}) , ((η3, s, 0), {v3})}.

Proposition 3.23. Consider three hse-sets (f1,Æ1),(f2,Æ2) and (f3,Æ3), then
(1) ((f1,Æ1) ∧ (f2,Æ2))c = ((f1,Æ1))c ∨ ((f2,Æ2))c
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(2) ((f1,Æ1) ∨ (f2,Æ2))c = ((f1,Æ1))c ∧ ((f2,Æ2))c.

Proposition 3.24. Consider three hse-sets (f1,Æ1), (f2,Æ2) and (f3,Æ3), then
(1) ((f1,Æ1) ∧ (f2,Æ2)) ∧ (f3,Æ3) = (f1,Æ1) ∧ ((f2,Æ2) ∧ (f3,Æ3))
(2) ((f1,Æ1) ∨ (f2,Æ2)) ∨ (f3,Æ3) = (f1,Æ1) ∨ ((f2,Æ2) ∨ (f3,Æ3))
(3) (f1,Æ1)∨((f2,Æ2)∧(f3,Æ3) = ((f1,Æ1)∨((f2,Æ2))∧((f1,Æ1)∨(f3,Æ3))
(4) (f1,Æ1) ∧ ((f2,Æ2) ∨ (f3,Æ3)) = ((f1,Æ1) ∧ ((f2,Æ2)) ∨ ((f1,Æ1) ∧

(f3,Æ3)).

4. BASIC PROPERTIES AND LAWS

In this section of the paper, some properties like exclusion, contraction and laws like
idempotent, identity, domination etc. are described.

(1) Idempotent Laws
(2) (Ξ,a) ∪ (Ξ,a) = (Ξ,a) = (Ξ,a) ∪R (Ξ,a)
(3) (Ξ,a) ∩ (Ξ,a) = (Ξ,a) = (Ξ,a) ∩ε (Ξ,a).
(1) Identity Laws
(2) (Ξ,a) ∪ (Ξ,a)Φ = (Ξ,a) = (Ξ,a) ∪R (Ξ,a)Φ

(3) (Ξ,a) ∩ (Ξ,a)U = (Ξ,a) = (Ξ,a) ∩ε (Ξ,a)U
(4) (Ξ,a)�R(Ξ,a)Φ = (Ξ,a) = (Ξ,a)F(Ξ,a)Φ

(5) (Ξ,a)�R(Ξ,a) = (Ξ,a)Φ = (Ξ,a)F(Ξ,a).
(1) Domination Laws
(2) (Ξ,a) ∪ (Ξ,a)U = (Ξ,a)U = (Ξ,a) ∪R (Ξ,a)U
(3) (Ξ,a) ∩ (Ξ,a)Φ = (Ξ,a)Φ = (Ξ,a) ∩ε (Ξ,a)Φ.

(1) Property of Exclusion
(2) (Ξ,a) ∪ (Ξ,a)∗ = (Ξ,a)U = (Ξ,a) ∪R (Ξ,a)∗.
(1) Property of Contradiction
(2) (Ξ,a) ∩ (Ξ,a)∗ = (Ξ,a)Φ = (Ξ,a) ∩ε (Ξ,a)∗.
(1) Absorption Laws
(2) (ð,H1) ∪ ((ð,H1) ∩ (ð,H1)) = (ð,H1)
(3) (ð,H1) ∩ ((ð,H1) ∪ (ð,H1)) = (ð,H1)
(4) (ð,H1) ∪R ((ð,H1) ∩ε (ð,H1)) = (ð,H1)
(5) (ð,H1) ∩ε ((ð,H1) ∪R (ð,H1)) = (ð,H1).
(1) Absorption Laws
(2) ((ð, {1) ∪ (ð, {2)) = ((ð, {1) ∪ (ð, {2))
(3) ((ð, {1) ∪R (ð, {2)) = ((ð, {1) ∪R (ð, {2))
(4) ((ð, {1) ∩ (ð, {2)) = ((ð, {1) ∩ (ð, {2))
(5) ((ð, {1) ∩ε (ð, {2)) = ((ð, {1) ∩ε (ð, {2))
(6) ((ð, {1)F(ð, {2)) = ((ð, {1)F(ð, {2)).
(1) Associative Laws
(2) (Υ, {1) ∪ ((Υ, {2) ∪ (ω, {3)) = ((Υ, {1) ∪ (Υ, {2)) ∪ (ω, {3)
(3) (Υ, {1) ∪R ((Υ, {2) ∪R (ω, {3)) = ((Υ, {1) ∪R (Υ, {2)) ∪R (ω, {3)
(4) (Υ, {1) ∩ ((Υ, {2) ∩ (ω, {3)) = ((Υ, {1) ∩ (Υ, {2)) ∩ (ω, {3)
(5) (Υ, {1) ∩ε ((Υ, {2) ∩ε (ω, {3)) = ((Υ, {1) ∩ε (Υ, {2)) ∩ε (ω, {3)
(6) (Υ, {1)

∨
((Υ, {2)

∨
(ω, {3)) = ((Υ, {1)

∨
(Υ, {2))

∨
(ω, {3)
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(7) (Υ, {1)
∧

((Υ, {2)
∧

(ω, {3)) = ((Υ, {1)
∧

(Υ, {2))
∧

(ω, {3).
(1) De Morgan’s Laws
(2) ((Θ, {1) ∪ (Θ, {2))c = (Θ, {1)c ∩ε (Θ, {2)c

(3) ((Θ, {1) ∩ε (Θ, {2))c = (Θ, {1)c ∪ (Θ, {2)c

(4) ((Θ, {1) ∪R (Θ, {2))∗ = (Θ, {1)∗ ∩ (Θ, {2)∗

(5) ((Θ, {1) ∩ (Θ, {2))∗ = (Θ, {1)∗ ∪R (Θ, {2)∗

(6) ((Θ, {1)
∨

(Θ, {2))c = (Θ, {1)c
∧

(Θ, {2)c

(7) ((Θ, {1)
∧

(Θ, {2))c = (Θ, {1)c
∨

(Θ, {2)c

(8) ((Θ, {1)
∨

(Θ, {2))∗ = (Θ, {1)∗
∧

(Θ, {2)∗

(9) ((Θ, {1)
∧

(Θ, {2))∗ = (Θ, {1)∗
∨

(Θ, {2)∗.
(1) Distributive Laws
(2) (Θ, {1) ∪ ((Θ, {2) ∩ (ω, {3)) = ((Θ, {1) ∪ (Θ, {2)) ∩ ((Θ, {1) ∪ (ω, {3))
(3) (Θ, {1) ∩ ((Θ, {2) ∪ (ω, {3)) = ((Θ, {1) ∩ (Θ, {2)) ∪ ((Θ, {1) ∩ (ω, {3))
(4) (Θ, {1) ∪R ((Θ, {2) ∩ε (ω, {3)) = ((Θ, {1) ∪R (Θ, {2)) ∩ε ((Θ, {1) ∪R (ω, {3))
(5) (Θ, {1) ∩ε ((Θ, {2) ∪R (ω, {3)) = ((Θ, {1) ∩ε (Θ, {2)) ∪R ((Θ, {1) ∩ε (ω, {3))
(6) (Θ, {1) ∪R ((Θ, {2) ∩ (ω, {3)) = ((Θ, {1) ∪R (Θ, {2)) ∩ ((Θ, {1) ∪R (ω, {3))
(7) (Θ, {1) ∩ ((Θ, {2) ∪R (ω, {3)) = ((Θ, {1) ∩ (Θ, {2)) ∪R ((Θ, {1) ∩ (ω, {3)).

5. AN APPLICATION TO HYPERSOFT EXPERT SET

In this section, the application of hse-set theory in decision-making problem is pre-
sented.
Statement of the problem
An assembling organization advertises an ”open position” to fill its an empty position. Its
primary trademark is ”the perfect individual for the right post”. Eight applications got from
the appropriate applicants and the experts need to finish this employing system through the
choice leading group of certain specialists for certain recommended ascribes..
Proposed Algorithm
The following is the algorithm which is adopted for the solution of the problem.
Step-1

Let universe of discourse Ω̃ = {C1, C2, C3, C4, C5, C6, C7, C8} consists of eight candi-
dates and X = {E1, E2, E3} is representing a set of experts. Attributes with corresponding
attribute-valued sets are given as:
O1 = Qualification = {41 = M.phil,42 = Ph.D}
O2 = Experience = {43 = 5years,44 = 10years}
O3 = ComputerKnowledge = {45 = Y es,46 = No}
O4 = Confidence = {47 = Low,48 = High}
O5 = Skills = {49 = Good,410 = Excellent}
and then H = O1 ×O2 ×O3 ×O4 ×O5, H =

(41,43,45,47,49), (41,43,45,47,410), (41,43,45,48,49), (41,43,45,48,410),
(41,43,46,47,49), (41,43,46,47,410), (41,43,46,48,49), (41,43,46,48,410),
(41,44,45,47,49), (41,44,45,47,410), (41,44,45,48,49), (41,44,45,48,410),
(41,44,46,47,49), (41,44,46,47,410), (41,44,46,48,49), (41,44,46,48,410),
(42,43,45,47,49), (42,43,45,47,410), (42,43,45,48,49), (42,43,45,48,410),
(42,43,46,47,49), (42,43,46,47,410), (42,43,46,48,49), (42,43,46,48,410),
(42,44,45,47,49), (42,44,45,47,410), (42,44,45,48,49), (42,44,45,48,410),
(42,44,46,47,49), (42,44,46,47,410), (42,44,46,48,49), (42,44,46,48,410)


and now take Ω ⊆ H as Ω = {S1 = (41,43,45,47,49), S2 = (41,43,46,47,410), S3 =
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FIGURE 1. Algorithm for recruitment process

(41,44,46,48,49), S4 = (42,43,46,48,49), S5 = (42,44,46,47,410)} and (f,Ω) =

((S1, E1, 1) = {C1, C2, C4, C7, C8}), ((S1, E2, 1) = {C1, C4, C5, C8}) ,
((S1, E3, 1) = {C1, C3, C4, C5, C6, C7, C8}) , ((S5, E3, 0) = {C2, C4, C6})
((S2, E1, 1) = {C3, C5, C8}), ((S2, E2, 1) = {C1, C3, C4, C5, C6, C8}) ,
((S2, E3, 1) = {C1, C2, C4, C7, C8}) , ((S3, E3, 1) = {C1, C7, C8}) ,
((S3, E1, 1) = {C3, C4, C5, C7}), ((S3, E2, 1) = {C1, C2, C5, C8}) ,
((S4, E1, 1) = {C1, C7, C8}), ((S4, E2, 1) = {C5, C1, C4, C8}) ,
((S4, E3, 1) = {C1, C6, C7, C8}) , ((S5, E3, 1) = {C1, C3, C4, C5, C7, C8}) ,
((S5, E1, 1) = {C1, C3, C4, C5, C7, C8}), ((S5, E2, 1) = {C1, C4, C5, C8}) ,
((S1, E1, 0) = {C3, C5, C6}), ((S1, E2, 0) = {C2, C3, C6, C7}) ,
((S1, E3, 0) = {C2, C5}) , ((S2, E3, 0) = {C2, C3, C4, C5, C6}) ,
((S2, E1, 0) = {C1, C2, C4, C5, C6, C7}), ((S2, E2, 0) = {C2, C7}) ,
((S3, E1, 0) = {C1, C2, C6, C8}), ((S3, E2, 0) = {C3, C4, C6, C7}) ,
((S3, E3, 0) = {C2, C3, C4, C5, C7}) , ((S4, E3, 0) = {C2, C3, C4, C5}) ,
((S4, E1, 0) = {C2, C3, C3, C4, C5, C7}), ((S4, E2, 0) = {C2, C3, C6, C7}) ,
((S5, E1, 0) = {C4, C6, C7}), ((S5, E2, 0) = {C2, C3, C6, C7}) ,


is a hypersoft expert set.
Step-2 Agree-hse-set and Disagree-hse-set have been presented in Tables 1 and 2 respectively in such
way when Ci ∈ F1(o) then Cij = ↑ = 1 otherwise Cij = ↓ = 0, and when Ci ∈ F0(o) then Cij = ↑ =
1 otherwise Cij = ↓ = 0.

Step-(3-6)
The ⊗i =

∑
i Cij for Agree-hse-set and �i=

∑
i Cij for Disagree-hse-set have been shown in Table

3, then ]j = ⊗j −�j is calculated so that decision can be made.

Decision
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TABLE 1. Agree-hse-set

v C1 C2 C3 C4 C5 C6 C8 C7

(S1, E1) ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↑
(S2, E1) ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↑
(S3, E1) ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↓
(S4, E1) ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑
(S5, E1) ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↑
(S1, E2) ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↑
(S2, E2) ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑
(S3, E2) ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↓
(S4, E2) ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑
(S5, E2) ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑
(S1, E3) ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑
(S2, E3) ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↑
(S3, E3) ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑
(S4, E3) ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑
(S5, E3) ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑
⊗j =

∑
i Cij ⊗1 = 12 ⊗2 = 3 ⊗3 = 7 ⊗4 = 9 ⊗5 = 9 ⊗6 = 3 ⊗7 = 9 ⊗8 = 13

TABLE 2. Disagree-hse-set

V C1 C2 C3 C4 C5 C6 C7 C8

(℘1, E1) ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓
(S2, E1) ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓
(S3, E1) ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑
(S4, E1) ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓
(S5, E1) ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↓
(S1, E2) ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓
(S2, E2) ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↓
(S3, E2) ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑
(S4, E2) ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓
(S5, E2) ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓
(S1, E3) ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓
(S2, E3) ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↓
(S3, E3) ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓
(S4, E3) ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓
(S5, E3) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↓
�i=

∑
i Cij �1 = 3 �2 = 12 �3 = 8 �4 = 6 �5 = 5 �6 = 12 �7 = 6 �8 = 2

As ]8 is getting best position in table, so candidate C8 will be selected. Then max ]8, so the com-
mittee will decide to select applicant C8 for the job.

6. COMPARATIVE ANALYSIS

The performance of hypersoft expert model outperforms all other existing models. Such a model
is popular in decision-making problems. This can be seen by comparing hypersoft expert set with the
others models like soft set, soft expert set and hypersoft set This proposed model is more useful to
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TABLE 3. Optimal

⊗i=
∑

i Cij �i=
∑

i Cij ]j = ⊗j −�j

⊗1 = 12 �1 = 3 ]1 = 9
⊗2 = 3 �2 = 12 ]2 = −9
⊗3 = 7 �3 = 8 ]3 = −1
⊗4 = 9 �4 = 6 ]4 = 3
⊗5 = 9 �5 = 5 ]5 = 4
⊗6 = 3 �6 = 12 ]6 = −9
⊗7 = 9 �7 = 6 ]7 = 3
⊗8 = 13 �8 = 2 ]8 = 11

others as it contains the multi argument approximate function, which is highly effective in decision-
making problems. Comparison analysis has been shown in Table 4. From the Table 4, it is clear that

TABLE 4. Comparison Analysis

Features soft set soft expert set hypersoft set Pro. Structure
Multi Decisive Opinion No Yes No Yes
Multi Argument Apro.Function No No Yes Yes
Single Ar. Apro.Function Yes Yes Yes Yes
Ranking No Yes No Yes

our proposed model is more generalized than the above described models.

7. CONCLUSIONS

In this study, fundamental properties, aggregation operations, and basic set laws are characterized
under hypersoft expert set environment. Moreover, an algorithm is proposed for the solution of a
decision-making problem. Future work may include the development of hybrids of hypersoft expert
set with fuzzy set, rough set, cubic set etc. and algebraic structures like hypersoft expert topological
spaces, hypersoft expert functional spaces, hypersoft expert groups, hypersoft expert vector spaces,
hypersoft expert ring, hypersoft expert measure etc.
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Neutrosophic Bi-LA-Semigroup and Neutrosophic 
N-LA-Semigroup

Mumtaz Ali, Florentin Smarandache, Muhammad Shabir, Munazza Naz

Abstract. In this paper we define neutrosophic bi-LA-
semigroup and neutrosophic N-LA-semigroup. Infact this 
paper is an extension of our previous paper neutrosophic 
left almost semigroup shortly neutrosophic LA-
semigroup. We also extend the neutrosophic ideal to neu-
trosophic biideal and neutrosophic N-ideal. We also find 

some new type of neutrosophic ideal which is related to 
the strong or pure part of neutrosophy. We have given 
sufficient amount of  examples to illustrate the theory of 
neutrosophic bi-LA-semigroup, neutrosophic N-LA-
semigroup and display many properties of them this pa-
per. 

Keywords: Neutrosophic LA-semigroup, neutrosophic ideal, neutrosophic bi-LA-semigroup, neutrosophic biideal, neutrosophic 
N-LA-semigroup, neutrosophic N-ideal.

1 Introduction 

 Neutrosophy is a new branch of philosophy which studies 
the origin and features of neutralities in the nature. Floren-
tin Smarandache in 1980 firstly introduced the concept of 
neutrosophic logic where each proposition in neutrosophic 
logic is approximated to have the percentage of truth in a 
subset T, the percentage of indeterminacy in a subset I, and 
the percentage of falsity in a subset F so that this neutro-
sophic logic is called an extension of fuzzy logic. In fact 
neutrosophic set is the generalization of classical sets, con-
ventional fuzzy set  1 , intuitionistic fuzzy set  2 and in-

terval valued fuzzy set  3 . This mathematical tool is used
to handle problems like imprecise, indeterminacy and in-
consistent data etc. By utilizing neutrosophic theory, 
Vasantha Kandasamy and Florentin Smarandache dig out 
neutrosophic algebraic structures in 11 . Some of them
are neutrosophic fields, neutrosophic vector spaces, neu-
trosophic groups, neutrosophic bigroups, neutrosophic N-
groups, neutrosophic semigroups, neutrosophic bisemi-
groups, neutrosophic N-semigroup, neutrosophic loops, 
neutrosophic biloops, neutrosophic N-loop, neutrosophic 
groupoids, and neutrosophic bigroupoids and so on. 
  A left almost semigroup abbreviated as LA-semigroup is 
an algebraic structure which was introduced by M .A.  

Kazim and M. Naseeruddin  3 in 1972. This structure is
basically a midway structure between a groupoid and a 
commutative semigroup. This structure is also termed as 
Able-Grassmann’s groupoid abbreviated as AG -groupoid 
 6 . This is a non associative and non commutative
algebraic structure which closely resemble to commutative 
semigroup. The generalization of semigroup theory is an 
LA-semigroup and this structure has wide applications in 
collaboration with semigroup.
We have tried to develop the ideal theory of LA-

semigroups in a logical manner. Firstly, preliminaries and 
basic concepts are given for neutrosophic LA-semigroup. 
Then we  presented the newly defined notions and results
in neutrosophic bi-LA-semigroups and neutrosophic N-
LA-semigroups. Various types of neutrosophic biideals
and neutrosophic N-ideal are defined and elaborated with 
the help of examples.

2 Preliminaries 

Definition 1. Let   ,S  be an LA-semigroup and let
 : ,S I a bI a b S    . The neutrosophic LA-

semigroup is generated by S  and I under   denoted as 
   ,N S S I   , where I is called the

neutrosophic element with property 2I I . For an 
integer n , n I and nI are neutrosophic elements and 

Madad Khan, Saima Anis, Florentin Smarandache, Young Bae Jun (2017). Neutrosophic N-structures 
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0. 0I  . 1I  , the inverse of I is not defined and hence
does not exist.
Similarly we can define neutrosophic RA-semigroup on 
the same lines. 

Definition 2. Let  N S  be a neutrosophic LA-semigroup
and  N H  be a proper subset of  N S . Then

 N H is called a neutrosophic sub LA-semigroup if
 N H  itself is a neutrosophic LA-semigroup under the

operation of  N S .

Definition 3. A neutrosophic sub LA-semigroup  N H
is called strong neutrosophic sub LA-semigroup or pure 
neutrosophic sub LA-semigroup if all the elements of 

 N H are neutrosophic elements.

Definition 4. Let  N S  be a neutrosophic LA-semigroup
and  N K  be a subset of  N S . Then  N K  is
called Left (right)  neutrosophic ideal of  N S  if
     N S N K N K

, {      N K N S N K }.
If  N K is both left and right neutrosophic ideal, then

 N K is called a two sided neutrosophic ideal or simply
a neutrosophic ideal.

Definition 5.  A neutrosophic ideal  N K  is called
strong neutrosophic ideal or pure neutrosophic ideal if all 
of its elements are neutrosophic elements. 

 3 Neutrosophic Bi-LA-Semigroup 

Definition 6. Let  ( ( ), , )BN S   be a non-empty set with 
two binary operations   and .  ( ( ), , )BN S   is said to 

be a neutrosophic bi-LA-semigroup if 1 2( )BN S P P 

where atleast one of  1( , )P   or 2( , )P  is a neutrosophic 

LA-semigroup and other is just an LA- semigroup. 1P  and 

2P are proper subsets of ( )BN S . 
Similarly we can define neutrosophic bi-RA-semigroup on 
the same lines. 

Theorem 1. All neutrosophic bi-LA-semigroups 
contains the corresponding bi-LA-semigroups. 

Example 1. Let 1 2( ) { }BN S S I S I    be a 
neutrosophic  bi-LA-semigroup where 

 1 1,2,3,4,1 ,2 ,3 ,4S I I I I I  is a neutrosophic 

LA-semigroup with the following table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 

2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

 2 1,2,3,1 ,2 ,3S I I I I  be another neutrosophic

bi-LA-semigroup with the following table. 

* 1 2 3 1I 2I 3I 

1 3 3 3 3I 3I 3I 

2 3 3 3 3I 3I 3I 

3 1 3 3 1I 3I 3I 

1I 3I 3I 3I 3I 3I 3I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 3I 3I 1I 3I 3I 

Definition 7. Let 1( ( ) P ;: , )BN S P    be a neutro-

sophic bi-LA-semigroup. A proper subset  ( , , )T   is said 
to be a neutrosophic sub bi-LA-semigroup of ( )BN S  if 

1.  1 2T T T   where 1 1T P T  and 

2 2T P T  and 

2. At least one of 1( , )T or 2( , )T  is a neutrosoph-
ic LA-semigroup. 

Example 2: ( )BN S  be a neutrosophic bi-LA-
semigroup in Example 1. Then 

{1,1 } {3,3 }P I I  and {2,2 } {1,1 }Q I I   are 
neutrosophic sub bi-LA-semigroups of ( )BN S . 
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Theorem 2. Let  BN S  be a neutrosophic bi-LA-
semigroup and  N H  be a proper subset of  BN S .
Then  N H is a neutrosophic sub bi-LA-semigroup of

 BN S  if      .N H N H N H .

Definition 8. Let 1( ( ) P , , )BN S P    be any 
neutrosophic bi-LA-semigroup. Let J  be a prop-
er subset of ( )BN S  such that 1 1J J P  and 

2 2J J P  are ideals of 1P and 2P respectively. 
Then J  is called the neutrosophic biideal of 

( )BN S . 

Example  3. Let  1 2( ) { }BN S S I S I    be a 
neutrosophic bi-LA-semigroup, where 

 1 1,2,3,1 ,2 ,3S I I I I  be another neutrosophic
bi-LA-semigroup with the following table. 

* 1 2 3 1I 2I 3I 

1 3 3 3 3I 3I 3I 

2 3 3 3 3I 3I 3I 

3 1 3 3 1I 3I 3I 

1I 3I 3I 3I 3I 3I 3I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 3I 3I 1I 3I 3I 

And  2 1,2,3, ,2 ,3S I I I I  be another neutro-
sophic LA-semigroup with the following table. 

. 1 2 3 I 2I 3I 

1 3 3 2 3I 3I 2I 

2 2 2 2 2I 2I 2I 

3 2 2 2 2I 2I 2I 

I 3I 3I 2I 3I 3I 2I 

2I 2I 2I 2I 2I 2I 2I 

3I 2I 2I 2I 2I 2I 2I 

Then  1,1I,3,3 {2,2 },P I I 

 1,3,1 ,3 {2,3,2 I,3I}Q I I   are neutrosophic
biideals of ( )BN S . 

Proposition 1. Every neutrosophic biideal of a 
neutrosophic bi-LA-semigroup is trivially a  
 Neutrosophic sub bi-LA-semigroup but the conver is not 
true in general. 
One can easily see the converse by the help of example. 

3 Neutrosophic Strong Bi-LA-Semigroup 

Definition 9: If both 1( , )P   and 2( , )P in the  
Definition  6. are neutrosophic strong LA-
semigroups then we call  ( ( ), , )BN S   is a neu-
trosophic strong bi-LA-semigroup. 

Definition 10. Let 1( ( ) P , , )BN S P    be a 
neutrosophic bi-LA-semigroup. A proper subset  
( , , )T   is said to be a neutrosophic strong sub 
bi-LA-semigroup of ( )BN S  if 

1.  1 2T T T   where 1 1T P T  and 

2 2T P T  and 
2.  1( , )T  and 2( , )T  are neutrosophic 

strong LA-semigroups. 

Example 4. Let ( )BN S  be a neutrosophic bi-
LA-semigroup in Example 3.  
Then  1I,3 {2 },P I I   and

 1 ,3 {2 I,3I}Q I I  are neutrosophic strong sub bi-
LA-semigroup  of ( )BN S . 

Theorem 4: Every neutrosophic strong sub bi-
LA-semigroup is a neutrosophic sub bi-LA-
semigroup. 

Definition 11. Let ( ( ), , )BN S   be a strong neutrosoph-

ic bi-LA-semigroup where 1 2( ) PBN S P    with 

1( , )P  and 2( , )P be any two neutrosophic LA-

semigroups. Let J  be a proper subset of ( )BN S  where 

1 2I I I  with 1 1I I P  and 2 2I I P  are neu-

trosophic ideals of the neutrosophic LA-semigroups 1P
and 2P  respectively. Then I  is called or defined as the
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neutrosophic strong biideal of ( )BN S . 

Theorem 5: Every neutrosophic strong  biideal is trivially 
a neutrosophic sub bi-LA-semigroup. 

Theorem 6: Every neutrosophic strong biideal is a neutro-
sophic strong sub bi-LA-semigroup. 

Theorem 7: Every neutrosophic strong biideal is a neutro-
sophic biideal. 

Example 5. Let ( )BN S  be a neutrosophic bi-LA 
semigroup in Example (*) .Then  

 1I,3 {2 },P I I  and   1 ,3 {2 I,3I}Q I I 
are neutrosophic strong biideal of ( )BN S . 

4 Neutrosophic N-LA-Semigroup 

Definition 12. Let 1 2{ ( ), ,..., }S N   be a non-empty set 

with N -binary operations defined on it. We call ( )S N  a 
neutrosophic N -LA-semigroup ( N  a positive integer)  if 
the following conditions are satisfied. 
1) 1( ) ... NS N S S  where each iS  is a proper sub-

set of ( )S N  i.e. i jS S  or j iS S if  i j . 

2) ( , )i iS   is either a neutrosophic LA-semigroup or an 

LA-semigroup for 1,2,3,...,i N . 

Example 6. Let 1 2 3 1 2 3S(N) {S S S , , , }     
be a neutrosophic  3-LA-semigroup where 

 1 1,2,3,4,1 ,2 ,3 ,4S I I I I  is a neutrosophic LA- 
semigroup with the following table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 

2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

 2 1,2,3,1 ,2 ,3S I I I be another neutrosophic bi-LA-

semigroup with the following table. 

* 1 2 3 1I 2I 3I 

1 3 3 3 3I 3I 3I 

2 3 3 3 3I 3I 3I 

3 1 3 3 1I 3I 3I 

1I 3I 3I 3I 3I 3I 3I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 3I 3I 1I 3I 3I 

And  3 1,2,3, ,2 ,3S I I I is another neutrosophic LA-
semigroup with the following table. 

. 1 2 3 I 2I 3I 

1 3 3 2 3I 3I 2I 

2 2 2 2 2I 2I 2I 

3 2 2 2 2I 2I 2I 

I 3I 3I 2I 3I 3I 2I 

2I 2I 2I 2I 2I 2I 2I 

3I 2I 2I 2I 2I 2I 2I 

Theorem 8 All neutrosophic N-LA-semigroups contains 
the corresponding N-LA-semigroups. 

Definition 13. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S      be a neutro-
sophic  N -LA-semigroup. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P      of ( )S N is said 
to be a neutrosophic sub N -LA-semigroup if 

, 1,2,...,i iP P S i N   are sub LA-semigroups of 

iS in which atleast some of the sub LA-semigroups are 
neutrosophic sub LA-semigroups. 

Example 7: Let 1 2 3 1 2 3S(N) {S S S , , , }      be a 
neutrosophic 3-LA-semigroup in above  Example 6. 
Then clearly {1,1 } {2,3,3 } {2,2I},P I I    

{2,2 } {1,3,1 ,3 } {2,3,2I,3I},Q I I I    and 
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{4,4 } {1 ,3 } {2I,3I}R I I I   are neutrosophic 
sub 3-LA-semigroups of S(N) . 

Theorem 19. Let ( )N S  be a neutrosophic N-LA- 
semigroup and  N H  be a proper subset of ( )N S .
Then  N H is a neutrosophic sub N-LA-semigroup of

( )N S if      .N H N H N H .

Definition 14. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S      be a neutro-
sophic N -LA-semigroup. A proper subset 

1 2 1 2{P .... , , ,..., }N NP P P       of ( )S N  is
said to be a neutrosophic N -ideal, if the following condi-
tions are true, 

1. P is a neutrosophic sub N -LA-semigroup of
( )S N .

2. Each , 1,2,...,i iP S P i N   is an ideal of 

iS .

Example 8. Consider Example 6. 
Then 1 {1,1 } {3,3 } {2,2 },I I I I    and

2 {2,2 } {1 ,3 } {2,3,3I}I I I I   are neutrosophic 3-

ideals of ( )S N . 

Theorem 10: Every neutrosophic N-ideal is trivially a 
neutrosophic sub N-LA-semigroup but the converse is not 
true in general. 

One can easily see the converse by the help of example. 

5 Neutrosophic Strong N-LA-Semigroup 

Definition 15: If all the N -LA-semigroups ( , )i iS  in 
Definition (  ) are neutrosophic strong LA-semigroups  (i.e. 
for  1,2,3,...,i N ) then we call ( )S N  to be a neutro-
sophic strong N -LA-semigroup. 

Definition 16. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S      be a neutro-
sophic strong N -LA-semigroup. A proper subset 

1 2 1 2{T .... T , , ,..., }N NT T        of ( )S N  is
said to be a neutrosophic strong sub N -LA-semigroup if 
each  ( , )i iT   is a neutrosophic strong sub LA-semigroup 

of  ( , )i iS   for  1,2,...,i N where i iT S T  . 

Theorem 11: Every neutrosophic strong sub N-LA-
semigroup is a neutrosophic sub N-LA-semigroup. 

Definition 17. Let 

1 2 1 2( ) { .... , , ,..., }N NS N S S S      be a neutro-
sophic strong  N -LA-semigroup. A proper subset 

1 2 1 2{J ....J , , ,..., }N NJ J       where 

t tJ J S  for 1,2,...,t N is said to be a neutro-

sophic strong N -ideal of ( )S N  if the following condi-
tions are satisfied. 
1) Each it is a neutrosophic sub LA-semigroup of

, 1,2,...,tS t N i.e. It is a neutrosophic strong N-

sub LA-semigroup of ( )S N .

2) Each it is a two sided ideal of tS for 1,2,...,t N . 

Similarly one can define neutrosophic strong N -left ideal 
or neutrosophic strong right ideal of  ( )S N . 
A neutrosophic strong N -ideal is one which is both a neu-
trosophic strong N -left ideal and N -right ideal of 

( )S N . 
Theorem 12: Every neutrosophic strong  Nideal is trivially 
a neutrosophic sub N-LA-semigroup. 

Theorem 13: Every neutrosophic strong  N-ideal is a neu-
trosophic strong sub N-LA-semigroup. 

Theorem 14: Every neutrosophic strong  N-ideal is a N-
ideal. 

Conclusion 

In this paper we extend neutrosophic LA-semigroup to 
neutrosophic  bi-LA-semigroup and neutrosophic N-LA-
semigroup. The neutrosophic ideal theory of neutrosophic 
LA-semigroup is extend to neutrosophic biideal and neu-
trosophic N-ideal. Some new type of neutrosophic ideals 
are discovered which is strongly neutrosophic or purely 
neutrosophic. Related examples are given to illustrate neu-
trosophic bi-LA-semigroup, neutrosophic N-LA-
semigroup and many theorems and properties are discussed. 
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Neutrosophic LA-Semigroup Rings 

Mumtaz Ali, Muhammad Shabir, Florentin Smarandache, Luige Vladareanu 

Abstract. Neutrosophic LA-semigroup is a midway 
structure between a neutrosophic groupoid and a commu-
tative neutrosophic semigroup. Rings are the old concept 
in algebraic structures. We combine the neutrosophic 

LA-semigroup and ring together to form the notion of 
neutrosophic LA-semigroup ring. Neutrosophic LA-
semigroup ring is defined analogously to neutrosophic 
group ring and neutrosophic semigroup ring. 

Keywords: Neutrosophic LA-semigroup, ring, neutrosophic LA-semigroup ring.

1. Introduction
Smarandache [13] in 1980  introduced neutrosophy which
is a branch of philosophy that studies the origin and scope
of neutralities with ideational spectra. The concept of
neutrosophic set and logic came into being due to
neutrosophy, where each proposition is approximated to
have the percentage of truth in a subset T, the percentage
of indeterminacy in a subset I, and the percentage of falsity
in a subset F.  This mathematical tool is used to handle
problems with  imprecise, indeterminate, incomplete and
inconsistent etc.  Kandasamy and Smarandache apply this
concept in algebraic structures in a slight different manner
by using the indeterminate/unknown element I, which they
call neutrosophic element. The neutrosophic element I is
then combine to the elements of the algebraic structure by
taking union and link with respect to the binary operation *
of the algebraic stucutre. Therefore, a neutrosophic
algebraic structure is generated in this way. They studied
several neutrosophic algebraic structure [3,4,5,6]. Some of
them are neutrosophic fields, neutrosophic vector spaces,
neutrosophic groups, neutrosophic bigroups, neutrosophic
N-groups, neutrosophic semigroups, neutrosophic
bisemigroups, neutrosophic N-semigroup, neutrosophic
loops, neutrosophic biloops, neutrosophic N-loop,
neutrosophic groupoids, and neutrosophic bigroupoids and
so on.
A left almost semigroup denoted as LA-semigroup is an
algebraic structure which was studied by Kazim and
Naseeruddin [7] in 1972. An LA-semigroup is basically a
midway structure between a groupoid and a commutative
semigroup. It is also termed as Able-Grassmann’s
groupoid shortly AG -groupoid [11]. LA-semigroup is a

non-associative and non-commutative algebraic structure 
which closely matching with commutative semigroup. LA-
semigroup is a generalization to semigroup theory which 
has wide applications in collaboration with semigroup. 
Mumtaz et al.[1] introduced neutrosophic left almost 
semigroup in short neutrosophic LA-semigroup which is 
basically generated by an LA-semigroup and the 
neutrosophic element I. Mumtaz et al.[1] also  studied their 
generalization and other properties. Neutrosophic group 
rings [5]  and neutrosophic semigroup rings [5] are defined 
analogously to group rings and semigroup rings 
respectively. In fact these are generalization of group ring 
and semigroup ring ring. The notion of neutrosophic 
matrix ring have been successfully applied and used in the 
neutrosophic models such as neutrosophic cognitive maps 
(NCMs), neutrosophic relational maps (NRMs) etc. 
In this paper, we introduced neutrosophic LA-semigroup 
rings owing to neutrosophic semigroup rings. Neutrosophic 
LA-semigroup rings are generalization of neutrosophic 
semigroup rings. These neutrosophic LA-semigroup rings 
are defined analogously to neutrosophic group rings and 
neutrosophic semigroup rings. We also studied some of 
their basic properties and other related notions in this paper. 
In section 2, we after reviewing the literature, we presented 
some basic concepts of neutrosophic LA-semigroup and 
rings. In section 3, neutrosophic LA-semigroup rings are 
introduced and studied some of their properties. 

. 
2. Basic Concepts
Definition 2.1 [1]:  Let  ,S   be an LA-semigroup and

let   : ,S I a bI a b S    . The neutrosophic

Mumtaz Ali, Muhammad Shabir, Florentin Smarandache, Luige Vladareanu (2015). Neutrosophic LA-Semigroup 
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LA-semigroup is generated by S  and I  under the opera-

tion   which is denoted as    ,N S S I   , where

I is called the neutrosophic element with property
2I I . For an integer n , n I and nI are neutrosophic 

elements and 0. 0I  . 

1I  , the inverse of I is not defined and hence does not
exist. 

Definition 2.2 [1]: Let  N S  be a neutrosophic LA-

semigroup and  N H  be a proper subset of  N S .

Then  N H is called a neutrosophic sub LA-semigroup

if   N H  itself is a neutrosophic LA-semigroup under

the operation of  N S .

Definition 2.3 [1]:  Let  N S  be a neutrosophic LA-

semigroup and  N K  be a subset of  N S . Then

 N K is called Left (right)  neutrosophic ideal of

 N S if

      ,N S N K N K {      N K N S N K }.

If  N K  is both left and right neutrosophic ideal, then

 N K is called a two sided neutrosophic ideal or simply

a neutrosophic ideal.

Definition 2.4 [5]: Let  , ,R    be a set with two binary

operations   and  . Then  , ,R    is called a ring if the

following conditions are hold. 

1.  ,R  is a commutative group under the opera-

tion of  .

2.  ,R  is a semigroup under the operation of  .

3.  a b c ab ac   and  b c a ba ca  

for all , ,a b c R .

Definition 2.5 [5]: Let  , ,R    be a ring and  1, ,R  

be a proper subset of  , ,R   . Then  1, ,R   is called a 

subring if   1, ,R    itself is a ring under the operation of 

R . 

Definition 2.6 [5]: Let R  be a ring. The neutrosophic ring 
R I is also a ring generated by R and I under the 

operation of R , where I is called the neutrosophic ele-
ment with property 2I I . For an integer n , n I and 
nI are neutrosophic elements and 0. 0I  . 1I  , the in-
verse of I is not defined and hence does not exist.

Example 2.8:  Let  be  the ring of integers. Then 
I is the neutrosophic ring of integers.

Definition 2.8 [5]: Let R I  be a neutrosophic ring. A 

proper subset P  of R I  is called a neutosophic 

subring if  P  itself a neutrosophic ring under the opera-
tion of R I . 

Definition 2.9 [5]: Let R I  be a neutrosophic ring. A 

non-empty set P  of R I  is called a neutrosophic 

ideal of R I if the following conditions are satisfied. 

1. P is a neutrosophic subring of R I , and 

2. For every p P  and r R I  , pr  and 

rp P .

3. Neutrosophic LA-semigroup Rings

In this section, we introduced neutosophic LA-
semigroup rings and studied some of their basic 
properties and types. 

Definition 3.1: Let S I  be any neutrosophic LA-

semigroup. R  be any ring with 1 which is commutative or 
field. We define the neutrosophic LA-semigroup ring 

R S I  of the neutrosophic LA-semigroup S I

over the ring R  as follows: 
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1. R S I  consists of all finite formal sum of 

the form 
1

n

i i
i

r g


 , n   , ir R  and

ig S I   R S I   .

2. Two elements
1

n

i i
i

r g


 and
1

m

i i
i

s g


 in

R S I  are equal  if and only if i ir s and 

n m .

3. Let 
1 1

,
n m

i i i i
i i

rg s g R S I 
 

     ; 

 
1

n

i i i
i

g R S I   


     , as 

,i i R   , so i i R   and 

ig S I  . 

4. 
1

0 0
n

i
i

g


 serve as the zero of  R S I . 

5. Let
1

n

i i
i

r g R S I


    then 

 
1

n

i i
i

g 


    is such that 

 
1

( ) 0

( )

0

n

i i i
i

i

g

g

 

 


  

  






Thus we see that R S I  is an abelian group under  . 

6. The product of two elements ,   in R S I

is follows:

Let 
1

n

i i
i

g 


 and
1

m

j j
j

h 


 .  Then

1
1

. .
n

i j i j
i n
j m

g h   
 
 

  k k
k

y t

where k i jy   with i j kg h t , kt S I   and 

ky R . 

Clearly . R S I    . 

7. Let
1

n

i i
i

g 


 and
1

m

j j
j

h 


 and

1

p

k k
k

l 


 .

Then clearly ( )        and 

( )       for all , , R S I     , 

that is the distributive law holds. 

Hence R S I  is a ring under the binary operations 

and . We call R S I  as the neutrosophic LA-

semigroup ring. 

Similarly on the same lines, we can define neutrosophic 
Right Almost semigroup ring abbrivated as neutrosophic 
RA-semigroup ring. 

Example 3.2: Let  be the ring of real numbers and let 
   1,2,3,4,1 ,2 ,3 ,4N S I I I I be a

neutrosophic LA-semigroup with the following  table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 

2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

Then S I  is a neutrosophic LA-semigroup ring. 

Theorem 3.3:  Let S I  be a neutrosophic LA-

semigroup and R S I  be a neutrosophic LA-

semigroup ring such that R S I  is a neutrosophic 

LA-semigroup ring over R . Then 

S I R S I   . 
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Proposition 3.4: Let R S I  be a neutrosophic LA-

semigroup ring over the ring R . Then R S I  has 

non-trivial idempotents. 

Remark 3.5: The neutrosophic LA-semigroup ring 

R S I  is commutative if and only if S I  is 

commutative neutrosophic LA-semigroup. 

Remark 3.6: The neutrosophic LA-semigroup ring 

R S I  has finite number of elements  if both R  and 

S I  are of finite order. 

Example 3.7: Let R S I  be a neutrosophic LA-

semigroup ring in Example (1). Then R S I  is a neu-

trosophic LA-semigroup ring of infinite order. 

Example 3.8: Let 

 1,2,3,4,5,1 ,2 ,3 ,4 ,5S I I I I I I  with left

identity 4, defined by the following  multiplication table. 

. 1 2 3 4 5 1 2 3 4 5
1 4 5 1 2 3 4 5 1 2 3
2 3 4 5 1 2 3 4 5 1 2
3 2 3 4 5 1 2 3 4 5 1
4 1 2 3 4 5 1 2 3 4 5
5 5 1 2 3 4 5 1 2 3 4

1 4 5 1 2 3 4 5 1 2 3
2 3 4 5 1 2 3 4 5 1 2
3 2 3 4 5 1 2 3 4 5 1
4 1 2 3 4 5 1 2 3 4 5
5 5 1 2 3 4 5 1

I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I

I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I I I I
I I I I I I I I 2 3 4I I I

Let 2  be the ring of two elements. Then 2 S I  is 

a neutrosophic LA-semigroup ring of finite order. 

Theorem 3.9: Every neutrosophic LA-semigroup ring 

R S I  contains atleast one proper subset which is an 

LA-semigroup ring. 

Proof: Let R S I  be a neutrosophic LA-semigroup 

ring. Then clearly RS R S I  . Thus R S I

contains an LA-semigroup ring. 

Definition 3.10: Let R S I  be a neutrosophic LA-

semigroup ring and let P  be a proper subset of 

R S I . Then P  is called a subneutrosophic LA-

semigroup ring of R S I  if P R H I   or 

Q S I  or T H I . In P R H I  , R  is a 

ring and H I  is a proper neutrosophic sub LA-

semigroup of S I  or in Q S I , Q  is a proper 

subring with 1  of R  and S I  is a neutrosophic LA-

semigroup and if P T H I  , T  is a subring of R  

with unity and H I  is a proper neutrosophic sub LA-

semigroup of S I . 

Example 3.11: Let S I  and S I  be as in 

Example 3.2.  Let  1 1,3H  ,  2 1,1H I and 

 3 1,3,1 ,3H I I are neutrosophic sub LA-semigroups. 

Then S I , 1H , 2H I  and 3H I

are all subneutrosophic LA-semigroup rings of 

S I . 

Definition 3.12: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a neutrosophic subring if 1P S I  where 1S
is a subring of RS  or R . 

Example 3.13: Let 2R S I S I    be a neu-

trosophic LA-semigroup ring in Example 3.8. Then clearly 

2 I  is a neutrosophic subring of 2 S I . 

Theorem 3.14: Let R S I  be a neutrosophic LA-

semigroup ring of the neutrosophic LA-semigroup over the 

Florentin Smarandache (author and editor) Collected Papers, XIII

332



ring R . Then R S I  always has a nontrivial neutro-

sophic subring. 

Proof: Let R I  be the neutrosophic ring which is 

generated by R  and I . Clearly R I R S I  

and this guaranteed the proof. 

Definition 3.15: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset T  of R S I  which 

is  a pseudo neutrosophic subring. Then we call T  to be a 

pseudo neutrosophic subring of R S I . 

Example 3.16: Let 6 S I be a neutrosophic LA-

semigroup ring of  the neutrosophic LA-semigroup 

S I over 6 . Then {0,3 }T I  is a proper subset

of 6 S I  which is a pseudo neutrosophic subring of 

6 S I . 

Definition 3.17: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a sub LA-semigroup ring if 1P R H where 1R is 

a subring of R  and H  is a sub LA-semigroup of S . SH
is the LA-semigroup ring of the sub LA-semigroup H  
over the subring 1R .

Theorem 3.18: All neutrosophic LA-semigroup rings have 
proper sub LA-semigroup rings. 

Definition 3.19: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a subring but P  should not have the LA-semigroup 

ring structure and is defined to be a subring of R S I . 

Definition 3.20: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a neutrosophic ideal of R S I , 

1. if P  is a neutrosophic subring or subneutrosophic

LA-semigroup ring of R S I .

2. For all p P  and R S I   , p  and 

p P  .
One can easily define the notions of left or right neutro-
sophic ideal of the neutrosophic LA-semigroup ring 

R S I . 

Example 3.21: Let  1,2,3,1 ,2 ,3S I I I I  be a

neutrosophic LA-semigroup with the following table. 

1 2 3 1 2 3
1 3 3 3 3 3 3
2 3 3 3 3 3 3
3 1 3 3 1 3 3

1 3 3 3 3 3 3
2 3 3 3 3 3 3
3 1 3 3 1 3 3

I I I
I I I
I I I
I I I

I I I I I I I
I I I I I I I
I I I I I I I



Let R   be the ring of integers. Then S I  is a 

neutrosophic LA-semigroup ring of the neutrosophic LA-
semigroup over the ring . Thus clearly 

2P S I  is a neutrosophic ideal of R S I . 

Definition 3.22: Let R S I  be a neutrosophic LA-

semigroup ring. A proper subset P  of R S I  is 

called a pseudo neutrosophic ideal of R S I

1. if P  is a pseudo neutrosophic subring or pseudo
subneutrosophic LA-semigroup ring of

R S I .

2. For all p P  and R S I   , p  and 

p P  .

Definition 3.23: Let R S I be a neutrosophic LA-

semigroup ring and let 1R be any subring ( neutrosophic 

or otherwise). Suppose there exist a subring P  in 

R S I  such that 1R  is an ideal over P  i.e,
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1,rs sr R for all p P and r R . Then we call 1R

to be a quasi neutrosophic ideal of R S I   relative to 

P . 

If 1R  only happens to be a right or left ideal, then we call 

1R to be a quasi neutrosophic right or left ideal of 

R S I . 

Definition 3.24: Let R S I  be a neutrosophic LA-

semigroup ring. If for a given 1R , we have only one P
such that 1R  is a quasi neutrosophic ideal relative to P
and for no other P . Then 1R is termed as loyal quasi neu-

trosophic ideal relative to P . 

Definition 3.25: Let R S I  be a neutrosophic LA-

semigroup. If every subring 1R  of R S I   happens to 

be a loyal quasi neutrosophic ideal relative to a unique P . 
Then we call the neutrosophic LA-semigroup ring 

R S I  to be a loyal neutrosophic LA-semigroup ring. 

Definition 3.26: Let R S I be a neutrosophic LA-

semigroup ring. If for 1R , a subring P is another subring 

1( )R P such that 1R is a quais neutrosophic ideal rela-

tive to P . In short P  happens to be a quasi neutrosophic 

ideal relative to 1R . Then we call  1,P R  to be a bound-

ed quasi neutrosophic ideal of the neutrosophic LA-

semigroup ring R S I . 

Similarly we can define bounded quasi neutrosophic right 
ideals or bounded quasi neutrosophic left ideals. 

Definition 3.27: Let R S I be a neutrosophic LA-

semigroup ring and let 1R be any subring ( neutrosophic 

or otherwise). Suppose there exist a subring P  in 

R S I such that 1R is an ideal over P i.e, 

1,rs sr R for all p P and r R . Then we call 1R

to be a quasi neutrosophic ideal of R S I relative to 

P . If 1R only happens to be a right or left ideal, then we 

call 1R to be a quasi neutrosophic right or left ideal of 

R S I . 

Definition 3.28: Let R S I be a neutrosophic LA-

semigroup ring. If for a given 1R , we have only one P
such that 1R is a quasi neutrosophic ideal relative to P
and for no other P . Then 1R is termed as loyal quasi neu-

trosophic ideal relative to P . 

Definition: Let R S I  be a neutrosophic LA-

semigroup. If every subring 1R of R S I   happens to 

be a loyal quasi neutrosophic ideal relative to a unique P . 
Then we call the neutrosophic LA-semigroup ring 

R S I  to be a loyal neutrosophic LA-semigroup ring. 

Definition 3.29: Let R S I be a neutrosophic LA-

semigroup ring. If for 1R , a subring P is another subring 

1( )R P such that 1R is a quais neutrosophic ideal rela-

tive to P . In short P  happens to be a quasi neutrosophic 

ideal relative to 1R . Then we call  1,P R  to be a bound-

ed quasi neutrosophic ideal of the neutrosophic LA-

semigroup ring R S I . 

Similarly we can define bounded quasi neutrosophic right 
ideals or bounded quasi neutrosophic left ideals. 

One can define pseudo quasi neutrosophic ideal, pseudo 
loyal quasi neutrosophic ideal and pseudo bounded quasi 
neutrosophic ideals of a neutrosophic LA-semigroup ring 

R S I . 

4. LA-semigroup Neutrosophic Ring
In this section, LA-semigroup Neutrosophic ring is intro-
duced and studied some of their basic properties.

Definition 4.1: Let S be an LA-semigroup and R I

be a commutative neutrosophic ring with unity. 
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 R I S is defined to be the LA-semigroup neutro-

sophic ring which consist of all finite formal sums of the 

form 
1

n

i i
i

rs


 ; n   , ir R I   and is S . This 

LA-semigroup neutrosophic ring is defined analogous to 
the group ring or semigroup ring. 

Example 4.2: Let 2 {0,1, ,1 }I I I   be the neu-

trosophic ring and let  1,2,3S   be an LA-semigroup

with the following table: 

Then  2 I S is an LA-semigroup neutrosophic 

ring. 

Definition 4.3: Let S I be a neutrosophic LA-

semigroup and K I  be a neutrosophic field or a 

commutative neutrosophic ring with unity. 

K I S I    is defined to be the neutrosophic

LA-semigroup neutrosophic ring which consist of all finite 

formal sums of the form 
1

n

i i
i

rs


 ; n   , ir K I 

and is S .

Example 4.4: Let I  be the ring of integers and let 

   1,2,3,4,1 ,2 ,3 ,4N S I I I I be a

neutrosophic LA-semigroup with the following  table. 

* 1 2 3 4 1I 2I 3I 4I 

1 1 4 2 3 1I 4I 2I 3I 
2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 

4 2 3 1 4 2I 3I 1I 4I 

1I 1I 4I 2I 3I 1I 4I 2I 3I 

2I 3I 2I 4I 1I 3I 2I 4I 1I 

3I 4I 1I 3I 2I 4I 1I 3I 2I 

4I 2I 3I 1I 4I 2I 3I 1I 4I 

Then I S I   is a neutrosophic LA-semigroup 

neutrosophic ring. 

Theorem 4.5: Every neutrosophic LA-semigroup neutro-
sophic ring contains a proper subset which is a neutrosoph-
ic LA-semigroup ring. 

Proof: Let R I S I  be a neutrosophic LA-

semigroup neutrosophic ring and let T R S I   be a 

proper subset of R I S I  . Thus clearly

T R S I   is a neutrosophic LA-semigroup ring. 

Conclusion 

In this paper, we introduced neutosophic LA-semigroup 
rings which are more general concept than neutrosophic 
semigroup rings. These neutrosophic LA-semigroup rings 
are defined analogously to neutrosophic semigroup rings. 
We have studiesd several properties of neutrosophic LA-
semigroup rings and also define different kind of 
neutrosophic LA-semigroup rings.  
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Neutrosophic Set Approach for Characterizations of Left 
Almost Semigroups 

Madad Khan, Florentin Smarandache, Sania Afzal 

Abstract. In this paper we have defined neutrosophic ideals, 
neutrosophic interior ideals, netrosophic quasi-ideals and 
neutrosophic bi-ideals (neutrosophic generalized bi-ideals) and 
proved some results related to them. Furthermore, we have done 
some characterization of a neutrosophic LA-semigroup by the 
properties of its neutrosophic ideals. It has been proved that in a 

neutrosophic intra-regular LA-semigroup neutrosophic left, right, 
two-sided, interior, bi-ideal, generalized bi-ideal and quasi-ideals 
coincide and we have also proved that the set of neutrosophic 
ideals of a neutrosophic intra-regular LA-semigroup forms a 
semilattice structure.

  Keywords: Neutrosophic LA-semigroup; neutrosophic intra-regular LA-semigroup; neutrosophic left invertive law; neutrosophic 
ideal.

Introduction 
It is well known fact that common models with their 
limited and restricted boundaries of truth and falsehood are 
insufficient to detect the reality so there is a need to 
discover and introduce some other phenomenon that 
address the daily life problems in a more appropriate way. 
In different fields of life many problems arise which are 
full of uncertainties and classical methods are not enough 
to deal and solve them. In fact, reality of real life problems 
cannot be represented by models with just crisp 
assumptions with only yes or no because of such certain 
assumptions may lead us to completely wrong solutions. 
To overcome this problem, Lotfi A.Zadeh in 1965 
introduced the idea of a fuzzy set which help to describe 
the behaviour of systems that are too complex or are ill-
defined to admit precise mathematical analysis by classical 
methods. He discovered the relationships of probability 
and fuzzy set theory which has appropriate approach to 
deal with uncertainties. According to him every set is not 
crisp and fuzzy set is one of the example that is not crisp. 
This fuzzy set help us to reduce the chances of failures in 
modelling.. Many authors have applied the fuzzy set theory 
to generalize the basic theories of Algebra. Mordeson et al. 
has discovered the grand exploration of fuzzy semigroups, 
where theory of fuzzy semigroups is explored along with 
the applications of fuzzy semigroups in fuzzy coding, 
fuzzy finite state mechanics and fuzzy languages etc. 
Zadeh introduced the degree of membership/truth (t) in 
1965 and defined the fuzzy set. Atanassov introduced the 
degree of nonmembership/falsehood (f) in 1986 and 
defined the intuitionistic fuzzy set. Smarandache 
introduced the degree of indeterminacy/neutrality (i) as 

independent component in 1995 (published in 1998) and 
defined the neutrosophic set. He has coined the words 
neutrosophy and neutrosophic. In 2013 he refined the 
neutrosophic set to n components: ,..., 21 tt ; ,..., 21 ii ; 

,..., 21 ff . The words neutrosophy and neutrosophic were
coined/invented by F. Smarandache in his 1998 book. 
Etymologically, neutro-sophy (noun) [French neutre 
<Latin neuter, neutral, and Greek sophia, skill/wisdom] 
means knowledge of neutral thought. While neutrosophic 
(adjective), means having the nature of, or having the 
characteristic of Neutrosophy. 
Recently, several theories have been presented to dispute 
with uncertainty, vagueness and imprecision. Theory of 
probability, fuzzy set theory, intutionistic fuzzy sets, rough 
set theory etc., are consistently being used as actively 
operative tools to deal with multiform uncertainties and 
imprecision enclosed in a system. But all these above 
theories failed to deal with indeterminate and inconsistent 
infomation. Therefore, due to the existance of 
indeterminancy in various world problems, neutrosophy 
founds its way into the modern research. Neutrosophy was 
developed in attempt to generalize fuzzy logic. 
Neutrosophy is a Latin world "neuter" - neutral, Greek 
"sophia" - skill/wisdom). Neutrosophy is a branch of 
philosophy, introduced by Florentin Smarandache which 
studies the origin, nature, and scope of neutralities, as well 
as their interactions with different ideational spectra. 
Neutrosophy considers a proposition, theory, event, 
concept, or entity, "A" in relation to its opposite, "Anti-A" 
and that which is not A, "Non-A", and that which is neither 
"A" nor "Anti-A", denoted by "Neut-A". Neutrosophy is 
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the basis of neutrosophic logic, neutrosophic probability, 
neutrosophic set, and neutrosophic statistics. 
Inpiring from the realities of real life phenomenons like 
sport games (winning/ tie/ defeating), votes (yes/ NA/ no) 
and decision making (making a decision/ hesitating/ not 
making), F. Smrandache introduced a new concept of a 
neutrosophic set (NS in short) in 1995, which is the 
generalization of a fuzzy sets and intutionistic fuzzy set. 
NS is described by membership degree, indeterminate 
degree and non-membership degree. The idea of NS 
generates the theory of neutrosophic sets by giving 
representation to indeterminates. This theory is considered 
as complete representation of almost every model of all 
real-world problems. Therefore, if uncertainty is involved 
in a problem we use fuzzy theory while dealing 
indeterminacy, we need neutrosophic theory. In fact this 
theory has several applications in many different fields like 
control theory, databases, medical diagnosis problem and 
decision making problems. 
Using Neutrosophic theory, Vasantha Kandasmy and 
Florentin Smarandache introduced the concept of 
neutrosophic algebraic structures in 2003. Some of the 
neutrosophic algebraic structures introduced and studied 
including neutrosophic fields, neutrosophic vector spaces, 
neutrosophic groups, neutrosophic bigroups, neutrosophic 
N-groups, neutrosophic bisemigroups, neutrosophic N-
semigroup, neutrosophic loops, neutrosophic biloops,
neutrosophic N-loop, neutrosophic groupoids,
neutrosophic bigroupoids and neutrosophic AG-groupoids.
Madad Khan et al., for the first time introduced the idea of
a neutrosophic AG-groupoid in [13].

1 Preliminaries 
Abel-Grassmann's Groupoid (abbreviated as an AG-
groupoid or LA-semigroup) was first introduced by 
Naseeruddin and Kazim in 1972. LA-semigroup is a 
groupoid S  whose elements satisfy the left invertive law 

acbcab )()(   for all a , b , Sc . LA-semigroup 
generalizes the concept of commutative semigroups and 
have an important application within the theory of flocks. 
In addition to applications, a variety of properties have 
been studied for AG-groupoids and related structures. An 
LA-semigroup is a non-associative algebraic structure that 
is generally considered as a midway between a groupoid 
and a commutative semigroup but is very close to 
commutative semigroup because most of their properties 
are similar to commutative semigroup. Every commutative 
semigroup is an AG-groupoid but not vice versa. Thus 
AG-groupoids can also be non-associative, however, they 
do not necessarily have the Latin square property. An LA-
semigroup S  can have left identity e  (unique) i.e aea 
for all Sa  but it cannot have a right identity because if 
it has, then S  becomes a commutative semigroup. An 

element s  of LA-semigroup S  is called idempotent if 
ss 2  and if holds for all elements of S  then S  is 

called idempotent LA-semigroup. 
Since the world is full of indeterminacy, the neutrosophics 
found their place into contemporary research. In 1995, 
Florentin Smarandache introduced the idea of neutrosophy. 
Neutrosophic logic is an extension of fuzzy logic. In 2003 
W.B Vasantha Kandasamy and Florentin Smarandache
introduced algebraic structures (such as neutrosophic
semigroup, neutrosophic ring, etc.). Madad Khan et al., for
the first time introduced the idea of a neutrosophic LA-
semigroup in [Madad Saima]. Moreover bIaSUI { : 
where a , Sb  and I is literal indeterminacy such that 

}2 II   becomes neutrosophic LA-semigroup under the 
operation defined as: 

bdIacdIcbIa  )()( for all )( bIa , 
SUIdIc  )( . That is ),( SUI becomes neutrosophic 

LA-semigroup. They represented it by )(SN . 
 ,))]()([())]()([( 212121212121 IaaIbbIccIccIbbIaa 

holds for all ),( 21 Iaa   ,21 Ibb 

  )(21 SNIcc  . 
It is since then called the neutrosophic left invertive law. A 
neutrosophic groupoid satisfying the left invertive law is 
called a neutrosophic left almost semigroup and is 
abbreviated as neutrosophic LA-semigroup. 
In a neutrosophic LA-semigroup )(SN  medial law holds 
i.e

 ,)])()][()([(
)])()][()([(

21212121

21212121

IddIbbIccIaa
IddIccIbbIaa




holds 

for all )( 21 Iaa  , )( 21 Ibb  , )( 21 Icc  , 

)()( 21 SNIdd  . 
There can be a unique left identity in a neutrosophic LA-
semigroup. In a neutrosophic LA-semigroup )(SN  with 

left identity  eIe   the following laws hold for all

)( 21 Iaa  , )( 21 Ibb  , )( 21 Icc  , 

)()( 21 SNIdd  . 

)],)()][()([(
)])()][()([(

21212121

21212121

IaaIccIbbIdd
IddIccIbbIaa





)],)()][()([()])()][()([( 2121212121212121 IaaIbbIccIddIddIccIbbIaa 

and 
  .])()[()])()[(( 212121212121 IccIaaIbbIccIbbIaa 

3 is called neutrosophic paramedial law and a
neutrosophic LA semigroup satisfies 5 is called
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neutrosophic AG ** -groupoid.
Now, bIabIa  2)(  implies bIa   is 
idempotent and if holds for all )(SNbIa   then 

)(SN  is called idempotent neutrosophic LA-semigroup. 

2 Neutrosophic LA-semigroups 

Example 2.1 Let  3,2,1S  with binary operation "  " is
an LA-semigroup with left identity 3  and has the following 
Calley's table: 

then 
N (S) {11I ,1 2I ,13I , 2 1I , 2  2I , 2 3I ,31I ,3 2I ,3 3I}

 is an example of neutrosophic LA-semigroup under the 
operation " " and has the following Callay's table: 

It is important to note that if )(SN  contains left identity 

I33  then )())(( 2 SNSN  . 
Lemma 2.1: If a neutrosophic LA-semigroup )(SN  
contains left identity Iee  then the following conditions 
hold. 
 i )()()( LNLNSN  for every neutrosophic left
ideal )(LN  of )(SN . 

 ii )()()( RNSNRN   for every neutrosophic right
ideal )(RN  of )(SN . 

Proof  i Let )(LN be the neutrosophic left ideal of

)(SN  implies that      .LNLNSN  Let

 LNbIa  and since

      LNSNbIaeIebIa  which implies

that       .LNSNLN  Thus      .LNSNLN 

 ii Let )(RN  be the neutrosophic right ideal of ).(SN

Then ).()()( RNSNRN   Now,let )(RNbIa  . 
Then 

  

    

    

).()(
)())()((

.

SNRN
SNSNRN

eIeeIebIa
bIaeIeeIe

bIaeIebIa











Thus )()()( SNRNRN  . Hence 
).()()( RNSNRN 

A subset )(QN of an neutrosophic LA-semigroup is 
called neutrosophic quasi-ideal if 

)()()()()( QNQNSNSNQN  . A subset )(IN  
of an LA-semigroup )(SN is called idempotent if 

)())(( 2 ININ  . 
Lemma 2.2: The intersection of a neutrosophic left ideal

)(LN and a neutrosophic right ideal )(RN of a 
neutrosophic LA-semigroup )(SN is a neutrosophic
quasi-ideal of )(SN . 

Proof Let  LN  and  RN  be the neutrosophic left and
right ideals of neutrosophic LA-semigroup )(SN  resp.

Since      RNRNLN  and

     LNRNLN  and      LNLNSN  and

     RNSNRN  . Thus
             
       
   
   .RNLN

LNRN
LNSNSNRN

RNLNSNSNRNLN









Hence,    RNLN   is a neutrosophic quasi-ideal of

 .SN
A subset(neutrosophic LA-subsemigroup) )(BN  of a 
neutrosophic LA-semigroup )(SN  is called neutrosophic 
generalized bi-ideal(neutosophic bi-ideal) of )(SN  if 

  )()()()( BNBNSNBN  .
Lemma 2.3: If )(BN  is a neutrosophic bi-ideal of a 
neutrosophic LA-semigroup )(SN  with left identity 

eIe , then )))(()(( 2211 IyxBNIyx  is also a 

neutrosophic bi-ideal of )(SN , for any 11 Iyx  and 

22 Iyx  in )(SN . 
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Proof Let  BN  be a neutrosophic bi-ideal of )(SN ,
now using (1), (2), (3) and (4), we get 

x 1  y1INBx 2  y2INSx 1  y1INBx 2  y2I
 NSx 2  y2Ix 1  y1INBx 1  y1INBx 2  y2I
 x 1  y1INBx 2  y2Ix 1  y1INBNSx 2  y2I
 x 1  y1INBx 1  y1Ix 2  y2INBNSx 2  y2I
 x 1  y1INBx 1  y1INSx 2  y2INBx 2  y2I
 NSx 1  y1Ix 1  y1INBx 2  y2INBx 2  y2I
 NBx 1  y1Ix 1  y1INSx 2  y2INBx 2  y2I
 NBx 1  y1Ix 2  y2INBx 1  y1INSx 2  y2I
 NBx 1  y1Ix 2  y2INBNS
 NBx 1  y1Ix 2  y2INBe  eINS
 NBx 1  y1Ie  eIx 2  y2INBNS
 e  eIx 1  y1INBNSNBx 2  y2I
 x 2  y2INSNBNBx 1  y1I
 e  eIx 2  y2INSNBNBx 1  y1I
 NBNSx 2  y2Ie  eINBx 1  y1I
 NBNSNBx 2  y2Ie  eIx 1  y1I
 NBx 2  y2Ie  eIx 1  y1I
 x 2  y2Ie  eINBx 1  y1I
 x 1  y1INBe  eIx 2  y2I
 x 1  y1INBx 2  y2I.

 

A subset )(IN  of a neutrosophic LA-semigroup )(SN  
is called a neutrosophic interior ideal if  

)()())()(( INSNINSN  . 
A subset )(MN  of a neutrosophic LA-semigroup )(SN  
is called a neutrosophic minimal left (right, two sided, 
interior, quasi- or bi-) ideal if it does not contains any other 
neutrosophic left (right, two sided, interior, quasi- or bi-) 
ideal of )(SN  other than itself. 
Lemma 2.4: If )(MN  is a minimal bi-ideal of )(SN  
with left identity and )(BN  is any arbitrary neutrosophic 
bi-ideal of )(SN , then 

)))(()(()( 2211 IyxBNIyxMN  , for every 

)( 11 Iyx  , )()( 21 MNIyx  . 
Proof Let )(MN  be a neutrosophic minimal bi-ideal and 

)(BN be any neutrosophic bi-ideal of )(SN , then by 

Lemma 2.3, ))](()[( 2211 IyxBNIyx  is a 

neutrosophic bi-ideal of )(SN  for every )( 11 Iyx  , 

)()( 22 SNIyx  . Let )( 11 Iyx  , 

)()( 22 MNIyx  , we have

.)(
)()]()([
)()]()([))](()[( 2211

MN
MNSNMN
MNBNMNIyxBNIyx







But )(MN  is a neutrosophic minimal bi-ideal, so 

)())](()[( 2211 MNIyxBNIyx   . 
Lemma 2.5: In a neutrosophic LA-semigroup )(SN  with 
left identity, every idempotent neutrosophic quasi-ideal is a 
neutrosophic bi-ideal of )(SN . 

Proof Let  QN  be an idempotent neutrosophic quasi-

ideal of  SN , then clearly  QN  is a neutrosophic LA-
subsemigroup too. 

             
 

   
  
  

).()(
)()()()(
)()()()(

)()()()()()(
and ,)()(

)()()(

SNQN
SNSNQNQN
QNQNSNSN

QNSNSNQNSNQN
QNSN

QNSNSN
SNSNQNQNSNQN















Thus 
      )()()()()()()()( QNQNSNSNQNQNSNQN 

. Hence, )(QN  is a neutrosophic bi-ideal of ).(SN   
Lemma 2.6: If )(AN  is an idempotent neutrosophic 
quasi-ideal of a neutrosophic LA-semigroup )(SN  with 
left identity eIe , then )()( BNAN  is a neutrosophic 
bi-ideal of )(SN , where )(BN  is any neutrosophic 
subset of )(SN . 
Proof Let )(AN  be the neutrosophic quasi-ideal of 

)(SN and )(BN  be any subset of )(SN . 

   
   
   
  
  
  

 )()(
)()()()(

)()()()(
)()()()(

)()()()()(
)()()()()(

)()()()()(

BNAN
BNANSNAN

SNANANBN
BNANANSN

BNANANSNSN
BNANANBNSN

BNANSNBNAN













Hence )()( BNAN  is neutrosophic bi-ideal of ).(SN  
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Lemma 2.7:If )(LN  is a neutrosophic left ideal and 
)(RN is a neutrosophic right ideal of a neutrosophic LA-

semigroup )(SN with left identity eIe then 
)()()( SNLNLN  and )()()( RNSNRN  are 

neutrosophic two sided ideals of )(SN  . 
Proof Let )(RN  be a neutrosophic right ideal of )(SN  
then by using (3) and (4), we have 

 
 

   
 

 
 

 .()())(
)()()(

]())[()(
]())[()(

)]()(][()[)(
]()][()[)(

)(]()[)()(
)(]()()[

RNSNRNRN
SNRNRN

SNSNRNRN
SNRNSNRN

SNRNSNSNRN
SNSNRNSNRN

SNRNSNSNRN
SNRNSNRN

















and 
 

 
 

   

.)()()(
)()()(

)()()()(
)]()()[()()(

]()][()[)()(
]())][()([)()(

]())[()()(
]()())[(

RNSNRN
RNRNSN

SNRNRNSN
SNSNRNRNSN

SNSNSNRNRNSN
RNSNSNSNRNSN

RNSNSNRNSN
RNSNRNSN

















Hence  ]()()[ RNSNRN   is a neutrosophic two
sided ideal of )(SN . Similarly we can show that  

 ]()()[ LNSNLN   is a neutrosophic two-sided ideal
of )(SN  . 

Lemma 2.8: A subset  IN  of a neutrosophic LA-

semigroup  SN  with left identity eIe  is a
neutrosophic right ideal of )(SN  if and only if it is a 
neutrosophic interior ideal of )(SN . 
Proof Let )(IN  be a neutrosophic right ideal of )(SN   

).(
)()(

)()]()([
)()]()([)()(

IN
SNIN

SNSNIN
INSNSNINSN









So )(IN  is a neutrosophic two-sided ideal of )(SN , so 

is a neutrosophic interior ideal of )(SN . 
Conversely, assume that )(IN  is a neutrosophic interior 
ideal of )(SN , then by using (4) and (3), we have 

).(
)()]()([

)]()()][()([
)]()()][()([

)]()()[(
)]()()[()()(

IN
SNINSN

SNSNINSN
SNINSNSN

SNINSN
SNSNINSNIN













If )(AN  and )(MN  are neutrosophic two-sided ideals 
of a neutrosophic LA-semigroup ),(SN  such that 

)())(( 2 MNAN   implies )()( MNAN  , then 
)(MN is called neutrosophic semiprime.

Theorem 2.1: In a neutrosophic LA-semigroup )(SN  with 
left identity eIe , the following conditions are 
equivalent. 
 i If )(AN and )(MN are neutrosophic two-sided

ideals of ),(SN then )())(( 2 MNAN  implies 
)()( MNAN  . 

 ii If )(RN  is a neutrosophic right ideal of )(SN  and
)(MN  is a neutrosophic two-sided ideal of )(SN  then 

)())(( 2 MNRN  implies )()( MNRN  . 

 iii If )(LN  is a neutrosophic left ideal of )(SN  and
)(MN  is a neutrosophic two-sided ideal of )(SN  then 

)())(( 2 MNLN  implies )()( MNLN  . 

Proof    iiii 

Let )(LN be a left ideal of )(SN and

)()]([ 2 MNLN  , then by Lemma ref: slrs , 

NL  NLNS is a neutrosophic two sided ideal of
NS , therefore by assumption  ,i we have

)()]()()([ 2 MNSNLNLN  which implies
)()]()()([ MNSNLNLN  which further implies 

that  )()( MNLN  . 

)()( iiiii  and    iii   are obvious.
Theorem 2.2: A neutrosophic left ideal )(MN of a 
neutrosophic LA-semigroup )(SN with left identity

eIe is neutrosophic quasi semiprime if and only if 
)()( 2

11 MNIba  implies )(11 MNIba  . 
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Proof Let )(MN  be a neutrosophic semiprime left ideal 

of )(SN  and )()( 2
11 MNIba  . Since 

2
11 ))(( IbaSN  is a neutrosophic left ideal of )(SN  

containing 2
11 )( Iba  , also )()( 2

11 MNIba  , 
therefore we have 

)())(()( 2
11

2
11 MNIbaSNIba  . But by using 

(2), we have 
 

 

.)])(([
)])(()][)(([

 ])()][()([
.])()[(])[(

2
11

1111

1111

1111
2

11

IbaSN
IbaSNIbaSN
IbaIbaSNSN

IbaIbaSNIbaSN









Therefore, )()])(([ 2
11 MNIbaSN  , but )(MN  is 

neutrosophic semiprime ideal so 
)())(( 11 MNIbaSN  . Since 

),)(()( 1111 IbaSNIba   therefore 

)()( 11 MNIba  . 
Conversely, assume that )(IN  is an ideal of )(SN  and 

let )())(( 2 MNIN   and )()( 11 INIba 

implies that 22
11 ))(()( INIba  , which implies that 

)()( 2
11 MNIba  which further implies 

that )()( 11 MNIba  . Therefore, 

)())(( 2 MNIN  implies )()( MNIN  . Hence
)(MN is a 

neutrosophic semiprime ideal. 
A neutrosophic LA-semigroup )(SN is called 
neutrosophic left (right) quasi-regular if every 
neutrosophic left (right) ideal of )(SN  is idempotent.
Theorem 2.3: A neutrosophic LA-semigroup )(SN with 
left identity is neutrosophic left quasi-regular if and only if 

)])(()][)(([ bIaSNbIaSNbIa  . 

Proof Let )(LN  be any left ideal of NS  and
)])(()][)(([ bIaSNbIaSNbIa  . Now for 

each )(21 LNIll  , we have 

Therefore, .))(()( 2LNLN   

Conversely, assume that 2))(()( ANAN   for every 
neutrosophic left ideal )(AN  of )(SN . Since 

))(( bIaSN  is a neutrosophic left ideal of )(SN . So, 
)])(()][)(([))(( bIaSNbIaSNbIaSNbIa 

. 
Theorem 2.4: The subset )(IN  of a neutrosophic left 
quasi-regular LA-semigroup )(SN  is a neutrosophic left 
ideal of  )(SN  if and only if it is a neutrosophic right 
ideal of )(SN . 

Proof Let NL  be a neutrosophic left ideal of )(SN  and

)(21 SNIss   therefore, by Theorem 2.3 and (1), we 
have 

   

   

   
   

.)()()(
]()][()[

]()}}][()){([{
])(}}][)(){[{(

)}]()(}{)([{
))((

2121212121

2121212121

2121

LNLNLN
LNSNLNSN

LNSNLNSNSN
IllIxxIllIyyIss

IssIllIyyIllIxx
IssIll













Conversely, assume that )(IN  is a neutrosophic right 

ideal of NS , as )(SN  is itself a neytrosophic left ideal
and by assumption )(SN  is idempotent, therefore by 
using (2), we have 

 
 

.)()()(
)(]()[
)(]()[)()(

INSNIN
SNSNIN
INSNSNINSN







This implies )(IN  is neutrosophic left bideal too. 
Lemma 2.9: The intersection of any number of 
neutrosophic quasi-ideals of )(SN  is either empty or 
quasi-ideal of )(SN . 

Proof Let )( 1QN and )( 2QN be two netrosophic quasi 

ideals of neutrosophic LA-semigroup )(SN . If )( 1QN
and )( 2QN are distinct then their intersection must be 
empty but if not then 

).()(
)]()()()([)]()()()([
)]()()()([)]()()()([

)()]()([)]()()[(

21

2211

2121

2121

QNQN
SNQNQNSNSNQNQNSN
SNQNSNQNQNSNQNSN

SNQNQNQNQNSN









Therefore, )()( 21 QNQN   is a neutrosophic quasi-
ideal. 
Now, generalizing the result and let 

.))(()()(
)]()()][()([

)])(()][)(([

2

212121

LNLNLN
LNSNLNSN

IllSNIllSNIll






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)(),...,(),( 21 nQNQNQN  be the n-number of 
neutrosophic quasi ideals of neutrosophic quasi-ideals of 

)(SN  and assume that their intersection is not empty then 
 

   

 

 

).(...)()(
)]()()()]...[()(
)([)]()()()([

)]()(...)()()()([
)](...)()()([

)](...)()([)](...)()()[(

21

2

211

21

21

2121

n

nn

n

n

nn

QNQNQN
SNQNQNSNSNQN
QNSNSNQNQNSN

SNQNSNQNSNQN
QNSNQNSNQNSN

SNQNQNQNQNQNQNSN













Hence )(...)()( 21 nQNQNQN   is a 
neuteosophic quasi-ideal. 
Therefore, the intersection of any number of neutrosophic 
quasi-ideals of )(SN  is either empty or quasi-ideal of 

NS.

3 Neutrosophic Regular LA-semigroups 

An element bIa  of a neutrosophic LA-semigroup 

)(SN  is called regular if  there exists x  yI  NS
such that   )]()([ bIayIxbIabIa  , and

)(SN  is called neutrosophic regular LA-semigroup if 
every element of )(SN  is regular. 

Example Let  3,2,1S  with binary operation "  " given
in the following Callay's table, is a regular LA-semigroup 
with left identity 4

then  
}44,34,24,14,33,23,13,32,22,12,31,21,11{)( IIIIIIIIIIIIISN 

  is an example of neutrosophic regular LA-semigroup un-
der the operation " " and has the following Callay's table: 

Clearly )(SN  is a neutrosophic LA-semigroup also 

   ]32)(44)[11()32](44)(11[ IIIIII 

, so )(SN  is non-associative  and is regular because 
)11)](22)(11[()11( IIII  , 

2  2I  2  2I3  3I2  2I , 
)23)](31)(23[()23( IIII  , 

4  1I  4  1I4  2I4  1I , 
)44)](44)(44[()44( IIII  etc. 

Note that in a neutrosophic regular LA-semigroup, 
)()]([ 2 SNSN  . 

Lemma 3.1: If )(AN is a neutrosophic bi-
ideal(generalized bi-ideal) of a regular neutrosophic LA-
semigroup )(SN  then  NANSNA  NA .
Proof Let )(AN  be a bi-ideal(generalized bi-ideal) of 

)(SN , then   ).()(]()[ ANANSNAN 

Let )(ANbIa  , since )(SN  is neutrosophic regular
LA-semigroup so there exists an element

)(SNyIx  such that 
))]()([( bIayIxbIabIa  , therefore,

    ).(]()[)]()([ ANSNANbIabIxbIabIa 

 This implies that ).()]()([)( ANSNANAN   Hence 

  )()(]()[ ANANSNAN  . 
Lemma 3.2: If )(AN  and )(BN are any neutrosophic 
ideals of a neutrosophic regular LA-semigroup )(SN , 
then )()()()( BNANBNAN  . 
Proof Assume that )(AN  and )(BN  are any 
neutrosophic ideals of )(SN  so 

NANB  )()()( ANSNAN   and 
).()()()()( BNBNSNBNAN  This implies that 

)()()()( BNANBNAN  . Let 
)()( BNANbIa  , then )(ANbIa  and 
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)(BNbIa  . Since )(SN is a neutrosophic regular 
AG-groupoid, so there exist yIx  such that

 

)()(
)(]()([)]()([

BNAN
BNSNANbIayIxbIabIa





, which implies that )()()()( BNANBNAN  . 
Hence ).()()()( BNANBNAN    
Lemma 3.3: If )(AN  and )(BN  are any neutrosophic 
ideals of a neutrosophic regular LA-semigroup )(SN , 
then )()()()( ANBNBNAN  . 
Proof Let )(AN  and )(BN  be any neutrosophic ideals 
of a neutrosophic regular LA-semigroup )(SN . Now, let 

)(21 ANIaa  and )(21 BNIbb  . Since,
)()( SNAN  and )()( SNBN  and )(SN is a 

neutrosophic regular LA-semigroup so  there exist 
Ixx 21  , )(21 SNIyy   such that  

  )]()([ 21212121 IaaIxxIaaIaa   and 

  )]()([ 21212121 IbbIyyIbbIbb  . 

Now, let   )()()( 2121 BNANIbbIaa  but 

 

 

 

 ).()()()(
)()(

)]()()][()([
 )]()()][()([

)]()}()()][{()}()([{
)]}()([{
)]}()([{

)(

212121

212121

2121

ANBNBNAN
ANBN

ANANBNBN
BNBNANAN

BNSNBNANSNAN
IbbIyyIbb
IaaIxxIaa

IbbIaa

















Now, let   )()()( 2121 ANBNIaaIbb  but 
   

 

).()(
)]()()][()([
)]()()][()([

)]()}()()][{()}()([{
)]}()([{
)]}()([{)(

212121

2121212121

BNAN
BNBNANAN
ANANBNBN

ANSNANBNSNBN
IaaIxxIaa
IbbIyyIbbIaaIbb













Since )()()()( BNANANBN  . Hence 
).()()()( ANBNBNAN 

Lemma 3.4; Every neutrosophic bi-ideal of a regular 
neutrosophic LA-semigroup )(SN  with left identity 

eIe is a neutrosophic quasi-ideal of ).(SN  
Proof Let )(BN be a bi-ideal of )(SN and 

)()())(( 2121 BNSNIbbIss  , for

)(21 SNIss  and )(21 BNIbb  . Since )(SN  
is a neutrosophic regular LA-semigroup, so there exists 

Ixx 21 

in NS  such that 
  )]()([ 21212121 IbbIxxIbbIbb  , then by 

using (4) and (1), we 
have 

   

 

 

   

   

 

.)(
)(]()[

))}]()}}]()(){()[{([(
)}]()()}{)()([{(
))](}]()(}{)([[{

))]()}(}()(){{[(
))](}()([{

])(][)([
)])}()()[{((

))((

212121212121

212121212121

212121212121

12121212121

21212121

21212121

21212121

2121

BN
BNSNBN

IbbIxxIbbIssIxxIbb
IbbIxxIbbIbbIssIxx
IbbIxxIbbIssIxxIbb

bIbIxxIbbIxxIbbIss
IbbIxxIbbIss

IbbIssIxxIbb
IbbIxxIbbIss

IbbIss





















Therefore, 
)()()()()()()( BNBNSNBNSNSNBN  . 

Lemma 3.5. In a neutrosophic regular LA-semigroup 
)(SN , every neutrosophic ideal is idempotent. 

Proof. Let NI  be any neutrosophic ideal of neutrosophic
regular LA-semigroup )(SN . As we know, 

)())(( 2 ININ  and let ),(INbIa  since 
)(SN  is regular so there exists an element 

)(SNyIx  such that 

 

 

.))(()()(
 )(]()[

)]()([

2INININ
INSNIN

bIayIxbIabIa







This implies 2))(()( ININ  . Hence, 

)())(( 2 ININ  . 
As )(IN  is the arbitrary neutrosophic ideal of )(SN . So 
every ideal of neutrosophic regular AG-groupoid is 
idempotent. 
Corollary 3.1. In a neutrosophic regular LA-semigroup 

)(SN , every neutrosophic right ideal is idempotent. 
Proof. Let )(RN be any neutrosophic right ideal of 
neutrosophic regular LA-semigroup )(SN then 

)()()( RNSNRN  and ).())(( 2 RNRN  Now,let
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),(RNbIa 

as )(SN is regular implies for )(RNbIa  ,there 
exists )(SNyIx  such that 

 
 

.))((
)()(

 )(]()[
)]()([

2RN
RNRN

INSNRN
bIayIxbIabIa









Thus )())(( 2 RNRN  . Hence, )())(( 2 RNRN  . So 
every neutrosophic right ideal of neutrosophic 
regular LA-semigroup  SN  is idempotent.
Corollary 3.2: In a neutrosophic regular LA-semigroup 

)(SN , every neutrosophic ideal is semiprime. 
Proof: Let )(PN be any neutrosophic ideal of 

neutrosophic regular LA-semigroup  SN
and let )(IN be any other neutrosophic ideal such that

).()]([ 2 PNIN 

Now as every ideal of )(SN  is idempotent by lemma 3.5. 

So, )()]([ 2 ININ  implies )()( PNIN  . Hence,
every neutrosophic ideal of )(SN  is semiprime.

4 Neutrosophic Intra-regular LA-semigroups 

An LA-semigroup )(SN  is called neutrosophic intra-

regular if for each element a1  a2I  NS  there exist
elements ),( 21 Ixx  )()( 21 SNIyy  such that

)]())([( 21
2

212121 IyyIaaIxxIaa  . 

Example Let  3,2,1S  with binary operation "  " given
in the following Callay's table, is an intra-regular LA-
semigroup with left identity 2 . 

then 
}33,23,13,32,22,12,31,21,11{)( IIIIIIIIISN 

 is an example of neutrosophic intraregular LA-semigroup 
under the operation " " and has the following Callay's ta-
ble: 

 I11  I21 1  3I 2  1I  2  2I  2  3I  3  1I    3  2I    3  3I   

Clearly  SN  is a neutrosophic LA-semigroup and is
non-associative because 

)]32()22[()11(
)32()]22()11[(
III

III



 and )(SN  is intra-

regular as 
 )312]()11)(31[()11( 2  III , 

)13]()32)(11[()32( 2 IIII  , 

)33]()13)(32[()13( 2 IIII  etc. 
Note that if )(SN is a neutrosophic intra-regular LA-

semigroup then )()]([ 2 SNSN  . 
Lemma 4.1: In a neutrosophic intra-regular LA-semigroup 

)(SN with left identity eIe , every neutrosophic ideal 
is idempotent. 
Proof Let )(IN be any neutrosophic ideal of a 
neutrosophic intraregular LA-semigroup )(SN implies

)()]([ 2 ININ  . Now, let )(21 INIaa  and since 

)()( SNIN  implies )(21 SNIaa  . Since )(SN  
is a neutrosophic intra-regular LA-semigroup, so there 
exist )( 21 Ixx  , )()( 21 SNIyy   such that 

.)]([
)()(

)())()((
)())()((

)()))()()(((
)())]()()(([

)(]))()(([
)]())([()(

2

2
21

2
212121

IN
ININ

ININSN
SNININ

SNINSNIN
SNININSN

SNINSN
IyyIaaIxxIaa

















Hence )()]([ 2 ININ  . As, )(IN  is arbitrary so every 
neutrosophic ideal of is idempotent in a neutrosophic intra-
regular LA-semigroup )(SN  with left identity. 
Lemma 4.2. In a neutrosophic intra-regular LA-semigroup

)(SN  with left identity eIe , 
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)()()()( JNINJNIN  , for every neutrosophic
ideals )(IN  and )(JN in )(SN . 
Proof: Let )(IN and )(JN be any neutrosophic ideals
of )(SN , then obviously )()()()( SNINJNIN   
and )()()()( JNSNJNIN   implies 

)()()()( JNINJNIN  . Since 
)()()( INJNIN  and )()()( JNJNIN  , 

then   )()(]()[ 2 JNINJNIN  . Also 
)()( JNIN  is a neutrosophic ideal of ),(SN so 

using Lemma 4.1, we have 
  )()(]()[)()( 2 JNINJNINJNIN  . 

Hence )()()()( JNINJNIN  . 
Theorem 4.1. For neutrosophic intra-regular AG-groupoid 
with left identity eIe , the following statements are 
equivalent. 
 i )(AN is a neutrosophic left ideal of )(SN .

 ii )(AN is a neutrosophic right ideal of )(SN .

 iii )(AN is a neutrosophic ideal of )(SN .

 iv )(AN is a neutrosophic bi-ideal of )(SN .

 v )(AN is a neutrosophic generalized bi-ideal of
)(SN . 

 vi )(AN is a neutrosophic interior ideal of )(SN .

 vii )(AN is a neutrosophic quasi-ideal of )(SN .

 viii )()()( ANSNAN  and
)()()( ANANSN  . 

Proof:    viiii 

Let )(AN be a neutrosophic left ideal of )(SN . By 
Lemma first, )()()( ANANSN  . Now let  

)()( 21 ANIaa  and ),()( 21 SNIss  since
)(SN is a neutrosophic intra-regular LA-semigroup, so 

there exist )( 21 Ixx  , )()( 21 SNIyy  such that

)]())([()( 21
2

212121 IyyIaaIxxIaa  , 
therefore by (1), we have 

 

 
 

 
   

    .)()(]())[(
]()][()[
)()](}()[{

)()](}}()){([{
)()](}}()){([{

))](}}()(){[{(
))](}())([{())((

2121212121

2121
2

21212121

ANANSNANSNSN
ANSNSNSN
SNSNANSN

SNSNANSNSN
SNSNANANSN

IssIyyIaaIaaIxx
IssIyyIaaIxxIssIaa















which implies that )(AN  is a neutrosophic right ideal of 

)(SN , again by Lemma first, ).()()( SNSNAN   

   viiviii 
Let )()()( ANSNAN  and )()()( ANANSN 

then ),()()()()( ANANSNSNAN  which 
clearly implies that )(AN is a neutrosophic quasi-ideal of 

)(SN . 

   vivii 

Let )(AN  be a quasi-ideal of )(SN . Now let 

    )(]()[)]()([ 212121 SNANSNIssIaaIss  ,
since  )(SN  is neutrosophic intra-regular LA-semigroup 

so there exist )( 21 Ixx  , )( 21 Iyy  , )( 21 Ipp  ,  

)()( 21 SNIqq   such that 

)]())([()( 21
2

212121 IyyIssIxxIss   and  

)]())([()( 21
2

212121 IqqIaaIppIaa  . 
Therefore using (2), (4), (3) and (1), we have 
 

 

 

.)()(
)]}}())(){()[{((

])(}}][))(){([{(
)]}())(][{()([

)]()([

21
2

21212121

2121
2

212121

21
2

2112121

212121

SNAN
IyyIssIxxIssIaa

IyyIaaIssIxxIss
IyyIssxIxIaaIss

IssIaaIss











and 
 

 

   

   

   

   

   

 

 

).()()(
))}](}}()(){){{([(
))}](}}()(){){{([(
)}]()(}}{)(){[{(
))}](}()(}{{)([{
))}](}()(}{{)([{
)}]()(}}{)(){[{(
)}]()(}}{)(){[{(

)}]()(}{))([{(
))}](}())(){{([(

)]()([

212121212121

212121212121

212121212121

212121212121

212121212121

212121212121

212121212121

212121
2

2121

2121
2

212121

212121

ANANSN
IaaIppIssIqqIaaIss
IssIppIssIqqIaaIaa
IssIppIaaIssIqqIaa
IssIaaIssIqqIaaIpp
IssIaaIaaIppIssIqq
IssIqqIssIaaIppIaa
IssIqqIssIaaIaaIpp

IssIqqIssIaaIpp
IssIqqIaaIppIss

IssIaaIss























which shows that )(AN  is a neutrosophic interior ideal of 
)(SN . 

   vvi 

Let )(AN be a neutrosophic interior ideal of a 
neutrosophic intraregular LA-semigroup )(SN  
and 
    )(]()[)]()([ 212121 ANSNANIaaIssIaa 
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. Now using (4) and (1), we get 
 

 

 

   

   

 

   

   

 

  .)()(]()[
))]()}(}}()(){[{{(
)}}]()(){}{()([{
)}}]()(}{)(){{[(
))}]()}(}()(){{{[(
)}]()()}{}()([{{

)]}()(}][{)(){[(
)]}()(][{))([(
)]}())(][{()([

)]()([

212121212121

212121212121

212121212121

212121212121

212121212121

212121212121

212121
2

2121

21
2

21212121

212121

ANSNANSN
IxxIaaIyyIssIaaIaa
IxxIssIaaIaaIyyIaa
IxxIssIaaIyyIaaIaa
IxxIaaIyyIssIaaIaa
IxxIaaIaaIyyIssIaa

IyyIssIaaIaaIaaIxx
IyyIssIaaIaaIxx
IyyIaaIxxIssIaa

IaaIssIaa





















   ivv 

Let )(AN be a neutrosophic generalized bi-ideal of 

)(SN . Let )(21 ANIaa  , and since )(SN is 
neutrosophic intra-regular LA-semigroup so there exist 
x1  x2I , y1  y2I in )(SN such that

),]())([( 21
2

212121 IyyIaaIxxIaa   then 
using (3) and (4), we have 

 

   
 

   

 

 

  .)()(]()[
))}](}}()(){){{([(
)}]()()}}{)(){([{(
))}](}()(}{{)([{

))}](}()({{)[(
)}](()}{)([{
)}]()(}{))([{(

))](}())([{(
))((

212121212121

212121212121

212121212121

21212121
2

21

2121
2

212121

212121
2

2121

2121
2

2121

2121

ANANSNAN
IaaIaaIeeIyyIxxIaa
IaaIaaIaaIeeIyyIxx
IaaIxxIeeIyyIaaIaa

IaaIxxIeeIyyIaa
IaaIxxIaaIeeIyy
IaaIyyIeeIaaIxx

IaaIyyIaaIxx
IaaIaa



















Hence )(AN  is a neutrosophic bi-ideal of )(SN . 
)()( iiiiv 

Let )(AN be any neutrosophic bi-ideal of )(SN  and let

)()())(( 2121 SNANIssIaa  . Since )(SN is 
neutrosophic intra-regular LA-semigroup, so there exist 

),( 21 Ixx  )()( 21 SNIyy   such that 

).]())([()( 21
2

212121 IyyIaaIxxIaa 

Therefore, using (1), (3), (4) and (2), we have 

 

 

)}})(){({(
))]()}}()(){([{(

)}])(){(][()([
])()][)}()([{(

]))}()}()([{{(
)])()][(()[(
]))()][()([(
))](}())([{(

))((

212121

2121212121

2121212121

2121212121

2
21212121

212121
2

21

2
21212121

2121
2

2121

2121

IssIyyIxx
IaaIaaIssIyyIxx

IssIyyIxxIaaIaa
IaaIaaIxxIssIyy

IaaIxxIssIyy
IssIyyIxxIaa

IaaIxxIyyIss
IssIyyIaaIxx

IssIaa



















))}]((
)}}})(){(){({{()[(

))}]((){(
)}}})(){(){([{(

))}]((
)}})(){(}{{())([{(

))}(}())({{(

2121

21212121
2

21

2121
2

21

21212121

2121

212121
2

2121

2121
2

2121

IaaIxx
IssIyyIxxIyyIaa

IaaIxxIaa
IssIyyIxxIyy

IaaIyy
IssIyyIxxIaaIxx

IaaIyyIaaIxx















 

  .)()(]()[
))}]()({(

)}}}})(){(){(){([{(
))}]()}}}()({(
)){(}{{()([{

212121

2121212121

21212121

21212121

ANANSNAN
IaaIaaIaa

IssIyyIxxIyyIxx
IaaIxxIssIyy
IxxIyyIaaIaa











 

 

   

  )]()}()}()([{{
)}]()(}{)([{
))}]()()}{()([{(

)])(}][()(){[(
)])(}][()(){[(

)])(][())([(
)]}())()[{((

))((

2121212121

2121212121

2121212121

2121212121

2121212121

2121
2

2121

21
2

212121

2121

IaaIaaIxxIssIyy
IaaIssIyyIxxIaa
IaaIaaIxxIyyIss

IyyIssIaaIxxIaa
IyyIssIaaIaaIxx

IyyIssIaaIxx
IyyIaaIxxIss

IaaIss

















 

 

 

   

 

   

  )}]()({
}})()}{}()([{{{

)}]()({
}})(}{()[{{

)}]()({
}}))(}{()([{{
))}](}())({{(

)}}()([{{

212121

2121212121

212121

212121
2

21

212121

2
21212121

2121
2

2121

212121

IaaIyyIxx
IyyIssIxxIaaIaa

IaaIyyIxx
IyyIssIxxIaa

IaaIyyIxx
IaaIxxIssIyy

IaaIyyIaaIxx
IxxIssIyy
















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 

 

 

 

.)(
)()]()([

))}](}}()({
)}}()(){{{{[(

))}](}()({{
}})()}{)([{{(

21212121

21212121

21212121

21212121

AN
ANSNAN

IaaIaaIxxIyy
IxxIyyIssIaa

IaaIxxIaaIaa
IyyIssIyyIxx













Therefore, )(AN  is a neutrosophic ideal of )(SN . 

   iiiii  and    iii   are obvious.
Lemma 4.4. A neutrosophic LA-semigroup )(SN  with left 
identity )( eIe is intra-regular if and only if every
neutrosophic bi-ideal of )(SN  is idempotent. 

Proof. Assume that  SN  is a neutrosophic intra-regular
LA-semigroup with left identity )( eIe  and )(BN  is a 
neutrosophic bi-ideal of )(SN . Let )()( BNbIb  , 
and since )(SN  is intra-regular so there exist 

)( 21 Icc  , )( 21 Idd  in )(SN such that 

)]())([()( 21
2

212121 IddIbbIccIbb  , then by 
using (3), (4) and (1), we have 

 

   
 

   

  )]()}()}()([{{
)}]}()(}{{)([{

)}]}()({{)[(
}]()}{)([{
}])(}{))([{(

)]())([(
)(

21212121

21212121

2121
2

21

21
2

2121

21
2

2121

21
2

2121

21

IbbIbbIcceIeIdd
IcceIeIddIbbIbb

IcceIeIddIbb
IccIbbeIeIdd
IddeIeIbbIcc

IddIbbIcc
Ibb















 

))]()}()({(
)}})}()}()([{{{{(

))}]()}((
)})()}}{{{()(){([{(

))]()}((
)})()}}{{()(){([{(

))}]((
})}()(}{{))([{{(

))}](}())({{(
)})}()([{{(

21212121

212121

212121

21212121

212121

21212121

2121

2121
2

2121

2121
2

2121

2121

IbbIbbIbbIcc
IddIcceIeIdd

IbbIddIcc
eIeIddIbbIccIbb

IbbIddIcc
eIeIddIbbIbbIcc

IbbIdd
IcceIeIddIbbIcc

IbbIddIbbIcc
IcceIeIdd





















))]()}}()}}()({(
)){{()}}{()}()}()([{{{{(

))}]((
))}})}}()(){({{(

))}}{()}()}()([{{{{(
))]()}}((

}))(){{({{(
)})}()}()([{{{{(

2121212121

2121212121

2121

21212121

21212121

212121

2
212121

212121

IbbIbbIddIbbIcc
IbbIccIddIcceIeIdd

IbbIbb
IddIbbIbbIcc

IccIddIcceIeIdd
IbbIbbIdd
IbbIccIcc

IddIcceIeIdd

















  .)()()()](}()[{
))]()}}()}}()(){({{(

)}})}()}()(){{{{{([(
))]()}}()}}()(){({{(

))}}{()}()}()([{{{{(

212121212121

21212121

212121212121

21212121

BNBNBNBNSNBN
IbbIbbIddIbbIccIcc

IddIcceIeIddIbb
IbbIbbIddIbbIccIcc

IbbIddIcceIeIdd











Hence )()]([ 2 BNBN  . 
Conversely, since ))(( bIaSN   is a neutrosophic bi-

ideal of NS , and by assumption NSa  bI  is
idempotent, so by using (2), we have 

Hence )(SN  is neutrosophic intra-regular LA-semigroup. 
Theorem 4.2. In a neutrosophic LA-semigroup )(SN  with 
left identity eIe , the following statements are 
equivalent. 
i )(SN  is intra-regular.

ii Every neutrosophic two sided ideal of )(SN is
semiprime. 
iii Every neutrosophic right ideal of )(SN is
semiprime. 
iv Every neutrosophic left ideal of )(SN  is semiprime.

Proof:    ivi 

Let )(SN  is intra-regular, then by Theorem equalient and 
Lemma 4.1, every neutrosophic left ideal of )(SN  is 
semiprime. 
   iiiiv 

Let )(RN be a neutrosophic right ideal and )(IN be 
any neutrosophic ideal of )(SN such that 

)()]([ 2 RNIN  . Then clearly

)()()()]([ 2 RNSNRNIN  . Now by Lemma 2.7, 
)()()( RNSNRN  is a neutrosophic two-sided ideal 

of )(SN , so is neutrosophic left. Then by  iv  we have
)()()()( RNSNRNIN  . Now using (1) we have 

   

     

       

 

.)(]))(([
]()][))(([

])(}][}{()[{
])(}][)(}{)([{

])(][)([
)(

2

2

SNbIaSN
SNSNbIaSN

bIaSNbIabIaSNSN
bIaSNbIaSNbIaSN

bIaSNbIaSN
bIa












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 

 

).()()(
)(]()[
)(]()[)()(

RNSNRN
SNSNRN
RNSNSNRNSN







This implies that 
).()()()()( RNRNSNRNIN  Hence )(RN  

is semiprime. 
It is clear that     iiiii  .

Now    iii 

Since )()( 2 SNbIa   is a neutrosophic right ideal of 

)(SN containing 2)( bIa  and clearly it is a 

neutrosophic two sided ideal so by assumption  ii , it is
semiprime, therefore by Theorem 2.2, 

).()()( 2 SNbIabIa  Thus using (4) and (3), we 
have 

 

 
   
   

.)(]))(([
]()][))([

]()][()[
]())[(
]()[)(

)()(

2

2

2

2

2

2

SNbIaSN
SNSNbIaSN

SNbIaSNSN
SNbIaSN
SNSNbIa

SNbIabIa













Hence )(SN  is intra-regular. 
Theorem 4.3. An LA-semigroup )(SN  with left identity 

eIe  is intra-regular if and only if every neutrosophic 
left ideal of )(SN  is idempotent. 
Proof. Let )(SN  be a neutrosophic intra-regular LA-
semigroup then by Theorem equalient and Lemma 4.1, 
every neutrosophic ideal of )(SN  is idempotent. 
Conversely, assume that every neutrosophic left ideal of 

)(SN is idempotent. Since ))(( bIaSN  is a 
neutrosophic left ideal of )(SN , so by using (2), we have

   
 

     

.)(]))(([
)]()(][))(([

})(}]{)(}{()[{
})()}]{)(()}{)(([{

])(][)([
))((

2

2

SNbIaSN
SNSNbIaSN

bIaSNbIabIaSNSN
bIaSNbIaSNbIaSN

bIaSNbIaSN
bIaSNbIa













Theorem 4.4. A neutrosophic LA-semigroup )(SN  with 
left identity eIe  is intra-regular if and only if  

)()()()( LNRNLNRN  , for every neutrosophic
semiprime right ideal )(RN  and every neutrosophic left
ideal )(LN  of )(SN . 
Proof. Let )(SN  be an intra-regular LA-semigroup, so by 
Theorem equalient )(RN and )(LN become 
neutrosophic ideals of )(SN , therefore by Lemma 4.2, 

),()()()( RNLNLNRN  for every neutrosophic
ideal )(RN and )(LN and by Theorem every ideal 
semiprime, )(RN  is semiprime.
Conversely, assume that )()()()( LNRNLNRN   
for every neutrosophic right ideal ),(RN which is 
semiprime and every neutrosophic left ideal )(LN of 

)(SN . Since )()()( 22 SNbIabIa  , which is a 
neutrosophic right ideal of )(SN  so is semiprime which 

implies that )()()( 2 SNbIabIa  . Now clearly 
))(( bIaSN  is a neutrosophic left ideal of )(SN  and

))(()( bIaSNbIa  . Therefore, using (3),we have 

   

   

   

 
 

   
 

.)(]))(([
)(}])(){([

)(}])(}{()[{
)()}]()()}{)([{(

)()](})([{
)(]()[

]()][()[
])(][()[

])([]()[

2

2

2

2

2

SNbIaSN
SNbIabIaSN

SNbIabIaSNSN
SNSNSNbIabIa

SNSNbIabIa
SNSNbIa

SNSNSNbIa
bIaSNSNbIa

bIaSNSNbIabIa



















Therefore, )(SN  is a neutrosophic intra-regular LA-
semigroup. 
Theorem 4.5. For a neutrosophic LA-semigroup )(SN  
with left identity eIe , the following statements are 
equivalent. 
 i )(SN  is intra-regular.

 ii )()()()( RNLNRNLN  , for every right
ideal ),(RN which is neutrosophic semiprime and every 
neutrosophic left ideal )(LN  of )(SN . 

 iii   )(]()[)()( LNRNLNRNLN  , for every
neutrosophic semiprime right ideal )(RN and every 
neutrosophic left ideal )(LN . 

Proof    iiii 
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Let )(SN  be intra-regular and ),(LN  )(RN  be any 
neutrosophic left and right ideals of )(SN  and let 

a1  a2I  NL  NR, which implies that 
)(21 LNIaa  and )(21 RNIaa  . Since )(SN  

is intra-regular so there exist )( 21 Ixx  , )( 21 Iyy   in 
)(SN , such that 

)]())([( 21
2

212121 IyyIaaIxxIaa  , then by 
using (4), (1) and (3), we have 

 

 

 

 

 

 

 

 

 

 

   

   

  ,)(]()[
]()][()[
]()][()[
)(]()}()[{

)()]()}}()){([{
)}}]()({

)}}{()(){[{(
)}}]()({

)}}{()(){[{(
)}}]()({

)}{())([{(
)}}]()(}{))(){{([(

))}}]((
}))(){{(){([(

))}]()(){([(
)}]()(){[(
)}]()(){[(

)]())([(

212121

21212121

212121

21212121

212121
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2

2121

2121
2

212121

2121

2
21212121

21212121

21212121

21212121

21
2

212121
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LNSNRNLN
LNRNSNLN

LNSNLNRN
LNSNLNSNRN

IaaIyyIxx
IyyIaaIxxIaa

IaaIyyIxx
IyyIaaIaaIxx

IaaIyyIxx
IyyIaaIxx

IaayIxxIaaIxxIyy
IaaIyy

IaaIxxIxxIyy
IaaIaaIxxIyy
IyyIaaIxxIaa
IyyIaaIaaIxx

IyyIaaIxxIaa





































which implies that 
  )(]()[)()( LNRNLNRNLN  . Also by 

Theorem every ideal semiprime, )(LN  is semiprime. 

   iiiii 
Let )(RN and )(LN be neutrosophic left and right 
ideals of )(SN and )(RN is semiprime, then by 

assumption  iii   and by (3), (4) and (1), we have
 
 
   
   

 
 
 

).()(
]())[(

)](}())[{(
)](}())[{(
]()][()[
]()][()[

)(]()[
)(]()[)()(

RNLN
SNRNLN

SNSNRNLN
RNSNSNLN
RNLNSNSN
SNSNLNRN

SNLNRN
RNLNRNLNRN

















   iii 

Since )(SNeIe  implies ),)(( bIaSNbIa 

which is a neutrosophic left ideal of )(SN , and 

)()()( 22 SNbIabIa  , which is a semiprime
neutrosophic right ideal of )(SN , therefore by Theorem

2.2 )()( 2 SNbIabIa  . Now using (3) we have

   
 

 

 

).(]))(([
]()][))(([

)]()][(()[
)]()][()([

]()[])([

2

2

2

2

2

SNbIaSN
SNSNbIaSN
SNbIaSNSN

SNbIabIaSN
SNbIabIaSNbIa











Hence )(SN  is intra-regular 
A neutrosophic LA-semigroup )(SN  is called totally 
ordered under inclusion if )(PN  and )(QN  are any 
neutrosophic ideals of )(SN  such that either 

)()( QNPN  or )()( PNQN  . 
A neutrosophic ideal )(PN of a neutrosophic LA-
semigroup )(SN is called strongly irreducible if  

)()()( PNBNAN  implies either 
)()( PNAN  or )()( PNBN  , for all 

neutrosophic ideals )(AN , )(BN and )(PN of 
)(SN . 

Lemma 4.4. Every neutrosophic ideal of a neutrosophic 
intra-regular LA-semigroup )(SN  is prime if and only if 
it is strongly irreducible. 
Proof. Assume that every ideal of )(SN  is neutrosophic 
prime. Let )(AN  and )(BN  be any neutrosophic ideals 
of )(SN  so by Lemma 4.2, 

)()()()( BNANBNAN  , where )()( BNAN 

is neutrosophic ideal of )(SN . Now, let
)()()( PNBNAN  where )(PN is a 

neutrosophic ideal of )(SN  too. But by assumption every 
neutrosophic ideal of a neutrosophic intra-regular LA-
semigroup )(SN is prime so is neutrosophic prime, 
therefore, )()()()()( PNBNANBNAN   
implies )()( PNAN  or )()( PNBN  . Hence

)(SN is strongly irreducible.
Conversely, assume that )(SN  is strongly irreducible. Let 

Florentin Smarandache (author and editor) Collected Papers, XIII

350



)(AN , )(BN  and )(PN  be any neutrosophic ideals of 
)(SN such that )()()( PNBNAN  implies

)()( PNAN  or )()( PNBN  . Now, let

NA  NB  NP  but 
NANB  NA  NB by lemma ij, 
NANB  NP implies )()( PNAN  or

)()( PNBN  . Since )(PN is arbitrary neutrosophic
ideal of )(SN so very neutrosophic ideal of a 
neutrosophic intra-regular LA-semigroup )(SN  is prime. 
Theorem 4.6. Every neutrosophic ideal of a neutrosophic
intra-regular LA-semigroup )(SN  is neutrosophic prime 
if and only if )(SN  is totally ordered under inclusion. 
Proof. Assume that every ideal of )(SN  is neutrosophic 
prime. Let )(PN  and )(QN be any neutrosophic ideals 

of NS , so by Lemma 4.2, 
)()()()( QNPNQNPN  , where )()( QNPN 

is neutrosophic ideal of )(SN , so is neutrosophic prime,
therefore, ),()()()( QNPNQNPN  which 
implies that )()()( QNPNPN   or 

),()()( QNPNQN  which implies that 
)()( QNPN  or )()( PNQN  . Hence )(SN is 

totally ordered under inclusion. 
Conversely, assume that )(SN  is totally ordered under 
inclusion. Let )(IN , )(JN  and )(PN  be any 
neutrosophic ideals of )(SN  such that 

)()()( PNJNIN  . Now without loss of generality 
assume that )()( JNIN  then 

.)()()(
)()()]([)( 2

PNJNIN
ININININ





Therefore, either )()( PNIN   or )()( PNJN  , 
which implies that )(PN  is neutrosophic prime. 

Theorem 4.7. The set of all neutrosophic ideals sIN )( of 

a neutrosophic intra-regular )(SN  with left identity 
eIe  forms a semilattice structure. 

Proof. Let NA , NB  NIs , since NA  and
NB  are neutrosophic ideals of NS  so we have

   

   

   

 

.)()(
)]()(][()[
]()][()[)]()()[( Also

 .)()(
]()][()[
]()][()[)()]()([

BNAN
BNSNANSN
BNANSNSNBNANSN

BNAN
SNBNSNAN
SNSNBNANSNBNAN













Thus   )(BNAN  is a neutrosophic ideal of )(SN .

Hence sIN )( is closed. Also using Lemma ij, we have, 

)()()()()()()()( ANBNANBNBNANBNAN 

which implies that sIN )( is commutative, so is 

associative. Now by using Lemma ii, )()]([ 2 ANAN  , 

for all sINAN )()(  . Hence sIN )( is semilattice.

References 
[1] M. Ali, and F. Smarandache, A New Type of Group

Action through the Applications of Fuzzy Sets and
Neutrosophic Sets, International Journal of
Mathematical Combinatorics, Vol. 04, no. 04, (2015),
33-40.

[2] M. Ali, F. Smarandache, M. Naz, and M. Shabir,
Neutrosophic Code, Critical Review, A Publication of
Society for Mathematics of Uncertainty, Vol. IX,
(2015), 44-54.

[3] M. Ali, M. Shabir, M. Naz, and F. Smarandache,
Neutrosophic Left Almost Semigroup, Neutrosophic
Sets and Systems, Vol. 03, (2014), 18-28.

[4] M. Ali, F. Smarandache, M. Naz, and M. Shabir, G- 
      Neutrosophic Space, Critical Review, A Publication of

  Society for Mathematics of Uncertainty, Vol. VIII, 
  (2014), 37-49. 

[5] M. Ali, F. Smarandache, M. Shabir and M. Naz,
Neutrosophic Bi-LA-Semigroup and Neutrosophic N- 

      LA-Semigroup, Neutrosophic Sets and Systems, Vol. 
  04, (2014), 19-24. 

[6] M. Ali, F. Smarandache, and M. Shabir, New Research
on Neutrosophic Algebraic Structures, EuropaNova
ASBL. 3E clos du Pannasse, Brussels 1000, Belgium.

[7] A. H. Clifford and G. B. Preston, The algebraic theory
of semigroups, John Wiley & Sons, vol.11961  .

[8] P. Holgate, Groupoids satisfying a simple invertive
law, The Math. Stud.,
1  4,611992,101  106  .

[9] J. Ježek and T. Kepka, A note on medial division
groupoids, Proc. Amer. Math. Soc.,
2,1191993,423  426.

[10] M. A. Kazim and M. Naseeruddin, On almost
semigroups, The Alig. Bull. Math.,
21972,1  7.

Florentin Smarandache (author and editor) Collected Papers, XIII

351



[11] S. Milić, V. Pavlović, Semigroups in which some
ideal is completely simple semigroup, Publ. Inst.
Math.,  30,441981,123  130  .

[12] Madad Khan, Some studies in AG   -groupoids, Ph.
D., thesis, Quaid-i-Azam University, Islamabad,
Paksitan, 2008.

[13] Madad Khan, F. Smarandache and Saima Anis,
Theroy of Abel Grassmann's groupoids, The
Educationa Publiusher, Inc., Ohio, USA, 2015.

[14] Q. Mushtaq and S. M. Yousuf, On LA-semigroups,
The Alig. Bull. Math.,  81978,65  70.

[15] Q. Mushtaq and S. M. Yousuf, On LA-semigroup
defined by a commutative inverse semigroup, Math.
Bech.,  401988  ,  59  62  .

[16] Q. Mushtaq and M. Khan, Ideals in left almost
semigroups, Proceedings of 4th International Pure
Mathematics Conference  2003,65  77.

[17] Q. Mushtaq and M. Khan, Semilattice decomposition
of locally associative AG   -groupoids, Algeb.
Colloq.,  16,12009,17  22  .

[18] N. Naseeruddin, Some studies in almost semigroups
and flocks, Ph.D., thesis, Aligarh Muslim University,
Aligarh, India,  1970  .

[19] P. V. Protić and N. Stevanović, AG-test and some
general properties of Abel-Grassmann's groupoids,
PU. M. A.,  4.  ,  6    1995  ,  371  383  .

[20] P. V. Protić and M. Božinovic, Some congruences on
an AG   -groupoid, Algebra Logic and Discrete
Mathematics, Ni,  3,91995,879  886  .

[21] Florentin Smarandache, Neutrosophy. Neutrosophic
Probability, Set, and Logic, Amer. Res. Press,
Rehoboth, USA, 105 p., 1998 (4th edition)

[22] O. Steinfeld, Quasi-ideals in ring and semigroups,
Akademiaikiado, Budapest,  1978  .

[23]
2

342004

N. Stevanović and P. V. Protić, Composition of Abel-

Grassmann's 3-bands, Novi Sad, J. Math.,   , 

 .

Florentin Smarandache (author and editor) Collected Papers, XIII

352



Neutrosophic N-structures and their applications 
in semigroups

Abstract. The notion of neutrosophic N -structure is introduced, and
applied it to semigroup. The notions of neutrosophic N -subsemigroup,
neutrosophic N -product and ε-neutrosophic N -subsemigroup are intro-
duced, and several properties are investigated. Conditions for neutrosophic
N -structure to be neutrosophic N -subsemigroup are provided. Using neu-
trosophic N -product, characterization of neutrosophic N -subsemigroup
is discussed. Relations between neutrosophic N -subsemigroup and ε-
neutrosophic N -subsemigroup are discussed. We show that the homo-
morphic preimage of neutrosophic N -subsemigroup is a neutrosophic N -
subsemigroup, and the onto homomorphic image of neutrosophic N -
subsemigroup is a neutrosophic N -subsemigroup.

Keywords: Neutrosophic N -structure, neutrosophic N -subsemigroup,
ε-neutrosophic N -subsemigroup, neutrosophic N -product.

1. Introduction

Zadeh introduced the degree of membership/truth (t) in 1965 and defined the

fuzzy set. As a generalization of fuzzy sets, Atanassov introduced the de-gree of
nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set.
Smarandache proposed the term “neutrosophic” because “neutrosophic” ety-
mologically comes from “neutrosophy” [French neutre, Latin neuter, neutral, and
Greek sophia, skill/wisdom] which means knowledge of neutral thought, and this
third/neutral represents the main distinction between “fuzzy”/“intuitionistic fuzzy”
logic/set and “neutrosophic” logic/set, i.e. the included middle component (Lupasco-
Nicolescu’s logic in philosophy), i.e. the neutral/indeterminate/unknown part (be-
sides the “truth”/“membership” and “falsehood”/“non-membership” components

Madad Khan, Saima Anis, Florentin Smarandache, Young Bae Jun

Madad Khan, Saima Anis, Florentin Smarandache, Young Bae Jun (2017). Neutrosophic 
N-structures and their applications in semigroups. Annals of Fuzzy Mathematics and
Informatics 14(6), 583-598
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that both appear in fuzzy logic/set). Smarandache introduced the degree of inde-
terminacy/neutrality (i) as independent component in 1995 (published in 1998) and
defined the neutrosophic set on three components

(t, i, f) = (truth, indeterminacy, falsehood).

For more detail, refer to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm.

The concept of neutrosophic set (NS) developed by Smarandache [?] and Smaran-
dache [?] is a more general platform which extends the concepts of the classic set
and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set.
Neutrosophic set theory is applied to various part (refer to the site

http://fs.gallup.unm.edu/neutrosophy.htm).
A (crisp) set A in a universe X can be defined in the form of its characteristic

function µA : X → {0, 1} yielding the value 1 for elements belonging to the set A and
the value 0 for elements excluded from the set A. So far most of the generalization of
the crisp set have been conducted on the unit interval [0, 1] and they are consistent
with the asymmetry observation. In other words, the generalization of the crisp set
to fuzzy sets relied on spreading positive information that fit the crisp point {1}
into the interval [0, 1]. Because no negative meaning of information is suggested, we
now feel a need to deal with negative information. To do so, we also feel a need to
supply mathematical tool. To attain such object, Jun et al. [?] introduced a new
function which is called negative-valued function, and constructed N -structures.
This structure is applied to BE-algebra, BCK/BCI-algebra and BCH-algebra etc.
(see [?], [?], [?], [?]).

In this paper, we introduce the notion of neutrosophic N -structure and applied
it to semigroup. We introduce the notion of neutrosophic N -subsemi-group and
investigate several properties. We provide conditions for neutrosophic N -structure
to be neutrosophic N -subsemigroup. We define neutrosophic N -product, and give
characterization of neutrosophic N -subsemigroup by using neutrosophic N -product.
We also introduce ε-neutrosophic subsemigroup, and investigate relations between
neutrosophic subsemigroup and ε-neutrosophic subsemigroup. We show that the ho-
momorphic preimage of neutrosophic N -subsemigroup is a neutrosophic N -subsemi-
group, and the onto homomorphic image of neutrosophic N -subsemigroup is a neu-
trosophic N -subsemigroup.

2. Preliminaries

Let X be a semigroup. Let A and B be subsets of X. Then the multiplication of
A and B is defined as follows:

AB = {ab ∈ X | a ∈ A, b ∈ B}.

By a subsemigroup of X, we mean a nonempty subset A of X such that A2 ⊆ A.

We consider the empty set ∅ is always a subsemigroup of X.
We refer the reader to the book [?] for further information regarding fuzzy semi-

groups.
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For any family {ai | i ∈ Λ} of real numbers, we define:∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,
sup{ai | i ∈ Λ} otherwise

and ∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,
inf{ai | i ∈ Λ} otherwise.

For any real numbers a and b, we also use a ∨ b and a ∧ b instead of
∨
{a, b} and∧

{a, b}, respectively.

3. Neutrosophic N -structures

Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We
say that an element of F(X, [−1, 0]) is a negative-valued function from X to [−1, 0]
(briefly, N -function on X). By an N -structure, we mean an ordered pair (X, f) of
X and an N -function f on X. In what follows, let X denote the nonempty universe
of discourse unless otherwise specified.

Definition 3.1. A neutrosophic N -structure over X is defined to be the structure:

(3.1) XN :=
X

(TN , IN , FN )
=

{
x

(TN (x), IN (x), FN (x))
| x ∈ X

}
where TN , IN and FN are N -functions on X which are called the negative truth
membership function, the negative indeterminacy membership function and the neg-
ative falsity membership function, respectively, on X.

Note that every neutrosophic N -structure XN over X satisfies the condition:

(∀x ∈ X) (−3 ≤ TN (x) + IN (x) + FN (x) ≤ 0) .

Example 3.2. Consider a universe of discourse X = {x, y, z}. We know that

XN =

{
x

(−0.7,−0.5,−0.1)
,

y

(−0.2,−0.3,−0.4)
,

z

(−0.3,−0.6,−0.1)

}
is a neutrosophic N -structure over X.

Definition 3.3. Let XN := X
(TN ,IN ,FN ) and XM := X

(TM ,IM ,FM ) be neutrosophic

N -structures over X. We say that XM is a neutrosophic N -substructure over X,
denoted by XN ⊆ XM, if it satisfies:

(∀x ∈ X)(TN (x) ≥ TM (x), IN (x) ≤ IM (x), FN (x) ≥ FM (x)).

If XN ⊆ XM and XM ⊆ XN, we say that XN = XM.

Definition 3.4. Let XN := X
(TN ,IN ,FN ) and XM := X

(TM ,IM ,FM ) be neutrosophic

N -structures over X.
(1) The union of XN and XM is defined to be a neutrosophic N -structure

XN∪M = (X;TN∪M , IN∪M , FN∪M ),
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where

TN∪M (x) =
∧
{TN (x), TM (x)},

IN∪M (x) =
∨
{IN (x), IM (x)},

FN∪M (x) =
∧
{FN (x), FM (x)},

for all x ∈ X.
(2) The intersection of XN and XM is defined to be a neutrosophic N -structure

XN∩M = (X;TN∩M , IN∩M , FN∩M ),

where

TN∩M (x) =
∨
{TN (x), TM (x)},

IN∩M (x) =
∧
{IN (x), IM (x)},

FN∩M (x) =
∨
{FN (x), FM (x)},

for all x ∈ X.

Definition 3.5. Given a neutrosophic N -structure XN := X
(TN ,IN ,FN ) over X, the

complement of XN is defined to be a neutrosophic N -structure

XNc :=
X

(TNc , INc , FNc)

over X, where

TNc(x) = −1− TN (x), INc(x) = −1− IN (x) and FNc(x) = −1− FN (x),

for all x ∈ X.

Example 3.6. Let X = {a, b, c} be a universe of discourse and let XN be the
neutrosophic N -structure over X in Example ??. Let XM be a neutrosophic N -
structure over X which is given by

XM =

{
x

(−0.3,−0.5,−0.2)
,

y

(−0.4,−0.2,−0.2)
,

z

(−0.5,−0.7,−0.8)

}
.

The union and intersection of XN and XM are given as follows respectively:

XN∪M =

{
x

(−0.7,−0.5,−0.2)
,

y

(−0.4,−0.3,−0.4)
,

z

(−0.5,−0.7),−0.8)

}
and

XN∩M =

{
x

(−0.3,−0.5,−0.1)
,

y

(−0.2,−0.2,−0.2)
,

z

(−0.3,−0.6,−0.1)

}
.

The complement of XN is given by

XMc =

{
x

(−0.7,−0.5,−0.8)
,

y

(−0.6,−0.8,−0.8)
,

z

(−0.5,−0.3,−0.2)

}
.
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4. Applications in semigroups

In this section, we take a semigroupX as the universe of discourse unless otherwise
specified.

Definition 4.1. A neutrosophic N -structure XN over X is called a neutrosophic
N -subsemigroup of X if the following condition is valid:

(∀x, y ∈ X)

 TN (xy) ≤
∨
{TN (x), TN (y)}

IN (xy) ≥
∧
{IN (x), IN (y)}

FN (xy) ≤
∨
{FN (x), FN (y)}

 .(4.1)

Let XN be a neutrosophic N -structure over X and let α, β, γ ∈ [−1, 0] be such
that −3 ≤ α+ β + γ ≤ 0. Consider the following sets:

TαN := {x ∈ X | TN (x) ≤ α},

IβN := {x ∈ X | IN (x) ≥ β},
F γN := {x ∈ X | FN (x) ≤ γ}.

(4.2)

The set

XN(α, β, γ) := {x ∈ X | TN (x) ≤ α, IN (x) ≥ β, FN (x) ≤ γ}

is called a (α, β, γ)-level set of XN. Note that

XN(α, β, γ) = TαN ∩ I
β
N ∩ F

γ
N .

Theorem 4.2. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈
[−1, 0] be such that −3 ≤ α+β+γ ≤ 0. If XN is a neutrosophic N -subsemigroup of
X, then the (α, β, γ)-level set of XN is a subsemigroup of X whenever it is nonempty.

Proof. Assume that XN(α, β, γ) 6= ∅ for α, β, γ ∈ [−1, 0] with −3 ≤ α+ β + γ ≤ 0.
Let x, y ∈ XN(α, β, γ). Then TN (x) ≤ α, IN (x) ≥ β, FN (x) ≤ γ, TN (y) ≤ α,
IN (y) ≥ β and FN (y) ≤ γ. Thus it follows from (??) that

TN (xy) ≤
∨
{TN (x), TN (y)} ≤ α,

IN (xy) ≥
∧
{IN (x), IN (y)} ≥ β,

FN (xy) ≤
∨
{FN (x), FN (y)} ≤ γ.

So xy ∈ XN(α, β, γ). Hence XN(α, β, γ) is a subsemigroup of X. �

Theorem 4.3. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈
[−1, 0] be such that −3 ≤ α + β + γ ≤ 0. If TαN , IβN and F γN are subsemigroups of
X, then XN is a neutrosophic N -subsemigroup of X.

Proof. Assume that there are a, b ∈ X such that TN (ab) >
∨
{TN (a), TN (b)}. Then

TN (ab) > tα ≥
∨
{TN (a), TN (b)} for some tα ∈ [−1, 0). Thus a, b ∈ T tαN but

ab /∈ T tαN , which is a contradiction. So

TN (xy) ≤
∨
{TN (x), TN (y)},
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for all x, y ∈ X.

Assume that IN (ab) <
∧
{IN (a), IN (b)}, for some a, b ∈ X. Then a, b ∈ ItβN and

ab /∈ ItβN , for tβ :=
∧
{IN (a), IN (b)}. This is a contradiction. Thus

IN (xy) ≥
∧
{IN (x), IN (y)},

for all x, y ∈ X.
Now, suppose that there exist a, b ∈ X and tγ ∈ [−1, 0) such that

FN (ab) > tγ ≥
∨
{FN (a), FN (b)}.

Then a, b ∈ F tγN and ab /∈ F tγN , which is a contradiction. Thus

FN (xy) ≤
∨
{FN (x), FN (y)},

for all x, y ∈ X. Hence XN is a neutrosophic N -subsemigroup of X. �

Theorem 4.4. The intersection of two neutrosophic N -subsemigroups is also a
neutrosophic N -subsemigroup.

Proof. Let XN := X
(TN ,IN ,FN ) and XM := X

(TM ,IM ,FM ) be neutrosophic N -subsemi-

groups of X. For any x, y ∈ X, we have

TN∩M (xy) =
∨
{TN (xy), TM (xy)}

≤
∨{∨

{TN (x), TN (y)} ,
∨
{TM (x), TM (y)}

}
=
∨{∨

{TN (x), TM (x)} ,
∨
{TN (y), TM (y)}

}
=
∨
{TN∩M (x), TN∩M (y)} ,

IN∩M (xy) =
∧
{IN (xy), IM (xy)}

≥
∧{∧

{IN (x), IN (y)} ,
∧
{IM (x), IM (y)}

}
=
∧{∧

{IN (x), IM (x)} ,
∧
{IN (y), IM (y)}

}
=
∧
{IN∩M (x), IN∩M (y)}

and

FN∩M (xy) =
∨
{FN (xy), FM (xy)}

≤
∨{∨

{FN (x), FN (y)} ,
∨
{FM (x), FM (y)}

}
=
∨{∨

{FN (x), FM (x)} ,
∨
{FN (y), FM (y)}

}
=
∨
{FN∩M (x), FN∩M (y)} ,

for all x, y ∈ X. Then XN∩M is a neutrosophic N -subsemigroup of X. �

Corollary 4.5. If {XNi | i ∈ N} is a family of neutrosophic N -subsemigroups of 
X, then so is X∩Ni .
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Let XN := X
(TN ,IN ,FN ) and XM := X

(TM ,IM ,FM ) be neutrosophic N -structures over

X. The neutrosophic N -product of XN and XM is defined to be a neutrosophic
N -structure over X

XN �XM =
X

TN◦M , IN◦M , FN◦M

=

{
x

TN◦M (x), IN◦M (x), FN◦M (x)
| x ∈ X

}
,

where

TN◦M (x) =

{ ∧
x=yz

{TN (y) ∨ TM (z)} if ∃ y, z ∈ X such that x = yz

0 otherwise,

IN◦M (x) =

{ ∨
x=yz

{IN (y) ∧ IM (z)} if ∃ y, z ∈ X such that x = yz

−1 otherwise

and

FN◦M (x) =

{ ∧
x=yz

{FN (y) ∨ FM (z)} if ∃ y, z ∈ X such that x = yz

0 otherwise.

For any x ∈ X, the element x
TN◦M (x), IN◦M (x), FN◦M (x) is simply denoted by

(XN �XM) (x) := (TN◦M (x), IN◦M (x), FN◦M (x))

for the sake of convenience.

Theorem 4.6. A neutrosophic N -structure XN over X is a neutrosophic N -subsemi-
group of X if and only if XN �XN ⊆ XN.

Proof. Assume that XN is a neutrosophic N -subsemigroup of X and let x ∈ X. If
x 6= yz for all x, y ∈ X, then clearly XN � XN ⊆ XN. Assume that there exist
a, b ∈ X such that x = ab. Then

TN◦N (x) =
∧
x=ab

{TN (a) ∨ TN (b)} ≥
∧
x=ab

TN (ab) = TN (x),

IN◦N (x) =
∨
x=ab

{IN (a) ∧ IN (b)} ≤
∨
x=ab

IN (ab) = IN (x),

and

FN◦N (x) =
∧
x=ab

{FN (a) ∨ FN (b)} ≥
∧
x=ab

FN (ab) = FN (x).

Thus XN �XN ⊆ XN.
Conversely, let XN be any neutrosophicN -structure over X such that XN�XN ⊆

XN. Let x and y be any elements of X and let a = xy. Then

TN (xy) = TN (a) ≤ TN◦N (a) =
∧
a=bc

{TN (b) ∨ TN (c)} ≤ TN (x) ∨ TN (y),

IN (xy) = IN (a) ≥ IN◦N (a) =
∨
a=bc

{IN (b) ∧ IN (c)} ≥ IN (x) ∧ IN (y),
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and

FN (xy) = FN (a) ≤ FN◦N (a) =
∧
a=bc

{FN (b) ∨ FN (c)} ≤ FN (x) ∨ FN (y).

Thus XN is a neutrosophic N -subsemigroup of X. �

Since [−1, 0] is a completely distributive lattice with respect to the usual ordering,
we have the following theorem.

Theorem 4.7. If {XNi | i ∈ N} is a family of neutrosophic N -subsemigroups of X,
then ({XNi | i ∈ N},⊆) forms a complete distributive lattice.

Theorem 4.8. Let X be a semigroup with identity e and let XN := X
(TN ,IN ,FN ) be

a neutrosophic N -structure over X such that

(∀x ∈ X) (XN(e) ≥ XN(x)) ,

that is, TN (e) ≤ TN (x), IN (e) ≥ IN (x) and FN (e) ≤ FN (x) for all x ∈ X. If XN is
a neutrosophic N -subsemigroup of X, then XN is neutrosophic idempotent, that is,
XN �XN = XN.

Proof. For any x ∈ X, we have

TN◦N (x) =
∧
x=yz

{TN (y) ∨ TN (z)} ≤ TN (x) ∨ TN (e) = TN (x),

IN◦N (x) =
∨
x=yz

{IN (y) ∧ IN (z)} ≥ IN (x) ∧ IN (e) = IN (x)

and

FN◦N (x) =
∧
x=yz

{FN (y) ∨ FN (z)} ≤ FN (x) ∨ FN (e) = FN (x).

This shows that XN ⊆ XN�XN. Since XN ⊇ XN�XN, by Theorem ??, we know
that XN is neutrosophic idempotent. �

Definition 4.9. A neutrosophic N -structure XN over X is called an ε-neutrosophic
N -subsemigroup of X, if the following condition is valid:

(∀x, y ∈ X)

 TN (xy) ≤
∨
{TN (x), TN (y), εT }

IN (xy) ≥
∧
{IN (x), IN (y), εI}

FN (xy) ≤
∨
{FN (x), FN (y), εF }

 ,(4.3)

where εT , εI , εF ∈ [−1, 0] such that −3 ≤ εT + εI + εF ≤ 0.

Example 4.10. Let X = {e, a, b, c} be a semigroup with the Cayley table which is
given in Table ??.
Let XN be a neutrosophic N -structure over X which is given as follows:

XN =
{ e

(−0.4,−0.3,−0.25)
,

a

(−0.3,−0.5,−0.25)
,

b

(−0.2,−0.3,−0.2)
,

c

(−0.1,−0.7,−0.1)

}
.

Then XN is an ε-neutrosophic N -subsemigroup of X with ε = (−0.4 −0.2, −0.3).
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Table 1. Cayley table for the binary operation “·”

· e a b c
e e e e e
a e a e a
b e e b b
c e a b c

Proposition 4.11. Let XN be an ε-neutrosophic N -subsemigroup of X. If XN(x) ≤
(εT , εI , εF ), that is, TN (x) ≥ εT , IN (x) ≤ εI and FN (x) ≥ εF , for all x ∈ X, then
XN is a neutrosophic N -subsemigroup of X.

Proof. Straightforward. �

Theorem 4.12. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈
[−1, 0] be such that −3 ≤ α+β+γ ≤ 0. If XN is an ε-neutrosophic N -subsemigroup
of X, then the (α, β, γ)-level set of XN is a subsemigroup of X whenever (α, β, γ) ≤
(εT , εI , εF ), that is, α ≥ εT , β ≤ εI and γ ≥ εF .

Proof. Assume that XN(α, β, γ) 6= ∅ for α, β, γ ∈ [−1, 0] with −3 ≤ α+ β + γ ≤ 0.
Let x, y ∈ XN(α, β, γ). Then TN (x) ≤ α, IN (x) ≥ β, FN (x) ≤ γ, TN (y) ≤ α,
IN (y) ≥ β and FN (y) ≤ γ. Thus it follows from (??) that

TN (xy) ≤
∨
{TN (x), TN (y), εT } ≤

∨
{α, εT } = α,

IN (xy) ≥
∧
{IN (x), IN (y), εI} ≥

∧
{β, εI} = β,

FN (xy) ≤
∨
{FN (x), FN (y), εF } ≤

∨
{γ, εF } = γ.

So xy ∈ XN(α, β, γ). Hence XN(α, β, γ) is a subsemigroup of X. �

Theorem 4.13. Let XN be a neutrosophic N -structure over X and let α, β, γ ∈
[−1, 0] be such that −3 ≤ α+ β + γ ≤ 0. If TαN , IβN and F γN are subsemigroups of X
for all εT , εI , εF ∈ [−1, 0] with −3 ≤ εT + εI + εF ≤ 0 and (α, β, γ) ≤ (εT , εI , εF ),
then XN is an ε-neutrosophic N -subsemigroup of X.

Proof. Assume that there are a, b ∈ X such that

TN (ab) >
∨
{TN (a), TN (b), εT }.

Then TN (ab) > tα ≥
∨
{TN (a), TN (b), εT }, for some tα ∈ [−1, 0). It follows that

a, b ∈ T tαN , ab /∈ T tαN and tα ≥ εT . This is a contradiction, since T tαN is a subsemigroup
of X by hypothesis. Thus

TN (xy) ≤
∨
{TN (x), TN (y), εT },

for all x, y ∈ X. Suppose that IN (ab) <
∧
{IN (a), IN (b), εI}, for some a, b ∈ X. If

we take tβ :=
∧
{IN (a), IN (b), εI}, then a, b ∈ ItβN , ab /∈ ItβN and tβ ≤ εI . This is a

contradiction. So

IN (xy) ≥
∧
{IN (x), IN (y), εI},
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for all x, y ∈ X. Now, suppose that there exist a, b ∈ X and tγ ∈ [−1, 0) such that

FN (ab) > tγ ≥
∨
{FN (a), FN (b), εF }.

Then a, b ∈ F tγN , ab /∈ F tγN and tγ ≥ εF , which is a contradiction. Thus

FN (xy) ≤
∨
{FN (x), FN (y), εF },

for all x, y ∈ X. Hence XN is an ε-neutrosophic N -subsemigroup of X. �

Theorem 4.14. For any εT , εI , εF , δT , δI , δF ∈ [−1, 0] with −3 ≤ εT + εI + εF ≤ 0
and −3 ≤ δT + δI + δF ≤ 0, if XN and XM are an ε-neutrosophic N -subsemigroup
and a δ-neutrosophic N -subsemigroup, respectively, of X, then their intersection
is a ξ-neutrosophic N -subsemigroup of X for ξ := ε ∧ δ, that is, (ξT , ξI , ξF ) =
(εT ∨ δT , εI ∧ δI , εF ∨ δF ).

Proof. For any x, y ∈ X, we have

TN∩M (xy) =
∨
{TN (xy), TM (xy)}

≤
∨{∨

{TN (x), TN (y), εT },
∨
{TM (x), TM (y), δT }

}
≤
∨{∨

{TN (x), TN (y), ξT },
∨
{TM (x), TM (y), ξT }

}
=
∨{∨

{TN (x), TM (x), ξT },
∨
{TN (y), TM (y), ξT }

}
=
∨{∨

{TN (x), TM (x)},
∨
{TN (y), TM (y)}, ξT

}
=
∨
{TN∩M (x), TN∩M (y), ξT } ,

IN∩M (xy) =
∧
{IN (xy), IM (xy)}

≥
∧{∧

{IN (x), IN (y), εI},
∧
{IM (x), IM (y), δI}

}
≥
∧{∧

{IN (x), IN (y), ξI},
∧
{IM (x), IM (y), ξI}

}
=
∧{∧

{IN (x), IM (x), ξI},
∧
{IN (y), IM (y), ξI}

}
=
∧{∧

{IN (x), IM (x)},
∧
{IN (y), IM (y)}, ξI

}
=
∧
{IN∩M (x), IN∩M (y), ξI} ,
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and

FN∩M (xy) =
∨
{FN (xy), FM (xy)}

≤
∨{∨

{FN (x), FN (y), εF },
∨
{FM (x), FM (y), δF }

}
≤
∨{∨

{FN (x), FN (y), ξF },
∨
{FM (x), FM (y), ξF }

}
=
∨{∨

{FN (x), FM (x), ξF },
∨
{FN (y), FM (y), ξF }

}
=
∨{∨

{FN (x), FM (x)},
∨
{FN (y), FM (y)}, ξF

}
=
∨
{FN∩M (x), FN∩M (y), ξF } .

Then XN∩M is a ξ-neutrosophic N -subsemigroup of X. �

Theorem 4.15. Let XN be an ε-neutrosophic N -subsemigroup of X. If

κ := (κT , κI , κF ) =

( ∨
x∈X
{TN (x)},

∧
x∈X
{IN (x)},

∨
x∈X
{FN (x)}

)
,

then the set

Ω := {x ∈ X | TN (x) ≤ κT ∨ εT , IN (x) ≥ κI ∧ εI , FN (x) ≤ κF ∨ εF }

is a subsemigroup of X.

Proof. Let x, y ∈ Ω for any x, y ∈ X. Then

TN (x) ≤ κT ∨ εT =
∨
x∈X
{TN (x)} ∨ εT ,

IN (x) ≥ κI ∧ εI =
∧
x∈X
{IN (x)} ∧ εI ,

FN (x) ≤ κF ∨ εF =
∨
x∈X
{FN (x)} ∨ εF ,

TN (y) ≤ κT ∨ εT =
∨
y∈X
{TN (y)} ∨ εT ,

IN (y) ≥ κI ∧ εI =
∧
y∈X
{IN (y)} ∧ εI ,

FN (y) ≤ κF ∨ εF =
∨
y∈X
{FN (y)} ∨ εF .

Thus it follows from (??) that

TN (xy) ≤
∨
{TN (x), TN (y), εT }

≤
∨
{κT ∨ εT , κT ∨ εT , εT }

= κT ∨ εT ,
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IN (xy) ≥
∧
{IN (x), IN (y), εI}

≥
∧
{κI ∧ εI , κI ∧ εI , εI}

= κI ∧ εI
and

FN (xy) ≤
∨
{FN (x), FN (y), εF }

≤
∨
{κF ∨ εF , κF ∨ εF , εF }

= κF ∨ εF .

So xy ∈ Ω. Hence Ω is a subsemigroup of X. �

For a map f : X → Y of semigroups and a neutrosophic N -structure XN :=
Y

(TN ,IN ,FN ) over Y and ε = (εT , εI , εF ) with −3 ≤ εT + εI + εF ≤ 0, define a

neutrosophic N -structure Xε
N := X

(T εN ,I
ε
N ,F

ε
N ) over X by:

T εN : X → [−1, 0], x 7→
∨
{TN (f(x)), εT } ,

F εN : X → [−1, 0], x 7→
∧
{IN (f(x)), εI} ,

F εN : X → [−1, 0], x 7→
∨
{FN (f(x)), εF } .

Theorem 4.16. Let f : X → Y be a homomorphism of semigroups. If a neutro-
sophic N -structure XN := Y

(TN ,IN ,FN ) over Y is an ε-neutrosophic N -subsemigroup

of Y , then Xε
N := X

(T εN ,I
ε
N ,F

ε
N ) is an ε-neutrosophic N -subsemigroup of X.

Proof. For any x, y ∈ X, we have

T εN (xy) =
∨
{TN (f(xy)), εT }

=
∨
{TN (f(x)f(y)), εT }

≤
∨{∨

{TN (f(x)), TN (f(y)), εT }, εT
}

=
∨{∨

{TN (f(x)), εT },
∨
{TN (f(y)), εT }, εT

}
=
∨
{T εN (x), T εN (y), εT } ,

IεN (xy) =
∧
{IN (f(xy)), εI}

=
∧
{IN (f(x)f(y)), εI}

≥
∧{∧

{IN (f(x)), IN (f(y)), εI}, εI
}

=
∧{∧

{IN (f(x)), εI},
∧
{IN (f(y)), εI}, εI

}
=
∧
{IεN (x), IεN (y), εI} ,

Florentin Smarandache (author and editor) Collected Papers, XIII

364



and

F εN (xy) =
∨
{FN (f(xy)), εF }

=
∨
{FN (f(x)f(y)), εF }

≤
∨{∨

{FN (f(x)), FN (f(y)), εF }, εF
}

=
∨{∨

{FN (f(x)), εF },
∨
{FN (f(y)), εF }, εF

}
=
∨
{F εN (x), F εN (y), εF } .

Then Xε
N := X

(T εN ,I
ε
N ,F

ε
N ) is an ε-neutrosophic N -subsemigroup of X. �

Let f : X → Y be a function of sets. If YM := Y
(TM ,IM ,FM ) is a neutrosophic N -

structures over Y , then the preimage of YM under f is defined to be a neutrosophic
N -structures

f−1 (YM) =
X

(f−1(TM ), f−1(IM ), f−1(FM ))

overX, where f−1(TM )(x) = TM (f(x)), f−1(IM )(x) = IM (f(x)) and f−1(FM )(x) =
FM (f(x)) for all x ∈ X.

Theorem 4.17. Let f : X → Y be a homomorphism of semigroups. If YM :=
Y

(TM ,IM ,FM ) is a neutrosophic N -subsemigroup of Y , then the preimage of YM under

f is a neutrosophic N -subsemigroup of X.

Proof. Let

f−1 (YM) =
X

(f−1(TM ), f−1(IM ), f−1(FM ))

be the preimage of YM under f . For any x, y ∈ X, we have

f−1(TM )(xy) = TM (f(xy)) = TM (f(x)f(y))

≤
∨
{TM (f(x)), TM (f(y))}

=
∨{

f−1(TM )(x), f−1(TM )(y)
}
,

f−1(IM )(xy) = IM (f(xy)) = IM (f(x)f(y))

≥
∧
{IM (f(x)), IM (f(y))}

=
∧{

f−1(IM )(x), f−1(IM )(y)
}

and

f−1(FM )(xy) = FM (f(xy)) = FM (f(x)f(y))

≤
∨
{FM (f(x)), FM (f(y))}

=
∨{

f−1(FM )(x), f−1(FM )(y)
}
.

Then f−1 (YM) is a neutrosophic N -subsemigroup of X. �
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Let f : X → Y be an onto function of sets. If XN := X
(TN ,IN ,FN ) is a neutrosophic

N -structures over X, then the image of XN under f is defined to be a neutrosophic
N -structures

f (XN) =
Y

(f(TN ), f(IN ), f(FN ))

over Y , where

f(TN )(y) =
∧

x∈f−1(y)

TN (x),

f(IN )(y) =
∨

x∈f−1(y)

IN (x),

f(FN )(y) =
∧

x∈f−1(y)

FN (x).

Theorem 4.18. For an onto homomorphism f : X → Y of semigroups, let XN :=
X

(TN ,IN ,FN ) be a neutrosophic N -structure over X such that

(4.4) (∀T ⊆ X) (∃x0 ∈ T )


TN (x0) =

∧
z∈T

TN (z)

IN (x0) =
∨
z∈T

IN (z)

FN (x0) =
∧
z∈T

FN (z)

 .

If XN is a neutrosophic N -subsemigroup of X, then the image of XN under f is a
neutrosophic N -subsemigroup of Y .

Proof. Let

f (XN) =
Y

(f(TN ), f(IN ), f(FN ))

be the image of XN under f . Let a, b ∈ Y . Then f−1(a) 6= ∅ and f−1(a) 6= ∅ in
X, which imply from (??) that there are xa ∈ f−1(a) and xb ∈ f−1(b) such that

TN (xa) =
∧

z∈f−1(a)

TN (z),=
∨

z∈f−1(a)

IN (z), FN (xa) =
∧

z∈f−1(a)

FN (z),

TN (xb) =
∧

w∈f−1(b)

TN (w),=
∨

w∈f−1(b)

IN (w), FN (xb) =
∧

w∈f−1(b)

FN (w).

Thus

f(TN )(ab) =
∧

x∈f−1(ab)

TN (x) ≤ TN (xaxb)

≤
∨
{TN (xa), TN (xb)}

=
∨ ∧

z∈f−1(a)

TN (z),
∧

w∈f−1(b)

TN (w)


=
∨
{f(TN )(a), f(TN )(b)} ,
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f(IN )(ab) =
∨

x∈f−1(ab)

IN (x) ≥ IN (xaxb)

≥
∧
{IN (xa), IN (xb)}

=
∧ ∨

z∈f−1(a)

IN (z),
∨

w∈f−1(b)

IN (w)


=
∧
{f(IN )(a), f(IN )(b)} ,

and

f(FN )(ab) =
∧

x∈f−1(ab)

FN (x) ≤ FN (xaxb)

≤
∨
{FN (xa), FN (xb)}

=
∨ ∧

z∈f−1(a)

FN (z),
∧

w∈f−1(b)

FN (w)


=
∨
{f(FN )(a), f(FN )(b)} .

So f (XN) is a neutrosophic N -subsemigroup of Y . �

Conclusions

In order to deal with the negative meaning of information, Jun et al. [?] have
introduced a new function which is called negative-valued function, and constructed
N -structures. The concept of neutrosophic set (NS) has been developed by Smaran-
dache in [?] and [?] as a more general platform which extends the concepts of the clas-
sic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy
set. In this article, we have introduced the notion of neutrosophic N -structure and
applied it to semigroup. We have introduced the notion of neutrosophic N -subsemi-
group and investigated several properties. We have provided conditions for neutro-
sophic N -structure to be neutrosophic N -subsemigroup. We have defined neutro-
sophicN -product, and gave characterization of neutrosophicN -subsemigroup by us-
ing neutrosophic N -product. We also have introduced ε-neutrosophic subsemigroup,
and investigated relations between neutrosophic subsemigroup and ε-neutrosophic
subsemigroup. We have shown that the homomorphic preimage of neutrosophic N -
subsemigroup is a neutrosophic N -subsemigroup, and the onto homomorphic image
of neutrosophic N -subsemigroup is a neutrosophic N -subsemigroup.
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On Neutrosophic Extended Triplet LA-hypergroups 
and Strong Pure LA-semihypergroups 

Minghao Hu, Floren tin Smarandache, Xiaohong Zhang

Abstract: We introduce the notions of neutrosophic extended triplet LA-semihypergroup, 

neutrosophic extended triplet LA-hypergroup, which can reflect some symmetry of hyperoperation 

and discuss the relationships among them and regular LA-semihypergroups, LA-hypergroups, 

regular LA-hypergroups. In particular, we introduce the notion of strong pure neutrosophic extended 

triplet LA-semihypergroup, get some special properties of it and prove the construction theorem 

about it under the condition of asymmetry. The examples in this paper are all from Python programs. 

Keywords: LA-semihypergroup; LA-hypergroup; neutrosophic extended triplet LA-semihypergroup; 

neutrosophic extended triplet LA-hypergroup 

1. Introduction and Preliminaries

Left almost semigroup (abbreviated as LA-semigroup, some researchers also call it Abel 

Grassmann's groupoid), a non-associative and noncommutative algebraic structure, was first proposed 

by Kazim and Naseeruddin in Reference [l]. Hyperstructure theory was first introduced by Marty 

in Reference [2]. In the following decades and nowadays, various hyperstructures are widely 

studied and applied [3-6]. In Reference [7], Hila and Dine extended the concept of LA-semigroup 

to LA-semihypergroup and investigated several properties of LA-semihypergroups. Since then, 

many researchers have been done a lot of studies in this field [8-13]. 

In recent years, as an application of idea of neutrosophic set, the new notion of neutrosophic 

triplet group (NTG) was firstly introduced by F. Smarandache and M. Ali in Reference [14]. Soon after, 

M. Gulistan, S. Nawaz and N. Hassan applied the idea of NTG to LA-semihypergroup, proposed the

concept of NTG-LA-semihypergroup and got some interesting results in Reference [15]. Meanwhile,

F. Smarandache extended the concept of NTG to neutrosophic triplet extended group (NETG) in

Reference [16]. Later, some research articles in this field are published. F. Smarandache, X.H. Zhang,

X.G. An and Q.Q. Hu investigated properties and structures of NETG in Reference [17]; T.G. Jafyeola

and F. Smarandache obtained some conclusions on neutrosophic triplet groups and discussed their

applications in Reference [18]; The new concept of NET-Abel-Gassmann's Groupoid was introduced

and the relationships of NETGs and regular semigroups were studied in Reference [19]; X.H. Zhang

and X.Y. Wu prove that the construction theorem ofNETG in Reference [20]; The concept of generalized

neutrosophic extended group were proposed by Y.C. Ma and the relationships ofNETGs and generalized

groups were studied in References [21,22]. In particular, the notions of NET-semihypergroup and

NET-hypergroup were introduced by X.H. Zhang, F. Smarandache and Y.C. Ma and the decomposition

theorem of PWC-NET-semihypergroup was proved in Reference [23]. For the study of some related

algebraic systems, please refer to Reference [24-26].

Minghao Hu, Florentin Smarandache, Xiaohong Zhang (2020). On Neutrosophic Extended Triplet 
LA-hypergroups and Strong Pure LA-semihypergroups. Symmetry 12, 163; DOI: 10.3390/
sym12010163
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In this study, we apply the concept of NETG to LA-semihypergroup and introduce the new notions 
of NET-LA-semihypergroup, NET-LA-hypergroup, SPNET-LA-semihypergroup; Further, we discuss 
their properties, relations and so forth. 

First of all, recall some conclusions and definitions on LA-semihypergroups. 

Definition 1. [7] We say that a mapping 

o : H x H-, P*(H)

is a binary hyperoperation, if H is a nonempty set, P(H) is power set of H and P*(H) = P(H)fcP. 

Definition 2. [7] (H, o) is a binary hypergroupoid, if H is a nonempty set and o is a binary hyperoperation. 
In addition, we write 

XoY= U (aob),Xo a  =Xo{a),aoY= {a)oY, 
aEX,bEY 

where aE H, X <:: H, Y <::H and X * cp, Y -:t=cp. 

Definition 3. [7] A binary hypergroupoid (H, o) is an LA-semihypergroup, if 

(a ob) o c =(cob) o a 

for all a, b, c E H, that is 

u (soc)= u (to a).
sE(aob) tE(cob) 

By Equation (1), we know that every LA-semihypergroup (H, o) satisfies 

(a ob) o (co d)= (a o c) o (bo d) 

for all a, b, c, d EH. 

(1) 

(2) 

(3) 

Note that, the Equations (1) and (3) are all set equations. If we replace all the elements in the 
equations (1) and (3) with nonempty subsets of H, these equations still hold. 

Definition 4. [7] (T, o) is a sub LA-semihypergroup of (H, o), if the following conditions hold: 

(a) T <:: H, T * cp;

(b) m o n <:: T for all m, n E T;

(c) (H, o) is an LA-semihypergroup.

Definition 5. [8] Suppose (H, o) is an LA-semihypergroup. An element a EH is regular if there is an element t 

EH such that 
a Ea o to a. 

Furthermore, (H, o) is a regular LA-semihypergroup if each element of H is regular. 

Definition 6. [7] Suppose (H, o) is an LA-semihypergroup. (H, o) is an LA-hypergroup if it satisfies 

to H=Ho t=H 

for all t EH. 

Definition 7. [8] Suppose (H, o) is an LA-semihypergroup. An element e EH is 

(a) a left identity, if a Ee o a for each a EH; 

(b) a right identity, if a Ea o e for each a EH;
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(c) an identity, if a E (e o a) n (a o e) for each a EH;
(d) a pure left identity, if a = e o a for each a EH;
(e) a pure right identity, if a = a o e for each a EH;
(f) a pure identity, if a = (e o a) n (a o e) for each a E H;

(g) a scalar identity, if a = e o a = a o e for each a E H.

In addition, we say that x EH is an inverse of a EH if x satisfies

e E (a o x) n (x o a), 

where e is an identity of (H, o). 

Definition 8. (H, o) is a regular LA-hyper group, if it satisfies the following conditions: 

(a) (H, o) is an LA-hypergroup;
(b) There exists e EH such that e is identity of (H, o) ;
(c) Every element a EH has at least one inverse.

Definition 9. [16] A nonempty set M is said to be a neutrosophic extended triplet set if to any given a EM, 
there are s E M and t E M, in such a way that 

ao s=so a=a 

a o t =to a= s, 

(4) 

(5) 

where o is a binary operation on M, s is an extend neutral of'a', t is an opposite of 'a' about s, (a, s, t) is a 
neutrosophic extend triplet. 

Definition 10. [14,16 I A semihypergroup (H, o) is said to be an NET-semihypergroup if to any given a E H, 
there are s E H and t E H, in such a way that 

a E (s o a) n (a o s), 

s E (to a) n (a o t). 

(6) 

(7) 

In addition,for a certain a EH, we say that (a, s, t) is a hyper-neutrosophic-triplet and use Oneut(a) for the 
set of all s that satisfy Formula (6) and (7). For a certain s E llneut(a), we use Oanti(a), for the set of all t that 
satisfy Formula (7). 

2. Neutrosophic Extended Triplet LA-Semihypergroups and Neutrosophic Extended Triplet
LA-Hypergroups

Definition 11. An LA-semihypergroup (L, ,) is said to be 

(a) a left neutrosophic extended triplet LA-semihypergroup (LNET-LA-semihypergroup) if to any given

a E L, there are p E L and q EL, in such a way that

p E q * a. 

(8) 

(9) 

Furthermore, for a certain a E L, p, q and (a, p, q) are called left neutral of a, left opposite of a and left 
hyper-neutrosophic-triplet respectively. Oineut(a) is used to represent the set of all p that satisfy Formula (8), 
(9) and for a certain p E 01neut(a), { lianti(a)r is used to represent the set of all q that satisfy Formula (9 ).

(b) a right neutrosophic extended triplet LA-semihypergroup (RNET-LA-semihypergroup), if to any given
a E L, there are s E L and t E L, in such a way that
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s Ea* t. 

(10) 

(11) 

Furthermore, for a certain a E H, (a, s, t) is called right-hyper-neutrosophic-triplet. llm
eu

t(a) is used to 
represent the set of all s that satisfy Formula (10 ), (11) and for a certain s E {} m

eu
t(a), {) ra

n
ti(a), is used to represent

the set of all t that satisfy Formula (11). 

(c) a neutrosophic extended triplet LA-semihypergroup (NET-LA-semihypergroup), if to any given a EL, there
are m E L and n E L, in such a way that

a E (m * a) n (a* m) (12) 

(13) 

Furthermore,Jor a certain a EL, (a, m, n) is called a hyper-neutrosophic-triplet, O
neu

t(a) is used to represent 
the set of all m that satisfy Formula (12), (13) and for a certain m E ll

neu
t(a), Oa

n
ti(a)m is used to represent the set

of all n that satisfy Formula (13). 

Example 1. Put L = (0, 1, 2}, the binary hypergroupoid (L, *) is as follows (see Table 1). 

Table 1. The binary hypergroupoid (L, *). 

* 0 1 2 

0 0 0 0 
1 0 1 0 
2 0 0 {O, 2} 

By Python program 1, (L, *) is an LA-semihypergroup (please see Figure 1). 

Python program 1 Verification of LA-semihypergroup 1 

1: T = [ [[O],[O],[O]], [[OJ, [1], [O]], [[OJ, [O], [0,2]] ]
2: count= 0 
3: for x in range(3): 
4: for yin range(3): 
5: for z in range(3): 
6: Tl = T[x][y] 
7: T2 = set() 
8: kl= len(Tl)S3 = set(T[neut_t][tl) 
9: for m in range(kl) 
10: T2 = set(T[Tl[m]][z]).union(T2) 
11: T3 = T[z][y] 
12: T4 = set() 
13: k2 = len(T3) 
14: for n in range(k2): 
15: T4 = set(T[T3[n ]][x]).union(T4) 
16: if T2 = = T4:Ifif 
17: count+= 1 
18: while count = = 3**3: 
19: print('{} is an LA-semihypergroup'.format(T)) 
20: break 
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Run: program 1 

C: \Users\ Think\ Anaconda3 \ python.cxc C:/U scrs/Think/PycharmProjccts/1/programl. py 

[ [[0],[0],[0]], [[0], [1 ], [0]], [[0], [0], [0,2]] ] is an LA-scmihypcrgroup. 

Process finished with exit code 0 

Furthermore, we get 

Figure 1. The result of Python program 1. 

OE (0 * 0) n (0 * 0), OE (0 * 0) n (0 * 0) 

OE (0 * 0) n (0 * 0), OE (1 * 0) n (0 * 1) 

o E (0 * 0) n (0 * 0), o E (2 * 0) n (0 * 2)

1 E (1 *1) n (1 *1), 1 E (1 *1) n (1 *1) 

2 E (2 * 2) n (2 * 2), 2 E (2 * 2) n (2 * 2). 

By Definiti on 11, (0, 0, 0), (0, 0, 1),(0, 0, 2) (1, 1, 1), (2, 2, 2) are all hyper neutrosophic-triplets and (L, *) 
is an NET-LA-semihypergroup. These results can also be verified by Python program 2 (please see Figure 2). 

Python program 2 Verification of NET-LA-semihypergroup 1 

1: T = [ [[O],[O],[O]], [[OJ, [1], [O]], [[OJ, [O], [0,2]] ] 
2: test = [[] 
3: fort in range(3): 
4: for neut_t in range(3): 
5: for anti_t in range(3): 
6: S1 = set(T[t][neut_tl) 
7: S2 = set(T[tl[anti_tl) 
8: S3 = set(T[neut_t][tl) 
9: S4 = set(T[anti_tl[tl) 
10: S5 = set(list([t])) 
11: S6 = set(list([neut_t])) 
12: if S5.issubset(S1 & S3) and S6.issubset(S2 & S4): 
13: test.append([t, neut_t, anti_t]) 
14: test2 = test 
15: testl = set([test2[i][O] for i in range(len(test2))]) 
16: if testl == set([x for x in range(3)]): 
17: print('{O} is an Net-LA-semihypergroup and hyper neutrosophic-triplet are {l}'.format(T, test2)) 

Run: programm 2 

C: \ U scrs \Think\ Anaconda3 \ python.cxc C:/Uscrs/Think/PycharmProjccts/1/pro gram2.. py 

[ [[0],[0],[0]], [[0], [1 ], [0]], [[0], [0], [0,2]] ] is an Nct-LA-scmihypcrgroup and hyper ncutrosophic­

tri plct arc [[0,0,0], [0,0, 1 ], [0,0,2.], [1, 1, 1 ], [2,2,2]] 

Process finished with e xit code 0 

Figure 2. The result of Python program 2. 
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Example 2. Suppose R is the set of real numbers, the binary hypergroupoid (R, *) is as follows. 

for all x, y E R , where (x, y) is the open interval. 
Whenz<x<y, 

X < y,

y < X,

X = y.

(Z*Y)*X= u (t*X)= u (t*X)=[ u (hx)]u[u(hx)]u[ u (hx)]
tE(z•y) tE(z,y) tE(z,x) t=x tE(x,y) 

= [ u (t,x)]u({x})u[ u (x,t)] = (z,x)u({x}) u (x,y) = (z , y) = (x* y) * z. 
tE(z,x) tE(x,y) 

In the same way, we have 
(x * y) * z = (z * y) * x,

for all x, y, z ER. Hence (R, * )  is an LA-semihypergroup. On the other hand, Since 

x E (x * x) n (x * x), x E (x * x) n (x * x), 

for any given x ER, x E llneut(x)
, x E llanti(x)x By Definition 11, (R, *) is an NET-LA-semihypergroup.

Example 3. Put L = (0, 1, 2}, the binary hypergroupoid (L, *) is as follows (see Table 2). 

* 

0 
1 
2 

Table 2. The binary hypergroupoid (L, *). 

0 

0 
0 
0 

1 

0 
0 
0 

By Python program, (L, *) is an LA-semihypergroup . In addition, we get 

2 

0 
0 

(0, 1) 

This shows that llneut(l) = ¢. By Definition 11, (L, ,) is not an NET-LA-semihypergroup. 

Remark 1. Every NET-LA-semihypergroup is an LA-semihypergroup but not vice versa. 

Example 4. Put L = (0, 11 21 3}, the binary hypergroupoid (L1 ,) is as follows (see Table 3). 

Table 3. The binary hypergroupoid (L, *). 

* 0 1 2 3 

0 0 0 0 {0,1,2,3) 
1 0 0 0 {0,1,2,3) 
2 0 0 {0,1) {2,3) 
3 {1,2,3) {0,1,2,3) {2,3) {0,3) 

By Python program 3 and Python program 4, (L1 ,) is both an LA-semihypergroup(please see Figure 3) and 
an NET-LA-semihypergroup(please see Figure 4). In addition1 
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(3, 0, 1), (3, 0, 3), (3, 1, 0), (3, 1, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2), (3, 3, 0), (3, 3, 1), (3, 3, 2), (3, 3, 3) are all hyper 
neutrosophic-triplets(please see Figure 4). Let M = { 0, 1, 2} c L, then (M, *) is a sub LA-semihypergroup of 

(L, * ). From Example 3, (M, *) is not an NET-LA-semihypergroup. 

Python program 3 Verification of LA-semihypergroup 2 

1: T = [ [[OJ,[0],[0],[0,1,2,3J], [[OJ, [OJ, [O],[O ,l,2,3]], [[OJ, [OJ, [O,l],[2,3JJ, [[l,2,3],[0,1,2,3J,[2,3],[0,3JJ J 
2: count= 0 
3 : for x in range(4): 
4: for yin range(4): 
5: for z in range(4): 
6: Tl = T[x][yJ 
7: T2 = set() 
8: kl= len(Tl)S3 = set(T[neut_t][t]) 
9: for m in range(kl) 
10: T2 = set(T[Tl[m]][z]).union(T2) 
11: T3 = T[z][yJ 
12: T4 = set() 
13: k2 = len(T3) 
14: for n in range(k2): 
15: T4 = set(T[T3[n]][x]).union(T4) 
16: if T2 = = T4:Ifif 
17: count+= 1 
18: while count== 4**3 : 
19: print('( T,*) is an LA-semihypergroup.') 
20: break 

Run: program 3 

C: \Users\ Think\ Anaconda3 \ python.exe C:/U sers/Think/PycharrnProjects/l/prograrn3. py 

(T, *) is an LA-sernihypergroup. 

Process finished with exit code 0 

Figure 3. The result of Python program 3. 

Python program 4 Verification of NET-LA-semihypergroup 2 

1: T = [ [[OJ,[OJ,[0],[0,1,2,3J], [[OJ, [OJ, [0],[0,1,2,3]], [[OJ, [OJ, [O,l],[2,3]], [[1,2,3],[0,1,2,3J,[2,3],[0,3JJ J 
2: test = [[J 
3 : fort in range(4): 
4: for neut_t in range(4): 
5: for antU in range(4): 
6: S1 = set(T[tJ[neut_t]) 
7: S2 = set(T[tJ[antU]) 
8: S3 = set(T[neut_t](t]) 
9: S4 = set(T[antU][t]) 
10: S5 = set(list([t])) 
11: S6 = set(list([neuU])) 
12: if S5.issubset(Sl & S3) and S6.issubset(S2 & S4): 
13: test.append([t, neuU, antU]) 
14: test2 = test 
15: testl = set([test2[i][OJ for i in range(len(test2))]) 
16: if testl == set([x for x in range(3)]): 
17: print('(T,*) is an NET-LA-semihypergroup and hyper neutrosophic-triplet are {}' .format(test2). 
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Run: program 4 

C: \Users\ Think\ Anaconda 3 \ python.exe C:/Users/Think/PycharmProject s/l/proram4. py 

(T,*) is an NET-LA-semihypergroup and hyper neutrosopic-triplet are [[0,0,0], [0,0,1), [0,0,2), 

[0,2,3), [1,3,3), [2,3,3], [3,0, 1 ], [3,0,3), [3, 1,0), [3, 1, 1 ], [3,2,0), [3,2, 1 ], [3,2,2), [3,3,0), [3,3, 1 ], 

[3,3,2), [3,3,3)) 

Process finished with exit code 0 

Figure 4. The result of Python program 4. 

Remark 2. From Example 4, we know that for a certain t in an NET-LA-semihypergroup, I Oneut(x) I may 
be greater than or equal to one and for a certain p E Oneut(x), I llanti(x) I may be greater than or equal to one.
According to the results of Example 4, we have 

r 

Oneut(O) = {0, 1, 2}, Oanti(O)
o 

= {0, 1, 2}, Oanti(O)
i 

={3}, Oanti(O)
i 

= {3} 

Oneut(t)= {3}, Oanti(t)
3 

= {3}; Oneut(z)= {3}, Oanti(2)
3 

= {3} 

Oneut(3) = {0, 1, 2, 3}, Oanti(3)
o 

={3}, Oanti(3)
1 

= {0, 1}, {lanti(3)
z 

= {0, 1, 2}; Oanti(3)
3 

= (0, 1, 2, 3} 

Definition 12. (L, ,) is said to be an NET-LA-hypergroup if it is both an LA-hypergroup (see Definition 6) and 
an NET-LA-semihypergroup. 

Proposition 1. Every LA-hypergroup is a regular LA-semihypergroup. 

Proof. Since (L, *) is an  LA-hypergroup, to every t EL, t* L = L* t = L. Thus 

By Definitio n 5, (L, *) is a regular LA-semihypergroup. □ 

Example 5. Put L = (0, 1, 2}, the binary hypergroupoid (L, *) is as follows (see Table 4). 

Table 4. The binary hypergroupoid (L, *). 

* 0 1 

0 0 0 

1 0 1 

2 0 {O, 1} 

By Python program, (L, *) is an LA-semihypergroup. Furthermore, we have 

0 E O * 0 * 0 ,  1 E 1 * 2 * 1, 2 E 2 * 2 * 2

By Definition 5, (L, *) is a regular LA-semihypergroup. But 

By Definition 6, (L, *) is not an LA-hypergroup. 

2 

{O, 1} 

{2} 

Remark 3. From Example 5, a regular LA-semihypergroup is not necessarily an LA-hypergroup. 

Proposition 2. Every NET-LA-semihypergroup is a regular LA-semihypergroup. 
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 Proof. Suppose (L, *) is an NET-LA-semihypergroup, then to any given a EL, there are p E {lneut(a) 
i;;; L 

and q E Oanti(a)p i;;; L such that

Hence 
a E (p * a) and p E (a* q) 

that is 
a E p * a E ( a * q) * a 

By Definition 5, (L, *) is a regular LA-semihypergroup. o 

Example 6. Put L = {0, 1, 2}, the binary hypergroupoid (L, *) is as follows (see Table 5) . 

Table 5. The binary hypergroupoid (L, *). 

* 0 1 2 

0 0 0 0 

1 0 2 2 

0 {0,1,2) {0,1,2) 

By Python programI (LI *) is an LA-semihypergroup. FurthermoreI we have 

0 E 0 * 0 * 0 I 1 E 1 * 2 * 11 2 E 2 * 1 * 2

By Definition 5
1 

(L
1 *) is a regular LA-semihypergroup. But 

1 (f. (0 * 1) n (1 * 0)1 1 (f. (1 * 1) n (1 * 1), 1 (f. (2 * 1) n (1 * 2) 

This shows that Oneut(t) 
= cp. By Definition 111 (L1 *) is not an NET-LA-semihypergroup. 

Remark 4. From Example 6
1 a regular LA-semihypergroup is not necessarily an NET-LA-semihypergroup. 

Example 7. Put L = {0, 11 2}, the binary hypergroupoid (L1 *) is as follows (see Table 6) . 

Table 6. The binary hypergroupoid (L, *). 

* 0 1 2 

0 0 0 0 

1 0 1 0 

2 0 0 {O ,2) 

By Python programI (LI *) is an LA-semihypergroup. FurthermoreI we get 

(0, 0/ 0)/ (0, 0, 1), (0/ 0/ 2)/ (11 11 1), (2/ 2/ 2) 

are all hyper neuromorphic-triplets. By Definition 111 (L1 * )  is an NET-LA-semihypergroup. But 

By Definition 6
1 

(L
1 
*) is not an LA-hypergroup. 
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Example 8. Put L = {0, 1, 2}, the binary hypergroupoid (L, *) is as follows (see Table 7). 

Table 7. The binary hypergroupoid (L, *). 

* 0 1 

0 0 {0,1,2} 

1 0 (0 ,2) 
2 {0,1,2) (0 ,2) 

By Python program, (L, *) is an LA-semi hypergroup. Furthermore, we get 

0 * L = L * 0 = L, 1 * L = L * 1= L, 2 * L = L * 2 = L 

By Definition 6, (L, *) is an LA-hypergroup. But 

2 

{0,1,2) 

{1 ,2) 

{0,1,2) 

1 � (O *1) n (1 * 0), 1 � (1 *1) n (1 *1), 1 � (2 *1) n (1 * 2) 

This shows that Oneut(l) 
= cp. By Definition 111 (L1 *) is not an NET-LA-semihypergroup. 

Proposition 3. Every regular LA-hypergroup is an NET-LA-hypergroup. 

Example 9. Put L = {01 11 2}1 the binary hypergroupoid (L1 *) is as follows (see Table 8). 

Table 8. The binary hypergroupoid (L, *). 

* 0 1 2 

0 {1,2) {0,1,2) {0,1,2) 

1 {0,1,2) {0,2} {0,2} 
2 {0,1} {1,2} {0,1} 

By Python program, (L, *) is an LA-semihypergroup. Furthermore, we get 

(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (1, 0/ 0), (1, 0, 1), (2,1,0), (2, 1, 2) 

are all hyper neutrosophic-triplets, and 

0 * L = L * 0 = L, 1 * L = L * 1 = L, 2 * L = L * 2 = L 

by Definition 12, (L, *) is an NET-LA-hypergroup. But 

0 � (0 * 0) n (0 * 0), 1 � (1 * 1) n (1 * 1), 2 � (2 * 2) n (2 * 2) 

This shows that the identity of ( L, * )  does not exist. By Definition 81 (L, * ) is not a regular LA-hypergroup. 
Based on the above, the relationships of LA-semihypergroup, regular LA-semihypergroup, 

LA-hypergroup, NET-LA-semihypergroup, NET-LA-hypergroup and regular LA-hypergroup, can be 

represented by the flowing Figure 5. 
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LA-semihypergroup 

Figure 5. The relationships of various LA-semihypergroups. 

Proposition 4. An NET-LA-semihypergroup (L, *) is both an LNET-LA-semihypergroup and a 

RNET-LA-semihypergroup. 

Proof. Since (L, *) is an NET-LA-semihypergroup , to any given a E L, there are s E Dneut(a) and 

t E Danti(a)
5 

such that 

a E (s * a) n (a* s) ands E (t * a) n (a* t). 

Hence a E (S* a) ands E (ha), This shows 

S E D1neut(a) E D1anti(a)
5 

• 

Thus (L, *) is an LNET-LA-semihypergroup. In the same way, we can prove that (L, *) is also a 

RNET-LA-semihypergroup. □ 

Example 10. Put L = {O, 1, 2lt the binary hypergroupoid (L, *) is as follows (see Table 9). 

Table 9. The binary hypergroupoid (L, *). 

* 0 1 2 

0 0 0 0 

1 0 2 2 

2 0 {1,2) {1,2) 

By Python program, (L, *) is an LA-semihypergroup a nd 

are all left-hyper neutrosophic-triplets; 

are all right-hyper neutrosophic-triplets; 

are all hyper neutrosophic-triplets. By Definition 11, (L, *) is an LNET-LA-semihypergroup but it is neither a 

RNET-LA-semihypergroup nor an NET-LA-semihypergroup. 
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Example 11. Put L = {0, 1, 2}, the binary hypergroupoid (L, *) is as follows (see Table 10). 

Table 10. The binary hypergroupoid (L, *). 

* 0 1 2 

0 0 {O, 1, 2} {O, 1, 2} 
1 2 2 { 1, 2} 

{O, 1, 2} {O, 2} {O, 1, 2} 

By Python program , (L, *) is an LA-semihypergroup and 

(0, 0, 0),(0, 0, 2),(0, 2, 1),(0, 2, 2),(1, 0, 0),(1, 0, 2),(2, 0, 0) 

(2, 0, 2),(2, 1, 0),(2, 1, 1),(2, 1, 2),(2, 2, 0),(2, 2, 1),(2, 2, 2) 

are all left-hyper neutrosophic-triplets; 

(0, 0, 0),(0, 0, 1)(0, 0, 2),(0, 1, 1),(0, 1, 2)(0, 2, 1),(0, 2, 2),(1, 2, 0),(1, 2, 1) 

(1, 2, 2),(2, 0, 0),(2, 0, 1),(2, 0, 2),(2, 1, 0),(2, 1, 2),(2, 2, 0),(2, 2, 1),(2, 2, 2) 

are all right-hyper neutrosophic-triplets; But 

1 <t (0 *1) n (1 * 0), 1 <t (1 *1) n (1 *1),1 <t (2 *1) n (1 * 2) 

T his shows that Oneut(l) = cp. By Definition 11, (L, *) is both an LNET-LA-semihypergroup and a 
RNET-LA-semihypergroup but not an NET-LA-semihypergroup. Moreover , from Example 11, we know that 

ll1neut(O) = {O, 2}, {} /anti(0)o = {O, 2), ll1anti(O )z = {1, 2)

O1neut(1)= {OJ, 01anti(l)o = {O, 2)

O1neut(2) = {O, 1, 2}, {J1anti(2 )o = {O, 2}, 01anti(2)
1 

= {O, 1, 2}, 01anti(2 )z = {O, 1, 2}

These means that for a certain x in an LNET-LA-semihypergroup , I Oineut(x) I may be greater than or equal 
to one and for a certain p E ll ineut(x)' I Oianti(x)pl may be greater than or equal to one. There are similar conclusions 
in RNET-LA-semihypergroup. In addition,Jor a certain x in an LA-semihypergroup, ifs E Oineut(x) (or s E 
llrneut(x)), then s may be not in llrneut(x) (or O1neut(x)>- By Example 11, we have 1 E Orneut(O) but 1 � ll1neut(O)· 

Remark 5. Non-LNET-LA-semihypergroup ( or Non-RNET-LA-semihypergruop) is not an NET-LA-semihypergroup. 
(L, *) is both an LNET-LA-semihypergroup and a RNET-LA-semihypergroup but it is not necessarily an 
NET-LA-semihypergroup . 

Based on the above, the relationships of NET-LA-semihypergroup, RNET-LA-semihypergroup and 
LNET-LA-hypergroup , can be represented by Figure 6.
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semihypergroup 

LNET-LA­
semihypergroup 

semihypergroup 

RNET-LA­
semihypergroup 

Figure 6. The relationships of various LA-semihypergroups. 

3. Strong Pure Neutrosophic Extended Triplet LA-Semihypergroups
(SPNET-LA-Semihypergroups)

Definition 13. An IA-semihypergroup (L, *) is said to be 

(a) a pure left neutrosophic extended triplet IA-semihypergroup (PLNET-IA-semihypergroup), if to any given

a E L, there are p E L and q E L, in such a way that

(b) a pure right neutrosophic extended triplet LA-semihypergroup (PRNET-IA-semihypergroup), if to any

given a E L, there are s E L and t E L, in such a way that

a = a * s and s = a * t 

(c) a pure neutrosophic extended triplet IA-semihypergroup (PNET-LA-semihypergroup), if to any given a E

L, there are m E L and n E L, in such a way that

a = (m * a) n (a* m) and m = (n * a) n (a* n) 

(d) a strong pure neutrosophic extended triplet IA-semihypergroup (SPNET-IA-semihypergroup), if to any

given a E L, there are m E L and n E L, in such a way that

a = m * a = a * m and m = n * a = a * n 

Proposition 5. Every SPNET-IA-semihypergroup is a PNET-IA-semihypergroup; Every PNET-IA-semihypergroup 

is an NET-LA-semihypergroup. Every PLNET-LA-semihypergroup is an LNET-LA-semihypergroup; Every 
PRNET-IA-semihypergroup is a RNET-LA-semihypergroup. 

Remark 6. From Proposition 5, we know that the signs in the Definition 11 can still be used, such as {l1neut(a), 
Orneut(a)1 {)neut(a)1 01anti(a)p ' Oranti(a)p ' etc.

Proposition 6. Every commutative PNET-LA-semihypergroup is an SPNET-LA-semihypergroup; Every 
commutative PLNET-IA-semihypergroup(or PRNET-IA-semihypergroup) is an SPNET-LA-semihypergroup. 

Proposition 7. Suppose (L, *) is an SPNET-IA-semihypergroup,jor any a, b, c EL, 

(1) ifs E {} neut(a), then s is unique and S* s = s; 

(2) ifs = neut(a), then neut(s) =s and sE {)anti(s)s;
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(3) ifs= neut(a), t E Oanti(a),, r E 1lanti(s),, then f* t <;;; 01anti(a)s;
(4) ifs= neut(a), t E Oanti(a)s, then S* t <;;; 01anti(a\;
(5) if P = neut(a), s = neut(b), q E llanti(a)/ E Oanti(b),and la* bl=I P* sl = 1, then

neut(a * b) = p * sandq * t <;;; {} anti(a•b) 

(6) ifs= neut(a) = neut(b), q E llanti(a)s, t E llanti(b)/nd la* bl= 1, then

neut ( a * b) = sandq * t <;;; {} anti(a•b )s 

(7) if neut(a) = neut(b), then a* b = b * a;
(8) thens* b = s * c if b *a= c * a, wher e s= neut(a);
(9) ifs = neut(a), q, t E 1lanti(a)s, then S* q = S* t.

p•s 

Proof. (1) Suppose there ares, p E {lneut(a)
, t E llanti(a),, q E Oanti(a)p· (L, *) is an SPNET-LA­

semihypergroup, hence 
a = s * a = a * s, s = t * a = a * t 

a = a * p = p * a, p = a * q = q * a 

we get 
s * p = (t *a)* p = (p *a)* t =a* t = s 

p * s = (q *a)* s = (s *a)* q =a* q = p 

s * p =(a* t) * (q *a)= (a* q) * (t *a)= p * s 

Thus p = s, it implies s is unique and S* s = s. 
(2) From (1), ifs= neut(a) EL, then S* s = S* s = s, This implies neut(s) =s and s E Oanti(s)s.
(3) For any given a EL, ifs = neut(a), t E {lanti(a)s' then

a = a * s = s * a, s = a * t = t * a 

On the other hand, from neut(s) =s and r E Oanti(s)s' we get 

s = s * s = s * s, s = r * s = s * r 

Thus 
u (m *a) = (r* t)* a  = (a* t)*r = S *r = s

mEr•t 

where m* a is a nonempty set, hence for any m E f* t, m* a= s. This implies m E {} lanti(a),. In other words,
f* t <;;; 1l1anti(a)s ·

(4) By (2), (3), we can get (4).
(5) if p = neut(a), s = neut(b), q E Oanti(a)/ E Oanti(b),, then

(p * s) *(a* b) = (p *a)* (s * b) =a* b 

That is, 
(p * s) * (a * b) = (a* b) * (p * s) = a * b. (14) 

On the other hand, 
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where (a* b)* 1 is a nonempty set, I a* b I= 1 and IP* sl= 1. Hence for any 1 E q* t, (a* b) * 1 = P* s. In the 
same way, we can prove that for any 1 E q* t, 1 * (a* b) = P* s. Thus for any 1 E q* t, 

z,. (a* b) =(a* b) * l = p * s. (15) 

From (14), (15) and I a* b I = I P* s I = 1, we get neut(a* b) = P* s and q* t � Oanti(a*b) 
p•s 

(6) Let p = s in Proposition 7 (5), we can get the conclusion.
(7) (L, *) is an SPNET-LA-semihypergroup, hence for any given a, b EL, there are neut(a) = s, neut(b)

= p, t E llanti(a ),, q E {lanti(b)p such that

Ifs = p, then we have 

a* b =(a* s) * (b * p) =(a* b) * (s * p) =(a* b) * (s * s) =(a* b) * s = (s * b) *a= (p * b) *a= b * a. 

(8) Suppose that b* a = C* a for a, b, c EL. There ares = neut(a) EL and t E llanti(a ),. Multiply b* a = C*
a by t, we have 

(b * a) * t = ( c * a) * t 

(t *a)* b = (t *a)* c 

(9) For any given a EL, there is s = neut(a) EL, if q, t E { lanti(a)s' then

s * q = (t *a)* q = (q *a)* t = s * t. 

D 

Theorem 1. Suppose (L, *) is a PRNET-LA-semihypergroup,for any x EL,

(a) ifp E Orneut(x), q E llranti(x)/nd IP*PI = 1, then

P* � 01neut(x)* � 01anti(x)
P'P 

and (L, *) is an P LNET-LA-semihypergroup. 
(b) if PE Omeut(x), q E O ranti(x)p' P* P = P and q E P* q, then

p = neutx E Oanti(x)p 

and (L, *) is an SPNET-LA-semihypergroup. 

Proof. (1) Since (L, *) is a PRNET-LA-semihypergroup, for any given x EL, there are p E Omeut(x) and q 
E {} ranti(x )p such that

multiply x = X* p by p, we have 

X = X * p = (X * p) * p = (p * p )  * X

In addition, 
P * p 
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where S* xis a nonempty set and IP* pl= 1. Thus for any s E P* q, S* x = P* p. It means that for any x EL, 
there are P* p, s E P* q such that

(p * p) * X = X, S * X = p * p 

It shows that 

P * P <:: lllneut(x), S E P * q <:: {lianti(x)
p•p 

By Definition 11, (L, *) is an LNET-LA-semihypergroup. 

(2) By Theorem 1 (a),

P = P * P E ll1neut(x) 

q E P * q <;;; Ozanti(x)p•p = lllanti(x)p 

It shows that for any given x E L, there is p E L such that 

p * x = x and q * x = p 

On the other hand, p E llmeut(x), q E Oranti(x)p' we get

x = x * p and x * q = p 

Based on the above, for any given x E L, there are p and q such that 

That is, 

P E llneut(x) and q E llanti(x)p 

By Definition 11, (L, *) is an SPNET-LA-semihypergroup. Applying Proposition 7 (1), we get 

p = neut(x). □

Example 12. Put L = {O, 1, 2}, the binary hypergroupoid (L, *) is as follows (see Table 11). 

Table 11. The binary hypergroupoid (L, *). 

* 0 1 

0 0 1 

1 1 0 

{0,1,2) {0,1,2) 

By Python program
1 
(L1 *) is an LA-semihypergroup. Furthermore1 we have 

rneut(O) = 0, rneut(1) = 0
1 rneut(2) = 2

2 

{0,1,2) 

{0,1,2) 
2 

ranti(O)meut(O)=O, ranti(l)meut(l)=O' ranti(2)meut(2)=2 = 2

o * o = of o * o = o, 2 * 2 = 2

0 E O * 0, 1 E O * 1
1 2 E 2 * 2

By Theorem 1 (b)1 we know that ( L1 *) is an SPNET-LA-semihypergroup. 

Corollary 1. A PRNET-LA-semihypergroup (L1 .. ), which satisfies conditions of Theorem 1 (b)1 then neut(p* s) 
= neut(p)* neut(s) if IP* sl = lneut(p)* neut(s)I= 1, where p, s EL.
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Proof. It follows from Theorem 1 (b) and Proposition 7 (5). o 

Corollary 2. An idempotent PRNET-LA-semihypergroup is a PLNET-LA-semihypergroup. 

Proof. It follows from Theorem 1 (a). o

Proposition 8. An idempotent PRNET-LA-semihypergroup with pure left identity is a commutative 

SPNET-LA-semihypergroup and its pure left identity is pure right identity. 

Proof. Put e is a pure left identity of (L, *). Then for any t EL, 

by idempotent law, we get 

It shows that e is pure right identity of (L *). Furthermore, for any m, n EL, 

It follows that (L, *) satisfies commutative law. 
On the other hand, (L, *) is a PRNET-LA-semihypergroup . Hence for any given a EL, there are 

SE llmeut(a) and t E ll ranti(a), such that 
a = a* s, s = a* t.

Applying commutative law, we get 

Thus (L, *) a commutative SPNET-LA-semihypergroup . o 

Proposition 9. Suppose (L, *) is a PRNET-LA-semihypergroup(or a PLNET-LA-semihypergroup) with pure 

right identity, then pure right identity is pure left identity and (L, *) is a commutative Net-semihypergroup. 

Proof. Put e is a pure right identity of (L, *),Then for any given t EL, 

we have 

This shows that e is pure left identity of (L, *). Furthermore, for any Z, m, n EL, 

It follows that (L, *) satisfies commutative law and associative law. In addition, (L, *) is a 
PRNET-LA-semihypergroup. Hence for any givens EL, there are p E llmeut(s) and q E {lranti(s)p such that 

S = S* p, p = S* q.

Applying commutative law, we get 

s = S* p = P* s, p = S* q = q* s. 
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By Definition 10, (L, *) is a commutative NET-semihypergroup. □ 

Theorem 2. I.et (L, *) be a PRNET-LA-semihypergroup, which satisfies the following conditions: 

(1) for any tE L, there are p E {} rneut(t), q E {} ranti(t)p such that

p * p = p, q = p * q; 

By condition (1), for a certain q in (1), there are r E O
rneut(q), l E O ranti(q)r such that 

(2) Ip * rl = 1, where p in (16) and r in (17);
(3) for any m, n EL, if neut(m) = neut(n), then Im* nl = 1.
Define an equivalent relation rp on L,

m rp n if and only if neut(m) = neut(n) 

Then 

(16) 

(17) 

(a) (To every t EL, ([t], *) is a sub NET-LA-semihypergroup of (L, *), in which [t] is the equivalent class of t
based on equivalent relation rp ; 

(b) To every t EL, ([t], *) is a regular LA-hypergroup.

Proof. (a) Firstly, by Theorem 1 (b) and Theorem 2's condition (1), we know that (L, *) is an 

SPNET-LA-semihypergroup. Suppose m, n E [t], by Theorem 2's condition (3), we have 

neut(m) = neut(n) = neut(t) and Im * nl = 1 

Applying Proposition 7 (6), we get neut(m* n) = neut(t). It shows that m* n E [t]. 
Secondly, applying Proposition 7 (2), we have 

neut(neut(m)) = neut(neut(t)) = neut(t) 

It means that for any m E [t], neut(m) E [t]. 
Lastly, by Theorem 2's condition (1) and Theorem 1 (b), for any mE [t] <;;; L, there is q EL such that 

q = neut(m) * q E Oanti(m) 
neut(m) 

and for the q in (18), there are r E O
rn

eut(q), l E O
ranti(q), such that

and r = neut(q). 

By Theorem 2's condition (2) and (19), we get 

lneut(m) * rl = lneut(m) * neut (q)I =lneut(neut(m)) * neut (q)I = 1. 

Applying Proposition 7 (5), we get 

neut(neut(m) * q) = neut(neut(m)) * neut (q) = neut(m) * neut (q) 

= neut(m * q) = neut(neut(m)) = neut(m) = neut(t). 

(18) 

(19) 

This implies q = neut(m)* q E Oanti(m) E [t]. Thus ([t], *) is a sub SPNET-LA-semihypergroup. 
neut(m) 
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(b) Firstly, from (a), for any given tE L, ([t}, *) is a sub-SPNET-LA-semihypergroup of (L, *). By the
definition of cf>, if mE [t], then for any nE [t], neut(m) = neut(n) = neut(t). Applying Proposition 7 (7),

we get 
m * n = n * m. 

That ism* [t] = [t]* m. 
Secondly, for any s E [t] , S* m E [t] , hence [t]* m C [t]; On the other hand, by proof of (a), we know

that for any m E [t], there is q E [t] such that

hence for any s E [t], S* q E [t]. Thus 

q = neut(m) * q {lanti(m) 
neut(m) 

s = neut(s) * s = neut(m) * s = (m * q) * s = (s * q) * m c [t] * m. 

That is, [t] C [t]* m. Thus [t] = [t]* m = m* [t]. It implies that ([tJ, *) is a LA-hypergroup.

Lastly, it can be easily proved that neut(t) is a scalar identity of ([t], *) and for every IE [t] has at
least one inverse. By Definition 8, ([t], *) is a regular LA-hypergroup. o

Corollary 3. If a PRNET-LA-semihypergroup (L, *) which satisfies conditions of Theorem 2 and cf> is the 
equivalence relation on L defined in Theorem 21 then If cf> is the partition of set L. 

Example 13. Put L = {01 L 2, 3, 4}, the binary hypergroupoid (L, *) is as follows (see Table 12). 

Table 12. The binary hypergroupoid (L, *). 
* 0 1 2 3 4 
0 0 1 {O, 1, 2) 0 4 

1 1 0 {O, 1, 2) 1 4 

2 {O, 1, 2) {O, 1, 2) 2 {O, 1, 2) 4 

3 0 1 {O, 1, 2) 3 4 

4 4 4 4 4 4 

By Python program, (L, *) is LA-semihypergroup. Firstly, we have 

rneut(O) = 0, rneut(l) = 0, rneut(2) = 2, rneut(3) = 3, rneut(4) = 4 

ranti(O) rneut(O)=o= 0, ran ti (1) 
rn

eut(l )=o= 1, ranti(2) rneut(2)=22, ranti(3) rneut(3)=3, ran ti( 4 )rneu
t( 4)=4 = 4

0 * 0 = 0, 0 * 0 = 0, 2 * 2 = 2, 3 * 3 = 3, 4 * 4 = 4 
0=0*�1=0*L2=2*t3=3*�4=4*� 

These means that Theorem 2's condition 1) hold; Secondly1 we get 

lrneutO * rneut(ranti(O)
rneu

t(O)=o)I = lrneut(O) * rneut(o)I = lol = 1

lo * rneut(ranti(l)
r
neut(l)=o)I = lrneut(l) * rneut(l) I =  lol = 1

I() * rneut(ranti(2)
r
neut(2)=2)1 = lrneut(2) * rneut(2) I = 121 = 1

I() * rneut(ranti(3)
rneu

t(3)=3
)1 = lrneut(3) * rneut(3) I = 131 = 1

IO *rneut(ranti(4)
rneu

t(4)=4)1=1rneut(4) * rneut(4)1=141= 1
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These means that Theorem 2's condition (2) hold. Lastly, 

rneut(O) = rneut(l) = 0,1 0 * 1 I= 1 

These means that Theorem 2's condition (3) hold. By Theorem 1 and Theorem 2, we know that (L, * )  is an 
SPNET-LA-semihypergroup and 

L = L1 u L2 u L3 u L4 

where (LvJlL2,*ML3,,.),(L4,*) are all regular LA-hypergroups. 

Definition 14. An NET-LA-semihypergroup (L, *) satisfies weak commutative law, if for any y EL, 

p * y = y * p, q * X = X * q 

where x is any element of set L, p E {lneut(x)
, q E llanti(x)p. 

Proposition 10. An SPNET-LA-semihypergroup (L, *) satisfies weak commutative law if and only if it is 
a commutative. 

Proof. If (L, *) is a weak commutative, then for any x, y EL, l E llneut(x)
' m E {lneut(y)

' we have

x * y = (x * l) * (y * m) = (l * x) * (y * m) = (l * y) * (x * m) = (y * l) * (m * x) = (y * m) * (l * x) = y * x 

That is, (L, *) is commutative. □ 

4. Conclusions

In this study, we give the new notions of NET-LA-semihypergroup, NET-LA-hypergroup, 

LNET-LA-semihypergroup, RNET-LA-semihypergroup, PLNET-LA-semihypergroup, PRNET-LA­

semihypergroup, PNET-LA-semihypergroup, SPNET-LA-semihypergroup, discuss the relationships of 

them (see Figures 5 and 6), get some special properties of SPNET-LA-semihypergroup (see Proposition 7). 

In particular, we prove that a RNET-LA-semihypergroup which satisfies certain conditions(the condition 

of asymmetry) be an SPNET-LA-semihypergroup and this SPNET-LA-semihypergroup is the union 

of some disjoint regular hypergroups, where every regular hypergroup is its subhypergroup (see 

Theorem 2). At last, we discuss the relationships of various NET-LA-semihypergroups (see Figure 7). 

NET-LA-scmihypcrgroup 

Figure 7. The relationships of various NET-LA-semihypergroups. 
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These studies help us to enhence the understanding of this hyperalgebraic structure about NET and 

tell us this hyper algebraic structure is a complex and unique structure. There is still a lot of unknown 

knowledge in this field to explore. In the future, we will discuss properties of NET-CA-

semihypergroup. 

Funding: This research was funded by National Natural Science Foundation of China (Grant No. 61976130). 
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Neutrosophic ℵ −interior ideals in semigroups
K. Porselvi, B. Elavarasan, F. Smarandache

Abstract: We define the concepts of neutrosophic ℵ -interior ideal and neutrosophic 

ℵ −characteristic interior ideal structures of a semigroup. We infer different types of semigroups 

using neutrosophic  ℵ-interior ideal structures. We also show that the intersection of neutrosophic 

ℵ-interior ideals and the union of neutrosophic ℵ-interior ideals is also a neutrosophic ℵ-interior 

ideal.  

Keywords: Semi group, neutrosophic ℵ − ideals, neutrosophic ℵ -interior ideals, neutrosophic 

ℵ −product. 

1. Introduction

Nowadays, the theory of uncertainty plays a vital role to manage different issues relating to 

modelling engineering problems, networking, real-life problem relating to decision making and so 

on. In 1965, Zadeh[24] introduced the idea of fuzzy sets for modelling vague concepts in the globe. 

In 1986, Atanassov [1] generalized fuzzy set and named as Intuitionistic fuzzy set. Also, from his 

viewpoint, there are two degrees of freedom in the real world, one a degree of membership to a 

vague subset and the other is a degree of non-membership to that given subset. 

Smarandache generalized fuzzy set and intuitionistic fuzzy set, and named as neutrosophic set 

(see [4, 7, 8, 14, 19, 22-23]). These sets are characterized by a truth membership function, an 

indeterminacy membership function and a falsity membership function. These sets are applied to 

many branches of mathematics to overcome the complexities arising from uncertain data. A 

Neutrosophic set can distinguish between absolute membership and relative membership. 

Smarandache used this in non-standard analysis such as the result of sports games 

(winning/defeating/tie), decision making and control theory, etc. This area has been studied by 

several authors (see [3, 11, 12, 16-18]).  

For more details on neutrosophic set theory, the readers visit the website 

http://fs.gallup.unm.edu/FlorentinSmarandache.htm 

In [2], Abdel Basset et al. designed a framework to manage scheduling problems using 

neutrosophic theory. As the concept of time-cost tradeoffs and deterministic project scheduling 

disagree with the real situation, some data were changed during the implementation process. Here 

fuzzy scheduling and time-cost tradeoffs models assumed only truth-membership functions dealing 

K. Porselvi, Balasubramanian Elavarasan, F. Smarandache (2020). Neutrosophic N-interior ideals in 
semigroups. Neutrosophic Sets and Systems 36, 70-80
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with uncertainties of the project and their activities duration which were unable to treat 

indeterminacy and inconsistency.  

In [6], Abdel Basset et al. evaluated the performance of smart disaster response systems under 

uncertainty. In [5], Abdel Basset et al. introduced different hybrid neutrosophic multi-criteria 

decision-making framework for professional selection that employed a collection of neutrosophic 

analytical network process and order preference by similarity to the ideal solution under bipolar 

neutrosophic numbers. 

In [21], Prakasam Muralikrishna1 et al. presented the characterization of MBJ – Neutrosophic 𝛽 

– Ideal of 𝛽 – algebra. They analyzed homomorphic image, pre–image, cartesian product and related

results, and these concepts were explored to other substructures of a 𝛽 – algebra. In [9], Chalapathi et 

al. constructed certain Neutrosophic Boolean rings, introduced Neutrosophic complement elements 

and mainly obtained some properties satisfied by the Neutrosophic complement elements of 

Neutrosophic Boolean rings. 

In [14], M. Khan et al. presented the notion of neutrosophic ℵ-subsemigroup in semigroup and 

explored several properties. In [11], Gulistan et al. have studied the idea of complex neutrosophic 

subsemigroups and introduced the concept of the characteristic function of complex neutrosophic 

sets, direct product of complex neutrosophic sets.  

In [10], B. Elavarasan et al. introduced the notion of neutrosophic ℵ-ideal in semigroup and 

explored its properties. Also, the conditions for neutrosophic ℵ-structure to be neutrosophic ℵ-ideal 

are given, and discussed the idea of characteristic neutrosophic ℵ-structure in semigroups and 

obtained several properties. In [20], we have introduced and discussed several properties of 

neutrosophic ℵ-bi-ideal in the semigroup. We have proved that neutrosophic ℵ-product and the 

intersection of neutrosophic ℵ-ideals were identical for regular semigroups. In this paper, we define 

and discuss the concepts of neutrosophic ℵ-interior ideal and neutrosophic ℵ-characteristic interior 

ideal structures of a semigroup. 

Throughout this paper, 𝑋 denotes a semigroup. Now, we present the important definitions of 

semigroup that we need in sequel.   

Recall that for any 𝑋1, 𝑋2 ⊆ 𝑋,   𝑋1𝑋2 =  {𝑎𝑏|𝑎 ∈ 𝑋1 𝑎𝑛𝑑 𝑏 ∈ 𝑋2} , multiplication of  𝑋1 and 𝑋2. 

Let 𝑋 be a semigroup and ∅ ≠ 𝑋1 ⊆ 𝑋. Then 

(i) 𝑋1 is known as subsemigroup if 𝑋1
2 ⊆ 𝑋1.

(ii) A subsemigroup 𝑋1 is known as left (resp., right) ideal if 𝑋1𝑋 ⊆ 𝑋1(resp., 𝑋𝑋1 ⊆ 𝑋1).

(iii) 𝑋1 is known as ideal if 𝑋1 is both a left and a right ideal.

(iv) 𝑋  is known as left (resp., right) regular if for each 𝑟 ∈ 𝑋, there exists 𝑖 ∈ 𝑋 such

that 𝑟 = 𝑖𝑟2(resp., 𝑟 = 𝑟2𝑖) [13].

(v) 𝑋  is known as regular if for each 𝑏1 ∈ 𝑋, there exists 𝑖 ∈ 𝑋 such that 𝑏1 = 𝑏1𝑖𝑏1

(vi) 𝑋  is known as intra-regular if for each 𝑥1 ∈ 𝑋, there exist 𝑖, 𝑗 ∈ 𝑋 such that 𝑥1 =

𝑖𝑥1
2𝑗 [15].

2. Definitions of neutrosophic ℵ - structures

We present definitions of neutrosophic ℵ −structures namely neutrosophic ℵ −subsemigroup, 

neutrosophic ℵ −ideal, neutrosophic ℵ −interior ideal of a semigroup 𝑋 
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The set of all the functions from 𝑋 to [−1, 0] is denoted by ℑ(𝑋, [−1, 0]). We call that an 

element of ℑ(𝑋, [−1, 0]) is ℵ −function on 𝑋. A ℵ −structure means an ordered pair (𝑋, 𝑔) of 

𝑋 and an ℵ −function 𝑔 on 𝑋. 

Definition 2.1.[14] A neutrosophic ℵ − structure of  𝑿  is defined to be the structure: 

𝑿𝑴: =  
𝑿

(𝑻𝑴,  𝑰𝑴,   𝑭𝑴) 
=  {

𝒓

𝑻𝑴(𝒓), 𝑰𝑴(𝒓),   𝑭𝑴(𝒓)
 | 𝒓 ∈ 𝑿}, 

where 𝑻𝑴, 𝑰𝑴  and 𝑭𝑴  are the negative truth, negative indeterminacy and negative falsity 

membership function on X (ℵ − functions). 

It is evident that −𝟑 ≤  𝑻𝑴(𝒓) +  𝑰𝑴(𝒓) + 𝑭𝑴(𝒓) ≤ 𝟎 for all 𝒓 ∈ 𝑿. 

Definition 2.2.[14] A neutrosophic ℵ − structure 𝑿𝑴  of 𝑿  is called a neutrosophic 

ℵ −subsemigroup of 𝑿 if the following assertion is valid: 

(∀ 𝒈𝒊, 𝒉𝒋 ∈ 𝑿) (

𝑻𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑻𝑴(𝒈𝒊) ˅ 𝑻𝑴(𝒉𝒋)

𝑰𝑴(𝒈𝒊𝒉𝒋) ≥ 𝑰𝑴(𝒈𝒊)  ∧  𝑰𝑴(𝒉𝒋)

𝑭𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑭𝑴(𝒈𝒊) ˅ 𝑭𝑴(𝒉𝒋)

). 

.Let 𝑿𝑴 be a neutrosophic ℵ −structure and 𝜸, 𝜹, 𝜺 ∈ [−𝟏, 𝟎] with −𝟑 ≤   𝜸 + 𝜹 + 𝜺 ≤ 𝟎.  Consider 

the sets: 

𝑻𝑴
𝜸

= {𝒓𝒊 ∈ 𝑿|𝑻𝑴(𝒓𝒊) ≤  𝜸} 

𝑰𝑴
𝜹 = {𝒓𝒊 ∈ 𝑿|𝑰𝑴(𝒓𝒊) ≥  𝜹} 

𝑭𝑴
𝜺 = {𝒓𝒊 ∈ 𝑿|𝑭𝑴(𝒓𝒊) ≤ 𝜺}. 

The set 𝑿𝑴(𝜸, 𝜹, 𝜺) ≔ {𝒓𝒊  ∈ 𝑿 |𝑻𝑴(𝒓𝒊) ≤  𝜸, 𝑰𝑴(𝒓𝒊) ≥  𝜹, 𝑭𝑴(𝒓𝒊) ≤ 𝝐}  is known as 

(𝜸, 𝜹, 𝜺)-level set of 𝑿𝑴.  It is easy to observe that 𝑿𝑴(𝜸, 𝜹, 𝜺) = 𝑻𝑴
𝜸

 ∩  𝑰𝑴
𝜹  ∩  𝑭𝑴

𝜺 . 

Definition 2.3.[10] A neutrosophic ℵ −structure 𝑿𝑴 of 𝑿  is called a neutrosophic ℵ −left (resp., 

right) ideal of 𝑿 if  

(∀ 𝒈𝒊, 𝒉𝒋  ∈ 𝑿) (

𝑻𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑻𝑴(𝒉𝒋) (𝒓𝒆𝒔𝒑. , 𝑻𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑻𝑴(𝒈𝒊)) 

𝑰𝑴(𝒈𝒊𝒉𝒋) ≥ 𝑰𝑴(𝒉𝒋) (𝒓𝒆𝒔𝒑., 𝑰𝑴(𝒈𝒊𝒉𝒋) ≥ 𝑰𝑴(𝒈𝒊))

𝑭𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑭𝑴(𝒉𝒋) (𝒓𝒆𝒔𝒑., 𝑭𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑭𝑴(𝒈𝒊))  

). 

𝑿𝑴 is neutrosophic  ℵ −ideal of 𝐗 if 𝑿𝑴 is neutrosophic ℵ −left and ℵ −right ideal of 𝑿. 

Definition 2.4. A neutrosophic ℵ −subsemigroup 𝑿𝑴 of 𝑿  is known as neutrosophic ℵ −interior 

ideal if  

(∀ 𝒙, 𝒂, 𝒚 ∈ 𝑿) (

𝑻𝑴(𝒙𝒂𝒚) ≤ 𝑻𝑴(𝒂)

𝑰𝑴(𝒙𝒂𝒚) ≥ 𝑰𝑴(𝒂)

𝑭𝑴(𝒙𝒂𝒚) ≤ 𝑭𝑴(𝒂)
). 

It is easy to observe that every neutrosophic ℵ −ideal is neutrosophic ℵ −interior ideal, but 

neutrosophic ℵ −interior ideal need not be a neutrosophic ℵ − ideal, as shown by an example. 

Example 2.5. Let 𝑿  be the set of all non-negative integers except 1. Then 𝑿 is a semigroup with 

usual multiplication. 

Let 𝑋𝑀 = {
0

(−0.9,−0.1,−0.7)
,

2

(−0.4  −0.6,−0.5)
,

5

(−0.3,−0.8,−0.3)
,

10

(−0.3,−0.8,−0.1)
,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(−0.7,−0.4,−0.6)
}. Then 𝑋𝑀 is 

neutrosophic ℵ −interior ideal, but not neutrosophic  ℵ − ideal with 𝑇𝑁(2.5) = −0.3 ≰ 𝑇𝑁(2). 

Definition 2.6.[14]  For any 𝑬 ⊆ 𝑿, the characteristic neutrosophic ℵ −structure is defined as 

𝝌𝑬(𝑿𝑴) =  
𝑿

(𝝌𝑬(𝑻)𝑴,  𝝌𝑬( 𝑰)𝑴, 𝝌𝑬(𝑭)𝑴)
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where 

𝝌𝑬(𝑻)𝑴: X→ [−𝟏, 𝟎], 𝒓 → {
−𝟏 𝒊𝒇 𝒓 ∈ 𝑬

𝟎   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

𝝌𝑬(𝑰)𝑴: X→ [−𝟏, 𝟎], 𝒓 → {
𝟎 𝒊𝒇 𝒓 ∈ 𝑬 

−𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

𝝌𝑬(𝑭)𝑴: X→ [−𝟏, 𝟎], 𝒓 → {
−𝟏  𝒊𝒇 𝒓 ∈ 𝑬
𝟎  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

Definition 2.7.[14] Let 𝑿𝑵: =  
𝑿

(𝑻𝑵,  𝑰𝑵,   𝑭𝑵) 
 and 𝑿𝑴: =  

𝑿

(𝑻𝑴,  𝑰𝑴,   𝑭𝑴) 
 be neutrosophic ℵ −structures of 

𝑿. Then 

(i) 𝑿𝑵 is called a neutrosophic ℵ −  substructure of 𝑿𝑴,  denote by  𝑿𝑴 ⊆ 𝑿𝑵 , if  𝑻𝑴(𝒓) ≥

𝑻𝑵(𝒓),  𝑰𝑴(𝒓) ≤  𝑰𝑵(𝒓), 𝑭𝑴(𝒓) ≥  𝑭𝑵(𝒓) for all r ∈ 𝑿.

(ii) If 𝑿𝑵 ⊆ 𝑿𝑴 and 𝑿𝑴 ⊆ 𝑿𝑵, then we say that 𝑿𝑵 = 𝑿𝑴.

(iii) The neutrosophic ℵ − product of 𝑿𝑵 and 𝑿𝑴 is  defined to be a neutrosophic ℵ −structure

of 𝑿,

𝑿𝑵 ʘ 𝑿𝑴 ∶=  
𝑿

(𝑻𝑵∘𝑴,  𝑰𝑵∘𝑴,   𝑭𝑵∘𝑴) 
=  {

𝒉

𝑻𝑵∘𝑴(𝒉),  𝑰𝑵∘𝑴(𝒉),   𝑭𝑵∘𝑴(𝒉) 
 | 𝒉 ∈ 𝑿}, 

where 

(𝑻𝑵 ∘ 𝑻𝑴)(𝒉) = 𝑻𝑵∘𝑴(𝒉) = {
⋀ {𝑻𝑵(𝒓) ˅ 𝑻𝑴(𝒔)}

𝒉=𝒓𝒔

  𝒊𝒇 ∃ 𝒓, 𝒔 ∈ 𝑿 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒉 = 𝒓𝒔

𝟎            𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

(𝑰𝑵 ∘ 𝑰𝑴)(𝒉) = 𝑰𝑵∘𝑴(𝒉) = {
⋁ {𝑰𝑵(𝒓) ˄ 𝑰𝑴(𝒔)}

𝒉=𝒓𝒔

  𝒊𝒇 ∃ 𝒖, 𝒗 ∈ 𝑿 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒉 = 𝒓𝒔

−𝟏  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

(𝑭𝑵 ∘ 𝑭𝑴)(𝒉) = 𝑭𝑵∘𝑴(𝒉) = {
⋀ {𝑭𝑵(𝒓) ˅ 𝑭𝑴(𝒔)}

𝒉=𝒓𝒔

  𝒊𝒇 ∃ 𝒖, 𝒗 ∈ 𝑿 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒉 = 𝒓𝒔

𝟎  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

For 𝒊 ∈ 𝑿, the element
𝐢

(𝐓𝐍∘𝐌(𝐢),  𝐈𝐍∘𝐌(𝐢),   𝐅𝐍∘𝐌(𝐢))
 is simply denoted by (𝐗𝐍 ʘ 𝐗𝐌)(𝐢) =

 (𝐓𝐍∘𝐌(𝐢),   𝐈𝐍∘𝐌(𝐢),   𝐅𝐍∘𝐌(𝐢)). 

(iii) The union of 𝑿𝑵 and 𝑿𝑴, a neutrosophic ℵ −structure over 𝑿 is defined as

𝑿𝑵 ∪ 𝑿𝑴 = 𝑿𝑵∪𝑴 = (𝑿; 𝑻𝑵∪𝑴,   𝑰𝑵∪𝑴,    𝑭𝑵∪𝑴), 

where 

(𝑻𝑵 ∪ 𝑻𝑴)(𝒉𝒊) = 𝑻𝑵∪𝑴(𝒉𝒊) =  𝑻𝑵(𝒉𝒊) ˄ 𝑻𝑴(𝒉𝒊), 

(𝑰𝑵 ∪ 𝑰𝑴)(𝒉𝒊) = 𝑰𝑵∪𝑴(𝒉𝒊) =  𝑰𝑵(𝒉𝒊) ˅ 𝑰𝑴(𝒉𝒊), 

 (𝑭𝑵 ∪ 𝑭𝑴)(𝒉𝒊) = 𝑭𝑵∪𝑴(𝒉𝒊) =  𝑭𝑵(𝒉𝒊) ˄ 𝑭𝑴(𝒉𝒊) ∀𝒉𝒊 ∈ 𝑿. 

(iv) The intersection of 𝑿𝑵 and 𝑿𝑴, a neutrosophic  ℵ −structure over 𝑿 is defined as

𝑿𝑵 ∩ 𝑿𝑴 = 𝑿𝑵∩𝑴 = (𝑿; 𝑻𝑵∩𝑴,   𝑰𝑵∩𝑴,    𝑭𝑵∩𝑴), 

where 

(𝑻𝑵 ∩ 𝑻𝑴)(𝒉𝒊) = 𝑻𝑵∩𝑴(𝒉𝒊) =  𝑻𝑵(𝒉𝒊) ˅ 𝑻𝑴(𝒉𝒊), 

(𝑰𝑵 ∩ 𝑰𝑴)(𝒉𝒊) = 𝑰𝑵∩𝑴(𝒉𝒊) =  𝑰𝑵(𝒉𝒊) ˄ 𝑰𝑴(𝒉𝒊), 

 (𝑭𝑵 ∩ 𝑭𝑴)(𝒉𝒊) = 𝑭𝑵∩𝑴(𝒉𝒊) =  𝑭𝑵(𝒉𝒊) ˅ 𝑭𝑴(𝒉𝒊) ∀ 𝒉𝒊 ∈ 𝑿. 

3. Neutrosophic ℵ −interior ideals

 We study different properties of neutrosophic ℵ −interior ideals of 𝑋 . It is evident that 

neutrosophic ℵ − ideal is a neutrosophic ℵ −interior ideal of 𝑋, but not the converse. Further, for 

a regular and for an intra-regular semigroup, every neutrosophic ℵ −interior ideal is neutrosophic 

ℵ −ideal. 
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All throughout this part, we consider 𝑋𝑀 and 𝑋𝑁 are neutrosophic ℵ −structures of 𝑋. 

Theorem 3.1. For any L ⊆ X, the equivalent assertions are: 

(i) 𝐿 is an interior ideal,

(ii) The characteristic neutrosophic ℵ −structure χL(XN) is a neutrosophic ℵ −interior ideal.

Proof: Suppose 𝐿 is an interior ideal and let 𝑥, 𝑎, 𝑦 ∈ 𝑋. 

If 𝑎 ∈ 𝐿,  then 𝑥𝑎𝑦 ∈ 𝐿, so 𝜒𝐿(𝑇)𝑁(𝑥𝑎𝑦) = −1 = 𝜒𝐿(𝑇)𝑁(𝑎),   𝜒𝐿(𝐼)𝑁(𝑥𝑎𝑦) = 0 = 𝜒𝐿(𝐼)𝑁(𝑎) and 

𝜒𝐿(𝐹)𝑁(𝑥𝑎𝑦) = −1 = 𝜒𝐿(𝐹)𝑁(𝑎).  

If 𝑎 ∉ 𝐿,  then 𝜒𝐿(𝑇)𝑁(𝑥𝑎𝑦) ≤ 0 = 𝜒𝐿(𝑇)𝑁(𝑎),    𝜒𝐿(𝐼)𝑁(𝑥𝑎𝑦) ≥ −1 = 𝜒𝐿(𝐼)𝑁(𝑎) and 

𝜒𝐿(𝐹)𝑁(𝑥𝑎𝑦) ≤ 0 = 𝜒𝐿(𝐹)𝑁(𝑎).  

Therefore 𝜒𝐿(𝑋𝑁) is a neutrosophic ℵ −interior ideal. 

Conversely, assume that 𝜒𝐿(𝑋𝑁) is a neutrosophic ℵ − interior ideal. Let 𝑢 ∈ 𝐿 and  𝑥, 𝑦 ∈ 𝑋. 

Then  

𝜒𝐿(𝑇)𝑁(𝑥𝑢𝑦) ≤ 𝜒𝐿(𝑇)𝑁(𝑢) = −1, 

𝜒𝐿(𝐼)𝑁(𝑥𝑢𝑦) ≥ 𝜒𝐿(𝐼)𝑁(𝑢) = 0, 

𝜒𝐿(𝐹)𝑁(𝑥𝑢𝑦) ≤ 𝜒𝐿(𝐹)𝑁(𝑢) = −1 . 

So  𝑥𝑢𝑦 ∈ 𝐿. □ 

Theorem 3.2. If 𝑋𝑀 and 𝑋𝑁 are neutrosophic ℵ − interior ideals, then 𝑋𝑀∩𝑁 is neutrosophic  ℵ − 

interior ideal. 

Proof: Let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − interior ideals. For any 𝑟, 𝑠, 𝑡 ∈ 𝑋, we have 

𝑇𝑀∩𝑁(𝑟𝑠𝑡) = 𝑇𝑀(𝑟𝑠𝑡)˅𝑇𝑁(𝑟𝑠𝑡) ≤ 𝑇𝑀(𝑠)˅𝑇𝑁(𝑠) = 𝑇𝑀∩𝑁(𝑠), 

𝐼𝑀∩𝑁(𝑟𝑠𝑡) = 𝐼𝑀(𝑟𝑠𝑡)˄𝐼𝑁(𝑟𝑠𝑡) ≥ 𝐼𝑀(𝑠)˄𝐼𝑁(𝑠) = 𝐼𝑀∩𝑁(𝑠), 

𝐹𝑀∩𝑁(𝑟𝑠𝑡) = 𝐹𝑀(𝑟𝑠𝑡)˅𝐹𝑁(𝑟𝑠𝑡) ≤ 𝐹𝑀(𝑠)˅𝐹𝑁(𝑠) = 𝐹𝑀∩𝑁(𝑠). 

Therefore 𝑋𝑀∩𝑁 is neutrosophic ℵ − interior ideal.                   □ 

Corollary 3.3. The arbitrary intersection of neutrosophic ℵ − interior ideals is a neutrosophic ℵ − 

interior ideal. 

Theorem 3.4. If 𝑋𝑀 and 𝑋𝑁 are neutrosophic ℵ − interior ideals, then 𝑋𝑀∪𝑁 is neutrosophic ℵ − 

interior ideal. 

Proof: Let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − interior ideals. For any 𝑟, 𝑠, 𝑡 ∈ 𝑋, we have  

𝑇𝑀∪𝑁(𝑟𝑠𝑡) = 𝑇𝑀(𝑟𝑠𝑡)˄𝑇𝑁(𝑟𝑠𝑡) ≤ 𝑇𝑀(𝑠)˄𝑇𝑁(𝑠) = 𝑇𝑀∪𝑁(𝑠), 

𝐼𝑀∪𝑁(𝑟𝑠𝑡) = 𝐼𝑀(𝑟𝑠𝑡)˅𝐼𝑁(𝑟𝑠𝑡) ≥ 𝐼𝑀(𝑠)˅𝐼𝑁(𝑠) = 𝐼𝑀∪𝑁(𝑠), 

𝐹𝑀∪𝑁(𝑟𝑠𝑡) = 𝐹𝑀(𝑟𝑠𝑡)˄𝐹𝑁(𝑟𝑠𝑡) ≤ 𝐹𝑀(𝑠)˄𝐹𝑁(𝑠) = 𝐹𝑀∪𝑁(𝑠). 

Therefore 𝑋𝑀∪𝑁 is neutrosophic ℵ − interior ideal.                 □ 

Corollary 3.5. The arbitrary union of neutrosophic ℵ − interior ideals is neutrosophic ℵ − interior 

ideal. 

Theorem 3.6. Let 𝑋 be a regular semigroup. If 𝑋𝑀 is neutrosophic ℵ − interior ideal, then 𝑋𝑀 is 

neutrosophic ℵ − ideal. 
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Proof: Assume that 𝑋𝑀 is an interior ideal, and let 𝑢, 𝑣 ∈ 𝑋. As 𝑋 is regular and 𝑢 ∈ 𝑋, there 

exists 𝑟 ∈ 𝑋  such that 𝑢 = 𝑢𝑟𝑢.  Now, 𝑇𝑀(𝑢𝑣) = 𝑇𝑀(𝑢𝑟𝑢𝑣) ≤ 𝑇𝑀(𝑢),   𝐼𝑀(𝑢𝑣) = 𝐼𝑀(𝑢𝑟𝑢𝑣) ≥ 𝐼𝑀(𝑢) 

and 𝐹𝑀(𝑢𝑣) = 𝐹𝑀(𝑢𝑟𝑢𝑣) ≤ 𝐹𝑀(𝑢). Therefore 𝑋𝑀 is neutrosophic ℵ − right ideal. 

Similarly, we can show that 𝑋𝑀 is neutrosophic ℵ − left ideal and hence 𝑋𝑀 is neutrosophic 

ℵ − ideal.                     □ 

Theorem 3.7. Let 𝑋 be an intra-regular semigroup. If 𝑋𝑀 is neutrosophic ℵ − interior ideal, then 

𝑋𝑀 is neutrosophic ℵ − ideal. 

Proof: Suppose that 𝑋𝑀 is neutrosophic ℵ − interior ideal, and let 𝑢, 𝑣 ∈ 𝑋. As 𝑋 is intra regular 

and 𝑢 ∈ 𝑋, there exist 𝑠, 𝑡 ∈ 𝑆 such that 𝑢 = 𝑠𝑢2𝑡. Now, 

𝑇𝑀(𝑢𝑣) = 𝑇𝑀(𝑠𝑢2𝑡𝑣) ≤ 𝑇𝑀(𝑢),

𝐼𝑀(𝑢𝑣) = 𝐼𝑀(𝑠𝑢2𝑡𝑣) ≥ 𝐼𝑀(𝑢)

𝐹𝑀(𝑢𝑣) = 𝐹𝑀(𝑠𝑢2𝑡𝑣) ≤ 𝐹𝑀(𝑢).

Therefore 𝑋𝑀 is neutrosophic ℵ − right ideal. similarly, we can show that 𝑋𝑀 is neutrosophic ℵ − 

left ideal and hence 𝑋𝑀 is neutrosophic ℵ − ideal.            □ 

Definition 3.8. A semigroup 𝑋 is left simple (resp., right simple) if it does not contain any proper left 

ideal (resp., right ideal) of 𝑋. A semigroup 𝑋 is simple if it does not contain any proper ideal of 𝑋. 

Definition 3.9. A semigroup 𝑋 is said to be neutrosophic ℵ −simple if every neutrosophic  ℵ −

ideal is a constant function 

i.e., for every neutrosophic ℵ − ideal 𝑋𝑀  of 𝑋,  we have 𝑇𝑀(𝑖) = 𝑇𝑀(𝑗), 𝐼𝑀(𝑖) = 𝐼𝑀(𝑗)  and

𝐹𝑀(𝑖) = 𝐹𝑀(𝑗) for all 𝑖, 𝑗 ∈ 𝑋. 

Notation 3.10. If 𝑋 is a semigroup and 𝑠 ∈ 𝑋, we define a subset, denoted by 𝐼𝑠 as follows: 

𝐼𝑠 ≔ {𝑖 ∈ 𝑋 |  𝑇𝑁(𝑖) ≤ 𝑇𝑁(𝑠),   𝐼𝑁(𝑖) ≥ 𝐼𝑁(𝑠)   𝑎𝑛𝑑   𝐹𝑁(𝑖) ≤ 𝐹𝑁(𝑠)}. 

Proposition 3.11. If 𝑋𝑁 is neutrosophic ℵ − right (resp., ℵ − left, ℵ − ideal) ideal, then 𝐼𝑠 is right 

(resp., left, ideal) ideal for every 𝑠 ∈ 𝑋. 

Proof: Let 𝑠 ∈ 𝑋. Then it is clear that φ ≠ Is𝑋. Let 𝑢 ∈ Is  and 𝑥 ∈ 𝑋. Then 𝑢𝑥 ∈ Is.  Indeed;

Since 𝑋𝑁  is neutrosophic ℵ −  right ideal and 𝑢, 𝑥 ∈ 𝑋,  we get 𝑇𝑁(𝑢𝑥) ≤ 𝑇𝑁(𝑢),  𝐼𝑁(𝑢𝑥) ≥ 𝐼𝑁(𝑢) 

and 𝐹𝑁(𝑢𝑥) ≤ 𝐹𝑁(𝑡). Since 𝑢 ∈ Is, we get 𝑇𝑁(𝑢) ≤ 𝑇𝑁(𝑠), 𝐼𝑁(𝑢) ≥ 𝐼𝑁(𝑠) and 𝐹𝑁(𝑢) ≤ 𝐹𝑁(𝑠) which 

imply 𝑢𝑥 ∈ Is. Therefore 𝐼𝑠 is a right ideal for every 𝑠 ∈ 𝑋.          □ 

Theorem 3.12.[4]  For any 𝐿 ⊆ 𝑋, the equivalent assertions are: 

(i) L is left (resp., right) ideal,

(ii) Characteristic neutrosophic ℵ −structure χL(XN)   is neutrosophic ℵ − left (resp., right)

ideal.

Theorem 3.13. Let 𝑋  be a semigroup. Then 𝑋  is simple if and only if 𝑋  is neutrosophic 

ℵ −simple. 
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Proof: Suppose 𝑋  is simple. Let 𝑋𝑀  be a neutrosophic ℵ −  ideal and 𝑢, 𝑣 ∈ 𝑋.  Then by 

Proposition 3.11, 𝐼𝑢  is an ideal of 𝑋.As𝑋  is simple, we have 𝐼𝑢 = 𝑋.  Since 𝑣 ∈ 𝐼𝑢,  we have 

𝑇𝑀(𝑣) ≤ 𝑇𝑀(𝑢),  𝐼𝑀(𝑣) ≥ 𝐼𝑀(𝑢) and 𝐹𝑀(𝑣) ≤ 𝐹𝑀(𝑢).  

Similarly, we can prove that 𝑇𝑀(𝑢) ≤ 𝑇𝑀(𝑣),    𝐼𝑀(𝑢) ≥ 𝐼𝑀(𝑣)  and 𝐹𝑀(𝑢) ≤ 𝐹𝑀(𝑣).   So 

𝑇𝑀(𝑢) = 𝑇𝑀(𝑣), 𝐼𝑀(𝑢) = 𝐼𝑀(𝑣) and 𝐹𝑀(𝑢) = 𝐹𝑀(𝑣). Hence 𝑋 is neutrosophic ℵ − simple. 

Conversely, assume that 𝑋  is neutrosophic ℵ −  simple and 𝐼  is an ideal of 𝑋.  Then by 

Theorem 3.12, χI(XN) is a neutrosophic ℵ − ideal. We now claim that 𝑋 = 𝐼. Let 𝑤 ∈ 𝑋. Since 𝑋 

is neutrosophic ℵ − simple, we have χI(XN) is a constant function and χI(XN)(w) = χI(XN)(y) for 

every 𝑦 ∈ 𝑋. In particular, we have χI(TN)(w) = χI(TN)(d) = −1,    χI(IN)(w) = χI(IN)(d) = 0 and 

χI(FN)(w) = χI(FN)(d) = −1 for any 𝑑 ∈ 𝐼 which implies 𝑤 ∈ 𝐼. Thus 𝑋 ⊆ 𝐼 and hence 𝑋 = 𝐼.  □ 

Lemma 3.14. Let 𝑋 be a semigroup. Then 𝑋  is simple if and only for every 𝑡 ∈ 𝑋, we have 𝑋 =

𝑋𝑡𝑋. 

Proof: Suppose 𝑋  is simple and let 𝑡 ∈ 𝑋. Then 𝑋(𝑋𝑡𝑋) ⊆ 𝑋𝑡𝑋 and (𝑋𝑡𝑋)𝑋 ⊆ 𝑋𝑡𝑋 imply that 

𝑋𝑡𝑋 is an ideal. Since 𝑋  is simple, we have 𝑋𝑡𝑋 = 𝑋. 

Conversely, let 𝑃 be an ideal and let 𝑎 ∈ 𝑃. Then 𝑋 = 𝑋𝑎𝑋,   𝑋𝑎𝑋 ⊆ 𝑋𝑃𝑋 ⊆ 𝑃 which implies 

𝑃 = 𝑋. Therefore 𝑋 is simple.               □ 

Theorem 3.15. Suppose 𝑋 is a semigroup. Then 𝑋  is simple if and only every neutrosophic ℵ − 

interior ideal of 𝑋 is a constant function. 

Proof: Suppose 𝑋  is simple and 𝑠, 𝑡 ∈ 𝑋. Let 𝑋𝑁  be neutrosophic ℵ − interior ideal. Then by 

Lemma 3.14, we get 𝑋 = 𝑋𝑠𝑋 = 𝑋𝑡𝑋.  As   𝑠 ∈ 𝑋𝑠𝑋,  we have 𝑠 = 𝑎𝑡𝑏  for 𝑎, 𝑏 ∈ 𝑋.  Since 𝑋𝑁  is 

neutrosophic ℵ − interior ideal ,  we have 𝑇𝑁(𝑠) = 𝑇𝑁(𝑎𝑡𝑏) ≤ 𝑇𝑁(𝑡),     𝐼𝑁(𝑠) = 𝐼𝑁(𝑎𝑡𝑏) ≥ 𝐼𝑁(𝑡)  and 

𝐹𝑁(𝑠) = 𝐹𝑁(𝑎𝑡𝑏) ≤ 𝐹𝑁(𝑡). Similarly, we can prove that 𝑇𝑁(𝑡) ≤ 𝑇𝑁(𝑠),     𝐼𝑁(𝑡) ≥ 𝐼𝑁(𝑠) and 𝐹𝑁(𝑡) ≤

𝐹𝑁(𝑠). So 𝑋𝑁 is a constant function. 

Conversely, suppose 𝑋𝑁 is neutrosophic ℵ − ideal.  Then 𝑋𝑁  is neutrosophic ℵ −  interior 

ideal. By hypothesis, 𝑋𝑁 is a constant function and so 𝑋𝑁 is neutrosophic ℵ −simple. By Theorem 

3.13, 𝑋  is simple.                    □ 

Theorem 3.16. Let 𝑋𝑀 be neutrosophic ℵ − structure and let 𝛾, 𝛿, 𝜀 ∈ [−1, 0] with−3 ≤  𝛾 + 𝛿 + 𝜀 ≤

0. If 𝑋𝑀 is neutrosophic ℵ −interior ideal, then (𝛾, 𝛿, 𝜀)-level set of 𝑋𝑀 is neutrosophic ℵ −interior

ideal whenever 𝑋𝑀(𝛾, 𝛿, 𝜀) ≠  ∅.

Proof: Suppose 𝑿𝑴(𝜸, 𝜹, 𝜺) ≠  ∅ for 𝜸, 𝜹, 𝜺 ∈ [−𝟏, 𝟎] with −𝟑 ≤  𝜸 + 𝜹 + 𝜺 ≤ 𝟎. 

Let 𝑿𝑴  be a neutrosophic ℵ −interior ideal and let 𝒖, 𝒗, 𝒘 ∈ 𝑿𝑴(𝜸, 𝜹, 𝜺). Then 𝑻𝑴(𝒖𝒗𝒘) ≤

𝑻𝑴(𝒗) ≤ 𝜶;   𝑰𝑴(𝒖𝒗𝒘) ≥ 𝑰𝑴(𝒗) ≥ 𝜷  and 𝑭𝑴(𝒖𝒗𝒘) ≤ 𝑭𝑴(𝒗) ≤ 𝜸  which imply 𝒖𝒗𝒘 ∈ 𝑿𝑴 ( 𝜶, 𝜷, 𝜸) . 

Therefore 𝑿𝑴(𝜸, 𝜹, 𝜺) is a neutrosophic ℵ −interior ideal of 𝑿.                 □ 

Theorem 3.17. Let 𝑋𝑁  be neutrosophic ℵ − structure with 𝛼, 𝛽, 𝛾 ∈ [−1, 0]  such that −3 ≤  𝛼 +

𝛽 +  𝛾 ≤ 0. If 𝑇𝑁
𝛼 , 𝐼𝑁

𝛽
and 𝐹𝑁

𝛾 are interior ideals, then 𝑋𝑁 is neutrosophic ℵ − interior ideal of 𝑋

whenever it is non-empty. 

Proof: Suppose that for 𝒂, 𝒃, 𝒄 ∈ 𝑿 with 𝑻𝑵(𝒂𝒃𝒄) > 𝑻𝑵(𝒃). Then 𝑻𝑵(𝒂𝒃𝒄) > 𝒕𝜶 ≥ 𝑻𝑵(𝒃) for some 

𝒕𝜶 ∈ [−𝟏, 𝟎). So 𝒃 ∈ 𝑻𝑵
𝒕𝜶(𝒃) but 𝒂𝒃𝒄 ∉ 𝑻𝑵

𝒕𝜶(𝒃), a contradiction. Thus 𝑻𝑵(𝒂𝒃𝒄) ≤ 𝑻𝑵(𝒃). 
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Suppose that for 𝒂, 𝒃, 𝒄 ∈ 𝑿 with 𝑰𝑵(𝒂𝒃𝒄) < 𝑰𝑵(𝒃). Then 𝑰𝑵(𝒂𝒃𝒄) < 𝒕𝜶 ≤ 𝑰𝑵(𝒃) for some 𝒕𝜶 ∈

[−𝟏, 𝟎). So 𝒃 ∈ 𝑰𝑵
𝒕𝜶(𝒃) but 𝒂𝒃𝒄 ∉ 𝑰𝑵

𝒕𝜶(𝒃),  a contradiction. Thus 𝑰𝑵(𝒂𝒃𝒄) ≥ 𝑰𝑵(𝒃). 

Suppose that for 𝒂, 𝒃, 𝒄 ∈ 𝑿  with 𝑭𝑵(𝒂𝒃𝒄) > 𝑭𝑵(𝒃).  Then 𝑭𝑵(𝒂𝒃𝒄) > 𝒕𝜶 ≥ 𝑭𝑵(𝒃)  for some 

𝒕𝜶 ∈ [−𝟏, 𝟎). So 𝒃 ∈ 𝑭𝑵
𝒕𝜶(𝒃) but 𝒂𝒃𝒄 ∉ 𝑭𝑵

𝒕𝜶(𝒃),  a contradiction. Thus 𝑭𝑵(𝒂𝒃𝒄) ≤ 𝑭𝑵(𝒃). 

Thus 𝑿𝑵 is neutrosophic ℵ − interior ideal.  □ 

Theorem 3.18. Let 𝑿𝑴 be neutrosophic ℵ − structure over 𝑿.  Then the equivalent assertions are: 

(i) 𝑿𝑴 is neutrosophic ℵ −interior ideal,

(ii) 𝑿𝑵ʘ 𝑿𝑴ʘ𝑿𝑵 ⊆  𝑿𝑴 for any neutrosophic ℵ − structure 𝑿𝑵.

Proof: Suppose  𝑿𝑴  is neutrosophic ℵ − interior ideal. Let 𝒙 ∈ 𝑿.  For any 𝒖, 𝒗, 𝒘 ∈ 𝑿 such that 

𝒙 = 𝒖𝒗𝒘.  Then 𝑻𝑴(𝒙) = 𝑻𝑴(𝒖𝒗𝒘)  ≤ 𝑻𝑴(𝒗) ≤ 𝑻𝑵(𝒖)˅𝑻𝑴(𝒗)˅𝑻𝑵(𝒘)  which implies 𝑻𝑴(𝒙) ≤

𝑻𝑵∘𝑴∘𝑵(𝒙).  Otherwise 𝒙 ≠ 𝒖𝒗𝒘.  Then 𝑻𝑴(𝒙) ≤ 𝟎 = 𝑻𝑵∘𝑴∘𝑵(𝒙).  Similarly, we can prove that 

𝑰𝑴(𝒙) ≥ 𝑰𝑵∘𝑴∘𝑵(𝒙) and  𝑭𝑴(𝒙) ≤ 𝑭𝑵∘𝑴∘𝑵(𝒙).  Thus 𝑿𝑵ʘ 𝑿𝑴ʘ𝑿𝑵 ⊆  𝑿𝑴. 

Conversely, assume that 𝑿𝑵ʘ 𝑿𝑴ʘ𝑿𝑵 ⊆  𝑿𝑴 for any neutrosophic ℵ −structure 𝑿𝑵. 

Let 𝒖, 𝒗, 𝒘 ∈ 𝑿. If 𝒙 = 𝒖𝒗𝒘, then 

𝑻𝑴(𝒖𝒗𝒘) = 𝑻𝑴(𝒙) ≤ (𝝌𝑿(𝑻)𝑵 ∘ 𝑻𝑴 ∘ 𝝌𝑿(𝑻)𝑵 )(𝒙) = ⋀ {𝝌𝑿(𝑻)𝑵 ∘ 𝑻𝑴)

𝒙=𝒓𝒘

(𝒓) ˅ 𝝌𝑿(𝑻)𝑵(𝒘)} 

 = ⋀{ ⋀ {𝝌𝑿(𝑻)𝑵

𝒓=𝒖𝒗

(𝒖) ˅ (𝑻)𝑴

𝒙=𝒓𝒄

(𝒗)} ˅ 𝝌𝑿(𝑻)𝑵(𝒘)} 

 ≤ 𝝌𝑿(𝑻)𝑵(𝒖)˅ (𝑻)𝑴(𝒗)˅ 𝝌𝑿(𝑻)𝑵(𝒘) = 𝑻𝑴(𝒗), 

𝑰𝑴(𝒖𝒗𝒘) = 𝑰𝑴(𝒙) ≤ (𝝌𝑿(𝑰)𝑵 ∘ 𝑰𝑴 ∘ 𝝌𝑿(𝑰)𝑵 )(𝒙) = ⋁ {𝝌𝑿(𝑰)𝑵 ∘ 𝑰𝑴)(𝒓) ˄  𝝌𝑿(𝑰)𝑵(𝒘)

𝒙=𝒓𝒘

} 

 = ⋁{ ⋁ {𝝌𝑿(𝑰)𝑵

𝒓=𝒖𝒗

(𝒖)˄(𝑰)𝑴(𝒗)} ˄ 𝝌𝑿(𝑰)𝑵(𝒘)

𝒙=𝒓𝒄

} 

 ≥ 𝝌𝑿(𝑰)𝑵(𝒖)˄(𝑰)𝑴(𝒗)˄ 𝝌𝑿(𝑰)𝑵(𝒘) = (𝑰)𝑴(𝒗), 

and 

𝑭𝑴(𝒖𝒗𝒘) = 𝑭𝑴(𝒙) ≤ (𝝌𝑿(𝑭)𝑵 ∘ 𝑭𝑴 ∘ 𝝌𝑿(𝑭)𝑵 )(𝒙) = ⋀ {𝝌𝑿(𝑭)𝑵 ∘ 𝑭𝑴)

𝒙=𝒓𝒘

(𝒓) ˅ 𝝌𝑿(𝑭)𝑵(𝒘)} 

 = ⋀{ ⋀ {𝝌𝑿(𝑭)𝑵

𝒓=𝒖𝒗

(𝒖) ˅ (𝑭)𝑴

𝒙=𝒓𝒄

(𝒗)} ˅ 𝝌𝑿(𝑭)𝑵(𝒘)} 

       ≤ 𝝌𝑿(𝑭)𝑵(𝒖)˅ (𝑭)𝑴(𝒗)˅ 𝝌𝑿(𝑭)𝑵(𝒘) = 𝑭𝑴(𝒗). 

Therefore  𝑿𝑴 is neutrosophic ℵ −interior ideal. □ 

Notation 3.19. Let 𝑿  and 𝒁 be semigroups. A mapping 𝒈: 𝑿 → 𝒁 is said to be a homomorphism if 

𝒈(𝒖𝒗) = 𝒈(𝒖)𝒈(𝒗) for all 𝒖, 𝒗 ∈ 𝑿. Throughout this remaining section, we denote 𝑨𝒖𝒕(𝑿), the set 

of all automorphisms of 𝑿. 

Definition 3.20. An interior ideal 𝑱 of a semigroup 𝑿 is called a characteristic interior ideal if 

𝒉(𝑱) = 𝑱 for all 𝒉 ∈ 𝑨𝒖𝒕(𝑿). 
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Definition 3.21. Let 𝑿  be a semigroup. A neutrosophic ℵ − interior ideal 𝑿𝑵  is called 

neutrosophic ℵ − characteristic interior ideal if 𝑻𝑵(𝒉(𝒖)) = 𝑻𝑵(𝒖),   𝑰𝑵(𝒉(𝒖)) = 𝑰𝑵(𝒖)  and 

𝑭𝑵(𝒉(𝒖)) = 𝑭𝑵(𝒖) for all 𝒖 ∈ 𝑿 and all 𝒉 ∈ 𝑨𝒖𝒕(𝑿). 

Theorem 3.22. For any L ⊆ X, the equivalent assertions are: 

(i) L is characteristic interior ideal,

(ii) The characteristic neutrosophic ℵ − structure χL(XM)  is neutrosophic ℵ − characteristic

interior ideal.

Proof: Suppose 𝐿 is characteristic interior ideal and let 𝑥 ∈ 𝑋. Then by Theorem 3.1, χL(XM) is 

neutrosophic ℵ −interior ideal. If 𝑥 ∈ 𝐿,  then 𝜒𝐿(𝑇)𝑀(𝑥) = −1, 𝜒𝐿(𝐼)𝑀(𝑥) = 0, and 𝜒𝐿(𝐹)𝑀(𝑥) =

−1.  Now, for any ℎ ∈ 𝐴𝑢𝑡(𝑋),   ℎ(𝑥) ∈ ℎ(𝐿) = 𝐿 which implies 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = −1, 𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) =

0,  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) = −1.  If 𝑥 ∉ 𝐿,  then 𝜒𝐿(𝑇)𝑀(𝑥) = 0, 𝜒𝐿(𝐼)𝑀(𝑥) = −1,  and 𝜒𝐿(𝐹)𝑀(𝑥) = 0.

Now, for any ℎ ∈ 𝐴𝑢𝑡(𝑋), ℎ(𝑥) ∉ ℎ(𝐿) which implies 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = 0, 𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) = −1, and

𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) = 0.  Thus 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝑇)𝑀(𝑥),   𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝐼)𝑀(𝑥),  and

𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝐹)𝑀(𝑥)  for all 𝑥 ∈ 𝑋 and hence  χL(XM)  is neutrosophic ℵ − characteristic

interior ideal.

Conversely, assume that χL(XM) is neutrosophic ℵ −characteristic interior ideal . Then by 

Theorem 3.1, 𝐿 is an interior ideal .  Now, let ℎ ∈ 𝐴𝑢𝑡(𝑋)  and 𝑥 ∈ 𝐿.  Then 𝜒𝐿(𝑇)𝑀(𝑥) =

−1,   𝜒𝐿(𝐼)𝑀(𝑥) = 0 and 𝜒𝐿(𝐹)𝑀(𝑥) = −1. Since χL(XM) is neutrosophic  ℵ −characteristic interior

ideal ,  we have 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝑇)𝑀(𝑥),   𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝐼)𝑀(𝑥)  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) =

𝜒𝐿(𝑇)𝑀(𝑥) which imply ℎ(𝑥) ∈ 𝐿. So ℎ(𝐿) ⊆ 𝐿 for all ℎ ∈ 𝐴𝑢𝑡(𝑋). Again, since ℎ ∈ 𝐴𝑢𝑡(𝑋) and

𝑥 ∈ 𝐿, there exists 𝑦 ∈ 𝐿 such that ℎ(𝑦) = 𝑥.

Suppose that 𝑦 ∉ 𝐿. Then 𝜒𝐿(𝑇)𝑀(𝑦) = 0, 𝜒𝐿(𝐼)𝑀(𝑦) = −1 and 𝜒𝐿(𝐹)𝑀(𝑦) = 0. 

Since 𝜒𝐿(𝑇)𝑀(ℎ(𝑦)) = 𝜒𝐿(𝑇)𝑀(𝑦),     𝜒𝐿(𝐼)𝑀(ℎ(𝑦)) = 𝜒𝐿(𝐼)𝑀(𝑦)  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑦)) = 𝜒𝐿(𝑇)𝑀(𝑦),  we 

get 𝜒𝐿(𝑇)𝑀(ℎ(𝑦)) = 0,   𝜒𝐿(𝐼)𝑀(ℎ(𝑦)) = −1  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑦)) = 0  which imply ℎ(𝑦) ∉ 𝐿,  a 

contradiction. So 𝑦 ∈ 𝐿  i.e., ℎ(𝑦) ∈ 𝐿.  Thus 𝐿 ⊆ ℎ(𝐿)  for all ℎ ∈ 𝐴𝑢𝑡(𝑋)  and hence 𝐿  is 

characteristic interior ideal.                     □  

Theorem 3.23. For a semigroup 𝑋,  the equivalent statements are: 

(i) 𝑋 is intra-regular,

(ii) For any neutrosophic ℵ −interior ideal 𝑋𝑀, we have 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋.

Proof: (𝑖) ⇒ (𝑖𝑖) Suppose 𝑋 is intra-regular, and 𝑋𝑀 is neutrosophic ℵ − interior ideal and 𝑤 ∈ 𝑋. 

Then there exist 𝑟, 𝑠 ∈ 𝑋 such that 𝑤 = 𝑟𝑤2𝑠. Now 𝑇𝑀(𝑤) = 𝑇𝑀(𝑟𝑤2𝑠) ≤ 𝑇𝑀(𝑤2) ≤ 𝑇𝑀(𝑤) and so

𝑇𝑀(𝑤) = 𝑇𝑀(𝑤2),    𝐼𝑀(𝑤) = 𝐼𝑀(𝑟𝑤2𝑠) ≥ 𝐼𝑀(𝑤2) ≥ 𝐼𝑀(𝑤)  and so 𝐼𝑀(𝑤) = 𝐼𝑀(𝑤2),  and 𝐹𝑀(𝑤) =

𝐹𝑀(𝑟𝑤2𝑠) ≤ 𝐹𝑀(𝑤2) ≤ 𝐹𝑀(𝑤) and so 𝐹𝑀(𝑤) = 𝐹𝑀(𝑤2). Therefore 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋.

(𝑖𝑖) ⇒ (𝑖)  Let (𝑖𝑖) holds and 𝑠 ∈ 𝑋. Then 𝐼(𝑠2) is an ideal of 𝑋. By Theorem 3.5 of [4],  𝜒𝐼(𝑠2)(𝑋𝑀)

is neutrosophic ℵ − ideal. By assumption, 𝜒𝐼(𝑠2)(𝑋𝑀)(𝑠) = 𝜒𝐼(𝑠2)(𝑋𝑀)(𝑠2).  Since 𝜒𝐼(𝑠2)(𝑇)𝑀(𝑠2) =

−1 = 𝜒𝐼(𝑠2)(𝐹)𝑀(𝑠2)  and 𝜒𝐼(𝑠2)(𝐼)𝑀(𝑠2) = 0,  we get 𝜒𝐼(𝑠2)(𝑇)𝑀(𝑠) = −1 = 𝜒𝐼(𝑠2)(𝐹)𝑀(𝑠)  and

𝜒𝐼(𝑠2)(𝐼)𝑀(𝑠2) = 0 which imply 𝑠 ∈ 𝐼(𝑠2). Hence 𝑋 is intra-regular.   □ 

Theorem 3.24. For a semigroup 𝑋,  the equivalent statements are: 

(i) 𝑋 is left (resp., right) regular,
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(ii) For any neutrosophic  ℵ −interior ideal 𝑋𝑀 , we have 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋.

Proof: (𝑖) ⇒ (𝑖𝑖) Let 𝑋 be left regular. Then there exists 𝑦 ∈ 𝑋 such that 𝑤 = 𝑦𝑤2.  Let 𝑋𝑀 be a

neutrosophic ℵ −interior ideal. Then 𝑇𝑀(𝑤) = 𝑇𝑀(𝑦𝑤2) ≤ 𝑇𝑀(𝑤) and so 𝑇𝑀(𝑤) = 𝑇𝑀(𝑤2),  𝐼𝑀(𝑤) =

𝐼𝑀(𝑦𝑤2) ≥ 𝐼𝑀(𝑤)  and so 𝐼𝑀(𝑤) = 𝐼𝑀(𝑤2),  and 𝐹𝑀(𝑤) = 𝐹𝑀(𝑦𝑤2) ≤ 𝐹𝑀(𝑤)  and so 𝐹𝑀(𝑤) =

𝐹𝑀(𝑤2).  Therefore 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋.

(𝑖𝑖) ⇒ (𝑖) Suppose (𝑖𝑖) holds and let 𝑋𝑀  be neutrosophic ℵ −interior ideal. Then for any 𝑤 ∈ 𝑋,

𝜒𝐿(𝑤2)(𝑇)𝑀(𝑤) = 𝜒𝐿(𝑤2)(𝑇)𝑀(𝑤2) = −1,    𝜒𝐿(𝑤2)(𝐼)𝑀(𝑤) = 𝜒𝐿(𝑤2)(𝐼)𝑀(𝑤2) = 0  and 𝜒𝐿(𝑤2)(𝐹)𝑀(𝑤) =

𝜒𝐿(𝑤2)(𝐹)𝑀(𝑤2) = −1 which imply 𝑤 ∈ 𝐿(𝑤2). Thus 𝑋 is left regular.               □

Conclusions 

In this paper, we have introduced the concepts of neutrosophic ℵ − interior ideals and 

neutrosophic ℵ − characteristic interior ideals in semigroups and studied their properties, and 

characterized regular and intra-regular semigroups using neutrosophic ℵ-interior ideal structures. 

We have also shown that R is a characteristic interior ideal if and only if the characteristic 

neutrosophic ℵ −structure χ
R

(XN) is neutrosophic ℵ −characteristic interior ideal. In future, we

will define neutrosophic ℵ −prime ideals in semigroups and study their properties.  
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NeutroOrderedAlgebra: Applications to Semigroups

Abstract. Starting with a partial order on a NeutroAlgebra, we get a NeutroStructure. The latter if it satisfies 
the conditions of NeutroOrder, it becomes a NeutroOrderedAlgebra. In this paper, we apply our new defined 
notion to semigroups by studying NeutroOrderedSemigroups. More precisely, we define some related terms like 
NeutrosOrderedSemigroup, NeutroOrderedIdeal, NeutroOrderedFilter, NeutroOrderedHomomorphism, etc., il-
lustrate them via some examples, and study some of their properties.

Keywords: NeutroAlgebra, NeutroSemigroup, NeutroOrderedAlgebra, NeutrosOrderedSemigroup, Neu-

troOrderedIdeal, NeutroOrderedFilter, NeutroOrderedHomomorphism, NeutroOrderedStrongHomomorphism. 

1. Introduction

Neutrosophy, the study of neutralities, is a new branch of Philosophy initiated by Smaran-

dache in 1995. It has many applications in almost every field. Many algebraists worked on the

connection between neutrosophy and algebraic structures. Fore more details, we refer to [1–3].

Unlike the idealistic or abstract algebraic structures, from pure mathematics, constructed on

a given perfect space (set), where the axioms (laws, rules, theorems, results etc.) are totally

(100%) true for all spaces elements, our world and reality consist of approximations, imper-

fections, vagueness, and partialities. Starting from the latter idea, Smarandache introduced

NeutroAlgebra. In 2019 and 2020, he [11–13] generalized the classical Algebraic Structures to

NeutroAlgebraic Structures (or NeutroAlgebras) whose operations and axioms are partially

true, partially indeterminate, and partially false as extensions of Partial Algebra, and to An-

tiAlgebraic Structures (or AntiAlgebras) whose operations and axioms are totally false. And

in general, he extended any classical Structure, in no matter what field of knowledge, to a

Madeleine Al-Tahan, F. Smarandache, Bijan Davvaz (2020). NeutroOrderedAlgebra: Applications to 
Semigroups. Neutrosophic Sets and Systems 39, 133-147

Madeleine Al-Tahan, F. Smarandache, Bijan Davvaz 
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NeutroStructure and an AntiStructure. A Partial Algebra is an algebra that has at least one

Partial Operation, and all its Axioms are classical. Through a theorem, Smarandache [11]

proved that a NeutroAlgebra is a generalization of Partial Algebra and gave some examples

of NeutroAlgebras that are not Partial Algebras. Many researchers worked on special types

of NeutroAlgebras and AntiAlgebras by applying them to different types of algebraic struc-

tures such as groups, rings, BE-Algebras, BCK-Algebras, etc. For more details, we refer

to [4–6,9, 10,14,15].

Inspired by NeutroAlgebra and ordered Algebra, our paper introduces and studies Neu-

troOrderedAlgebra. And it is constructed as follows: After an Introduction, in Section 2,

we introduce NeutroOrderedAlgebra and some related terms such as NeutroOrderedSubAl-

gebra and NeutroOrderedHomomorphism. And in Section 3, we apply the concept of Neu-

troOrderedAlgebra to semigroups and study NeutroOrderedSemigroups by presenting several

examples and studying some of their interesting properties.

2. NeutroOrderedAlgebra

In this section, we combine the notions of ordered algebraic structures and NeutroAlgebra

to introduce NeutroOrderedAlgebra. Some new definitions related to the new concept are

presented. For details about ordered algebraic structures, we refer to [7, 8].

Definition 2.1. [11] A non-empty set A endowed with n operations “?i” for i = 1, . . . , n, is

called NeutroAlgebra if it has at least one NeutroOperation or at least one NeutroAxiom with

no AntiOperations nor AntiAxioms.

Definition 2.2. [8] Let A be an Algebra with n operations “?i” and “≤” be a partial order

(reflexive, anti-symmetric, and transitive) on A. Then (A, ?1, . . . , ?n,≤) is an Ordered Algebra

if the following conditions hold.

If x ≤ y ∈ A then z ?i x ≤ z ?i y and x ?i z ≤ y ?i z for all i = 1, . . . , n and z ∈ A.

Definition 2.3. Let A be a NeutroAlgebra with n (Neutro) operations “?i” and “≤” be a

partial order (reflexive, anti-symmetric, and transitive) on A. Then (A, ?1, . . . , ?n,≤) is a

NeutroOrderedAlgebra if the following conditions hold.

(1) There exist x ≤ y ∈ A with x 6= y such that z ?i x ≤ z ?i y and x ?i z ≤ y ?i z for all

z ∈ A and i = 1, . . . , n. (This condition is called degree of truth, “T”.)

(2) There exist x ≤ y ∈ A and z ∈ A such that z ?i x � z ?i y or x ?i z � y ?i z for some

i = 1, . . . , n. (This condition is called degree of falsity, “F”.)

(3) There exist x ≤ y ∈ A and z ∈ A such that z ?i x or z ?i y or x ?i z or y ?i z are

indeterminate, or the relation between z ?i x and z ?i y, or the relation between x ?i z
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and y ?i z are indeterminate for some i = 1, . . . , n. (This condition is called degree of

indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical Ordered Algebra as well

from (0, 0, 1) that represents the AntiOrderedAlgebra.

Definition 2.4. Let (A, ?1, . . . , ?n,≤) be a NeutroOrderedAlgebra. If “≤” is a total order on

A then A is called NeutroTotalOrderedAlgebra.

Definition 2.5. Let (A, ?1, . . . , ?n,≤A) be a NeutroOrderedAlgebra and ∅ 6= S ⊆ A. Then S

is a NeutroOrderedSubAlgebra of A if (S, ?1, . . . , ?n,≤A) is a NeutroOrderedAlgebra and there

exists x ∈ S with (x] = {y ∈ A : y ≤A x} ⊆ S.

Remark 2.6. A NeutroOrderedAlgebra has at least one NeutroOrderedSubAlgebra which is

itself.

Definition 2.7. Let (A, ?1, . . . , ?n,≤A) and (B,~1, . . . ,~n,≤B) be NeutroOrderedAlgebras

and φ : A→ B be a function. Then

(1) φ is called NeutroOrderedHomomorphism if there exist x, y ∈ A such that for all i =

1, . . . , n, φ(x ?i y) = φ(x) ~i φ(y), and there exist a ≤A b ∈ A with a 6= b such that

φ(a) ≤B φ(b).

(2) φ is called NeutroOrderedIsomomorphism if φ is a bijective NeutroOrderedHomomor-

phism. In this case, we write A ∼=I B.

(3) φ is called NeutroOrderedStrongHomomorphism if for all x, y ∈ A and for all i =

1, . . . , n, we have φ(x?i y) = φ(x)~iφ(y) and a ≤A b ∈ A is equivalent to φ(a) ≤B φ(b)

for all a, b ∈ A.

(4) φ is called NeutroOrderedStrongIsomomorphism if φ is a bijective NeutroOrdered-

StrongHomomorphism. In this case, we write A ∼=SI B.

Example 2.8. Let (A, ?1, . . . , ?n,≤A) be a NeutroOrderedAlgebra, B a NeutroOrderedSub-

Algebra of A, and φ : B → A be the inclusion map (φ(x) = x for all x ∈ B). Then φ is a

NeutroOrderedStrongHomomorphism.

Example 2.9. Let (A, ?1, . . . , ?n,≤A) be a NeutroOrderedAlgebra and φ : A → A be the

identity map (φ(x) = x for all x ∈ A). Then φ is a NeutroOrderedStrongIsomomorphism.

Remark 2.10. Every NeutroOrderedStrongHomomorphism (NeutroOrderedStrongIsomor-

phism) is a NeutroOrderedHomomorphism (NeutroOrderedIsomorphism).

Theorem 2.11. The relation “∼=SI” is an equivalence relation on the set of NeutroOrderedAl-

gebras.
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Proof. By taking the identity map and using Example 2.9, we can easily prove that “∼=SI”

is a reflexive relation. Let A ∼=SI B. Then there exist a NeutroOrderedStrongIsomorphism

φ : (A, ?1, . . . , ?n,≤A) → (B,~1, . . . ,~n,≤B). We prove that φ−1 : B → A is a Neutro-

OrderedStrongIsomorphism. For all b1, b2 ∈ B, there exist a1, a2 ∈ A with φ(a1) = b1 and

φ(a2) = b2. For all i = 1, . . . , n, we have:

φ−1(b1 ~i b2) = φ−1(φ(a1) ~i φ(a2)) = φ−1(φ(a1 ?i a2)) = a1 ?i a2 = φ−1(b1) ?i φ
−1(b2).

Moreover, having a1 ≤A a2 ∈ A equivalent to φ(a1) ≤B φ(a2) ∈ B and φ an onto function

implies that b1 = φ(a1) ≤B φ(a2) = b2 ∈ B is equivalent to a1 = φ−1(b1) ≤A a2 = φ−1(b2) ∈ A.

Thus, B ∼=SI A and hence, “∼=SI” is a symmetric relation. Let A ∼=SI B and B ∼=SI C. Then

there exist NeutroOrderedStrongIsomorphisms φ : A→ B and ψ : B → C. One can easily see

that ψ ◦ φ : A→ C is a NeutroOrderedStrongIsomorphism. Thus, A ∼=SI C and hence, “∼=SI”

is a transitive relation.

Remark 2.12. The relation “∼=I” is a reflexive and symmetric relation on the set of Neutro-

OrderedAlgebras. But it may fail to be a transitive relation.

3. NeutroOrderedSemigroup

In this section, we use the defined notion of NeutroOrderedAlgebra in Section 2 and apply

it to semigroups. As a result, we define NeutroOrderedSemigroup and other related concepts.

Moreover, we present some examples of finite as well as infinite NeutroOrderedSemigroups.

Finally, we study some properties of NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and

NeutroOrderedFilters.

Definition 3.1. [8] Let (S, ·) be a semigroup (“·” is an associative and a binary closed

operation) and “≤” a partial order on S. Then (S, ·,≤) is an ordered semigroup if for every

x ≤ y ∈ S, z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.

Definition 3.2. [8] Let (S, ·,≤) be an ordered semigroup and ∅ 6= M ⊆ S. Then

(1) M is an ordered subsemigroup of S if (M, ·,≤) is an ordered semigroup and (x] ⊆ M

for all x ∈M . i.e., if y ≤ x then y ∈M .

(2) M is an ordered left ideal of S if M is an ordered subsemigroup of S and for all x ∈M ,

r ∈ S, we have rx ∈M .

(3) M is an ordered right ideal of S if M is an ordered subsemigroup of S and for all

x ∈M , r ∈ S, we have xr ∈M .

(4) M is an ordered ideal of S if M is both: an ordered left ideal of S and an ordered right

ideal of S.
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(5) M is an ordered filter of S if (M, ·) is a semigroup and for all x, y ∈ S with x · y ∈M ,

we have x, y ∈M and [y) ⊆M for all y ∈M . i.e., if y ∈M with y ≤ x then x ∈M .

Definition 3.3. Let (S, ·) be a NeutroSemigroup and “≤” be a partial order (reflexive, anti-

symmetric, and transitive) on S. Then (S, ·,≤) is a NeutroOrderedSemigroup if the following

conditions hold.

(1) There exist x ≤ y ∈ S with x 6= y such that z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.

(This condition is called degree of truth, “T”.)

(2) There exist x ≤ y ∈ S and z ∈ S such that z · x � z · y or x · z � y · z. (This condition

is called degree of falsity, “F”.)

(3) There exist x ≤ y ∈ S and z ∈ S such that z ·x or z ·y or x ·z or y ·z are indeterminate,

or the relation between z · x and z · y, or the relation between x · z and y · z are

indeterminate. (This condition is called degree of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical Ordered Semigroup, and

from (0, 0, 1) that represents the AntiOrderedSemigroup.

Definition 3.4. Let (S, ·,≤) be a NeutroOrderedSemigroup . If “≤” is a total order on A

then A is called NeutroTotalOrderedSemigroup.

Definition 3.5. Let (S, ·,≤) be a NeutroOrderedSemigroup and ∅ 6= M ⊆ S. Then

(1) M is a NeutroOrderedSubSemigroup of S if (M, ·,≤) is a NeutroOrderedSemigroup and

there exist x ∈M with (x] = {y ∈ S : y ≤ x} ⊆M .

(2) M is a NeutroOrderedLeftIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that r · x ∈M for all r ∈ S.

(3) M is a NeutroOrderedRightIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that x · r ∈M for all r ∈ S
(4) M is a NeutroOrderedIdeal of S if M is a NeutroOrderedSubSemigroup of S and there

exists x ∈M such that r · x ∈M and x · r ∈M for all r ∈ S.

(5) M is a NeutroOrderedFilter of S if (M, ·,≤) is a NeutroOrderedSemigroup and there

exists x ∈ S such that for all y, z ∈ S with x · y ∈M and z · x ∈M , we have y, z ∈M
and there exists y ∈M [y) = {x ∈ S : y ≤ x} ⊆M .

Proposition 3.6. Let (S, ·,≤) be a NeutroOrderedSemigroup and ∅ 6= M ⊆ S. Then the

following statements are true.

(1) If S contains a minimum element (i.e. there exists m ∈ S such that m ≤ x for

all x ∈ S.) and M is a NeutroOrderedSubSemigroup (or NeutroOrderedRightIdeal or

NeutroOrderedLeftIdeal or NeutroOrderedIdeal) of S then the minimum element is in

M .
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(2) If If S contains a maximum element (i.e. there exists n ∈ S such that x ≤ n for all

x ∈ S.) and M is a NeutroOrderedFilter of S then M contains the maximum element

of S.

Proof. The proof is straightforward.

Remark 3.7. Let (S, ·,≤) be a NeutroOrderedSemigroup. Then every NeutroOrderedIdeal

of S is NeutroOrderedLeftIdeal of S and a NeutroOrderedRightIdeal of S. But the converse

may not hold. (See Example 3.16.)

Definition 3.8. Let (A, ?,≤A) and (B,~,≤B) be NeutroOrderedSemigroups and φ : A→ B

be a function. Then

(1) φ is called NeutroOrderedHomomorphism if φ(x ? y) = φ(x) ~ φ(y) for some x, y ∈ A
and there exist a ≤A b ∈ A with a 6= b such that φ(a) ≤B φ(b).

(2) φ is called NeutroOrderedIsomomorphism if φ is a bijective NeutroOrderedHomomor-

phism.

(3) φ is called NeutroOrderedStrongHomomorphism if φ(x?y) = φ(x)~φ(y) for all x, y ∈ A
and a ≤A b ∈ A is equivalent to φ(a) ≤B φ(b) ∈ B.

(4) φ is called NeutroOrderedStrongIsomomorphism if φ is a bijective NeutroOrdered-

StrongHomomorphism.

Example 3.9. Let S1 = {s, a,m} and (S1, ·1) be defined by the following table.

·1 s a m

s s m s

a m a m

m m m m

Since s ·1 (s ·1 s) = s = (s ·1 s) ·1 s and s ·1 (a ·1 m) = s 6= m = (s ·1 a) ·1 m, it follows that

(S1, ·1) is a NeutroSemigroup.

By defining the total order

≤1= {(m,m), (m, s), (m, a), (s, s), (s, a), (a, a)}

on S1, we get that (S1, ·1,≤1) is a NeutroTotalOrderedSemigroup. This is easily seen as:

m ≤1 s implies that m ·1 x ≤1 s ·1 x and x ·1m ≤1 x ·1 s for all x ∈ S1. And having s ≤1 a but

s ·1 s = s �1 m = a ·1 s.
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Example 3.10. Let S2 = {0, 1, 2, 3} and (S2, ·2) be defined by the following table.

·2 0 1 2 3

0 0 0 0 3

1 0 1 1 3

2 0 3 2 2

3 3 3 3 3

Since 0 ·2 (0 ·2 0) = 0 = (0 ·2 0) ·2 0 and 1 ·2 (2 ·2 3) = 1 6= 3 = (1 ·2 2) ·2 3, it follows that (S2, ·2)
is a NeutroSemigroup.

By defining the total order

≤2= {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

on S2, we get that (S2, ·2,≤2) is a NeutroTotalOrderedSemigroup. This is easily seen as:

0 ≤2 3 implies that 0 ·2 x ≤2 3 ·2 x and x ·2 0 ≤2 x ·2 3 for all x ∈ S2. And having 1 ≤2 2 but

2 ·2 1 = 3 �2 2 = 2 ·2 2.

We present examples on NeutroOrderedSemigroups that are not NeutroTotalOrderedSemi-

groups.

Example 3.11. Let S2 = {0, 1, 2, 3} and (S2, ·′2) be defined by the following table.

·′2 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 3 2

3 0 1 3 2

Since 0 ·′2 (0 ·′2 0) = 0 = (0 ·′2 0) ·′2 0 and 2 ·′2 (2 ·′2 3) = 3 6= 2 = (2 ·′2 2) ·′2 3, it follows that (S2, ·′2)
is a NeutroSemigroup.

By defining the partial order ( which is not a total order)

≤′2= {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2), (3, 3)}

on S2, we get that (S2, ·′2,≤′2) is a NeutroOrderedSemigroup (that is not a NeutroTotalOrdered-

Semigroup). This is easily seen as:

0 ≤′2 1 implies that 0 ·′2 x = x ·′2 0 = 0 ≤′2 1 = 1 ·′2 x = x ·′2 1. And having 0 ≤′2 2 but

2 ·′2 0 = 0 �′2 3 = 2 ·′2 2.
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Example 3.12. Let S3 = {0, 1, 2, 3, 4} and (S3, ·3) be defined by the following table.

·3 0 1 2 3 4

0 0 0 0 3 0

1 0 1 2 1 1

2 0 4 2 3 3

3 0 4 2 3 3

4 0 0 0 4 0

Since 0 ·3 (0 ·3 0) = 0 = (0 ·3 0) ·3 0 and 1 ·3 (2 ·3 1) = 1 6= 4 = (1 ·3 2) ·3 1, it follows that (S3, ·3)
is a NeutroSemigroup.

By defining the partial order

≤3= {(0, 0), (0, 1), (0, 3), (0, 4), (1, 1), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)}

on S3, we get that (S3, ·3,≤3) is a NeutroOrderedSemigroup that is not NeutroTotalOrdered-

Semigroup as “≤3” is not a total order on S3. This is easily seen as:

0 ≤3 4 implies that 0 ·3 x ≤3 4 ·3 x and x ·3 0 ≤3 x ·3 4 for all x ∈ S3. And having 0 ≤3 1 but

0 ·3 2 = 0 �3 2 = 1 ·3 2.

Example 3.13. Let Z be the set of integers and define “�” on Z as follows: x� y = xy − 1

for all x, y ∈ Z. Since 0� (1�0) = −1 = (0�1)�0 and 0� (1�2) = −1 6= −3 = (0�1)�2, it

follows that (Z,�) is a NeutroSemigroup. We define the partial order “≤Z” on Z as −1 ≤Z x
for all x ∈ Z and for a, b ≥ 0, a ≤Z b is equivalent to a ≤ b and for a, b < 0, a ≤Z b is equivalent

to a ≥ b. In this way, we get −1 ≤Z 0 ≤Z 1 ≤Z 2 ≤Z . . . and −1 ≤Z −2 ≤Z −3 ≤Z . . .. Having

0 ≤Z 1 and x � 0 = 0 � x = −1 ≤Z x − 1 = 1 � x = x � 1 for all x ∈ Z and −1 ≤Z 0 but

(−1)� (−1) = 0 �Z −1 = 0� (−1) implies that (Z,�,≤Z) is a NeutroOrderedSemigroup with

−1 as minimum element.

Example 3.14. Let “≤” be the usual order on Z and “�” be the operation define on Z in

Example 3.13. One can easily see that (Z,�,≤) is not a NeutroTotalOrderedSemigroup as

there exist no x ≤ y ∈ Z (with x 6= y) such that z � x ≤ z � y for all z ∈ Z. In this case and

according to Definition 3.3, (T, I, F ) = (0, 0, 1).

Example 3.15. Let Z be the set of integers and define “⊗” on Z as follows: x⊗y = xy+1 for

all x, y ∈ Z. Since 0⊗ (1⊗ 0) = 1 = (0⊗ 1)⊗ 0 and 0⊗ (1⊗ 2) = 1 6= 3 = (0⊗ 1)⊗ 2, it follows

that (Z,⊗) is a NeutroSemigroup. We define the partial order “≤⊗” on Z as 1 ≤⊗ x for all

x ∈ Z and for a, b ≥ 1, a ≤⊗ b is equivalent to a ≤ b and for a, b ≤ 0, a ≤⊗ b is equivalent

to a ≥ b. In this way, we get 1 ≤⊗ 2 ≤⊗ 3 ≤⊗ 4 ≤⊗ . . . and 1 ≤⊗ 0 ≤⊗ −1 ≤⊗ −2 ≤⊗ . . ..
Having 0 ≤⊗ −1 and x ⊗ 0 = 0 ⊗ x = 1 ≤⊗ −x + 1 = −1 ⊗ x = x ⊗ (−1) for all x ∈ Z and
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1 ≤⊗ 0 but 1⊗ 1 = 2 �⊗ 1 = 0� 1 implies that (Z,⊗,≤⊗) is a NeutroOrderedSemigroup with

1 as minimum element.

We present some examples on NeutroOrderedSubSemigroups, NeutroOrderedRightIdeals,

NeutroOrderedLeftIdeals, NeutroOrderedIdeals, and NeutroOrderedFilters.

Example 3.16. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example 3.12.

Then I = {0, 1, 2} is a NeutroSubSemigroup of S3 as (I, ·3) is NeutroOperation (with no

AntiAxiom as 0 ·3 (0 ·3 0) = (0 ·3 0) ·3 0) and 0 ≤3 1 ∈ I but 2 ·3 0 = 0 ≤3 4 = 2 ·3 1 is

indeterminate over I as 4 /∈ I. Moreover, (0] = {0} ⊆ I. Since g ·3 0 = 0 ∈ I for all g ∈ S3,
it follows that I is a NeutroOrderedLeftIdeal of S3. Moreover, having 1 ·3 g ∈ {0, 1, 2} ⊆ I

implies that I is a NeutroOrderedRightIdeal of S3. Since there is no g ∈ S satisfying g ·3 i ∈ I
and i ·3 g ∈ I for a particular i ∈ I, it follows that I is not a NeutroOrderedIdeal of S3.

Remark 3.17. Unlike the case in Ordered Semigroups, the intersection of NeutroOrdered-

Subsemigroups may not be a NeutroOrderedSubsemigroup. (See Example 3.18.)

Example 3.18. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example 3.12.

One can easily see that J = {0, 1, 3} is a NeutroOrderedSubsemigroup of S3. From Example

3.16, we know that I = {0, 1, 2} is a NeutroOrderedSubsemigroup of S3. Since ({0, 1}, ·3) is a

semigroup and not a NeutroSemigroup, it follows that (I ∩ J, ·3,≤3) is not a NeutroOrdered-

SubSemigroup of S3. Here, I ∩ J = {0, 1}.

Example 3.19. Let (Z,�,≤Z) be the NeutroOrderedSemigroup presented in Example 3.13.

Then I = {−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of Z. This is clear as:

(1) 0� (1� 0) = −1 = (0� 1)� 0 and 0� (−1�−2) = −1 6= 1 = (0�−1)�−2;

(2) g � 0 = 0� g = −1 ∈ I for all g ∈ Z;

(3) −1 ∈ I and (−1] = {−1} ⊆ I;

(4) 0 ≤Z 1 ∈ I implies that 0� x = x� 0 = −1 ≤Z x− 1 = x� 1 = 1� x for all x ∈ I and

−1 ≤Z 0 ∈ I but −1�−1 = 0 �Z −1 = 0�−1.

Example 3.20. Let (Z,�,≤Z) be the NeutroOrderedSemigroup presented in Example 3.13.

Then F = {−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of Z. This is clear as:

(1) 0� (1� 0) = −1 = (0� 1)� 0 and 1� (2� 3) = 4 6= 2 = (1� 2)� 3;

(2) 1 ∈ F and for all x ∈ Z such that x− 1 = 1� x = x� 1 ∈ F , we have x ∈ F ;

(3) 0 ∈ F and [0) = {0, 1, 2, 3, 4, . . .} ⊆ F ;

(4) 0 ≤Z 1 ∈ F and 0⊗ (−1) = −1 ≤ −2 = 1⊗ (−1) is indeterminate in F .

Here, F is not a NeutroOrderedSubSemigroup of Z as there exist no x ∈ F with (x] ⊆ F .

Example 3.21. Let (S2, ·2,≤2) be the NeutroTotalOrderedSemigroup presented in Example

3.10. Then F = {1, 2, 3} is a NeutroOrderedFilter of S2. This is clear as:
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(1) 2 ·2 (2 ·2 2) = (2 ·2 2) ·2 2 and 1 ·2 (2 ·2 1) = 3 6= 1 = (1 ·2 2) ·2 1;

(2) 1 ·2 x ∈ F and z ·2 1 ∈ F implies that x, z ∈ F ;

(3) 3 ∈ F and [3) = {3} ⊆ F ;

(4) 2 ≤2 3 ∈ F implies that 2 ·2 x ≤2 3 ·2 x and x ·2 2 ≤2 x ·2 3 for all x ∈ F and 1 ≤2 2 but

2 ·2 1 = 3 �2 2 = 2 ·2 2.

Lemma 3.22. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. Then S is a NeutroTotalOrderedSemigroup if and only

if S′ is a NeutroTotalOrderedSemigroup.

Proof. The proof is straightforward.

Remark 3.23. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′

be a NeutroOrderedIsomorphism. Then Lemma 3.22 may not hold. (See Example 3.24.)

Example 3.24. Let (S2, ·2,≤2) be the NeutroTotalOrderedSemigroup presented in Ex-

ample 3.10, (S2, ·′2,≤′2) be the NeutroOrderedSemigroup presented in Example 3.11, and

φ : (S2, ·2,≤2) → (S2, ·′2,≤′2) be defined as φ(x) = x for all x ∈ S2. One can easily see

that φ is a NeutroOrderedIsomorphism that is not NeutroOrderedStrongIsomorphism as:

φ(0 ·2 0) = φ(0) = 0 = φ(0) ·′2 φ(0), 0 ≤2 1 and φ(0) = 0 ≤′2 1 = φ(1), 1 ≤2 3 but

φ(1) = 1 �′2 3 = φ(3). Having (S2, ·2,≤2) a NeutroOrderedSemigroup that is not Neutro-

TotalOrderedSemigroup and (S2, ·′2,≤′2) a NeutroTotalOrderedSemigroup illustrates our idea.

Lemma 3.25. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. Then S contains a minimum (maximum) element if and

only if S′ contains a minimum (maximum) element.

Proof. The proof is straightforward.

Remark 3.26. In Lemma 3.25, if φ : S → S′ is a NeutroOrderedIsomorphism that is not a

NeutroOrderedStrongIsomorphism then S′ may contain a minimum (maximum) element and

S does not contain. (See Example 3.27.)

Example 3.27. With reference to Example 3.24, (S2, ·2,≤2) has 0 as its minimum element

whereas (S2, ·′2,≤′2) has no minimum element.

Lemma 3.28. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. If M ⊆ S is a NeutroOrderedSubsemigroup of S then

φ(M) is a NeutroOrderedSubsemigroup of S′.
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Proof. First, we prove that (φ(M), ?) is a NeutroSemigroup. Since (M, ·) is a NeutroSemi-

group, it follows that (M, ·) is either NeutroOperation or NeutroAssociative.

• Case (M, ·) is NeutroOperation. There exist x, y, a, b ∈M such that x·y ∈M and a·b /∈
M or x · y is indeterminate. The latter implies that there exist φ(x), φ(y), φ(a), φ(b) ∈
φ(M) such that φ(x) ? φ(y) = φ(x · y) ∈ φ(M) and φ(a) ? φ(b) = φ(a · b) /∈ φ(M) or

φ(x) ? φ(y) = φ(x · y) is indeterminate.

• Case (M, ·) is NeutroAssociative. There exist x, y, z, a, b, c ∈ M such that (x · y) ·
z = x · (y · z) and (a · b) · c 6= a · (b · c). The latter implies that there exist

φ(x), φ(y), φ(z), φ(a), φ(b), φ(c) ∈ φ(M) such that (φ(x) ? φ(y)) ? φ(z) = φ(x) ? (φ(y) ?

φ(z)) and (φ(a) ? φ(b)) ? φ(c) 6= φ(a) ? (φ(b) ? φ(c)) (as φ is one-to-one.).

Since M is a NeutroOrderedSubsemigroup of S, it follows that there exist x ∈ M such that

(x] ⊆ M . It is easy to see that (φ(x)] ⊆ φ(M) as for all t ∈ S′, there exist y ∈ S such that

t = φ(y). For φ(y) ≤S′ φ(x), we have y ≤S x. The latter implies that y ∈ M and hence,

t ∈ φ(M).

Since M is a NeutroOrderedSubsemigroup of S, it follows that:

(T) There exist x ≤S y ∈M (with x 6= y) such that z · x ≤S z · y and x · z ≤S y · z for all

z ∈M ;

(F) There exist a ≤S b ∈M and c ∈M with a · c �S b · c (or c · a �S c · b);
(I) There exist x ≤S y ∈M and z ∈M with: z · x (or x · z or y · z or z · y) indeterminate

or z · x ≤S z · y (or x · z ≤S y · z) indeterminate in M .

Where (T, I, F ) 6= (1, 0, 0) and (T, I, F ) 6= (0, 0, 1). This implies that

(T) There exist φ(x) ≤S′ φ(y) ∈ φ(M) (with φ(x) 6= φ(y) as x 6= y) such that φ(z)?φ(x) ≤S′

φ(z) ? φ(y) and φ(x) ? φ(z) ≤S′ φ(y) ? φ(z) for all φ(z) ∈ φ(M);

(F) There exist φ(a) ≤S′ φ(b) ∈ φ(M) and φ(c) ∈ φ(M) with φ(a) ? φ(c) �S′ φ(b) ? φ(c)

(or φ(c) ? φ(a) �S′ φ(c) ? φ(b));

(I) There exist φ(x) ≤S′ φ(y) ∈ φ(M) and φ(z) ∈ φ(M) with: φ(z)?φ(x) (or φ(x)?φ(z) or

φ(y)?φ(z) or φ(z)?φ(y)) indeterminate or φ(z)?φ(x) ≤S′ φ(z)?φ(y) (or φ(x)?φ(z) ≤S′

φ(y) ? φ(z)) indeterminate in φ(M).

Where (T, I, F ) 6= (1, 0, 0) and (T, I, F ) 6= (0, 0, 1). Therefore, φ(M) is a NeutroOrderedSub-

semigroup of S′.

Lemma 3.29. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′

be a NeutroOrderedStrongIsomorphism. If M ⊆ S is a NeutroOrderedLeftIdeal (Neutro-

OrderedRightIdeal) of S then φ(M) is a NeutroOrderedLeftIdeal (NeutroOrderedRightIdeal)

of S′.
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Proof. We prove that if M ⊆ S is a NeutroOrderedLeftIdeal of S then φ(M) is a Neutro-

OrderedLeftIdeal of T . For NeutroOrderedRightIdeal, it is done similarly. Using Lemma 3.28,

it suffices to show that there exist z ∈ φ(M) such that for all t ∈ S′ t ? z ∈ φ(M). Since M is

a NeutroOrderedLeftIdeal of S, it follows that there exist m ∈ M such that s ·m ∈ m for all

s ∈ S. Having φ an onto function implies that for all t ∈ S′, there exist s ∈ S with t = φ(s).

By setting z = φ(m), we get that t ? z = φ(s) ? φ(m) = φ(s ·m) ∈ φ(M).

Lemma 3.30. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. If M ⊆ S is a NeutroOrderedIdeal of S then φ(M) is a

NeutroOrderedIdeal of S′.

Proof. The proof is similar to that of Lemma 3.29.

Example 3.31. Let (Z,�,≤Z) and (Z,⊗,≤⊗) be the NeutroOrderedSemigroups presented in

Example 3.13 and Example 3.15 respectively, and φ : (Z,�,≤Z) → (Z,⊗,≤⊗) be defined as

φ(x) = x+2 for all x ∈ Z. One can easily see that φ is a NeutroOrderedStrongIsomorphism. By

Example 3.19, we have I = {−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of (Z,�,≤Z).

Applying Lemma 3.30, we get that φ(I) = {1, 2, 3, 0,−1,−2, . . .} is a NeutroOrderedIdeal of

(Z,⊗,≤⊗).

Lemma 3.32. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. If M ⊆ S is a NeutroOrderedFilter of S then φ(M) is a

NeutroOrderedFilter of S′.

Proof. Using Lemma 3.28, we get that (φ(M), ?) is a NeutroSemigroup and that ≤S′ is Neu-

troOrder on φ(M). i.e., Conditions (1), (2), and (3) of Definition 3.3 are satisfied.

Since M is a NeutroOrderedFilter of S, it follows that there exist x ∈ M such that [x) ⊆ M .

It is easy to see that [φ(x)) ⊆ φ(M) as for all t ∈ S′, there exist y ∈ S such that t = φ(y). For

φ(x) ≤S′ φ(y), we have x ≤S y. The latter implies that y ∈M and hence, t ∈ φ(M).

Since M is a NeutroOrderedFilter of S, it follows that there exist x ∈ M such that for all

y, z ∈ S with x · y ∈M and z · x ∈M we have y, z ∈M . The latter and having φ onto implies

that there exist t = φ(x) ∈ φ(M) such that for all φ(y), φ(z) ∈ S′ with φ(x) ? φ(y) ∈ φ(M)

and φ(z) ? φ(x) ∈ φ(M) we have φ(y), φ(z) ∈ φ(M).

Example 3.33. Let (Z,�,≤Z) and (Z,⊗,≤⊗) be the NeutroOrderedSemigroups presented

in Example 3.13 and Example 3.15 respectively, and φ : (Z,�,≤Z) → (Z,⊗,≤⊗) be the

NeutroOrderedStrongIsomorphism defined as φ(x) = x+ 2 for all x ∈ Z. By Example 3.20, we
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have F = {−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of (Z,�,≤Z). Applying Lemma 3.32,

we get that φ(F ) = {1, 2, 3, 4, 5, 6, . . .} is a NeutroOrderedFilter of (Z,⊗,≤⊗).

Lemma 3.34. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. If N ⊆ S′ is a NeutroOrderedSubsemigroup of S′ then

φ−1(N) is a NeutroOrderedSubsemigroup of S.

Proof. Theorem 2.11 asserts that φ−1 : S′ → S is a NeutroOrderedStrongIsomorphism. Having

N ⊆ S′ a NeutroOrderedSubsemigroup of S′ and by using Lemma 3.28, we get that φ−1(N)

is a NeutroOrderedSubsemigroup of S.

Lemma 3.35. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. If N ⊆ S′ is a NeutroOrderedSubsemigroup of S′ then

φ−1(N) is a NeutroOrderedLeftIdeal (NeutroOrderedRightIdeal) of S.

Proof. Theorem 2.11 asserts that φ−1 : S′ → S is a NeutroOrderedStrongIsomorphism. Having

N ⊆ S′ a NeutroOrderedLeftIdeal (NeutroOrderedRightIdeal) of S′ and by using Lemma 3.29,

we get that φ−1(N) is a NeutroOrderedLeftIdeal (NeutroOrderedRightIdeal) of S.

Lemma 3.36. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. If N ⊆ S′ is a NeutroOrderedSubsemigroup of S′ then

φ−1(N) is a NeutroOrderedIdeal of S.

Proof. Theorem 2.11 asserts that φ−1 : S′ → S is a NeutroOrderedStrongIsomorphism. Having

N ⊆ S′ a NeutroOrderedIdeal of S′ and by using Lemma 3.35, we get that φ−1(N) is a

NeutroOrderedIdeal of S.

Lemma 3.37. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. If N ⊆ S′ is a NeutroOrderedFilter of S′ then φ−1(N) is

a NeutroOrderedFilter of S.

Proof. Theorem 2.11 asserts that φ−1 : S′ → S is a NeutroOrderedStrongIsomorphism. Having

N ⊆ S′ a NeutroOrderedFilter of S′ and by using Lemma 3.32, we get that φ−1(N) is a

NeutroOrderedFilter of S.

We present our main theorems.

Theorem 3.38. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′

be a NeutroOrderedStrongIsomorphism. Then M ⊆ S is a NeutroOrderedSubsemigroup of S if

and only if φ(M) is a NeutroOrderedSubsemigroup of S′.
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Proof. The proof follows from Lemmas 3.28 and 3.34.

Theorem 3.39. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′

be a NeutroOrderedStrongIsomorphism. Then M ⊆ S is a NeutroOrderedLeftIdeal (Neutro-

OrderedRightIdeal) of S if and only if φ(M) is a NeutroOrderedLeftIdeal (NeutroOrderedRight-

Ideal) of S′.

Proof. The proof follows from Lemmas 3.29 and 3.35.

Theorem 3.40. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. Then M ⊆ S is a NeutroOrderedIdeal of S if and only if

φ(M) is a NeutroOrderedIdeal of S′.

Proof. The proof follows from Lemmas 3.30 and 3.36.

Theorem 3.41. Let (S, ·,≤S) and (S′, ?,≤S′) be NeutroOrderedSemigroups and φ : S → S′ be

a NeutroOrderedStrongIsomorphism. Then M ⊆ S is a NeutroOrderedFilter of S if and only

if φ(M) is a NeutroOrderedFilter of S′.

Proof. The proof follows from Lemmas 3.32 and 3.37.

4. Conclusion

This paper contributed to the study of NeutroAlgebra by introducing, for the first time,

NeutroOrderedAlgebra. The new defined notion was applied to semigroups and many inter-

esting properties were proved as well illustrative examples were given on NeutroOrderedSemi-

groups.

For future research, it will be interesting to apply the concept of NeutroOrderedAlgebra to

different algebraic structures such as groups, rings, modules, etc. and to study AntiOrderedAl-

gebra.
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A Kind of Variation Symmetry: Tarski Associative 
Groupoids (TA-Groupoids) and Tarski Associative 

Neutrosophic Extended Triplet Groupoids 
(TA-NET-Groupoids) 

Abstract: The associative law reflects symmetry of operation, and other various variation associative 

laws reflect some generalized symmetries. In this paper, based on numerous literature and related 

topics such as function equation, non-associative groupoid and non-associative ring, we have 

introduced a new concept of Tarski associative groupoid (or transposition associative groupoid 

(TA-groupoid)), presented extensive examples, obtained basic properties and structural characteristics, 

and discussed the relationships among few non-associative groupoids. Moreover, we proposed a 

new concept of Tarski associative neutrosophic extended triplet groupoid (TA-NET-groupoid) and 

analyzed related properties. Finally, the following important result is proved: every TA-NET-groupoid 

is a disjoint union of some groups which are its subgroups. 

Keywords: Tarski associative groupoid (TA-groupoid); TA-NET-groupoid; semigroup; subgroup 

1. Introduction

Generally, group and semigroup [1-5] are two basic mathematical concepts which describe 

symmetry. As far as we know the term semigroup was firstly introduced in 1904 in a French book (see 

book review [1]). A semigroup is called right commutative if it satisfies the identity a*(x*y) = a*(y*x) [4]. 

When we combine right commutative with associative law, we can get the identity: 

(x * y) * z = x * (z * y) (Tarski associative law). 

In this study we focused on the non-associative groupoid satisfying Tarski associative law (it 

is also called transposition associative law), and this kind of groupoid is called Tarski associative 

groupoid (TA-groupoid). From a purely algebraic point of view, these structures are interesting. They 

produce innovative ideas and methods that help solve some old algebraic problems. 

In order to express the general symmetry and algebraic operation laws which are similar with 

the associative law, scholars have studied various generalized associative laws. As early as in 1924, 

Suschkewitsch [6] studied the following generalized associative law (originally called "Postulate A"): 

(x *a)* b = x * c,

where the element c depended upon the element a and b only, and not upon x. Apparently, the 

associative law is a special case of this Postulate A when c = a * b, and Tarski associative law explained 

Xiaohong Zhang, Wangtao Yuan, Mingming Chen, Florentin Smarandache (2020). A Kind of Variation 
Symmetry: Tarski Associative Groupoids (TA-Groupoids) and Tarski Associative Neutrosophic Extended 
Triplet Groupoids (TA-NET-Groupoids). Symmetry 12, 714; DOI: 10.3390/sym12050714
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above is also a special case of this Postulate A when c = b * a. This fact shows that Tarski associative 
groupoid (TA-groupoid) studied in our research is a natural generalization of the semigroup. At the 

same time, Hosszu studied the function equations satisfying Tarski associative law in 1954 (see [7-9]); 
Thedy (10] studied rings satisfying x(yz) = (yx)z, and it is symmetric to Tarski associative groupoid, 

since defining x*y = yx, x(yz) = (yx)z is changed to (z*y)*x = z*(x*y); Phillips (see the Table 12 in (11]) 

and Pushkashu [12] also referred to Tarski associative law. These facts show that the systematic study 
of Tarski associative groupoid (TA-groupoid) is helpful to promote the study of non-associative rings 

and other non-associative algebraic systems. 
In recent years, a variety of non-associative groupoids have been studied in depth (it should 

be noted that the term "groupoid" has many different meanings, such as the concept in category 
theory and algebraic topology, see [13]). An algebraic structure midway between a groupoid and a 

commutative semigroup appeared in 1972, Kazim and Naseeruddin [14] introduced the concept of 
left almost semigroup (LA-semigroup) as a generalization of commutative semigroup and it is also 

called Abel-Grassmann's groupoid (or simply AG-groupoid). Many different aspects of AG-groupoids 
have been studied in [15--22]. Moreover, Mushtaq and Kamran [19] in 1989 introduced the notion of 

AG*-groupoids: one AG-groupoid (5, *) is called AG*-groupoid if it satisfies 

(x * y) * z = y * (x * z), for any x, y, z E 5. 

Obviously, when we reverse the above equation, we can get (z*x)*y = z*(y*x), which is the Tarski 

associative law (transposition associative law). In [23], a new kind of non-associative groupoid (cyclic 

associative groupoid, shortly, CA-groupoid) is proposed, and some interesting results are presented. 
Moreover, this paper also involves with the algebraic system 1'neutrosophic extended triplet 

group", which has been widely studied in recent years. The concept of neutrosophic extended triplet 
group (NETG) is presented in [24], and the close relationship between NETGs and regular semigroups 

has been established (25]. Many other significant results on NETGs and related algebraic systems can be 
found, see (25,26]. In this study, combining neutrosophic extended triplet groups (NETGs) and Tarski 

associative groupoids (TA-groupoids), we proposed the concept of Tarski associative neutrosophic 
extended triplet groupoid (TA-NET-groupoid). 

This paper has been arranged as follows. In Section 2, we give some definitions and properties 
on groupoid, CA-groupoid, AG-groupoid and NETG. In Section 3, we propose the notion of 

Tarski associative groupoid (TA-groupoid), and show some examples. In Section 4, we study 
its basic properties, and, moreover, analyze the relationships among some related algebraic systems. 

In Section 5, we introduce the new concept of Tarski associative NET-groupoid (TA-NET-groupoid) 
and weak commutative TA-NET-groupoid (WC-TA-NET-Groupoid), investigate basic properties of TA­

NET-groupoids and weak commutative TA-NET-groupoids (WC-TA-NET-Groupoids). In Section 6, 

we prove a decomposition theorem of TA-NET-groupoid. Finally, Section 7 presents the summary and 
plans for future work. 

2. Preliminaries

In this section, some notions and results about groupoids, AG-groupoids, CA-groupoids and 
neutrosophic triplet groups are given. A groupoid is a pair (S, *) where S is a non-empty set with a 

binary operation *. Traditionally, when the * operator is omitted, it will not be confused. Suppose (5, *) 
is a groupoid, we define some concepts as follows: 

(1) Va, b, cES, a*(b*c) = a*(c*b), S is called right commutative; if (a*b)*c = (b*a)*c, S is called left
commutative. When 5 is right and left commutative, then it is called bi-commutative groupoid.

(2) If a2 
= a (aE5), the element a is called idempotent.

(3) If for all x, yES, a*x = a*y ⇒ x = y (x*a = y*a ⇒ x = y), the element aES is left cancellative

(respectively right cancellative). If an element is a left and right cancellative, the element is
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cancellative. If (VaES) a is left (right ) cancellative or cancellative , then 5 is left (right) cancellative 

or cancellative. 

(4) If Va, b, c ES, a*(b*c) = (a*b)*c, Sis called semigroup. If Va, bES, a *  b = b * a, then a semigroup (5, * )

is commutative.

(5) If Va ES, a2 = a, a semigroup (5, *) is called a band.

Definition 1. ([14, 151) Assume that (S, *) is a groupoid. If S satisfying the left invertive law: V a, b, c ES, 

(a*b)*c = (c*b)*a. Sis called an Abel-Grassmann's groupoid (or simply AG-groupoid). 

Definition 2. ([2 1,22]) Let (S, *)be an AG-groupoid, for all a, b, cES. 

(1) If (a*b)*c = b*(a*c), then Sis called an AG*-groupoid.

( 2) If a*(b*c) = b*(a*c), then Sis called an AG**-groupoid.

(3) If a*(b*c) = c*(a*b), then Sis called a cyclic associative AG-groupoid (or CA -AG-groupoid).

Definition 3. [23] Let (5, *) be a groupoid. Sis called a cyclic associative groupoid (shortly, CA-groupoid), if S 
satisfying the cyclic associative law:Va, b, c ES, a*(b*c) = c*(a*b). 

Proposition 1. [23] Let (5, *) be a CA-groupoid, then: 

(1) For any a, b, c, d, x, yES, (a * b) * (c * d) = (d * a) *  (c * b);

( 2) For any a, b, c,d, x,yES,(a * b) * ((c * d) * (x * y)) = (d * a) * ((c * b) * (x * y)).

Definition 4. ([24,26]) Suppose S be a non-empty set with the binary operation *. If for any a E S, there is a 
neutral "a" (denote by neut(a)), and the opposite of "a" (denote by anti(a)), such that neut(a) ES, anti(a) ES, 

and: a *  neut(a) = neut(a) * a = a; a *  anti(a) = anti(a) * a= neut(a). T hen, Sis called a neutrosophic extended 
triplet set. 

Note: For any a ES, neut(a) and anti(a) may not be unique for the neutrosophic extended triplet set 

(5, *). To avoid ambiguity, we use the symbols {neut(a)} and {anti(a)} to represent the sets of neut(a) and 

anti(a), respectively. 

Definition 5. ([24,26]) Let (5, *) be a neutrosophic extended triplet set. Then, Sis called a neutrosophic extended 

triplet group (NETG), if the following conditions are satisfied: 

(1) (5, *) is well-defined, that is, for any a, b E 5, a * b ES.

(2) (5, *) is associative, that is, for any a, b, c ES, (a * b) *c = a * (b * c).

A NETG S is called a commutative NETG if a * b = b * a, Va, b ES.

Proposition 2. ([25]) Let (5, *) be a NETG. Then (VaES) neut(a) is unique. 

Proposition 3. ([25]) Let (5, *) be a groupoid. Then Sis a NETG if and only if it is a completely regular semi group. 

3. Tarski Associative Groupoids (TA-Groupoids)

Definition 6. Let (S, *) be a groupoid. S is called a Tarski associative groupoid (shortly, TA-groupoid), if S 
satisfying the Tarski associative law (it is also called transposition associative law): (a * b) * c =a * (c * b), V a, 

b, cES. 
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The following examples depict the wide existence of TA-groupoids. 

Example 1. For the regular hexagon as shown in Figure 1, denote S = {e, C, C2 , C3, C4
, cs}, where C, C2, C3, 

C4, cs and e represent rotation 60, 120, 180, 240, 300 and 360 degrees clockwise around the center, respectively. 

y 

Figure 1. Regular hexagon. 

Define the binary operation o as a composition of functions in S, that is, V U, VES, Uo Vis that the

first transforming V and then transforming U. Then (S, o) is a TA-groupoid (see Table 1). 

Table 1. Cayley table on S = {0, G, G2, G3, G4, Gs}. 

0 (} C c2 cJ c4 cs

(} e G G2 G3 G4 Gs

C G G2 G3 G4 Gs e 

c2 G2 G3 G4 Gs e G 
cJ G3 G4 Gs e G G2

c4 G4 Gs e G G2 G3 
cs Gs e G G2 G3 G4 

Example 2. Let S = [n
1 
2n] (real number interoal

1 n is a natural number), V x, yES. Define the multiplication 
* by 

{ X + y- n,
X* 

-
Y- x + y-2n,

if X + y :S; 3n 
if X + y > 3n 

Then (S, *) is a TA-groupoid, since it satisfies (x * y) * z = x * (z * y), V x, y, z ES, the proof is as follows: 
Case 1: x + y + z - n s; 3n. It follows that y + z s; x + y + z - n s; 3n and x + y s; x + y + z - n s; 3n. 

Then (x * y)*z = (x + y - n) *z = x + y + z - 2n = x * (z + y - n) = x * (z * y). 
Case 2: x + y + z - n > 3n, y + z s; 3n and x + y s; 3n. Then(x *y)*z = (x + y - n)*c = x + y + z - 3n =

x * (z + y - n) = x * (z * y). 
Case 3: x + y + z - n > 3n, y + zs; 3n and x + y > 3n. It follows that x + y + z-2n s; x+3n - 2n = x + n 

s; 3n. Then (x * y) *z = (x + y - 2n) *c = x + y + z - 3n = x * (z + y - n) = x * (z * y). 
Case 4: x + y + z - n > 3n

1 y + z > 3n and x + y s; 3n. It follows that x + y + z - 2n s; 3n + c - 2n = z + 

n s; 3n. Then (x * y) *z = (x + y - n) *z = x + y + z - 3n = x * (z + y - 2n) = x * (z * y). 
Case 5: x + y + z-n > 3n, y + z > 3n and x + y > 3n. When x + y + c - 2n s; 3n, (x *y) *z = (x + y - 2n) 

*z = x + y + z - 3n = x * (z + y - 2n) = x * (z *y); Vvhen x + y + z - 2n > 3n, (x *y) *z = (x + y - 2n)*z = x + 

y + z - 4n = x * (z + y - 2n) = x * (z * y).
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Example 3. Let

Denote S1 ={ ( � � ) : a isaintegralnumber }, S2 ={ ( � � ), ( � �
l 

) }· Define the operation* on
S: V x, yES, (1) if XE S1 or yE S1, x*y is common matrix multiplication; (2) if XE S2 and yES2, x*y = ( � � ).
T hen (S, *) is a TA-groupoid. In fact, we can verifY that (x*y )*z = x* (z*y) V x, y, zES, since
(i) if x, y, zES 1, by the definition of operation* we can get (x*y)*z = x* (y*z ) =x* (z*y) ;
( ii) if x, y, zE S 2 1 

then ( x*y)*z = ( � � ) = x* (z*y)
1 by (2) in the definition of operation *;

(iii) if xE S2
1 
y, zE S1

1 
then (x*y)*z = y*z = z*y = x* (z*y) 1 by (1) in the definition of operation *;

(iv) if xE S2, yE S2, ZE S1 1 then (x*y)*z =( � � )*z = z = z*y = x* (z*y), by the definition of operation*;
(v) if XE S2, yE S1, zE S2, then (x*y)*z = y*z = y = z*y = x* (z*y), by the definition of operation *;
(vi) if XE S1, yE S2, zE S1, then (x*y)*z = x*z = x* (z*y), by (1) in the definition of operation *;
(vii) if XE S1, yE S1, zE S2, then (x*y)*z = x*y = x* (z*y), by (1) in the definition of operation *; 
(vii) if xES1, yES2, zES2, then (x*y)*z = x*z = x = x*( � � ) = x* (z*y), by (1) and (2) in the definition of

operation *.

Example 4. Table 2 shows the non-commutative TA-groupoid of order 5. S ince (b * a) * b * b *(a* b)
1 (a* b) * b

* (b * b) * a
1 so (S, *) is not a semigroup, and it is not an AG-groupoid.

Table 2. Cayley table on S = {a, b, c, d, e}. 

* 
a b C d e 

a a a a a a 

b d d C C b 

C d C C C C 

d d d C C C 

e d C C C e 

From the following example, we know that there exists TA-groupoid which is a non- commutative 

semigroup, moreover, we can generate some semirings from a TA-groupoid. 

Example 5. As shown in Table 3, put 5 = {s, t, u, v, w}, and define the operations * on 5. T hen we can verify
through MATLAB that (S

1 
*) is a TA-groupoid

1 
and (S

1 
*) is a semigroup.

Table 3. Cayley table on S = {s, t, u, v, w). 

*
s t u V w 

s s s s s s 

t t 

u s s u u s 

V s s u V s 

w w w t 
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Now, define the operation+ on S as Table 4 (or Table 5), then (Vm, n, pES) (m + n) *p = m *p + n *p and 
(S; +,*)is a semiring (see [27]). 

Table 4. A Commutative semigroup (S, +). 

+ s t u V w 

s s u u w 

t s w w u 

u u w u u w 

V u w u u w 

w w u w w u 

Table 5. Another commutative semigroup (S, +) with units. 

+ s t u V w 

s s u V w 

t w w w 

tt u w u u w 

V V w u u w 

w w w w w w 

Proposition 4. (1) If (S, *) is a commutative semigroup, then (S, *) is a TA-groupoid. (2) Let (S, *) be a 
commutative TA-groupoid. T hen (S, *) is a commutative semigroup. 

Proof. It is easy to verify from the definitions. □ 

4. Various Properties of Tarski Associative Groupoids (TA-Groupoids)

In this section, we discussed the basic properties of TA-groupoids, gave some typical examples, 

and established its relationships with CA-AG-groupoids and semigroups (see Figure 2). Furthermore, 

we discussed the cancellative and direct product properties that are important for exploring the 

structure of TA-groupoids. 

Semigroup 

Figure 2. The relationships among some algebraic systems. 

Proposition 5. Let (S, *) be a TA-groupoid. Then V m, n, p, r, s, t ES: 

(1) (m*n) *(p*r) = (m*r)*(p*n);

(2) ((m*n)*(p*r))*(s*t) = (m*r)*((s*t)*(p*n)).
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Proof. (1) Assume that (S, *) is a TA-groupoid, then for any m, n, p, r E 5, by Definition 6, we have 

(m * n) * (p * r) = m * ((p * r) * n) = m * (p * (n * r)) = (m * (n * r)) * p = ((m * r) * n) * p = (m * r) * (p * n). 

(2) For any m, n, p, r, s, t ES, by Definition 6, we have

((m * n) * (p * r)) * (s * t) = (m * n) * ((s * t) * (p * r)) = (m * n) * ((s * r) * (p * t)) = ((m * n) * (p * t)) * (s * r) 
= ((m*n)*r)*(s* (p*t)) = ((m*n) *r)*((s*t) *p) = ((m*n) *p)*((s*t) *r) 

= (m*(p*n))*((s*t)*r) = (m*r)*((s*t)*(p*n)). □

Theorem 1. Assume that (S, *) is a TA-groupoid. 

(1) If 3eES such that (VaES) e*a=a, then (S, *) is a commutative semigroup.

(2) If eES is a left identity element in S, then e is an identity element in S. 

(3) If Sis a right commutative CA-groupoid, then Sis an AG-groupoid.

(4) If Sis a right commutative CA-groupoid, then Sis a left commutative CA-groupoid. 

(5) If Sis a left commutative CA-groupoid, then Sis a right commutative CA-groupoid. 

(6) If Sis a left commutative CA-groupoid, then Sis an AG-groupoid . 

(7) If Sis a left commutative semigroup, then Sis a CA-groupoid.

Proof. It is easy to verify from the definitions, and the proof is omitted. □ 

From the following example, we know that a right identity element in 5 may be not an identity 

element in 5. 

Example 6. TA-groupoid of order 6 is given in Table 6, and e6 is a right identity element in S, but e6 is not a left 
identity element in S. 

Table 6. Cayley table on S = {e1, e2, e3, e4, es, e6)-

* e1 e2 e3 e4 es e6 

e1 e1 e1 e1 e1 e1 e1 
e2 e2 e2 e2 e2 e2 e2 
e3 e1 e1 e4 e6 e1 e3 
e4 e1 e1 e6 e3 e1 e4 
es e2 e2 es es e2 es 
e6 e1 e1 e3 e4 e1 e6 

By Theorem 1 (1) and (2) we know that the left identity element in a TA-groupoid is unique. 
But the following example shows that the right identity element in a TA-groupoid may be not unique. 

Example 7. The following non-commutative TA-groupoid of order 5 given in Table 7. Moreover, x1 and x2 are 
right identity elements in S. 

Table 7. Cayley table on S = {x1, x2, x3, x4, xs)-

* x1 x2 X3 X4 X5 

x1 X1 X1 X3 X3 XS 
x2 x2 x2 X4 X4 XS 
X3 X3 X3 x1 x1 XS 
X4 X4 X4 X2 X2 Xs 
X5 Xs Xs Xs Xs Xs 
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Theorem 2. I.et (S, *) be a TA-groupoid. 

(1) If Sis a left commutative AG-groupoid, then Sis a CA-groupoid.

(2) If Sis a left commutative AG-groupoid, then Sis a right commutative TA-groupoid.

(3) If Sis a right commutative AG-groupoid, then Sis a left commutative TA-groupoid

(4) If Sis a right commutative AG-groupoid, then Sis a CA-groupoid.

(5) If Sis a left commutative semigroup, then Sis an AG-groupoid.

Proof. It is easy to verify from the definitions, and the proof is omitted. o 

Theorem 3. I.et (S, *) be a groupoid. 

(1) If Sis a CA-AG-groupoid and a semigroup, then Sis a TA-groupoid.

(2) If Sis a CA-AG-groupoid and a TA-groupoid, then Sis a semigroup.

(3) If Sis a semigroup, TA-groupoid and CA-groupoid, then Sis an AG-groupoid.

(4) If Sis a semigroup, TA-groupoid and AG-groupoid, S is a CA-groupoid.

Proof. (1) If (S, *) is a CA-AG-groupoid and a semigroup, then by Definition 2, Va, b, cES: 

b * ( c * a) = c * (a * b) = (c * a) * b = (b * a) * c. 

It follows that (S, *) is a TA-groupoid by Definition 6. 

(2) Assume that (S, *) is a CA-AG-groupoid and a TA-groupoid, by Definition 2, Va, b, cES:

a* (b * c) = c * (a * b) = (c * b) * a= (a * b) * c. 

This means that (S, *) is a semigroup. 

(3) Assume that (S, *) is a semigroup, TA-groupoid and CA-groupoid. Then, we have (Va, b, cES):

(a* b) * c = a * (b * c) = c *(a* b) = (c * b) * a. 

Thus, (S, *) is an AG-groupoid. 

(4) Suppose that (S, *) is a semigroup, TA-groupoid and AG-groupoid. Va, b, cES:

c *(b * a)= (c * b) * a= (a* b) * c  =a *(c * b). 

That is, (S, *) is a CA-groupoid by Definition 3. o 

Example 8. Put S = {e, f, g, h, i}. The operation * is defined on S in Table 8. We can get that (S, *) is a 

CA-AG-groupoid. But (S, *) is not a TA-groupoid, due to the fact that (i * h) * i * i * (i * h). Moreover, (S, *) is 
not a semigroup, because (i * i) * i * i * (i * i). 

Table 8. Cayley table on S = {e, J, g, h, i).

* e f g h 

e e e e e e 
f e e e e e 

g e e e e f 
h e e e e f 

e e e g h 

From Proposition 4, Theorems 1-3, Examples 4-5 and Example 8, we get the relationships among 

TA-groupoids and its closely linked algebraic systems, as shown in Figure 2. 
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Theorem 4. I.et (S, *) be a TA-groupoid. 

(1) Every left cancellative element in S is right cancellative element;
(2) if x, yES and they are left cancellative elements, then x*y is a left cancellative element;
(3) if x is left cancellative and y is right cancellative, then x*y is left cancellative;
( 4) if x*y is right cancellative, then y is right cancellative;
(5) If for all aES, a2 

= a, then it is associative. That is, S is a band. 

Proof. (1) Suppose that xis a left cancellative element in S. If (Vp, q ES) p*x = q*x, then: 

x*(x*(x*p)) = (x*(x*p))*x = ((x*p)*x)*x = (x*p)*(x*x) 
= x*((x*x)*p) = x*(x*(p*x)) = x*(x*(q*x)) 
= x*((x*x)*q) = (x*q)*(x*x) = ((x*q)*x)*x 

= (x*(x*q))*x = x*(x*(x*q)). 

From this, applying left cancellability, x*(x*p) = x*(x*q). From this, applying left cancellability two 

times, we get that p= q. Therefore, xis right cancellative. 

(2) If x and y are left cancellative, and (Vp, qES) (x*y)*p = (x*y)*q, there are:

x*(x*(y*p)) = x*((x*p)*y) = (x*y)*(x*p) 
= (x*p)*(x*y) (by Proposition 5 (1))

= x((x*y)*p) = x((xy)*p) = x((xy)*q) = x((x*y)*q) 
= (x*q)*(x*y) = (x*y)*(x*q) = x*((x*q)*y) 

= X *(x*(y*q)). 

Applying the left cancellation property of x, we have y*p = y*q. Moreover, since y is left cancellative, 

we can get that p = q. Therefore, x*y is left cancellative. 

(3) Suppose that xis left cancellative and y is right cancellative. If (Vp, qES) (x*y)*p = (x*y)*q,
there are: 

x*(p*y) = (x*y)*p = (x*y)*q = x*(q*y). 

Applying the left cancellation property of x, we have p*y = q*y. Moreover, since y is right 

cancellative, we can get that p = q. Therefore, x*y is left cancellative. 

(4) If x*y is right cancellative, and p*y = q*y, p, qES, there are:

p*(x*y) = (p*y)*x = (q*y)*x = q*(x*y). 

Applying the right cancellation property of x*y, we have p = q. 
right cancellative. □

Hence, we get that y is 

(5) Assume that for all aES, a2 =a. Then, V r, s, tES,

r*(s*t) = (r*(s*t))*(r*(s*t)) = r*((r*(s*t))*(s*t)) 
= r*(r*((s*t)*(s*t))) = r*(r*(s*t)). 

Similarly, according to (1) we can get r*(t*s) = r*(r*(t*s)). And, by Proposition 5 (1), we have 

r*(r*(s*t)) = r*((r*t)*s) = (r*s)*(r*t) = (r*t)*(r*s) 
= r*((r*s)*t) = r*(r*(t*s)). 

(1)
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Combining the results above, we get that r*(s*t) = r*(r*(s*t)) = r*(r*(t*s)) = r*(t*s). Moreover, by 
Definition 6, (r*s)*t = r*(t*s). Thus 

(r*s)*t = r*(t*s) = r*(s*t). 

This means that 5 is a semigroup, and for all aE5, a2 = a.

Therefore, we get that 5 is a band. □ 

Example 9. TA-groupoid of order 4, given in Table 9. It is easy to verify that (5, *) is a band, due to the fact that 
X * X = X, y * y = y, Z * Z = Z, U * U = U. 

* 

X 

y 

z 

u 

Table 9. Cayley table on S = {x, y, z, u}. 

X 

X 

y 

u 

u 

y 

X 

y 

u 

u 

z 

X 

z 

z 

u 

u 

X 

y 

u 

u 

Definition 7. Assume that (51, *1) and (S2, *2) are TA-groupoids, S1XS2 = {(a, b)laES1, bESz}. Define the 
operation * on S1 x S2 as follows: 

Then (S1 x52, *) is called the direct product of (S1, *1) and (52, *2). 

Theorem 5. If (S1, *1) and (S2, *2) are TA-groupoids, then their direct product (51 x 52, *) is a TA-groupoid. 

Proof. Assume that (a1, a2), (b1, b2), (c1, c2)E51 x 52. Since 

((a1, a2) * ((b1, b2)) * (c1, c2) = (a1 *1 bi, a2 *2 b2) * (c1, c2) 
= ((a1 *1 b1)*1c1, (a2 *2 b2)*2 c2) = (a1 *1 (c1 *1 bi), a2 *2 (c2 *2 b2)) 

= (a1, a2) * (c1 *1 b1, c2*2 b2) = (a1, a2) * ((c1, c2) * (b1, b2)). 

Hence, (51 x 52, *) is a TA-groupoid. □ 

Theorem 6. Let (51, * 1) and (S2, * 2) be two TA-groupoids, if x and y are cancellative (x ES1, y E52), then (x, 
y) ES1 x52 is cancellative.

Proof. Using Theorem 5, we can get that 51 x 52 is a TA-groupoid. Moreover, for any (s1, s2), (t1, t2) E 
51 x 52, if (x, y) * (si, s2) = (x, y) * (t1, t2), there are: 

(xs1, ys2) = (xt1, yt2) 
xs1 = xt1, ys2 = yt2. 

Since x and y are cancellative, so s1 = t1, s2 = t2, and (s1, s2) = (t1, t2)­
Therefore, (x, y) is cancellative. □ 

5. Tarski Associative Neutrosophic Extended Triplet Groupoids (TA-NET-Groupoids) and Weak
Commutative TA-NET-Groupoids (WC-TA-NET-Groupoids)

In this section, we first propose a new concept of TA-NET-groupoids and discuss its basic 
properties. Next, this section will discuss an important kind of TA-NET-groupoids, called weak 
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commutative TA-NET-groupoids (WC-TA-NET-groupoids). In particular, we proved some well-known 

properties of WC-TA-NET-groupoids. 

Definition 8. Let (S, *) be a neutrosophic extended triplet set. If 

(1) (S, *) is well-defined, that is, (Vx, yES) x*y E S;

(2) (S, *) is Tarski associative, that is, for any x, y, z ES (x*y)*z = x*(z*y).

Then (S, *) is called a Tarski associative neutrosophic extended triplet groupoid (or TA-NET-groupoid). A
TA-NET-groupoid (S, *) is called to be commutative, if (V x, y E S) x*y = y*x. 

According to the definition of the TA-NET-groupoid, element a may have multiple neutral 

elements neut(a). We tried using the MATLAB math tools to find an example showing that an element's 

neutral element is not unique. Unfortunately, we did not find this example. This leads us to consider 

another possibility: every element in a TA-NET-groupoid has a unique neutral element? Fortunately, 

we successfully proved that this conjecture is correct. 

Theorem 7. Let (S, *) be a TA-NET-groupoid. Then the local unit element neut(a) is unique in S. 

Proof. For any aES, if there exists s, t E{neut(a)}, then 3 m, nES there are: 

a * s = s * a = a and a * m = m * a = s; a * t = t * a = a and a * n = n * a = t. 

(l)s=t*s.Since

s = a * m = (t * a) * m = t * (m * a)= t * s. 

(2) t = t * s. Since

t = n * a= n * (s * a)= (n * a) *  s = t * s.

Hences= t and neut(a) is unique for any aES. □ 

Remark 1. For element a in TA-NET-groupoid (S, *), although neut(a) is unique, we know from Example 10 
that anti(a) may be not unique. 

Example 10. TA-NET-groupoid of order 6, given in Table 10. While neut(!-,.)= /I.., {anti( t-,.)} = (/1.., r, I, S, K}. 

Table 10. Cayley table on S = {L'., r, I, -8, K, A}. 

* A r I 

A L1 L1 L1 

r L1 r I 

I L1 I K 

,9 L1 -8 r 

K L1 K -8 
A A A A 

Theorem 8. Let (S, *) be a TA-NET-groupoid. Then V xES: 

(1) neut(x) *neut(x) = neut(x);

(2) neut(neut(x)) = neut(x);

(3) anti(neut(x))E {anti(neut(x))}, x = anti(neut(x)) *x.

,9 K 

L1 L1 

-8 K 

r -8 
K I 

I r 

A A 

A 

L1 

L1 

L1 

L1 

L1 

A 
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Proof. (1) For any xES, according to x*anti(x) = anti(x)*x = neut(x), we have 

neut(x)*neut(x) = neut(x)*((anti(x)*x) = (neut(x)*x)*anti(x) = x*(anti(x)) = neut(x). 

(2) VxES, by the definition of neut(neut(x)), there are:

neut(neut(x))*neut(x) = neut(x)*neut(neut(x)) = neut(x). 

Thus, 

neut(neut(x))*x = neut(neut(x))*(x*neut(x)) = (neut(neut(x))*neut(x))*x = neut(x)*x = x; 

x*neut(neut(x)) = (x*neut(x))*neut(neut(x)) = x*(neut(neut(x))*neut(x)) = x*neut(x) = x. 

Moreover, we can get: 

anti(neut(x))*neut(x) = neut(x)*anti(neut(x)) = neut(neut(x)). 

Then, 

(anti(neut(x))*anti(x))*x = anti(neut(x))* (x*anti(x)) = anti(neut(x))*neut(x) = neut(neut(x)); 

x*(anti(neut(x))*anti(x)) = (x*anti(x))*anti(neut(x)) = neut(x)*anti(neut(x)) = neut(neut(x)). 

Combining the results above, we get 

neut(neut(x))*x = x*neut(neut(x)) = x; 
(anti(neut(x))*anti(x))*x = x*(anti(neut(x))*anti(x)) = neut(neut(x)). 

This means that neut(neut(x)) is a neutral element of x (see Definition 4). Applying Theorem 6, we 

get that neut(neut(x)) = neut(x). 

(3) For all xES, using Definition 8 and above (2),

anti(neut(x))*x = anti(neut(x))*(x*(neut(x))) = (anti(neut(x))*neut(x))*x 

= neut(neut(x))*x = neut(x)*x = x. 

Thus, anti(neut(x))*x = x. □

Example 11. TA-NET-groupoid of order 4, given in Table 11. And neut(a) = a, neut(p) = p, neut(o) = o, 

{anti(a)} = {a, o, E}. While anti(a) = o, neut(anti(a)) = neut(o) = o *a= neut(a). 

Table 11. Cayley table on S = {a, fi, 6, E). 

* 
ll /1 {j f. 

ll a a a a 

/1 fi fi fi 
{j a a 6 6 

a a 6 E 

Theorem 9. I.et (5, *) be a TA-NET-groupoid. Then V XE S, V m, nE{anti(a)}, V anti(a)E{anti(a)}: 

(1) m*(neut(x)) = neut(x)*n;

(2) anti( neut( x))*anti(x)E{anti(x)};

(3) neut(x)*anti(n) = x*neut(n);

(4) neut(m)*neut(x) = neut(x)*neut(m) = neut(x);
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(5) (n*(neut(x))*x = x*(neut(x)*n) = neut(x);

(6) neut(n)*x = x.

Proof. (1) By the definition of neutral and opposite element (see Definition 4), applying Theorem 6, 

there are: 

(2) By Theorem 7(2), there are:

m*x = x*m = neut(x), n*x = x*n = neut(x). 
m*(neut(x)) = m*(n*x) = (m*x)*n = neut(x)*n. 

x*[anti(neut(x))*anti(x)J = [x*(anti(x))J*anti(neut(x)) = neut(x)*anti(neut(x)) 
= neut(neut(x)) = neut(x). 

[anti(neut(x))*anti(x)J*x = anti(neut(x))*[x*(anti(x)] =anti(neut(x))*neut(x) 
= neut(neut(x)) = neut(x). 

Thus, anti(neut(x))*anti(x)E{ anti(x)}. 

(3) For any xES, ne{anti(a)), by x*n = n*x = neut(x) and n*anti(n) = anti(n)*n = neut(n), we get

x*neut(n) = x*[anti(n)*n] = (x*n)*anti(n) = neut(x)*anti(n). 

This shows that neut(x)*anti(n) = x*neut(n). 

(4) For any xES, mE{anti(x)), by x*m = m*x = neut(x) and anti(m)*m = m*anti(m) = neut(m), there are:

neut(m)*neut(x) = neut(m)*(x*m) = (neut(m)*m)*x = m*x = neut(x). 
neut(x)*neut(m) = neut(x)*[m*(anti(m))J = [neut(x)*anti(m)J*m. 

Applying (3), there are: 

neut(x)*neut(m) = [neut(x)*anti(m)J*m = [x*(neut(m))J*m = x*(m*(neut(m)) = x*m= neut(x). 

That is, 

neut(m)*neut(x) = neut(x)*neut(m) = neut(x). 

(5) By x*n = n*x = neut(x), there are:

[n*(neut(x))J*x = n*(x*(neut(x))) = n*x = neut(x). 
x*[neut(x)*n] = (x*n)*(neut(x)) = neut(x)*neut(x) = neut(x). 

Thus, [n*(neut(x))]*x = x*[neut(x)*n] = neut(x). 

(6) For any xES, nE{anti(x)}, by x*n = n*x = neut(x),

neut(n)*x = neut(n)*[x*(neut(x))J = [neut(n)*neut(x)J*x. 

From this, applying (4), there are: 

neut(n)*x = [neut(n)*neut(x)]*x = neut(x)*x = x. 

Hence , neut(n)*x = x. □

Proposition 6. Let (S, *) be a TA-NET-groupoid. Then V x, y, z ES: 

(1) y*x = z*x, implies neut(x)*y = neut(x)*z;

(2) y*x = z*x, if and only if y*neut(x) = z*neut(x).
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Proof. (1) For any x, yES, if y*x = z*x, then anti(x)*(y*x) = anti(x)*(z*x). By Definition 6 and Definition 8 

there are: 
anti(x)*(y*x) = (anti(x)*x)*y = neut(x)*y; 

anti(x)*(z*x) = (anti(x)*x)*z = neut(x)*z. 

Thus neut(x)*y = anti(x)*(y*x) = anti(x)*(z*x) = neut(x)*z. 

(2) For any x, yES, if y*x = z*x, then (y*x)*anti(x) = (z*x)*anti(x). Since

(y*x)*anti(x) = y*(anti(x)*x) = y*neut(x); (z*x)*anti(x) = z*(anti(x)*x) = z*neut(x). 

It follows that y*neut(x) = z*neut(x). This means that y*x = z*x implies y*neut(x) = z*neut(x). 
Conversely, if y*neut(x) = z*neut(x), then (y*neut(x))*x = (z*neut(x))*x. Since 

(y*neut(x))*x = y*(x*neut(x)) = y*x; (z*neut(x))*x = z*(x*neut(x)) = z*x. 

Thus, y*x = z*x. Hence, y*neut(x) = z*neut(x) implies y*x = z*x. □

Proposition 7. Suppose that (5, *) is a commutative TA-NET-groupoid. Vx, yES: 

(1) neut(x) * neut(y) = neut(x * y);

(2) anti(x) * anti(y) E {anti(x * y)}.

Proof. (1) For any x, yES, since Sis commutative, so x * y = y* x. From this, by Proposition 5(1), we have 

(x*y)*(neut(x)*neut(y)) = (y*x)*(neut(x)*neut(y)) = (y*neut(y))*(neut(x)*x) = y*x = x*y; 
(neut(x)*neut(y))*(x*y) = (neut(x)*neut(y))*(y*x) = (neut(x)*x)*(y*(neut(y)) = x*y. 

Moreover, using Proposition 5(1), 

(anti(x)*anti(y))*(x*y) = (anti(x)*anti(y))*(y*x) = (anti(x)*x)*(y*anti(y)) = neut(x)*neut(y); 

(x*y)*(anti(x)*anti(y)) = (x*y)*(anti(y)*anti(x)) = (x*anti(x))*(anti(y)*y) = neut(x)*neut(y). 

This means that neut(x)*neut(y) is a neutral element of x*y (see Definition 4). Applying Theorem 6, 

we get that neut(x)*neut(y) = neut(x*y). 

(2) For any anti(x)E{anti(x)}, anti(y)E{anti(y)}, by the proof of (1) above,

(anti(x)*anti(y))*(x*y) = (x*y)*(anti(x)*anti(y)) = neut(x)*neut(y). 

From this and applying (1), there are: 

(anti(x)*anti(y))*(x*y) = (x*y)*(anti(x)*anti(y)) = neut(x*y). 

Hence, anti(x)*anti(y) E{anti(x*y)}. □

Definition 9. Let (5, *) be a TA-NET-groupoid. If (Vx, yES) x * neut(y) = neut(y) * x, then we said that Sis a 
weak commutative TA-NET-groupoid (or WC-TA-NET-groupoid). 

Proposition 8. Let (5, *) be a TA-NET-groupoid. Then (5, *) is weak commutative¢::;, S satisfies the following 
conditions (Vx, yES): 

(1) neut(x)*neut(y) = neut(y)*neut(x).

(2) neut(x)*(neut(y)*x) = neut(x)*(x*neut(y)).
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Proof. Assume that (S, *) is a weak commutative TA-NET-groupoid, using Definition 9, there are 

(Vx, yES): 
neut(x)*neut(y) = neut(y)*neut(x), 

neut(x)*(neut(y)*x) = neut(x)*(x*neut(y)). 

In contrast, suppose that S satisfies the above conditions (1) and (2). there are(Vx, yES): 

x*neut(y) = (neut(x)*x)*neut(y) = neut(x)*(neut(y)*x) = neut(x)*(x*neut(y))= 
(neut(x)*neut(y))*x =(neut(y)*neut(x))*x = neut(y)*(x*neut(x)) = neut(y)*x. 

From Definition 9 and this we can get that (S, *) is a weak commutative TA-NET-groupoid. □ 

Theorem 10. Assume that (S, *) is a weak commutative TA-NET-groupoid. Then V x, yES: 

(1) neut(x)*neut(y) = neut(y*x);

(2) anti(x)*anti(y) E{anti(y*x)};

(3) (S is commutative) ¢:;, (S is weak commutative).

Proof. (1) By Proposition 5 (1)), there are: 

[neut(x)*neut(y)J*(y*x) = [neut(x)*x]*[y*neut(y)] = [neut(x)*x]*[neut(y)*y] = 
[neut(x)*y]*[neut(y)*x] = [y*neut(x)J*[x*neut(y)] = [y*neut(y)]*[x*neut(x)] = y*x. 

And, (y*x)*[neut(x)*neut(y)] = [y*neut(y)]*[neut(x)*x] = y*x. That is, 

[neut(x)*neut(y)J*(y*x) = (y*x)*{neut(x)*neut(y)] = y*x. 

And that, there are: 

[anti(x)*anti(y)J*(y*x) = [anti(x)*x]*[y*anti(y)J = neut(x)*neut(y); 
(y*x)*[anti(x)*anti(y)J = [y*anti(y)J * [anti(x)*x] = neut(y)*neut(x) = neut(x)*neut(y). 

That is, 

[anti(x)*anti(y)J*(y*x) = (y*x)*[anti(x)*anti(y)J = neut(x)*neut(y). 

Thus, combining the results above, we know that neut(x)*neut(y) is a neutral element of y*x. 
Applying Theorem 6, we get neut(x)*neut(y) = neut(y*x). 

(2) Using (1) and the following result (see the proof of (1))

[anti(x)*anti(y)]*(y*x) = (y*x)*[anti(x)*anti(y)] = neut(x)*neut(y) 

we can get that anti(x)*anti(y)E{anti(y*x)). 

(3) If S is commutative, then Sis weak commutative.

On the other hand, suppose that S is a TA-NET-groupoid and S is weak commutative. 
By Proposition 5 (1) and Definition 9, there are: 

x*y = (x*neut(x))*(y*neut(y)) = (x*neut(y))*(y*neut(x)) = (neut(y)*x)*(neut(x)*y) 
= (neut(y)*y)*(neut(x)*x) = y*x. 

Therefore, Sis a commutative TA-NET-groupoid. □ 
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6. Decomposition Theorem of TA-NET-Groupoids

This section generalizes the well-known Clifford's theorem in semigroup to TA-NET-groupoid,

which is very exciting. 

Theorem 11. Let (S, *) be a TA-NETgroupoid. Then for any x ES, and all m E{anti(a)}: 

(1) neut(x)*mE{anti(x)};

(2) m*neut(x) = (neut(x)*m)*neut(x);

(3) neut(x)*m = (neut(x)*m)*neut(x);

(4) m*neut(x) = neut(x)*m;

(5) neut(m*(neut(x))) = neut(x).

Proof. (1) For any xES, mE{anti(x)}, we have m*x = x*m = neut(x). Then, by Definition 6, Theorem 7 (1) 

and Proposition 5 (1), there are: 

x*[neut(x)*m] = (x*m)*neut(x) = neut(x)*neut(x) = neut(x); 

[neut(x)*m]*x = [neut(x)*m]*[x*neut(x)J = [neut(x)*neut(x)J*(x*m) = [neut(x)*neut(x)J*neut(x) = neut(x). 

This means that neut(x)*mE{anti(x)}. 

(2) If xES, mE{anti(x)}, then m*x = x*m = neut(x). Applying (1) and Theorem 8 (1),

m*neut(x) = neut(x)*[neut(x)*m]. 

On the other hand, using Theorem 7 (1) and Proposition 5 (1), there are: 

neut( x)*[ neut( x)*m] = ( neut(x)*neut( x) )*[neut(x)*m] = [neut(x)*m]*[ neut( x)*neut(x)] = [neut(x)*m]*neut( x). 

Combining two equations above, we get m*neut(x) = (neut(x)*m)*neut(x). 

(3) Assume that me{anti(x)}, then x*m = m*x = neut(x) and m*neut(m) = neut(m)*m = m.
By Theorem 7 (1), Proposition 5 (1) and Theorem 8 (4), there are: 

neut(x)*m = [neut(x)*neut(x)]*(neut(m)*m) = (neut(x)*m)[neut(m)*neut(x)] = (neut(x)*m)*neut(x). 

That is, neut(x)*m = (neut(x)*m)*neut(x). 

(4) It follows from (2) and (3).

(5) Assume mE{anti(x)}, then x*m = m*x = neut(x). Denote t = m*neut(x). We prove the

following equations, 

t*neut(x) = neut(x)*t = t; t*x = x*t = neut(x). 

By (3) and (4), there are: 

t*neut(x) = (m*neut(x))*neut(x) = (neut(x)*m)*neut(x) = neut(x)*m = m*neut(x) = t. 

Using Definition 6, Theorem 7 (1) and Theorem 8 (1), there are: 

neut(x)*t = neut(x)*[m*(neut(x))J = (neut(x)*neut(x))*m = neut(x)*m = m*neut(x) = t. 
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Moreover, applying Proposition 5 (1), Theorem 7 (1) and Definition 6, there are: 

t*x = {m*(neut(x))J*x = [m*neut(x)J * (neut(x)*x) = (m*x)*[neut(x)*neut(x)J 
= neut(x)*[neut(x)*neut(x)J = neut(x). 

x*t = x*{m*(neut(x))] = {x*neut(x)]*m = x*m = neut(x). 

Thus, 
t*neut(x) = neut(x)*t = t; t*x = x*t = neut(x). 

By the definition of neutral element and Theorem 6, we get that neut(x) is the neutral element oft 
= m*neut(x). This means that neut(m*(neut(x))) = neut(x). □ 

Theorem 12. Let (S, *) be a TA-NET-groupoid. Then the product of idempotents is still idempotent. That is for 
any Y1, Y2 ES, (y1 * Y2) * (y1 * Y2) = Y1 * Y2• 

Proof. Assume that y1, y2 ES and (y1 *y1 = Y1, Y2 *y2 = Y2), then:

From this, applying Definition 4 and Definition 6, 

Y1 *y2 = [neut(y1 *y2)J*(y1 *yz) = [anti(y1 *y2)*(y1 *y2)J*(y1 *yz) = anti(y1 *y2)*[(y1 *y2)*(y1 *yz)] 
= anti(y1 *y2)*[y1 *(y1 *yz)] (By (y1 *y2)*(y1 *y2) = y1*(y1 *yz)) 

= [anti(y1*y2)*(y1*y2)J*y1 = neut(y1*y2)*y1. 

Thus, 
( Y1 *yz)*( Y1 *y2) = Y1 *( Y1 *yz) = ( Y1 *y2)*y1 

= [neut(y1 *yz)*y1l*y1 (By Y1 *Y2 = [neut(y1 *yz)]*y1) 
= neut(y1 *y2)*(y1 *y1) = neut(y1 *y2)*y1 = Y1 *yz. 

This means that the product of idempotents is still idempotent. □ 

Example 12. TA-NET-groupoid of order 4, given in Table 12, and the product of any two idempotent 
elements is still idempotent, due to the fact that, 

(z1* z2)*(z1* z2) = z1* z2, (z1* Z3)*(z1* z3) = z1* 23, (z1* z4) * (z1* z4) = z1* Z4, 
(Zz * Z3)*(z2 * Z3) = Zz * Z3, (Zz * Z4)*(z2 * Z4) = Zz * Z4, (Z3 * Z4)*(z3 * Z4) = Z3 * Z4. 

Table 12. Cayley table on S = {21, 22, 23, 24}. 

* 21 z2 Z3 Z4 

z1 21 21 21 24 
z2 22 22 22 24 
Z3 21 21 23 24 
Z4 24 24 24 24 

Theorem 13. Let (S, *) be a TA-NET-groupoid. Denote E(S) be the set of all different neutral element in S, 
S(e) = {aESI neut(a) = e} (V eEE(S)). Then: 

(1) S(e) is a subgroup of S.
(2) for any e1, ezEE(S), e1 :;t:ez ⇒ S(e1) n S(e2) = 0.

(3) S = UeEE(S)S(e). 
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Proof. (1) For any mE 5(e), neut(m) = e. That is, e is an identity element in 5(e). And, using Theorem 7 
(1), we get e * e = e. 

Assume that m, nE5(e), then neut(m) = neut(n) = e. We're going to prove that neut(m*n) = e. 
Applying Definition 6, Proposition 5 (1), 

(m*n)*e = m*(e*n) = m*n; 

e*(m*n) = (e*e)*(m*n) = (e*n)*(m*e) = (e*n)*m 

= (e*n)*(e*m) = (e*m)*(e*n) = m*n. 

On the other hand, for anyanti(m)E{anti(m)},anti(n)E{anti(n)}, by Proposition 5 (1), we have 

(m*n)*[anti(m)*anti(n)] = (m*anti(n))*(anti(m)*n) = [(m*anti(n))*n]*anti(m) 
= [m*(n*anti(n))]*anti(m) = (m*neut(n))*anti(m) = (m*e)*anti(m) 

= m*anti(m) = neut(m) = e. 

[anti(m)*anti(n)J*(m*n) = [anti(m)*n]*[m*anti(n)J = anti(m)*[(m*anti(n))*n] 

= anti(m)* [m*(n*anti(n))J = anti(m)*(m*neut(n)) = anti(m)*(m*e) 
= anti(m)*m = neut(m) = e. 

From this, using Theorem 6 and Definition 4, we know that neut(m*n) = e. Therefore, m*nES(e), 
i.e., (5(e), *) is a sub groupoid.

Moreover, V mES(e), 3qES such that qE{anti(m)}. Applying Theorem 10 (1)(2)(3), q*neut(m) E 
{anti(m)}; and applying Theorem 10 (5), neut(q*neut(m)) = neut(m). 

Putt= q*neut(m), we get 

t = q*neut(m)E{anti(m)}, 
neut(t) = neut( q*neut(m)) = neut(m) = e. 

Thus tE{anti(m)}, neut(t) = e, i.e., tE5(e) and t is the inverse element of m in 5(e). 
Hence, (5(e), *) is a subgroup of 5. 

(2) Let xE5(e1) n 5(e2) and e1, ezEE(5). We have neut(x) = e1, neut(x) = ez. Using Theorem 6, e1 = e2.
Therefore, e1 =f:. e2 ⇒ 5(e1) n 5(e2) = 0.

(3) For any xE5, there exists neut(x)E5. Denote e = neut(x), then eEE(5) and xE5(e).
This means that 5 = u

eE
E(S)5(e). □

Example 13. Table 13 represents a TA-NET-groupoid of order 5. And, 

neut(m1) = m4, anti(m1) = m1; neut(m2) = m3, anti(m2) = m2; 

neut(m3) = m3, anti(m3) = {m3, ms}; neut(m4) = m4, anti(m4) = m4; neut(ms) = ms, anti(ms) = ms. 

Table 13. Cayley table on S = {m1, m2, m3, m4, m5}.

* m1 m2 m3 m4 ms 

m1 m4 m4 m1 m1 m1 
m2 m3 m3 m2 m2 m2 
m3 m2 m2 m3 m3 m3 

m4 m1 m1 m4 m4 m4 

ms m2 m2 m3 m3 ms

Denote 51 = {m1, m4}, 52 = {m2, m3}, 53 = {ms}, then 51, 52 and 53 are subgroup of 5, and 5 = 51 u 52 
u53, 51 n 52 = 0, 51 n 53 = 0,52 n 53 = 0. 
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Example 14. Table 14 represents a TA-NET-groupoid of order 5. And, 

neut(x) = x, anti(x) = x; neut(y) = y, {anti(y)} = {y, v}; 
neut(z) = y, {anti(z)} = {z, v}; neut(u) = u, {anti(u)} = {y, z, u, v}; neut(v) = v, anti(v) = v. 

Denote S1 = {x}, S2 = {y, z}, S3 = {u}, S4 = {v}, then S1, S2, S3 and S4 are subgroup of S, and 

s =S1 u S2 u S3 u S4, S1 n S2 = 0, S1 n S3 = 0, S1 n S4 = 0, S2 n S3 = 0, S2 n S4 = 0, S3 n S4 = 0. 

Table 14. Cayley table on S = {x, y, z, u, v}. 

* 
X y z u V 

X X X X X X 

y u y z u y
z u z y u z
u u u u u u 
V u y z u V 

Open Problem. Are there some TA-NET-groupoids which are not semigroups? 

7. Conclusions

In this study, we introduce the new notions of TA-groupoid, TA-NET-groupoid, discuss some 

fundamental characteristics of TA-groupoids and established their relations with some related algebraic 

systems (see Figure 2), and prove a decomposition theorem of TA-NET-groupoid (see Theorem 13). 
Studies have shown that TA-groupoids have important research value, provide methods for studying 

other non-associated algebraic structures, and provide new ideas for solving algebraic problems. 
This study obtains some important results: 

(1) The concepts of commutative semigroup and commutative TA-groupoid are equivalent.

(2) Every TA-groupoid with left identity element is a monoid.

(3) A TA-groupoid is a band if each element is idempotent (see Theorem 4 and Example 9).

(4) In a Tarski associative neutrosophic extended triplet groupoid (TA-NET-groupoid), the local unit
element neut(a) is unique (see Theorem 7).

(5) The concepts of commutative TA-groupoid and WC-TA-groupoid are equivalent.

(6) In a TA-NET-groupoid, the product of two idempotent elements is still idempotent (see Theorem
12 and Example 12).

(7) Every TA-NET-groupoid is factorable (see Theorem 13 and Example 13-14).

Those results are of great significance to study the structural characteristics of TA-groupoids and

TA-NET-groupoids. As the next research topic, we will study the Green relations on TA-groupoids and 
some relationships among related algebraic systems (see [23,25,28]). 
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Properties of Productional NeutroOrderedSemigroups

Abstract. The introducing of NeutroAlgebra by Smarandache opened the door for researchers to define 
many related new concepts. NeutroOrderedAlgebra was one of these new related definitions. The aim of 
this paper is to study productional NeutroOrderedSemigroup. In this regard, we firstly present many 
examples and study subsets of productional NeutroOrderedSemigroups. Then, we find sufficient 
conditions for the productional NeutroSemigroup to be a NeutroOrderedSemigroup. Finally, we find 
sufficient conditions for subsets of the productional NeutroOrderedSemigroup to be 
NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and Neu-troOrderedFilters.

Keywords: NeutroSemigroup, NeutrosOrderedSemigroup, NeutroOrderedIdeal, NeutroOrderedFilter, 
Produc-tional NeutroOrderedSemigroup.

1. Introduction

Smarandache [1–3] introduced NeutroAlgebra as a generalization of the known Algebra.

It is known that in an Algebra, operations are well defined and axioms are always true whereas

for NeutroAlgebra, operations and axioms are partially true, partially indeterminate, and par-

tially false. The latter is considered as an extension of Partial Algebra where operations and

axioms are partially true and partially false. Many researchers worked on special types of Neu-

troAlgebras by applying them to different types of algebraic structures such as semigroups,

groups, rings, BE-Algebras, CI-Algebras, BCK-Algebras, etc. For more details about Neu-

troStructures, the reader may see [4–8]. l order on it that satisfies the monotone property, we

get an Ordered Algebra (as illustrated in Figure 1). And starting with a partial order on a

Madeleine Al-Tahan, Bijan Davvaz, Florentin Smarandache, Osman Anis (2021). Properties 
of Productional NeutroOrderedSemigroups. Neutrosophic Sets and Systems 42, 178-190

Madeleine Al-Tahan, Bijan Davvaz, Florentin Smarandache, Osman Anis 
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Figure 1. Ordered Algebra

NeutroAlgebra, we get a NeutroStructure. The latter if it satisfies the conditions of Neutro-

Order, it becomes a NeutroOrderedAlgebra (as illustrated in Figure 2). In [9], the authors

Figure 2. NeutroOrderedAlgebra

defined NeutroOrderedAlgebra and applied it to semigroups by studying NeutroOrderedSemi-

groups and their subsets such as NeutrosOrderedSubSemigroups, NeutroOrderedIdeals, and

NeutroOrderedFilters.

Our paper is concerned about Cartesian product of NeutroOrderedSemigroups and the re-

mainder part of it is as follows: In Section 2, we present some definitions and examples related

to NeutroOrderedSemigroups. In Section 3, we define productional NeutroOrderedSemigroup

and find sufficient conditions for the Cartesian product of NeutroSemigroups and semigroups

to be NeutroOrderedSemigroups. Finally in Section 4, we find sufficient conditions for subsets

of the productional NeutroOrderedSemigroup to be NeutroOrderedSubSemigroups, Neutro-

OrderedIdeals, and NeutroOrderedFilters.

2. NeutroOrderedSemigroups

In this section, we present some definitions and examples about NeutroOrderedSemi-

groups, introduced and studied by the authors in [9], that are used throughout the paper.

Definition 2.1. [10] Let (S, ·) be a semigroup (“·” is an associative and a binary closed

operation) and “≤” a partial order on S. Then (S, ·,≤) is an ordered semigroup if for every

x ≤ y ∈ S, z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.

Florentin Smarandache (author and editor) Collected Papers, XIII

438



Definition 2.2. [10] Let (S, ·,≤) be an ordered semigroup and ∅ 6= M ⊆ S. Then

(1) M is an ordered subsemigroup of S if (M, ·,≤) is an ordered semigroup and (x] ⊆ M

for all x ∈M . i.e., if y ≤ x then y ∈M .

(2) M is an ordered left ideal of S if M is an ordered subsemigroup of S and for all x ∈M ,

r ∈ S, we have rx ∈M .

(3) M is an ordered right ideal of S if M is an ordered subsemigroup of S and for all

x ∈M , r ∈ S, we have xr ∈M .

(4) M is an ordered ideal of S if M is both: an ordered left ideal of S and an ordered right

ideal of S.

(5) M is an ordered filter of S if (M, ·) is a semigroup and for all x, y ∈ S with x · y ∈M ,

we have x, y ∈M and [y) ⊆M for all y ∈M . i.e., if y ∈M with y ≤ x then x ∈M .

For more details about semigroup theory and ordered algebraic structures, we refer to

[10,11].

Definition 2.3. [2] Let A be any non-empty set and “·” be an operation on A. Then “·” is

called a NeutroOperation on A if the following conditions hold.

(1) There exist x, y ∈ A with x · y ∈ A. (This condition is called degree of truth, “T”.)

(2) There exist x, y ∈ A with x · y /∈ A. (This condition is called degree of falsity, “F”.)

(3) There exist x, y ∈ A with x · y is indeterminate in A. (This condition is called degree

of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical binary closed operation,

and from (0, 0, 1) that represents the AntiOperation.

Definition 2.4. [2] Let A be any non-empty set and “·” be an operation on A. Then “·” is

called a NeutroAssociative on A if there exist x, y, z, a, b, c, e, f, g ∈ A satisfying the following

conditions.

(1) x · (y · z) = (x · y) · z; (This condition is called degree of truth, “T”.)

(2) a · (b · c) 6= (a · b) · c; (This condition is called degree of falsity, “F”.)

(3) e · (f · g) is indeterminate or (e · f) · g is indeterminate or we can not find if e · (f · g)

and (e · f) · g are equal. (This condition is called degree of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical associative axiom, and

from (0, 0, 1) that represents the AntiAssociativeAxiom.

Definition 2.5. [2] Let A be any non-empty set and “·” be an operation on A. Then (A, ·)
is called a NeutroSemigroup if “·” is either a NeutroOperation or NeutroAssociative.
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Definition 2.6. [9] Let (S, ·) be a NeutroSemigroup and “≤” be a partial order (reflexive, anti-

symmetric, and transitive) on S. Then (S, ·,≤) is a NeutroOrderedSemigroup if the following

conditions hold.

(1) There exist x ≤ y ∈ S with x 6= y such that z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.

(This condition is called degree of truth, “T”.)

(2) There exist x ≤ y ∈ S and z ∈ S such that z · x � z · y or x · z � y · z. (This condition

is called degree of falsity, “F”.)

(3) There exist x ≤ y ∈ S and z ∈ S such that z ·x or z ·y or x ·z or y ·z are indeterminate,

or the relation between z · x and z · y, or the relation between x · z and y · z are

indeterminate. (This condition is called degree of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical Ordered Semigroup, and

from (0, 0, 1) that represents the AntiOrderedSemigroup.

Definition 2.7. [9] Let (S, ·,≤) be a NeutroOrderedSemigroup . If “≤” is a total order on

A then A is called NeutroTotalOrderedSemigroup.

Example 2.8. [9] Let S1 = {s, a,m} and (S1, ·1) be defined by the following table.

·1 s a m

s s m s

a m a m

m m m m

By defining the total order

≤1= {(m,m), (m, s), (m, a), (s, s), (s, a), (a, a)}

on S1, we get that (S1, ·1,≤1) is a NeutroTotalOrderedSemigroup.

Example 2.9. Let S2 = {0, 1, 2, 3} and (S2, ·′2) be defined by the following table.

·′2 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 3 2

3 0 1 3 2

By defining the partial order

≤′
2= {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2), (3, 3)}

on S2, we get that (S2, ·′2,≤′
2) is a NeutroOrderedSemigroup.
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Example 2.10. [9] Let S3 = {0, 1, 2, 3, 4} and (S3, ·3) be defined by the following table.

·3 0 1 2 3 4

0 0 0 0 3 0

1 0 1 2 1 1

2 0 4 2 3 3

3 0 4 2 3 3

4 0 0 0 4 0

By defining the partial order

≤3= {(0, 0), (0, 1), (0, 3), (0, 4), (1, 1), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)}

on S3, we get that (S3, ·3,≤3) is a NeutroOrderedSemigroup.

Example 2.11. Let Z be the set of integers and define “?” on Z as follows: x ? y = xy − 2

for all x, y ∈ Z. We define the partial order “≤?” on Z as −2 ≤? x for all x ∈ Z and for

a, b ≥ −2, a ≤? b is equivalent to a ≤ b and for a, b < −2, a ≤? b is equivalent to a ≥ b. In

this way, we get −2 ≤? −1 ≤? 0 ≤? 1 ≤? . . . and −2 ≤? −3 ≤? −4 ≤? . . .. Then (Z, ?,≤?) is a

NeutroOrderedSemigroup.

Definition 2.12. [9] Let (S, ·,≤) be a NeutroOrderedSemigroup and ∅ 6= M ⊆ S. Then

(1) M is a NeutroOrderedSubSemigroup of S if (M, ·,≤) is a NeutroOrderedSemigroup and

there exist x ∈M with (x] = {y ∈ S : y ≤ x} ⊆M .

(2) M is a NeutroOrderedLeftIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that r · x ∈M for all r ∈ S.

(3) M is a NeutroOrderedRightIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that x · r ∈M for all r ∈ S
(4) M is a NeutroOrderedIdeal of S if M is a NeutroOrderedSubSemigroup of S and there

exists x ∈M such that r · x ∈M and x · r ∈M for all r ∈ S.

(5) M is a NeutroOrderedFilter of S if (M, ·,≤) is a NeutroOrderedSemigroup and there

exists x ∈ S such that for all y, z ∈ S with x · y ∈M and z · x ∈M , we have y, z ∈M
and there exists y ∈M [y) = {x ∈ S : y ≤ x} ⊆M .

Definition 2.13. [9] Let (A, ?,≤A) and (B,~,≤B) be NeutroOrderedSemigroups and φ :

A→ B be a function. Then

(1) φ is called NeutroOrderedHomomorphism if φ(x ? y) = φ(x) ~ φ(y) for some x, y ∈ A
and there exist a ≤A b ∈ A with a 6= b such that φ(a) ≤B φ(b).

(2) φ is called NeutroOrderedIsomomorphism if φ is a bijective NeutroOrderedHomomor-

phism.
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(3) φ is called NeutroOrderedStrongHomomorphism if φ(x?y) = φ(x)~φ(y) for all x, y ∈ A
and a ≤A b ∈ A is equivalent to φ(a) ≤B φ(b) ∈ B.

(4) φ is called NeutroOrderedStrongIsomomorphism if φ is a bijective NeutroOrdered-

StrongHomomorphism.

Example 2.14. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example 2.10.

Then I = {0, 1, 2} is both: a NeutroOrderedLefttIdeal and a NeutroOrderedRightIdeal of S3.

Example 2.15. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Then I = {−2,−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of Z.

Example 2.16. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Then F = {−2,−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of Z.

3. Productional NeutroOrderedSemigroups

Let (Aα,≤α) be a partial ordered set for all α ∈ Γ. We define “≤” on
∏
α∈ΓAα as follows:

For all (xα), (yα) ∈
∏
α∈ΓAα,

(xα) ≤ (yα)⇐⇒ xα ≤α yα for all α ∈ Γ.

One can easily see that (
∏
α∈ΓAα,≤) is a partial ordered set.

Let Aα be any non-empty set for all α ∈ Γ and “·α” be an operation on Aα. We define “·”
on

∏
α∈ΓAα as follows: For all (xα), (yα) ∈

∏
α∈ΓAα, (xα) · (yα) = (xα ·α yα).

Throughout the paper, we write NOS instead of NeutroOrderedSemigroup.

Theorem 3.1. Let (G1,≤1), (G2,≤2) be partially ordered sets with operations ·1, ·2 respec-

tively. Then (G1 ×G2, ·,≤) is an NOS if one of the following statements is true.

(1) G1 and G2 are NeutroSemigroups with at least one of them is an NOS.

(2) One of G1, G2 is an NOS and the other is a semigroup.

Proof. Without loss of generality, let G1 be an NOS. We prove 1. and 2. is done similarly. We

have three cases for “·1” and “·2”: Case “·1” is a NeutroOperation, Case “·2” is a NeutroOp-

eration, and Case “·1” and “·2” are NeutroAssociative.

Case “·1” is a NeutroOperation. There exist x1, y1, a1, b1 ∈ G1 such that x1 ·1 y1 ∈ G1

and a1 ·1 b1 /∈ G1 or x1 ·1 y1 is indeterminate in G1. Since G2 is a NeutroSemigroup, it follows

that there exist x2, y2 ∈ G2 6= ∅ such that x2 ·2 y2 ∈ G2 or x2 ·2 y2 is indeterminate in G2 (If

no such elements exist then G2 will be an AntiSemigroup.). Then (x1, x2) · (y1, y2) ∈ G1 ×G2

and (a1, x2) · (b1, y2) /∈ G1×G2 or (x1, x2) · (y1, y2) is indeterminate in G1×G2. Thus “·” is a

NeutroOperation.

Case “·2” is a NeutroOperation. This case can be done in a similar way to Case “·1” is a
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NeutroOperation.

Case “·1” and “·2” are NeutroAssociative. There exist x1, y1, z1, a1, b1, c1 ∈ G1 and

x2, y2, z2, a2, b2, c2 ∈ G2 such that

x1 ·1 (y1 ·1 z1) = (x1 ·1 y1) ·1 z1 , a1 ·1 (b1 ·1 c1) 6= (a1 ·1 b1) ·1 c1,

x2 ·2 (y2 ·2 z2) = (x2 ·2 y2) ·2 z2 , and a2 ·2 (b2 ·2 c2) 6= (a2 ·2 b2) ·2 c2.

The latter implies that

(x1, x2) · ((y1, y2) · (z1, z2)) = ((x1, x2) · (y1, y2)) · (z1, z2)

and

(a1, a2) · ((b1, b2) · (c1, c2)) = ((a1, a2) · (b1, b2)) · (c1, c2).

Thus, “·” is NeutroAssociative.

Having “≤1” a NeutroOrder on G1 implies that:

(1) There exist x ≤1 y ∈ G1 with x 6= y such that z ·1 x ≤1 z ·1 y and x ·1 z ≤1 y ·1 z for all

z ∈ G1.

(2) There exist x ≤1 y ∈ G1 and z ∈ G1 such that z ·1 x � z ·1 y or x ·1 z � y ·1 z.
(3) There exist x ≤1 y ∈ G1 and z ∈ G1 such that z ·1 x or z ·1 y or x ·1 z or y ·1 z are

indeterminate, or the relation between z ·1 x and z ·1 y, or the relation between x ·1 z
and y ·1 z are indeterminate.

Where (T, I, F ) is different from (1, 0, 0) and from (0, 0, 1).

Having b ≤2 b for all b ∈ G2 implies that:

By (1), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 with (x, b) 6= (y, b). For all (z, a) ∈
G1 × G2, we have either a ·2 b ∈ G2 or a ·2 b /∈ G2 or a ·2 b is indeterminate in G2. Similarly

for b ·2 a. The latter implies that (z, a) · (x, b) ≤ (z, a) · (y, b) and (x, b) · (z, a) ≤ (y, b) · (z, a)

or (z, a) · (x, b) ≤ (z, a) · (y, b) is indeterminate in G1 × G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is

indeterminate in G1 ×G2.

By (2), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 and (z, a) ∈ G1 × G2 such that

(z, a) · (x, b) � (z, a) · (y, b) or (x, b) · (z, a) � (y, b) · (z, a) or (z, a) · (x, b) ≤ (z, a) · (y, b) is

indeterminate in G1 ×G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is indeterminate in G1 ×G2.

By (3), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 and (z, a) ∈ G1 × G2 such that

(z, a) · (x, b) ≤ (z, a) · (y, b) is indeterminate in G1 × G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is

indeterminate in G1 × G2 or (z, a) · (x, b) is indeterminate in G1 × G2 or (x, b) · (z, a) is

indeterminate in G1 ×G2. Therefore, (G1 ×G2, ·,≤) is an NOS.

Theorem 3.1 implies that G1 ×G2 is an NOS if either G1, G2 are both NOS, G1 is an NOS

and G2 is a NeutroSemigroup, G1 is an NOS and G2 is a semigroup (or odered semigroup),
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G1 is a NeutroSemigroup and G2 is an NOS, or G1 is a semigroup (or ordered semigroup) and

G2 is an NOS.

We present a generalization of Theorem 3.1.

Theorem 3.2. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ.

Then (
∏
α∈ΓGα, ·,≤) is an NOS if there exist α0 ∈ Γ such that (Gα0 , ·α0 ,≤α0) is an NOS and

(Gα, ·α) is a semigroup or NeutroSemigroup for all α ∈ Γ− {α0}.

Notation 1. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ. If

(
∏
α∈ΓGα, ·,≤) is an NOS then we call it the productional NOS.

Proposition 3.3. Let (G1, ·1,≤1) and (G2, ·2,≤2) be NeutroTotalOrderedSemigroups with

|G1|, |G2| ≥ 2. Then (G1 ×G2, ·,≤) is not a NeutroTotalOrderedSemigroup.

Proof. Since (G1, ·1,≤1) and (G2, ·2,≤2) are NeutroTotalOrderedSemigroups with |G1| ≥ 2

and |G2| ≥ 2, it follows that there exist a ≤1 b ∈ G1, c ≤2 d ∈ G2 with a 6= b and c 6= d.

One can easily see that (a, d) � (b, c) ∈ G1 × G2 and (b, c) � (a, d) ∈ G1 × G2. Therefore,

(G1 ×G2, ·,≤) is not a NeutroTotalOrderedSemigroup.

Corollary 3.4. Let (Gα, ·α,≤α) be NeutroTotalOrderedSemigroups for all α ∈ Γ with

|Gα0 |, |Gα1 | ≥ 2 for α0 6= α1 ∈ Γ. Then (
∏
α∈ΓGα, ·,≤) is not a NeutroTotalOrderedSemi-

group.

Proof. The proof follows from Proposition 3.3.

Example 3.5. Let S1 = {s, a,m}, (S1, ·1,≤1) be the NOS presented in Example 2.8, and

“≤′
1” be the trivial order on S1. Theorem 3.1 asserts that Cartesian product (S1 × S1, ·,≤)

resulting from (S1, ·1,≤1) and (S1, ·1,≤′
1) is an NOS of order 9.

Example 3.6. Let S1 = {s, a,m}, (S1, ·1,≤1) be the NOS presented in Example 2.8, and

(R, ·s,≤u) be the semigroup of real numbers under standard multiplication and usual order.

Theorem 3.1 asserts that Cartesian product (R× S1, ·,≤) is an NOS of infinite order.

Example 3.7. Let S1 = {s, a,m} and (S1, ·1,≤1) be the NOS presented in Example 2.8.

Theorem 3.2 asserts that (S1 × S1 × S1, ·,≤) is an NOS of order 27. Moreover, by means of

Proposition 3.3, (S1 × S1 × S1, ·,≤) is not a NeutroTotalOrderedSemigroup.

Example 3.8. Let (Z, ?,≤?) be the NOS presented in Example 2.11 and (Zn,�,≤t) be the

semigroup under standard multiplication of integers modulo n and “≤t” is defined as follows.

For all x, y ∈ Zn with 0 ≤ x, y ≤ n− 1,

x ≤t y ⇐⇒ x ≤ y ∈ Z.
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Then (Zn × Z, ·,≤) is an NOS.

Proposition 3.9. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ

and (Gα0 , ·α0 ,≤α0) be an NOS for some α0 ∈ Γ. Then φ : (
∏
α∈ΓGα, ·,≤) → Gα0 with

φ((xα)) = xα0 is a NeutroOrderedHomomorphism.

Proof. The proof is straightforward.

Remark 3.10. If |Γ| ≥ 2 and there exist α 6= α0 ∈ Γ with |Gα| ≥ 2 then the NeutroOrdered-

Homomorphism φ in Proposition 3.9 is not a NeutroOrderedIsomorphism.

Remark 3.11. If |Γ| ≥ 2 and there exist α 6= α0 ∈ Γ with |Gα| ≥ 2 then Gα0 �s
∏
α∈ΓGα.

This is clear as there exist no bijective function from Gα0 to
∏
α∈ΓGα.

Proposition 3.12. There are infinite non-isomorphic NOS.

Proof. Let (G, ·G,≤G) be an NOS with |G| ≥ 2, Γ ⊆ R, and |Γ| ≥ 2. Theorem 3.2 asserts that

(
∏
α∈ΓG, ·,≤) is an NOS for every Γ ⊆ R. For all Γ1,Γ2 ⊆ R with |Γ1| 6= |Γ2|, Remark 3.11

asserts that
∏
α∈Γ1

G �s
∏
α∈Γ2

G. Therefore, there are infinite non-isomorphic NOS.

Example 3.13. Let (Z, ?,≤?) be the NOS presented in Example 2.11. Then for every n ∈ N,

we have (
∏n
i=1 Z, ·,≤) is an NOS. Moreover, we have infinite such non-isomorphic NOS.

Theorem 3.14. Let (Gα, ·α,≤α) and (G′
α, ·′α,≤′

α) be NOS for all α ∈ Γ. Then the following

statements hold.

(1) If there is a NeutroOrderedHomomorphism from Gα to G′
α for all α ∈ Γ then there is

a NeutroOrderedHomomorphism from (
∏
α∈ΓGα, ·,≤) to (

∏
α∈ΓG

′
α, ·′,≤′).

(2) If there is a NeutroOrderedStrongHomomorphism from Gα to G′
α for all α ∈

Γ then there is a NeutroOrderedStrongHomomorphism from (
∏
α∈ΓGα, ·,≤) to

(
∏
α∈ΓG

′
α, ·′,≤′).

(3) If Gα ∼= G′
α for all α ∈ Γ then (

∏
α∈ΓGα, ·,≤) ∼= (

∏
α∈ΓG

′
α, ·′,≤′).

(4) If Gα ∼=s G
′
α for all α ∈ Γ then (

∏
α∈ΓGα, ·,≤) ∼=s (

∏
α∈ΓG

′
α, ·′,≤′).

Proof. We prove 1. and the proof of 2., 3., and 4. are done similarly. Let φα : Gα → G′
α

be a NeutroOrderedHomomorphism and define φ :
∏
α∈ΓGα →

∏
α∈ΓG

′
α as follows: For all

(xα) ∈
∏
α∈ΓGα,

φ((xα)) = (φα(xα)).

one can easily see that φ is a NeutroOrderedHomomorphism.

M. Al-Tahan, B. Davvaz, F. Smarandache, and O. Anis, On Some Properties of Productional
NeutroOrderedSemigroups
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4. Subsets of productional NeutroOrderedSemigroups

In this section, we find some sufficient conditions for subsets of the productional NOS to be

NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and NeutroOrderedFilters. Moreover,

we present some related examples.

Proposition 4.1. Let (Aα,≤α) be a partial ordered set for all α ∈ Γ and (xα) ∈
∏
α∈ΓAα.

Then ((xα)] =
∏
α∈Γ(xα].

Proof. Let (yα) ∈ ((xα)]. Then (yα) ≤ (xα). The latter implies that yα ≤α xα for all α ∈ Γ and

hence, yα ∈ (xα] for all α ∈ Γ. We get now that (yα) ∈
∏
α∈Γ(xα]. Thus, ((xα)] ⊆

∏
α∈Γ(xα].

Similarly, we can prove that
∏
α∈Γ(xα] ⊆ ((xα)].

Proposition 4.2. Let (Aα,≤α) be a partial ordered set for all α ∈ Γ and (xα) ∈
∏
α∈ΓAα.

Then [(xα)) =
∏
α∈Γ[xα).

Proof. The proof is similar to that of Proposition 4.1.

Theorem 4.3. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Sα is a NeutroOrderedSubSemi-

group of Gα for all α ∈ Γ then
∏
α∈Γ Sα is a NeutroOrderedSubSemigroup of

∏
α∈ΓGα.

Proof. For all α ∈ Γ, we have Sα an NOS (as it is NeutroOrderedSubSemigroup of Gα).

Theorem 3.2 asserts that
∏
α∈Γ Sα is an NOS. Since Sα is a NeutroOrderedSubSemigroup of

Gα for every α ∈ Γ, it follows that for every α ∈ Γ there exist xα ∈ Sα with (xα] ⊆ Sα.

Using Proposition 4.1, we get that there exist (xα) ∈
∏
α∈Γ Sα such that ((xα)] =

∏
α∈Γ(xα] ⊆∏

α∈Γ Sα. Therefore,
∏
α∈Γ Sα is a NeutroOrderedSubSemigroup of

∏
α∈ΓGα.

Corollary 4.4. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such

that Sα0 is a NeutroOrderedSubSemigroup of Gα0 then
∏
α∈Γ,α<α0

Gα × Sα0 ×
∏
α∈Γ,α>α0

is a

NeutroOrderedSubSemigroup of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.3 and having Gα a NeutroOrderedSubSemigroup of

itself.

Theorem 4.5. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedLeftIdeal

of Gα for all α ∈ Γ then
∏
α∈Γ Iα is a NeutroOrderedLeftIdeal of

∏
α∈ΓGα.

187
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Proof. Having every NeutroOrderedLeftIdeal a NeutroOrderedSubSemigroup and that Iα is a

NeutroOrderedLeftIdeal of Gα for all α ∈ Γ implies, by means of Theorem 4.3, that
∏
α∈Γ Iα is

a NeutroOrderedSubSemigroup of
∏
α∈ΓGα. Since Iα is a NeutroOrderedLeftIdeal of Gα for all

α ∈ Γ, it follows that for every α ∈ Γ there exist xα ∈ Iα such that rα ·αxα ∈ Iα for all rα ∈ Gα.

The latter implies that there exist (xα) ∈
∏
α∈Γ Iα such that (rα) · (xα) = (rα ·α xα) ∈

∏
α∈Γ Iα

for all (rα) ∈
∏
α∈ΓGα. Therefore,

∏
α∈Γ Iα is a NeutroOrderedLeftIdeal of

∏
α∈ΓGα.

Corollary 4.6. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedLeftIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that rα ·αxα ∈ Gα
for all rα ∈ Gα then

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedLeftIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.5 and having Gα a NeutroOrderedLeftIdeal of itself.

Theorem 4.7. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedRightIdeal

of Gα for all α ∈ Γ then
∏
α∈Γ Iα is a NeutroOrderedRightIdeal of

∏
α∈ΓGα.

Proof. The proof is similar to that of Theorem 4.5.

Corollary 4.8. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedRightIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that xα·αrα ∈ Gα
for all rα ∈ Gαthen

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedRightIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.7 and having Gα a NeutroOrderedRightIdeal of

itself.

Theorem 4.9. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedIdeal of Gα

for all α ∈ Γ then
∏
α∈Γ Sα is a NeutroOrderedIdeal of

∏
α∈ΓGα.

Proof. The proof is similar to that of Theorem 4.5.

Corollary 4.10. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that rα ·αxα, xα ·αrα ∈
Gα for all rα ∈ Gα then

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.9 and having Gα a NeutroOrderedIdeal of itself.
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Example 4.11. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example

2.10. Example 2.14 asserts that I = {0, 1, 2} is both: a NeutroOrderedLefttIdeal and

a NeutroOrderedRightIdeal of S3. Theorem 4.5 and Theorem 4.7 imply that I × I =

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} is both: a NeutroOrderedLefttIdeal

and a NeutroOrderedRightIdeal of S3 × S3. Moreover, I × S3 and S3 × I are both: Neutro-

OrderedLefttIdeals and NeutroOrderedRightIdeals of S3 × S3.

Example 4.12. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Example 2.15 asserts that I = {−2,−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of Z.

Theorem 4.9 asserts that I × I × I is NeutroOrderedIdeal of Z× Z× Z.

Theorem 4.13. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Fα is a NeutroOrderedFilter of

Gα for all α ∈ Γ then
∏
α∈Γ Fα is a NeutroOrderedFilter of

∏
α∈ΓGα.

Proof. For all α ∈ Γ, we have Fα an NOS (as it is NeutroOrderedFilter of Gα). Theorem 3.2

asserts that
∏
α∈Γ Sα is an NOS. Having Fα is a NeutroOrderedFilter of Gα for all α ∈ Γ implies

that for every α ∈ Γ there exist xα ∈ Fα such that for all yα, zα ∈ Fα, xα ·α yα ∈ Fα and zα ·α
xα ∈ Fα imply that yα, zα ∈ Fα. We get now that there exist (xα) ∈

∏
α∈Γ Fα such that for all

(yα), (zα) ∈
∏
α∈Γ Fα, (xα) ·(yα) = (xα ·αyα) ∈

∏
α∈Γ Fα and (zα) ·(xα) = (zα ·αxα) ∈

∏
α∈Γ Fα

imply that (yα), (zα) ∈
∏
α∈Γ Fα. Since Fα is a NeutroOrderedFilter of Gα for every α ∈ Γ,

it follows that for every α ∈ Γ there exist xα ∈ Fα with [xα) ⊆ Fα. Using Proposition 4.2,

we get that there exist (xα) ∈
∏
α∈Γ Fα such that [(xα)) =

∏
α∈Γ[xα) ⊆

∏
α∈Γ Fα. Therefore,∏

α∈Γ Fα is a NeutroOrderedFilter of
∏
α∈ΓGα.

Corollary 4.14. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Fα0

is a NeutroOrderedFilter of Gα0 then
∏
α∈Γ,α<α0

Gα×Fα0×
∏
α∈Γ,α>α0

is a NeutroOrderedFilter

of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.13 and having Gα a NeutroOrderedFilter of itself.

Example 4.15. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Example 2.16 asserts that F = {−2,−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of Z. Theo-

rem 4.13 implies that F × F × F × F is a NeutroOrderedFilter of Z× Z× Z× Z. Moreover,

Z× Z× F × Z is a NeutroOrderedFilter of Z× Z× Z× Z.

5. Conclusion

The class of NeutroAlgebras is very large. This paper considered NeutroOrderedSemi-

groups (introduced by the authors in [9]) as a subclass of NeutroAlgebras. Results related to

productional NOS and its subsets were investigated and some examples were elaborated.
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For future work, it will be interesting to investigate the following.

(1) Find necessary conditions for the productional NeutroSemigroup to be NeutroOrdered-

Semigroup.

(2) Check the possibility of introducing the quotient NeutroOrderedSemigroup and inves-

tigate its properties.

(3) Study other types of productional NetroOrderedStructures.
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Graph Structures in Bipolar Neutrosophic 
Environment 

Muhammad Akram, Muzzamal Sitara Florentin Smarandache

Abstract: A bipolar single-valued neutrosophic (BSVN) graph structure is a generalization of a 
bipolar fuzzy graph. In this research paper, we present certain concepts of BSVN graph structures. 
We describe some operations on BSVN graph structures and elaborate on these with examples. 
Moreover, we investigate some related properties of these operations. 

Keywords: graph structure; bipolar single-valued neutrosophic (BSVN) graph structure 

1. Introduction

Fuzzy graphs are mathematical models for dealing with combinatorial problems in different 
domains, including operations research, optimization, computer science and engineering. In 1965, 
Zadeh [1] proposed fuzzy set theory to deal with uncertainty in abundant meticulous real-life 
phenomena. Fuzzy set theory is affluently applicable in real-time systems consisting of information 
with different levels of precision. Subsequently, Atanassov [2] introduced the idea of intuitionistic fuzzy 
sets in 1986. However, for many real-life phenomena, it is necessary to deal with the implicit counter 
property of a particular event. Zhang [3] initiated the concept of bipolar fuzzy sets in 1994. Evidently 
bipolar fuzzy sets and intuitionistic fuzzy sets seem to be similar, but they are completely different sets. 
Bipolar fuzzy sets have large number of applications in image processing and spatial reasoning. Bipolar 
fuzzy sets are more practical, advantageous and applicable in real-life phenomena. However, both 
bipolar fuzzy sets and intuitionistic fuzzy sets cope with incomplete information, because they do 
not consider indeterminate or inconsistent information that clearly appears in many systems of 
different fields, including belief systems and decision-support systems. Smarandache [4] introduced 
neutrosophic sets as a generalization of fuzzy sets and intuitionistic fuzzy sets. A neutrosophic set 
has three constituents: truth membership, indeterminacy membership and falsity membership, for 
which each membership value is a real standard or non-standard subset of the unit interval [o-, 1 +]. 
In real-life problems, neutrosophic sets can be applied more appropriately by using the single-valued 
neutrosophic sets defined by Smarandache [4] and Wang et al. [5]. Deli et al. [6] considered bipolar 
neutrosophic sets as a generalization of bipolar fuzzy sets. They also studied some operations and 
applications in decision-making problems. 

On the basis of Zadeh's fuzzy relations [7], Kauffman defined fuzzy graphs [8]. In 1975, 
Rosenfeld [9] discussed a fuzzy analogue of different graph-theoretic ideas. Later on, Bhattacharya [10] 
gave some remarks on fuzzy graphs in 1987. Akram [11] first introduced the notion of bipolar fuzzy 
graphs. In 2011, Dinesh and Ramakrishnan [12] studied fuzzy graph structures and discussed their 
properties. In 2016, Akram and Akmal [13] proposed the concept of bipolar fuzzy graph structures. 
Certain concepts on graphs have been discussed in [14-19]. Ye [20-22] considered several applications 

Muhammad Akram, Muzzamal Sitara, Florentin Smarandache (2017). Graph Structures in Bipolar 
Neutrosophic Environment. Mathematics, 5(4), 60; DOI: 10.3390/math5040060
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of single-valued neutrosophic sets. Inthis research paper, we present certain concepts of bipolar 
single-valued neutrosophic graph structures (BSVNGSs). We introduce some operations on BSVNGSs 
and elaborate on these with examples. Moreover, we investigate some relevant and remarkable 
properties of these operators. 

We have used standard definitions and terminologies in this paper. For other notations, 
terminologies and applications not mentioned in the paper, the readers are referred to [23-29]. 

2. Bipolar Single-Valued Neutrosophic Graph Structures

Definition 1. [ 41 A neutrosophic set N on a non-empty set V is an object of the form 

where TN, INJN V --+ [o-, 1 +] and there is no restriction on the sum of TN(v), IN(v) and FN(v) 
for all VE V. 

Definition 2. [5] A single-valued neutrosophic set N on a non-empty set Vis an object of the form 

where TN, IN, FN : V --+ [0, 1] and the sum of TN( v ), IN( v) and FN( v) is confined between O and 3 for all 
VE V. 

Definition 3. [23] A BSVN set on a non-empty set V is an object of the form 

B = {(v, TC (v),If (v),Ff (v), Tf/(v),I}1 (v),Ff/(v)): v EV} 

where Tf,If,Ff : V --+ [0,1] and Tf/,If/,Ff/ : V --+ [-1,0]. The positive values Tf(v),IC(v) and 
Ff ( v) denote the truth , indeterminacy and falsity membership values of an element v E V, whereas negative 
values TI/ (v), I}1 (v) and Ff/ (v) indicate the implicit counter property of truth, indeterminacy and falsity 
membership values of an element v E V. 

Definition 4. [23] A BSVN graph on a non-empty set Vis a pair G = (B, R), where B is a BSVN set on V 
and R is a BSVN relation in V such that 

Tf (b,d) � Tf (b) /\ Tf (d), IK(b,d) � If (b) /\ If (d), Ff (b,d) � Ff (b) v Ff (d), 
Tf:(b,d) � Tf/(b) vTf/(d), If:(b,d) � If/(b) v If/ (d), Ff: (b,d) � Ffl (b) /\Ff/(d) 

for all b,d E V. 

We now define the BSVNGS. 

Definition 5. {30] A BSVNGS of a graph structure Gs = (V, V1, V2, ... , Vm) is denoted by 
Gbn = (B, B1, B 2, ... , Bm), where B =< b, T P(b), IP(b), FP(b), TN (b), IN (b), FN (b) > is a BSVN set on 
the set V and Bk =< (b, d), T{ (b, d), If (b, d) ,F{ (b, d), Tf' (b, d), Jt' (b,d),Ff' (b, d) > are the BSVN sets on 
Vk such that 

T{(b,d) � min{T P(b), T P(d)}, If (b,d) � min{IP(b), IP(d)}, F{(b,d) � max{FP(b),FP(d)},
Tf' (b, d) � max{TN (b), TN (d)}, Jt' (b,d) � max{IN (b), IN (d) },Ff' (b, d) � min{FN (b),FN (d)}

for all b, d E V. Note that 0 � T{ (b, d) + If (b, d) + F{ (b, d) � 3, -3 � Tf' (b, d) + Jt' (b, d) + Ff' (b, d) � 0
for all (b, d) E Vk, and (b, d) represents an edge between two vertices b and d .  In this paper we use bd in place 
of (b,d). 
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Example 1. Consider a graph structure Gs = (V , Vi, Vz, V3) such that V = {bi,bz,b3,b4,b5,b6,b7,bs}, 
Vi= {bib2,b2b7,b4bs,b6bs,bsb6,b3b4}, V2 = {bibs,bsb7,b3b6,b7bs}, and V3 = {bib3,b2b4}. Let B be 
a BSVN set on V given in Table 1 and Bi, B2 and B3 be BSVN sets on ½_, V2 and V3, respectively, given 
in Table 2. 

Table 1. Bipolar single-valued neutrosophic (BSVN) set Bon vertex set V.

B b1 b2 b3 b4 bs b6 b7 bs 

yP 
0.5 0.4 0.4 0.5 0.3 0.4 0.5 0.3 

IP 0.4 0.3 0.4 0.4 0.2 0.4 0.5 0.4 

fP 0.6 0.5 0.4 0.6 0.4 0.7 0.4 0.5 
yN -0.5 -0.4 -0.4 -0.5 -0.3 -0.4 -0.5 -0.3

IN -0.4 -0.3 -0.4 -0.4 -0.2 -0.4 -0.5 -0.4

FN -0.6 -0.5 -0.4 -0.6 -0.4 -0.7 -0.4 -0.5 

Table 2. BSVN sets B1, B2 and B3.

B1 b1b2 b2b7 b4bs b6bs bsb6 b3b4 B2 bibs b5b7 b3b6 b7bs B3 b1b3 b2b4 

yP 0.4 0.4 0.3 0.3 0.3 0.4 yP 0.3 0.3 0.4 0.3 yP 0.4 0.4 

IP 0.3 0.3 0.4 0.4 0.2 0.4 IP 0.2 0.2 0.4 0.4 IP 0.4 0.3 

FP 0.6 0.5 0.6 0.7 0.7 0.6 FP 0.6 0.4 0.7 0.5 FP 0.6 0.6 
yN -0.4 -0.4 -0.3 -0.3 -0.3 -0.4 yN -0.3 -0.3 -0.4 -0.3 yN -0.4 -0.4

IN -0.3 -0.3 -0.4 -0.4 -0.2 -0.4 IN -0.2 -0.2 -0.4 -0.4 IN -0.4 -0.3

FN -0.6 -0.5 -0.6 -0.7 -0.7 -0.6 FN -0.6 -0.4 -0.7 -0.5 FN -0.6 -0.6

By direct calculations, it is easy to show that Gbn = (B, B1, B2, B3) is a BSVNGS. This BSVNGS is shown 
in Figure 1. Generated with LaTeXDraw 2.0.8 on Saturday March 11 20:30:24 PKT 2017. 
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Figure 1. A BSVN graph structure. 

Definition 6. A BSVNGS Gbn = (B, B1 , B2, ... , Bm) is called a Bk-cycle if (supp(B),supp(B1), 
supp(B2), . . .  , supp(Bm)) is a Bk -cycle. 

Example 2. Consider a BSVNGS Gbn = (B, B1, B2) as shown in Figure 2.
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Figure 2. A BSVN B1 -cycle. 

Definition 7. A BSVNGS Gbn = (B, B1, B2, ... , Bm) is a BSVN fuzzy Bk-cycle (for any k) if Gbn is a Bk -cycle 
and no unique Bk-edge bd exists in Gbn, such that Tfk(bd) = min{Tfk(ef) : ef E Bk = supp(Bk)}, 
It(bd) = min{IC/ef) : ef E Bk = supp(Bk)}, F[k(bd) = max{F[k(ef) : ef E Bk = supp(Bk)}, 
T�(bd) = max{T�(ef) : ef E Bk = supp(Bk)}, I�(bd) = max{I�(ef) : ef E Bk = supp(Bk)} 
or Ft(bd) = min{Ft(ef): ef E Bk = supp(Bk)}. 

Example 3. Consider a BSVNGS Gbn = (B, B1, B2) as depicted in Figure 3. 

B2 (0.2, 0.5, 0.5, 0.2, 0.5, 0.5) 

Figure 3. A BSVN fuzzy Bi-cycle. 

Tf/bd) = min{Tf/ef): ef E B2 = supp(B2)}, I[
2
(bd) = min{If

2
(ef): ef E B2 = supp(B2)}, 

Ff/bd) = max{F[
2
(ef) : ef E B2 = supp(B2)}, T�(bd) = max{T�(ef): ef E B2 = supp(B2)}, 

Il1z(bd) = max{Il1z(ef): ef E B2 = supp(B2)} or F�(bd) = min{F};;(ef): ef E B2 = supp(B2)}. 

Definition 8. A sequence of vertices (distinct) in a BSVNGS Gbn = (B, B1, B2, ... , Bm) is called a Bk-path, 
that is, b 1 , b2, ... , bm, such that bk-1 bk is a BSVN Bk-edge, for all k = 2, ... , m. 

Example 4. Consider a BSVNGS Gbn = (B, B1, B2) as represented in Figure 4. 

Florentin Smarandache (author and editor) Collected Papers, XIII

454



5" 
I 
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� 
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b•(0.3, 0.4, 0.5, -0.3, -OA, -0.5) 

Figure 4. A BSVN B2 -path. 

In this BSVNGS, the sequence of distinct vertices b1, b4, b3, bz is a BSVN Bz-path. 

Definition 9. Let Cbn = (B, B1, Bz, ... , Bm) be a BSVNGS. The positive truth strength rP _pB
k
, positive falsity 

strength F P _pB
k
, and positive indeterminacy strength JP _pBk 

of a Bk-path, PBk 
= b1, b2,.,., bn, are defined as 

Similarly, the negative truth strength rN .PBe negative falsity strength F N .PBk
, and negative indeterminacy 

strength JN .PB
k 

of a Bk-path are defined as 

Example 5. Consider a BSVNGS Cbn = (B, B1 , B2, B3) as shown in Figure 5. 

b8(0.2, 0A,0A, -0.2, -0.4, -0.4) 

Figure 5. A bipolar single-valued neutrosophic graph structure (BSVNGS) Cbn = (B, B1, B2, B3). 
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In this BSVNGS, there is a Bi-path, that is, Ps
1 

= b5, b6, b3,b4, b3 . Thus, TN.Ps
1 
= -0.2, JN .Ps

1 
= -0.2,

FN.Ps
2
= -0.6, TP.Ps

1 
= 0.2, JP.Ps

1 
= 0.2 and FP.Ps

2 
= 0.6.

Definition 10. Let Gbn = (B, B1, Bz, ... , Bm) be a BSVNGS. Then 

• The Bk-po sitive strength of co nnectedness of truth between two no des band d is defined by
Tft(bd) = V {Tf; (bd) }, such that Tf;(bd) = (T%;-1 

o Tf; )(bd) fo r l � 2
1::,:1 

and Tf;(bd) = (Tf; o TCk1) (bd) = V (TC; (by) I\ Tf; (yd)).
y 

• The Bk-po sitive strength of co nnectedness of indeterminacy between two no des band d is defined by
IC;'(bd) = V UC;(bd)}, such that IC; (bd) = (Jf�-l o IC; )(bd) fo r l � 2

1::,:1 
and r:; (bd) = (I:; or:;) (bd) = V (If; (by) I\ If; (yd)).

y 

• The Bk-po sitive strength of connectedness of falsity between two no des band d is defined by
F!00(bd) = I\ {Ff;(bd)}, such that Ff;(bd) = (F%;-1 

o Ff; )(bd) fo r l � 2
I::,: 1 

and Ff;(bd) = (Ffk1 o F!1 )(bd) = I\ (Ff; (by) V Ffk1 (yd)).
y 

• The Bk-negative strength of co nnectedness of truth between two no des band d is defined by
Tflt(bd) = I\ {Tfj/(bd)}, such that Tfj/(bd) = (Tr1-1 oTfj/)(bd)fo r l � 2

1::,:1
and Tfj/(bd) = (T�1 

o T�1 )(bd) = I\ (T�1 (by) V T�1 (yd)).
y 

• The Bk-negative strength of co nnectedness of indeterminacy between two no des band d is defined by
I�00(bd) = I\ Ult(bd)},such that Ifj}(bd) = ut1

-
1 

o I�1)(bd)fo r l � 2
1::,:1

and I�2(bd) = (J�1 oI�1 )(bd) = j\(I�1 (by) V Ili;1 (yd)).
y 

• The Bk-negative strength of co nnectedness of falsity between two no des b and d is defined by
F�00(bd) = V {F�1(bd)},such that Ffj/(bd) = (Ffit1 oF�1 )(bd)fo r l � 2

1::,:1

and F�2(bd) = (F�1 
o F�1 )(bd) = V(Ffj} (by) I\ F�1 (yd)).

y 

Definition 11. Let Gbn = ( B, B1, B2, ... , Bm) be a BSVNGS and "b" be a node in Gbn · Let ( B', B�, Bi, ... , B;,,)
be a BSVN subgraph structure of Gbn induced by B \ { b} such that Ve i= b, f i= b 

T%, (b) = Ifi(b) = F%,(b) = T%, (be)= I%, (be) = F%, (be) = 0
k k k 

TJ/(b) = IJ/(b) = Ff/(b) = Tf;; (be)= IJ/(be) = Ff;; (be)= 0
k k k 

TC,(e) = TG(e), r;,(e) = IG(e),Ffi(e) = Ff(e), Tf;;(e) = Tfj(e), IJ/(e) = Ifj(e), Ff;;e) = Ffj(e) 
TBP' (e f) = TC (e f), IBP' (e f) = IC (e f), FBP' (e f) = Ff (e f), TB1'; (e f) = Tfj (e f), Isl'f (e f) = Ifj (e f) 

k k k k k k k k k k 

FB1'; (e f) = Ffj (e f), V edges be, e f E Gbn
k k 

Then b is a BSVN fuzzy Bk cut-vertex if TC00(ef) > TBP100(ef), r;00(ef) > IBP100(ef), FC00(ef) >
k k k k k 

FBP100(ef), Tfj 00(ef) < TB1';00(ef), Ifj00(ef) < IB1';00(ef) and Ffj 00(ef) < FB1';00(ef),Jor some e,J E B \ {b}.
k k k k k k k 

Note that vertex b isa BSVNfuzzy Bk - TP cut-vertex ifTG00(ef) > TBP100(ef), it isa BSVNfuzzy Bk - J P 

k k 

cut-vertex if IG00(ef) > JBP;"'(ef), and it is a BSVN fuzzy Bk - F P cut-vertex if Ff00(ef) > FBP,00(ef). 
k k k k 

Moreover, vertex b is a BSVN fuzzy Bk - TN cut-vertex if Tfl00 (ef) < TB�00(ef), it is a BSVN fuzzy Bk - JN 

k k 

cut-vertex if Ifj00(ef) < IB�00(ef) and it is a BSVN fuzzy Bk - FN cut-vertex if Ffj 00(ef) < FB1';00(ef). 
k k k k 

Example 6. Consider a BSVNGS Gbn = (B, B1, B2) as depicted in Figure 6, and let Gb
h 

= (B', B�, Bi) be a 
BSVN subgraph structure of the BSVNGS Gbw which is obtained thro ugh deletio n  of vertex b2. 
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Figure 6. A BSVNGS Gbn = (B, B1, Bz). 

Definition 12. Suppose Gbn = (B, B1, B2, ... , Bm) is a BSVNGS and bd is a Bk-edge. Let (B', Bi, B�, ... , B:n) 
be a BSVN fuzzy spanning subgraph structure of Gbni such that 

T%, (bd) = 0 = I%, (bd) = F%, (bd)1 Tf (bd) = 0 = I� (bd) = Ff (bd) 
k k k k k k 

TB� (gh) = TC (gh), IBP' (gh) = IC (gh) 
k k k k 

FBP' (bd) = FC (bd\ TBI'{ (gh) = Tj;' (gh)1 IBI'{ (gh) = I};' (gh)1 FBI'{ (bd) = FJ;' (bd), \/ edges gh -/- bd 
k k k k k k k k 

Then bd is a BSVN fuzzy Bk-bridge if Tf"'(ef) > T8Pt'(ef), IC00(ef) > J8
P,00(ef), FC00(ef) >

k k k k k 

F8P,oo (e f), Tj;'00 (e f) < T81';
00 (e f), Iif 00 (e f) < I8�

00 (e f) and FJ;'00 (e f) < F81';
00 (e f), for some e, f E V.

k k k k k k k 

Note that bd is a BSVN fuzzy Bk - TP bridge if TC00(ef) > T8P'('(ef), it is a BSVN fuzzy Bk - JP bridge if 
k k 

I &00 ( e f) > J8P,oo ( e f) and it is a BSVN fuzzy Bk - F P bridge if FC00 ( e f) > F8P,oo ( e f). Moreover1 bd is a BSVN 
k k k k 

fuzzy Bk - TN bridge ifTJ;'00(ef) < T8N1

00(ef), it is a BSVN fuzzy Bk - JN bridge if IJi00(ef) < I8�
00(ef)

k k k k 

and it is a BSVN fuzzy Bk - FN bridge if F};'00(ef) < F81';
00 (ef). 

k k 

Example 7. Consider a BSVNGS Gbn = (B1 B1, B2) as depicted in Figure 6 and G{,
5 

= (B', Bi, B�), a BSVN 
spanning subgraph structure of the BSVNGS Gbn obtained by deleting B1 -edge (bzbs) and that is shown in 
Figure 7.
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This edge (b2b5) is a BSVN fuzzy B1 -bridge, as T8Pi°', (bzb5) = 0.3, TC00 (bzb5) = 0.4, J8P,
00 (bzbs)= 0.3,

1 l 1 
IC00 (bzbs) = 0.41 F8P,oo (bzbs)= 0.41 Ff00 (bzbs) = 0.5.1 T8N,

00 (bzbs) = -0.3 > -0.4 = Tf 00 (bzbst I8N,
00 (bzbs)=1 1 1 1 1 1 

-0.3 > -0.4= Ifj""(b2bst and F
8
N,00 (b2bs)= -0.4 > -0.5 = Ffj""(bzbs).

1 
1 

1 

Definition 13. A BSVNGS Gbn = (B,B1,Bz, ... 
1
Bm) is a Bk-tree if (supp(B),supp(B1),supp(B2), 

.. . ,supp(Bm)) is a Bk-tree. Alternatively, Gbn is a Bk-tree if Gbn has a subgraph induced by supp(Bk) 
that forms a tree. 

Example 8. Consider the BSVNGS Gbn = (B, B1, B2) as depicted in Figure 8. 

b5 (0.6, 0.7, 0.6, -0.6, -0. 7, -0.6) b4 (0.8, 0.9, 0.8, -0.8, -0.9, -0.8) ii;' 

B1(0.5, 0.5, 0.8, -0.5, -0.5, -0.8) 

bi(0.5,0.8,0.7, -0.5, -0.8, -0.7) 

Figure 8. A BSVN Bi-tree.
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This BSVNGS Gbn = (B,B1,B2) is a B2-tree,as (supp(B),supp(B1),supp(B2)) is a B2-tree. 

Definition 14. A BSVNGS Gbn = (B, B1, B2, ... , Bm) is a BSVN fuzzy Bk-tree if Gbn has a BSVN fuzzy 
spanning subgraph structure Hbn = (B', B�, B�, ... , B;,,) such that for all Bk-edges1 bd not in f'hn: 

1. Hbn is a B{-tree.
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2. Tf (bd) < TBpi°',(bd), I{ (bd) < JBP,00(bd), Ff (bd) < FB�00(bd), Tfj (bd) > TBl'f00(bd),
k k k k k k k k IJ1 (bd) > IJ;'i00(bdt and Ffj (bd) > Fj;;00(bd).

k 
k 

k 
k In particular, Gbn is a BSVN fuzzy Bk - T P tree ifTf (bd) < T8P1

00(bd), it is a BSVN fuzzy Bk - JP tree
k k if I{ (bd) < J8P100(bd), and it is a BSVN fuzzy Bk - F P tree if Ff (bd) > F8P1

00(bd). Moreover, Gbn is a BSVN 
k k k k fuzzy Bk - TN tree if Tfj (bd) > T8l'f00(bd), it is a BSVNfuzzy Bk - JN tree if IJ1 (bd) > I8�00(bd),and it is a

k k k k BSVN fuzzy Bk - F Ntree if Ff! (bd) < F8�00(bd).
k k 

Example 9. Consider the BSVNGS Gbn = (B, B1 , B2) as depicted in Figure 9. 

Figure 9. A BSVN fuzzy Bi-tree. 

It is B2-tree, rather than a B1 -tree. However, it is a BSVN fuzzy B1 -tree, because it has a BSVN fuzzy spanning subgraph ( B1
, B�, Bi) as a B� -tree, which is obtained through the deletion of the B1 -edge b2 b5 from Gbn · Moreover, T8P,00(b2bs) = 0.3 , Tf (b2 bs) = 0.2, J

8
P,00(b2bs) = 0.3, I{ (b2bs) = 0.1, F8P,00(b2bs) = 0.4,1 l 1 l 1 FB

1 
(b2bs) = 0.5. T

8
l'f00(b2bs) = -0.3 < -0.2 = TJ1 (b2 bs), I8�00(b2bs) = -0.3 < -0.1 = Ifi (b2 bs) and1 1 1 1 

Ff,00 (b2bs) = -0.4 > -0.5 = FB
1 (b2bs). 

1 

Now we define the operations on BSVNGSs. 

Definition 15. Let Gb1 = (B1, B11 , B12, ... , B1m) and C\2 = (B2, B21, B22 , ... , B2m) be two BSVNGSs. The Cartesian product of Gb1 and Gb2, denoted by 
Gbl X Gb2 = (B1 X B2 , B11 X B21 , B12 X B22 , ... , B1m X Bzm) 

is defined as 
{ T{s1XB2) (bd) = (Tf

l X Tf
2
) (bd) = TG

l 
(b) I\ TG

2 
(d)

(i) I{s1 
xB 2) (bd) 

= UK X IC) (bd) 
= 

IG/b) /\ IG/d)F{s
1
x82/bd) = (Ff

1 
x Ff)(bd) = Ff/b) V Ff/d)
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(ii) 

(iii) 

(iv) 

(v) 

(vi) 

Example 10. Consider Gb1 = (B1 , B11 , B12 ) and Gbz = (Bz , B21 , B22 ) as BSVNGSs of GSs Gs 1 = (V1, V11, Vtz) 
and Gs2 = (Vz, V21 , V22), respectively, as depicted in Figure 10, where V11 = {b1 b2}, V12 = {b3b4}, 
V21 = {d1d2},and V22 = {d2d3 }. 

"' "'"� "' 
oo 

jn� 
'? '?  
,_: _N 
O o  

�� 
I I 

0 O 

-� �
I I 

'? '?
....-�

I I 
0 O 

��

I 
0 

_i-, 
I 

0 

" 
I 

0 

� 

b2(0.5, 0.2, 0.8, -0.5, -0.2, -0.8) b4 (0.5, 0.2, 0.6, -0. , -0.2, -0.6) d2 (0.3, 0.2, 0.4, -0.3, -0.2, -0.4) 

Figure 10. Two BSVNGSs Gbl and Gb2-

fr­
o 
Y' 
0 
,w 
0 

Y' 
I 

0 

y, 

I 
0 

-°" 
I 

0 

-3 

The Cartesian product of Gb1 and Gbz, defined as Gb1 x Gbz = { B1 x B2 , B11 x B21 , B12 x B22}, is depicted 
in Figures 11 and 12.
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Figure 11. cbl x Gbz . 

B12 X B,z(0.3, 0.2,0.6, -0.3, -0.2, -0.6) 

Figure 12. cbl x Gb2. 

Theorem 1. The Cartesian product Gb1 x Gb2 = (B1 x Bz, Bn x B21, B12 x B22, ... , B1m x B2m) of two 
BSVNSGSs of GSs c:1 and c:2 is a BSVNGS of c:1 x Gsz. 

Proof. Consider two cases: 

Case 1. For b E V1, d1 d2 E V2k, 

T{B
lkxB21<) ( (bd1) (bd2)) = Tf1 (b) /\ Tf

21< 
(d1d2) 

� Tf1 (b) /\ [Tf
2 
(d1) /\ Tf2 (dz)] 

= [TC
1 
(b) /\ Tf

2 
(d1)] /\ [Tf

1 
(b) /\ Tf

2 
(dz)] 

= T{B
l 
xB

2
) (bd1) I\ T{B

l 
xB

2
) (bd2) 

T�
lkxB21<

/(bd1)(bd2)) = Tlii(b) vTK(d1d2) 
:::,. Tlii (b) v [T� (d1) v T� (d2)]

= [Tfi (b) v T� (d1)] v [Tlii (b) v Tfz (dz)] 
= T�1 xBz) (bd1) V T�1 xBz) (bd2) 
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I(
P
B xB )((bd1)(bd2)) = IC (b) /\ IC (d1d2) lk 2k 1 2k 

::; IC/b) I\ [IC2(d1) /\IC2(d2)] 
= [ IC/b) /\ ICZ (d1)] /\ [ IC/b) /\ ICZ (d2)] 
= I[B1XB2/bd1) I\ I[B1 XB2)(bd2) 

I(
N

B xB )((bd1)(bd2)) = I}1 (b) V If (d1d2)lk 2k 1 2k 

� I� (b) V [Ifz(d1) V Ifz(d2)] 
= [I�(b) V Ifz(di)] V [I�(b) V I�(d2)] 
= I�1XB2/bd1) V I�1XB2)(bd2) 

F(BikxB2k)((bd1)(bd2)) = F£ (b) V F[
2k(d1 d2) 

::; F£ (b) V [F[/d1) V FC/d2)] 
= [F£ (b) V F[2 (d1)] V [F[l (b) V FC2 (d2)] 
= F(BixB2/bd1) V F(BixB2/bd2) 

F�ikxB2k) ( (bd1 ) (bd2)) = Ffi1i (b) /\ Ft (d1d2) 
� Ffi1i (b) /\ [FJ;; (d1) /\ Ffz (d2)] 
= [Ffi1i (b) I\ FJ;; (d1)] /\ [Ffi (b) /\ FJ;; (d2)] 
= F�1XB2/bd1) I\ F�1XB2/bd2) 

for bd1 , bd2 E V1 x V2. 
Case 2. For b E Vz, d1d2 E Vu, 

T(BlkxB2k / (d1 b) (d2b)) = T[/b) I\ TC1k (d1d2) 
::; T[2 (b) /\ [T[l (d1) I\ T[l (d2)] 
= [TC/b) I\ Tfl (d1)] /\ [Tf/b) I\ T[/d2)] 
= T(B1XB2/d1b) I\ T(B1 XB2)(d2b) 

T�lkxB2k/(d1 b)(d2b)) = Tfi1/b) vTK(d1d2) 
� Tj;; (b) v [Tfi1i (d1) V Tfi (d2)] 
= [T};; (b) V Tfi1i (d1)] V [Tfz (b) V Tfi (d2)] 
= T(BixB2)(d1b) VT(BixB2/d2b) 

I{BlkxB2k)((d1b)(d2b)) = IC2 (b) /\Ifu(d1d2) 
::; IC2(b) /\ [If/d1 ) /\IC/d2)] 
= [IC/b) I\ Ifl (d1)] /\ [IC/b) I\ IC/d2)] 
= I[B1 XB2 )(d1b) I\ I[B1 XB2)(d2b) 
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I�lkxB2.,J((d1b)(dzb)) = I};;(b) v IK(d1 d2)
2: I};; (b) V [I� (d1) VI� (dz)] 
= [I};;(b) VI� (d1)] V [I�(b) VI� (dz)] 
= I�1XB2/d1b) V J�1XB2)(d2b) 

F{s1kXB2,:/(d1b)(d2b)) = Ff/b) V Fflk (d1d2) 
:S FC2(b) V [F£ (d1) V FCl (d2)] 
= [Ff2(b) VF£ (d1)] V [Fl/b) VF£ (d2)] 
= F(B1xB2/d1b) V F(B1xB2/d2b) 

F['txB2,:) 
( (d1 b) (d2b)) = Fj;; (b) /\ F�k (d1d2) 

2: Ffh (b) I\ [F� (d1) /\ F� (d2)] 
= [Ffh(b) /\F� (d1)] /\ [Ffh(b) /\F� (d2)] 
= F�1XB2)(d1b) I\ F(B1xB2)(d2b) 

for d1 b, d2b E V1 x Vz. 

Both cases hold for all k E {1, 2, ... , m }. This completes the proof. □ 

Definition 16. Let Gb1 = (Bi, B11, B12, ... , Bim) and Gb2 = (B2, B21, B22, ... , B2m) be two BSVNGSs.
The cross product of Gbi and Gb2, denoted by 

(;bl * Gb2 = (B1 * B2, B11 * B21, B12 * B22, · · ·, Bim * B2m) 

Example 11. The cross product of BSVNGSs Gb1 and Gb2 shown in Figure 10 is defined as Ghi * Gb2 = 
{ B1 * B2, B11 * B21, B12 * B22} and is depicted in Figure 13. 
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Figure 13. Gb1 x Gb2 .

Theorem 2. The cross product Gb1 * Gb2 = ( B1 * B2 , B11 * B21 , B12 * B22, ... , B1m * B2m) of two BSVNSGSs
of GSs G:1 and G:2 is a BSVNGS of G:1 * Gsz .

T(PB *B )((b1 d1 )(b2 d2)) = TBP (b1b2) I\ TBP (d1d2)lk 2k lk 2k 

:::; [Tf
l 
(b1) I\ Tf

l 
(b2] /\ [Tf/d1) I\ Tf

2
(d2)]

= [TC
1 
(b1) A TC2 

(d1) l A [TC
1 
(b2) A Tf2 (d2) l

= r&
1 *B2

)(b1 d1) I\ r&
1
*B

2
/b2 d2)

T(NB B ) ( (b1 d1) (b2d2)) = TBN (b1 b2) V TBN (d1 d2)
lk

* 2k lk 2k 

2': [Tfi (b1) V Tfi (b2 ] V [T� (d1) VT� (d2)]
= [Tfi (b1) V Tfz (d1)] V [Tfi (b2) V Tfz (d2)]
= T�

1 
*B

2
) (b1 d1) V T�

1 
*B

z
) (b2d2)

I[B1k
*B

2k
)((b1d1)(b2d2)) = IC

lk (b1b2) I\ IC
2k 

(d1d2)
:::; [IK (bi)/\ IC

1 
(b2] /\ [IC

2 
(d1) I\ IC

2 
(dz)]

= [IK (b1) /\JC2
(d1)] /\ [IC

l (b2) I\ 1C
2
(d2)]

= I[B
i
*Bz)(b1d1) I\ I[Bi

*B
2
)(b2d2)

I(Blk
*B

2k
)((b1d1)(b2d2)) = IK (b1b2) V Ifj

2k 
(d1 d2)

2': [J� (b1) VJ� (b2] V [Ifz (d1) V Ifz (d2)]
= [I� (b1) V Il1z(d1)] V [J�(b2) V Il1z(d2)]
= J(Bi *Bz

)(b1 d1) V J(Bi *B
2
)(b2d2)
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F(PB *B )((bid1)(b2d2)) = Ff (b1b2) V Ff (d1d2) 
lk 2k lk 2k 

::; [Ff
1 
(b1 ) v F£ (b2] v [Ff2 (d1) v Ff

2 
(dz)] 

= [Ff
l 
(b1) V Ff

2 
(d1)] V [Ff

l 
(bz) V Ff/dz)] 

= F{s1
*B

2
)(b1d1) V F{s

1
*B

2
)(b2d2) 

F(NB *B )((bid1)(b2d2)) = Ff (b1b2) /\Ff (d1d2)
lk 2k lk 2k 

� [F� (b1) I\ F� (bz] I\ [Ffz (d1) I\ Ffz (dz)] 
= [F� (b1) I\ F� (d1)] /\ [F� (b2) I\ F� (dz)] 
= Fn1

*B
2
)(b1d1) /\Fn1

*B
2
)(b2d2) 

where b1d1, b2d2 E V1 * V2 and h E {1, 2, ... , m }. □

Definition 17. Let Gb1 = (B1, Bn , B12, ... , B1m) and Gb2 = (B2, B21, B22, ... , B2m) be two BSVNGSs. 
The composition of Cb1 and Cb2, denoted by 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii)
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(viii) 

Example 12. The composition of BSVNGSs Gbl and Gbz shown in Figure 10 is defined as Gbl o Gb2 =
{ B1 o B2, B11 o B21, B12 o B22 } and is depicted in Figures 14 and 15. 
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Eno E21(0.3,0.1, 0.8, -0.3, -0.1, -0.8) 

Figure 14. Gbt o Gb2-

E12 o E22(0.2, 0.1, 0.6, -0.2, -0.1, -0.6) 

;?01Y � 
'Q.;> "1 0. ' . ,- . 
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,, 
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Figure 15. Cb1 o Cb2. 
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Theorem 3. The composition Gb1 o Gb2 = ( B1 o B2, B11 o B21, B12 o B22, ... , B1m o B2m) of two BSVNGSs of 
GSs c:1 and c:2 is a BSVNGS of ½1 o c:2 . 

Proof. Consider three cases: 

Florentin Smarandache (author and editor) Collected Papers, XIII

466



Case 1. For b E V1, d1d2 E V2k, 

r&1koB2.1:)((bd 1)(bd2)) = rel (b) /\ rC2J: (d1d2) 
:::: rel (b) /\ [rC2 (d1) /\ r:2 (dz)] 
= [rCl (b) /\ r:2 (d1)] /\ [rCl (b) /\ rf/dz)] 
= r&1 oBz) (bd1) /\ r&1 oBz) (bdz) 

r(B1koB2.1:)((bd1)(bdz)) = rl!i(b) vrK(d1dz) 
:::: rl!i (b) v [rt (d1) v rt (dz) l
= [rl!

i 
(b) V rt (d1)] V [rl!i (b) V rt(dz)]

= r(BioBz)
(bd1) V r(BioBz/bdz) 

I{Blk
oB2.1:) ( (bd1 ) (bdz)) = ICl (b) /\ Itk (d1 dz) 

::; IK (b) /\ [IC/d1) I\ If/dz)] 
= [IC

l 
(b) /\ IC/d1)] I\ [IC

l 
(b) /\ Jfz(dz)] 

= I{B10B2)(bd 1) I\ I{B10Bz)
(bdz) 

J(BlkoB2.1:)((bd1 )(bdz)) = Il!i (b) V IK(d1 d2) 
:::: If1i (b) V [J�(d1) V J�(dz)] 
= [Il!i (b) V J�(d1)] V [Jl!i (b) V J�(dz)] 
= J(B10B2)(bd 1) V J(B10Bz)(bdz) 

F(BlkoB2.1:)((bd1 )(bd2)) = Ffi (b) V Ff2.1: (d1 d2) 
:::: F£ (b) V [FC2 (d1) V FCZ (dz)] 
= [F£ (b) v Ff2 (d1)] v [Ff1 (b) v Ff2 (dz)] 
= F(B1oBz)(bd1 ) V F(BioBz)(bdz) 

F(BlkoB2.1:)((bd1 )(bd2)) = Fl!i (b) /\Ff2.1: (d1d2) 

for bd1, bdz E V1 o Vz . 
Case 2. For b E Vz, d1 dz E Vu, 

:::: Ff1i (b) /\ [Ft (d1) /\ F� (dz)] 
= [Fl!i (b) /\ F� (d1)] /\ [Fl!i (b) /\ F� (dz)] 
= F(B1 oB2) (bd1 ) I\ F(B1 oBz/bdz) 

r&1koB2.1:)((d1b)(dzb)) = rC/b) I\ r:lk
(d1dz) 

::; rf2(b) /\ [r£ (d1) /\ rf1 (dz)] 
= [rC2(b) /\ rfi (d1)] /\ [rC2(b) /\ rel (dz)] 
= r(B10Bz)

(d1 b) I\ r(B10Bz/dzb) 
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T�1k
0B21<)

((d1b)(d2b)) = Tf;;(b) VT�k(d1d2) 
2: Tf;;(b) V [Tfi (d1) V Tfi (dz)] 
= [Tf;; (b) VT� (d1)] V [Tf;; (b) VT� (dz)] 
= T�10B2/d1b) VT�

10B2/dzb) 

I
(
P
B B )((d1b)(dzb)) = IB

P (b) /\ IB
P (d1d2) 

Jko 2J< 2 lk 
S IC2 (b) /\ [IC/d1) /\ IC/dz)] 
= [IC/b) I\ IC/d1)] I\ [IC/b) I\ IC/dz)] 
= I{B1 oB2) (d1 b) /\ I{s1 oB2) (dzb) 

I
(
N
B B )((d1b)(dzb)) = IB

N (b) V IB
N (d1 d2)

1ko 21< 2 lk 
2: I};;(b) V [I�(d1) V I�(dz)] 
= [If;;(b) VI� (d1)] V [If;;(b) VI� (dz)] 
= I�10B2)

(d1b) V I(BioB2)(dzb) 

F
(
P
B B )((d1b)(d2b)) = FB

P (b) V FB
P (d1d2) 

JkO 2J< 2 lk 
S Ff2 (b) V [FCJ (d1) V Ffl (dz)] 
= [Ff/b) V Ff1 (d1)] V [Ff/b) V Ffi (dz)] 
= F(s1 0B2)(d1 b) V F(s1 0B2

)(dzb) 

F
(
N
B B )((d1b)(d2b)) = FB

N (b) /\FB
N (d1d2) 

JkO 2J< 2 lk 

2: Ff;; (b) /\ [F� (d1) /\ F� (dz)] 
= [ Ff;; (b) /\ F� ( d1)] /\ [ Ffi (b) /\ F� ( d2)] 
= F�10B2

)(d1 b) I\ F(B
10B2)(dzb) 

for d1 b, d2b E V1 o Vz. 
Case 3. For (b1 bz) E Vlk , (d1dz) E Vzk such that d1 :/=- dz, 

T(slk0B21<)((b1d1)(bzdz)) = Tflk(b1bz) I\ Tf/d1) I\ Tf2(dz) 
S [Tfl (b1) /\ Tfl (b2] /\ [Tf2 (d1) /\ TC2 (dz)] 
= [TCl (b1) /\ TC2(d1)] /\ [TCJ (bz) /\ TC2(dz)] 
= r&10Bz)(b1 d1 ) I\ T{B10Bz/bzdz) 

T(BlkoB21<) ( (b1 d1 ) (bzdz)) = TK (b1 bz) V Tfi (d1) V Tj;; (dz) 
2: [T� (b1) VT� (b2] V [Tf;; (d1) V Tj;; (dz)] 
= [T� (b1) V Tf;;(d1)] V [T� (bz) V Tf;;(dz)] 
= T(BioBz) (b1d1 ) V T(BJOBz/bzdz) 
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I(
P
B oB )((bid1)(b2d2)) = IC (b1b2) I\ IC (d1) /\ IC (dz) lk 2k lk 2 2 

::; [ rel (b1) /\ IK (b2] /\ [ IC2 (d1) /\ IC/d2)] 

= [ICl (b1) /\ IC2 (d1)] /\ [ICl (b2) /\ IC2(d2)] 

= I[B10B2)(b1d1) I\ I{B10B2)(b2d2) 

I(
N
B oB )((bid1)(b2d2)) = I}1 (b1b2) V I}1 (d1) V I}1 (dz) lk 2k lk 2 2 

� [ If1i (bi) VI� (b2] v [ I};; (d1) V I}1/d2)] 

= [If1i (b1) VI};; (d1)] V [I� (b2) V I�(d2)] 

= I�l 0B2) (b1 d1) V I�l 0B2/b2d2)

F(
P
B B )((b1d1)(b2d2)) = FBP (b1b2) V FBP (d1) V FBP (dz)lko 2k lk 2 2 

::; [Fifi (b1) V FCl (b2] V [FC2 (d1) V FC2 (d2)] 

= [Fifi (b1) v FC2 (d1)] v [Ff1 (b2) v Ff2 (dz)] 

= F{sl 0B2/b1 d1 ) V F{sl 0B2) (b2d2)

F�ikoB2k) ( (b1 d1) (b2d2)) = F}1lk (b1 b2) I\ F� (d1) /\ F� (dz)

� [Ffi (b1) /\ Ffi (b2] /\ [Ff;; (d1) /\ Ff;; (d2)] 

= [Ffi (b1) /\F�(d1)] /\ [Ffi (b2) AFf;;(d2)] 
= F�l 0B2/b1 d1) /\ F�l 0B2/b2d2)

where b1d1 , b2d2 E V1 o Vz. 

All cases are satisfied for all k E { 1, 2, ... , m}. □

3. Conclusions

The notion of bipolar fuzzy graphs is applicable in several domains of engineering, expert systems, 
pattern recognition, signal processing, neural networks, medical diagnosis and decision-making. 
BSVNGSs show more flexibility, compatibility and precision for a system than single-valued 
neutrosophic graph structures. In this research paper, we introduced certain concepts of BSVNGSs 
and elaborated on them with suitable examples. Further, we defined some operations on BSVNGSs 
and investigated some relevant properties of these operations. We intend to generalize our research of 
fuzzification to (1) concepts of BSVN soft graph structures, (2) concepts of BSVN rough fuzzy graph 
structures, (3) concepts of BSVN fuzzy soft graph structures, and (4) concepts of BSVN rough fuzzy 
soft graph structures. 
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An Efficient Image Segmentation Algorithm 
Using Neutrosophic Graph Cut 

Yanhui Guo, Yaman Akbulut, Abdulkadir �engiir, Rong Xia Florentin Smarandache

Abstract: Segmentation is considered as an important step in image processing and computer vision 
applications, which divides an input image into various non-overlapping homogenous regions and 
helps to interpret the image more conveniently. This paper presents an efficient image segmentation 
algorithm using neutrosophic graph cut (NGC). An image is presented in neutrosophic set, and an 
indeterminacy filter is constructed using the indeterminacy value of the input image, which is defined 
by combining the spatial information and intensity information. The indeterminacy filter reduces 
the indeterminacy of the spatial and intensity information. A graph is defined on the image and the 
weight for each pixel is represented using the value after indeterminacy filtering. The segmentation 
results are obtained using a maximum-flow algorithm on the graph. Numerous experiments have 
been taken to test its performance, and it is compared with a neutrosophic similarity clustering (NSC) 
segmentation algorithm and a graph-cut-based algorithm. The results indicate that the proposed 
NGC approach obtains better performances, both quantitatively and qualitatively. 

Keywords: image segmentation; neutrosophic set; graph cut; indeterminate filtering 

1. Introduction

With a classical definition, image segmentation refers to dividing an input image into several 
sub-images according to a pre-defined criterion where the sub-images are disjointed, homogenous 

and meaningful. Image segmentation is also known as an important and crucial step in many 
computer vision and pattern-recognition applications. Many researchers have been working on image 
segmentation, and works have been done [l]. 

Among the published works, graph-based segmentation algorithms constitute an important 

image segmentation category [2]. A graph G can be denoted as G = (V, E) where V and E are a set 
of vertices and edges. On an image, vertices can be either pixels or regions, and edges connect the 
neighboring vertices [3]. A weight is a non-negative measure of dissimilarity which is associated with 
each edge using some property of the pixels. 

In this paper, using the advantages of neutrosophic to interpret the indeterminacy on the image, 
we combine neutrosophic set into the graph cut for image segmentation. Neutrosophic set (NS) was 
an extension of the fuzzy set [4]. In NS theory, a member of a set has degrees to the truth, falsity, and 

indeterminacy, respectively [5]. Therefore, it has an ability to deal with the indeterminacy information 
and has attracted much attention in almost all engineering communities and subsequently a great 
number of works have been studied, such as NS-based color and texture segmentation [ 6-14 ], NS-based 

Yanhui Guo, Yaman Akbulut, Abdulkadir Șengür, Rong Xia, Florentin Smarandache (2017). An 
Efficient Image Segmentation Algorithm Using Neutrosophic Graph Cut. Symmetry 9, 185; DOI: 
10.3390/sym9090185
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clustering [15-17], NS-based similarity for image thresholding [18], NS-based edge detection [19] and 

NS-based level set [20]. 

Firstly, the image is interpreted using neutrosophic set and indeterminacy degree is calculated 

accordingly. Then an indeterminacy filter is constructed using the indeterminacy value on the image 

which is defined by combining the spatial and intensity information. The indeterminacy filter reduces 

the indeterminacy in the intensity and spatial information respectively. A graph is defined on the 

image and the weight for each pixel is represented using the value after indeterminacy filtering, 

and the energy function is also redefined using the neutrosophic value. A maximum-flow algorithm 

on the graph is employed to obtain the final segmentation results. 

The proposed method has the following new contributions: (1) an indeterminate filter is proposed 

to reduce the uncertain information in the image; and (2) a new energy function in graph model is 

defined in neutrosophic domain and used to segment the image with better performance. 
The rest of the paper is structured: Section 2 briefly reviews the previous works. Section 3 

describes the proposed method based on neutrosophic graph cut. Section 4 provides the experimental 

results. Conclusions are drawn in Section 5. 

2. Previous Works

As mentioned in the Introduction Section, graph based image segmentation has gained much 

attention from the domain researchers with many published papers. A systematic survey work 

on graph-based image segmentation was conducted by Peng et al. [21]. In this survey, authors 

categorized the graph-based image segmentation methods into five groups. The first category is 

minimal spanning tree (MST)-based method. The MST is a popular concept in graph theory with 

numerous works. In [22], a hierarchical image segmentation method was proposed based on MST [22]. 

This method segmented the input image iteratively. At each iteration, one sub-graph was produced 

and, in the final segmentation, there were a given number of sub-graphs. In [23], a region merging 

procedure was adopted to produce a MST-based image segmentation algorithm using the differences 

between two sub graphs and inside graphs. 

Cost-function-based graph cut methods constitute the second category. The most popular 

graph-based segmentation methods are in this category. Wu et al. [3] applied the graph theory 

to image segmentation and proposed the popular minimal cut method to minimize a cost function. 

A graph-based image segmentation approach namely normalized cut (Neut) was presented [24]. 

It alleviates shortcomings of the minimal cut method by introducing an eigen system. Wang et al. [25] 

presented a graph-based method and a cost function and defined it as the ratio of the sum of different 

weights of edges along the cut boundary. Ding et al. [26] presented a cost function to alleviate 

the weakness of the minimal cut method, in which the similarity between two subgraphs was 

minimized, and the similarity within each subgraph was maximized. Another efficient graph-based 

image segmentation method was proposed in [27], and considered both the interior and boundary 

information. It minimized the ratio between the exterior boundary and interior region. The Mean-Cut 

incorporates the edge weight function [25] to minimize the mean edge weight on the cut boundary. 

Methods based on Markov random fields (MRF) are in the third class, and the shortest-path-based 

methods are classified in the fourth class. Generally, MRF-based graph cut methods form a graph 

structure with a cost function and try to minimize that cost function to solve the segmentation problem. 

The shortest path based methods searched the shortest path between two vertices [21], and the 

boundaries of segments were achieved by employing the shortest path. The shortest-path-based 

segmentation methods need interaction from users. 

The other graph-based methods are categorized into the fifth class. The random walker (RW) 

method by Grady [28] used a weighted graph to obtain labels of pixels and then these weights were 

considered as the likelihood that RW went across the edge. Finally, a pixel label was assigned by 

the seed point where the RW reached first. 
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3. Proposed Method

3.1. Neutrosophic Image 

An element in NS is defined as: let A = { A1 , Az, , .... , Am} as a set of alternatives 
in neutrosophic set. The alternative Ai is {T(Ai), I(Ai),F(Ai)} / Ai, where T(Ai), I(Ai) and F(Ai) are 
the membership values to the true, indeterminate and false set. 

An image Im in NS is called neutrosophic image, denoted as INs which is interpreted using Ts,
Is and Fs. Given a pixel P(x,y) in INs, it is interpreted as PNs(x,y) = {Ts(x,y), Is(x,y),Fs(x,y)}.
Ts(x, y), Is(x, y) and Fs(x, y) represent the memberships belonging to foreground, indeterminate set 
and background, respectively. 

Based on the intensity value and local spatial information, the true and indeterminacy 
memberships are used to describe the indeterminacy among local neighborhood as: 

Ts(x, y) = g(x, y) - gmin 
gmax -gmin 

I ( ) _ Gd(x, y) - Gdmin
s x, y - Gd - Gd · max mm 

(1) 

(2) 
where g(x,y) and Gd(x,y) are the intensity and gradient magnitude at the pixel of (x,y) on the image. 

We also compute the neutrosophic membership values based on the global intensity distribution 
which considers the indeterminacy on intensity between different groups. The neutrosophic 
c-means clustering (NCM) overcomes the disadvantages on handling indeterminate points in other
algorithms (16]. Here, we use NCM to obtain the indeterminacy values between different groups
on intensity to be segmented.

Using NCM, the truth and indeterminacy memberships are defined as: 

[ 
c 

i-1
1 _ 2 1 2 1 2 K= �'°'(x·-C·) m=-r+�(x·-C· )-m-l+�li-m-1 CVL, 1 J CV 1 imax CV lj=l 2 3 (3) 

(4) 

(5) 
where Tnii and Ini are the true and indeterminacy membership value of point i, and the cluster centers 
is Cj. Cfmax is obtained using to indexes of the largest and second largest value of Tij

. They are updated 
at each iteration until I T��+l) - T��) I < £,where£ is a termination criterion. 

3.2. Indeterminacy Filtering

A filter is newly defined based on the indeterminacy and used to remove the effect 
of indeterminacy information for segmentation, in which the kernel function is defined using 
a Gaussian function as follows: 

1 ( u2 +vz )G1 (u, v) = --
2 

exp -
2 2rrCT1 2CT1 

CT1(x,y) = f(I(x,y)) = aI(x,y) +b

(6) 

(7) 
where CT[ is the standard deviation value where is defined as a function J(-) associated 
to the indeterminacy degree. When the indeterminacy level is high , CT[ is large and the filtering 
can make the current local neighborhood more smooth. When the indeterminacy level is low, CT[ is 
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small and the filtering takes a less smooth operation on the local neighborhood. The reason to use 
Gaussian function is that it can map the indeterminate degree to a filter weight more smooth. 

An indeterminate filtering is taken on Ts(X, y), and it becomes more homogeneous. 

y+m/2 

T;(x,y) = Ts(x,y) EB Grs(u,v) = L 
x+m/2 

L Ts(x-u,y-v)Gr5(u,v) v=y-m/2 u=x-m/2 

1 ( u2 +v2 ) Grs(u, v) = --
2 

exp -
2

2ncrls 2lTis 

lT1s(x,y) = J(Is(x,y)) = ais(x,y) + b 

(8) 

(9) 

(10) 

where T; is the indeterminate filtering result. a and b are the parameters in the linear function 
to transform the indeterminacy level to parameter value. 

The filtering is also used on Tnij (x, y) after NCM. The input of NCM is the local spatial 
neutrosophic value after indeterminacy filtering. 

y+m/2 x+m/2 

Tn�
j(x,y) = Tnij(x,y)EBG1n(u,v) = L L Tnij(x-u,y-v)Grn(u,v) v=y-m/2 u=x-m/2 

1 ( u2 
+ v2 )G1n(u, v) = --

2
-exp - 2 27Wln 2lTln 

lTJn(x,y) = J(In(x,y)) = cin(x,y) +d 

(11) 

(12) 

(13) 

where Tn�
j 

is the indeterminate filtering result on T
5 

and m is the size of the filter kernel. Tn;
j 

is 
employed to construct a graph, and a maximum-flow algorithm is used to segment the image. 

3.3. Neutrosophic Graph Cut 

A cut C = (S,T) partitions a graph G = (V,E) into two subsets: Sand T. The cut set of a cut C = (S,T)

is the set { ( u, v) E E lu E 5, v E T} of edges that have one endpoint in Sand the other endpoint in 
T. Graph cuts can efficiently solve image segmentation problems by formulating in terms of energy
minimization, which is transformed into the maximum flow problem in a graph or a minimal cut
of the graph.

The energy function often includes two components: data constrict Edata and smooth constrict 
Esmooth as: 

E(f) = EdataU) + Esmoo th(f) (14)

where f is a map which assigns pixels to different groups. Edata measures the disagreement behveen f
and the assigned region, which can be represented as a t-link, while Esmooth evaluates the extent of how 
f is piecewise smooth and can be represented as an n-link in a graph. 

Different models have different forms in the implementation of the energy function. The function 
based on Potts model is defined as: 

(15) 

where p and q are pixels, and N is the neighborhood of p. Dp evaluates how appropriate a segmentation 
is for the pixel p.

In the proposed neutrosophic graph cut (NCC) algorithm, the data function Dp and smooth 
function V

{p
,q} are defined as:

(16)
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V
{p

,q}(Jp,fq) = ub(Jp -/= fq) 
6 (f P -/= f q) = { 1 if f 

p -/= !q 0 othenv1se 

(17) 
(18) 

where u is a constant number in [O, 1] and used for a penalty of the disagree of labeling of pixel p and q.After the energy function is redefined in the neutrosophic set domain, a maximum flow algorithm in graph cut theory is used to segment the objects from the background. All steps can be summarized as: 
Step 1: Compute the local neutrosophic value Ts and Is , Step 2: Take indeterminate filtering on Ts using I5 • Step 3: Use NCM algorithm on the filtered Ts subset to obtain Tn and In . Step 4: Filter Tn using indeterminate filter based on In . Step 5: Define the energy function based on the Tn

1 value. Step 6: Partition the image using the maximum flow algorithm. 
The flowchart of the proposed approach is shown in Figure 1 as: 

Input image 

Compute Ts and Is using local intensities 

Take indeterminacy filtering on Ts subset 

Compute Tn and In using NCM on filtered Ts 

Take indeterminacy filtering on Tn subset 

Define the energy function using filtered Tn 

Segment image using maximum flow algorithm 

Segmented image 

Figure 1. The flowchart of the proposed method. 

To show the steps of the whole algorithm, some intermediate results are demonstrated using an example image in Figure 2. 
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(e) (f) 

Figure 2. Intermediate results for "Lena" image: (a) Original image; (b) Result of Ts; ( c) Result of Is; 
( d) Filtered result of Ts; ( e) Filter result of Tn; (f) Final result.

4. Experimental Results

It is challenging to segment images having uncertain information such as noise. Different 

algorithms have been developed to solve this problem. To validate the performance of the NCC 
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approach on image segmentation, we test it on many images and compare its performance with 
a newly published neutrosophic similarity clustering (NSC) method [12] which performed better than 
previous methods [6], and a newly developed graph cut (GC) method [29]. 

All experiments are taken using the same parameters: a= 10; b = 0.25; c = 10; d = 0.25; and u = 0.5. 

4.1. Quantitatively Evaluation 

Simulated noisy images are employed to compare the NCC with NSC and GC methods visually, 
and then their performances are tested quantitatively by using two metrics. In the NSC method [12], 
simulated noisy images were employed to evaluate its performance. To make the comparison fair and 
consistent, we use the same images and noise and test three algorithms on them. 

A simulated image having intensities of 64, 128, and 192 is added with Gaussian noises and used 
to evaluate the performance of NCC, NSC, and GC algorithms. Figure 3a shows the original noisy 
images with noise mean values are O and variance values: 80, 100, and 120, respectively. Figure 3b---d 
lists results by the NSC, GC, and NCC methods, respectively. The results in Figure 3 also show the 
NCC performs visually better than NSC and GC methods on the simulated images with low contrast 
and noises. Pixels in Figure 3b,c that are segmented into wrong groups are assigned into the right 
groups by NCC method in Figure 3d. Boundary pixels, which are challenging to label, are also 
segmented into right categories by NCC. 

Misclassification error (ME) is used to evaluate the segmentation performances [30-32] .  The ME 
measures the percentage of background wrongly categorized into foreground, and vice versa. 

ME= l 
- ]Bo n By]+]Fo n Fy]

]B0 ]+]Fo] 
(19) 

where F0, B0, Fy, and By are the object and background pixels on the ground truth image and 
the resulting image, respectively. 

In addition, FOM [31] is used to evaluate the difference between the segmented results with 
the ground truth: 

FOM =
l 1: l 

max(N1, NA) k=l 1 + f3d2(k)
(20) 

where N1 and NA are the numbers of the segment object and the true object pixels. d(k) is the distance 
from the kth actual pixel to the nearest segmented result pixel. f3 is a constant and set as 1/9 in (31]. 

The quality of the noisy image is measured via a signal to noise ratio (SNR): 

SNR = lOlog 

H-1 W-1 

L L J2(r, c)
r=l c=l 

H-1 W-1 

L L (I(r, c)-In(r, c))2 

r=l c=l 

(21) 

where In(r,c)and I(r,c) are the intensities of point (r,c) in the noisy and original images, respectively. 
The results of ME and FOM are drawn in Figures 4 and 5, where* denotes NSC method, o denotes 

GC method, and + is NCC method. NCC method has the lowest ME values. All ME by NCC are 
smaller than 0.043, and all values from NSC and CC methods are larger than those from NCC method. 
The NCC obtains the best performance with ME= 0.0068 when SNR is 5.89 dB, while NSC has the 
lowest value ME= 0. 1614 and GC ME= 0.0327. NCC also has bigger FOM than NSC and GC, especially 
at the low SNR. The comparison results are listed in Table 1. The mean and standard deviation of the 
ME and FOM are 0.247 ± 0.058 and 0.771 ± 0.025 using NSC method, 0.062 ± 0.025 and 0.897 ± 0.027 
using CC method, 0.015 ± O.ol 1 and 0.987 ± 0.012 using NCC method, respectively. The NCC method 
achieves better performance with lesser values of ME and FOM than the NSC and GC methods. 
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(c) 

(d) 

Figure 3. Segmentation comparison on a low contrast synthetic noisy image: (a) Artificial image with 

different levels of Gaussian noises; (b) Results of the NSC; ( c) Results of the GC; ( d) Results of the NGC. 
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Figure 4. Plot of ME:*, NSC method; o, GC method; +, NGC method. 
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Figure 5. Plot of FOM: *, NSC method; o, GC method;+, NGC method. 

Table 1. Performance comparisons on evaluation metrics. 

Metrics 

ME 
FOM 

NSC 

0.247 ± 0.058 

0.771 ± 0.025 

GC 

0.062 ± 0.025 

0.897 ± 0.027 

NGC 

0.ol5 ± 0.011

0.987 ± 0.012 
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4.2. Performance on Natural Images 

Many images are employed to validate the NCC's performance. We also compare the results 

with a newly developed image segmentation algorithm based on an improved kernel graph cut (KGC) 

algorithm [33]. Here, five images are randomly selected to show the NCC method's segmentation 

performance. The first row in Figures 6-10 shows the original images and segmentation results 

of NSC, GC, KGC, and NCC, respectively. The other rows demonstrate the results on the noisy images. 

The results by NCC have better quality than those of NSC, CC, and KCC visually. On the original 

images, the NCC and CC obtain similarly accurate results, while the KCC obtains under-segmented 

results. When the noise is increased, the NSC and CC are deeply affected and have a lot of 

over-segmentation, and the KCC results are under-segmentation and lose some details. However, 

NCC is not affected by noise and most pixels are categorized into the right groups, and the details 

on the boundary are well segmented. 

Figure 6 shows the segmentation results on the "Lena" image. The results in the fourth columns 

are better than in the second and third columns. Regions of face, nose, mouth, and eyes are segmented 

correctly by NCC. The noisy regions as hair region and the area above the hat are also segmented 

correctly. However, the NSC and CC methods obtain wrong segmentations, especially in the region 

above the hat. The KCC results lose some detail information on face and eyes. In the observation, 

the NCC algorithm is better than NSC. 

(a) 

Figure 6. Cont.
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(b) 

( c) 

Figure 6. Cont.
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(d) 

(e) 

Figure 6. Comparison results on "Lena" image: (a) "Lena" image with different Gaussian noise level: 

variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c) Segmentation results of GC; (d) Segmentation 

results of KGC; (e) Segmentation results of NGC. 
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We also compared the performances of all methods on the "Peppers" image, as shown in Figure 7. 

As mentioned earlier for other comparisons, for zero noise level, GC, NGC, and KGC produced similar 

segmentations. GC, KGC and NGC methods produced better segmentation results than NSC in all 

noise levels. W hen the noise level increased, the efficiency of the proposed NGC method became 

more obvious. There were some wrong segmentation regions (black regions in gray pepper regions) 

in the GC results. Some of the background regions were also wrongly segmented by the GC method. 

More proper segmentations were obtained with the proposed NGC method. Especially, for noise levels 

20 and 30, the NGC method's segmentation achievement was visually better than the others, with less 

wrongly segmented regions produced. On this image, the KGC achieves similar performance as NGC 

on the segmentation results. 

The comparison results on the "Woman" image are given in Figure 8. It is obvious that the NSC 

method produced worse segmentations when the noise level increased. The GC and KGC methods 

produced better results when compared to the NSC method, with more homogeneous regions 

produced. It is also worth mentioning that the GC, KGC and NGC methods produced the same 

segmentation results for the noiseless case. However, when the noise level increased, the face of the 

woman became more complicated. On the other hand, the proposed NGC method produced more 

distinctive regions when compared to other methods. On the results of KGC, the boundary of eyes 

and nose cannot be recognized. In addition, the edges of the produced regions by NGC were smoother 

than for the others. 

(a) 

Figure 7. Cont. 
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(d) 

(e) 

Figure 7. Comparison results on "Peppers" image: (a) "Peppers" image with different Gaussian 
noise level: variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c) Segmentation results of GC; 
(d) Segmentation results of KGC; (e) Segmentation results of NGC.
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( c) 

(d) 

Figure 8. Cont.
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(e) 

Figure 8. Comparison results on "Woman" image: (a) "Woman" image with different Gaussian 
noise level: variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c) Segmentation results of GC; 

(d) Segmentation results of KGC; ( e) Segmentation results of NGC.

We also compared these methods on the "Lake" image, as shown in Figure 9. In the comparisons, 

it is seen that GC, KGC and NGC methods produced better results than for the NSC method. The results 

are especially better at high noise levels. It should be specified that GC and KGC methods produced 

more homogeneous regions, but, in that case, the boundary information was lost. This is an important 

disadvantage of the GC method. On the other hand, the proposed NGC method also produced comparable 

homogeneous regions, while preserving the edge information. The proposed method especially yielded 

better results at high noise levels. 

In Figure 10, a more convenient image was used for comparison purposes. While the blood cells 

can be considered as objects, the rest of the image can be considered as background. In the "Blood" 

image, the NSC and NGC methods produced similar segmentation results. The KGC has some wrong 

segmentation on the background region. The NGC has better results on the noisy blood images where 

the blood cells are extracted accurately and completely. The superiority of the NGC algorithm can also 

be observed in this image. 
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( c) 

(d) 

Figure 9. Cont.
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(e) 

Figure 9. Comparison results on "Lake" irrtage: (a) "Lake" image with different Gaussian noise level: 

variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c) Segmentation results of GC; (d) Segmentation 

results of KGC; (e) Segmentation results of NGC. 

(a) 

Figure 10. Cont.
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Figure 10, Cont.
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(e) 

Figure 10. Comparison results on "Blood" image: (a) "Blood" image with different Ga ussian no ise 

level: variance: 0, 10, 20, 30, 40; (b) Segmentation results of NSC; (c) Segmentation results of GC; 

( d) Segmentation results of KGC; ( e) Segmentation results of NGC.
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5. Conclusions

This study aims to develop an efficient method to segment images having uncertain information 

such as noise. To overcome this challenge, a novel image segmentation method is proposed based 

on neutrosophic graph cut in this paper. An image is mapped into the neutrosophic set domain and 

filtered using a newly defined indeterminacy filter. Then, a new energy function is designed according 

to the neutrosophic values after indeterminacy filtering. The indeterminacy filtering operation removes 

the indeterminacy in the global intensity and local spatial information. The segmentation results are 

obtained by maximum flow algorithm. Comparison results demonstrate the better performance 

of the proposed method than existing methods, in both quantitative and qualitative terms. It also 

shows that the presented method can segment the i mages properly and effectively, on both clean 

images and noisy images, because the indeterminacy information in the image has been handled well 

in the proposed approach. 
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Abstract: In this work, we define Interval-valued Fermatean neutrosophic 
graphs (IVFNS) and present some operations on Interval-valued Fermatean 
neutrosophic graphs. Further, we introduce the concepts of Regular interval-
valued Fermatean neutrosophic graphs, Strong interval-valued Fermatean 
neutrosophic graphs, Cartesian, Composition, Lexicographic product of 
interval-valued Fermatean neutrosophic graphs. Finally, we give the 
applications of Interval-valued Fermatean neutrosophic graphs. 

Key words: Interval-valued Fermatean Fuzzy sets, Interval-valued 
Fermatean Neutrosophic sets, Interval-valued Fermatean Neutrosophic 
graphs 

1. Introduction

The concept of neutrosophic set theory was proposed by Jun (2017). The idea of 
neutrosophic set which is a generalization of the fuzzy set (Zadeh, 1965), intuitionistic 

 Interval-Valued Fermatean Neutrosophic Graphs

Said Broumi, Raman Sundareswaran, Marayanagaraj Shanmugapriya, 
Giorgio Nordo, Mohamed Talea, Assia Bakali, Florentin Smarandache
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fuzzy set (Atanassov, 1986). The neutrosophic sets are characterized by a truth
function (T), an indeterminate function (I) and a false function (F) independently. 
Smarandache (2019) introduced the concept of spherical neutrosophic oversets as
generalization of spherical fuzzy sets. By bending the concept of single valued 
neutrosophic set and graph theory, different classes of neutrosophic graphs is 
discussed by Broumi (2016) and many works available in the literature (Broumi et al., 
2016a, 2016b, 2016c, 2016d, 2022). Nagarajan et al. (2019) investigated the interval-
valued neutrosophic graphs and its applications. Recently, Ajay et al. (2020, 2021) 
extended the concept of Pythagorean neutrosophic sets to graphs and called it 
Pythagorean neutrosophic graph (PNG) and investigated some of their properties. The 
same authors presented the idea of labelling of Pythagorean neutrosophic fuzzy 
graphs and investigate their properties. Ajay et al. (2022) studied the concept of 
regularity in PNG and introduced the ideas of regular, full edge regular, edge regular, 
and partially edge regular Pythagorean Neutrosophic graphs. In addition, a new 
MCDM method has been introduced using the Pythagorean neutrosophic graphs with 
an illustrative example. By integrating the concepts pythagorean neutrosophic fuzzy 
graph and Dombi operator. Furthermore, Ajay et al. (2021) proposed a new extension 
of neutrosophic graph called Pythagorean Neutrosophic Dombi fuzzy graphs (PNDFG) 
and suggested some basic operations of PNDFG and computed the degree and total 
degree of a vertex of PNDFG. Akalyadevi et al. (2022) introduced the concept of 
spherical neutrosophic graph coloring and discussed some of their important 
properties also they suggested the chromatic number of spherical neutrosophic graph 
as a crisp number.  Duleba et al. (2021) applied the concept of Interval-valued 
spherical fuzzy AHP method to public transportation problem. Aydın et al. (2021) 
proposed a novel fuzzy MULTIMOORA method based on interval-valued spherical 
fuzzy sets to evaluate companies that are using Industry 4.0 technologies. 
Lathamaheswari et al. (2021) proposed the concept of Interval Valued Spherical Fuzzy 
Aggregation Operators and applied it for solving a Decision-Making Problem. Kutlu 
Gündoğdu et al. (2021) extended spherical fuzzy analytic hierarchy process to 
interval-valued spherical fuzzy AHP (IVSF-AHP) method and applied it to compare the 
service performances of several hospitals. Kutlu Gündoğdu et al. (2019) presented the 
idea of Spherical fuzzy sets (SFS) as an integration of Pythagorean fuzzy sets and 
neutrosophic sets. Smarandache (2017) proposed the concept of Spherical 
Neutrosophic Numbers. Senapati et al. (2019) defined basic operators over the FFSs. 
On the other hand, division, and subtraction operations on FFSs were proposed. 
Donghai Liu et al. (2019) focused on a distance measure for Fermatean fuzzy linguistic 
term sets. Ganie et al. (2022) proposed some novel distance measures for Fermatean 
fuzzy sets using t-conorms. On the other hand, Jeevaraj et al. (2021) proposed the 
concept of interval-valued Fermatean fuzzy sets (IVFFSs) and establishes some 
Mathematical operations on the class of IVFFSs. A new total ordering principle on the 
class of IVFFNs is introduced. They implemented the interval-valued Fermatean fuzzy 
TOPSIS (IVFFTOPSIS) method for solving multi-criteria decision-making problems. 
Based on neutrosophic Pythagorean sets, Stephen et al. (2021) introduced the concept 
of interval-valued neutrosophic Pythagorean sets with dependent interval valued 
Pythagorean components and discussed some of its properties. Recently, Lakhwani et 
al. (2022) introduced a novel concept of Dombi neutrosophic graph and presented 
some kinds of Dombi neutrosophic graph such as a regular Dombi neutrosophic graph, 
strong Dombi neutrosophic graph, complete Dombi neutrosophic graph, and 
complement Dombi neutrosophic graph and described some of their properties, also, 
and discussed some operations on Dombi neutrosophic graphs are defined.  
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In this paper, we present the concept of Interval-valued Fermatean neutrosophic 
graphs (IVFNG) and the concepts of Regular interval-valued Fermatean neutrosophic 
graphs, Strong interval-valued Fermatean neutrosophic graphs, Cartesian, 
Composition, Lexicographic product of interval-valued Fermatean neutrosophic 
graphs. We also introduce some theorems and examples on IVFNG’s Finally, we give 
the applications of Interval-valued Fermatean neutrosophic graphs.  

2. Preliminaries

The extension of crisp set theory with membership degree is known as Fuzzy set 
theory in which each element of the set gets a real number between 0 and 1. But in 
many real time situations, it is not always possible to give an exact degree of 
membership because of lack of knowledge, vague information, and so forth. To 
overcome this problem, we can use interval-valued fuzzy sets, which assign to each 
element a closed interval which approximates the “real,” but unknown, membership 
degree. The length of this interval is a measure for the uncertainty about the 
membership degree. An interval number I is an interval [𝑐−, 𝑐+] with 0 ≤  𝑐−  ≤  𝑐+  ≤
1. The interval [c, 𝑐] is identified with the number 𝑐 ∈  [0, 1]. Let 𝐼[0, 1] be the set of 
all closed subintervals of [0, 1]. An extension of fuzzy sets by Zadeh (1965), Interval-
valued fuzzy sets which stated that the values of the membership degrees are intervals 
of numbers instead of the numbers.  It provides a more sufficient information about 
uncertainty than traditional fuzzy sets. In this section, we provide all the basic 
definitions of interval valued sets and its corresponding graphs. Table 1 depicts the 
types of sets and graphs for interval-valued fuzzy and neutrosophic environments.

Table 1. Different types of Interval-valued sets and its graphs 

Type of 

Sets 
Definition 

Type of 

Graphs 
Definition 

Interval-valued 
Fuzzy set 
(IVFS) 
-Zadeh, 1975

𝐴 = {(𝑥, [𝜇𝐴
−(𝑥), 𝜇𝐴

+(𝑥)]): 𝑥 ∈ 𝑉} 

Interval-
valued Fuzzy 
graph (IVFG) -
Muhammad 
Akram, 
Wieslaw A. 
Dudek, 2011. 

G = (A, B), where A = [𝜇𝐴
−(𝑥), 𝜇𝐴

+(𝑥)] is an
interval-valued fuzzy set on V and B = 
[𝜇𝐵

−(𝑥), 𝜇𝐵
+(𝑥)]is an interval-valued fuzzy

relation on E. 

Interval-valued 
Intuitionistic 
Fuzzy set 
(IVIFS) -   
Atanassov, K., 
Gargov, G., 
1989 

𝐴 = {(𝑥, [𝑇𝐴
−(𝑥), 𝑇𝐴

+(𝑥)]): ∈ 𝑉}; 
𝐵 = {(𝑥, [𝐹𝐴

−(𝑥), 𝐹𝐴
+(𝑥)]): 𝑥 ∈ 𝑉} 

such that 0 ≤  𝑇𝐴
+(𝑥) + 𝐹𝐴

+(𝑥) ≤
 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝜖 𝑋 

Interval-
valued 
Intuitionistic 
Fuzzy graph 
(IVIFG) - S. N. 
Mishra and A. 
Pal, 2013 

 𝜇𝐴: 𝑉 → 𝐷[0,1]; 𝜂𝐴: 𝑉 → 𝐷[0,1] such that 
0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) ≤ 1 , ∀ 𝑥 ∈ 𝑉

 𝜇𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1] ;  𝜂𝐵: 𝐸 ⊆ 𝑉  ×
𝑉 → 𝐷[0,1]

𝜇𝐵
−((𝑥, 𝑦)) ≤ min( 𝜇𝐴

−(𝑥), 𝜇𝐴
−(𝑦));

𝜂𝐵
−((𝑥, 𝑦)) ≥ min( 𝜂𝐴

−(𝑥), 𝜂𝐴
−(𝑦)) 

𝜇𝐵
+((𝑥, 𝑦)) ≤ min( µ𝐴

+(𝑥), µ𝐴
+(𝑦)); 

𝜂𝐵
+((𝑥, 𝑦)) ≥ min( 𝜂𝐴

+(𝑥), 𝜂𝐴
+(𝑦)) 

such that 0 ≤ 𝜇𝐵
+((𝑥, 𝑦)) + 𝜂𝐵

+((𝑥, 𝑦)) ≤

1 , ∀(𝑥, 𝑦) ∈ 𝐸 

Interval-valued 
Neutrosophic 
set (IVNS) - 
Said Broumi , 
Mohamed Talea 
, Assia Bakali , 
Florentin 
Smarandache, 
(2016) 

For each point 𝑥 ∈  𝑋, we have that 
𝑇𝐴(𝑥) =  [𝑇𝐴

−(𝑥), 𝑇𝐴
+(𝑥)], 𝐼𝐴(𝑥) =

[𝐼𝐴
−(𝑥),  𝐼𝐴

+(𝑥)], 𝐹𝐴(𝑥) =
[𝐹𝐴

−(𝑥), 𝐹𝐴
+(𝑥)] ⊆  [0, 1] and 0 ≤

 𝑇𝐴(𝑥)  +  𝐼𝐴(𝑥)  +  𝐹𝐴(𝑥)  ≤  3. 

Interval-
valued 
Neutrosophic 
graph (IVNG) - 
Said Broumi, 
Mohamed 
Talea, Assia 
Bakali, 
Florentin 
Smarandache, 
2016 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<
[𝑇𝐴

−, 𝑇𝐴
+], [𝐼𝐴

−, 𝐼𝐴
+], [𝐹𝐴

−, 𝐹𝐴
+] > is an interval-

valued neutrosophic set on V; and 𝐵 = <
[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+] > 𝑇𝐵

−: 𝑉  ×  𝑉 →
[0, 1], 𝑇𝐵

+: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 →

[0, 1], 𝐼𝐵
+: 𝑉 ×  𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 →
[0,1], 𝐹𝐵

+: 𝑉  × 𝑉 → [0, 1] are such that

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗})  ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )],

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )],

𝐼𝐵
−({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖 ), 𝐼𝐵
−(𝑣𝑗  )], 

𝐼𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

+(𝑣𝑖 ), 𝐼𝐵
+(𝑣𝑗 )],

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 
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Definition 2.1 (Akram et al., 2013) 
The Interval-valued Fuzzy Set (IVFS) 𝐴 in 𝑉 is defined by  = {(𝑥, { µ𝐴

− (𝑥), µ𝐴
+  (𝑥))} ∶

𝑥 ∈  𝑉 } , where µ𝐴
− (𝑥) and µ𝐴

+ (𝑥) are fuzzy subsets of 𝑉 such that µ𝐴
− (𝑥) ≤  µA

+  (x)
for all 𝑥 ∈  𝑉. For any two interval-valued sets 𝐴 =  [µ𝐴

− (𝑥), µ𝐴
+  (𝑥)] and 𝐵 =

[µ𝐵
− (𝑥), µ𝐵

+  (𝑥)] in V.
Define:  •  𝐴 ⋃ 𝐵 =  {(𝑥, 𝑚𝑎𝑥(µ𝐴

− (𝑥), µ𝐵
− (𝑥)), 𝑚𝑎𝑥(µ𝐴

+ (𝑥), µ𝐵
+ (𝑥))) ∶  𝑥 ∈  𝑉},

• 𝐴 ⋂ 𝐵 =  {(𝑥, 𝑚𝑖𝑛(µ𝐴
− (𝑥), µ𝐵

− (𝑥)), 𝑚𝑖𝑛(µ𝐴
+ (𝑥), µ𝐵

+ (𝑥))) ∶  𝑥 ∈  𝑉}.

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗 })  ≥  𝑚𝑎𝑥[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)] 

Interval-valued 
Pythagorean 
Fuzzy set 
(IVPFS) - F. 
Teng, Z. Liu, and 
P. Liu, (2018).

For each point 𝑥 ∈  𝑋, we have that 
𝑇𝐴(𝑥) =  [𝑇𝐴

−(𝑥),  𝑇𝐴
+(𝑥)],  𝐹𝐴(𝑥) =

[𝐹𝐴
−(𝑥), 𝐹𝐴

+(𝑥)] ⊆  [0, 1] and 0 ≤
𝑇𝐴

+(𝑥)2  +  𝐹𝐴
+(𝑥)2  ≤  1.

Interval-
valued 
Pythagorean 
Fuzzy graph 
(IVPFG) -
Mohamed S.Y., 
Ali A.M.,2018 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<  [𝑇𝐴
−, 𝑇𝐴

+],
[𝐹𝐴

−, 𝐹𝐴
+] > is an interval-valued 

neutrosophic set on V; and 𝐵 = < [𝑇𝐵
−, 𝑇𝐵

+],
[𝐹𝐵

−, 𝐹𝐵
+] > 𝑇𝐵

−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵
+: 𝑉  ×

𝑉 → [0, 1], and 𝐹𝐵
−: 𝑉  ×  𝑉 →

[0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are such that

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )],

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )],

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗  })  ≥  max[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)] 

such that 0 ≤  𝑇𝐴
+(𝑥)2  +  𝐹𝐴

+(𝑥)2  ≤  1.

Interval-valued 
Fermatean 
Fuzzy set 
(IVFFS) - 
Jeevaraj S, 
(2021) 

For each point 𝑥 ∈  𝑋, we have that 
𝑇𝐴(𝑥) =  [𝑇𝐴

−(𝑥), 𝑇𝐴
+(𝑥)], 𝐹𝐴(𝑥) =

[𝐹𝐴
−(𝑥), 𝐹𝐴

+(𝑥)] ⊆  [0, 1] and 0 ≤
𝑇𝐴

+(𝑥)3  +  𝐹𝐴
+(𝑥)3  ≤  1.

Interval-
valued 
Fermatean 
Fuzzy graph 
(IVFFG) 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<  [𝑇𝐴
−, 𝑇𝐴

+],
[𝐹𝐴

−, 𝐹𝐴
+] > is an interval-valued 

neutrosophic set on V; and 𝐵 = < [𝑇𝐵
−, 𝑇𝐵

+],
[𝐹𝐵

−, 𝐹𝐵
+] > 𝑇𝐵

−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵
+: 𝑉  ×

𝑉 → [0, 1], and 𝐹𝐵
−: 𝑉  ×  𝑉 →

[0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are such that

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )],

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )],

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗 })  ≥  𝑚𝑎𝑥[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)] 

such that 0 ≤  𝑇𝐴
+(𝑥)3  +  𝐹𝐴

+(𝑥)3  ≤  1.

Interval-valued 
Fermatean 
Neutrosophic 
set (IVFNS) – 
Said Broumi, 
Raman 
Sundareswaran, 
Marayanagaraj 
Shanmugapriya, 
Giorgio Nordo 
Mohamed 
Talea, Assia 
Bakali, and 
Florentin 
Smarandache, 
(2022) 

A={〈𝑥, 𝑇𝐴(𝑥), IA(𝑥), FA(𝑥)〉| 𝑥 ∈ X } 
where 𝑇𝐴(𝑥) =
[TA

−(𝑥) , 𝑇𝐴
+(𝑥)], IA(𝑥)=[IA

−(𝑥) , IA
+(x)]

and FA(𝑥) = [𝐹𝐴
−(𝑥), FA

+(𝑥)], 
 𝑇𝐴(𝑥): 𝑋 → 𝐷[0,1]  
IA(𝑥): 𝑋 → 𝐷[0,1], 𝐹𝐴(𝑥): 𝑋 →
𝐷[0,1] and 

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

≤1 and 0 ≤

(𝐼𝐴 (𝑥))
𝟑

≤ 1 

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

+(𝐼𝐴(𝑥))
𝟑

≤ 

2   means   
0 ≤
(𝑇𝐴

+(x))𝟑+(𝐼𝐴
+(𝑥))𝟑+(𝐹𝐴

+(𝑥))𝟑 ≤ 2
∀ 𝑥 ∈  X 

Interval-
valued 
Fermatean 
Neutrosophic 
graph (IVFNG) 
- Said Broumi,
et al.,  2022 

𝐺 =  (𝐴, 𝐵), where 𝐴 =<
[𝑇𝐴

−, 𝑇𝐴
+], [𝐼𝐴

−, 𝐼𝐴
+], [𝐹𝐴

−, 𝐹𝐴
+] > is an interval-

valued Fermatean neutrosophic set on V; and 
𝐵 = < [𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+] >

𝐸 satisfying the following condition: 
𝑇𝐴

−  ∶ 𝑉 →  [0, 1], 𝑇𝐴
+  ∶ 𝑉 →  [0, 1], 𝐼𝐴

−  ∶ 𝑉 →
[0, 1], 𝐼𝐴

+: 𝑉 → [0, 1]𝑎𝑛𝑑 𝐹𝐴
−: 𝑉 →

[0, 1], 𝐹𝐴
+: 𝑉 → [0, 1],

and 0 ≤  𝑇𝐴(𝑣𝑖)  +  𝐼𝐴(𝑣𝑖  )  + 𝐹𝐴(𝑣𝑖)  ≤
3, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑖  ∈  𝑉 (𝑖 = 1, 2, … , 𝑛 
The functions 𝑇𝐵

−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵
+: 𝑉  ×

𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵

+: 𝑉 ×
𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 →
[0,1], 𝐹𝐵

+: 𝑉  × 𝑉 → [0, 1] are such that

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖 ), 𝑇𝐴
−(𝑣𝑗 )],

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖 ), 𝑇𝐴
+(𝑣𝑗 )],

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖 ), 𝐼𝐵
−(𝑣𝑗 )],

𝐼𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

+(𝑣𝑖 ), 𝐼𝐵
+(𝑣𝑗  )], 

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)], 

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗 }) ≥ max[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)], 

denoting the degree of truth-membership, 
indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖 , 𝑣𝑗)  ∈  𝐸 

respectively, where  0 ≤  𝑇𝐵({𝑣𝑖  , 𝑣𝑗 })3  +

𝐼𝐵({𝑣𝑖  , 𝑣𝑗  })3 +  𝐹𝐵({𝑣𝑖  , 𝑣𝑗  })3  ≤ 2 for all

{𝑣𝑖 , 𝑣𝑗 }  ∈  𝐸 (𝑖, 𝑗 =  1, 2, … , 𝑛) means  0 ≤

(𝑇𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
+(𝐼𝐵

+(𝑣𝑖  , 𝑣𝑗))
𝟑

+(𝐹𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
≤ 

2    ∀ 𝑥 ∈  X. 
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 Definition 2.2 (Akram et al., 2013) 

If 𝐺∗  =  (𝑉, 𝐸) is a graph, then by an Interval-valued Fuzzy Relation (IVFR) 𝐵 on 
a set 𝐸 we mean an interval-valued fuzzy set such that µ𝐵

− (𝑥𝑦)  ≤
𝑚𝑖𝑛(µ𝐴

− (𝑥), µ𝐴
− (𝑦)), µ𝐵

+ (𝑥𝑦)  ≤  𝑚𝑖𝑛(µ𝐴
+(𝑥), µ𝐴

+ (𝑦)) for all 𝑥𝑦 ∈  𝐸.

Definition 2.3 (Akram et al., 2013) 
By an Interval-valued Fuzzy Graph (IVFG) of a graph 𝐺∗  =  (𝑉, 𝐸) we mean a pair 

𝐺 =  (𝐴, 𝐵), where 𝐴 =  [µ𝐴
− , µ𝐴

+ ] is an interval-valued fuzzy set on 𝑉 and 𝐵 =
[µ𝐵

− , µ𝐵
+ ] is an interval-valued fuzzy relation on 𝐸.

Example 2.4 (Akram  et al., 2013) 
 Consider a graph 𝐺∗  =  (𝑉, 𝐸) such that 𝑉 =  {𝑥, 𝑦, 𝑧}, 𝐸 =  {𝑥𝑦, 𝑦𝑧, 𝑧𝑥}. Let A be 

an interval-valued fuzzy set of V and B be an interval-valued fuzzy set of 𝐸 ⊆  𝑉 ×  𝑉 
defined by 

𝐴 =   〈( 
𝑥 

0.2
 ,

𝑦 

0.3
 ,

𝑧

0.4
 ) , ( 

𝑥 

0.4
 ,

𝑦 

0.5
 ,

𝑧

0.5
 ) 〉 , 𝐵 = 〈( 

𝑥 

0.2
 ,

𝑦 

0.3
 ,

𝑧

0.4
 ) , ( 

𝑥𝑦 

0.3
 ,

𝑦𝑧 

0.4
 ,

𝑧𝑥

0.4
 ) 〉  

Figure 1. Interval-Valued Fuzzy Graph G 

Akram et al. (2013) introduced certain types of interval-valued fuzzy graphs 
including balanced interval-valued fuzzy graphs, neighbourly irregular interval-
valued fuzzy graphs, neighbourly total irregular interval-valued fuzzy graphs, highly 
irregular interval-valued fuzzy graphs, and highly total irregular interval-valued fuzzy 
graph.  Hossein et al. (2013) define three new operations on interval-valued fuzzy 
graphs; namely direct product, semi strong product and strong product. 

Definition 2.5 (Mishra et al., 2013; Ismayil et al., 2014) 
An Interval-valued Intuitionistic Fuzzy Set (IVIFS) 𝐴 in 𝑋, is given by 𝐴 =

{ 〈𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥)〉/ 𝑥𝜖 𝑋} where 𝜇𝐴: 𝑋 → [0, 1], 𝜂𝐴: 𝑋 → 𝐷[0, 1]. The intervals 𝜇𝐴(𝑥) 
and 𝜂𝐴(𝑥) denote the degree of membership and the degree of non-membership of the 
element 𝑥 to the set, where 𝜇𝐴(𝑥) = [ 𝜇𝐴

−(𝑥), 𝜇𝐴
+(𝑥)] and 𝜂𝐴(𝑥) = [𝜂𝐴

−(𝑥), 𝜂𝐴
+(𝑥)] with

the condition 0 ≤  𝜇𝐴
+(𝑥) + 𝜂𝐴

+(𝑥) ≤  1 for all 𝑥𝜖 𝑋.

Definition 2.6 (Mishra et al., 2013; Ismayil et al., 2014) 
An Interval-valued Intuitionistic Fuzzy Graph (IVIFG) with underlying set V is 

defined to be a pair 𝐺 =  (𝐴, 𝐵) where 
 the functions 𝜇𝐴: 𝑉 → 𝐷[0,1]; 𝜂𝐴: 𝑉 → 𝐷[0,1] denote the degree of

membership and non-membership of the element 𝑥 ∈ 𝑉 respectively, such

that 0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) ≤ 1 , ∀ 𝑥 ∈ 𝑉

 the functions 𝜇𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1] ; 𝜂𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1]   are

defined by
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𝜇𝐵
−((𝑥, 𝑦)) ≤ min( 𝜇𝐴

−(𝑥), 𝜇𝐴
−(𝑦))  ;  𝜂𝐵

−((𝑥, 𝑦)) ≥ min( 𝜂𝐴
−(𝑥), 𝜂𝐴

−(𝑦))

𝜇𝐵
+((𝑥, 𝑦)) ≤ min( µ

𝐴
+(𝑥), µ

𝐴
+(𝑦))  ;  𝜂𝐵

+((𝑥, 𝑦)) ≥ min( 𝜂
𝐴
+(𝑥), 𝜂

𝐴
+(𝑦))

such that 0 ≤ 𝜇𝐵
+((𝑥, 𝑦)) + 𝜂𝐵

+((𝑥, 𝑦)) ≤ 1 , ∀(𝑥, 𝑦) ∈ 𝐸

Example 2.7 
𝐺 = (𝐴, 𝐵) defined on a graph 𝐺∗  =  (𝑉, 𝐸) such that 𝑉 =  {𝑥, 𝑦, 𝑧}, 𝐸 =

 {𝑥𝑦, 𝑦𝑧, 𝑧𝑥}, A is an interval valued intuitionistic fuzzy set of 𝑉and let 𝐵 is an interval-
valued intuitionistic fuzzy set of 𝐸 ⊆ 𝑉 𝑋 𝑉.  

here 𝐴 = {〈𝑥, [0.5,0.7], [0.1,0.3]〉, 〈𝑦, [0.6,0.7], [0.1,0.3]〉 , 〈𝑧, [0.4,0.6], [0.2,0.4]〉 } 

𝐵 = {〈𝑥𝑦, [0.3,0.6], [0.2,0.4]〉, 〈𝑦𝑧, [0.3,0.5], [0.3,0.4]〉 , 〈𝑥𝑧, [0.3,0.5], [0.2,0.4]〉} 

Figure 2. Interval-Valued Intuitionistic Fuzzy Graph G 

Mishra et al. (2013) introduced product of IVIFG and Ismayil et al. (2014) defined 
On Strong Interval-Valued Intuitionistic Fuzzy Graph. Akram et al. (2013) studied the 
certain types of interval-valued fuzzy graphs. Peng Xu et al. (2022) studied the concept 
of certain interval-valued intuitionistic fuzzy graphs and its applications.  Xindong et 
al. (2016) introduced the concept of interval-valued Pythagorean fuzzy set. Mohamed 
et. al. (2018) introduced and studied interval-valued Pythagorean fuzzy graphs.  

Definition 2.8 (Mohamed et. al., 2018) 
An Interval- valued Pythagorean Fuzzy set (IVPFS) A defined in a finite universe of 

discourse 𝑋 is given by 𝐴 = {〈𝑥, 𝜇𝐴(𝑥) = [ 𝜇𝐴
−(𝑥), 𝜇𝐴

+(𝑥)], 𝜂𝐴(𝑥) = [𝜂𝐴
−(𝑥), 𝜂𝐴

+(𝑥)]〉 /
𝑥𝜖 𝑋} where 𝜇𝐴

−(𝑥), 𝜇𝐴
+(𝑥) ∶ 𝑋  [0,1] and 𝜂𝐴

−(𝑥), 𝜂𝐴
+(𝑥): 𝑋  [0,1] and 0 ≤

(𝜇𝐴
+(𝑥))2   + (𝜂𝐴

+(𝑥))2 ≤ 1 . Here 𝜇𝐴(𝑥) and 𝜂𝐴(𝑥)  denote the degree of membership
and degree of non-membership of 𝑥 ∈ 𝑋  in 𝐴. 

Definition 2.9 (Mohamed et. al., 2018) 
An Pythagorean Fuzzy Graph (PFG) with underlying set  𝑉 defined to be a pair 𝐺 =

(𝐴, 𝐵)where 
 the functions 𝜇𝐴: 𝑉 → 𝐷[0,1]; 𝜂𝐴: 𝑉 → 𝐷[0,1] denote the degree of

membership and non-membership of the element 𝑥 ∈ 𝑉 respectively, such

that 0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) ≤ 1 , ∀ 𝑥 ∈ 𝑉

 the functions 𝜇𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1] ; 𝜂𝐵: 𝐸 ⊆ 𝑉  ×  𝑉 → 𝐷[0,1]   are

defined by

𝜇𝐵
−((𝑥, 𝑦)) ≤ min( 𝜇𝐴

−(𝑥), 𝜇𝐴
−(𝑦))  ;  𝜂𝐵

−((𝑥, 𝑦)) ≥ min( 𝜂𝐴
−(𝑥), 𝜂𝐴

−(𝑦))

𝜇𝐵
+((𝑥, 𝑦)) ≤ min( µ

𝐴
+(𝑥), µ

𝐴
+(𝑦))  ;  𝜂𝐵

+((𝑥, 𝑦)) ≥ min( 𝜂
𝐴
+(𝑥), 𝜂

𝐴
+(𝑦))

such that 0 ≤ 𝜇𝐵
+((𝑥, 𝑦))

2
+ 𝜂𝐵

+((𝑥, 𝑦))
2

≤ 1 , ∀(𝑥, 𝑦) ∈ 𝐸
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Yahya et al. (2018) defined the strong interval-valued Pythagorean fuzzy graph and 
Cartesian product, composition and join of two strong interval-valued Pythagorean 
fuzzy graph are studied. 

Definition 2.10 (Broumi et al., 2016d) 
An Interval-valued Neutrosophic Set (IVNS) 𝐴 in 𝑋 is characterized by truth-

membership function 𝑇𝐴(𝑥) , indeterminacy-membership function 𝐼𝐴(𝑥) and falsity-
membership function 𝐹𝐴(𝑥). For each point 𝑥 ∈ 𝑋, we have that 𝑇𝐴(𝑥) = 
[𝑇𝐴

−(𝑥), 𝑇𝐴
+(𝑥)], 𝐼𝐴(𝑥) = [𝐼𝐴

−(𝑥), 𝐼𝐴
+(𝑥)], 𝐹𝐴(𝑥) = [𝐹𝐴

−(𝑥), 𝐹𝐴
+(𝑥)] ⊆ [0, 1] and 0 ≤ 

 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. 

Definition 2.11 (Broumi et al., 2016d) 
An Interval- valued Neutrosophic Graph (IVNG) of a graph 𝐺∗  =  (𝑉, 𝐸) we 

mean a pair 𝐺 =  (𝐴, 𝐵), where 𝐴 =<  [𝑇𝐴
−, 𝑇𝐴

+], [𝐼𝐴
−, 𝐼𝐴

+], [𝐹𝐴
−, 𝐹𝐴

+] > is an interval-
valued neutrosophic set on V; and 𝐵 = 〈[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+]〉  is an interval

valued neutrosophic relation on 𝐸 satisfying the following condition: 
i. 𝑉 =  { 𝑣1 , 𝑣2 , … , 𝑣𝑛 }, such that 𝑇𝐴

−  ∶ 𝑉 →  [0, 1], 𝑇𝐴
+  ∶ 𝑉 →  [0, 1], 𝐼𝐴

−  ∶ 𝑉 →
[0, 1],  𝐼𝐴

+: 𝑉 → [0, 1]  and 𝐹𝐴
−: 𝑉 → [0, 1], 𝐹𝐴

+: 𝑉 → [0, 1] denote the degree of

truth-membership, the degree of indeterminacy-membership and falsity-

membership of the element 𝑦 ∈  𝑉, respectively, and 0 ≤  𝑇𝐴(𝑣𝑖)  +  𝐼𝐴(𝑣𝑖  )  +

𝐹𝐴(𝑣𝑖)  ≤ 3, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑖  ∈  𝑉 (𝑖 = 1, 2, … , 𝑛)

ii. The functions 𝑇𝐵
−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵

+: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 →

[0, 1], 𝐼𝐵
+: 𝑉 ×  𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 → [0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are

such that

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖  ), 𝑇𝐴
−(𝑣𝑗  )],

𝑇𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

+(𝑣𝑖  ), 𝑇𝐴
+(𝑣𝑗  )],

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖  ), 𝐼𝐵
−(𝑣𝑗  )],

𝐼𝐵
+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

+(𝑣𝑖  ), 𝐼𝐵
+(𝑣𝑗  )],

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗  }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)],

𝐹𝐵
+({𝑣𝑖  , 𝑣𝑗  })  ≥  𝑚𝑎𝑥[𝐹𝐵

+(𝑣𝑖), 𝐹𝐵
+(𝑣𝑗)],

denoting the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖  , 𝑣𝑗)  ∈  𝐸 respectively, where  0 ≤  𝑇𝐵({𝑣𝑖  , 𝑣𝑗  })  +

 𝐼𝐵({𝑣𝑖  , 𝑣𝑗  }) +  𝐹𝐵({𝑣𝑖  , 𝑣𝑗  })  ≤ 3 for all {𝑣𝑖  , 𝑣𝑗  } ∈  𝐸 (𝑖, 𝑗 =  1, 2, … , 𝑛). 

3. Interval-valued Fermatean neutrosophic graphs

Fuzzy sets, Intuitionistic fuzzy sets, Neutrosophic sets are the generalization of the
classical set and which are also the most popular mathematical tools in the study 
uncertainty.  Later, researchers combined these sets with graph structures and studied 
its properties in literature.  These combinations, Fuzzy graphs, Intuitionistic fuzzy 
graphs and Neutrosophic graphs are useful in decision making problems.  In an 
administrative setup, electing a leader among a group of people through the voting 
process, a judgement may give based on a candidate satisfies his expectations with a 
possibility of 0.80 and this candidate dissatisfies the expectations with a possibility of 
0.95 and neutrally give 0.85   But their sum is 2.80 (>2) and their square sum is 2.265 
(>2) and the sum of the cubes is equal to 1.9835 (<2). It is impossible to give an exact 
degree of membership in every instant, because the lack of knowledge, vague 
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information, and so forth may produce higher values to the membership values. To 
overcome this problem, we can use interval-valued fuzzy sets, which assign to each 
element a closed interval which approximates the “real,” but unknown, membership 
degree. In this series, we are adding one more class of graphs namely, interval-valued 
Fermatean neutrosophic graphs and certain types of interval-valued Fermatean 
neutrosophic graphs are introduced and discussed in this section. 

Definition 3.1 
An interval-valued Fermatean neutrosophic set (IVFNS) 𝐴 on the universe of 
discourse 𝑋 is of the structure: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), IA(𝑥), FA(𝑥)〉| 𝑥 ∈ X }, where 𝑇𝐴(𝑥) = [TA
−(𝑥) , 𝑇𝐴

+(𝑥)], IA(𝑥) =
[IA

−(𝑥) , IA
+(x)] and FA(𝑥) = [𝐹𝐴

−(𝑥), FA
+(𝑥)] represents the truth-membership degree,

indeterminacy-membership degree and falsity-membership degree, respectively. 
Consider the mapping 𝑇𝐴(𝑥): 𝑋 → 𝐷[0,1] , IA(𝑥): 𝑋 → 𝐷[0,1], 𝐹𝐴(𝑥): 𝑋 → 𝐷[0,1] and 

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

≤1 and 0 ≤ (𝐼𝐴 (𝑥))
𝟑

≤ 1

0 ≤ (𝑇𝐴(𝑥))
𝟑

+(𝐹𝐴(𝑥))
𝟑

+(𝐼𝐴(𝑥))
𝟑

≤ 2   means

0 ≤ (𝑇𝐴
+(x))𝟑+(𝐼𝐴

+(𝑥))𝟑+(𝐹𝐴
+(𝑥))𝟑 ≤ 2    ∀ 𝑥 ∈  X

Definition 3.2 
An Interval-Valued Fermatean Neutrosophic Graph (IVFNG) of a graph 𝐺∗  =

(𝑉, 𝐸) we mean a pair 𝐺 =  (𝐴, 𝐵), where 𝐴 = 〈[𝑇𝐴
−, 𝑇𝐴

+], [𝐼𝐴
−, 𝐼𝐴

+], [𝐹𝐴
−, 𝐹𝐴

+]〉  is an
interval-valued Fermatean neutrosophic set on V; and 𝐵 =
〈[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+〉] is an interval valued Fermatean  neutrosophic relation on

𝐸 satisfying the following condition: 
i. 𝑉 =  { 𝑣1 , 𝑣2 , … , 𝑣𝑛 }, such that 𝑇𝐴

−  ∶ 𝑉 →  [0, 1], 𝑇𝐴
+  ∶ 𝑉 →  [0, 1], 𝐼𝐴

−  ∶ 𝑉 →
[0, 1], 𝐼𝐴

+: 𝑉 → [0, 1] and  𝐹𝐴
−: 𝑉 → [0, 1], 𝐹𝐴

+: 𝑉 → [0, 1]denote the degree of

truth -membership, the degree of indeterminacy-membership and falsity-

membership of the element 𝑦 ∈  𝑉, respectively, and 0 ≤  𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖  ) +

𝐹𝐴(𝑣𝑖) ≤ 3, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑖  ∈  𝑉 (𝑖 = 1, 2, … , 𝑛).

ii. The functions 𝑇𝐵
−: 𝑉  ×  𝑉 → [0, 1], 𝑇𝐵

+: 𝑉  ×  𝑉 → [0, 1], 𝐼𝐵
−: 𝑉  ×  𝑉 →

[0, 1], 𝐼𝐵
+: 𝑉 ×  𝑉 → [0, 1] and 𝐹𝐵

−: 𝑉  ×  𝑉 → [0,1], 𝐹𝐵
+: 𝑉  × 𝑉 → [0, 1] are

such that

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴

−(𝑣𝑖  ), 𝑇𝐴
−(𝑣𝑗  )] ,   𝑇𝐵

+({𝑣𝑖  , 𝑣𝑗}) ≤ min[𝑇𝐴
+(𝑣𝑖  ), 𝑇𝐴

+(𝑣𝑗  )],

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵

− (𝑣𝑖  ), 𝐼𝐵
−(𝑣𝑗  )],   𝐼𝐵

+({𝑣𝑖  , 𝑣𝑗}) ≥ max[𝐼𝐵
+(𝑣𝑖  ), 𝐼𝐵

+(𝑣𝑗  )],

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗  }) ≥ max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)],     𝐹𝐵

+({𝑣𝑖  , 𝑣𝑗  })  ≥  max[𝐹𝐵
+(𝑣𝑖), 𝐹𝐵

+(𝑣𝑗)]

denoting the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖  , 𝑣𝑗)  ∈  𝐸 respectively, where 0 ≤  𝑇𝐵({𝑣𝑖  , 𝑣𝑗  })3  +

𝐼𝐵({𝑣𝑖  , 𝑣𝑗  })3 +  𝐹𝐵({𝑣𝑖  , 𝑣𝑗  })3  ≤ 2 for all {𝑣𝑖  , 𝑣𝑗  }  ∈  𝐸 (𝑖, 𝑗 =  1, 2, … , 𝑛) means  0 ≤

(𝑇𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
+(𝐼𝐵

+(𝑣𝑖  , 𝑣𝑗))
𝟑

+(𝐹𝐵
+(𝑣𝑖  , 𝑣𝑗))

𝟑
≤ 2    ∀ 𝑥 ∈  X.

Example 3.3 
Consider a graph 𝐺∗, such that 𝑉 =  {𝑥1, 𝑥2, 𝑥3}, 𝐸 =  {𝑥1𝑥2, 𝑥2𝑥3, 𝑥3𝑥4, 𝑥4𝑥1}. Let 𝐴

be an interval valued Fermatean neutrosophic subset of 𝑉 and 𝐵 be an interval valued 
Fermatean neutrosophic subset of 𝐸, denoted by 

𝐴 = {
〈𝑥1[0.85,0.95], [0.90,0.95], [0.85,0.85]〉, 〈𝑥2, [0.85,0.90], [0.90,0.95], [0.85,0.90]〉,

〈𝑥3, [0.85,0.95], [0.95,0.95], [0.85,0.95]〉
} 

𝐵 = {
〈𝑥1𝑥2, [0.80,0.90], [0.90,0.95], [0.80,0.85]〉, 〈𝑥2𝑥3, [0.85,0.90], [0.90,0.95], [0.85,0.85]〉,

〈𝑥3𝑥1, [0.85,0.95], [0.90,0.95], [0.85,0.85]〉
}
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Figure 3. Interval-valued Fermatean Neutrosophic Graph  G 

Definition 3.4. 
Let 𝐺 =  (𝐴, 𝐵) be an IVFNG. 𝐺 is an interval valued regular Fermatean 

neutrosophic graph if it satisfies the following conditions: 
∑ 𝑇𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2
   ; ∑ 𝑇𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

∑ 𝐼𝐵
−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

 ; ∑ 𝐼𝐵
+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

∑ 𝐹𝐵
−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

 ; ∑ 𝐹𝐵
+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑣1≠𝑣2

Definition 3.5. 
Let G = (A, B) be an IVFNG. G is an interval valued regular strong neutrosophic 

graph if it satisfies the following conditions 

𝑇𝐵
−(𝑣1, 𝑣2) = min(𝑇𝐴

−(𝑣1), 𝑇𝐴
−(𝑣2)) ; ∑ 𝑇𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

𝑇𝐵
+(𝑣1, 𝑣2) = min(𝑇𝐴

+(𝑣1), 𝑇𝐴
+(𝑣2)) ; ∑ 𝑇𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

𝐼𝐵
−(𝑣1, 𝑣2) = max(𝐼𝐴

−(𝑣1), 𝐼𝐴
−(𝑣2)) ;  ∑ 𝐼𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

𝐼𝐵
+(𝑣1, 𝑣2) = max(𝐼𝐴

+(𝑣1), 𝐼𝐴
+(𝑣2)) ;  ∑ 𝐼𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

𝐹𝐵
−(𝑣1, 𝑣2) = max(𝐹𝐴

−(𝑣1), 𝐹𝐴
−(𝑣2)) ;  ∑ 𝐹𝐵

−(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

𝐹𝐵
+(𝑣1, 𝑣2) = max(𝐹𝐴

+(𝑣1), 𝐹𝐴
+(𝑣2)) ;  ∑ 𝐹𝐵

+(𝑣1, 𝑣2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑣1≠𝑣2

Definition 3.6. 
Let G = (A, B) be an IVFNG. G is a strong interval valued regular strong neutrosophic 

graph if it satisfies the following conditions: 
𝑇𝐵

−(𝑣1, 𝑣2) = min(𝑇𝐴
−(𝑣1), 𝑇𝐴

−(𝑣2)) ;

𝐼𝐵
−(𝑣1, 𝑣2) = max(𝐼𝐴

−(𝑣1), 𝐼𝐴
−(𝑣2)) ;

𝐹𝐵
−(𝑣1, 𝑣2) = max(𝐹𝐴

−(𝑣1), 𝐹𝐴
−(𝑣2));

𝑇𝐵
+(𝑣1, 𝑣2) = min(𝑇𝐴

+(𝑣1), 𝑇𝐴
+(𝑣2)) ;

𝐼𝐵
+(𝑣1, 𝑣2) = max(𝐼𝐴

+(𝑣1), 𝐼𝐴
+(𝑣2)) ;

𝐹𝐵
+(𝑣1, 𝑣2) = max(𝐹𝐴

+(𝑣1), 𝐹𝐴
+(𝑣2)) ;

Florentin Smarandache (author and editor) Collected Papers, XIII

504



such that 0≤ 𝑇𝐵
+(𝑣1, 𝑣2)) + I𝐵

+ (𝑣1, 𝑣2)) + 𝐹𝐵
+(𝑣1, 𝑣2))  ≤  3, for all 𝑣1, 𝑣2  ∈  𝐸 and 0 ≤

(𝑇𝐵
+(𝑣𝑖 , 𝑣𝑗))

𝟑
+(𝐼𝐵

+(𝑣𝑖 , 𝑣𝑗))
𝟑

+(𝐹𝐵
+(𝑣𝑖 , 𝑣𝑗))

𝟑
≤ 2    ∀ 𝑥 ∈  X

Example 3.7.  
Let 𝐺 = (𝐴, 𝐵)be an Interval-valued Fermatean Neutrosophic graph with𝑉 =

{𝑥1, 𝑥2, 𝑥3}. 

𝐴 = {
〈𝑥1, [0.85,0.95], [0.90,0.95], [0.85,0.85]〉, 〈𝑥2, [0.85,0.90], [0.90,0.95], [0.85,0.90]〉,

〈𝑥3, [0.85,0.95], [0.95,0.95], [0.85,0.95]〉,
},  

𝐵 = {
〈𝑥1𝑥2, [0.85,0.90], [0.90,0.95], [0.80,0.90]〉, 〈𝑥2𝑥3, [0.85,0.90], [0.95,0.95], [0.85,0.95]〉,

〈𝑥1𝑥3, [0.85,0.95], [0.95,0.95], [0.85,0.95]〉,
},  

Figure 4. Strong Interval-valued Fermatean Neutrosophic Graph  G 

Definition 3.8. 
Let 𝐴1 and 𝐴2 be interval-valued neutrosophic subsets of 𝑉1 and 𝑉2 respectively. Let 

𝐵1 and 𝐵2 interval-valued neutrosophic subsets of 𝐸1 and 𝐸2 respectively. The 
Cartesian product of two IVFNGs 𝐺1 and 𝐺2 is denoted by 𝐺1 × 𝐺2  =  (𝐴1 × 𝐴2 , 𝐵1 ×
𝐵2) and is defined as follows: 

i. (𝑇𝐴1
−  ×  𝑇𝐴2

−  )(𝑥1, 𝑥2) = min (𝑇𝐴1
−  (𝑥1), 𝑇𝐴2

−  (𝑥2))

(𝑇𝐴1
+   ×  𝑇𝐴2

+  )(𝑥1, 𝑥2) = min (𝑇𝐴1
+ (𝑥1), 𝑇𝐴2

+ (𝑥2))

(𝐼𝐴1
−  ×  𝐼𝐴2

−  )(𝑥1, 𝑥2) = max (𝐼𝐴1
− (𝑥1), 𝐼𝐴2

− (𝑥2))

(𝐼𝐴1
+  ×  𝐼𝐴2

+ )(𝑥1, 𝑥2) = max (𝐼𝐴1
+ (𝑥1), 𝐼𝐴2

+ (𝑥2))

(𝐹𝐴1
−  ×  𝐹𝐴2

−  )(𝑥1, 𝑥2) = max (𝐹𝐴1
− (𝑥1 ), 𝐹𝐴2

− (𝑥2))

(𝐹𝐴1
+  ×  𝐹𝐴2

+ )(𝑥1, 𝑥2) = max (𝐹𝐴1
+ (𝑥1), 𝐹𝐴2

+ (𝑥2)) 𝑓𝑜𝑟 𝑎𝑙𝑙 ( 𝑥1, 𝑥2) ∈  𝑉

ii. (𝑇𝐵1
−  ×  𝑇𝐵2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
− (𝑥), 𝑇𝐵1

− (𝑥2𝑦2))

(𝑇𝐵1
+  ×  𝑇𝐵2

+ )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
+ (𝑥), 𝑇𝐵1

+ (𝑥2𝑦2))

(𝐼𝐵1
−  ×  𝐼𝐵2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1
− (𝑥), 𝐼𝐵2

− (𝑥2𝑦2))

(𝐼𝐵1
+  ×  𝐼𝐵2

+ )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1
+ (𝑥), 𝐼𝐵2

+ (𝑥2𝑦2))

(𝐹𝐵1
−  ×  𝐹𝐵2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐴1
− (𝑥), 𝐹𝐵2

− (𝑥2𝑦2))

(𝐹𝐵1
+  ×  𝐹𝐵2

+  )((𝑥, 𝑥2 )(𝑥, 𝑦2  )) =  max (𝐹𝐴1
+ (𝑥), 𝐹𝐵2

+ (𝑥2𝑦2 ))

∀ 𝑥 ∈  𝑉1 𝑎𝑛𝑑 ∀ 𝑥2𝑦2 ∈  𝐸2

iii. (𝑇𝐵1
−  ×  𝑇𝐵2

−  ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  min (𝑇𝐵1
− (𝑥1𝑦1), 𝑇𝐴2

− (𝑧))
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(𝑇𝐵1
+  ×  𝑇𝐵2

+  ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1
+ (𝑥1𝑦1), 𝑇𝐴2

+ (𝑧))

(𝐼𝐵1
−  ×  𝐼𝐵2

− )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝐵1
− (𝑥1𝑦1), 𝐼𝐴2

− (𝑧))

(𝐼𝐵1
+  ×  𝐼𝐵2

+ )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝐵1
+ (𝑥1𝑦1), 𝐼𝐴2

+ (𝑧))

(𝐹𝐵1
−  ×  𝐹𝐵2

−  )((𝑥1, 𝑧) (𝑦1 , 𝑧)) = max (𝐹𝐵1
− (𝑥1𝑦1), 𝐹𝐴2

− (𝑧))

(𝐹𝐵1
+  ×  𝐹𝐵2

+ )((𝑥1, 𝑧)(𝑦1, 𝑧)) = max (𝐹𝐵1
+ (𝑥1𝑦1), 𝐹𝐴2

+ (𝑧))

∀ 𝑧 ∈  𝑉2 𝑎𝑛𝑑 ∀ 𝑥1𝑦1  ∈  𝐸1 

Example 3.9. 
Let 𝐺1

∗  = (𝐴1, 𝐵1)and 𝐺2
∗ =  (𝐴2, 𝐵2) be two graphs where 𝑉1  = {𝑢1, 𝑢2}, 𝑉2  =

{𝑣1, 𝑣2}. Consider two interval valued Fermatean neutrosophic graphs:  
𝐴1 = {〈u1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉, },  

𝐵1 = {〈𝑢1𝑢2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉} ;  
𝐴2 = {〈𝑣1, [0.80,0.90], [0.85,0.95], [0.95,0.85]〉, 〈𝑣2, [0.95,0.90], [0.95,0.95], [0.80,0.85]〉, }, 
 𝐵2 = {〈𝑣1𝑣2, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉}. 

 

Figure 6. Cartesian product of two IVFNGs  𝐺1  × G2 

Definition 3.10. 

Let 𝐺$   =  𝐺1
$ × 𝐺2

$  = (𝑉1 × 𝑉2, 𝐸) be the composition of two graphs where 𝐸 =
 {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈  𝑉1, 𝑥2𝑦2  ∈  𝐸2}  ∪ {(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈  𝑉2, 𝑥1𝑦1  ∈  𝐸1} ∪
 {( 𝑥1, 𝑥2) ( 𝑦1 , 𝑦2) |𝑥1𝑦1  ∈  𝐸1, 𝑥2  ≠  𝑦2}, then the composition of interval valued 
Fermatean neutrosophic graphs 𝐺1[ 𝐺2]  =  (𝐴1  ∘  𝐴2, 𝐵1  ∘  𝐵2) is an interval valued 
Fermatean neutrosophic graphs defined by:  

i. (𝑇𝐴1
−  ∘  𝑇𝐴2

−  ) (𝑥1, 𝑥2)  =  min (𝑇𝐴1
− (𝑥1), 𝑇𝐴2

− (𝑥2))

(𝑇𝐴1
+ ∘  𝑇𝐴1

+ ) (𝑥1, 𝑥2)  =  min (𝑇𝐴1
+ (𝑥1), 𝑇𝐴1

+ (𝑥2))

(𝐼𝐴1
− ∘ 𝐼𝐴2

−  )(𝑥1, 𝑥2) = max (𝐼𝐴1
− (𝑥1), 𝐼𝐴2

− (𝑥2))

(𝐼𝐴1
+ ∘ 𝐼𝐴2

+ )(𝑥1, 𝑥2) = max (𝐼𝐴1
+ (𝑥1), 𝐼𝐴2

+ (𝑥2))

(𝐹𝐴1
− ∘ 𝐹𝐴2

−   )(𝑥1, 𝑥2) = max (𝐹𝐴1
− (𝑥1), 𝐹𝐴2

− (𝑥2))

(𝐹𝐴1
+ ∘ 𝐹𝐴2

+  ) (𝑥1, 𝑥2)  =  max (𝐹𝐴1
+ (𝑥1), 𝐹𝐴2

+ (𝑥2)) ∀ 𝑥1  ∈  𝑉1, 𝑥2  ∈  𝑉2

ii. (𝑇𝐴1
− ∘ 𝑇𝐴2

−  )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
− (𝑥), 𝑇𝐵2

− (𝑥2𝑦2))

Figure 5.  Interval − valued Fermatean Neutrosophic Graphs G1 , G2
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(𝑇𝐴1
+ ∘ 𝑇𝐴1

+ )((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1
+ (𝑥), 𝑇𝐵2

+ (𝑥2𝑦2))

(𝐼𝐴1
− ∘ 𝐼𝐴2

−  ) ((𝑥, 𝑥2)(𝑥, 𝑦2))  =  max (𝐼𝐴1
− (𝑥), 𝐼𝐵2

− (𝑥2𝑦2))

(𝐼𝐴1
+ ∘ 𝐼𝐴2

+ ) ((𝑥, 𝑥2)(𝑥, 𝑦2))  =  max (𝐼𝐴1
+ (𝑥), 𝐼𝐵2

+ (𝑥2𝑦2))

(𝐹𝐴1
− ∘ 𝐹𝐴2

−   )((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐴1
− (𝑥), 𝐹𝐵2

− (𝑥2𝑦2))

(𝐹𝐴1
+ ∘ 𝐹𝐴2

+  ) ((𝑥, 𝑥2)(𝑥, 𝑦2))  =  max (𝐹𝐴1
+ (𝑥), 𝐹𝐵2

+ (𝑥2𝑦2)) ∀ 𝑥 ∈  𝑉1, ∀𝑥2𝑦2  ∈  𝐸2

iii. (𝑇𝐵1  
− ∘  𝑇𝐵2  

− ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  min (𝑇𝐵1  
− (𝑥1𝑦1), 𝑇𝐴2

−(𝑧)) 

(𝑇𝐵1  
+ ∘ 𝑇𝐵2  

+ ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  min (𝑇𝐵1
+ (𝑥1𝑦1), 𝑇𝐴2

+(𝑧))

(𝐼𝐵1  
− ∘ 𝐼𝐵2  

−  ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  max (𝐼𝐵1  
− (𝑥1𝑦1), 𝐼𝐴2

− (𝑧))

(𝐼𝐵1  
+ ∘ 𝐼𝐵2  

+ ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  max (𝐼𝐵1  
+ (𝑥1𝑦1), 𝐼𝐴2

+ (𝑧))

(𝐹𝐵1  
− ∘ 𝐹𝐵2  

−  ) ((𝑥1, 𝑧) (𝑦1, 𝑧))  =  max (𝐹𝐵1
− (𝑥1𝑦1), 𝐹𝐴2

− (𝑧))

(𝐹𝐵1  
+ ∘  𝐹𝐵2  

+ ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) =  max (𝐹𝐵1
+ (𝑥1𝑦1), 𝐹𝐴2

+ (𝑧)) ∀ 𝑧 ∈  𝑉2, ∀𝑥1𝑦1

∈  𝐸1 ; 

iv. (𝑇𝐵1  
− ∘  𝑇𝐵2  

−  ) ((𝑥1, 𝑥2) (𝑦1, 𝑦2))  =  min (𝑇𝐴2
− (𝑥2), 𝑇𝐴2

− (𝑦2), 𝑇𝐵1
− (𝑥1𝑦1))

(𝑇𝐵1  
+ ∘  𝑇𝐵2  

+ )((𝑥1, 𝑥2)(𝑦1 , 𝑦2)) = min (𝑇𝐴2
+ (𝑥2), 𝑇𝐴2

+ (𝑦2), 𝑇𝐵1
+ (𝑥1𝑦1))

(𝐼𝐵1  
− ∘  𝐼𝐵2  

−  )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) = max (𝐼𝐴2
− (𝑥2), 𝐼𝐴2

− (𝑦2), 𝐼𝐵1
− (𝑥1𝑦1))

(𝐼𝐵1  
+ ∘  𝐼𝐵2  

+ )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) = max (𝐼𝐴2
+ (𝑥2), 𝐼𝐴2

+ (𝑦2), 𝐼𝐵1
+ (𝑥1𝑦1))

(𝐹𝐵1
−  ∘  𝐹𝐵2

−  )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) = max (𝐹𝐴2
− (𝑥2), 𝐹𝐴2

− (𝑦2), 𝐹𝐵1
− (𝑥1𝑦1))

( 𝐹𝐵1
+  ∘  𝐹𝐵2

+  )((𝑥1, 𝑥2)(𝑦1 , 𝑦2)) = max ( 𝐹𝐴2
+ (𝑥2 ), 𝐹𝐴2

+ (𝑦2 ), 𝐹𝐵1
+ (𝑥1𝑦1 )),

∀ (𝑥1, 𝑥2)( 𝑦1, 𝑦2)  ∈  𝐸0  − 𝐸, 𝑤ℎ𝑒𝑟𝑒 𝐸0 =  𝐸 ∪  {( 𝑥1, 𝑥2) ( 𝑦1, 𝑦2) |𝑥1𝑦1

∈  𝐸1, 𝑥2  ≠  𝑦2}. 

Example 3.11. 
Let 𝐺1

∗  = (𝐴1, 𝐵1)and 𝐺2
∗ =  (𝐴2, 𝐵2) be two graphs where 𝑉1  = {𝑢1, 𝑢2}, 𝑉2  =

{𝑣1, 𝑣2}. Consider two interval valued Fermatean neutrosophic graphs:  

𝐴1 = {〈u1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈u2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉},  

𝐵1 = {〈𝑢1𝑢2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉 } ;  
𝐴2 = {〈𝑣1, [0.80,0.90], [0.85,0.95], [0.95,0.85]〉, 〈𝑣2, [0.95,0.90], [0.95,0.95], [0.80,0.85]〉}, 
 𝐵2 = {〈𝑣1𝑣2, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉}. 

Figure 7. Interval − valued Fermatean Neutrosophic Graphs G1 , G2
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Figure 8. Composition of interval valued Fermatean neutrosophic graphs 𝐺1[ 𝐺2] 

Definition 3.12. 
The union 𝐺1  ∪  𝐺2 =  (𝐴1  ∪  𝐴2, 𝐵1  ∪  𝐵2) of two interval valued Fermatean 

neutrosophic graphs of the graphs 𝐺1
∗ and 𝐺2

∗ is an interval-valued Fermatean
neutrosophic graph of 𝐺1

∗  ∪  𝐺2
∗ .

 (𝑇𝐴1

−    ∪  𝑇𝐴2

−   )(𝑥) =  {

𝑇𝐴1

− (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝑇𝐴2

− (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

min (𝑇𝐴1

− (𝑥), 𝑇𝐴2

− (𝑥)) if 𝑥 ∈  V1  ∩  V2,

, 

 (𝑇𝐴1

+    ∪  𝑇𝐴2

+   )(𝑥) =  {

𝑇𝐴1

+ (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝑇𝐴2

+ (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

min (𝑇𝐴1

+ (𝑥), 𝑇𝐴2

+ (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 (𝐼𝐴1

−    ∪  𝐼𝐴2

−   )(𝑥) =  {

𝐼𝐴1

− (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐼𝐴2

− (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐼𝐴1

− (𝑥), 𝐼𝐴2

− (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 (𝐼𝐴1

+    ∪  𝐼𝐴2

+   )(𝑥) =  {

𝐼𝐴1

+ (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐼𝐴2

+ (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐼𝐴1

+ (𝑥), 𝐼𝐴2

+ (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 (𝐹𝐴1

−    ∪  𝐹𝐴2

−   )(𝑥) =  {

𝐹𝐴1

− (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐹𝐴2

− (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐹𝐴1

− (𝑥), 𝐹𝐴2

− (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 (𝐹𝐴1

+    ∪  𝐹𝐴2

+   )(𝑥) =  {

𝐹𝐴1

+ (𝑥), 𝑖𝑓 𝑥 ∈  𝑉1  𝑎𝑛𝑑 𝑥 ∉  𝑉2

𝐹𝐴2

+ (𝑥)𝑖𝑓 𝑥 ∉  𝑉1 𝑎𝑛𝑑 𝑥 ∈  𝑉2

max (𝐹𝐴1

+ (𝑥), 𝐹𝐴2

+ (𝑥)) if 𝑥 ∈  V1  ∩  V2,

 (𝑇𝐵1

−    ∪  𝑇𝐵2

−   )(𝑥𝑦) =  {

𝑇𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝑇𝐵2

− (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

min (𝑇𝐵1

− (𝑥𝑦), 𝑇𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 (𝑇𝐵1

+    ∪  𝑇𝐵2

+   )(𝑥𝑦) =  {

𝑇𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝑇𝐵2

+ (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

min (𝑇𝐵1

+ (𝑥𝑦), 𝑇𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,
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 (𝐼𝐵1

−    ∪  𝐼𝐵2

−   )(𝑥𝑦) =  {

𝐼𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐼𝐵2

− (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

min (𝐼𝐵1

− (𝑥𝑦), 𝐼𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 (𝐼𝐵1

+    ∪  𝐼𝐵2

+   )(𝑥𝑦) =  {

𝐼𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐼𝐵2

+ (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

max (𝐼𝐵1

+ (𝑥𝑦), 𝐼𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 𝐹𝐵1

−    ∪  𝐹𝐵2

−   )(𝑥𝑦) =  {

𝐹𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐹𝐵2

− (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

max (𝐹𝐵1

− (𝑥𝑦), 𝐹𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

 (𝐹𝐵1

+    ∪  𝐹𝐵2

+   )(𝑥𝑦) =  {

𝐹𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1  𝑎𝑛𝑑 𝑥𝑦 ∉  𝐸2

𝐹𝐵2

+ (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∉  𝐸1 𝑎𝑛𝑑 𝑥𝑦 ∈  𝐸2

max (𝐹𝐵1

+ (𝑥𝑦), 𝐹𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∩  𝐸2,

Definition 3.13. 
The join of 𝐺1  +  𝐺2  =  (𝐴1  +  𝐴2 , 𝐵1  +  𝐵2 ) interval valued neutrosophic graphs 

𝐺1 and 𝐺2 of the graphs 𝐺1
∗ and 𝐺2

∗ is defined as follows:

 (𝑇𝐴1

−   +  𝑇𝐴2

−   )(𝑥) =  {

𝑇𝐴1

− (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1

𝑇𝐴2

− (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

min(𝑇𝐴1

− , 𝑇𝐴2

− )(𝑥) if 𝑥 ∈  V1 ∪  V2,

, 

 (𝑇𝐴1

+ +  𝑇𝐴2

+   )(𝑥) =  {

𝑇𝐴1

+ (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1

𝑇𝐴2

+ (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

min(𝑇𝐴1

+ , 𝑇𝐴2

+ )(𝑥) if 𝑥 ∈  V1 ∪  V2,

 (𝐼𝐴1

−   +  𝐼𝐴2

−   )(𝑥) =  {

𝐼𝐴1

− (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1

𝐼𝐴2

− (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

max(𝐼𝐴1

− , 𝐼𝐴2

− )(𝑥) if 𝑥 ∈  V1 ∪  V2,

 (𝐼𝐴1

+ +  𝐼𝐴2

+   )(𝑥) =  {

𝐼𝐴1

+ (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1

𝐼𝐴2

+ (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

max(𝐼𝐴1

+ , 𝐼𝐴2

+ )(𝑥) if 𝑥 ∈  V1 ∪  V2,

 (𝐹𝐴1

−   + 𝐹𝐴2

−   )(𝑥) =  {

𝐹𝐴1

− (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1

𝐹𝐴2

− (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

max(𝐹𝐴1

− , 𝐹𝐴2

− )(𝑥) if 𝑥 ∈  V1 ∪ V2,

 (𝐹𝐴1

+ + 𝐹𝐴2

+   )(𝑥) =  {

𝐹𝐴1

+ (𝑥) 𝑖𝑓 𝑥 ∈  𝑉1

𝐹𝐴2

+ (𝑥) 𝑖𝑓  𝑥 ∈  𝑉2

max(𝐹𝐴1

+ , 𝐹𝐴2

+ )(𝑥) if 𝑥 ∈  V1 ∪ V2,

 (𝑇𝐵1

−   +  𝑇𝐵2

−   )(𝑥𝑦) =  {

𝑇𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1

𝑇𝐵2

− (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

min (𝑇𝐵1

− (𝑥𝑦), 𝑇𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,
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 (𝑇𝐵1

+ +  𝑇𝐵2

+   )(𝑥𝑦) =  {

𝑇𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1

𝑇𝐵2

+ (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

min (𝑇𝐵1

+ (𝑥𝑦), 𝑇𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,

 𝐼𝐵1

−   + 𝐼𝐵2

−   )(𝑥𝑦) =  {

𝐼𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1

𝐼𝐵2

− (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

max(𝐼𝐵1

− (𝑥𝑦), 𝐼𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪ 𝐸2,

 (𝐼𝐵1

+ + 𝐼𝐵2

+   )(𝑥𝑦) =  {

𝐼𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1

𝐼𝐵2

+ (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

max(𝐼𝐵1

+ (𝑥𝑦), 𝐼𝐵2

+ (𝑥𝑦) ) if xy ∈  E1  ∪  𝐸2,

 𝐹𝐵1

−   +  𝐹𝐵2

−   )(𝑥𝑦) =  {

𝐹𝐵1

− (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1

𝐹𝐵2

− (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

max(𝐹𝐵1

− (𝑥𝑦), 𝐹𝐵2

− (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,

 (𝐹𝐵1

+ +  𝐹𝐵2

+   )(𝑥𝑦) =  {

𝐹𝐵1

+ (𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈  𝐸1

𝐹𝐵2

+ (𝑥𝑦) 𝑖𝑓  𝑥𝑦 ∈  𝐸2

max(𝐹𝐵1

+ (𝑥𝑦), 𝐹𝐵2

+ (𝑥𝑦) ) if 𝑥𝑦 ∈  E1  ∪  𝐸2,

 (𝑇𝐵1

−  +  𝑇𝐵2

−  ) (𝑥 𝑦)  =  min (𝑇𝐵1

− (𝑥), 𝑇𝐵2

− (𝑥))

 (𝑇𝐵1

+ +  𝑇𝐵2

+ ) (𝑥𝑦)  =  min (𝑇𝐵1

+ (𝑥), 𝑇𝐵2

+ (𝑥))

 (𝐼𝐵1

−  + 𝐼𝐵2

−   ) (𝑥𝑦) = max (𝐼𝐵1

−  (𝑥), 𝐼𝐵2

−  (𝑥))

 (𝐼𝐵1

+ + 𝐼𝐵2

+  ) (𝑥 𝑦)  =  max (𝐼𝐵1

+ (𝑥), 𝐼𝐵2

+ (𝑥)

 (𝐹𝐵1

−  +  𝐹𝐵2

−  ) (𝑥𝑦) = max (𝐹𝐵1

− (𝑥), 𝐹𝐵2

− (𝑥))

 (𝐹𝐵1

+  +  𝐹𝐵2

+ ) (𝑥 𝑦)  =  max (𝐹𝐵1

+ (𝑥), 𝐹𝐵1

+ (𝑥))𝑖𝑓𝑥𝑦 ∈  𝐸′ ,

where 𝐸′is the set of all edges joining the nodes of 𝑉1 and 𝑉2, assuming 𝑉1  ∩  𝑉2 =
∅. 

Example 3.14.  

Let 𝐺1
∗  = (𝐴1, 𝐵1)and 𝐺2

∗ =  (𝐴2, 𝐵2) be two graphs where𝑉1  = {𝑢1, 𝑢2, 𝑢3,𝑢4}, 𝑉2  =
{𝑣1, 𝑣2, 𝑣3}. Consider two interval valued fermatean neutrosophic graphs: 

𝐴1 = {
〈𝑢1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,
〈𝑢3, [0.90,0.95], [0.85,0.95], [0.85,0.85]〉, 〈𝑢4, [0.90,0.95], [0.95,0.90], [0.80,0.85]〉 

},  

𝐵1

= {

〈𝑢1𝑢2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2𝑢3, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,
〈𝑢3𝑢4, [0.90,0.95], [0.95,0.95], [0.85,0.85]〉, 〈𝑢1𝑢4, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉,

〈𝑢1𝑢3, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉
}  ;  

𝐴2 = {
〈𝑢1, [0.80,0.90], [0.85,0.95], [0.95,0.85]〉, 〈𝑢2, [0.95,0.90], [0.95,0.95], [0.80,0.85]〉,

〈𝑢3, [0.90,0.90], [0.95,0.95], [0.80,0.80]〉
}, 

 𝐵2 = {
〈𝑢1𝑢2, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉 , 〈𝑢2𝑢3, [0.90,0.90], [0.95,0.95], [0.80,0.85]〉,

〈𝑢1𝑢3, [0.80,0.90], [0.95,0.95], [0.95,0.85]〉
}. 
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Figure 9. Interval − valued Fermatean Neutrosophic Graph G1 

Figure 10.  Interval − valued Fermatean Neutrosophic Graph G2 

  Figure 11. Union two Interval − valued Fermatean Neutrosophic Graphs 𝐺1  ∪  𝐺2 

{

〈𝑢1𝑢2, [0.80,0.90], [0.95,0.95], [0.95,0.95]〉, 〈𝑢2𝑢3, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,
〈𝑢3𝑢4, [0.90,0.95], [0.95,0.95], [0.85,0.85]〉, 〈𝑢1𝑢4, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉,

〈𝑢1𝑢3, [0.80,0.90], [0.95,0.95], [0.95,0.95]〉
} 

Example 3.15 
Let 𝐺1

∗  = (𝐴1, 𝐵1)and 𝐺2
∗ =  (𝐴2, 𝐵2) be two graphs where 𝑉1  = {𝑥1, 𝑥2, 𝑥3}, 𝑉2  =

{𝑦1, 𝑦2, 𝑦3}. Consider two interval valued Fermatean neutrosophic graphs :  

𝐴1 = {
〈𝑥1, [0.85,0.95], [0.95,0.95], [0.95,0.95]〉, 〈𝑥2, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉,

〈𝑥3, [0.90,0.95], [0.85,0.95], [0.85,0.85]〉 
},  

𝐵1 = {〈𝑥1𝑥2, [0.85,0.90], [0.95,0.95], [0.95,0.95]〉, 〈𝑥2𝑥3, [0.90,0.90], [0.95,0.95], [0.85,0.85]〉 } 

𝐴2 = {
〈𝑦1, [0.85,0.85], [0.95,0.95], [0.90,0.90]〉, 〈𝑦2, [0.95,0.90], [0.90,0.95], [0.80,0.85]〉,

〈𝑦3, [0.95,0.95], [0.85,0.85], [0.85,0.85]〉 
},  

𝐵2 = {〈𝑦1𝑦2, [0.85,0.85], [0.95,0.95], [0.90,0.90]〉, 〈𝑦2𝑦3, [0.95,0.90], [0.90,0.95], [0.85,0.85]〉} 
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Figure 12. Interval − valued Fermatean Neutrosophic Graph G1

Figure 13. Interval − valued Fermatean Neutrosophic Graph G2

Figure 14.  Join of Interval − valued Fermatean Neutrosophic Graphs  𝐺1 + 𝐺2 

𝐸(𝐺1 + 𝐺2) : 
< 𝑥1𝑥2, [0.85,0.90], [0.95,0.95], [0.95,0.95] >, < 𝑥2𝑥3, [0.90,0.90], [0.95,0.95], [0.85,0.85] > 
< 𝑦1𝑦2, [0.85,0.85], [0.95,0.95], [0.90,0.90] >, < 𝑦2𝑦3, [0.95,0.90], [0.90,0.95], [0.85,0.85] >  
< 𝑥1𝑦1, [0.85,0.85], [0.95,0.95], [0.95,0.95] >, < 𝑥1𝑦2, [0.85,0.90], [0.95,0.95], [0.95,0.95] >,

< 𝑥1𝑦3, [0.85,0.95], [0.95,0.95], [0.95,0.95] > 
< 𝑥2𝑦1, [0.85,0.90], [0.95,0.95], [0.90,0.90] >, < 𝑥2𝑦2, [0.90,0.90], [0.95,0.95], [0.85,0.85] >,

< 𝑥2𝑦3, [0.90,0.90], [0.95,0.95], [0.85,0.85] > 
< 𝑥3𝑦1, [0.85,0.85], [0.95,0.95], [0.90,0.90] >, < 𝑥3𝑦2, [0.90,0.90], [0.90,0.95], [0.85,0.85] >,

< 𝑥3𝑦3, [0.90,0.95], [0.85,0.95], [0.85,0.85] > 
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Definition 3.16. 
 An interval valued Fermatean neutrosophic graph G = (A, B) is called complete if 

𝑇𝐵
−({𝑣𝑖  , 𝑣𝑗}) = min[𝑇𝐴

−(𝑣𝑖  ), 𝑇𝐴
−(𝑣𝑗  )] , 𝑇𝐵

+({𝑣𝑖  , 𝑣𝑗}) = min[𝑇𝐴
+(𝑣𝑖  ), 𝑇𝐴

+(𝑣𝑗  )]

𝐼𝐵
−({𝑣𝑖  , 𝑣𝑗}) = max[𝐼𝐵

− (𝑣𝑖  ), 𝐼𝐵
−(𝑣𝑗 )] , 𝐼𝐵

+({𝑣𝑖  , 𝑣𝑗}) = max[𝐼𝐵
+(𝑣𝑖  ), 𝐼𝐵

+(𝑣𝑗  )]

𝐹𝐵
−({𝑣𝑖  , 𝑣𝑗  }) = max[𝐹𝐵

−(𝑣𝑖), 𝐹𝐵
−(𝑣𝑗)],  𝐹𝐵

+({𝑣𝑖  , 𝑣𝑗 }) =  max[𝐹𝐵
+(𝑣𝑖), 𝐹𝐵

+(𝑣𝑗)] 

Definition 3.17. 
Let G = (A,B) be an interval-valued Fermatean neutrosophic graph where 𝐴 =

〈[𝑇𝐴
−, 𝑇𝐴

+], [𝐼𝐴
−, 𝐼𝐴

+], [𝐹𝐴
−, 𝐹𝐴

+]〉 is an interval-valued Fermatean neutrosophic set on V;
and 𝐵 =  〈[𝑇𝐵

−, 𝑇𝐵
+], [𝐼𝐵

−, 𝐼𝐵
+], [𝐹𝐵

−, 𝐹𝐵
+]〉 is an interval valued Fermatean  neutrosophic

relation on 𝐸 satisfying 𝑉 =  { 𝑣1 , 𝑣2 , … , 𝑣𝑛 }, such that 𝑇𝐴
−  ∶ 𝑉 →  [0, 1], 𝑇𝐴

+  ∶ 𝑉 →
[0, 1], 𝐼𝐴

−  ∶ 𝑉 →  [0, 1], 𝐼𝐴
+: 𝑉 → [0, 1] and 𝐹𝐴

−: 𝑉 → [0, 1], 𝐹𝐴
+: 𝑉 → [0, 1] denote the

degree of truth-membership, the degree of indeterminacy-membership and falsity-
membership of the element 𝑦 ∈  𝑉, respectively. The positive degree of a vertex 𝑢 ∈
𝑉(𝐺) is 𝑇+(𝑢) = ∑ [𝑇𝐴

+]𝑢𝑣∈𝐸(𝐺)  ; 𝐼+(𝑢) = ∑ [𝐼𝐴
+]𝑢𝑣∈𝐸(𝐺) ; 𝐹+(𝑢) =

∑ [𝐹𝐴
+]𝑢𝑣∈𝐸(𝐺) and 𝑑+(𝑢) = (𝑇𝐴

+, 𝐼𝐴
+, 𝐹𝐴

+). 𝑇−(𝑢) = ∑ [𝑇𝐴
−]𝑢𝑣∈𝐸(𝐺)  ; 𝐼−(𝑢) =

∑ [𝐼𝐴
−]𝑢𝑣∈𝐸(𝐺) ; 𝐹−(𝑢) = ∑ [𝐹𝐴

−]𝑢𝑣∈𝐸(𝐺) and 𝑑−(𝑢) = (𝑇𝐴
−, 𝐼𝐴

−, 𝐹𝐴
−). The degree of a vertex

𝑢 is 𝑑(𝑢) =  [𝑑+ (𝑢), 𝑑− (𝑢)]. 
If 𝑑+ (𝑢)  =  𝑘1 , 𝑑− (𝑢)  =  𝑘2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉, 𝑘1, 𝑘2 are two real numbers, then the
graph is called [𝑘1 , 𝑘2] -regular interval valued Fermatean neutrosophic graph. 

Example 3.18. 
We consider an interval-valued Fermatean neutrosophic graph. 

  Figure 15. Interval- valued Fermatean Neutrosophic Graph G 

𝑑(x1) = ([ 1.65,1.80,1.65], [1.85,1.90,1.70]); 
d(x2) = ([1.65,1.8,1.65], [1.8,1.9,1.7]);  d(x3) = ([1.7,1.8,1.7], [1.85,1.9,1.7]). 

4. Proposed IVFNG framework for MCDM problem

The most of real life problems deal with uncertain domain. Recently, researchers
(Sriganesh et al. 2021; Sundareswaran et al. 2022) have been studied the assessment 
of structural cracks in buildings using single-valued neutrosophic DEMATEL model 
and graph theoretical approach. The new concepts of IVFNG are employed to find the 
best materials that are used for making dental implants in the case of smokers. There 
are many researchers developed and studied different types uncertainty sets and their 
application in Multi-Criteria Decision- Making (MCDM) (Duran et al., 2021; Ejegwa et 
al. 2022; Mohanta et al., 2020; Li et al., 2022; Smarandache, 2020; Smarandache, 2022; 
Wang et al., 2022; Zhang et al., 2022). Mahesh et al. (2022), made a comparative study 
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of Dental Implant Materials Using Digraph Techniques.  Dental implants are the most 
popular option to replace missing teeth. They create direct contact with the bone 
which mimics the root of the tooth, upon which dental prosthesis can be fitted. These 
implants are designed in such a way that they can last for a long time without any 
failure. They get adhered to the bone without intervening in any connective tissue 
and this phenomenon is known as osseointegration. Titanium is considered the gold 
standard as it is the most commonly used dental implant material in use since the 
1960s Zirconia is a non-metallic alternative to metal dental implants like 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 
− 6𝐴𝑙 − 4𝑉) and 𝑇𝑖 alloys. 

Figure 16. Fishbone diagram with the various factors and subfactors 

In this section, the concept of Interval-valued Fermatean neutrosophic graph-
theoretic approach has been used to selection of material.  The condition of 
osseointegration in smokers is taken into consideration to compare the different 
material dental implants namely 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 − 6𝐴𝑙 − 4𝑉), 𝑇𝑖  alloy, and zirconia. The 
material to be chosen should exhibit certain properties to satisfy the purpose. While 
designing a dental implant, many factors come into consideration such as materials, 
dimensions, shape, etc. Material selection is the most important property for a dental 
implant to serve the required function. The material of the implant must be affordable 
and available. Following are the factors that are important for the selection of the 
material. 

Biocompatibility (B): A biocompatible material does not invoke an immune 
response and does not release any toxic substances. The major subfactors of 
biocompatibility are corrosion, inflammation, and allergy. 

Surface Properties (S): Surface properties refer to macroscopic and microscopic 
features of the implant surface and it plays a major role in determining the level of 
osseointegration between the implant and the bone. The major subfactors of surface 
properties are Surface Tension and Surface Energy, Surface Roughness, Porosity. 

Mechanical Properties(M): The implant biomaterial should possess a high degree 
of modulus of elasticity, to withstand the forces applied to the implant, thus preventing 
its deformation. It also ensures uniform stress distribution, thus reducing the implant 
movement concerning the bone. 

Cost (C): Dental implants in India range from 30,000-50,000 rupees. The price 
depends on many factors like the type of tooth implant, material, and design of the 
implant, etc. Titanium is more expensive than stainless steel. The cost of titanium is 
slightly lower than zirconia. 
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Titanium (𝑀1) and Titanium Alloys (𝑀2): Titanium is an excellent corrosion– 
resistant material due to the formation of 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 − 6𝐴𝑙 − 4𝑉)  when 𝑇𝑖 atoms 
react with water molecules and oxygen. They show excellent biocompatibility 
properties and support osseointegration. Titanium-based dental implants are strong 
and resist fracture. The cost of titanium is slightly lower than the zirconia. However, 
titanium implants are less aesthetically pleasing than zirconia and hence they are not 
preferable to use in the case of front teeth implant placement. Zirconia could be 
preferred in this case due to its ivory color. 

Zirconia (𝑀3): Zirconia is a non-metallic alternative to metal dental implants like 
Ti. An advantage of zirconia over titanium is its ivory color. Its low modulus of 
elasticity and thermal conductivity, low affinity to plaque, and high biocompatibility, 
in addition to its white color, have made zirconia ceramics a very attractive alternative 
to titanium. It is highly corrosion resistant and does not involve any release of ions 
hence no cytotoxicity. 

Figure 17. Types of Dental Implants 
In the process of applying IVFNG in identifying the best material. IVFNG can be 

represented as a matrix whose rows and columns are the sub-factors. 𝑉 =
{ 𝑀1, 𝑀2, 𝑀3} be the three different material under the selection on the basis of wishing 
param  eters or attributes set 𝐴 = {𝐵 , 𝑆}.  

Figure 18. IVFNG based on Biocompatibility & Surface Properties 

We construct the adjacency matrix for  𝑀(𝐵), 𝑀(𝑆)  listed below: 

𝑴(𝑩) =  (

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

< [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.85,0.95] >

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.85,0.95] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

) 

𝑴(𝑺) =  (

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.95], [0.90,0.95], [0.85,0.85] > < [0.85,0.90], [0.95,0.95], [0.95,0.85] >

< [0.85,0.95], [0.90,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.90], [0.95,0.95], [0.95,0.85] >

< [0.85,0.90], [0.95,0.95], [0.95,0.85] > < [0.85,0.90], [0.95,0.95], [0.95,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

) 
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We obtain the resultant interval valued Fermatean neutrosophic graph G by 
performing some operation (AND or OR). The incidence matrix of resultant interval 
Fermatean neutrosophic graph is 

𝑴(𝑩) =  (

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

< [0.85,0.95], [0.95,0.95], [0.85,0.85] > <  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.95,0.95] >

<  [0, 0 ], [0, 0 ], [0, 0 ]  > < [0.85,0.85], [0.95,0.95], [0.95,0.95] > <  [0, 0 ], [0, 0 ], [0, 0 ]  >

) 

Sahin (2015) defined the average possible membership degree of element x to 
interval valued neutrosophic set  
𝐴 =  〈[𝑇𝐴

− (𝑥), 𝑇𝐴
+(𝑥)], [𝐼𝐴

− (𝑥), 𝐼𝐴
+(𝑥)], [𝐹𝐴

− (𝑥), 𝐹𝐴
+(𝑥)]〉 as follows:

𝑆𝑘(𝑥) =
𝑇𝐴

− (𝑥) + 𝑇𝐴
+(𝑥) + 4 − 𝐼𝐴

− (𝑥) − 𝐼𝐴
+(𝑥) − 𝐹𝐴

− (𝑥) − 𝐹𝐴
+(𝑥)

6
Based on 𝑆𝑘(𝑥), Table 2 depicted the score value of adjacency matrix of resultant 

interval valued Fermatean neutrosophic graph G with 𝑆𝑘   and choice value for both 
materials. 

Table 2.  Score value of adjacency matrix
Materials 𝑴𝟏 𝑴𝟐 𝑴𝟑 Overall 

𝑴𝟏 0 0.383 0 0.383 
𝑴𝟐 0.383 0 0.317 0.7 
𝑴𝟑 0 0.317 0 0.317 

Further, it is noticed from Table 2, 𝑇𝑖 𝑎𝑙𝑙𝑜𝑦 (𝑇𝑖 − 6𝐴𝑙 − 4𝑉) has higher level of 
osseointegration in smokers followed by 𝑇𝑖 and zirconia. Therefore, we may claim that 
IVFNG is a new way to tackle the uncertainty in Fermatean Neutrosophic environment. 

5. Conclusion

The concept of uncertainty plays a vital role in all science and engineering 
problems.  Especially, Fuzzy theory, Intuitionistic fuzzy theory and then Neutrosophic 
theory are the most valuable tools to find the optimum solution in mutli-criteria 
decision making problems. In this work, we include one more concept called interval-
valued Fermatean neutrosophic graphs in the list which has Pythagorean 
Neutrosophic, Single Valued Neutrosophic, Bipolar Neutrosophic graphs. We have 
discussed various types of Interval-valued Fermatean Neutrosophic graphs and the 
other types of these graphs in this paper. We also apply this new type of graph in a 
decision making problem. We are extending our research on this new concept to 
introduce Interval-valued Fermatean Neutrosophic number and Interval-valued 
Fermatean triangle and trapezoidal Neutrosophic number and its applications in our 
future work. 

Interval-valued Fermatean Neutrosophic graph has many advantages in MCDM 
problems such as mobile networking, supply chain management system, bio-medical 
applications, e-waste management and networking, etc. In future, one may determine 
the optimum alternatives in MCDM problems using IVFNG based score and accuracy 

functions.  
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Introduction to the n-SuperHyperGraph - the most general form 
of graph today 

Florentin Smarandache

Abstract: We recall and improve our 2019 and 2020 concepts of n-SuperHyperGraph, Plithogenic n-

SuperHyperGraph, n-Power Set of a Set, and we present some application from the real world. The n-

SuperHyperGraph is the most general form of graph today and it is able to describe the complex 

reality we live in, by using n-SuperVertices (groups of groups of groups etc.) and n-

SuperHyperEdges (edges connecting groups of groups of groups etc.). 

Keywords: n-SuperHyperGraph (n-SHG), n-SHG-vertex, n-SHG-edge, Plithogenic (Crisp, Fuzzy, 

Intuitionistic Fuzzy, Neutrosophic, etc.) n-SuperHyperGraph, n-Power Set of a Set, MultiEdge, 

Loop, Indeterminate Vertex, Null Vertex, Indeterminate Edge, Null Edge, Neutrosophic Directed 

Graph 

1. Definition of the n-SuperHyperGraph

Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚}, for 1 ≤ 𝑚 ≤ ∞, be a set of vertices, that contains Single Vertices (the 

classical ones), Indeterminate Vertices (unclear, vague, partially known), and Null Vertices (totally 

unknown, empty). 

Let 𝑃(𝑉) pe the power of set 𝑉, that includes the empty set  too. 

Then 𝑃𝑛(𝑉) be the 𝑛-power set of the set 𝑉, defined in a recurent way, i.e.: 

P(V), 𝑃2(𝑉) = 𝑃(𝑃(𝑉)), 𝑃3(𝑉) = 𝑃(𝑃2(𝑉)) = 𝑃 (𝑃(𝑃(𝑉))), …, 

𝑃𝑛(𝑉) = 𝑃(𝑃𝑛−1(𝑉)), for 1 ≤ 𝑛 ≤ ∞, where by definition
0( )

def
P V V . 

Then, the n-SuperHyperGraph (n-SHG) is an ordered pair: 

n-SHG = (𝐺𝑛 , 𝐸𝑛),

where 𝐺𝑛 ⊆ 𝑃𝑛(𝑉), and 𝐸𝑛 ⊆ 𝑃𝑛(𝑉), for 1 ≤ 𝑛 ≤ ∞.

𝐺𝑛 is the set of vertices, and 𝐸𝑛 is the set of edges. 

The set of vertices 𝐺𝑛 contains the following types of vertices: 

 Singles Vertices (the classical ones);

 Indeterminate Vertices (unclear, vagues, partially unkwnown);

 Null Vertices (totally unknown, empty);

and: 

 SuperVertex (or SubsetVertex), i.e. two ore more (single, indeterminate, or null) vertices

put together as a group (organization).

 n-SuperVertex that is a collection of many vertices such that at least one is a (𝑛 − 1)-

SuperVertex and all other 𝑟-SuperVertices into the collection, if any, have the order 𝑟 ≤

𝑛 − 1.

 The set of edges 𝐸𝑛 contains the following types of edges:

 Singles Edges (the classical ones);

Florentin Smarandache (2022). Introduction to the n-SuperHyperGraph - the most general form of graph 
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 Indeterminate Edges (unclear, vagues, partially unkwnown);

 Null Edges (totally unknown, empty);

and: 

 HyperEdge (connecting three or more single vertices);

 SuperEdge (connecting two vertices, at least one of them being a SuperVertex);

 𝑛-SuperEdge (connecting two vertices, at least one being a 𝑛-SuperVertex, and the other

of order 𝑟-SuperVertex, with 𝑟 ≤ 𝑛);

 SuperHyperEdge (connecting three or more vertices, at least one being a SuperVertex);

 𝑛 -SuperHyperEdge (connecting three or more vertices, at least one being a 𝑛 -

SuperVertex, and the other 𝑟-SuperVertices with 𝑟 ≤ 𝑛;

 MultiEdges (two or more edges connecting the same two vertices);

 Loop (and edge that connects an element with itself).

and: 

 Directed Graph (classical one);

 Undirected Grpah (classical one);

 Neutrosophic Directed Graph (partially directed, partially undirected, partially

indeterminate direction).

2. SuperHyperGraph

When n = 1 we call the 1-SuperHyperGraph simply SuperHyperGraph, because only the first 

power set of V is used, P(V).  

3. Examples of 2-SuperHyperGraph, SuperVertex, IndeterminateVertex, SingleEdge,

Indeterminate Edge, HyperEdge, SuperEdge, MultiEdge, 2-SuperHyperEdge [2]

IE7, 8 is an Indeterminate Edge between single vertices V7 and V8, since the connecting 

curve is dotted; 

IV9 is an Indeterminate Vertex (since the dot is not filled in); 

while ME5,6 is a MultiEdge (double edge in this case) between single vertices V5 and V6. 
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4. Types of n-SuperHyperGraphs

The attributes values degrees of appurtenance of a vertex or an edge to the graph may be:  crisp 

/ fuzzy / intuitionistic fuzzy / picture fuzzy / spherical fuzzy / etc. / neutrosophic / refined 

neutrosophic / degrees with respect to  each n-SHG-vertex and to each n-SHG-edge respectively. 

For example, one has: 

5. Plithogenic n-SuperHyperGraph

We recall the Plithogenic n-SuperHyperGraph. 

A Plithogenic n-SuperHyperGraph (n-PSHG) is a n-SuperHyperGraph whose each n-SHG-vertex 

and each n-SHG-edge are characterized by many distinct attributes values  (a1, a2, …, ap), p ≥ 1. 

Therefore one gets n-SHG-vertex(a1, a2, …, ap) and n-SHG-edge(a1, a2, …, ap). 

6. Plithogenic Fuzzy-n-SHG-vertex (a1(t1), a2(t2), …, ap(tp))

and Fuzzy-n-SHG-edge(a1(t1), a2(t2), …, ap(tp)); 

7. Plithogenic Intuitionistic Fuzzy-n-SHG-vertex (a1(t1, f1), a2(t2, f2), …, ap(tp, fp))

and Intuitionistic Fuzzy-n-SHG-edge(a1(t1, f1), a2(t2, f2), …, ap(tp, fp)); 

8. Plithogenic Neutrosophic-n-SHG-vertex (a1(t1, i1, f1), a2(t2, i2, f2), …, ap(tp, ip, fp))

and Neutrosophic-n-SHG-edge (a1(t1, i1, f1), a2(t2, i2, f2), …, ap(tp, ip, fp)); 

etc. 

Whence in general we get: 

9. The Plithogenic (Crisp / Fuzzy / Intuitionistic Fuzzy / Picture Fuzzy / Spherical Fuzzy / etc. /

Neutrosophic / Refined Neutrosophic) n-SuperHyperGraph

10. Conclusions

The n-SuperHyperGraph is the most general for of graph today, designed in order to catch our

complex real world. 

First, the SuperVertex was introduced in 2019, then the SuperHyperGraph constructed on the 

power set P(V), and further on this was extended to the n-SuperHyperGraph built on the n-power 

set of the power set, Pn(V), in order to overcome the complex groups of individuals and the 

sophisticated connections between them. 
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Introduction to Neutrosophic Restricted 

SuperHyperGraphs and Neutrosophic Restricted 

SuperHyperTrees and several of their properties 

Masoud Ghods, Zahra Rostami, Florentin Smarandache

Abstract: In this article, we first provide a modified definition of SuperHyperGraphs (SHG) and we call 

it Restricted SuperHyperGraphs (R-SHG). We then generalize the R-SHG to the neutrosophic graphs and 

then define the corresponding trees. In the following, we examine the Helly property for subtrees of 

SuperHyperGraphs.

Keywords: SuperHyperGraphs; Restricted SuperHyperGraphs; Neutrosophic SuperHyperGraphs; 

Neutrosophic SuperHyperTrees; Helly property; chordal graph; subtree. 

1. Introduction

          Hypergraph theory is one of the most widely used theories in modeling large and complex 

problems. In recent years, many efforts have been made to find different properties of these graphs [1-

5]. One of these features that is also very important is the property of Helly. To read more about this 

property, you can refer to [4, 5]. Here we first rewrite the definition of SuperHyperGraphs from [1], 

which has the advantage that we have reduced the empty set from the set of vertices because in practice 

the empty vertex is not much applicable, and we have also categorized the set of vertices and edges 

according to its type. Then the adjacency matrix. We define the incidence matrix and the Laplacian 

matrix. 

 Obviously, if a super hyper power graph contains a triangle, it will not have a highlight feature. We 

show here that some defined super hyper power graphs have subtrees that have Helly property.  

There are algorithms for detecting Helly property in subtrees that the reader can refer to [4] to view. 

In graph theory, a chordal graph is a graph in which each cycle is four or more lengths and contains 

at least one chord. In other words, each induction cycle in these graphs has a maximum of three vertices. 

Chord graphs have unique features and applications. To study an example of the applications of chordal 

graphs, you can refer to [7]. 

Definition 1 [4]. Let 𝐴 be a set. We say that 𝐴 has Helly property if and only if, for every non-empty set 𝑆 

such that 𝑆 ⊆ 𝐴 and for all sets 𝑥, 𝑦 such that 𝑥, 𝑦 ∈ 𝑆 holds 𝑥 meets 𝑦 holds ∩ 𝑆 ≠ ∅.  

Proposition 1 [4]. Let 𝑇 be a tree and 𝑋 be a finite set such that for every set 𝑥 such that 𝑥 ∈ 𝑋 there exists a 

subtree 𝑡 of 𝑇 such that 𝑥 is equal the vertices of 𝑡. Then 𝑋 has Helly property. 
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2. Neutrosophic Restricted SuperHyperGraphs 

In this section, we provide a modified definition of Restricted SuperHyperGraphs (RSHG), and then generalize this definition 

to neutrosophic graphs. 

Definition 2. SuperHyperGraph (𝑺𝑯G))[1] 

A Super Hyper Graph (𝑆𝐻𝐺) is an ordered pair 𝑆𝐻𝐺 = (𝑋 ⊆ 𝑃(𝑉)\∅, 𝐸 ⊆ 𝑃(𝑉) × 𝑃(𝑉)), where  
i. 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a finite set of 𝑛 ≥ 0 vertices, or an infinite set. 

ii. 𝑃(𝑉) is the power set of 𝑉 (all subset of 𝑉). therefore, an 𝑆𝐻𝐺-vertex may be a single (classical) vertex (𝑉𝑆𝑖), or a super-

vertex (𝑉𝑆𝑢) (a subset of many vertices) that represents a group (organization), or even an indeterminate-vertex (𝑉𝐼) 

(unclear, unknown vertex);

iii. 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}, for 𝑚 ≥ 1, is a family of subsets of 𝑉 × 𝑉, and each 𝑒𝑖 is an 𝑆𝐻𝐺 −edge, 𝑒𝑖 ∈ 𝑃(𝑉) × 𝑃(𝑉). An 

𝑆𝐻𝐺 −edge may be a (classical) edge, or a super-edge (edge between super vertices) that represents connections 

between two groups (organizations), or hyper-super-edge that represents connections between three or more groups

(organizations), or even an indeterminate-edge (unclear, unknown edge); ∅ represents the null-edge (edge that means 

there is no connection between the given vertices).

Definition 2-1(2-Restricted SuperHyperGraphs) 

2-Restricted SuperHyperGraphs are a special case of SuperHyperGraphs, where we look at the system from the part to the whole. 

So, according to definition 2, we have

1. Single Edges (𝐸𝑆𝑖), as in classical graphs.

2. Hyper Edges (𝐸𝐻), edges connecting three or more single- vertices. 

3. Super Edges (𝐸𝑆𝑢), edges connecting only two 𝑆𝐻𝐺- vertices and at least one vertex is super Vertex.

4. Hyper Super Edges (𝐸𝐻𝑆), edges connecting three or more single- vertices (and at least one vertex is super vertex.

5. Indeterminate Edges (𝐸𝐼), either we do not know their value, or we do not know what vertices they might 

connect. 

Then, 𝐺 = (𝑋, 𝐸) where 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) × 𝑃(𝑉). 

Definition 3. (Neutrosophic  Restricted SuperHyperGraphs) Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph. If all vertices and 

edges of 𝐺 belong to the neutrosophic set, then the SHG is a Neutrosophic Restricted SuperHyperGraphs (NRSHG). If 𝑥 is a 

neutrosophic super vertex containing vertices  {𝑣1, 𝑣2, … , 𝑣𝑘}, where 𝑣𝑖 ∈ 𝑉 for 1 ≤ 𝑖 ≤ 𝑘, then  

𝑇𝑋(𝑥) = min{𝑇𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}, 
𝐼𝑋(𝑥) = min{𝐼𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}, 
𝐹𝑋(𝑥) = max{𝐹𝑋(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}. 

Definition 4. Let 𝐺 = (𝑋, 𝐸) be a 2-Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆

𝑃(𝑉) × 𝑃(𝑉). Then, the adjacency matrix 𝐴(𝐺) = (𝑎𝑖𝑗) of 𝐺 is defined as a square matrix which columns and rows its, is shown by the 

vertices of 𝐺 and for each 𝑣𝑖 , 𝑣𝑗  ∈ 𝑋,  

𝑎𝑖𝑗 =

{

0    there should be no edge between vertices 𝑣𝑖  and 𝑣𝑗 ; 

1         there is a single edge between vertices 𝑣𝑖  and 𝑣𝑗 ;

S         there is a super edge between vertices 𝑣𝑖  and 𝑣𝑗 ; 

H         there is a hyper edge between vertices 𝑣𝑖  and 𝑣𝑗 ;

SH    there is a super hyper edge between vertices 𝑣𝑖  and 𝑣𝑗 .

 

Note that in the adjacency matrix 𝐴, a value of one can be placed instead of non-numeric values (𝑆, 𝐻 and 𝑆𝐻)  if necessary for 

calculations. So that, since 𝐴 is a symmetric and values of 𝐴 is positive, eigenvalues of 𝐴 are real. 

Definition 5. Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) ×

𝑃(𝑉). If 𝐸 = (𝑒1, 𝑒2, … , 𝑒𝑚) then an incidence matrix 𝐵(𝐺) = (𝑏𝑖𝑗) define as 
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𝑏𝑖𝑗 = {
1    𝑖𝑓 𝑣𝑖 ∈ 𝑒𝑗 ,

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Definition 6. Let 𝐺 = (𝑋, 𝐸) be a Restricted SuperHyperGraph, with 𝑋 = (𝑉𝑆𝑖 , 𝑉𝑆𝑢 , 𝑉𝐼) ⊆ 𝑃(𝑉)\∅, and 𝐸 = (𝐸𝑆𝑖 , 𝐸𝐻 , 𝐸𝑆𝑢 , 𝐸𝐻𝑆, 𝐸𝐼) ⊆ 𝑃(𝑉) ×

𝑃(𝑉). If 𝐷 = 𝑑𝑖𝑎𝑔(𝐷(𝑣1), 𝐷(𝑣2),… , 𝐷(𝑣𝑛)) where 𝐷(𝑣𝑖) = ∑ 𝑎𝑣𝑖𝑣𝑗𝑣𝑗∈𝑋
, then, a laplacian matrix define as 

𝐿(𝐺) = 𝐷 − 𝐴(𝐺). 

Example 1. Consider 𝐺 = (𝑋, 𝐸) as shown in figure 1 (This figure is selected from reference [1]). Where 𝑋 =

{𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝐼𝑉9, 𝑆𝑉4,5, 𝑆𝑉1,2,3} and 𝐸 = {𝑆𝑖𝐸5,6, 𝐼𝐸7,8, 𝑆𝐸123,45, 𝐻𝐸459,3, 𝐻𝑆𝐸123,7,8}. We now obtain the SuperHyperGraph – 

related matrices in figure 1 using the above definitions. 

Figure 1. a Restricted SuperHyperGraph𝐺 = (𝑋, 𝐸) 

a. Adjacency matrix
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b. incidence matrix

c. Laplacian matrix

To calculate the Laplacian matrix, we first obtain the diameter matrix 𝐷, in which the vertices

on the principal diameter, the degree of vertices, and the other vertices are 0. Then its Laplacian 

matrix is calculated as follows. 

3. Neutrosophic SuperHyperTree

In this section, we first provide a definition of Neutrosophic SuperHyperTree. We then define the 

subtree for Neutrosophic SuperHyperGraphs. In the following, we will examine the Helly property in 

this type of power graphs. 

Definition 7. Let 𝐺 = (𝑋, 𝐸) be a Neutrosophic SuperHyperGraph. Then 𝐺 is called a Neutrosophic 

SuperHyperTree (NSHG) if 𝐺 be a connected Neutrosophic SuperHyperGraph  without a neutrosophic 

cycle. 

Definition 8. Let 𝐻 = (𝐴, 𝐵) be a Neutrosophic SuperHyperGraph. Then 𝐻 is called a subtree NSHG if 

there exists a tree 𝑇 with the same vertex set 𝑉 such that each hyperedge, superedge, or hypersuperedge 

𝑒 ∈ 𝐸 induces a subtree in 𝑇. 

Note. Here we consider the underlying graph 𝐻∗ to find the subtree of NSHG. 
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Example 2. Consider  𝐺 = (𝑋, 𝐸) a Restricted SuperHyperGraph as shown in figure 2. 

Figure 2. A Restricted SuperHyperGraph 

As you can see, since 𝐺 contains the cycle, so that 𝐺 is not a Restricted SuperHyperTree. An 

𝑅𝑆𝐻 −subgraph induced by the subset {𝑒7, 𝑒8, 𝑒9, 𝑒5} of 𝑋, is a RSHT. 

Example 3. Consider  𝐺 = (𝑋, 𝐸) a Neutrosophic Super Hyper Power Graph as shown in figure 3. 

Note that in this example all vertices and edges belong to the neutrosophic sets. As you can see, G is 

a Restricted SuperHyperTree. 
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Figure 3. A Neutrosophic Restricted SuperHyperTree 𝐺 

 Now we find a subtree according to definition 7 for 𝐺. 

Figure 4. A subtree for NRSHG 𝐺 

Now, let 𝑇 = (𝐴, 𝐶) be a tree, that is, 𝑇 is a connected neutrosophic graph without cycle. Then, 

we build a connected NRSHGraph 𝐻 in the following way: 
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1. The set of vertices of 𝐻 is the set of vertices of 𝑇;

2. The set of edges (hyperedges, superedges or superhyperedges) are a family E of subset V such

that induced subgraph 𝑇𝑖  is a subtree of T where 𝑇𝑖  is produced by vertices located on edge 𝑒𝑖 ∈ 𝐸.

so that subgraph 𝑇𝑖  is a tree.

Theorem 1. Let 𝑇 = (𝑉, 𝐸′) be a tree. Also, 𝐻 is a subtree Restricted SuperHyperGraph according to 𝑇. 

Then 𝐻 has the Helly property. 

Proof. Since for each tree there exist exactly one path between the two vertices 𝑣𝑖 , 𝑣𝑗 . The path between 

two vertices 𝑣𝑖 , 𝑣𝑗 denoted 𝑃[𝑣𝑖 , 𝑣𝑗].suppose that, 𝑣𝑖 , 𝑣𝑗  and 𝑣𝑘 are three vertices of 𝐻. The paths 𝑃[𝑣𝑖 , 𝑣𝑗], 

𝑃[𝑣𝑗 , 𝑣𝑘] and 𝑃[𝑣𝑘 , 𝑣𝑖] have one common vertex. Now, using theorem 1, for each family of edges 

(hyperedges, superedges and superhyperedges) where the edge contains at least two of the vertices 

𝑣𝑖 , 𝑣𝑗  and 𝑣𝑘 have a non-empty intersection. 



Theorem 2. Let 𝑇 = (𝑉, 𝐸′) be a tree. Also, 𝐻 is a subtree Restricted SuperHyperGraph according to 𝑇. 

Then 𝐿(𝐻) is a chordal graph. 

Proof. Consider 𝑇 = (𝑉, 𝐸′) is a tree. Suppose 𝐻 is a subtree Restricted SuperHyperGraph according 

to T. If |𝑉| = 1, then 𝐻 include exactly one vertex and one hyperdege, so that, the linegraph of H has 

only one vertex hence H is a clique.  It turns out that 𝐻 is a chordal graph. Next, assume that the 

assertion is true for each tree with |𝑉| = 𝑛 − 1, 𝑛 > 1.

 Now we have to show that the problem assumption is valid for 𝑛 vertices as well. For that, 

suppose 𝑣 ∈ 𝑉 is a vertex leaf on 𝐻. remember that in a tree with at least two vertices there exist at 

least two leaves. If 𝑇1 = (𝑉 − {𝑣}, 𝐸1
′), where 𝑇1 is the subgraph on 𝑉 − {𝑣}, and 

𝐻1(𝑉 − {𝑣}) = (𝑉 − {𝑣}, 𝐸1),  |𝑉| > 1. 

The 𝑇1 = (𝑉 − {𝑣}, 𝐸1
′) is a tree moreover 𝐻1 = (𝑉 − {𝑣}, 𝐸1) is an induced subtree Restricted 

SuperHyperGraph associated with 𝑇1. Hence 𝐿(𝐻1) is chordal. 

Now, if the number of edges should be the same, that is, |𝐸′| = |𝐸1
′| then we have 𝐿(𝐻) ≈ 𝐿(𝐻1)

so that 𝐿(𝐻) is a chordal graph.  

If |𝐸′| ≠ |𝐸1
′| then we have 

{𝑣} ∈ 𝐸′ 𝑎𝑛𝑑 |𝐸′| > |𝐸1
′|. 

It is easy to show that a neighborhood from {𝑣} in 𝐿(𝐻) is a clique. Hence any cycle passing 

through {v} is chordal in 𝐿(𝐻) and so 𝐿(𝐻) is chordal. 



Corollary 1. A  Restricted SuperHyperGraph 𝐺 is a subtr Restricted SuperHyperGraph if and only if 𝐺 

has the Helly property and its line graph is a chordal graph. 

4. Conclusions

In this article, we have defined a SuperHyperTree and Neutrosophic SuperHyperTree, and 

examined the Helly property, which is one of the most important and practical properties in subtrees, 
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for the super hyper tree introduced in this article. There are also algorithms for detecting Helly 

property that we have omitted here. 
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Spectrum of Superhypergraphs via Flows

For any n ∈ N and given nonempty subset V, the concept of n-superhypergraphs is introduced by Florentin Smarandache based
on Pn(V) (n-th power set of V ). In this paper, we present the novel concepts supervertices, superedges, and superhypergraph via the 
concept of flow. This study computes the number of superedges of any given superhypergraphs, and based on the numbers of
superedges and partitions of an underlying set of superhypergraph, we obtain the number of all superhypergraphs on any 
nonempty set. As a main result of the research, this paper is introducing the incidence matrix of superhypergraph and computing 
the characteristic polynomial for the incidence matrix of superhypergraph, so we obtain the spectrum of superhypergraphs. The 
flow of superedges plays the main role in computing of spectrum of superhypergraphs, so we compute the spectrum of 
superhypergraphs in some types such as regular flow, regular reversed flow, and regular two-sided flow. The new conception of 
superhypergraph and computation of the spectrum of superhypergraphs are introduced firstly in this paper.

1. Introduction and Preliminaries

�e theory of graph is a main and important theory for
modeling the real problem in the world, and this theory
extends in past years in this regard. �e disadvantage of a
graph is that it cannot connect more than two elements, so
this problem causes weakness in this theory. Berge gener-
alized the theory of graphs to the mathematical concept of
theory of hypergraphs with the motivation that hypergraphs
solve the con�icts, defects, and shortcomings of graph theory
around 1960 [1]. Hypergraphs have some applications in
other sciences and the real-world, one of the applications of
hypergraphs is a simulation for complex hypernetworks.
Today, hypergraphs have a vital role and important per-
formances, so are used in complex hypernetworks such as
computer science, wireless sensor hypernetwork, and social
hypernetworks. In this regards there has been a lot of re-
search about using hypergraphs to problems in real-world
such as hypergraph matching via game-theoretic hyper-
graph clustering [2], hypergraph matching via game-theo-
retic hypergraph clustering [3], hypergraph-based centrality
metrics for maritime container service networks, a

worldwide application [4], clustering ensemble via struc-
tured hypergraph learning [5], and hypergraph neural
network for skeleton-based action recognition [6]. �ere is
some main connection between graphs and hypergraphs via
the mathematical computational tools and basic theorems in
which these connections facilitate the modeling of other
sciences with mathematics. Further materials regarding
graphs and hypergraphs are available such as extending
factorizations of complete uniform hypergraphs [7], �nding
perfect matchings in bipartite hypergraphs [8], graphs and
hypergraphs [1], resilient hypergraphs with �xed matching
number [9], on the spectrum of hypergraphs [10], on the
distance spectrum of minimal cages and associated distance
biregular graphs [11], on the spectrum of the perfect
matching derangement graph [12], and probabilistic re-
�nement of the asymptotic spectrum of graphs [13]. Re-
cently, Hamidi and Saeid computed eigenvalues of discrete
complete hypergraphs and partitioned hypergraphs. �ey
de�ned positive equivalence relation on hypergraphs that
establishes a connection between hypergraphs and graphs,
and it makes a connection between a spectrum of graphs and
a spectrum of the quotient of any hypergraphs. �ey studied

Mohammad Hamidi, Florentin Smarandache, Elham Davneshvar (2022). Spectrum of Superhypergraphs 
via Flows. Journal of Mathematics, ID 9158912, 12; DOI: 10.1155/2022/9158912
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the construct spectrum of path trees via the quotient of
partitioned hypergraphs [14]. A hypergraph on any given set
considers a relationship between elements and the set
(as objects or hyper vertices) and describes this relationship
if it is a weighted hypergraph. It is an ideal condition if
proper weights are known, but in most situations, the
weights may not be known, and the relationships are hes-
itant in a natural sense. With the advent of the fuzzy graph,
the importance of this theory increased and fuzzy graph as a
generalization of a graph provides more information in real-
life problems. Based on Zadeh’s fuzzy relations [15], the
notion of hypergraph has been extended in the fuzzy theory
and the concept of fuzzy hypergraph was provided by
Kaufmann [16]. Recently, some researchers investigated the
concept of fuzzy hypergraphs and applications such as fuzzy
hypergraphs and related extensions [17], an algorithm to
compute the strength of competing interactions in the
Bering sea based on Pythagorean fuzzy hypergraphs [18] and
bipolar fuzzy soft information applied to hypergraphs [19].
Recently, Smarandache introduced a new the concept as a
generalization of hypergraphs to n-superhypergraph, pli-
thogenic n-superhypergraph {with supervertices (that are
groups of vertices) and hyperedges {defined on power set of
power set. . .} that is the most general form of a graph as
today}, which have several properties and are connected with
the real-world [20]. Indeed, n-superhypergraphs are a
generalization of hypergraphs, with the advantage that they
can communicate between the hyperedges.

Regarding these points, we consider a nonempty set
and make a partition of the given set into some subsets,
and relate this subset together with some maps. Indeed,
subsets will call supervertices, the mapping between them
will call superedges or flows and the system with super-
vertices and superedges will call a quasi superhypergraph.
'emain motivation of this the concept is a generalization
of graphs to hypernetworks such that all elements be
related together. In hypergraph theory, any hypergraph
can relate a set of elements, while without any details that
it makes some conflicts, defects, and shortcomings in the
hypergraph theory. 'us, by introducing superhyper-
graph, we try to eliminate defects of graph (sometimes
graph structures give very limited information about
complex networks) structures and hypergraph structures
(although the hypergraph structures are for covering
graph defects in the applications but in hypergraphs, the
relation between of vertices cannot be described in full
details). As a main result of the research, this paper is
introducing the incidence matrix of superhypergraph and
computing the characteristic polynomial for the incidence
matrix of superhypergraph, so we obtain the spectrum of
superhypergraphs. Indeed, we computed the number of
superedges of any given superhypergraphs and based on
superedges and partitions of an underlying set of
superhypergraph, we obtained the number of all super-
hypergraphs on any nonempty set. 'e flow of superedges
plays the main role in computing of spectrum of super-
hypergraphs, so we computed the spectrum of super-
hypergraphs in some types regular flow, regular reversed
flow, and regular two-sided flow.

Definition 1. [1] Let X be a finite set. A hypergraph on X is a
pair H � (X, Ei􏼈 􏼉

m

i�1) such that for all 1≤ i≤m,∅≠Ei ⊆X

and ∪m
i�1Ei � X. 'e elements x1, x2, . . . , xn of X are called

vertices, and the sets E1, E2, . . . , Em are called the hyperedges
of the hypergraph H. In hypergraphs, hyperedges can
contain an element (loop) two elements (edge) or more
than three elements. A hypergraph H � (X, Ei􏼈 􏼉

m
i�1) is called

a complete hypergraph, if for any x, y ∈ X there is 1≤ i≤m

such that x, y􏼈 􏼉⊆Ei. A hypergraph H � (X, Ei􏼈 􏼉
n

i�1) is called
as a joint complete hypergraph, if |X| � n for all
1≤ i≤ n, |Ei| � i and Ei ⊆Ei+1 element (loop). If for all
1≤ k≤m, |Ek| � 2, the hypergraph becomes an ordinary
(undirected) graph and n rows representing the vertices
x1, x2, . . . , xn, where for all 1≤ i≤ n and for all 1≤ j≤m, we
have mij � 1 if xi ∈ Ej and mij � 0 if xi ∉ Ej.

Definition 2. [20] Let m ∈ N and V � v1, v2, . . . , vm􏼈 􏼉 be a set
of vertices, that contains single vertices (the classic alones),
indeterminate vertices (unclear, vague, unknown) and null
vertices (unknown, empty). Consider P(V) as the power set
of V, P2(V) � P(P(V)) . . ., and Pn(V) � P(Pn− 1(V)) be the
n-power set of the set V. 'en, the n-superhypergraph (n −

SHG) is an ordered pair n-SHG � (Gn, En), where for any
n ∈ N, Gn ⊆Pn(V) is the set of vertices and En ⊆Pn(V) is the
set of edges. 'e set Gn contains some type of vertices, such
as single vertices (the classical ones), indeterminate vertices
(unclear, vague, partially unknown), null vertices (totally
unknown, empty), and supervertices (or subset vertex), i.e.,
two or more (single, indeterminate, or null) vertices to-
gether as a group (organization). An n-supervertex is a
collection of many vertices such that at least one is a
(n − 1)-supervertex and all other supervertices in to the
collection if any have the order r≤ n − 1. 'e set of edges En

contains some type of edges such as single edges
(the classic alones), indeterminate (unclear, vague, partially
unknown), null-edge (empty, totally unknown), hyperedge
(containig three ormore single vertices), superedge
(containing two vertices atleast one of them being
a super vertex), n-superedge (containing two vertices,
atleast one being an n − super vertex and the other
of order r − super vertex with r≤ n), superhyperedge (con-
taining three or more vertices, at least one being a super-
vertex, n-superhyperedge (containing three
ormore vertices, atleast one being an n − super vertex
and the other r − super vertices with r≤ n), multiedges
(two ormore edges connecting the same two vertices), and
loop (an edge that connects an element).

2. On (Quasi) Superhypergraph

In this section, we introduce the concepts of supervertex,
superedge, superhypergraph, and investigate their proper-
ties. For any given superhypergraph, the lower and upper
bound of the set of their superedges is computed and proved
in a theorem. Also, we computed and proved the number of
all superhypergraphs constructed on any given nonempty
set. In the following, for any nonempty set X, will denote
P∗(X) � Y|∅≠Y⊆X{ }.
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In what follows, based on the concept of n-super-
hypergraph [20], recall, define, and investigate a special case
in n-superhypergraphs as the notation of quasi
superhypergraph.

Definition 3. Let X be a nonempty set. 'en,

(i) H � (X, Si􏼈 􏼉
k
i�1, φi,j􏽮 􏽯

i,j
) is called a quasi super-

hypergraph, if φi,j􏽮 􏽯
i,j
≠∅ and X � ∪ n

i�1Si, where

k≥ 2,
(ii) for all 1≤ i≤ k, Si ∈ P∗(X), is called a supervertex

and for any i≠ j, the map φi,j: Si⟶ Sj (say Si links
to Sj) is called a superedge,

(iii) the quasi superhypergraph H � (X, Si􏼈 􏼉
k

i�1, φi,j􏽮 􏽯
i,j

)

is called a superhypergraph, if for any Si ∈ P∗(X),
there exists at least one Sj ∈ P∗(X) such that Si links
to Sj (it is not necessary all super vertices be linked).

(iv) 'e superhypergraph H � (X, Si􏼈 􏼉
k
i�1, φi,j􏽮 􏽯

i,j
) is

called a trivial superhypergraph, if k �

1(S1 can’t link to itself).

Example 1. Let X � xi􏼈 􏼉
9
i�1. 'en, H � (X, Si􏼈 􏼉

4
i�1, φ1,2,􏽮

φ2,1,φ2,3,φ2,4}) is a quasi superhypergraph
(there is no any link between of S4 and S3) in Figure 1, where

φ1,2 � x1, x4( 􏼁, x2, x5( 􏼁, x3, x4( 􏼁􏼈 􏼉,

φ2,1 � x4, x3( 􏼁, x5, x2( 􏼁􏼈 􏼉,

φ2,3 � x4, x6( 􏼁, x5, x7( 􏼁􏼈 􏼉,

φ2,4 � x5, x9( 􏼁, x4, x9( 􏼁􏼈 􏼉.

(1)

Let H � (X, Si􏼈 􏼉
k

i�1, φi,j􏽮 􏽯
i,j

) be a superhypergraph. We

will denote Φ(H) � φi,j|i, j≥ 1􏽮 􏽯 by the set of all superedges

of superhypergraph H. In what follows, compute and prove
the lower bound and upper bound of Φ(H), as set of all
superedges of superhypergraph.

Theorem 1. Let H � (X, Si􏼈 􏼉
k

i�1, φi,j􏽮 􏽯
i,j

) be a superhyper-
graph. 8en,

(k − 1)≤ |Φ(H)|≤ 􏽘
1≤i≠j≤n

Si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Sj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (2)

Proof. Let H � (X, Si􏼈 􏼉
k
i�1, φi,j􏽮 􏽯

i,j
) be a superhypergraph.

Since, by definition, for any Si ∈ P∗(X), there exists at
least one Sj ∈ P∗(X) such that Si links to Sj, we have (k −

1) superedges. In addition, let Φ(Si, Sj) �

φi,j: Si⟶ Sj|i, j􏽮 􏽯. For all 1≤ i≠ j≤ n, in one case, if
Si ∩ Sj � ∅, then, |Φ(Si, Sj)| � |Si|

|Sj| + |Sj|
|Si|. Hence, if

|Φ(S1, S2, . . . , Sk− 1)| � 􏽐1≤i≠j≤k− 1|Si|
|Sj|, then, for all

1≤ i≠ j≤ n, Si ∩ Sj � ∅ implies that

Φ S1, S2, . . . , Sk− 1, Sk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Φ S1, S2, . . . , Sk− 1( 􏼁, Sk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� Φ S1, S2, . . . , Sk− 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘
1≤i≤k− 1

Si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Sk| |
+ Sk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Si| |
􏼒 􏼓

� 􏽘
1≤i≠j≤ n

Si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Sj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
.

(3)

In another case, if there exists some 1≤ i≠ j≤ n such that
Si ∩ Sj ≠∅, since for all 1≤ i≠ j≤ n, Si ∩ Sj ⊆ Si, for all
1≤ t≤ n, we get that Φ(Si ∩ Sj, St)⊆Φ(Si, St) and Φ(Si ∩ Sj,

St)⊆ Φ(Sj, St). So, in any cases, |Φ|≤􏽐1≤i≠j≤n|Si|
|Sj|. □

Example 2. Let |X| � xi􏼈 􏼉
4
i�1 and H � (X, Si􏼈 􏼉

3
i�1, φi,j􏽮 􏽯

i,j
) be

a superhypergraph, where |S1| � 2, |S2| � 1, |S3| � 1. 'en,
by 'eorem 1, 2≤ |Φ(H)|≤ 8 � (21 + 21 + 12+ 11 + 12 + 11),
where

φ1,2 � x1, x3( 􏼁, x2, x3( 􏼁􏼈 􏼉,

φ1,3 � x1, x4( 􏼁, x2, x4( 􏼁􏼈 􏼉,

φ2,1 � x3, x1( 􏼁􏼈 􏼉,

φ2,1′ � x3, x2( 􏼁􏼈 􏼉,

φ3,1 � x4, x1( 􏼁􏼈 􏼉,

φ3,1′ � x4, x2( 􏼁􏼈 􏼉,

φ2,3 � x3, x4( 􏼁􏼈 􏼉,

φ3,2 � x4, x3( 􏼁􏼈 􏼉.

(4)

'e superhypergraph H � (X, Si􏼈 􏼉
3
i�1, φ1,2􏽮 􏽯3,2) with

minimum superedges is shown in Figure 2.

x1
x2

x3

S1

x4
x5

S2

x6
x7

x8

S3

x9

S4

φ1,2

φ2,3
φ 2,1

φ 2
,4

Figure 1: Superhypergraph H � (X, Si􏼈 􏼉
4
i�1, φ1,2,φ2,1,φ2,3,φ2,4􏽮 􏽯).

x1
x2

S1

x3

S2

x4

S3φ1,2 φ3,2

Figure 2: Superhypergraph H � (X, Si􏼈 􏼉
3
i�1, φ1,2,φ3,2􏽮 􏽯) with

|Φ(H)| � 2.
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Let X be a nonempty set, SH �

H|H is a superhypergraph onX􏼈 􏼉 and SH(n1, n2, . . . , nk) �

(X, Si􏼈 􏼉
k
i�1, φi,j􏽮 􏽯

i,j
) ∈ SH||Si| � ni and for all i≠ j,􏼚 Si ∩

Sj � ∅}. In what follows, compute and prove the number of
SH(n1, n2, . . . , nk), as the set of all superhypergraphs based
on any nonempty set X, where |X| � n.

Theorem 2. Let X be a nonempty set, r, n ∈ N and |X| � n.

(i) |SH(n)| � 1.
(ii) If 􏽐

r
i�1 ni � n and m � | i|ni � nj􏽮 􏽯|, then, |SH(n1,

n2, . . . , nr)| � (1/m!) 􏽑
r
i�1(n − 􏽐

i− 1
j�1nj

ni

)(􏽐1≤i≠j≤rn
nj

i ).

Proof

(i) By definitions is clear.
(ii) Let |X| � n. Since SH(n1, n2, . . . , nk) � (X, Si􏼈 􏼉

k

i�1,􏽮

φi,j􏽮 􏽯
i,j

) ∈ SH||Si| � ni and for all i≠ j, Si ∩ Sj � ∅},
we get that S1, S2, . . . , Sk􏼈 􏼉 ∈ P(X) is a partition of set
X, where |Si| � ni. Consider S1, then, the numbers of

selected vertices in S1 is equal to
n

n1
􏼠 􏼡. Because for any

1≤ i≤ k, Si ∩ Sj � ∅, the number of selected vertices in

S2 is equal to
n − n1

n2
􏼠 􏼡. It follows that the numbers of

ways to chosen the selected vertices between S1, S2 is

equal to n

n1
􏼠 􏼡

n − n1
n2

􏼠 􏼡 for the case n1 ≠ n2 and is

equal to (1/2!)
n

n1
􏼠 􏼡

n − n1
n2

􏼠 􏼡, for the case n1 � n2.

'us, in the process of doing so and by induction, for all
1≤ i≤ k, |P(X)| � (1/m!) 􏽑

k
i�1(n − 􏽐

i− 1
j�1nj

ni

), where

m � | i|ni � nj􏽮 􏽯|. In addition, by 'eorem 1, we have
|Φ(H)|≤􏽐1≤i≠j≤n|Si|

|Sj|, so |SH(n1, n2, . . . ,

nr)| � (1/m!) 􏽑
r
i�1(n − 􏽐

i− 1
j�1nj

ni

)(􏽐1≤i≠j≤rn
nj

i ). □

Theorem 3. Let X be a nonempty set and |X| � n. If α �

(n1, n2, . . . , nr)| 􏽐
r
i�1 ni � n, ni, r ∈ N􏼈 􏼉 and m � | i|ni � nj􏽮 􏽯|,

then,

|SH(X)| � 􏽘
α

1
m!

􏽙

r

i�1
n − 􏽘

i− 1

j�1
nj

ni

􏽘
1≤i≠j≤ r

n
nj

i
⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Proof. It is clear by 'eorem 2. □

Example 3. Let X be an arbitrary set and |X| � 4. 'en,

|SH(X)| � |SH(4)| +|SH(3, 1)| +|SH(2, 2)|

+ |SH(2, 1, 1)| +|SH(1, 1, 1, 1)|

� 1 +

4

3
⎛⎜⎝ ⎞⎟⎠

1

1
⎛⎜⎝ ⎞⎟⎠ 31 + 13􏼐 􏼑

+
1
2!

4

2
⎛⎜⎝ ⎞⎟⎠

2

2
⎛⎜⎝ ⎞⎟⎠ 22 + 22􏼐 􏼑

+
1
2!

4

2
⎛⎜⎝ ⎞⎟⎠

2

1
⎛⎜⎝ ⎞⎟⎠

1

1
⎛⎜⎝ ⎞⎟⎠ 21 + 21 + 12 + 11 + 12 + 11􏼐 􏼑

+
1
4!

4

1
⎛⎜⎝ ⎞⎟⎠

3

1
⎛⎜⎝ ⎞⎟⎠

2

1
⎛⎜⎝ ⎞⎟⎠

1

1
⎛⎜⎝ ⎞⎟⎠ 11 + 11 + 11􏼐 􏼑4 � 101.

(6)

3. Incidence Matrix of Superhypergraphs

In this section, we introduce a square matrix as incidence
matrix associate with any given superhypergraph with sign
function. Indeed, in the incidence matrix associate to any
given superhypergraph the domain and range of any map
determine the sign function.

Let H � (X, Si􏼈 􏼉
k
i�1, φi,j􏽮 􏽯

i,j
) be a superhypergraph and

Ψ(H)⊆Φ(H). 'en, we have the following concepts.

Definition 4. Let H � (X, Si􏼈 􏼉
k
i�1, φi,j􏽮 􏽯

i,j
) be a superhyper-

graph and |X| � n. Define A(|S1|,|S2|,...,|Sk|) � (aij)n×(k+|Ψ(H)|) as
incidence matrix of H with k + |Ψ(H)| columns repre-
senting the supervertices S1, S2, . . . , Sk, superedges φi,j and n

rows representing the vertices x1, x2, . . . , xn, where n � (k +

|Ψ(H)|) and

aij �

1, if xi ∈ Si orxi ∈ Domain φi,j􏼐 􏼑,

− 1, if xi ∈ Range φi,j􏼐 􏼑,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

Example 4. Let X � xi􏼈 􏼉
5
i�1. 'en, H � (X, Si􏼈 􏼉

3
i�1,

φ1,3,φ2,3􏽮 􏽯) is a superhypergraph in Figure 3, where φ1,3 �

(x1, x5), (x2, x5)􏼈 􏼉 and φ2,3 � (x3, x5), (x4, x5)􏼈 􏼉.
'en, A(2,2,1) is the incidence matrix of H.

x1
x2

S1

x3
x4

S2

x5

S3

φ1,3

φ2,3

Figure 3: Superhypergraph H � (X, Si􏼈 􏼉
3
i�1, φ1,3,φ2,3􏽮 􏽯).
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S1 S2 S3 ϕ1,3 ϕ2,3

1 0 0 1 0

1 0 0 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 −1−1

A(2,2,1) =

x1

x2

x3

x4

x5

(8)

3.1. Characteristic Polynomial for the Incidence Matrix of
Superhypergraph. In this subsection, we compute the
characteristic polynomial of the incidence matrix of any
given superhypergraph. Let H � (X, Si􏼈 􏼉

k

i�1, φi,j􏽮 􏽯
i,j

) be a
superhypergraph and so investigate the spectrum of the
superhypergraph.

From now on, let P(|S1|,|S2|,...,|Sk|)(x) be the characteristic
polynomial of the incidence matrix A(|S1|,|S2|,...,|Sk|) corre-
sponding to superhypergraph H and E(A(|S1|,|S2|,...,|Sk|)) �

x|is an eigenvalue of A(|S1|,|S2|,...,|Sk|)􏽮 􏽯. In addition, for any
Si, Sj, if Φ(Si, Sj) � φi,j|φi,j: Si⟶ Sj, i, j≥ 1􏽮 􏽯, will say Si

flows to Sj and will denote by Si⇝Sj. In this case, will denote
A(|S1|,|S2|,...,|Sk|) by A⇝(|S1|,|S2|,...,|Sk|) and P(|S1|,|S2|,...,|Sk|)(x) by
P⇝(|S1|,|S2|,...,|Sk|)(x).

Theorem 4. Let |S1| � 1, |S2| � n, n≥ 2 and S1⇝S2. 8en,

(i) P⇝1,n(x) � (− x)n− 1(x2 + (n − 3)x − (n − 2)).

(ii) Spec (A⇝1,n) �
0 1 2 − n

n − 1 1 1􏼠 􏼡.

Proof

(i) Let n � 2. It is easy to see that
P⇝1,2(x) � (− x)(x2 − x). Suppose that k≥ 3 and
P⇝1,k− 1(x) � (− x)k− 2(x2 + (k − 4)x− (k − 3)). 'en,
A⇝1,k � [c1, c2, . . . , ck, ck+1], where c3 � · · · �

ck+1 � [1, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

]t. It follows that

P
⇝
1,k(x) � det A

⇝
1,k − I(k+1)×(k+1)X􏼐 􏼑 � det B

⇝
1,k􏼐 􏼑, (9)

such that B⇝1,k � [bij](k+1)×(k+1), where B⇝1,k � [c1′,
c2′, . . . , ck

′, ck+1′ ] that for all i ∈ 3, . . . , k + 1{ }, ci
′ �

[1, − 1, . . . ,􏽼√√􏽻􏽺√√􏽽 − 1(i− 2)− times, − 1 − x, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i+1)− times

]t. Now,

consider D⇝1,k � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k + 1,

− ck
′ + ck+1′ , j � k + 1.

⎧⎨

⎩ (10)

'us, D⇝1,k � [c1′, c2′, . . . , ck− 1′ , ck
′, ck+1″], where ck+1″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, x, − x]t � (x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, 1, − 1]t. Based on

induction assumption and computations of deter-
minant based on column ck+1″ in matrix D⇝1,k, have

P
⇝
k,1(x) � det D

⇝
1,k − I(k+1)×(k+1)X􏼐 􏼑

� x − P
⇝
1,k− 1(x) +(− x)

k− 1
+(− x)

k− 2
􏼐 􏼑

� (− x)
k− 1

x
2

+(k − 3)x − (k − 2)􏼐 􏼑.

(11)

(ii) It is clear by item (i). □

Theorem 5. Let |S1| � n, |S2| � 1, n≥ 2 and S1⇝S2. 8en,
P⇝n,1(x) � (− x)n− 1(x2 − (n − 2)x − 2).

Proof. Let n � 2. It is easy to see that P⇝2,1(x) � (− x)(x2 − 2).
Suppose that k≥ 3 and P⇝k− 1,1(x) � (− x)k− 2(x2− (k − 3)

x − 2). 'en, A⇝k,1 � [c1, c2, . . . , ck, ck+1], where c3 � · · · �

ck+1 � [1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, − 1]t. It follows that

P
⇝
k,1(x) � det A

⇝
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � det B

⇝
k,1􏼐 􏼑, (12)

such that B⇝k,1 � [bij](k+1)×(k+1), where B⇝k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′ ] that for all i ∈ 3, 4, . . . , k{ }, ci

′ � [1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
i− 1{ }− times

,

1 − x, 1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
k− i{ }− times

, − 1]t and ck+1′ � [1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, − 1 − x]t.

Consider D⇝k,1 � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k,

ck
′ − ck+1′ , j � k.

⎧⎨

⎩ (13)

'us, D⇝k,1 � [c1′, c2′, . . . , ck− 1′ , c′
′
k, ck+1′], where

c′
′
k � [0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽

k− 1{ }− times

, − x, x]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
k− 1{ }− times

, 1, − 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k in matrix D⇝k,1, have

P
⇝
k,1(x) � det D

⇝
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � − xP

⇝
k− 1,1(x) +(− x)

k
.

(14)
□

Theorem 6. Let |S1| � n, |S2| � 2, n≥ 2 and S1⇝S2. 8en,
P⇝n,2(x) � (− x)n(x2 − (n − 3)x − 4).

Proof. Let n � 2. It is easy to see that P⇝2,1(x) �

x2(x2 + x − 4). Suppose that k≥ 3 and P⇝k− 1,1(x) �

(− x)k− 1(x2 − (k − 4)x − 4).'en, A⇝k,2 � [c1, c2, . . . , ck, ck+1,

ck+2], where c3 � · · · � ck+2 � [1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, − 1, − 1]t. It follows
that

P
⇝
k,2(x) � det A

⇝
k,2 − I(k+2)×(k+2)X􏼐 􏼑 � det B

⇝
k,2􏼐 􏼑, (15)

such that B⇝k,2 � [bij](k+2)×(k+2), where B⇝k,2 � [c1′, c2′, . . . , ck
′,

ck+1′, ck+2′] that for all i ∈ 3, 4, . . . , k{ }ci
′ �

x1 x2

S1

x3

S2

φ1,2

Figure 4: Superhypergraph H � (X, Si􏼈 􏼉
2
i�1, φ1,2􏽮 􏽯).
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[1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
i− 1{ }− times

, 1 − x, 1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
k− i{ }− times

, − 1, − 1]t, ck+1′ � [1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

,

− 1 − x, , − 1]t and ck+2′ � [1, 1, . . . , 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, − 1, − 1 − x]t. In addi-

tion, D⇝k,2 � (dij)(k+2)×(k+2), where

dij �
bij, j≠ k,

ck
′ − ck+2′ , j � k.

⎧⎨

⎩ (16)

'us, D⇝k,2 � [c1′, c2′, . . . , c′
′
k, ck+1′, ck+2′], where c′

′
k �

[0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
k− 1{ }− times

, − x, 0, x]t � (− x)[0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
k− 1{ }− times

, 1, 0, − 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k in matrix D⇝k,2 show that

P
⇝
k,2(x) � det D

⇝
k,2 − I(k+2)×(k+2)X􏼐 􏼑 � − xP

⇝
k− 1,2(x) +(− x)

k+1
.

(17)□

Theorem 7. Let |S1| � n, |S2| � 3, n≥ 2 and S1⇝S2. 8en,
P⇝n,3(x) � (− x)n+1(x2 − (n − 4)x − 6).

Proof. It is similar to 'eorem 6. □

Corollary 1. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1⇝S2.
8en,

(i) P⇝n,m(x) � (− x)n+m− 2(x2 − (n − m − 1)x − 2m).
(ii) Spec (A⇝n,m) � 0 (α +

��
α

√
( 2 + 8m )/2 (α −�������

α2 + 8m
􏽰

)/2n + m − 211), where α � n − m − 1.
(iii) 􏽐x∈E(A⇝n,m)x � 0 if and only if n � m + 1.

Example 5. Let X � x1, x2, x3􏼈 􏼉. 'en, H � (X, Si􏼈 􏼉
2
i�1,

φ1,2􏽮 􏽯) is a superhypergraph as shown in Figure 4 and in-
cidence matrix of A⇝2,1 as follows.

MH =

S1 S2 ϕ1,2

x1

x2

x3

1 0 1

1 0 1

0 1 −1

(18)

'us, by 'eorem 5, we have P⇝2,1(x) � (− x)(x2 − 2)

and so Spec(A⇝2,1) �
0

�
2

√
−

�
2

√

1 1 1􏼠 􏼡.

3.2. Characteristic Polynomial for the Incidence Matrix of
Superhypergraph with Reverse Flows. In this subsection, we
compute the characteristic polynomial and spectrum of the
superhypergraph in the reverse flows to the previous section.

For any Si, Sj, if Φ(Sj, Si) � φi,j|φi,j: Sj⟶ Si, i, j≥ 1􏽮 􏽯,
will say Sj flows to Si and will denote by
Si←Sj(reverse flows to Si⇝Sj) and so A|S1|,|S2|,...,|Sk| by
A←|S1|,|S2|,...,|Sk| and P|S1|,|S2|,...,|Sk|(x) by P←|S1|,|S2|,...,|Sk|(x).

Theorem 8. Let |S1| � 1, |S2| � n, n≥ 2 and S1←S2. 8en,

(i) P←1,n(x) � (− x)n− 1(x2 − (n + 1)x + n).

(ii) Spec (A←1,n) �
0 1 n

n − 1 1 1􏼠 􏼡.

Proof

(i) Let n � 2. It is easy to see that
P←1,2(x) � (− x)(x2 − 3x + 2). Suppose that k≥ 3 and
P←1,k− 1(x) � (− x)k− 2(x2 − kx+ (k − 1)). 'en,
A←1,k � [c1, c2, . . . , ck, ck+1], where c3 � · · · �

ck+1 � [− 1, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
k− times

]t. It follows that

P
←
1,k(x) � det A

←
1,k − I(k+1)×(k+1)X􏼐 􏼑 � det B

←
1,k􏼐 􏼑, (19)

such that B←1,k � [bij](k+1)×(k+1), where B←1,k � [c1′, c2′,
. . . , ck
′, ck+1′ ] that for all i ∈ 3, 4, . . . , k + 1{ }, ci

′ �
[− 1, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽

(i− 2)− times

, 1 − x􏽼√√􏽻􏽺√√􏽽
i− th

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k− i+1)− times

]t. Now, consider

D←1,k � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k + 1,

− ck
′ + ck+1′ , j � k + 1.

⎧⎨

⎩ (20)

'us, D←1,k � [c1′, c2′, . . . , ck− 1′ , ck
′, ck+1″], where ck+1″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, x, − x]t � (x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, 1, − 1]t. Based on

induction assumption and computations of deter-
minant based on column c′

′
k+1 in matrix D←1,k, have

P
←
1,k(x) � det D

←
1,k − I(k+1)×(k+1)X􏼐 􏼑

� x − P
←
1,k− 1(x) − (− x)

k− 1
− (− x)

k− 2
􏼐 􏼑

� (− x)
k− 1

x
2

− (k + 1)x + k􏼐 􏼑.

(21)

(ii) It is clear by item (i). □

Theorem 9. Let |S1| � n, |S2| � 1, n≥ 2 and S1←S2. 8en,
P←n,1(x) � (− x)n− 1(x2 + (n − 4)x + 2).

Proof. Let n � 2. It easy is to see that P←2,1(x) �

(− x)(x2 − 2x + 2). Suppose that k≥ 3 and P←k− 1,1(x) �

(− x)k− 2(x2 + (k − 5)x + 2).'en, A←k,1 � [c1, c2, . . . , ck,

ck+1], where c3 � · · · � ck+1 � [− 1, − 1, . . . , − 1􏽼√√√√√√􏽻􏽺√√√√√√􏽽
k times

, 1]t. It follows

that

P
←
k,1(x) � det A

←
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � det B

←
k,1􏼐 􏼑, (22)

such that B←k,1 � [bij](k+1)×(k+1), where B←k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′ ] that for all i ∈ 3, . . . , k{ }, ci

′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(i− 1)− times

,

− 1 − x􏽼√√􏽻􏽺√√􏽽
ith

, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i)− times

, 1]t and ck+1′ � [− 1, − 1, . . . , − 1􏽼√√√√√√􏽻􏽺√√√√√√􏽽
k times

, 1 − x]t.

Moreover, consider D←k,1 � (dij)(k+1)×(k+1), where

dij �
bij, j≠ k,

ck
′ − ck+1′ , j � k.

⎧⎨

⎩ (23)
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'us, D←k,1 � [c1′, c2′, . . . , ck− 1′ , c′
′
k, ck+1′], where c′

′
k �

[0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
k− 1 times

, − x, x]t � (− x)[0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
k− 1 times

, 1, − 1]t. Based on induc-

tion assumption and computations of determinant based on
column c′

′
k in matrix D←k,1, have

P
←
k,1(x) � det D

←
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � − xP

←
k− 1,1(x) +(− 1)

k+1
x

k
.

(24)

□

Theorem 10. Let |S1| � n, |S2| � 2, n≥ 2 and S1←S2. 8en,
P←n,2(x) � (− x)n(x2 + (n − 5)x + 4).

Proof. Let n � 2. It is easy to see that P←2,1(x) �

x2(x2 − 3x + 4). Suppose that k≥ 3 and P←k− 1,1(x) �

(− x)k− 1(x2 + (k − 6)x + 4).'en, A←k,2 � [c1, c2, . . . , ck,

ck+1, ck+2], where c3 � · · · � ck+2 � [− 1, − 1, . . . , − 1􏽼√√√√√√􏽻􏽺√√√√√√􏽽
k times

, 1, 1]t. It

follows that

P
←
k,2(x) � det A

←
k,2 − I(k+2)×(k+2)X􏼐 􏼑 � det B

←
k,2􏼐 􏼑, (25)

such that B←k,2 � [bij](k+2)×(k+2), where B←k,2 � [c1′, c2′, . . . , ck
′,

ck+1′, ck+2′ ] that for all i ∈ 3, . . . , k{ }, ci
′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

(i− 1)− times

,

− 1 − x􏽼√√􏽻􏽺√√􏽽
ith

, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i)− times

, 1, 1]t, ck+1′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, 1 − x, 1]t, and

ck+2′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, 1, 1 − x]t. Consider D←k,2 �

(dij)(k+2)×(k+2) where

dij �
bij, j≠ k,

ck
′ − ck+1′ , j � k.

⎧⎨

⎩ (26)

'us, D←k,2 � [c1′, c2′, . . . , c′
′
k, ck+1′, ck+2′], where c′

′
k �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, − x, x, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, 1, − 1, 0]t. Based on

induction assumption and computations of determinant

based on column c′
′
k in matrix D←k,2 show that

P
←
k,2(x) � det D

←
k,2 − I(k+2)×(k+2)X􏼐 􏼑 � (− x)P

←
k− 1,2(x) +(− 1)

k
x

k+1
.

(27)

□

Theorem 11. Let |S1| � n, |S2| � 3, n≥ 2 and S1←S2. 8en,
Pn,3(x) � (− x)n+1(x2 + (n − 6)x + 6).

Proof. It is similar to 'eorem 6. □

Corollary 2. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1←S2.
8en,

(i) P←n,m(x) � (− x)n+m− 2(x2 + (n − m − 3)x + 2m).
(ii) Spec (A←n,m) � 0 (− α +

�������
α2 − 8m

􏽰
)/2 (− α􏼐

−
�������
α2 − 8m

􏽰
)/ 2n + m − 211), where α � n − m − 3.

(iii) 􏽐x∈E(An,m)x � 0 if and only if n � m + 3.

Example 6. Let X � x1, x2, x3􏼈 􏼉. 'en, H � (X,

Si􏼈 􏼉
2
i�1, φ2,1􏽮 􏽯) is a superhypergraph as shown in Figure 5 and

incidence matrix of A2,1 as follows.

−1

−1

1 0

1 0

0 1 1

.

S1 S2 ϕ2,1

MH =

x1

x2

x3

(28)

'us, by'eorem 9, we have P2,1(x) � (− x)(x2 − 2x +2)

and so Spec (A←2,1) �
0 1+ i 1 − i

1 1 1􏼠 􏼡.

3.3. Characteristic Polynomial for the Incidence Matrix of
Superhypergraph with Two-Sided Flows. In this subsection,
we compute the characteristic polynomial and spectrum of
the superhypergraph with two-sided flows.

For any Si, Sj, if Φ � φi,j|φi,j: Si↔Sj, i, j≥ 1􏽮 􏽯, will say Si

flows to Sj by two-sided and will denote by Si↭ Sj and so
A|S1|,|S2|,...,|Sk| by A↭|S1|,|S2|,...,|Sk| and P|S1|,|S2|,...,|Sk|(x) by
P↭|S1|,|S2|,...,|Sk|(x). When we will show that Si↭ Sj of type
[+, − , +, − , . . .], it means that the first map flows from Si to
Sj, the second map flows from Sj to Si, the third map flows
from Si to Sj, etc., respectively. We will show it in Figure 6,
where, n is an odd.

Theorem 12. Let |S1| � 1, |S2| � n, n≥ 3 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

(i) P↭1,n(x) �
− (x

2k
)(x − 1) n � 2k

x
2k

(x − 1)
2

n � 2k + 1
􏼨 .

(ii) if n is an even, then Spec (A↭1,n ) �
0 1
n 1􏼠 􏼡.

x1 x2

S1

x3

S2

φ2,1

Figure 5: Superhypergraph H � (X, Si􏼈 􏼉
2
i�1, φ2,1􏽮 􏽯).

(1)

(2)

(3)

x1
x2

Si Sj

y1
y2

ymxn

(m+n-2)φi,j

φi,j

φ i,j

φj,i

Figure 6: H � (X, Si, Sj􏽮 􏽯, φ(1)
i,j ,φ(2)

j,i , . . . ,φ(m+n− 2)
j,i􏽮 􏽯).
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(iii) if n is an odd, then Spec (A↭1,n ) �
0 1

n − 1 2􏼠 􏼡.

Proof

(i) Let n � 3 and n � 4. It is easy to see that P↭1,3(x) �

x2(x − 1)2 and P↭1,4(x) � − x4(x − 1). Suppose that k≥ 3 is
an odd and P↭1,k− 1(x) � x2k− 2(x − 1)2. 'en, A↭1,k � [c1,

c2, . . . , ck, ck+1], where for all i ∈ 3, 5, 7, . . . , k{ },

ci � [1, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

]t and where for all i ∈ 4, 8, . . . , k + 1{ },

ci � [− 1, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
k− times

]t. It follows that

P
↭
1,k(x) � det A

↭
1,k − I(k+1)×(k+1)X􏼐 􏼑 � det B

↭
1,k􏼐 􏼑, (29)

such that B↭1,k � [bij](k+1)×(k+1), where B↭1,k � [c1′, c2′,
. . . , ck
′, ck+1′ ], where for all i ∈ 3, 5, 7, . . . , k{ }, ci

′ �
[1, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

(i− 2)− times

, − 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i+1)− times

]t and for all i ∈ 4, 8, . . . ,{

k + 1}, ci
′ � [− 1, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽

(i− 2)− times

, 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k− i+1)− times

]t. Now, consider

D↭1,k � (dij)(k+1)×(k+1), where

dij �

bij, 1≤ j≤ k − 1,

ck
′ + ck− 1′ , j � k,

ck+1′ − ck− 1′ , j � k + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

'us, D↭1,k � [c1′, c2′, . . . , ck− 1′, ck
″, ck+1″], where ck

″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, 1, 1, 0]t and ck+1″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, x, 0, − x]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − 1, 0, 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k+1 in matrix D↭1,k , have

P
↭
1,k(x) � det D

↭
1,k − I(k+1)×(k+1)X􏼐 􏼑 � x

2
􏼐 􏼑 P

↭
1,k− 2(x)􏼐 􏼑 � x

2k
(x − 1)

2
.

(31)

In a similar way, if n is an even, we get that
P↭1,n(x) � − (xn)(x − 1).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 13. Let |S1| � n, |S2| � 1, n≥ 3 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

P
↭
n,1(x) �

(− x)
2k− 1

x
2

− 2􏼐 􏼑, n � 2k,

(x)
2k

x
2

− 3x + 2􏼐 􏼑, n � 2k + 1.

⎧⎪⎨

⎪⎩
(32)

Proof. Let n � 3. It is easy to see that P↭3,1(x) �

x2(x2 − 3x + 2). Suppose that k≥ 3 is an odd and
P↭k− 1,1(x) � x2k− 2(x2 − 3x + 2). 'en, A↭k,1 � [c1, c2, . . . ,

ck, ck+1], where for all i ∈ 3, 5, . . . , k{ }, ci � [1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
k− times

, − 1]t

and where for all i ∈ 4, 6, . . . , k + 1{ }, ci � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, 1]t. It

follows that

P
↭
k,1(x) � det A

↭
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � det B

↭
k,1􏼐 􏼑, (33)

such that B↭k,1 � [bij](k+1)×(k+1), where B↭k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′], where for all i ∈ 3, 5, . . . , k{ }, ci

′ � [1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(i− 1)− times

,

1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k− i)− times

, − 1]t and for all i ∈ 4, 8, . . . , k − 1{ },

ci
′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

(i− 1)− times

, − 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i)− times

, 1]t and for i � k + 1,

ci
′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

k− times

, 1 − x]t. Now, consider D↭k,1 �

(dij)(k+1)×(k+1), where

dij �

bij, j � 1, . . . , k − 2, k + 1,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎨

⎪⎩
(34)

'us, D↭k,1 � [c1′, c2′, . . . , ck− 2′ , ck− 1″, ck
″, ck+1′], where ck− 1″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, 1, 1, 0]t and ck
″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, − x, − x]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, 1, 1]t. Based on in-

duction assumption and computations of determinant based
on column c′

′
k in matrix D↭k,1 , we have

P
↭
k,1(x) � det D

↭
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � x

2
􏼐 􏼑 P

↭
k− 2,1(x)􏼐 􏼑

� x
2k

x
2

− 3x + 2􏼐 􏼑.
(35)

In a similar way, if k is an even, we get that
P↭k,1(x) � (− x)2k− 1(x2 − 2).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 14. Let |S1| � n, |S2| � 2, n≥ 3 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

P
↭
n,2(x) �

x
2k+1

(x − 1), n � 2k,

− x
2k+2

(x − 2), n � 2k + 1.

⎧⎨

⎩ (36)

Proof. Let n � 3. It is easy to see that
P↭3,1(x) � (− x)4(x − 2). Suppose that k≥ 3 is an odd and
P↭k− 1,2(x) � (− x)2k(x − 2). 'en, A↭k,2 � [c1, c2, . . . , ck + 1,

ck+2], where for all i ∈ 3, 5, . . . , k + 2{ }, ci �

[1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
k− times

, − 1, − 1]t and where for all i ∈ 4, 6, . . . , k + 1{ },

ci � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, 1, 1]t. It follows that

(1)

(2)

(3)

x1
x2

Si Sj

y1
y2

ymxn

(m+n–2)φj,i

φj,i

φ j,i

φi,j

Figure 7: H � (X, Si, Sj􏽮 􏽯, φ(1)
i,j ,φ(2)

j,i , . . . ,φ(m+n− 2)
j,i􏽮 􏽯).
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↭
k,2 − I(k+2)×(k+2)X􏼑 � det B

↭
k,2􏼐 􏼑, (37)

such that B↭k,2 � [bij](k+2)×(k+2), where B↭k,2 � [c1′, c2′, . . . ,

ck+1′ , ck+2′ ], where for all i ∈ 3, 5, . . . , k{ }, ci
′ �

[1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(i− 1)− times

, 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k− i)− times

, − 1, − 1]t and for i � k + 2, ci
′ �

[ 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − 1, − 1 − x]t and for all i ∈ 4, 8, . . . , k + 1{ }, ci
′

� [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(i− 1)− times

, − 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i)− times

, 1, 1]t. Now, consider

D↭k,2 � (dij)(k+2)×(k+2), where

dij �

bij, j � 1, . . . , k − 2, k + 1, k + 2,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

'us, D↭k,2 � [c1′, c2′, . . . , ck− 2′ , ck− 1″, ck
″, ck+1′ , ck+2′ ], where

ck− 1″ � [ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − x, − x, 0, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, 1, 1, 0, 0]t

and ck
″ � [ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽

(k− 1)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, 1, 1, 0]t.

Based on induction assumption and computations of de-
terminant based on column c′

′
k in matrix D↭k,2 , we have

P
↭
k,2(x) � det D

↭
k,2 − I(k+2)×(k+2)X􏼐 􏼑 � x

2
􏼐 􏼑 P

↭
k− 2,2(x)􏼐 􏼑

� (− x)
2k+2

(x − 2).
(39)

In a similar way, if k is an even, we get that
P↭k,2(x) � x2k+1(x − 1).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 15. Let |S1| � n, |S2| � 3, n≥ 2 and S1↭ S2 of type
[+, − , +, − , . . .]. 8en,

P
↭
n,3(x) �

(− x)
2k+1

x
2

− 2􏼐 􏼑, n � 2k(k≥ 1),

(− x)
2k+2

x
2

− 3x + 2􏼐 􏼑, n � 2k + 1(k≥ 1).

⎧⎪⎨

⎪⎩

(40)

Proof. It is similar to 'eorem 14. □

Corollary 3. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [+, − , +, − , . . .]. If m is an odd, then,

(i) P↭n,m(x) �
(− x)

2k+m− 2
(x

2
− 2) n � 2k(k≥1)

x
2k+m− 1

(x
2

− 3x +2) n � 2k +1(k≥1)
􏼨 ,

(ii) If n is an odd, then, Spec (A↭n,m) �

0 1 2
n + m − 2 1 1􏼠 􏼡,

(iii) If n is an even, then Spec (A↭n,m) �

0 −
�
2

√ �
2

√

n + m − 2 1 1􏼠 􏼡,

(iv) 􏽐x∈E(An,m)x≠ 0.

Corollary 4. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [+, − , +, − , . . .]. If m is an even, then,

(i) if n is an even, then, P↭n,m(x) �

(− x)
2k+m− 1

(x − 1) n � 2k(k≥ 1)

− (x
2k+m

)(x − 2) n � 2k + 1(k≥ 1)
􏼨 ,

(ii) If n is an odd, then, Spec (A↭n,m) �
0 2

n + m − 1 1􏼠 􏼡,

(iii) If n is an even, then, Spec (A↭n,m) �
0 1

n + m − 1 1􏼠 􏼡,
(iv) 􏽐x∈E(An,m)x≠ 0.

When we will show that Si↭ Sj of type [− , +, − , +, . . .], it
means that the first map flows from Sj to Si, the second map
flows from Si to Sj, the third map flows from Sj to Si, etc.,
respectively. We will show it in Figure 7, where, n is an odd.

Theorem 16. Let |S1| � 1, |S2| � n, n≥ 3 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

(i) P↭1,n(x) �
− (x

2k− 1
)(x

2
− 3x + 2) n � 2k

x
2k

(x − 1)
2

n � 2k + 1
􏼨 ,

(ii) if n is an even, then, Spec (A↭1,n ) �
0 1 2

n − 1 1 1􏼠 􏼡,

(iii) if n is an odd, then, Spec (A↭1,n ) �
0 1

n − 1 2􏼠 􏼡.

Proof

(i) Let n � 3 and n � 4. It is easy to see that P↭1,3(x) �

x2(x − 1)2 and P↭1,4(x) � − x3(x2 − 3x + 2). Suppose that
k≥ 3 is an even and P↭1,k− 1(x) � − x2k− 3(x2 − 3x + 2). 'en,
A↭1,k � [c1, c2, . . . , ck, ck+1], where for all i ∈ 3, 5, 7, . . . , k{ },

ci � [− 1, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
k− times

]t and where for all i ∈ 4, 6, 8, . . . , k{ },

ci � [1, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

]t. It follows that

P
↭
1,k(x) � det A

↭
1,k − I(k+1)×(k+1)X􏼐 􏼑 � det B

↭
1,k􏼐 􏼑, (41)

such that B↭1,k � [bij](k+1)×(k+1), where B↭1,k � [c1′, c2′, . . . ,

ck
′, ck+1′ ], where for all i ∈ 4, 6, 8, . . . , k{ }, ci

′ �
[1, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

(i− 2)− times

, − 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k+1− i)− times

]t and for all i ∈ 3,{

5, 7, . . . , k}, ci
′ � [− 1, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽

(i− 2)− times

, 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k+1− i)− times

]t. Now,

consider D↭1,k � (dij)(k+1)×(k+1), where

dij �

bij, 1≤ j≤ k − 1,

ck
′ + ck− 1′ , j � k,

ck+1′ − ck− 1′ , j � k + 1.

⎧⎪⎪⎨

⎪⎪⎩
(42)

'us, D↭1,k � [c1′, c2′, . . . , ck− 1′ , ck
″, ck+1″], where ck

″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, 1, 1, 0]t and ck+1″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, x, 0, − x]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − 1, 0, 1]t. Based on

induction assumption and computations of determinant
based on column c′

′
k+1 in matrix D↭1,k , we have

P
↭
1,k(x) � det D

↭
1,k − I(k+1)×(k+1)X􏼐 􏼑 � x

2
􏼐 􏼑 P

↭
1,k− 2(x)􏼐 􏼑

� − x
2k− 1

􏼐 􏼑 x
2

− 3x + 2􏼐 􏼑.
(43)

Pk,
↭
2 (x) � det􏼐A
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In a similar way, if n is an odd, we get that
P↭1,n(x) � xn− 1(x − 1)2.

(ii) and (iii) 'ey are clear by item (i). □

Theorem 17. Let |S1| � n, |S2| � 1, n≥ 3 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

P
↭
n,1(x) �

(− x)
2k− 1

x
2

− 2x + 2􏼐 􏼑, n � 2k,

(− x)
2k

x
2

+ x − 2􏼐 􏼑, n � 2k + 1.

⎧⎪⎨

⎪⎩
(44)

Proof. Let n � 3, n � 4. It is easy to see that
P↭3,1(x) � x2(x2 + x − 2) and P↭4,1(x) � (− x)3(x2 − 2x + 2)

Suppose that k≥ 3 is an even and P↭k− 1,1(x) �

(− x)2k− 3(x2 − 2x + 2). 'en, A↭k,1 � [c1, c2, . . . , ck, ck+1],
where for all i ∈ 3, 5, . . . , k + 1{ }, ci � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

k− times

, 1]t and

where for all i ∈ 4, 6, . . . , k{ }, ci � [1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
k− times

, − 1]t. It follows

that

P
↭
k,1(x) � det A

↭
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � det B

↭
k,1􏼐 􏼑, (45)

such that B↭k,1 � [bij](k+1)×(k+1), where B↭k,1 � [c1′, c2′, . . . ,

ck
′, ck+1′], where for all i ∈ 4, 6, . . . , k{ }, ci

′ � [1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(i− 1)− times

,

1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k− i)− times

, − 1]t and for all i ∈ 3, 5, . . . , k − 1{ }, ci
′ �

[− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(i− 1)− times

, − 1 − x, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i)− times

, 1] and for i � k + 1, ci
′ �

[− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
k− times

, 1 − x]t. Now, consider D↭k,1 � (dij)(k+1)×(k+1),

where

dij �

bij, j � 1, . . . , k − 2, k + 1,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

'us, D↭k,1 � [c1′, c2′, . . . , ck− 2′, ck− 1″, ck
″, ck+1′], where ck− 1″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, 1, 1, 0]t and ck
″ �

[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, − x, − x]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, 1, 1]t. Based on in-

duction assumption and computations of determinant based
on column c′

′
k in matrix D↭k,1 , we have

P
↭
k,1(x) � det D

↭
k,1 − I(k+1)×(k+1)X􏼐 􏼑 � x

2
􏼐 􏼑 P

↭
k− 2,1(x)􏼐 􏼑

� (− x)
2k− 1

x
2

− 2x + 2􏼐 􏼑.
(47)

In a similar way, if k is an odd, we get that
P↭k,1(x) � (− x)2k(x2 + x − 2).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 18. Let |S1| � n, |S2| � 2, n≥ 3 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

P
↭
n,2(x) �

x
2k+1

(x − 1), n � 2k,

(− x)
2k+3

, n � 2k + 1.

⎧⎨

⎩ (48)

Proof. Let n � 3. It is easy to see thatP↭3,2(x) � (− x)5 and for
n � 4, P↭4,2(x) � x5(x − 1). Suppose that k≥ 3 is an odd and
P↭k− 1,2(x) � (− x)2k+1. 'en, A↭k,2 � [c1, c2, . . . , ck+1, ck+2],
where for all i ∈ 3, 5, . . . , k + 2{ }, ci � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

k− times

, 1, 1]t and

where for all i ∈ 4, 6, . . . , k + 1{ }, ci � [1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
k− times

, − 1, − 1]t. It

follows that

P
↭
k,2(x) � det A

↭
k,2 − I(k+2)×(k+2)X􏼐 􏼑 � det B

↭
k,2􏼐 􏼑, (49)

such that B↭k,2 � [bij](k+2)×(k+2), where B↭k,2 � [c1′, c2′, . . . ,

ck+1′ , ck+2′ ], where for all i ∈ 3, 5, . . . , k{ },

ci
′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

(i− 1)− times

, − 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, − 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽
(k− i)− times

, 1, 1]t and for i � k + 2,

ci
′ � [− 1, . . . , − 1􏽼√√√√􏽻􏽺√√√√􏽽

k− times

, 1, 1 − x]t and for all i ∈ 4, 8, . . . , k − 1{ },

ci
′ � [ 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽

(k− 2)− times

, 1 − x􏽼√√􏽻􏽺√√􏽽
(i)th

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
(k− i)− times

, − 1, − 1]t and for i � k + 1,

ci
′ � [1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽

k− times

, − 1 − x, − 1]t. Now, consider

D↭k,2 � (dij)(k+2)×(k+2), where

dij �

bij, j � 1, . . . , k − 2, k + 1, k + 2,

ck
′ + ck− 1′ , j � k − 1,

ck
′ + ck+1′ , j � k.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

'us, D↭k,2 � [c1′, c2′, . . . , ck− 2′ , ck− 1″, ck
″, ck+1′ , ck+2′ ], where

ck− 1″ � [ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, − x, − x, 0, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 2)− times

, 1, 1, 0, 0]t

and ck
″ � [ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽

(k− 1)− times

, − x, − x, 0]t � (− x)[ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
(k− 1)− times

, 1, 1, 0]t.

Based on induction assumption and computations of de-
terminant based on column c′

′
k in matrix D↭k,2 , we have

P
↭
k,2(x) � det D

↭
k,2 − I(k+2)×(k+2)X􏼐 􏼑 � x

2
􏼐 􏼑 P

↭
k− 2,2(x)􏼐 􏼑 � (− x)

2k+3
.

(51)

In a similar way, if k is an even, we get that
P↭k,2(x) � x2k+1(x − 1).

(ii) and (iii) 'ey are clear by item (i) and (ii). □

Theorem 19. Let |S1| � n, |S2| � 3, n≥ 2 and S1↭ S2 of type
[− , +, − , +, . . .]. 8en,

P
↭
n,3(x) �

− x
2k+1

x
2

− 2x + 2􏼐 􏼑, n � 2k,

x
2k+2

x
2

+ x − 2􏼐 􏼑, n � 2k + 1.

⎧⎪⎨

⎪⎩
(52)

Proof. It is similar to 'eorem 18. □

Corollary 5. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [− , +, − , +, . . .]. If m is an odd, then,
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(i) P↭n,m(x)�
− x

2k+m− 2
(x

2
− 2x+2) n�2k(k≥1)

x
2k+m− 1

(x
2
+x − 2) n�2k+1(k≥1)

􏼨 ,

(ii) If n is an odd, then, Spec (A↭n,m) �

0 − 2 1
n + m − 2 1 1􏼠 􏼡,

(iii) If n is an even, then, Spec (A↭n,m ) �

0 1 + i 1 − i

n + m − 2 1 1􏼠 􏼡,

(iv) 􏽐x∈E(An,m)x≠ 0.

Corollary 6. Let |S1| � n, |S2| � m, n≥ 2, m≥ 1 and S1↭ S2
of type [− , +, − , +, . . .]. If m is an even, then,

(i) P↭n,m(x) �
x
2k+m− 1

(x − 1) n � 2k(k≥ 1)

− (x
2k+m+1

) n � 2k + 1(k≥ 1)
􏼨 ,

(ii) If n is an odd, then, Spec (A↭n,m) �
0

n + m
􏼠 􏼡,

(iii) If n is an even, then, Spec (A↭n,m) �
0 1

n + m − 1 1􏼠 􏼡,
(iv) 􏽐x∈E(An,m)x≠ 0.

4. Conclusions and Future Works

'e current paper has introduced a novel concept of
superhypergraphs as a generalization of graphs. 'e ad-
vantage of the notation of superhypergraphs is that it
considers the relationship between a set of elements sepa-
rately and as a whole, and this helps to eliminate the defects
of graphs and superhypergraphs. 'e notation of super-
hypergraphs can be useful tools inmodeling the real issues in
engineering sciences and other sciences, especially network-
related issues. For any given superhypergraph, the lower and
upper bound of the number of the set of their superedges is
computed and so it is computed and proved the number of
all superhypergraphs constructed on any given nonempty
set. Polynomial characteristics and eigenvalues of a matrix
that represents a superhypergraph can provide useful in-
formation about the superhypergraph. 'e concept of the
incidence matrix of superhypergraphs is presented and the
characteristic polynomial of the incidence matrix of
superhypergraphs and spectrum of superhypergraphs is
analyzed and computed. It is shown that the spectrum of
superhypergraphs depended on to flows of their maps be-
tween supervertices and the spectrum of superhypergraphs
varies with the change of direction of flows. We presented
and computed the spectrum of superhypergraphs with some
types of flows such as one-sided flows, left to the right flows,
right to left flows, and two-sided reverse flows. We hope that
these results are helpful for further studies in the theory of
graphs, hypergraphs, and superhypergraphs. In our future
studies, we hope to obtain more results regarding domi-
nation sets and domination numbers of superhypergraphs,
fuzzy superhypergraphs, and obtain some results in this
regard and their applications in the real-world.
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Plithogenic Probability & Statistics are generalizations 
of MultiVariate Probability & Statistics 

Florentin Smarandache 

Abstract: In this paper we exemplify the types of Plithogenic Probability and respectively Plithogenic 

Statistics. Several applications are given. 

The Plithogenic Probability of an event to occur is composed from the chances that the event occurs 

with respect to all random variables (parameters) that determine it. Each such a variable is described 

by a Probability Distribution (Density) Function, which may be a classical, (T,I,F)-neutrosophic, 

I-neutrosophic, (T,F)-intuitionistic fuzzy, (T,N,F)-picture fuzzy, (T,N,F)-spherical fuzzy, or (other

fuzzy extension) distribution function.

The Plithogenic Probability is a generalization of the classical MultiVariate Probability.

The analysis of the events described by the plithogenic probability is the Plithogenic Statistics.

Keywords: MultiVariate Probability; MultiVariate Statistics; Plithogenic Probability; Plithogenic 

Refined Probability; Plithogenic Statistics; Plithogenic Refined Statistics; Neutrosophic Data; 

Neutrosophic Sample, Neutrosophic Population, Neutrosophic Random Variables; Plithogenic 

Variate Data 

1. Introduction

The Plithogeny, as generalization of Dialectics and Neutrosophy, and then its applications to Plithogenic 

Set/Logic/Probability/Statistics (as generalization of fuzzy, intuitionistic fuzzy, neutrosophic 

set/logic/probability/statistics) [1, 2] were introduced by Smarandache in 2017. 

 Plithogeny is the genesis or origination, creation, formation, development, and evolution of 

new entities from dynamics and organic fusions of contradictory and/or neutrals and/or 

non-contradictory multiple old entities. 

Plithogenic means what is pertaining to plithogeny. Etymologically, plitho-geny comes from: 

(Gr.) πλήθος (plithos) = crowd, many while -geny < (Gr.) -γενιά (-geniá) = generation, the 

production of something 

2. Neutrosophic (or Indeterminate) Data

Neutrosophic (or Indeterminate) Data is a vague, unclear, incomplete, partially unknown,

conflicting indeterminate data. The neutrosophic data can be metrical, or categorical, or both.

Plithogenic Variate Data summarizes the associations (or inter-relationships) between 

Neutrosophic variables. While Neutrosophic Variable is a variable (or function, operator), that

deals with neutrosophic data) either in its arguments or in its values, or in both. The problem to 

solve may have many dimensions, therefore multiple measurements and observations are needed 

since there are many sides to the problem, not only one. Neutrosophic variables may be: 

dependent;  independent; or partially dependent, partially independent, and partially

indeterminate.

Florentin Smarandache (2021). Plithogenic Probability & Statistics are generalizations of MultiVariate 
Probability & Statistics. Neutrosophic Sets and Systems 43, 280-289
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(i.e. unknown if dependent or independent). The data’s attributes (features, functions etc.) are 

investigated by survey-based techniques within the frame of Neutrosophic Conjoint Analysis 

(which includes the choice based conjoint and the adaptive choice-based conjoint.) Indeterminacy 

may occur at the level of attributes as well. We may thus deal with neutrosophic (indeterminate, 

unclear, partially known etc.) attributes [3-14]. 

3. Classical MultiVariate Analysis vs. Plithogenic Variate Analysis

The Classical MultiVariate Analysis (MVA) studies a system, which is characterized by many 

variables, or one may call it a system-of-systems. The variables, i.e. the subsystems, and the system 

as a whole are also classical (i.e. they do not deal with indeterminacy). Many classical measurements 

are needed, and the classical relations between variables to be determined. This system-of-systems is 

generally represented by a surrogate approximate model. 

The Plithogenic Variate Analysis (PVA) is an extension of of the classical MultiVariate 

Analysis, where indeterminate data or procedures, that are called neutrosophic data and 

respectively neutrosophic procedures, are allowed. Therefore PVA deals with neutrosophic/ 

indeterminate variables, neutrosophic/indeterminate subsystems, and neutrosophic/indeterminate 

system-of-systems as a whole. 

Therefore the Plithogenic Variate Analysis studies a neutrosophic/indeterminate system as a 

whole, characterized by many neutrosophic/indeterminate variables (i.e. 

neutrosophic/indeterminate sub-systems), and many neutrosophic/indeterminate relationships. 

Hence many neutrosophic measurements and observations are needed. 

The Plithogenic Variate Analysis requires complex computations, hence it is more complicated 

than the Classical MultiVariate Analysis due to the neutrosophic (indeterminate) data it deals with; 

nonetheless the PVA better reflects our world, giving results nearer to real-life situation. With the 

dramatic increase of computers power this complexity is overcome. 

The Plithogenic Variate Analysis elucidates each attribute of the data, using various methods, 

such as: regression/factor/cluster/path/discriminant/latent (trait or profile)/multilevel analysis / 

structural equation/recursive partition/redundancy/ constrained correspondence/ artificial neural 

networks, multidimensional scaling, and so on. 

The Plithogenic UniVariate Analysis (PUVA) comprises the procedures for analysis of 

neutrosophic/indeterminate data that contains only one neutrosophic/indeterminate variable. 

4. Plithogenic Probability

The Plithogenic Probability of an event to occur is composed from the chances that the event 

occurs with respect to all random variables (parameters) that determine it. 

The Plithogenic Probability, based on Plithogenic Variate Analysis, is a multi-dimensional 

probability (“plitho” means “many”, synonym with “multi”). We may say that it is a probability of 

sub-probabilities, where each sub-probability describes the behavior of one variable. We assume that 

the event we study is produced by one or more variables. 

Each variable is represented by a Probability Distribution (Density) Function (PDF). 

5. Subclasses of Plithogenic Probability are:

(i) If all PDFs are classical, then we have a classical MultiVariate Probability.

(ii) If all PDFs are in the neutrosophic style, i.e. of the form (T, I, F),

where T is the chance that the event occurs,  

I is the indeterminate-chance of the event to occur or not, 

and F is the chance that the event do not occur, with T, I, F  [0, 1], 0 ≤ T+I+F ≤ 3, 

     then we have a Plithogenic Neutrosophic Probability. 

(iii) If all PDFs are indeterminate functions (i.e. functions that have indeterminate data in their

arguments, or in their values, or in both), 
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then we have a Plithogenic Indeterminate Probability. 

(iv) If all PDFs are Intuitionistic Fuzzy in the form of (T, F),

where T is the chance that the event occurs, 

and F is the chance that the event do not occur, with T, F  [0, 1], 0 ≤ T+ F ≤ 1, 

      then we have a Plithogenic Intuitionistic Fuzzy Probability. 

(v) If all PDFs are in the Picture Fuzzy Set style, i.e. of the form (T, N, F),

where T is the chance that the event occurs,  

N is the neutral-chance of the event to occur or not, 

and F is the chance that the event do not occur, with T, N, F  [0, 1], 0 ≤ T+N+F ≤ 1, 

     then we have a Plithogenic Picture Fuzzy Probability. 

(vi) If all PDFs are in the Spherical Fuzzy Set style, i.e. of the form (T, H, F),

where T is the chance that the event occurs,  

H is the neutral-chance of the event to occur or not, 
and F is the chance that the event do not occur, with T, H, F  ≤ T2+H2+F2 ≤ 1,      

then we have a Plithogenic Spherical Fuzzy Probability.

(vii) In general, if all PDFs are in any (fuzzy-extension set) style,

then we have a Plithogenic (fuzzy-extension) Probability. 

(viii) If some PDFs are in one of the above styles, while others are in different styles,
then we have a Plithogenic Hybrid Probability.

6. Plithogenic Refined Probability

The most general form of probability is Plithogenic Refined Probability, when the components 

of T (Truth = Occurrence), I (Indeterminate-Occurrence), and F (Falsehood-NonOccurrence) are 

refined/split into sub-components:  T1, T2, …, Tp (sub-truths = sub-occurrences) and I1, I2, …, Ir 

(sub-indeterminate-occurrences), and F1, F2, …, Fs (sub-falsehoods = sub-nonoccurrences), where p, 

r, s ≥  0 are integers, and p + r + s ≥ 1. 

All the above sub-classes of plithogenic probability may be refined this way. 

7. Convergence from MultiVariate to UniVariate Analysis

In order to be able to make a decision, we need to convert from Plithogenic (MultiVariate) 

Probability and Statistics to Plithogenic UniVariate Probability and Statistics. Actually we need to 

fusion (combine) all variables and obtain a single cumulative variable.

The Classical Probability Space is complete, i.e. all possible event that may occur are known. 

For example, let’s consider a soccer game between teams A and B. The classical probability 

space is CPS = {A wins, tie game, B wins}. 

The Neutrosophic Probability Space is in general incomplete, i.e. not all possible events are 

known, and there also are events that are only partially known. In our world, most real probability 

spaces are neutrosophic. 

Example. Considering the same soccer game, the neutrosophic probability space NPS = {A wins, 

tie game, B wins, interrupted game, etc.}, “interrupted” means that due to some unexpected weather 

conditions, or to a surprising terrorist attack on the stadium, etc. the game is interrupted and 

rescheduled (this has happened in our world many times).  

Let’s assume an event E in a given (classical or neutrosophic) probability space is determined by 

n ≥ 2 variables v1, v2, …, vn, and we denote it as E(v1, v2, …, vn).  The multi-variate probability of the 

event E to occur, denoted by MVP(E), depends on many probabilities, i.e. on the probability that the 

event E occurs with respect to variable v1, denoted by P1(E(v1)), on the probability that the event E 

occurs with respect to variable v2, denoted by P2(E(v2)), and so on. 

Therefore, MVP(E(v1, v2, …, vn)) = (P1(E(v1)), P2(E(v2)), …, Pn(E(vn))). 

The variables v1, v2, …, vn, and the probabilities P1, P2, …, Pn, may be classical, or having some degree 

of indeterminacy. 

[0,1] , 0
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In order to convert from multi-probability to uni-probability, we apply various logical operators 

(conjunctions, disjunctions, negations, implications, etc. and their combinations, depending on the 

application to do and on the expert) on the multi-probability. 

Such applications are presented towards the end of the paper. 

7. Plithogenic Statistics

Plithogenic Statistics (PS) encompasses the analysis and observations of the events studied by 

the Plithogenic Probability. 

Plithogenic Statistics is a generalization of classical MultiVariate Statistics, and it is a 

simultaneous analysis of many outcome neutrosophic/indeterminate variables, and it as well is a 

multi-indeterminate statistics. 

8. Subclasses of Plithogenic Statistics are:

- MultiVariate Statistics

- Plithogenic Neutrosophic Statistics

- Plithogenic Indeterminate Statistics

- Plithogenic Intuitionistic Fuzzy Statistics

- Plithogenic Picture Fuzzy Statistics

- Plithogenic Spherical Fuzzy Statistics

- and in general: Plithogenic (fuzzy-extension) Statistics

- and Plithogenic Hybrid Statistics.

9. Plithogenic Refined Statistics are, similarly, the most general form of statistics that studies the

analysis and observations of the events described by the Plithogenic Refined Probability.

10. Applications of Plithogenic Probability

We retour our 2017 example [1] and pass it through all sub-classes of Plithogenic Probability.

In the Spring 2021 semester, at The University of New Mexico, United States, in a program of 

Electrical Engineering, Jenifer needs to pass four courses in order to graduate at the end of the 

semester: two courses of Mathematics (Second Order Differential Equations, and Stochastic 

Analysis), and two courses of Mechanics (Fluid Mechanics and Solid Mechanics). What is the 

Plithogenic Probability that Jenifer will graduate? 

Her chances of graduating are estimated by the university’s advisors. 

There are four variables (courses), v1, v2, v3, v4 respectively, that generate four probability 

distributions. We consider the discrete probability distribution functions.  

[ For the continuous ones, it will be similar. ] 

10.1. Classical MultiVariate Probability (CMVP) 

The advisers have estimated that CMVP(Jenifer) = (0.5, 0.6, 0.8, 0.4), 

which means that Jenifer has 50% chance to pass the Second Order Differential Equations class, 

60% chance of passing the Stochastic Analysis class (both as part of Mathematics), and 80% chance of 

passing the Fluid Mechanics class, and 40% chance of passing the Solid Mechanics class (both as part 

of Mechanics). 

Since she has to pass all four classes, Jenifer’s chance of graduating is min{0.5, 0.6, 0.8, 0.4} = 0.4 

or 40% chance. 

10.2 Plithogenic Neutrosophic Probability 

PNP(Jenifer) = ((0.5, 0.9, 0.2), (0.6, 0.7, 0.4); (0.8, 0.2, 0.1), (0.4, 0.3, 0.5)), 

which similarly means that : 

Jenifer’s chance to pass the Second Order Differential Equations class is 50%, and the 

indeterminate chance is 90%, and the chance to fail it is 20%. Similarly for the other three classes.  
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In conclusion: (min{0.5, 0.6, 0.8, 0.4}, max{0.9, 0.7, 0.2, 0.3}, max{0.2, 0.4, 0.1, 0.5}) = (0.4, 0.9,

0.5). 

10.3. Plithogenic Indeterminate Probability 

PIP(Jenifer) = ([0.4, 0.5], 0.2 or 0.4, 0.1 or unknown) 

which unclear information, i.e. chance of graduating is between [40%, 50%], 20% or 40% is
indeterminate-chance of graduating, and chance of not graduating is 10% or unknown (i.e. the

advisors were not able to estimate it well).  

10.4. Plithogenic Intuitionistic Fuzzy Probability (PIFP) provides more information 

PIFP(Jenifer) = ((0.5, 0.2), (0.6, 0.4); (0.8, 0.1), (0.4, 0.5)), 

which means that Jenifer has 50% chance to pass the Second Order Differential Equations class, 

and 20% chance to fail it. And similarly for the other three classes.  

In conclusion: ((min{0.5, 0.6, 0.8, 0.4), max{0.2, 0.4, 0.1, 0.5}) = (0.4, 0.5). 

10.5. Plithogenic Picture Fuzzy Probability (PPFP) brings even more information 

PPFP(Jenifer) = ((0.5,0.1, 0.2), (0.6, 0.0, 0.4); (0.8, 0.1, 0.1), (0.4, 0.0, 0.5)), 

which means that Jenifer’s chance to pass the Second Order Differential Equations class is 50%, 

and 10% neutral chance, and 20% chance to fail it. Similarly for the other three classes.  

In conclusion: PSFP(Jenifer) = ((min{0.5, 0.6, 0.8, 0.4), max{0.1, 0.0, 0.1, 0.0}, max{0.2, 0.4, 0.1, 0.5}) 

= (0.4, 0.1, 0.5). 

10.6. Plithogenic Spherical Fuzzy Probability (PSFP) enlarges the value spectrum of the previous 

one  

PSFP(Jenifer) = ((0.5, 0.3, 0.2), (0.6, 0.5, 0.4); (0.8, 0.3, 0.1), (0.4, 0.6, 0.5)), 

with the same meaning as the previous one. 

In conclusion: PSFP(Jenifer) = ((min{0.5, 0.6, 0.8, 0.4), max{0.3, 0.5, 0.3, 0.6}, max{0.2, 0.4, 0.1, 0.5}) 

= (0.4, 0.6, 0.5). 

10.7. Plithogenic Hybrid Probability (PHP) 

PHP(Jenifer) = ( 0.5; (0.7, 0.1, 0.4); (0.1, 0.2); 0.4 or 0.3 ), 

which means that Jenifer has 50% chance to pass the Second Order Differential Equations class; 

70% chance of passing and 10% indeterminate-chance and 40% chance of failing the Stochastic 

Analysis class (both as part of Mathematics); and 10% chance of passing and 20% of failing the Fluid 

Mechanics class; and 40% or 30% chance of passing the Solid Mechanics class (both as part of 

Mechanics). 

We have mixed herein: the fuzzy, neutrosophic, intuitionistic fuzzy, and indeterminate above 

cases. 

Or PHP(Jenifer) = ((0.5, 0.0, 0.0); (0.7, 0.1, 0.4); (0.1, 0.7, 0.2); (0.4 or 0.3, 0.0, 0.0)), since for the 

intuitionistic fuzzy the hesitancy is : 1 – 0.1 – 0.2 = 0.7. 

In conclusion: PHP(Jenifer) = ((min{0.5, 0.7, 0.1, 0.4 or 0.3), max{0.0, 0.1, 0.7, 0.0}, max{0.0, 0.4, 

0.2, 0.0}) = (0.1, 0.7, 0.4). 

10.8. Plithogenic Refined Probability (PRP) 

Let’s assume that for each class, Jenifer has to pass an oral test and a written test. Therefore T,I,F 

are refined/split into:  

T1(oral test), T2(written test); 

I1(oral test), I2(written test);  
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F1(oral test), F2(written test). 

Then, we may have, as an example: 

PRP(Jenifer) = (((0.5, 0.6), (0.4, 0.7), (0.1, 0.2)), 

 ((0.6, 0.8), (0.0, 0.7), (0.3, 0.4)), 

 ((0.8, 0.8), (0.1, 0.2), (0.1, 0.0)), 

 ((0.3, 0.7), (0.2, 0.3), (0.5, 0.4))), 

which means : 

with respect to the first class,  

Jenifer’s chance to pass the oral test is 50% and the written test is 60%;  

indeterminate-chance to pass the oral test is 40% and the written test is 70%; 

and chance not to pass the oral test is 10% and the written test 20%. 

Similarly for the other classes. 

11. Converging/Transforming from MultiVariate to UniVariate Analysis

11.1. From Classical MultiVariate Probability (CMVP) to UniVariate Probability 

(i) Since Jenifer has to pass all four classes, we use the conjunction operator: 1 2 3 4v v v v   .

In this case it is fuzzy conjunction (t-norm). 

Therefore, Jenifer’s chance of graduating is CMVP(Jenifer) = min{0.5, 0.6, 0.8, 0.4} = 0.4, or 40% 

chance.  

(ii) Let’s change the example and assume that for Jenifer to graduate she needs to pass at least

one class among the four. Now we use the disjunction operator: 1 2 3 4v v v v   or fuzzy

disjunction (t-conorm). Therefore, Jenifer’s chance of graduating is CMVP(Jenifer) = max{0.5, 0.6, 0.8, 

0.4} = 0.8, or 80% chance. 

(iii) Let’s change again the example and assume that for Jenifer to graduate she needs to pass

at least one class of Mathematics and at least one class of Mechanics. Then, we use a mixture of 

conjunctions and disjunctions: CMVP(Jenifer) = 1 2 3 4( ) ( )v v v v   = min{max{v1, v2}, max{v3, v4}} 

= min{max{0.5, 0.6}, max{0.8, 0.4}} = min{0.6, 0.8} = 0.6, or 60% chance. 

11.2 From Plithogenic Neutrosophic Probability (PNP) to UniVariate Neutrosophic Probability 

In conclusion: PNP(Jenifer) = ((min{0.5, 0.6, 0.8, 0.4), max{0.9, 0.7, 0.2, 0.3}, max{0.2, 0.4, 0.1, 0.5}) 

= (0.4, 0.9, 0.5). 

11.3. This Plithogenic Indeterminate Probability happens to be a UniVariate Indeterminate 

Probability 

Therefore, no converting (or transformation) needed. 

PIP(Jenifer) = ([0.4, 0.5], 0.2 or 0.4, 0.1 or unknown) 

with unclear information, i.e. chance of graduating is between [40%, 50%], 20% or 40% 

indeterminate-chance of graduating, and chance of not graduating is (10% or unknown – i.e. the 

advisors were not able to estimate it well).  

11.4. From Plithogenic Intuitionistic Fuzzy Probability (PIFP) to UniVariate Intuitionistic Fuzzy 

Probability 

In conclusion: PIPF(Jenifer) = ((min{0.5, 0.6, 0.8, 0.4), max{0.2, 0.4, 0.1, 0.5}) = (0.4, 0.5), which 

means that chance of graduating is 40%, and chance of not graduating 50%. 

11.5. From Plithogenic Picture Fuzzy Probability (PPFP) to UniVariate Picture Fuzzy Probability 

In conclusion: PSFP(Jenifer) = ((min{0.5, 0.6, 0.8, 0.4), max{0.1, 0.0, 0.1, 0.0}, max{0.2, 0.4, 0.1, 0.5}) 

= (0.4, 0.1, 0.5), or 40% chance to graduate, 10% neutral chance, and 50% chance not to graduate. 

Florentin Smarandache (author and editor) Collected Papers, XIII

550



11.6. From Plithogenic Spherical Fuzzy Probability (PSFP) to UniVariate Spherical Fuzzy 

Probability 

In conclusion: PSFP(Jenifer) = ((min{0.5, 0.6, 0.8, 0.4), max{0.3, 0.5, 0.3, 0.6}, max{0.2, 0.4, 0.1, 0.5}) 

= (0.4, 0.6, 0.5), or 40% chance to graduate, 60% hesitant chance, and 50% chance not to graduate. 

11.7. From Plithogenic Hybrid Probability (PHP) to UniVariate Hybrid Probability 

In conclusion: PHP(Jenifer) = ((min{0.5, 0.7, 0.1, 0.4 or 0.3), max{0.0, 0.1, 0.7, 0.0}, max{0.0, 0.4, 

0.2, 0.0}) = (0.1, 0.7, 0.4). 

10.8. From Plithogenic Refined Probability (PRP) to UniVariate Refined Probability ??? 

Taking min of T1’s, min T2’s, and max of I1’s, max of I2’s, and max of F1’s, F2’s, one gets:  

PRP(Jenifer) = ((0.3, 0.6), (0.4, 0.7), (0.5, 0.4)). 

Whence, Jenifer’s chance, with respect to all classes,  

to pass the oral test is 30% and the written test is 60%;  

indeterminate-chance to pass the oral test is 40% and the written test is 70%; 

and chance not to pass the oral test is 50% and the written test 40%. 

But, with respect to graduation, we use again the fuzzy conjunction: 

PRP(Jenifer) = (min{0.3, 0.6}, max{0.4, 0.7}, max{0.5, 0.4}) = (0.3, 0.7, 0.5), or  

Jenifer’s chance to graduate is 30%, indeterminate-chance of graduating 70%, and 50% chance 

not to graduate. 

11. Corresponding Applications of Plithogenic Statistics

A prospective is made on the university student population, that was enrolled this semester, in

order to determine the chance of the average students to graduate. 

Let’s take a random sample of the university’s student population in order to investigate what’s 

the chance of graduating for an enrolled average student. 

By inference statistics, we estimate the population’s average student to be similar to the sample’s 

average student. 

We may have a classical random sample, i.e. the sample size is known and all sample 

individuals belong 100% of the population - i.e. the individuals are full-time students; or a 

neutrosophic random sample {i.e. the sample size may be unknown or only approximately known), 

and some or all individuals may only partially belonging to the population (for example part-time 

students), or may have taken some extra classes above the norm. 

Even the university’s student population is a neutrosophic population, since the number of 

students changes almost continuously (some students drop, others enroll earlier or later), and not all

students are 100% enrolled: there are full-time, part-time, and even over-time (i.e. students

enrolled in more than the required full time number or credit hour classes).
In a classical population, the population size is known, and all population individuals belong 

100% to the population. 

Let T = truth, with T belongs to [0,1], be the chance to graduate, I = indeterminate, with I belongs 

to [0,1], be the indeterminate-chance to graduate, and F = falsehood, with F belongs to [0,1], be the 

chance not to graduate, where 0 ≤ T + I + F ≤ 3.   

Let’s assume, the classical or neutrosophic random sample has the size n ≥ 2, and a student Sj, 1 

≤ j ≤ n, has the plithogenic neutrosophic probabilty of (graduating, indeterminate-graduating, not 

graduating), respectively (Tj, Ij, Fj), with all Tj, Ij, Fj belong to [0, 1], 0 ≤ Tj + Ij + Fj ≤ 3.  

Make the average of all sample students, assuming the sample size is n ≥ 2, 

1 1 1 1

1 1 1 1( , , ) ( , , )
n n n n

j j j j j j
j j j j

T I F T I F
n n n n= = = =

=    . 
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For the Plithogenic Refined Neutrosophic Probabilities, the average is a straight-forward 

extension. Let the student Sj, 1 ≤ j ≤ n, have the Plithogenic Refined Neutrosophic Probability:  

PRNP(Sj) = 1 2 1 2 1 2( ( ), ( ),..., ( ); ( ), ( ),..., ( ); ( ), ( ),..., ( ))p r sT j T j T j I j I j I j F j F j F j
where p, r, s ≥ 0 are integers, and p + r + s ≥ 1. 

The refined neutrosophic sub-components with index 0, such as 0 0 0( ), ( ), ( )T j I j F j , if any, are

discarded.  

All refined neutrosophic sub-components 

( ),1 k  p, ( ),1   r, ( ),1   s,k l mT j I j l F j m      are single-valued in [0, 1]. 

Then, the average of PRNPs of the sample students is: 

( )j 1 2 1 2 1 2
1 1

1 1PRNP S ( ( ), ( ),..., ( ); ( ), ( ),..., ( ); ( ), ( ),..., ( ))
n n

p r s
j j

T j T j T j I j I j I j F j F j F j
n n= =

= 

= 

1 2 1 2 1 2
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1( ( ), ( ),..., ( ); ( ), ( ),..., ( ); ( ), ( ),..., ( ))
n n n n n n n n n

p r s
j j j j j j j j j

T j T j T j I j I j I j F j F j F j
n n n n n n n n n= = = = = = = = =
        

And we get the sample average students’ plithogenic refined probability to (graduate, 

indeterminate graduate, not graduate).  

For the cases when one or two among T, I, F are missing, we simply discard them. 

An average student is not among the best, not among the worst.  

Let’s consider Jenifer is an average student, whose plithogenic probabilities have been obtained 

after sampling and computing the average of plithogenic probabilities of all its students - since we 

have already her data. 

Considering the inference statistics, we simply substitute Jenifer by average student. 

We consider the simplest case when T,I,F are single-valued neutrosophic (SVN) components in 

[0,1]. But the cases when T,I,F are hesitant-valued (finite discrete subsets of [0,1]) neutrosophic HVN 

components, or interval-valued included in [0,1] neutrosophic (IVN) component, or in general 

subset-valued included in [0,1] neutrosophic (SVN) components.  

10.1. Classical MultiVariate Statistics (CMVS) 

Since the average student has to pass all four classes, his chance of graduating is min{0.5, 0.6, 

0.8, 0.4} = 0.4 or 40% chance. In conclusion: CMVS(average student) = 0.4. 

10.2. Plithogenic Neutrosophic Statistics (PNS) 

In conclusion: PNP(average student) = ((min{0.5, 0.6, 0.8, 0.4), max{0.9, 0.7, 0.2, 0.3}, max{0.2, 0.4, 

0.1, 0.5}) = ((0.4, 0.9, 0.5)). 

An average student has 40% chance to graduate, 90% indeterminate chance of graduating, and 

50% chance not to graduate. 

10.3. Plithogenic Indeterminate Statistics 

An average student has (40% or 50%) chance of graduating, 90% indeterminate chance of 

graduating, and (50% or unknown) chance of not graduating. 

10.4. Plithogenic Intuitionistic Fuzzy Statistics 

An average student has 40% chance to graduate and 50% chance not to graduate. 
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An average student has 40% chance to graduate, 10% indeterminate chance to graduate, and 

50% chance not to graduate. 

10.6. Plithogenic Spherical Fuzzy Statistics 

An average student has 40% chance to graduate, 60% indeterminate chance of graduating, and 

50% chance not to graduate.  

10.7. Plithogenic Hybrid Statistics 

An average student has 40% chance to graduate, 60% indeterminate chance of graduating, and 

50% chance not to graduate.  

10.8. Plithogenic Refined Statistics 

An average student’s chance to graduate is 30%, indeterminate-chance of graduating 70%, and 

50% chance not to graduate. 

11. Conclusion

We have presented in this paper many types of Plithogenic Probability and corresponding Plithogenic

Statistics, together with some application. 

The Plithogenic Probability of an event to occur is composed from the chances that the event 

occurs with respect to all random variables (parameters) that determine it. Each such a variable is 

described by a Probability Distribution (Density) Function, which may be a classical, 

(T,I,F)-neutrosophic, I-neutrosophic, (T,F)-intuitionistic fuzzy, (T,N,F)-picture fuzzy, 

(T,N,F)-spherical fuzzy, or (other fuzzy extension) distribution function. 

The Plithogenic Probability is a generalization of the classical MultiVariate Probability. 

The analysis of the events described by the plithogenic probability constitutes the Plithogenic 

Statistics. 
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Plithogeny, Plithogenic Set, Logic, Probability, and Statistics: 
A Short Review

Florentin Smarandache

Abstract: In this paper, one recalls our 2017 concepts of plithogeny and its derivative applications in set theory, logic, probability, and
statistics. The plithogenic set, plithogenic logic, plithogenic probability, and plithogenic statistics are presented again.

Keywords: plithogeny; plithogenic set; plithogenic logic; plithogenic probability; plithogenic statistics

1. Etymology of Plithogeny

Plithogeny etymologically comes from: (Gr.) πλήθος
(plithos) = crowd, large number of, multitude, plenty of, and
-geny < (Gr.) -γενιά (-geniá) = generation, the production of
something, and γένeια (géneia) = generations, the production
of something < -γένεση (-génesi) = genesis, origination, creation,
development, according to Translate Google Dictionaries (https://
translate.google.com/) and Webster’s New World Dictionary of
American English, Third College Edition, Simon & Schuster, Inc.,
New York, pp. 562–563, 1988.

Therefore, plithogeny is the genesis or origination, creation,
formation, development, and evolution of new entities from
dynamics and organic fusions of contradictory and/or neutrals
and/or non-contradictory multiple old entities. Plithogenic means
what is pertaining to plithogeny.

2. Plithogenic Set

degrees between attributes’ values, and the first two are linear
combinations of the fuzzy operators’ tnorm and tconorm.

Plithogenic set was introduced by Smarandache in Smarandache
(2017, 2018, 2019, 2020, 2021), and Chavez et al. (2021), and it is a
generalization of the crisp set, fuzzy set, intuitionistic fuzzy set,
and neutrosophic set, since these types of sets are characterized
by a single attribute value (appurtenance): which has one
value (membership) – for the crisp set and fuzzy set, two values
(membership and nonmembership) – for intuitionistic fuzzy set, or
three values (membership, nonmembership, and indeterminacy) –

for neutrosophic set.

2.1. Example

LetP be a plithogenic set, representing the students from a college.
Let x 2 P be a generic student that is characterized by three attributes:

• altitude (a), whose values are {tall, short} = {a1, a2};
• weight (w), whose values are {obese, fat, medium, thin} = {w1,
w2, w3, w4};
and

• hair color, whose values are {blond, reddish, brown} = {h1,
h2, h3}.

The multi-attribute of dimension 3 is

V3 ¼ ai;wj; hk
� �

for all 1 � i � 2; 1 � j � 4; 1 � k � 3
� �

:

Let us say P= {John(a1,w3, h2), Richard(a1,w3, h2)}= {John(tall,
thin, reddish), Richard(tall, thin, reddish}.

From the view point of expert A, one has PA = {John(0.7, 0.2,
0.4), Richard(0.5, 0.8, 0.6)}, which means that, from the view point
of expert A, John’s fuzzy degrees of tallness, thinness, and
reddishness are, respectively, 0.7, 0.2, and 0.4, while Richard’s
fuzzy degrees of tallness, thinness, and reddishness are,
respectively, 0.5, 0.8, and 0.6.

While from the view point of expert B, one has PB= {John(0.8,
0.2, 0.5), Richard(0.3, 0.7, 0.4)}.

A plithogenic set P is a set whose elements are characterized by 
one or more attributes, and each attribute may have many values. Each 
attribute’s value  v has a corresponding degree of appurtenance d(x,v) of  
the element x to the set P, with respect to some given criteria.

In order to obtain a better accuracy for the plithogenic aggregation 
operators, a contradiction (dissimilarity) degree is defined between 
each attribute value and the dominant (most important) attribute value.

However, there are cases when such dominant attribute value 
may not be taken into consideration or may not exist (therefore it 
is considered zero by default), or there may be many dominant 
attribute values. In such cases, either the contradiction degree 
function is suppressed, or another relationship function between 
attribute values should be established.

The plithogenic aggregation operators (intersection, union, 
complement, inclusion, equality) are based on contradiction
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The uni-dimensional attribute contradiction degrees are

c a1; a2ð Þ ¼ 1

c w1; w2ð Þ ¼ 1
3

c w1; w3ð Þ ¼ 2
3

c w1; w4ð Þ ¼ 1

c h1; h2ð Þ ¼ 0:5

c h1; h3ð Þ ¼ 1

Dominant attribute values are a1, w1, and h1 for each corresponding
uni-dimensional attribute a, w, and h, respectively. Let us use the
fuzzy conjunction a ∧F b = ab {where ∧F means fuzzy
conjunction}, and fuzzy disjunction a ∨F b = a + b − ab {where
∨F means fuzzy disjunction}.

We use the notations: ∧P and ∨P to denote the plithogenic
intersection and the plithogenic union, respectively.

Then

ða; b; cÞ ^p ðd; e; f Þ ¼ ðad; ð1=2ÞfðbeÞ þ ðbþ e� beÞg; cþ f � cf Þ
¼ ðad; ðbþ eÞ=2; cþ f � cf Þ:

2.2. A plithogenic application to images

A pixel x may be characterized by colors c1, c2, : : : , cn. We
write x(c1, c2, : : : , cn), where n≥ 1. We may consider the degree
of each color either fuzzy, intuitionistic fuzzy, or neutrosophic.

For example.

Fuzzy degree:

xð0:4; 0:6; 0:1; . . . ; 0:3Þ:

Intuitionistic fuzzy degree:

x 0:1; 0:2ð Þ; 0:3; 0:5ð Þ; 0:0; 0:6ð Þ; . . . ; 0:8; 0:9ð Þð Þ:

Neutrosophic degree:

x 0:0; 0:3; 0:6ð Þ; 0:2; 0:8; 0:9ð Þ; 0:7; 0:4; 0:2ð Þ; . . . ; 0:1; 0:1; 0:9ð Þð Þ:

Then, we can use a plithogenic operator to combine them.

For example:

xð0:4; 0:6; 0:1; . . . ; 0:3Þ ^p xð0:1; 0:7; 0:5; . . . ; 0:2Þ ¼ . . .

We establish first the degrees of contradictions between all colors
ci and cj in order to find the linear combinations of t-norm and
t-conorm that one applies to each color (similar to the
indeterminacy above).

2.3. A plithogenic application to decision-making
problems

Researchers have shown great attention to the decision-
making problem by utilizing the features of the plithogenic set.

For instance, Sankar et al. (2020) presented a TOPSIS approach
to solve the decision-making problems by using plithogenic set.
Abdel-Basset et al. (2021) presented a decision model for
supplier selection problem using the plithogenic set. Rana et al.
(2019) and Ahmad et al. (2020) presented the applications of
the decision-making problems under the environment of
plithogenic hypersoft set. Sujatha et al. (2020) and Martin and
Priya (2021) utilized the plithogenic cognitive map to analyze
the data related to the corona virus. Quek et al. (2020)
presented an entropy measure, while Bala (2020) discussed the
information fusion measures for the plithogenic set. Ahmad
et al. (2021) presented an optimization model for the supply
chain problems by utilizing the neutrosophic set features.

2.4. Extension of the plithogenic set

Since the appearance of the plithogenic set, many researchers
have extended the concept of the plithogenic set to different
environment. For instance, Smarandache (2018a,c) give the formal
definition of the Plithogenic set, which is an extension of the
several existing theories such as crisp, fuzzy, neutrosophic etc.
Later on, Smarandache (2018b) extends the soft set to hypersoft set
and plithogenic hypersoft set. Gayen et al. (2020) presented the idea
of the plithogenic hypersoft subgroup. In 2020, Alkhazaleh (2020)
presented the concept of the plithogenic soft set. Priyadharshini
et al. (2020) presented the concept of the plithogenic cubic set. For
more details about the plithogenic hypersoft set and their
extensions, we refer to read the articles (Martin and Smarandache,
2020, 2020a, 2020b; Rana et al. 2020). Some other application on
the extension of the plithogenic set can be read from the articles
(Selcuk et al. 2020; Alwadani and Ndubisi, 2021; Martin et al., 2021).

3. Plithogenic Probability

Since in plithogenic probability each event E from a probability
space U is characterized by many chances of the event to occur (not
only one chance of the event E to occur: as in classical probability,
imprecise probability, and neutrosophic probability), a plithogenic
probability distribution function, PP(x), of a random variable, x, is
described by many plithogenic probability distribution sub-
functions, where each sub-function represents the chance (with
respect to a given attribute value) that value x occurs, and these
chances of occurrence can be represented by classical, imprecise,
neutrosophic probabilities, and in general any fuzzy-extension
type (depending on the type of degree of a chance).

3.1. Example of plithogenic probabilistic

What is the plithogenic probability that Jenifer will graduate at the
end of this semester in her program of electrical engineering, given that
she is enrolled in and has to pass two courses of Mathematics (Non-
Linear Differential Equations and Stochastic Analysis), and two
courses of Mechanics (Fluid Mechanics, and Solid Mechanics)? We
have four attribute values of plithogenic probability.

According to her adviser, Jenifer’s plithogenic single-valued
fuzzy probability of graduating at the end of this semester is:
J(0.5, 0.6; 0.8, 0.4), which means 50% chance of passing the
Non-Linear Differential Equations class, 60% chance of passing
the Stochastic Analysis class (as part of Mathematics), and 80%
chance of passing the Fluid Mechanics class and 40% chance of
passing the Solid Mechanics class (as part of Physics).

Therefore, the plithogenic probability in this example is
composed of four classical probabilities.
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3.2. Subclasses of Plithogenic Probability
(Smarandache, 2021) are

(i) If all probability distribution functions (PDFs) are classical,
then we have a classical MultiVariate Probability.

(ii) If all PDFs are in the neutrosophic style, that is, of the form
(T, I, F), where T is the chance that the event occurs, I is
the indeterminate chance of the event to occur or not, and
F is the chance that the event does not occur, with T, I,
F 2 [0,1], 0≤ T+ I+ F≤ 3, then we have a Plithogenic
Neutrosophic Probability.

(iii) If all PDFs are indeterminate functions (i.e. functions that
have indeterminate data in the arguments, or in the values,
or in both), then we have a Plithogenic Indeterminate
Probability.

(iv) If all PDFs are Intuitionistic Fuzzy in the form of (T, F), where
T is the chance that the event occurs, and F is the chance that
the event does not occur, with T; F 2 ½0; 1�, 0≤ T+ F≤ 1, then
we have a Plithogenic Intuitionistic Fuzzy Probability.

(v) If all PDFs are in the Picture Fuzzy Set style, that is, of the form
(T, N, F), where T is the chance that the event occurs, N is the
neutral chance of the event to occur or not, and F is the chance
that the event does not occur, with T;N; F 2 ½0; 1�, 0≤ T+N+
F≤ 1, thenwe have aPlithogenic Picture Fuzzy Probability.

(vi) If all PDFs are in the Spherical Fuzzy Set style, that is, of the
form (T, H, F), where T is the chance that the event occurs, H is
the neutral chance of the event to occur or not, and F is the
chance that the event does not occur, with T;H; F 2 ½0; 1�,
0≤ T2+H2+ F2≤ 1, then we have a Plithogenic Picture
Fuzzy Probability.

(vii) In general, if all PDFs are in any (fuzzy-extension set) style,
then we have a Plithogenic (fuzzy-extension) Probability.

(viii) If some PDFs are in one of the above styles, while others are in
different styles, then we have a Plithogenic Hybrid
Probability.

3.3. Plithogenic refined probability

The most general form of probability is Plithogenic Refined
Probability (Smarandache and Smarandache, 2021), when the
components of T (Truth = Occurrence), I (Indeterminate-
Occurrence), and F (Falsehood-NonOccurrence) are refined/split
into sub-components: T1, T2, : : : , Tp (sub-truths = sub-
occurrences) and I1, I2, : : : , Ir (sub-indeterminate-occurrences),
and F1, F2, : : : , Fs (sub-falsehoods = sub-nonoccurrences), where
p, r, s≥ 0 are integers, and at least one of p, r, s is ≥ 2.

All the above sub-classes of plithogenic probability may be
refined this way. In the direction of refined plithogenic set,
Priyadharshini and Nirmala Irudayam (2021) discussed an
approach related to the refined plithogenic neutrosophic set to
solve the decision-making problems.

4. Plithogenic Statistics

As a generalization of classical statistics and neutrosophic
statistics, the plithogenic statistics is the analysis of events
described by the plithogenic probability.

Inneutrosophic statistics,wehave somedegreeof indeterminacy
into the data or into the statistical inference methods. The
neutrosophic probability (and similarly for classical probability and
for the imprecise probability) of an event E to occur is calculated
with respect to the chance of the event E to occur (i.e. it is

calculated with respect to only ONE chance of occurrence), while
the plithogenic probability of an event E to occur is calculated with
respect to MANY chances of the event E to occur (it is calculated
with respect to each event’s attribute/parameter chance of
occurrence). Therefore, the plithogenic probability is a multi-
probability (i.e. multi-dimensional probability) – unlike the
classical, and probabilities may be of any type, such as classical,
imprecise, neutrosophic, and any other fuzzy-extension type that
are uni-dimensional probabilities. Recently, Singh (2020) utilized
the plithogenic set to study the multi-variate data.

4.1. Example of plithogenic statistics

Let us consider the previous example of plithogenic probability
that Jenifer will graduate at the end of this semester in her program of
electrical engineering. Instead of defining only one probability
distribution function (and drawing its curve), we do now draw
four probability distribution functions (and draw four curves),
when we consider the neutrosophic distribution as a uni-
dimensional neutrosophic function. Therefore, plithogenic
statistics is a multivariate statistics.

5. Conclusion

We have recalled the 2017 plithogenic set, logic, probability,
and statistics of an event that is composed from the chances that the
event occurs with respect to all random variables (parameters)
that determine it. Each such a variable is described by a pro-
bability distribution (density) function, which may be a classical,
(T, I, F)-neutrosophic, I-neutrosophic, (T, F)-intuitionistic fuzzy,
(T, N, F)-picture fuzzy, (T, N, F)-spherical fuzzy, or (other
fuzzy extension) distribution function.

Plithogenic statistics is the analysis of the events described
by the plithogenic probability. Several examples were provided.
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Indeterminate masses, elements and models 
in information fusion 

Abstract: In this paper at the beginning, we make a short history of the logics, from the classical 
Boolean logic to the most general logic of today neutrosophic logic. We define the general logic space 
and give the definition of the neutrosophic logic. Then we introduce the indeterminate models in 
information fusion, which are due either to the existence of some indeterminate elements in the 
fusion space or to some indeterminate masses. The best approach for dealing with such models is the 
neutrosophic logic, which is part of neutrosophy. Neutrosophic logic is connected with 
neutrosophic set and neutrosophic probability and statistics. 

Keywords: neutrosophic logic; indeterminacy; indeterminate model; indeterminate element; 
indeterminate mass; indeterminate fusion rules; DSmT; DST; TBM. 

1 Introduction 

Let Θ be a frame of discernment, defined as: 

{ }1 2, , ..., , 2,Θ = ≥n nφ φ φ  (1) 

and its Super-Power Set (or fusion space): 

( , , , )Θ Θ ∪ ∩ CS  (2) 

which means the set Θ closed under union, intersection, and 
respectively complement. 

As an alternative to the existing logics we have 
proposed the neutrosophic logic (NL) to represent a 
mathematical model of uncertainty, vagueness, ambiguity, 
imprecision, undefined, unknown, incompleteness, 
inconsistency, redundancy, contradiction. It is a 
non-classical logic. NL and neutrosophic set are 
consequences of the neutrosophy. 

Neutrosophy is a new branch of philosophy, which 
studies the origin, nature, and scope of neutralities, as well 
as their interactions with different ideational spectra. 

A logic in which each proposition is estimated to have 
the percentage of truth in a subset T, the percentage of 
indeterminacy in a subset I, and the percentage of falsity in 
a subset F, where T, I, F are defined above, is called NL. 

(T, I, F) truth-values, where T, I, F are standard or 
non-standard subsets of the non-standard interval ]–0, 1+[, 
where ninf = inf T + inf I + inf F ≥ –0, and nsup = sup T + 
sup I + sup F ≤ 3+. Statically T, I, F are subsets, but 
dynamically T, I, F are functions/operators depending on 
many known or unknown parameters. 

The truth, indeterminacy and falsity can be 
approximated: for example, a proposition is between 30% to 
40% true and between 60% to 70% false, even worst: 
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between 30% to 40% or 45% to 50% true (according to 
various analysers), and 60% or between 66% to 70% false. 

The subsets are not necessary intervals, but any sets 
(discrete, continuous, open or closed or half-open/half-
closed interval, intersections or unions of the previous sets, 
etc.) in accordance with the given proposition. 

Statically T, I, F are subsets, but dynamically they are 
functions/operators depending on many known or unknown 
parameters. 

The classical logic, also called bivalent logic for taking 
only two values {0, 1}, or Boolean logic from British 
mathematician George Boole (1815–1964), was named by 
the philosopher Quine (1981) ‘sweet simplicity’. 

Peirce, before 1910, developed a semantics for 
three-valued logic in an unpublished note, but Emil Post’s 
dissertation (1920s) is cited for originating the three-valued 
logic. Here ‘1’ is used for truth, ‘1/2’ for indeterminacy, and 
‘0’ for falsehood. Also, Reichenbach, leader of the logical 
empiricism, studied it. 

The three-valued logic was employed by Hallden 
(1949), Korner (1960), and Tye (1994) to solve Sorites 
Paradoxes. They used truth tables, such as Kleene’s, but 
everything depended on the definition of validity. A 
three-valued paraconsistent system (LP) has the values: 
‘true’, ‘false’, and ‘both true and false’. The ancient Indian 
metaphysics considered four possible values of a statement: 
‘true (only)’, ‘false (only)’, ‘both true and false’, and 
‘neither true nor false’; J.M. Dunn (1976) formalised this in 
a four-valued paraconsistent system as his first degree 
entailment semantics. 

The Buddhist logic added a fifth value to the previous 
ones, ‘none of these’ (called catushkoti). 

The {0, a1, …, an, 1} multi-valued, or plurivalent, logic 
was develop by Lukasiewicz, while post originated the m 
valued calculus. 

The many-valued logic was replaced by Goguen (1969) 
and Zadeh (1975) with an infinite-valued logic (of 
continuum power, as in the classical mathematical analysis 
and classical probability) called fuzzy logic, where the 
truth-value can be any number in the closed unit interval 
[0, 1]. The fuzzy set was introduced by Zadeh in 1965. 

Applications of neutrosophic logic/set have been used to 
information fusion (Smarandache and Dezert, 2004–2009), 
extension logic (Smarandache, 2013; Vladareanu et al., 
2013), and to robotics (Smarandache and Vladareanu, 2011; 
Smarandache, 2011; Okuyama et al., 2013). 

With imprecise data has been worked in magnetic 
bearing systems (Anantachaisilp and Lin, 2013), signal 
processing (Golpira and Golpira, 2013), water pollution 
control system (Wang and Wu, 2013), neutrosophic soft set 
(Broumi and Smarandache, 2013), and especially to 
robotica and mechatronics systems (Vladareanu et al., 
2012a, 2012b). 

This paper is organised as follows: we present the NL, 
the indeterminate masses, elements and models, and give an 
example of indeterminate intersection. 

2 Indeterminate mass 

2.1 Neutrosophic logic 

NL (Smarandache, 1998, 2002) started in 1995 as a 
generalisation of the fuzzy logic, especially of the 
intuitionistic fuzzy logic (IFL). A logical proposition P is 
characterised by three neutrosophic components: 

( ) ( , , )=NL P T I F (3) 

where T is the degree of truth, F the degree of falsehood, 
and I the degree of indeterminacy (or neutral, where the 
name ‘neutro-sophic’ comes from, i.e., neither truth nor 
falsehood but in between – or included-middle principle), 
and with: 

, , 0, 1+⊆ −⎤ ⎡⎦ ⎣T I F  (4) 

where ]–0, 1+[ is a non-standard interval. 
In this paper, for technical proposal, we can reduce this 

interval to the standard interval [0, 1]. 
The main distinction between NL and IFL is that in NL 

the sum T + I + F of the components, when T, I, and F are 
crisp numbers, does not need to necessarily be 1 as in IFL, 
but it can also be less than 1 (for incomplete/missing 
information), equal to 1 (for complete information), or 
greater than 1 (for paraconsistent/contradictory information). 

The combination of neutrosophic propositions is done 
using the neutrosophic operators (especially ∧, ∨). 

2.2 Neutrosophic mass 

We recall that a classical mass m(.) is defined as: 

: [0,1]Θ →m S (5) 

such that 

( ) 1
Θ∈

=∑
X S

m X  (6) 

We extend this classical basic belief assignment (mass) m(.) 
to a neutrosophic basic belief assignment (NBBA) (or 
neutrosophic mass) mn(.) in the following way. 

3: [0, 1]Θ →nm S  (7) 

with 

( )( ) ( ), ( ), ( )=nm A T A I A F A (8) 

where T(A) means the (local) chance that hypothesis A 
occurs, F(A) means the (local) chance that hypothesis A 
does not occur (non-chance), while I(A) means the (local) 
indeterminate chance of A (i.e., knowing neither if A occurs 
nor if A does not occur), such that: 

[ ]( ) ( ) ( ) 1.
Θ∈

+ + =∑
X S

T X I X F X (9) 

In a more general way, the summation (9) can be less than 1 
(for incomplete neutrosophic information), equal to 1 (for 
complete neutrosophic information), or greater than 1 (for 
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paraconsistent/conflicting neutrosophic information). But in 
this paper we only present the case when summation (9) is 
equal to 1. 

Of course, 

0 ( ), ( ), ( ) 1≤ ≤T A I A F A  (10) 

A basic belief assignment (or mass) is considered 
indeterminate if there exist at least an element A ∈ SΘ such 
that I(A) > 0, i.e., there exists some indeterminacy in the 
chance of at least an element A for occurring or for not 
occurring. Therefore, a neutrosophic mass which has at least 
one element A with I(A) > 0 is an indeterminate mass. 

A classical mass m(.) as defined in equations (5) and (6) 
can be extended under the form of a neutrosophic mass 

(.)′nm  in the following way: 

3(.) : [0, 1]Θ′ →nm S  (11) 

with 

( )( ) ( ), 0, 0′ =nm A m A  (12) 

but reciprocally it does not work since I(A) has no 
correspondence in the definition of the classical mass. 

We just have T(A) = m(A) and F(A) = m(C(A)), where 
C(A) is the complement of A. The non-null I(A) can, for 
example, be roughly approximated by the total ignorance 
mass m(Θ), or better by the partial ignorance mass m(ΘI) 
where ΘI is the union of all singletons that have some 
non-zero indeterminacy, but these mean less accuracy and 
less refinement in the fusion. 

If I(X) = 0 for all X ∈ SΘ, then the neutrosophic mass is 
simply reduced to a classical mass. 

3 Indeterminate element 

We have two types of elements in the fusion space SΘ, 
determinate elements (which are well-defined), and 
indeterminate elements (which are not well-defined; for 
example: a geographical area whose frontiers are vague; or 
let us say in a murder case there are two suspects, John – 
who is known/determinate element – but he acted together 
with another man X (since the information source saw John 
together with an unknown/unidentified person) – therefore 
X is an indeterminate element). 

Herein, we gave examples of singletons as indeterminate 
elements just in the frame of discernment Θ, but 
indeterminate elements can also result from the 
combinations (unions, intersections, and/or complements) of 
determinate elements that form the super-power set SΘ. For 
example, A and B can be determinate singletons (we call the 
elements in Θ as singletons), but their intersection A ∩ B 
can be an indeterminate (unknown) element, in the sense 
that we might not know if A ∩ B = φ or A ∩ B ≠ φ. 

Or A can be a determinate element, but its complement 
C(A) can be indeterminate element (not well-known), and 
similarly for determinate elements A and B, but their A ∪ B 
might be indeterminate. 

Indeterminate elements in SΘ can, of course, result from 
the combination of indeterminate singletons too. All 
depends on the problem that is studied. 

A frame of discernment which has at least an 
indeterminate element is called indeterminate frame of 
discernment. Otherwise, it is called determinate frame of 
discernment. Similarly, we call an indeterminate fusion 
space (SΘ) that fusion space which has at least one 
indeterminate element. Of course an indeterminate frame of 
discernment spans an indeterminate fusion space. 

An indeterminate source of information is a source 
which provides an indeterminate mass or an indeterminate 
fusion space. Otherwise it is called a determinate source of 
information. 

4 Indeterminate model 
An indeterminate model is a model whose fusion space is 
indeterminate, or a mass that characterises it is 
indeterminate. 

Such case has not been studied in the information fusion 
literature so far. In the next sections, we will present some 
examples of indeterminate models. 

5 Classification of models 

In the classical fusion theories, all elements are considered 
determinate in the closed world, except in Smets’ open 
world where there is some room (i.e., mass assigned to the 
empty set) for a possible unknown missing singleton in the 
frame of discernment. So, the open world has a probable 
indeterminate element, and thus its frame of discernment is 
indeterminate. While the closed world frame of discernment 
is determinate. 

In the closed world in Dezert-Smarandache theory, there 
are three models classified upon the types of singleton 
intersections: Shafer’s model (where all intersections are 
empty), hybrid model (where some intersections are empty, 
while others are non-empty), and free model (where all 
intersections are non-empty). 

We now introduce a fourth category, called 
indeterminate model (where at least one intersection is 
indeterminate/unknown, and in general at least one element 
of the fusion space is indeterminate). We do this because in 
practical problems we do not always know if an intersection 
is empty or nonempty. As we still have to solve the problem 
in the real time, we have to work with what we have, i.e., 
with indeterminate models. 

The indeterminate intersection cannot be refined 
(because not knowing if A ∩ B is empty or nonempty, we’d 
get two different refinements: {A, B} when intersection is 
empty, and {A\B, B\A, A ∩ B} when intersection is 
nonempty). 

The percentage of indeterminacy of a model depends on 
the number of indeterminate elements and indeterminate 
masses. 
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By default: the sources, the masses, the elements, the 
frames of discernment, the fusion spaces, and the models 
are supposed determinate. 

6 An example of information fusion with an 
indeterminate model 

We present the below example. 
Suppose we have two sources, m1(.) and m2(.), such that. 

Table 1 First part of the fusion with indeterminate model 

A B C A ∪ B 
∪ C

A ∩ B 
= Ind. 

A ∩ C 
= φ 

B ∩ C 
= Ind. 

m1 0.4 0.2 0.3 0.1 
m2 0.1 0.3 0.2 0.4 
m12 0.21 0.17 0.20 0.04 0.14 0.11 0.13 

Applying the conjunction rule to m1 and m2 we get m12(.) as 
shown in Table 1. 

The frame of discernment is Θ = {A, B, C}. We know 
that A ∩ C is empty, but we do not know the other two 
intersections: we note them as A ∩ B = ind. and B ∩ C = 
ind, where ind. means indeterminate. 

Using the conjunctive rule to fusion m1 and m2, we get 
m12(.): 

12 1 2
,

\ , ( ) ( ) ( ).
Θ

Θ

∈
= ∩

∀ ∈ = ∑
X Y S
A X Y

A S m A m X m Yφ  (13) 

Whence m12(A) = 0.21, m12(B) = 0.17, m12(C) = 0.20, m12(A 
∪ B ∪ C) = 0.04, and for the intersections:

12 12 12( ) 0.14, ( ) 0.11, ( ) 0.13.∩ = ∩ = ∩ =m A B m A C m B C

We then use the PCR5 fusion rule style to redistribute the 
masses of these three intersections. We recall PCR5 for two 
sources: 

12 12

2 2
1 2 2 1

1 2 2 1\{ }

\
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )Θ

Θ

∈
∩ =

∀ ∈
=

⎡ ⎤
+ +⎢ ⎥+ +⎣ ⎦

∑
PCRS

X S
X A

A S
m A m A

m A m X m A m X
m A m X m A m Xφ

φ

φ,
(14) 

a m12(A ∩ C) = 0.11 is redistributed back to A and C 
because A ∩ C = φ, according to the PCR5 style. 

Let α1 and α2 be the parts of mass 0.11 redistributed back 
to A, and γ1 and γ2 be the parts of mass 0.11 redistributed 
back to C. 

We have the following proportionalisations: 

1 1 0.4 0.2 0.133333,
0.4 0.2 0.4 0.2

⋅
= = =

+
γα

whence α1 = 0.4(0.133333) ≈ 0.053333 and γ1 = 0.2 
(0.13333) ≈ 0.026667. 

Similarly: 

2 2 0.1 0.3 0.075,
0.1 0.3 0.1 0.3

⋅
= = =

+
γα

whence α2 = 0.1(0.075) = 0.0075 and γ2 = 0.3(0.075) = 
0.0225. 

Therefore, the mass of A, which can also be noted as 
T(A) in a neutrosophic mass form, receives from 0.11 back: 

1 2 0.053333 0.0075 0.060833,+ = + =α α

while the mass of C, or T(C) in a neutrosophic form, 
receives from 0.11 back: 

1 2 0.026667 0.0225 0.049167.+ = + =γ γ

We verify our calculations: 0.060833 + 0.049167 = 0.11. 
m12(A ∩ B) = 0.14 is redistributed back to the 

indeterminate parts of the masses of A and B respectively, 
namely I(A) and I(B) as noted in the neutrosophic mass 
form, because A ∩ B = Ind. We follow the same PCR5 style 
as done in classical PCR5 for empty intersections (as 
above). 

Let α3 and α4 be the parts of mass 0.14 redistributed 
back to I(A), and β1 and β2 be the parts of mass 0.14 
redistributed back to I(B). 

We have the following proportionalisations: 

3 1 0.4 0.3 0.171429,
0.4 0.3 0.4 0.3

⋅
= = =

+
α β

whence α3 = 0.4(0.171429) ≈ 0.068572 and β1 = 0.3 
(0.171429) ≈ 0.051428. 

Similarly: 

4 2 0.1 0.2 0.066667
0.1 0.2 0.1 0.2

⋅
= = =

+
α β

whence α4 = 0.1(0.066667) ≈ 0.006667 and β2 = 0.2 
(0.066667) ≈ 0.013333. 

Therefore, the indeterminate mass of A, I(A) receives 
from 0.14 back: 

3 4 0.068572 0.006667 0.075239+ = + =α α

and the indeterminate mass of B, I(B), receives from 0.14 
back: 

1 2 0.051428 0.013333 0.064761.+ = + =β β  

Analogously, m12(B ∩ C) = 0.13 is redistributed back to the 
indeterminate parts of the masses of B and C respectively, 
namely I(B) and I(C) as noted in the neutrosophic mass 
form, because B ∩ C = Ind. also following the PCR5 style. 
Whence I(B) gets back 0.065 and I(C) also gets back 0.065. 

Finally, we sum all results obtained from firstly using 
the conjunctive rule (Table 1) and secondly redistributing 
the intersections masses with PCR5 [sections (a), (b), and 
(c) from above]:
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Table 2 Second part of the fusion with indeterminate model 

T(A) T(B) T(C) T(Θ) I(A) I(B) I(C) 

m12 0.21 0.17 0.20 0.04 
0.0075 0.022 0.068 0.051 0.04 
0.053 5 572 428 0.045
333 0.026 0.006 0.013

667 667 333 
0.02 

Additions 

 0.045
0.270 0.17 0.249 0.04 0.075 0.129 0.065m12PCR5I 
833  167 239 761 

where Θ = A ∪ B ∪ C is the total ignorance. 

7 Believe, disbelieve, and uncertainty 

In classical fusion theory, there exist the following 
functions: 

• Belief in A with respect to the bba m(.) is:

\{ }

( ) ( )
Θ∈

⊆

= ∑
X S
X A

Bel A m X
φ

 (15) 

• Disbelief in A with respect to the bba m(.) is:

\{ }

( ) ( )
Θ∈

∩ =

= ∑
X S
X A

Dis A m X
φ

φ

(16) 

• Uncertainty in A with respect to the bba m(.) is:

\{ }

( )

( ) ( ),
Θ∈

∩ ≠
∩ ≠

= ∑
X S
X A
X C A

U A m X
φ

φ
φ

(17) 

where C(A) is the complement of A with respect to the 
total ignorance Θ. 

• Plausability of A with respect to the bba m(.) is:

\{ }

( ) ( )
Θ∈

∩ ≠

= ∑
X S
X A

Pl A m X
φ

φ

(18) 

8 Neutrosophic believe, neutrosophic disbelieve, 
and neutrosophic undecidability 

Let us consider a neutrosophic mass mn(.) as defined in 
formulas (7) and (8), mn(X) = (T(X), I(X), F(X)) for all 
X ∈ SΘ. 

We extend formulas (15) to (18) from m(.) to mn(.): 

• Neutrosophic Belief in A with respect to the nbba mn(.)
is:

\{ } \{ }

( ) ( ) ( )
Θ Θ∈ ∈

⊆ ∩ =

= +∑ ∑
X S X S
X A X A

NeutBel A T X F X
φ φ

φ

(19) 

• Neutrosophic Disbelief in A with respect to the nbba
mn(.) is:

\{ } \{ }

( ) ( ) ( )
Θ Θ∈ ∈

∩ = ⊆

= +∑ ∑
X S X S
X A X A

NeutDis A T X F X
φ φ

φ

(20) 

• Neutrosophic uncertainty in A with respect to the nbba
mn(.) is

[ ]

\{ } \{ }

( ) ( )

\{ }

( )

( ) ( ) ( )

( ) ( )

Θ Θ

Θ

∈ ∈
∩ ≠ ∩ ≠
∩ ≠ ∩ ≠

∈
∩ ≠
∩ ≠

= +

= +

∑ ∑

∑

X S X S
X A X A
X C A X C A

X S
X A
X C A

NeutU A T X F x

T X F X

φ φ
φ φ

φ φ

φ
φ

φ

(21) 

• We now introduce the neutrosophic global
indeterminacy in A with respect to the nbba mn(.) as a
sum of local indeterminacies of the elements included
in A:

\{ }

( ) ( )
Θ∈

⊆

= ∑
X S
X A

NeutGlobInd A I X
φ

 (22) 

• And afterwards we define another function called
neutrosophic undecidability about A with respect to the 
nbba mn(.): 

( ) ( )  ( )= +NeutUnd A NeutU A NeutGlobInd A  (23) 

or 

[ ]
\{ }

( )

\{ }

( ) ( ) ( )

( )

Θ

Θ

∈
∩ ≠
∩ ≠

∈
⊆

= +

+

∑

∑

X S
X A
X C A

X S
X A

NeutUnd A T X F X

I X

φ
φ

φ

φ

(24) 

• Neutrosophic plausability of A with respect to the nbba
mn(.) is:

\{ } \{ }
( )

( ) ( ) ( )
Θ Θ∈ ∈

∩ ≠ ∩ ≠

= +∑ ∑
X S Y S
X A C Y A

NeutPl A T X F Y
φ φ

φ φ

 (25) 

In the previous example, let us compute NeutBel(.), 
NeutDis(.), and NeutUnd(.): 

Table 3 Neutrosophic believe, disbelieve and undecidability 

A B C A ∪ B 
∪ C

NeutBel 0.270833 0.17 0.249167 0.73 

NeutDis 0.419167 0.52 0.440833 0 

NeutGlobInd 0.115239 0.169761 0.105 0 

Total 0.805239 ≠ 
1 

0.859761 ≠ 
1 

0.795 ≠ 1 0.73 ≠ 
1 

Florentin Smarandache (author and editor) Collected Papers, XIII

564



As we see, for indeterminate model we cannot use the 
intuitionistic fuzzy set or IFL since the sum NeutBel(X) + 
NeutDis(X) + NeutGlobInd(X) is less than 1. In this case, we 
use the neutrosophic set or logic which can deal with 
incomplete information. 

The sum is less than 1 because there is missing 
information (we do not know if some intersections are 
empty or not). 

For example: 

( ) ( ) ( ) 0.859761
1 ( ) ( ).

+ + =
= − −
NeutBel B NeutDis B NeutGlobInd B

I A I C

( ) ( ) ( ) 0.795
1 ( ) ( ) 

+ + =
= − −
NeutBel C NeutDis C NeutGlobInd C

I A I B

and 

( ) ( )
( ) 0.73

1 ( ) ( ) ( ).

∪ ∪ + ∪ ∪
+ ∪ ∪ =
= − − −

NeutBel A B C NeutDis A B C
NeutGlobInd A B C

I A I B I C

9 Neutrosophic dynamic fusion 

A neutrosophic dynamic fusion is a dynamic fusion where 
some indeterminacy occurs: with respect to the mass or with 
respect to some elements. 

The solution of the above indeterminate model which 
has missing information, using the neutrosophic set, is 
consistent in the classical dynamic fusion in the case we 
receive part (or total) of the missing information. 

In the above example, let us say we find out later in the 
fusion process that A ∩ B = φ. That means that the mass of 
indeterminacy of A, I(A) = 0.075239, is transferred to A, and 
the masses of indeterminacy of B (resulted from A ∩ B 
only) – i.e., 0.051428 and 0.13333 – are transferred to B. 
Thus, we get in Table 4. 

The sum NeutBel(X) + NeutDis(X) + NeutBlogInd(X) 
increases towards 1, as indeterminacy I(X) decreases 
towards 0, and reciprocally. 

When we have complete information we get NeutBel(X) 
+ NeutDis(X) + NeutGlobInd(X) =1 and in this case we have
an intuitionistic fuzzy set, which is a particular case of the
neutrosophic set.

Let us suppose once more, considering the neutrosophic 
dynamic fusion, that afterwards we find out that B ∩ C ≠ φ. 
Then, from Table 4 the masses of indeterminacies of B, I(B) 
(0.065 = 0.02 + 0.045, resulted from B ∩ C which was 
considered indeterminate at the beginning of the 
neutrosophic dynamic fusion), and that of C, I(C) = 0.065, 
go now to B ∩ C. Thus, we get in Table 5. 

10 More redistribution versions for 
indeterminate intersections of determinate 
elements 

Besides PCR5, it is also possible to employ other fusion 
rules for the redistribution, such as follows: 

a For the masses of the empty intersections we can use 
PCR1-PCR4, URR, PURR, Dempster’s Rule, etc. (in 
general any fusion rule that first uses the conjunctive 
rule, and then a redistribution of the masses of empty 
intersections). 

b For the masses of the indeterminate intersections we 
can use DSm Hybrid (DSmH) rule to transfer the mass 
m12(X ∩ Y = ind.) to X ∪ Y, since X ∪ Y is a kind of 
uncertainty related to X, Y. In our opinion, a better 
approach in this case would be to redistributing the 
empty intersection masses using the PCR5 and the 
indeterminate intersection masses using the DSmH, so 
we can combine two fusion rules into one. 

Table 4 First neutrosophic dynamic fusion 

A B C Θ I(A) I(B) I(C) A∩B A∩C 

m 0.270 0.17 0.249 0.04 0 0.065 0.065 0 0 

833 167 

+ 0.075 0.051 

239 428 

0.013 

333 

mN 0.346 0.234 0.249 0.04 0 0.065 0.065 0 0 

072 761 167 

Note: Where Θ = A ∪ B ∪ C is the total ignorance. 
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Table 5 Second neutrosophic dynamic fusion 

A B C Θ I(A) I(B) I(C) A∩B A∩C B∩C 

0.346 0.234 0.249 0.04 0 0.065 0.065 0 0 0 mN 
072 761 167 

–0.065 –0.065 +0.065–/+ 
+0.065

0.346 0.234 0.249 0.04 0 0 0 0 0 0.13mNN 
072 761 167 

Let m1(.) and m2(.) be two masses. Then: 
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φ

(26) 

Yet, the best approach, for an indeterminate intersection 
resulted from the combination of two classical masses m1(.) 
and m2(.) defined on a determinate frame of discernment, is 
the first one: 

• Use the PCR5 to combine the two sources: formula
(14).

• Use the PCR5-ind [adjusted from classical PCR5
formula (14)] in order to compute the indeterminacies
of each element involved in indeterminate intersections:

( )12 5

2 2
1 2 2 1

1 2 2 1\{ }
.

\ ,
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )Θ

Θ

∈
∩ =

∀ ∈

=

⎡ ⎤
+⎢ ⎥+ +⎣ ⎦

∑
PCR Ind

X S
X A ind

A S
m I A

m A m X m A m X
m A m X m A m Xφ

φ
(27) 

• Compute NeutBel(.), NeutDis(.), NeutGlobInd(.) of
each element.

11 Conclusions 

In order for the paper to be easier understanding, a short 
history of logics was made in the introduction. Connection 
between neutrosophy and NL were established. 

In this paper, we introduced for the first time the notions 
of indeterminate mass (BBA), indeterminate element, 
indeterminate intersection, and so on. We gave an example 
of neutrosophic dynamic fusion using two classical masses, 

defined on a determinate frame of discernment, but having 
indeterminate intersections in the super-power set SΘ (the 
fusion space). We adjusted several classical fusion rules 
(PCR5 and DSmH) to work for indeterminate intersections 
instead of empty intersections. 

Then we extended the classical Bel(.), Dis(.) {also called 
Dou(.), i.e., Dough} and the uncertainty U(.) functions to 
their respectively neutrosophic correspondent functions that 
use the neutrosophic masses, i.e., to the NeutBel(.), 
NeutDis(.), NeutU(.) and to the undecidability function 
NeutUnd(.). We have also introduced the neutrosophic 
global indeterminacy function, NeutGlobInd(.), which 
together with NeutU(.) form the NeutUnd(.) function. 

In our first example, the mass of A ∩ B is determined (it 
is equal to 0.14), but the element A ∩ B is indeterminate (we 
do not know if it empty or not). 

But there are cases when the element is determinate (let 
us say a suspect John), but its mass could be indeterminate 
as given by a source of information {for example, mn(John) 
= (0.4, 0.1, 0.2), i.e., there is some mass indeterminacy: 
I(John) = 0.2 > 0}. 

These are the distinctions between the indeterminacy of 
an element, and the indeterminacy of a mass. 
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PCR5 and Neutrosophic Probability in Target Identification 
(revisited) 

Abstract. In this paper, we use PCR5 in order to fusion the 
information of two sources providing subjective probabilities of an 
event A to occur in the following form: chance that A occurs, 
indeterminate chance of occurrence of A, chance that A does not 
occur.

Keywords. Target Identification, PCR5, neutrosophic measure, 
neutrosophic probability, normalized neutrosophic probability.

I. INTRODUCTION

Neutrosophic Probability [1] was defined in 1995 and
published in 1998, together with neutrosophic set, neutrosophic 
logic, and neutrosophic probability. 

The words “neutrosophy” and “neutrosophic” were 
introduced by F. Smarandache in his 1998 book. 
Etymologically, “neutrosophy” (noun) [French neutre < Latin 
neuter, neutral, and Greek sophia, skill/wisdom] means 
knowledge of neutral thought. While “neutrosophic” 
(adjective), means having the nature of, or having the 
characteristic of Neutrosophy. 

Neutrosophy is a new branch of philosophy which studies 
the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra. 

Zadeh introduced the degree of membership/truth (t) in 
1965 and defined the fuzzy set.  

Atanassov introduced the degree of nonmembership/ 
falsehood (f) in 1986 and defined the intuitionistic fuzzy set.  

Smarandache introduced the degree of 
indeterminacy/neutrality (i) as independent component in 1995 
(published in 1998) and defined the neutrosophic set. He has 
coined the words “neutrosophy” and “neutrosophic”. In 2013 
he refined/split the neutrosophic set to n components: t1, t2, 
…tj; i1, i2, …, ik; f1, f2, …, fl, with j+k+l = n > 3. And, as
particular cases of refined neutrosophic set, he split the fuzzy 

set truth into t1, t2, …; and the intuitionistic fuzzy set into t1, t2, 
… and f1, f2, … .

See: http://fs.gallup.unm.edu/neutrosophy.htm.

For single valued neutrosophic logic, the sum of the 
components is: 

0 ≤ t+i+f ≤ 3 when all three components are independent; 

0 ≤ t+i+f ≤ 2 when two components are dependent, while the 
third one is independent from them; 

0 ≤ t+i+f ≤ 1 when all three components are dependent. 

When three or two of the components T, I, F are independent, 
one leaves room for incomplete information (sum < 1), 
paraconsistent and contradictory information (sum > 1), or 
complete information (sum = 1).  

If all three components T, I, F are dependent, then similarly 
one leaves room for incomplete information (sum < 1), or 
complete information (sum = 1). 

II. DEFINITION OF NEUTROSOPHIC MEASURE

A neutrosophic space is a set which has some
indeterminacy with respect to its elements. 

Let X  be a neutrosophic space, and   a  -neutrosophic
algebra over X . A neutrosophic measure   is defined by for
neutrosophic set A  by 

3: X R  ,

   A = m(A), m(neutA),m(antiA) ,          (1) 

with antiA = the opposite of A, and neutA = the neutral 
(indeterminacy), neither A nor anti A (as defined above); for 
any A X  and A ,
m(A) means measure of the determinate part of A;
m(neutA) means measure of indeterminate part of A; 

Florentin Smarandache, Nassim Abbas, Youcef Chibani, Bilal Hadjadji, Zayen Azzouz Omar (2017). PCR5 and 
Neutrosophic Probability in Target Identification (revisited). Neutrosophic Sets and Systems 16, 76-79
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and m(antiA) means measure of the determinate part of antiA; 
where   is a function that satisfies the following two 
properties: 

a) Null empty set:    0 0 0, ,   .

b) Countable additivity (or  -additivity): For all

countable collections  n n LA


   of      disjoint

neutrosophic sets in  , one has:

1n n n n
n L n L n Ln L

A m( A ), m( neutA ), m( antiA ) ( n )m( X )
  

   
     
  
  

(2) 
where X is the whole neutrosophic space, and 

1n n nn Ln L n L
m( antiA ) ( n )m( X ) m( X ) m( A ) m( antiA ).


 

      

(3) 
A neutrosophic measure space is a triplet  X , , .

III. NORMALIZED NEUTROSOPHIC MEASURE

A neutrosophic measure is called normalized if 
   1 2 3X ( m( X ),m( neutX ),m( antiX )) x ,x ,x   ,

(4) 
with 1 2 3 1x x x   , and 1 2 30 0 0x ,x ,x   , where, of 

course, X is the whole neutrosophic measure space. 
As a particular case of neutrosophic measure   is the 
neutrosophic probability measure, i.e. a neutrosophic measure 
that measures probable/possible propositions 

 0 3X  ,

where X is the whole neutrosophic probability sample space. 

For single valued neutrosophic logic, the sum of the 
components is: 

0 ≤ x1+x2+x3 ≤ 3 when all three components are independent; 

0 ≤ x1+x2+x3 ≤ 2 when two components are dependent, while 
the third one is independent from them; 

0 ≤ x1+x2+x3 ≤ 1 when all three components are dependent. 

When three or two of the components x1, x2, x3 are 
independent, one leaves room for incomplete information 
(sum < 1), paraconsistent and contradictory information (sum 
> 1), or complete information (sum = 1).

If all three components x1, x2, x3 are dependent, then
similarly one leaves room for incomplete information (sum < 
1), or complete information (sum = 1).  

IV. NORMALIZED PROBABILITY

We consider the case when the sum of the components
m(A) + m(neutA) + m(antiA) =1. 

We may denote the normalized neutrosophic probability 
of an event A as , where t is the chance that 

 occurs, i is indeterminate chance of occurrence of , and f 
is the chance that  does not occur. 

V. THE PCR5 FORMULA

Let the frame of discernment 1 2{ , ,..., }, 2.n n    

Let ( , , , )G C     be the super-power set, which is Θ 
closed under union, intersection, and respectively 
complement. 

Let’s consider two masses provided by 2 sources: 
m1, m2 : G  [0, 1]. 

The conjunctive rule is defined as 

1 2

12 1 1 2 2
,

( ) ( ) ( )
X X G

m X m X m X


  . (5) 

Then the Proportional Conflict Redistribution Rule (PCR) #5 
formula for 2 sources of information is defined as follows: 

\ { }X G   ,  
2 2

1 2 2 1
5 12

\{ } 1 2 1 2

( ) ( ) ( ) ( )( ) ( ) [ ]
( ) ( ) ( ) ( )PCR

Y G X

m X m Y m X m Ym X m X
m X m Y m X m Y

  
 



(6) 
where all denominators are different from zero.  
If a denominator is zero, that fraction is discarded. 

VI. APPLICATION IN INFORMATION FUSION

Suppose an airplane  is detected by the radar. What is the
chance that  is friendly, neutrally, or enemy? 

Let’s have two sources that provide the following 
information: 

, and .  
Then: 

(7) 
Because:  is redistributed back to the truth (t) and 
indeterminacy proportionally with respect to  and 
respectively : 

 ,      (8) 

whence  ,  .      (9) 

Similarly,  is redistributed back to  and 
proportionally with respect to  and respectively : 

 ,    (10) 
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whence  ,  .                       (11) 

Similarly,  is redistributed back to  and  (falsehood) 
proportionally with respect to  and respectively : 

 ,    (12) 

whence  ,  .    (13) 

Again, similarly  is redistributed back to  and 
proportionally with respect to  and respectively : 

 ,    (14) 

whence  ,  .      (15) 

In the same way,  is redistributed back to  and 
proportionally with respect to  and respectively : 

 ,    (16) 

whence  ,  .    (17) 

While  is redistributed back to  and  proportionally 
with respect to  and respectively : 

 ,    (18) 

whence  ,  .    (19) 

Then 

(20) 
and 

(21) 

VII. EXAMPLE

Let’s compute:    . 
 and 

are replaced into the three previous neutrosophic logic 
formulas: 

▪ (using PCR5 rule)

. 

. 

. 
▪ (using Dempster’s rule)

Conj. rule: 
0.12 0.03 0.15 

Dempster’s rule: 
0.40 0.10 0.50 

This is actually a PCR5 formula for a frame of 
discernment  whose all intersections are 
empty. 

We can design a PCR6 formula too for the same frame. 
Another method will be to use the neutrosophic 

, which is a generalization of fuzzy . 
If we have two neutrosophic probabilities 

Friend Neutral Enemy 

then 
= 

Of course, the quantity of  will go to Friend, 
quantity of  will go to Neutral, 
and quantity of  will go to Enemy. 
The other quantities will go depending on the pessimistic 

or optimistic way: 
a) In the pessimistic way (lower bound)  will 

go to Neutral, and  to 
Enemy.

b) In the optimistic way (upper bound)  will 
go to Friend, and  to Neutral. 
About , we can split it half-half to Friend 
and respectively Enemy.
We afterwards put together the pessimistic and
optimistic ways as an interval neutrosophic
probability.

c) Of course, the reader or expert can use different
transfers of intermediate mixed quantities , 
and respectively  to Friend,
Neutral, and Enemy.
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CONCLUSION

We have introduced the application of neutrosophic 
probability into information fusion, using the combination of 
information provided by two sources using the PCR5.  

Other approaches can be done, for example the 
combination of the information using the N-norm and N-
conorm, which are generalizations of the T-norm and T-
conorm from the fuzzy theory to the neutrosophic theory.  

More research is needed in this direction. 
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Abstract: 

To obtain effective fusion results of multi source 
evidences with different importance, an evidence 
fusion method with importance discounting factors 
based on neutrosopic probability analysis in DSmT 
framework is proposed. First, the reasonable 
evidence sources are selected out based on the 
statistical analysis of the pignistic probability 
functions of single focal elements. Secondly, the 
neutrosophic probability analysis is conducted 
based on the similarities of the pignistic probability 
functions from the prior evidence knowledge of the 
reasonable evidence sources. Thirdly, the 
importance discounting factors of the reasonable 
evidence sources are obtained based on the 
neutrosophic probability analysis and the reliability 

discounting factors of the real-time evidences are 
calculated based on probabilistic-based distances. 
Fourthly, the real-time evidences are discounted by 
the importance discounting factors and then the 
evidences with the mass assignments of 
neutrosophic empty sets are discounted by the 
reliability discounting factors. Finally, 
DSmT+PCR5 of importance discounted evidences 
is applied. Experimental examples show that the 
decision results based on the proposed fusion 
method are different from the results based on the 
existed fusion methods. Simulation experiments of 
recognition fusion are performed and the 
superiority of proposed method is testified well by 
the simulation results. 

Keywords: Information fusion; Belief function; Dezert-Smarandache Theory; Neutrosophic probability; 
Importance discounting factors. 

1. Introduction

As a high-level and commonly applicable key 
technology, information fusion can integrate partial 
information from multisource, and decrease potential 
redundant and incompatible information between 
different sources, thus reducing uncertainties and 
improving the quick and correct decision ability of 
high intelligence systems. It has drawn wide 
attention attention by scholars and has found many 
successful applications in the military and economy 
fields in recent years [1-9]. With the increment of 
information environmental complexity, effective 
highly conflict evidence reasoning has huge demands 
on information fusion. Belief function also called 
evidence theory which includes Dempster- Shafer 
theory (DST) and Dezert-Smarandache theory 
(DSmT) has made great efforts and contributions to 
solve this problem. Dempster-Shafer theory (DST) 
[10,11] has been commonly applied in information 
fusion field since it can represent uncertainty and full 
ignorance effectively and includes Bayesian theory 

as a special case. Although very attractive, DST has 
some limitations, especially in dealing with highly 
conflict evidences fusion [9]. DSmT, jointly 
proposed by Dezert and Smarandache, can be 
considered as an extension of DST. DSmT can solve 
the complex fusion problems beyond the exclusive 
limit of the DST discernment framework and it can 
get more reasonable fusion results when multisource 
evidences are highly conflicting and the refinement 
of the discernment framework is unavailable. 
Recently, DSmT has many successful applications in 
many areas, such as, Map Reconstruction of Robot 
[12,13], Clustering [14,15], Target Type Tracking 
[16,17], Image Processing [18], Data Classification 
[19-21], Decision Making Support [22], Sonar 
Imagery [23], and so on. Recently the research on the 
discounting factors based on DST or DSmT have 
been done by many scholars [24,25]. Smarandache 
and et al [24] put forward that discounting factors in 
the procedure of evidence fusion should conclude 
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importance discounting factors and reliability 
discounting factors, and they also proved that 
effective fusion could not be carried out by Dempster 
combination rules when the importance discounting 
factors were considered. However, the method for 
calculating the importance discounting factors was 
not mentioned. A method for calculating importance 
or reliability discounting factors was proposed in 
article [25]. However, the importance and reliability 
discounting factors could not be distinguished and 
the focal element of empty set or full ignorance was 
processed based on DST. As the exhaustive limit of 
DST, it could not process empty set effectively. So, 
the fusion results based on importance and reliability 

discounting factors are the same in [25], which is not 
consist with real situation. In this paper, an evidence 
fusion method with importance discounting factors 
based on neutrosophic probability analysis in DSmT 
framework is proposed. In Section 2, basic theories 
including DST, DSmT and the dissimilarity measure 
of evidences are introduced briefly. In Section 3, the 
contents and procedure of the proposed fusion 
method are given. In Section 4, simulation 
experiments in the application background of 
recognition fusion are also performed for testifying 
the superiority of proposed method. In Section 5, the 
conclusions are given. 

2. Basic Theories

2.1. DST 

Let Θ = {𝜃1, 𝜃2, 𝐿, 𝜃𝑛}  be the discernment
frame having n exhaustive and exclusive hypotheses 
𝜃𝑖 , 𝑖 = 1, 2, 𝐿, 𝑛. The exhaustive and exclusive limits
of DST assume that the refinement of the fusion 
problem is accessible and the hypotheses are 

precisely defined. The set of all subsets of Θ , 
denoted by 2Θ, is defined as the power set of Θ. 2Θ 
is under closed-world assumption. If the discernment 
frame Θ is defined as above, the power set can be 
obtained as follows [10,11]: 

2Θ = {∅, {𝜃1}, {𝜃2}, 𝐿, {𝜃𝑛}, {𝜃1, 𝜃2}, 𝐿, {𝜃1, 𝜃2, 𝐿, 𝜃𝑛}}. (1) 
In Shafer’s model, a basic belief assignment 

(bba) 𝑚(. ): 2Θ → [0,1] which consists evidences is 
defined by 𝑚𝑘(∅) = 0 and ∑ 𝑚(𝑎) = 1𝐴∈2Θ . (2)

The DST rule of combination (also called the 
Dempster combination rule) can be considered as a 
conjunctive normalized rule on the power set 2Θ . 
The fusion results based on the Dempster 
combination rule are obtained by the bba’s products 

of the focal elements from different evidences which 
intersect to get the focal elements of the results. DST 
also assumes that the evidences are independent. The 
ith evidence source’s bba is denoted 𝑚𝑖 . The
Dempster combination rule is given by [10,11]: 

(𝑚1⊕𝑚2)(𝐶) =
1

1−𝐾
∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴𝐼 𝐵=𝐶 , ∀𝐶 ⊆ Θ (3) 

𝐾 = ∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴,𝐵⊆Θ
𝐴𝐼 𝐵=∅

(4) 

In some applications of multisource evidences 
fusion, some evidences influenced by the noise or 
some other conditions are highly conflicting with the 
other evidences. The reliability of an evidence can 
represent its accuracy degree of describing the given 
problem. The reliability discounting factor 𝛼 in [0, 
1] is considered as the quantization of the reliability
of an evidence. The reliability discounting method of

DST (also called the Shafer’s discounting method) is 
widely accepted and applied. The method consists of 
two steps. First, the mass assignments of focal 
elements are multiplied by the reliability discounting 
factor 𝛼. Second, all discounted mass assignments of 
the evidence are transferred to the focal element of 
full ignorance Θ. The Shafer’s discounting method 
can be mathematically defined as follows [10,11] 

{
𝑚𝛼(𝑋) = 𝛼 ∙ 𝑚(𝑋), for 𝑋 ≠ Θ

𝑚𝛼(𝑋) = 𝛼 ∙ 𝑚(Θ) + (1 − 𝛼)
(5) 

where the reliability discounting factor is denoted by 
𝛼  and 0 ≤ 𝛼 ≤ 1, 𝑋  denotes the focal element 
which is not the empty set, 𝑚(. ) denotes the original 
bba of evidence, 𝑚𝛼(. ) denotes the bba after 
importance discounting. 

2.2. DSmT 

For many complex fusion problems, the 
elements can not be separated precisely and the 
refinement of discernment frame is inaccessible. For 
dealing with this situation, DSmT [9] which 
overcomes the exclusive limit of DST, is jointly 
proposed by Dezert and Smarandache. The hyper-
power set in DSmT framework denoted by 𝐷Θ 
consists of the unions and intersections elements in 
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Θ. Assume that Θ = {𝜃1, 𝜃2}, the hyper-power set of
Θ  can be defined as 𝐷Θ = {∅, 𝜃1, 𝜃2, 𝜃3, 𝜃1 ∪
𝜃2, 𝜃1 ∩ 𝜃2 }. The bba which consists the body of the
evidence in DSmT framework is defined on the 
hyper-power set as 𝑚(. ): 𝐷𝛩 → [0,1]. 

Dezert Smarandache Hybrid (DSmH) 
combination rule transfers partial conflicting beliefs 
to the union of the corresponding elements in 
conflicts which can be considered as partial 
ignorance or uncertainty. However, the way of 
transferring the conflicts in DSmH increases the 
uncertainty of fusion results and it is not convenient 
for decision-making based on the fusion results. The 

Proportional Conflict Redistribution (PCR) 1-6 rules 
overcome the weakness of DSmH and gives a better 
way of transferring the conflicts in multisource 
evidence fusion. PCR 1-6 rules proportionally 
transfer conflicting mass beliefs to the involved 
elements in the conflicts [9,26,27]. Each PCR rule 
has its own and different way of proportional 
redistribution of conflicts and PCR5 rule is 
considered as the most accurate rule among these 
PCR rules [9,26,27]. The combination of two 
independent evidences by PCR5 rule is given as 
follows [9,26,27]: 

𝑚1⊕2(𝑋𝑖) = ∑ 𝑚1(𝑌) ∙ 𝑚2𝑌,𝑍∈𝐺Θ and 𝑌,𝑍≠∅
𝑌I 𝑍=𝑋𝑖

(𝑍) (6) 

𝑚𝑃𝐶𝑅5(𝑋𝑖) =

{

𝑚1⊕2 + ∑ [
𝑚1(𝑋𝑖)

2 ∙ 𝑚2(𝑋𝑗)

𝑚1(𝑋𝑖) + 𝑚2(𝑋𝑗)
+
𝑚2(𝑋𝑖)

2 ∙ 𝑚1(𝑋𝑗)

𝑚2(𝑋𝑖) + 𝑚1(𝑋𝑗)
]𝑋𝑖 ∈ 𝐺

Θ and 𝑋𝑖 ≠ ∅

𝑋𝑗∈𝐺
Θ and 𝑖≠𝑗

𝑋𝑖I𝑋𝑗=∅

0  𝑋𝑖 = ∅

where all denominators are more than zero, 
otherwise the fraction is discarded, and where 𝐺Θ 
can be regarded as a general power set which is 
equivalent to the power set 2Θ, the hyper-power set 
𝐷Θ and the super-power set 𝑆Θ , if discernment of 
the fusion problem satisfies the Shafer’s model, the 
hybrid DSm model, and the minimal refinement 
Θ𝑟𝑒𝑓 of Θ respectively [9,26,27].  

Although PCR5 rule can get more reasonable 
fusion results than the combination rule of DST, it 
still has two disadvantages, first, it is not associative 
which means that the fusion sequence of multiple 
(more than 2) sources of evidences can influence the 
fusion results, second, with the increment of the focal 
element number in discernment frame, the 
computational complexity increases exponentially.  

It is pointed out in [24] that importances and 
reliabilities of multisources in evidence fusion are 
different. The reliability of a source in DSmT 
framework represents the ability of describing the 
given problem by its real-time evidence which is the 
same as the notion in DST framework. The 

importances of sources in DSmT framework 
represent the weight that the fusion system designer 
assigns to the sources. Since the notions of 
importances and reliabilities of sources make no 
difference in DST framework, Shafer’s discounting 
method can not be applied to evidence fusion of 
multisources with unequal importances.  

The importance of a source in DSmT 
framework [24] can be characterized by an 
importance discounting factor, denoted 𝛽  in [0,1]. 
The importance discounting factor 𝛽 is not related 
with the reliability discounting factor 𝛼  which is 
defined the same as DST framework. 𝛽 can be any 
value in [0,1] chosen by the fusion system designer 
for his or her experience. The main difference of 
importance discounting method and reliability 
discounting method lies in the importance discounted 
mass beliefs of evidences are transferred to the empty 
set rather than the total ignorance Θ. The importance 
discounting method in DSmT framework can be 
mathematically defined as  

{
𝑚𝛽(𝑋) = 𝛽 ∙ 𝑚(𝑋), for 𝑋 ≠ ∅

𝑚𝛽(∅) = 𝛽(∅) + (1 − 𝛽)
(7) 

where the importance discounting factor is denoted 
by 𝛽  and 0 ≤ 𝛽 ≤ 1, 𝑋  denotes the focal element 
which is not the empty set, 𝑚(. ) denotes the original 
bba of evidence, 𝑚𝛽(. )  denotes the bba after
importance discounting. The empty set ∅  of 
Equation (7) is particular in DSmT discounted 
framework which is not the representation of 
unknown elements under the open-world assumption 

(Smets model), but only the meaning of the 
discounted importance of a source. Obviously, the 
importance discounted mass beliefs are transferred to 
the empty set in DSmT discounted framework which 
leads to the Dempster combination rule is not 
suitable to solve this type of fusion problems. The 
fusion rule with importance discounting factors in 
DSmT framework for 2 sources is considered as the 
extension of PCR5 rule, defined as follows [24]: 

𝑚𝑃𝐶𝑅5∅
(𝐴) = ∑ 𝑚1(𝑋1)𝑚2(𝑋2)𝑋1,𝑋2∈𝐺

Θ

𝑋1I𝑋2=𝐴

+∑ [
𝑚1(𝐴)

2∙𝑚2(𝑋)

𝑚1(𝐴)+𝑚2(𝑋)
+

𝑚2(𝐴)
2∙𝑚1(𝑋)

𝑚2(𝐴)+𝑚1(𝑋)
]𝑋∈𝐺Θ

𝑋I𝐴=∅

(8) 
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The fusion rules with importance discounting 
factors considered as the extension of PCR6 and the 

fusion rule for multisources (𝑠 > 2)  as the 
extension of PCR5 can be seen referred in [24]. 

3. An Evidence Fusion Method with Importance Discounting Factors Based on Neutrosopic

Probability Analysis in DSMT Framework

An evidence fusion method with importance 
discounting factors based on neutrosophic 
probability analysis in DSmT framework is proposed 
in this section. First, the reasonable evidence sources 
are selected out based on the statistical analysis of the 
pignistic probability functions of single focal 
elements. Secondly, the neutrosophic probability 
analysis is conducted based on the similarities of the 
pignistic probability functions from the prior 
evidence knowledge of the reasonable evidence 
sources. Thirdly, the importance discounting factors 

of the reasonable evidence sources are obtained 
based on the neutrosophic probability analysis and 
the reliability discounting factors of the real-time 
evidences are calculated based on probabilistic-based 
distances. Fourthly, the real-time evidences are 
discounted by the importance discounting factors and 
then the evidences with the mass assignments of 
neutrosophic empty sets are discounted by the 
reliability discounting factors. Finally, DSmT+PCR5 
of importance discounted evidences is applied. 

3.1. The reasonable evidence sources are selected out 

Definition 1: Extraction function for extracting 
focal elements from the the pignistic probability 
functions of single focal elements. 

𝜒(𝑃(𝑎𝑖)) = 𝑎𝑖 , 𝑎𝑖 ∈ {𝑎1, 𝑎2, 𝐿, 𝑎2} (11)
Definition 2: Reasonable sources.  
The evidence sources are defined as reasonable 

sources if and only if the focal element which has the 
maximum mean value of the pignistic probability 
functions of all single focal elements is the element 
aj which is known in prior knowledge, denoted by  

𝜒(𝑃(𝜃)) = max(𝑃(𝑎))̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑎𝑗 , 1 ≤ 𝑖 ≤ 𝑧

where 𝜃 represents that the focal element which has 
the maximum mean value of the pignistic probability 
functions of all single focal elements.  

Based on Definition 2 and the prior evidence 
knowledge, reasonable sources are selected out. The 

unreasonable sources are not suggested to be 
considered in the following procedure for they are 
imprecise and unbelievable.  

3.2. The neutrosophic probability analysis of the sources and the importance discounting factors in DSmT 
framework 

The neutrosophic probability theory is 
proposed by Smarandache [30]. In this section, the 
neutrosophic probability analysis is conducted based 

on the similarities of the pignistic probability 
functions from the prior evidence knowledge of the 
reasonable evidence sources.  

Definition 3: Similarity measure of the pignistic probability functions (SMPPF). 
Assume that the distribution characteristics of 

pignistic probability functions of the focal elements 
𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑧 and 𝑎𝑘, 𝑘 ≠ 𝑖, 1 ≤ 𝑘 ≤ 𝑧 are denoted
by: 

𝑷(𝑎𝑖): {𝑃(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅, 𝜎(𝑎𝑖)}, 𝑷(𝑎𝑘): {𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ , 𝜎(𝑎𝑘)}.
The similarity measure of the pignistic 

probability functions(SMPPF) is the function 
satisfying the following conditions:  

(1) Symmetry:
∀𝑎𝑖 , 𝑎𝑘 ∈ 𝛩, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) = 𝑆𝑖𝑚(𝑷(𝑎𝑘), 𝑷(𝑎𝑖));
(2) Consistency:
∀𝑎𝑖 ∈ 𝛩, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑖)) = 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑖)) = 1;

(3) Nonnegativity:
∀𝑎𝑖 , 𝑎𝑘 ∈ Θ, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) > 0.
We will say that 𝑷(𝑎𝑖) is more similar to 𝑷(𝑎𝑘) than 𝑷(𝑎𝑔) if and only if:
𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) > 𝑆𝑖𝑚 (𝑷(𝑎𝑖), 𝑷(𝑎𝑔)).

(12)
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The similarity measure of the pignistic 
probability functions based on the distribution 

characteristics of the pignistic probability functions 
is defined as follows: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎𝑖 , 𝑎𝑘) = exp {−
|𝑃(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅̅ −𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ |

2[𝜎(𝑎𝑖)+𝜎(𝑎𝑘)]
} (13) 

Assume that 𝑎𝑗 is known in prior knowledge,
the diagram for the similarity of the pignistic 
probability functions of focal elements 𝑎𝑗  and 𝑎𝑘
which has the largest SMPPF to 𝑎𝑗 is shown in Fig.
1. 𝑷(𝑎𝑗) is mapped to a circle in which 𝑃(𝑎𝑗)̅̅ ̅̅ ̅̅ ̅ is the
center and 𝜎(𝑎𝑗) is the radius. Similarly, 𝑷(𝑎𝑘) is
mapped to a circle in which 𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅  is the center and
𝜎(𝑎𝑘) is the radius. All the evidences in the prior
knowledge from the reasonable source are mapped to
the drops in any circle which means that the mapping
from drops in the circle of 𝑷(𝑎𝑗)  to the prior
evidences is one-to-one mapping and similarly the 
mapping from drops in the circle of 𝑷(𝑎𝑘) to the
prior evidences is also one-to-one mapping. If 𝑷(𝑎𝑗)
is very similar to 𝑷(𝑎𝑘), the shadow accounts for a

large proportion of 𝑷(𝑎𝑗)  or 𝑷(𝑎𝑘) . If 𝑷(𝑎𝑗)  or
𝑷(𝑎𝑘) has the random values in the shadow of the
diagram, the evidences of the reasonable source can 
not totally and correctly support decision-making for 
there are two possibilities which are 𝑃(𝑎𝑗) > 𝑃(𝑎𝑘)
and 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘) . If 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘)  in the
evidences, the decisions are wrong. However, if 
𝑷(𝑎𝑗) or 𝑷(𝑎𝑘) has the random values in the blank
of the diagram, there is only one possibility which is 
𝑃(𝑎𝑗) > 𝑃(𝑎𝑘) for the sources are reasonable and
the decisions by these evidences are totally correct. 
So, we define the neutrosophic probability and the 
absolutely right probability of the reasonable 
evidence source as probability of 𝑷(𝑎𝑗)  in the
shadow and blank of the diagram.

𝑃(𝑎𝑗) 

𝑃(𝑎𝑗) > 𝑃(𝑎𝑘) or 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘) 

𝑃(𝑎𝑘) 

Figure 1. The diagram for the similarity. 

Based on the above analysis, the neutrosophic 
probability and the absolutely right probability of the 
reasonable evidence source can be obtained by the 
similarity from the prior evidences for the mapping 
of the SMPPF of 𝑷(𝑎𝑗)  and 𝑷(𝑎𝑘)  to the
probability of 𝑷(𝑎𝑗)  in the shadow is one-to-one
mapping. 

As ∀𝑎𝑖 , 𝑎𝑘 ∈ Θ, 0 <

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘)) ≤ 𝟏 , iff 𝑎𝑖 =

𝑎𝑘, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖)) , we define that the
probability of 𝑷(𝑎𝑗) in the shadow is the same as
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘)).

Assume there are reasonable evidence sources 
for evidence fusion, denoted by 𝑆𝑘, 𝑘 = 1,2, L, ℎ. So,
the neutrosophic probability of the the reasonable 
evidence source in the prior condition that 𝑎𝑗  is
known can be calculated as follows: 

𝑃(𝑆𝑘 is neutral |𝑎𝑖) = max
1<𝑗<𝑛,𝑗≠𝑖

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘))] (14) 

Then, the absolutely right probability of the 
reasonable evidence source in the prior condition that 
𝑎𝑗 is known can be calculated as follows:

(𝑆𝑘 is absolutely right|𝑎𝑖) = 1 − 𝑃(𝑆𝑘 is neutral |𝑎𝑖) = 1 − max
1<𝑗<𝑛,𝑗≠𝑖

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘))] (15)

So, if the prior probability of each focal element 
can be obtained accurately, the absolutely right 

probability of the reasonable evidence source can be 
calculated by the equation 

𝑃(𝑆𝑘 is absolutely right) = ∑ 𝑃𝑎𝑖∈Θ,𝑖=1,2,L,𝑛
(𝑆𝑘 is absolutely right|𝑎𝑖)𝑔𝑃(𝑎𝑖). (16) 

If the prior probability of each focal element 
can not be obtained accurately and any focal element 
has no advantage in the prior knowledge, denoted by 

𝑃(𝑎1) = 𝑃(𝑎2) = L = 𝑃(𝑎𝑛) , the absolutely right
probability of the reasonable evidence source can be 
calculated as follows: 

𝑃(𝑆𝑘 is absolutely right) =
∑ (𝑆𝑘 is absolutely right |𝑎𝑖)𝑎𝑖∈Θ,𝑖=1,2,L,𝑛

𝑛
(17) 

We define the discounting factors of 
importances in DSmT framework 𝛼𝑆𝐼𝐺(𝑆𝑘)  as the
normalization of the absolutely right probabilities of 

the the reasonable evidence sources P(𝑆𝑘  is right),
𝑘 = 1,2, L, ℎ, denoted by  

𝛼𝑆𝐼𝐺(𝑆𝑘) =
𝑃(𝑆𝑘 is absolutely right)

max
𝑘=1,2,L,ℎ

[𝑃(𝑆𝑘 is absolutely right)] (18) 
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3.3. The reliablility discounting factors based on probabilistic-based distances 

The Classical Pignistic Transformation(CPT) [9,10,11] is introduced briefly as follows: 
𝑃(𝐴) = ∑

|𝑋I𝐴|

|𝑋|𝑋∈2Θ 𝑚(𝑋) (19) 

Based on CPT, if the mass assignments of the 
single focal elements which consist of the union set 
of single focal elements are equal divisions of the 
mass assignment of the union set of single focal 
elements in two evidences, the pignistic probability 
of two evidences are equal and the decisions of the 
two evidences based on CPT are also the same. From 
the view of decision, it is a good way to measure the 
similarity of the real-time evidences based on 
pignistic probability of evidences. Probabilistic 
distance based on Minkowski's distance [25] is 
applied in this paper to measure the similarity of real-
time evidences. The method for calculating the 

reliability discounting factors based on Minkowski's 
distance [25] (𝑡 = 1) is given as follows. 

Assume that there are h evidence sources, 
denoted by 𝑆𝑘, 𝑘 = 1,2, L, ℎ , the real-time 2
evidences from 𝑆𝑖 and 𝑆𝑗, 𝑖 ≠ 𝑗 are denoted by 𝒎𝑖,
𝒎𝑗  the discernment framework of the sources is
{𝜃1, 𝜃2, 𝐿, 𝜃𝑛} , the pignistic probabilities of single
focal elements from 𝑆𝑖 are denoted by 𝑃𝑆𝑖(𝜃𝑤), 1 <
𝑤 < 𝑛 and the pignistic probabilities of single focal 
elements from 𝑆𝑗 are denoted by 𝑃𝑆𝑗(𝜃𝑤), 1 < 𝑤 <

𝑛. 

1) Minkowski's distance (𝑡 = 1) between two real-time evidences is calculated as follows:
𝐷𝑖𝑠𝑡𝑃(𝒎𝑖 ,𝒎𝑗) =

1

2
∑ |𝑃𝑆𝑖(𝜃𝑤) − 𝑃𝑆𝑗(𝜃𝑤)|𝜃𝑤∈Θ
|𝜃𝑤|=1

. (20) 

2) The similarity of the real-time evidences is obtained by
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑦(𝒎𝑖 ,𝒎𝑗) = 1 − 𝐷𝑖𝑠𝑡𝑃(𝒎𝑖 ,𝒎𝑗). (21) 
3) The similarity matrix of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝑆 = [

1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎1,𝒎2)  L 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎1,𝒎ℎ)

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎2,𝒎1) 1  L 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎2,𝒎ℎ)

M
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎ℎ,𝒎1)

M
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎ℎ,𝒎2)

M  M
L  1

] (22) 

The average similarity of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎𝑖,𝒎𝑘)𝑖=1,2,L,ℎ,𝑖≠𝑘

ℎ−1
(23) 

4) The reliability discounting factors of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝛼𝑅𝐸𝐿(𝑆𝑘) =
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

max
𝑘=1,2,L,ℎ

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
(24) 

3.4. The discounting method with both importance and reliability discounting factors in DSmT framework 

1) Discounting evidences based on the discounting factors of importance.
Assume that the real-time evidence from the

reasonable evidence source sk is denoted by: 
𝒎𝑘 = {𝑚(𝐴), 𝐴 ⊆ 𝐷

Θ}, 𝐺Θ = {𝑎1L, 𝑎2, 𝑎1I L I 𝑎2, 𝑎1 UL U𝑎2}.
Based on the discounting factors of importances 

in DSmT framework αSIG(sk), the new evidence 
𝒎𝑘
𝑆𝐼𝐺  after importance-discounting by αSIG(sk) can

be calculated by: 

𝒎𝐾
𝑆𝐼𝐺 = {

𝑚𝛼𝑆𝐼𝐺(𝐴) = 𝛼𝑆𝐼𝐺(𝑆𝐾)𝑔(𝑚(𝐴)), 𝐴 ⊆ 𝐺
Θ

𝑚𝛼𝑆𝐼𝐺(∅) = 1 − 𝛼𝑆𝐼𝐺(𝑆𝐾)
(25) 

where 𝑚𝛼𝑆𝐼𝐺(𝐴)  are the mass assignments to all 
focal elements of the original evidence and 
𝑚𝛼𝑆𝐼𝐺(∅)  is the neutrosophic probability of the 

source, which represents the mass assignment of 
paradox.  

2) Discounting the real-time evidences based on reliability discounting factors after importance
discounting. 

As the property of the neutrosophic probability 
of the source, the pignistic probabilities of single 
focal elements are not changed after importance-
discounting the real-time evidences in DSmT 
framework and the mass assignments of 
neutrosophic empty focal element Ø which represent 
the importances degree of sources is added to the new 

evidences. If some real-time evidence has larger 
conflict with the other real-time evidences, the 
evidence should be not reliable and the mass 
assignments of the focal elements of the evidence 
should be discounted based on the discounting 
factors of reliabilities. As one focal element of the 
new evidence, the mass assignment of neutrosophic 
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empty focal element Ø of the unreliable evidence 
should also be discounted. So the new discounting 
method based on the discounting factors of 

reliabilities after discounting by the discounting 
factors of importances is given as follows 

𝒎𝐾
𝑆𝐼𝐺 = {

𝑚𝛼𝑆𝐼𝐺(𝐴) = 𝛼𝑅𝐸𝐿(𝑆𝑘)𝑔𝛼𝑆𝐼𝐺(𝑆𝑘)𝑔(𝑚(𝐴)), 𝐴 ⊆ 𝐺
Θ

𝑚𝛼𝑆𝐼𝐺(∅) = 𝛼𝑅𝐸𝐿(𝑆𝑘)𝑔[1 − 𝛼𝑆𝐼𝐺(𝑆𝑘)]

𝑚𝛼𝑆𝐼𝐺(Θ) = 1 − 𝛼𝑅𝐸𝐿(𝑆𝑘)

(26) 

3.5. The fusion method of PCR5Ø in DSmT framework is applied 

After applying the new discounting method to 
the real-time evidences, the new evidences with the 
mass assignments of both the neutrosophic empty 
focal element Ø and the total ignorance focal 
elements Θ are obtained. The classic Dempster 

fusion rules can not be sufficient to process these 
evidences in DSmT framework and PCR5Ø for 2 
sources in DSmT framework is applied as our fusion 
method as follows:   

(27) 

𝑚𝑃𝐶𝑅5∅
(𝐴) = ∑ 𝑚1(𝑋1)𝑚2(𝑋2)

𝑋1,𝑋2∈𝐺
Θ

𝑋1I𝑋2=𝐴

+ ∑ [
𝑚1(𝐴)

2 ∙ 𝑚2(𝑋)

𝑚1(𝐴) + 𝑚2(𝑋)
+
𝑚2(𝐴)

2 ∙ 𝑚1(𝑋)

𝑚2(𝐴) + 𝑚1(𝑋)
]

𝑋∈𝐺Θ

𝑋I𝐴=∅

, 𝐴 ∈ 𝐺Θ or ∅ 

The mass assignment of the neutrosophic empty 
focal element Ø is included in the fusion results, 
which is not meaningful to decision. According to the 

principle of proportion, 𝑚𝑃𝐶𝑅5∅
(∅)  in the fusion

result is redistributed to the other focal elements of 
the fusion result as follows: 

𝑚𝑃𝐶𝑅5∅
′ (𝐴) = 𝑚𝑃𝐶𝑅5∅

(𝐴) +
𝑚𝑃𝐶𝑅5∅

(𝐴)

∑ 𝑚𝑃𝐶𝑅5∅
(𝐴)

𝐴∈𝐺Θ
∙ 𝑚𝑃𝐶𝑅5∅

(∅), 𝐴 ∈ 𝐺Θ

𝑚𝑃𝐶𝑅5∅
′ (∅) = 0 (28) 

where 𝑚𝑃𝐶𝑅5∅
′ (𝐴), 𝐴 ∈ 𝐺Θ is the final fusion results of our method. 

4. Simulation Experiments

The Monto Carlo simulation experiments of 
recognition fusion are carried out. Through the 
simulation experiment results comparison of the 
proposed method and the existed methods, included 
PCR5 fusion method, the method in [25] and PCR5 
fusion method with the reliability discounting 
factors, the superiority of the proposed method is 
testified. (In this paper, all the simulation 
experiments are implemented by Matlab simulation 
in the hardware condition of Pentimu(R) Dual-Core 
CPU E5300 2.6GHz 2.59GHz, memory 1.99GB. 
Abscissas of the figures represent that the ratio of the 
the standard deviation of Gauss White noise to the 

maximum standard deviation of the pignistic 
probabilities of focal elements in prior knowledge of 
the evidence sources, denoted by ‘the ratio of the 
standard deviation of GWN to the pignistic 
probabilities of focal elements’.)  

Assume that the prior knowledge of the 
evidence sources is counted as the random 
distributions of the pignistic probability when 
different focal element occurs. The prior knowledge 
is shown in Tabel 3 and the characteristics of random 
distributions are denoted by P(.): (mean value, 
variance). 

Table 3. Prior knowledge of evidence sources. 

Evidence sources Prior knowledge when a occurs Prior knowledge when b occurs 

s1 
P1(a) ~ (0.6,0.3) 

P1(b) ~ (0.4,0.3) 

P1(a) ~ (0.46,0.3) 

P1(b) ~ (0.54,0.3) 

s2 
P2(a) ~ (0.6,0.3) 

P2(b) ~ (0.4,0.3) 

P2(a) ~ (0.4,0.3) 

P2(b) ~ (0.6,0.3) 

s3 
P3(a) ~ (0.8,0.05) 

P3(b) ~ (0.2,0.05) 

P3(a) ~ (0.2,0.05) 

P3(b) ~ (0.8,0.05) 

5.1.1 Simulation experiments in the condition that importance discounting factors of most evidence sources 
are low 

Assume that there are 3 evidence sources, 
denoted by s1, s2, s3, and the discernment framework 

of the sources is 2 types of targets, denoted by {a,b}. 
The prior knowledge is shown in Table 3. Assume 
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that the pignistic probabilities of the focal elements 
are normally distributed. The real-time evidences of 
3 sources are random selected out 1000 times based 
on the prior knowledge in Table 3 in the condition 
that a occurs and b occurs respectively. The Moto-
carlo simulation experiments of recognition fusion 
based on the proposed method and the existed 
methods are carried out. With the increment of the 
standard deviation of Gauss White noise in the mass 
assignments of evidences, the fusion results 
comparisons in different conditions are shown in Fig.
3 and Fig. 4, and the mean value of the correct 
recognition rates and computation time are show in 
Table 11 and Table 12. 

The fusion results comparisons in the condition 
that importance discounting factors of most evidence 
sources are low show that: 

1) The method proposed in this paper has the
highest correct recognition rates among the existed 
methods. PCR5 fusion method has the secondly 
highest correct recognition rates, PCR5 fusion 
method with reliability discounting factors has the 
thirdly highest correct recognition rates, the method 
in [25] has the lowest correct recognition rates. 

2) The method proposed in this paper has the
largest computation time among the existed methods. 
the method in [25] has the secondly largest 
computation time, PCR5 fusion method with 
reliability discounting factors has the thirdly largest 
computation time, PCR5 fusion method has the 
lowest computation time.

Table 11. The mean value of correct recognition rates. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 98.9% 88.6% 80.5% 84.3% 

b 98.9% 87.6% 79.0% 82.9% 

Table 12. The mean value of computation time. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 1.47 × 10−4 0.48 × 10−4 0.88 × 10−4 0.67 × 10−4 

b 1.46 × 10−4 0.47 × 10−4 0.89 × 10−4 0.66 × 10−4 

Table 13. Prior knowledge of evidence sources. 

Evidence sources Prior knowledge when a occurs Prior knowledge when b occurs 

s1 
P1(a) ~ (0.6,0.3) 

P1(b) ~ (0.4,0.3) 

P1(a) ~ (0.46,0.3) 

P1(b) ~ (0.54,0.3) 

s2 
P2(a) ~ (0.8,0.05) 

P2(b) ~ (0.2,0.05) 

P2(a) ~ (0.2,0.05) 

P2(b) ~ (0.8,0.05) 

s3 
P3(a) ~ (0.8,0.05) 

P3(b) ~ (0.2,0.05) 

P3(a) ~ (0.2,0.05) 

P3(b) ~ (0.8,0.05) 

5.1.2 Simulation experiments in the condition that importance discounting factors of most evidence sources 
are high 

Assume that there are 3 evidence sources, 
denoted by s1, s2, s3, and the discernment framework 
of the sources is 2 types of targets, denoted by {a,b}. 
The prior knowledge is shown in Table 13. Assume 

that the pignistic probabilities of the focal elements 
are normally distributed. The Moto-carlo simulation 
experiments are carried out similarly to the Section
4.3.1. With the increment of the standard deviation 
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of Gauss White noise in the mass assignments of 
evidences, the fusion results comparisons in different 
conditions are shown in Fig. 5 and Fig. 6, and the 
mean value of the correct recognition rates and 

computation time are show in Table 14 and Table 15. 
The importance factors of the evidences are 
calculated by Equation (18). The importance factor 
of s1 is 0.19, the importance factor of s2 and s3 is 1. 

Table 14. The mean value of correct recognition rates. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 99.0% 98.8% 99.0% 99.0% 

b 99.0% 98.8% 99.0% 99.0% 

Table 15. The mean value of computation time. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 1.45 × 10−4 0.47 × 10−4 0.86 × 10−4 0.67 × 10−4 

b 1.46 × 10−4 0.47 × 10−4 0.87 × 10−4 0.65 × 10−4 

The fusion results comparisons in the 
condition that importance discounting factors of 
most evidence sources are high show that: 

1) The correct recognition rates of four
methods are similarly closed, PCR5 fusion method 
has the lowest correct recognition rates among four 
methods. 

2) The method proposed in this paper has the
largest computation time among the existed 
methods. the method in [25] has the secondly 
largest computation time, PCR5 fusion method 
with reliability discounting factors has the thirdly 
largest computation time, PCR5 fusion method has 
the lowest computation time. 

5. Conclusions

Based on the experiments results, we suggest that 
the fusion methods should be chosen based on the 
following conditions: 

1) Judge whether the evidences are simple.

2) The importance discounting factors of most
evidences are low or not high, the method in this paper 
is chosen. 

The importance discounting factors of most 
evidences are high, PCR5 fusion method with 
reliability discounting factors is chosen

.
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ABSTRACT 

This short technical paper advocates a bootstrapping algorithm from 
which we can form a statistically reliable opinion based on limited clinically observed data, 
regarding whether an osteo-hyperplasia could actually be 
a case of Ewing’s osteosarcoma. The basic premise underlying our methodology is 
that a primary bone tumour, if it is indeed Ewing’s osteosarcoma, cannot increase 
in volume beyond some critical limit 
without showing metastasis. We propose a statistical method to extrapolate 
such critical limit to primary tumour volume. Our model does 
not involve any physiological variables but rather is entirely based on time 
series observations of increase in primary tumour volume from the point 
of initial detection to the actual detection of metastases. 

KEY WORDS 

Ewing’s bone tumour, multi-cellular spheroids, linear difference equations 

INTRODUCTION 

To date, oncogenetic studies of EWS/FLI-11 induced malignant 
transformation have largely relied upon experimental manipulation of Ewing’s 
bone tumour cell lines and fibroblasts that have been induced to express the 
oncogene. It has been shown that the biology of Ewing’s tumour cells in vitro 
is dramatically different 

Sreepurna Malakar, Florentin Smarandache, S. Bhattacharya (2005). Statistical 
Modeling of Primary Ewing Tumours of the Bone. International Journal of 
Tomography & Statistics 3, JJ05, 81-88
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between cells grown as mono-layers and cells grown as anchorage-independent, 
multi-cellular spheroids (MCS). The latter is more representative of primary 
Ewing’s tumour in vivo (Lawlor et. al, 2002). MCS are clusters of cancer cells, used 
in the laboratory to study the early stages of avascular tumour growth. Mature 
MCS possess a well-defined structure, comprising a central core of necrotic i.e. 
dead cells, surrounded by a layer of non-proliferating, quiescent cells, with 
proliferating cells restricted to the outer, nutrient-rich layer of the tumour. As such, 
they are often used to assess the efficacy of new anti-cancer drugs and treatment 
therapies. The majority of mathematical models focus on the growth of MCS or 
avascular tumour growth. Most recent works have focused on the evolution of 
MCS growing in response to a single, externally-supplied nutrient, such as oxygen 
or glucose, and usually two growth inhibitors (Marusic et. al., 1994). 

Mathematical models of MCS growth typically consist of an ordinary differential 
equation (ODE) coupled to one or more reaction-diffusion equations (RDEs). The 
ODE is derived from mass conservation and describes the evolution of the outer 
tumour boundary, whereas the RDEs describe the distribution within the tumour of 
vital nutrients such as oxygen and glucose and growth inhibitors (Dorman and 
Deutsch, 2002). However studies of this type, no matter how mathematically 
refined, often fall short of direct clinical applicability because of rather rigorous 
restrictions imposed on the boundary conditions. Moreover, these models focus 
more on the structural evolution of a tumour that is already positively classified as 
cancerous rather than on the clinically pertinent question of whether an initially 
benign growth can at a subsequent stage become invasive and show metastases 
(De Vita et. al., 2001). 

What we therefore aim to devise in our present paper is a bootstrapping algorithm 
from which we can form an educated opinion based on clinically observed data, 
regarding whether a bone growth initially diagnosed as benign can subsequently 
prove to be malignant (i.e. specifically, a case of Ewing’s osteosarcoma) . The 
strength of our proposed algorithm lies mainly in its computational simplicity – our 
model does not involve any physiological variables but is entirely based on time 
series observations of progression in tumour volume from the first observation 
point till detection of metastases. 

LITERATURE SUPPORT 

In a clinical study conducted by Hense et. al. (1999), restricted to patients with 
suspected Ewing’s sarcoma, tumour volumes of more than 100 ml and the 
presence of primary metastases were identified as determinants of poor prognosis 
in patients with such tumours. Diagnoses of primary tumours were ascertained 
exclusively by biopsies. The diagnosis of primary metastases was based on 
thoracic computed tomography or on whole body bone scans. It was observed that 
of 559 of the patients (approx. 68% in a total sample size of 821) had a volume 
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above 100 ml with smaller tumours being more common in childhood than in late 
adolescence and early adulthood. Extensive volumes were observed in almost 
90% of the tumours located in femur and pelvis while they were less common in 
other sites (p < 0.001). On average, 26% of all patients were detected with 
clinically apparent primary metastases. 

The detection rate of metastases was markedly higher in patients diagnosed after 
1991 (p < 0.001). Primary metastases were also significantly more common for 
tumours originating in the pelvis and for other tumours in the Ewing’s family of 
tumours (EFT); mainly the peripheral neuro-ectodermal tumours (PNET); (p < 
0.01). Tumours greater than 100 ml were positively associated with metastatic 
disease (p < 0.001). Multivariate analyses, which included simultaneously all 
univariate predictors in a logistic regression model, indicated the observed 
associations were mostly unconfounded. Further it has been found that the 
metastatic potential of human tumours is encoded in the bulk of a primary tumour, 
thus challenging the notion that metastases arise from sparse cells within a 
primary tumour that have the ability to metastasize (Sridhar Ramaswamy et. al., 
2003). These studies lend credence to our fundamental premise about a critical 
primary tumour volume being used as a classification factor to distinguish between 
benign and potentially malignant bone growth. 

STATISTICAL MODELLING METHODOLOGY 

Assuming that the temporal drift process governing the progression in size of a 
primary Ewing tumour of the bone to be linear (the computationally simplest 
process), we suggest a straightforward computational technique to generate a 
large family of possible tumour propagation paths based on clinically observed 
growth patterns under laboratory conditions. In case the governing process is 
decidedly non-linear, then our proposed scheme would not be applicable and in 
such a case one will have to rely on a completely non-parametric classification 
technique like e.g. an Artificial Neural Network (ANN).  

Our proposed approach is a bootstrapping one, whereby a linear autoregression 
model is fitted through the origin to the observation data in the first stage. If one or 
more beta coefficients are found to be significant at least at a 95% level for the 
fitted model then, in the second stage, the autoregression equation is formulated 
and solved as a linear difference equation to extract the governing equation. 

In the final stage, the governing equation obtained as above is plotted, for different 
values of the constant coefficients, as a family of possible temporal progression 
curves generated to explain the propagation property of that particular strain of 
tumour. The critical volume of the primary growth can thereafter be visually 
extrapolated from the observed cluster of points where the generated family of 
primary tumour progression curves shows a definite uptrend vis-à-vis the actual 
progression curve. 
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If no beta coefficient is found to be significant in the first stage, a non-linear 
temporal progression process is strongly suspected and the algorithm terminates 
without proceeding onto the subsequent stages, thereby implicitly recommending 
the problem to a non-parametric classification model. 

The mathematical structure of our proposed model may be given as follows: 

Progression in primary Ewing tumour size over time expressed as an n-step 
general autoregressive process through the origin: 

Formulated as a linear, difference equation we can write: 

Taking St common and applying the negative shift operator throughout, we get: 

Now applying the positive shift operator throughout we get: 

The characteristic equation of the above form is then obtained as follows: 

Here r is the root of the characteristic equation. After solving for r, the governing 
equation can be derived in accordance with the well-known analytical solution 
techniques for ordinary linear difference equations (Kelly and Peterson, 2000). 

SIMULATED CLINICAL STUDY

We set up a simulated clinical study applying our modeling methodology with the 
following hypothetical primary Ewing tumour progression data adapted from the 
clinical study of Hense et. al. (1999) as given in Table I below: 
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The temporal progression path of the primary growth from the point of first 
detection to the onset of metastasis is plotted above in Figure I. 

We have fitted an AR (2) model to the primary tumour growth data as follows: 

      E (St) = -1.01081081St-1 + 5.32365561St-2                  (VI)

The R
2
 of the fitted model is approximately 0.8311 and the F-statistic is 9.83832 
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with an associated p-value of approximately 0.04812. Therefore the fitted model 
definitely has an overall predictive utility at the 5% level of significance. The 
residuals of the above AR (2) fitted model are given in Table II as follows: 

The average of the residuals comes to 3.044841. Therefore the linear difference 
equation to be solved in this case is as follows: 

  Xt = -1.01081081Xt-1 + 5.32365561Xt-2 + 3.044841       (VII) 

Applying usual solution techniques, the general solution to equation (VII) is 
obtained as follows: 

Xt = c1 (2.43124756) 
t
 + c2 (-3.44205837) 

t
 (VIII)

Here c1 and c2 are the constant coefficients which may now be suitably varied to 
generate family of possible primary tumour progression curves as in Figure II 
below: 
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In the above plot, we have varied c2 in the range 0.01 to 0.10 and imposed the 
condition c1 = 1 – c2. The other obvious condition is that choice of c1 and c2 would 
be such as to rule out any absurd case of negative volume. Of course the choice of 
the governing equation parameters would also depend on specific clinical 
considerations (King, 2000). 

CONCLUSION 

From Figure II, it becomes visually apparent that continuing increase in the 
observed size of the primary growth beyond approximately 52 ml. in volume would 
be potentially malignant as this would imply that the tumour would possibly keep 
exhibiting uncontrolled progression till it shows metastasis. This could also be 
obtained arithmetically as the average volume for t = 5. Therefore the critical 
volume could be fixed around 2 ml. as per the computational results obtained in 
our illustrative example. 

Though our computational study is intended to be purely illustrative as we have 
worked with hypothetical figures and hence cannot yield any clinical conclusion, 
we believe we have hereby aptly demonstrated the essential algorithm of our 
statistical approach and justified its practical usability under laboratory settings. 
This is not intended to be a clinical paper and in defense, it may be stated that 
given the immense potential of computer modeling and simulation in present times, 
a number of mathematical tumor growth studies are being conducted now that are 
essentially theoretical rather than clinical in nature (Swanson et. al. 2003; 
Tabatabai, Williams and Bursac, 2005). 

We have used a difference equation model rather than a differential equation one 
because under practical laboratory settings, observations cannot be made 
continuously but only at discrete time intervals. However, as already stated 
previously, the numerical example we have provided is purely demonstrative - its 
purpose is illustrating the computational modeling technique rather than drawing 
clinically viable conclusions based on the model coefficients. Having said that, we 
definitely feel that there is an immediate scope of taking our line of research further 
forward by actually implementing an autoregressive process to model in vitro 
growth of MCS with clinically observed data. 
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Florentin Smarandache 

While the Classical Statistics deals with determinate data and determinate 

inference methods only, the Neutrosophic Statistics deals with indeterminate data, i.e. 

data that has some degree of indeterminacy (unclear, vague, partially unknown, 

contradictory, incomplete, etc.), and indeterminate inference methods that contain 

degrees of indeterminacy as well (for example, instead of crisp arguments and values for 

the probability distributions, charts, diagrams, algorithms, functions etc. one may have 

inexact or ambiguous arguments and values). 

The Neutrosophic Statistics was founded by Prof. Dr. Florentin Smarandache, 

from the University of New Mexico, United States, in 1998, who developed it in 2014 by 

introducing the Neutrosophic Descriptive Statistics (NDS). Further on, Prof. Dr. 

Muhammad Aslam, from the King Abdulaziz University, Saudi Arabia, introduced in 

2018 the Neutrosophic Inferential Statistics (NIS), Neutrosophic Applied Statistics 

(NAS), and Neutrosophic Statistical Quality Control (NSQC). 

The Neutrosophic Statistics is also a generalization of Interval Statistics, because 

of, among others, while Interval Statistics is based on Interval Analysis, Neutrosophic 

Statistics is based on Set Analysis (meaning all kind of sets, not only intervals). 

Neutrosophic Statistics is more elastic than Classical Statistics. 

If all data and inference methods are determinate, then the Neutrosophic Statistics 

coincides with the Classical Statistics. 

But, since in our world we have more indeterminate data than determinate data, 

therefore more neutrosophic statistical procedures are needed than classical ones. 

Neutrosophic Numbers of the form N = a+bl have been defined by W. B. 

VasanthaKandasamy and F. Smarandache in 2003 [see B2], and they were interpreted as 

"a" is the determinate part of the number N, and "bl" as the indeterminate part of the 

number N by F. Smarandache in 2014 [see B3]. 

Neutrosophic Statistics is the analysis of events described by the Neutrosophic 

Probability. 

Florentin Smarandache (2021). Short Note on Neutrosophic Statistics as a 
generalization of Classical Statistics. Journal of Rajasthan Statistical Association 
3(1), 159-171

Short Note on Neutrosophic Statistics 
as a generalization of Classical Statistics
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Neutrosophic Probability is a generalization of the classical probability and 

imprecise probability in which the chance that an event A occurs is t% true - where t 

varies in the subset T, i% indeterminate - where i varies in the subset I, and f% false -

where f varies in the subset F. In classical probability the sum of all space probabilities is 

equal to 1, while in Neutrosophic Probability it is equal to 3. 

In Imprecise Probability: the probability of an event is a subset T in [O, 1], not a 

number p in [O, 1], what's left is supposed to be the opposite, subset F (also from the unit 

interval [0, l]); there is no indeterminate subset I in imprecise probability [see B9]. 

The function that models the Neutrosophic Probability of a random variable x is 

called Neutrosophic distribution: NP(x) = ( T(x), l(x), F(x) ), where T(x) represents the 

probability that value x occurs, F(x) represents the probability that value x does not 

occur, and l(x) represents the indeterminate / unknown probability of value x [see B3]. 

More than 100 papers, nine books, one PhD thesis, and five international scientific 

seminars have been published or presented on neutrosophic statistics, including many 

journals by Elsevier and Springer of high impact factor. 
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ABSTRACT
In this paper we have proposed a semi-heuristic optimization algorithm for 

designing optimal plant layouts in process-focused manufacturing/service facilities. Our 
proposed algorithm marries the well-known CRAFT 

(Computerized Relative Allocation of Facilities Technique) with the Hungarian 
assignment algorithm. Being a semi-heuristic search, MASS 

can be potentially more efficient in terms of CPU engagement time as it 
can converge on the global optimum faster than the traditional CRAFT, 

which is a pure heuristic. We also present a numerical illustration of our proposed 
algorithm.

KEY WORDS 

CRAFT, facilities layout planning, Hungarian assignment algorithm. 

INTRODUCTION 

The fundamental integration phase in the design of productive systems is 
the layout of production facilities.  A working definition of layout may be given 
as the arrangement of machinery and flow of materials from one facility to 
another, which minimizes material-handling costs while considering any physical 
restrictions on such arrangement.  

S. Bhattacharya, Florentin Smarandache, M. Khoshnevisan

MASS - Modified Assignment Algorithm 
in Facilities Layout Planning

S. Bhattacharya, Florentin Smarandache, M. Khoshnevisan (2005). MASS - 
Modified Assignment Algorithm in Facilities Layout Planning. International 
Journal of Tomography & Statistics 3, JJ05, 19-29
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Usually this layout design is based either on considerations of machine-time cost 
and product availability; thus making the production system product-focused; or on 
considerations of quality and flexibility; thereby making the system process-
focused. It is natural that while product-focused systems are better off with a ‘line 
layout’ dictated by available technologies and prevailing job designs, process-
focused systems, which are more concerned with job organization, opt for a 
‘functional layout’. Of course, in reality the actual facility layout often lies 
somewhere in between a pure line layout and a pure functional layout format; 
governed by the specific demands of a particular production plant. Since our 
present paper concerns only functional layout design for process-focused systems, 
this is the only layout design we will discuss here.  

The main goal to keep in mind is to minimize material handling costs - therefore 
the departments that incur the most interdepartmental movement should be 
located closest to one another. The main type of design layouts is Block 
diagramming, which refers to the movement of materials in existing or proposed 
facility. This information is usually provided with a from/to chart or a load summary 
chart, which gives the average number of unit loads moved between departments. 
A load-unit can be a single unit, a pallet of material, a bin of material, or a crate of 
material. The next step is to design the layout by calculating the composite 
movements between departments and rank them from most movement to least 
movement. Composite movement refers to the back-and-forth movement between 
each pair of departments. Finally, trial layouts are placed on a grid that graphically 
represents the relative distances between departments. This grid then becomes 
the objective of optimization when determining the optimal plant layout.  We give a 
schematic representation of the basic operational considerations in a process-
focused system as follows: 
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In designing the optimal functional layout, the fundamental question to be 
addressed is that of ‘relative location of facilities’. The locations will depend on the 
need for one pair of facilities to be adjacent (or physically close) to each other 
relative to the need for all other pairs of facilities to be similarly adjacent (or 
physically close) to each other. Locations must be allocated based on the relative 
gains and losses for the alternatives and seek to minimize some indicative 
measure of the cost of having non-adjacent locations of facilities. Constraints of 
space prevents us from going into the details of the several criteria used to 
determine the gains or losses from the relative location of facilities and the 
available sequence analysis techniques for addressing the question; for which we 
advise the interested reader to look up any standard handbook of 
production/operations management. 

COMPUTERIZED RELATIVE ALLOCATION OF FACILITIES TECHNIQUE  
Computerized Relative Allocation of Facilities Technique (CRAFT) (Buffa, Armour 
and Vollman, 1964) is a computerized heuristic algorithm that takes in load matrix
of interdepartmental flow and transaction costs with a representation of a block 
layout as the inputs. The block layout could either be an existing layout or; for a 
new facility, any arbitrary initial layout. The algorithm then computes the 
departmental locations and returns an estimate of the total interaction costs for the 
initial layout. The governing algorithm is designed to compute the impact on a cost 
measure for two-way or three-way swapping in the location of the facilities. For 
each swap, the various interaction costs are computed afresh and the load matrix 
and the change in cost (increase or decrease) is noted and stored in the RAM. The 
algorithm proceeds this way through all possible combinations of swaps 
accommodated by the software. The basic procedure is repeated a number of 
times resulting in a more efficient block layout every time till such time when no 
further cost reduction is possible. The final block layout is then printed out to serve 
as the basis for a detailed layout template of the facilities at a later stage. Since its 
formulation, more powerful versions of CRAFT have been developed but these too 
follow the same, basic heuristic routine and therefore tend to be highly CPU-
intensive (Khalil, 1973; Hicks and Cowan, 1976). 

The basic computational disadvantage of a CRAFT-type technique is that one 
always has got to start with an arbitrary initial solution (Carrie, 1980). This means 
that there is no mathematical certainty of attaining the desired optimal solution 
after a given number of iterations. If the starting solution is quite close to the 
optimal solution by chance, then the final solution is attained only after a few 
iterations. However, as there is no guarantee that the starting solution will be close 
to the global optimum, the expected number of iterations required to arrive at the 
final solution tend to be quite large thereby straining computing resources (Driscoll 
and Sangi, 1988).  

 In this paper we propose and illustrate the Modified Assignment (MASS) algorithm 
as an extension to the traditional CRAFT, to enable faster convergence to the 
optimal solution. This we propose to do by marrying CRAFT technique with the 
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Hungarian assignment algorithm. As our proposed algorithm is semi-heuristic, it is 
likely to be less CPU-intensive than any traditional, purely heuristic CRAFT-type 
algorithm.  

THE HUNGARIAN ASSIGNMENT ALGORITHM 

A general assignment problem may be framed as a special case of the balanced 
transportation problem with availability and demand constraints summing up to 
unity. Mathematically, it has the following general linear programming form:

Minimize ΣΣ CijXij

Subject to ΣXij = 1, for each i, j = 1, 2 …n

In terms of the classical assignment problem, Cij is the cost of assigning the i
th
 job

to the j
th
 individual and Xij is the number of assignments of the i

th
 job to the j

th

individual. In words, the problem may be stated as assigning each of n individuals 
to n jobs so that exactly one individual is assigned to each job in such a way as to 
minimize the total cost.  

To ensure satisfaction of the basic requirements of the assignment problem, the 
basic feasible solutions of the corresponding balanced transportation problem 
must be integer valued. However, any such basic feasible solution will contain (2n 
– 1) variables out of which (n – 1) variables will be zero thereby introducing a high
level of degeneracy in the solution making the usual solution technique of a
transportation problem very inefficient.

This has resulted in mathematicians devising an alternative, more efficient 
algorithm for solving this class of problems, which has come to be commonly 
known as the Hungarian assignment algorithm. This algorithm is based on the 
following optimality theorem:  

Theorem: If a constant number is added to any row and/or column of the cost 
matrix of an assignment-type problem, then the resulting assignment-type problem 
has exactly the same set of optimal solutions as the original problem and vice 
versa. 

Proof: Let Ai and Bj (i, j = 1, 2 … n) be added to the ith row and/or jth column 
respectively of the cost matrix. Then the revised cost elements are Cij

*
 = Cij + Ai

+Bj. The revised cost of assignment is ΣΣCij
*
Xij = ΣΣ (Cij + Ai + Bj) Xij = ΣΣCijXij +

ΣAi ΣXij + ΣBjΣXij. But by the imposed assignment constraint ΣXij = 1 (for i, j = 1, 2
… n), we have the revised cost as ΣΣCijXij + ΣAi + ΣBj i.e. the cost differs from the
original by a constant. As the revised costs differ from the originals by a constant,
which is independent of the decision variables, an optimal solution to one is also
optimal solution to the other and vice versa.
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The optimality theorem can be used in two different ways to solve the assignment 
problem. First, if in an assignment problem, some cost elements are negative, the 
problem may be converted into an equivalent assignment problem by adding a 
positive constant to each of the entries in the cost matrix so that they all become 
non-negative.  Next, the important thing to look for is a feasible solution that has 
zero assignment cost after adding suitable constants to the rows and columns. 
Since it has been assumed that all entries are now non-negative, this assignment 
must be the globally optimal one (Mustafi, 1996).  

Given a zero assignment, a straight line is drawn through it (a horizontal line in 
case of a row and a vertical line in case of a column), which prevents any other 
assignment in that particular row/column.  The governing algorithm then seeks to 
find the minimum number of such straight lines, which would cover all the zero 
entries to avoid any redundancy. Let us say that k such lines are required to cover 
all the zeroes. Then the necessary condition for optimality is that number of zeroes 
assigned is equal to k and the sufficient condition for optimality is that k is equal to 
n for an n x n cost matrix.  

MASS (MODIFIED ASSIGNMENT) ALGORITHM 

The basic idea of our proposed algorithm is to develop a systematic scheme to 
arrive at the initial input block layout to be fed into the CRAFT program so that the 
program does not have to start off from any initial (and possibly inefficient) 
solution. Thus, by subjecting the problem of finding an initial block layout to a 
mathematical scheme, we in effect reduce the purely heuristic algorithm of CRAFT 
to a semi-heuristic one. Our proposed MASS algorithm follows the following 
sequential steps:

Step 1: We formulate the load matrix such that each entry lij represents the load 
carried from facility i to facility j. 

Step 2: We insert lij = M, where M is a large positive number, into all the vacant
cells of the load matrix signifying that no inter-facility load transportation is required 
or possible between the i

th
 and j

th
 vacant cells.

Step 3: We solve the problem on the lines of a standard assignment problem 
using the Hungarian assignment algorithm treating the load matrix as the cost 
matrix.

Step 4: We draft the initial block layout trying to keep the inter-facility distance dij
*

between the i
th
 and j

th
assigned facilities to the minimum possible magnitude, 

subject to the available floor area and architectural design of the shop floor. 

Step 5: We proceed using the CRAFT program to arrive at the optimal layout by 
iteratively improving upon the starting solution provided by the Hungarian 
assignment algorithm till the overall load function L = ΣΣ lijdij

*
 subject to any
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particular bounds imposed on the problem. 

The Hungarian assignment algorithm will ensure that the initial block layout is at 
least very close to the global optimum if not globally optimal itself. Therefore the 
subsequent CRAFT procedure will converge on the global optimum much faster 
starting from this near-optimal initial input block layout and will be much less CPU-
intensive than any traditional CRAFT-type algorithm. Thus MASS is not a stand-
alone optimization tool but rather a rider on the traditional CRAFT that tries to 
ensure faster convergence to the optimal block layout for process-focused 
systems, by making the search semi-heuristic.  

That MASS will be an improvement over traditional CRAFT in terms of 
computational efficiency is rather intuitive. At its worst the computational efficiency 
of MASS will be same as that of traditional CRAFT (in the rather unlikely scenario 
that the CRAFT heuristic chances upon the best possible layout in its very first 
iteration). In all other scenarios, MASS will give an initial solution to CRAFT which 
is much more likely to be closer to the global optimal than any random initial 
solution as under traditional CRAFT. 

We provide a numerical illustration of the MASS algorithm in the Appendix by 
designing the optimal block layout of a small, single-storied, process-focused 
manufacturing plant with six different facilities and a rectangular shop floor design. 
The model can however be extended to cover bigger plants with a higher number 
of facilities. Also the MASS approach we have advocated here can even be 
extended to deal with the multi-floor version of CRAFT (Johnson, 1982) by 
constructing a separate assignment table for each floor subject to any 
predecessor-successor relationship among the facilities. 
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APPENDIX: NUMERICAL ILLUSTRATION OF MASS 

We consider a small, single-storied process-focused manufacturing plant with a 
rectangular shop floor plan having six different facilities. We mark these facilities 
as FI, FII, FIII, FIV, FV and FVI. The architectural design requires that there be an 
aisle of at least 2 meters width between two adjacent facilities and the total floor 
area of the plant is 64meters x 22meters. Based on the different types of jobs 
processed, the loads to be transported between the different facilities are supplied 
in the load matrix below: 

We put in a very large positive value M in each of the vacant cells of the load 
matrix to signify that no inter-facility transfer of load is required or is permissible for 
these cells: 
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Next we apply the standard Hungarian assignment algorithm to obtain the initial 
solution: 

Above is the assignment table after first iteration. There are two rows and three 
columns that are covered i.e. k = 5. But as this is a 6x6 load matrix, the above 
solution is sub-optimal. So we make a second iteration: 

Now columns FI, FIII, FIV, FVI and rows FI and FVI are covered i.e. k = 6. As this is a 
6x6 load matrix the above solution is optimal. 
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The optimal assignment table (subject to the 2 meters of aisle between adjacent 
facilities) is shown below: 

Initial layout of facilities as dictated by the Hungarian assignment algorithm: 

Figure 2 

FI FIII FV

FII FIV FVI

The above layout conforms to the rectangular floor plan of the plant and also 
places the assigned facilities adjacent to each other with an aisle of 2 meters width 
between them. Thus FI is adjacent to FII, FIII is adjacent to FIV and FV is adjacent to 
FVI.

Based on the cost information provided in the load-matrix the total cost in terms of 
load-units for the above layout can be calculated as follows:   
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L = 2{(20 + 10) + (50 + 30) + (10 + 15)} + (44 x 25) + (22 x 40) + (22 x 15) = 2580.  

By feeding the above optimal solution into the CRAFT program the final, the global 
optimum is found in a single iteration. The final, best layout as obtained by CRAFT 
is:

Figure 3 

FI FVI FIV

FII FV FIII

Based on the cost information provided in the load-matrix the total cost in terms of 
load-units for the optimal layout can be calculated as follows:   

L* = 2{(10 + 20) + (15 + 10) + (5 + 30)} + (22 x 25) + (44 x 15) + (22 x 40) = 2360. 

Therefore the final solution is an improvement of just 220 load-units over the initial 
solution! This shows that this initial solution fed into CRAFT is indeed near optimal 
and can thus ensure a faster convergence. 
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Cross entropy measure is one of the best way to 
calculate the divergence of any variable from the priori one 
variable.  We define a new cross entropy measure under interval 
neutrosophic set (INS) environment, which we call IN-cross 
entropy measure and prove its basic properties. We also develop 
weighted IN-cross entropy measure and investigats its basic 
properties. Based on the weighted IN-cross entropy measure, we 
develop a novel strategy for multi attribute group decision 

making (MAGDM) strategy under interval neutrosophic 
environment. The proposed multi attribute group decision 
making strategy is compared with the existing cross entropy 
measure based strategy in the literature under interval 
neutrosophic set environment. Finally, an illustratative  example 
of multi attribute group decision making problem is solved to 
show the feasibility, validity and efficiency of the proposed 
MAGDM strategy.  

Interval neutrosophic set, IN-cross entropy measure, MAGDM strategy.

In our daily life we frequently meet with the quantitative 
measure to take appropriate decision for solving many 
problems. Entropy measure provides us a quantitative 
measure of two variables. In 1968, Zadeh [1] introduced 
fuzzy entropy measure. According to Liu [2], under fuzzy 
environment, entropy should meet at least three basic fol-
lowing requirements: the entropy of a crisp number is ze-
ro; the entropy of an equipossible fuzzy variable is max-
imum and the entropy is applicable not only to finite and 
infinite cases but also to discrete and continuous cases. 
Shang and Jiang [3] proposed a cross entropy measure 
and symmetric discrimination measure between fuzzy 
sets. Atanassov [4] introduced intuitionistic fuzzy set 
(IFS) in 1989, which is the extension of fuzzy set.  Some 
recent applications of IFS are found in [5-11] in the liter-
ature. Vlachos and Sergiadis [12] defined cross entropy 
measure in IFS environment and showed a mathematical 
connection between the notions of entropy for fuzzy sets 
and IFSs in terms of fuzziness and intuitionism. In 1998, 
Smarandache [13] introduced the concept of neutrosophic 

set (NS) by introducing truth membership, falsity mem-
bership and indeterminacy membership functions as in-
dependent components and their sum lies (-0, 3+ ). There-
after, Wang et al. [14] introduced single valued neutro-
sophic set (SVNS) as a subclass of NS. Thereafter, many 
researchers paid attention to apply NS and SVNS in 
many field of research such as conflict resolution [15], 
clustering analysis [16, 17], decision making [18-47], ed-
ucational problem [48, 49], image processing [50, 52], 
medical diagnosis [53], optimization [54-59], social prob-
lem [60, 61]. Ye [62] introduced cross entropy measure 
in SVNS and applied it to multi criteria decision- making 
(MCDM) problems. Ye [63] defined an improved cross 
entropy measure for SVNS to overcome drawbacks in 
[62]. In 2005, Wang et al. [64] introduced interval neu-
trosophic set (INS) considering truth membership, inde-
terminate membership and falsity membership as interval 
number in [0, 1]. Broumi and Smarandache [65] defined 
correlation coefficient of INS and proved its basic prop-
erties. Zhang et al. [66] defined correlation coefficient for 

Shyamal Dalapati, Surapati Pramanik, Sheriful Alam, Florentin Smarandache, Tapan Kumar Roy (2017). IN-cross 
Entropy Based MAGDM Strategy under Interval Neutrosophic Set Environment. Neutrosophic Sets and Systems 
18, 43-57
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interval neutrosophic number (INN) and applied it 
MAGDM problems.  Zhang et al. [67] presented an out-
ranking approach for INS and applied its MCDM prob-
lems. Recently, Yu et al. [68] use VIKOR method to 
solve MAGDM problem with INN.  Ye [69] defined sim-
ilarity measure in INS environment and applied to solve 
MCDM problem. Pramanik and Mondal [70] extended 
the single valued neutrosophic grey relational analysis 
strategy to interval neutrosophic environment and applied 
it to multi-attribute decision-making (MADM) problems. 
Zhao et al. [71] proposed a MADM strategy based on 
generalized weighted aggregation operator with INS. 
Zhang et al. [72] proposed a MCDM strategy based on 
two interval neutrosophic number aggregation operators. 
Sahin [73] defined two cross entropy measures with INS 
based on fuzzy cross entropy measure and single valued 
neutrosophic cross entropy measure and applied for solv-
ing MCDM problem. Tian et al. [74] proposed a cross en-
tropy measure with INS and TOPSIS for solving MCDM 
problems. 

Sahin [73], Tian et al. [74] proposed cross entropy 
measures under the interval-valued neutrosophic set envi-
ronment, which is suitable for single decision maker on-
ly. So multiple decision maker cannot participate in their 
strategies in [73, 74].  

The aforementioned applications of cross entropy 
[63, 73, 74] can be effective in dealing with neutrosophic 
MADM problems. However, they also bear some limita-
tions, which are outlined below: 

i. The strategies [63, 73, 74] are capable of solving
neutrosophic MADM problems.

ii. In the strategies [73, 74], interval-valued neutrosophic
set are transformed to SVNS by suitable transform
operators.

iii. The strategies [63, 73, 74] have a single decision-making
structure, and not enough attention is paid to improving
robustness when processing the assessment information.

MAGDM strategy based on cross entropy measure. 
This study answers the following research ques-

tions: 
i. Is it possible to define a new cross entropy measure under

interval-valued neutrosophic set environment that is free
from asymmetrical phenomena?

ii. Is it possible to define a new weighted cross entropy
measure under interval-valued neutrosophic set that is
free from asymmetrical phenomena?

iii. Is it possible to develop a new MAGDM strategy based
on the proposed cross entropy measure under interval-
valued neutrosophic set environment?

iv. Is it possible to develop a new MAGDM strategy based
on the proposed weighted cross entropy measure under
interval-valued neutrosophic set environment?

The above-mentioned analysis describes the motiva-
tion behind proposing a novel IN-cross entropy-based
strategy for tackling MAGDM under the interval-valued
neutrosophic environment. This study develops a novel
IN-cross entropy-based MAGDM strategy that can deal
with multiple decision-makers and free from the draw-
backs that exist in [63, 72, 73].

The objectives of the paper are: 
1. i.   To define a new cross entropy measure under interval-

valued neutrosophic set environment without using any
transformation operator and prove its basic properties,

2. ii.   To define a new weighted cross measure and prove
its basic properties.

3. iii. To develop a new MAGDM strategy based on
weighted cross entropy measure under interval-valued
neutrosophic set environment.

To fill the research gap, we propose IN-cross entropy-
based MAGDM, which is capable of dealing with multi-
ple decision-makers.

The main contributions of this paper are summa-
rized below:

1. i.  We define a new IN-cross entropy measure and prove
its basic properties. It is straightforward symmetric.

2. ii.  We define a new weighted IN-cross entropy measure
in the single-valued neutrosophic set environment and
prove its basic properties. It is straightforward symmetric

3. iii. In this paper, we develop a new MAGDM strategy
based on weighted IN cross entropy to solve MAGDM
problems.

4. iv. In this paper, we solve a MAGDM problem based on
the proposed MAGDM strategy.

5.
The paper unfolds as follows: In section 2, we describe

the basic definitions and operations of SVNS, INS. In
section 3, we present the definition of proposed IN-cross
entropy measure, weighted IN-cross entropy measure and
their basic properties. In section 4, we develop a
MAGDM strategy with the proposed weighted IN-cross
entropy measure. In section 5, we solve a MAGDM prob-
lem to show the feasibility, validity and efficiency of the
proposed strategy. In section 6, we present conclusion
and future direction of this study.
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Assume that U be a space of points (objects) with generic 
elements u ∈ U. A SVNS H in U is characterized by a 
truth-membership function TH(u), an indeterminacy-
membership function IH(u), and a falsity-membership 
function FH(u), where TH(u), IH(u), FH(u)  [0, 1] for each 
point u in U. Therefore, a SVNS A can be expressed as H 
= { u, TH (u), I H (u), FH (u) | u  U}, whereas, the sums of 
TH(u), IH(u) and FH(u) satisfy the condition 

0 ≤ TH(u) + IH(u) + FH(u) ≤ 3. 

Assume that U be a space of points (objects) with generic 
elements u ∈ U. An INSs J in U is characterized by a truth-
membership measure TJ(u), an indeterminacy-membership 
measure IJ(u), and a falsity-membership measure FJ(u), 
where, 

)](),([)( +−= , )]u(),u([)u( III JJJ
+−= ,

)](),([)( +−=  for each point u in U. Therefore, a
INSs J can be expressed as J = {u, )](),([ +− , 

)](),([ +− , )](),([ +−  | u  U}. Where, 
)(),( +− , )(),( +− , ]1,0[)u(),u( FF JJ ⊆+− .

2.3
Let J1 = {u, )]u(),u([ TT 1J1J

+− , )]u(),u([ II 1J1J
+− , )]u(),u([ FF 1J1J

+−  | 

u  U} and J2 = {u, )]u(),u([ TT 2J2J
+− , )]u(),u([ II 2J2J

+− , 

)]u(),u([ FF 2J2J
+−  | u  U} be any two INSs in U, then JJ 21⊆

iff ),u()u( TT 2J1J
−− ≤ )u()u( TT 2J1J

++ ≤ , )u()u( II 2J1J
−− ≥ , 

)u()u( II 2J1J
++ ≥ , )u()u( FF 2J1J

−− ≥ , )u()u( FF 2J1J
++ ≥ for all u  U. 

The complement Jc of an INS J = {u, )]u(),u([ TT JJ
+− , 

)]u(),u([ II JJ
+− , )]u(),u([ FF JJ

+−  | u  U}  is defined as follows: 

Jc  = {u, )]u(),u([ T1T1 JJ −− −+ , )]u(),u(1[ I1I JJ − −+− ,

)]u([ F1),u(F1 J J−− + −
| u  U}.

Let J1 = {u, )]u(),u([ TT 1J1J
+− , )]u(),u([ II 1J1J

+− , )]u(),u([ FF 1J1J
+−  | 

u  U} and J2 = {u, )]u(),u([ TT 2J2J
+− , )]u(),u([ II 2J2J

+− , 

)]u(),u([ FF 2J2J
+−  | u  U} be any two INSs in U, then JJ 21 =

iff ),u()u( TT 2J1J
−− = )u()u( TT 2J1J

++ = , )u()u( II 2J1J
−− = , 

)u()u( II 2J1J
++ = , )u()u( FF 2J1J

−− = , )u()u( FF 2J1J
++ = for all u  U. 

Let J1 and J2 be any two INSs in U = { }u...,,u,u,u n321 .  
Then, the interval neutrosophic cross-entropy measure of 
J1 and J2 is denoted by CEIN (J1, J2) and defined as follows:   
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Interval-valued neutrosophic cross entropy  )J ,(J CE 21IN
for any two INSs J and J 21 of U, satisfies the following 
properties: 
i) 0)J ,(J CE 21IN ≥ .
ii) 0)J ,(J CE 21IN = if and only if

),u()u( i2Ji1J TT −− = )u()u( i2Ji1J TT ++ = , )u()u( i2Ji1J II −− = , 
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.Uui ∈∀
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2
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1IN21IN =
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So, 0)J ,(J CE 21IN = if and only if 
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)u()u( i2Ji1J II ++ = , )u()u( i2Ji1J FF −− = , )u()u( i2Ji1J FF ++ = .Uui ∈∀
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Hence complete the proof. 
  

We consider the weight  (i = 1, 2, 3,…, n) of  (i = 1, 2, 

3, …, n) with .1wand]1,0[w
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 (2) 

Interval neutrosophic weighted cross-entropy measure 
w
IN 1 2CE  (J , J ) satisfies the following properties:
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1FF

F(1F

FF

FF






























 1



 1


F )) (1 F


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2
J2
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2

J1
(ui

J2
(uiJ1

(ui

2

J2
(ui

2

J1
(ui

J2
(uiJ1

(ui

(1F ))(1 F ))1

(1 ))2

F )F )1

F ) F )2

CEw (J1, J2 ), uiU. IN

Hence complete the proof. 

iv). 
Since, 

T (ui)TJ
 (ui)TJ1(ui)  (ui)T 1J2J2

  ,

IJ2 (ui) IJ
 (ui)IJ1(ui) I (ui) 1J2

  ,

FJ2 (ui)FJ
 (ui)FJ1(ui)  (ui)F 1J2

  ,

(1 J

2 i)) (1TJ

 (ui))(uT(1TJ

1(ui)) (1TJ


2 (ui)) 1 ,

(1  (ui)) (1 IJ
 (ui)) I(1 IJ


1(ui)) (1 I (ui)) 1J2J2  ,

(1  (ui)) (1FJ
 (ui))F(1FJ


1(ui)) (1F (ui)) 1J2J2  . 

Then, we obtain 
2222

TJ

1(ui)TJ


2(ui)TJ


2(ui)TJ


1(ui)  1 1 11 ,

2222
IJ

1(ui)IJ


2(ui)IJ


2(ui)IJ


1(ui)  1 1 11 ,

2222
FJ

1(ui)FJ


2(ui)FJ


2(ui)FJ


1(ui)  1 1 11 ,

,( i)(1(ui)(11(ui)(1i)(11 2
J1

2
J2

2
J2

2
J1 T uT (u  T T  1 1

, 2222
(1 IJ


1(ui)(1 IJ


2(ui)(1 IJ


2(ui)(1 IJ


1(ui)  1 1 11 , 
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J1

2
J2

2
J2

2
J1 F uF (u  F F  1 1

u i U.  
Similarly, T (ui)TJ

 (ui)T )T (ui) 1J2J2J1
(ui

  ,

I (ui) IJ
 (ui)I ) I (ui) 1J2J2J1

(ui
  ,

F (ui)FJ
 (ui)FJ1

(ui)F (ui) 1J2J2
  ,

(1  (ui)) (1TJ
 (ui))T(1TJ



1
(ui)) (1T (ui)) 1J2J2

 ,

(1  (ui)) (1 IJ
 (ui)) I(1 )) (1 I (ui)) 1J2J21

(ui IJ
  ,

(1  (ui)) (1FJ
 (ui))F(1 )) (1F (ui)) 1J2J21

(uiFJ
  , 

then 
2

Q1

2

Q2

2

Q2

2

Q1
T (ui)T (ui)T (ui)T (ui)  1 1 11 ,

2222
IJ

1(ui)IJ


2(ui)IJ


2(ui)IJ


1(ui)  1 1 11 ,

,( i)(ui)1(ui)1( i)1
2

J1

2

J2

2

J2

2

J1 F uFFF u   1 

,i)(1(ui)(11(ui)(1( i)(11
2

J1

2

J2

2

J2

2

J1 T (uT u  T T  1 1

2222
(1 IJ


1(ui)(1 IJ


2(ui)(1 IJ


2(ui)(1 IJ


1(ui)  1 1 11 , 

,i)(1(ui)(11(ui)(1i)(11
2

J1

2

J2

2

J2

2

J1 F (uF (u  F F  1 1

u i U.  

And w i[0,1], 1
n

i1
wi  , w i  0 .

So, CE  (J , J )  CE IN  ( J 2 , J1).w
21

w
IN Hence complete the proof. 

4. Multi attribute group decision making strat-
egy using IN-cross entropy measure in in-
terval neutrosophic set environment

In this section we develop a novel MAGDM strategy based 
on proposed IN- cross entropy measure.     

The MAGDM problem can be consider as follows: 
Let A {A1,A2,A3,...,Am} and G {G1,G2,G3,...,Gn} be the 
discrete set of alternatives and attribute respectively. Let 
W  {w1,w2,w3,...,wn} be the weight vector of attributes G j  

(j = 1, 2, 3, …, n), where w j  0 and w 1
n

j 1
 j


. Let 

E  {E1,E2,E3,...,E} be the set of decision makers who are 
employ to evaluate the alternative. The weight vector of 
the decision makers Ek (k  1,2,3,...,) is 

  {1,2,3,...,} (where, 10 and
k 1
k 


), which can be 

determined according to the decision makers expertise, 
judgment quality and decision making knowledge.  
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Now, we describe the steps of the proposed MAGDM 
strategy (See Figure 1.) using weighted IN-cross entropy 
measure. 

For MAGDM with INSs information, the rating values of 
the alternatives )m...,,3,2,1i(Ai = on the basis of 
critera )n...,,3,2,1j(Gj = by the k-th decision maker can be 

expressed in INN as ><= +−+−+− ]F,F[],I,I[],T,T[ k
ij

k
ij

k
ij

k
ij

k
ij

k
ij

k
ija  (i = 

1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ρ)   .  We 
arrange these rating values of alternatives provided by the 
decision makers in matrix form as follows: 

























=

aaa

aaa
aaa

k
mn

k
m2

k
m1m

k
2n

k
22

k
212

k
1n

k
12

k
111

n21

k

...A

......
A

 ...A

G....GG 

M ………(3) 

 

For obtaining one group decision, we aggregate all 
individual decision matrices )M( k  to an aggregated 
decision matrix (M) using interval-valued neutrosophic 
weighted averaging (INNWA) operator ([72]) as follows:  

== ρ
λ )...,,,,(INNWAa aaaa ij

3
ij

2
ij

1
ijij

)a...aaa( ij
3
ij3

2
ij2

1
ij1

ρ
ρλ⊕⊕λ⊕λ⊕λ =

)4(])F(,)F([

,])I(,)I([],)T1(1,)T1(1[

1k

kk
ij

1k

kk
ij

1k

kk
ij

1k

kk
ij

k

1k

k
ij

k

1k

k
ij

>

−−−−<

∏∏

∏∏∏∏

ρ

=

λ+ρ

=

λ−

ρ

=

λ+ρ

=

λ−λρ

=

+λρ

=

−

(i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ρ). 
Therefore, the aggregated decision matrix is defined as 
follows: 























=

mnm2m1m

n222212

1n12111

n21

a...aaA
......

aaaA
a ...aaA
G....GG 

M ……… (5) 

In the MAGDM processes, the priori decision matrix is 
used to select the best alternatives among the set of 
collected feasible alternatives. In this decision making 
processes we use the following decision matrix as priori 
decision matrix. 

























=

aaa

aaa
aaa

*
mn

*
m2

*
m1m

*
2n

*
22

*
212

*
1n

*
12

*
111

n21

...A

......
A

 ...A

G....GG 

P  ...............(6) 

Where, ><= ]0,0[],0,0[],1,1[a*
ij for benefit type attributes 

and ><= ]1,1[],1,1[],0,0[a*
ij for cost type attributes, (i = 1, 2, 

3, …, m; j = 1, 2, 3, …, n). 

Using equation (2), we calculate weighted cross entropy 
value between aggregate matrix and priori matrix. The 
cross entropy value can be present in matrix form as 
follows: 

























=

)(A CE
..................
.................

)(A CE

)(A CE

m
w
IN

2
w
IN

1
w
IN

……….. (7) 

Smaller value of the cross entropy reflect that an 
alternative is closer to the ideal alternative. Therefore, the 
priority order of all the alternatives can be determined 
according to the increasing order of the cross entropy 
values )(A CE i

w
IN (i = 1, 2, 3, …, m). Smallest cross entropy 

value indicates the best alternative and greatest cross 
entropy value indicates the worst alternative. 
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Figure.1 Decision making procedure of proposed MAGDM method 
................................................................................................................................................................................................... 

5. Illustrative example
In this section, we provide an illustrative example of 
MAGDM problems to reflect the validity and efficiency of 
our proposed strategy under INSs environment. 
Now, we solve an illustrative example adapted from [9] for 
cultivation and analysis. A venture capital firm intends to 
make evaluation and selection to five enterprises with the 
investment potential: 

1) Automobile company (A1)
2) Military manufacturing enterprise (A2)
3) TV media company (A3)

4) Food enterprises (A4)
5) Computer software company (A5)

On the basis of four attributes namely: 
1) Social and political factor (G1)
2) The environmental factor (G2)
3) Investment risk factor (G3)
4) The enterprise growth factor (G4).

The investment firm makes a panel of three decision 
makers E  {E1,E2,E3}  having their weights vector 

  Decision making analysis phase 

 Multi attribute gr                                            oup decision mak ing problem 

Formulate the decision matrices Step-1 

Formulate the weighted 
aggregated decision matrix

Formulate priori/ ideal decision 
matrix   

Step- 2 

Step- 3 

Calculate the weighted IN-cross 
entropy matrix 

Rank the priority 

Step-4 

Step-5 

End 

Start 
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 {0.42,0.28,0.30}  and weight vector of attributes
is W  {0.24, 0.25, 0.23, 0.28} .
The steps of decision making strategy to rank alternatives 
are presented below: 
Step: 1. Formulate the decision matrices 

We represent the rating values of alternatives 
i
A  (i = 

1, 2, 3, 4, 5) with respects to the attributes
j

 G  (j = 1, 2, 3, 
4) provided by the decision-makers

k
E  (k = 1, 2, 3) in ma-

trix form as follows:

.................................................................................................................................................................................................... 
 Decision matrix for E1  decision maker 

























 

 

 

 

 

 

 

 

 

 

 

 

 















   


[.7,.9],[.1,.2],[.1, .3]
[.6,.7],[.1,.3],[.2,.3]
[.4,.5],[.3,.4],[.6,7]
[.7,.9],[.6,.7],[.4,.5]

[.7,.9],[.5,.6],[.4,.5]
[.8,.9], [.5,.7],[.3,.6]
[.6,.7],[.1, .2],[.4,.5]
[.5,.6],[.2,.4],[.3,.4]

[.7,.8],[.2,.4],[.2,.3]
[.5,.7],[.3,.4],[.1,.2]
[.3,.6],[.2,.3],[.3,.4]
[.4,.5],[.2,.4],[.3,.5]

[.6,.7],[.1,.2],[.2,.3]
[.6,.8],[.2,.4],[.3,.4]
[.4,.5],[.7,.8],[.6,.7]
[.7,.8],[.3,.4],[.2,.3]A

A
A
A

[.4,.5],[.3,.4],[.7, .8][.6,.7],[.2,.3],[.2,.4][.6,.7],[.3,.4],[.4,.5][.7,.9],[.3,.4],[.3,.4]A
GGGG

M

5

4

3

2

1

4321

1 ……….(8) 

Decision matrix for E2  decision maker 

























 

 

 

 

 

 

 

 

  

 



 

 



   



[.6,.8],[.3,.5],[.3,4]
[.3,.5],[.3,.4],[.4,.5]

[.5,.7],[.1,.3],[.3,.4]
[.8,.9], [.2,.5],[.3,.4]
[.4,.7],[.1, .4],[.3,.4]
[.6,.8],[.3,.5],[.,4.6]

[.6,.7],[.2,.3],[.3,.4]
[.4,.5],[.2,.3],[.3,.5]
[.5,.6],[.1,.3],[.4,.6]
[.3,.6],[.3,.4],[.2,.5]

[.5,.7],[.3,.5],[.1,.3]
[.6,.9],[.3,.4],[.2,.3]A

A
[.5,.6],[.3,.5],[.3,.6]

[.4,.7],[.2,.4],[.3,.4]
[.3,.6],[.2,.4],[.3,.4]A

[.4,.6],[.3,.4],[.2, .3]A
[.4,.6],[.4,.5],[.2, .3][.7,.9],[.3,.4],[.3,.5][.3,.5],[.2,.4],[.4,.5][.6,.7],[.1,.2],[.2,.3]A

GGGG

M

5

4

3

2

1

4321

2 ……….(9) 

Decision matrix for E3  decision maker 

























  

 

  





  

 

 

 

 

 





 

   



[.5,.7],[.2,.3],[.3,.5][.4,.6],[.1,.3],[.2,.4]
[.5,.6],[.1,.3],[.2,.4]
[.5,.6],[.2,.4],[.1,.3]

[.6,.9],[.2,.3],[.2,.4]
[.7,.8],[.1,.3],[.2,.3]A

[.5,.7],[.2,.3],[.3,5][.3,.5],[.1, .2],[.2,.4]A
[.6,.7],[.2,.3],[.3,.4]

[.5,.7],[.2,.4],[.2,.3]
[.6,.8], [.2,.3],[.3,.4]

[.7,.9],[.1,.3],[.3,.4]
[.8,.9],[.1,.3],[.3,.4][.7,.8],[.1,.3],[.4,.5]A

[.6,.8],[.2,.4],[.3, .5][.3,.6],[.4,.5],[.4,.5]A
[.8,.9],[.2,.4],[.1, .3][.6,.7],[.2,.4],[.3,.5][.3,.6],[.2,.4],[.3,.4][.4,.7],[.1,.2],[.3,.5]A

GGGG

M

5

4

3

2

1

4321

3 …………(10) 

Step: 2. Formulate the weighted aggregated decision matrix 
Using equation (4), the aggregated decision matrix is presented below: 
    Aggregated decision matrix 

























 

 

 

  

  

  

   

  


[.6,.7],[.2,.3],[.2,.4]
[.5,.7],[.3,.4],[.4,.5]
[.6,.8],[.4,.5],[.4,.5]  [.5,.7],[.2,.4],[.3,.4]

[.5,.6],[.2,.4],[.4,.4]
[.7,.8],[.2,.3],[.2,.4]
[.6,.8],[.2,.3],[.2,.3]
[.4,.6],[.1,.3],[.3,.4]
[.4,.6],[.2,.4],[.2,.4][.7,.8],[.2,.4],[.2,.3]A

[.5,.6],[.1, .2],[.3,.4][.5,.7],[.4,.5],[.3,.5]A
[.8,.9], [.3,.5],[.3,.5][.6,.8],[.2,.4],[.3,.4]A

[.6,.8],[.2,.3],[.2, .3][.6,.8],[.2,.4],[.3,.4]
[.6,.8],[.2,.3],[.3,.4]
[.5,.7],[.2,.3],[.3,.4]A

  [.6,.7],[.3,.4],[.3, .4][.6,.8],[.2,.3],[.2,.4]A
GGGG

M

5

4

3

2

1

4321

 ………(11) 

Step: 3. Formulate priori/ ideal decision matrix 
 Priori/ ideal decision matrix 

























 

 

 

 

 

 

 

 

 

 

 

 





 

   



[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]
[1,1],[0,0],[0,0]A

[1,1],[0,0],[0,0]A
[1,1],[0,0],[0,0]A
[1,1],[0,0],[0,0]A
[1,1],[0,0],[0,0][1,1],[0,0],[0,0][1,1],[0,0],[0,0][1,1],[0,0],[0,0]A

GGGG

M

5

4

3

2

1

4321

1        …………(12) 

Step: 4. Calculate the weighted IN-cross entropy matrix 
Using equation (2), we calculate the interval neutrosophic 
weighted cross entropy values between ideal matrixes (12)  
and weighted aggregated decision matrix (11).  


























0.90
0.95
0.78
0.77
0.86

w
CE

IN M ………….(13) 
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Step: 5. Rank the priority 
The position of cross entropy values of alternatives 
arranging in increasing order is  
0.77 < 0.78 < 0.86 < 0.90 < 0.95. Since, smallest 
values of cross entropy indicate the alternative is closer to 

the ideal alternative.  Thus the ranking priority of 
alternatives is A2 > A3 > A1 > A5 > A4. Hence, military 
manufacturing enterprise (A2) is the best alternative for 
investment.

.................................................................................................................................................................................................... 
In Figure 2, we draw a bar diagram to represent the cross 
entropy values of alternatives which shows that A2 is the 
best alternative according our proposed strategy.   

Figure.2. Bar diagram of alternatives versus cross entropy values of alternatives 
...................................................................................................................................................................................................

2. Conclusion
In this paper we have defined IN-cross entropy measure 
in INS environment which is free from all the drawback 
of existence cross entropy measures under interval 
neutrosophic set environment. We have proved the 
basic properties of the cross entropy measures. We have 
also defined weighted IN- cross entropy measure and 
proved its basic properties. Based on the weighted IN-
cross entropy measure, we have proposed a novel 
MAGDM strategy. Finally, we solve a MAGDM 
problem to show the feasibility and efficiency of the 
proposed MAGDM making strategy.  The proposed IN-
cross entropy based MAGDM strategy can be employed 
to solve a variety of problems such as logistics center 
selection, teacher selection, renewable energy selection, 
fault diagnosis, etc.  

References
[1] L. A. Zadeh. Probability measures of fuzzy events.

Journal of Mathematical Analysis and Applications,
23 (1968), 421–427.

[2] B. Liu. A survey of entropy of fuzzy variables.
Journal of Uncertain Systems, 1(1) (2007), 4–13.

[3] X. G. Shang, and W. S. Jiang. A note on fuzzy in-
formation measures. Pattern Recognition Letters, 18
(1997), 425-432.

[4] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy
Sets and Systems, 20 (1986), 87-96.

[5] M. D. Wade, A. Telik, D. S. Malik, and J. N.
Mordeson. Political stability: analysis using TOP-
SIS and intuitionistic fuzzy sets. New Mathematics
and Natural Computation, 13 (1) (2017), 1-11. doi:
10.1142/s1793005717500016.

[6] S. Pramanik, and D. Mukhopadhyaya. Grey rela-
tional analysis based intuitionistic fuzzy multi-
criteria group decision-making approach for teacher
selection in higher education. International Journal
of Computer Applications,  34 (10) (2011), 21-29.
doi: 10.5120/4138-5985.

[7] K. Mondal, and S. Pramanik. Intuitionistic fuzzy
multi criteria group decision making approach to
quality-brick selection problem. Journal of Applied
Quantitative Methods, 9 (2) (2014), 35–50.

[8] P. P. Dey, S. Pramanik, and B. C. Giri. Multi-
criteria group decision making in intuitionistic fuzzy
environment based on grey relational analysis for
weaver selection in Khadi institution. Journal of
Applied Quantitative Methods, 10 (4) (2015), 1–14.

[9] X. He, and W. F.  Liu. An intuitionistic fuzzy multi-
attribute decision-making method with preference
on alternatives. Operations Research & Manage-
ment Science, 22 (2013), 36–40.

Florentin Smarandache (author and editor) Collected Papers, XIII

636



[10] K. Mondal, S. Pramanik. Intuitionistic fuzzy
similarity measure based on tangent function and its
application to multi-attribute decision making.
Global Journal of Advanced Research, 2 (2), (2015),
464-471.

[11] P. Biswas, S. Pramanik, and B. C. Giri. A study on
information technology professionals’ health
problem based on intuitionistic fuzzy cosine
similarity measure. Swiss Journal of Statistical and
Applied Mathematics, 2 (1) (2014), 44-50.

[12] I. K. Vlachos, and G. D. Sergiadis. Intuitionistic
fuzzy information applications to pattern recogni-
tion. Pattern Recognition Letters, 28 (2007), 197-
206.

[13] F. Smarandache. A unifying field of logics. Neu-
trosophy: neutrosophic probability, set and logic,
American Research Press, Rehoboth, (1998).

[14] H. Wang, F. Smarandache, Y. Zhang, and R. Sun-
derraman. Single valued neutrosophic sets. Multi-
space and Multi-structure, 4 (2010), 410-413.

[15] S. Pramanik, and T. K. Roy. Neutrosophic game
theoretic approach to Indo-Pak conflict over Jam-
mu-Kashmir. Neutrosophic Sets and Systems, 2
(2014) 82-101.

[16] J. Ye. Single valued neutrosophic minimum span-
ning tree and its clustering method. Journal of Intel-
ligent Systems, 23(2014), 311–324.

[17] J. Ye.  Clustering methods using distance-based
similarity measures of single-valued neutrosophic
sets. Journal of Intelligent Systems, 23 (2014), 379–
389.

[18] P. Biswas, S. Pramanik, and B. C. Giri. Entropy
based grey relational analysis method for multi-
attribute decision making under single valued neu-
trosophic assessments. Neutrosophic Sets and Sys-
tems, 2 (2014), 102–110.

[19] P. Biswas, S. Pramanik, and B. C. Giri. A new
methodology for neutrosophic multi-attribute deci-
sion making with unknown weight information.
Neutrosophic Sets and Systems, 3 (2014), 42–52.

[20] P. Biswas, S. Pramanik, and B. C. Giri. TOPSIS
method for multi-attribute group decision-making
under single valued neutrosophic environment. Neu-
ral Computing and Applications, (2015), doi:
10.1007/s00521-015-1891-2.

[21] P. Biswas, S. Pramanik, and B. C. Giri. Aggregation
of triangular fuzzy neutrosophic set information and
its application to multi-attribute decision making.
Neutrosophic Sets and Systems, 12 (2016), 20-40.

[22] P. Biswas, S. Pramanik, and B. C. Giri. Value and
ambiguity index based ranking   method of single-
valued trapezoidal neutrosophic numbers and its ap-
plication to multi-attribute decision making. Neutro-
sophic Sets and Systems 12 (2016), 127-138.

[23] P. Biswas, S. Pramanik, and B. C. Giri. Multi-
attribute group decision making based on expected
value of neutrosophic trapezoidal numbers. New
Trends in Neutrosophic Theory and Applications-
Vol-II. Pons Editions, Brussels (2017). In Press.

[24] P. Biswas, S. Pramanik, and B. C. Giri. Non-linear
programming approach for single-valued neutro-
sophic TOPSIS method. New Mathematics and
Natural Computation, (2017). In Press.

[25] I. Deli, and Y. Subas. A ranking method of single
valued neutrosophic numbers and its applications to
multi-attribute decision making problems. Interna-
tional Journal of Machine Learning and Cybernet-
ics, (2016), doi:10.1007/s13042016-0505-3.

[26] P. Ji , J. Q. Wang, and H. Y. Zhang.  Frank priori-
tized Bonferroni mean operator with single-valued
neutrosophic sets and its application in selecting
third-party logistics providers. Neural Computing
and Applications, (2016). doi:10.1007/s00521-016-
2660-6.

[27] A. Kharal. A neutrosophic multi-criteria decision
making method. New Mathematics and Natural
Computation, 10 (2014), 143–162.

[28] R. X. Liang, J. Q. Wang, and L. Li. Multi-criteria
group decision making method based on interde-
pendent inputs of single valued trapezoidal neutro-
sophic information. Neural Computing and Applica-
tions, (2016), doi:10.1007/s00521-016-2672-2.

[29] R. X. Liang, J. Q. Wang, and H. Y. Zhang. A multi-
criteria decision-making method based on single-
valued trapezoidal neutrosophic preference relations
with complete weight information. Neural Compu-
ting and Applications, (2017). Doi: 10.1007/s00521-
017-2925-8.

[30] P. Liu, Y. Chu, Y. Li, and Y. Chen. Some general-
ized neutrosophic number Hamacher aggregation
operators and their application to group decision
making. International Journal of Fuzzy System,
16(2) (2014), 242–255.

[31] P. D. Liu, and H. G. Li. Multiple attribute decision-
making method based on some normal neutrosophic
Bonferroni mean operators. Neural Computing and
Applications, 28 (2017), 179–194.

[32] P. Liu, and Y. Wang. Multiple attribute decision-
making method based on single-valued neutrosophic
normalized weighted Bonferroni mean. Neural
Computing and Applications, 25(7) (2014), 2001–
2010.

[33] J. J. Peng, J. Q. Wang, J. Wang, H. Y. Zhang, and
X. H. Chen. Simplified neutrosophic sets and their
applications in multi-criteria group decision-making
problems. International Journal of Systems Science,
47 (10) (2016), 2342-2358.

Florentin Smarandache (author and editor) Collected Papers, XIII

637



[34] J. Peng, J. Wang, H. Zhang, and X. Chen. An out-
ranking approach for multi-criteria decision-making
problems with simplified neutrosophic sets. Applied
Soft Computing, 25:336–346.

[35] S. Pramanik, D. Banerjee, and B. C. Giri. Multi –
criteria group decision making model in neutrosoph-
ic refined set and its application. Global Journal of
Engineering Science and Research Management,
3(6) (2016), 12-18.

[36] S. Pramanik, S. Dalapati, and T. K. Roy. Logistics
center location selection approach based on neutro-
sophic multi-criteria decision making. New Trends
in Neutrosophic Theories and Applications. Pons-
Editions, Brussels, 2016, 161-174.

[37] R. Sahin, and M. Karabacak. A multi attribute deci-
sion making method based on inclusion measure for
interval neutrosophic sets.  International Journal of
Engineering and Applied Sciences, 2(2) (2014), 13–
15.

[38] R. Sahin, and A. Kucuk. Subsethood measure for
single valued neutrosophic sets. Journal of Intelli-
gent and Fuzzy System, (2014), doi:10.3233/IFS-
141304.

[39] R. Sahin, and P.  Liu. Maximizing deviation method
for neutrosophic multiple attribute decision making
with incomplete weight information. Neural Com-
puting and Applications, (2015), doi:
10.1007/s00521-015-1995-8.

[40] M. Sodenkamp. Models, methods and applications
of group multiple-criteria decision analysis in com-
plex and uncertain systems. Dissertation, University
of Paderborn, (2013), Germany.

[41] J. Ye. Multi criteria decision-making method using
the correlation coefficient under single-valued neu-
trosophic environment. International Journal of
General Systems,42 (2013), 386–394.

[42] E. K. Zavadskas, R. Baušys, and M. Lazauskas.
Sustainable assessment of alternative sites for the
construction of a waste incineration plant by
applying WASPAS method with single-valued
neutrosophic set. Sustainability, 7 (2015), 15923-
15936.

[43] J. Ye. A multi criteria decision-making method us-
ing aggregation operators for simplified neutrosoph-
ic sets. Journal of Intelligent and Fuzzy Systems, 26
(2014), 2459–2466.

[44] J. Ye. Trapezoidal neutrosophic set and its applica-
tion to multiple attribute decision-making. Neural
Computing and Applications, 26 (2015),1157–1166.

[45] J. Ye. Bidirectional projection method for multiple
attribute group decision making with neutrosophic

number. Neural Computing and Applications, 
(2015), doi: 10.1007/s00521-015-2123-5. 

[46] J. Ye. Projection and bidirectional projection
measures of single valued neutrosophic sets and
their decision – making method for mechanical de-
sign scheme. Journal of Experimental and Theoreti-
cal Artificial Intelligence, (2016),
doi:10.1080/0952813X.2016.1259263.

[47] S. Pramanik, P. Biswas, and B. C. Giri. Hybrid vec-
tor similarity measures and their applications to
multi-attribute decision making under neutrosophic
environment. Neural Computing and Applications,
28 (2017), 1163–1176. doi:10.1007/s00521-015-
2125-3.

[48] K. Mondal, and S. Pramanik. Multi-criteria group
decision making approach for teacher recruitment in
higher education under simplified Neutrosophic en-
vironment. Neutrosophic Sets and Systems, 6
(2014), 28-34.

[49] K. Mondal, and S. Pramanik. Neutrosophic decision
making model of school choice. Neutrosophic Sets
and Systems, 7 (2015), 62-68.

[50] H. D. Cheng, and Y. Guo. A new neutrosophic ap-
proach to image thresholding. New Mathematics
and Natural Computation, 4 (2008), 291–308.

[51] Y. Guo, and H. D. Cheng. New neutrosophic ap-
proach to image segmentation. Pattern Recognition,
42 (2009), 587–595.

[52] Y. Guo, A. Sengur, and J. Ye. A novel image
thresholding algorithm based on neutrosophic simi-
larity score. Measurement, 58 (2014), 175–186.

[53] J. Ye. Improved cosine similarity measures of sim-
plified neutrosophic sets for medical diagnoses. Ar-
tificial Intelligence in Medicine, 63 (2015b), 171–
179.

[54] M. Abdel-Baset, I.M. Hezam, and F. Smarandache.
Neutrosophic goal programming, Neutrosophic Sets
and Systems, 11 (2016), 112-118.

[55] P. Das, and T. K. Roy. Multi-objective non-linear
programming problem based on neutrosophic opti-
mization technique and its application in riser de-
sign problem. Neutrosophic Sets and Systems, 9
(2015), 88-95.

[56] I.M. Hezam, M. Abdel-Baset, and F. Smarandache.
Taylor series approximation to solve neutrosophic
multiobjective programming problem. Neutrosophic
Sets and Systems, 10 (2015), 39-45.

[57] S. Pramanik. Neutrosophic multi-objective linear
programming. Global Journal of Engineering Sci-
ence and Research Management, 3(8) (2016), 36-46.

[58] S. Pramanik. Neutrosophic linear goal program-
ming, Global Journal of Engineering Science and
Research Management, 3(7) (2016), 01-11.

[59] R. Roy, and P. Das. A multi-objective production
planning roblem based on neutrosophic linear
rogramming approach. Internal Journal of Fuzzy
Mathematical Archive, 8(2) (2015), 81-91.

Florentin Smarandache (author and editor) Collected Papers, XIII

638



[60] K. Mondal, and S. Pramanik. A study on problems
of Hijras in West Bengal based on neutrosophic
cognitive maps. Neutrosophic Sets and Systems,
5(2014), 21-26.

[61] S. Pramanik, and S. Chakrabarti. A study on prob-
lems of construction workers in West Bengal based
on neutrosophic cognitive maps. International Jour-
nal of Innovative Research in Science. Engineering
and Technology, 2(11) (2013), 6387-6394.

[62] J. Ye. Single valued neutrosophic cross-entropy for
multi criteria decision making problems. Applied
Mathematical Modelling, 38 (3) (2014), 1170 –
1175.

[63] J. Ye. Improved cross entropy measures of single
valued neutrosophic sets and interval neutrosophic
sets and their multi criteria decision making meth-
ods. Cybernetics and Information Technologies, 15
(2015), 13-26. doi: 10.1515/cait-2015-0051.

[64] H. Wang, F. Smarandache, Y. Q. Zhang, and R.
Sunderraman. Interval neutrosophic sets and logic:
theory and applications in computing. Hexis; Neu-
trosophic book series, No. 5 (2005).

[65] S. Broumi, and F. Smarandache. Correlation coeffi-
cient of interval neutrosophic set. Applied Mechan-
ics and Materials,  436 (2013), 511–517.

[66] H.Y. Zhang, P. Ji, J. Wang, and X.H. Chen. An im-
proved weighted correlation coefficient based on in-
tegrated weight for interval neutrosophic sets and its
application in multi-criteria decision-making prob-
lems. International Journal of Computational Intel-
ligence Systems, 8 (2015), 1027–1043.

[67] H.Y. Zhang, J.Q. Wang, and X.H. Chen. An out-
ranking approach for multi-criteria decision-making
problems with interval-valued neutrosophic sets.
Neural Computing and Applications, 17 (2016),
615–627.

[68] Y. Huang, G. Wei, and C. Wei. VIKOR method for
interval neutrosophic multiple attribute group deci-
sion-making. Information 8 (2017), 144;
doi:10.3390/info8040144.

[69] J. Ye. Similarity measures between interval neutro-
sophic sets and their applications in multi criteria
decision-making. Journal of Intelligent and Fuzzy
Systems, 26 (2014), 165–172.

[70] S. Pramanik and K. Mondal. Interval neutrosophic
multi-attribute decision-making based on grey rela-
tional analysis. Neutrosophic Sets and Systems, 9
(2015), 13-22.

[71] A. W. Zhao, J. G.  Du, and H. J. Guan. Interval val-
ued neutrosophic sets and multi-attribute decision-
making based on generalized weighted aggregation
operator. Journal of Intelligent and Fuzzy Systems,
29 (2015), 2697–2706.

[72] H.Y. Zhang, J.Q. Wang, and X. H. Chen. Interval
neutrosophic sets and their application in multi-
criteria decision making problems. The Scientific
World Journal, 2014 (2014), Article ID 645953.
http://dx.doi.org/10.1155/2014/645953.

[73] R. Sahin. Cross-entropy measure on interval neutro-
sophic sets and its applications in multi criteria de-
cision making. Neural Computing and Applications,
2015, doi 10.1007/s00521-015-2131-5.

[74] Z. P. Tian, H. Y. Zhang, J. Wang, J. Q. Wang, and
X. H. Chen. Multi-criteria decision-making method
based on a cross-entropy with interval neutrosophic
sets. International Journal of Systems Science, 2015.
doi:10.1080/00207721.2015.1102359.

Florentin Smarandache (author and editor) Collected Papers, XIII

639



Generalized Single Valued Triangular Neutrosophic 
Numbers and Aggregation Operators for Application to 

Multi-attribute Group Decision Making

Mehmet Şahin, Abdullah Kargın, Florentin Smarandache

ABSTRACT 

In this study we define the generalizing single valued triangular neutrosophic number. In addition, single valued 
neutrosophic numbers are transformed into single valued triangular neutrosophic numbers according to the 
values of truth, indeterminacy and falsity. Furthermore, we extended the Hamming distance given for triangular 
intuitionistic fuzzy numbers to single valued triangular neutrosophic numbers. We have defined new score 
functions based on the Hamming distance. We then extended some operators given for intuitionistic fuzzy 
numbers to single valued triangular neutrosophic numbers. Finally, we developed a new solution to multi-
attribute group decision making problems for single valued neutrosophic numbers with operators and scoring 
functions and we checked the suitability of our new method by comparing the results we obtained with previously 
obtained results. We have also mentioned for the first time that there is a solution for multi-attribute group 
decision making problems for single valued triangular neutrosophic numbers. 

Keywords: Hamming distance, single valued neutrosophic number, generalized single valued neutrosophic number,   multi-
attribute group decision making 

1. INTRODUCTION

There are many uncertainties in daily life. However, classical mathematical logic is insufficient to account for 
these uncertainties. In order to explain these uncertainties mathematically and to use them in practice, Zadeh 
(1965) first proposed a fuzzy logic theory. Although fuzzy logic is used in many field applications, the lack of 
membership is not explained because it is only a membership function. Then Atanassov (1986) introduced the 
theory of intuitionistic fuzzy logic. In this theory, he states membership, non-membership and indeterminacy, 
and has been used in many fields and applications. Later, Li (2010) defined triangular intuitionistic fuzzy 
numbers. However, in the intuitionistic fuzzy logic, membership, non-membership, and indeterminacy are all 
completely dependent in each other. Finally, Smarandache (1998 and 2016) proposed the neutrosophic set 
theory, which is the more general form of intuitionistic fuzzy logic. Many studies have been done on this theory 

Mehmet Şahin, Abdullah Kargın, Florentin Smarandache (2018). Generalized Single Valued Triangular 
Neutrosophic Numbers and Aggregation Operators for Application to Multi-attribute Group Decision Making. 
In F. Smarandache, S. Pramanik (eds.): New Trends in Neutrosophic Theory and Applications, II, 51-84
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and have been used in many field applications. In this theory, the values of truth, indeterminacy and falsity of a 
situation are considered and these three values are defined completely independently of each other Smarandache, 
Wang, Zhang, and Sunderraman (2010) defined single valued neutrosophic sets. Subas (2015) defined single 
valued triangular neutrosophic numbers is a special form of single valued neutrosophic numbers. Many 
uncertainties and complex situations arise in decision-making applications. It is impossible to come up with 
these uncertainties and complexities, especially with known numbers. For example, in multi-attribute decision 
making (MADM), multiple objects are evaluated according to more than one property and there is a choice of 
the most suitable one. Particularly in multi-attribute group decision making (MAGDM), the most appropriate 
object selection is made according to the data received from more than one decision maker. Multi - attribute 
decision making group and multi-attribute decision making problems have been found by many researchers 
using various methods using intuitionistic fuzzy numbers. For example; Wan and Dong (2015) studied 
trapezoidal intuitionistic fuzzy numbers and application to multi attribute group decision making. Wan, Wang, Li 
and Dong (2016) studied triangular intuitionistic fuzzy numbers and application to multi attribute group decision 
making. Biswas, Pramanik, and Giri (2016) have studied trapezoidal fuzzy neutrosophic numbers and its 
application to multi-attribute decision making (MADM) and triangular fuzzy neutrosophic set and its application 
to multi-attribute decision making (MADM). 

However, these methods and solutions are not suitable for neutrosophic sets and neutrosophic numbers. 
Therefore, many researchers have tried to find solutions to multi-attribute group decision making and multi-
attribute decision making problems using neutrosophic sets and neutrosophic numbers. Recently, Liu and Luo 
(2017) have proposed multi-attribute group decision making problems using "power aggregation operators of 
simplifield neutrosophic sets"; Sahin, Uluçay, Kargın and Ecemiş (2017) studied centroid single valued 
triangular neutrosophic numbers and their applications in multi-attribute decision making; Sahin and Liu (2017) 
used multi-criteria decision making problems using exponential operations of simplest neutrosophic numbers; 
Liu and Li have produced solutions to multi-criteria decision making problems with "some normal neutrosophic 
Bonferroni mean operators" (2017). Smarandache (2016) have produced neutrosophic overset, neutrosophic 
underset, and neutrosophic offset. Biswas, Pramanik, and Giri (2016) have studied single-valued trapezoidal 
neutrosophic numbers and its application to multi-attribute decision making (MADM). Ye (2015) have studied 
multi-attribute decision making (MADM). 

Subas (2015) defined =   as a positive single valued triangular neutrosophic 

number for ∈  or a negative single valued triangular neutrosophic number for   ∈  . 

However, the condition ∈  -{0} has not been defined. This narrows the applications of single valued 

triangular neutrosophic numbers. In this study we first define the condition of ∈  for single valued 
triangular neutrosophic numbers and gave basic operations on these conditions. These basic operations we have 
given also include operations where ∈  and ∈ . Thus, by generalizing single valued 
triangular neutrosophic numbers, we made it more useful. Then, single valued neutrosophic numbers were 
converted to single valued triangular neutrosophic numbers. Thus, we made single valued neutrosophic numbers 
more useful by carrying single valued triangular neutrosophic numbers, which have rich application fields. We 
then extended the Hamming distance for triangular intuitionistic fuzzy numbers to single valued triangular 
neutrosophic numbers and showed some properties.  Besides, we defined the scoring and certainty functions for 
the single-valued neutrosophic numbers and for the single valued triangular neutrosophic numbers based on the 
Hamming distance according to the truth, indeterminacy and falsity values. We compared the results of the score 
and certainty functions we obtained with the score and certainty functions.  We also made some operators for 
triangular intuitionistic fuzzy numbers available for single valued triangular neutrosophic numbers and showed 
some properties of these operators. We mentioned similarities and differences with the operators. Finally, we 
have found a new solution to the multi-attribute group decision making problems by using the transformation of 
single valued neutrosophic numbers, new scoring functions and using the operators we have obtained. Since the 
transformations and the scoring functions are separate according to the values of truth, indeterminacy and falsity, 
we obtained results separately for each of the three values for multi-attribute group decision making problems. 
We compared our result with the result of a multi-attribute group decision making problem for single valued 
neutrosophic numbers. We have checked the applicability of the method we have achieved. 
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In this study, we gave some definitions of triangular intuitional fuzzy numbers and related definitions about 
neutrosophic sets, single valued neutrosophic sets and numbers, single valued triangular neutrosophic numbers, 
and some related definitions in section 2.  In Section 3, we generalized the single valued triangular neutrosophic 
numbers to make them more usable and described the basic operations. In Section 3, we gave transformations for 
single valued neutrosophic numbers based on their truth, indeterminacy and falsity values.  In section 4, we 
made the Hamming distance for triangular intuitionistic fuzzy numbers available for single valued triangular 
neutrosophic numbers and showed some properties. 

In addition, we have separately defined the score and certainty functions according to the values of truth, 
indeterminacy and falsity depending on the generalized Hamming distance and compared with the score and 
certainty functions given before. In Section 5, we made some operators for triangular intuitionistic fuzzy 
numbers available with single valued triangular neutrosophic numbers, and we showed some properties of these 
operators and discussed the similarities and differences with the previously given operators . In Section 6, we 
gave a new method for solving multi-attribute group decision making problems for single valued neutrosophic 
numbers using the transform functions and operators that we have achieved in this work. In Section 7, we looked 
at the applicability of our method by comparing the result of a previous multi-attribute group decision making 
problem with the result of our method. Finally, in Section 8 we briefly discussed the results of our work. 

2. PRELIMINARIES

Definition 2.1: A triangular intuitionistic fuzzy number  =  is a special intuitionistic fuzzy 

set on the real number set R, whose truth-membership and falsity-membership functions are defined as follows: 

(x) =

(x) =

respectively. (Li, 2010) 

Definition 2.2: Let  =  (i=1,2) be two triangular intuitionistic fuzzy numbers. The 

Hamming distance between  and  is 

( , )= [ +

+ ] 

(Wan, Wang, Li and Dang, 2016) 
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Definition 2.3: Let  =   (i = 1,2,3,…,n) be a collection of triangular intuitionistic 

fuzzy numbers. Then triangular intuitionistic fuzzy generalized ordered weighted averaging operator is defined 
as;  

TIFGOWA :  → ℧, TIFGOWA ( ) = (   ) 

Where g is a continuous strictly monotone increasing function,  w =  is a weight vector 

associated with the TIFGOWA operator, with ≥0, j = 1,2,3,…,n and  = 1 and ((1),(2), … , (n)) is a 

permutation of (1,2, …,n) such that  ≥  for all i. (Wan, Wang, Li and Dang, 2016) 

Definition 2.4: Let  =   (i = 1,2,3,…,n) be a collection of triangular intuitionistic 

fuzzy numbers. Then triangular intuitionistic fuzzy generalized hybrid weighted averaging operator is defined as; 

TIFGHWA :  → ℧, TIFGHWA ( ) = (   ) 

Where g is a continuous strictly monotone increasing function,  w =  is a weight vector 

associated with the TIFGHWA operator, with ≥0, i = 1,2,3,…,n  = 1, ω =  is a 

weight vector of  and  = . . (Wan, Wang, Li and Dang, 2016) 

Definition 2.5: Let U be an universe of discourse then the neutrosophic set A is on object having the farm A={ 
(x: , , > , x U} where the functions T,I,F:U 0, [ respectively the degree of membership, 

the degree of indeterminacy and degree of non-membership of the element  x U to the set A with the condition. 

+ + . (Smarandache, 2016)

Definition2.6: Let U be an universe of discourse then the single valued neutrosophic set A is on object having 
the form A={ (x: , , > , x U} where the functions T,I,F:U [0,1]respectively the degree of 

membership, the degree of indeterminacy and degree of non-membership of the element  x U to the set A with 
the condition. 

     0 + + 3

For convenience, we can simply use x = (T, I, F) to represent an element x in single valued neutrosophic 
numbers and the element x can be called a single valued neutrosophic number.
(Wang, Smarandache, Zhang, Sunderraman, 2010) 

Definition 2.7: Let x = (T, I, F) be a single valued triangular neutrosophic number and then 

1) sc(x)=T+1-I+1-F;

2) ac(x)=T-F;

Florentin Smarandache (author and editor) Collected Papers, XIII

643



Where sc(x) represents the score function of the single valued neutrosophic number and ac(x) represent certainty 
function of the single valued neutrosophic number. (Liu, Chu, Li and Chen, 2014) 

Definition 2.8: Let x = ( ,  ) and y = ( ,  ) be two single valued neutrosophic numbers, the 
comparison approach can be defined as follows. 

1) If sc(x)>sc(y), then x is greater than y and denoted x ≻y.

2) If sc(x)=sc(y) and ac(x)>ac(y), then x is greater than y and denoted x ≻y.

3) If sc(x)=sc(y) and ac(x)=ac(y), then x is equal to y and denoted by x∼y.

(Liu, Chu, Li and Chen, 2014) 

Definition2.9: Let  ∈ [0, 1]. A single valued  triangular neutrosophic number  = 

 is a special neutrosophic set on the real number set R, whose truth-membership, 
indeterminacy-membership and falsity-membership functions are defined as follows: 

(x) =

(x) =

(x) =

respectively. 

1 

0 

  Fig. 1.  (  =  single valued triangular neutrosophic number) 
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If ≥0 and at least >0, then  = is called a positive triangular 

neutrosophic number, denoted by >0. Likewise, If ≤0 and at least <0, then = 

 is called a negative triangular neutrosophic number, denoted by <0. 

A triangular neutrosophic number  =  may express an ill-known quantity 

about , which is approximately equal to . (Subas, 2017) 

Definition 2.10:  Let   =  and  = , be two single valued 
triangular neutrosophic numbers and ⋎ ≠ 0 be any real number. Then, 

1. +  =

2. -  =

3. =

4. =

5. ⋎  =

6. = .  (Subas, 2017) 

Definition 2.11: We defined a method to compare any two single valued triangular neutrosophic numbers which 
is based on the score function and the certainty function. Let  =  be any single 

valued triangular neutrosophic number, then  

      S(  ) = [ ]x( ) 

and 

A(  ) = [ ]x( ) 

is called the score and certainty degrees of  , respectively. (Subas, 2017) 

Definition2.12: Let  and  be two single valued triangular neutrosophic numbers, 

1. If S(  )< S(  ), then  is smaller then , denoted by . 
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2. If S(  )= S(  );

(a) If A(  )< A(  ), then  is smaller then , denoted by . 

(b) If A(  )= A(  ), then and are the same, denoted by = .

(Subas, 2017) 

Definition2.13: Let  = (j = 1,2,3,…,n) be a collection of single valued 

triangular neutrosophic numbers. Then single valued triangular neutrosophic weight averaging operator 
(SVTNWAO) is defined as; 

SVTNWAO: → , SVTNWAO( ) = 

where  w =  is a weight vector associated with the SVTNWAO operator, with ≥0, j = 

1,2,3,…,n and  = 1.    (Subas, 2017) 

Definition2.14: Let  = (j = 1,2,3,…,n) be a collection of single valued 

triangular neutrosophic numbers and w =  is a weight vector associated with ≥0, and 

 = 1.Then single valued triangular neutrosophic ordered averaging operator (SVTNWAO) is defined as; 

SVTNOAO: → , SVTNOAO( ) = 

where   =  , k∈{1,2,3, …,n} is the single valued triangular neutrosophic number 

obtained by using the score and certainty function and For ;  =  is the maximum 

value of K . (Subas, 2017) 

3. GENERALIZED SINGLE VALUED TRIANGULAR NEUTROSOPHIC NUMBERS

     In this section we will generalize single valued triangular neutrosophic numbers to make them more usable. 
Because definition 2.9 for a single valued triangular neutrosophic number = ; The 

values  must either be negative real numbers or positive real numbers. However, some of these values 
are not defined as negative real numbers of some of them are positive real numbers. This situation narrows the 
field of use of single valued triangular neutrosophic numbers. We will abolish this limited situation with 
definitions given in this section. 

Definition 3.1: Let  ∈ [0, 1] and ∈ ℝ-{0}. A generalized single valued  triangular 

neutrosophic number  =  is a special neutrosophic set on the real number set R, 
whose truth-membership, indeterminacy-membership and falsity-membership functions are defined as follows: 
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(x) =

(x) =

(x) =

respectively. 

The most important and only difference of this definition from definition 2.9 is that ∈ ℝ-{0}. For 
example ,  cannot be single valued triangular neutrosophic 
numbers according to the previous definition, it is a generalized single valued triangular neutrosophic number 
according to this new definition. In addition, negative single valued triangular neutrosophic numbers and 
positive single valued triangular neutrosophic numbers are covered by single valued triangular neutrosophic 
numbers according to this definition. 

1 

0  =  ; for <0 

Fig. 2: (  =  ;for  <0,    generalized single valued triangular neutrosophic number)  

1 

0 

Fig. 3: (  =   ; <0 generalized single valued triangular neutrosophic number) 
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Now let's define the basic operations for generalized single valued triangular neutrosophic numbers. 

Degrees of membership / indeterminacy / nonmembership > 1 or < 0 have been proposed by Smarandache since 
2007. 

Definition 3.2: Let   =  and  = , be two generalized 
single valued triangular neutrosophic numbers and ⋎ ≠ 0 be any real number. Then, 

1. +  =

2. -  =

3. For the set  ; 

: is the minimum value of 

: be the largest element of  ; 

=  .        

4. For the set  ; 

: is the minimum value of , 

: be the largest element of  ; 

=

5. For the set  ; 

 : is the minimum value of , 

: be the largest element of ; 

  ⋎ =

6. For the set ; 

: is the minimum value of , 

: be the largest element of ; 

=

These operations also give the same results as the operations in definition 2.10. 
Namely, these operations are a generalized description of the operations in Definition 2.10. 
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4. TRANSFORMED SINGLE VALUED TRIANGULAR NEUTROSOPHIC
NUMBERS, HAMMING DISTANCE AND A NEW SCORE FUNCTION BASED ON
HAMMING DISTANCE FOR GENERALIZED SINGLE VALUED TRIANGULAR
NEUTROSOPHIC NUMBER

In this section, we define single valued triangular neutrosophic numbers by transforming single valued 
neutrosophic numbers in the definition 2.6. However, since single valued neutrosophic numbers consist of 
independent truth, falsity, and indeterminacy states, we have defined a separate transformation for each case. 
However, we have generalized the Hamming distance to single valued triangular neutrosophic numbers in the 
definition 2.2 for the triangular intuitionistic fuzzy numbers and gave some properties. We then defined new 
score functions based on the Hamming distance measure. We compared the results obtained with these scoring 
functions to the results of the scoring functions in definition 2.7 and definition 2.11. 

Definition4.1 =( ) conversion to a generalized single valued triangular neutrosophic number 
according to the truth value for a single valued neutrosophic number; 

 = 

= +(1+ ) =1+2 

= +(1+ ) =2+3       and 

 =   ; 

 Transformed 

 =( )  = . Namely 

 = . 

Thus we obtained the number of  generalized single valued triangular neutrosophic number from   single 

valued neutrosophic number. Hence, 1+  ≥0 and 1+  ≥0 for ≤  . Because of this each 

 number obtained from the definition of single valued neutrosophic number is a generalized single valued 
triangular neutrosophic number. 

1 
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0 

( (  ( ) 

Fig. 4: (  =  generalized single valued triangular neutrosophic number) 

Definition4.2  =( ) conversion to a generalized single valued triangular neutrosophic number 
according to the indeterminacy value for the single valued neutrosophic number; 

 = 

=  +( 1+ ) =1+ 

= + ( 1+ ) =2+      and 

 =   ; 

 transformed 

 =( )  = . Namely 

 = . 

Thus we obtained the number of  generalized single valued triangular neutrosophic number from   single 

valued neutrosophic number. Hence 1+  ≥0 and 1+  ≥0; ≤ . Because of this each 
number obtained from the definition of single valued neutrosophic number is a generalized single valued 
triangular neutrosophic number. 

1 

0 

( (  ( ) 

Fig. 5: (  =  generalized single valued triangular neutrosophic number) 
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Definition4.3 =( ) conversion to a generalized single valued triangular neutrosophic number 
according to the falsity value for the single valued neutrosophic number; 

 = 

=  +( 1+ ) =1+ 

= + ( 1+ ) =2+      and 

 =   ; 

 Transformed 

 =( )  = . Namely 

 = . 

Thus we obtained the number of  generalized single valued triangular neutrosophic number from   single 

valued neutrosophic number. Hence, 1+  ≥0 and 1+  ≥0 for ≤  . Because of this each 

 number obtained from the definition of single valued neutrosophic number is a generalized single valued 
triangular neutrosophic number. 

1 

0 

( (  ( ) 

Fig. 6 (  =  generalized single valued triangular neutrosophic number) 

Definition 4.4: 

a) =( )    ideal generalized single valued triangular neutrosophic number according to the truth  value 
for single valued neutrosophic numbers; 

 =1,  and ;  = 

 =  . 

b) =( ) ideal generalized single valued triangular neutrosophic number according to the 
indeterminacy value for single valued neutrosophic numbers; 
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 =1,  and  ;  = 

 =  . 

c) =( )  ideal generalized single valued triangular neutrosophic number according to the falsity 
value for single valued neutrosophic numbers; 

 =1,  and ;  = 

 =  . 

It can be seen from b) and c),  = . 

Definition 4.5: Let  =  and  = be two 

generalized single valued triangular neutrosophic numbers. The Hamming distance between  and  is 

( , )= [ +

+

] 

        This definition is the expansion of the Hamming distance given to the triangular intuitionistic fuzzy 
numbers given in the definition to generalized single valued triangular neutrosophic numbers. 

Proposition 4.6: The Hamming distance ( , ) satisfies the following properties. 

1) ( , ) ≥ 0

2) ( , ) = 0 , if = , for all , ∈

3) ( , ) = ( , )

4) Let  = ,  =  and  = 

be three single valued triangular neutrosophic numbers.

If ≤ ≤ ,  ≤ ≤  , ≤ ≤ ,   ≤ ≤ ,   ≤ ≤  ,  ≥ ≥ , then; 

( , )≥ ( , )  and ( , )≥ ( , ) 

Proof: The proof of 1), 2), 3) can easily be done by the definition 4.5. Now let's prove 4). 

Let's show that ( , ) ≥ ( , ) . 

( , )= 
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[ +

+

] 

And ≤ ≤ ,  ≤ ≤  , ≤ ≤ ,   ≤ ≤ ,   ≤ ≤  ,  ≥ ≥    hence; 

 ≤  and ≤ ≤ . Hence; 

  . Similarly; 

 ; 

 . From here; 

( , )= 

  -

- + 

- ] …………………………………………..……(1) 

( , )= 

[ +

+

] 

and ≤ ≤ ,  ≤ ≤  , ≤ ≤ ,,   ≤ ≤ ,,   ≤ ≤  ,  ≥ ≥    hence; 

 ≤  and ≤ ≤  hence; 

. Similarly,

 ; 

. From here; 

( , )= 

  -
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  - + 

- ]  ………………………………………(2) 

From (1) and (2) ( , )- ( , )= 

[ - +

] 

+ - +

] 

+ - - +

= [  - ] 

 + - ] 

+ [  -  . Here; 

≤  ≤ ,   ≤  ≤  ,   ≤  ≤ ,,   ≤   ≤ ,,     ≤   ≤  ,    ≥    ≥   . Hence; 

[ - ]≥0 …………………………………………….(3) 

- ]≥0…………….………………….………….(4) 

[ - ………………..……………………….(5) 

From (3), (4) and  (5) ( , )- ( , )  . Namely; ( , ) ≥ ( , ). 

( , )≥ ( , ) can be showed a similar way to the proof of ( , )≥ ( , ). 

Definition 4.7: =( ) single valued neutrosophic number, = 

generalized single valued 

triangular neutrosophic number transformed according to the truth value of  ,    = , ideal 

generalized single valued triangular neutrosophic number transformed according to the truth value of  , and let 
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 be the Hamming distance for generalized single valued triangular neutrosophic number. According to the 
truth value of single valued neutrosophic numbers certainty and score functions are 

( )= ( , ) 

( ) = min{ ,  } respectively. Here; 

( ) = 

[ +

+

] 

[ + +

]. 

Definition 4.8: Let =( ) be single valued neutrosophic number, = 

; be generalized single valued triangular 

neutrosophic number transformed according to the indeterminacy value of  ,    = , be ideal 
generalized single valued triangular neutrosophic number transformed according to the indeterminacy value of 

,  and  be hamming distance for generalized single valued triangular neutrosophic number. According to the 
indeterminacy value of single valued neutrosophic numbers certainty and score functions are; 

( )= ( , ) 

=min{ , , } respectively. Here; 

( ) = 

[ +

+

] 

[ + +

] 

Definition 4.9: Let =( ) be single valued neutrosophic number, = 

; be generalized single valued triangular 

neutrosophic number transformed according to the falsity value of  ,  = ,be ideal 

generalized single valued triangular neutrosophic number transformed according to the falsity value of , and 

 be Hamming distance for generalized single valued triangular neutrosophic number. According to the falsity 
value of single valued neutrosophic numbers certainty and score functions are; 
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( )= ( , ) 

=min{ , , } respectively. Here; 

( ) = 

[ +

+

] 

[ + +

] 

Definition 4.10: Let =( ) and  =( )  be two single valued neutrosophic numbers and , 

 be score and  certainty functions according to truth value. 

i) If ( ) > ( ), then  is greater than  and denoted by  > .

ii) If ( ) = ( ) and ( )> ( ), then  is greater than  and denoted by  > .

iii) If ( ) = ( ) and ( )= ( ), then  is equal to  and denoted by  = .

This definition can also be done for ,  score and certainty functions in case of indeterminacy and for , 
score and certainty functions in case of falsity. 

Definition 4.11: Let  =  and  be Hamming distance for the generalized single 

valued triangular neutrosophic numbers. 

i) = ,be ideal generalized single valued triangular neutrosophic number according to the 

truth value of ; depending on the Hamming distance  generalized single valued triangular neutrosophic 

numbers according to the truth value  score and certainty functions are; 

( )= ( , ) 

( )= min{ , } respectively. 

ii) = , be ideal generalized single valued triangular neutrosophic number according to the 

indeterminacy value of ; depending on the hamming distance generalized single valued triangular 

neutrosophic numbers according to the indeterminacy value  score and certainty functions are; 

( )= ( , ) 
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( )= min{ , } respectively. 

iii) i)  = , be ideal generalized single valued triangular neutrosophic number according to the 

falsity value of ; depending on the Hamming distance  generalized single valued triangular neutrosophic 

numbers according to the falsity value  score and certainty functions are; 

( )= ( , ) 

( )= min{ , } respectively. 

Thus, for generalized single valued triangular neutrosophic numbers we have also defined a new scoring 
function based on the Hamming distance. 

Definition 4.12: Let  =  and  = be two generalized 

single valued triangular neutrosophic numbers and ,  be score and certainty functions according to truth 
value.  

i) If ( )> ( ), then  is greater than  and denoted by  > . 

ii) If ( )= ( ) and ( )> ( ), then  is greater than  and denoted by  > . 

iii) if ( )= ( ) and ( )= ( ), then  is equal to  and denoted by  = . 

Example 4.13: Now let’s compare the score and certainty function in definition 4.7 with the ,   score 

and certainty function according to the truth value, ,  score and certainty function in definition 4.8 according 

to the indeterminacy value and ,  score and certainty function in definition 4.9 according to the falsity 
value. 

Let  =  ),  =  ) and  =  ) be three single valued neutrosophic 
number. 

i) For score and certainty functions in Definition 2.7;

ac( )=  2.2  sc( )= 0,6 

ac( )=  2.2  sc( )= 0,6 

ac( )=  2.2  sc( )= 0,6    hence;  = = . 

ii) For the score function according to the truth value in Definition 4.7;

( ) = 1.42 ( ) = 1.44 ( ) = 1.46    hence  > > 

iii) For the score function according to the indeterminacy value in Definition 4.8;
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( ) = 0.51 ( ) = 0.49 ( ) = 0.47    hence   > > .

iv)For the score function according to the falsity value in Definition 4.9;

( ) = 0.51 ( ) = 0.49 ( ) = 0.47  hence   > > . 

Table 1: (Results of scoring functions for single valued triangular neutrosophic numbers) 

The result of the score and certainty function in Definition 2.7  = =
The result of the score function according to the  truth value in definition 4.7  > > 
The result of the score function according to the indeterminacy value in definition 4.8  > > 
The result of the score function according to the falsity value in Definition 4.9  > > 

Example 4.14: Now let’s compare the score and certainty function in definition 4.3 with the , score and 

certainty function in definition 2.1 according to the truth value, ,  score and certainty function according 

to the indeterminacy value and ,  score and certainty function according to the falsity value. 

Let = ,   and  =  be three single valued 
triangular neutrosophic numbers. 

i) For the score and certainty functions in Definition 2.11;

S( )=  3.73  A( )= 3.73 

S( )=  3.73  A( )= 3.73 

S( )=  3.73  A( )= 3.73  hence  = = . 

ii) For the score function according to the truth value in Definition 4.11;

( ) = 0,458 ( ) = 0,450 ( ) = 0,358    hence   > > .

iii) For the score function according to the indeterminacy value in Definition 4.8;

( ) = 1,458 ( ) = 1,350 ( ) = 1,358   hence  > > .

iv) For the score function according to the falsity value in Definition 4.9;

( ) = 1,458 ( ) = 1,350 ( ) = 1,358     hence   > > . 
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Table 2: (Results of scoring functions for single valued triangular neutrosophic numbers) 

The result of the score and certainty function in Definition 2.11  = =
The result of score function according to the truth value in Definition 4.11  > > 
The result of score function according to the indeterminacy value in Definition 4.11  > > 
The result of score function according to the falsity value in Definition 4.11  > > 

5. SOME NEW GENERALIZED AGGREGATION OPERATORS BASED ON
GENERALIZED SINGLE VALUED TRIANGULAR NEUTROSOPHIC NUMBERS
FOR APPLICATION TO MULTI-ATTRIBUTE GROUP DECISION MAKING

In this section we have generalized some operators given for triangular intuitionistic fuzzy numbers in Definition 
2.3 and Definition 2.4 for generalized single valued triangular neutrosophic numbers and showed some 
properties. We have shown that the new operators we have acquired include operators in definitions 2.13 and 
2.14. Additionally, we showed the generalized single valued triangular neutrosophic numbers in this section. 

Definition 5.1: Let  =  (j = 1, 2, 3,…, n) be a collection of generalized single 

valued triangular neutrosophic numbers. Then generalized single valued triangular neutrosophic generalized 
weight averaging operator (SVTNGWAO) is defined as; 

GSVTNGWAO: → , GSVTNGWAO( ) = (   ) 

where g is a continuous strictly monotone increasing function, w =  is a weight vector 

associated with the GSVTNGWAO operator, with ≥0, j = 1,2,3,…,n and  = 1 (j = 1,2,3,…,n) . 

Theorem 5.2: Let  = (j = 1, 2, 3, …, n) be a collection of generalized single 

valued triangular neutrosophic numbers and w =  is a weight vector associated with ≥0, 

and  = 1. Then their aggregated value by using SVTNGWAO operator is also a neutrosophic number 

and 

GSVTNGWAO ( ) 

= 

Where, g is a continuous strictly monotone increasing function. 

Proof: We proof this by using the method of mathematical induction. For this; 

i) For n = 2

= and be two single valued triangular 

neutrosophic numbers by definition; 

+ =
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+ 

= + 

= ( + ) 

=

 it’s true. 

Let it be true for n = k that is we assumed 

+ + … + 

 = 

 equation is true and let show that it is also true for n+1 .then 

+  + … + 

= 

  +

 Hence the expression is true for n =k+1 as required. 

As a result, the proof of the theorem is completed. 

Lemma 5.3: Let =  and  (j = 1, 2, 3,…,n) be a 

collection of generalized single valued triangular neutrosophic numbers and  =  be a 

generalized single valued triangular neutrosophic number. w =  be a weight vector associated 

with ≥0, and  = 1.  

1) If  =   (j = 1, 2, 3, …, n), then  GSVTNGWAO ( ) = 

2) If  = 

  = 

 Then, 

 ≤ GSVTNGWAO ( ) ≤ 

3) If ≤ ≤ ,  ≤ , ≤ ,  ≥ , ≥  for all j then, 
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GSVTNGWAO ( ) ≤ GSVTNGWAO ( ) 

Proof: 

1) From theorem 5.2 GSVTNGWAO ( ) 

= 

= 

 = 1. Hence; 

GSVTNGWAO ( )= = 

The proof of 2) and 3) can easily be done from the proposition 4.6 given for the scoring function according to the 
center of the Hamming distance in the definition 5.1 and section 4. 

Definition 5.4: Let  =  (j = 1, 2, 3, …, n) be a collection of generalized single 

valued triangular neutrosophic numbers. Then generalized single valued triangular neutrosophic generalized 
ordered averaging operator (GSVTNGOAO) is defined as; 

GSVTNGOAO: → , GSVTNGOAO ( ) = (   ) 

where g is a continuous strictly monotone increasing function, w = is a weight vector 

associated with the GSVTNGOAO operator, with ≥0, j = 1,2,3,…,n and  = 1 (j = 1,2,3,…,n) and k is 

the largest generalized single valued triangular neutrosophic number obtained by using the new score function of 
;  =   for k∈{1,2,3, …,n}. 

Theorem5.5 Let  = (j = 1,2,3,…,n) be a collection of single valued triangular 

neutrosophic numbers and w =  is a weight vector associated with ≥0, and  = 1. 

Then their aggregated value by using GSVTNGOAO operator is also a neutrosophic number and 

GSVTNGOAO ( ) 

= (   )= 

where g is a continuous strictly monotone increasing function and k is the largest generalized single valued 
triangular neutrosophic number obtained by using the new score function of  ;  = 

 for  k∈{1,2,3, …,n}. 

Proof: Proof is made similar to Theorem 5.2 using Definition 5.4. 

Florentin Smarandache (author and editor) Collected Papers, XIII

661



Lemma 5.6 Let = and (j = 1,2,3,…,n) be 

collections of generalized single valued triangular neutrosophic numbers and  =  be a 

generalized single valued triangular neutrosophic number. w =  be a weight vector associated 

with ≥0, and  = 1.  

1) If  =   (j = 1, 2, 3, …,n), then  GSVTNGOAO ( ) = 

2) If  = 

  = 

Then, 

 ≤ GSVTNGOAO ( )≤ 

3) If ≤ ≤ ,  ≤ ,  ≤ ,   ≥  ,   ≥ for all j then, 

GSVTNGOAO ( ) ≤ GSVTNGOAO ( ) 

Proof:  

The prof of 1) can be done similar to the proof of the theorem 5.3. 

The proof of 2) and 3)   can easily be done from proposition 4.6 given for the Hamming distance depending on 
the scoring function in the definition 5.4 and in the section 6.  

Corollary 5.7: If g (x) = x (r = 1) is taken in Definition 5.1, the operator in Definition 2.13 is obtained. 
Similarly, if g (x) = x (r = 1) is taken in 5.2, the operator in Definition 2.14 is obtained. 

Note 5.8:  If g(x)=  is taken in the operators in Definition 5.1 and Definition 5.2; r value should not be taken as 
an odd number. Indeterminacy emerges when any of the values  of a generalized single valued 

triangular neutrosophic number =  takes a negative real number value. 

6. MULTI – ATTRIBUTE GROUP DECISION MAKING METHOD BASED ON THE
SVTNGWAO OPERATOR

For a multi-attribute group decision making problem, let E = { } be a set of experts (or DMs), A = 

{ } be set of alternatives, X = { } be set of attributes. Assume that the rating of 

alternative  on attribute  given by expert  is represented by single valued neutrosophic number  = 

 (i = 1,2,…,m; j = 1,2,…,p; k = 1,2,…,n ).  Additionally, let g be a continuous strictly monotone 
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increasing function. Now let's take the steps we will follow to solve the multi-attribute group decision making 
problem. 

i) The decision matrices obtained by the decision makers are found as  =  (i = 1,2,…,m; j = 

1,2,…,p; k = 1,2,…,n).

ii) decision matrices; for   single valued neutrosophic numbers,  matrices are formed that consist of 

converted single valued triangular neutrosophic numbers.

iii) Let ω =  f ; be the weight vector of decision makers with ≥0, and  = 1. 

Accordingly, the weighted decision matrix is  =   (i = 1,2,…,m; j = 1,2,…,p; k = 1,2,…,n ). 

iv) GSVTNGWAO is the operator in the definition 5.1; the unified decision matrix =(  obtained 

from the weighted decision matrices. Here;

 = GSVTNGWAO( …, ), 

 = GSVTNGWAO( …, ), 

. 

. 

. 

 = GSVTNGWAO( …, ).  Where; (i = 1, 2, 3, …, m). 

Also here, the weight vector to be used for the GSVTNGWAO operator is φ =   with ≥0, 

and  = 1. 

v) =(  be the unified decision matrix; let w =  weight vector of   {

} with ≥0, and = 1. single valued triangular neutrosophic numbers for the 

{ } alternatives  is ; 

 = ( , ,…, ) (t = 1,2,…,m). 

vi) Single valued triangular neutrosophic numbers (t = 1,2,…,m)for the  { } alternatives are 
compared with one of the new score functions in definition 4.7, definition 4.8 or definition 4.9, and the best 
alternative is found. Here; there is a score function according to the truth value in definition 4.7, according to the 
indeterminacy value in definition 4.8 and according to the falsity value in definition 4.9. 

Corollary 6.1: In this method for single valued neutrosophic numbers, starting directly from the second step, 
single valued triangular neutrosophic numbers can be taken and processed. Thus the method we have obtained 
can be used for single valued triangular neutrosophic numbers or generalized single valued triangular 
neutrosophic numbers. 
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Example 6.2: A pharmaceutical company wants to choose the most appropriate diabetes drug from four 
alternatives { }. For this, a decision committee of three pharmacological specialists {𝑒1, 𝑒2, 𝑒3}
was established. This decision commission will review alternative medicines in three qualities. These qualities 
are; the dose rate of the drug is𝑥1, suitable for all ages 𝑥2 and its cost is 𝑥3. For the decision committee {

} weight vector ω = , ( ). Weight vector for qualities are w = 

and φ = ( , , ). Additionally, let g (x) = 𝑥𝑟 is a continuous strictly monotone increasing function. Now let g (x)

= x for r = 1 and then perform the steps in section 5.1 according to the truth value of the transformations and 
scoring function. 

i) The table showing single valued neutrosophic numbers for the alternatives evaluated by the decision makers is
as follows.

Table 3: (Decision matrix created by 𝑒1 decision maker) 

) ) 

) ) 

) 

Table 4: (decision matrix created by 𝑒2 decision maker) 

) ) 

) ) 

) 

Florentin Smarandache (author and editor) Collected Papers, XIII

664



) ) 

) ) 

) 

ii) Transformed decision-making matrices created by decision makers;

Table 6: (transformed decision matrix created by 𝑒1 decision maker) 

Table 7: (transformed decision matrix created by 𝑒2 decision maker)

Table 5: (decision matrix created by 𝑒3 decision maker) 
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iii) Transformed weighted decision matrices generated by decision makers;

Table 9: (transformed weighted decision matrix created by 𝑒1decision maker) 

Table 10: (transformed weighted decision matrix created by 𝑒2 decision maker) 

Table 8: (transformed decision matrix created by 𝑒3 decision maker) 
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iv)The resulting unified decision matrix;

Table 12: (unified decision matrix) 

v) Generalized single valued triangular neutrosophic numbers obtained from the unified decision matrix for the
alternatives;

( ) = 

( ) = 

( ) = 

( ) = 

( ) = 

Table 11: (transformed weighted decision matrix created by 𝑒3 decision maker) 
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vi) According to the values in v);

( ) = 2,15 

( ) = 2,11 

( ) = 2,08 

( ) = 2,04 

( )= 1,99 

Hence   . So the best alternative drug is . 

  If g(x) =  is taken in example 6.2 for r = 2; 

( ) = 2,12 

( ) = 2,08 

( ) = 2,06 

( ) = 2,01 

( ) = 1,97 

 Hence,  . So the best alternative drug is . 

If g(x)=  is taken in example 6.2 for  r = 5; 

( ) = 2,14 

( ) = 2,09 

( ) = 2,04 

( ) = 1,97 

( ) = 1,92 

Hence,   . So the best alternative drug is . 

 If g(x)=  is taken in example 6.2 for r = 0.04  ; 

( ) = 2,246 

( ) = 2,240 
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( ) = 2,237 

( ) = 2,234 

( ) = 2,231 

Hence, . So the best alternative drug is . 

Example 6.3:  If the same assumption in Example 6.2 applies to decision making based on indeterminacy; 
i) If g(x)= x is taken for  r = 1;

( ) = 1,185 

( ) = 1,160 

( ) = 1,148 

( ) = 1,113 

( ) = 1,087 
 Hence, . So the best alternative drug is . 

ii) If g(x) =  is taken for r = 2;

( ) = 1,169 

( ) = 1,140 

( ) = 1,133 

( ) = 1,094 

( )= 1,071 
 Hence, . So the best alternative drug is . 

iii ) If  g(x)=  is taken for  r = 5; 

( ) = 1,195 

( ) = 1,163 

( ) = 1,127 

( ) = 1,072 

( ) = 1,045 
 Hence, . So the best alternative drug is . 
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iv) If g(x)= is taken for  r = 0.04 ; 

( ) = 1,245 

( ) = 1,243 

( ) = 1,242 

( ) = 1,241 

( ) = 1,238 
Hence, . So the best alternative drug is . 

Example 6.4:  If the same assumption in Example 6.2 applies to decision making based on falsity; 

i) If g(x) = x is taken for r = 1;

( ) = 1,173 

( ) = 1,127 

( ) = 1,104 

( ) = 1,094 

( ) = 1,063 
Hence, . So the best alternative drug is . 

ii) If g(x)=  is taken for r = 2;

( ) = 1,154 

( ) = 1,106 

( ) = 1,087 

( ) = 1,073 

( ) = 1,046 
 Hence,  . So the best alternative drug is . 

iii) If g(x)=  is taken for r = 5  ;

( ) = 1,179 

( ) = 1,129 

( ) = 1,076 

( ) = 1,055 
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( ) = 1,027 
Hence, . So the best alternative drug is . 

iv) If g(x) = is taken for r = 0.04; 

( ) = 1,246 

( ) = 1,240 

( ) = 1,238 

( ) = 1,239 

( ) = 1,236   hence   . So the best alternative drug is . 

Table 13: (Results obtained according to r in Example 6.2, example6.3 and example 6.4) 
Value of R The result according to the 

value of truth 
The result according to the 
value of indeterminacy  

The result according to the value 
of falsity 

r=1 
r=2 
r=5 
r=0.04 

7. COMPARISON ANALYSIS AND DISCUSSION

Table 14: (Results obtained from methods) 
r=1 r=2 r=5 

Method 1 

Method 2 

Method 3 

Method 4 

      To be able to see the effect of the method given in section 6; we compared the results of the method with 
those of the method in Section 6. For the same "r" values were comparable a method obtained according to the 
truth value, indeterminacy value and falsity value in section 6. According to Table 14; the best alternative to the 
results from all methods is the same and it is 𝑥4.  Besides; Hamacher aggregation operators are used for single
valued neutrosophic numbers. In the chapter 5, we used generalized single valued triangular neutrosophic 
numbers obtained by transformed single valued neutrosophic numbers.  With these numbers, we used the 
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operators we have generalized to the operators given for intuitionistic fuzzy numbers. These operators include 
previously given operators for single valued triangular neutrosophic numbers. Thus, in section 6 we used single 
valued triangular neutrosophic numbers and more general operators used in many decision making methods. We 
also compared the score and certainty functions used in Table 1 and used in Section 6. In this comparison, the 
values are not equal according to the scoring functions in Section 6 and therefore we have achieved different 
results. In addition, we have the possibility to obtain separate results according to the value of truth, falsity and 
indeterminacy in order to decide on the method in section 6. Thus, we have obtained a more comprehensive 
result. For this reason, the method in section 6 is effective and applicable. 

8. CONCLUSION

In this study, we generalized single valued triangular neutrosophic numbers. Thus, we have defined a new
set of numbers that can be more useful and can be very applicable. We have also obtained generalized single 
valued triangular neutrosophic numbers by converting single valued neutrosophic numbers according to their 
truth, indeterminacy and falsity values separately. Thus, single valued neutrosophic numbers are transformed 
into generalized single valued triangular neutrosophic numbers, which are a special case and have a lot of 
application field. We then defined the Hamming distance for single valued triangular neutrosophic numbers and 
gave some properties. We have defined the scoring and certainty functions based on this defined distance. We 
also extended operators for intuitionistic fuzzy numbers to single valued triangular neutrosophic numbers. 
Finally, we compared multi-attribute group decision making with generalized operators and new score functions, 
and compared the results with a previous multi-attribute group decision making application. In addition to this, 
the applied multi-attribute group decision making method can be used in many different scientific researches. 
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Special issue on “Applications of neutrosophic theory 
in decision making‑recent advances and future trends”

Multicriteria decision-making (MCDM) is a modeling and 
methodological tool for dealing with complex engineering 
problems. In these problems, sometimes, it is challenging for 
decision-makers to find solutions because the information 
they get may be incomplete and vague.

The management of uncertainty within decision-making 
problems is still a very challenging research issue despite 
the different proposals developed across the time. One of 
the most interesting research topics in recent years is the use 
of neutrosophic sets in decision-making processes. Neutro-
sophic sets and logic are generalizations of fuzzy and intui-
tionistic fuzzy sets and logic.

Neutrosophic logic and set are gaining significant atten-
tion in solving many real-life problems that involve uncer-
tainty, impreciseness, vagueness, incompleteness, incon-
sistent, and indeterminacy. A number of new neutrosophic 
theories have been proposed and have been applied in com-
putational intelligence, multiple-attribute decision-making, 
image processing, medical diagnosis, fault diagnosis, opti-
mization design, and so on.

This special issue includes seven papers on decision-
making theory and applications using neutrosophic theory. 

They have been selected after a peer-review process with at 
least three reviewers per papers.

The first paper titled A New Attribute Sampling Plan 
Using Neutrosophic Statistical Interval Method, by Muham-
mad Aslam, proposed a new attribute sampling plan using 
the neutrosophic interval method. The lot acceptance, rejec-
tion, and indeterminate probabilities are computed using 
the neutrosophic binomial distribution at various specified 
parameters such as sample size and acceptance number. The 
efficiency of the proposed sampling plan is also discussed. 
A real example is also added to explain the proposed sam-
pling plan.

The second paper titled Shortest Path Problem in Fuzzy, 
Intuitionistic Fuzzy and Neutrosophic Environment: An 
Overview, by Said et al., introduced a survey on a shortest 
path problem with various existing algorithms in fuzzy, intu-
itionistic fuzzy and neutrosophic environment. This paper 
will be very helpful to the new researchers to propose novel 
concepts to solve the shortest path problem. In the future, 
based on this paper, new algorithms and frameworks will be 
designed to find the shortest path for a given network under 
various types of set environments.

The third paper titled TODIM Strategy for Multi Attrib-
ute Group Decision Making in Trapezoidal Neutrosophic 
Number Environment, by Surapati Pramanik and Rama Mal-
lick, proposed a trapezoidal neutrosophic multiple-attribute 
group decision-making strategy, namely TODIM strategy in 
which the evaluation values of alternatives over the attrib-
utes assume the form of trapezoidal neutrosophic numbers. 
The advantage of the proposed strategy is that it is more suit-
able for solving multiple-attribute group decision-making 
problems with trapezoidal neutrosophic information because 
trapezoidal neutrosophic number can handle indeterminate 
and inconsistent information and are the extension of trap-
ezoidal intuitionistic fuzzy numbers. A comparison analysis 
is also provided.

The fourth paper titled The Shortest Path Problem In 
Interval Valued Trapezoidal and Triangular Neutrosophic 

Mohamed Abdel-Basset, Florentin Smarandache, Jun Ye

Mohamed Abdel-Basset, Florentin Smarandache, Jun Ye (2019). Special issue on “Applications of neutrosophic 
theory in decision making-recent advances and future trends”. Complex & Intelligent Systems, 2; DOI: 10.1007/
s40747-019-00127-1
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Environment, by Broumi et al., proposed a new score func-
tion for interval-valued neutrosophic numbers and shortest 
path problem is solved using interval-valued neutrosophic 
numbers. Also, novel algorithms are proposed to find the 
neutrosophic shortest path by considering interval valued 
neutrosophic number, trapezoidal and triangular interval-
valued neutrosophic numbers for the length of the path in a 
network with illustrative example. A comparative analysis 
has been done for the proposed algorithm with the exist-
ing method with the shortcoming and advantage of the pro-
posed method and it shows the effectiveness of the proposed 
algorithm.

The fifth paper titled Neutrosophic Analysis of Variance: 
Application to University Students, by Muhammad Aslam, 
introduced a new concept called, neutrosophic analysis of 
variance (NANONA). The proposed NANOVA is the gen-
eralization of the existing ANOVA under classical statistics. 
The proposed method has the ability to be applied effectively 
than the existing under uncertainty. A NANOVA table from 
a real example shows that sum squares were in indetermi-
nacy interval.

The sixth paper titled Shortest Path Problem using Bell-
man Algorithm under Neutrosophic Environment, by Broumi 
et al., proposed a novel algorithm to obtain the neutrosophic 
shortest path between each pair of nodes. Length of all the 
edges is accredited an interval-valued neutrosophic set. 
For the validation of the proposed algorithm, a numerical 

example has been offered. A comparative analysis has been 
done with the existing methods which exhibit the advantages 
of the new algorithm.

The seventh paper titled A New Approach on Differential 
Equations Via Trapezoidal Neutrosophic Number, by I. R. 
Sumathi and C. Antony Crispin, derived the solution of the 
second-order differential equation in neutrosophic environ-
ment. An example is given to demonstrate the strong solu-
tion of the same.

We hope this issue will provide a useful resource of ideas, 
techniques, and methods for the research on the theory and 
applications of neutrosophic theory and the decision-making 
problems. We thank all the authors whose contributions and 
efforts made the publication of this issue possible. We are 
also grateful to the referees for their valuable and highly 
appreciated works contributed to select the high quality of 
papers published in this issue. Finally, our sincere thanks go 
to Prof. Yaochu Jin, Editor-in-Chief, for his support through-
out the process of editing this issue.
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A Bipolar Neutrosophic Multi Criteria Decision 
Making Framework for Professional Selection 
Mohamed Abdel-Basset, Abduallah Gamal, Le Hoang Son, Florentin Smarandache 

Abstract: Professional selection is a significant task for any organization that aims to select the 
most appropriate candidates to fill well-defined vacancies up. In the recruitment process, 
various individual characteristics are involved, such as leadership, analytical skills, independent 
thinking, innovation, stamina and personality, ambiguity and imprecision. It outlines staff 
contribution and therefore plays a significant part in human resources administration. 
Additionally, in the era of the Internet of Things and Big Data (IoTBD), professional selection 
would face several challenges not only to the safe selection and security but also to make wise and 
prompt decisions especially in the large-scale candidates and criteria from the Cloud. However, 
the process of professional selection is often led by experience, which contains vague, ambiguous 
and uncertain decisions. It is therefore necessary to design an efficient decision-making 
algorithm, which could be further escalated to IoTBD. In this paper, we propose a new 
hybrid neutrosophic multi criteria decision making (MCDM) framework that employs a 
collection of neutrosophic analytical network process (ANP), and order preference by similarity 
to ideal solution (TOPSIS) under bipolar neutrosophic numbers. The MCDM framework is 
applied for chief executive officer (CEO) selection in a case study at the Elsewedy Electric 
Group, Egypt. The proposed approach allows us to assemble individual evaluations of 
the decision makers and therefore perform accurate personnel selection. The outcomes of 
the proposed method are compared with those of the related works such as weight sum model 
(WSM), weight product model (WPM), analytical hierarchy process (AHP), multi-objective 
optimization based on simple ratio analysis (MOORA) and ANP methods to prove and validate 
the results. 

Keywords: personnel selection; neutrosophic ANP; neutrosophic TOPSIS; bipolar neutrosophic 
numbers; chief executive officer 

1. Introduction

Human resources are considered as one of the most important assets for an organization to 
improve its advantages of real wealth in knowledge economy [1,2]. The interest of organizations and 
large institutions in human capitals contributes to significant investment. Therefore, many 
organizations give a clear interest in the process of personnel selection to represent a positive turning 
point in relation to the organization, relying on them to achieve growth rates; thus supporting in the 
acquisition of the entire business sector in which the company is located, determining the input 
quality of human resources and personnel recruitments and choosing directly [3]. Personnel selection 

Mohamed Abdel-Basset, Abduallah Gamal, Le Hoang Son, Florentin Smarandache (2020). A Bipolar 
Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 
10, 1202; DOI: 10.3390/app10041202
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is the procedure of selecting candidates who accord the desired employees and match the skills, 
knowledge and experience for the respective jobs [4]. Certainly, one of the major causes for the down 
grade of performance and the productivity of the enterprise is due to poor personnel selection. 
Inappropriate choices affect not only the level of the individual, but also the production [5–8]. 

Personnel selection is complicated in the real world, as decision makers tend to decide and 
forecast based on the qualitative methods, such as interviewing the candidates and knowing them 
well through conversations and group activities. In contrast, they may have poor judgment on the 
team and individual performance based on their quantitative metrics, such as productivity, outputs 
of their contributions and so on. Most often, there are vague expressions and imprecise terms used 
throughout the process that can make the judgment imprecise and investment on human capitals less 
productive. To make this forward, a neutrosophic theory is usually applied in decision problems. 
Neutrosophic research has been well established and demonstrated in supplier selection [9], 
developing supplier selection criteria [10,11], smart medical device selection [12] or quantifying risks 
in supply chain [13]. A neutrosophic set is also used to solve complex problems and design 
interrelationships and interdependencies among criteria and alternatives. 

In real life, personnel selection is a Multi-Criteria Decision Making (MCDM) problem, and from 
the MCDM perspective, it has attracted the attention of many researchers [14]. Jasemi et al. [15] used 
a new fuzzy ELimination Et Choix Traduisant la REalité (ELECTRE) method for personnel selection. 
Karabasevic et al. [16] presented an approach for the selection of personnel. Ji et al. [17] used multi-
valued neutrosophic sets with a projection-based difference measurement in an acronym in 
Portuguese for Interactive and Multicriteria Decision Making (TODIM) method. A collection of 
extensions of the order preference by similarity to ideal solution by Technique for Order of Preference 
by Similarity to Ideal Solution (TOPSIS) for personnel selection using the interval neutrosophic set 
has been presented in [18]. Pramanik et al. [19] raised the idea of personal biases in decision making. 
Personnel selection for IT using Evaluation based on Distance from Average Solution (EDAS) has 
been demonstrated by [20]. Apart from these researches, other researchers’ works could be found in 
the literature. 

Based on the observation, the hybridization could offer better results than the standalone 
method. The objective of this study is to develop a decision-making approach to a multiple 
information sources problem, which enables us to incorporate neutrosophic data represented as 
linguistic variables or bipolar neutrosophic numbers into the analysis, and disregards the 
troublesome neutrosophic number ranking process that may yield inconsistent results when different 
ranking methods are used. 

In this paper, we propose a new hybrid neutrosophic multi criteria decision making (MCDM) 
framework that employs a collection of neutrosophic analytical network process (ANP), and order 
preference by similarity to ideal solution (TOPSIS) under bipolar neutrosophic numbers. This paper 
hence aims at extending the neutrosophic ANP–TOPSIS for linguistic reasoning under decision 
making. The extended neutrosophic ANP–TOPSIS is applied for solving a personnel selection 
problem. Here, neutrosophic ANP can be applied to handle the difficulty of dependency in the 
problem, in addition to feedback between each quantification criteria. TOPSIS is lastly used to find 
the best alternative or candidate for professional selection. The MCDM framework is applied for chief 
executive officer (CEO) selection in a case study at the Elsewedy Electric Group, Egypt. The proposed 
approach allows us to assemble individual evaluations of the decision makers and therefore perform 
stronger personnel selection procedures. The outcomes of the proposed method are compared with 
those of the related works such as weight sum model (WSM), weight product model (WPM), 
analytical hierarchy process (AHP), multi-objective optimization based on simple ratio analysis 
(MOORA) and ANP methods to prove and validate the results. 

The article is planned as follows: Section 2 presents the literature review. Section 3 describes the 
background theory including some inceptions on bipolar neutrosophic numbers and proposed 
model. Section 4 describes a case study to approve the practicality of the ANP–TOPSIS method. 
Section 5 provides the comparative results. In Section 6, a sensitivity analysis is recognized. Lastly, 
we conclude our research with some observations. 
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2. Literature Review

ANP is an inclusive decision-making approach that depends on the dependency between criteria 
[21]. ANP is an extension for analytical hierarchy process (AHP). By pairwise comparisons, weights 
or priorities are determined as in AHP. The priority determined to each prospect and criterion may 
be predestined subjectively by decision makers (DMs), or from the data. ANP provides a scale by the 
consistency ratio (CR), which is a pointer of the dependability of the method or model, and it is 
preferred to measure the CR of the DMs’ comparison judgment. The CR is determined in such a way 
that the ratio equals 0.1, denoting compatible judgment, in the case that the ratio overrides 0.1, it 
denotes incompatible judgment [22]. ANP works for complicated interrelationships between rules, 
decisions and attributes [21]. ANP method can solve complex problems as in Figure 1. 

Figure 1. Complex decision problem by the analytical network process (ANP) method. 

The ANP method structure allows for feedback and enables us to deal with direct and indirect 
problems, as in Figure 2. In the ANP method, the relationships and interrelationships among criteria, 
sub criteria and alternatives cannot be simply designed as direct or indirect, predominant or 
subsidiary [23].  

Figure 2. Feedback connections and loop in the ANP method. 
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TOPSIS depends on the idea that the preferable candidate should not just have the shortest path 
from the favorable ideal solution, but also has the longest path from the negative ideal solution [24]. 
The preferable candidate would be the one that is closest to the positive ideal solution and furthest 
from the negative ideal solution, according to this method [25]. We show that TOPSIS depends on 
Euclidean distance as in Figure 3. 

Figure 3. Euclidean distance in the order preference by similarity to ideal solution (TOPSIS) method. 

3. Proposed Methodology

In this section, we proposed definitions of bipolar neutrosophic set (BNS), score, accuracy and 
certainty functions [26–30]. 

Definition 2.1: A BNS A in X is defined as an object of the form A = {〈x, Tା(x), Iା(ᶍ), Fା(x),  Tି(x), Iି(x) , Fି(x)  〉: x ∈ X}, where Tା ,  Iା , Fା  : X→ [1, 0] and Tି ,  Iି , Fି : X → [-1, 0]. The certain 
membership standards Tା(x),  Iା(x),Fା(x) denote the truth, indeterminate and falsity memberships 
of a component x ∈ X corresponding to a BNS A, and the uncertain membership standards Tି(x), Iି(x) and Fି(x) denote the truth, indeterminate and falsity memberships of an element x ∈ X to 
some implicit counter property corresponding to a BNS A. 

Definition 2.2: Let Aଵ  = {〈 x, Tଵା (x), Iଵା  (x), Fଵା(x), Tଵି (x), Iଵି (x), Fଵି (x)  〉 and Aଶ  = {〈 x, Tଶା (x), Iଶା 
(x), Fଶା(x), Tଶି (x), Iଶି (x), Fଶି (x) 〉 be two bipolar neutrosophic numbers (BNNs). Then their union is 

distinct as: ( Aଵ  ∪ Aଶ ) (x) = (max( Tଵା (x), Tଶା (x)), ୍భశ(୶) ା ୍మశ(୶)ଶ , min(( Fଵା (x), Fଶା (x)), min( Tଵି (x), = Tଶା(x)),୍భష (୶)ା ୍మష (୶)ଶ , max((Fଵି (x), Fଶି (x)) ) for all x ∈ X.

Definition 2.3: Let 𝑎෤ଵ = (Tଵା, Iଵା, Fଵା, Tଵି , Iଵି , Fଵି ) then a෤ଶ= (Tଶା, Iଶା, Fଶା, Tଶି , Iଶି , Fଶି ) be  two BNNs. After that 
the procedures for NNs are explained as follows: 

γa෤ଵ =(1 − (1 − Tଵା), ⟨ Iଵା), ⟨ Fଵା), - ⟨− Tଵି ),- ⟨− Iଵି ), -⟨ 1 −  (1 − Fଵି ))) ) a෤ଵ  =⟨ (Tଵା), 1 −  (1 − Iଵା), 1 − (1 − Fଵା), -(1 − (1 − Tଵି ))),-(  Iଵି )),-(−Fଵି ) )a෤ଵ +  a෤ଶ = ( Tଵା+Tଶା- Tଵା Tଶା, Iଵା Iଶା, Fଵା Fଶା,− Tଵି  Tଶି , - ( - Iଵି - Iଶି  - Iଵି  Iଶି ),-( - Fଵି - Fଶି  - Fଵି  Fଶି )) a෤ଵ. a෤ଶ = (Tଵା Tଶା, Iଵା+Iଶା - Iଵା Iଶା + Fଵା + Fଶା - Fଵା Fଶା, - ( - Tଵି - Tଶି  - Tଵି  Tଶି ), - Iଵି  Iଶି , - Fଵି  Fଶି ) when γ > 
0. 

Definition 2.4: Let a෤ଵ= (Tଵା, Iଵା, Fଵା, Tଵି , Iଵି , Fଵି ) be a BNN. Then, the score, accuracy and certainty 
functions P(a෤ଵ), A(a෤ଵ) and C(a෤ଵ) respectively, of an NBN are well-defined as below: 
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P෩(a෤ଵ) = ( Tଵା + 1 - Iଵା +1 - Fଵା+ 1 + Tଵି  - Iଵି - Fଵି ) / 6 (1) A෩(a෤ଵ) = Tଵା - Fଵା+ Tଵି  - Fଵି (2)C෨(a෤ଵ) = Tଵା - Fଵି (3)

Definition 2.5: Let a෤ଵ= (Tଵା, Iଵା, Fଵା, Tଵି , Iଵି , Fଵି ) and a෤ଶ= (Tଶା, Iଶା, Fଶା, Tଶି , Iଶି , Fଶି ) be two BNNs. We will 
present the comparisons as follows: 

if P෩(a෤ଵ) > P෩(a෤ଶ), then a෤ଵ > a෤ଶ; P෩(a෤ଵ) = P෩(a෤ଶ) and A෩(a෤ଵ) > A෩(a෤ଶ), then a෤ଵ > a෤ଶ; 
if P෩(a෤ଵ) =  P෩(a෤ଶ), A෩(a෤ଵ) = A෩(a෤ଶ) and C෨(a෤ଵ) > C෨(a෤ଶ), then a෤ଵ > a෤ଶ; 
if P෩(a෤ଵ) =  P෩(a෤ଶ), A෩(a෤ଵ) = A෩(a෤ଶ) and C෨(a෤ଵ) > C෨(a෤ଶ), then a෤ଵ=  a෤ଶ. 

Definition 2.6: Let a෤୨= (T୨ା, I୨ା, F୨ା, T୨ି , I୨ି , F୨ି ) (j = 1, 2,…,n) be a collection of BNNs. A mapping A୵: Q୬ → 𝒬 is named bipolar neutrosophic weighted average factor if it fulfills the condition: 

A୵(a෤ଵ, a෤ଶ ,….., a෤୬) =
n∑j = 1 w୨a෤୨  = ⟨ 1 −

n∏j = 1 (1 − T୨ା)୵ౠ , n∏j = 1 I୨ା୵ౠ , n∏j = 1 F୨ା୵ౠ ,- n∏j = 1 ( −T୨ି )୵ౠ ,- n∏j = 1(−I୨ି )୵ౠ, - ( 1 -
n∏j = 1 (1 − (−F୨ି ))୵ౠ)), when w୨ is the weight of a෤୨ (j = 1,2, …,n), w୨ ∈ [0, 1] and 

n∑j = 1w୨ =1. 
Then, the steps of the suggested ANP with TOPSIS under neutrosophic environment are 

presented in details. Illustration of the suggested technique for CEO selection is exhibited in Figure 
4. 

Step 1. Build the structure of a problem. 

The problem or issue should be obviously pointed, and the hierarchy framework established. 
The hierarchy framework can be designed by DMs' judgments via exchanges of ideas or other suitable 
techniques, as shown in literature reviews. 

Step 2. Estimate of the criteria priority using the pairwise comparisons. 

The committee comprises the DMs, collecting pairwise comparisons to determine the 
proportional weight of criteria and perspectives. In pairwise comparisons, we depended on the scale 
exhibited in Table 1. In the comparison matrix, the result of 𝑎௜௝ illustrates the relative significance of 
the element on row (𝑖) over the element on column (𝑗), i.e., 𝑎௜௝ = w୧/w୨. The reciprocal value of the 
term ଵ௔೔ೕ, which we replaced by 1 ∆ൗ  in our comparison matrices, was utilized when the element (𝑗)
was more significant than the element (𝑖). The comparison judgment matrix A is outlined below: 

A = ⎣⎢⎢⎢
⎢⎡wଵ/wଵwଶ/wଵ⋮w୬/wଵ

wଵ/wଶwଶ/wଶ⋮w୬/wଶ

……⋮…
wଵ/w୬wଶ/w୬⋮w୬/w୬⎦⎥⎥

⎥⎥⎤ = ⎣⎢⎢⎢
⎢⎡ 0.51/𝑎ଶଵ⋮1/𝑎ଵ୬

𝑎ଵଶ 0.5⋮1/𝑎ଶ୬
……0.5…

𝑎ଵ௡ aଶ୬ ⋮0.5 ⎦⎥⎥⎥
⎥⎤

(4) 

Table 1. Indications expression for the significance weight of all criteria. 

Linguistic Expressions 

Bipolar Neutrosophic Numbers Scale for 
Proportional Significance of Comparison 

Matrix 
[𝐓ା(𝐱), 𝐈ା(𝐱), 𝐅ା(𝐱),  𝐓ି(𝐱), 𝐈ି(𝐱), 𝐅ି(𝐱)] 

Absolutely Significant (AS) ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 
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Very Highly Significant (VHS) ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 
Equally Significant (ES) ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 

Significant (S) ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.10ሿ 
Almost Significant (ALS) ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 

Step 3. Build the super matrix. 

The acquired vectors are normalized to explain the native priority vector. The super matrix is 
constructed, and the native priority vectors are entered in the suitable columns of the matrix of impact 
between the components, to gain comprehensive weights. The super matrix is formed of three stages 
as follows:  G  C A 

w = Goal (G)Criteria (C)Alternative (A) ൦ 0 wଶଵ 0 
0 wଶଶwଷଶ  

00I ൪ (5) 

Zero in the super matrix can be exchanged by a matrix if there is an interdependency of 
components in a group or among to groups. I is the symmetry matrix, wଶଵ illustrates the influence 
of the goal on the criteria, wଶଶ illustrates the influence of the interrelationships between criteria and wଷଶ illustrates the influence of criteria on each of substitutions. 

Step 4. Construct the weighted super matrix. 

The obtained eigenvector from the pairwise comparison matrix of the row clusters with esteem 
to the column cluster, which in transformation yields an eigenvector for each column cluster. 

In physical situations, DMs cannot present their decisions about confirmed characteristics, like 
being healthy, etc. So, we defined neutrosophic scales and measures. In our application, BNNs, as in 
Table 1, were applied by DMs to indicate their judgments to compare characteristics and attributes 
to determine the priorities of criteria. In the suggested approach, pairwise comparison judgments are 
created with the aid of BNNS, and the neutrosophic ANP is utilized to settle the problem of personnel 
selection. The neutrosophic ANP can simply accommodate interdependencies existent between the 
activities. The notion of super matrices is used to acquire the composite priorities that cope with the 
existent interdependencies [31,32]. We use BNNs [Tା(x) , Iା(x) , Fା(x) , Tି(x) , Iି(x) , Fି(x) ] to 
construct pairwise comparison matrices, the neutrosophic matrix being constructed as follows:  

A෩ = ⎣⎢⎢⎢
⎡ �𝑎ଵଵ୘శ ,𝑎ଵଵ୍శ ,𝑎ଵଵ୊శ , 𝑎ଵଵ୘ష , 𝑎ଵଵ୍ష , 𝑎ଵଵ୊ష〉�𝑎ଶଵ୘శ ,𝑎ଶଵ୍శ , 𝑎ଶଵ୊శ , 𝑎ଶଵ୘ష ,𝑎ଶଵ୍ష ,𝑎ଶଵ୊ష〉⋮�𝑎௡ଵ୘శ ,𝑎௡ଵ୍శ ,𝑎௡ଵ୊శ , 𝑎௡ଵ୘ష , 𝑎௡ଵ୍ష , 𝑎௡ଵ୊ష〉

… …… …⋮… ⋮…
�𝑎ଵ௡୘శ ,𝑎ଵ௡୍శ ,𝑎ଵ௡୊శ ,𝑎ଵ௡୘ష , 𝑎ଵ௡୍ష ,𝑎ଵ௡୊ష〉�𝑎ଶ௡୘శ , 𝑎ଶ௡୍శ , 𝑎ଶ௡୊శ ,𝑎ଶ௡୘ష ,𝑎ଶ௡୍ష ,𝑎ଶ௡୊ష〉⋮�𝑎௡௡୘శ , 𝑎௡௡୍శ ,𝑎௡௡୊శ ,𝑎௡௡୘ష ,𝑎௡௡୍ష ,𝑎௡௡୊ష〉⎦⎥⎥

⎥⎤ (6) 

The pairwise comparison matrix A෩ is supposed as reciprocal 

A෩ = 

⎣⎢⎢
⎢⎢⎡�0.5, 0.5,0.5, - 0.5, - 0.5, - 0.5〉ଵ∆మభ⋮ଵ∆౤భ

0.5 �𝑎ଵ௡୘శ ,𝑎ଵ௡୍శ ,𝑎ଵ௡୊శ ,𝑎ଵ௡୘ష ,𝑎ଵ௡୍ష ,𝑎ଵ௡୊ష〉�𝑎ଶ௡୘శ ,𝑎ଶ௡୍శ ,𝑎ଶ௡୊శ ,𝑎ଶ௡୘ష ,𝑎ଶ௡୍ష ,𝑎ଶ௡୊ష〉⋮�0.5, 0.5,0.5, - 0.5, - 0.5, - 0.5〉 ⎦⎥⎥
⎥⎥⎤ (7) 

The ANP method can be applied to compute the priority of criteria and rank of the alternatives. 
In the suggested technique, neutrosophic ANP will be applied only to compute the weights of the 
criteria. Equation (8) will be applied to help neutrosophic TOPSIS for ranking the candidates. w = ቈ 0 wଶଵ 0wଶଶ቉ (8)
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Step 5. Determine the linguistic valuations X෩ = {x෤୧୨, i = 1, 2, 3, … , n, j = 1, 2, 3, … , j } for alternatives 
with regard to criteria and construct matrix as in Equation (9). Bipolar neutrosophic numbers, as in 
Table 2, have also been used by DMs to indicate their judgments on the alternatives according to each 
criterion. The linear measure conversion is utilized here to convert the different criteria measures into 
comparable measures to avert difficulty of mathematical procedures in a decision process.  

The trouble can be presented by the next sets:  
A collection of j potential applicant described A = ൛Aଵ, Aଶ, Aଷ, … , A୨ൟ; 
A collection of n criteria, C = ሼCଵ, Cଶ, Cଷ, … , C୧ሽ; 
A collection of performance valuations of A୨  ( j = 1, 2, 3, … , j ) with regard to criteria C୨  ( i =1, 2, 3, … , n) described 𝑋෨ = {x෤୧୨, i = 1, 2, 3, … , n, j = 1, 2, 3, … , j }; 
A collection of significant priorities of every criterion w୧ = (i = 1, 2, 3, … , n). 
As mentioned, a professional selection issue can be briefly stated in matrix shape as follows: 

X෩ = ⎣⎢⎢
⎢⎢⎡𝑋෨ଵଵ𝑋෨ଶଵ⋮𝑋෨୨ଵ

𝑋෨ଵଶ𝑋෨ଶଶ⋮𝑋෨୨ଶ
……⋱…

X෩ଵ୬X෩ଶ୬⋮X෩୨୬ ⎦⎥⎥
⎥⎥⎤ (9) 

Table 2. Linguistic expressions for valuation. 

Linguistic Expressions 
Bipolar Neutrosophic Numbers Scale for 

Proportional Significance of Comparison Matrix 
[𝐓ା(𝐱), 𝐈ା(𝐱), 𝐅ା(𝐱), 𝐓ି(𝐱), 𝐈ି(𝐱), 𝐅ି(𝐱)] 

Extremely Low (EL) ሾ0.15, 0.90, 0.80, 0.65, - 0.10, - 0.10ሿ 
Very Low (VL) ሾ0.25, 0.70, 0.80, - 0.55, - 0.15, - 0.30ሿ 

Low (L) ሾ0.30, 0.40, 0.60, - 0.30, - 0.20, - 0.10ሿ 
Medium (M) ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 

Perfect (P) ሾ0.75, 0.20, 0.25, - 0.25, - 0.60, - 0.50ሿ 
Very Perfect (VP) ሾ0.85, 0.15, 0.20, - 0.20, - 0.70, - 0.90ሿ 

Extremely Perfect (EP) ሾ1.00, 0.00, 0.10, - 0.10, - 0.90, - 1.00ሿ 
Step 6. Construct the normalized matrix. 

r୧୨ = 
ଡ଼౟ౠඨ ୫∑୧ୀଵଡ଼౟ౠమ (10) 

where i refers to the alternatives, j refers to the choosing criteria and X୧୨ refers to the i alternative 
under the j criterion to be evaluated. 

Step 7. Build the weighted united assessment matrix. 

Priorities of choosing criteria w = (wଵ, wଶ, wଷ, … , w୬) multiplied by the normalized matrix, 
may be presented as 

V = ⎣⎢⎢⎢
⎢⎡VଵଵVଶଵ⋮V୨ଵ

VଵଶVଶଶ⋮V୨ଶ
……⋱…

Vଵ୬Vଶ୬⋮V୨୬ ⎦⎥⎥⎥
⎥⎤ = ⎣⎢⎢⎢

⎢⎡wଵVଵଵwଵVଶଵ⋮wଵV୨ଵ
wଶVଵଶwଶVଶଶ⋮wଶV୨ଶ

……⋱…
w୬Vଵ୬w୬Vଶ୬⋮w୬V୨୬ ⎦⎥⎥⎥

⎥⎤
 (11) 

Step 8. Determine the positive and negative ideal solution. 

We could define the neutrosophic positive ideal solution (NPIS,  A∗ ) and the neutrosophic 
negative ideal solution (NNIS, Aି) 
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Iା = ൛Vଵ∗, Vଶ∗, … , V୨∗, … , V୬∗ൟ = ቄቀmaxj  V୧୨| j ϵ Jቁ | i = 1, … , mቅ, (12) Iି = ൛Vଵି, Vଶି, … , V୨ି, … , V୬ିൟ = ቄቀminj  V୧୨| j ϵ Jቁ | i = 1, … , mቅ, (13) 

Step 9. Compute the Euclidean distance between the positive ideal solution (D∗୧) and negative ideal 
solution (Dି୧) for all alternatives. 

D∗୧ = ඨ n∑j = 1(V୧୨ −  V୧∗)ଶ, i = 1, 2, … ,ɱ, (14) 

Dି୧ = ඨ n∑j = 1(V୧୨ −  V୧ି)ଶ, i = 1, 2, … ,ɱ, (15) 

Step 10. Compute the proportional closeness to the positive ideal solution for each alternative. A 
closeness coefficient is outlined to locate the classification order of all potential alternatives where D∗୧ and Dି୧ of each alternative A୨ (j = 1, 2, 3, … , j) has been computed. CC୧ = ୈష౟ୈ∗౟ ା ୈష౟ ; i = 1, 2, … ,ɱ (16) 

Rank the alternatives according to CC୧ ; major index values refer to the best selection of the 
alternatives. 

4. Case Study

We presented a practical application to apply the suggested approach in real world problems. 
The case study was based on the Elsewedy Electric Group. The employment department needs to 
hire a new CEO every five years, according to Elsewedy Electric Group’s policy. The judgment 
commission consists of three DMs. They recommend four candidates from all the applicants. The 
general criteria for selections are mentioned in Table 3. The criteria were divided according to three 
factors, which were the physical factor, functional factor and personal factor. 

The suggested technique for the professional selection difficult is comprised of neutrosophic 
ANP and neutrosophic TOPSIS techniques, composed of three major points: (1) determine the criteria 
to be utilized in the suggested approach, (2) neutrosophic ANP calculations and (3) valuation of 
appropriate applicant with neutrosophic TOPSIS, which we will divide into several steps: 

Step 1. For the valuation process, the DMs decided to select 10 criteria for the selection of the CEO 
from four current alternatives (efficient managers).  

Step 2. Determine the subordination among the criteria according to the group decision, as in Table 4. 

Step 3. Establish the structure of the problem. 

In our research, criteria could impact the goal with dependency for each other. The alternatives 
are also influenced by the criteria to confirm a dependency among the components of the problem. 
Obviously, the ANP method is more capable of dealing with the problem than AHP. We presented a 
schematic diagram of the problem in Figure 5. 

Table 3. Criteria for CEO selection. 

Factors Criteria A Shortened Form of a Phrase 

Physical 
Cଵ Stamina and physical strength Cଶ Good health 

Functional Cଷ Leadership and analytical thinking ability 
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Cସ Communication skills Cହ Being good at marketing 

Personal 

C଺ Sentimental stability C଻ Self confidence C଼ Ability to work independently Cଽ Patience Cଵ଴ Quietness 

Table 4. Mutuality through criteria. 

Subordinate Criteria Relying On Subordinate Criteria Relying On 𝐂𝟏 Cଶ, C଻, Cଽ C଺ C଻, C଼, Cଽ, Cଵ଴ 𝐂𝟐 Cଵ, C଺, Cଵ଴ C଻ Cଵ, Cଷ, Cହ 𝐂𝟑 Cଶ, C଺, C଻, C଼ C଼ Cଵ, Cଷ, Cହ, C଺ 𝐂𝟒 Cଷ, C଺, Cଵ଴ Cଽ C଺, C଼, Cଵ଴ 𝐂𝟓 Cଵ, Cଷ, C଻ Cଵ଴ Cସ, C଺, Cଽ 

Figure 4. Suggested method. 

Step 4. Construct the comparison matrices among criteria and calculate weights of the criteria 

Using the scales mentioned previously in Table 1, we constructed the pairwise comparison 
matrix between criteria. 

• We used Equation (1) to calculate the score value of linguistic terms.
• Computed the CR of the comparison matrices with less or equal 0.1.
• Computed Wଶଵ as presented in Table 5.
• Calculated the interdependences for criteria C୧ (i = 1, 2, 3, … , 10) as exhibited in Tables 6–15.
• Constructed the pair-wise comparison for values of Wଶଶ as presented in Table 16.
• Constructed the weight matrix using Equation (8).
• We calculated the final weight of criteria by Wୡ୰୧୲ୣ୰୧ୟ = Wଶଵ × Wଶଶ, as shown in Table 16 and

exhibited in Figure 6.
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Figure 5. The analytic network process model for selecting CEO. 

Table 5. Pairwise discrimination for Wଶଵ. 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 Ciଵ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.5 1 ∆ൗ  ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.1 1 ∆ൗ  Ciଶ ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.1 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.5 1 ∆ൗ  1 ∆ൗ  Ciଷ 1 ∆ൗ  ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.8 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.5 ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.9Ciସ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.9 ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.1 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.5Ciହ 1 ∆ൗ  ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.8 ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.9 1 ∆ൗ  Ci଺ 1 ∆ൗ  1 ∆ൗ  1 ∆ൗ  1 ∆ൗ  Ci଻ ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.1 ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.9 1 ∆ൗ  1 ∆ൗ  Ci଼ 1 ∆ൗ  1 ∆ൗ  1 ∆ൗ  ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.1Ciଽ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.5 1 ∆ൗ  1 ∆ൗ  ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.1Ciଵ଴ 1 ∆ൗ  ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.8 1 ∆ൗ  1 ∆ൗ  

𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 Ciଵ  ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  Ciଶ 1 ∆ൗ  ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 1 ∆ൗ  Ciଷ  1 ∆ൗ  ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ Ciସ  ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ Ciହ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ Ci଺ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  Ci଻ 1 ∆ൗ  ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ Ci଼ ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.10ሿ 1 ∆ൗ  1 ∆ൗ  Ciଽ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 
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Ciଵ଴ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  1 ∆ൗ  

𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 
N 

weigh
t 𝐖𝟐𝟏 Ciଵ  ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.098 Ciଶ ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 1 ∆ൗ  0.091 Ciଷ  ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 0.084 Ciସ  1 ∆ൗ  1 ∆ൗ  ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 0.094 Ciହ 1 ∆ൗ  1 ∆ൗ  1 ∆ൗ  0.104 Ci଺ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 0.114 Ci଻ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 0.071 Ci଼ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  0.108 Ciଽ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 0.071 Ciଵ଴ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.165 

Table 6. Interior interdependencies matrix of factor Cଵ. 𝐂𝐢𝟐 𝐂𝐢𝟕 𝐂𝐢𝟗 𝐖𝟐𝟐 Ciଶ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 1 ∆ൗ  0.23 Ci଻ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 0.43 Ciଽ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.34 

The prior matrix a(CR) = 0.099. 

Table 7. Interior interdependencies matrix of factor Cଶ. 𝐂𝐢𝟏 𝐂𝐢𝟔 𝐂𝐢𝟏𝟎 𝐖𝟐𝟐 𝐂𝐢𝟏 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  0.44𝐂𝐢𝟔 1 ∆ൗ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.29 𝐂𝐢𝟏𝟎 ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 1 ∆ൗ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.27 

The prior matrix a(CR) = 0.020. 

Table 8. Interior interdependencies matrix of factor Cଷ. 𝐂𝐢𝟐 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐖𝟐𝟐 𝐂𝐢𝟐 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50 ሾ0.80, 0.50, 0.50, - 0.30, - 0.80 1 ∆ൗ 0.16 𝐂𝐢𝟔 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50 1 ∆ൗ ሾ0.40, 0.20, 0.70, - 0.50, - 0.20 0.3
1 𝐂𝐢𝟕 1 ∆ൗ  ሾ0.40, 0.20, 0.70, - 0.50, - 0.20 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50 1 ∆ൗ 0.2
6 𝐂𝐢𝟖 ሾ0.90, 0.10, 0.10, - 0.40, - 0.80 1 ∆ൗ  ሾ0.40, 0.20, 0.70, - 0.50, - 0.20 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50 0.2
7 

The prior matrix a(CR) = 0.1. 

Table 9. Interior interdependencies matrix of factor Cସ. 𝐂𝐢𝟑 𝐂𝐢𝟔 𝐂𝐢𝟏𝟎 𝐖𝟐𝟐 𝐂𝐢𝟑 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 0.45𝐂𝐢𝟔 ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  0.24 𝐂𝐢𝟏𝟎 1 ∆ൗ  ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.31 

The prior matrix a(CR) = 0.1. 
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Table 10. Interior interdependencies matrix of factor Cହ. 𝐂𝐢𝟏 𝐂𝐢𝟑 𝐂𝐢𝟕 𝐖𝟐𝟐 𝐂𝐢𝟏 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 0.38 𝐂𝐢𝟑 ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.10ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  0.29 𝐂𝐢𝟕 1 ∆ൗ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.33 

The prior matrix a(CR) = 0.005. 

Table 11. Interior interdependencies matrix of factor C଺. 
𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 𝐖𝟐𝟐 𝐂𝐢𝟕  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 1 ∆ൗ  0.18𝐂𝐢𝟗 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.10ሿ 0.32 𝐂𝐢𝟗  1 ∆ൗ  ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.10ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  0.24 

𝐂𝐢𝟏𝟎 ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.26 

The prior matrix a(CR) = 0.1. 

Table 12. Interior interdependencies matrix of factor C଻. 𝐂𝐢𝟏 𝐂𝐢𝟑 𝐂𝐢𝟓 𝐖𝟐𝟐 𝐂𝐢𝟏 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ 1 ∆ൗ  0.23𝐂𝐢𝟑 1 ∆ൗ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 0.43 𝐂𝐢𝟓 ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.34 

The prior matrix a(CR) = 0.080. 

Table 13. Interior interdependencies matrix of factor C଼. 
𝐂𝐢𝟏 𝐂𝐢𝟑 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐖𝟐𝟐 Ciଵ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 1 ∆ൗ  0.18

Ciଷ 1 ∆ൗ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.10ሿ 0.32 Ciହ  1 ∆ൗ ሾ0.40, 0.20, 0.70, - 0.50, - 0.20, - 0.10ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  0.24 Ci଺ ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ 1 ∆ൗ  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.26 

The prior matrix a(CR) = 0.020. 

Table 14. Interior interdependencies matrix of factor Cଽ. 𝐂𝐢𝟔 𝐂𝐢𝟖 𝐂𝐢𝟏𝟎 𝐖𝟐𝟐 𝐂𝐢𝟔 ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  ሾ0.90, 0.10, 0.10, - 0.40, - 0.80, - 0.90ሿ 0.45𝐂𝐢𝟖 ሾ0.10, 0.80, 0.70, - 0.90, - 0.20, - 0.10ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  0.24 𝐂𝐢𝟏𝟎 1 ∆ൗ  ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.31 

The prior matrix a(CR) = 0.080. 

Table 15. Interior interdependencies matrix of factor Cଵ଴. 𝐂𝐢𝟔 𝐂𝐢𝟗 Neutrosophic weight 𝐖𝟐𝟐 𝐂𝐢𝟔  ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 1 ∆ൗ  0.59 𝐂𝐢𝟗 ሾ0.80, 0.50, 0.50, - 0.30, - 0.80, - 0.80ሿ ሾ0.50, 0.50, 0.50, - 0.50, - 0.50, - 0.50ሿ 0.41 

The prior matrix a(CR) = 0.005. 
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Step 5. Essentially, all the previous steps were within the neutrosophic ANP phase for calculating the 
weights of criteria. In the second stage of the study, the neutrosophic TOPSIS stage began by initiating 
neutrosophic valuations of alternatives candidates Aଵ, Aଶ, Aଷ, Aସ  with regard to the criteria by 
applying bipolar neutrosophic numbers. 

• Table 17 indicates the performance classification of the candidates with respect to the criteria
using Equation (9).

• Applying the linguistic expressions in Table 2 to establish the decision matrix.
• Deneutrosophication values of judgments matrix using Equation (1) as in Table 18.
• After establishing the decision matrix, by using Equation (10) a normalized decision matrix was

computed, as represented in Table 19.
• Multiply the weights Wୡ୰୧୲ୣ୰୧ୟ of criteria from Table 16 by the normalized matrix in order to

produce the weighted matrix in Table 20, by using Equation (11).
• Furthermore, the positive (Iା) and negative (Iି) ideal solutions were specified. The neutrosophic

positive and negative ideal solution (NPIS,Iା) and (NNIS,Iି) were computed using Equations
(12) and (13) as presented in Table 21.

• Compute the Euclidean distance between positive (D∗୧) and negative (Dି୧) ideal solution by
applying Equations (14) and (15), as presented in Table 21.

• Compute the closeness coefficient and rank the candidates ascending according to the maximum
index of CC୧, by using Equation (16) as in Table 21 and in Figure 7.

Step 6. Lastly, after completing the steps of the solution, we found that the candidate Aସ is the most 
appropriate candidate to occupy the role of CEO of the company in accordance with all the criteria 
that were approved by DMs. 

The candidate Aସ was considered to be the best because his features met the judgments of DMs 
and criteria to achieve goals in a company. We believed that we had successfully passed this step in 
selecting the best candidate for the job. Given, we had taken most of the important criteria in 
consideration, which we mentioned earlier to choose any candidate for this problem. The numerical 
example exhibited possibilities for improvement of human resources management by applying 
ANP–TOPSIS. However, further studies might be useful for extending the method by introducing 
both application of different aggregation operators and application of neutrosophic numbers. 

Table 16. Final weight for criteria using the ANP method. 

Pair-Wise Comparison for Values of 𝐖𝟐𝟐 Neutrosophic 
Weight 𝐖𝟐𝟏 

𝐖𝐢 
criteria 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 Ciଵ 0.00 0.44 0.00 0.00 0.38 0.00 0.23 0.18 0.00 0.00 0.098 0.12 Ciଶ 0.23 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.091 0.04 Ciଷ 0.00 0.00 0.00 0.45 0.29 0.00 0.43 0.32 0.00 0.00 0.084 0.14 Ciସ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.094 0.00 Ciହ 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.24 0.00 0.00 0.104 0.05 Ci଺ 0.00 0.29 0.31 0.24 0.00 0.00 0.00 0.26 0.45 0.59 0.114 0.23 Ci଻ 0.43 0.00 0.26 0.00 0.33 0.18 0.00 0.00 0.00 0.00 0.071 0.11 Ci଼ 0.00 0.00 0.27 0.00 0.00 0.32 0.00 0.00 0.24 0.00 0.108 0.08 Ciଽ 0.34 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.41 0.071 0.13 Ciଵ଴ 0.00 0.27 0.00 0.31 0.00 0.26 0.00 0.00 0.31 0.00 0.165 0.10 
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Figure 6. The weight of personnel selection criteria 

Table 17. Judgments matrix for alternatives. 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 Aଵ �EP〉 �VP〉 �EL〉 �EL〉 �P〉 �M〉 �EP〉 �L〉 �EP〉 �P〉Aଶ �VL〉 �P〉 �M〉 �L〉 �EP〉 �VL〉 �L〉 �M〉 �VL〉 �EL〉Aଷ �P〉 �L〉 �VP〉 �P〉 �M〉 �EL〉 �VP〉 �P〉 �VP〉 �M〉Aସ �VP〉 �M〉 �VP〉 �VL〉 �M〉 �VP〉 �EP〉 �VP〉 �VL〉 �VL〉
Table 18. Deneutrosophication values of the judgments matrix. 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 Aଵ 0.95 0.82 0.17 0.17 0.69 0.50 0.95 0.38 0.95 0.69 Aଶ 0.28 0.69 0.50 0.38 0.95 0.28 0.38 0.50 0.28 0.17 Aଷ 0.69 0.38 0.82 0.69 0.50 0.17 0.82 0.69 0.82 0.50 Aସ 0.82 0.50 0.82 0.28 0.50 0.82 0.95 0.82 0.28 0.28 

Table 19. The normalized values of the judgments matrix. 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 Aଵ 0.65 0.66 0.13 0.20 0.50 0.49 0.59 0.31 0.72 0.76 Aଶ 0.19 0.56 0.39 0.46 0.69 0.28 0.23 0.40 0.21 0.19 Aଷ 0.47 0.31 0.64 0.81 0.36 0.18 0.51 0.56 0.62 0.55 Aସ 0.56 0.40 0.64 0.33 0.36 0.81 0.59 0.66 0.21 0.31 

Table 20. The weighted values of the judgments matrix. 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 Aଵ 0.08 0.03 0.02 0.00 0.03 0.11 0.06 0.02 0.09 0.08 Aଶ 0.02 0.02 0.05 0.00 0.03 0.06 0.03 0.03 0.03 0.02 Aଷ 0.06 0.01 0.09 0.00 0.02 0.04 0.06 0.04 0.08 0.06 Aସ 0.07 0.02 0.09 0.00 0.02 0.19 0.06 0.05 0.03 0.03 

Table 21. The final result of the judgments matrix. 
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𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 𝐒𝐢ା 𝐒𝐢ି 𝐏𝐢 Normaliz
ed 
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Figure 7. Final ranking using the suggested method. 

5. Analysis Using Other Methods

In this section, we reviewed some MCDM methods, which would combine with the 
neutrosophic set to solve the same problem in order to prove the effectiveness and efficiency of the 
proposed method. On the other hand, we clarified the importance of the problem that we had 
mentioned, and that it had an important role in the success of any organization or system in the real 
world. 

5.1. Analysis Using WSM and WPM Methods 

In this subsection, we compared the results and ranking of candidates obtained from the 
proposed method with the obtained results from the weight sum model (WSM) and the weight 
product model (WPM) as follows: 

• Here, we utilized the obtained weights Wୡ୰୧୲ୣ୰୧ୟ  of the criteria using ANP method as
mentioned in Table 16.

• The normalized judgments matrix of candidates relevant to all criteria is exhibited in Table
22 as follows.

• In the last, the final result of ranking candidates exhibited in Table 23 and in Figure 8. More
details on the two MCDM methods in [33].
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Table 22. The normalized judgments matrix using the weight sum model (WSM) and weight 
product model (WPM) methods. 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 𝐀𝟏 1 1 0.21 0.25 0.73 0.61 1 0.46 1 1 𝐀𝟐 0.29 0.84 0.61 0.55 1 0.34 0.40 0.61 0.29 0.25 𝐀𝟑 0.73 0.46 1 1 0.53 0.21 0.86 0.84 0.86 0.72 𝐀𝟒 0.86 0.61 1 0.41 0.53 1 1 1 0.29 0.41 

Table 23. The final result of the judgments matrix using the WSM and WPM methods. 𝐧∑𝐣 = 𝟏𝐰𝐣 𝐱𝐢𝐣 Normalized 
values 

Ranking 
WSM 

𝐧∏𝐣 = 𝟏𝐱𝐢𝐣𝐰𝐣 Normalized 
values 

Ranking 
WPM 𝐀𝟏 0.7430 0.28 4 9.620 0.25 4𝐀𝟐 0.4375 0.17 1 9.156 0.24 1𝐀𝟑 0.6664 0.25 3 9.517 0.25 3𝐀𝟒 0.7928 0.30 2 9.697 0.26 2

Figure 8. Final ranking using the WSM and WPM methods. 

5.2. Analysis Using the AHP Method 

In this subsection, we compared the results and ranking of candidates obtained from the 
proposed method with the results from the analytical hierarchy process (AHP) as follows: 

• Here, we utilized the obtained weights of the criteria without considering the
interdependencies and feedback between elements’ of the problem as follows: W =ሾ0.098, 0.091, 0.084, 0.094, 0.104, 0.114, 0.071, 0.108, 0.071, 0.165ሿ୘.

• The judgment matrix of candidates related to all criteria for professional selection of chief
executive officer as follows in Table 24.

• In the last, the final result of ranking candidates exhibited in Table 25 and in Figure 9.

Table 24. Judgments matrix for alternatives relevant to criteria using the analytical hierarchy
process (AHP). 𝐂𝐢𝟏 𝐂𝐢𝟐 𝐂𝐢𝟑 𝐂𝐢𝟒 𝐂𝐢𝟓 𝐂𝐢𝟔 𝐂𝐢𝟕 𝐂𝐢𝟖 𝐂𝐢𝟗 𝐂𝐢𝟏𝟎 Aଵ 0.95 0.82 0.17 0.17 0.69 0.50 0.95 0.38 0.95 0.69 Aଶ 0.28 0.69 0.50 0.38 0.95 0.28 0.38 0.50 0.28 0.17 Aଷ 0.69 0.38 0.82 0.69 0.50 0.17 0.82 0.69 0.82 0.50 Aସ 0.82 0.50 0.82 0.28 0.50 0.82 0.95 0.82 0.28 0.28 
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Table 25. The final result of the judgments matrix using the AHP method. 

Alternatives. values Normalized values RankingAଵ 0.6165 0.28 1Aଶ 0.4276 0.19 4Aଷ 0.5808 0.26 3Aସ 0.5886 0.27 2

Figure 9. Final ranking using the AHP method. 

5.3. Analysis Using the MOORA Method 

In this subsection, we compared the results and ranking of candidates obtained from the 
proposed method with the obtained results from the multi-objective optimization based on simple 
ratio analysis (MOORA) as follows: 

• Here, we utilized the obtained weights Wୡ୰୧୲ୣ୰୧ୟ  of the criteria using ANP method as
mentioned in Table 16.

• The normalized weighted judgment matrix of candidates related to each criterion for
professional selection of chief executive officer as follows in Table 26.

• Lastly, the final result of ranking candidates is presented in Table 27 and in Figure 10. More
details on the equations that we used in MOORA method are accessible with the specifics
in [34].

• To facilitate the problem and give a background on the results obtained from all the
methods used to solve the problem, we compared the results of all applied methods used
in this paper, as shown in Figure 11.

Table 26. The normalized weighted values of judgments matrix using the multi-objective
optimization based on simple ratio analysis (MOORA). Ciଵ Ciଶ Ciଷ Ciସ Ciହ Ci଺ Ci଻ Ci଼ Ciଽ Ciଵ଴ Aଵ 0.08 0.03 0.02 0.00 0.03 0.11 0.06 0.02 0.09 0.08 Aଶ 0.02 0.02 0.05 0.00 0.03 0.06 0.03 0.03 0.03 0.02 Aଷ 0.06 0.01 0.09 0.00 0.02 0.04 0.06 0.04 0.08 0.06 Aସ 0.07 0.02 0.09 0.00 0.02 0.19 0.06 0.05 0.03 0.03 
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Table 27. The normalized weighted values of judgments matrix using the MOORA. 

Alternatives values Normalized values Ranking Aଵ 0.61 0.27 3 Aଶ 0.57 0.24 1 Aଷ 0.63 0.29 2 Aସ 0.51 0.20 4 

Figure 10. Final ranking using the MOORA method. 

Figure 11. Final ranking using the various applied methods.
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6. Sensitivity Analysis

We conducted a sensitivity analysis using various criteria weights. Five extra cases were tested 
so that the rank of the substitutes varied in each once. Figure 12 illustrates the obtained results. The 
first case in Figure 12 was the rank of the proposed method while the others were the results of the 
sensitivity analysis. The criteria weights were given as the following in the tested cases. The current 
weights of the proposed method as following: 

Case 1: 𝑊ଵ = (0.12, 0.04, 0.14, 0.00, 0.05, 0.23, 0.11, 0.08, 0.13, 0.10), 
Case 2: 𝑊ଶ = (0.16, 0.08, 0.02, 0.04, 0.12, 0.08, 0.10, 0.15, 0.10, 0.15), 
Case 3: 𝑊ଷ = (0.20, 0.15, 0.05, 0.05, 0.20, 0.10, 0.05, 0.05, 0.05, 0.10), 
Case 4: 𝑊ସ = (0.20, 0.10, 0.05, 0.10, 0.11, 0.15, 0.03, 0.06, 0.10, 0.10), 
Case 5: 𝑊ହ = (0.25, 0.06, 0.06, 0.05, 0.20, 0.05, 0.05, 0.08, 0.10, 0.10). 

When we saw Figure 12 observe that the cases in the sensitivity analysis, which were compared 
with respect to case 1, the following outcomes were obtained:  

In case 2, considerable decreases in the weight of the criterion being good at marketing and 
increases in the weight of the criterion stamina and physical strength caused alternative 1 and 
alternatives 3 to switch their ranks. 

This also caused alternative 2 and alternative 4 to remain at the same ranking. In Case 3, 
alternative 3 took the first order while alternative 4 moved one level lower, alternative 2 moved one 
level higher and alternative moved two levels lower to become the last in ordering. 

In Case 4, alternative 4 moved to a level lower while alternative 2 moved one level higher. In 
Case 5, a slight increase in the other criteria and an unexpected increase in the weight of the criterion 
being good at marketing and slight decreases in good health criterion and sentimental stability 
caused alternative 4 to become the best choice. 

Figure 12. Results of the sensitivity analysis. 

7. Conclusions

An organizational success depends on selecting the utmost suitable personnel, which is 
considered as the most significant factor for any organization. The personnel selection’s issue, 
affected by individual attributes of impreciseness and vagueness, could be considered as an 
extremely substantial decision-making problem. The traditional MCDM techniques to estimate 
inevitable or indiscriminate procedures should not efficaciously exhaust decision-making problems 
consisted of unspecific, indistinct imprecise and linguistic information. A sound MCDM procedure 
applied for personnel selection should be capable to combine quantitative as well as qualitative 
information. In this research, a neutrosophic MCDM technique was introduced to handle challenges 
when applying traditional decision-making procedures. The suggested method was appropriate to 
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handle estimated information using both numerical and linguistic measurement in a decision-making 
context. 

A proposed model has practical implications as integrating two MCDM methods was adopted 
by CEO selection as an example of personnel selection. The neutrosophic set was used with all 
methods so as to make the valuation procedure more resilient and more accurate for the DMs. In 
other words, the use of the neutrosophic could determine characterizing vagueness in various factors. 
It could also facilitate the complicated structure of the judgment phase. The suggested neutrosophic 
hybrid MCDM technique included neutrosophic ANP and neutrosophic TOPSIS. The hybridization 
of the two MCDM methods, the comparison of results with the other MCDM methods and the 
proposed MCDM technique for CEO selection provided the most significant features of this research. 
Furthermore, the suggested technique could enable leaders or managers to deal with uncertain and 
unclear information. It could also create a suitable environment for the use of various semantic styles 
by DMs. The model provided the use of both qualitative and quantitative factors. As mentioned 
before the proposed hybrid structure of two MCDM techniques and proposing a MCDM approach 
for the professional real selection case were the unique features of the study. 

The future work will include prediction of the influential factors by advanced decision-making 
algorithms that affect organizations by apply of variant multi criteria decision analysis techniques, 
so that our research contributions can be transferrable to other fields. 
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Abst ract

The postulation of neutrosophic numbers has been analyzed from different angles in this paper. In this current era, 
our main purpose is to mention Decagonal Neutrosophic numbers. The types of linear and non-linear 
generalized decagonal neutrosophic numbers play a very critical role in the theory related to uncertainty This 
approach is helpful in getting a crisp number from a neutrosophic number. The definitions regarding Linear, 
Non-Linear, symmetry, Asymmetry, alpha cuts have been introduced and large decision-making problems using 
fuzzy TOPSIS have been solved. 

Keywords: Accuracy Functions, Neutrosophic number, Decagonal Neutrosophic numbers (DNN), MCDM, 
TOPSIS. 

1.Int roduct ion

In the line of remarkable researches from fuzzy to neutrosophic, each concept has its unique importance and 
flexibility. The traditional mathematics based on crisp (e.g. Yes or No) has a well defined [1] property.  Fuzzy 
Set was first established by Zadeh [2], and further extended by Zadeh [3]. In fuzzy set, each element has its 
corresponding membership function. Molodtsov established soft sets [4], which opened new possibilities for 
researches and soft sets have been used widely in engineering, medical, economics. Moreover, we introduced 
‘’The best technique to lose weight’’ [5], by using soft sets. 

The techniques to deal with vagueness and uncertainty were introduced by Smarandache [6] and the generalization 
of soft to hyper soft sets was also introduced by him. Smarandache [7-9] also discussed the extensions of 
neutrosophic sets in MCDM and TOPSIS and in other researches it is also mentioned [10-15]. The applicability of 
these applications is also found in the fields of operational research [16-17]. 

The neutrosophic numbers from triangular to nonagonal have been published and have established their use in real-
life. Triangular and pentagonal have membership function [18-20]. Wang [21] introduced that single-valued 
neutrosophic sets are an extension of NSs. Ye [22] developed its aggregate operations and Peng [23-24] introduced 
the applications of neutrosophic sets . The other remarkable MCDM researches have been presented by Abdel-Basset 
[25] and Riaz [26-27].

Sara Farooq, Ali Hamza, Florentin Smarandache (2021). Linear and Non-Linear Decagonal Neutrosophic 
numbers: Alpha Cuts, Representation, and solution of large MCDM problems. International Journal of 
Neutrosophic Science 14(1), 24-41; DOI: 10.5281/zenodo.4721629

Linear and Non-Linear Decagonal Neutrosophic numbers: 
Alpha Cuts, Representation, and solution of large MCDM 

problems

Sara Farooq, Ali Hamza, Florentin Smarandache
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Motivation 

The motivation for writing this article arose keeping in perspective the mutli dimensional problems associated with 
decision-making. So what makes the decognal approach different? This approach can be useful in solving mutli 
criteria decision-making problems associated with uncertain conditon in a neutrosophic environment.  Already 
triangular neutrosophic numbers to Nonagonal neutrosophic numbers are being used in the fields of medical, 
engineering, accounting, cryptography. But they carry with them some limitions in their functions. The limitations 
of using Triangular to nonagonal neutrosophic numbers in solving MCDM are low edges. They solve less complex 
promblems, such as decision making based on less than ten edges.  In order to overcome these limitations, Decagonal 
Neutrosophic numbers are introduced to deal with big and complex problems pertaining to decision-making. 

 Each neutrosophic numbers have its edges and capability to deal with fluctuations e.g. triangular has three edges, 
pentagonal have five, octagonal has eight, and nonagonal have nine edges for truthiness, indeterminacy, and falsity. 
With decagonal we have ten edges. So, it is suitable to solve decision-making problems in a better way by having ten 
edges as it gives us a slight edge.   

1.1 Contr ibution: From the beginning of human life, decision-making is a common activity and the complication 
arises when we have to decide multi-criteria. For this purpose, we give some researches (e.g. octagonal and 

Neutrosophic 
numbers

Triangular

Trapezoidal

Pentagonal

Hexagonal

Heptagonal

Octagonal

Nonagonal

Decagonal

Florentin Smarandache (author and editor) Collected Papers, XIII

698



nonagonal neutrosophic numbers), but these have limitations. Now with decagonal, we can deal with maximum 
large and multi-criteria problems. Moreover, we present representations, alpha cuts, linear, and nonlinear. Now 
the MCDM problems solve much better and in a decent way. The decagonal is extremely handy, effective, 
accurate, and can deal with more fluctuations, mentioned below. 

Struc ture o f Article: 

The article based on these point

2. Definition

In this section we proposed necessary definitions, which will further use in article.

Definit ion 2.1: Soft sets: Let ξ⃑ as universal set and the set of attributes is €��⃑  and P (ξ⃑) as power set and Ą ⊆ €��⃑ . A 
pair (�⃑, Ą) is soft set over  ξ⃑ and mapping is defined as:  

�⃑, Ą→ P (ξ⃑) 
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 (�⃑, Ą) = {�⃑(�) ∈ P (ξ⃑): � ∈ €��⃑ , �⃑(�) = 	∅	if	e	 ≠ 	Ą} 

Definit ion 2.2 Neutro sophic sets: Set ����  as neutrosophic if  ���� = {�̇; 〈[�
���� 	
(�̇),̇ �

���� 	
(�̇),̇ �

���� 	
(�̇)̇ 〉: �̇��̇} where, for

membership of truthiness �
���� 	
(�̇) → [0,1], for membership of indeterminacy �

���� 	
(�̇), for membership of falsity 

�
���� 	
(�̇) and the relation given following, 

0� ≤ �
���� 	
(�̇) + �

���� 	
(�̇) + �

���� 	
(�̇) ≤ 3�  

Definit ion 2.3: Tri angular neutrosophic numbers : Triangular single value neutrosophic number is given as: 
����̀�� = (��,� ��,� ��: ��,́ ��,́ ��,́� ) moreover, truthiness, indeterminacy and falsity are given as: 

�����̀�� 	(�̇) =

⎩
⎪⎪
⎨

⎪⎪
⎧
�̇ − �́�
�́� − �́�

	���	�� ≤� �̇ < �́�

	1	 				�ℎ��			�̇ = �́�
�́� − �̇

�́� − �́�
���	�� < �̇ ≤� ��́

0	��ℎ������

 

�����̀�� 	(�̇) =

⎩
⎪⎪
⎨

⎪⎪
⎧
�́� − �̇

�́� − �́�
	���	�� ≤� �̇ < �́�

	0	 						�ℎ��			�̇ = �́�
�̇ − �́�
�́� − �́�

���		�� < �̇ ≤� ��́

1	��ℎ������

 

�����̀�� 	(�̇) =

⎩
⎪⎪
⎨

⎪⎪
⎧
�̇ − �́�
�́� − �́�

	���	�� ≤� �̇ < �́�

	1	 				�ℎ��			�̇ = �́�
�́� − �̇

�́� − �́�
���	�� < �̇ ≤� ��́

0	��ℎ������

 

Where, 

0� ≤ �����̀��
(�̇) + �����̀�� 	(�̇) + �����̀�� 	(�̇) ≤ 3�; �̇ ∈ ����̀��   

Parameter type: (����̀�� )�́,�� ,�́ = ��.���̀� �̀
(�̇), �.���̀� �̀

(�̇); �.���̀� �̀
���̇�, �.���̀� �̀

���̇�; �.���̀� �̀
(�́), �.���̀� �̀

(�́)�, where, �.���̀� �̀
(�̇) =

�́� + �̇(�́� − �́�), �.���̀� �̀
(�̇) = �́� − �̇(�́� − �́�), �.���̀� �̀

���̇� = �́� − ��̇(�́� − �́�), �.���̀� �̀
���̇�= �́� + ��̇(�́� − �́�),

�.���̀� �̀
(�́) = �́� − �́(�́� − �́�), �.���̀� �̀

(�́) = �́� + �́(�́� − �́�), where, 0 < �̇ ≤ 1, 0 < �� ≤ 1 0 < �́ ≤ 1 and 0 < �̇ +

��̇ + �́ < 3. 

Definit ion 2.4: Tra pezoida l neutrosophic numbers : If �̇ be universe of discourse, define as: �� =
{〈�̇, �� (�̇)� , �� (�̇)� , �� (�̇)� 〉�̇ ∈ �̇}  where �� (�̇)� ⊂ [0,1], �� (�̇)� ⊂ [0,1], �� (�̇)� ⊂ [0,1] as three trapezoidal numbers 
�� (�̇)� = ��́�

� (�̇), �́�
�(�̇), �́�

�(�̇), �́�
�(�̇)�: �̇ → [0,1], �� (�̇)� = ��́�

� (�̇), �́�
� (�̇), �́�

� (�̇), �́�
� (�̇)�: �̇ → [0,1], 	�� (�̇)� =

����
�(�̇), ���

�(�̇), ��
�(�̇), ���

�(�̇)�: �̇ → [0,1] 

With condition 0 ≤ �́�
� (�̇) + �́�

� (�̇) + ���
�(�̇) ≤ 3, 0 ≤ �́�

�(�̇) + �́�
� (�̇) + ���

�(�̇) ≤ 3 �̇ ∈ �̇. 

Moreover, 
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Definit ion 2.5: Pentagonal neutros ophic numbers : For single value it is given as: 

�� = 〈���,� ��,� ��,� ��,� ��; �̇� �, ���,� ��,� ��,� ��,� ��� ,́ �̇�, ���,� ��,� ��,� ��,� ��,� �̇�〉 where, �̇, �̇, �̇�[0,1]. The Truth membership 
function ���� �: ℝ → [0, �̇], indeterminacy ���� �: ℝ → [0, �̇], and falsity ���� �: ℝ → [0, �̇] and given as: 

��̇(�̇)� =

⎩
⎪⎪
⎨

⎪⎪
⎧

�̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

�̇ = ��̇̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

0	 	��ℎ������

��̇(�̇)� =

⎩
⎪⎪
⎨

⎪⎪
⎧

�̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

��̇�(�̇)� 							��̇ ≤ �̇ < ��̇

�̇ = ��̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

��̇�(�̇)� 	��̇ ≤ �̇ < ��̇

1						��ℎ������

 ��̇(�̇)� =

⎩
⎪⎪
⎨

⎪⎪
⎧

€̇̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

���̇(�̇)� 							��̇ ≤ �̇ < ��̇

�̇ = ��̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

���̇(�̇)� 	��̇ ≤ �̇ < ��̇

1						��ℎ������

Wher e, 〈�(� �̇ < ��̇ < ��̇ < ��̇ < ��̇): �̇�, �(� �̇ < ��̇ < ��̇ < ��̇ < ��̇): �̇�, [(� �̇ < ��̇ < ��̇ < ��̇ < ��̇): €̇]〉 

Definit ion 2.6: Octagonal  neutro sophic numbers : A neutrosophic number denoted by �� and defined as: 

��= 〈[(�, �, �, �, �, �, �, �): �̇], �(��, ��, ��, ��, ��, ��, ��, ��): �̇�, [(��, ��, ��, ��, ��, ��, ��, ��): €̇]〉 where, 
�̇, €̇	, �̇ 	∈ [0,1]. 

Truth membership function as, (�̇�):ℝ → [0,1],	Indeterminacy membership function as, (�̇�):ℝ → [0,1]. 

Falsity membership function as, (€�̇):ℝ → [0,1]. 

�̇��(�̇) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

�

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �
�̇ = ℰ

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �
0			��ℎ������

  �̇ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

ᾯ

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇ = ℰ�

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

1			��ℎ������

€̇ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

ὒ

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

�̇ = ℰ�

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

1			��ℎ������

��= 〈[(� < � < � < � < � < � < � < �): �̇], �(�� < �� < �� < �� < �� < �� < �� < ��): �̇�, �(�� < ��

< �� < �� < �� < �� < �� < ��): €̇�〉 

Definit ion 2.7: Nonagonal neutro sophic numbers :  A neutrosophic number denoted by �� and defined as: 

��= 〈[(�, �, �, �, �, �, �, �, Ƣ ): �̇], �(��, ��, ��, ��, ��, ��, ��, ��, Ƣ �): �̇�, [(��, ��, ��, ��, ��, ��, ��, ��, Ƣ �): €̇]〉 
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where, �̇, €̇	, �̇ 	 ∈ [0,1]. 	��= 〈[(� < � < � < � < � < � < � < � < Ƣ ): �̇], �(�� < �� < �� < �� < �� < �� <

�� < �� < Ƣ �): �̇�, �(�� < �� < �� < �� < �� < �� < �� < �� < Ƣ �): €̇�〉

Truth membership function as, (�̇�):ℝ → [0,1]. 

Indeterminacy membership function as, (�̇�):ℝ → [0,1]. 

Falsity membership function as, (€�̇):ℝ → [0,1]. 

�̇��(�̇) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �
�		 	�̇ = ℰ

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < �

�̇��� (�̇)	 	� ≤ �̇ < Ƣ
0			��ℎ������

 �̇ =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

	ᾯ 	�̇ = ℰ�

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < Ƣ �

1			��ℎ������

   €̇ =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

ὒ		 	�̇ = ℰ�

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

€̇��� (�̇)	 	�� ≤ �̇ < ��

�̇��� (�̇)	 	�� ≤ �̇ < Ƣ �

1			��ℎ������

 

3. Representation and Properties.

3.1 Linear Decagonal neutrosophic numbers with symmetry

��� = (�̇, �̇, �̇, �̇, �̇, �̇, �̇, ℎ̇, �,̇ �̇)�  as linear DNN with these membership function:

����ℎ = ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 	�̇ < �̇

�̇ �
�̇ − �̇

�̇ − �̇
�		 	 �̇ < �̇ < �̇

�̇ �
�̇ − �̇

�̇ − �̇
� �̇ < �̇ < �̇

�̇	 	�̇ < �̇ < �̇

�̇ + �1 − �̇ � �
�̇ − �̇

�̇ − �̇
� 	�̇ < �̇ < �̇

1	 	�̇ < �̇ < �̇

�̇ + �1 − �̇ � �
�̇ − �̇

�̇ − �̇
� 	�̇ < �̇ < �̇

�̇	 	�̇ < �̇ < ℎ̇

�̇ �
�̇− �̇

�̇− ℎ̇
�	 	 ℎ̇ < �̇ < �̇

�̇ �
�̇− �̇

�̇− �̇
�	 	�̇< �̇ < �̇

0	 	�̇ > �̇
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�������= ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 	�̇ < ��̇

�̇ �
�̇ − ��̇

�̇� − �̇�
� � ̇ < �̇ < ��̇

�̇ �
�̇ − ��̇

��̇ − ��̇
� 	��̇ < �̇ < �̇�

�̇	 	�̇� < �̇ < �̇�

�̇ + �1 − �̇ � �
�̇ − ��̇

��̇ − ��̇
� 	��̇ < �̇ < �̇�

1	 	�̇� < �̇ < ��̇

�̇ + �1 − �̇ � �
��̇ − �̇

��̇ − ��̇
� 	��̇ < �̇ < ��̇

�̇	 	�̇� < �̇ < ℎ̇�

�̇ �
�̇� − �̇

��̇ − ℎ�̇
� 	ℎ̇� < �̇ < ��̇

�̇ �
�̇� − �̇

��̇ − ��̇
� 								 �̇� < �̇ < �̇�

1	 	�̇ > �̇�

������������� = ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 0	 	�̇ < ��̇

�̇ �
�̇ − ��̇

�̇� − �̇�
� ��̇ < �̇ < ��̇

�̇ �
�̇ − ��̇

��̇ − ��̇
� 	��̇ < �̇ < �̇�

�̇		 	�̇� < �̇ < �̇�

�̇ + �1 − �̇ � �
�̇ − ��̇

��̇ − ��̇
� 	��̇ < �̇ < �̇�

1	 	�̇� < �̇ < ��̇

�̇ + �1 − �̇ � �
��̇ − �̇

��̇ − ��̇
� 	��̇ < �̇ < ��̇

�̇	 	�̇� < �̇ < ℎ̇�

�̇ �
��̇ − �̇

�̇� − ℎ�̇
� 	ℎ̇� < �̇ < ��̇

�̇ �
�̇� − �̇

��̇ − ��̇
� 								�̇� < �̇ < �̇�

1	 	�̇ > �̇�

As, 0<�̇ < 1 

��� = {�̇ ∈ �̇|�����̇ �, �����̇ �, ��(��̇) ≥  �̇ }

3.2 �  − ����	��	Linear DNN with symmetry: We can express as: 
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����ℎ = ��� (�̇) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ ���� (�̇) = �̇ +

�̇

��̇
��̇ − �̇�	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = �̇ +
1 − �̇

1 − ��̇
��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ +
1 − �̇

1 − ��̇
��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ +
1 − �̇

1 − ��̇
��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ +
1 − �̇

1 − ��̇
��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ −
�̇

��̇
��̇ − �̇�	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = �̇ −
�̇

��̇
�ℎ̇ − �̇�	 ���	�̇ ∈ �0, ��� �

���� (�̇) = ℎ̇ −
�̇

��̇
��̇− ℎ̇�	 ���	�̇ ∈ �0, ��� �

���� (�̇) = �̇−
�̇

��̇
(�̇− �̇)	 ���	�̇ ∈ [0, ��� ]

�������= ��� (�̇) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ ���� (�̇) = �̇� +

�̇

��̇
��̇� − �̇��								���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = ��̇ −
�̇

��̇
���̇ − �̇��	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ −
�̇

��̇
�ℎ̇� − �̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = ℎ�̇ −
�̇

��̇
��̇� − ℎ̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = �̇� −
�̇

��̇
(�̇� − �̇�)	 ���	�̇ ∈ [0, ��� ]
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������������� = ��� (�̇) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ ���� (�̇) = �̇� +

�̇

��̇
��̇� − �̇��								���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� +
1 − �̇

1 − ��̇
��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = ��̇ −
�̇

��̇
���̇ − �̇��	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ −
�̇

��̇
�ℎ̇� − �̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = ℎ�̇ −
�̇

��̇
��̇� − ℎ̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = �̇� −
�̇

��̇
(�̇� − �̇�)	 ���	�̇ ∈ [0, ��� ]

Increasing are  ���� (�̇), 	���� (�̇), 	���� (�̇), ���� (�̇), ���� (�̇) and decreasing are ���� (�̇),		���� (�̇), 	���� (�̇), 

���� (�̇). 

3.3 Non-Linear Decagonal neutrosophic numbers with symmetry: 

��� = (�̇, �̇, �̇, �̇, �̇, �̇, �̇, ℎ̇, �,̇ �̇)(��̇,��̇,��̇,� �̇ ,� �̇ ,� �̇ )
�  as non-linear DNN with these membership function: 

����ℎ = ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 	�̇ < �̇

�̇ �
�̇ − �̇

�̇ − �̇
�	��̇	 	�̇ < �̇ < �̇

�̇ �
�̇ − �̇

�̇ − �̇
�

��

�̇ < �̇ < �̇

�̇	 	�̇ < �̇ < �̇

�̇ + �1 − �̇ � �
�̇ − �̇

�̇ − �̇
�

��

	 �̇ < �̇ < �̇

1	 	�̇ < �̇ < �̇

�̇ + �1 − �̇ � �
�̇ − �̇

�̇ − �̇
�		� �						�̇ < �̇ < �̇

�̇	 	�̇ < �̇ < ℎ̇

�̇ �
�̇− �̇

�̇− ℎ̇
�
� �

	 ℎ̇ < �̇ < �̇

�̇ �
�̇− �̇

�̇− �̇
�
� �

	�̇< �̇ < �̇

0	 	�̇ > �̇
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�������= ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 	�̇ < ��̇

�̇ �
�̇ − ��̇

�̇� − �̇�
�

� �

	��̇ < �̇ < ��̇

�̇ �
�̇ − ��̇

��̇ − ��̇
�

� �

							��̇ < �̇ < �̇�

�̇	 	�̇� < �̇ < �̇�

�̇ + �1 − �̇ � �
�̇ − ��̇

��̇ − ��̇
�

� �

	��̇ < �̇ < �̇�

1	 	�̇� < �̇ < ��̇

�̇ + �1 − �̇ � �
��̇ − �̇

��̇ − ��̇
�

��

					��̇ < �̇ < ��̇

�̇	 	�̇� < �̇ < ℎ̇�

�̇ �
�̇� − �̇

��̇ − ℎ�̇
�

��

	ℎ̇� < �̇ < ��̇

�̇ �
�̇� − �̇

��̇ − ��̇
�

��

	�̇� < �̇ < �̇�

1	 	�̇ > �̇�

������������� = ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 	�̇ < ��̇

�̇ �
�̇ − ��̇

�̇� − �̇�
�

� �̇

	��̇ < �̇ < ��̇

�̇ �
�̇ − ��̇

��̇ − ��̇
�

� �̇

							��̇ < �̇ < �̇�

�̇	 	�̇� < �̇ < �̇�

�̇ + �1 − �̇ � �
�̇ − ��̇

��̇ − ��̇
�

� �̇

	��̇ < �̇ < �̇�

1	 	�̇� < �̇ < ��̇

�̇ + �1 − �̇ � �
��̇ − �̇

��̇ − ��̇
�

��̇

					��̇ < �̇ < ��̇

�̇	 	�̇� < �̇ < ℎ̇�

�̇ �
��̇ − �̇

�̇� − ℎ�̇
�

��̇

	ℎ̇� < �̇ < ��̇

�̇ �
�̇� − �̇

��̇ − ��̇
�

��̇

	 �̇� < �̇ < �̇�

1	 	�̇ > �̇�

As, 0<�̇ < 1 ��� = {�̇ ∈ �̇ |�����̇ �, �����̇�, ��(��̇) ≥  �̇ }

3.4 �  − ���	�� �	��� −Linear DNN with symmetry: 

� − ���	 ���	��� −Linear DNN can be defined as ��� = {�̇ ∈ �̇ |�����̇ �, �����̇�, ��(��̇ ) ≥  �̇ }
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����ℎ = ��� (�̇) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ ���� (�̇) = �̇ + �

�̇

��̇
�

��̇

��̇ − �̇�	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = �̇ + �
1 − �̇

1 − ��̇
�

��̇

��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ + �
1 − �̇

1 − ��̇
�

��̇

��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ + �
1 − �̇

1 − ��̇
�

��̇

��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ + �
1 − �̇

1 − ��̇
�

��̇

��̇ − �̇�	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇ − �
�̇

��̇
�

� �̇

��̇ − �̇�	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = �̇ − �
�̇

��̇
�

� �̇

�ℎ̇ − �̇�	 ���	�̇ ∈ �0, ��� �

���� (�̇) = ℎ̇ − �
�̇

��̇
�

� �̇

��̇− ℎ̇�	 ���	�̇ ∈ �0, ��� �

���� (�̇) = �̇− �
�̇

��̇
�

� �̇

(�̇− �̇)	 ���	�̇ ∈ [0, ��� ]

�������= ��� (�̇) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ ���� (�̇) = �̇� + �

�̇

��̇
�

� �̇

��̇� − �̇��								���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = ��̇ − �
�̇

��̇
�

��̇

���̇ − �̇��	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ − �
�̇

��̇
�

��̇

�ℎ̇� − �̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = ℎ�̇ − �
�̇

��̇
�

��̇

��̇� − ℎ̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = �̇� − �
�̇

��̇
�

��̇

(�̇� − �̇�)	 ���	�̇ ∈ [0, ��� ]
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������������� = ��� (�̇) =

⎩
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⎪
⎪
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⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ ���� (�̇) = �̇� + �

�̇

��̇
�

� �̇

��̇� − �̇��								���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = �̇� + �
1 − �̇

1 − ��̇
�

� �̇

��̇� − �̇��	���	�̇ ∈ [��� , 1]

���� (�̇) = ��̇ − �
�̇

��̇
�

��̇

���̇ − �̇��	 ���	�̇ ∈ [0, ��� ]

���� (�̇) = ��̇ − �
�̇

��̇
�

��̇

�ℎ̇� − �̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = ℎ�̇ − �
�̇

��̇
�

��̇

��̇� − ℎ̇��	 ���	�̇ ∈ �0, ��� �

���� (�̇) = �̇� − �
�̇

��̇
�

��̇

(�̇� − �̇�)	 ���	�̇ ∈ [0, ��� ]

Increasing are  ���� (�̇), 	���� (�̇), 	���� (�̇), ���� (�̇), ���� (�̇) and decreasing are ���� (�̇),		���� (�̇), 	���� (�̇), 

���� (�̇). 

����ℎ = ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 	�̇ < �̇

�̇ �
�̇ − �̇

�̇ − �̇
�	��̇ 	 	�̇ < �̇ < �̇

�̇ �
�̇ − �̇

�̇ − �̇
�

��

�̇ < �̇ < �̇

�̇	 	�̇ < �̇ < �̇

�̇ − ��̇ − �̇� �
�̇ − �̇

�̇ − �̇
�

��

	�̇ < �̇ < �̇

1	 	�̇ < �̇ < �̇

�̇ − ��̇ − �̇� �
�̇ − �̇

�̇ − �̇
�		� �						�̇ < �̇ < �̇

�̇	 	�̇ < �̇ < ℎ̇

�̇ �
�̇− �̇

�̇− ℎ̇
�
� �

	 ℎ̇ < �̇ < �̇

�̇ �
�̇− �̇

�̇− �̇
�
� �

	�̇< �̇ < �̇

0	 	�̇ > �̇
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������������� = ��(�̇)
� =
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⎨
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⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 	�̇ < ��̇

�̇ �
�̇ − ��̇

�̇� − �̇�
�

� �

	��̇ < �̇ < ��̇

�̇ �
�̇ − ��̇

��̇ − ��̇
�

� �

	��̇ < �̇ < �̇�

� 	�̇� < �̇ < �̇�

�̇ − ��̇ − �̇ ��
�̇ − ��̇

��̇ − ��̇
�

� �

	��̇ < �̇ < �̇�

1	 	�̇� < �̇ < ��̇

�̇ − �� − �̇ � �
��̇ − �̇

��̇ − ��̇
�

��

						��̇ < �̇ < ��̇

�̇		 	�̇� < �̇ < ℎ̇�

�̇�
�̇� − �̇

��̇ − ℎ�̇
�

��

	ℎ̇� < �̇ < ��̇

�̇�
�̇� − �̇

��̇ − ��̇
�

��

								�̇� < �̇ < �̇�

1	 	�̇ > �̇�

�������= ��(�̇)
� =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0	 		�̇ < ��̇

�̇ �
�̇ − ��̇

�̇� − �̇�
�

� �̇

	��̇ < �̇ < ��̇

�̇ �
�̇ − ��̇

��̇ − ��̇
�

� �̇

							��̇ < �̇ < �̇�

�̇	 	�̇� < �̇ < �̇�

�̇ − (� − �̇ ) �
�̇ − ��̇

��̇ − ��̇
�

� �̇

						��̇ < �̇ < �̇�

1	 	�̇� < �̇ < ��̇

�̇ − (� − �̇ ) �
��̇ − �̇

��̇ − ��̇
�

��̇

						��̇ < �̇ < ��̇

�̇	 	�̇� < �̇ < ℎ̇�

�̇ �
��̇ − �̇

�̇� − ℎ�̇
�

��̇

	 ℎ̇� < �̇ < ��̇

�̇ �
�̇� − �̇

��̇ − ��̇
�

��̇

								 �̇� < �̇ < �̇�

1	 	�̇ > �̇�

 

As, 0<�̇ < 1 ��� = {�̇ ∈ �̇|����̇�
� , ����̇�

� , ��(�̇)
� ≥ �̇}

Accuracy function 

The accuracy function is given below: 

� �̇��� = (
�́ + � + �́+ �� + �́ + �� + �̀ + �� + �́+ �́

��
) 
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� �̇��� = (
��� + �� + ��� + ��� + �́� + �� � + �̀� + ��� + ��� + �́�

��
) 

� �̇��� = (
��� + �� + ��� + ��� + �́� + �� � + �̀� + ��� + ��� + �́�

��
) 

4. Case Study

We will estimate the flexibility and outcome of decagonal neutrosophic numbers. We will show the strength of the 
decagonal by the real-life problem. With ten edges we can handle huge problems easily. Suppose a real-life problem 
with maximum parameters. 

Numeri cal pro blem:  Here U as the universe. A student wants to study abroad. So, he decided to compare different 
countries. It’s a big multi-criteria decision and the method to avail the solution given below: 

The different countries are �� , �� , ���	�� . Choice parameters are ��,� 	��,� 	���	��� . 

�� �� ��

{��� (0.69,0.59,0.21,0.35,0.47,0.85,0.32,0,13,0.48,0.64)      {��� (0.21,0.31,0.41,0.51,0.61,0.71,0.76,0.52,0.36,0.46)        {��� (0.21,0.31,0.41,0.51,0.61,0.72,0.84,0.33,0.30,0.24)

  (0.65,0.87,0.33,0.29,0.31,0.48,0.67,0.45,0.63,0.21)          (0.79,0.87,0.67,0.98,0.78,0.58,0.48,0.69,0.24,0.62)     (0.25,0.41,0.67,0.75,0.85,0.47,0.67,0.41,0.31,0.49) 

  (0.28,0.58,0.88,0.38,0.55,0.36,0.78,0.24,0.36,0.95)}           (0.98,0.95,0.94,0.93,0.90,0.92,0.99,0.88,0.78,0.58)           (0.98,0.97,0.96,0.94,0.87,0.81,0.89,0.48,0.61,0.13) 

{��� (0.11,0.21,0.19,0.28,0.52,0.36,0.57.0.36,0.38,0.25)            {��� (0.41,0.51,0.13,0.23,0.43,0.33,0.17,0.58,0.21,0.67)      {��� (0.31,0.27,0.47,0.59,0.92,0.50,0.47,0.38,0.14,0.27) 

  (0.74,0.24,0.34,0.21,0.98,0.75,0.41,0.58,0.32,0.27)                  (0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,0.21,0.34)     (0.17,0.28,0.78,0.71,0.94,0.95,0.68,0.74,0.71,0.92) 

  (0.33,0.44,0.55,0.66,0.45,0.87,0.88,0.97,0.23,0.45)}           (0.12,0.97,0.85,0.81,0.86,0.79,0.75,0.61,0.66,0.68)          (0.21,0.94,0.92,0.97,0.93,0.82,0.81,0.87,0.24,0.93) 

{��� (0.45,0.87,0.36,0.45,0.36,0.54,0.63,0.28,0.13,0.11)      ��� (0.27,0.58,0.34,0.13,0.23,0.25,0.34,0.22,0.71,0.62)      {��� (0.14,0.13,0.17,0.27,0.34,0.57,0.19,0.58,0.19,0.74) 

        (0.51,0.29,0.27,0.19,0.23,0.47,0.18,0.72,0.23,0.22)           (0.67,0.24,0.31,0.45,0.65,0.74,0.39,0.52,0.41,0.31)           (0.37,0.47,0.97,0.24,0.87,0.82,0.92,0.67,0.58,0.71) 

       (0.90,0.96,0.11,0.24,0.34,0.87,0.21,0.36,0.78,0.11)}           (0.57,0.67,0.37,0.47,0.57,0.67,0.77,0.97,0.27,0.68)              (0.81,0.91,0.96,0.92,0.97,0.82,0.81,0.79,0.88,0.67) 

In above matrix (��,� ��� , ��� ) mentioned as row and countries as (�� , �� , ���	�� ) in column. 

Step 1: Defuzzification of Decagonal neutrosophic number by using accuracy function: 

� �̇��� = (
�́����́��� ��́��� ��̀��� ��́��́

��
), � �̇��� = (

��� ������� ���� ��́���� ���̀����� ���� ��́�

��
), and 

� �̇��� = (
��� ������� ���� ��́���� ���̀����� ���� ��́�

��
) 

By using these formulas, Neutrosophic soft Matrix given below: 

Enrollment in local colleges, 2005 

Criteria �� �� ��

��� (0.4,0.4,0.5)   (0.4,0.6,0.8) (0.4,0.5,0.7) 

��� (0.3,0.4,0.5) (0.3,0.5,0.7) (0.4,0.6,0.7) 

��� (0.4,0.3,0.4) (0.3,0.4,0.6) (0.3,0.6,0.8) 

Step 2: For normalized aggregate fuzzy decision matrix. 

���� = �
����

����
,
����

����
,
����

����
�
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Criteria �� �� ��

��� (0.8,0.8,1.0) (0.5,0.7,1.0) (0.5,0.7,1.0) 

��� (0.6,0.8,1.0) (0.4,0.7,1.0) (0.5,0.8,1.0) 

��� (1.0,0.7,1.0) (0.5,0.6,1.0) (0.3,0.7,1.0) 

For criteria weighting, aggregate decision matrix given below: 

��
� = (0.3,0.4,0.5), ��

� = (0.5,0.6,0.7), and ��
� = (0.1,0.2,0.3)  

Step 3: ���� = ����  will multiply by ��� moreover, weighted normalized decision matrix. 

Criteria �� �� ��

��� (0.2,0.3,0.5) (0.1,0.2,0.5) (0.1,0.2,0.5) 

��� (0.3,0.4,0.7) (0.2,0.4,0.7) (0.2,0.4,0.7) 

��� (0.1,0.1,0.3) (0.5,0.1,0.3) (0.3,0.1,0.3) 

Step 4: Find �����	���	����� 

��� = (���
�, ���

�, ���
�, … , ���

�)  

���
� = max�����

. � 	� = 1,2, … ,�	���	� = 1,2, … , � 

��� = (���
�, ���

�, ���
�, … , ���

�)  

���
� = max�����

. � 	� = 1,2, … ,�	���	� = 1,2, … , � 

��� = ���
�(0.5,0.5,0.5), ���

�(0.7,0.7,0.7), ���
�(0.3,0.3,0.3) 

��� = ���
�(0.2,0.1,0.1), ���

�(0.3,0.2,0.2), ���
�(0.1,0.1,0.1) 

��(�̀, �̀) = �
1

3
(��̀ − ��̀)

� + (��� − ��� )
� + (��̀ − ��̀)

�

Ideal positive solution 

Criteria �� �� ��

��� (0.2) (0.4) (0.2) 

��� (0.2) (0.1) (0.4) 

��� (0.3) (0.3) (0.2) 

Negative Ideal solution 

Criteria �� �� ��

��� (0.3) (0.3) (0.3) 

��� (0.2) (0.5) (0.3) 

��� (0.1) (0.1) (0.2) 

Now calculate the distance between every weighted alternative. 
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���
∗ = ����

� ��(���̀ , ��
∗� ), ���

� = ����
� ��(���̀ , ��

�̀)  

��
� =� 0.7 ��

� =�  0.6

��
� = 0.8� ��

� =� 0.9

��
� =�  0.8 ��

� =� 0.8

Closeness coefficient 

���� =
���
�

�� �
���� �

�

�
 

���� =�  0.4615 

���� =�  0.5294 

���� =�  0.5000 

Strategy Results Rank 

����
� (0.4615) (3) 

����
� (0.5294) (1) 

�� ��
� (0.5000) (2) 

Clearly �� >  �� >  �� , The best country is �� . 

5. Conclusion

In this article, we introduce decagonal neutrosophic numbers (Linear, Non-Linear, Symmetric, Asymmetric). In the 
environment of MCDM, decagonal neutrosophic numbers will be very effective because of their ten edges. By using 
decagonal neutrosophic numbers we can deal with daily-life problems more effectively. Decagonal neutrosophic 
numbers have ten edges to deal with more fluctuations. In order to show the reliability and the working of this tool, 
we introduce an application based on MCDM. We solve the problem with the TOPSIS technique of MCDM. 
Moreover, we present aggregate operators of decagonal neutrosophic numbers with matrix notations and operations.  
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ABSTRACT The modern power systems are evolving in parallel to the development of other technological
trends such as decarbonization and digitalization. While the penetration of renewable energy resources
is increasing within the national and regional energy mix, emerging digitalization technologies, such as
artificial intelligence and blockchain technology are shaping modern power systems. Especially blockchain
technology has a very high potential to disrupt the current and future energy sector landscape by enabling
various use cases in this domain. This paper aims to prioritize different energy use cases where blockchain
technology can actively be utilized to create additional value. This study proposes a Type-2 Neutrosophic
Number (T2NN) based Evaluation based on Distance from Average Solution (EDAS) to evaluate and rank
a set of existing use cases of an energy blockchain system. Testing and validation of the model is done
through a comparison against one alternative T2NN based Multi-Criteria Decision Making (MCDM) model
and an existing approach from literature. In addition, a sensitivity analysis is performed, revealing that
changing criteria weightings do not affect the ranking order of the use cases of the energy blockchain
system. Prioritizing the use cases can assist the companies, standardization bodies, and related government
authorities to make better decisions for their operations, such as ranking the investment decisions.

INDEX TERMS Blockchain, Distributed Ledger Technology, Energy Use Case, Fuzzy Sets, Multi-Criteria
Decision Making, Neutrosophic Numbers

I. INTRODUCTION

THE traditional power system was designed highly cen-
tralized, which in return led to unidirectional power

ulation, decentralization, decarbonization, digitalization, and
democratization of the market participants. The inclusion
of Distributed Ledger Technology (DLT) in energy markets
can further utilize digitalization to achieve more control and
consensus across the prosumers, allowing an open market.

DLT can be considered an umbrella term for distributed
databases across different locations with multiple users [4].
The first widespread application of DLT was concentrated
on cryptocurrencies acting as an alternative medium of ex-
change. The second utilization of DLT enabled distributed
data storage with online ledgers, as the name of the tech-
nology also suggests. The third and current application of
DLT focuses on smart contracts for scaled and distributed
computing. Even though in industry and media the terms
are using interchangeably, the blockchain technology is a
heavily used sub-category of DLT [5]. In blockchain, as the
name suggests the information is stored in “blocks” which

flow. H owever, r apid i ntegration o f D istributed E nergy Re-
sources (DERs), Electrical Vehicles (EVs), Energy Storage 
Systems (ESSs), responsive loads, and demand response 
programs are causing a paradigm shift in the grid’s behavior, 
leading to a Transactive Energy system [1], [2]. Transactive 
energy is defined a s a  s ystem o f e conomic a nd control 
mechanisms that allows the dynamic balance of supply and 
demand across the entire electrical infrastructure using value 
as a critical operational parameter [3]. As this transactive 
network is already designed as an interconnected matrix of 
devices, Blockchain is an excellent fit, operating in a matrix 
structure of nodes with no centralized authority. This trend is 
also being accelerated due to the integration of smart meters, 
IoT devices and other ICT technologies leading to the dereg-

 Prioritizing Energy Blockchain Use Cases Using Type-2 
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connects to each other via cryptographic hash functions,
hence the “chain” connection. Blockchain is a specific format
of DLT with potential applications in supply chain manage-
ment, telecommunications, transportation, medical, energy
systems, and more [6]. For energy systems, there is a vast
number of use cases for blockchain1. With the inclusion of
DLT, energy sector can further utilize the digitalization for
achieving more control and consensus across the multiple
participants which will lead to reduced operational, planning
and infrastructure costs. Detailed review of application of
blockchain and challenges lying ahead can be found in [7]–
[9].

Work done in [10], [11] proposed a systematic method-
ology to demonstrate the value of blockchain in various
power system use cases. However, there has not been any
systemic study or consensus among the experts to indicate
which one of these use cases has the highest priority in
implementing and creating blockchain applications for en-
ergy systems. Prioritization of the possible use cases can
provide various solutions to the industry, academia, and
the standardization bodies. As Business-as-Usual practice,
the companies planning innovative digitalization investments
like integrating blockchain technology into their ongoing or
new processes spend several months even years to make the
most effective decisions for their investments. The decision-
making process relies on various, primarily sophisticated
investigations and analyses considering multiple technical,
economic, sustainability, and political issues. However, some
criteria and aspects can be quantifiable, making the decision-
making process relatively less complicated and manageable.
Furthermore, standardization bodies like IEEE Standards
Association (SA) have dedicated working groups (WGs) that
focus on various industrial verticals such as health, energy,
and supply chain management. IEEE SA P2418.5 a WG
that intends to propose an open, common, and interopera-
ble standard reference framework for the potential use of
blockchain in the energy sector. The ranking of the high
potential energy blockchain use cases plays an important
role for such organizations to proceed with a clean workflow
based on solid consensus-based methodologies.

Ranking all the potential uses cases of blockchain for en-
ergy systems is essentially a Multi-Criteria Decision-Making
(MCDM) problem as the evaluation of use cases relies on the
chosen criteria. In decision-making problems, it is not easy
to accurately characterize evaluation information with exact
numbers. Decision-makers may have different opinions, and
this may reveal uncertainty in information [12]. Type-2 Neu-
trosophic Numbers (T2NNs) was introduced in [13] as an ef-
ficient tool to handle vagueness, imprecision, ambiguity, and
inconsistency of such MCDM problems [14]. T2NNs have
been successfully implemented in various MCDM problems
such as: developing supplier selection using a T2NN based
TOPSIS (Technique for Order of Preference by Similarity to

1In this work, DLT and blockchain are used interchangeably to stay inline
with the trend in academia and industry.

Ideal Solution) approach [13], a public transportation pricing
system selection using a two-stage hybrid MCDM model
including CRITIC (CRiteria Importance Through Intercri-
teria Correlation) and MABAC (Multi-Attributive Border
Approximation area Comparison) approach under T2NNs
[15], two-stage decision model for the location selection of
an Automobile Lithium-ion battery [16], and more. However,
literature review shows that there has not been any research
to apply advanced decision-making methods approach in
energy blockchain.

A. CONTRIBUTIONS
This work proposes two T2NN based models to evaluate
and rank the use cases of an energy blockchain system.
This work does not propose a new energy DLT use case but
explores the application of Fuzzy set theory to rank/prioritize
the existing and commonly implemented use cases where
DLT/blockchain is utilized in the field of energy domain. To
the best of our knowledge, this work is the first in this cate-
gory to merge emerging topics such as energy blockchain and
advanced decision-making methods in an orchestrated man-
ner. The proposed models use neutrosophic numbers, which
can handle uncertainties such as vagueness, imprecision, and
inconsistency [13]. The first proposed model is a T2NN
based EDAS which is a very effective method in case of
having some incompatible parameters. The second proposed
model is a T2NN based hybrid model that includes WASPAS,
MABAC, and CODAS. We use the distance measures in
the second model to calculate the difference degree between
T2NNs. Comparison of the two proposed models against a
T2NN based CODAS model [16] is also completed along
with sensitivity analysis of the two proposed models with
respect to a threshold parameter (can be set by a decision-
maker) .

The paper is organized as follows. Section II details the
use cases considered in the work where Section III illustrates
the criteria used to evaluate the use cases for prioritizing
them. Section IV provides preliminaries on fuzzy set and
the proposed methodology. Section V shows the application
of the proposed methodology on survey results collected
from various experts on the application of blockchain on
energy systems and shows the ranking based on the survey
results. The results of the analysis indicate that the use case
Grid Management and Transactions is the most suitable
alternative among six alternative use cases. Note that the pro-
posed methodology is independent of the number of collected
survey results and can be extended for a different set of use
cases evaluated with respect to a different set of evaluation
criteria.

II. ENERGY BLOCKCHAIN USE CASES
The global energy landscape is rapidly digitalizing alongside
"Industry 4.0" technologies such as artificial intelligence
(AI), advanced ICT, quantum computing, and DLT as inte-
gral parts of the daily business and operations. The digital
transition leverages various digital technologies and tools
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to increase the efficiency of existing processes, create new
revenue streams, and increase the safe and secure operation
of the businesses. DLT is among the most disruptive dig-
ital technologies with the potential to impact the existing
energy market and systems as an enabler. It is possible to
eliminate unnecessary third parties, increase transaction and
processing speeds, improve the operations’ cyber-physical
security, and even create new unlocked business territories by
effective use of DLT. However, DLT can not be proposed as a
unique solution to multiple energy-related problems but can
be considered one of the most promising enablers of digital
solutions besides other digital technologies. While designing
a DLT-based system, one shall consider the potential limita-
tions of existing DLTs, such as interoperability, transaction
speeds, energy consumption levels, and transaction fees of
the selected DLT ecosystems. If the investigated use case
does not necessarily require decentralized databases like
DLT, it is better not to increase the complexity of the existing
system and overload the ecosystem. Figure 1 visualizes the
segmentation for the following energy blockchain use cases
alongside with the entire value chain of power systems and
markets.

• Energy financing,
• Renewable energy certificate (REC) trading,
• Labelling and energy provenience,
• EV charging ans payment settlement,
• Retail trading,
• Wholesale trading,
• Flexibility management,
• Grid management and operation
• P2P energy trading,

Each energy use case is cross-segmented under the relevant

A. P2P ENERGY TRADING
Increasing utilization of DER, smart meters, and two-way
communication technologies allows the classical customers
to be more active in the electrical energy supply chain [17]. In
return, this phenomenon results in the reconstruction of clas-
sical energy markets from a top-down approach to a bottom-
up approach where customers can act as producers, resulting
in the new term “prosumers.” Utilizing blockchain can accel-
erate the transition securely while removing Trusted Third
Parties, thus providing faster transaction validations and
more privacy to market participants. Additionally, blockchain
can act as an enabler for achieving multiple Local Energy
Markets (LEM) across different communities where pro-
sumers can sell their excess energy to their communities
(ideally for a cheaper price then the spot electricity prices)
or towards the main grid.

Currently, transforming the existing grid network into an
operational P2P energy network is the most utilized ap-
plication of blockchain in the energy industry [18]. The
P2P market structure can be classified into fully decentral-
ized markets, community-based markets, and hybrid markets
[19]–[21]. However, a fully functional and scaled real-world
P2P energy network is unlikely to be achieved soon despite
various startups and businesses because many projects are
still in the virtual domain and depend on the existing grid
structure. Blockchain networks enabled with communication
technologies that have a bandwidth of smaller than 1000
kbit/s such as Narrow-Band IoT (NB-IoT), LoRa, Wireless
Personal Area Network (WPAN) will lead to bottlenecks
and low output in real-life scenarios [22]. Therefore, more
technological maturity is needed before various blockchain-
enabled markets can be realized in real-world applications.
However, for the areas without a grid and with low population
density, P2P networks can prove to be beneficial earlier than
expected by connecting local homes for faster and more
secure energy transactions [23].

B. SUSTAINABILITY ATTRIBUTIONS AND GREEN
ENERGY CERTIFICATION
DER is expected to present unprecedented advantages com-
pared to traditional centralized approaches such as lowered
electrical transmission losses, security of supply, and ad-
vanced efficiency [24]. Individuals (either residential, in-
dustrial, or commercial) or a collective entity (aggregator,
[25]) can be the source of local generation which then can
act as a generator agent or can perform various ancillary
services (such as load shaving) [26]. However, due to several
economic, technical, social, and regulatory problems, the
worldwide deployment rate of DER is still relatively low
despite the advantages [27].

By the laws of physics, once power is injected into the
main grid, the energy from Renewable Energy Sources (RES)
and classical generation techniques are indistinguishable.
Thus, there is no way for a consumer to ensure that the
consumed electricity comes from RES-based DER. However,
by utilizing Green Certificates (also known as Renewable

value chain section. For instance, EV charging use case can 
be operated between grid edge (prosumer and consumers) to 
power distribution system depending on the location of the 
EV charging station. Moreover, DLT accommodates three 
dimensions in terms of flow: data, financial, and power trans-
actions, which can be beneficial for the P2P energy trading 
use case. In this use case scenario, electrical power flows 
as a physical commodity, and smart metering-based systems 
can be used to track-record the energy transaction feature 
immutably to the blocks or on-chain databases of the crypto-
network. Besides, financial transactions can be accomplished 
via DLT-based cryptocurrencies or classical fiat currency as a 
medium, depending on the preference of the business owners.

Among variety of use cases, this work shows the proposed 
methodology based on the following short-listed use cases 
based on popularity [7]–[9]:

A1: P2P Energy Trading
A2: Sustainability Attributions and Green Energy Certifica-

tion
A3: EV Charging and E-Mobility
A4: Grid Management and Transactions
A5: E-Metering and Payment Settlement
A6: Energy Finance
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FIGURE 1: Energy blockchain segmentation analysis.

Energy Certificates or REC), the origin of energy can be
logged in an immutable and distributed manner [28]. This
will allow the consumers to feel a sense of support towards
DER integration by ensuring that the energy being consumed
is coming from RES [29], thus acting as an encouraging
agent for consumers to prioritize renewable energy over
conventional methods.

REC trading is a credible way to buy and sell renewable
energy. The framework works by assigning a REC certificate
to the energy produced and fed to the grid (usually a cer-
tificate per MWh), which can later be traded. The price per
certificate depends on various parameters such as electricity
supply and demand, certificate generation frequency, and
scarcity. Currently, various REC trading market places exist
across different regions such as China, the European Union
(EU), the United States of America (USA), and India [30]–
[33]. Integration of DLT can pave the development of effi-
cient, transparent, and secure trading of REC. It is currently
an active research field where various consensus mechanisms
such as Proof of Generation (PoG) are being developed for
efficient and scalable trading across participating agents [34].

C. EV CHARGING AND E-MOBILITY

Although the worldwide adaptation of EVs is relatively low
due to the scarcity of public charging infrastructure, the uti-
lization rate of EVs is still increasing [35] due to innovations
in the development of such as autonomous vehicles and
shared mobility. However, this increased utilization of EVs
is posing challenges for the management of modern power

systems in the areas of; increased peak demand, voltage
instabilities, higher rate of equipment degradation, cyber
security, and more [36]. Therefore, securing new mobility,
developing efficient data management, and handling quick
complex transactions are necessary. Blockchain can act as
an enabler with distributed and immutable track recording,
allowing many small transactions to be performed securely
and privately for small power units [37]. Blockchain can
ensure a secure identity, communication through a standard
messaging format, and automatic recording of charging, gen-
eration, and exchange transactions on a distributed ledger for
EVs, chargers, and electricity producers. Smart contracts can
allow users who have excess electricity to sell to the charging
stations. In addition, EV users can leverage electronic wal-
lets to pay the charging bills. The development of such an
automatic-payment system using DLT can reduce human in-
teraction and increase trust, transparency, and privacy among
EV participants [38].

However, a real-world system should be scalable, consid-
ering that the number of EVs on the road increases due to
wide-scale adaptation [39]. Thus the proposed blockchain-
based systems must be able to perform a higher number of
Transactions per Second (TPS) [40]. EV charging and E-
mobility is an active research field in DLT; thus, many start-
ups and organizations are working on real-world deploy-
ments and realization [41], [42].
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D. GRID MANAGEMENT AND TRANSACTIONS
Compared to the P2P network, grid transactions are less
radical in decentralization and are a research field supported
by energy companies. These transactions happen in a way
that keeps the power grid integrated even if its function
fundamentally changes, such as wholesale energy markets
where transactions can be verified quickly and efficiently
while being transparent to market participants, hence increas-
ing the efficiency [5]. Compared to the classical wholesale
markets, these markets can handle smaller transactions in a
quicker way which would put increased pressure on central-
ized systems [43]. In addition to wholesale power markets,
new ancillary markets can be realized by DLT, which will
allow distribution network balancing by DER without the
need for expensive infrastructure upgrades [40].

Unlike “traditional” centralized generating units, DERs at
the prosumer level come in small capacities and are con-
nected to low and medium voltage electricity distribution
grids. The distributed nature of these resources can enable
new services through DER aggregation to create economic
value by providing these services at scale [44]. By acting as
intermediaries between prosumers and a deregulated energy
market, aggregators can provide hedging solutions by procur-
ing demands from consumers and selling to purchasers, thus
reducing risk to individual market participants [45]. [46].
Ensuring security, transparency, and privacy in an aggregator-
based market is achievable by integrating blockchain while
reducing communication latency and computation time [25].

E. E-METERING AND PAYMENT SETTLEMENT
Grid operators must be aware of the electricity consumption
patterns of their users for an efficient and stable electricity
market [47]. Thus, information security is even more critical
amid the decentralized markets with multiple smaller par-
ticipants. This change leads to the need of answering who
oversees the following parameters in the power market such
as:

• The owner of the customer data,
• Regulation of the use and access of the customer data,
• The data security and privacy

the application of a proof-of-authority consensus mechanism
for metering infrastructure that uses significantly less energy
than computation-heavy and energy-intensive proof-of-work
blockchain systems [50].

F. ENERGY FINANCE
Additional utilization of blockchain in the energy sector is
the capital funding via crowdfunding for various energy-
related investments such as solar PV, energy storage, and
more. The main idea behind this type of energy finance is the
allowance of digital partial ownership of the said investments
by the investors in exchange for cryptocurrencies, Initial
Coin Offerings (ICOs), Security Token Offerings (STOs)
[51]–[53] and more. The currency ownership and transaction
records can be kept in a distributed digital ledger across every
node via various consensus mechanisms for cryptocurren-
cies. However, utilizing cryptocurrencies in capital funding
can lead to unsuccessful financing due to their inherited
market volatility. ICO can be defined as utility tokens offered
in an unregulated environment, mainly to circumnavigate the
required regulatory government bodies, making them more
prone to market volatility and fraud. Unlike ICOs, STOs
can be launched only after passing the required controls
from various government regulatory bodies. Therefore, STOs
anchored to a fiat currency are more protected from market
speculations and frauds. Also, there are prior works [54]
developing decentralized digital currency that is generated by
injecting energy into the grid and offers numerous advantages
over fiat currency.

Thus, blockchain based crowdfunding has the benefit of
allowing multiple smaller investors to participate in an clean
energy related investment for easier capital raising and pro-
vide a feeling of support towards RES and increase their
utilization factor [55] with the added benefit of lowering
LCOE values of various energy investments such as PV
panels and wind turbines and allowing additional countries
to achieve grid parity [51].

III. EVALUATION CRITERIA OF ENERGY BLOCKCHAIN
USE CASES
This section describes the set of criteria used to evaluate the
blockchain energy use cases described in Section II.
C1-Technological Maturity: Technological maturity is an
essential convention in research and development, emerging
technology-centered strategic planning, and the decision-
making process related to digital infrastructure investments.
Technology maturity stages are used to indicate and address
a given technology’s position on the evolutionary curve.
C2-Interoperability Interoperability in blockchain for en-
ergy applications refers to various cyber-physical com-
ponents’ interconnection and interaction within a multi-
dimensional and multi-layer ecosystem, which satisfies the
safe and robust operation of the proposed system and sub-
systems.
C3-Scalibility: For energy blockchain use cases, the scala-
bility aspects refer to multiple dimensions such as an upper

By utilizing a smart meter, market participants can share 
information (energy consumption, production, voltage, cur-
rent, power factor, and more) to their utility. Blockchain 
integrated with metering infrastructure can pave the path for 
an automated billing in energy services for prosumers, with 
the potential of administrative cost reduction. Traceability 
of energy produced and consumed can inform prosumers 
about the origins and cost of their energy supply, making en-
ergy charges more transparent, thus incentivizing behavioral 
change and demand response. After the data acquisition, a 
blockchain-based information system can provide data con-
sistency, and security [48] against communication dropouts 
[49], and cyber-attacks [37] and can ensure a robust state 
verification [25]. Moreover, recent development has shown
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limit on the number of stakeholders of the energy market
or systems landscape like power generators, utilities, power
traders, prosumers and in some business models, aggrega-
tors that can actively participate in the blockchain network.
Therefore, for an energy blockchain network, an essential
evaluation criterion is to ensure that a vast number of cus-
tomers can participate in the blockchain-enabled energy mar-
ket at the same time.
C4-Transaction Speed: Transaction speed for energy
blockchain use case refers to how fast the power market and
systems related operations and transactions can be performed
with respect to transaction numbers [25]. For a day-ahead
market for instance, the effect of transaction speed is less
compared to an hourly market or a 15-min market. Hence,
any blockchain solution needs to be evaluated with respect to
the maximum parallel transactions per second it can allow at
any given time without overloading the network.
C5-Cybersecurity: Cybersecurty aspects investigate risks
associated with the cross-sectional fields between cyberse-
curity, Blockchain DLT and energy use cases. Cryptographic
and performance aspects including the management of key
generation, storage, transmission, update, escrow, revocation
and distribution as well as various corresponding metrics,
the various scalability and permission related fields such as
the identifying the thresholds for Blockchain DLT scalabil-
ity and functionality of permission mechanisms and their
impacts can be considered as important elements of cy-
bersecurity analysis. Furthermore, evaluation of the Smart
Contracts in terms of cybersecurity and attack surface aspects
of Blockchain DLT use cases in the field of Energy are other
perspectives to be improved.
C6-Economic Viability (OPEX and CAPEX): Like any
other investment, it is essential to check the economic viabil-
ity of a digitalization investment project that uses some form
of DLT. Capital Expenditures (CAPEX) of such investments
may include project management, system design, and devel-
opment of both the hardware and the software component.
Meanwhile, the Operational Expenditures (OPEX) are the
cost components associated with the operation and main-
tenance of the established system. For energy blockchain,
OPEX can also include the associated transaction fees.
C7-Economic Value Creation: This criterion is related to
the degree of value created by using DLT for a specific
use case by eliminating the third parties, accelerating the
processes, increasing the efficiencies, reducing the costs,
and/or increasing the benefits.
C8-Energy Consumption: A growing concern of adopting
blockchain for various solutions is it’s high energy require-
ment [56]. A permissioned DLT framework (for instance,
Hyperledger Fabric) allows consensus protocols that are far
less energy-intensive than the consensus protocols (for ex-
ample, proof-of-work) employed by a permissionless DLT
architecture [25], [57]. While both types of architectures have
a possible application in energy blockchain, it is crucial to
evaluate the use cases with respect to their corresponding
effect on overall energy consumption.

C9-Contribution to UN SDG: This work also proposes to
evaluate the use cases with respect to some of the goals
of the 17 Sustainable Development Goals (SDGs) [58]. For
example, the adoption of blockchain for energy can lead to
innovating new technologies towards industry practice (goal
number 9), resulting in affordable and clean energy (goal
number 7) and paving the way to develop sustainable cities
and communities (goal number 11).
C10-Legal and Legislative Interoperability: Legal and
legislative aspects are regulating the rules of the game. The
policy-makers are responsible to regulate any official market
in a country. Legal documents and laws are used to declare
the specific sets of the rules. Various legal and legislative
shall successfully interoperated between each other and
various regions where different set of legislative documents
are valid.
C11-Political Support: Support of the policy makers and
the dynamics behind them such as public acceptance are
among important criteria which have potential to influence
the investment decisions.

IV. APPLICATION OF FUZZY SET FOR RANKING
BLOCKCHAIN ENERGY USE CASES
A. PRELIMINARIES ON FUZZY SETS
Fuzzy set theory was introduced in [59] to deal with the
uncertainties in the information. Later, work done in [60]
extended the theory of intuitionistic fuzzy set, as a gener-
alisation of fuzzy sets, which characterize with membership
and non-membership degrees. The concept of neutrosophic
sets was introduced as an extension of fuzzy sets in [61].
Various types of fuzzy sets and their membership functions
are depicted in Figure 2. Membership functions were first
introduced in [59]. Membership functions can be characterize
the fuzziness; in other words, a membership function repre-
sents the degree of truth.

1) Type-1 Neutrosophic set
A neutrosophic set can be represented by three membership
functions including truth membership function T , an inde-
terminacy membership function I , and a falsity membership
function F [13].

Definition 1. Let X̆ be a fixed set. A neutrosophic set Q in
X̆ denoted by x̆ [62].

Q̆ =
{
〈x̆ : ωQ̆(x̆), φQ̆(x̆), πQ̆(x̆)〉|x̆ ∈ X̆

}
, (1)

where ω, φ, π : X̆ → ]−0, 1+[ represent the degree of
truth membership (T ), the degree of indeterminacy I , and
the degree of falsity membership (F ) of the element x̆ ∈ X̆
to the set Q̆, respectively. There is no restriction on the sum
of ωQ̆(x̆), φQ̆(x̆), and πQ̆(x̆) [63]. Therefore, the sum of all
three membership values changes 0− ≤ ωQ̆(x̆) + φQ̆(x̆) +

πQ̆(x̆) ≤ 3+.

2) Type-2 Neutrosophic Set
Some fundamental definitions of T2NN are as follows:
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(a) fuzzy sets

(b) intuitionistic fuzzy sets

(c) neutrosophic sets

FIGURE 2: Various types of fuzzy sets and their membership
functions.

Definition 2. A type-2 neutrosophic number Q̆ are char-
acterized by a truth ωQ̆, indeterminacy φQ̆, and falsity πQ̆
membership functions [64]. A T2NN set Q̆ in X̆ is defined
by [13]:

Q̆ =
{〈
x̆, ωQ̆(x̆), φQ̆(x̆), πQ̆(x̆)

〉∣∣∣x̆ ∈ X̆}, (2)

where ωQ̆(x̆), φQ̆(x̆), πQ̆(x̆) : X̆ → [0, 1]3. The elements of
the T2NN set can be defined as follows:

ωQ̆(x̆) =
(
ωωQ̆

(x̆), ωφQ̆
(x̆), ωπQ̆

(x̆)
)

φQ̆(x̆) =
(
φωQ̆

(x̆), φφQ̆
(x̆), φπQ̆

(x̆)
)

πQ̆(x̆) =
(
πωQ̆

(x̆), πφQ̆
(x̆), ππQ̆

(x̆)
)

Another way of representing a T2NN set is:

A =
(

(ωω, ωφ, ωπ), (φω, φφ, φπ), (πω, πφ, ππ)|x̆ ∈ X̆
)

ωQ̆(x̆) =
(
ω1
Q̆

(x̆), ω2
Q̆

(x̆), ω3
Q̆

(x̆)
)

φQ̆(x̆) =
(
φ1
Q̆

(x̆), φ2
Q̆

(x̆), φ3
Q̆

(x̆)
)

πQ̆(x̆) =
(
π1
Q̆

(x̆), π2
Q̆

(x̆), π3
Q̆

(x̆)
)

where ωQ̆(x̆), φQ̆(x̆) and πQ̆(x̆) are X̆ → [0, 1]3. For every
x̆ ∈ X̆ : 0 ≤ ω1

Q̆
(x̆) + φ1

Q̆
(x̆) + π1

Q̆
(x̆) ≤ 3, 0 ≤ ω2

Q̆
(x̆) +

φ2
Q̆

(x̆) + π2
Q̆

(x̆) ≤ 3, and 0 ≤ ω3
Q̆

(x̆) + φ3
Q̆

(x̆) + π3
Q̆

(x̆) ≤ 3

are stated.

Let two T2NNs Q̆1 and Q̆2 be defined as the following:

Q̆1 =
〈(
ωωQ̆1

(x̆), ωφQ̆1
(x̆), ωπQ̆1

(x̆)
)
,(

φωQ̆1
(x̆), φφQ̆1

(x̆)φπQ̆1
(x̆)
)
,(

πωQ̆1
(x̆), πφQ̆1

(x̆), ππQ̆1
(x̆)
)〉
,

Q̆2 =
〈(
ωωQ̆2

(x̆), ωφQ̆2
(x̆), ωπQ̆2

(x̆)
)
,(

φωQ̆2
(x̆), φφQ̆2

(x̆), φπQ̆2
(x̆)
)
,(

πωQ̆2
(x̆), πφQ̆2

(x̆), ππQ̆2
(x̆)
)〉

Definition 3. The addition of two T2NNs is given by [13],
[15], [65]:

Q̆1 ⊕ Q̆2 =
〈(
ωωQ̆1

(x̆) + ωωQ̆2
(x̆)− ωωQ̆1

(x̆) · ωωQ̆2
(x̆),

ωφQ̆1
(x̆) + ωφQ̆2

(x̆)− ωφQ̆1
(x̆) · ωφQ̆2

(x̆),

ωπQ̆1
(x̆) + ωπQ̆2

(x̆)− ωπQ̆1
(x̆) · ωπQ̆2

(x̆)
)
,(

φωQ̆1
(x̆) · φωQ̆2

(x̆), φφQ̆1
(x̆) · φφQ̆2

(x̆),

φπQ̆1
(x̆) · φπQ̆2

(x̆)
)
,
(
πωQ̆1

(x̆) · πωQ̆2
(x̆),

πφQ̆1
(x̆) · πφQ̆2

(x̆), ππQ̆1
(x̆) · ππQ̆2

(x̆)
)〉
.

(3)

Definition 4. The multiplication of two T2NNs is given by
[13], [15], [65]:

Q̆1 ⊗ Q̆2 =
〈((

ωωQ̆1
(x̆) · ωωQ̆2

(x̆), ωφQ̆1
(x̆) · ωφQ̆2

(x̆),

ωπQ̆1
(x̆) · ωπQ̆2

(x̆)
)
,
(
φωQ̆1

(x̆) + φωQ̆2
(x̆)− φωQ̆1

(x̆)·
φωQ̆2

(x̆)
)
,
(
φφQ̆1

(x̆) + φφQ̆2
(x̆)− φφQ̆1

(x̆) · φφQ̆2
(x̆)
)
,(

φπQ̆1
(x̆) + φπQ̆2

(x̆)− φπQ̆1
(x̆) · φπQ̆2

(x̆)
))
,((

πωQ̆1
(x̆) + πωQ̆2

(x̆)− πωQ̆1
(x̆) · πωQ̆2

(x̆)
)
,(

πφQ̆1
(x̆) + πφQ̆2

(x̆)− πφQ̆1
(x̆) · πφQ̆2

(x̆)
)
,(

ππQ̆1
(x̆) + ππQ̆2

(x̆)− ππQ̆1
(x̆) · ππQ̆2

(x̆)
))〉

.

(4)

Definition 5. The arithmetic operation for a T2NN can be
expressed by [13], [15], [65]:
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Q̆ =
〈(

1− (1− ωωQ̆
(x̆))α,

1− (1− ωφQ̆
(x̆))α, 1− (1− ωπQ̆

(x̆))α
)
,(

(φωQ̆
(x̆))α, (φφQ̆

(x̆))α, (φπQ̆
(x̆))α

)
,(

(πωQ̆1
(x̆))α, (πφQ̆

(x̆))α, (ππQ̆
(x̆))α

)〉
, (5)

where α > 0.

Definition 6. The exponent of a T2NN is given by [13], [15],
[65]:

Q̆α =
〈(

(ωωQ̆
(x̆))α, (ωφQ̆

(x̆))α, (ωπQ̆
(x̆))α

)
,(

1− (1− φωQ̆
(x̆))α, 1− (1− φφQ̆

(x̆))α, 1− (1− φπQ̆
(x̆))α

)
,(

1− (1− πωQ̆
(x̆))α, 1− (1− πφQ̆

(x̆))α, 1− (1− ππQ̆
(x̆))α

)〉
(6)

where, α > 0.

The convergent classification values of each alternative are
arranged with the help of score and accuracy values in order
to identify the superior alternative [13].

Definition 7. The score function S(Q̆1) of T2NN Q̆1 is
defined as follows [13]:

S(Q̆1) =
1

12

〈
8 +

(
ωωQ̆1

(x̆) + 2 ωφQ̆1
(x̆) + ωπQ̆1

(x̆)
)

−
(
φωQ̆1

(x̆) + 2 φφQ̆1
(x̆) + φπQ̆1

(x̆)
)

−
(
πωQ̆1

(x̆) + 2 πφQ̆1
(x̆) + ππQ̆1

(x̆)
)〉

(7)

It can be said that the larger the score value, the more
appropriately the corresponding alternative meets the expec-
tation of the decision maker [66].

Definition 8. If the score values of two q-ROFs are equal,
then the accuracy values are checked. The accuracy function
A(Q̆1) of T2NN Q̆1 is defined as follows [13]:

A(Q̆1) =
1

4

〈(
ωωQ̆1

(x̆) + 2
(
ωφQ̆1

(x̆)
)

+ ωπQ̆1
(x̆)
)
−(

πωQ̆1
(x̆) + 2

(
πφQ̆1

(x̆)
)

+ ππQ̆1
(x̆)
)〉

(8)

Definition 9. The relations between S(Q̆i) and A(Q̆i) can
be defined as follows [13]:

1) If S(Q̆1) > S(Q̆2), then Q̆1 is bigger than Q̆2, denoted
Q̆1 > Q̆2

2) If S(Q̆1) = S(Q̆2), then their accuracy values are
compared as follows:

a) A(Q̆1) > A(Q̆2), then Q̆1 > Q̆2,
b) A(Q̆1) = A(Q̆2), then Q̆1 = Q̆2.

For example, consider two T2NNs in the group of real
numbers:

Q̆1 = (0.7, 0.8, 0.9), (0.25, 0.2, 0.35), (0.1, 0.15, 0.05)

Q̆2 = (0.4, 0.35, 0.5), (0.3, 0.4, 0.25), (0.2, 0.3, 0.35)

Following Eqs. (7) and (8), score and accuracy values can be
calculated as follows:

1) Score value of Q̆1, S(Q̆1) = (8 + (3.2 − 1.0 −
0.45))/12 = 0.81, and of Q̆2, S(Q̆2) = (8 + (1.6 −
1.35− 1.15))/12 = 0.59;

2) Accuracy value of Q̆1, A(Q̆1) = (83.2 − 0.45)/4 =
0.69, and of Q̆2, A(Q̆2) = (1.6− 1.15)/4 = 0.11.

It can be clearly seen that Q̆1 > Q̆2.

Definition 10. Distance methods basically calculate crisp
distance values between two fuzzy numbers. However, a
logical problem arises when the distance is calculated in an
uncertain frame due to the presence of uncertainty. Therefore,
a measure of distance is used for uncertain numbers [67]
and can be defined as follow considering the followings two
T2NNs:

Q̆1 =
(

(ω1, ω2, ω3), (φ1, φ2, φ3), (π1, π2, π3)
)

Q̆2 =
(

(T1, T2, T3), (I1, I2, I3), (F1, F2, F3)
)

The distance measure z(Q̆1, Q̆2) between them is defined as
follows [68]:

z(Q̆1, Q̆2) = 1−∑3
i=1 (ωiTi + φiIi + πiFi)(∑3

i=1 [ω2
i + φ2

i + π2
i ]
)
×
(∑3

i=1 [T 2
i + I2

i + F 2
i ]
) (9)

B. PROPOSED METHODOLOGIES
In this section, two different models using T2NN have been
proposed to rank the use cases and then select the best
DLT use case using reviews from experts. The flowchart of
proposed models is shown in Figure 3.

1) Model-I: T2NN Based EDAS
Model-I is structured based on EDAS approach introduced
in [69] under T2NN. The steps of the proposed model are as
follows:

Step 1: Construct the fuzzy decision matrix X̃ = (xij)m×n.
xij is the evaluation value of the alternative ai (i =
1, 2, ...,m) according to the criteria sj(j = 1, 2, ..., n),

X̃ = (xij)m×n =



A1 A2 · · · Am

P1 x11 x12 · · · x1n

P2 x21 x22 · · · x2n

...
...

...
. . .

...
Pn x1m x2m · · · xmn

 (10)

where m indicates the number of alternatives and n indicates
the number of criteria.
Step 2: Calculate the score values of alternatives in terms of
each criterion using decision matrix with the help of score
function S(Q̆1) in given in Eq. (7).
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Determine the criteria, and alternatives for evaluation


Define the linguistic terms, and criteria and alternatives are
evaluated by experts using these terms


Model I 

(T2NN based EDAS)


Model II 

(T2NN based WASPAS, MABAC and

CODAS)


Step 1. Construct the fuzzy decision matrix


Step 4. Determine the PDA ve NDA values


Sensitivity analysis


Validation of the results


Start


End


Step 2. Calculate the score values of alternatives


Step 3. Calculate the average solution


Step 5. Find the weighted sum of PDA and NDA
values


Step 7. Compute the compromise score of each
alternative


Step 6. The normalization of weighted sum
values of SP and SN 


Step 8. Rank the alternatives


Step 3. Calculate the linear normalization of
performance values


Step 6. Calculate the approximate border area
matrix


Step 4. Find the measures of WS and WP values


Step 5. Calculate the aggregated measure of the
WASPAS


Step 7. Compute the distance matrix


Step 9. Obtain the overall score values


Step 8. Calculate the relative assessment matrix


Step 10. Rank the alternatives


FIGURE 3: T2NN based proposed models.

Step 3: Calculate the average solution AV =
[
AVj

]
1xm

considering all criteria. Average solution of each criterion is
found using (11).

AVj =

∑n
i xij
n

(11)

Step 4: Two important measures of the EDAS, the positive
distance from average (PDA) and the negative distance from
average (NDA) matrix are structured based on the type of
criteria (benefit and cost).
If jth criterion belongs to benefit group, then PDA and NDA
values are calculated using Eqs. ((12)-(13):

PDAij =
max(0, xij −AVj)

AVj
(12)

NDAij =
max(0, AVj − xij)

AVj
(13)

If jth criterion belongs to cost group, then PDA and NDA
values are calculated using Eqs. (14)-(15):

PDAij =
max(0, AVj − xij)

AVj
(14)

NDAij =
max(0, xij −AVj)

AVj
(15)

where PDAij and NDAij represent the positive and neg-
ative distance of ith alternative from average solution with
respect to jth criterion, respectively.
Step 5: Weighted sum of PDA and NDA values are found
using Eqs. (16)-(17) with the help of weight coefficient of
each criteria (wj):

SPi =
m∑
j

wjPDAij (16)

SNi =
m∑
j

wjNDAij (17)

Step 6: The normalization of weighted sum values of SP
and SN are calculated using Eqs. (18) and (19), respectively.

NSPi =
SPi

maxi(SPi)
(18)

NSNi = 1− SNi
maxi(SNi)

(19)

Step 7: Compromise score of each alternative is found by
(20).

ASi =
1

2
(NSPi +NSNi) (20)

Step 8: Alternatives are ranked by the descending order of
values of their AS, i.e., the alternative with the highest value
of the compromise score is the highest ranked alternative.

2) Model-II: T2NN Based Model Including WASPAS,
MABAC, and CODAS
This proposed model is designed as an integrated model
including WASPAS [70], MABAC [71], and CODAS [72]
based on T2NN. The proposed model can be described in the
following steps.
Steps 1-2: Same as the first two steps of Model-I.
Step 3: Linear normalization of performance values are ob-
tained as follows [70]:

r̃ij =

{
xij/maxi xij ∀i if j ∈ B
mini xij/xij ∀i if j ∈ C (21)

where B and C denote sets of benefit and cost criteria,
respectively. Alternatives and criteria are defined by i =
1, 2, ...,m and j = 1, 2, ..., n, respectively.
Step 4: The measures of weighted sum (WS) (∆1

i ) and
weighted product (WP) (∆2

i ) for each alternative are defined
as follows [70]:

∆1
ij =

m∑
j=1

wj r̃ij ∀i (22)

∆2
ij =

m∏
j=1

(r̃ij)
wj ∀i (23)

Step 5: The aggregated measure of the WASPAS method are
calculated as follows [70]:

∆ij = µ∆1
ij + (1− µ)∆2

ij ∀i (24)

Florentin Smarandache (author and editor) Collected Papers, XIII

723



where µ is defined as the parameter of the WASPAS method
and this parameter is the set of numbers between 0 and 1. If
µ is = 1, WASPAS method is transformed into WS, whereas
µ = 0 leads to WP.
Step 6: Calculate the approximate border area matrix H .
Border Approximate Area (BAA) for each criterion is ob-
tained as follows [71]:

hj =

(
m∏
i=1

∆ij

)1/m

(25)

where hj and m represent the border approximation area for
criterionCj and the total number of alternatives, respectively.
The border approximation area vector H can be also ex-
pressed in another form (1× n) as in the following:

H =
(P1 P2 · · · Pm
h1 h2 · · · hn

)
Step 7: Calculate distance matrix ρ = (dij)m×n. The dis-
tances of alternative from the border approximation area are
calculated as follows [71]:

ρ1 = ∆−H ⇒


∆11 − h1 ∆12 − h2 . . . ∆1n − hn
∆21 − h1 ∆22 − h2 . . . ∆2n − h1

...
...

. . .
...

∆m1 − h1 ∆m2 − h2 · · · ∆mn − hn


(26)

Calculate the ideal distance as follows:

F = [fj ]1xm and fj = min {∆ij}, (27)

where fj represents the distance.

ρ2 = ∆−F ⇒


∆11 − f1 ∆12 − f2 . . . ∆1n − fn
∆21 − f1 ∆22 − f2 . . . ∆2n − f1

...
...

. . .
...

∆m1 − f1 ∆m2 − f2 · · · ∆mn − fn


(28)

The alternative Zi may belong to the upper approximate area
(H+) and (F+), lower approximate area (H+) and (F−) or
border approximation area, respectively ∀i ∈

{
H ∨ H+ ∨

H−} and
{
F ∨ F+ ∨ F−} as shown in Figure 4. H+ and

F+ are an area in which the ideal alternative is found (Z+),
while the H− and F− are an area in which the anti-ideal
alternative (Z−).
Belonging of the alternative (Zi) to the approximate area
(H+, H or H−) and (F+, F or F−) are calculated by:

Zi ∈


H+ if dij > 0

H if dij = 0

H− if dij < 0

and Zi ∈


F+ if dij > 0

F if dij = 0

F− if dij < 0
(29)

Step 8: Calculate the relative assessment matrix (ϑ) as fol-
lows [72]:

ϑ = [υil]m×m

where, υil = (ρ1
i − ρ1

l ) +
(
Ψ(ρ1

i − ρ1
l )× (ρ2

i − ρ2
l )
) (30)

FIGURE 4: The upper (H+) and (F+), lower (H−) and
(F−), and border (H) and (F ) approximation areas.

Here l ∈ {i = 1, 2, . . . ,m} and Ψ is a threshold function
that can be defined as follows:

Ψ(x) =

{
1 if |x| ≥
0 if |x| < (31)

ψ denotes the threshold parameter of Ψ function which can
be set by decision makers.
Step 9: Obtain the overall score (λi) for each alternative as
follow:

λi =
m∑
l=1

υil (32)

Step 10: The alternative are ranked according to the de-
scending ordering of the overall score values, i.e., the alter-
native with highest λ is the highest ranked alternative.

V. EXPERIMENTAL RESULTS
In this section, we present the results of applying the two
proposed models on survey results collected from experts.
Firstly, each criterion is evaluated by four experts using the
linguistic terms presented in Table 1. The expert evaluations
for each criterion are presented in Table 13 in Appendix A.
Secondly, the experts provide their opinions (reported in
Table 14 in Appendix A) about the ratings of six energy
blockchain use case alternatives (refer to Section II) with
respect to eleven criteria using the linguistic terms (shown
in Table 2).

A. RESULTS OF THE T2NN BASED EDAS APPROACH
Step 1: The fuzzy decision matrix is structured using the
evaluation of alternatives given in Table 14 with the help of
the T2NNs values in Table 2.
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TABLE 1: Linguistic terms and their corresponding values
for weighting of criteria [Weakly important (WI); Equal im-
portant (EI); Strong important (SI); Very strongly important
(VSI); Absolutely important (AI)].

Linguistic terms T2NN

WI ((0.20,0.30,0.20), (0.60,0.70,0.80), (0.45,0.75,0.75))
EI ((0.40,0.30,0.25), (0.45,0.55,0.40), (0.45,0.60,0.55))
SI ((0.50,0.55,0.55), (0.40,0.45,0.55), (0.35,0.40,0.35))
VSI ((0.80,0.75,0.70), (0.20,0.15,0.30), (0.15,0.10,0.20))
AI ((0.90,0.85,0.95), (0.10,0.15,0.10), (0.05,0.05,0.10))

TABLE 2: Linguistic terms and their corresponding values
for rating of alternative.

Linguistic terms T2NN

Very bad (VB) ((0.20,0.20,0.10), (0.65,0.80,0.85), (0.45,0.80,0.70))
Bad (B) ((0.35,0.35,0.10), (0.50,0.75,0.80), (0.50,0.75,0.65))
Medium bad (MB) ((0.50,0.30,0.50), (0.50,0.35,0.45), (0.45,0.30,0.60))
Medium (M) ((0.40,0.45,0.50), (0.40,0.45,0.50), (0.35,0.40,0.45))
Medium good (MG) ((0.60,0.45,0.50), (0.20,0.15,0.25), (0.10,0.25,0.15))
Good (G) ((0.70,0.75,0.80), (0.15,0.20,0.25), (0.10,0.15,0.20))
Very good (VG) ((0.95,0.90,0.95), (0.10,0.10,0.05), (0.05,0.05,0.05))

TABLE 3: The score values of alternatives for each criterion.

Alternatives
Criteria

C1 C2 C3 C4 C5 C6

A1 0.898 0.898 0.911 0.889 0.906 0.889
A2 0.846 0.827 0.846 0.807 0.875 0.875
A3 0.890 0.889 0.911 0.858 0.911 0.875
A4 0.911 0.911 0.911 0.911 0.914 0.898
A5 0.846 0.875 0.906 0.878 0.898 0.872
A6 0.903 0.897 0.884 0.899 0.911 0.908

Alternatives C7 C8 C9 C10 C11

A1 0.890 0.886 0.875 0.860 0.838
A2 0.898 0.872 0.906 0.875 0.860
A3 0.875 0.863 0.860 0.857 0.835
A4 0.875 0.898 0.878 0.842 0.853
A5 0.838 0.856 0.853 0.863 0.838
A6 0.908 0.794 0.826 0.910 0.739

Step 2: The score values of alternatives for each criteria are
calculated using Eq. (7) and are presented in Table 3.
Step 3: The average solution matrix (AVj) calculated using
the score values in Table 3 and Eq. (11) is presented in Table 4
.

TABLE 4: The average solution matrix.

Criteria C1 C2 C3 C4 C5 C6

AVj 0.882 0.883 0.895 0.874 0.902 0.886

Criteria C7 C8 C9 C10 C11

AVj 0.881 0.862 0.866 0.868 0.827

TABLE 5: The values of positive distance from average of
DLT alternatives.

Alternatives
Criteria

C1 C2 C3 C4 C5 C6

A1 0.018 0.018 0.018 0.017 0.004 0.003
A2 0.000 0.000 0.000 0.000 0.000 0.000
A3 0.008 0.007 0.018 0.000 0.009 0.000
A4 0.032 0.032 0.018 0.042 0.012 0.014
A5 0.000 0.000 0.012 0.005 0.000 0.000
A6 0.024 0.016 0.000 0.029 0.010 0.025

Alternatives C7 C8 C9 C10 C11

A1 0.010 0.000 0.010 0.000 0.013
A2 0.020 0.000 0.045 0.008 0.039
A3 0.000 0.000 0.000 0.000 0.009
A4 0.000 0.000 0.014 0.000 0.031
A5 0.000 0.007 0.000 0.000 0.013
A6 0.031 0.078 0.000 0.049 0.000

TABLE 6: The values negative distance from average of the
alternatives.

Alternatives
Criteria

C1 C2 C3 C4 C5 C6

A1 0.000 0.000 0.000 0.000 0.000 0.000
A2 0.041 0.063 0.055 0.077 0.031 0.013
A3 0.000 0.000 0.000 0.017 0.000 0.013
A4 0.000 0.000 0.000 0.000 0.000 0.000
A5 0.041 0.009 0.000 0.000 0.005 0.016
A6 0.000 0.000 0.012 0.000 0.000 0.000

Alternatives C7 C8 C9 C10 C11

A1 0.000 0.029 0.000 0.009 0.000
A2 0.000 0.012 0.000 0.000 0.000
A3 0.007 0.002 0.007 0.013 0.000
A4 0.007 0.043 0.000 0.029 0.000
A5 0.048 0.000 0.015 0.006 0.000
A6 0.000 0.000 0.046 0.000 0.107

Step 5: The weights of criteria are determined using Eq. (7)
and the normalized criteria weights are presented in Table 7.
Later, following Eqs. (16)-(17), the weighted PDA and NDA
are calculated using the Tables 5-6 and are presented in
Tables 8 and 9, respectively. After that, the weighted sum of
PDA and NDA (SPi and SNi) are obtained and reported in
Table 10.

TABLE 7: The normalized weights of eleven criteria.

Criteria C1 C2 C3 C4 C5 C6

Weights 0.094 0.093 0.093 0.088 0.093 0.093

Criteria C7 C8 C9 C10 C11

Weights 0.094 0.089 0.084 0.092 0.086

Steps 6-7: The values of SPi and SNi given in Table 10
are normalized using Eqs. (18)-(19), respectively. Later, the
compromise score of each alternative is calculated using Eq.

Step 4: Using the values in Table 3 and Table 4, the positive 
and negative distance from average for each alternative are 
calculated using Eqs. (12)-(15) and reported in Table 5 and 
Table 6, respectively.
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TABLE 8: The weighted PDA.

Alternatives
Criteria

C1 C2 C3 C4 C5 C6

A1 0.002 0.002 0.002 0.002 0.000 0.000
A2 0.000 0.000 0.000 0.000 0.000 0.000
A3 0.001 0.001 0.002 0.000 0.001 0.000
A4 0.003 0.003 0.002 0.004 0.001 0.001
A5 0.000 0.000 0.001 0.000 0.000 0.000
A6 0.002 0.002 0.000 0.003 0.001 0.002

Alternatives C7 C8 C9 C10 C11

A1 0.001 0.000 0.001 0.000 0.001
A2 0.002 0.000 0.004 0.001 0.003
A3 0.000 0.000 0.000 0.000 0.001
A4 0.000 0.000 0.001 0.000 0.003
A5 0.000 0.001 0.000 0.000 0.001
A6 0.003 0.007 0.000 0.004 0.000

TABLE 9: The weighted NDA.

Alternatives
Criteria

C1 C2 C3 C4 C5 C6

A1 0.000 0.000 0.000 0.000 0.000 0.000
A2 0.004 0.006 0.005 0.007 0.003 0.001
A3 0.000 0.000 0.000 0.002 0.000 0.001
A4 0.000 0.000 0.000 0.000 0.000 0.000
A5 0.004 0.001 0.000 0.000 0.000 0.001
A6 0.000 0.000 0.001 0.000 0.000 0.000

Alternatives C7 C8 C9 C10 C11

A1 0.000 0.003 0.000 0.001 0.000
A2 0.000 0.001 0.000 0.000 0.000
A3 0.001 0.000 0.001 0.001 0.000
A4 0.001 0.004 0.000 0.003 0.000
A5 0.005 0.000 0.001 0.001 0.000
A6 0.000 0.000 0.004 0.000 0.009

(20). The normalized values (NSPi and NSNi) and the
compromise score (ASi) are given in Table 10.
Step 8: Based on the results of ASi, the alternatives are
ranked. The rank of six alternatives is A4 > A6 > A1 >
A3 > A5 > A2. Table 10 shows that A4 is the best among
the six DLT alternatives because it has the highest value of
AS, while A2 is the worst alternative.

TABLE 10: The ranking results of T2NN based EDAS
model.

Alternatives SPi SPi NSPi NSNi ASi Rank

A1 0.010 0.003 0.424 0.872 0.648 3
A2 0.010 0.027 0.413 0.000 0.206 6
A3 0.005 0.005 0.198 0.801 0.500 4
A4 0.018 0.007 0.738 0.733 0.735 1
A5 0.003 0.013 0.142 0.516 0.329 5
A6 0.024 0.014 1.000 0.468 0.734 2

TABLE 11: The ranking results of T2NN based WASPAS,
MABAC and CODAS model.

Alternatives A1 A2 A3 A4 A5 A6 λ Rank

A1 0.000 0.022 0.007 -0.004 0.016 -0.003 0.041 3
A2 -0.022 0.000 -0.016 -0.055 -0.008 -0.053 -0.100 6
A3 -0.007 0.016 0.000 -0.011 0.009 -0.010 0.007 4
A4 0.004 0.055 0.011 0.000 0.020 0.001 0.089 1
A5 -0.016 0.008 -0.009 -0.020 0.000 -0.019 -0.038 5
A6 0.003 0.053 0.010 -0.001 0.019 0.000 0.083 2

B. RESULTS OF THE T2NN BASED MODEL INCLUDING
WASPAS, MABAC, AND CODAS
The survey results are used with the model proposed in Sec-
tion IV-B2 and the final ranking results of proposed Model-II
is shown in Table 11. Ranking results from best to worst are
A4 > A6 > A1 > A3 > A5 > A2. Each model found A4 to
be the best alternative whileA2 is the less suitable alternative
for two proposed model. The main reason for A2 being the
worst alternative is that it has the lowest transaction speed
and highest power consumption.

C. COMPARISON WITH EXISTING METHOD
This section shows a comparison of the two proposed models
with the following two existing MCDM methods:
Existing MCDM-1 : T2NN based CODAS approach pre-
sented in [16]
Existing MCDM-2 : T2NN based fuzzy TOPSIS [13]
The ranking results for each of model and existing MCDM
models are given in Table 12 and shown in Fig. 5.

The existing MCDM-1 is not based on weighted sum and
product. Comparison with the proposed models indicate that
A4 is still the most suitable use case of energy blockchain
system for the three models while A2 is the worst alternative
for the two proposed models. The only difference found be-
tween the models and existing MCDM model is the ranking
of A2 and A5. The main reason for this small difference lies
in the properties of the distance calculations of the existing
MCDM model-1. The proposed hybrid model uses a linear
normalization to eliminate the units of criterion values. The
measures of weighted sum and weighted product using WAS-
PAS approach are implemented to aggregate the fuzzy values.
The border approximation area is applied to close the ideal
solution. Using the MABAC method as a reliable tool for
rational decision making allows comprehensive evaluation of
the potential value of gains and losses [71]. CODAS which
includes two types of distances are used to evaluate the
desirability of alternatives [73]. Thus combining all three to
form the proposed hybrid MCDM model can better express
uncertainty.

Applying the existing MCDM-2 method shows the ranking
of alternatives to be A6 > A2 > A4 > A3 > A5 > A2,
which shows a bigger difference with the proposed two
models. The results of this model were different from other
models as the normalization technique used has a different
structure.
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TABLE 12: The comparison ranking of the proposed models and two existing MCDM models.

Alt. Proposed Model I Proposed Model II Existing MCDM-1 Existing MCDM-2

Score Ranking Score Ranking Score Ranking Score Ranking

A1 0.648 3 0.041 3 0.004 3 0.617 2
A2 0.206 6 -0.100 6 -0.006 5 0.466 6
A3 0.500 4 0.007 4 -0.004 4 0.578 4
A4 0.735 1 0.089 1 0.013 1 0.609 3
A5 0.329 5 -0.038 5 -0.007 6 0.527 5
A6 0.734 2 0.083 2 0.010 2 0.661 1

A1 A2 A3 A4 A5 A6
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FIGURE 5: Comparative analysis of proposed models
against existing MCDM models

D. STABILITY ANALYSIS
Sensitivity analysis is performed with respect to change in
priority weights to investigate the stability of the solution.
The sensitivity analysis process is completed by changing
the weights of each criterion with other criteria weights.
Therefore, experiments are done with 20 different sets. In
each experiment, we examine the overall scores. Results of
each experiment are illustrated in Figure 6 that illustrates that
varying criteria weights did not affect the ranking results.
In addition, the impact of different values of the threshold
parameter on the ranking results of the T2NN based inte-
grated WASPAS, MABAC, and CODAS model is shown
in Figure 7. The results indicate that the ranking of the
alternatives is not changed for different threshold values.

E. DISCUSSION
The outcome of the proposed algorithm yielded the following
results: A4 > A6 > A1 > A3 > A5 > A2. According to
the finding of this study, Grid Management and Transac-
tions use case yielded as the most significant use case among
the six alternatives/use cases. This use case accommodate
various multi-layer, sophisticated and interconnected tasks

(a) T2NN based EDAS

(b) T2NN based WASPAS, MABAC and CODAS

FIGURE 6: Sensitivity analysis for the proposed models.

methods are independent of the choice of use cases, evalu-
ation criteria and number of expert reviews.

VI. CONCLUSION
This study presented two models – a T2NN based EDAS
model and a T2NN based integrated WASPAS, MABAC,
and CODAS model to evaluate and rank the use cases of

Likewise, Sustainability Attributions and Green En-
ergy Certification u se c ase l anded t o t he l ast p osition in 
terms of ranking among the other five o ptions. A s stated 
in Section I, the contribution of the paper is to apply com-
plex decision-making frameworks to a multi-criteria decision 
making problem, and the results illustrated here depend on 
the reviews of the experts. The framework and proposed
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FIGURE 7: The analysis of the impact of the parameter ψ.

an energy blockchain system. Comparison against a T2NN
based CODAS approach is illustrated too to test the appli-
cability of the two proposed models. Moreover, a sensitivity
analysis is performed with a set of weights for each criterion
to investigate the effect of the weightings on the ranking order
of the alternatives.

This work aims to develop a methodology that can be used
to prioritize the energy blockchain use cases. The proposed
approach is based on advanced decision-making algorithms
that can capture consensus-based expert opinion via a dedi-
cated survey as an interface. The main contributions of this
study are: (i) representing and handling higher degrees of un-
certainties such as vagueness, imprecision, and inconsistency
in the decision process of prioritizing energy blockchain
under T2NNs, (ii) handling multiple uncertainties in the
decision-making problem through a new type-2 neutrosophic
fuzzy numbers (T2NN) based EDAS and hybrid model, and,
(iii) proposing alternatives and evaluation criteria for energy
blockchain use cases. However, since the study uses only
four experts’ opinions, primarily academicians, the ranking
result does not reflect a comprehensive and representative
ranking result. Nevertheless, this work can be considered an
early prototype of a functional decision-support tool that can
incorporate a more diversified and higher number of expert
opinions to yield better results.

The energy blockchain use cases considered in this work
represents a small subset of numerous possible use cases
of DLT for power systems. Also, the set of criteria used is
limited, and the formulation has been tested with only four
survey results. Therefore, wider adoption of the presented
formulation will require evaluating the proposed models with
more use cases, a broader set of criteria and more survey
results, which will increase the complexity of the calculation.
One path to resolve This limitation will require solving
the presented algorithm with more user-friendly software.
Secondly, the λ value for Model-II does not affect the results
after a certain value which may depend upon the use of

chosen values shown in Table 1 and Table 2.
The future research includes using Type-3 and higher Neu-

trosophic Numbers, extending the model using Pythagorean
Fuzzy sets [74], using MACBETH or Best Worst Method to
calculate criterion weights instead of T2NN score function,
and more. These approaches are well-known approaches in
decision-making to determine criteria weights. Further com-
parison will be completed by applying the EDAS method to
calculate the alternatives. Moreover, the authors are currently
working on extending the scope of the work by adding
more use cases and criteria while increasing the collected
survey results. Furthermore, the developed models can also
be applied in other decision-making problems such as trans-
portation, manufacturing, healthcare management, business
management, and other management decisions problems.

.
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TABLE 13: The importance ratings of the criteria by experts.

Experts
Criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

E1 AI VSI VSI SI VSI VSI AI SI SI VSI SI
E2 VSI VSI VSI SI AI AI AI VSI EI EI SI
E3 AI AI AI VSI AI VSI AI VSI SI AI VSI
E4 AI AI AI SI VSI AI VSI SI SI AI EI

TABLE 14: The ratings of the DLT alternatives in terms of criterion and each experts.

Alternatives Experts
Criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

A1

E1 G G VG G MG G G G VG G MG
E2 VG VG VG VG VG G G G MG M M
E3 G G VG G VG MG G VG G MG G
E4 G G G MG VG VG G M MG G M

A2

E1 MG MG MG B MG MG G MG VG G MG
E2 MG MG MG MG MG VG VG VG VG M G
E3 MG MG G MG G MG G G G G G
E4 G MG MG M VG G G M G G M

A3

E1 G G VG MG VG G VG MG G G G
E2 G VG G MG G MG MG MG M MB MB
E3 G MG VG VG VG MG MG G MG MG MG
E4 G G VG MG VG VG G G G G M

A4

E1 VG VG G VG VG VG VG G G G G
E2 VG VG VG VG VG MG MG VG MG M M
E3 VG G VG VG VG G MG G G MG G
E4 G VG VG G VG VG G G G MG MB

A5

E1 MG G VG MB MG G M M MB MG MG
E2 MG M M M G M M M M G M
E3 G G VG VG VG MG MG G G G G
E4 MG G VG VG VG VG G G G MG M

A6

E1 G MB M MG VG VG G MG VG VG MG
E2 G MG MG MG G G G M M VG G
E3 MG MG G MG G G VG MG G MG G
E4 G MG G MG VG G G MG MG G M

[14] Nouran M. Radwan, M. Badr Senousy, and Alaa Eldin M. Riad. A
new expert system for learning management systems evaluation based on
neutrosophic sets. Expert Systems, 33(6):548–558, 2016.

[15] Vladimir Simic, Ilgin Gokasar, Muhammet Deveci, and Ahmet Karakurt.
An integrated CRITIC and MABAC based Type-2 neutrosophic model for
public transportation pricing system selection. Socio-Economic Planning
Sciences, page 101157, 2021.

[16] Muhammet Deveci, Vladimir Simic, and Ali Ebadi Torkayesh. Re-
manufacturing facility location for automotive lithium-ion batteries: an
integrated neutrosophic decision-making model. Journal of Cleaner Pro-
duction, 317:128438, 2021.

[17] Ayman Esmat, Martijn de Vos, Yashar Ghiassi-Farrokhfal, Peter Palen-
sky, and Dick Epema. A novel decentralized platform for peer-to-peer
energy trading market with blockchain technology. Applied Energy,
282(PA):116123, 2021.

[18] Merlinda Andoni, Valentin Robu, David Flynn, Simone Abram, Dale
Geach, David Jenkins, Peter McCallum, and Andrew Peacock. Blockchain
technology in the energy sector: A systematic review of challenges and
opportunities. Renewable and Sustainable Energy Reviews, 100(October
2018):143–174, 2019.

[19] Tiago Sousa, Tiago Soares, Pierre Pinson, Fabio Moret, Thomas Baroche,
and Etienne Sorin. Peer-to-peer and community-based markets: A com-
prehensive review. Renewable and Sustainable Energy Reviews, 104:367–
378, 2019.

[20] Esther Mengelkamp, Johannes Gärttner, Kerstin Rock, Scott Kessler,
Lawrence Orsini, and Christof Weinhardt. Designing microgrid energy
markets : A case study : The Brooklyn Microgrid. Applied energy,
210:870–880, 2018.

[21] Sonam Norbu, Benoit Couraud, Valentin Robu, Merlinda Andoni, and
David Flynn. Modelling the redistribution of benefits from joint in-

Florentin Smarandache (author and editor) Collected Papers, XIII

729



vestments in community energy projects. Applied Energy, 287(Febru-
ary):116575, 2021.

[22] Arne Meeuw, Sandro Schopfer, Anselma Wörner, Verena Tiefenbeck,
Liliane Ableitner, Elgar Fleisch, and Felix Wortmann. Implementing a
blockchain-based local energy market: Insights on communication and
scalability. Computer Communications, 160(March):158–171, 2020.

[23] IEEE Spectrum. Startup Profile: ME SOLshare’s “Swarm Electrification”
Powers Villages in Bangladesh, 2018.

[24] Fabio Moret and Pierre Pinson. Energy Collectives: A Community and
Fairness Based Approach to Future Electricity Markets. IEEE Transac-
tions on Power Systems, 34(5):3994–4004, 2019.

[25] Shammya Saha, Nikhil Ravi, Kári Hreinsson, Jaejong Baek, Anna
Scaglione, and Nathan G. Johnson. A secure distributed ledger for trans-
active energy: The Electron Volt Exchange (EVE) blockchain. Applied
Energy, 282, 2021.

[26] Juan Cuenca, Emad Jamil, and Barry Hayes. Energy Communities and
Sharing Economy Concepts in the Electricity Sector: A Survey. In 2020
IEEE International Conference on Environment and Electrical Engineering
and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC
/ I CPS Europe), pages 1–6, 2020.

[27] Qiang Tu, Jianlei Mo, Regina Betz, Lianbiao Cui, Ying Fan, and Yu Liu.
Achieving grid parity of solar PV power in China- The role of Tradable
Green Certificate. Energy Policy, 144(May):111681, 2020.

[28] Yuting Pan, Xiaosong Zhang, Yi Wang, Junhui Yan, Shuonv Zhou,
Guanghua Li, and Jiexiong Bao. Application of Blockchain in Carbon
Trading. Energy Procedia, 158:4286–4291, 2019.

[29] United States Environmental Protection Agency. Renewable En-
ergy Certificate Monetization. https://www.epa.gov/repowertoolbox/
renewable-energy-certificate-monetization, 2021. [Online; accessed 17-
December-2021].

[30] Power System Operation Corporation Limited. Renewable Energy Cer-
tificate Registry of INDIA. https://www.recregistryindia.nic.in, 2021.
[Online; accessed 17-December-2021].

[31] Chrisman, Katherine and Cao, Yiyan. RMI Buys Renewable
Energy Certificates in China’s Pilot Market. https://rmi.org/
rmi-buys-renewable-energy-certificates-chinas-pilot-market/, 2021.
[Online; accessed 17-December-2021].

[32] AIB. Certification. {https://www.aib-net.org/certification}, 2021. [Online;
accessed 17-December-2021].

[33] A Perez, Enzo Sauma, Francisco Munoz, and Ben Hobbs. The Economic
Effects of Interregional Trading of Renewable Energy Certificates in the
U.S. WECC. The Energy Journal, 37, 2016.

[34] Fangyuan Zhao, Xin Guo, and Wai Kin (Victor) Chan. Individual Green
Certificates on Blockchain: A Simulation Approach. Sustainability, 12(9),
2020.

[35] Shao-Chao Ma and Ying Fan. A deployment model of EV charging piles
and its impact on EV promotion. Energy Policy, 146:111777, 2020.

[36] Sri Nikhil Gupta Gourisetti, Ümit Cali, Kim-Kwang Raymond Choo,
Elizabeth Escobar, Christopher Gorog, Annabelle Lee, Claudio Lima,
Michael Mylrea, Marco Pasetti, Farrokh Rahimi, Ramesh Reddi, and
Abubakar Sadiq Sani. Standardization of the Distributed Ledger Tech-
nology cybersecurity stack for power and energy applications. Sustainable
Energy, Grids and Networks, page 100553, 2021.

[37] Eric Münsing, Jonathan Mather, and Scott Moura. Blockchains for
decentralized optimization of energy resources in microgrid networks. In
2017 IEEE Conference on Control Technology and Applications (CCTA),
pages 2164–2171, 8 2017.

[38] Prince Waqas Khan and Yung-Cheol Byun. Blockchain-based peer-to-
peer energy trading and charging payment system for electric vehicles.
Sustainability, 13(14):7962, Jul 2021.

[39] Zhengtang Fu, Peiwu Dong, Siyao Li, Yanbing Ju, and Hanbo Liu. How
blockchain renovate the electric vehicle charging services in the urban
area? A case study of Shanghai, China. Journal of Cleaner Production,
315:128172, 2021.

[40] Clean Tech. Autonomous Datasets and V2X Transactions: Blockchain in
Mobility Pilots Getting Traction, 2018.

[41] Ben Schiller. Need a car charging infrastructure? How about peer-to-peer
and on the blockchain?, 2017. [Online; accessed 17-December-2021].

[42] Godwin C Okwuibe, Zeguang Li, Thomas Brenner, and Ole Langniss. A
Blockchain Based Electric Vehicle Smart Charging System with Flexibil-
ity. IFAC-PapersOnLine, 53(2):13557–13561, 2020.

[43] Murat Kuzlu, Salih Sarp, Manisa Pipattanasomporn, and Umit Cali. Re-
alizing the potential of blockchain technology in smart grid applications.

2020 IEEE Power and Energy Society Innovative Smart Grid Technologies
Conference, ISGT 2020, pages 1–5, 2020.

[44] Martin Braun and Philipp Strauss. A review on aggregation approaches of
controllable distributed energy units in electrical power systems. Interna-
tional Journal of Distributed Energy Resources, 4, 2008.

[45] Stephan Koch. Chapter 2 - assessment of revenue potentials of ancillary
service provision by flexible unit portfolios. In Pengwei Du and Ning Lu,
editors, Energy Storage for Smart Grids, pages 35 – 66. Academic Press,
Boston, 2015.

[46] N. Mahmoudi, T. K. Saha, and M. Eghbal. A new trading framework
for demand response aggregators. In 2014 IEEE PES General Meeting |
Conference Exposition, pages 1–5, 2014.

[47] Shaomin Zhang, Jieqi Rong, and Baoyi Wang. A privacy protection
scheme of smart meter for decentralized smart home environment based
on consortium blockchain. International Journal of Electrical Power &
Energy Systems, 121:106140, 2020.

[48] Aron Laszka, Abhishek Dubey, Michael Walker, and Douglas Schmidt.
Providing Privacy, Safety, and Security in IoT-Based Transactive Energy
Systems using Distributed Ledgers. 2017.

[49] Pierluigi Siano, Giuseppe De Marco, Alejandro Rolan, and Vincenzo Loia.
A Survey and Evaluation of the Potentials of Distributed Ledger Tech-
nology for Peer-to-Peer Transactive Energy Exchanges in Local Energy
Markets. IEEE Systems Journal, 13(3):3454–3466, 2019.

[50] Energy Web. We build operating systems for energy grids. https://www.
energyweb.org/, 2022. [Online; accessed 28-January-2022].

[51] Ugur Halden, Umit Cali, Marthe Fogstad Dynge, Joseph Stekli, and
Linquan Bai. DLT-based equity crowdfunding on the techno-economic
feasibility of solar energy investments. Solar Energy, 227(August):137–
150, 2021.

[52] Cristiano Bellavitis, Christian Fisch, and Johan Wiklund. A comprehen-
sive review of the global development of initial coin offerings (ICOs) and
their regulation. Journal of Business Venturing Insights, 15:e00213, 2021.

[53] Sebastian Gryglewicz, Simon Mayer, and Erwan Morellec. Optimal
financing with tokens. Journal of Financial Economics, 142(3):1038–
1067, 2021.

[54] Mihail Mihaylov, Sergio Jurado, Narcís Avellana, Kristof Van Moffaert,
Ildefons Magrans de Abril, and Ann Nowé. Nrgcoin: Virtual currency
for trading of renewable energy in smart grids. In 11th International
Conference on the European Energy Market (EEM14), pages 1–6, 2014.

[55] Fernando García-Monleón, Ignacio Danvila-del Valle, and Francisco J.
Lara. Intrinsic value in crypto currencies. Technological Forecasting and
Social Change, 162(June 2020):120393, 2021.

[56] Gagandeep Kaur and Charu Gandhi. Chapter 15 - scalability in
blockchain: Challenges and solutions. In Saravanan Krishnan, Valentina E.
Balas, E. Golden Julie, Y. Harold Robinson, S. Balaji, and Raghvendra
Kumar, editors, Handbook of Research on Blockchain Technology, pages
373–406. Academic Press, 2020.

[57] Shen Wang, Ahmad F. Taha, and Jianhui Wang. Blockchain-assisted
crowdsourced energy systems. In 2018 IEEE Power Energy Society
General Meeting (PESGM), pages 1–5, 2018.

[58] United Nations. The 17 Goals. https://sdgs.un.org/goals, 2021. [Online;
accessed 14-November-2021].

[59] Lotfi Asker Zadeh. Fuzzy sets. Information and Control, 8(3):338–353,
1965.

[60] Krassimir T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems,
20(1):87–96, 1986.

[61] Florentin Smarandache. Neutrosophy: neutrosophic probability, set, and
logic: analytic synthesis & synthetic analysis. 1998.

[62] Zdzislaw Pawlak. Rough sets. International of Computer and Information
Science, 11:341–356, 1982.

[63] Muhammet Deveci, Nuh Erdogan, Umit Cali, Joseph Stekli, and Shuya
Zhong. Type-2 neutrosophic number based multi-attributive border ap-
proximation area comparison (MABAC) approach for offshore wind farm
site selection in USA. Engineering Applications of Artificial Intelligence,
103:104311, 2021.

[64] Florentin Smarandache. Neutrosophic set-a generalization of the intuition-
istic fuzzy set. International journal of pure and applied mathematics,
24(3):287, 2005.

[65] Pranab Biswas, Surapati Pramanik, and Bibhas C Giri. Aggregation of
triangular fuzzy neutrosophic set information and its application to multi-
attribute decision making. Neutrosophic sets and systems, 12:20–40, 2016.

[66] Xindong Peng and Jingguo Dai. Research on the assessment of classroom
teaching quality with q-rung orthopair fuzzy information based on multi-

Florentin Smarandache (author and editor) Collected Papers, XIII

730

https://www.epa.gov/repowertoolbox/renewable-energy-certificate-monetization
https://www.epa.gov/repowertoolbox/renewable-energy-certificate-monetization
https://www.recregistryindia.nic.in
https://rmi.org/rmi-buys-renewable-energy-certificates-chinas-pilot-market/
https://rmi.org/rmi-buys-renewable-energy-certificates-chinas-pilot-market/
{https://www.aib-net.org/certification}
https://www.energyweb.org/
https://www.energyweb.org/
https://sdgs.un.org/goals


parametric similarity measure and combinative distance-based assessment.
International Journal of Intelligent Systems, 34(7):1588–1630, 2019.

[67] Chandan Chakraborty and Debjani Chakraborty. A theoretical develop-
ment on a fuzzy distance measure for fuzzy numbers. Mathematical and
Computer Modelling, 43(3-4):254–261, 2006.

[68] Tan Ruipu and Zhang Wende. Multiple attribute group decision making
methods based on trapezoidal fuzzy neutrosophic numbers. Journal of
Intelligent & Fuzzy Systems, 33(4):2547–2564, 2017.

[69] Mehdi Keshavarz Ghorabaee, Edmundas Kazimieras Zavadskas, Laya
Olfat, and Zenonas Turskis. Multi-criteria inventory classification using
a new method of evaluation based on distance from average solution
(EDAS). Informatica, 26(3):435–451, 2015.

[70] Edmundas Kazimieras Zavadskas, Zenonas Turskis, Jurgita Antuchevi-
ciene, and Algimantas Zakarevicius. Optimization of weighted aggregated
sum product assessment. Elektronika ir elektrotechnika, 122(6):3–6, 2012.
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Abstract. The main aim of the article is to propose a new multiple criteria 
decision-making ap-proach for selecting alternatives, the newly-
developed MULTIMOOSRAL approach, which inte-grates advantages of 
the three well-known and prominent multiple-criteria decision-making 
meth-ods: MOOSRA, MOORA, and MULTIMOORA. More specifically, 
the MULTIMOOSRAL method has been further upgraded with an 
approach that can be clearly seen in the well-known WASPAS and 
CoCoSo methods, which rely on the integration of weighted sum and 
weighted product approaches. In addition to the above approaches, the 
MULTIMOOSRAL method also integrates a logarithmic approximation 
approach. The expectation from the development of this method is that the 
integration of several approaches can provide a much more reliable 
selection of the most appropriate alterna-tive, which can be very 
important in cases where the performance of alternatives obtained by 
using some other method does not differ much. Finally, the ranking of 
alternatives based on the dominance theory, used in the MOORA and 
MULTIMOORA methods, is replaced by a new original approach that 
should allow a much simpler final ranking of alternatives in order to reach 
a stronger result with five different techniques. The suitability and efficacy 
of the proposed MULTIMOOSRAL approach are presented through an 
illustrative case study of the supplier selection.

Key words: MOOSRA, MOORA, MULTIMOORA, logarithmic 
approximation, MULTIMOOSRAL, MCDM.
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1. Introduction

The increasing competitiveness and complexity of the market, the accelerated develop-
ment of information and communication technologies have caused the decision-making
process in many organizations to become of crucial and decisive importance. Decision-
making involves human judgments and logic. Therefore, increasingly complex business
conditions require a multi-criteria approach to solving business problems, which allows
an objective comparison of several alternatives evaluated in a system of multiple hetero-
geneous and different criteria with other extremization requirements and different relative
importance. Consequently, multi-criteria decision-making (MCDM) methods are useful
for facilitation of decision-making process in situations when there are a number of of-
ten conflicting criteria (Karamaşa et al., 2020; Stanujkic et al., 2019). Hafezalkotob et al.
(2019a) emphasizes three categories of the MCDM techniques, such as: Value Measure-
ment Methods (the SAW method; the WASPAS method etc.); Goal or Reference Level
Models (the VIKOR method, the TOPSIS method etc.); and Outranking Techniques (the
ELECTRE method; the PROMETHEE method etc.).

Accelerated growth and the existence of numerous methods of multi-criteria decision-
making can improve the decision-making process in all areas of life. Solving problems by
utilizing MCDM is based on quantitative analyses and represent elegant solutions when
making decisions between multiple alternatives based on multiple-criteria. Therefore, in
due course of time, there are prominent and most common developed MCDM methods,
among the dozens of approaches proposed over time for solving complex-decision mak-
ing problems, such as the Maxmax method, the Maxmin method, the SAW method, the
AHP method, the ELECTRE method, the PROMETHEE method, the TOPSIS method,
the VIKOR method, the COPRAS method, the MACBETH method, the ANP method,
the MOORA method, the MULTIMOORA method, and so forth (Zavadskas et al., 2020;
Ulutaş et al., 2020; Jauković-Jocić et al., 2020).

The need to solve as wide a range of real-world problems has led to the creation of a
new generation of MCDM methods and approaches, such as: the HEBIN method (Zavad-
skas et al., 2021); the MARCOS method (Stević et al., 2020); the CoCoSo method (Yaz-
dani et al., 2019); the SECA method (Keshavarz-Ghorabaee et al., 2018); the FUCOM
method (Pamučar et al., 2018); the ARCAS (Stanujkic et al., 2017a); the PIPRECIA
method (Stanujkić et al., 2017b); the MABAC method (Pamučar and Ćirović, 2015); the
EDAS method (Keshavarz Ghorabaee et al., 2015), and so forth. Some of the aforemen-
tioned methods were used for ranking of alternatives whereas some of them for the purpose
of weight determination.

The MOOSRA method (Multi-Objective Optimization on the basis of Simple Ratio
Analysis) belongs to the group of multi-objective optimization methods and is developed
by Brauers (2004). The main difference between the MOOSRA method and the MOORA
method is reflected in the negative performance scores that do not appear in the MOOSRA
method, unlike the MOORA method. Besides, the MOOSRA method is less sensitive to
the large variation in the values of the criteria (Adalı and Işık, 2017). So far, the MOOSRA
method has been applied for solving of a various complex decision-making problems,
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such as: the laptop selection problem (Adalı and Işık, 2017); project-critical path selection
(Dorfeshan et al., 2018); bio-medical waste disposal assessment (Narayanamoorthy et al.,
2020); machine selection (Sarkar et al., 2015), and so forth. The simplicity of the calcu-
lation procedure of the MOOSRA method, which is based on the ratio between weighted
ratings of beneficial and non-beneficial criteria, can be mentioned as an important char-
acteristic of this method.

Brauers (2004) also developed the MOORA method (Multi-Objective on the basis of
Ratio Analysis). Somewhat later, based on the ideas of the MOORA method, Brauers
and Zavadskas (2010) have proposed the MULTIMOORA method (Multi-Objective Op-
timization by Ratio Analysis plus Full Multiplicative Form). Both methods have been pro-
posed to cope with subjectivity problems. The usability of the MOORA method has been
demonstrated in numerous cases, such as: credit evaluation model using MOORA method
(İç, 2020); evaluation of the work performance (Fadli and Imtihan, 2019); decision-
making in the production system (Attri and Grover, 2014); supplier selection (Karande
and Chakraborty, 2012); decision-making in a manufacturing environment (Chakraborty,
2011); privatization in a transition economy (Brauers and Zavadskas, 2006), and so on.
When it comes to the MULTIMOORA method, the same has also been applied in various
and numerous cases, such as: personnel selection (Karabasevic et al., 2015; Baležentis et
al., 2012); risk assessment (Liu et al., 2014); project management (Brauers and Zavad-
skas, 2010); strategy assessment (Fedajev et al., 2020); ranking of the renewable energy
sources (Alkan and Albayrak, 2020); site selection (Rahimi et al., 2020); hybrid vehicle
engine selection (Hafezalkotob et al., 2019b), and so on. Integration of several proven mul-
ticriteria approaches for ranking alternatives and the use of dominance theory for the final
ranking of alternatives can be mentioned as an important characteristic of these methods,
which is also proven in the above-mentioned articles.

The main motivation of this research is to develop a new simpler and much more reli-
able MCDM approach for selecting alternatives. Accordingly, the paper aims to propose
a new MCDM-based technique that is based in some segments on previous well-known
MCDM techniques (MOOSRA, MOORA, MULTIMOORA), and as a novelty also in-
cludes the logarithmic approximation (LA) approach. Therefore, it is also important to
state that there are four arithmetic operations in the proposed MULTIMOOSRAL method.
These are as follows: addition, subtraction, multiplication, and division. In addition to
these arithmetic operations, a fifth evaluation technique, which is the logarithmic approach
has been added to the MULTIMOOSRAL method. Thus, unlike other methods (MULTI-
MOORA, MOORA, and MOOSRA), the MULTIMOOSRAL method was tried to reach
a stronger result with five different techniques. For example, MULTIMOORA method
uses only three arithmetic operations, which are subtraction, division, and multiplication.
On the other hand, MOORA and MOOSRA use only two arithmetic operations. However,
the MULTIMOOSRAL method uses all arithmetic operations and a logarithmic approach
to reach much more valid and rigorous results.

Further, highlights of the logarithmic normalization are emphasized by Zavadskas and
Turskis (2008). Therefore, the newly-developed, so-called MULTIMOOSRAL method in-
tegrates five approaches for ranking alternatives. In order to apply and test the new ap-
proach, an illustrative case study of the supplier selection is conducted. Accordingly, the
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paper is structured as follows: in Section 1, the introductory consideration are given. In
Section 2, the MOOSRA method, the MOORA method and the MULTIMOORA method
are presented. The new MULTIMOOSRAL approach is presented in Section 3, whereas
in Section 4, a conducted case study is demonstrated. Finally, at the end of the article,
conclusions are given.

2. Methodology

2.1. The MOOSRA Method

The overall performance score of each alternative vi in the MOOSRA method is calculated
as follows Kumar and Ray (2015):

vi =
∑

j∈θmax
wjrij∑

j∈θmin
wjrij

, (1)

where wj denotes weight of criterion j , rij denotes normalized rating of alternative i in
relation to criterion j , θmax and θmin denote set of beneficial and set of non-beneficial
criteria.

The MOOSRA method uses vector normalization procedure for normalization as fol-
lows:

rij = xij√∑m
i=1(xij )2

, (2)

where xij denotes rating of alternative i in relation to criterion j , and m denotes the num-
ber of alternatives.

In the MOOSRA method, the alternatives are ranked on the basis of values of vi in
descending order, and the alternative with a higher value of vi is the most preferable.

2.2. The MOORA Method

The MOORA method combines two approaches to ranking alternatives. The first ap-
proach, named the Ratio System (RS) approach, calculates the difference between the
ratings of beneficial and non-beneficial criteria as follows:

yi =
∑

j∈θmax

wjrij −
∑

j∈θmin

wjrij , (3)

where yi denotes an overall importance of the alternative i.
The alternative with a higher value of yi is the most appropriate alternative in this

approach, i.e. alternatives are ranked based on yi in descending order.
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The second approach, named the Reference Point (RP) approach, is based on Tcheby-
cheff Min–Max metric. A maximal distance between alternative and the reference point ti
is determined as follows:

ti = max
j

(
wj

∣∣r∗
j − rij

∣∣), (4)

where r∗
j denotes j th coordinate of reference point, and it is determined as follows:

rj =
{

maxi rij , j ∈ θmax,

mini rij , j ∈ θmin.
(5)

The alternative with the lowest value of ti is the most appropriate alternative in this
approach, i.e. alternatives are ranked based on ti in ascending order.

The final ranking of the alternatives in the MOORA method is based on the dominance
theory, i.e. the alternative with the highest number of appearances in the first positions on
two ranking lists is the most appropriate alternative.

2.3. The MULTIMOORA Method

The MULTIMOORA method combines three approaches, where two are adopted from
the MOORA method, as shown in Fig. 1. The third approach, named Full Multiplicative
Form (FMF), calculates the ratio between ratings of beneficial and non-beneficial criteria
as follows:

ui =
∏

j∈θmax
wjrij∏

j∈θmin
wjrij

, (6)

where ui denotes an overall utility of the alternative i.
The alternative with a higher value of ui is the most appropriate alternative in this

approach, i.e. alternatives are ranked based on ui in descending order.
Similarly as in the MOORA method, as a result of the evaluation of the alternatives

using the MULTIMOORA method, three ranking orders of alternatives are formed, ob-
tained using three approaches, and the final ranking order, as well as the selection of the
most suitable alternative, is made based on the dominance theory.

However, it should be noted that Dahooie et al. (2019) considered an approach for
ranking alternatives that is not based on the dominance theory.

3. The MULTIMOOSRAL Method

The newly proposed MULTIMOOSRAL method integrates five approaches for ranking
alternatives. In addition to the previously discussed approaches, applied in MOOSRA,
MOORA and MULTIMOORA methods, the MULTIMOOSRAL method also includes
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Fig. 1. Computational procedure of the MULTIMOORA method.

the LA approach. In addition, an important characteristic of MULTIMOOSRAL method
can be mentioned, that is, it uses a new approach for determining the final ranking order
of alternatives, which is not based on the dominance theory.

The computational procedure of the MULTIMOOSRAL method, presented in Fig. 2,
can be precisely presented using the following steps:

Step 1. Forming the initial decision matrix and determining criteria weights.
Step 2. Forming the normalized decision matrix. The normalized decision matrix is

formed using Eq. (7), which is:

rij = xij√∑n
i=1(xij )2

. (7)

Step 3. Calculating the normalized overall utilities of alternatives based on the five
approaches included in the MULTIMOOSRAL method, as follows:
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Fig. 2. Computational procedure of the MULTIMOOSRAL method.

Step 3.1. Determining the utility of alternatives based on the RS approach by applying
the following substeps:

Substep 3.1.1. Calculating the overall importance of considered alternatives is per-
formed using Eq. (8), which is:

yi =
∑

j∈θmax

wjrij −
∑

j∈θmin

wjrij . (8)

Substep 3.1.2. Calculating the overall utility of considered alternatives as follows:

mi =

⎧⎪⎨⎪⎩
yi, maxi (yi) > 0,

yi + 1, maxi (yi) = 0,

−1/yi, maxi (yi) < 0,

(9)

where mi denotes overall utility of alternative i obtained on the basis of RS approach.
Substep 3.1.3. Normalizing the overall utilities obtained on the basis of RS approach

as follows:
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m′
i = mi − min(mi)

max(mi) − min(mi)
, (10)

where m′
i denotes normalized overall utility of alternative i obtained on the basis of RS

approach.
Step 3.2. Determining the utility of alternatives based on the RP approach by applying

the following substeps:
Substep 3.2.1. Determining reference point r∗ as follows:

r∗ = (
r∗
1 , r∗

2,, . . . , r
∗
n

) = {
max

i
rij

∣∣j ∈ θmax, min
i

rij
∣∣j ∈ θmin

}
. (11)

Substep 3.2.2. Calculating the maximal distance between each alternative and the ref-
erence point using Eq. (12), which is:

ti = max
j

(
wj

∣∣r∗
j − rij

∣∣). (12)

Substep 3.2.3. Normalizing maximal distances as follows as follows:

t ′i = max(ti) − ti

max(ti) − min(ti)
, (13)

where t ′i denotes normalized overall utility of alternative i obtained on the basis of RP
approach.

Step 3.3. Determining the utility of alternatives based on the FMF approach by apply-
ing the following substeps:

Substep 3.3.1. Calculating the overall utility of the alternatives using Eq. (14), which
is:

ui =
∏

j∈θmax
wjrij∏

j∈θmin
wjrij

. (14)

Substep 3.3.2. Normalizing the overall utilities obtained on the basis of FMF approach
as follows:

u′
i = ui − min(ui)

max(ui) − min(ui)
, (15)

where u′
i denotes normalized overall utility of alternative i obtained on the basis of FMF

approach.
Step 3.4. Determining the utility of alternatives based on an addition form (AF) ap-

proach by applying the following substeps:
Substep 3.4.1. Calculating the overall utility of each alternative using Eq. (16), which

is:

vi =
∑

j∈θmax
wjrij∑

j∈θmin
wjrij

. (16)
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Substep 3.3.2. Normalizing the overall utilities obtained on the basis of AF approach
as follows:

v′
i = vi − min(vi)

max(vi) − min(vi)
, (17)

where v′
i denotes normalized overall utility of alternative i obtained on the basis of AF

approach.
Step 3.5. Determining the utility of alternatives based on the LA approach by applying

the following substeps:
Substep 3.5.1. Calculating the overall utility of alternatives based on the LA approach

ki as follows:

ki =
∑

j∈θmax

ln(1 + wjrij ) + 1∑
j∈θmin

ln(1 + wjrij )
. (18)

Substep 3.5.2. Normalizing the overall utilities obtained on the basis of AF approach
as follows:

k′
i = ki − min(ki)

max(ki) − min(ki)
, (19)

where k′
i denotes normalized overall utility of alternative i obtained on the basis of AF

approach.
Step 4. Determining the final ranking orders of alternatives. The final ranking of alter-

natives is determined based on their total utility Si , which is calculated as follows:

Si = m′
i + t ′i + u′

i + v′
i + k′

i . (20)

After that, the alternatives are ranked on the basis of values of Si in descending order
and the alternative with higher value of Si is the most preferable.

4. An Illustrative Case Study

In this study the usability of the MULTIMOOSRAL method was demonstrated on supplier
selection problem for a textile company. All data were collected from three managers of
the company and the actual data of company. Managers of the company evaluated the
criteria (indicated in Table 1) to obtain criteria weights. The evaluation criteria, as well as
their weights (obtained by using the SWARA method, Keršuliene et al., 2010), are shown
in Table 1.

The data of the first three criteria are actual data and the data of the other criteria are
obtained from managers of the company. The ratings of suppliers and normalized decision
matrix are shown in Table 2 and Table 3.
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Table 1
Evaluation criteria and their weights.

Criterion Abbreviation Weight Type

Reject ratio RjR 0.163 Non-beneficial
Purchasing cost PCo 0.166 Non-beneficial
Late delivery ratio LDT 0.161 Non-beneficial
Discount opportunity DO 0.130 Beneficial
Technical assistance TA 0.139 Beneficial
Technological capability TecC 0.123 Beneficial
Supplier reputation SRe 0.117 Beneficial

Table 2
Initial decision matrix.

Criteria suppliers RjR PCo LDT DO TA TecC SRe

Supplier 1 0.02 2.64 0.02 6.3 7.7 7.3 8.3
Supplier 2 0.04 2.45 0.03 7 6.3 5 6.7
Supplier 3 0.04 2.40 0.04 6.7 6.3 5 6.7
Supplier 4 0.03 2.64 0.01 4.7 8.3 7.7 8
Supplier 5 0.04 2.26 0.04 7.7 5.7 7 7

Table 3
Normalized decision matrix.

Criterian suppliers RjR PCo LDT DO TA TecC SRe

Supplier 1 0.256 0.476 0.294 0.430 0.497 0.502 0.504
Supplier 2 0.513 0.441 0.441 0.477 0.407 0.344 0.407
Supplier 3 0.513 0.432 0.588 0.457 0.407 0.344 0.407
Supplier 4 0.385 0.476 0.147 0.321 0.536 0.529 0.485
Supplier 5 0.513 0.407 0.588 0.525 0.368 0.481 0.425

Table 4
Computational details obtained on the basis of RS approach.

Suppliers Overall
importance

Overall
utility

Normalized
overall utility

Supplier 1 0.078 0.078 1.000
Supplier 2 −0.019 −0.019 0.211
Supplier 3 −0.045 −0.045 0.000
Supplier 4 0.073 0.073 0.959
Supplier 5 −0.019 −0.019 0.211

The overall importance of alternatives, overall utilities and normalized overall utilities
obtained on the basis of RS approach, calculated by Eqs. (8), (9) and (10), are shown in
Table 4.

The reference point, obtained using Eq. (11) and data from Table 3, is shown in Table 5.
After that, the maximal distances and normalized maximal distances are calculated,

using Eq. (12) and Eq. (13), as shown in Table 6.
The overall utility and normalized overall utility of alternatives obtained on the basis

of FMF approach, using Eqs. (14) and (15), are shown in Table 7.
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Table 5
The reference point.

RjR PCo LDT DO TA TecC SRe

r∗ 0.256 0.407 0.147 0.525 0.536 0.529 0.504

Table 6
Computational details obtained on the basis of RP

approach.

Suppliers Maximal
distance

Normalized
maximal distance

Supplier 1 0.024 1.000
Supplier 2 0.047 0.511
Supplier 3 0.071 0.000
Supplier 4 0.027 0.936
Supplier 5 0.071 0.000

Table 7
Computational details obtained on the basis of FMF

approach.

Suppliers Overall utility Normalized
overall utility

Supplier 1 0.0906 0.918
Supplier 2 0.0164 0.053
Supplier 3 0.0118 0.000
Supplier 4 0.0977 1.000
Supplier 5 0.0189 0.082

Table 8
Computational details obtained on the basis of AF

approach.

Suppliers Overall utility Normalized
overall utility

Supplier 1 1.4643 1.000
Supplier 2 0.9167 0.149
Supplier 3 0.8207 0.000
Supplier 4 1.4398 0.962
Supplier 5 0.9231 0.159

The overall utility and normalized overall utility of alternatives obtained on the basis
of AF approach, using Eqs. (16) and (17), are shown in Table 8.

The overall utility and normalized overall utility of alternatives obtained on the basis
of LA approach, using Eqs. (18) and (19), are shown in Table 9.

Finally, in Table 10 results obtained using five approaches integrated in MULTI-
MOOSRAL method, overall utility of considered alternatives, calculated using Eq. (20),
and ranking order of alternatives are presented.
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Table 9
Computational details obtained on the basis of LA

approach.

Suppliers Overall utility Normalized
overall utility

Supplier 1 6.3697 0.962
Supplier 2 4.7551 0.193
Supplier 3 4.3512 0.000
Supplier 4 6.4490 1.000
Supplier 5 4.4375 0.041

Table 10
Computational details obtained using the MULTIMOOSRAL method.

Suppliers m′
i

t ′
i

u′
i

v′
i

k′
i

Si Rank

Supplier 1 1.000 1.000 0.918 1.000 0.962 4.880 1
Supplier 2 0.211 0.511 0.053 0.149 0.193 1.117 3
Supplier 3 0.000 0.000 0.000 0.000 0.000 0.000 5
Supplier 4 0.959 0.936 1.000 0.962 1.000 4.857 2
Supplier 5 0.211 0.000 0.082 0.159 0.041 0.494 4

Table 11
Ranking of alternatives using the MOOSRA method.

Suppliers vi Rank

Supplier 1 1.4643 1
Supplier 2 0.9167 4
Supplier 3 0.8207 5
Supplier 4 1.4398 2
Supplier 5 0.9231 3

Table 12
Ranking of alternatives using the MOORA method.

Suppliers RS RS Rank RP RP Rank Rank

Supplier 1 0.078 1 0.024 1 1
Supplier 2 −0.019 3 0.047 3 3
Supplier 3 −0.045 5 0.071 4 4–5
Supplier 4 0.073 2 0.027 2 2
Supplier 5 −0.019 4 0.071 4 4

As it can be seen from Table 10, the best supplier selected using the MULTIMOOS-
RAL method is supplier denoted as “Supplier 1”.

In order to further verify the obtained results, a comparison with the results obtained
using the MOOSRA, MOORA and MULTIMOORA methods was performed below. The
results obtained using the above methods are shown in Tables 11, 12 and 13.

From Tables 11, 12 and 13 it can be seen that the ranking results obtained using the
MULTIMOOSRAL method are identical to the results obtained using the MOOSRA,
MOORA and MULTIMOORA methods.
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Table 13
Ranking of alternatives using the MULTIMOORA method.

Suppliers RS RS Rank RP RP Rank FMF FMF Rank Rank

Supplier 1 0.078 1 0.024 1 0,0906 2 1
Supplier 2 −0.019 3 0.047 3 0,0164 4 3
Supplier 3 −0.045 5 0.071 4 0,0118 5 5
Supplier 4 0.073 2 0.027 2 0,0977 1 2
Supplier 5 −0.019 4 0.071 4 0,0189 3 4

Table 14
Comparative analysis of ranking orders obtained using different MCDM

methods.

Suppliers MULTIMOOSRAL TOPSIS MULTIMOORA CoCoSo

Supplier 1 1 1 1 1
Supplier 2 3 3 3 3
Supplier 3 5 5 5 4
Supplier 4 2 2 2 2
Supplier 5 4 4 4 5

In order to finally verify the results obtained using the MULTIMOOSRAL method,
a comparative analysis was performed with several well-known MCDM methods, such as
TOPSIS, MULTIMOORA, and CoCoSo methods, as shown in Table 14.

It can be observed from Table 14, that the MULTIMOOSRAL method gives the same
ranking orders as the TOPSIS and MULTIMOORA methods. Some discrepancy in the
rank of the alternative can be observed in the case of the use of the CoCoSo method,
which refers to the fourth and fifth-ranked alternatives. However, such phenomena are ex-
pected because the newly proposed MULTIMOOSRAL method integrates more ranking
approaches and because of that, it should allow a more accurate ranking of the alternatives.

5. Conclusions

This paper proposes a new MCDM technique called MULTIMOOSRAL that is based on
the approaches in MOOSRA, MOORA, and MULTIMOORA methods and LA approach
for the facilitation of a decision-making process. The main incentive for proposing the new
method reflects the desire to develop such an approach that will contribute to the increasing
of the credibility of the obtained results. In this case, by involving five approaches (RS,
RP, FMF, AF, and LA) the reliability of the final ranking order as well as its stability is
raised to a higher level.

In order to demonstrate the applicability and usefulness of the proposed method, the
illustrative case study pointed to the selection of the adequate supplier of the textile com-
pany is presented. The evaluation process, entrusted to 3 managers, is based on the 7 cri-
teria and 5 alternatives. The gained result revealed that supplier 1 is the most suitable to
work within the present conditions, while supplier 3 is the worst choice according to the
given performances.

Florentin Smarandache (author and editor) Collected Papers, XIII

744



To acknowledge the reliability of the obtained ranking order, the MOOSRA, MOORA,
and MULTIMOORA methods are applied. The results from all three used techniques con-
firmed that one was obtained by using the newly proposed MULTIMOOSRAL method.
Namely, in all three observations, supplier 1 is ranked as the best alternative, while sup-
plier 3 is ranked as the last and worst option. In this way, the stability of the proposed
MCDM method is verified as well as its suitability for applying in the decision-making
process.

Although this novel method contributes to the reliability of the performed decision
process by involving more approaches, the same thing could be considered as its main
deficiency, too. Namely, the computational procedure could be considered as complex for
application by the users that are not familiar with the MCDM field. Additionally, in order
to better incorporate the uncertainty, this model could be extended by involving the fuzzy,
grey, or neutrosophic numbers. But, despite the mentioned imperfections, the MULTI-
MOOSRAL method proved its efficiency in enhancing the decision-making process and
its possibilities should be further examined.
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Abstract. An extension of the Integrated Simple Weighted Sum Product 
(WISP) method is pre-sented in this article, customized for the 
application of single-valued neutrosophic numbers. The extension is 
suggested to take advantage that the application of neutrosophic sets 
provides in terms of solving complex decision-making problems, as well 
as decision-making problems associated with assessments, prediction 
uncertainty, imprecision, and so on. In addition, an adapted questionnaire 
and appropriate linguistic variables are also proposed in the article to 
enable a simpler and more precise collection of respondents’ attitudes 
using single-valued neutrosophic numbers. An approach for 
deneutrosophication, i.e. the transformation of a single-valued 
neutrosophic number into a crisp number is also proposed in the article. 
Detailed use and characteristics of the presented improvement are shown 
on an example of the evaluation of rural tourist tours.

Key words: neutrosophic set, single-valued neutrosophic number, Simple 
WISP, deneutrosophication, MCDM.
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1. Introduction

According to numerous similar definitions, multiple criteria decision-making (MCDM) is
a process of evaluating or ranking alternatives based on a set of mutually conflicting cri-
teria (Levy, 2005; Gebrezgabher et al., 2014; Qin et al., 2020; Ardil et al., 2021). Similar
definitions of MCDM can be found in Özdağoğlu et al. (2021) and Popovic (2021).

Since the end of the last century, MCDM has been used for solving many decision-
making problems, and as a result, numerous MCDM methods have been proposed, such as
SAW (MacCrimon, 1968), ELECTRE (Roy, 1968), AHP (Saaty, 1977), TOPSIS (Hwang
and Yoon, 1981), PROMEHTEE (Brans, 1982).

In addition to the mentioned MCDM methods, a significant emergence of newly pro-
posed MCDM methods can also be observed, such as ARAS (Zavadskas and Turskis,
2010), WASPAS (Zavadskas et al., 2012), EDAS (Keshavarz Ghorabaee et al., 2015),
ARCAS method (Stanujkic et al., 2017b), CoCoSo Yazdani et al. (2018), and so on.

However, it should be noted that the emergence of fuzzy sets, introduced by Zadeh
(1965), had a significant impact on the use of the MCDM method. The fuzzy set theory
enabled the use of a membership function μA(x), whose value lies in the interval [0, 1],
that is μA(x) ∈ [0, 1].

In order to solve the decision-making problems associated with uncertainties and pre-
dictions, many MCDM methods have been extended to allow the use of fuzzy numbers.
However, the use of only one membership function did not allow solving some types of
complex decision-making problems, which is why certain extensions of the fuzzy set the-
ory were proposed, as, for example, interval-valued fuzzy sets (Turksen, 1986), intuition-
istic fuzzy sets (Atanassov, 1986) and so on.

In intuitionistic fuzzy set theory, Atanassov (1986) originated the non-membership
function νA(x), νA(x) ∈ [0, 1], with the following restriction 0 � μA(x)+vA(x) � 1. As
a logical sequence of the membership function in fuzzy sets, a non-membership function
discloses non-membership to a set, thus having initiated a fundament for deal with a wider
class of decision-making problems. Usage of two functions, the membership and the non-
membership function, enabled solving more complex decision-making problems, which
also caused the development of appropriate extensions of some MCDM methods.

The membership and non-membership functions in relation to an intuitionistic fuzzy
set are also known as truth-membership and falsity-membership functions.

In 1998, Smarandache (1998) further extended fuzzy and intuitionistic fuzzy set theory
by introducing the indeterminacy-membership function. Consequently, in neutrosophic
set theory (Smarandache, 1998, 1999), each element of a set is defined by three indepen-
dent membership functions: the truth-membership TA(x), the indeterminacy-membership
IA(x), and the falsity-membership FA(x) functions, where the values of the mentioned
functions are not limited to the interval [0, 1], and there is also no restriction regarding
their sum −0 � TA(x) + IA(x) + FA(x) � 3+, as in intuitionistic fuzzy sets. Com-
pared to fuzzy and intuitionistic fuzzy sets, neutrosophic sets are much more flexible and
applicable for forming mathematical models designed for solving problems related to un-
certainty, vagueness, ambiguity, imprecision, incompleteness, inconsistency, and so on
(Smarandache, 1999; Ansari et al., 2011).
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To facilitate usage of neutrosophic sets for solving scientific and engineering problems,
Wang et al. (2010) proposed a Single-Valued Neutrosophic (SVN) set, by introducing
significantly stricter restrictions on the set of values that membership functions can have
TA(x), IA(x), FA(x) : X → [0, 1], as well as the sum of their values 0 � TA(x)+IA(x)+
FA(x) � 3.

So far, numerous studies have been conducted to apply SVN sets for solving decision-
making problems (Garg, 2020a, 2020b, 2020c, 2022), and as a result, they have been used
to solve various problems in a number of decision-making areas such as the economy
(Meng et al., 2020), medicine (Zhang et al., 2018; Abdel-Basset et al., 2020), air quality
evaluation (Li et al., 2016; Bera and Mahapatra, 2021), and so on. Appropriate extensions
that allow the use of SVN sets have also been proposed for a number of MCDM methods,
such as TOPSIS (Biswas et al., 2016), PROMETHEE (Xu et al., 2020), AHP (Kahraman et
al., 2020), WASPAS (Zavadskas et al., 2015), MULTIMOORA (Stanujkic et al., 2017c),
CoCoSo (Rani et al., 2021), and so on.

Stanujkic et al. (2021) proposed a new MCDM method entitled the Integrated Simple
Weighted Sum Product (WISP) method. Since there is no extension for this method that
allows its use with SVN sets, an appropriate extension is provided in this research.

Therefore, the remaining sections are subject to the subsequent organization. In Sec-
tion 2, some pivotal facts of the SVN sets, as well as some contents relevant to the devel-
opment of a new improvement and extension of the WISP method are given. The single-
valued neutrosophic extension of the WISP technique is presented in Section 3, while
Section 4 presents the detailed use of the suggested extension on the example of selecting
a rural tourist tour in Romania. Conclusions, limitations of the proposed extension and
directions of further development are presented in the final section.

2. Introductory Observations

Some fundamental elements about neutrosophic sets, important for the development of
the proposed extension, are presented in this section. In addition, some other contents that
are also important for the development of the proposed extension are also discussed in this
section.

2.1. The Basis of the Single-Valued Neutrosophic Sets

Definition 1. Let X be the universe of discourse. A neutrosophic set A in X is an object
with entries of the form (Smarandache, 1999)

A = {
x
〈
TA(x), IA(x), FA(x)

〉 ∣∣ x ∈ X
}
, (1)

where: TA(x) denotes the truth-membership function, IA(x) denotes the indeterminacy-
membership function, and FA(x) denotes the falsity-membership function, TA(x), IA(x),

FA(x) : X → ]−0, 1+[, and −0 � TA(x) + IA(x) + FA(x) � 3+.
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Definition 2 (Wang et al., 2010; Smarandache, 2005). If X is the universe of discourse,
then the SVN set A in X is an object possessing the form

A = {
x
〈
TA(x), IA(x), FA(x)

〉 ∣∣ x ∈ X
}
, (2)

where: TA(x), IA(x), FA(x) : X → [0, 1], and 0 � TA(x) + IA(x) + FA(x) � 3.

Definition 3. For an SVN set A in X, the triple 〈tA, iA, fA〉 is called the SVN number
(Smarandache, 1999).

Definition 4. Let x1 = 〈t1, i1, f1〉 and x2 = 〈t2, i2, f2〉 be two SVN numbers and α > 0.
The basic operations on SVN numbers are as follows:

x1 + x2 = 〈t1 + t2 − t1t2, i1i2, f1f2〉, (3)
x1 · x2 = 〈t1t2, i1 + i2 − i1i2, f1 + f2 − f1f2〉, (4)
α · x1 = 〈

1 − (1 − t1)
α, iα1 , f α

1

〉
, (5)

xα
1 = 〈

tα1 , iα1 , 1 − (1 − f1)
α
〉
. (6)

Definition 5. Let x = 〈t, i, f 〉 be an SVN number. The score function s(x) of x is defined
by Smarandache (2020)

s(x) = t + (1 − i) + (1 − f )

3
= 2 + t − i − f

3
, (7)

where s(x) ∈ [0, 1].

Definition 6. Let x = 〈t, i, f 〉 be an SVN number. The reliability of the information r(x)

included in x is defined by Stanujkic et al. (2020):

r(x) =
{ |t−f |

t+i+f
t + i + f �= 0,

0 t + i + f = 0,
(8)

where r(x) ∈ [0, 1].

Definition 7. Let Aij = 〈tij , iij , fij 〉 be a stream of SVN numbers, i = 1, 2, . . . m;
j = 1, 2, . . . n. Then the average reliability of the information r(Aij ) contained in the
collection of SVN numbers can be calculated as

r(Aij ) =
m∑

i=1

n∑
j=1

r(x), (9)

where r(x) denotes the reliability of the information contained in an SVN number x.
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Definition 8. Let Aj = 〈tj , ij , fj 〉 be a cluster of SVNSs. The SVN Weighted Average
(WAsvn) function of Aj is defined by Sahin (2014)

WAsvn(Aj ) =
n∑

j=1

Ajwj =
〈
1 −

n∏
j=1

(1 − tj )
wj ,

n∏
j=1

i
wj

j ,

n∏
j=1

f
wj

j

〉
, (10)

where wj denotes the weight of element j of the collection Aj , wj ∈ [0, 1], and∑n
j=1 wj = 1.

Definition 9. Let Aj = 〈tj , ij , fj 〉 be a set of SVNSs. The SVN Weighted Geometric
(WGsvn) operator of Aj is defined by Sahin (2014)

WGsvn(Aj ) =
n∏

j=1

A
wj

j =
〈 n∏
j=1

t
wj

j , 1 −
n∏

j=1

(1 − ij )
wj , 1 −

n∏
j=1

(1 − fj )
wj

〉
, (11)

where wj means a weight corresponding to the element j of the collection Aj , wj ∈ [0, 1],
and

∑n
j=1 wj = 1.

2.2. Questionnaire Designed for Using SVN Numbers

The use of SVN numbers for collecting respondents’ attitudes also requires the use of a
specially designed questionnaire. It has already been stated that SVN numbers use three
membership functions, which allows the use of complex evaluation criteria. Instead of
using ordinary questionnaires based on questions prepared for collecting ratings of al-
ternatives concerning the selected criteria, the proposed questionnaire uses affirmative
sentences whose truthfulness should be assessed using three membership functions.

For example, the first criterion, used in numerical illustration, Destination attractive-
ness, integrates the natural attractions of a tourist destination, such as natural beauties,
mountain ranges, lakes, rivers, landscapes, environmental protection, diversity of flora and
fauna, and others. Using the three affiliation functions provided by neutrosophic numbers,
the respondent can express the level of his agreement with the confirmatory sentence, the
level of his disagreement, and the level of his uncertainty regarding the statements in-
cluded in the confirmatory sentence. It should be noted that the evaluation based on the
use of SVN numbers does not require the mandatory use of all three membership functions
for evaluation. Depending on their opinions, respondents can use three, two, or even one
membership function. In cases when one or two membership functions are not used in the
evaluation the values of unused membership functions are automatically set to value 0.

Finally, using Eq. (9), the average reliability of the information collected from the
respondents can be assessed, and based on that a decision can be made on the usability of
the questionnaire, i.e. its use for evaluation or its rejection as useless.
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Table 1
Linguistic variables for expressing confidence levels.

Linguistic variable Abbreviation Crisp numerical value Permissible value range

Extremely High EH 9 [8, 10]
Very High VH 8 [7, 9]
High H 7 [6, 8]
Moderate High MH 6 [5, 7]
Moderate M 5 [4, 6]
Moderate Low ML 4 [3, 5]
Low L 3 [2, 4]
Very Low VL 2 [1, 3]
Extremely Low EL 1 [0, 2]

2.3. Linguistic Variables

Linguistic variables are often used in various extensions of grey, fuzzy, intuitionistic fuzzy,
and neutrosophic extensions of MCDM methods to facilitate and enable decision-makers,
i.e. respondents, to more accurately evaluate alternatives.

For the purposes of this research, the following nine-point scale, shown in Table 1,
was chosen.

In addition to the use of linguistic variables, i.e. their abbreviations, respondents can
express their attitudes using the recommended crisp numerical values. However, if they
want it or it is necessary, the respondents can express their attitudes more precisely using
numbers from the interval [0, 10].

2.4. Deneutrosophication

Similar to defuzzification in fuzzy sets, in the neutrosophy, a deneutrosophication is the
process of transforming information contained in neutrosophic numbers into crisp values.

The transformation of neutrosophic information into a crisp value can be easily per-
formed using Eq. (7). However, much better results, primarily in terms of analysis of dif-
ferent scenarios, can be achieved by applying the following equation:

df(x) = 2 + αt − βi − γf

3
, (12)

where: x = 〈t, i, f 〉 is an SVNN, α, β, and γ are coefficients, and α, β, γ ∈ [0, 1].
In the case when all three coefficients tend to a value of one, α, β, γ ∼= 1, Eq. (12) gives

similar values as Eq. (7). In contrast, when all three values of the coefficients tend to zero,
α, β, γ ∼= 0, all the information contained in the neutrosophic numbers is meaningless.

3. A Single-Valued Neutrosophic Extension of the WISP method

The Simple WISP method was proposed in Stanujkic et al. (2021). Based on this method,
a procedure for ranking alternatives based on using SVNNs can be presented using the
following steps:
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Step 1. Construct a single-valued neutrosophic initial decision-making matrix and deter-
mine criteria weights. In this step, the single-valued neutrosophic initial decision matrix
is formed using linguistic variables proposed in Section 2.3. Criteria weights can be deter-
mined using some of several MCDM methods primarily intended for specifying criteria
weights such as the AHP method (Saaty, 1980), SWARA method (Kersuliene et al., 2010),
Best-Worst method (Rezaei, 2015), or PIPRECIA method (Stanujkic et al., 2017a).

Step 2. Generate a normalized intuitionistic decision-making matrix as

rij = 〈tij , iij , fij 〉 =
〈
xtij

10
,
xiij

10
,
xfij

10

〉
, (13)

where: xtij , xiij and xfij denote the affiliation level of alternative i regarding criterion j

expressed using three membership functions, respectively.
Denominators used in Eq. (13) were chosen according to the 9-point linguistic scale

proposed in Table 1.

Step 3. Compute the sum and product of the weight-normalized neutrosophic performance
of each alternative, for the beneficial and non-beneficial criteria, using Eqs. (10) and (11),
as follows:

Smax
i =

〈
1 −

∏
j∈φmax

(1 − tj )
wj ,

∏
j∈φmax

i
wj

j ,
∏

j∈φmax

f
wj

j

〉
, (14)

Smin
i =

〈
1 −

∏
j∈φmin

(1 − tj )
wj ,

∏
j∈φmin

i
wj

j ,
∏

j∈φmin

f
wj

j

〉
, (15)

P max
i =

〈 ∏
j∈φmax

t
wj

j , 1 −
∏

j∈φmax

(1 − ij )
wj , 1 −

∏
j∈φmax

(1 − fj )
wj

〉
, (16)

P min
i =

〈 ∏
j∈φmin

t
wj

j , 1 −
∏

j∈φmin

(1 − ij )
wj , 1 −

∏
j∈φmin

(1 − fj )
wj

〉
, (17)

where: Smax
i = 〈ti , ii , fi〉 and Smin

i = 〈ti , ii , fi〉 denote the sum of the weight-
normalized neutrosophic performances of alternative i, achieved based on beneficial and
non-beneficial criteria, respectively, and P max

i = 〈ti , ii , fi〉 and P min
i = 〈ti , ii , fi〉 denote

the product of the weight-normalized neutrosophic performances of alternative i, achieved
based on beneficial and non-beneficial criteria, respectively, φmax and φmin denote sets of
beneficial and nonbeneficial criteria, respectively.

Step 4. Calculate the values of four utility measures usd
i , u

pd
i , usr

i , and u
pr
i . The subtrac-

tion and division operations required for determining the four utility measures used in
the WISP method are not primarily defined for SVNNs. Therefore, values of Smax

i , Smin
i ,

P max
i , and P min

i , should be transformed into crisp values before calculating the four utility
measures.
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Deneutrosophication can be performed using Eq. (7) or Eq. (12), after which the values
of the four utility measures can be calculated as follows:

usd
i = Smax

i − Smin
i , (18)

u
pd
i = P max

i − P min
i , (19)

usr
i = Smax

i

Smin
i

, and (20)

u
pr
i = P max

i

P min
i

. (21)

Step 5. Recalculate values of four utility measures, as follows:

ϑsd
i = 1 + usd

i

1 + maxi usd
i

, (22)

ϑ
pd
i = 1 + u

pd
i

1 + maxi u
pd
i

, (23)

ϑsr
i = 1 + usr

i

1 + maxi usr
i

, and (24)

ϑ
pr
i = 1 + u

pr
i

1 + maxi u
pr
i

, (25)

where: ϑsd
i , ϑpd

i , ϑsr
i , and ϑ

pr
i denote recalculated values of usd

i , upd
i usr

i and u
pr
i , respec-

tively, and maxi usd
i , maxi u

pd
i , maxi usr

i and maxi u
pr
i denote the maximum values of the

right end points of four utility measures, respectively.

Step 6. Evaluate the total utility ϑi for each alternative by the rule

ϑi = 1

4

(
ϑsd

i + ϑ
pd
i + ϑsr

i + ϑ
pr
i

)
. (26)

Step 7. Rank available alternatives and choose the most justifiable one. In cases of eval-
uating alternatives in the Simple WISP method, the alternative with the highest overall
utility is the most admissible one.

Using the approach presented above, decision-makers can take advantage of the pre-
viously discussed benefits that SVN sets provide when gathering respondents’ attitudes.
Also, using Eq. (12) decision-makers can vary the impact of truth, indeterminacy, and fal-
sity membership functions and consider different scenarios, from very pessimistic to very
optimistic. The possibility of considering different scenarios candidates the proposed ap-
proach for using in the process of the project evaluation and selection where it is important
and necessary to overview every circumstance that may occur.
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4. An Illustrative Example

In order to give a demonstration of the applicability of the presented extension of the WISP
procedure, one example of selecting a tourist destination for Nature & Rural Tourism was
considered.

After considering alternatives from Serbia, Montenegro, Albania, Bulgaria, and Ro-
mania, it is determined that the demonstration was carried out on the example of choos-
ing a tourist tour of Natural and Rural Tourism in Romania. One of the main reasons for
choosing Romania was a wealth of useful information regarding tourist tours, including a
wealth of photographs that enchant the natural beauties of the Transylvania region located
in central Romania.

To attest the applicability of the proposed extension of the WISP method, an example
of evaluation of a tourist destination, that is evaluation of rural tourist tours, is discussed
in this section. The evaluation of several below mentioned alternatives was performed
according to the following criteria:

– C1, Destination attractiveness,
– C2, Additional facilities,
– C3, Accommodation and comfort,
– C4, Transportation and accessibility, and
– C5, Price.

The evaluation criteria were selected based on the criteria proposed by Ryglova et al.
(2017). In their research, Ryglova et al. (2017) considered the application, i.e. significance,
of 19 criteria for determining the quality of rural tourism destinations. However, the use
of a large number of evaluation criteria, without their hierarchical organization, maybe
impractical for MCDM evaluation. In addition, the use of three membership functions
allows utilization of a smaller number of complex criteria, which is why more significant
criteria considered by Ryglova et al. (2017) are aggregated to the previously mentioned
five criteria.

The meaning of the above criteria can be described as follows: the criterion Destination
attractiveness includes the presence of natural attractions, mountain ranges, lakes, rivers,
landscapes, beauties of untouched nature, diversity of flora and fauna, and so on. The
criterion Additional facilities include facilities such as hiking, climbing, visiting man-
made facilities such as castles and fortifications, cultural and social attractions, and so
on, while the criterion Accommodation and comfort include the type of accommodation
and additional amenities such as the Internet, Wi-Fi, television, and so on. The criterion
Transportation and accessibility includes the way of arriving at the starting points of the
tourist tour from the residence of the respondents. Finally, since the considered tours have
different durations, the Price criterion is considered as a complex criterion that includes
the price on a daily basis and the total price of the tourist tour.

In this research, the following rural tourist tours were selected for evaluation:

– Wildlife Tour in Romania,
– Family Tour of Romania,
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Table 2
The questionnaire obtained from the selected respondent.

C1 C2 C3 C4 C5

t i f t i f t i f t i f t i f

A1 6.5 EL 1.5 M EL 5.5 ML 1.5 M 2.5
A2 VH VH EL MH M VL 0.5 6.5
A3 MH EL EH EL VL ML EL VL ML L MH
A4 MH 0.7 VH EL EL L ML ML ML L M
A5 EH VH EL M VL EL VH ML 0.5 M
A6 EH H H VL VL VH ML VH

Table 3
A transformed questionnaire with the attitudes of the selected respondent.

C1 C2 C3 C4 C5

t i f t i f t i f t i f t i f

A1 6.5 1 1.5 5 0 1 5.5 0 0 4 0 1.5 5 0 2.5
A2 8 0 0 8 0 1 6 0 0 5 0 0 2 0.5 6.5
A3 6 0 1 9 1 2 4 1 2 4 0 0 3 0 6
A4 6 0 0.7 8 1 1 3 4 4 4 0 0 3 0 5
A5 9 0 0 8 0 1 5 2 1 8 0 0 4 0.5 5
A6 9 0 0 7 0 0 7 2 2 8 0 0 4 0 8

– Maramures and Bucovina Tour, and
– 4-Day Carpathian Trek: Bucegi Mountains and Piatra Craiului National Park,
– Village Life in Transylvanian Carpathian Mountains, and
– 14 Days Full Donau Delta, Braşov and Apuseni Tour.

Information regarding the above rural tourist tours is available on the following web-
sites:

– https://true-romania.tours/rural-tourism/ (True-Romania) and,
– https://www.viator.com/Romania-tours/Nature-and-Wildlife/ (Romania-tours).

The evaluation of alternatives, i.e. checking the usability and efficacy of the proposed
procedure, was done on a small number of respondents. More precisely, the examination
was performed on a sample of fifteen examinees. From the collected questionnaires, one
characteristic was chosen to show in detail the steps of the proposed calculation procedure.

The completed questionnaire with the attitudes of the selected respondents, filled in
with the combined use of linguistic variables and numbers, is shown in Table 2. After the
transformation of linguistic variables into numerical values, as well as filling in the values
of unused membership functions, the transformed questionnaire is shown in Table 3.

A normalized intuitionistic decision matrix, generated utilizing Eq. (12), is arranged in
Table 4. The average reliability of the data contained in the SVNNs in Table 4, determined
using Eq. (9), is 0.674.

For further applying the proposed calculation procedure, the weights of the criteria
are necessary after this step. In the observed case, the weights of criteria were defined

Florentin Smarandache (author and editor) Collected Papers, XIII

757

https://true-romania.tours/rural-tourism/
https://www.viator.com/Romania-tours/Nature-and-Wildlife/


Table 4
A normalized intuitionistic decision-making matrix.

C1 C2 C3 C4 C5

A1 〈0.7, 0.1, 0.2〉 〈0.5, 0.0, 0.1〉 〈0.6, 0.0, 0.0〉 〈0.4, 0.0, 0.2〉 〈0.5, 0.0, 0.3〉
A2 〈0.8, 0.0, 0.0〉 〈0.8, 0.0, 0.1〉 〈0.6, 0.0, 0.0〉 〈0.5, 0.0, 0.0〉 〈0.2, 0.1, 0.7〉
A3 〈0.6, 0.0, 0.1〉 〈0.9, 0.1, 0.2〉 〈0.4, 0.1, 0.2〉 〈0.4, 0.0, 0.0〉 〈0.3, 0.0, 0.6〉
A4 〈0.6, 0.0, 0.1〉 〈0.8, 0.1, 0.1〉 〈0.3, 0.4, 0.4〉 〈0.4, 0.0, 0.0〉 〈0.3, 0.0, 0.5〉
A5 〈0.9, 0.0, 0.0〉 〈0.8, 0.0, 0.1〉 〈0.5, 0.2, 0.1〉 〈0.8, 0.0, 0.0〉 〈0.4, 0.1, 0.5〉
A6 〈0.9, 0.0, 0.0〉 〈0.7, 0.0, 0.0〉 〈0.7, 0.2, 0.2〉 〈0.8, 0.0, 0.0〉 〈0.4, 0.0, 0.8〉

Table 5
The weights of the criteria.

C1 C2 C3 C4 C5

wj 0.23 0.18 0.20 0.18 0.22

Table 6
Sums and products of weight-normalized neutrosophic ratings of alternatives achieved

based on beneficial and non-beneficial criteria.

Smax
i

Smin
i

P max
i

P min
i

A1 〈0.39, 0.00, 0.00〉 〈0.14, 0.00, 0.73〉 〈0.61, 1.00, 1.00〉 〈0.86, 1.00, 0.27〉
A2 〈0.27, 0.00, 0.00〉 〈0.30, 0.51, 0.91〉 〈0.73, 1.00, 1.00〉 〈0.70, 0.49, 0.09〉
A3 〈0.38, 0.00, 0.00〉 〈0.23, 0.00, 0.89〉 〈0.62, 1.00, 1.00〉 〈0.77, 1.00, 0.11〉
A4 〈0.43, 0.00, 0.00〉 〈0.23, 0.00, 0.86〉 〈0.57, 1.00, 1.00〉 〈0.77, 1.00, 0.14〉
A5 〈0.21, 0.00, 0.00〉 〈0.18, 0.51, 0.86〉 〈0.79, 1.00, 1.00〉 〈0.82, 0.49, 0.14〉
A6 〈0.18, 0.00, 0.00〉 〈0.18, 0.00, 0.95〉 〈0.82, 1.00, 1.00〉 〈0.82, 1.00, 0.05〉

by means of the PIPRECIA method. The weights calculated based on the attitudes of the
selected respondent are shown in Table 5.

After determining criteria weights, the sums and products of weighted normalized
neutrosophic ratings of the alternatives were calculated, for beneficial and non-beneficial
criteria, as presented in Table 6.

Deneutrosophied values of sums and products of the weighted normalized neutro-
sophic ratings are shown in Table 7. In this case, deneutrosophization, i.e. transformation
of SVNNs into crisp values, was performed using Eq. (7), but it can also be performed
using Eq. (12), as mentioned above.

The values of four utility measures usd
i , u

pd
i , usr

i , and u
pr
i , calculated using Eqs. (18)

to (21) are also shown in Table 7.
The recalculated values of four utility measures ϑsd

i , ϑ
pd
i , ϑsr

i , and ϑ
pr
i are shown in

Table 8.
As it can be concluded on the basis of data in Table 8, the alternative A5 is the most

suitable rural tourist tour, based on the attitudes obtained from the selected respondent.
From Table 8, it can also be observed that all considered alternatives have approximately
similar values of the overall utilities, which indicates that the use of Eq. (12), for deneu-
trosophization, could cause changes in the ranking order of considered alternatives.
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Table 7
Deneutrosophied values of sums and products of weighted normalized neutrosophic 

ratings.

Smax
i

Smin
i

P max
i

P min
i

usd
i

u
pd
i

usr
i

u
pr
i

A1 0.80 0.47 0.20 0.53 0.33 −0.33 1.70 0.38
A2 0.76 0.29 0.24 0.71 0.46 −0.46 2.58 0.34
A3 0.79 0.45 0.21 0.55 0.35 −0.35 1.77 0.37
A4 0.81 0.46 0.19 0.54 0.35 −0.35 1.76 0.35
A5 0.74 0.27 0.26 0.73 0.47 −0.47 2.72 0.36
A6 0.73 0.41 0.27 0.59 0.32 −0.32 1.77 0.46

Table 8
Recalculated values of four utility measures, overall utility measures, and ranking order

of alternatives.

ϑsd
i

ϑ
pd
i

ϑsr
i

ϑ
pr
i

ϑi Rank

A1 0.91 0.98 0.73 0.94 0.889 5
A2 1.00 0.78 0.96 0.92 0.916 2
A3 0.92 0.96 0.75 0.94 0.889 4
A4 0.92 0.95 0.74 0.92 0.884 6
A5 1.00 0.78 1.00 0.93 0.927 1
A6 0.90 1.00 0.74 1.00 0.910 3

Similar evaluations, done again with the attitudes of the remaining respondents,
showed that there were some differences in the ranks of considered alternatives, which
was expected. However, it also emphasizes the need for developing a neutrosophic exten-
sion of the WISP method that can be used for group decision-making. Unfortunately, the
development of such an extension has not yet been considered.

Numerous articles and studies dealing with the application of MCDM methods in
the tourism and hospitality industry can be found in scientific and professional journals.
A comprehensive overview of previously conducted research in this area can be found in
Ahmad (2016).

A similar approach to choosing a tourist destination was considered in Genç and Filipe
(2016), where they applied a fuzzy MCDM approach for evaluating a tourist destination
in Portugal. Besides, Alptekin and Büyüközkan (2011) considered the use of MCDM sys-
tem for web-based tourism destination planning, while Peng and Tzeng (2012) considered
the use of MCDM model for evaluating strategies for promoting tourism competitiveness.
Stanujkic et al. (2015, 2019) evaluate the quality of websites in a rural tourism and hospi-
tality industry using Atanassov intuitionistic fuzzy sets, bipolar neutrosophic sets. Popovic
et al. (2021) applied the PIPRECIA model for identifying key determinants of tourism
development in Serbia while Hosseini and Paydar (2022) prioritized the factors affecting
tourist absorption for ecotourism centres using MCDM methods.

5. Conclusion

An upgrading of the Simple WISP method based on the usage of single-valued neutro-
sophic numbers is proposed in this article.
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The SVN numbers use three membership functions for expressing truth, indetermi-
nacy, and falsity which is why they can be used for expressing beliefs, uncertainties, and
doubts about some occurrences, conditions, or events. For this reason, these numbers can
be very useful for collecting respondents’ attitudes because they provide respondents with
a very flexible way of expressing attitudes. It is known that the three membership func-
tions are mutually independent and that each function can have a value from the interval
[0, 1]. Based on this, respondents can express their preferences using three zeros or three
ones, or with any other combination of numbers from the interval [0, 1].

The use of SVN numbers for collecting respondents’ attitudes also allows the use of
complex criteria for evaluating alternatives. Of course, the use of these numbers requires
the use of customized questionnaires, as well as adapted linguistic variables for expressing
the respondents’ preferences, which are also discussed in the article.

Some initial research conducted during the development of the proposed approach
pointed to certain problems related to the collection of attitudes from respondents who are
not familiar with the use of neutrosophic sets. The questionnaire proposed in this article
is certainly not suitable for collecting the views of respondents “on the street”, but can be
used to collect the views of respondents who are familiar with the basic elements of fuzzy,
intuitionistic, and neutrosophic sets.

Therefore, the intention to conduct a study with a significantly larger number of re-
spondents using the proposed approach can be stated as one of the directions of future
research. Adoption of the proposed approach for use in a group decision-making environ-
ment can also be mentioned as one of the further potential directions of research regarding
the proposed approach.

An approach for deneutrosophication, i.e. the transformation of information contained
in SVN numbers into crisp numbers is also considered in the article. Using this approach,
decision-makers can analyse a variety of scenarios, from pessimistic to optimistic, similar
as in many fuzzy and intuitionistic extensions of other MCDM methods.

Using the proposed approach, decision-makers can take advantage of the fact SVN sets
provide for gathering respondents’ attitudes based on a smaller number of complex evalua-
tion criteria. Also, using approach proposed for deneutrosophication, decision-makers can
vary the impact of truth, indeterminacy, and falsity membership functions and consider
different scenarios, from very pessimistic to very optimistic. And finally, the evaluations
performed with the proposed extension of the Simple WISP method confirmed its appli-
cability and efficiency.

Besides the outlined usefulness of the proposed approach, it could not be denied that
it has some limitations, as well. Maybe the crucial shortcoming of the proposed approach
reflects in its complexity for application by ordinary decision-makers that are not familiar
with neutrosophic sets logic. In that sense, its application is limited only to those decision-
makers who understand and successfully work with this type of decision-making aiding
technique.

The results of conducted research proved the reliability and usability of the proposed
extension, so it is considered that it would be also an adequate decision-making aid in other
business fields such as project management, human resource management, production
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management, and so on. Besides, the recommendation of the future work involves the
proposing of the extension of the WISP method based on the multi-valued neutrosophic
numbers to acknowledge the vagueness and uncertainty of the environment to a greater
extent.
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Generalizations of the Distance and Dependent Function
in Extenics to 2D, 3D, and n −D

Florentin Smarandache

Dr. Cai Wen defined in his 1983 paper: — the distance formula between a point x0 and a one-dimensional (1D) interval <a, b>; — and 
the dependence function which gives the degree of dependence of a point with respect to a pair of included 1D-intervals. His paper 
inspired us to generalize the Extension Set to two-dimensions, i.e. in plane of real numbers R2 where one has a rectangle (instead of a 
segment of line), deter-mined by two arbitrary points A(a1, a2) and B(b1, b2). And similarly in R3, where one has a prism determined by 
two arbitrary points A(a1, a2, a3) and B(b1, b2, b3). We ge-ometrically define the linear and non-linear distance between a point and the 2D 
and 3D-extension set and the dependent function for a nest of two included 2D and 3D-extension sets. Linearly and non-linearly 
attraction point principles towards the optimal point are presented as well. The same procedure can be then used considering, instead of a 
rectangle, any bounded 2D-surface and similarly any bounded 3D-solid, and any bounded (n − D)-body in Rn. These generalizations are 
very important since the Ex-tension Set is generalized from one-dimension to 2, 3 and even n-dimensions, therefore more classes of 
applications will  result in consequence.

1 Introduction

Extension Theory (or Extenics) was developed by Professor
Cai Wen in 1983 by publishing a paper called Extension Set
and Non-Compatible Problems. Its goal is to solve contradic-
tory problems and also nonconventional, nontraditional ideas
in many fields. Extenics is at the confluence of three disci-
plines: philosophy, mathematics, and engineering. A con-
tradictory problem is converted by a transformation function
into a non-contradictory one. The functions of transformation
are: extension, decomposition, combination, etc. Extenics
has many practical applications in Management, Decision-
Making, Strategic Planning, Methodology, Data Mining, Ar-
tificial Intelligence, Information Systems, Control Theory,
etc. Extenics is based on matter-element, affair-element, and
relation-element.

2 Extension Distance in 1D-space

Let’s use the notation<a, b> for any kind of closed, open, or
half-closed interval [a, b], (a, b), (a, b], [a, b). Prof. Cai Wen
has defined the extension distance between a pointx0 and a
real intervalX = <a, b>, by

ρ (x0,X) =
∣

∣

∣

∣

∣

x0 −
a+ b

2

∣

∣

∣

∣

∣

−
b− a

2
, (1)

where in general:

ρ : (R,R2)→ (−∞,+∞) . (2)

Algebraically studying this extension distance, we find
that actually the range of it is:

ρ (x0,X) ∈

[

−
b− a

2
,+∞

]

(3)

Fig. 1:

Fig. 2:

or its minimum range value−
(

b−a
2

)

depends on the intervalX
extremitiesa andb, and it occurs when the pointx0 coincides
with the midpoint of the intervalX, i.e. x0 =

a+b
2 . The closer

is theinterior point x0 to the midpoint of the interval<a, b>,
the negatively larger isρ (x0,X).

In Fig. 1, for interior pointx0 betweena and a+b
2 , the ex-

tension distanceρ (x0,X) = a−x0 is thenegative length of the
brown line segment[left side]. Whereas for interior pointx0

betweena+b
2 andb, the extension distanceρ (x0,X) = x0 − b

is the negative length of the blue line segment[right side].
Similarly, the further isexterior point x0 with respect to the
closest extremity of the interval<a, b> to it (i.e. to eithera or
b), the positively larger isρ (x0,X).

In Fig. 2, for exterior pointx0<a, the extension distance
ρ (x0,X) = a − x0 is the positive length of the brown line
segment [left side]. Whereas for exterior pointx0>b, the ex-
tension distanceρ (x0,X) = x0−b is thepositive length of the
blue line segment[right side].

3 Principle of the Extension 1D-Distance

Geometrically studying this extension distance, we find the
following principle that Prof. Cai Wen has used in 1983
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defining it:

ρ (x0,X) is the geometric distance between the point x0

and the closest extremity point of the interval<a, b > to
it (going in the direction that connects x0 with the op-
timal point), distance taken as negative if x0 ∈ <a, b>,
and as positive if x0 ⊂ <a, b >.

This principle is very important in order to generalize the
extension distance from 1D to 2D (two-dimensional
real space), 3D (three-dimensional real space), andn−D
(n-dimensional real space).

The extremity points of interval< a, b> are the pointa
andb, which are also the boundary (frontier) of the interval
< a, b>.

4 Dependent Function in 1D-Space

Prof. Cai Wen defined in 1983 in 1D the Dependent Function
K(y). If one considers two intervalsX0 andX, that have no
common end point, andX0 ⊂ X, then:

K(y) =
ρ (y,X)

ρ (y,X) − ρ (y,X0)
. (4)

Since K(y) was constructed in 1D in terms of the exten-
sion distanceρ (., .), we simply generalize it to higher dimen-
sions by replacingρ (., .) with the generalized in a higher di-
mension.

5 Extension Distance in 2D-Space

Instead of considering a segment of lineAB representing the
interval<a, b> in 1R, we consider a rectangleAMBN rep-
resenting all points of its surface in 2D. Similarly as for 1D-
space, the rectangle in 2D-space may be closed (i.e. all points
lying on its frontier belong to it), open (i.e. no point lying on
its frontier belong to it), or partially closed (i.e. some points
lying on its frontier belong to it, while other points lying on
its frontier do not belong to it).

Let’s consider two arbitrary pointsA(a1, a2) andB(b1, b2).
Through the pointsA andB one draws parallels to the axes of
the Cartesian systemXY and one thus one forms a rectangle
AMBNwhose one of the diagonals is justAB.

Let’s note byO the midpoint of the diagonalAB, but O
is also the center of symmetry (intersection of the diagonals)
of the rectangleAMBN. Then one computes the distance be-
tween a pointP (x0, y0) and the rectangleAMBN. One can do
that following the same principle as Dr. Cai Wen did:

— compute the distance in 2D (two dimensions) between
the pointP and the centerO of the rectangle (intersec-
tion of rectangle’s diagonals);

— next compute the distance between the pointP and the
closest point (let’s note it byP′) to it on the frontier (the
rectangle’s four edges) of the rectangleAMBN.

Fig. 3: P is an interior point to the rectangleAMBNandthe optimal
point O is in the center of symmetry of the rectangle.

Fig. 4: P is an exterior point to the rectangleAMBNandthe optimal
point O is in the center of symmetry of the rectangle.

This step can be done in the following way: considering
P′ as the intersection point between the linePOand the fron-
tier of the rectangle, and taken among the intersection points
that pointP′ which is the closest toP; this case is entirely
consistent with Dr. Cai’s approach in the sense that when re-
ducing from a 2D-space problem to two 1D-space problems,
one exactly gets his result.

The Extension 2D-Distance, forP , O, will be:

ρ
(

(x0, y0),AMBN
)

= d
(

point P, rectangleAMBN
)

=

= |PO| − |P′O| = ±|PP′|, (5)

i) which is equal to the negative length of the red seg-
ment|PP′| in Fig. 3, whenP is interior to the rectangle
AMBN;

ii) or equal to zero, whenP lies on the frontier of the rect-
angleAMBN(i.e. on edgesAM, MB, BN, orNA) since
P coincides withP′;

iii) or equal to the positive length of the blue segment|PP′|
in Fig. 4, whenP is exterior to the rectangleAMBN,
where |PO| means the classical 2D-distance between
the pointP andO, and similarly for|P′O| and|PP′|.

The Extension 2D-Distance, for the optimal point, i.e.
P = O, will be

ρ (O,AMBN) = d(pointO, rectangleAMBN) =

= −maxd
(

pointO, point M on the frontier ofAMBN
)

. (6)
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The last step is to devise the Dependent Function in 2D-
space similarly as Dr. Cai’s defined the dependent function in
1D. The midpoint (or center of symmetry)O has the coordi-
nates

O

(

a1 + b1

2
,
a2 + b2

2

)

. (7)

Let’s compute the

|PO| − |P′O| . (8)

In this case, we extend the lineOP to intersect the frontier
of the rectangleAMBN. P′ is closer toP thanP′′, therefore
we considerP′. The equation of the linePO, that of course
passes through the pointsP (x0, y0) andO

(

a1+b1
2 ,

a2+b2
2

)

, is:

y − y0 =

a2+b2
2 − y0

a1+b1
2 − x0

(x− x0) . (9)

Sincethex-coordinate of pointP′ is a1 becauseP′ lies on
the rectangle’s edgeAM, one gets they-coordinate of pointP′

by a simple substitution ofxP′ = a1 into the above equality:

yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0) . (10)

ThereforeP′ has the coordinates

P′
[

xP′ = a1, yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0)

]

. (11)

The distance

d(PQ) = |PQ| =

√

(

x0 −
a1 + b1

2

)2

+

(

y0 −
a2 + b2

2

)2

, (12)

while the distance

d(P′,Q) = |P′Q| =

=

√

(

a1 −
a1 + b1

2

)2

+

(

yP′ −
a2 + b2

2

)2

=

=

√

(

a1 − b1

2

)2

+

(

yP′ −
a2 + b2

2

)2

. (13)

Also, the distance

d(PP′) = |PP′| =
√

(a1 − x0)2 + (yP′ − y0)2 . (14)

Whence the Extension 2D-distance formula

ρ
[

(x0, y0), AMBN
]

=

= d
[

P (x0, y0), A(a1, a2) MB(b1, b2) N
]

=

= |PQ| − |P′Q| (15)

=

√

(

x0−
a1+b1

2

)2
+
(

y0−
a2+b2

2

)2
−

√

( a1−b1
2

)2
+
(

yP′−
a2+b2

2

)2 (16)

= ±|PP′| (17)

= ±

√

(a1 − x0)2 + (yP′ − y0)2 , (18)

where

yP′ = y0 +
a2 + b2 − 2y0
a1 + b1 − 2x0

(a1 − x0) . (19)

6 Properties

As for 1D-distance, the following properties hold in 2D:

6.1 Property 1

a) (x, y) ∈ Int (AMBN) if ρ [(x, y),AMBN] < 0, where
Int (AMBN) means interior ofAMBN;

b) (x, y) ∈ Fr (AMBN) if ρ [(x, y),AMBN] = 0, where
Fr (AMBN) means frontier ofAMBN;

c) (x, y) < AMBN if ρ [(x, y),AMBN] > 0.

6.2 Property 2

Let A0M0B0N0 andAMBNbe two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, andA0M0B0N0 ⊂

AMBN. We assume they have the same optimal points
O1 ≡ O2 ≡ O located in the center of symmetry of the two
rectangles. Then for any point (x, y) ⊂ R2 one has
ρ [(x, y),A0M0B0N0] > ρ [(x, y),AMBN]. See Fig. 5.

Fig. 5: Two included rectangles with the same optimal pointsO1 ≡

O2 ≡ O locatedin their common center of symmetry.

7 Dependent 2D-Function

Let A0M0B0N0 andAMBNbe two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, andA0M0B0N0 ⊂

AMBN.
The Dependent 2D-Function formula is:

K2D(x,y) =
ρ [(x, y),AMBN]

ρ [(x, y),AMBN, ] − ρ [(x, y),A0M0B0N0]
. (20)

7.1 Property 3

Again, similarly to the Dependent Function in 1D-space,
one has:

a) If (x, y) ∈ Int (A0M0B0N0), thenK2D(x,y) > 1;

b) If (x, y) ∈ Fr (A0M0B0N0), thenK2D(x,y) = 1;
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c) If (x, y) ∈ Int (AMBN − A0M0B0N0),
then 0< K2D(x,y) < 1;

d) If (x, y) ∈ Fr (AMBN), thenK2D(x,y) = 0;

e) If (x, y) < AMBN, thenK2D(x, y) < 0.

8 General Case in 2D-Space

One can replace the rectangles by any finite surfaces, bounded
by closed curves in 2D-space, and one can consider any op-
timal pointO (not necessarily the symmetry center). Again,
we assume the optimal points are the same for this nest of two
surfaces. See Fig. 6.

Fig. 6: Two included arbitrary bounded surfaces with the same opti-
mal points situated in their common center of symmetry.

9 Linear Attraction Point Principle

We introduce the Attraction Point Principle, which is the fol-
lowing:

Let S be a given set in the universe of discourseU, and
the optimal pointO ⊂ S. Then each pointP (x1, x2, . . . , xn)
from the universe of discourse tends towards, or is attracted
by, the optimal pointO, because the optimal pointO is an
ideal of each point. That’s why one computes the exten-
sion (n−D)-distance between the pointP and the setS as
ρ [(x1, x2, . . . , xn),S] on the direction determined by the point
P and the optimal pointO, or on the linePO, i.e.:

a) ρ [(x1, x2, . . . , xn),S] is the negative distance between
P and the set frontier, ifP is inside the setS;

b) ρ [(x1, x2, . . . , xn),S] = 0, if P lies on the frontier of the
setS;

c) ρ [(x1, x2, . . . , xn),S] is the positive distance betweenP
and the set frontier, ifP is outside the set.

It is a king of convergence/attraction of each point to-
wards the optimal point. There are classes of examples where
such attraction point principle works. If this principle is good
in all cases, then there is no need to take into consideration the
center of symmetry of the setS, since for example if we have
a 2D piece which has heterogeneous material density, then
its center of weight (barycenter) is different from the center
of symmetry. Let’s see below such example in the 2D-space:
Fig. 7.

Fig. 7: The optimal point O as an attraction point for all other points
P1,P2, . . . ,P8 in the universe of discourseR2.

10 Remark 1

Another possible way, for computing the distance between
the pointP and the closest pointP′ to it on the frontier (the
rectangle’s four edges) of the rectangleAMBN, would be by
drawing a perpendicular (or a geodesic) fromP onto the clos-
est rectangle’s edge, and denoting byP′ the intersection be-
tween the perpendicular (geodesic) and the rectangle’s edge.
And similarly if one has an arbitrary setS in the 2Dspace,
bounded by a closed urve. One computes

d(P,S) =Inf
Q∈S
|PQ| (21)

as in the classical mathematics.

11 Extension Distance in 3D-Space

We further generalize to 3D-space the Extension Set and the
Dependent Function. Assume we have two points (a1, a2, a3)
and (b1, b2, b3) in D. Drawing throughA endB parallel planes
to the planes’ axes (XY,XZ,YZ) in the Cartesian systemXYZ
we get a prismAM1M2M3BN1N2N3 (with eight vertices)
whose one of the transversal diagonals is just the line segment
AB. Let’s note byO the midpoint of the transverse diagonal
AB, butO is also the center of symmetry of the prism.

Therefore, from the line segmentAB in 1D-space, to
a rectangleAMBN in 2D-space, and now to a prism
AM1M2M3BN1N2N3 in 3D-space. Similarly to 1D- and 2D-
space, the prism may be closed (i.e. all points lying on its
frontier belong to it), open (i.e. no point lying on its frontier
belong to it), or partially closed (i.e. some points lying on its
frontier belong to it, while other points lying on its frontier
do not belong to it).

Then one computes the distance between a point
P (x0, y0, z0) and the prismAM1M2M3BN1N2N3. One can do
that following the same principle as Dr. Cai’s:

— compute the distance in 3D (two dimensions) between
the pointP and the centerO of the prism (intersection
of prism’s transverse diagonals);

— next compute the distance between the pointP and the
closest point (let’s note it byP′) to it on the frontier of
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the prismAM1M2M3BN1N2N3 (the prism’s lateral sur-
face); consideringP′ as the intersection point between
the line OP and the frontier of the prism, and taken
among the intersection points that pointP′ which is the
closest toP; this case is entirely consistent with Dr.
Cai’s approach in the sense that when reducing from
3D-space to 1D-space one gets exactly Dr. Cai’s result;

— the Extension 3D-Distanced(P,AM1M2M3BN1N2N3)
is d(P,AM1M2M3BN1N2N3) = |PO| − |P′O| = ±|PP′|,
where |PO| means the classical distance in 3D-space
between the pointP andO, and similarly for|P′O| and
|PP′|. See Fig. 8.

Fig. 8: Extension 3D-Distance between a point and a prism, where
O is the optimal point coinciding with the center of symmetry.

12 Property 4

a) (x, y, z) ∈ Int (AM1M2M3BN1N2N3)
if ρ [(x, y, z),AM1M2M3BN1N2N3] < 0,
where Int (AM1M2M3BN1N2N3) means interior
of AM1M2M3BN1N2N3;

b) (x, y, z) ∈ Fr (AM1M2M3BN1N2N3)
if ρ [(x, y, z),AM1M2M3BN1N2N3] = 0
means frontier ofAM1M2M3BN1N2N3;

c) (x, y, z) < AM1M2M3BN1N2N3

if ρ [(x, y, z),AM1M2M3BN1N2N3] > 0.

13 Property 5

Let A0M01M02M03B0N01N02N03 and AM1M2M3BN1N2N3

be two prisms whose sides are parallel to the axes of the
Cartesian system of coordinates, such that they have no
common end points, andA0M01M02M03B0N01N02N03 ⊂

AM1M2M3BN1N2N3. We assume they have the same opti-
mal pointsO1 ≡ O2 ≡ O located in the center of symmetry of
the two prisms.

Then for any point (x, y, z) ∈ R3 one has

ρ [(x, y, z),A0M01M02M03B0N01N02N]03 >

ρ [(x, y, z)AM1M2M3BN1N2N3] .

14 The Dependent 3D-Function

The last step is to devise the Dependent Function in 3D-space
similarly to Dr. Cai’s definition of the dependent function
in 1D-space. Let the prismsA0M01M02M03B0N01N02N03 and
AM1M2M3BN1N2N3 be two prisms whose faces are paral-
lel to the axes of the Cartesian system of coordinatesXYZ,
such that they have no common end points in such a way that
A0M01M02M03B0N01N02N03 ⊂ AM1M2M3BN1N2N3. We as-
sume they have the same optimal pointsO1 ≡ O2 ≡ O located
in the center of symmetry of these two prisms.

The Dependent 3D-Function formula is:

K3D(x,y,z) =
(

ρ [(x, y, z),AM1M2M3BN1N2N3]
)

×

×
(

ρ [(x, y, z),AM1M2M3BN1N2N3, ] −

− ρ [(x, y, z),A0M01M02M03BN01N02N03]
)−1
. (22)

15 Property 6

Again, similarly to the Dependent Function in 1D- and 2D-
spaces, one has:

a) If (x, y, z) ∈ Int (A0M01M02M03B0N01N02N03),
thenK3D(x, y, z) > 1;

b) If (x, y, z) ∈ Fr (A0M01M02M03B0N01N02N03),
thenK3D(x, y, z) = 1;

c) If (x, y, z) ∈ Int (AM1M2M3BN1N2N3−

−A0M01M02M03B0N01N02N03),
then 0< K3D(x, y, z) < 1;

d) If (x, y, z) ∈ Fr (AM1M2M3BN1N2N3),
thenK3D(x, y, z) = 0;

e) If (x, y, z) < AM1M2M3BN1N2N3,
thenK3D(x, y, z) < 0.

16 General Case in 3D-Space

One can replace the prisms by any finite 3D-bodies, bounded
by closed surfaces, and one considers any optimal pointO
(not necessarily the centers of surfaces’ symmetry). Again,
we assume the optimal points are the same for this nest of
two 3D-bodies.

17 Remark 2

Another possible way, for computing the distance between
the pointP and the closest pointP′ to it on the frontier (lateral
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surface) of the prismAM1M2M3BN1N2N3 is by drawing a
perpendicular (or a geodesic) fromP onto the closest prism’s
face, and denoting byP′ the intersection between the perpen-
dicular (geodesic) and the prism’s face.

And similarly if one has an arbitrary finite bodyB in the
3D-space, bounded by surfaces. One computes as in classical
mathematics:

d(P, B) =Inf
Q∈B
|PB|. (23)

18 Linear Attraction Point Principle in 3D-Space

Fig. 9: Linear Attraction Point Principle for any bounded 3D-body.

19 Non-Linear Attraction Point Principle in 3D-Space,
and in (n−D)-Space

There might be spaces where the attraction phenomena un-
dergo not linearly by upon some specific non-linear curves.
Let’s see below such example for pointsPi whose trajecto-
ries of attraction towards the optimal point follow some non-
linear 3D-curves.

20 (n−D)-Space

In general, in a universe of discourseU, let’s have an (n−D)-
set S and a pointP. Then the Extension Linear (n−D)-
Distance between pointP and setS, is:

ρ (P,S) =







































−d(P,P′)
P′∈Fr (S)

, P , 0, P ∈ |OP′|

d(P,P′)
P′∈Fr (S)

, P , 0, P′ ∈ |OP|

−maxd(P,M)
P′∈Fr (S)

, P = 0

(24)

whereO is the optimal point (or linearly attraction point);
d(P,P′) means the classical linearly (n−D)-distance between

Fig. 10: Non-Linear Attraction Point Principle for any bounded 3D-
body.

two pointsP andP′; Fr (S) means the frontier of setS; and
|OP′| means the line segment between the pointsO and P′

(the extremity pointsO andP′ included), thereforeP ∈ |OP′|
means thatP lies on the lineOP′, in between the pointsO
andP′.

For P coinciding with O, one defined the distance be-
tween the optimal pointOand the setS as the negatively max-
imum distance (to be in concordance with the 1D-definition).

And the Extension Non-Linear (n−D)-Distance between
point P and setS, is:

ρc(P,S) =







































−dc(P,P′)
P′∈Fr (S)

, P , 0, P ∈ c (OP′)

dc(P,P′)
P′∈Fr (S)

, P , 0, P′ ∈ c (OP)

−maxdc(P,M)
P′∈Fr (S), M∈c (O)

, P = 0

(25)

where means the extension distance as measured along the
curve c; O is the optimal point (or non-linearly attraction
point); the points are attracting by the optimal point on tra-
jectories described by an injective curvec; dc(P,P′) means
the non-linearly (n−D)-distance between two pointsP and
P′, or the arc length of the curve c between the pointsP and
P′; Fr (S) means the frontier of setS; andc (OP′) means the
curve segment between the pointsO and P′ (the extremity
pointsO andP′ included), thereforeP ∈ (OP′) means thatP
lies on the curvec in between the pointsO andP′.

For P coinciding with O, one defined the distance be-
tween the optimal pointO and the setS as the negatively
maximum curvilinear distance (to be in concordance with the
1D-definition).
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In general, in a universe of discourseU, let’s have a nest
of two (n−D)-sets,S1 ⊂ S2, with no common end points,
and a pointP. Then the Extension Linear Dependent (n−D)-
Function referring to the pointP (x1, x2, . . . , xn) is:

KnD(P) =
ρ (P,S2)

ρ (P,S2) − ρ (P,S1)
, (26)

where is the previous extension linear (n−D)-distance be-
tween the pointP and the (n−D)-setS2.

And the Extension Non-Linear Dependent (n−D)-Func-
tion referring to pointP (x1, x2, . . . , xn) along the curvec is:

KnD(P) =
ρc(P,S2)

ρc(P,S2) − ρc(P,S1)
, (27)

where is the previous extension non-linear (n−D)-distance
between the pointP and the (n−D)-setS2 along the curvec.

21 Remark 3

Particular cases of curvesc could be interesting to studying,
for example if c are parabolas, or have elliptic forms, or arcs
of circle, etc. Especially considering the geodesics would be
for many practical applications. Tremendous number of ap-
plications of Extenics could follow in all domains where at-
traction points would exist; these attraction points could be in
physics (for example, the earth center is an attraction point),
economics (attraction towards a specific product), sociology
(for example attraction towards a specific life style), etc.

22 Conclusion

In this paper we introduced theLinear and Non-Linear At-
traction Point Principle, which is the following:

Let S be an arbitrary set in the universe of discourseU
of any dimension, and the optimal pointO ∈ S. Then each
point P (x1, x2, . . . , xn), n > 1, from the universe of discourse
(linearly or non-linearly) tends towards, or is attracted by, the
optimal pointO, because the optimal pointO is an ideal of
each point.

It is a king of convergence/attraction of each point to-
wards the optimal point. There are classes of examples and
applications where such attraction point principle may apply.

If this principle is good in all cases, then there is no need
to take into consideration the center of symmetry of the set
S, since for example if we have a 2D factory piece which
has heterogeneous material density, then its center of weight
(barycenter) is different from the center of symmetry.

Then we generalized in the track of Cai Wen’s idea
to extend 1D-set to an extension (n−D)-set, and thus de-
fined theLinear (or Non-Linear) Extension(n−D)-Distance
between a pointP (x1, x2, . . . , xn) and the (n−D)-set S as
ρ [(x1, x2, . . . , xn),S] on the linear (or non-linear) direction
determined by the pointP and the optimal pointO (the line
PO, or respectively the curvilinearPO) in the following way:

1) ρ [(x1, x2, . . . , xn),S] is the negative distance between
P and the set frontier, ifP is inside the setS;

2) ρ [(x1, x2, . . . , xn),S] = 0, if P lies on the frontier of the
setS;

3) ρ [(x1, x2, . . . , xn),S] is the positive distance betweenP
and the set frontier, ifP is outside the set.

We got the following properties:

4) It is obvious from the above definition of the extension
(n−D)-distance between a pointP in the universe of
discourse and the extension (n−D)-setS that:

i) Point P (x1, x2, . . . , xn) ∈ Int (S)
if ρ [(x1, x2, . . . xn),S] < 0;

ii) Point P (x1, x2, . . . , xn) ∈ Fr (S)
if ρ [(x1, x2, . . . xn),S] = 0;

iii) Point P (x1, x2, . . . , xn) < S
if ρ [(x1, x2, . . . xn),S] > 0.

5) Let S1 andS2 be two extension sets, in the universe
of discourseU, such that they have no common end
points, andS1 ⊂ S2. We assume they have the same
optimal pointsO1 ≡ O2 ≡ O located in their center
of symmetry. Then for any pointP (x1, x2, . . . , xn) ∈ U
one has:

ρ [(x1, x2, . . . xn),S2] > ρ [(x1, x2, . . . xn),S1] . (28)

Then we proceed to the generalization of the dependent
function from 1D-space to Linear (or Non-Linear) (n−D)-
space Dependent Function, using the previous notations.

TheLinear (or Non-Linear) Dependent(n−D)-Function
of pointP (x1, x2, . . . , xn) along the curvec, is:

KnD(x1, x2, . . . , xn) =
(

ρc[(x1, x2, . . . xn),S2]
)

×

×
(

ρc[(x1, x2, . . . xn),S2] − ρc[(x1, x2, . . . xn),S1]
)−1

(29)

(wherec may be a curve or even a line) which has the follow-
ing property:

6) If point P (x1, x2, . . . , xn) ∈ Int (S1),
thenKnD(x1, x2, . . . , xn) > 1;

7) If point P (x1, x2, . . . , xn) ∈ Fr (S1),
thenKnD(x1, x2, . . . , xn) = 1;

8) If point P (x1, x2, . . . , xn) ∈ Int (S2− S1),
thenKnD(x1, x2, . . . , xn) ∈ (0, 1);

9) If point P (x1, x2, . . . , xn) ∈ Int (S2),
thenKnD(x1, x2, . . . , xn) = 0;

10) If point P (x1, x2, . . . , xn) < Int (S2),
thenKnD(x1, x2, . . . , xn) < 0.
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The paper presents an application of Extenics Engineering principles to a two-dimensional robotic 
workspace. This provides the mathematical basis and considerations for obtaining the trajectory 
tracking reference in robotic applications. A brief history and overview of the relevant theoretical 

concepts is provided.  

 Keywords:  Extenics, robot workspace, reference generation, Extenics control. 

1. INTRODUCTION

Extenics is a science whose stated aim is to deal with unsolvable problems. With applications 
in artificial intelligence, business, marketing, planning, design, control theory and image processing, to 
name just a few, it is one of the fastest developing new fields of study in the world today.  

To be able to manipulate the outcomes of situations which represent contradictory problems, we need 
to have in place a representation, as well as a set of tools and an environment model in which to do so. This 
section will briefly explain the theoretical basis of Extenics and describe the general model of thought in an 
Extenics problem. The three pillars of Extenics Theory are Basic Element, Extension Set and 
Extension Logic. 

Extenics Theory maps all components of a given problem into elements, which provides the basis for a 
working model of the problem. These are called Basic Elements and consist of the triplet formed by 
an object, action or relation, a possibly infinite number of characteristics and their corresponding value 
relating to the object. In mathematical form, we call: 

𝐵 = (

𝑂𝑚 𝑐𝑚1
𝑣𝑚1

⋮ ⋮
𝑐𝑚𝑛

𝑣𝑚𝑛

) = (𝑂𝑚, 𝑐𝑚, 𝑣𝑚) 

a basic element in Extenics Theory. The „m‟ means this particular triplet defines a matter-element (although 
all basic elements are similar from a construction standpoint) [1,2]. 

Elements are organized together with the help of Extension Sets. These provide a means of 
classification for the initial problem, as well as the outcomes. Extension Sets are further processed using any 
number of transformations to achieve a desired result and new norms are introduced for work on them, such 
as Extenics Distances. Working with Extension Sets and the different classes of transformations to solve 
contradictory problems is at the very core of practical Extenics Theory applications.  
Extension Set Theory is a new set theory which aims to describe the change of the nature of matters, thus 
taking both qualitative, as well as quantitative aspects into account. The theoretical definition for an 
extension set is as follows: supposing U to be an universe of discourse, u is any one element in U, k is a 
mapping of U to the real field I, T=(TU ,Tk, Tu) is given transformation, we call: 

𝐸(𝑇) = *(𝑢, 𝑦, 𝑦′)|𝑢 ∈ 𝑈, 𝑦 = 𝑘(𝑢) ∈ 𝐼, 𝑇𝑢𝑢 ∈ 𝑇𝑈𝑈, 𝑦
′ = 𝑇𝑘𝑘(𝑇𝑢𝑢) ∈ 𝐼+ 

Victor Vlădăreanu, Ovidiu-Ilie Șandru, Mihnea Alexandru Moisescu, Florentin Smarandache, Hongnian Yu 
(2016). The Extenics Norm Applied to a Two-Dimensional Robotic Workspaces. Proceedings of the Annual 
Symposium of the Institute of Solid Mechanics and Session of the Commission of Acoustics; Acta 
Electrotechnica 57(1-2), 35-40
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an extension set on the universe of discourse U, y=k(u) the Dependent Function of E (T), and y‟= Tk k(Tu u) 
the extension function of E(T), wherein, TU, Tk and Tu are transformations of the respective universe of 
discourse U, Dependent Function k and element u. If T≠e, that is to say the transformation is not identical, 
four more concepts can be outlined, as follows: 

- positive extensible field (or positive qualitative change field) of E (T):

𝐸⏟
+
(𝑇) = *(𝑢, 𝑦, 𝑦’) ∣ 𝑢 ∈ 𝑈, 𝑦 = 𝑘(𝑢) ≤ 0; 𝑇𝑢𝑢 ∈ 𝑇𝑈𝑈, 𝑦’ = 𝑇𝑘𝑘(𝑇𝑢𝑢) > 0+ 

- negative extensible field (or negative qualitative change field) of E (T ):

𝐸⏟
−
(𝑇) = *(𝑢, 𝑦, 𝑦’) ∣ 𝑢 ∈ 𝑈, 𝑦 = 𝑘(𝑢) ≥ 0; 𝑇𝑢𝑢 ∈ 𝑇𝑈𝑈, 𝑦’ = 𝑇𝑘𝑘(𝑇𝑢𝑢) < 0 + 

- positive stable field (or positive quantitative change field) of E (T ):

𝐸+(𝑇) = *(𝑢, 𝑦, 𝑦’) ∣ 𝑢 ∈ 𝑈, 𝑦 = 𝑘(𝑢) > 0; 𝑇𝑢𝑢 ∈ 𝑇𝑈𝑈, 𝑦’ = 𝑇𝑘𝑘(𝑇𝑢𝑢) > 0+ 
- negative stable field (or negative quantitative change field)of E (T ):

𝐸−(𝑇) = *(𝑢, 𝑦, 𝑦’) ∣ 𝑢 ∈ 𝑈, 𝑦 = 𝑘(𝑢) < 0; 𝑇𝑢𝑢 ∈ 𝑇𝑈𝑈, 𝑦’ = 𝑇𝑘𝑘(𝑇𝑢𝑢) < 0+ 

- extension boundary of E (T ):

𝐸0(𝑇) = *(𝑢, 𝑦, 𝑦’) ∣ 𝑢 ∈ 𝑈, 𝑇𝑢𝑢 ∈ 𝑇𝑈𝑈, 𝑦’ = 𝑇𝑘𝑘(𝑇𝑢𝑢) = 0+ 

This is further illustrated in Figure 1 [1] 

Figure 1. Universe of Discourse in an Extenics Transformation 

The Extension Set, then, is defined in relation to a transformation and an existing function mapped onto 
the universe of discourse. Following the transformation, the Extension Set is divided into the positive and 
negative fields with regard to the dependent function value. Four subsets are therefore defined: the positive 
stable, the positive transitive, the negative stable and the negative transitive field. The stable fields are those 
for which the polarity of the dependent function is unaltered by the transformation, whereas transitive (also 
named extensible) fields are those affected by the change. This provides a useful classification and 
investigation tool for contradictory problem models.  

2. EXTENICS WORKSPACE

Let there be a robotic application determined by a similar workspace to that presented in Figure 2. For 
the mechatronic mechanism within this workspace there is a two-dimensional point reference – defined 
exactly on the axes by the double (x,y) – which must be reached by the robot end-effector. 
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There is assumed an extended controller for actuator control, which implements the concepts of 
Extenics Theory. For this, it will be necessary to know the dependence function, calculated for the multi-
dimensional case, in order to estimate the level of incompatibility, from which follows the intensity of the 
actuator response. This is detailed in [3-5]. For modelling the robotic workspace, it suffices to say that it is 
required to compute the dependent function for multi-dimensional cases. 

Figure 2. Robotic Workspace 

Using the theories developed by Smarandache [6, 7] and Sandru [5, 8] relating to working with the 
dependence function in n-dimensional spaces, its point value can be obtained for the particular case. 

Figure 3. Nested extended interval space relative to reference R 
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Starting from the given reference point R(xr,yr), which is the optimum for the actuator – controlled 
position, there is an accepted reference interval X0 and acceptable interval X, the optimum for both being the 
singular reference R. 

In order to find the values of the extended indicators, two regions of the two-dimensional space are 
considered, as can be seen in Figures 4 and 6. The two zone correspond to the field variations on x and y. 

For any point P(xP,yP) in the first region (shown in Figure 4) can be calculated [6, 7] (cf. Smarandache) 
the 2D extended distance to the existing intervals: 

 ( ,  ) = | |

 ( ,  0) = | | (6.1) 
This will yield the dependent function as: 

𝑘( ) =
 ( , )

 ( ,  , )
=

 ( , )

 ( , )− ( ,  )
=

|  |

| |−|  1|
(6.2) 

Figure 4. Vertical region of the extended field 

In the figure, point P is chosen outside X0, but inside X, which will lead to a negative sub-unitary value 
for the dependence function (the function denominator is negative). Had P belonged to X0, k(Q) would have 
been similarly computed, with the result being positive and, had P been chosen outside X, the dependence 
function value would have been lower than -1.  

Figure 5. Vertical point classes having the same dependence function value 

The dependence function value in point P will thus be the 2D extended distance between the point and 
the closest frontier of the larger interval, divided by the difference of the 2D extended distance between the 

Florentin Smarandache (author and editor) Collected Papers, XIII

781



point and the larger interval, and the point and the smaller interval. All of these distances are considered 
along the line defined by the optimum point R(x,y) and the chosen point P(xP,yP).  

As explained in [9] (Smarandache, Vlădăreanu, 2012) this will determine the dependent function 
within the region, as the final expression does not depend on the value of the y-coordinate in the chosen 
point. This concept is illustrated in Figure 5. For every point Q(xQ,yQ) in the second region (see Figure 6), a 
similar final expression is reached, where: 

𝑘( ) =
 ( , )

 ( ,  , )
=

 ( , )

 ( , )− ( ,  )
=

|  |

| |−|  1|
(6.3) 

Figure 6. Horizontal region of the extended field 

 This will determine classes of horizontal points having the same value of the dependent function, as 
is shown in Figure 7. 

Figure 7. Classes of horizontal points having the same value of the dependent function 

Thus, it can be seen that for such a distribution of the extended intervals upon which the dependent 
function is based, the two-dimensional problem can be separated into two distinct one-dimensional problems. 
It should be noted that this characteristic in not necessarily present in all applications, for which different 
distributions of extended intervals may exist. Beyond the scope of this paper, the subject can be further 
investigated in [6, 10]. These results are the basis for the design, implementation and simulation of Extenics 
Control concepts presented in various papers, and in modelling the robotic workspace and the reference and 
control system for a humanoid walking robot [11].   
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3. CONCLUSIONS

Modelling a robotic workspace using concepts from Extenics Theory contributes to the development of 
a new type of innovative control for robot actuators. The advantages of extended control are remarkable 
through the lack of added complexity in design or implementation. The controller architecture is very 
straightforward, once the function interpreter is established. While the place and limits of the extended sets 
need to be specified and may involve some fine tuning, their optimization is not vital, and perfectly fine 
results can be obtained with simple and intuitive values (such as setting the accepted interval to be ±2% of 
the reference value). 

Extenics control, as discussed in this paper, benefits greatly from being a novelty approach to 
controller design. While this paper proves a working model can be established with basic parameters, the 
possibilities for tweaking and optimizing in the hopes of obtaining improved performance are virtually 
limitless.  

Perhaps most importantly, it represents a shift in the paradigm of controller structure. While the 
controllers themselves have evolved greatly over the years, changes in the way one looks at controllers and 
controller structures have not been frequent. By way of being an implementation of a more generalized 
theory, whose aim is precisely to formalize the process of innovation, there is virtually no end to the 
possibilities for further research. Also, as Extenics Theory continues to grow and mature as a discipline in 
itself, the theoretical advances made are sure to have a favourable impact upon this field of research. 
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Parameterized Special Theory of Relativity (PSTR)
Florentin Smarandache

We have parameterized Einstein’s thought experiment with atomic clocks, supposing that we knew neither if the space and time 
are relative or absolute, nor if the speed of light was ultimate speed or not. We have obtained a Parameterized Special Theory of 
Relativity (PSTR), first introduced in 1982. Our PSTR generalized not only Einstein’s Special Theory of Relativity, but also our 
Absolute Theory of Relativity, and introduced three more possible Relativities to be studied in the future. After the 2011 CERN’s 
superluminal neutrino experiments, we recall our ideas and invite researchers to deepen the study of PSTR, ATR, and check the 
three new mathematically emerged Relativities 4.3, 4.4, and 4.5.

1 Einstein’s thought experiment with the light clocks

There are two identical clocks, one is placed aboard of a
rocket, which travels at a constant speedv with respect to
the Earth, and the second one is on the Earth. In the rocket,
a light pulse is emitted by a source fromA to a mirrorB that
reflects it back toA where it is detected. The rocket’s move-
ment and the light pulse’s movement are orthogonal. There is
an observer in the rocket (the astronaut) and an observer on
the Earth. The trajectory of light pulse (and implicitly the dis-
tance traveled by the light pulse), the elapsed time it needs to
travel this distance, and the speed of the light pulse at which
is travels are perceived differently by the two observers (de-
pending on the theories used — see below in this paper).

According to the astronaut (see Fig. 1):

Δt′ =
2d
c
, (1)

whereΔt′ time interval, as measured by the astronaut,for the
light to follow the path of double distance 2d, while c is the
speed of light.

According to the observer on the Earth (see Fig. 2):

2 l = vΔt , s= |AB| = |BA′|

d = |BB′| , l = |AB′| = |b′A′|




, (2)

whereΔt is the time interval as measured bythe observer on
the Earth. And using the Pythagoras’ Theorem in the right
triangleΔABB′, one has

2s= 2
√

d2 + l2 = 2

√

d2 +
vΔt
2

)2

, (3)

but 2s= cΔt, whence

cΔt = 2

√

d2 +
vΔt
2

)2

. (4)

Squaring and computing forΔt one gets:

Δt =
2d
c

1
√

1− v
2

c2

. (5)

Figure 1

Figure 2

Whence Einstein gets the following time dilation:

Δt =
Δt′

√
1− v

2

c2

. (6)

whereΔt > Δt′

2 Parameterized Special Theory of Relativity (PSTR)

In a more general case when we don’t know the speedx of
the light as seen by the observer on Earth, nor the relationship
betweenΔt′ andΔt, we get:

xΔt = 2

√

d2 +
vΔt
2

)2

. (7)

But d = cΔt′

2 , therefore:

xΔt = 2

√(
cΔt
2

)2

+
vΔt
2

)2

, (8)

or
xΔt =

√
c2(Δt′)2 + v2(Δt′)2 . (9)

Florentin Smarandache (2012). Parameterized Special Theory of Relativity (PSTR). Progress in Physics 2, 28-29
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Dividing the whole equality byΔt we obtain:

x =

√

v2 + c2 Δt′

Δt

)2

. (10)

which is thePSTR Equation.

3 PSTR elapsedtime ratio τ (parameter)

We now substitute in a general case

Δt′

Δt
= τ ∈ (0,+∞) , (11)

whereτ is the PSTR elapsed time ratio.Therefore we split
the Special Theory of Relativity (STR) in the below ways.

4 PSTR extends STR, ATR, and introduces three more
Relativities

4.1 If τ =
√

1− v
2

c2 we get the STR (see [1]), sincereplacing
x by c, one has

c2 = v2 + c2 Δt′

Δt

)2

, (12)

c2

c2
−
v2

c2
=

Δt′

Δt

)2

, (13)

or Δt′

Δt =

√
1− v

2

c2 ∈ [0,1] as in the STR.

4.2 If τ = 1, we get ourAbsolute Theory of Relativity(see
[2]) in the particular case when the two trajectory vectors are
perpendicular, i.e.

X =
√
v2 + c2 = |~v + ~c| . (14)

4.3 If 0 < τ <
√

1− v
2

c2 , the time dilation is increased with
respect tothat of the STR, therefore the speedx as seen by
the observer on the Earth is decreased (becomes subluminal)
while in STR it isc.

4.4 If
√

1− v
2

c2 < τ < 0, there is still time dilation,but
less than STR’s time dilation, yet the speedx as seen by the
observer on the Earth becomes superluminal (yet less than
in our Absolute Theory of Relativity). About superluminal
velocities see [3] and [4].

4.5 If τ > 1, we get anopposite time dilation(i.e. Δt′ > Δt)
with respect to the STR (instead ofΔt′ < Δt), and the speedx
as seen by theobserver on earth increases even more than in
our ATR.

5 Further research

The reader might be interested in studying these new Relativ-
ities mathematically resulted from the above 4.3, 4.4, and 4.5
cases.

References
1. Einstein A. Zur Eletrodynamik bewegter Körper.Annalen der Physik,

1905, v. 17, 891–921.

2. Smarandache F. Absolute Theory of Relativity and Parameterized Spe-
cial Theory of Relativity and Noninertial Multirelativity. Somipress,
1982, 92 p.

3. Smarandache F. There is No Speed Barrier in the Universe. Liceul Ped-
agogic Rm. V̂alcea, Physics Prof. Elena Albu, 1972.

4. Rabounski D. A blind pilot: who is a super-luminal observer?Progress
in Physics, 2008, v. 2, 171.

Florentin Smarandache (author and editor) Collected Papers, XIII

786



Relations between Distorted and Original Angles in STR
Florentin Smarandache

Using the Oblique-Length Contraction Factor, which is a generalization of Lorentz Con-traction Factor, one shows several trigonometric 
relations between distorted and original angles of a moving object lengths in the Special Theory of Relativity.

1 Introduction

The lengths at oblique angle to the motion are contracted with
the Oblique-Length Contraction Factor OC(ν, θ), defined as
[1-2]:

OC(ν, θ) =
√

C(ν)2 cos2 θ + sin2 θ (1)

where C(ν) is just Lorentz Factor:

C(ν) =

√
1 − ν

2

c2 ∈ [0, 1] for ν ∈ [0, c]. (2)

Of course
0 ≤ OC(ν, θ) ≤ 1. (3)

The Oblique-Length Contraction Factor is a generalization of
Lorentz Contractor C(ν), because: when θ = 0, or the length
is moving along the motion direction, then OC(ν, 0) = C(ν).
Similarly

OC(ν, π) = OC(ν, 2π) = C(ν). (4)

Also, if θ = π/2, or the length is perpendicular on the motion
direction, then OC(ν, π/2) = 1, i.e. no contraction occurs.
Similarly OC(ν, 3π

2 ) = 1.

2 Tangential relations between distorted acute angles vs.
original acute angles of a right triangle

Let’s consider a right triangle with one of its legs along the
motion direction (Fig. 1).

Fig. 1:

tan θ =
β

γ
(5)

tan(180◦ − θ) = − tan θ =
β

γ
(6)

After contraction of the side AB (and consequently contrac-
tion of the oblique side BC ) one gets (Fig. 2):

Fig. 2:

tan(180◦ − θ′) = − tan θ′ = −β
′

γ′
= − β

γC(ν)
. (7)

Then:

tan(180◦ − θ′)
tan(180◦ − θ) =

− β

γC(ν)

−β
γ

=
1

C(ν)
. (8)

Therefore
tan(π − θ′) = − tan(π − θ)

C(ν)
(9)

and consequently

tan(θ′) =
tan(θ)
C(ν)

(10)

or
tan(B′) =

tan(B)
C(ν)

(11)

which is the Angle Distortion Equation, where θ is the angle
formed by a side travelling along the motion direction and
another side which is oblique on the motion direction.

Florentin Smarandache (2013). Relations between Distorted and Original Angles in STR. 
Progress in Physics 3, 21-24
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The angle θ is increased (i.e. θ′ > θ ).

tanφ =
γ

β
and tanφ′ =

γ′

β′
=
γC(ν)
β

(12)

whence:

tanφ′

tanφ
=

γC(ν)
β
γ

β

= C(ν). (13)

So we get the following Angle Distortion Equation:

tanφ′ = tanφ ·C(ν) (14)

or
tan C′ = tan C ·C(ν) (15)

where φ is the angle formed by one side which is perpendicu-
lar on the motion direction and the other one is oblique to the
motion direction.

The angle φ is decreased (i.e. φ′ < φ). If the traveling
right triangle is oriented the opposite way (Fig. 3)

Fig. 3:

tan θ =
β

γ
and tanφ =

γ

β
. (16)

Similarly, after contraction of side AB (and consequently con-
traction of the oblique side BC) one gets (Fig. 4)

tan θ′ =
β′

γ′
=
β

γC(ν)
(17)

and

tanφ′ =
γ′

β′
=
γC(ν)
β

(18)

tan θ′

tan θ
=

β

γC(ν)
β

γ

=
1

C(ν)
(19)

or

tan θ′ =
tan θ
C(ν)

(20)

Fig. 4:

and similarly

tanφ′

tanφ
=

γC(ν)
β
γ

β

= C(ν) (21)

or
tanφ′ = tanφ ·C(ν). (22)

Therefore one got the same Angle Distortion Equations for a
right triangle traveling with one of its legs along the motion
direction.

3 Tangential relations between distorted angles vs.
original angles of a general triangle

Let’s suppose a general triangle ∆ABC is travelling at speed
v along the side BC as in Fig. 5.

Fig. 5:

The height remains not contracted: AM ≡ A′M′. We can split
this figure into two traveling right sub-triangles as in Fig. 6.

In the right triangles ∆A′M′B′ and respectively ∆A′M′C′

one has

tan B′ =
tan B
C(ν)

and tan C′ =
tan C
C(ν)

. (23)

Also

tan A′1 = tan A1C(ν) and tan A′2 = tan A2C(ν). (24)
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Fig. 6:

Fig. 7:

But

tan A′ = tan(A′1 + A′2) =
tan A′1 + tan A′2

1 − tan A′1 tan A′2

=
tan A1C(ν) + tan A2C(ν)

1 − tan A1C(ν) tan A2C(ν)

= C(ν) · tan A1 + tan A2

1 − tan A1 tan A2C(ν)2

= C(ν) ·

tan A1 + tan A2

1 − tan A1 tan A2
· (1 − tan A1 tan A2)

1 − tan A1 tan A2C(ν)2

= C(ν) · tan(A1 + A2)
1

· 1 − tan A1 tan A2

1 − tan A1 tan A2C(ν)2 .

tan A′ = C(ν) · tan(A) · 1 − tan A1 tan A2

1 − tan A1 tan A2C(ν)2 . (25)

We got

tan A′ = tan(A) ·C(ν) · 1 − tan A1 tan A2

1 − tan A1 tan A2C(ν)2 (26)

Fig. 8:

4 Other relations between the distorted angles and the
original angles

1. Another relation uses the Law of Sine in the triangles
∆ABC and respectively ∆A′B′C′:

α

sin A
=
β

sin B
=
γ

sin C
(27)

α′

sin A′
=
β′

sin B′
=
γ′

sin C′
. (28)

After substituting

α′ = αC(ν) (29)

β′ = βOC(ν,C) (30)

γ′ = γOC(ν, B) (31)

into the second relation one gets:

αC(ν)
sin A′

=
βOC(ν,C)

sin B′
=
γOC(ν, B)

sin C′
. (32)

Then we divide term by term the previous equalities:

α

sin A
αC(ν)
sin A′

=

β

sin B
βOC(ν,C)

sin B′

=

γ

sin C
γOC(ν, B)

sin C′

(33)

whence one has:

sin A′

sin A ·C(ν)
=

sin B′

sin B · OC(ν,C)

=
sin C′

sin C · OC(ν, B)
.

(34)

2. Another way:

A′ = 180◦ − (B′ +C′) and A = 180◦ − (B +C) (35)

tan A′ = tan[180◦ − (B′ +C′)] = − tan(B′ +C′)

= − tan B′ + tan C′

1 − tan B′ · tan C′
Similarly we can split this Fig. 7 into two traveling right

sub-triangles as in Fig. 8.
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= −

tan B
C(ν)

+
tan C
C(ν)

1 − tan B · tan C/C(ν)2

= − 1
C(ν)

· tan B + tan C
1 − tan B · tan C/C(ν)2

= − tan(B +C)
C(ν)

· 1 − tan B tan C
1 − tan B · tan C/C(ν)2

= −− tan[180◦−(B +C)]
C(ν)

· 1 − tan B · tan C
1− tan B · tan C/C(ν)2

=
tan A
C(ν)

· 1 − tan B · tan C
1 − tan B · tan C/C(ν)2 .

We got

tan A′ =
tan A
C(ν)

· 1 − tan B · tan C
1 − tan B · tan C/C(ν)2 . (36)
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Remark on Possible Binary Companion of the Sun: 
Towards a Symmetric Cosmology model which may be 

called Quantum Liquid Dirac-Milne (QLDM) model

1 Abstract

In a recent paper, we review our previous paper where we put forth an argument
that from Bohr-Sommerfeld quantization rules we can come up with a model of
quantized orbits of planets in our solar system, be it for inner planets and also for
Jovian planets. Now, considering a well-known problem of asymmetry between
matter-antimatter in cosmology studies[18], we discuss how we can solve this
problem by put forth a new conjecture that there are large scale antimatter
in the form of negative masses in this Universe, hence avoiding the problem
of matter-antimatter asymmetry. Subsequently, we argue that provided that
Newton-Schrödinger approach to planetary quantization may be problematic,
then perhaps it is time to consider Dirac-Milne cosmology with its extension to
quantum liquid, especially in the context of symmetric cosmology.

2 Introduction

In a preceding article, we introduced some new disputes on the theoretical lit-
tle star thought to be a partner to our Sun, known as the Nemesis, which is
proposed to explain a clear example of mass destructions in Earth’s history.

Victor Christianto, Florentin Smarandache, Yunita Umniyati (2021). Remark on possible binary 
companion of the sun: towards a symmetric cosmology model which may be called Quantum Liquid 
Dirac-Milne (QLDM) model. Octogon Mathematical Magazine 29(1), 342-347

Victor Christianto, Florentin Smarandache, Yunita Umniyati

Florentin Smarandache (author and editor) Collected Papers, XIII

791



Some speculated that such a star could impact the hover of comet shower in
the far outer close planetary framework, sending them on a brief training with
Earth. While continuous infinite surveys fail to find any verification that such
a binary companion star exists, we present in this article some theoretical ar-
guments including our own, proposing that such a small star buddy of the Sun
stays a possibility. Also, one great marker for such a bantam buddy of the
Sun is Sedna, a planetoid which has been found around 2004 by Mike Brown
and his Caltech group. Sedna area and unconventional circle are with the end
goal that it should be there [1][6]. Therefore a physical explanation of why
Sedna is located there can be a good start to begin to search the existence and
location of the supposedly dwarf companion of the Sun. Strikingly, we can com-
ment here that condition above is actually the equivalent with what is gotten
by Nottale utilizing his Schrödinger-Newton formula [12]. In this manner here
we can check that the outcome is the equivalent, it is possible that one uses
Bohr-Sommerfeld’s quantization rules of Schrodinger-Newton condition. The
relevance of condition above can incorporate that one can anticipate new exo-
planets (i.e., extrasolar planets) with noteworthy outcome. Consequently, one
can find a neat correspondence between Bohr-Sommerfeld quantization rules
and development of quantized vortices in united issue structures, especially in
superfluid helium [1]. Here we propose a guess that superfluid vortices quan-
tization runs additionally give a decent depiction to the planetary circles in
our Solar System. A thought that given the science structure of Jovian plan-
ets are unique in relation to inward planets started around 15 years prior, in
this manner it is likely both arrangement of planets have diverse cause. By
accepting inward planets circles have distinctive quantum number from Jovian
planets, here by utilizing ”least square difference” method (with the help of a
computer spreadsheet program) so as to look for the most ideal straight line
for Jovian planets circles in an alternate quantum number. At that point it
came out that such a straight line must be displayed on the off chance that
we accept that the Jovian planets were begun from a twin star framework: the
Sun and its partner, utilizing the idea of reduced mass, as we often find at solid
state physics textbooks. Although based on statistical optimization, it yields
new prediction of 3 planetoids in the outer orbits beyond Pluto, from which
prediction, Sedna. A figure as shown below shows results of our simple model
based on large-scale quantization inspired by Bohr-Sommerfeld’s rule obtains a
remarkably good prediction compared to observation:

3 Extension to symmetric Dirac-Milne cosmol-
ogy is possible

In the previously mentioned segments, we set forth a contention for low tem-
perature material science model of nearby planetary group, specifically utilizing 
Bogoliubov-de Gennes conditions which are typically used for superconductors. 
While this makes the model somewhat less difficult and understandable, one may
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Figure 1: Comparison between observed and calculated inner and outer plane-
tary orbit distances in the Solar System. Source: V. Christianto, Apeiron, vol.
23, July 2004. url: http://redshift.vif.com
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ask: what are different confirmations accessible to legitimize the BdG model for 
the Solar framework. In this respects, permit us to submit three supporting con-
firmations which appear to compare to the calculated model as we illustrated 
previously: * Pairing of Pluto-Charon and other TNOs/KBOs seem to be at-
tributed to the BCS/BdG pairing condition; ** pointing to low temperature 
physics model of Solar System; *** Solar interior has superfluid inner structure 
(Oliver K. Manuel et al); see for instance [19-20]. Some literatures argue that 
G1.9 is remnant of supernovae, others argue that G1.9 cannot be supernovae, 
instead it is more plausible to argue that G1.9 is brown dwarf star. Now, we 
refer to paper by Boney and also by Heald, who argue that (a) Dirac Feynman’s 
interpretation of Dirac equation symmetry as requiring that antimatter is just 
an ordinary matter going backward in time, that is not the only possibility. 
Quote from Heald [13]: “If rest mass energy is not a real scalar quantity but 
a potential imaginary energy, then the rest mass of antimatter will have neg-
ative potential energy. Accordingly, it would follow that the total relativistic 
energy of a matter or antimatter particle can be described by a complex vector 
summing the real kinetic and imaginary rest mass energies and Newton’s law of 
gravitation will remain valid for antimatter. Theorems of quantum physics and 
general relativity have shown that antimatter has negative gravitational mass, 
and so matter and antimatter bodies will exert mutual gravitational repulsion.” 
Boney also suggests that it is also equally possible to interpret antimatter as 
having negative mass. He wrote: “Unfortunately, it seems there is no imperative 
to imagine antimatter moves backwards in time, at least from the Dirac Equa-
tion, if you allow negative mass solutions.”[14] The notion of negative mass is 
admittedly quite strange for solar physics or cosmology, but it is well accepted in 
solid state physics and condensed matter physics. Moreover, Anastopoulos Hu 
argue that (b) Newton-Schrödinger equation which is quite common in some 
models for AQT (alternative quantum theory), especially for macroquantum 
physics, is quite problematic.[15] Provided arguments (a) and (b) above can be 
accepted, then we suggest to consider symmetry between ordinary matter and 
antimatter (negative mass) should be considered from the beginning of physical 
modelling. As such, that is why we consider Bogoliubov-De Gennes instead 
of Newton-Schrödinger equation. In addition, we may also consider symmetric 
Dirac-Milne cosmology model, which is essentially a generalized Newtonian cos-
mology which admits negative gravitational mass. There are growing interests 
to such a Dirac-Milne model in recent years. [16-17] This appears to help our 
suggestion of conceivable twofold buddy of the Sun as negative mass star (NMS) 
as we considered in a prior paper [1]. Similarly as with expected area to dis-
cover the bantam friend of the Sun, we can specify quickly here that since 2017, 
there is an article named as G1.9 which was seen around 60-66 AU (around 
Pluto/Kuiper Belt); see [21]. In this manner it very well may be a decent begin 
to see if the G1.9 is surely the bantam friend of the Sun that we’re searching 
for from the beginning. Moreover, further investigations are needed to extend 
Dirac Milne model towards symmetric Quantum Liquid Dirac Milne (QLDM), 
as implicated by our superfluid dynamics model.
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4 Concluding remarks

In this paper, we present a contention that Bohr-Sommerfeld quantization con-
dition can be connected to Bogoliubov-de Gennes conditions, and hence it will
in general be demonstrated that such a Bohr-Sommerfeld’s quantization rules
can be associated with enormous degree structure quantization, for instance,
our close by planetary gathering in Solar framework. At that point we recom-
mend to think about balance between customary issue and antimatter (negative
mass) ought to be considered from the earliest starting point of physical demon-
strating. Accordingly, that is the reason we consider Bogoliubov-De Gennes
rather than Newton-Schrödinger condition. Furthermore, we may likewise con-
sider DiracMilne cosmology model, which is basically a summed up Newtonian
cosmology which concedes negative gravitational mass. In addition, further
examinations are expected to broaden Dirac Milne model towards symmetric
Quantum Liquid Dirac Milne (sQLDM), as involved by our superfluid vortices
model.
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Remark on creation and dis-creation processes related 
to origination of charge and matter 

Robert N. Boyd, Victor Christianto,  Florentin Smarandache

 Abstract 
The ubiquitous creation process of the electron-positron pairs is brought out as being due to resonant von 
Karman vortex streets caused by local aether flows, as related to the Kelvin-Helmholtz vortex model of the 
electron and positron from fluid dynamics. The origination of electric charge is discussed as being caused by the 
bending and slowing of infinite velocity vortex lines, where electrons and positrons exhibit continuous charge 
because vortex lines are captured,  always bent away from a perfectly straight line, and constantly circulate 
internal to these particles. The ubiquitous dis-creation (dissociation) of atomic matter due to gamma ray 
resonance with the given atom, can be controlled, and can produce any manner of force desired, arising from the 
vicinity of the atomic dissociation site. Both processes, creation and dis-creation, can produce excess electrical 
energy, so we think these investigations are valuable, in this regard. As these useful matter creation processes are 
more deeply investigated and new technologies arise from these studies, we will be able to make any amount of 
any kinds of atoms we like. We will also will be able to make "designer atoms" which will have physical 
properties, as desired by us, perfectly suited for the selected application. 

Keywords: Creation Process; Dis-creation Process; Origination of charge 

     Introduction 
The origination of charge is a creation process. Infra-atomic reactors (cf. G. Le Bon) are based on dis-creation 
processes. Both these things are happening all the time, everywhere. Matter is both created and destroyed all the 
time, everywhere. This has already been proved by experiments and instrumented observations. Therefore, now 
it appears worthy to discuss how these processes may be related to origination of charge and matter.  
That is the topic of this short communication. 

Robert N. Boyd, Victor Christianto, Florentin Smarandache (2022). Remark on creation and dis-creation 
processes related to origination of charge and matter. Journal of Cosmology, Filaments and Astrobiology 
1(1), 33-41; DOI: 10.54216/JCFA.010105
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Section 1. KH electron vortex and turbulence theory 

Turbulence origination of Kelvin-Helmholtz electron vortex from classical perspective (see also ref. [1]) 
For a non-viscous fluid, pressure exerts a force of -grad p per unit volume. (There is also a gravitational aether 

force, ρg per unit volume.) The aether fluid obeys Newton's law of motion, so ρdv/dt = -grad p, as the equation 
of motion.  (This is used to determine fluid pressure when the flow is known.)  

A vorticity field is ω(x,y,z,t) in magnitude and direction, at any point. Lines drawn parallel to ω are called 
vortex lines, and their density can express the strength of the rotation, just as streamlines define the velocity 
field, and magnetic field lines define a magnetic field. (Such lines are not real, but greatly aid in visualization). 

The line integral of the component of velocity, tangent to a closed curve, is called "circulation", and clearly 
measures the amount of rotation in the vortex. Let's take a small circle surrounding an area A = πr2 as the path of 
integration. If the angular velocity is ω, then the circulation will be 2πr x ωr = 2πωr2 = 2ωa. Thus, the circulation 
of the fluid, per unit area, is directly proportional to the angular velocity of rotation. 

Stokes's Theorem states that the circulation of a vector about any curve C, is the surface integral of the curl (del 
cross) of the vector over the area enclosed by C. If this is applied to the present case, we find that curl v = 2ω, so 
that the rotation of the vortex is half the curl of the velocity. Since the divergence of the curl of a vector is 
identically zero, div ω = 0.  

This means that if we consider a tube whose walls are parallel to ω, called a vortex tube, then this tube has the 
same "strength" (the product of the area and ω), at any point. This means that the vortex tube cannot end within 
the fluid, and must either close into a ring, or go to a boundary. 

The Kelvin-Helmholtz theorem, states that the substantial derivative of the circulation about any curve C, in a 
fluid of zero viscosity, vanishes. This applies to any curve C on the walls of a vortex tube, or in any surface 
parallel to the vorticity, and implies that vortex lines are carried with the fluid, and that the "strength" at any 
point remains constant.  

If the initial state of a fluid to which the KH theorem applies, has no rotation, that is, curl v = 0 everywhere, the 
fluid will remain irrotational as it moves. This also means that if rotation exists in the vortex, it will persist for all 
time.  

The stream function in a fluid or gas is analogous to the use of the vector potential of the magnetic fields of 
electric currents. From this, the foundational basis of electromagnetism is actually a description of fluidic flows 
in the aether. 

Consider a vector field 

A = kA(x,y),  (1) 

where A(x,y) may also vary with the time, but we will consider that later. Suppose that v is derived from A by 
the rule v = curl A.  Writing this out:  

v = i(∂A/∂y) - j(∂A/∂x),                                                                           (2) 

so that vx = ∂A/∂y and vy = -∂A/∂x. Now, writing out the continuity equation of 

div v = 0,                                                                                              (3) 
it is automatically satisfied for any function A. To find the relationship between A and the vorticity, we write 

out the z-component of curl v, to find that 
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2ω = ∂vy/∂x - ∂vx/∂y -div grad A.                                                          (4) 
In considering two-dimensional motions, the vorticity of the aether fluid can only be parallel to the z-axis, since 
the velocity must lie in the x y-plane and is independent of z. (The vector potential of a magnetic field satisfies 
the same equation, where the current takes the place of fluidic vorticity.) The above, is Helmholtz's equation. 
The one scalar function A, thus allows us to find two interrelated components of the fluid velocity.  

If the aether flow is irrotational, then A will satisfy Laplace's equation, and solve the problem as well as the 
velocity potential φ. In fact, A and φ are conjugate functions. In two dimensions, they are the real and imaginary 
parts of a complex analytic function. The streamlines A = constant, are orthogonal to the equipotentials φ = 
constant, again pointing to the direct relation between fluidic aether flows and the Maxwell equations.  

Vortex lines have been postulated to study fluid dynamics. A vortex line has a finite strength (vorticity times 
area), but zero area, similar to the understanding that a dipole has zero length. The resulting vortex lines tend to 
propagate at infinite velocity, as long as the lines remain absolutely straight. This would be the 5th aether phase 
state in Mishin's 5-phase aetherdynamics.1 See figure 1 below.2 

Figure 1: Mishin's 5-phase aetherdynamics. 

1 https://www.researchgate.net/figure/Mishins-5-phase-aetherdynamics_fig7_329072312 

2 In Figure 1, there is reference to phase 5: Intergalactic superluminal. A few additional note: Based on a 1972 
manuscript, when he (FS) was a student in Rm. Valcea, he published in 1982 the hypothesis that 'there is no 
speed barrier in the universe and one can construct any speed', ( 
http://scienceworld.wolfram.com/physics/SmarandacheHypothesis.html). This hypothesis was partially validated 
on September 22, 2011, when researchers at CERN experimentally proved that the muon neutrino particles travel 
with a speed greater than the speed of light. We will discuss this superluminal hypothesis in the next paper 
submitted to this journal. 
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The aether flows around an already existing, but non-motional, electron vortex in a streaming aether fluid flow, 
sheds vortex pairs which are rotating in opposite directions, alternately from the two sides of the KH vortex, 
resulting in lines made of vortices, called a “vortex street" (also called a "von Kármán street"), behind it. These 
"streets" are seen on all scales, from flows in brooks, to clouds in the atmosphere, to the fluidic aether in which 
KH electron vortices eventually come into existence. 

Figure 2: Photographs of von Karman streets in clouds (see also ref. [1]) 

Alternating transverse forces can act on a cylinder, for example a telephone wire, which can make it vibrate. This 
is the reason why wires "sing" in the wind. The wire cylinder is stationary in a stream of moving media.  Behind 
the cylinder is a turbulent wake of slowed air. Two vortex sheets are formed on each side of the wake, and their 
instability results in the vortex streets (streams of vortices). Vortices are formed in a Kelvin-Helmholtz 
instability in the same way. Analogous effects occur in aether flows which pass around an existing electron 
sphere, but in this situation the resulting "street" of vortices form into rings, which are exactly many newly 
formed KH vortices.  

Vortex "shedding" produces resonances with the object that impeded the flow. In this case, the vortices are 
resonant with the existing electron. This means the positron could be viewed as an "anti-resonant" particle. 
Resonance at this level will constrain the vortices in the "street" to form duplicates that are the same as the 
original forms, in terms of "aether mass" (constrained aether infinitesimals). This also implies that positrons can 
be the basis for the  

formation of new electrons, in the parallel aether stream. See figure 3. 
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Figure 3: alternating electron-positron, alternating rotation directions (Wikipedia gif) 

This raises a number of questions: Does this imply that both positive and negative charges already both exist, 
internal to the aether which comprises the aether winds? This implies that behaviors of obstructed aether flows 
are the origination of the cause of the distinct charges of electrons and positrons, and of electrons and protons. 

The KH vortex model of the electron is simultaneously a sphere, surrounding a nest of concentric smaller 
vortices, which have a vortex ring at the middle of the concentric aether flows which comprise the particle. (So 
the ring model is only partially valid). 

Section 2: KH electron vortex and origination of charge and matter 

Vortex lines have been postulated to study fluid dynamics. A vortex line has a finite "strength" (vorticity times 
area), but a zero area, similar to the understanding that a dipole has zero length. Vortex lines tend to propagate at 
infinite velocity, as long as the lines remain absolutely straight. (This would be the 5th aether phase state in 
Mishin's 5-phase aether dynamics. See Figure 1.) 

Importantly, the instant a vortex line departs from an absolutely straight line of propagation, charge develops in 
all the vortex lines that are bent. According to the direction of the bend, away from a perfectly straight line, a 
positive or a negative charge develops. In addition, with every bend in the propagation line, the vortex line is 
slowed to below an infinite velocity. Eventually vortex lines are moving slowly enough to comprise the 5 phase-
state aether and can produce new matter through interacting with existing matter by way of “von Karman 
streets”, where there is an “aether wind” in the vicinity of the existing matter. 

Parity (handedness) is directly involved in the development of charge. Parity determines the sign of the charge. 
The internal quantum numbers of electrons are opposite to those of positrons, which is just a restatement of the 
handedness (parity) of the internal aether circulation directions. The involvement of superluminal SQ 
infinitesimals in the formation of electrons and positrons, and superluminal internal circulations of the aether 
constituents of electrons and positrons, eliminates Lorentz "invariance" from consideration.  

Lorentz "invariance" is only valid for the single absolute value of c, which value has been experimentally 
proven to vary by as much as plus and minus 3000 meters per second, as recorded in the handwritten log-books 
associated with the hundreds of repetitions of the Michelson-Moreley experiments during the last century; see 
ref. [7]. In addition, Lorentz "invariance" has nothing to do with electrons, positrons, and so on, due to the fact 
that "invariance" is only valid for exact specific-velocity photons, which are not identical to electrons, contrary 
to the expressions of Heisenberg in his first book on quantum theory. 
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Vortex lines circulating internal to electrons or positrons are always bent away from a straight line, so the vortex 
lines circulating internal to electrons and positrons are always creating charge. This is the origination of 
charge and the reason charge never ceases, as long as the charged particle exists. 

In addition, the electron-positron pairs are forming in aether-connected chains, which chains are responsible for 
the creations of atoms, as well as protons and neutrons, in a manner which depends on how long is the “street” of 
connected electron-positron pairs, which in turn, become parts of the nucleus of the new atom, in terms of the 
atomic number of the nucleus of the atom, in an 
e-p pair model of the composition of, and the construction of, the protons and neutrons which comprise the
nuclear particles of atoms.

If the parallel aether flows which are forming chains of e-p pairs are short-lived, we will only see hydrogen, or 
perhaps the occasional helium atom being generated. Longer e-p chains result in larger atoms. The local density 
of types of atoms and alignments of atoms, may give an indication of the frequency of aether wind streamlines, 
in that region. Proper instrumentation of vortex-line (SQ infinitesimals) resultant behaviors can be used to map 
astronomical space, comprising an infinite range observation capability, due to the fact that vortex lines 
propagate with infinite velocity. 

Section 3: Creation and dis-creation processes 

As we wrote above, the origination of charge is a creation process. Infra-atomic reactors (cf G. Le Bon) are 
based on dis-creation processes. Both these things are happening all the time, everywhere. Matter is both created 
and destroyed all the time, everywhere. This has already been proved by experiments and instrumented 
observations. The infinite volume universe has creation and dis-creation events going on everywhere all the time. 
Creation is ubiquitous and unending. Everything and everybody participates in creation processes. 

Thermodynamics is not valid, in general, except that topological thermodynamics has some important merit. The 
late Prof. R.M. Kiehn made excursions into the topological thermodynamics of Pfaff Dimension 4, which is 
highly commended.3 Kiehn proved that volumes which topologically occupy Pfaff Dimension 4, can gain or lose 
energy and/or mass. Thus topological Pfaff Dimension 4 activities can involve both creation and dis-creation of 
both matter and energy. 
The KH electron creation process described above, makes perfect sense from the von Karman “vortex street" 
perspective, which results in electron-positron chains, which can form larger nuclear particles if the chain is long 
enough, and then entire atoms, if the chain of alternating electrons and protons is long enough.  
The physical extent of subatomic particles such as the electron, proton, and neutron, have been measured by 
experiments. The stability and longevity of subatomic particles are fairly well documented. The life span of 
subatomic particles is incorrect though, as the proton is calculated, without physical evidence, to live for billions 
of years. They do not. The universal proton life-span is considerably shorter than that, on average, when 
universally ubiquitous gamma ray dissociations of atoms are included in considerations of the average life of a 
proton. 

It is conjectured that when an electron captures a photon, the mass and the size of the electron increase for a 
short time.  
This helical form of EM ties into the KH electron, during photon capture events, The captured photon causes an 
energetic imbalance in the desired and required stability of the electron, which causes the photon to be ejected in 
a short while. 

3 See for instance R.M. Kiehn. The Universal Effectiveness of Topological Thermodynamics. April 2014. url: 
https://www.amazon.com/Effectiveness-Topological-Thermodynamics-Non-Equilibrium-
Irreversible/dp/1304702928 
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Perhaps the formation of the electron during a creation incident causes the aether which is involved in the 
electron, to change its phase-state towards being a "solid". This might account somewhat for the physical 
properties and behaviors of the electron. Does the electron change form in any way, while it is involved with an 
atom? Atoms are all about aether motion, ultimately. 

The fact that some atoms are the same sizes as some gamma rays, can cause a resonance-breakdown, when a 
gamma ray, exactly the same size as the given atom, passes somewhere close to that atom, causing the entire of 
the atom to dissociate into the aether from whence it came. Poof! Gone. No other particles arise. Now liberated 
from participating in the particles that used to exist there, large numbers of infinite velocity vortex lines radiate 
from the dissociation site, starting matter creation processes anew. 

If the gamma ray which causes atomic dissociation is not exactly the perfect wavelength for the given atom, the 
atom will break down in showers of multitudes of subatomic particles, rushing away from the former location of 
the atom.  

Some of these particles cannot be observed during collider experiments, which are as primitive as throwing rocks 
at other rocks from a large distance, and then studying the small bits of rock and dust, resulting from the 
collision. ("Look! This bit has some red in it!", all excited about the discovery.) There is a limit to what can be 
produced by colliders, based on the angles of intersection during the occasional collisions, and according to what 
is colliding with what.  

There have been very few collider experiments involving atoms, by the way. We wonder why? We think it is 
because they don't want people to know what happens to atoms during collider experiments. Nuclear 
"enrichment" by neutron bombardment is the only collider-type event that they will allow the public to hear 
about.  

T. Henry Moray made apparatus which involved a linear accelerator bombarding gold mine refuse, which was
slowly passing through the accelerator output, on a conveyor belt. Moray's apparatus made prolific quantities of
gold appear in the mine tailings refuse, as gold "seed atoms", scattered through the tailings, proliferated into
larger and larger numbers of gold atoms which appeared near the “seed atoms”, eventually forming into gold
crystals, which were directly connected to the originating "seed atom". This gold-producing process was quite
profitable, even considering the expenses of the equipment.
Infra-atomic interactions (resonant gamma rays and atoms) are interesting. Exact atom-gamma ray resonance 
will result in the entire of the atom being converted back into aether, and entirely vanishing. By controlling the 
exact frequency of gamma radiation, relative to a given atom, when the impacting gamma ray has a small 
frequency deviation, away from exact resonance with the given atom, when the atom-gamma ray interaction 
occurs, not only are showers of subatomic particles resulting, but specific forces of any selected kind, will arise 
from the reaction site. Which force arises depends on the exact frequency offset departing from exact gamma ray 
resonance with the given type of atom.  

Heat, light, cold, attractive force, repulsive force, gravity, anti-gravity, magnetism, electric fields, anti-electric 
fields, propulsive force, indeed, whatever kind of force you would like, will be radiated from the infra-atomic 
interaction site, directly controlled by the gamma ray frequency offset, relative to the given atomic element. 
Since this is not exact resonance, some subatomic particle effluvia will result, and must be accounted for, for 
safety reasons, in the local environment surrounding the reactor.  

Section 4. Remark on Tesla's magnifying transmitter 
Telsa's "magnifying transmitter" produces streams of aether which radiate from the electrical explosion point at 
the rate of 1/r. This apparatus is what is required to produce prolonged streams of aether, with close to parallel 
emanations of aether, to create matter in the von Karman vortex aether creation model of matter production. The 
strength and duration and duty cycle of the magnifying transmitter operation determine how many e-p pairs are 
created in a string, which determines what kinds of atoms will be created. Thus kinds of atoms created can be 
directly controlled through controlling the operational parameters of the magnifying transmitter. 
This is vastly superior to destructive and limited collider techniques, which are only able to make isolated pairs. 
The magnifying transmitter approach can make strings of selected numbers of e-p pairs, thus producing selected 
types of atoms. 
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Tesla's magnifying transmitter technology needs to be re-awoken to make this available. Many additional 
capabilities are available from Tesla's magnifying transmitter apparatus, such as wireless and safe transmission 
of electrical power and wireless communications which do not cause any hazards to life-forms. 

Section 5. Concluding note: Practical and potential implications of the proposed view 

In this article, we discuss shortly on creation and dis-creation processes related to origination of charge and 
matter by the production of any force you like, especially from Kelvin-Helmholtz electron vortex theory. Both 
processes, creation and dis-creation, can produce excess electrical energy, so we think such an investigation is 
worthy to continue.  

When the matter creation process is deeply investigated and technologies arise from the studies, we will be able 
to make any amount of any kinds of atoms we like.  
Later, after deeper investigations, we will be able to make "designer atoms" which will have physical properties, 
as desired by us, perfectly suited for the selected specific application.  

For example, Gustave Le Bon made an "infra-atomic" reactor, which he designed to produce electricity. Le Bon 
stated that any kind of atom could be used as fuel. His reactor was so efficient, he stated that after 100 years of 
continuous operation, at 500 kilowatts, the atomic material he used would be measured to have lost 
approximately 1 gram of weight, the lost matter having reverted into the aether.[3] 

Using the same principles as outlined above, when sufficient control of atom parameters becomes available, we 
could produce a version of the metal lead with atoms which do not melt until 2000o C temperature is exceeded. 
(This example was accomplished by T. Henry Moray, during the 1950s. Moray sent useful weights of samples of 
his new form of lead to many Universities, chemical suppliers and chemical manufacturers for them to examine 
and experiment with. None of them responded. See also Ref. [6]) 
There will be limits regarding which atomic parameters can be controlled, and to what extent the physical 
properties of the given atomic element can be changed, which will be specific to that kind of atom.  

However, tailored combinations of tailored atoms can manufacture new kinds of materials, and new kinds of 
custom-tailored alloys, with amazing physical properties. 

In the sequence of new technology developments related to matter-creation processes, we will eventually be able 
to make complicated large objects, such as extraordinarily capable automobiles, on an atom-by atom basis.  
Soon after that stage is reached, we will be able to mass produce anything we choose, on an atomic basis, at no 
cost for the materials, and no cost for the automated assembly. The item can be made an integral whole, with no 
bolts or rivets or welds or adhesives required to assemble the unit on an atom-by-atom basis. 
Eventually, making new cars on an atomic basis, will be as easy and convenient as printing a page out of your 
computer. 

Acknowledgement 
The authors wish to extend gratitude for discussions with many scholars, including to the late Prof. Robert M. 
Kiehn (Univ. of Houston, USA). An earlier version of this manuscript has been presented at Physics Beyond 
Relativity Conference, October-November 2019, held at Prague, Czech, host by Prof. Jan Rak. Url: 
https://science21.cz/conference/?p=858 

Florentin Smarandache (author and editor) Collected Papers, XIII

804



References: 
[1] Victor Christianto, Florentin Smarandache, & Robert N. Boyd. Electron Model Based on  Helmholtz’s
Electron  Vortex Theory & Kolmogorov’s Theory of Turbulence. Prespacetime Journal, Volume 10, Issue 
1, January 2019, pp. 139-148. url: www.prespacetime.com 

[2] E. Charpentier, A. Lesne N. Nikolski. Kolmogorov heritage in mathematics. Heidelberg: Springer-Verlag
Berlin Heidelberg, 2007, p. 25 

[3] https://www.nuenergy.org/intra-atomic-energy-and-the-forces-derived-therefrom/

[4] J. Vranjes. Tripolar vortex in plasma flow. Planetary and Space Science 47 (1999) 1531-1535

[5] M.N. Nishino et al., A case study of Kelvin-Helmholtz vortices on both flanks of the Earth’s magnetotail.
Planetary and Space Science 59 (2011). 

[6] G. Vassilatos. Lost Science. Adventures Unlimited Press. One Adventure Place, Kempton, Illinois 60946-
0074 

[7] V. Christianto, R.N. Boyd, F. Smarandache. There is no constant in physics: a Neutrosophic Explanation.
International Journal of Neutrosophic Science, Vol. 1 No. 1 (2021). url: 
http://americaspg.com/articleslist/21/27/26 

Florentin Smarandache (author and editor) Collected Papers, XIII

805

https://www.nuenergy.org/intra-atomic-energy-and-the-forces-derived-therefrom/


A New Hypothesis of Spin Supercurrent as Plausible 
Mechanism of Biological Nonlocal Interaction, 

Synchronicity, Quantum Communication

Yunita Umniyati, Victor Christianto, Florentin Smarandache

Abstract

We start with citing a seminal paper by Josephson-Pallikari-Viras, that biological 
entities can be assumed to be able to communicate nonlocally, i.e., instantaneously. 
However, they also admit that the underlying mechanism of such an entangled com-
munication is not clear yet from the wave mechanical equations. Similar arguments 
have been pointed out by several authors, citing that quantum equations themselves 
have not described anything on a possible mechanism of quantum-type interaction 
between two biological entities. This chapter intends to fill that research gap by 
suggesting a new hypothesis of spin supercurrent as a physical mechanism, based on 
the assumption of macroquantum condensate having nonlocal effects. Moreover, we 
also draw several potential applications including superconductor quasi-crystalline 
structure of space and plausible new method of quantum communication. Such an 
argument is outlined herein partly based on our personal encounter with 
astrophysical quantization in the past 17 years or so.

Keywords: biological nonlocal interaction, quantum nonlocality, entanglement, 
spin supercurrent, superfluid dynamics, superconductor quasicrystalline,  
quantum communication

1. Introduction

In a seminal paper by Prof. Brian Josephson—Pallikari-Viras, they argued that 
despite quantum nonlocal interaction tends to be undetected by statistical averaging, 
but by assuming macroquantum system, biological entities can be assumed to be able 
to communicate nonlocally, i.e. instantaneously. However, they also admit that the 
underlying mechanism of such an entangled communication is not clear yet from the 
wave mechanical equations [1, 2].

Yunita Umniyati, Victor Christianto, Florentin Smarandache (2022). A New Hypothesis of Spin 
Supercurrent as Plausible Mechanism of Biological Nonlocal Interaction, Synchronicity, Quantum 
Communication. In K. S.  Essa, k. H.  Mahmoud, & Y. H.  Chemin (Eds.), Magnetosphere and Solar Winds - 
Humans and Communication. IntechOpen. DOI: 10.5772/intechopen.102743
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Actually, it is known for a long time that quantum physics allows quantum cor-
relations—common reliance of attributes of wave capacity of supposed entangled 
quantum substances while there is space partition. This may include a phenomenon 
called the near-field antenna effect, i.e. the presence close to radio wire (a wavering 
electric dipole) of superluminally spreading electromagnetic field [3].

Nonetheless, various arguments have been pointed out by several authors, citing 
that quantum equations themselves have not described anything on the possible 
mechanism of quantum-type interaction between two biological entities.

In this chapter, we will discuss some existing literature and then we come up with 
a new hypothesis that spin supercurrent provides the sought-after physical mecha-
nism for biological nonlocal interaction, synchronicity, and plausible new quantum 
communication method.

2. Literature survey

2.1 Wave mechanics equations

In quantum mechanics, the depiction of action of the field-free magnetic 
vector potential depends on Schrödinger’s equations without presenting any 
actual inter-action. As the activity of the field-free magnetic vector likely takes 
place in space where the electromagnetic field is missing, this potential has both 
non-electric and non-attractive nature. While there are researchers who did try to 
develop an electric representation of quantum wave mechanics, such as Gabriel 
Kron, but it did not give new results, as far as our knowledge. Moreover, in our 
previous book, Shpenkov and Kreidik have shown that Weyl provided cut-off to 
solutions of the original Schrodinger equation (3D), to achieve a quite good 
agreement with experimental data at the time. It is clear that in most textbooks on 
QM, whenever the authors discuss solutions of spherical Schrodinger equations, 
they rarely compare the results with actual experimental data, because they know, 
there is no agreement at all between spherical wave mechanics and experiment. It 
should be clear, that despite fairytale stories have been circulated to invoke 
certain mystical elements to wave mechanics origin, the fact is, it was a failed 
attempt since the beginning [4].

2.2 Classical EM theory approach

As Boldyreva wrote, which can be paraphrased as follows: “EM hypothesis 
portrays field-free magnetic vector potential. In traditional electrodynamics, the 
magnetic field of acceptance B is resolved by condition curl = B curl A , where A 
will be an attractive vector potential. In protecting of attractive field, 0 = B, the 
accompanying may happen: 0 ≠ A. This case is alluded to as the without field 
vector potential. Magnetic vector potential has its very own actual significance. 
In 1949, Erenberg furthermore Siday anticipated the capacity of attractive vec-
tor potential to impact straightforwardly the attributes of quantum substances 
despite the fact that there is no electromagnetic field at the area of the elements. 
In 1959, the chance of such an impact was considered by Aharonov and Bohm. 
Hence, an extraordinary number of tests have been directed which affirmed the 
hypothesis” [3].
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2.3 Macroquantum condensate hypothesis

Here allow us to mention our chapter in a journal of Foundation Louis de Broglie 
2006, suggesting that astrophysical quantization can be explained for instance by 
assuming macroquantum condensate of astrophysical bodies [5].

Provided such astrophysical macroquantum effects can be accepted, then it 
seems not so hard to suppose that under certain circumstances biological 
nonlocality interaction can happen, once we assume similar macroquantum 
condensates.

2.4 Spin supercurrent in superfluid helium

What we can read in some recent papers by Liudmila Boldyreva, she puts forward 
an argument of the existence of spin supercurrent to mediate biological quantum-
type interactions [3].

Boldyreva wrote among other things, which can be paraphrased as follows:

“This work proposes basically another way to deal with portrayal of the above-thought 

about peculiarities: specifically, it is shown that it is conceivable to portray these pecu-

liarities as far as such actual interaction as spin supercurrent. The twist supercurrent 

arises between objects having turn, and its activity will in general make equivalent the 

individual characteristics of precession of twists of collaborating objects. (Note that Yuri 

Bunkov, Vladimir Dmitriev and Igor Fomin were granted the Fritz London Memorial 

Prize in 2008 for the investigations of spin supercurrents in superfluid 3 Не-B).”

In this model, quantum correlations between quantum entities may be performed 
by spin supercurrent emerging between virtual photons (virtual particles pairs) cre-
ated by those quantum entities.

2.5 Carl Jung’s synchronicity

Limar wrote a review on the possible link between Carl Jung’s concept of syn-
chronicity with quantum non-local effect, known as entanglement. He argues in 
favor of cellular level or DNA level quantum type interaction, such as meiosis etc. 
Nonetheless, he also admits that many paper streams on this subject are plagued by 
the non-existence (as yet) of the physiological or physical mechanism of such non-
local interaction [6].

2.6 Research gap

Similar arguments have been pointed out by several authors, citing that quantum 
equations themselves have not described anything on the possible mechanism of 
quantum-type interaction or communication between two biological entities. This 
chapter intends to fill that research gap by suggesting a new hypothesis of spin 
supercurrent as the physical mechanism, based on the assumption of macroquan-
tum condensate having nonlocal effects. Moreover, we also draw several potential 
applications including superconductor quasi-crystalline structure of space and 
plausible new method of quantum communication. Such an argument is outlined 
herein partly based on our personal encounter with astrophysical quantization in 
the past 17 years or so.
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3. A new hypothesis

If now we put all the above findings from macroquantum condensate (or close to 
superfluid 3 He) to spin supercurrent, hence, we come up with a new hypothesis, 
that we will state here for the first time:

3.1 Hypothesis

“There is spin supercurrent to be observed to mediate interaction between biologi-
cal entities, between consciousness which known as synchronicity (in Jungian term), 
and also to provide quasi-crystalline structure of space, and in turn, it allows a new 
model of quantum-type nonlocal communication.”

3.2 Simple physical model

According to Bunkov and Volovik, the superfluid current of twists—turn super-
current—is another agent of superfluid flows, for example, the superfluid current 
of mass and molecules in superfluid 4He; superfluid current of electric charge in 
superconductors [7].

According to Boldyreva, such spin supercurrent mechanism can be helpful to 
mediate biological nonlocal interaction, can be modeled as follows:

( ) ( )1 1 2 2 1 2
,zJ g a a g t t= − + − (1)

where g1 and g2 are coefficients depending on deflection angles and the properties 
of the medium where spin supercurrent emerges. Turn supercurrent is certainly not 
an electric or attractive interaction and therefore it is not protected by electromag-
netic screens [3].

Moreover, Boldyreva also argues that such a spin supercurrent interaction can 
find implications in alternative medicine, which can be paraphrased as follows: “…a 
deterministic portrayal of the association is utilized, which continues as per the laws 
overseeing the conduct of sub-atomic fluid when the temperature of the last option 

is near outright zero (the properties of superfluid 3не-В). This methodology concurs 
with E. Schrödinger’s perspective communicated in his book ‘What is life?’, i.e. “The 
living organic entity is by all accounts a naturally visible framework which to a limited 
extent of its conduct ways to deal with that absolutely mechanical (as differentiated 
with thermodynamical) direct to which all frameworks tend, as the temperature 
moves toward outright zero and the atomic problem is taken out” [8].

4. Sideways and rationale

4.1 Our personal encounter with macroquantum condensate astrophysics

This segment permits us to recount an account of our experience with macroquan-
tum condensate in astrophysics. Everything started by a to some degree “reasonable 
deduction” (or readers might call it: einfuhlung), when one of us (VC) got an old book 
by Nozieres and Pines [9], on superfluid Bose liquid. He inquired: Let us see what this 
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book can bring to the domain of astronomy and cosmology. Before long, he tracked 
down many fascinating discoveries with regards to the writing, from W.H. Zurek 
to Grigory Volovik and so forth. That is the start of our undertaking for more than 
18 years up to this point, coming about a few papers in a series [5, 10–14]. The soonest 
paper called “Cantorian superfluid vortex hypothesis” was distributed in January 
2004, where VC presented a forecast of potential areas of three new circles of 
planetoids on the external side of Pluto. Then, at that point, after 2 years, VC 
distributed a paper in AFLB [5], where he laid out what are potential clarifications of 
macroquantum impacts in astronomy (for example, noticed likewise by Tifft and 
furthermore Virginia Trimble and so forth). One of the contentions in that AFLB 
paper is macroquantum conden-sate, for example, conceivable quantum impact 
actuated by BEC or superfluid-type medium [5].

More recently, we (VC, FS, YU) come up with an argument of cosmological 
entanglement supposing such a macroquantum effect is real.

4.2 Observational evidence

4.2.1 Quantization of planetary orbit distances in the solar system

In this section, we will review the work and results by us, during the past 17 years 
or so. The basic assumption here is that the Solar System’s planetary orbits are quan-
tized. But how do their orbits behave? Do they follow Titius-Bode’s law? Our answer 
can be summarized as follows (Figure 1):

And it seems that the proposed model is slightly better compared to Nottale-
Schumacher’s gravitational Schrödinger model and also Titius-Bode’s empirical law [1, 11].

The evidence of quantization of planetary orbit distances seem to suggest to wave 
mechanics model at a large scale [5, 10–14]. See also Peter Coles [15].

4.2.2 Observational finding on cosmological entanglement

Interestingly there is a recent report from MIT suggesting that ancient quasars 
support such quantum entanglement at large-scale phenomena. In an article, it is 
reported about the possibility of cosmological entanglement [16], which can be 
paraphrased as follows:

“In 2014, … the William Herschel Telescope and the Telescopio Nazionale Galileo, 
both located on the equal mountain and separated via about a kilometer. One tele-
scope focused on a particular quasar ….. Meanwhile, researchers at a station located 
between the two telescopes created pairs of entangled photons and beamed particles 
from each pair in contrary directions toward every telescope” [17].

Figure 1. 
From NS turbulence to quantized vortices.
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Therefore, such a discovery has opened up a new way to look at the Universe: an 
entangled Cosmos [18, 19].

4.2.3 Newtonian action at a distance: Smarandache’s

Hypothesis expresses that there is no speed limit of anything, including light and 
particles [20]. Eric Weisstein likewise composed ramifications of Smarandache’s 
Hypothesis [21], which can be summarized as follows: “…the speed of light c is as of 
now not a biggest at which estimations can be sent and that abstract speeds of data or 
mass switch can occur. These confirmations fly notwithstanding every idea and 
inves-tigation, as they misuse both Einstein’s exceptional rule of relativity and 
causality and don’t have any test support. It is genuine that current preliminaries 
have confirmed the presence of positive sorts of quantifiable superluminal quirks.
….” [21].

While the thought is very basic and in view of known speculation of quantum 
mechanics, called Einstein-Podolski-Rosen bridge, actually such a superluminal 
material science appears to be still difficult to acknowledge by the greater part of 
physicists. Beginning around 2011, there was a clear astounding outcome as declared 
by the OPERA group. Regardless, hardly any months after the fact, it was disavowed 
on the ground of mistakes in dealing with the estimation.

Permit us to offer not many remarks on such a clear inability to identify quicker 
than light speed as follows: Despite those discussions over the OPERA results, we 
believed that a seriously persuading test has been finished by Alain Aspect and so 
on; he had the option to show that quantum non-territory association is genuine. 
In 1980, Alain Aspect played out the first EPR try (Einstein-Podolski-Rosen) 
which demonstrated the presence of room nonlocality (Aspect 1982). Alain  
Aspect and his group at Orsay, Paris, led three Bell tests utilizing calcium course, 
i.e. the first and last utilized the CH74 disparity. The second was the first use of the 
CHSH imbalance.

The third (and generally well known) was organized with the end goal that the 
decision between the two settings on each side was made during the flight of the 
photons (as initially proposed by John Bell). A few experimenters demonstrated a 
comparative outcome until the distance of more than 90 km.

So, the thought of “spooky action at a distance” is a genuinely actual peculiar-
ity. In addition, activity a way off was at that point referenced in Newton’s Principia 
Mathematica. Regardless of obviously Einstein was attempting to make each of 
Newton’s demeanors into nothing, our result suggests that the Maxwell equations in 
classical electrodynamics have “spooky interaction at a distance” type of interactions 
(as it has also been proven for Coulomb potential), which might be noticed both at 
limited scope tests just as in a cosmological scale, as ongoing confirmations show 
similar effect at a distance in relation to Smarandache’s hypothesis.

4.2.4  Evidence of Cooper-pair tunneling in nuclei is likely to indicate superfluid 
vacuum model instead of gluon

In a recent report published in Phys. Rev. C, Potel et al. wrote on a breakthrough on 
the subject was made through the study of one- and two-neutron transfer reactions with 
heavy-ion collisions in inverse and direct kinematics, enabled by the use of magnetic and 
γ-ray spectrometers, which suggest that there can be Cooper-pair tunneling in nuclei 
[22]. In retrospect, this finding seems to indicate that the superfluid vacuum model can 
be a better approach than the gluon model as in the Standard Model. See also [23, 24]. 

Florentin Smarandache (author and editor) Collected Papers, XIII

811



Besides, the superfluid nuclear matter hypothesis is known for a quite long time,  
especially going beyond BCS theory, cf. Walecka, Matsuzaki, Lombardo etc. [25, 26].

4.2.5 Initial evidence on the synchronicity between patient and doctor

In a 2008 article, Alex Hankey argues in favor of Macroscopic Quantum 
Coherence in Patient-Practitioner-Remedy Entanglement. An interesting remark in 
his article goes, which can be paraphrased as follows: “A different relationship length 
implies that the quantum cognizance’s initially infinitesimal connection length 
currently becomes naturally visible. We reason that, for the most part, at every basic 
pre-cariousness (remembering input dangers for natural administrative 
frameworks), quantum vacillation fields display plainly visible quantum 
cognizance” [27].

Although he did not come up yet with a clear physical mechanism of such macro-
quantum coherence, one can arrive at a similar hypothesis of spin (supercurrent) 
interac-tion like Boldyreva’s, as it is known in biological phenomena. See Likhtenshtein 
[28].

4.2.6 Initial evidence on galactic synchronicity

Although it is known that “One of the cornerstones of inflationary cosmology is 
that primordial density fluctuations have a quantum mechanical origin,” as Kanno & 
Soda wrote, however, most physicists consider that such quantum mechanical effects 
disappear in CMB data due to decoherence [29].

We have discussed before that cosmological entanglement has been observed, 
which in turn, it can be attributed to the superfluid turbulent interstellar medium.

Presently, there is a new striking report by Charlotte Olsen et al., proposing that 
36 cosmic systems appear to have “facilitated” in a such way that they seem to give 
synchronized stars arrangement. From Olsen et al. paper, they do not give a potential 
hypothetical explanation [30].

Notwithstanding, by theorizing such a twist supercurrent system likewise can 
occur at cosmic scale in view of superfluid interstellar medium, we can concoct a 
“potential” clarification, that such a lucid star arrangement is because of some sort of 
“galactic synchronicity.” We know that such a term is not accessible yet in present 
cosmological vocabularies, however, we can predict that time for that term will come 
as well, as there is likewise a book, proposing that synchronicity is probably going to 
show up all around in Cosmos [31].

4.2.7 Other experimental results

Other reports seem to indicate that there are reasons to believe such a quantum 
effect between consciousness, mind-matter interaction, and also Aharonov-Bohm 
type interaction in the superfluid vortex [16, 32, 33]. Suter et al. also provide other 
experiment evidence, as they wrote in the abstract: “The data unambiguously show 
that Bzclearly deviates from an exponential law and represent the first direct, model 
independent proof for a nonlocal response in a superconductor” [34].

5. Discussion: four plausible applications in various fields

a. A new theoretical model of high-temperature superconductivity may lead to
extremely efficient energy generation and transmission
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b. A new type of electronic device.

c. Superconductor quasi-crystalline vacua hypothesis.

d. The plausible new method of quantum communication.

The explanation for each of the aforementioned plausible applications will be 
discussed shortly below:

5.1  A new theoretical model of high-temperature superconductivity may lead to 
extremely efficient energy generation and transmission

It is known that a superconductor permits the flow of current without resistance. 
The conventional way of thinking about the transition from normal to superconduct-
ing is called the Bardeen-Cooper-Schrieffer (BCS) theory. But last year, H. Koizumi, 
a researcher at Tsukuba University has announced a new theoretical model of high-
temperature superconductivity, which may lead to extremely efficient energy generation 
and transmission. Instead of focusing on the pairing of charged particles, this new theory 
uses the mathematical tool called the Berry connection. This value computes a twisting 
of space where electrons travel. In the standard BCS theory, the origin of superconduc-
tivity is electron pairing. In this new theory, the supercurrent is identified as the dissipa-
tion less flow of the paired electrons [35]. We will discuss later; we may come up with an 
alternative method of quantum communication based on such Berry connection.

5.2 A new type of electronic device

Hua Chen et al. wrote experimental evidence which can lead to a new type of 
electronic device based on spin supercurrent, according to their abstract which can 
be paraphrased as follows: “In slight film ferromagnets with amazing simple plane 
anisotropy, the part of absolute twist perpendicular to the simple plane is a decent 
quantum number and the relating turn supercurrent can stream without scattering. 
In this Letter we clarify how turn supercurrents couple spatially remote turn blending 
vertical vehicle channels, in any event, when simple plane anisotropy is flawed, and 
examine the likelihood that this impact can be utilized to manufacture new kinds of 
electronic device” [36, 37].

5.3 Superconductor quasicrystalline vacua hypothesis

As we discussed in a forthcoming paper [38], we discuss on the possibility that the 
space consists of discrete cells, to become cells composed of superconductor quasi-
crystalline. We put forth a new hypothesis that the discrete cellular structure of space 
consists of cells of superconductor quasi-crystalline. It is argued that the definition of 
quasicrystals should not include the requirement that they possess an axis of sym-
metry that is forbidden in periodic crystals. The term “quasicrystal” should simply be 
regarded as an abbreviation for “quasiperiodic crystal,” possibly with two provisos.

To sum up, quasicrystals display a non-periodic, yet ordered, arrangement of atoms. 
They contain a small set of local environments which reappear again and again, albeit 
not in a periodic fashion. Their structure is not random either, since the diffraction 
pattern shows sharp Bragg peaks, although their symmetry is noncrystallographic, 
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Figure 2. 
Plausible assembly of soft-matter quasi-crystal.

with the n-fold symmetries (n = 5, 8, 10, …) stemming from the fact that these local 
environments occur with n equiprobable orientations. A recent discovery suggests that 
quasi-crystalline has a superconductive phase at a very low temperature [39].

It may resemble Finkelstein’s hypercrystalline model of vacuum. What if the 
quasicrystalline model is not in semiconductor solid…but a superconductor quasicrys-
talline? We may call it: super-crystalline structure of 3D space.

Quasicrystalline solid is also good because it brings in more than three dimensions, 
which may be very relevant. This would also bring in Finkelstein and Penrose and 
some of Frank Tony Smith’s investigations. The next item to consider is a super-quasi-
crystalline solid (SQC).

Because of its fractal properties, we can expect that the SQC can extend down to 
the structure of space, similar to what Finkelstein envisaged [40].

The quasicrystal structure of space may be composed of solid matter or soft 
matter, of which its general dynamics have been outlined by Fan et al. [41]. Plausible 
assembly of soft matter quasicrystal is shown in Figure 2:

It exhibits close-packed structures. This dense-packed structure of space should be 
verified with experiment. A few observables:

5.4 Natural quasicrystal in rock:

Steinhardt and Bindi [42] argued a unique hypothesis, proposing that quasicrys-
tals might conceivably be pretty much as hearty and steady as gems, maybe, in any 
event, framing normally. These contemplations roused a very long term look for a 
characteristic quasicrystal finishing in the revelation of icosahedrite (Al63Cu24Fe13), 
an icosahedral quasicrystal found in a stone example made fundamentally out of 
khatyrkite (translucent (Cu,Zn)Al2) named as coming from the Koryak Mountains of 
far eastern Russia. In their paper, they contended that the examination demonstrates 
the example to be of an extraterrestrial beginning (Figure 3).
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Moreover, some papers argue that such a rock may be of manmade origin, as Bindi 
et al. noted:

“The proof for the presence of the quasicrystal deliberately work in the stone is thusly 

predominantly solid. Be that as it may, the perception of intermetallic compounds 

with copper and iron, which requires a profoundly lessening climate, is profoundly 

bewildering. It raises the likelihood that the example started from slag or another 

anthropogenic interaction. Nonetheless, the example was found in a far-off locale 

exceptionally a long way from any modern action.” [43]

While we admit that it would need further studies, as we see it such a hypothetical 
origin of meteorites and rock from extraterrestrial or manmade origin remains puz-
zling. It may be more possible to argue in favor that the quasicrystalline that happens 
in nature was caused by the structure of space itself is composed of SQC.

5.4.1 Natural quasicrystals in the solar system

Luca Bindi and also Matthias Meier et al. seem to suggest that quasicrystals have 
a cosmic origin [44, 45]. While such a hypothesis is quite reasonable, allow us to add 
a possibility that such a cosmic origin might yield from hidden structure of space 
itself. Such a hypothetical origin may be more “workable” than most quantum gravity 
hypotheses [46].

What is more interesting here is that Sakai has presented superconductor effects 
of quasicrystals [47].

5.4.2 A plausible new method of quantum communication

Inspired partly by Koizumi’s research at Tsukuba Univ., we may come up 
with an alternative method of quantum communication based on such Berry 

Figure 3. 
Light image of entire MSNF specimen prior to sampling, Khatyrka CV3 meteorite [42].
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connection. Prof. M.V. Berry is widely known for his research, but mostly for his 
theorem called Berry phase and Berry connection, which are often linked to the 
Aharonov-Bohm effect.

While there are various researchers who have come up with a number of possible 
quantum information or quantum internet methods, such as Pomorski & Staszewski, 
who wrote: “The idea of quantum web was.

displayed in this work. The more definite picture requires considering different 
impacts as decoherence processes that drive the quantum position-base qubit out of 
its cognizance just as decoherence processes that annihilate the cognizance of qEC 
(quantum Electromagnetic Cavity) [48].

Nonetheless, just yesterday an idea came to us, inspired by Berry connection 
and also crystalline structure of space. Actually, Tesla came up first with an idea to 
propagate telecommunication with the help of the telluric field of Earth, but alas it 
was canceled because Marconi obtained the patent first before him.

As we mentioned above, Sakai presented evidence of superconductivity of quasi-
crystal, therefore provided, we accept the super-quasi-crystalline model of 3D space, 
we may come up with an idea that can be considered as quantum communication built 
on the crystalline structure of space itself. The outline of our idea is as follows, as we 
began to read papers by Prof. Michael V. Berry from UK (Figure 4):

If we can prove this can work, at least a conceptual design, then may it can be a 
quite viable alternative to the 5G cellular network.

Moreover, such an assumption of superconductor crystalline structure of space, 
it seems to find support from our descriptive model of the Solar System in terms of 
superconductors. See our recent paper [49, 50].

6. Concluding remarks

In this chapter, we discuss how conventional wave mechanics does not provide 
a physical mechanism which is supposed to mediate nonlocal biological interac-
tion, as discussed by Josephson-Pallikari Viras and others. Based on the hypothesis 
and also research findings by Yuri Bunkov, L. Boldyreva et al., we submit whole-
heartedly that a new hypothesis of spin supercurrent is the sought-after physical 
mechanism, based on the assumption of macroquantum condensate having 
nonlocal effects.

In the last section, we discuss four plausible applications of such a scheme, 
including: a. A new theoretical model of high-temperature superconductivity may 
lead to extremely efficient energy generation and transmission; b. A new type of 
electronic device; c. Superconductor quasi-crystalline vacua hypothesis; d. Plausible 
new method of quantum communication. Clearly, more research is recommended to 
verify further what we outlined herein.

Figure 4. 
A process flow of quantum communication based on Berry connection.
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The electric Coulomb field travels with an infinite 
velocity: Remarks on Naudin’s experiment, 

Montagnier-Gariaev’s experiments, and Lienert-
Wiechart potential 

Robert N. Boyd,  Florentin Smarandache

Abstract 

The following is summary of discussions via email, concerning remark on infinite velocity of 
Coulomb Potential, Naudin’s experiment, Proca equations and Lienert-Wiechart potential etc. 
Discussions were around October 2018. Hopefully readeres will find them interesting. 

Keywords: Naudin’s experiment; Proca equations; infinite velocity of Coulomb Potential. 

1. Introduction

The Coulomb field also conveys information at an infinite velocity. This fact has been proved by 
several different experiments. The infinite velocity Coulomb field is completely overlooked by 
"standard" cosmology adherents, who base their cosmological fictions on fraudulent and completely 
non-physical relativity, a fantasy narrative originally composed by Einstein, et al. Due to Coulomb 
field infinite velocity activities, electric events and interactions can take place between myriads of 
galaxies inconceivable distances away from one another. The speed of light has nothing to do with 
any of these vastly distant interactions. The following is summary of discussions via email, 
concerning remark on infinite velocity of Coulomb Potential, Naudin’s experiment, Proca equations 
and Lienert-Wiechart potential etc. Discussions were around October 2018. 

2. Remark on Naudin’s experiments etc.
One of us (RNB) used to converse with Naudin several times a week. Naudin was doing
experiments with "lifters" which were related to my work with Greenglow regarding the Beifield-
Brown Effect. He also made several Rodin coils and photographed their influences on iron powder. I
also used to know Marko Rodin when he was living in Hawaii in those days. Amazing stuff
happened from my Greenglow connections.
But the experiments he is referring to happened in the 1930s, in France. The name Nipher comes to
mind, for some reason. In the book "Lost Science" by Vassilatos, you will find the experiments he is
referring to in there, along with many other interesting results. You have to read Vassilatos over and
over, because some of the concepts he expresses are so far removed from the standard
indoctrinations of the Hollywood sciences, that it takes several exposures for them to register
properly, despite a life-time of "science" propaganda.
One of us (RNB) also knew Jeffimenko, who was a participant in Greenglow. He used to live in
West Virginia. He was one of the keys to my making major breakthroughs which resulted in he
eliminating E's version of relativity entirely from all consideration, in every regard.

Robert N. Boyd, Florentin Smarandache (2022). The electric Coulomb field travels with an infinite 
velocity: Remarks on Naudin’s experiment, Montagnier-Gariaev’s experiments, and Lienert-Wiechart 
potential. Journal of Cosmology, Filaments and Astrobiology 1(2), 8-12; DOI: 10.54216/JCFA.010201
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RNB also knew Roshin and Goden, and he participated in designing experiments with Podkletnov, 
who was also with Greenglow. We had quite the group of bright minds working together, during the 
best years of Greenglow. At one point we had more than 200 participants, from all over the world. 
RNB ran across Tajmar's work on Research Gate, but he did not know at the time that Proca's 
version of gravitation preceded the model produced by Le Sage, if he is not mistaken. He'll have to 
go and read Tajmar's paper now. 
It looks like we have quite a talented group of researchers working together on getting these books 
out. 

We think that combining our understandings, along with some modified results from 
Krasnoholovets, will result in some marvelous breakthroughs.  

RNB designed an infinite range superluminal aether-gravity telescope about the year 2002 when he 
was with Greenglow. No one was interested, because the observations which such a system will 
produce will demolish, not only relativity theory, but every attempt at proving any sort of 
ecclesiastical "beginning" of the Infinite Volume Universe. It will also eradicate such Hollywood 
fantasies as "black holes" and "neutron stars", as well. So it wasn't very popular among the 
"Hollywood science" crew. Needless to say, he couldn't get funding for it. 

3. Remarks on infinite velocity of the propagation of electric charge
Experimental results which are brought out in our previous book, regarding the infinite velocity of
the propagation of electric charge, in terms of the Lienert-Weichert potential, allow for yet another
approach to designing an infinite range superluminal telescope. There are two more ways to do this,
but he won't talk about them right now.
Creation is a Continuous Process, in which everyone and everything, constantly participates. An
infinite range telescope would go far towards supporting this thesis, based on observational
evidence.
The research team at Greenglow dismissed gravitomagnetism early on. When one brought up the
Proca equations, for some reason, he thought one were referring to Fatio, who preceded Le Sage in
his version of shadow gravity.
The Proca equations have nothing to do with this.

Anything that links to the "Higgs field" or the "Higgs boson" has nothing to do with physical reality. 
This brings to mind a photograph which was taken of Prof. Higgs standing on one of the railings of 
the LHC facility, wearing a red rubber Bozo The Clown nose. That photograph coincides perfectly 
with my view of Higgs fantasies. 

Photons are not the origination of gravitation. Here is my model of the photon, without the 
accompanying deBroglie wave. It is comprised of dual circulations of particles, which particles are 
made of particles, and so on, down to the infinitely small. The Primer Fields Part 3 - Duration: 
56:14. by David LaPoint 69,062 views Add deBroglie waves to each photon, and you arrive at our 
model, which has been proved by experiments done at Rutgers University, and incidentally validates 
photon wave optics paradigms dating back to at least Fresnel. 

As one of us (RNB) sees things, all the creatures that are smaller than the Kolmogorov Limit (10e -58 
m) are the cause of gravitation. This view agrees with Fatio, Le Sage, and La Place and has
experimental evidence supporting it. The SubQuantum microscope he designed when he was with
Greenglow, was constructed in Serbia and has imaged entities as small as 10e-95 cm. Relevant
physical evidence and observations must be taken into consideration in our explorations.

We like the fluidic version of the Proca equations, but these concepts need to be applied to 
understanding detailed behaviors and properties of the SubQuantum aether.1 Just as the Maxwell 
equations are based on the fact of the aether, so too is the fluidic version of the Proca equations. 
Unfortunately, neither of these sets of equations are describing gravitation, but are discussing E and 
B systems. Gravitation is what he was working on now. Again. RNB’s previous efforts found strong 

1
 This was referring to our joint paper with Victor Christianto et al. See : V. Christianto, F. Smarandache, Y. Umniyati. A 

Derivation of Fluidic Maxwell-Proca Equations for Electrodynamics of Superconductors & Its Implication to Chiral 
Cosmology Model. Prespacetime J., Vol. 9 No. 7, 2018. url: https://prespacetime.com/index.php/pst/article/view/1471 
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agreement with the LaPlacian version of gravitation. He wants to look very closely at everything 
Louis Rancourt has expressed, because he has arrived at conclusions similar to my previous studies. 
And he (LR) has made some marvelous experiments 

4. Problems with QED
QED has multitudes of problems. Some of the problems are solved when one brings the activities of 
the SubQuantum infinitesimals into the more difficult situations, such as "virtual particles". There 
are no virtual particles. The events which are claimed to be due to imagined "virtual particles" are 
actually resulting from real actions of real SQ infinitesimals.

We will look at Lehnert's RQED theory and see if we have gotten rid of any of the flaws which 
presently exist in "standard" QED. If it has any infinitesimal basis, there is hope. QED resulted from 
the Solvay Conference, which was the origination of vast numbers of frauds in the sciences. He 
wonders if QED can be repaired at all, because of its origins made of lies and paradoxes. There must 
be a better way than QED. It's broken. 

Please keep it in mind that the aether exhibits 5 different phase-states [cf. Mishin], just as our 
accustomed physical material experiences do. However, the experiential information which is 
carried by the SQ infinitesimals exists at all scales (and is additive and cumulative), is partly 
responsible for the creation of "matter", due to the neg-entropy (ordering, organizing information) 
that the infinitesimals add to the constituent subatomic particles as they accrete to eventually form 
the completely materialized physical form, from out of the SQ aether. Negentropy is one of the 
factors that causes physical matter to form, "ab initio" (from out of nothing). 

Many mythologies refer to the "nothing", the pre-physical, no-matter condition of the unfettered SQ 
aether as the "Creative Void". So it is said, "Nothing is everything. And everything is [made of] 
nothing.". 

The second main factor in the Creation of matter is Consciousness-Information. We are "immersed" 
in a Consciousness Field. Everything is and has Consciousness. Myriads of different kinds of 
Consciousness Everything is created by Intelligent Design, and happens by Intelligent Design, not 
by "accident". The individual soul (monad) participates in the manifestation of the physical body 
from the instant of conception, which body will fully occupy when its construction is complete, 
based on what the soul and the Divine have mutually decided will be the best manifestation for the 
individual, in terms of appearances and abilities. 

5. Remarks on Gariaev and Montagnier’s experiments
I am still a member of Peter Gariaev's research staff. Gariaev's experiments have demonstrated that 
the DNA and the protein factories which construct the cell, can only make what they are told to 
make, not by the DNA, but by "environmental factors" to use Gariaev's terminology.
We have experimentally proved the existence of an Ambient Intelligence, by several different 
experimental approaches. So there is scientific evidence that God, or whatever you want to call Him, 
is REAL. The Ambient Intelligence is certainly directly involved in making life-forms which are 
suited to the environmental conditions of the given time and place.

By implications presented by the experimental results of Montagnier, DNA information is present 
everywhere in the Universe, and manifests physical life-forms suited to the given local time and 
place, through the auspices of the Ambient Intelligence. Indeed, astrophysics has discovered that 
much of the so-called "interstellar dust" is not dust at all, but vast clouds of bacteria and spores, 
which have appeared between the stars, ab initio. They don't want the general public to know about 
these facts, much to their discredit. 

This creation process has been observed to happen literally overnight, according to observations 
made by Crick, et al., regarding completely new kinds of bacteria which appeared in less than 24 
hours in his labs, which were not due to any Darwinistic "evolutionary survival of the fittest". The 
first of the new kinds of bacteria which were micro-graphed and catalogued, were the first bacteria 
in the history of the world that had constructed, internal to their little bodies, electric motors, 
complete with stator and rotor, bearings, and an internally contained power supply, all of which was 
connected to a rotating hair-like appendage. This new species did not gain any mobility advantage in 
its fluid-based environment, over other species of bacteria which use flagella to get around. So this 
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was not an adaptation, but an entirely new kind of life-form. Because of these events, Crick 
attempted to return his Nobel Prize award to the Nobel Prize Committee, because he knew that what 
he had been given the award for, was wrong. So in all good conscience, he tried to give it back, as 
he considered himself undeserving of it. But the Committee refused it. 

New DNA starts self-constructing when there is DNA already existing in the vicinity, according to 
Montagnier's Nobel Prize winning results. He discovered that DNA had formed in test tubes, 
previously filled with nothing but pure water, in less than a day, especially when electromagnetic 
radiation was passing through an area which contained other test tubes which contained samples of 
DNA, suspended in pure water. The E/M conveyed the DNA information to the pure water in the 
nearby test tubes, whereupon DNA started forming, ab initio, in the previously empty test tubes, 
along with all the requisite atoms which are required to construct new DNA molecules, which are 
not found in pure water. And where does the forming DNA get its instructions on how to make itself 
out of nothing but water, as seen in the Montagnier experiments? 

Summary 
To the best of our knowledge, SubQuantum infinitesimals are the root of all of everything else, 
including Life, matter, all the forces, and Consciousness. 
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==== 
Appendix: Letter to Louis Rancourt 

October 23, 2018 

Dear Louis, 

Regarding http://www.gravityforces.com/?p=1482 

You have independently reached many of the same conclusions I reached during the early 2000s 
when I was with Project Greenglow, an independent research group, partially sponsored by BAE 
Aerospace. Here is a partial summation of some of my results during that era: 

http://noosphere.princeton.edu/papers/misc/Subquantum.Plenum.doc 

This version was altered by some person associated with Princeton, in that, an entire section was 
removed from the text. The section removed was a set of experiments performed in France in the 
1930 using an electrified version of the original Cavendish experiment which was used to prove 
Newton's thesis of gravitation. The French team connected a very thick copper cable to the base of 
the fixed lead ball, and surrounded the fixed central mass with a grounded Faraday cage. Then they 
conducted the standard Cavendish experiment and got the expected results. After that they increased 
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the voltage applied to the fixed central mass in 1000 Volt DC increments, repeating the release of a 
free-swinging mass which was hung from the ceiling by a very thin thread, while they measured the 
degree to which the free mass was attracted by the fixed mass, at the given applied voltage on the 
fixed mass. Eventually, they were able to measure the fact that the free-swinging mass did not 
exhibit as large an attraction as the standard Cavendish expectation value. The attraction became 
less and less as they increased the voltage, until they arrived at a voltage where no attractive force 
could be measured between the free-swinging mass and the electrified central mass. They kept 
increasing the voltage and measured the fact that the free-swinging mass was being repelled by the 
fixed mass with the degree of repulsion increasing to the limits of their voltage supply. The paper 
that was written on these experiments concluded that the electric field and the gravitational field 
were related, but not directly related. The applied voltage modified the gravitational attraction. 

From this, the electric field is a SubQuantum aether flux which is flowing outward from the 
electrified mass, and counter-acting the SubQuantum aether flux which causes gravitation, until 
repulsion is exhibited between the two masses. One thing I have not been able to figure out yet: 
When the experimenters removed the Faraday cage and electrified the fixed mass, no repulsion or 
alteration of gravitation force was exhibited. Why is that? If you have any ideas on this, I would 
appreciate it if you could tell me about them. 

From reading the materials on your website, I am sure you will appreciate the book "Creation of 
Matter" by Gustave Le Bon of Belgium, first published in 1906. This book was translated into 
English during the late 1990s, and is available here in the English version. (If you look around for a 
few years you might be able to find an original copy written in French, which might be even more to 
your liking. But, searches for such rare and old books are usually expensive and sometimes 
fruitless.) 

The best English version is here: https://www.nuenergy.org/the-evolution-of-matter/ 

I am working on a document which will be included in a book which will be published about 
February or March, next year, out of the UK. I am including your arguments as well as I can within 
the book, as related to my understandings. Or, some of your text could be included in this book. If 
so, the publisher will want to obtain your permission to publish your materials in book form. I may 
be sending you a copyright release form in the next week or so. I need to consult with Victor 
Cristiano on this, as he is the primary editor of this text. 

Attached is a preliminary version of the manuscript, which does not include my and your 
contributions yet. I think you will like the title of the book though :) 

https://www.researchgate.net/publication/327537679_Going_Beyond_Tesla_Recent_developments_
of_LaPlace_Gravitation_SubQuantum_Plenum_and_Aetherdynamics?_sg=YI3QjfzHjnzW41O4wm
NLOS49mM7GhjVmR_AptTJEmiafLaJGrtSrNhtwHp7v_kTZBLxhKCTSTiCSGVEeFHE5e0erUTj
BDsEmkQ9XTI-Y.uozqtwnJ-
1uGlH8yWUG9Bvqelef_ODKkO4QzrWqSksFUxC0tB1L3AIISXweBfU4JGXM_fqiX9Ammf7oZ
CR7jww 

I hope to hear from you soon. 

Best Wishes, 

Neil 
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Remark on Project Greenglow and Rodin coil 

Abstract 

I and Florentin communicated extensively for the last 4 years or so. And this is one of our email, on 
my experience with Project Greenglow and using Rodin coil for special stargate device. The 
following is excerpt of communication with me and Florentin. 

Keywords: Project Greenglow; Rodin coil 

1. Introduction

When one of us (RNB) was with Project Greenglow, a research team out of the UK, he designed a 

faster than light (FTL) drive based on arrays of arrays of Rodin coils. He knew Marko Rodin 

personally at the time, where he was living in Hawaii then. 

In addition to making FTL travel possible1, an array of arrays of Rodin coils produces vast amounts 

of excess energy. So much so that if not properly controlled, the power produced by such an array 

becomes a hazard to living beings. 

Marko designed his coil to be the basis of a fusion reactor, but due to its mathematical properties 

and geometries, it can do much more than that. Tony Smith studied Rodin coils for a while. See: 

 https://www.valdostamuseum.com/hamsmith/SegalConf2.html 

Anything to do with E's version of relativity is never going to work. That is because E's version of 

relativity is NOT PHYSICAL, in any way. 

1
 RNB’s result can be seen as real experimental vindication of Smarandache’s hypothesis, even if such an experiment may be 

difficult to replicate. 

Robert N. Boyd,  Florentin Smarandache

Robert N. Boyd, Florentin Smarandache (2022). Remark on Project Greenglow and Rodin coil. 
Journal of Cosmology, Filaments and Astrobiology 1(2), 13-14; DOI: 10.54216/JCFA.010202

Florentin Smarandache (author and editor) Collected Papers, XIII

825



Because of that, "warp" drives, "folding space" and etc., are never going to work either. 

The proper way to go about this is to enter into higher "densities", which the entire planet is in the 

process of doing at this time. We are entering 5th Density Reality. (I have known about the various 

densities ever since I (RNB) was a teenager.) 

The Pleiadians and many other ET races already have Higher Density technologies. 

The New World has arrived and is unfolding now. 

God is here, helping directly, and things are moving along very nicely. 

References 
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Remark on the Safire Project’s findings and infinite 
velocity beyond speed of light 

Robert N. Boyd,  Florentin Smarandache

Abstract 
I and Florentin communicated extensively for the last 4 years or so. And this is one of our email, on  
Project Greenglow and infinite velocity of Coulomb potential etc. This communication is excerpt of 
previous emails between us. 

Keywords: Safire Project; infinite velocity; Coulomb potential 

1. On Safire Project
The Safire Project, which duplicates the way the Sun work, in a lab, is producing physical evidence
of the creation of new atoms in plasmas and in the anode and in Langmuir probes used to monitor
the plasma.

We have contacted the Principles of Safire and they have allowed us to use some of their 
copyrighted materials for my Prague presentation on matter-creation/dis-creation in an infinite 
volume Intelligent Universe. 

 Look at Phase 3. https://www.safireproject.com/science/phase-three.html 

 https://www.safireproject.com/science/ewExternalFiles/SAFIRE-Project-Report.pdf 

We've got slides showing the SEM (Scanning Electron Microscope) results with new atoms showing 
up clearly, because there are big clumps of them, not just one or two. 

Best Wishes, 

RNB & FS 

Robert N. Boyd, Florentin Smarandache (2022). Remark on the Safire Project’s findings and 
infinite velocity beyond speed of light. Journal of Cosmology, Filaments and Astrobiology 1(2), 
15-18; DOI: 10.54216/JCFA.010203
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Time has nothing to do with the speed of light. Einstein's absurd blundering attempt to connect 
everything to the speed of light, including time, leads to countless irrationalities regarding the 
observable behaviors of the physical universe. 

Using the pseudo-manifold (not a real manifold) concocted by Minkowski results in a mathematical 
construction which has nothing to do with Real Reality, tailor made for a Disney cartoon production 
such as "Fantasia", complete with dancing hippopotami in pink tutus. 

The term ict, called "imaginary time" was used by Minkowski to link time with the speed of light. 
This construction has nothing to do with anything physical. There have never been any experimental 
measurements which have demonstrated that time has anything to do with light or the speed of light. 

There have also never been any experiments which demonstrate that the speed of light is always the 
same, everywhere in the infinite volume universe. 

In fact, there have never been any two consecutive measurements of the speed of light which were in 
perfect agreement. 

In dishonest attempts to support E's version of relativity, when speed of light measurements are 
performed under laboratory conditions, all the measurements which do not agree with E's version of 
relativity, are thrown away and removed from the records. Typically, some disagreeable 
measurements are left in the data base so as to make the "erroneous" measurements appear to be due 
to "instrumentation errors". All the other disagreeable measurements are extracted from the data 
base. 

The speed of light is not a constant. It changes according to the variations of the permittivity and 
permeability of the media (which is primarily the quiescent portion of the aether, with some aether 
density variations involved from the motional part of the aether). 

The Michelson-Morely experiment measured the speed of light at every run of the experiment, to an 
accuracy of 0.03 meters per second. Personal and detailed studies of the original handwritten 
physical lab notes and log books from the M-M experiment show instrumentally measured 
variations in the speed of light were observed at every turn, some as large as plus and minus 3000 
meters per second. 

The fact that the speed of light is not a constant forces us to revise many of the previously 
unquestioned ideas about how the physics of our Universe actually operate. 

The fact of the variable speed of light demolishes the Lorentz transformation (which was non-
physical already), as the Lorentz construction requires an absolute unchanging single value for the 
propagation velocity of light equal to c and no other value. In turn, this means that all considerations 
of "Lorentz invariance" are perfectly wrong and must be removed from all considerations of the 
behaviors of the actual physical Universe. 

Minkowski "spacetime" is fantasy. It is fictional. It is a mathematical abstraction which is removed 
from physicality. It is a "mathemagical" Mother Goose story, just as is the rest of E's version of 
relativity. 

Minkowski's imaginary "spacetime" removes from consideration the experimentally proven and 
easily observed facts propounded by Newton regarding time and Absolute Time. So fantasy and lies 
have been replacing reproducibly observable physical facts, for more than 100 years, leading to a 
very unreliable physics paradigm. 

Absolute Time is non-local and infinite velocity. Einstein wanted to destroy anything that did not 
agree with making the speed of light the basis of existence, requiring the abolition of all faster than 
light or infinite velocity events. So the FACT of Absolute Time was replaced with "imaginary time" 
from Mother Goose land. 

2. Other email per 2019, on infinite velocity beyond speed of light
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Physically performed instrumented Quantum experiments have proved "non-locality" is an 
irrefutable fact. "Non-locality" means faster than light speed, or infinite velocity. 

Newton's "Absolute Time" is exactly correct. And as usual, Newton corrects and vastly surpasses all 
of Einstein's irrational non-physical absurdities. Some relativists like to say "Einstein's results 
correct Newton." Not at all. Newton's results correct Einstein. 

Physical experiments and astrophysical observations by N.A. Kozyrev proved that time is a 
"substance" which is inherent in the aether in-flow known as gravitation. The "time substance" is the 
origination of the helical component of gravitation, and behaves as an in-spiraling vortex of aether 
which enters into all ponderable matter, just as the gravitational aether flow does. 

The local attributes of of Kozyrev's "time substance" can be modified and modulated so that one can 
slow down, speed up, and even stop, time flows. But reversing the direction of the time flow does 
not result in "time travel". 

The non-local attributes of the time flow which are Newton's Absolute Time, cannot be modified, as 
they are Universal and infinite velocity. 

Please to keep in mind, Einstein himself once stated, "Relativity theory can never be proved by any 
manner of physical experiment." Why? Because it is not physical. It is a fabrication of the 
imagination which has no physical factual reality under any circumstances. It is easier to prove the 
reality of Mickey Mouse than it is to prove the reality of E's version of relativity. 

We made a few abbreviated mentions of these items during one of us (RNB) presentation,2 but our 
primary focus was proving that matter and energy are created and destroyed constantly by plasma 
processes in stars and interstellar plasmas, all over the infinite volume Universe, over an infinite 
span of time. There was never a "big bang". Creation/Dis-Creation is a continuous process which 
directly involves all stars and galaxies, in the moment. The average life-span of a proton is less than 
the purported "half-life" of the "radioactive" isotopes as according to the "standard model" of 
radioactivity, which is wrong. [See: Le Bon] 

We mentioned during our presentation that space-time has no physical units associated with it. That 
is because it cannot be measured. That is because it is imaginary. 

3. Other email per May 2019, magnetic fields also propagate on infinite velocity

When the electric field at a given point, is evaluated according to Liénard–Wiechert potential, the 
result is identical to the result which obtains when one hypothesizes that the Coulomb field 
propagates with an infinite velocity. Experiments performed during the past several years have 
confirmed this hypothesis to be valid: The Coulomb Field does propagate with an infinite velocity. 
For example, see: 

 http://www.pandualism.com/c/coulomb_experiment.html; 
 http://gsjournal.net/Science-JournalsPapers/Author/1624/Allen,%20Robnett; 
 https://link.springer.com/article/10.1140/epjc/s10052-015-3355-3; 
 http://prola.aps.org/abstract/PR/v39/i4/p616_1. 

That magnetic fields may also propagate at an infinite velocity, is implied in some of the more 
recent results. It has already been expressed by many, such as Newton, LaPlace, Eddington, Mach, 
Jefimenko, Van Flandern, Podkletnov, and Boyd, that gravitation also propagates with an infinite 
velocity. We already know that quantum physics experiments have proven quantum “non-locality” 
(infinite velocity) as an irrefutable fact. A Subquantum infinitesimal particle, with an infinitely small 
mass, can easily propagate at an infinite velocity, as demonstrated by the several Mobius (bilinear) 

2
 This is referring to Physics Beyond Relativity Conference, held in Prague, Oct. 2019. 
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transformation solutions to the Maxwell equations found by V. Fock, R.M. Kiehn, R.N. Boyd, and 
T. Smith.

So it appears that infinite velocity is the most common velocity in the Universe, with light speed 
being an exception to the otherwise consensus infinite velocity dynamics of the Universe, with less 
than light speed events being more common than light-speed events. Infinite velocity SQ dynamics 
is the basis which unifies all the sciences. 

4. Superluminal Mobius (bilinear transformation solutions to the Maxwell equations

During the last decade, Boyd and Smith discovered 14 non-linear projective Mobius transformation 
solutions to the Maxwell equations, in addition to the original Mobius (bi-linear) transformation 
discovered by Vladimir Fock, during 1948. 

The Mobius transformation solutions to the Maxwell equations allow that entities of these classes 
can exhibit propagation velocities from zero, to an infinite velocity (and everything in between). 
The 15 classes of Mobius propagations are generators of the Conformal Group Spin (2, 4) = SU (2, 
2), consisting of: 6 rotations and boosts; 4 special conformal transformations; 4 translations; and 1 
dilation. (See: http://www.valdostamuseum.com/hamsmith/SegalConf.html#conformalEMG) 

The above is from the chapter in the book "New Horizons", titled "The Inner Workings of Reality": 

   https://novapublishers.com/shop/old-problems-and-new-horizons-in-world-physics/ 

May be readers will read that chapter eventually, at some convenient time. 

 https://www.zmescience.com/research/light-frequencies-travel-infinitely-fast-zero-  
  refraction-index-041324/ 

See page 7 of:  faculty.philosophy.umd.edu/mfrisch/papers/non-locality_in_ced.pdf 

  https://plato.stanford.edu/entries/qm-action-distance/ 

Infinite velocity events are a fact, especially in the SubQuantum domains. Recall my expressions 
regarding the infinite velocity of "vortex lines" in the paper regarding one of the 5 creation processes 
of matter, available at http://vixra.org/pdf/1811.0404v2.pdf. 

We hope that people get over E's version of relativity, erase the non-physical "Lorentz 
transformation", and restore the Aether to its rightful place, before the next century arrives. 
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The Paradoxism in Mathematics, Philosophy, and Poetry 

Florentin Smarandache

ABSTRACT 
This short article pairs the realms of “Mathematics”, “Philosophy”, and “Poetry”, presenting some corners of 
intersection of this type of scientocreativity. Poetry have long been following mathematical patterns expressed 
by stern formal restrictions, as the strong metrical structure of ancient Greekheroic epic, or the consistent meter 
with standardized rhyme scheme and a “volta” of Italian sonnets. Poetry was always connected to Philosophy, 
and further on, notable mathematicians, like the inventor of quaternions, William Rowan Hamilton, or Ion 
Barbu, the creator of the Barbilian spaces, have written appreciated poems. We will focus here on an avant-
garde movement in literature, art, philosophy, and science, called Paradoxism, founded in Romania in 1980 by a 
mathematician, philosopher and poet, and on the laboured writing exercises of the Oulipo group, founded in 
Paris in 1960 by mathematicians and poets, both of them still in act. 

KEYWORDS: Paradoxism, Mathematics, Philosophy, and Poetry 

1. PARADOXISM: AVANT-GARDE MOVEMENT IN LITERATURE, ART, PHILOSOPHY, AND
SCIENCE

Paradoxismis a neo-avant-garde movement in literature, art, philosophy, science, based on excessive use of 
antitheses, parables, odds, paradoxes in creations, set up and led by the mathematician Florentin Smarandache, 
started as an anti-totalitarian protest in 1980s against the closed society of communist Romania. 

Paradoxism seeks to explore new possibilities in literature, art, philosophy, and even science through a 
paradoxist thinking algorithm. Meta fictional leads, playful expressions, or combinatorial processes of 
composition are employed for the conveyance of the paradoxes. Structural constraints are important, but without 
loosing the interest in the meaning of the message.  

2.NEUTROSOPHY, AS EXTENSION OF THE PARADOXISM

Later on, the paradoxism as well as the dialectics and the Ancient Chinese philosophy Yin-Yan, consisting of 
the dynamics of the opposites <A> and <antiA>, where <A> is an item (concept, idea, theorem, theory etc.) and 
<antiA> is its opposite, were extended to Neutrosophy (as a dynamic between the opposites <A>, <antiA>, 
together with the neutralities between them <neutA>) generated the development in science of Neutrosophic 
Logic, Neutrosophic Set, Neutrosophic Probability, Neutrosophic Statistics and so on [1]. Neutrosophy is a new 
branch of philosophy and started in 1998 [2]. 

Florentin Smarandache (2022). The Paradoxism in Mathematics, Philosophy, and Poetry. Bulletin of 
Pure and Applied Sciences - Section - E - Mathematics & Statistics 41E(1), 46-48; DOI: 
10.5958/2320-3226.2022.00006.6
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3. OULIPO LITERARY MOVEMENT

In 1960, Raymond Queneau – a member of Société Mathématique de France, most known for the screened 
novel"Zazie dans le Métro" [3], who had joined the Surrealists but then departed he movement after its support 
of the USSR – met the chemical engineer and absurdist writer François Le Lionnais, head of the Division of 
Science Education at UNESCO, and founded in Paris, together with a motley crew of writers, mathematicians, 
professors, and "pataphysicians", a literary movement of rigorous formalism based on Mathematics, called 
Ouvroir de littératurepotentielle (Workshop for potential literature), in short Oulipo – later enlarged with a 
series of analogous workshops, including Oumupo (for potential music), Oupeinpo (for potential painting), or 
Oucinépo (for potential film).  

Many inventive scientocreative works had emerged from here, such as the Boolean, Fibonaccian, and 
exponential Queneau’s book "Cent Mille Milliards de Poèmes" (One Hundred Thousand Billion Poems), 
formed by ten sonnets with the same rhyme scheme, each line of poetry being printed on a separate stripof card, 
as it could be combined with any other lines, generating 1014 different poems [4]. 

The Oulipo group were in a quest for new forms of writing developed from new methods of invention, but 
considered themselves merely a working group than a creative one, set up to offer practical solutions for writers 
by inductive research, seeking "to formulate problems and eventually to offer solutions that allow any and 
everybody to construct, letter by letter, word by word, a text" [5] 

Their creed of literary freedom by automatic writing, originating in Surrealism, was paradoxically grilled by 
rule-bound formulas of mathematical constraints, as they were convinced that "it is not only the virtualities of 
language that are revealed by constraint but also the virtualities of him who accepts to submit himself to 
constraint." [6]. 

For instance, they invented the procedure N+7, meaning to choose a classic poem and substitute each noun with 
the noun found seven nouns away in a specific dictionary. Take for example the first stanza of "The Snow 
Man," by Wallace Stevens: 

The Snow Man The Soap Mandible 

One must have a mind of winter 
To regard the frost and the boughs 
Of the pine-trees crusted with snow. 

One must have a miniature of wisdom 
To regard the fruit and the boulders 
Of the pinions crusted with soap. 

Another math-based structural constraint employed by Oulipo is the snowball poetry, with successive 
lines/sections progressively longer, e.g. starting with a line/section of one word long, going further with a 
second line/section of two words, a third line/section of three words, and so on; or starting with a line/section of 
one letter, going further with a second line/section of two letter, and so on with the following line/section longer 
than the preceding one. The interested reader can find a work that compiles Oulipean techniques, processes, 
procedures, rules, definitions, and personalities [7]. 

4. PARADOXISM AND OULIPO: CONNECTIONS

The main difference between Paradoxism and most neo-avant-gardism movements is its option for significance, 
while the others tend to instrument form to the detriment of meaning. As expounded above, the Paradoxism 
started not as a game of mind, but as an outcry over the power of any kind, especially deploying contra-dictions, 
anti-nomies, anti-thesis, anti-phrases, and in particular paradoxes, through any possible literary, art and even 
scientific vehicle.  There are indeed similarities, intersections and connections though between Paradoxism and 
neo-avant-gardism movements, out of which we briefly discuss two common features between Paradoxism and 
Oulipo. 

The first one refers to a kindred view on intertextuality as a potentiality for re-elaboration. A contemporary 
American writer, Harry Mathews (with many of his works employing the Oulipean style), suggested the 
"Mathews' Algorithm" for producing literature by permuting equivalent members in accordance to 
predetermined rules, in order to reveal the "otherness in language" [8], based on which Mark Wolff created a 
web application offering the reader an opportunity "to discover duplicities in texts" [9]. Even if the approach is 
different, the goal is the same: opening texts to exploratory quests towards the collective talent, exploring 
otherness and duplicities in texts. But really close to Paradoxism’s view on intertextuality are Mathews’ "35 
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Variations on a Theme from Shakespeare", where one can read: "To be or not to be: that’s the problem"," 
Nothing and something: this was an answer", "Choosing between life and death confuses me" [10]. Many 
similar intertextual games are to be found in Paradoxist anthologies [11]. 

The second one regards practice, as there is an Oulipian method closely related to Paradoxism. It is called 
antonymy, and the experiment consists in replacing every significant word in each text with its antonym or 
opposite, based on a given thesaurus. Moreover, definite articles can be replaced by indefinite ones, or singular 
by plural, and vice versa. Proper nouns or words that have no direct antonyms are usually treated as symbols or 
generic objects. The results might differentiate the two movements, as Paradoxism tends not to accept random 
meanings or non-meanings, but rather alternative meanings. 

5. CONCLUSION

To many, literary movements such as the Paradoxism or the Oulipo represent a washed moment in time, 
outdated experimentalism, a chink of postwar neo-avant-gardism. Still, these type of mixed sciento-creative 
manifestations do not show signs of lassitude. For its 50th celebration, Oulipo published an anthology of almost 
1000 pages [12], while the Paradoxist movement has reached its fifteenth anthology in 2020 [13]. 
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Abstract: This short article pairs the realms of „Mathematics”, „Philosophy” 
and „Poetry”, presenting some corners of the intersection of this type of science-
creativity. Poetry has always been linked to philosophy, and further notable 
mathematicians, such as the inventor of the Quaternaries, William Rowan Hamilton, 
or Ion Barbu, the creator of the Barbilian spaces, wrote acclaimed poems. We 
will focus here on a cutting-edge movement in literature, art, philosophy, and 
science called Paradoxism, founded in Romania in the 1980s by a mathematician, 
philosopher, and poet, and on the laborious writing exercises of the Oulipo group, 
founded in Paris in 1960, by mathematicians and poets, both still in action.

Keywords: Paradoxism, Oulipo, Neutrosophy, Neutrosophic Logic.

Paradoxismul, mișcare de avangardă în literatură, artă, filosofie și 
știință

Paradoxismul este o mișcare neo-avangardistă în literatură, artă, 
filosofie, știință, bazată pe utilizarea excesivă de antiteze, parabole, 
oximoroni, paradoxuri în creații, înființată și condusă de matematicianul 
Florentin Smarandache, începută ca un protest antitotalitar în anii 1980 
împotriva societății închise a României comuniste.

Paradoxismul caută să exploreze noi posibilități în literatură, artă, 
filosofie și chiar știință printr-un algoritm de gândire paradoxistă. 
Conductele metaficționale, expresiile jucăușe sau procesele combinatorii de 
compoziție sunt folosite pentru transmiterea paradoxurilor. Constrângerile  
structurale sunt importante, dar fără a pierde interesul pentru semnificația 
mesajului.

Neutrosofia, ca extensie a paradoxismului
Mai târziu, paradoxismul, precum și dialectica dar si filozofia chineza 
antica Yin-Yan, constând din dinamica opuselor <A> și <antiA>, unde 
<A> este un element (concept, idee, teoremă, teorie etc.) și <antiA> este
opusul

Florentin Smarandache (2022). Paradoxismul în matematică, filosofie și poezie. 
Sæculum 7, 131-135

Paradoxismul în matematică, filosofie 
și poezie

Florentin Smarandache
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său, au fost extinse la Neutrosofie (ca o dinamică între opuse <A>, <antiA>, 
împreună cu neutralitățile dintre ele <neutA>) a generat dezvoltarea în  
știință a Logicii Neutrosofice, Mulțimii Neutrosofice, Probabilității 
Neutrosofice, Statisticii Neutrosofice etc. [1]. Neutrosofia este o nouă 
ramură a filosofiei și a început în anul 1998 [2].

Mișcarea literară Oulipo
În 1960, Raymond Queneau – membru al Société Mathématique de 

France, cunoscut pentru romanul ecranizat Zazie dans le Métro [3], care 
s-a alăturat suprarealiștilor, dar apoi a părăsit mișcarea după sprijinul său
pentru URSS – a întâlnit pe inginerul chimist și scriitorul de literatură
absurdă François Le Lionnais, șeful Diviziei de Educație Științifică de la
UNESCO, și au fondat la Paris, împreună cu un echipaj pestriț de scriitori,
matematicieni, profesori și „patafizicieni”, o mișcare literară de formalism
riguros bazată pe matematică, numit „Ouvroir de littérature potentielle”
(Atelier pentru literatură potențială), pe scurt: Oulipo – extins ulterior cu
o serie de ateliere analoage, inclusiv Oumupo (pentru muzică potențială),
Oupeinpo (pentru pictura potențială), sau Oucinépo (pentru filmul
potențial).

De aici au apărut multe lucrări științo-creative inventive, cum ar 
fi cartea booleană, fibonacciană și exponențială a lui Queneau Cent 
Mille Milliards de Poèmes, formată din zece sonete cu aceeași schemă  
de rimă, fiecare linie de poezie fiind tipărită pe o bandă separată de 
card, care poate fi combinată cu orice alte rânduri, generând 1014 poezii  
diferite [4].

Grupul Oulipo se afla într-o căutare de noi forme de scriere dezvoltate 
din noi metode de invenție, dar se considerau mai mult un grup de lucru 
decât unul creativ, creat pentru a oferi soluții practice scriitorilor prin 
cercetări inductive, căutând „să formuleze probleme și în cele din urmă să 
ofere soluții care să permită oricui și tuturor să construiască, literă cu literă, 
cuvânt cu cuvânt, un text” [5].

Crezul lor de libertate literară prin scriere automată, originar din 
suprarealism, a fost paradoxal preparat de formule de constrângeri 
matematice legate prin reguli, întrucât erau convinși că „nu doar virtualitățile 
limbajului sunt dezvăluite prin constrângere, ci și virtualitățile lui care 
acceptă să se supună constrângerii” [6].

De exemplu, au inventat procedura N + 7, adică să aleagă un poem 
clasic și să înlocuiască fiecare substantiv cu substantivul aflat la șapte 
substantive distanță într-un dicționar specific. Luați, de exemplu, prima 
strofă din Omul de zăpadă de Wallace Stevens:
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Omul de zăpadă Mandibula săpunului

 Trebuie să ai o minte de iarnă
 Pentru a privi înghețul și ramurile
 Dintre pinii crustați de zăpadă.

 Trebuie să ai o minimă înțelepciune
 Să privesti fructele și bolovanii
 Dintre pinioanele crustate cu săpun.

O altă constrângere structurală bazată pe matematică, utilizată de 
Oulipo, este poezia cu bulgări de zăpadă, cu linii / secțiuni succesive 
progresiv mai lungi, de ex. începând cu o linie / secțiune de un cuvânt lung, 
mergând mai departe cu o a doua linie / secțiune de două cuvinte, o a treia 
linie / secțiune de trei cuvinte și așa mai departe; sau începând cu o linie / 
secțiune dintr-o literă, mergând mai departe cu o a doua linie / secțiune din 
două litere și așa mai departe cu următoarea linie / secțiune mai lungă decât 
cea precedentă.

Cititorul interesat poate găsi o lucrare care compilează tehnici, procese, 
proceduri, reguli, definiții și personalități olipene [7].

Paradoxism și Oulipo: conexiuni
Principala diferență dintre paradoxism și majoritatea mișcărilor neo-

avangardiste este opțiunea sa pentru semnificație, în timp ce celelalte tind 
să instrumenteze forma în detrimentul sensului. După cum s-a expus mai 
sus, paradoxismul nu a început ca un joc al minții, ci ca un strigăt asupra 
puterii de orice fel, în special desfășurând contra-dicțiuni, anti-nomii, anti-
teze, anti-fraze și, în special, paradoxuri, prin orice posibil vehicul literar, 
de artă și chiar științific.

Există într-adevăr similitudini, intersecții și conexiuni totuși între 
paradoxism și mișcările neo-avangardiste, dintre care discutăm pe scurt 
două trăsături comune între Paradoxism și Oulipo.

Prima se referă la o viziune înrudită asupra intertextualității ca 
potențialitate pentru reelaborare. Un scriitor american contemporan, 
Harry Mathews (în multe dintre lucrările sale folosind stilul Oulipo-ean), 
a sugerat „Mathews’ Algorithm” pentru producerea literaturii permutând 
membri echivalenți în conformitate cu reguli prestabilite, pentru a dezvălui 
„alteritatea în limbă” [ 8], pe baza căreia Mark Wolff a creat o aplicație web 
oferind cititorului o oportunitate „de a descoperi duplicități în texte” [9]. 
Chiar dacă abordarea este diferită, scopul este același: deschiderea textelor 
către căutări exploratorii, către talentul colectiv, și explorarea alterității și a 
duplicităților în texte. 

Dar foarte aproape de viziunea paradoxismului asupra intertextualității 
sunt 35 de variații pe o temă de la Shakespeare ale lui Mathews, unde se 
poate citi: „A fi sau a nu fi: asta este problema”, „Nimic și ceva: acesta 
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a fost un răspuns”, „Alegerea între viață și moarte mă încurcă” [10].  
Multe jocuri intertextuale similare se găsesc în antologiile paradoxiste [11].

Al doilea privește practica, deoarece există o metodă Oulipo-eană 
strâns legată de paradoxism. Se numește antonimie, iar experimentul constă 
în înlocuirea fiecărui cuvânt semnificativ dintr-un anumit text cu antonimul 
său, pe baza unui tezaur dat. Mai mult, articolele definite pot fi înlocuite 
cu articole nedeterminate, sau singular cu plural, și invers. Substantivele 
proprii sau cuvintele care nu au antonime directe sunt de obicei tratate ca 
simboluri sau obiecte generice. Rezultatele ar putea diferenția cele două 
mișcări, deoarece Paradoxismul tinde să nu accepte semnificații aleatorii 
sau nesemnificații, ci mai degrabă semnificații alternative.

Concluzie
Pentru mulți, mișcările literare precum Paradoxismul sau Oulipo 

reprezintă un moment spălat în timp, experimentalism învechit, o 
ciudățenie a neo-avangardismului postbelic. Totuși, acest tip de manifestări  
mixte sciento-creative nu prezintă semne de lâncezeală. Pentru a 50-a 
sărbătoare, Oulipo a publicat o antologie de aproape 1000 de pagini [12], 
în timp ce mișcarea paradoxistă a ajuns la a cincisprezecea antologie în  
2020 [13].
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VARIA MATHEMATICA
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The science’s function is realizing the natural world, developing our society in coordina-

tion with natural laws and the mathematics provides the quantitative tool and method for

solving problems helping with that understanding. Generally, understanding a natural thing

by mathematical ways or means to other sciences are respectively establishing mathematical

model on typical characters of it with analysis first, and then forecasting its behaviors, and

finally, directing human beings for hold on its essence by that model.

As we known, the contradiction between things is generally kept but a mathematical sys-

tem must be homogenous without contradictions in logic. The great scientist Albert Einstein

complained classical mathematics once that “As far as the laws of mathematics refer to reality,

they are not certain; and as far as they are certain, they do not refer to reality.” Why did it
happens? It is in fact result in the consistency on mathematical systems because things are full

of contradictions in nature in the eyes of human beings, which implies also that the classical

mathematics for things in the nature is local, can not apply for hold on the behavior of things

in the world completely. Thus, turning a mathematical system with contradictions to a com-

patible one and then establish an envelope mathematics matching with the nature is a proper

way for understanding the natural reality of human beings. The mathematical combinatorics

on Smarandache multispaces, proposed by Dr.Linfan Mao in mathematical circles nearly 10

years is just around this notion for establishing such an envelope theory. As a matter of fact,

such a notion is praised highly by the Eastern culture, i.e., to hold on the global behavior of

natural things on the understanding of individuals, which is nothing else but the essence of

combinatorics.

Florentin Smarandache (2016). Mathematics for Everything with Combinatorics on Nature - A Report 
on the Promoter Dr. Linfan Mao of Mathematical Combinatorics. International Journal of 
Mathematical Combinatorics 1, 130-133

Florentin Smarandache

Mathematics for Everything with Combinatorics on Nature 
- A Report on the Promoter Dr. Linfan Mao 

of Mathematical Combinatorics

Florentin Smarandache (author and editor) Collected Papers, XIII

841



Linfan Mao was born in December 31, 1962, a worker’s family of China. After graduated

from Wanyuan school, he was beginning to work in the first company of —it China Construc-

tion Second Engineering Bureau at the end of December 1981 as a scaffold erector first, then

appointed to be technician, technical adviser, director of construction management department,

and then finally, the general engineer in construction project, respectively. But he was special

preference for mathematics. He obtained an undergraduate diploma in applied mathematics

and Bachelor of Science of Peking University in 1995, also postgraduate courses, such as those of

graph theory, combinatorial mathematics, · · · , etc. through self-study, and then began his ca-

reer of doctoral study under the supervisor of Prof.Yanpei Liu of Northern Jiaotong University

in 1999, finished his doctoral dissertation “A census of maps on surface with given underlying

graph” and got his doctor’s degree in 2002. He began his postdoctoral research on automor-

phism groups of surfaces with co-advisor Prof.Feng Tian in Chinese Academy of Mathematics

and System Science from 2003 to 2005. After then, he began to apply combinatorial notion to

mathematics and other sciences cooperating with some professors in USA. Now he has formed

his own unique notion and method on scientific research. For explaining his combinatorial

notion, i.e., any mathematical science can be reconstructed from or made by combinatoriza-

tion, and then extension mathematical fields for developing mathematics, he addressed a report

“Combinatorial speculations and the combinatorial conjecture for mathematics” in The 2nd

Conference on Combinatorics and Graph Theory of China on his postdoctoral report “On au-

tomorphism groups of maps, surfaces and Smarandache geometries” in 2006. It is in this report

he pointed out that the motivation for developing mathematics in 21th century is combinatorics,

i.e., establishing an envelope mathematical theory by combining different branches of classical

mathematics into a union one such that the classical branch is its special or local case, or

determining the combinatorial structure of classical mathematics and then extending classical

mathematics under a given combinatorial structure, characterizing and finding its invariants,

which is called the CC conjecture today. Although he only reported with 15 minutes limitation

in this conference but his report deeply attracted audiences in combinatorics or graph theory

because most of them only research on a question or a problem in combinatorics or graph

theory, never thought the contribution of combinatorial notion to mathematics and the whole

science. After the full text of his report published in journal, Prof.L.Lovasz, the chairman of

International Mathematical Union (IMU) appraise it “an interesting paper”, and said “I agree

that combinatorics, or rather the interface of combinatorics with classical mathematics, is a

major theme today and in the near future” in one of his letter to Dr.Linfan Mao. This paper

was listed also as a reference for the terminology combinatorics in Hungarian on Wikipedia, a

free encyclopedia on the internet. After CC conjecture appeared 10 years, Dr.Linfan Mao was

invited to make a plenary report “Mathematics after CC conjecture – combinatorial notions

and achievements” in the International Conference on Combinatorics, Graph Theory, Topology

and Geometry in January, 2015, surveying its roles in developing mathematics and mathemat-

ical sciences, such as those of its contribution to algebra, topology, Euclidean geometry or

differential geometry, non-solvable differential equations or classical mathematical systems with

contradictions to mathematics, quantum fields and gravitational field. His report was highly

valued by mathematicians coming from USA, France, Germany and China. They surprisingly
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found that most results in his report are finished by himself in the past 10 years.

Generally, the understanding on nature by human beings is originated from observation,

particularly, characterizing behaviors of natural things by solution of differential equation es-

tablished on those of observed data. However, the uncertainty of microscopic particles, or

different positions of the observer standing on is resulted in different equations. For example,

if the observer is in the interior of a natural thing, we usually obtain non-solvable differential

equations but each of them is solvable. How can we understand this strange phenomenon?

There is an ancient poetry which answer this thing in China, i.e., “Know not the real face of

Lushan mountain, Just because you are inside the mountain”. Hence, all contradictions are

artificial, not the nature of things, which only come from the boundedness or unilateral knowing

on natural things of human beings. Any thing inherits a combinatorial structure in the nature.

They are coherence work and development. In fact, there are no contradictions between them

in the nature. Thus, extending a contradictory system in classical mathematics to a compatible

one and establishing an envelope theory for understanding natural things motivate Dr.Linfan

Mao to extend classical mathematical systems such as those of Banach space and Hilbert space

on oriented graphs with operators, i.e., action flows with conservation on each vertex, apply

them to get solutions of action flows with geometry on systems of algebraic equations, ordi-

nary differential equations or partial differential equations, and construct combinatorial model

for microscopic particles with a mathematical interpretation on the uncertainty of things. For

letting more peoples know his combinatorial notion on contradictory mathematical systems, he

addressed a report “Mathematics with natural reality – action flows” with philosophy on the

National Conference on Emerging Trends in Mathematics and Mathematical Sciences of India

as the chief guest and got highly praised by attendee in December of last year.

After finished his postdoctoral research in 2005, Dr.Linfan Mao always used combinatorial

notion to the nature and completed a number of research works. He has found a natural road

from combinatorics to topology, topology to geometry, and then from geometry to theoretical

physics and other sciences by combinatorics and published 3 graduate textbooks in mathematics

and a number of collection of research papers on mathematical combinatorics for the guidance of

young teachers and post-graduated students understanding the nature. He is now the president

of the Academy of Mathematical Combinatorics & Applications (USA), also the editor-in-chief

of International Journal of Mathematical Combinatorics (ISSN 1937-1055, founded in 2007).

Go your own way. “Now the goal is that the horizon, Leaving the world can be only

your back”. Dr.Linfan Mao is also the vice secretary-general of China Tendering & Bidding

Association at the same time. He is also busy at the research on bidding purchasing policy and

economic optimization everyday, but obtains his benefits from the research on mathematics and

purchase both. As he wrote in the postscript “My story with multispaces” for the Proceedings

of the First International Conference on Smarandache Multispace & Multistructure (USA) in

2013, he said: “For multispaces, a typical example is myself. My first profession is the industrial

and civil buildings, which enables me worked on architecture technology more than 10 years

in a large construction enterprise of China. But my ambition is mathematical research, which

impelled me learn mathematics as a doctoral candidate in the Northern Jiaotong University and

then, a postdoctoral research fellow in the Chinese Academy of Sciences. It was a very strange
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for search my name on the internet. If you search my name Linfan Mao in Google, all items

are related with my works on mathematics, including my monographs and papers published in

English journals. But if you search my name Linfan Mao in Chinese on Baidu, a Chinese search

engine in China, items are nearly all of my works on bids because I am simultaneously the vice

secretary-general of China Tendering & Bidding Association. Thus, I appear 2 faces in front of

the public: In the eyes of foreign peoples I am a mathematician, but in the eyes of Chinese, I am a

scholar on theory of bidding and purchasing. So I am a multispace myself.” He also mentioned in

this postscript: “There is a section in my monograph Combinatorial Geometry with Applications

to Fields published in USA with a special discussion on scientific notions appeared in TAO TEH

KING, a well-known Chinese book, applying topological graphs as the inherited structure of

things in the nature, and then hold on behavior of things by combinatorics on space model and

gravitational field, gauge field appeared in differential geometry and theoretical physics. This is

nothing else but examples of applications of mathematical combinatorics. Hence, it is not good

for scientific research if you don’t understand Chinese philosophy because it is a system notion

on things for Chinese, which is in fact the Smarandache multispace in an early form. There is

an old saying, i.e., philosophy gives people wisdom and mathematics presents us precision. The

organic combination of them comes into being the scientific notion for multi-facted nature of

natural things on Smarandache multispaces, i.e., mathematical combinatorics. This is a kind

of sublimation of scientific research and good for understanding the nature.”

This is my report on Dr.Linfan Mao with his combinatorial notion. We therefore note

that Dr.Linfan Mao is working on a way conforming to the natural law of human understand-

ing. As he said himself: “mathematics can not be existed independent of the nature, and only

those of mathematics providing human beings with effective methods for understanding the

nature should be the search aim of mathematicians!”As a matter of fact, the mathematical

combinatorics initiated by him in recent decade is such a kind of mathematics following with

researchers, and there are journals and institutes on such mathematics. We believe that math-

ematicians would provide us more and more effective methods for understanding the nature

following his combinatorial notion and prompt the development of human society in harmony

with the nature.
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The 3n ± p Conjecture: A Generalization 
of Collatz Conjecture 

W.B. Vasantha Kandasamy, Ilanthenral Kandasamy, Florentin Smarandache

ABSTRACT. The Collatz conjecture is an open conjecture in mathematics named 
so after Lothar Collatz who proposed it in 1937. It is also known as 3n + 1 
conjecture, the Ulam conjecture (after Stanislaw Ulam), Kakutanis problem (after 
Shizuo Kakutani) and so on. Several various generalization of the Collatz conjecture 
has been carried. In this paper a new generalization of the Collatz conjecture called 
as the 3n ± p conjecture; where p is a prime is proposed. It functions on 3n + p and 
3n - p, and for any starting number n, its sequence eventually enters a finite cycle 
and there are finitely many such cycles. The 3n ± 1 conjecture, is a special case of 

the 3n ± p conjecture when p is 1. 

1 INTRODUCTION 

The Collatz conjecture is long standin� open conjecture in number theory. 

Paul Erdos had commented about the Collatz conjecture that "Mathematics 

may not be ready for such problems". The Collatz conjecture has been 
extensively studied by several researchers [1, 2, 3, 4, 5]. A novel theoretical 
framework was formulated for information discovery using the Collatz 
conjecture data by Idowu [6]. Generalizing the odd part of the Collatz 
conjecture was studied by [7]. Several various generalization of the Collatz 
conjecture was studied by [8]. Various generalization are listed and given in 
number theory website of Keith Matthews [9]. 
This paper proposes a new conjecture which is a generalization of the Collatz 

conjecture. This new conjecture is called as the 3n ± p conjecture, where p is 

a prime. This paper is organised into four sections. First section is 
introductory in nature. Section two recalls the Collatz conjecture and its 
various generalizations so that the paper is self contained. 

W.B. Vasantha Kandasamy, Ilanthenral Kandasamy, Florentin Smarandache (2017). The 3n±p 
Conjecture: A Generalization of Collatz Conjecture. Octogon Mathematical Magazine 25(1), 
26-33; DOI: 10.22147/jusps-A/290207
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Section three proposes the new 3n ± p conjecture and illustrates it by 
examples. The conclusions and future study are given in the last section.

2 COLLAT'Z CONJECTURE AND ITS VARIOUS GENERALIZATIONS

2.2. Collatz Conjecture 

The 3n + 1 conjecture or the Collatz conjecture is summarized as follows: 
Take any positive integer n. If n is even divide it by 2 to get n/2. If n is odd 
multiply it by 3 and add 1 to obtain 3n + l. Repeat the process (which has 
been called "Half Or Triple Plus One" or HOTPO) indefinitely. The 
conjecture states that no matter what number you start with you will always 
eventually reach 1. 
Consider the following operation on an arbitrary positive integer: If the 
number is even divide it by two, if the number is odd, triple it and add one. 
This is illustrated by example of taking numbers from 4 to 10 and the 
related sequence is obtained: 

• n = 4; related sequence is 4, 2, 1.

• n = 5, related sequence is 5, 16, 8, 4, 2, l. 

• n = 6, related sequence is 6, 3, 10, 5, 16, 8, 4, 2, l. 

• n = 7, related sequence is 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16,
8, 4, 2, l.

• n = 8, related sequence is 8, 4, 2, l. 

• n = 9, related sequence is 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20,
10, 5, 16, 8, 4, 2, l.

• n = 10, related sequence is 10, 5, 16, 8, 4, 2, 1. 

In simple modular arithmetic notation the Collatz conjecture can be 
represented as 

{ i if n == 0(mod 2) 
f(n) = 3n;l if n == l(mod 2)

(1)
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Note: Only powers of two converge to one quickly. 

2.2. Various generalization of the Collatz Conjecture 

Several researchers have studied and generalized the Collatz conjecture. 
Some generalize by taking different values for 2 as 3, 5, etc [9]. Keith 
Matthew [9] has studied for 3n + 371 and so on. Some natural 
generalizations of the Collatz Problem was done by Carnielli [8]. Lu Pei has 
given a generalization of 3x - 1 mapping in [9]. 
The generalization of the 3n - 1 mapping due to Lu Pei is given verbatim 
from [9]. 
Consider the mapping Td : Z +- Z. Let d � 2. Then 

{ 
� if n = 0(mod 2) 

Td(n) 
= (d+l)n-i "f = "( d 2)

2 
1 n _ 1 mo 

where -d/2 S i S d/2; i i= 0. 
In case, d = 2 it gives the 3n - 1 mapping: 

( ) { 
� if n = O(mod 2) 

T2 n = 3n2
1 if n = l(mod 2)

(2) 

(3) 

This is a special case of a version of a mapping studied by Herbert Moller 
[10] and is also an example of a relatively prime mapping, in the language of
Matthews and Watts, where mo = 1 and mi = d+ 1 for 1:S i j d and where
we have the inequality

So it seems certain that the sequence of iterates 

n, Td_(n), TJ(n), ... 

always eventually enters a cycle and that there are only finitely many such 
cycles. 
Clearly Td(n) = n for -d/2 < n S d/2. Ford= 3, 6 and 10, there appears to 
be no other cycles. By replacing 2 by d, it given the 3x - 1 conjecture will 
eventually enter a cycle. It is showed that the 3n + 1 collatz conjecture when 
n is negative has finite cycles which terminates in -1 or -5 or -17 [9]. 
Thus if for every non zero n E Z the 3n + 1 Collatz conjecture converges to 
{ -17, -5, -1, 1} and the 3n - 1 collatz conjecture converges to { -1, 1, 5, 17}-
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The 3n - 1 conjecture is a special case of the Lu Pei's generalization of the 
Collatz conjecture. The 3n - l conjecture is described here for clarity.

2.3. The 3n - l Conjecture

The 3n - l conjecture which is akin to the Collatz conjecture is proposed in 
this section. The 3n - l conjecture is as follows: 
Take any arbitrary positive integer n. If n is even divide it by two and get 
n/2 if n is odd multiply it by 3 and subtract 1 and obtain 3n - 1, repeat this 
process indefinitely. We call this process as "Half Or Triple Minus One" or 
HOTMO. The conjecture states that immaterial of which number you begin 
with, you will eventually reach 1 or 5 or 17. 

2.3.1. Statement of the Problem/Conjecture 

On any arbitrary positive integer, consider the operation 

• If the number is even, divide it by two

• Else triple it and subtract one

continue this process recursively. The 3n - l conjecture is that this process 
which will eventually reach either 1 or 5 or 17, regardless of which positive 
integer is selected at the beginning. 
The smallest i such that ai = l or 5 or 17 is called as the total stopping time 
of n. The 3n - l conjecture asserts that every n has a well defined total 
stopping time i. If for some n ( any positive integer) such i ( total stopping 
time) doesn't exist, then n has an infinite total stopping time then the 
conjecture is false. It can happen only because there is some starting number 
which gives a sequence that does not contain 1, 5 or 17. Such a sequence may 
have a repeating cycle that does not contain 1, 5 or 1 7 or it might increase 
without bounds. Till now such a sequence or number has not been found. 
In simple modular arithmetic notation the 3n - 1 conjecture can be 
represented as 

_ { 
� if n = 0(mod 2) 

f(n) - 3n
2-

1 if n = l(mod 2) (4) 

A sequence is formed by performing this operation repeatedly, it starts with 
any arbitrary positive integer and takes the result each step as the input for 
the next. 
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{
n if i=0

· ai = 

f(ai-i) if i cc/ 0

ai = Ji ( n) that is ai is the value of f applied to n recursively i times; n is
the starting number and i at the end of the sequence is called the total 
stopping time. 

Examples 

(5) 

The conjecture states that the sequence will reach 1, 5 or 17. The following
repeated sequences / cycles happen for 1, 5 or 17. 

1. n = l; the repeated sequence is 4, 2, 1.

2. n = 5; the repeated sequence is 14, 7, 20, 10, 5.

3. n = 17; the repeated sequence is 50, 25, 74, 37, 110, 55, 164, 82, 41,
122, 61, 182, 91, 272, 136, 68, 34, 17.

We will illustrate this conjecture by some examples using the 3n - 1 formula
and taking numbers from 4 to 10. It is tabulated in Table 1

Table 1: Illustration of the 3n - 1 conjecture

In Sequence I i I Ends in I

4 4, 2, 1 3 1
5 5, 14, 7, 20, 10, 5 1 5
6 6, 3, 8, 4, 2, 1 6 1
7 7, 20, 10, 5 4 5
8 8, 4, 2, 1 4 1
9 9, 26, 13, 38, 19, 56, 28, 14, 7, 20, 10, 5 12 5
10 10, 5 2 5

Similar to 3n + 1 conjecture in 3n - 1 conjecture also the powers of 2,
converge quickly. Figure 2.3.2 gives the scatter plot that takes the starting
number n from 1 to 1000 along the x-axis and the total stopping number i
along the y-axis. Depending on which number the sequence ends, the colour
is given. If the sequence ends in 1, then blue colour is given, if it ends in 5 
then red colour is given and if it ends in 17 green colour is given.
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Figure 1. The scatter plot of first 1000 numbers and their stopping times 

The 3n - 1 conjecture creates a sequence that ends in 3 different numbers 
with the sequence having a repe·ated sequence of 

1. for any negative n the sequence ends in -1.

2. n = l; the repeated sequence is 4, 2, 1. 

3. n = 5; the repeated sequence is 14, 7, 20, 10, 5.

4. n = 17; the repeated sequence is 50, 25, 74, 37, 110, 55, 164, 82, 41,
122, 61, 182, 91, 272, 136, 68, 34, 17.

The 3n - 1 conjecture and 3n + 1 conjecture are mirror functions. The 
3n ± p conjecture is defined in the next section. 

3THE3n±pCONJECTURE 

The 3n + p and 3n - p conjecture ( or simply the 3 ± p conjecture) is given in 
the following: 

_ { i if n = 0(mod 2) 
T(n) - 3n±p -2- if n = l(mod 2)

In simple modular arithmetic notation the 3n + p conjecture can be 
represented as 

_ { i if n = 0(mod 2) 
f(n) - 3nip if n = l(mod 2)

and the 3n - p conjecture can be represented as 

(6) 

(7)
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· _ { � if n = O(mod 2) 
f(n) -

3n-p 'f ( d )2 1 n = l mo 2 
It is clearly seen when p = l, we see the sequence converges to {-17, -5, -1, 0, 1} and when p = -l, the sequence converges to 

(8) 

{ -1, 0, 1, 5, 17}. When p is 1, it is Collatz conjecture and when p is -1 it is
3n - 1 conjecture. We show for 3n + 5 the sequence converges to{-85, -25, -5, -1, 0, 1, 5, 19, 23,187,407} for any n in Z . For 3n - 5 we get{-407,-187,-23,-19,-5,-1,0,l,5,25,85}. 3n+5 and 3n-5 act likemirror functions.In Table2 some 3n ± p conjecture and their minimum cycle elements arelisted.

Table 2: Illustration of the 3n ± p conjecture 
Sequence j 
3n+3 

3n - :3 :3n+ 5 
3n-5 

3n+7 

3n- 7 
3n + 11 
3n-ll 
3n+ 13 
3n- 13 

Ends in 
{ -51, -5, -3, 0, 1, 3}{-3, -1, 0, 3, 5, 51}{ -85, -25, -5, -1, 0, 1, 5, 19, 23,187,407}{-407, -187, -23, -19, -5, -1, 0, 1, 5, 25, 85} {-119, -35, -7, -1, 0, 1, 5, 7} {-7, -5, -1, 0, 1, 7, 35,119} {-187, -55, -19, -11, -3, -1, 0, 1, 11, 13} {-13, -11, -1, 0, 1, 3, 11, 19, 55,187} {-221, -65, -13, -1, 0, 1, 13,131, 211,227,251,259,283,287,319} {-319 -287 -283 -259 -251 -227 ' ' ' ' ' ' -211, -131, -13, -1, o, 1, 13, 65,221}

It is conjectured that for every prime p the 3n ± p sequence will result in a finite cycle and there are finite number of such cycles. 
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4 RESULTS AND FURTHER STUDY 

The proposed 3n ± p conjecture is a new generalization of the 3n + 1 
conjecture or the Collatz conjecture. Given any starting number n, the 
conjecture states that the sequence will result in a finite cycle and there are 
finite number of such cycles. Cycles related to the 3n ± p, resulting hailstone 
numbers and parity sequence are left open for study. 
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ABSTRACT. While it is known that Euclids five axioms include a proposition that 

a line consists at least of two points, modern geometry consistently avoids any 
discussion on the precise definition of points, lines, etc. It is our aim to clarify one of 
notorious question in Euclidean geometry from discrete cellular space (DCS) 
viewpoint: How many points are there in a line segment'? In retrospect, it may offer 
an alternative for quantum gravity, i.e., by exploring discrete gravitational theories. 
To elucidate our propositions, in the last section we will discuss some implications of 
the discrete cellular space model in several areas of interest: (a) cell biology, (b) 
cellular computing, (c) Maxwell equations, (d) low energy fusion, and (e) cosmology 
modelling. 

I consider it quite possible that physics cannot be based on the field concept, 

i.e., on continuous structures. In that case nothing remains of my entire

castle in the air gravitation theory included, -and of- the rest of modern

physics. A. Einstein

INTRODUCTION 

So many students of all ages have asked this question: how many points are 
there in a line segment? A good math teacher would answer politely: in the 
circumference of a circle there are an infinite number of points [1]. Similarly, 

one can also ask: how many lines are there in a rectangle? The answer again 
is known: there are infinite number of lines in given rectangle. 

But a careful student would ask again: then what is the definition of a point 
and a line? The teacher would answer again: a point is a circle with a zero 
diameter, and a line is composed of infinite points. 

Victor Christianto, Florentin Smarandache (2018). How many points are there in a Line 
Segment? A New Answer from a Discrete Cellular Space Viewpoint. Octogon 
Mathematical Magazine 26(2), 604-615

Victor Christianto, Florentin Smarandache

How many points are there in a Line Segment? 
A New Answer from a Discrete Cellular Space 

Viewpoint

Florentin Smarandache (author and editor) Collected Papers, XIII

853



If our beloved student persisted, he/she would continue to ask: but teacher, 
if a circle has a zero diameter, then an infinite number of zeroes will not 
make a finite line, right? At this time, there is fair chance that the teacher 
would feel upset and say: shut up and calculate! That is what usually 
happens in most primary and high school mathematics classrooms, and the 

situation is not getting better in the undergraduate classroom. Only in 

graduate math class are the students allowed to ask deeper questions 
concerning the foundations of mathematics, etc. A more serious debate 
among mathematicians over this notorious continuum problem has been 

recorded in reference [11]. 
Here, we will offer a simpler solution of the above posed question from a 
discrete cellular space (DCS) viewpoint, with wide implications, including 
more clarity in the distinction between quantization and discretization. 

2 SOLUTION: SPACE CONSISTS OF CIRCLES WITH FINITE 
DIAMETERS (DISCRETE-CELLULAR MODEL) 

The obvious paradox that we set in the introduction section can be 
simplified as follows: 

o+o+o+.ad infinitum= O 

Therefore, the basic postulate that a line segment consists of circles with 
zero diameter is contradictory by itself. Our proposed solution is to assume 
that space consists of circles with small but finite diameter ( z), therefore if a 
line segment consists of circles like that, we have: 

z+z+z+ ad infinitum = finite line 

One implication of this proposition is that we should consider the geometry 
of space not as continuum, but as a discrete cellular space. We must also 
remember that the discretization of space is much more fundamental than 
quantization. Moreover, we can consider the following: 
a. It can be shown that similar indeterminacy problems plague the very
definition of differential calculus, as no one knows that actual size of dx. See
H.J.M. Bos [2]:

2.15. I turn now to a difficulty which necessarily arises in any attempt to set 

up an infinitesimal calculus which takes the differential as fundamental 

concept, namely the indeterminancy of differentials. 
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The first differential dx of the variable x is infinitely small with respect to x, 
and it has fhe same dimension as x. These are the only conditions it has to 
satisfy, and they do not determine a unique dx, for if dx satisfies the 
conditions �hen clearly so do 2dx and ½dx and in general all adx for finite 
numbers a. That is, all quantities that have the same dimension and the 
same order of infinity as dx might serve as dx. 

Moreover, there are elements not from this class which satisfy the conditions 
for dx; for instance dx2 / a and vadx, for finite positive a of the same 
dimension as x. dx2 / a is infinitely small with respect to dx and vadx is 
infinitely large with respect to dx, so that there is even not a privileged class 
of infinite smallness from which dx has to be chosen; there is no first class of 
infinite smallness adjacent to 'finiteness. 

Thus first-order differentials involve a fundamental indeterminancy. 

b. Boyer has shown that Planck blackbody radiation can be derived from a
discrete charge assumption (without partition as assumed by Planck). See

[3].
c. Lee Smolin has described three approaches to quantum gravity in his book
[4]. Considering our proposition above however, it seems that the notion of
quantum gravity may be not necessary. Instead, we should consider discrete
gravity thcr;ries.

d. Gary W. Gibbons and George F.R. Ellis have investigated a discrete
Newtonian r:osmology. That is a good start [5].

e. Gerard t Hooft has proposed a discrete deterministic interpretation of QM
[6]. Howevei.', it seems the use of both discrete and quantum language are
superfluom,. We need to let go of quantum terminology that has its own
excess baggage.

f. At the astronomical scale, Conrad Ranzan has proposed a cellular
universe, which is essentially a Newtonian steady-state model with a discrete
cellular space model [7]. In our view, such an approach needs to be explored
and investigated further. See also our recent paper where we suggest an
ultradiscrete KdV as a model of cosmology [8]. See also the
Lindquist-Wheeler model [9] [10]. We discuss this approach in the last
example of the last section of this paper.

g. It may be possible for certain conditions to consider a partial continuum
and partially discrete space. In other words, we may have a hybrid space.
We have yet to investigate it, however.
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3 A FEW PHILOSOPHICAL CONSIDERATIONS 

According to Miguel Lorente, in order to better understand these models, it 
would be useful to consider three levels of human knowledge in the 
comprehension of the physical world [12]: 

Level 1: Physical magnitudes such as distances, intervals, force, mass and 

charge that are given by our sensation and perceptions. 

Level 2: Mathematical structures that are the result of metrical properties 
given by measurements and numerical relations among them. 

Level 3: Fundamental concepts representing the ontological properties of the 
physical world given by our intelligence in an attempt to know reality. This 
level of knowledge is not accepted by some philosophical positions like logical 
positivismus, conventionalismus and neokantismus. 

There must be some connections among the three levels. In QM, the 
theoretical models of microphysics in level 2 are related to observable 
magnitudes in level 1 by correspondence laws. If we accept level 3, it should 
be connected to level 2 and to level 1 ( through level 2). In fact, the rules 
governing the constructions of theoretical models in level 2 must be 
grounded in some fundamental ( ontological) properties of the physical world. 
It is also worth noting that there are dierent interpretations of the concepts 
of space and time. They are usually divided in three classes, as follows [12]: 

(a) Dualistic theories: space is a container in which particles and waves are
moving. Time is also a separate entity with respect to the motion that takes
place. Therefore space and time are absolute and can be thought of in the
absence of particles (Newton).

(b) Monistic theories: spacetime is identied with some properties of matter
and cannot be conceivable without the existence of the latter. The eld of
forces and their sources are nothing more than geometrical deformations of
spacetime (Einstein, Kaluza-Klein, Wheeler).

( c) Relational theories: spacetime consists of the set of relations among some
fundamental objects, namely: monads (Leibniz), units (Penrose), processes
(Weisaecker, F inkelstein), preparticles (Bunge, Garca Sucre) and objects
(Hilbert).

In the present paper, following our argument in the previous section, we 
assert that space consists of discrete cells with finite dimensions, which is the 
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most realistic model to the best of our knowledge. Next, we will discuss some 
implications of our assertion in different areas of interest. 

4 PROOF OF CONCEP T: A FEW IMPLICATIONS OF DISCRE TE 
CELLULAR SPACE 

To elucidate our propositions, we will discuss some implications of the 
discrete cellular space model in several areas of interest: (a) cell biology, (b) 
cellular computing, (c) Maxwell equations, (d) low energy fusion, and (e) 
cosmology modelling. 

(a) Cell biology. The mathematical modeling of cell populations can be,
broadly speaking, split into two categories: continuum and discrete models.
Discrete models treat cells as individual entities and hence provide a natural
framework within which to make use of an increasing amount of
experimental data available at the cellular and subcellular scales. There are
now many different types of discrete cell-level models used to describe cell
populations, e.g., cellular automata, cellular Potts models, cell-vertex, and
off-lattice cell-based model [19].

(b) While continuum models have their own advantages, they also have
certain limitations [20]:
Continuum models of the cell aim at capturing its passive dynamics. In
addition to the limitations mentioned above, current models do not yet
typically account for active biology: deformations and stresses experienced as
a direct consequence of biochemical responses of the cell to mechanical load
cannot be predicted by current continuum models. However, by contrasting
the predicted purely mechanical cell response to experimental observations,
one could isolate phenomena involving active biology, such as cell contraction
or migration, from the passive mechanical response of the cell. Alternatively, 
continuum models might be envisioned that account for active processes
through time-dependent properties or residual strains that are linked to
biological processes.
Another limitation of continuum models stems from lack of description of
cytoskeletal bers. As such, they are not applicable for micromanipulations of
the cell with a probe of the same size or smaller than the cytoskeletal mesh
(0.11.0 m). This includes most AFM experiments. In addition, the
continuum models exclude small Brownian motions due to thermal
uctuations of the cytoskeleton, which would correspond to uctuations of the
network nodes in a continuum model and have been shown to play a key role
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in cell motility (1fogilner and Oster, 1996). Finally, continuum models have 
80 far employed a limited number of time constants to characterize the cells 
behavior. However, cells have recently been shown to exhibit behaviors with 
power-law rheology, implying a continuous spectrum of time scales (Fabry et 
al., 2001; Desprat et al., 2004). In the meantime, models involving a nite 

number of time constants consistent with the time scale of the experimental

technique can be used, recognizing their limitations [20]. 

(c) Cellular computer. Around 18 years ago, Sipper described a number of

interesting features of the cellular computer. He began his article by noting 
that von Neumanns architecture - which is based upon the principle of one 
complex processor that sequentially performs a single complex task at a 
given moment - has dominated computing technology for the past 50 years. 
Recently, however, researchers have begun exploring alternative 
computational systems based on entirely different principles. Although 
emerging from disparate domains, the work behind these systems shares a 
common computational philosophy, which can be called cellular computing 
[21]. Cellular computers are supposed to have three principles in common. 
Combining these three principles results in the following definition: cellular 
computing = simplicity + vast parallelism + locality. Because the three 
principles are highly interrelated, attaining vast parallelism, for example, is 
facilitated by the cells simplicity and local connectivity. Changing any single 
term in the equation results in a different computational paradigm. So, for 
example, foregoing the simplicity property results in the distributed 
computing paradigm. 

Cellular computing has been placed further along the parallelism axis to 
emphasize the vastness aspect [21]. What specific application areas invite a 
cellular computing approach? 

Research has raised several possibilities: (1) Image processing. Applying 
cellular computers to perform image-processing tasks arises as a natural 
consequence of their architecture. For example, in a two-dimensional grid, a 
cell ( or group of cells) can correspond to an image pixel, with the machines 
dynamics designed to perform a desired image-processing task. Research has 
shown that cellular image processors can attain a high level of performance 
and exhibit fast operation times for several problems. (2) Fast solutions to 
NP-complete problems. Even if only a few such problems can be dealt with, 
doing so may still prove highly worthwhile. NP-completeness implies that a 
large number of hard problems can be efciently solved, given an efcient 
solution to any one of them. The list of NP-complete problems includes 
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hundreds of cases from several domains, such as graph theory, network 
design, logic, program optimization, and scheduling, to mention but a few. 
(3) Generating long sequences of high-quality random numbers. This
capability is of prime import in domains such as computational physics and
computational chemistry. Cellular computers may prove a good solution to
this problem. (4) Nanoscale calculating machines. Cellular computings
ability to perform arithmetic operations raises the possibility of
implementing rapid calculating machines on an incredibly small scale. These
devices could exceed current models speed and memory capacity by many
orders of magnitude. (5) Novel implementation platforms. Such platforms
include recongurable digital and analog processors, molecular devices, and
nanomachines. [21].

(d) Maxwells equations. While X.S. Wang [23] was able to derive the above
mentioned Maxwells equations in vacuum based on a continuum mechanics
model of vacuum and a singularity model of electric charges, Krasnoholovets
managed to show in the meantime and quite remarkably that the very
definition of charge can be modelled from the viewpoint of tessellated space
[22]. He argued that Maxwells equations are the manifestation of hidden
dynamics of surface fractals. He also concludes that James Clerk Maxwell
was right when he utilized imaginary cogwheels constructing the equations of
motion of an electromagnetic field [22, p. 128].

( e) Low energy fusion. Since the early years of condensed matter nuclear
science (aka. LENR/cold fusion), Robert W. Bussard from the
Energy /Matter Conversion Corporation has argued in favor of internal
nuclear fusion in a metal lattice to explain the low energy reaction as
reported by Pons and Fleischmann [24]. Subsequently, there are a number of
researchers who have explored the implications of lattice vibration and
lattice structure models from solid state physics in order to explain the
CMNS process [25][26][27]. Such approaches seem to be quite promising and
they are worthy to continue further. For a recent discussion on discrete and
continuum modelling, see [28].

(f) Cosmology modelling. Many physicists and philosophers alike have
debated a long-standing puzzle: whether space is continuous or discrete. It
has been known for long time that most of the existing cosmology models
rely on a pseudo-Riemannian metric as the cornerstone of the Einsteinian
universe. However, the metric itself is based on continuum theory. It is
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known that such models have led us to too many (monster) problems,
including dark matter and dark energy etc. Now, what if the universe is
discrete? Then perhaps we can solve these problems naturally. 
Philosophically speaking, the notion of discrete space can be regarded as a
basic question in the definition of differential calculus and limit. If it is 
supposed that space is continuous, then we can use standard differential
calculus, but if we assume it is finite and discrete, we should use a difference
equation or finite difference theories. This problem is particularly acute 
when we want to compute our mathematical models in computers, because
all computers are based on discrete mathematics. Then we can ask: is it 
possible that discrete mathematics can inspire cosmology theorizing too?
Despite the fact that the majority of cosmologists rely on a standard model
called Lambda-CDM theory, here we will explore redshift theory based on a
few lattice-cellular models, including Lindquist-Wheeler theory and beyond 
it. We will also touch briefly on some peculiar models such as Voronoi 
tessellation and Conrad Ranzans cellular model of the universe. 

a). Lindquist-Wheelers theory. In this model, matter content is assumed
to be discrete, identical spherically symmetric islands uniformly distributed 
in a regular lattice. This attempt was first introduced in 1957 by Lindquist
and Wheeler (LW) in a seminal paper. While LW suggested that their global
dynamics are similar to those of the Friedmann universe for closed dust 
dominated universe, Shalaby has shown that the LW-model can be extended
to yield a redshift equation, as follows [9]: 

1 + z = 1 + (y) ln ( :: ) = 1 + ( (y)) ln( 1 + z F mv) c::'. ( 1 + z F mv) (y) ( 1)

It can be shown that the value of (y) approximates geometrically to be 2/3,
however, numerically its value was estimated to be 7 /10 [9]. Liu also 
analyzed the LW model and he concludes that LW redshifts can differ from
their FLRW counterparts by as much as 30%, even though they increase 
linearly with FLRW redshifts and they exhibit a non-zero integrated
Sachs-Wolfe effect, something that would not be possible in 
matter-dominated FLRW universes without a cosmological constant [10].

b. Voronoi Tessellation model. Rien van de Weygaert describes a novel
model based on Voronoi tessellation. The spatial cosmic matter distribution
on scales of a few up to more than a hundred Megaparsecs displays a salient
and pervasive foam-like pattern [14]. Voronoi tessellations are a versatile and
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flexible mathematical model for such web-like spatial patterns. Cellular 
patterns may be the source of an intrinsic geometrically biased clustering. 
However, so far we have not found a redshift equation from this model [13]. 

c. Non-expanding cellular universe. Conrad Ranzan suggests a DSSU
cellular cosmology ( dynamics steady state universe), which he claims to be
problem-free. The cosmic redshift is shown to be a velocity-differential effect
caused by a flow differential of the space medium. He obtains the cosmic
redshift equation in its basic form [7]:

z = (1 + zcc)N - 1 (2) 

There are other cellular cosmology models of course and some of them have 
been reviewed by Marmet, but this paper is not intended to be an exhaustive 
list of redshift models. See for example: Marmet [18]. 

CONCLUSION 

An old question and paradox in Euclidean geometry may be resolved 
consistently once we accept and assume discrete cellular space instead of a 
continuum model, which is full of indeterminacies. Many implications and 
further developments can be expected both in the particle physics realm and 
also in cosmology theorizing. More observations and experiments are 
recommended to verify whether space is discrete, continuous, or hybrid. 

In retrospect, it may offer an alternative for quantum gravity, i.e. by 
exploring discrete gravitational theories. To elucidate our propositions, we 
discussed some implications of the discrete cellular space model in several 
areas of interest: ( a) cell biology, (b) cellular computing, ( c) Maxwell 
equations, (d) low energy fusion, and (e) cosmology modelling. 
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Some Results on Various Cancellative CA-Groupoids 
and Variant CA-Groupoids 

Zhirou Ma, Xiaohong Zhang, Florentin Smarandache

Abstract: Cyclic associativity can be regarded as a kind of variation symmetry, and cyclic associative 

groupoid (CA-groupoid) is a generalization of commutative semigroup. In this paper, the various 

cancellation properties of CA-groupoids, including cancellation, quasi-cancellation and power 

cancellation, are studied. The relationships among cancellative CA-groupoids, quasi-cancellative 

CA-groupoids and power cancellative CA-groupoids are found out. Moreover, the concept of variant 

CA-groupoid is proposed firstly, some examples are presented. It is shown that the structure of 

variant CA-groupoid is very interesting, and the construction methods and decomposition theorem 

of variant CA-groupoids are established. 

Keywords: cyclic associative groupoid (CA-groupoid); cancellative; variant CA-groupoids; 

decomposition theorem; construction methods 

1. Introduction

An algebraic structure is called a groupoid, if it is well-defined regarding an operation on it.

A groupoid satisfying the "cyclic associative law" (that is, x(yz) = y(zx)) is called a cyclic associative 

groupoid, or simply CA-groupoid [1,2]. 

In fact, as early as 1946, when Byrne [3] studied axiomatization of Boolean algebra, he mentioned 

the following operation law: (xy)z = (yz)x. Obviously, its dual form is as follows: z(yx) = x(zy), this is 

the cyclic associative law mentioned above. In 1954, Sholander [4] mentioned Byrne's paper [3], 

and used the term of "cyclic associative law" to express the operation law: (ab)c = (bc)a. This is the first 

literature we know to use the term "cyclic associative law". At the same time, Hosszu also used the 

term of "cyclic associative law" in the study of functional equation (see [5] and the introduction and 

explanation by Maksa [6]). Later, Kleinfeld [7] and Behn [8,9] studied the rings satisfying the cyclic 

associative law, and Iqbal et al. [10] studied the AG-groupoids satisfying the cyclic associative law. It is 

on the basis of these researches that we start to systematically study the groupoids satisfying the cyclic 

binding law (CA-groupoids) in [1,2], in order to provide a common basis for the research of related 

algebraic systems. 

As a continuation of [1,2], this paper focuses on various cancellation properties of CA- groupoids 

and a special class of CA-groupoids. In many algebraic systems (such as semigroups, commutative 

semigroups and AG-groupoids), the cancellation, quasi-cancellation and power cancellation properties 

have important research value (see [11-26]). In 1957, Takayuki Tamura studied commutative non-potent 

Archimedean semigroups with cancellative law (see [11]), cancellability is applied to semigroups. 

Since then, various cancellative laws have been put forward and applied to various algebraic systems, 

and a series of valuable conclusions have been drawn. The rise of these properties makes an irreplaceable 

contribution to the development of algebra. 

Zhirou Ma, Xiaohong Zhang, Florentin Smarandache (2020). Some Results on Various Cancellative CA-
Groupoids and Variant CA-Groupoids. Symmetry 12, 315; DOI: 10.3390/sym12020315
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Semigroup with the identity is named monoid, the research of monoid is gradually deepening 

(see [24,27]). In addition, AG-group is an AG-groupoid with the left identity and inverses (see [28-32]). 

Through these papers, we know that the identity is a powerful tool for solving algebraic problems. 

Therefore, we naturally consider CA-groupoids with unit element. However, our study finds that 

CA-groupoids with unit element degenerate into commutative monoids, and a CA- groupoid with 

quasi right unit element ( i.e., there exists e, if x -=f. e, then xe = x; and ee -=f. e) maybe not a semigroup. 

Moreover, this kind of CA-groupoids (with quasi right unit element) not only has very interesting 

properties, but also promotes the study of algebraic structures such as rings and semirings (some 

examples are presented in Section 5). Therefore, this paper studies it in depth, and we call them 

variant CA-groupoids. 

At last, the content of this paper as follows: in Section 2, we introduce some basic concepts 

and cancellative properties on semigroup and AG-groupoid; in Section 3, we give the definitions 
of cancellative CA-groupoids, left cancellative CA-groupoids, right cancellative CA-groupoids and 

weak cancellative CA-groupoids, and discuss the relationships about them; in Section 4, we give 

the definitions of several quasi-cancellative CA-groupoids and power cancellative CA-groupoids, 

and analyze the relationships about several types cancellative CA-groupoids; in Section 5, we propose 

the new notion of variant CA-groupoid and some interesting examples, moreover, we prove the 

structure theorem and construction method of variant CA-groupoids. 

2. Preliminaries

This paper mainly studies some special types of CA-groupoids. In this section some notions and 

results on semigroups and CA-groupoids are given. A groupoid (S, *) is a non-empty set S together 

with a binary operation*. Traditionally, the* operator is omitted without confusion, and (S, *) is 

abbreviated to 5. For a groupoid 5, an element aE5 is called to be left cancellative (respectively right 

cancellative) if for all x, yES, ax = ay implies x = y (xa = ya implies x = y); an element is called to be 

cancellative if it is both left and right cancellative. A groupoid S satisfying the associative law is called 

a semigroup. A monoid 5 is a semigroup with an identity element. 

Definition 1. [11 Let S be a groupoid. If for all a, b, cES, a(bc) = c(ab), then Sis called a cyclic associative 
groupoid (or shortly CA-groupoid). 

Proposition 1. [11 If 5 is a CA-groupoid, then,Jor any a, b, c, d, x, yE5: 
(1) (ab)(cd) = (da)(cb);

(2) (ab)((cd)(xy)) = (da)((cb)(xy)) .

Proposition 2. [11 Every commutative semigroup is a CA-groupoid. Assume that (5, ) is a CA-groupoid, if 5 
is commutative, then 5 is a commutative semigroup. 

Proposition 3. [11 Let S be a CA-groupoid. (1) If S have a left identity element, that is, there exists eES such 
that ea = a for all a ES, then 5 is a commutative semigroup (thus, 5 is a commutative monoid). (2) If eE5 is a left 
identity element in S, then e is an identity element in S. (3) If eE5 is a right identity element in S, that is, ae = a 
for all aES, then e is an identity element in S. (4) If Shave a right identity element, then Sis a commutative 
semigroup (thus, 5 is a commutative monoid). 

Proposition 4. [11 Let S be a CA-groupoid. If for all aES, a2 
= a, then S is commutative (thus, S is a 

commutative semigroup). 

Proposition 5. [11 Let 51, S2 be two CA-groupoids. Then the direct product S1 x 52 is a CA-groupoid. 
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Definition 2. [2] An element a of a CA-groupoid S is called locally associative if satisfied : 

a(aa) = (aa)a. 

Sis called a locally associative CA-groupoid, if all elements in Sare locally associative. 

Definition 3. [2] Let S be a groupoid. If for all a, b, cES: 

a(bc) = (ab)c, a(bc) = c(ab), 

then Sis called a cyclic associative semigroup (shortly, CA-semigroup). 

Definition 4. [18] Let S be a semigroup. Sis called a separative semigroup, if for any x, yES: 
(i) x2 

= xy and y2 
= yx imply x = y; 

(ii) x2 = yx and y2 
= xy imply x = y.

A semigroup S is called quasi-separative if for all a ,  bES, x2 
= xy = y2 imply x = y.

3. Cancellation Properties of CA-Groupoids

Definition 5. Assume that Sis a CA-groupoid. If every element of Sis left cancellative (right cancellative , 
cancellative), then Sis called a left cancellative (right cancellative, cancellative) CA-groupoid. 

Example 1. Let S = (o, 1, 2, 3, 4}. For all x, yES, the operation * on Sis defined as x*y = x + y = x + y 
(mod 5), see Table 1. Then, (S, *) is a cancellative CA-groupoid. 

Table 1. The operation* on S.

* 
0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 I 2 

4 4 0 1 2 3 

Definition 6. Assume that Sis a CA-groupoid. Let xES, if for any y, zES, xy = xz and yx = zx imply y = z ,  
then x is called to  be weak cancellative. If all elements in S are weak cancellative , then S is called a weak 
cancellative CA-groupoid. 

Obviously, for a CA-groupoid S and any xES, if x is a left (or right) cancellative, then x is 

weak cancellative. 

Example 2. Let S = {1, 2, 3, 4}. The operation * on Sis defined as Table 2. Then, (S, *) is a weak cancellative 
CA-groupoid. 

Table 2. The operation* on S.

* 1 2 3 4 

1 4 3 2 1 

2 3 1 4 2 

2 4 1 3 

1 2 3 4 
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Theorem 1. I.et S be a CA-gr o upoid. Then, fo r any element a, b ES: 

(1) if a is left cancellative, then a is right cancellative, thus a is cancellative;

(2) if a and b ar e left cancellative, then ab is right cancellative;

(3) if a is right cancellative and bis left cancellative, then ab is right cancellative;

( 4) if ab is right cancellative, then ab = ba;

(5) if ab is cancellative, then bis cancellative;

(6) if ab is cancellative, then a and b ar e cancellative;

(7) if a and ab ar e right cancellative, and bis left cancellative, then a is cancellative;

(8) if a and ab ar e right cancellative, and bis left cancellative, then ab is cancellative.

Proof. Suppose that (S, *) is a CA-groupoid and a, bES. 
(1) Assume that a is a left cancellative element. If (Vx, yES) x*a = y*a, then (by cyclic association):

a*(a*x) = x*(a*a) = a*(x*a) = a*(y*a) = a*(a*y). 

From this, applying left cancellation property of a, a*x = a*y. From this, applying left cancellation 

property of a one time, we get that x = y. Therefore, a is a right cancellative element in S, so a is a 

cancellative element in S. 

(2) Suppose that a and bare left cancellative. If (Vx, yES) x*ab = y*ab, then:

a*(b*x) = x*(a*b) = x*(ab) = y*(ab) = y*(a*b) = b*(y*a) = a*(b*y). 

Since a is left cancellative, so b*x = b*y. Moreover, from this and bis left cancellative, we get that 

x = y. Therefore, ab is a right cancellative. 

(3) Assume that a is right cancellative and bis left cancellative. If (Vx, yES) x*ab = y*ab, then:

b*(x*a) = a*(b*x) = x*(a*b) = x*(ab) = y*(ab) = y*(a*b) = b*(y*a). 

Since bis left cancellative, so x*a = y*a. Moreover, from this and a is right cancellative, we get that 
x = y. Therefore, ab is a right cancellative. 

(4) Suppose that ab is right cancellative. Since:

ab*ab = b*(ab*a) = a*(b*ab) = a*(b*ba) = ba*ab 

Since ab is right cancellative, we get that ab= ba. 
(5) Assume that ab is cancellative. If b*x = b*y, x, yES, then:

x*ab = b*(x*a) = a*(b*x) = a*(b*y) = y*ab 

Since ab is cancellative, so x = y. This means that bis left cancellative. Applying (1), we get that b 
is cancellative. 

(6) Assume that ab is cancellative. Using (5), we know that bis cancellative. Moreover, since ab
is cancellative, so ab is right cancellative, applying (4) we get that ba = ab. Thus, ba is cancellative, 

using (5) again, a is cancellative. 

(7) Suppose that a and ab are right cancellative, and b is left cancellative. If a*x = a*y, x, yES,

then (applying Proposition 1 (1)): 

b*(xa*ab) = b*(bx*aa) = b*(ab*ax) = b*(ab*ay) = b*(ya*ab). 
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Since b is left cancellative, so xa*ab = ya*ab. Using the condition that ab is right cancellative, 

it follows that xa = ya. Since a is right cancellative, thus, x = y. Hence, a is left cancellative. Therefore, 

a is cancellative 

(8) Suppose that a and ab are right cancellative, and bis left cancellative. If ab*x = ab*y, x, yE5, then:

b*(xa*ab) = ab*(b*xa) = ab*(a*bx) = ab*(x*ab) = ab*(ab*x) = ab*(ab*y) = 

ab*(y*ab) = ab*(a*by) = ab*(b*ya) = b*(ya*ab). 

Since b is left cancellative, so xa*ab = ya*ab. Using the condition that ab is right cancellative, 

it follows that xa = ya. Since a is right cancellative, thus, x = y. This means that ab is left cancellative. 
From this and ab is right cancellative, we know that ab is cancellative. o 

Applying Theorem 1 we can get the following corollaries. 

Corollary 1. Let 5 be a CA-groupoid. Then the following asserts are equivalent: 

(1) 5 is a left cancellative CA-groupoid;

(2) 5 is a right cancellative CA-groupoid;

(3) 5 is a cancellative and commutative semigroup;

( 4) 5 is a cancellative CA-groupoid.

Proof. (1) ⇒ (2): It follows Theorem 1 (1). 

(2) ⇒ (3): For any a, bES, then abES. Since S is right cancellative, then ab is right cancellative.

Applying Theorem 1 (4), ab= ba. This means that 5 is commutative. By Proposition 2, we know that 5 
is a commutative semigroup. Moreover, since 5 is right cancellative, so 5 is left cancellative. Thus, 5 is 

a cancellative and commutative semigroup. 

(3) ⇒ (4): Obviously.

(4) ⇒ (1): It follows from Definition 5. o

Corollary 2. Let S be a CA-groupoid. If there exists a cancellative element in S, then the set H = { aES: a is 
cancellative} is a sub CA-groupoid of 5. 

Proof. By the condition that there exists a cancellative element in 5, we know that His not empty. 

For any a, bEH, then a and bare left and right cancellative. Applying Theorem 1 (2), we know 

that ab is right cancellative. By Theorem 1 (8), ab is cancellative. Thus abEH. It follows that His a sub 

CA-groupoid of 5. o 

Corollary 3. Let 5 be a CA-groupoid. If there exists a non-cancellative element in 5, then the set K = {aE5: a is 
non-cancellative} is a sub CA-groupoid of 5. 

Proof. Obviously, K is non-empty. For any a, bEK, then a and bare non-cancellative. By Theorem 1 (5), 

we know that ab is non-cancellative. Thus abEK. It follows that K is a sub CA-groupoid of 5. o 

The following example shows that a weak cancellative element maybe not a left (or right) 

cancellative element. 

Example 3. Let 5 = {1, 2, 3, 4, 5}, and the operation * on 5 is defined as Table 3, then 5 is a CA-groupoid. It is 
easy to verify that 3 is weak cancellative, but 3 is not left (right) cancellative. 
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Table 3. The operation* on S.

* 1 2 3 4 5 

1 1 1 1 1 1 

2 1 1 2 1 2 

3 1 1 4 2 2 

4 1 1 2 1 2 

5 1 1 1 1 1 

Open Problem 1 (to prove or give a counterexample): Is any weak cancellative CA-groupoid 

necessarily cancellative? 

Theorem 2. Let 5 be a CA-groupoid and a, b, cE5. Define on 5 the relation - as: 

a ~ b ⇒ a and b are both cancellative or non - cancellative. 

T hen - is an equivalence relation. 

Proof. Suppose that a is a cancellative element (or non-cancellative element) of CA-groupoid S. 

Then a-a. This means that - is reflexive. 

Suppose a-b. If a and bare cancellative, then b-a; if a and bare non-cancellative, then b-a. Thus -

is symmetric. 

Next, suppose that a-band b-c. If a and bare cancellative, from b-c we know that c is cancellative, 

thus a and c are cancellative, i.e., a-c; if a and b are non-cancellative, from b-c we know that c is 
non-cancellative, thus a and care non-cancellative, i.e., a-c. Thus - is transitive. 

Therefore, - is an equivalence relation. □ 

Example 4. Let 5 = {1, 2, 3, 4} and the operation* on 5 is defined as Table 4, then 5 is a CA-groupoid. Obviously, 
1 and 2 are cancellative, 3 and 4 are non-cancellative. H = (1, 2} is a sub CA-groupoid of 5. 

Table 4. The operation* on S. 

* 1 2 3 4 

1 1 2 4 3 
2 2 1 3 4 

3 3 4 4 3 
4 4 3 3 4 

Theorem 3. Let S1, Sz are CA-groupoids, then the direct product S1 xS2 of S1 and S2 is a CA-groupoid. If aE51, 
bE52, a and b are cancellative, then (a, b) E 51 x 52 is cancellative. 

Proof. Suppose that 51 and 52 are CA-groupoids. By Proposition 5, 51 x 52 is a CA-groupoid. Let aE51, 
bES2, a and b be cancellative. For any (x1,x2), (y1, Y2) E 51 x 52, if (a,b) * (x1,x2) = (a,b) * (y1, Y2), 
then: 

ax1 = ay1, bx2 = by2 

X1 = Y1, x2 = Y2· (since a and bare cancellative) 

hence, (a, b) is cancellative. □ 
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4. Separability and Quasi-Cancellability of CA-Groupoids

Definition 7. Let S be a CA-groupoid. (1) Sis called to be left (right) separative,for all x, yE S, if x2- = xy and 
y2 = yx (x2 

= yx and y2 = xy) imply x = y. (2) Sis called to be separative, if it is both left and right separative. 
(3) S is called to be quasi-separative, if for all x, yES, x2 = xy = y2 implies x = y.

Example 5. Let S = {1, 2, 3, 4}. The operation * on S is defined as Table 5. Then (S, *) is a separative 
CA-groupoid. 

* 

1 

2 
3 
4 

Table 5. The operation* on S.

1 

4 

2 
1 

1 

2 

2 
2 
2 
2 

3 

1 

2 
3 
4 

4 

1 

2 
4 

4 

Example 6. Let S = {1, 2, 3, 4}. The operation * on S is defined as Table 6. Then (S, *) is a quasi-separative 
CA-groupoid. 

Table 6. The operation* on S. 

* 1 2 3 4 

1 4 3 2 1 
2 3 2 3 2 
3 2 3 2 3 
4 1 2 3 4 

Theorem 4. Let S be a CA-groupoid. Then the following asserts are equivalent: 

(1) S is separative;
(2) S is left separative;
(3) S is right separative;
(4) S is quasi-separative.

Proof. Obviously, (1)⇒(2), by Definition 7. 

(2)⇒ (3): Suppose that Sis left separative. For any x, yE S, if x2- = yx and y2 = xy, then (by Proposition

1 (1)): 

(xy)2 
= (xy)(xy) = (xy) y2 

= (xy)(yy) = (yx)(yy) = x2 (yy) = (xx)(yy) = (yx)(yx) = (xy)(yx); 

(yx)2 
= (yx)(yx) = (xy)(yx) = (xx)(yy) = x2y2 

= (yx)(xy). 

Since Sis left separative, by Definition 7 we have xy = yx. From this, using x2 
= yx and y2 

= xy, 
we get that x2- = xy and y2 = yx. Applying the condition that S is left separative, by Definition 7 again,

we have x = y. This means that S is right separative.

(3)⇒ (4): Suppose that Sis right separative. For any x, yE S, if x2 = xy = y2 , then (by Proposition

1 (1)): 

(xy) 2 
= (xy)(xy) = x2 (xy) = (xx)(xy) = (yx)(xx) = (yx)x2 = (yx)(xy); 

(yx) 2 
= (yx)(yx) = (xy)(yx).
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Since S is right separative, by Definition 7 we have xy = yx. From this, using x2 
= xy = y2, we get 

that x2 = yx and y2 = xy. Applying the condition that Sis right separative, by Definition 7 again, 
we have x = y. This means that S is quasi-separative. 

(4)⇒(1) Suppose that Sis quasi-separative. For any x ,  yE S, then (by Proposition 1 (1)): 

(xy)2 
= (xy)(xy) = (yx)(xy) = (yy)(xx) = y2x2; 

(yx)2 
= (yx)(yx) = (xy)(yx) = (xx)(yy) = x2y2. 

Moreover, 

[(yx)(xy)]2 
= [(yx)(xy)] [(yx)(xy)] = [(yx)(xy)] [(yy)(xx)] = [(yx)(xy)] (y2x2) = [(yx)(xy)] (xy)2 

=

[(yx)(xy)] [(xy)(xy)] = [(xy)(yx)] [(xy)(xy)] = [(xx)(yy)] [(xy)(xy)] = (x2y2) [(xy)(xy)] =

(yx)2 [(xy)(xy)] = [(yx)(yx)] [(xy)(xy)] = [(xy)(yx)] [(xy)(yx)] = [(xy)(yx)f 

If x2 = xy and y2 
= yx, then 

0/)2 = (y2y2")2 = [(yx)(yx)]2 = [(xy)(yx)]2= [(yx)(xy)]2 = (/x2)2 = (/x2)(/x2) = (x2/)(/x2) = (x2x2)(//) =x4
y

4; 

(x4)2 = (x2x2)2 = [(xy)(xy)J2= [(yx)(xy)J2= [(yy)(xx)J2 = (y2x2)2= (/x2)(y2x2) = (x2y2)(/x2) = (x2x2)(y2y2) =x4y4. 

From this, applying the condition that Sis quasi-separative, we get that x4=y4 . Thus, 

(xy)2 
= (x2)2 

= x4 
= y4 

= (y2)2 
= (yx)2 

= (yx)(yx) = (xy)(yx). 

That is, (xy)2 
= (xy)(yx) = (yx)2 . Since S is quasi-separative, by Definition 7 we have xy = yx. 

From this, using x2 
= xy and y2 

= yx, we have x2 
= xy = y2 . Applying the condition that Sis 

quasi-separative, by Definition 7 again, we have x = y. This means that S is left separative. □ 

Similarly, we can prove that S is right separative. Therefore, S is separative by Definition 7. 

Proposition 6. Let S be a CA-groupoid. If Sis cancellative, then Sis separative . 

Proof. Assume that S is cancellative. For any x, yE S, if x2 
= xy = y2, then xx = xy and xy = yy. 

Using cancellability of S, we have x = y. This means that Sis separative. 
Similarly, we can prove that Sis separative when Sis left (or right) cancellative. □ 

The following example shows that a separative CA-groupoid maybe not a left (or right) 
cancellative CA-groupoid. 

Example 7. Let S = {1,2 ,3,4}. The operation * on Sis defined as Table 7. Then (S, *) is a separative CA- groupoid, 
but S isn't cancellative , since 1 *1 = 2*1, 1 * 2.

Table 7. The operation* on S.

* 1 2 3 4 

1 1 2 3 1 

2 1 4 3 2 

3 3 3 3 3 
4 1 2 3 4 

Definition 8. Let S be a CA-groupoid. S is called a CA-band, if for all aES, aa = a; S is called CA-3-band, if for 
all aES, a*aa = aa*a = a .  
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Definition 9. Let S be a CA-groupoid. Sis called to be left(right) quasi-cancellative, for all x, yES, if x = xy 

and y2 = yx (x = yx and y2 = xy) imply x = y. Sis called quasi-cancellative, if it is both left and right quasi­

cancellative. 

Example 8. Let S = {1,2,3,4}. The operation * on Sis defined as Table 8. Then (S, *) is a quasi-cancellative

CA-groupoid. 

Table 8. The operation* on S.

* 1 2 3 4 

1 1 1 1 1 

2 1 2 1 1 

3 1 1 3 4 

4 1 1 4 3 

Theorem 5. Let S be a CA-groupoid. If Sis left quasi-cancellative, then Sis right quasi-cancellative. 

Proof. Suppose that Sis left quasi-cancellative. For any x, yE S, if x = yx and y2 = xy, then (by Proposition 
1 (1)): 

x2 = (yx)(yx) = (xy)(yx) = (xx)(yy) = x2

y
2; 

(y2)2 
= y

2

y
2 

= (xy)(xy) = (yx)(xy) = (yy)(xx) = y
2x2. 

From this, applying the condition that Sis left quasi-cancellative, we get that x2 = y2. Thus: 

xy = y2 = x2 = (yx)(yx) = (xy)(yx); 

(yx)2 = (yx)(yx) = x(yx) = x(xy) = (yx)(xy). 

From this, applying the condition that Sis left quasi-cancellative and Definition 9 again, we get 
that xy = yx. Hence, using the condition that x = yx and y2 = xy, we have x = xy and y2 = yx, applying 
the definition of left quasi-cancellative, we get that x = y. Therefore, Sis right quasi-cancellative. □ 

Open Problem 2 (to prove or give a counterexample): Is any right quasi-cancellative CA-groupoid 
necessarily left quasi-cancellative? 

Theorem 6. The following asserts are true: 

(1) Every CA-band is quasi-cancellative.

(2) Every CA-3-band is quasi-cancellative.

(3) Every quasi-separative CA-groupoid is quasi-cancellative;

(4) Every separative (or left-, right-separative) CA-groupoid is quasi-cancellative.

Proof. (1) Let S be a CA-band. For any x ,  y E S, if x = xy and y2 = yx, then (by Definition 8) x = x2
, 

y = y2. It follows that: 

x = x2 = (xy)(xy) = (yx)(xy) = -.j(xy) = y(xy) = yx = y2 = y.

This means that Sis left quasi-cancellative. Applying Theorem 5, we know that Sis right quasi­
cancellative. Hence, S is quasi-cancellative. 

Florentin Smarandache (author and editor) Collected Papers, XIII

872



(2) Let S be a CA-3- band. For any x, y ES, if x = xy and y2 = yx, then (by Definition 8) x = xx2 =
x2x, y = yy2 = y2 y. Furthermore: 

y2 = yx = y(xy) = y(yx) = yy2 = y,

x = xy = x(yy2 ) = y2 (xy) = y2
x = yx = y2 = y.

Thus, Sis left quasi-cancellative. Applying Theorem 5, we get that Sis right quasi-cancellative. 
Hence, 5 is quasi-cancellative. 

(3) Let 5 be a quasi-separative CA-groupoid. For any x, y E 5, if x = xy and y2 = yx, then:

x2 = xx = x(xy) = y(xx) = x(yx) = xy2 = x(yy) = y(xy) = yx = y2 

That is, y2 = yx = x2. By Definition 7 we have x = y. This means that Sis left quasi-cancellative. 
Applying Theorem 5, we get that 5 is right quasi-cancellative. Hence, 5 is quasi-cancellative. 

(4) It follows from (3) and Theorem 4. o

Example 9. Let S = {1,2,3,4,5}. The operation * on S is defined as Table 9. Then (S, *) is a quasi-cancellative 
CA-groupoid, 5 isn't separative, because 2*2 = 2*4 = 3, 4*4 = 4*2 = 3, but 2 * 4. 

Table 9. The operation* on S.

* 1 2 3 4 5 

1 3 3 5 3 3 

2 3 3 5 3 3 

3 4 4 3 5 5 

4 3 3 5 3 3 

5 3 3 5 3 3 

Definition 10. Let (5, *) be a CA-groupoid. 5 is called to be power-cancellative, if for all x, yE5, x2 = y2 implies 

x=y. 

Example 10. Let 5 = {1,2,3,4,5}. The operation* on 5 is defined as Table 10. Then (5, *) is a power- cancellative 

CA-groupoid, 5 isn't cancellative, because 1*2 = 1*3, but 2-:t-3. 

Table 10. The operation* on S.

* 1 2 3 4 5 

1 1 1 1 4 5 

2 1 2 1 4 5 

3 1 1 3 4 5 

4 4 4 4 5 1 

5 5 5 5 1 4 

Example 11. Let S = {1,2,3,4}. The operation * on S is defined as Table 11. Then (S, *) is a cancellative 
CA-groupoid, 5 isn't power-cancellative, because 12 

= 22 = 1, but 1 * 2. 
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* 

1 

2 

3 

4 

Table 11. The operation* on S.

1 

1 
2 

3 
4 

2 

2 

1 
4 
3 

3 

3 
4 
2 

1 

Theorem 7. I.et 5 be a CA-groupoid. If 5 is power-cancellative, then: 

(1) 5 is commutative, and 5 is a commutative semigroup.
(2) 5 is separative.

4 

4 
3 
1 
2 

Proof. (1) Suppose that 5 is power-cancellative. For any x, y E 5, since (by Proposition 1 (1)): 

(xy)2 = (xy)(xy) = (yx)(xy) = (yy)(xx) = y2x2; 

(yx)2 = (yx)(yx) = (xy)(yx) = (xx)(yy) = x2y2. 

Moreover, 

[(yx)(xy)]2 = [(yx)(xy)] [(yx)(xy)] = [(yx)(xy)] [(yy)(xx)] = [(yx)(xy)] (y2x2) = [(yx)(xy)] (xy)2 = 

[(yx)(xy)] [(xy)(xy)] = [(xy)(yx)] [(xy)(xy)] = [(xx)(yy)] [(xy)(xy)] = (x2y2) [(xy)(xy)] = 

(yx)2 [(xy)(xy)] = [(yx)(yx)] [(xy)(xy)] = [(xy)(yx)] [(xy)(yx)] = [(xy)(yx)J2 

Applying the condition that 5 is power-cancellative, we get that (yx)(xy) = (xy)(yx). Thus: 

(xy)2 = y2x2 = (yx)(xy) = (xy)(yx) = x2y2 = (yx)2 . 

By Definition 10, we have xy = yx. This means that 5 is commutative, and 5 is a commutative 
semigroup (by Proposition 2). 

(2) Assume that 5 is power-cancellative. For any x, y E 5, if x2 = xy = y2
, then (by Definition 10),

x = y. This means that 5 is quasi-separative. Applying Theorem 4, we know that 5 is separative. o 

5. Variant CA-Groupoids

In this section, we focus on a special class of CA-groupoids, which are called variant CA-groupoids.
The reasons why we want to discuss this kind of CA-groupoids are that: (1) it is closely related to 
the generalized unit element (i.e., quasi right unit element), and it is the closest to the commutative 
semigroup (see Example 12 and Example 13 below); (2) this kind of CA-groupoids has many interesting 
properties, and it can constructed from any commutative semigroup, please refer to the following 
Theorem 9; (3) the research this kind of CA-groupoids is of great significance to study some special 
rings and semirings. See literature [7-9] and Example 14 and Example 15 below. 

Definition 11. Let (S, *) be a CA-groupoid. 5 is called a variant CA-groupoid, if exist eES, such that for all 
xE5-{e}, xe = x and e2 if,.e. Where, e is called a quasi-right unite element of 5. 

Example 12. I.et S = {1, 2, 3, 4, 5}, The operation * on S is defined as Table 12, then (S, *) is a variant 
CA-groupoid and 1 is a quasi-right unit element in 5. Obviously, 5 isn't commutative. 
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Table 12. The operation* on S.

* 1 2 3 4 5 

1 3 3 3 4 4 
2 2 3 3 4 4 
3 3 3 3 4 4 
4 4 4 4 4 4 
5 5 4 4 4 4 

Looking at the above example carefully, we find that: (1) the element 1 as a quasi-right unit 

element of 5, does not appear in the operation table; (2) in the operation table, the first row is the same 

as the third row; (3) if we change the first row of the operation table to {1, 2, 3, 4, 5), we will get a 

commutative semigroup (S, +) (as shown in Table 13). These are all interesting phenomena. Later, 

we will analyze the characteristics of variant CA-groupoids. 

Table 13. A Commutative semigroup (S, +) corresponding to (S, *). 

+ 1 2 3 4 5 

1 1 2 3 4 5 

2 2 3 3 4 4 
3 3 3 3 4 4 
4 4 4 4 4 4 
5 5 4 4 4 4 

Example 13. I.et S = {1, 2, 3, 4, 5}, The operation * on S is defined as Table 14, then (S, *) is a variant 

CA-groupoid and 5 is a quasi-right unit element in 5. Obviously, 5 is commutative. 

Table 14. The operation* on S. 

* 1 2 3 4 5 

1 1 1 1 1 1 

2 1 4 2 3 2 

3 1 2 3 4 3 

4 1 3 4 2 4 
5 1 2 3 4 3 

If we change the last row of the operation table to {1, 2, 3, 4, 5), we will get a commutative 

semigroup (5, +) (as shown in Table 15). 

Table 15. A Commutative semigroup (S, +) corresponding to (S, *). 

+ 1 2 3 4 5 

1 1 1 1 1 1 

2 1 4 2 3 2 

3 1 2 3 4 3 

4 1 3 4 2 4 
5 1 2 3 4 5 
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Example 14. Let:

Define the operation * on 5 is the common matrix multiplication, then (5, *) is a variant CA-groupoid and 
( � �

l 
) is a quasi-right unit element in S. Moreover, we define the addition operation + on 5 as following:

for any x, yES, denote S1 ={ ( � � ) : a is a integral number}, S2 = { ( � � ), ( � _01 ) },

(1) if x, y E S1, x + y is common matrix addition;
(2) if x E S1 and y E S2, x + y = ( a; 1 � ), where y = ( � � }
(3) if x E S2 and y ES1, x + y = y + x (see (2));
( 4) if X = y E S2, X + y = ( � � }
(5) ifx,y E S2and x#cy,x+ y=( � �).

Then (S, +) is a commutative group, and (S; +,*) is a ring, that is, (x + y)*z = x*z + y*z and z*(x + y) =z*x + z*y, for any x, y, zES. 
Example 15. Let S = {1, 2, 3, 4, 5 ,  6}, The operation * on S is defined as Table 16, then (S, *) is a variant CA-groupoid and 1 is a quasi-right unit element in S. Obviously, S is not commutative. 

Table 16. The operation* on S. 

* 1 2 3 4 5 6 

1 3 3 3 4 4 6 

2 2 3 3 4 4 6 

3 3 3 3 4 4 6 

4 4 4 4 4 4 6 

5 5 4 4 4 4 6 

6 6 6 6 6 6 6 

Moreover, we define the addition operation+ on S as Table 17 or Table 18, then (S, +) is a commutative semigroup with unite 6. We can verify that (x + y)*z = x*z + y*z for any x, y, z in S, so (S; +,*) is a semiring(for the theory of semirings, please see the monograph [3 3-35]). 
Table 17. A Commutative monoid (5, +). 

+ 1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 1 2 3 3 3 2 

3 1 3 3 3 3 3 

4 1 3 3 4 5 4 
5 1 4 3 5 5 5 6 1 2 3 4 5 6 
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Table 18. Another Commutative monoid (S, + ). 

+ 1 2 3 4 5 

1 1 2 1 4 5 

2 2 2 2 4 5 

3 1 2 3 4 5 

4 4 4 4 4 5 

5 5 5 5 5 4 

6 1 2 3 4 5 

Theorem 8. Let S be a variant CA-groupoid: 

(1) If e is a quasi-right unit element of Sand ee= a, a E S, then ex= ax for all x E S.

(2) The quasi-right unite element is unique in S.

6 

1 
2 

3 

4 

5 

6 

Proof. (1) Let e be a quasi-right unit element of S and ee = a, aES. By Definition 11, we know that a * e. 
For any xES, if x = e, then ex= ee =a= ae = ax; if x * e, then (by Definition 11): 

ex = e*xe = e*ex = x*ee = xa = xe*ae = e*(xe*a) = a*(e*xe) = a*(e*ex) = a*(x*ee) = a*xa = a*ax 

= x*aa = x*(a*ee) = x*(e*ae) = ae*xe = ax. 

hence, ex = ax for all xES. 

(2) Suppose that s and tare quasi-right unit elements of S, s * t. From Definition 11 we know that

ss * s and tt * t. Since: 

s =st= st*ts = s*(st*t) = t*(s*st) = t*(t*ss) = t*(s*ts) = t*st = ts = t. 

This means that the quasi-right unit element is unique in 5. □ 

Obviously, let 5 = {a} and (5, *) is a CA-groupoid, then 5 isn't a variant CA-groupoid. Let 5 = {a, b} 

and (5, *) is a variant CA-groupoid, denote the quasi-right unit element e = a (orb), then for any x, yE5, 
we have xy = b (or a ). 

Through the study of the variant CA-groupoid, we give the following construction method, that is 

to say, on the basis of a commutative semigroup, a variant CA-groupoid is formed by adding an 

element which does not intersect with it, and a variant CA-groupoid can also be decomposed to obtain 

a commutative semigroup and an independent element. 

Theorem 9. The foll owing asserts are true: 

(1) Let 5 be a variant CA-groupoid and e is the quasi-right unite element on S, then 51 = 5-{e} is a commutative
semi group.

(2) Let S be a commutative monoid with unit element e and a is an element such that {a}nS = 0, then 52 =
5u{a} is a variant CA-groupoid if define xa = x, ax= ex, aa = e,for all xE5.

Proof. (1) Suppose that 5 is a variant CA-groupoid and e is the quasi-right unit element of 5, if .3x, yE 

51 = 5-{e} such that xy = e, then for all aE5-{e}, a*xy = ae = a, so we have: 

ee = e*xy = y*ex = x*ye = xy = e. 
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This conclusion contradicts Definition 11. Hence, for all x, yE5-{e), xy-:t-e, in other words, 5-{e} is 

closed, that is, 5-{e} is a sub CA-groupoid of 5. Moreover, for all x, yE 51 = 5-{e), applying Theorem 8 

(1), ex= (ee)x, and: 

xy = x*ye = e*xy = y*ex = y*(ee*x) = x*(y*ee) = x*(e*ye) = ye*xe = yx 

hence 5-{e} is commutative, then 5-{e} is a commutative semigroup (by Proposition 2). 

(2) On the other hand, suppose that Sis commutative monoid with unit element e. Let a be an

element such that {a}n5 = 0, denote 52 = Su{a}. Define a new binary operation• on 52: 

for any x, yE 52, if x, yE S, then X♦ y = x*y; if XE 5, then x•a = x, a•x = e•x, a•a = e. 

Obviously, (52, •) is a groupoid. For all x, y, zE5, by the definition of operation• we have: 

x•ya = xy = e-xy = a-xy, 

a•xy = (a•xa)•ya = ya•(a•xa) = y•ax. 

thus, (52, •) is a variant CA-groupoid with the quasi-right unit element a. □ 

Applying Definition 11 and Definition 9 we can easy to verify that the following proposition 

is true. 

Proposition 7. (1) If Sis a variant CA-groupoid, then S isn't cancellative. (2) If Sis a cancellative CA-groupoid, 

then 5 isn't a variant CA-groupoid. 

From Theorem 9, Proposition 7, Examples 12-15, we have Figure 1. 

Cancellative Commutative 
Semigroup 

(Cancellative Commutative 
CA-groupoid) 

CA-groupoid 

Non-cancellative 
Commutative Semigroup 

(Non-cancellative 
.mmnutativc CA-groupoid} 

Figure 1. The relationships among some CA-groupoids. 
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Theorem 10. Let 5 be  a variant CA-groupoid and e be a quasi-right unit element of 5. Denote a= ee, b = aa. 
Then the following asserts are true: 

(l) If b = a, then {e, a} is a variant sub CA-groupoid of S;

(2) If b -:1:-a, then {e, a, b} is a variant sub CA-groupoid of S.

Proof. (1) Suppose b = a. For the set {e, a}, since (by Theorem 8): 

It follows that {e, a} is closed on the operation*. Thus, {e, a} is a variant sub CA-groupoid with 
quasi-right unit element e. 

(2) Assume b-:1:-a. By Theorem 9 (1), for all x, yES - {e}, xy = yx. For the set {e, a, b}, since (by
Theorem 8): 

eb = e*aa = a*ea = a*ae = aa = b, be = b; 

ba =ab= ee*aa = a*(ee*a) = a*(a*ee) = a*(e*ae) = ae*ae = aa = b. 

Thus, {e, a, b} is closed about*, so {e, a, b} is a variant sub CA-groupoid of S. □ 

Theorem 11. Let (S1, *1) and (S2, *2) be two variant CA-groupoids, e1 and e2 are quasi-right unit elements of 
(S1, *1) and (S2, *2), S1 nS2 = {e} (e = e1 = ez). Denote S = S1 US2, and define the operation * on S as follows: 

(i) if a, bES1, then a*b = a*1b;
(ii) if a, bES2 , then a*b = a*2b;

(iii) if aESr{e}, bES2-{e}, then a*b = b;
(iv) if aESr{e}, bES1-{e}, then a*b = a.

Then (S, *) is a variant CA-groupoid with the quasi-right unite e.

Proof. It is only necessary to prove that the cyclic associative law hold in (S, *), that is, a*(b*c) = c*(a*b) 
for all a, b, cES. We will discuss the following situations separately: 

(1) If a, b, cES1 , or a, b, cES2 , then a*(b*c) = c*(a*b);

(2) If aES1 -{e}, bES2 -{e} and cES2 -{e}, then a*(b*c) = b*c = c*b = c*(a*b);

(3) If aES2 -{e}, bES1 -{e} and cES2 -{e}, then a*(b*c) = a*c = c*a = c*(a*b);

( 4) If aES2-{e}, bES2-{e} and cES1 -{e}, then a*(b*c) = a*b = c*(a*b);

(5) If aES1 -{e}, bES1 -{e} and cES2 -{e}, then a*(b*c) = a*c = c = c*(a*b);

(6) If aES1 -{e}, bES2-{e} and cES1 -{e}, then a*(b*c) = a*b = c*(a*b);

(7) If aES2-{e}, bES1 -{e} and cES1 -{e}, then a*(b*c) =a= a*b = c*(a*b).

Then (S, *) is a variant CA-groupoid and e is the quasi-right unit element. □

Example 16. Let 51 = (1, 2, 3, 4} and 52 = (1, 5, 6, 7}. Define operations *1 and *2 on 51, 52 as following 
Tables 19 and 21. Then S = S1 uS2 = {1, 2, 3, 4, 5, 6 }, and (S, *) is a variant CA-groupoid with the operation * in 
Table 20. 

Table 19. The operation *1 on S1. 

*1 1 2 3 4 

1 2 2 4 4 

2 2 2 4 4 

3 3 4 4 4 

4 4 4 4 4 
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Table 20. The operation* on 5.

* 1 2 3 4 5 6 7 

1 2 2 4 4 5 6 7 
2 2 2 4 4 5 6 7 
3 3 4 4 4 5 6 7 
4 4 4 4 4 5 6 7 
5 5 5 5 5 5 7 7 
6 6 6 6 6 7 5 5 

7 7 7 7 7 7 5 5 

Table 21. The operation *2 on 52. 

*2 1 5 6 7 

1 5 5 7 7 

5 5 5 7 7 
6 6 7 5 5 

7 7 7 5 5 

Similar to Theorem 11, we can get another constructer method as following proposition (the proof 

is omitted). 

Proposition 8. Let (51, *1) and (52, *2) be two variant CA-groupoids, e1 and e2 are variant unit elements of 
(51, *1) and (52, *2), 51 n52 = 0 and 52 is commutative. Denote 5 = 51 u52 , and define the operation * in 5 

as follows: 

(1) if a, bES1, then a*b = a*1b;

(2) if a, b ES2, then a*b = a*2b;

(3) if aES1, bES2 , then a*b = b;

(4) ifa ES2,b E Si,then a*b=a.

Then (S, *) is a variant CA-groupoid with the quasi-right unite e1.

Example 17. Let 51 = (1, 2, 3, 4} and 52 = (5, 6, 7, 8}. Define operations *1 and *2 on 51, 52 as following 
Tables 22 and 24. Then S = 51 u52 = (1, 2, 3, 4, 5, 6, 7, 8}, and (5, *) is a variant CA-groupoid with the operation 

* in Table 23.

Table 22. The operation *1 on 51. 

*1 1 2 3 4 

1 3 2 2 4 
2 2 2 2 4 
3 3 2 2 4 
4 4 4 4 4 
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Table 23. The operation* on S. 

* 1 2 3 4 5 6 7 8 

1 3 2 2 4 5 6 7 8 

2 2 2 2 4 5 6 7 8 

3 3 2 2 4 5 6 7 8 

4 4 4 4 2 5 6 7 8 

5 5 5 5 5 8 6 7 8 

6 6 6 6 6 6 6 6 6 

7 7 7 7 7 7 6 6 7 
8 8 8 8 8 8 6 7 8 

Table 24. The operation *2 on 52. 

*2 5 6 7 8 

5 8 6 7 8 

6 6 6 6 6 

7 7 6 6 7 
8 8 6 7 8 

Theorem 12. Let 51 be a variant CA-groupoid with order n (n 2 2 and n is an even number) and the quasi- right 

unit element e1 E 51, let 52 be a variant CA-groupoid with order 2 and the quasi-right unit element e2 E52 . If 5 
= 51 u 52 and 51 n 52 = 0, then 5 is a variant CA-groupoid, when it such that any of the following conditions: 

(1) for the variant CA-groupoid 5, the quasi-right unit element e = e1, and e2*e1 = e2, and for all x E 5, x*(e2*
e2) = (e2* e2)*x = e2* e2, x* e2 = e2* e2, e2*x = e2* e2 (xi:-e1);

(2) for the variant CA-groupoid 5, the quasi-right unit element e = e1 and for all x E 5, x*(e2* e2) = (e2* e2)*x
= e2* e2, x* e2 = e2*x = e2.

Proof. (1) Suppose that 5 is constructed according to the method described in (1), then for all x, y, zE51 , 
x*yz = z*xy = y*zx, and: 

x*ye2 = x*e 2 e2 = e2 e2, e2*xy = e2 e 2 (xy * e1) 

Y*C2X = 
{ y*e2e1 = ye2 = e2e2 x = e1 

Y*e2e2 = e2e2 x * e1 

That is, x*ye2 = e2*xy = y*e2x. Denote e2 e2 = b, then: 

x*yb = xb = b, b*xy = b, y*bx = yb = b. That is, x*yb = b*xy = y*bx. 

x*e2e2 = xb = b, e2 *xe2 = e2 *e2 e2 = b, 

e2 *C2X = 

{ e2 * e2e1 = e2e2 = b x = e1 

e2 * e2e2 = b x * e1 

x*be2 = x*e2 b = xb = b, b*xe2 = b*e2 e2 = b = e2 b = e2*bx, e2*xb = e2 b = b, 

b *C2X =

{ b * e2e1 = be2 = b x = e1 
b * e2e2 = b x * e1 

It follows that x*be2 = e2 *xb = b*e2x, and x*e2b = b*xe2 = e2 *bx. Obviously, x*bb = b*xb = b*bx. Hence, 

5 is a variant CA-groupoid. 
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(2) Suppose that Sis constructed according to the method described in (2), then for all x, y, zES1,

x*yz = z*xy = y*zx, and: 

x*ye2 = xe2 = e2, e2*xy = e2, y*e2x = ye2 = e2. 

Then x*ye2 = e2 *xy = y*e2x. Assume e2e2 = b, then: 

x*yb = xb = b, b*xy = b, y*bx = yb = b. 

That is, x*yb = b*xy = y*bx. And: 

It follows that x*be2 = e2*xb = b*e2x, and x*e2 b = b*xe2 = e2 *bx. Obviously, x*bb = b*xb = b*bx. Hence, 

S is a variant CA-groupoid. □ 

6. Conclusions

In the paper, we mainly study various cancellabilities of CA-groupoids and the structural 

properties of a special kind of CA-groupoids (variant CA-groupoids). Firstly, we investigate some 

cancellabilities of CA-groupoids, including left (right) cancellation, weak cancellation, left (right) 

quasi-cancellation and left (right) separation, and analyze the relationships among them. Secondly, 

from the view of quasi-right unit element, we introduce the new notion of variant CA-groupoid, 

illustrate the close connections among variant CA-groupoid with commutative semigroup, ring and 

semiring by some examples; discuss deeply the characteristics of variant CA-groupoid, and establish 

its structure theorem and construction methods. This paper obtains many conclusions, some important 

results as follows: 

(1) Every left cancellative element in CA-groupoid is right cancellative (see Theorem 1);

(2) For a CA-groupoid, it is left cancellative if and only if it is right cancellative (see Theorem 1 and

Corollary l);

(3) For a CA-groupoid, it is left separative if and only if it is right separative, and if and only if it is

quasi-separative (see Theorem 4 and Corollary l);

( 4) Every left quasi-cancellative CA-groupoid is right quasi-cancellative (see Theorem 5); every power

cancellative CA-groupoid is separative (see Theorem 7);

(5) For a variant CA-groupoid, its quasi-right unit element is unique;

(6) A variant CA-groupoid can be decomposed into the quasi-right unit element and a commutative

CA-groupoid; starting from any commutative semigroup, one can construct a variant CA-groupoid

(see Theorem 9);

(7) There are many ways to construct a new variant CA-groupoid from the existing variant

CA-groupoids (see Theorems 11 and 12).

As a direction of future research, we will discuss the structural characteristics of CA-rings,

CA-semirings and related algebraic systems (see [36-39]). 
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This article is based on the article "From Newton's Theorem to a Theorem of Inscribable 

Octagon” in [2, pp. 96-99]. On this occasion we announce that Theorem 3 regarding the 

circumscribable octagon stated there is false.

In this article we will introduce the notions of special octagon and quasi-center of a special 

octagon and we will state and prove two properties related to these notions.

Definition 1. We call a special octagon a circumscribed octagon whose property as the four 

lines determined by the points of contact with the circle of the opposite sides are concurrent. 

The point of competition of these lines we will call the quasi-center of the special octagon.

Figure 1

In Figure 1, the octagon ABCDEFGH is special. I marked with 1, 2, 3, 4, 5, 6, 7, 8 the points

of tangency with the circle of the sides AB, BC, CD, DE, EF, FG, GH, HA. Lines 15, 26, 37

and 48 are concurrent in the note point W - quasi-center of the special octagon.

Property 1.  In a special octagon, the diagonals determined by the opposite vertices of the

octagon are concurrent in its quasi-center.
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Two Properties of The Special Octagon
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Figure 2

We denote by O1, O2, O3, O4 the centers of the tangent circles respectively in P and U of the

lines BC and AD, in N and R of the lines AB and CD, in Q and V of the lines BC and AD

and in M and S of the lines AB and CD .

V

U
O3

O1

Q

P

R

O2

N

S

M

D

B

C

A
I

D1

C1

A1

B1

O4

To demonstrate this property we will use two lemmas.

Lemma 1. (Theorem I. Newton). In a circumscribed convex quadrilateral, the diagonals and 

lines determined by the points of tangent to the circle of the opposite sides are four 

competing lines.

Demonstration. Let A1, B1, C1, D1 be the tangent points of the sides with the circle (see figure 

2). On the extensions of the sides AB, BC, CD, DA of the circumscribed quadrilateral ABCD 

we construct respectively the points M, N; P, Q; R, S; U, V such that: A1M = A1N = B1P = 

B1Q = C1R = C1S = D1U = D1V.
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From: A1M = A1N = C1R = C1S it follows that A1C1 is the radical axis for the circles (O2) and 

(O4). (1)

The relations B1P = B1Q = D1U = D1V lead to the conclusion that

B1D1 is the radical axis of the circles (O3) and (O1). (2)

Noting {I} = A1C1 ∩ B1D1 from relations (1) and (2) we deduce that:

 I has equal powers over circles (O1), (O2), (O3) and (O4). (3)

Since BA1 = BB1 (tangents taken from point B to the circle) and B1P = A1N we obtain that BP 

= BN. (4)

Also from D1U = C1R and DD1 = DC1 it results that DU = DR. (5)

Relationships (4) and (5) show that BD is the radical axis of the circles (O1), (O2). (6)

From relations (3) and (6) we retain that I ∈ (BD) (7). Analogously it is shown that I ∈ (AC) 

and consequently {I} = A1C1 ∩ B1D1 ∩ AC ∩ BD. (8)

Lemma 2. In a circumscribed concave quadrilateral the diagonals and lines determined by 

the points of tangent to the circle of the opposite sides are four competing lines.

The demonstration of this lemma being very similar to that of lemma 1, we do not reproduce 

it here. The reader can make this demonstration using possibly figure 3. We mention that a 

circumscribable concave quadrilateral has two adjacent sides tangent to the circle and the 

extensions of the other two sides are tangent to the circle.
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Figure 3

Proof of Ownership 1.

Note {X} = BA ∩ FG and {Y} = BC ∩ FE (see figure 4). In the circumscribed convex

quadrilateral BXFY applying Lemma 1 we have as: 15 ∩ 26 ∩ BF ∩ XY = {W}. Remember

that W ∈ BF. (9)
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Figure 4

We denote {Z} = CD ∩ FG and {T} = CB ∩ GH, we apply the lemma in the circumscribed

convex quadrilateral CZGT we obtain that; 26 ∩ 37 ∩ CG ∩ ZT = {W}. We note here that W

∈ CG. (10)

Note {R} = AB ∩ ED and {S} = AH ∩ EF. In the circumscribed convex quadrilateral ARES

applying Lemma 1 we obtain that: 15 ∩ 48 ∩ AE ∩ RS = {W}, consequently W ∈ AE. (11)

Note {P} = DE ∩ HG and {Q} = CD ∩ AH. The circumscribed concave quadrilateral QDPH

and Lemma 2 lead to 37 ∩ 48 ∩ DH ∩ QP = {W}. We note from here that W ∈ AE. (12)

Relationships (9), (10), (11) and (12) show that the diagonals BF, CG, AE and DH of the

special octagon ABCDEFGH are concurrent in its quasi-center W.
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Figure 5
P8
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Property 2.  The opposite sides of a special octagon and the opposite sides of the octagon 

determined by the tangent points of the sides of the given special octagon with the circle 

intersect two by two in 8 collinear points.

Demonstration. Let ABCDEFGH be the special octagon given and die 12345678 the octagon 

formed by the points of tangent to the circle of the sides AB, BC, CD, DE, EF, FG, GH, HA 

(see figure 5).
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Transforming  by  duality  in  relation  to  the  circle  inscribed  in  the  special  octagon  the

configuration  from figure  1 we have that  the  lines  AB, BC, CD, DE, EF,  FG, GH, HA

correspond to their poles, that is the points 1, 2, 3, 4, 5, 6, 7, 8. The pole of the line 15 will be

the intersection of the opposite sides AB and EF of the special octagon, we will denote this

point with P1.

 The pole of line 26 will be the point P2 - the intersection of the opposite sides BC and FG of

the special octagon. The pole of line 37 will be the point P3 - the intersection of the opposite

sides CD and GH of the special octagon. The pole of line 48 is the point P 4 -the intersection

of the opposite sides DE and HA of the special octagon.

Since the lines 15, 26, 37 and 48 are concurrent in the point W -quasi-center of the octagon-

then the poles of these lines, ie the points P1, P2, P3, P4 will be collinear points belonging to

the polar of W in relation to the circle. The polar of point A is line 18, the polar of point E is

line 45, it results that the pole of the diagonal AE will be the intersection of lines 18 and 45,

opposite sides in octagon 12345678, ie a point that we denote P5, because AE passes through

W we obtain that P5 it will be on the polar of W in relation to the circle, so it will be collinear

with the points P1, P2, P3, P4.

Analogously point P6, the pole of the diagonal BF of the octagon will belong to the polar of

W, P7 the pole of the diagonal CG of the octagon will be a point on the polar of W and finally

point P8 the pole of the diagonal DH will belong to the polar of W. In conclusion the points

P1, P2, P3, P4, P5, P6, P7, P8 are collinear points located on the polar quasi-center W in relation

to the circle.
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Erratum to the paper “Fifty Years of Kurepa’s !n 
Hypothesis” by Žarko Mijajlović 

Florentin Smarandache

Abstract In this short note we prove that the Kurepa (K) function is different from 
the Smarandache-Kurepa (SK) function, therefore, these functions are not the same, 
as Mijajlović has unfoundedly accused the prestigious Encyclopedia of Mathematics and 
this author. This note is an answer to Mijajlović’s paper (Žarko Mijajlović, Fifty years 
of Kurepa’s !n hypothesis, Bulletin T.CLIV de l’Académie serbe des sciences et des arts 
– 2021 Classe des Sciences mathématiques et naturelles Sciences mathématiques, No. 46,
169–181 (2021). http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=bltn&rbr=
21, http://elib.mi.sanu.ac.rs/files/journals/bltn/46/bltnn46p169-181.pdf).

Key words Kurepa (K) function, Smarandache-Kurepa (SK) function, Encyclopedia 
of Mathematics.

1 Introduction

In the paper [1, p. 172], Mijajlović asserts that: “We have to mention also that there are inappropriate
names assigned related to Kurepa’s left factorial function. The most remarkable example is that !n is
also called Smarandache-Kurepa function at the rather reputed Wolfram MathWorld portal [5].”
Although the author cited the prestigious Encyclopedia of Mathematics and the link to the SK function
[5], he either overlooked its entry (although it has only five lines), or he did not understand it. Therefore,
he jumped to attacks and an unfounded accusation.

2 Proposition

We propose here that the K and SK functions are different from each other and we prove this below.

Definition 2.1. The Kurepa K left factorial function [2] is defined as a sum of increasing factorials:

Kn =!n =

n−1∑
i=0

i! = 0! + 1! + · · ·+ (n− 1)!,

for n ≥ 1.

Florentin Smarandache (2021). Erratum to the paper “Fifty Years of Kurepa’s !n Hypothesis” 
by Žarko Mijajlović. Bulletin of Pure and Applied Sciences - Section - E - Mathematics & 
Statistics 40E(2), 164-166; DOI: 10.5958/2320-3226.2021.00018.7
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Let us compute some values of the Kurepa function Kn.

K1 = 0! = 1,

K2 = 0! + 1! = 2,

K3 = 0! + 1! + 2! = 4,

K4 = K3 + 3! = 4 + 6 = 10,

K5 = K4 + 4! = 10 + 24 = 34,

K6 = K5 + 5! = 34 + 120 = 154,

and so on.

Definition 2.2. In the Encyclopedia of Mathematics, the Smarandache-Kurepa (SK) function [5] is
defined as follows: “Given the left factorial function:∑

(n) =

n∑
k=1

k!.

SK(p) for p prime is the smallest integer n such that p|{1 +
∑

(n− 1)}, i.e., p divides 1 +
∑

(n− 1).
The first few known values of SK(p) are 2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 24, . . . for p = 2, 5, 7, 11, 17, 19,
23, 31, 37, 41, 61, 71, 73, 89, . . ..
The function SK(p) does not exist for p = 3, 13, 29, 43, 47, 53, 67, 79, 83, . . . .”

Definition 2.3. Let us also present the Smarandache (S) function [3, 4], used in the construction of
the SK function, which is defined as below: S(n) is the smallest integer n such that n|S (n)!, i.e., n
divides S (n)!.

3 Comparison of the K and SK functions

From the above three definitions, we clearly see that the SK function is a combination of the S function
(“the smallest integer n such that p divides …”), and the K function (“the expression that has to be
divisible by p is the Kurepa left factorial) - where its name the SK function comes from.
However, the two functions, K and SK are analytically different as it can be seen easily.
Neither their values are the same:
The first values of the Kn computed above are: 1, 2, 4, 10, 34, 154, . . ..
While, the first few known values of SK(p) are 2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 24, . . . for p =
2, 5, 7, 11, 17, 19, 23, 31, 37, 41, 61, 71, 73, 89, . . . (see, Weisstein [5]).
Thus, the values of K and SK functions are also different.
The SK function was introduced by M.R. Mudge [6, 7] in 1996, an English mathematician, not by
Ashbacher as asserted by Mijajlović [1].
Mijajlović does not say anything about the Wagstaff’s left factorial [6–8], which looks more intuitive
than Kurepa’s, and is defined as:

Bn =!(n+ 1)− 1 = 1! + 2! + 3! + ...+ n!.

When this author found out about the above said paper of Mijalović, he sent e-mails [9,10] to Mijajlović
and to the Editor of this Journal [1] - Gradimir V. Milovanović, inviting the author Mijajlović to update
his paper [1], since it has a wrong section, or else to publish this author’s response in this reference,
but they both declined this author’s request.
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The Fifth Function of University:  
“Neutrosophic E-function” of Communication-

Collaboration-Integration of University 
in the Information Age 

The study is based on the following hypothesis with practical foundation: 
- Premise 1 - if two members of university on two continents meet on the Internet
and initiate interdisciplinary scientific communication;
- Premise 2 - subsequently, if within the curricular interests they develop an
academic scientific collaboration;
- Premise 3 - if the so-called collaboration integrates the interests of other members
of the university;
- Premise 4 - finally, if the university allows, accepts, validates and promotes such
an approach;
- Conclusion: then it means the university as a system (the global academic
system) has, and it is, exerting a potential function to provide communication,
collaboration and integration of research and of academic scientific experience.

We call this last function of the university “neutrosophic e-function” 
because it mixes heterogeneous and uncertain notions. It is specialized, 
according to the functions of “teaching-learning, researching, the public 
interest and entrepreneurial interest,” as the fifth function. As the other four 
have structured and shaped university paradigms, this one configures one as 
well. E-function makes visible a functional structure in a scientific scan: 
the communicative-collaborative-integrative paradigm. 

Beyond the practical and inferential logic arguments, the research bases the 
hypothesis on historical and systemic-operational arguments. The foundation 
consists of the fundamental contributions of some academics (Y. Takahara, C. 
Brătianu, M. Păun, R. Carraz, Y. Harayama, I. Jianu, A. Marga, M. Castells, H. 
Etzkowitz, A. Ghicov, T. Callo, and S. Naidu), and our contribution is 
apprehending the strong tendency of the university system to exercise an e-
function and to move toward a global university e-system. 

Florentin Smarandache, Ştefan Vlăduţescu (2013). The Fifth Function of University: “Neutrosophic E-function” 
of Communication-Collaboration-Integration of University in the Information Age. Archive.org, 18. DOI: 
10.5281/zenodo.30217
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I. The concept of university. Axis 1

In relation to the requirements of accuracy, the side resonances turn the idea 
of university into an elusive and vague concept. This does not come from 
the specialists’ lack of concern for the radiography of such a major social 
agent. University is, from all existing institutions, the organization with the 
oldest, most solid and most thorough history. As a place of knowledge, it is also 
a medium of self-understanding. From this perspective, it is paradoxical that in 
the house of knowledge is not found a thorough and robust self-understanding. It 
seems that the university does not have a clear and lucid self-awareness. 
Epistemologically, the university is the fountain, the criteria and the 
archive of knowledge. Any knowledge, it appears, implies a lack of knowledge. 
And maybe, once the status of knowledge is accepted, ignorance can be 
considered as the foundation of knowledge. Therefore, an explanation of 
the elusiveness of the concept of universality comes from the uncertainty 
about the content of the ignorance. In a way, the meaning of university is the 
unknown. The awareness of the unknown and the awareness of the need for 
developing knowledge forms the energetic poles that feed the university system. 

Another line of explanation is to understand current university as 
moving quickly in relation to the subject of knowledge and to the actors of 
knowledge. University is the most agile, insidious and versatile of all the 
institutions of knowledge. 

Thirdly, the fact that it knows itself better and better, while rapidly 
changing, makes visible knowledge variable itself. Variability is the subject of 
entropy and thus of negentropy and information. Therefore, the accuracy of 
self-knowledge induces an effect of vagueness that reinforces the impression of 
elusiveness. 

Practically and conceptually, the university is all right. The first axis of 
understanding the university is this conceptual elusive understanding. 

II. University as an organization. Axis 2

On a second axis of preliminary understanding-explaining, the university is 
specialized, as shown by Professor Constantin Brătianu as “a very complex 
organization” (2005, pp. 43-55). Generically, the organization is founded as a 
social group dedicated to a specific task. Subsequently, Norman Goodman shows it 
has a “formal structure that tries to accomplish the task” (1998, p. 71). In 
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accomplishing the defining task, it exploits some of the statutes and potential roles 
of its members. Related, it generates status and roles arising from the title of 
member and of organizational actor. 

The genesis of organization is not conceptual, but social. Through it, society 
solves social problems. Essentially, traditionally, university solves two categories 
of problems: knowledge and education. The first category includes the production 
and transfer of knowledge. The other includes ethical, political, medical, 
economic-entrepreneurial education etc. 

Organizations are defined not by the tasks they propose, by the objectives 
they set or by the mottos they are acting under, but by the problems they solve. 
They are not ends but means. Organization is a social tool for solving problems. 
The word organization comes from the French vocable “organisation” and 
etymologically comes from the Greek “organon” which means “instrument.” 
Basically, the organization carries out activities that lead to solving social 
problems. The first feature of the organization is to be an association of people 
interacting in the idea of preparing a group engaged in cultural, social, educational, 
and administrative activities. Underlying features are linked to it. Members related 
to a set of values, are subjected to rules and accomplish shared tasks when 
performing roles and statutes. 

Organizations may be firms, companies, associations, governmental or non-
governmental entities, foundations, etc. The most important organizations have 
legal grounds. When the activities of an organization and the social relations 
established by it acquire state importance, they are regulated by law. The 
organizations that acquire state importance or have national or supranational 
interest are legally recognized as institutions. 

University is a fundamental scientific and educational institution of a state. 
Organizations have a social profile not because of the accomplishment of “specific 
objectives,” as S.P. Robbins, D. A. DeCenzo and M. Coulter deem (2010), but due 
to the problems they solve. In our opinion, the role of the organization as an 
intelligent operator is to perform activities that solve problems. 

III. University as a system. Axis 3

3.1. A third axis of comprehension is to address the university as a system. 
As shown by Yasuhito Takahara, “An organizational system is a complex of 
interconnected human and nonliving machines” (2004, p. 3).   

As a system, the organization has inputs and outputs. The inputs would be of 
two kinds: “The first type is a resource input such as personnel, material, money, 
energy, and information. The second is external managerial information related to 
customer demands, consumer behaviors, marketing conditions, economic 
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situations, etc.“ (Takahara Y., 2004, p. 4). The organizational mechanism 
“transforms the resource inputs into products or services and transmits them to 
environments as an output” (Takahara Y., 2004, p. 4). The Japanese specialist 
understands the organization as being “formed for a purpose” (Takahara Y., 2004, 
p. 3) and as performing activities in this regard. About the transformation of input
resources into output products or services is stated: “The transformation, which
usually requires support of a specific technology, is the primary activity of an
organization” (Takahara Y., 2004, p. 4). The professors Constantin Brătianu,
Simona Vasilache and Ionela Jianu conceive the organization similarly. They
emphasize that any organization is made up of “resources,” “processes” and
“products” (Brătianu C., S. Vasilache, Jianu I., 2006). In a later article, Constantin
Brătianu highlights: “In any organization all activities can be grouped together in
two basic processes: the production process and the management process” (2007,
p. 376). The production process (technological process) leads to achieving tangible
final results of the organization that can be “objects or services” (as Y. Takahara
asserted in 2004). The organizational system develops management activities as
well: “management activity is to control the primary activity of transformation so
that the organizational goal is realized” (Takahara Y., 2004, p. 4). The
management process is connected with the production process and together they
made up a systemic unit. It is focused on ensuring the production performing
“effectively and efficiently”: the fulfillment of tasks correctly and obtaining
products with a minimum allocation of resources and execution of those activities
that lead to achieving goals. In the same context, Professor Constantin Brătianu
explains: “The process of management can be performed through its main
functions: planning, organizing, leading and controlling” (2007, p. 376).

3.2. Topologically, the organization as a system is defined by several 
modules. The above mentioned specialists identify the input, the output and the 
processes (Constanin Brătianu) or the transformation (Yasuhito Takahara). 
Collaterally, in order to designate activities performed between the input module 
and the output module we will use the concept of throughput. David Besanko, 
David Dranove, Mark Stanley and Scott Schaefer use the term “throughput” to 
conceptualize a phenomenon that conditions the successful businesses. Throughput 
is “the movement of inputs and outputs through the production process” (2010, p. 
100).              

So by throughput it is understood the module of activities which ensures the 
conversion of input (resources) to output (products and/or services). 

3.3. Besides the topological coordinate the system has two more coordinates: 
the structural and the functional. 

The entirety, the “multitude of elements” of a system with the connections, 
the “relations between them” “form the system structure” (Dima I.C. Cucui I., 
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Petrescu M., Stegăroiu I., Năbârjoiu N., 2007, p. 11). The structure is emerging as 
a configuration of the moment. The system has potential for structural changes. It 
remains valid even when structural changes occur. In this coordinate, the system 
seems to be capable of allowing the evolution of elements and relationships, of 
components. At one point, the system has a structure, a state and a set of 
possibilities for transformation and development. The structure is the specific 
internal way of organizing the system elements. It is a configuration currently 
stable and qualitatively determined of the connections between elements. 

3.4. The functional coordinate of the system is inextricably linked to the 
structural coordinate. Between the system structure and the functions performed by 
the system, a strong connection exists. The structure determines the function and 
the functioning modifies the structure. As the functioning is the prerogative of 
managers, it is at the same time, subjected to the power of the management 
strategies. As Peter F. Drucker shows, “structure follows strategy” (2010, p. 94). 
The functional connections, on the other hand, determine in time the variations in 
input and output. The state system is a functional problem. It appears as a constant 
of the connection’s parameters within certain time. State is the measure of the 
system characteristics of the moment. The functional coordinate consists of the 
processes by which the system performs its functions. The transition from one 
functional state to another is the transformation. 

The components of an organization are employees, managers, leaders, 
clients, beneficiaries etc. This is the structural capital of the organization. Systemic 
social connections appear as relations. In its relational capital, a system may 
include relationships of cooperation, collaboration, exchange, determination, 
influence, and communication. They may be hierarchical, vertical, horizontal, etc. 
Relations are those that ensure the system stability and allow its operation and 
adaptation to internal and external environments (natural, social, financial, 
economic, strategic, etc.). Relationships vary in time and give the dynamic 
character of the system. Effective systems seek to maintain stability. In general, 
however, systems have a strong inertia. As S.P. Robbins argues, “Organizations, 
by their very nature, are conservative” (2008, p. 187). 

Structural-functional internal stability can be maintained in two ways. 
Adapting to the environment, systems tend to preserve internal steady states and 
perform its functions. First of all, W. R. Ashby states, the actions of the system “as 
varied as they are have one goal, to maintain constant conditions in the internal 
environment” (1958, p. 121). The more structurally elements are more independent 
of each other the more each one develops a greater capability to adapt. A better 
flexibility of the elements, namely a lower interdependence, is a premise for higher 
functional stability of the system. The second manner that the system preserves its 
stability in is feedback. Yasuhito Takahara speaks of two types of stability: 
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“behavior stability and structural stability” (2004, p. 4). “Behavior stability” is 
achieved through “feedback mechanism” and “structural stability” (or “the practice 
of keeping characteristic parameters of an organization constant”) is achieved ”by 
higher level management activities” (2004, p. 4). 

In the article “Interactions among components of the university system,” 
Mihaela Păun (from Louisiana Tech University) and Miltiade Stanciu (from ASE 
Bucharest) start from the assumption of the university as system and institution. 
Zetetic stake is finding a revealing answer to the question: “Which is the most 
important component/resource in a university?” (2008, p. 94). Research is moving 
toward the components/resources of the university. The perspective is, implicitly, 
topological, structural and functional. The referred components are students, 
teachers and infrastructure. Resources are put into the equation to conclude about 
an intangible resultant. The unknown is defined: the human components (students, 
teachers) and the infrastructure are crucial in the university performance and 
competitiveness. They are equally important. From other perspective, we mention 
that there are “teaching oriented” universities and “researching oriented” 
universities. It is also recalled the existence of components of “teaching” and 
“researching” in most universities (Păun M., Stanciu M., 2008, p. 98). 

Students and teachers appear to be defining systemic academic components 
(M. Trow, 1975). Professor Constantin Brătianu considers that “professors and 
students represent the most important resources” (2009, p.67). In higher education, 
teachers and students are defined as actors who have specific functions. Social 
actors exercising functions become system factors. Functional actors, ontological 
factors of the university, are the students and teachers (including teachers who 
have managerial responsibilities). They are engaged in an academic contract of 
didactic communication. The rights and obligations of the academic actors bear the 
mark of university functions. In turn, academic institution exists through its factors 
and through didactic teaching and research actions carried out in the university. 

IV. The four institutionalized functions of the university

4.1. The first functions: “Teaching-learning” and “Researching.”  

Generations of universities, the Humboldtian university paradigm: 

Today, university is at the end of an evolution and in a transformation 
process that takes into account the forecasting, the foresight and the normative 
future. The functioning of the system means conducting specific activities. This 
happens within some processes. As Yasuhito Takahara (2004), Constantin 
Brătianu, S. Vasilache and Ionela Jianu (2006) argue, any organization runs two 
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types of processes: processes of production (or technology) and management 
processes. The set of academic technological processes is subsumed to some 
functions undertaken by the university institutions. On the other hand, an effective 
university management process will be in line with technological processes, first of 
all and defining, regarding the functions of the university system. This university 
management process is supported by a structure with a clear profile, which Yuko 
Harayama and René Carraz would call “the university management structure” 
(2008, p. 93). 

In 2003, Parliament of Australia retained that the “core functions of 
university” are “teaching, learning, and research” (2003, p. 21440). The one who 
diachronically has implemented this academic and functional model was Wilhelm 
von Humboldt, founder of the University of Berlin. “His university model,” 
professor Gerd Hohendorf (Hohendorf G., 1993, pp. 617-618) argues, “is 
characterized by the unity of teaching and research. It was to be a special feature of 
the higher science establishments that they treated science as a problem which is 
never completely solved and therefore engaged in constant research.” 

Professor Constantin Brătianu and professor Yuko Harayama agree with the 
idea that Wilhelm von Humboldt introduced a “new university paradigm” 
(incidentally in Greek “paradigm” meant “modeled”). In addition, the Romanian 
specialist found that the two functions were also complementary. “The new 
university paradigm... is founded on the unity and the complementarity of the 
functions of teaching and research” (Brătianu C., 2009, p. 63). 

The core of the functional Humboldtian model is that scientific issues are 
never “completely solved” and that, therefore, the university must remain 
“engaged in constant research.” Understanding the Humboldtian model as a third 
generation of universities, Yuko Harayama emphasizes that within it the situation 
of the academic subjects is a situation of constant discovery. This means that “the 
teaching and learning process” occurs through “research activities” (Harayama Y., 
1997, p. 13). In other words, the discoveries occur in university; possibly even in 
the teaching process. To reach this stage, the university has gone through, Yuko 
Harayama asserts, two models. 

The first of university system emerges in the eleventh century and the 
twelfth century. Its elements are the teachers and students. The function of the 
system is one of knowledge transfer (knowledge is validated and scientific 
information is consecrated and preserved). The teachers do not create, do not 
innovate, do not discover. They take knowledge and new knowledge elements and 
they teach them. The new elements of knowledge are generated outside academia. 
The function of this university is one of “teaching.” 

A second generation of universities, according to Professor Yuko Harayama, 
keeps the non-investigative character and guides the teaching act only toward the 
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elites of the religious and political spectrum. We would say that this model is 
focused on “teaching” too, its characteristic being the limitation induced by the 
religious or political pressures. 

The third model, introduced by Wilhelm von Humboldt, is bi-functional: 
“teaching and research.” 

Today the university model is based on the Humboldtian model. The 
technological university process is essentially a “teaching-learning process.” Over 
time this process has always been the focus of academic management in order to 
increase its efficiency and effectiveness. On the other hand, he was doubled at a 
time by the research process. The opinion of Professor Constantin Brătianu is 
similar: “The fundamental competences of a generic university are: teaching, 
learning and research. All of these are knowledge dynamic processes”(2009, p. 
69). These two key functions have been multiplied in the policies developed in 
universities. Thus the universities are no longer limited today to the two functions. 
As Howard Newby argues “Today's universities are expected to engage in lifelong 
learning (not just teaching), research, knowledge transfer, social inclusion (via 
widening participation or access for non-traditional students), local and regional 
economic development, citizenship training and much more”( 2008, pp. 57-58). 

4.2. The third function: utility and social engagement 

During the early twentieth century, the external environment required that 
universities have a stronger orientation toward utility. University transfer generates 
a system of high education that should acquire a more remarkable social, 
economic, financial and moral utility. He who brings in this practical necessity is 
John Henry Cardinal Newman. In his “The Idea of University,” he considers 
theology as a “branch of knowledge” (1999, p. 19) and militates for “useful 
knowledge” and for “usefulness” (1999, pp. 102-109). Through the knowledge 
provided, the university must exercise a function of utility and social involvement, 
locally, regionally or nationally. The transferred knowledge is required to acquire 
utility and practical involvement. 

4.3. Entrepreneurial function. Entrepreneurial Paradigm 

The functional development of the university has as its main purpose the 
performance and the competitiveness. Modern and post-modern universities are 
financed either by public funds or private funds and sometimes have a double 
funding. Private universities were the first who raised the question of self-
financing. Related, the research function included an economic efficiency criterion. 
Therefore, having at least this double causality, the commercial, and economic 
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entrepreneurial function has enforced in the set of functions. This remodeled the 
principal functions too, the ones of “teaching, learning and researching.” High 
education institutions have also assumed the entrepreneurial task function. In 1983, 
in the article “Entrepreneurial Scientists and Entrepreneurial Universities in 
American Academic Science,” Henry Etzkowitz launched the concept of 
“entrepreneurial university.” He argued that Thorstein Veblen had admitted at the 
beginning of the twentieth-century the possibility “that American universities 
would increasingly take on commercial characteristics.” Then, Henry Etzkowitz 
noted that “universities... are considering the possibilities of new sources of funds 
to come from patenting the discoveries made by holding academic appointments        
from the sale of knowledge gained by research done under the contract with 
commercial firms, and from entry into partnerships with private business 
enterprises” (1983, p. 198). A university exerting such an entrepreneurial function 
is an entrepreneurial university. In 2000, Henry Etzkowitz and his colleagues 
would find that “entrepreneurial university is a global phenomenon” and 
understand that it was “the triple helix model of academic-industry-government 
relations.” They speak, in this case, of the “entrepreneurial paradigm” (H. 
Etzkowitz, A. Webster, C. Gebhardt, Cantisano, Terra BR, 2000, p. 313). The 
concept of “entrepreneurial university” was considered lucrative and was 
developed so that, in 2007, David Woollard, Oswald Jones and Michael Zhang 
realized that this feature (generally accepted as a function) is, along with “teaching 
and researching the third mission” (2007, p. 1), meaning “commercialization of 
science .” 

However, the concept also keeps a dose of lack of understanding and a dose 
of misunderstanding (Stanciu. Şt., 2008, pp. 130-134). However, in Romania the 
concern for an entrepreneurial university is already solid. Since 1998, professor 
Panaite Nica has taken scientifically into account the entrepreneurial function. 
Subsequently, Professor Valentin Mureşan (2002) brought in convergence opinions 
of university entrepreneurial specialists from France, England and Romania. For 
now, the concept of “Entrepreneurial University is still fuzzy and culturally 
dependent” (Brătianu C., Stanciu Şt., 2010, p. 133). 

V. Collaborative-Communications Paradigm, the fifth function:
function of communication, collaboration-integration 

The functions of the university system are related to the mending demands 
required by the internal environment and by the needs to adapt to the external 
environment. These functions are initially mission assumed by the management 
structure. Once proven, the practical validity and the mission effectiveness, for a 
longer period and in several universities, it becomes a function of the global 
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university system. 
Functions are ways of permanent structural changing-transforming of the 

university system in relation to the internal requirements and external needs. As 
specified by Andrei Marga, university functions in society and fulfills “functions 
which develop along with the changes around them” (2009, p. 152). Following the 
same line of ideas, Andrei Marga takes into account “the multiple functions of 
university” (2004, p. 13). In exercising these functions, the university is presented 
“as a powerful scientific research center… for acquiring and applying knowledge,” 
and “as a source of technological innovation, as an intellectual authority in 
critically examining situations; as a space for commitment to civil rights, social 
justice and reforms“ (Marga A., 2004, p. 13). 

Functions are, in general, “institutionalized” by the laws that give the 
university the character of institution. Thus, for example, social utility missions or 
entrepreneurial plans that were undertaken by some universities 25 years ago are 
now a function of the university system in general. Moreover, supranational 
authorities currently allow future university functions. 

“The Bologna Declaration” (1999) mentions many of the functions of the 
university, teaching, research and a predicted communication-dissemination 
function. “The University functions in the societies having differing organization 
being the consequence of different geographical and historical conditions, and 
represents an institute that critically interprets and disseminates culture by the way 
of research and teaching.” 

Nowadays, the environment university develops is one it has contributed to. 
This environment is not one in which the university decides. It must adapt to it. 

The globalization of economic, financial, social phenomena is, on the one 
hand, the result of knowledge development, of creativity and innovation, and on 
the other, of their putting into practice. The world is in the Information Age. There 
has been a digital revolution that has succeeded everywhere. Interaction, 
networking, connectivity that is always the engine of society acquires new values 
in the new context. Social relations are digitally imprinted. Some of them even 
develop completely or partially, as mediated by computers. Many social relations 
have a virtual component. 

The Information Age began after 1970 with the first personal computers, 
expanded after 1990 with the introduction of the Internet and strengthened after 
2000 with the generalization of the Internet, with its use widely and globally. 

In his trilogy, Information Age (1996, 1997, 1998, second edition 2000, 
2001, 2004), Manuel Castells states: “Toward the end of second millenium of the 
christian era several events of historical significance transformed the social 
landscape of human life. A technological revolution, centered around information 
technologies, began to reshape, at accelerated peace, the material basis of society. 
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People increasingly organize their meaning not around what they do but on the 
basis of what they are. Meanwhile, on the other hand, global networks of 
instrumental exchanges selectively switch on and off individuals, groups, regions 
and even countries. “Our societies are increasingly structured around a bipolar 
opposition between the Net and the Self” (Castells M ., 1996, p. 1 p. 2 and p. 3). 
Taking ideas expressed in the late 1980s, Manuel Castells formulates and sets in 
trilogy the concept of the “Information Age.” “Prologue: the Net and the Self” 
opens the first volume “The Rise of the Network Society.” Here with the idea of 
the Information Age, two more ideas are displayed, that of the “network society” 
and that of the opposition between “Net” and “Self.” Later, in his book, 
Communication Power (2009), Manuel Castells will talk about the Information 
Age as the “digital age” or “network age.” The Information Age is the era of 
information society, information economy, information policy, etc. It is not a 
change of vision, but a transformation of substance, a historic turning point 
transformation. There is the digitization, globalization and putting in interaction to 
the components of the global social system. 

Illustrating for the practical impact of digitization is the banks case. The 
globalization and interdependence brought by digitization went beyond any 
boundaries. They induced significant changes, major changes, namely functional 
changes. Banks, like all other operators, actors, and factors of the social, economic, 
and political systems, found themselves confronted with their own limits: some 
uncontrollable limits. In this respect, Lloyd Darlington points out: “For the first 
time in 300 years, the very nature of banking has changed. We still handle money, 
but information, not money, is now the lifeblood of our industry. From what was 
essentially a transaction-based business, where customers come to you (or didn’t), 
banking has to make the leap into what is essentially a sale-and-marketing culture” 
(1998, p. 115). 

The Information era has induced significant changes in the internal 
environment and external environment of the university system. It has generated 
changes in the way the system should respond to the challenges and opportunities 
generated by the digital revolution, the technological revolution. The university 
system must adapt to external processes. To the external environmental changes, 
the university management must respond adaptively. The technological revolution 
has brought not only the transformation of the external environment, but it has also 
brought new tools for the university system to adapt. The challenge is primarily 
one of the university system functioning as a management coordinate and, 
secondly, in its “production” coordinate. The vision, missions and academic values 
are going through changes. In their content, strategic management includes 
adaptive tasks to respond to exogenous factors induced by digitization: extended or 
sometimes generalized computing and Internet communication, as well as rapid 
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globalization of knowledge, discoveries, innovations, etc. 
University is becoming more and more a place for creative knowledge. In 

visions, missions and values, functional commitments begin to transpire. In other 
words, on their own some universities assume new functions. In time, through their 
inter-university resonance, similar commitments in visions, mission and values go 
national. They are institutionalized and become functions of any university system. 

For example, in his strategic document, Oxford Brooks University mentions 
the traditional, modern and postmodern functions and it involves performing 
activities we think will become functions specific to the Information Age. In “Our 
strategy for 2020,”Oxford Brooks University stated: “Oxford Brooks University 
occupies a strong position in UK higher education. We have a sound and growing 
international reputation for the quality of our teaching, learning and research and 
we are a vital part of and contributor to the local and national economy and 
society.” 

Remain fundamental nuclear functions of the university: “teaching, learning 
and researching.” 

Public interest and entrepreneurial functions were institutionalized: “we are 
a vital part of and contributor to the local and national economy and society.” The 
strategy states: “We also need to ensure that our organizational structures support 
staff and students in their activities, that they facilitate the integration of research 
and teaching and promote inter-disciplinarity and diversity. We are international in 
our orientation: in our curriculum, our staff, our student body and our increasingly 
interdependent world partnership in an increasingly interdependent world. We 
aspire to be a university which makes a commitment to an educational culture 
where mentorship is valued and teaching is integrated with both research and 
cutting-edge practice from the professions.” 

In the space it exists, the university must place itself as the main generator 
and supplier of knowledge. The relevant context of the current university system is 
structured mainly by the action of three factors. These factors-buoys of the context 
are:  

a) Computing, technology, rapid innovation (prefigured by and currently
under development by Gordon Moore's law: “the computing power of microchips 
doubles every 18 months”); 

b) Accelerated extension of the information-communication systems,
(categories of users increase, diversify and amplify their importance: according to 
Robert Metcalfe’s postulate: “a network's value grows proportionally with the 
numbers of users” and according to George Gilder’s law “the total bandwidth of 
communication systems triple every 12 months”); 

c) Development and accreditation of a collaborative and disseminating
academic environment (the transition from unilateral projects to international and 
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multilateral projects, the application of the principle of “shared knowledge,” the 
liberalization of flows of knowledge and the setting of new dissemination 
channels). 

The fundamental phenomena taking place in the internal environment are a 
permissive-adaptive and intelligent replication of those from the external 
environment: tech-digitization, globalization and interdependence. They have a 
direct impact on the activities carried out in the university and indirectly (mediated 
by management) on the functions of the university system. 

According to the strategy Oxford - 2020, management assures (“ensure”) in 
connection with the involvement in reforming the functions of “teaching” and 
“research”: “facilitate the integration of research and reaching” and “commitment 
to”... “teaching integrated with both research and cutting-edge practice.” 

Related, we mention a commitment to “promote inter-disciplinarity and 
diversity.” A direction with a functional touch is the decision that the university 
should be “international in our orientation: in our curriculum, our staff, our student 
body and our partnership.” If at first already accredited four functions are 
mentioned, this latter functional commitment is specific to the Information Age 
world: “an increasingly interdependent world.” 

Manuel Castells considers “globalisation and digitization” as “the two most 
profound social and economic trends of our age” (2009, p. 70). The main feature of 
globalization is reflected in the fulminant emergence of networks. A “Global 
Network Society” emerges. “Network society is to the Information Age,” Castells 
states, “what the industrial society was to the Industrial Age” (2009, p. 12). In the 
“Global Network Society” image, universities are characterized as academic 
institutions with a recognizable profile. They “are at the cutting edge of research 
and teaching on the global network society.” Keeping in mind two of the functions 
of the university “teaching” and “research,” we may notice the acceptance of a 
commitment project: “project of situation the university within the technological 
and intellectual conditions of the Information Age” (Castells M., 2009, p. 3). 
Manuel Castells is not concerned with how the university should develop in the 
Information Age. 

Our thesis is that in the context of the “Digital Age,” the university system 
must assume new functions adaptively. These functions are not surprising 
occurrences. They have been preliminarily mentioned in the university strategies, 
either incidentally as vision, mission and values or as precise missions. In the 
context of separation of functions the university system had to institutionalize, we 
mention Professor Andrei Marga’s point of view. He has argued that the twenty-
first century university is forced to face many challenges, listing ten: “the 
implementation of the Bologna Declaration (1999), globalization, the sustainability 
and the identity of a university, the autonomy, the quality assurance, the 
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Phenomenon of “brain drain,” the issue of multiculturalism of leadership, the 
climate of change, the overcoming of relativism, and the recuperation of the vision 
based on knowledge “(Marga A., 2008). 

Smart organizations are characterized, among other things, by flexibility, 
learning and a high potential for change. As the most important pole of knowledge 
and as a decisive development pole, the university is among the most intelligent 
organizations. Therefore, we anticipate that university systems will even take on 
new functions according to the Digital Age opportunities. They will not expect that 
from opportunities, the challenges should become necessities. The new paradigm 
of a pure specificity for the Information Age will be a collaborative-
communicational paradigm. 

We predict that the current university system will connect into a single 
network under a title like “Universities Global Network.” It is already mentioned, 
as Professor Adrian Ghicov does, about the “matching network” for an “efficient 
learning” (2008, p. 29) and about the “idea of integration and completeness” (Callo 
T., 2005, p. 49). Following the same line of ideas, Bogdan Danciu, Margaret Dinca 
and Valeria Savu consider communication and collaboration as concepts of 
adaptation in the “academic field” (2010, p. 87). 

University collaborative platforms will be open in areas and disciplines. 
Yuko Harayama and René Carraz count on “scientific collaboration,” a feature 
found in the Japanese university system; see Harayama Y., R. Carraz, 2008.) Thus, 
“teaching” and “researching” could be carried out in the network. In this respect, 
Ilie Bădescu, Radu Baltasiu and Cristian Bădescu talk about “research networks” 
(2011, p. 248). IT infrastructure will enable the exchange of lectures held by 
teachers, live, interactively, in the videoconferencing system. Teachers specialize 
in certain subjects or who have important contributions on specific topics will be 
able to teach, using computer highways, the students from other universities in 
different regions or even other continents. As Ana Maria Marhan argues, cognitive 
players have not only become users of information technology, but they have 
mentally adjusted with the computer tools for learning, research, knowledge: a 
lucrative relationship between man and computer has been established (2007, pp. 
12-14). Moreover, the teaching-learning in the network will capitalize improving
the effect of “social facilitation” discovered by Robert B. Zajonc; “the mere
presence of others” improves performance (1965, p. 274). The presence of students
and teachers from other universities in videoconferencing will enhance the
performance of teaching-learning knowledge and information. Students, as stated
by Gheorghe Iosif, Ştefan Trăuşan-Matu, Ana-Maria Marhan, Ion Juvină şi
Gheorghe Marius (2001), will be involved in designing cooperatively, with
teachers, educational objectives; the training-educational process will be
accomplished in relation to the “learning needs” and the “learning tasks,” using
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computer technology, especially the Internet. 
The integration of university research will start by regional, national projects 

and will expand globally. Collaborative platforms will allow the dissemination and 
unification of knowledge in areas and disciplines. In this manner, a knowledge 
base will arise for each discipline to avoid knowledge, research, parallel 
investigation or discovery in some places of old discoveries made in other units of 
knowledge. On the platforms, virtual research teams may rise which can synthesize 
all relevant knowledge on a specific subject and to continue research on behalf of 
the entire community of specialists. Researchers from different universities will 
work on joint projects in virtual teams in collaboration platforms. Interdependence 
of the world will be so fully visible regarding the interdependence of research and 
learning too. Research will be better and more equitable and professional and 
student performance indicators will gain a unique and relevant basis for reporting 
and evaluation. At this moment it has already achieved the digitization of some of 
the activities induced by the use and occurrence in university of the traditional 
university-canonical function. Decisive steps were taken to implement computer 
strategies concerning the “learning-teaching” function. Well-known Australian 
specialist, Som Naidu, notes that today student should learn in a new context, one 
“of e-learning; open, distant, and flexible learning environments” (2003, p. 362). 
Naidu says that “In the midst of all this interest in the proliferation of e-learning, 
there is a great deal of variability in the quality of e-learning and teaching.” (2003, 
p. 354). On this basis and related, the professor at the University of Melbourne
develops a guide of principles and procedures. The study requires the idea of
digitization by “e-learning and teaching” and other processes undertaken by the
university system (S. Naidu, 2003).

We value and fight for strengthening and developing the communicative-
collaborative-integrative functions of the global university system. If the Digital 
Age brings, however, globalization and interdependence, we should not expect that 
they be imposed, but we should welcome them. It is good to settle all opportunities 
from challenges. It would be a beneficial and wonderful feed-forward response. In 
fact, some steps toward this emerging fifth function have already been taken. 

Finally, it is arguable that it is about a global e-university in a global e-
system and that e-communication and collaboration function applies not only to 
universities, but to all institutions, and even to individuals entering the electronic 
global communication system. 
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În decembrie 2016 - ianuarie 2017, am 
întreprins o croazieră culturală și științifică în 
Arhipelagul Galápagos, Ecuador, în Oceanul Pacific, 
unde am vizitat șapte insule și insulițe:  Mosquera, 
Isabela, Fernandina, Santiago, Sombrero Chino, 
Santa Cruz și Rabida, într-o croazieră cu vaporul 
Golondrina. Am discutat extensiv cu simpaticul nos-
tru ghid, señor Milton Ulloa, despre habitatele natu-
rale și transformările lor. După ce am observat multe 
animale și plante care au evoluat diferit de strămoșii 
lor veniți de pe continent, am consultat, reîntors la 
Universitatea New Mexico (UNM), unde activez, o 
variată literatură științifică despre viața animalelor și 
plantelor, despre reproducerea acestora și despre 
multiplele teorii ale evoluției. Am folosit bazele de 
date științifice on-line la care Biblioteca UNM 
(http://library.unm.edu) este abonată, ca: MathSci-
Net, Web of Science, EBSCO, Thomson Gale (Cen-
gage), ProQuest, DOAJ, IEEE/IET Electronic Libra-
ry, IEEE Xplore Digital Library etc., făcând nume-
roase căutări pe cuvinte-cheie legate de originile 
vieții, evoluție, idei controversate despre evoluție, 
adaptare și inadaptare, curiozități, mutații, genetică, 
embriologie ș.a.m.d. Concluzia mea generală a fost 
că fiecare teorie a evoluției posedă un grad de ade-
văr, un grad de indeterminare și un grad de neadevăr 
(ca în logica neutrosofică) - depinzând de tipurile de 
specii, mediu înconjurător, intervale de timp, sau alți 
parametri. Și toate aceste grade sunt diferite de la 
specie la specie, de la mediu înconjurător la mediu 
înconjurător, de la interval de timp la interval de 
timp, de la parametru la parametru. 
Prin mediu înconjurător se înțelege: geografie, cli-
mat, prăzi și prădători, i.e. întregul ecosistem. 
Animalele și plantele (și chiar ființele umane) nu 
doar evoluează, dar și involuează. Unele trăsături se 

accentuează, altele se depreciază. Este de asemenea 
de observat că adaptarea poate ține diferențiat de 
evoluția fizică sau funcțională a unei părți a corpu-
lui, în timp ce alte părți ale corpului pot involua, iar 
celelalte pot rămâne neschimbate. Să reamintim câ-
teva noțiuni din biologia clasică. 
         Taxonomia este disciplina științifică a clasifi-
cării viețuitoarelor de pe Pământ (în specii, genuri și 
familii). 
         O specie este un grup de organisme viețuind 
într-o arie specifică, având multe trăsături comune și 
fiind capabile de a se reproduce între ele. În unele 
cazuri, distincția dintre subgrupuri ale diferitelor 
specii este neclară, ca în Paradoxurile Sorites din 
cadrul neutrosofiei: frontiera dintre ˂A˃ (unde ˂A˃ 
poate fi o specie, un gen, sau o familie) și ˂nonA˃ 
(care înseamnă ceea ce nu este ˂A˃) este vagă, in-
completă, ambiguă. Similar pentru distincția dintre o 
specie și o subspecie. 
         Conform dicționarelor online, involuție în-
seamnă: 
— Degradare, regresie sau contracție în dimensiuni; 
sau revenirea la o formă anterioară [Collins Dictio-
nary of Medicine, Robert M. Youngson, 2005]; 
— Revenirea unui organ mărit la dimensiune norma-
lă; sau răsucire interioară a marginilor unei părți; 
declinul mental asociat cu avansarea în vârstă (psi-
hiatrie) [Medical Dictionary for the Health Professi-
ons and Nursing, Farlex, 2012]; 
— Având margini laminate (pentru organele plante-
lor) [Collins Dictionary of Biology, 3rd edition, 
W.G. Hale,V.A. Saunders, J.P. Margham, 2005]; 
— O schimbare retrogradă a corpului sau a unui 
organ [Dorland's Medical Dictionary for Health 
Consumers, Saudenders, an imprint of Elsevier, Inc., 
2007]; 
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— Un declin progresiv sau degenerarea funcționării 
fiziologice normale [The American Heritage, 
Houghton Mifflin Company, 2007]. 
În timpul procesului de adaptare a unei viețuitoare B 
la un nou mediu înconjurător η, 
— B evoluează parțial; 
— B involuează parțial; 
— sau B rămâne parțial neschimbat (neutru, sau 
indeterminat – i.e. nu e sigur dacă este evoluție sau 
involuție). 
         Orice acțiune are o reacțiune. Putem observa, 
datorită adaptării: evoluția, involuția, și neutralitatea 
(indeterminarea), oricare dintre aceste trei 
componente neutrosofice într-un anume grad.  
          Gradele de evoluție / indeterminare / involuție 
se referă atât la structura lui B (părțile corpului), 
cât și funcționalitățile lui B (funcționalități ale 
fiecărei părți, sau inter-funcționalități ale părților, 
sau funcționalități ale lui B ca întreg).  
          Adaptarea la un nou mediu înconjurător 
înseamnă dezadaptarea de mediul înconjurător ante-
rior. Evoluție într-o direcție însemnă involuție într-o 
altă direcție. Când o viețuitoare pierde într-o di-
recție, trebuie să câștige într-o altă direcție, în scopul 
de a supraviețui (pentru echilibru). 
O specie, în ceea ce privește un mediu înconjurător, 
poate fi: 
— în echilibru, în dezechilibru, sau în indetermina-
re; 
— stabil, instabil, sau indeterminat; 
— optimal, suboptimal, sau indeterminat. 
         Se naște astfel o Teorie Neutrosofică a Evo-
luției, Involuției și Indeterminării (oscilație sau 
fluctuație între Evoluție și Involuție).  
         Dacă speciile sunt într-un stadiu de indetermi-
nare (neclar, vag, ambiguu) față de mediul lor încon-
jurător, tind să se îndrepte spre o extremă: fie spre 
echilibru / stabilitate / optimalitate, sau spre dezechi-
libru / instabilitate / suboptimalitate față de mediul 
lor înconjurător; speciile sau se degradează, fie trep-
tat, fie brusc, prin mutație, și pier, sau se ridică trep-
tat sau brusc, prin mutație, către echilibru / stabilita-
te / optimalitate. 
         Punctul de atracție în acest sistem neutrosofic 
dinamic este, desigur, stadiul de echilibru / stabilita-
te / optimalitate. Dar nici când atinge acest stadiu, 
specia nu este fixată și poate ajunge, datorită unor 

noi condiții sau unor accidente, la stadiul de 
dezechilibru / instabilitate / suboptimalitate, iar din 
acest stadiu pornind din nou lupta speciei pentru a 
atinge punctul de atracție. 

          Câteva Exemple Neutrosofice de Evoluție, 
Involuție și Indeterminare (Neutralitate) 
1. Exemplul cormoranului
Să luăm exemplul cormoranilor nezburători 
(Nannopterum harrisi) din Insulele Galápagos, cu 
aripile și coada atrofiate (deci involuție) din cauza 
lipsei necesității de zbor (căci ei nu au prădători la 
sol) și pentru nevoia lor permanentă de a-și scufunda 
capul în apă, după pește, caracatițe, anghile etc. 
Sternul lor aviar a dispărut (involuție), din moment 
ce nu le mai erau necesari mușchi de sprijin pentru 
aripi. Dar gâtul lor a devenit mai lung, picioarele lor 
mai puternice, cu labe reticulare (evoluție), pentru 
ușurarea prinderii peștilor sub apă. Cu toate acestea, 
cormoranii nezburători au păstrat mai multe dintre 
obiceiurile strămoșilor lor (funcționalitate în 
ansamblu): fac cuiburi, clocesc ouăle etc. (deci 
neutralitate).

2. Exemplul cosmonautului
Astronauții aflați în spațiu pentru o perioadă lungă de 
timp se acomodează la gravitație redusă sau nulă 
(evoluție), dar își pierd densitatea oaselor 
(involuție). Cu toate acestea, alte părți ale corpului 
nu se schimbă, sau nu au fost descoperite modificări 
până în prezent (neutralitate / indeterminare).

3. Exemplul  de evoluție și involuție al balenelor 
Balenele au evoluat, în ceea ce privește dinții lor, de 
la dinți butuci, la dinți ascuțiți. Apoi, balenele au 
involuat de la dinți ascuțiți, la dinți conici neascuțiți.

4. Exemplul pinguinului
Pinguinul din Galápagos (Spheniscus mendiculus) s-a 
diferențiat de pinguinul Humboldt, reducându-și 
dimensiunea la 35 cm înălțime (adaptare prin 
involuție) pentru a fi în măsură să rămână răcoros în 
soarele ecuatorial.
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Fregatele din Galápagos sunt păsări care și-au 
pierdut abilitatea de a-și obține hrana prin 
scufundare, dat fiind că penele lor nu sunt 
impermeabile (involuție), dar au devenit experte în 
zborul rapid și manevrabil prin furtul de hrană de la 
alte păsări, adică în hrănirea cleptoparazitică 
(evoluție). 

6. Exemplul Cintezelor lui Darwin
Cele 13 specii din Galápagos de Cinteze ale lui 
Darwin manifestă variate grade de evoluție ale 
ciocului, având forme și dimensiuni diferite pentru 
fiecare specie, în scopul de a înghiți diferite tipuri de 
alimente (deci evoluție):
— pentru spargerea semințelor tari, un cioc gros 
(cinteza de sol);
— pentru insecte, flori și cactuși, un cioc lung și 
subțire (alte specii de cinteză).
În afară de ciocurile lor, tipurile de cinteze sunt 
asemănătoare, dovadă că provin dintr-un strămoș 
comun (deci neutralitate).
          Să ne imaginăm un experiment. Să presupu-
nem că cintezele de sol cu cioc subțire s-ar muta 
înapoi într-un mediu înconjurător cu semințe moi, 
unde nu e nevoie un cioc gros. Atunci, ciocul gros 
devenind o povară ar trebui să se atrofieze și, în 
timp, pentru că cintezelor le-ar fi greu să-și folo-
sească ciocul gros greoi, cintezele cu cioc subțire să 
predomine. 

7. Exemplul El Niño
Profesorul de ecologie, etologie și evoluție Martin
Wikelski, de la Universitatea Illinois at Urbana –
Champaign, a publicat în jurnalul "Nature" un raport
curios, privind date pe care le-a colectat împreună cu
echipa sa despre iguanele marine începând cu anul
1987. În timpul tsunami-ului El Niño din 1997 –
1998, algele marine au murit, cauzând lipsa hranei
iguanelor marinei. Din acest motiv, iguanele marine
dintr-o insulă din Galápagos și-au redus înălțimea cu
o pătrime și și-au înjumătățit greutatea (adaptare
prin involuție). După ce hrana a fost din nou îndes-
tulătoare, iguanele marine au revenit la lungimea și
greutatea originală (re-adaptare prin evoluție).
[J. Smith, J. Brown, The Incredible Shrinking Igua-
nas, Ecuador & The Galápagos Islands, Moon
Handbook, Avalon Travel, p. 325.]

Întrebări deschise despre evoluție 
1) Cum să măsurăm evoluția?
2) Cum să calculăm gradul de asemănare cu
strămoșii, gradul de neasemănare cu strămoșii, și
gradul de indeterminare al asemănării - neasemănării
cu strămoșii?
3) Întrebare experimentală. Să presupunem că popu-
lația parțială a unei specii S1 se mută dintr-un mediu
înconjurător η1 către un mediu înconjurător nou η2;
după un timp, o nouă specie S2 se naște prin
adaptarea la η2; apoi, o populație parțială S2 se mută
înapoi din η2 în η1; va evolua S2 înapoi la caracteris-
tice anterioare (de fapt, va involua) la S1?
4) Sunt toate speciile existente astăzi necesare
naturii, ori sunt accidente ale naturii?

5. Exemplul fregatelor
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Summary of the Special Issue “Neutrosophic 
Information Theory and Applications” at

“Information” Journal

Florentin Smarandache, Jun Ye

Abstract: Over a period of seven months (August 2017–February 2018), the Special Issue dedicated to 
“Neutrosophic Information Theory and Applications” by the “Information” journal (ISSN 2078-2489), 
located in Basel, Switzerland, was a success. The Guest Editors, Prof. Dr. Florentin Smarandache 
from the University of New Mexico (USA) and Prof. Dr. Jun Ye from the Shaoxing University (China), 
were happy to select—helped by a team of neutrosophic reviewers from around the world, and by 
the “Information” journal editors themselves—and publish twelve important neutrosophic papers, 
authored by 27 authors and coauthors. There were a variety of neutrosophic topics studied and used 
by the authors and coauthors in Multi-Criteria (or Multi-Attribute and/or Group) Decision-Making, 
including Cross Entropy-Based MAGDM, Neutrosophic Hesitant Fuzzy Prioritized Aggregation 
Operators, Biparametric Distance Measures, Pattern Recognition and Medical Diagnosis, Intuitionistic 
Neutrosophic Graph, NC-TODIM-Based MAGDM, Neutrosophic Cubic Set, VIKOR Method, 
Neutrosophic Multiple Attribute Group Decision-Making, Competition Graphs, Intuitionistic 
Neutrosophic Environment, Neutrosophic Commutative N-Ideals, Neutrosophic N-Structures 
Applied to BCK/BCI-Algebras, Neutrosophic Similarity Score, Weighted Histogram, Robust 
Mean-Shift Tracking, and Linguistic Neutrosophic Cubic Numbers.

Neutrosophic logic, symbolic logic, set, probability, statistics, etc., are, respectively, generalizations
of fuzzy and intuitionistic fuzzy logic and set, classical and imprecise probability, classical statistics,
and so on. Neutrosophic logic, symbol logic, and set are gaining significant attention in solving many
real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency,
and indeterminacy. A number of new neutrosophic theories have been proposed and have been
applied in computational intelligence, multiple-attribute decision making, image processing, medical
diagnosis, fault diagnosis, optimization design, etc. This Special Issue gathers original research papers
that report on the state of the art, as well as on recent advancements in neutrosophic information
theory in soft computing, artificial intelligence, big and small data mining, decision-making problems,
pattern recognition, information processing, image processing, and many other practical achievements.

In the first chapter (NS-Cross Entropy-Based MAGDM under Single-Valued Neutrosophic Set
Environment), the authors Surapati Pramanik, Shyamal Dalapati, Shariful Alam, Florentin Smarandache,
Tapan Kumar Roy propose a new cross entropy measure under a single-valued neutrosophic set (SVNS)
environment, namely NS-cross entropy, and prove its basic properties. Additionally, they define
the weighted NS-cross entropy measure, investigate its basic properties, and develop a novel
multi-attribute group decision-making (MAGDM) strategy that is free from the drawbacks of
asymmetrical behavior and undefined phenomena. It is capable of dealing with an unknown weight of
attributes and an unknown weight of decision-makers. Finally, a numerical example of multi-attribute

Florentin Smarandache, Jun Ye (2018). Summary of the Special Issue “Neutrosophic Information 
Theory and Applications” at “Information” Journal. Information, 9, 49; DOI: 10.3390/info9030049
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group decision-making problem of investment potential is solved to show the feasibility, validity and
efficiency of the proposed decision-making strategy.

Single-valued neutrosophic hesitant fuzzy set (SVNHFS) is a combination of a single-valued
neutrosophic set and a hesitant fuzzy set, and its aggregation tools play an important role in the
multiple criteria decision-making (MCDM) process. The second paper (Generalized Single-Valued
Neutrosophic Hesitant Fuzzy Prioritized Aggregation Operators and Their Applications to Multiple Criteria
Decision-Making) investigates MCDM problems in which the criteria under SVNHF environment
are in different priority levels. First, the generalized single-valued neutrosophic hesitant fuzzy
prioritized weighted average operator and generalized single-valued neutrosophic hesitant fuzzy
prioritized weighted geometric operator are developed based on the prioritized average operator.
Second, some desirable properties and special cases of the proposed operators are discussed in
detail. Third, an approach combining the proposed operators and the score function of single-valued
neutrosophic hesitant fuzzy element is constructed to solve MCDM problems. Finally, the authors Rui
Wang, Yanlai Li provide the example of investment selection to illustrate the validity and rationality of
the proposed method.

Single-valued neutrosophic sets (SVNSs) handling the uncertainties characterized by truth,
indeterminacy, and falsity membership degrees are a more flexible way of capturing uncertainty.
In the third paper (Some New Biparametric Distance Measures on Single-Valued Neutrosophic Sets with
Applications to Pattern Recognition and Medical Diagnosis), the authors Harish, Garg and Nancy propose
some new types of distance measures, overcoming the shortcomings of the existing measures, for
SVNSs with two parameters along with their proofs. The various desirable relations between the
proposed measures are also derived. A comparison between the proposed and existing measures is
performed in terms of counter-intuitive cases for showing its validity. The proposed measures are
illustrated with case studies of pattern recognition, as well as medical diagnoses, along with the effect
of the different parameters on the ordering of the objects.

A graph structure is a generalization of simple graphs. Graph structures are very useful
tools for the study of different domains of computational intelligence and computer science. In the
fourth research paper, Certain Concepts in Intuitionistic Neutrosophic Graph Structures, the authors
Muhammad Akram and Muzzamal Sitara introduce certain notions of intuitionistic neutrosophic graph
structures, illustrating these notions with several examples. They investigate some related properties
of intuitionistic neutrosophic graph structures, and also present an application of intuitionistic
neutrosophic graph structures.

A neutrosophic cubic set is the hybridization of the concept of a neutrosophic set and an interval
neutrosophic set. A neutrosophic cubic set has the capacity to express the hybrid information of
both the interval neutrosophic set and the single valued neutrosophic set simultaneously. Since the
neutroaophic cubic sets have only recently been defined, not much research on the operations and
applications of neutrosophic cubic sets is currently available in the literature. In the fifth paper,
NC-TODIM-Based MAGDM under a Neutrosophic Cubic Set Environment, the authors Surapati Pramanik,
Shyamal Dalapati, Shariful Alam and Tapan Kumar Roy propose score and accuracy functions for
neutrosophic cubic sets and prove their basic properties. They also develop a strategy for ranking
of neutrosophic cubic numbers based on the score and accuracy functions. The authors firstly
develop a TODIM (Tomada de decisao interativa e multicritévio) in the neutrosophic cubic set (NC)
environment, which is called the NC-TODIM. They establish a new NC-TODIM strategy for solving
multi-attribute group decision-making (MAGDM) problems in neutrosophic cubic set environments.
They illustrate the proposed NC-TODIM strategy for solving a multi-attribute group decision-making
problem to show the applicability and effectiveness of the developed strategy. They also conduct
sensitivity analysis to show the impact of the ranking order of the alternatives on the different values
of the attenuation factor of losses for multi-attribute group decision-making strategies.

In the sixth paper, VIKOR Method for Interval Neutrosophic Multiple Attribute Group Decision-Making,
the authors Yu-Han Huang, Gui-Wu Wei and Cun Wei extend the VIKOR method to multiple-attribute
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group decision-making (MAGDM) with interval neutrosophic numbers (INNs). Firstly, the basic
concepts of INNs are briefly presented. The method first aggregates all individual decision-makers’
assessment information based on an interval neutrosophic weighted averaging (INWA) operator,
and then employs the extended classical VIKOR method to solve MAGDM problems with INNs.
The validity and stability of this method are verified by example analysis and sensitivity analysis,
and its superiority is illustrated by a comparison with the existing methods.

The concept of intuitionistic neutrosophic sets provides an additional possibility for representing
imprecise, uncertain, inconsistent and incomplete information that exists in real situations. The seventh
research article (Certain Competition Graphs Based on Intuitionistic Neutrosophic Environment) presents
the notion of intuitionistic neutrosophic competition graphs. Then, the authors Muhammad Akram
and Maryam Nasir discuss p-competition intuitionistic neutrosophic graphs and m-step intuitionistic
neutrosophic competition graphs. Further, applications of intuitionistic neutrosophic competition
graphs in ecosystem and career competition are described.

The notion of a neutrosophic commutative N-ideal in BCK-algebras is introduced in the eighth
paper (Neutrosophic Commutative N-Ideals in BCK-Algebras), and several properties are investigated.
Relations between a neutrosophic N-ideal and a neutrosophic commutative N-ideal are discussed
by the authors Seok-Zun Song, Florentin Smarandache, and Young Bae Jun. Characterizations of
a neutrosophic commutative N-ideal are considered.

Neutrosophic N-Structures Applied to BCK/BCI-Algebras is the title of the ninth paper. The notions of
a neutrosophic N-subalgebra and a (closed) neutrosophic N-ideal in a BCK/BCI-algebra are introduced
by authors Young Bae Jun, Florentin Smarandache and Hashem Bordbar, and several related properties
are investigated. Characterizations of a neutrosophic N-subalgebra and a neutrosophic N-ideal are
considered, and relations between a neutrosophic N-subalgebra and a neutrosophic N-ideal are stated.
The conditions for a neutrosophic N-ideal being a closed neutrosophic N-ideal are provided.

Recently, TODIM has been used to solve multiple attribute decision making (MADM) problems.
Single-valued neutrosophic sets (SVNSs) are useful tools for depicting the uncertainty of the MADM.
In the tenth paper, TODIM Method for Single-Valued Neutrosophic Multiple Attribute Decision Making,
Dong-Sheng Xu, Cun Wei and Gui-Wu Wei extend the TODIM method to the MADM with the
single-valued neutrosophic numbers (SVNNs). Firstly, the definition, comparison, and distance of
SVNNs are briefly presented, and the steps of the classical TODIM method for MADM problems
are introduced. Then, an extended classical TODIM method is proposed for dealing with MADM
problems with SVNNs, its significant characteristic being that it can fully consider the decision makers’
bounded rationality, which is a real factor in decision-making. Furthermore, the authors extend the
proposed model to interval neutrosophic sets (INSs). Finally, a numerical example is proposed.

Visual object tracking is a critical task in computer vision. Challenging things always exist when
an object needs to be tracked. For instance, background clutter is one of the most challenging problems.
The mean-shift tracker is quite popular because of its efficiency and performance under a range of
conditions. However, the challenge of background clutter also disturbs its performance. In the eleventh
article, Neutrosophic Similarity Score Based Weighted Histogram for Robust Mean-Shift Tracking, the authors
Keli Hu, En Fan, Jun Ye, Changxing Fan, Shigen Shen and Yuzhang Gu propose a novel weighted
histogram based on neutrosophic similarity score to help the mean-shift tracker discriminate the
target from the background. The authors utilize the single-valued neutrosophic set (SVNS), which is
a subclass of NS, to improve the mean-shift tracker. First, two kinds of criteria are considered—object
feature similarity and background feature similarity—and each bin of the weight histogram is
represented in the SVNS domain via three membership functions: T(Truth), I(indeterminacy),
and F(Falsity). Second, the neutrosophic similarity score function is introduced to fuse those two
criteria and to build the final weighted histogram. Finally, a novel neutrosophic weighted mean-shift
tracker is proposed. The proposed tracker is compared with several mean-shift-based trackers on
a dataset of 61 public sequences. The results reveal that this method outperforms other trackers,
especially when confronting background clutter.
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To describe both certain linguistic neutrosophic information and uncertain linguistic
neutrosophic information simultaneously in the real world, Jun Ye proposes in the twelfth paper
(Linguistic Neutrosophic Cubic Numbers and Their Multiple Attribute Decision-Making Method) the concept
of a linguistic neutrosophic cubic number (LNCN), including an internal LNCN and external
LNCN. In LNCN, its uncertain linguistic neutrosophic number consists of the truth, indeterminacy,
and falsity uncertain linguistic variables, and its linguistic neutrosophic number consists of the truth,
indeterminacy, and falsity linguistic variables to express their hybrid information. Then, the author
presents the operational laws of LNCNs and the score, accuracy, and certain functions of LNCN for
comparing/ranking LNCNs. Next, the author proposes a LNCN weighted arithmetic averaging
(LNCNWAA) operator and a LNCN weighted geometric averaging (LNCNWGA) operator to
aggregate linguistic neutrosophic cubic information and discuss their properties. Further, a multiple
attribute decision-making method based on the LNCNWAA or LNCNWGA operator is developed
under a linguistic neutrosophic cubic environment. Finally, an illustrative example is provided to
indicate the application of the developed method.
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How to celebrate 24 new year’s eves in a single year! ∗

Florentin Smarandache

Abstract In this paper we explain how a person can celebrate 24 New Year Eves in a
single year.

Key words International Date Line, New Year Eve, Geographical Poles, Eastern
Hemisphere, Western Hemisphere, Absolute (Mathematical) Time.

1 Introduction

New Year’s Eve 2018 reaches us on Jeju Island, South Korea, in the East China Sea, while we had
spent New Year’s Eve 2017 in Galapagos Islands, in the Pacific.

We can celebrate 24 new year’s eves in a single year, moving to the West – for example in an orbital
spacecraft - (in the reverse sense of the Earth’s rotation around its axis) at a faster angular speed than
Earth’s rotation, jumping from one time-zone to another, and starting from the International Date

Line. (In this paper we are referring to the solar day, hence to the angular speed of Earth’s rotation
on its axis with respect to the Sun.)

But a person being on the Geographical (Terrestrial) North Pole or on the Geographical (Terrestrial)
South Pole celebrates the new year eve for 24 hours continuously!!

2 Astronomical data

The solar day (time that our planet rotates around its axis, considering the Sun as referential system)
is 24 hours, but the sidereal day (time that our planet rotates around its axis, but considering the fixed
stars as referential system) is 23 hours, 56 minutes, and 4.09 seconds [1, 2].

The rotation from West to East is counter-clockwise, as seen from the North Pole Star (Polaris).

The Earth’s rotation duration had and will still be changing over astronomical time (in the last period
it was decelerating – making the day to increase from 21 to 24 hours), due to the Moon’s gravitational
field interacting with the Earth’s gravitational field.

Similarly, the Earth’s rotation axis changes with respect to the planet’s crust [polar motion], as well
as with respect to the fixed stars [procession and nutation].

Therefore, we may compute two angular velocities:

Florentin Smarandache (2020). How to celebrate 24 new year’s eves in a single year. Bulletin of Pure and 
Applied Sciences - Section - E - Mathematics & Statistics 39E(1), 98-101
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(a) With respect to the Sun - as referential system (i.e. when a day = 24 hours = 86,400 sec-
onds), the angular velocity of Earth’s rotation on its axis, is: 2π radians/86,400 seconds ≃
7.272 × 10−5 rad/s.

(b) And with respect to the fixed stars - as referential system (i.e. when a day = 23 hours, 56 minutes,
and 4.09 seconds = 86,164.09 seconds), the angular velocity of Earth’s rotation on its axis, is:
2π radians/86,164.09 seconds ≃ 7.292 × 10−5 rad/s.

While the angular velocities (with respect to the Sun, or with respect to the fixed stars) are the same
for all points on the Earth, the linear movement of a point on the equatorial nearly circular orbit
{1,669.8 km/h (with respect to the Sun), or 1,674.4 km/h (with respect to the fixed stars)} is bigger
in comparison to the linear movement of a point on a different latitude.

3 International date line

The International Date Line (Fig. 1, Fig. 2) starts from the North Pole, passing through the Arctic
Ocean, the Bering Strait and the Bering Sea, then through the Pacific, roughly on the 180◦ meridian,
bypassing / leaving Aleutian Islands of Alaska to the east, and zigzagging among a few islands of the
Pacific – therefore, less populated areas, cutting Antarctica, and reaching the South Pole.

Fig. 1: The International Date Line.

This demarcation line is the first to pass in the new year (roughly 180◦ meridian), followed by the
meridians: 165◦ East, 150◦ E, 135◦ E, 120◦ E; 105◦ E, 90◦ E, 75◦ E, 60◦ E, 45◦ E, 30◦ E, 15◦ E, 0◦,

15◦ West, 30◦ W, 45◦ W, 60◦ W, 75◦ W, 90◦ W, 105◦ W, 120◦ W; 135◦ W, 150◦ W, 165◦ W.

Consequently, every New Year is celebrated 24 times. The first to celebrate are the inhabitants of the
Pacific Islands: Apia, Nuku’alofa, Funafuti, Suva, and of the remote east of Siberia (Provdeniya), and
of the Wrangel Island of Siberia. And the last to celebrate it: the inhabitants of the most western
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Aleutian islands, plus those in the Pacific islands: Midway, Pago Pago, Alofi, Johnson Atoll, Avalua,
Cook Islands.

Fig. 2: The International Date Line.

There are 24 New Year’s Eve annually, due to the planetary convention that each time-zone is 2π/24
= π/12 = 15◦, or, 360

◦

15◦
= 24 time-zones.

In general, if a time-zone has d◦, d > 0, then there are 360

d
time-zones, considering d a rational divisor

of 360: for example, d = 10, 2

7
, 15

13
, etc.

In fact, there is an infinitude of New Year’s Eves, because for every meridian between [0◦, 180◦ East ]
and [0◦, 180◦ West ] respectively, there is a New Year’s Eve, namely: limd→0+

360

d
= ∞ .

Within 24 hours, from the first to the last, the whole world thus, celebrates the New Year’s Eve .
Yet, a person being on the Geographical (Terrestrial) North Pole or on the Geographical (Terrestrial)
South Pole celebrates the New Year Ever for 24 hours continuously ( [3]), it being well known that the
Earth’s geographical poles are different from its magnetic poles!

4 Calculating the difference of time-zones

How do we know the difference in time-zones between two cities using Airplanes Timetable (knowing:
aircraft’s departure time, aircraft’s arrival time, and aircraft’s flight duration ( [4]))?
There are two Earth’s hemispheres – the Eastern and the Western. The continents Europe, Asia,
Africa and Australia are in the Eastern Hemisphere of the Earth, while in the Western Hemisphere lie
the Americas (Northern, Central, and Southern). If the cities are in the same hemisphere (Eastern or
Western), the eastern city will be ahead with the time-zone because the Earth rotates around its axis
from the West to the East.

Example 4.1. Suppose our plane leaves Chicago at 20:20 and arrives in Albuquerque at 22:25 after 3h
5min of flight. Chicago is east of Albuquerque, so ahead with the time-zone. 20 : 20+ 3 : 05 = 23 : 25.

If it had the same time-zone, then the airplane should have reached Albuquerque at 23:25, not at
22:25. The difference of one hour 23 : 25 − 22 : 25 = 1 : 00 is precisely the time-zone difference, so
Albuquerque is one hour past Chicago.

Example 4.2. The problem is complicated when cities are in different hemispheres. For example,
Tokyo is in the Eastern hemisphere and Chicago lies in the Western hemisphere. Suppose our American
Airlines plane leaves Tokyo on Monday, January 8th, 2018, at 18:15, and lands in Chicago still on
Monday, January 8th, 2018, but at 15:10, after 11h 55min flight hours! How is that possible? So, at
about 3 hours back in time!
Instead of considering the relative time (the time-zone), we can consider the absolute (mathematical)
time that is the same all over the globe.

18 : 15 + 11 : 55 = 30 : 10.
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Being in different hemispheres, the Western hemisphere city (Chicago) is behind the Eastern hemisphere
city (Tokyo). Since 30 : 10 > 24 : 00, it does not exist, and we subtract one days (24h). Therefore,30 :
10 − 24 : 00 = 6 : 10, in other words, if these two cities had the same time-zone then one would have
arrived at 6:10 the following day (January 9th, 2018). and then: 15 : 10 − 6 : 10 = 9 : 00, that is, the
city of Chicago is 9 hours behind Tokyo.

5 Conclusion

In this paper we explain how it is possible for a person to celebrate 24 New Year’ Eves within a single
year, and that somebody staying on the North or South Pole celebrates the New Year Eve for 24 hours
continuously!
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Within the Lack of Chest COVID-19 X-ray Dataset: 
A Novel Detection Model Based on GAN and Deep 

Trans£ er Learning 

Mohamed Loey, Florentin Smarandache Nour Eldeen M. Khalifa

Abstract: The coronavirus (COVID-19) pandemic is putting healthcare systems across the world 

under unprecedented and increasing pressure according to the World Health Organization (WHO). 

With the advances in computer algorithms and especially Artificial Intelligence, the detection of 

this type of virus in the early stages will help in fast recovery and help in releasing the pressure off 

healthcare systems. In this paper, a GAN with deep transfer learning for coronavirus detection in 

chest X-ray images is presented. The lack of datasets for COVID-19 especially in chest X-rays images 

is the main motivation of this scientific study. The main idea is to collect all the possible images for 

COVID-19 that exists until the writing of this research and use the GAN network to generate more 

images to help in the detection of this virus from the available X-rays images with the highest accuracy 

possible. The dataset used in this research was collected from different sources and it is available 

for researchers to download and use it. The number of images in the collected dataset is 307 images 

for four different types of classes. The classes are the COVID-19, normal, pneumonia bacterial, 

and pneumonia virus. Three deep transfer models are selected in this research for investigation. 

The models are the Alexnet, Googlenet, and Restnet18. Those models are selected for investigation 

through this research as it contains a small number of layers on their architectures, this will result 

in reducing the complexity, the consumed memory and the execution time for the proposed model. 

Three case scenarios are tested through the paper, the first scenario includes four classes from the 

dataset, while the second scenario includes 3 classes and the third scenario includes two classes. 

All the scenarios include the COVID-19 class as it is the main target of this research to be detected. 

In the first scenario, the Googlenet is selected to be the main deep transfer model as it achieves 

80 .6% in testing accuracy. In the second scenario, the Alexnet is selected to be the main deep transfer 

model as it achieves 85.2% in testing accuracy, while in the third scenario which includes two classes 

(COVID-19, and normal), Googlenet is selected to be the main deep transfer model as it achieves 

100% in testing accuracy and 99.9% in the validation accuracy. All the performance measurement 

strengthens the obtained results through the research. 

Keywords: 2019 novel coronavirus; deep transfer learning; machine learning; COVID-19; SARS-CoV-2; 

convolutional neural network; GAN 

Mohamed Loey, Florentin Smarandache, Nour Eldeen M. Khalifa (2020). Within the Lack of Chest 
COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning. 
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1. Introduction

In 2019, Wuhan is a commercial center of Hubei province in China that faced a flare-up of a novel 

2019 coronavirus that killed more than hundreds and infected over thousands of individuals within the 

initial days of the novel coronavirus pestilence. The Chinese researchers named the novel virus as the 

2019 novel coronavirus (2019-nCov) or the Wuhan virus [1]. The International Committee of Viruses 

titled the virus of 2019 as the Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-Co V-2) and 

the malady as Coronavirus disease 2019 (COVID-19) (2--4]. The subgroups of the coronaviruses family 

are alpha-CoV (<x:), beta-CoV ([3), gamma-CoV (8), and delta-CoV (y) coronavirus. SARS-CoV-2 was 

announced to be an organ of the beta-Co V (f3) group of corona viruses. In 2003, the K wangtung people 

were infected with a 2013 virus lead to the Severe Acute Respiratory Syndrome (SARS-CoV). SARS-CoV 

was assured as a family of the beta-CoV ([3) subgroup and was title as SARS-CoV [5]. Historically, 

SRAS-CoV, across 26 countries in the world, infected more than 8000 individuals with a death rate of 

9%. Moreover, SARS-CoV-2 infected more than 750,000 individuals with a death rate of 4%, across 

150 states, untill the date of this lettering. It demonstrates that the broadcast rate of SARS-CoV-2 is 

higher than SRAS-CoV The transmission ability is enhanced because of authentic recombination of S 

protein in the RBD region [6]. 

Beta-coronaviruses have caused malady to people that have had wild animals generally either in 

bats or rats [7,8]. SARS-CoV-1 and MERS-CoV (camel flu) were transmitted to people from some wild 

cats and Arabian camels respectively as shown in Figure 1. The sale and buy of unknown animals 

may be the provenance of coronavirus infection. The invention of the various progeny of pangolin 

coronavirus and their propinquity to SARS-CoV-2 suggests that pangolins should be a thinker as 

possible hosts of novel 2019 coronaviruses. Wild animals must be taken away from wild animal 

markets to stop animal coronavirus transmission [9]. Coronavirus transmission has been assured 

by World Health Organization (WHO) and by The Centers for Diseases of the US, with evidence of 

human-to-human conveyance from five different cases outside China, namely in Italy (10], US [11], 

Nepal [12], Germany [13], and Vietnam (14]. On 31 March 2020, SARS-CoV-2 confirmed more than 

750,000 cases, 150,000 recovered cases, and 35,000 death cases. Table 1 show some statistics about 

SARS-CoV-2 (15]. 
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Figure 1. Coronavirus transmission from animals to humans. 
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Table 1. SARS-CoV-2 statistics in some countries. 

Location Confirmed Recovered Deaths 

United States 164,345 5,945 3,171 

Italy 101,739 14,620 11,591 

Spain 94,417 19,259 8,269 

China 81,518 76,052 3305 

Germany 67,051 7635 682 

Iran 44,606 14,656 2898 

France 43,973 7202 3018 

United Kingdom 22,141 135 1408 

1.1. Deep Learning 

Nowadays, Deep Learning (DL) is a subfield of machine learning concerned with techniques 

inspired by neurons of the brain [16]. Today, DL is quickly becoming a crucial technology in image/video 

classification and detection. DL depends on algorithms for reasoning process simulation and data 

mining, or for developing abstractions (17]. Hidden deep layers on DL maps input data to labels 

to analyze hidden patterns in complicated data [18]. Besides their use in medical X-ray recognition, 

DL architectures are also used in other areas in the application of image processing and computer 

vision in medical. DL improves such a medical system to realize higher outcomes, widen illness scope, 

and implementing applicable real-time medical image (19,20] disease detection systems. Table 2 shows 

a series of major contributions in the field of the neural network to deep learning (21]. 

Table 2. Major contributions in the history of the neural network to deep learning [21,22]. 

Milestone/Contribution Year 

McCulloch-Pitts Neuron 1943 

Perceptron 1958 

Backpropagation 1974 

Neocognitron 1980 

Boltzmann Machine 1985 

Restricted Boltzmann Machine 1986 

Recurrent Neural Networks 1986 

Autoencoders 1987 

LeNet 1990 

LSTM 1997 

Deep Belief Networks 2006 

Deep Boltzmann Machine 2009 

1.2. Generative Adversarial Network 

Generative Adversarial Network (GAN) is a class of deep learning models invented by Ian 

Goodfellow in 2014 (23]. GAN models have two main networks, called the generative network and 

discriminative network. The first neural network is the generator network, responsible for generating 

new fake data instances that look like training data. The discriminator tries to distinguish between real 

data and fake (artificially generated) data generated by the generator network as shown in Figure 2. 

The mission GANs models that generator network is to try fooling the discriminator network and the 

discriminator network tries to fight from being fooled [24-27]. 
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Figure 2. Generative Adversarial Network model. 

1.3. Convolution Neural Networks 

Predicted Labels♦ 

Convolutional Neural Networks (ConvNets or CNNs) are a category of deep learning techniques 

used primarily to recognize and classify the image. Convolutional Neural Networks have accomplished 

extraordinary success for medical image/video classification and detection. In 2012, Ciregan et al. 

and Krizhevsky and et al. [28,29] showed how CNNs based on Graphics Processing Unit (GPU) 

can enhance many vision benchmark records such as MNIST [30], Chinese characters [31], Arabic 

digits recognition [32], Arabic handwritten characters recognition [33], NORB (jittered, cluttered) [34], 

traffic signs [35], and large-scale ImageNet [36] benchmarks. In the following years, various advances 

in ConvNets further increased the accuracy rate on the image detection/classification competition 

tasks. ConvNets pre-trained models introduced significant improvements in succeeding in the annual 

challenges of ImageNet Large Scale Visual Recognition Competition (ILSVRC). Deep Transfer Learning 

(DTL) is a deep learning (DL) model that focuses on storing weights gained while solving one 

image classification and applying it to a related problem. Many DTL models were introduced like 

VGGNet [37], GoogleNet [38], ResNet [39], Xception [40], Inception-V3 [41] and DenseNet [42]. 

The novelty of this paper is conducted as follows: i) the introduced ConvNet models have 

end-to-end structure without classical feature extraction and selection methods. ii) We show that GAN 

is an effective technique to generate X-ray images. iii) Chest X-ray images are one of the best tools for 

the classification of SARS-Co V-2. iv) The deep transfer learning models have been shown to yield very 

high outcomes in the small dataset COVID-19. The rest of the paper is organized as follows. Section 2 

explores related work and determines the scope of this works. Section 3 discusses the dataset used in 

our paper. Section 4 presents the proposed models, while Section 5 illustrates the achieved outcomes 

and its discussion. Finally, Section 6 provides conclusions and directions for further research. 

2. Related Works

This part conducts a survey on the recent scientific researches for applying machine learning and 

deep learning in the field of medical pneumonia and coronavirus X-ray classification. Classical image 

classification stages can be divided into three main stages: image preprocessing, feature extraction, 

and feature classification. Stephen et al. [43] proposed a new study of classifying and detect the 

presence of pneumonia from a collection of chest X-ray image samples based on a ConvNet model 

trained from scratch based on dataset [44]. The outcomes obtained were training loss= 12.88%, training 

accuracy= 95.31 %, validation loss = 18.35%, and validation accuracy = 93.73%. 

In [45], the Authors introduced an early diagnosis system from Pneumonia chest X-ray images 

based on Xception and VGG16. In this study, a database containing approximately 5800 frontal chest 

X-ray images introduced by Kermany et al [44) 1600 normal case, 4200 up-normal pneumonia case in

the Kermany X-ray database. The trial outcomes showed that VGG-16 network better than X-ception

network with a classification rate of 87%. Forasmuch X-ception network better than VGG-16 network

by sensitivity 85%, precision 86% and recall 94%. X-ception network is more felicitous for classifying

X-ray images than VGG-16 network. Varshni et al. [ 46] proposed pre-trained Conv Net models (VGG-16,

Xception, Res50, Dense-121, and Dense-169) as feature-extractors followed by different classifiers
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(SVM, Random Forest, k-nearest neighbors, Nai:ve Bayes) for the detection of normal and abnormal 

pneumonia X-rays images. The prosaists used ChestX-ray14 introduced by Wang et al. (47]. 

Chauhan et al. (48] introduced an ensemble deep model that combines outputs from all transfer 

deep models for the classification of pneumonia using the connotation of deep learning. The Guangzhou 

Medical Center (44] database introduced a total of approximately 5200 X-ray images, divided to 1300 

X-ray normal, 3900 X-rays abnormal. The proposed model reached a miss-classification error of 3.6%

with a sensitivity of 99.6% on test data from the database. Ref. (49] proposed a Compressed Sensing

(CS) with a deep transfer learning model for automatic classification of pneumonia on X-ray images to

assist the medical physicians. The dataset used for this work contained approximately 5850 X-ray data 

of two categories (abnormal /normal) obtained from Kaggle. Comprehensive simulation outcomes

have shown that the proposed approach detects the classification of pneumonia (abnormal /normal)

with 2.66% miss-classification.

In this research, we introduced a transfer of deep learning models to classify COVID-19 X-ray 

images. To input adopting X-ray images of the chest to the convolutional neural network, we embedded 

the medical X-ray images using GAN to generate X-ray images. After that, a classifier is used to 

ensemble the outputs of the classification outcomes. The proposed transfer model was evaluated on 

the proposed dataset. 

3. Dataset

The COVID-19 dataset (50] utilized in this research (51] was created by Dr. Joseph Cohen, 

a postdoctoral fellow at the University of Montreal. The Pneumonia (44] dataset Chest X-ray Images 

was used to build the proposed dataset. The dataset (52] is organized into two folders (train, test) and 

contains sub-folders for each image category (COVID-19/normal/pneumonia bacterial/ pneumonia 

virus). There are 306 X-ray images (JPEG) and four categories (COVID-19/normal/pneumonia bacterial/ 

pneumonia virus). The number of images for each class is presented in Table 3. Figure 3 illustrates 

samples of images used for this research. Figure 4 also illustrates that there is a lot of variation of image 

sizes and features that may reflect on the accuracy of the proposed model which will be presented in 

the next section. 

Table 3. Number of images for each class in the COVID-19 dataset. 

Dataset/Class Covid 

Train 60 

Test 9 

Total 69 

Covid 

Normal 

Pnew:nonia 
Bacterial 

Normal 

70 

9 

79 

Pneumonia r I; 
VJ.ruS �-

Pneumonia_bac 

70 

9 

79 

Pneumonia_ vir Total 

70 270 

9 36 

79 306 

Figure 3. Samples of the used images in this research. 
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Figure 4. The proposed GAN/deep transfer learning mode. 

4. The Proposed Model

The proposed model includes two main deep learning components, the first component is GAN 
and the second component is the deep transfer model. Figure 4 illustrates the proposed GAN/Deep 

transfer learning model. Mainly, the GAN used for the preprocessing phase while the deep transfer 
model used in the training, validation and testing phase. 

Algorithm 1 introduces the proposed transfer model in detail. Let D = {Alexnet, Googlenet, 

Resnet18} be the set of transfer models. Each deep transfer model is fine-tuned with the COVID-19 
X-ray Images dataset (X, Y); where X the set of N input data, each of size, 512 lengths x 512 widths,
and Y have the identical class, Y = {y I y E {COVID-19; normal; pneumonia bacterial; pneumonia virus
}}. The dataset divided to train and test, training set (Xtrain; Ytrain) for 90% percent for the training and 

then validation while 10% percent for the testing. The 90% percent was divided into 80% for training

and 20% for the validation. The selection of 80% for the training and 20% in the validation proved it is
efficient in many types of research such as [53-57]. The training data then divided into mini-batches,
each of size n = 64, such that (x

q
; Y

q
) E (Xtrain;Ytrain); q = l, 2, ... , ¥i, and iteratively optimizes the

DCNN model d E D to reduce the functional loss as illustrated in Equation (1). 

C(w, Xi) = 1 _L c(d(x,w),y),
xEX;,yEY; 

(1) 

where d(x,w) is the ConvNet model that true label y for input x given w is a weight and c(.) is the 
multi-class entropy loss function. 

This research relied on the deep transfer learning CNN architectures to transfer the learning 
weights to reduce the training time, mathematical calculations and the consumption of the available 
hardware resources. There are several types of research in [53,58,59] tried to build their architecture, 
but those architecture are problem-specific and cannot fit the data presented in this paper. The used 

deep transfer learning CNN models investigated in this research are Alexnet [29], Resnet18 [39], 
Googlenet [60], The mentioned CNN models had a few numbers of layers if it is compared to large 
CNN models such as Xception [40], Densenet [42], and Inceptionresnet [61] which consist of 71, 201 and 
164 layers accordingly. The choice of these models will reflect on reducing the training time and the 

complexity of the calculations. 
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Algorithm 1 Introduced algorithm. 

1: Input data: COVID-19 Chest X-ray Images (X, Y); where Y = {y!y E {COVID-19; normal; pneumonia 
bacterial; pneumonia virus}} 

2: Output data: The transfer model that detected the COVID-19 Chest X-ray image x EX 

3: Pre-processing steps: 

4: modify the X-ray input to dimension 512 height X 512 width 
5: Generate X-ray images using GAN 
6: Mean normalize each X-ray data input 

7: download and reuse transfer models D = {Alexnet, Googlenet, ResnetlS) 

8: Replace the last layer of each transfer model by (4 x 1) layer dimension. 

9: foreach Vd E D do 

10: µ = 0.01 

11: for epochs = 1 to 20 do 

12: foreach mini-batch (X;; Y;) E (X1raini Ytrain) do 
Modify the coefficients of the transfer d( ·) 

if the error rate is increased for five epochs then 

/1 = /1 X 0.01 
end 

end 

13: end 

14: end 

15: foreach Vx E Xtest do 

16: the outcome of all transfer architectures, d E D

17: end 

4.1. Generative Adversarial Network 

GANs consist of two different types of networks. Those networks are trained simultaneously. 

The first network is trained on image generation while the other is used for discrimination. GANs are 

considered a special type of deep learning models. The first network is the generator, while the 

second network is the discriminator. The generator network in this research consists of five transposed 

convolutional layers, four Re LU layers, four batch normalization layers, and Tanh Layer at the end of 

the model, while the discriminator network consists of five convolutional layers, four leaky ReLU, 

and three batch normalization layers. All the convolutional and transposed convolutional layers used 

the same window size of 4*4* pixel with 64 filters for each layer. Figure 5 presents the structure and the 

sequence of layers of the GAN network proposed in this research. 

The GAN network helped in overcoming the overfitting problem caused by the limited number of 

images in the dataset. Moreover, it increased the dataset images to be 30 times larger than the original 

dataset. The dataset number of images reached 8100 images after using the GAN network for 4 classes. 

This will help in achieving a remarkable testing accuracy and performance matrices. The achieved 

results will be deliberated in detail in the experimental outcomes section. Figure 6 presents samples of 

the output of the GAN network for the COVID-19 class. 
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Figure 5. The structure and the sequence of layers for the proposed GAN network. 

Figure 6. Samples of images generated using the proposed GAN structure. 

4.2. Deep Transfer Learning
Convolutional Neural Networks (ConvNet) is the most successful type of model for image 

classification and detection. A single Conv Net model contains many different layers of neural networks 

that work on labeling edges and simple/complex features on neural network layers and more complex 

deep features in deeper network layers. An image is convolved with filters (kernels) and then max 
pooling is applied

1 
this process may go on for some layers and at last recognizable features are obtained. 

Take the size of w1-1 x H1-1 x c1-1 (where W x His width x height) feature map and a filterbank in

layer I - 1 for example within C1 kernels at the size of J
1 x c1-1, augmenting the other two coefficients

stride s1 and padding p1, the outcome feature box in layer I is W1 x H1 x C1 as shown in Equation (2): 

1 l - [ (W
l-1 X Hl-1) + 2pl -

J
1

] (W ,H) - 1 + 1,
s 

(2)
where [·] indicate to floor math. Kernels must be equal to that of the input map. as in Equation (3): 

1 (� 1-1 J,1 bl) 
X, = 0 L,. X, X .. + . , 

l iEVj l IJ J (3)

Florentin Smarandache (author and editor) Collected Papers, XIII

932



where i and j are indexes of input/output network maps at a range of W1 x H1 and w1-1 x H1-1 

respectively. Vj here indicates the receptive field of kernel and b� is the bias term. In equation (3), 
a(.) is a non-linearity function applied to get non-linearity in deep transfer learning. In our transfer 
method, we used Re LU in equation (4) as the non-linearity function for rapid training process: 

a( Xinput) = max( 0, Xtnput ). 

Our cost function in Equation (5): 

(4) 

(5) 

where Sc• is output label c* while g and g* denote [gx, gy, gw, gh] of bounding boxes. A[p* > OJ consider 
the boxes of non-background (if p* = 0 is background). This cost function have detection loss Leis and 
regression loss Lreg, in Equations (6)-(8): 

(6) 

and 
(7) 

where: 
( ) -{0.5x2

, if lxl< o
Rux -

lxl - 0.5, otherwise
(8) 

In terms of optimizer technique, the momentum Stochastic Gradient Descent (SGD) [62] with 
momentum 0.9 is chosen as our optimizer technique, which updates weights parameters. This optimizer 
technique updates the weights of the gradient at the previous iteration and fine-tuning of the gradient. 
To bypass deep learning network overfitting problems, we utilize this problem by using the dropout 
technique [63] and the early-stopping technique [64] to select the best training steps. As to the learning 
rate policy, the step size technique is performed in SGD. We introduced the learning rate (µ) to 0.01 
and the number of iterations to be 2000. The mini-batch size is set to 64 and early-stopping to be five 
epochs if the accuracy did not improve. 

5. Experimental Results

The introduced model was coded using a software package (MATLAB). The development was 
CPU specific. All outcomes were conducted on a computer server equipped by an Intel Xeon processor 
(2 GHz), 96 GB of RAM. The proposed model has been tested under three different scenarios, the first 
scenario is to test the proposed model for 4 classes, the second scenario for three classes and the third 
one for two classes. All the test experiment scenarios included the COVID-19 class. Every scenario 
consists of the validation phase and the testing phase. In the validation phase, 20% of total generated 
images will be used while in the testing phase consists of around 10% from the original dataset will 
be used. 

The main difference between the validation phase and testing phase accuracy is in the validation 
phase, the data used to validate the generalization ability of the model or for the early stopping, during 
the training process. In the testing phase, the data used for other purposes other than training and 
validating. The data used in training, validation, and testing never overlap with each other to build a 
concrete result about the proposed model. 

Before listing the major results of this research, Table 4 presents the validation and the testing 
accuracy for four classes before using GAN as an image augmenter. The presented results in Table 4 
show that the validation and testing accuracy is quite low and not acceptable as a model for the 
detection of coronavirus. 
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Table 4. Validation and testing accuracy for 4 classes according to 3 deep transfer learning models 

without using GAN. 

Model/Validation-Testing Accuracy ALexnet Googlenet ResnetlS 

Validation Accuracy 73.1% 76.9% 67.3% 

Testing Accuracy 52.0% 52.8% 50.0% 

5.1. Verification and Testing Accuracy Measurement 

Testing accuracy is one of the estimations which demonstrates the precision and the accuracy of 

any proposed models. The confusion matrix also is one of the accurate measurements which give 

more insight into the achieved validation and testing accuracy. First, the four classes scenario will 

be investigated with the three types of deep transfer learning which include Alexnet, Googlenet, 

and Resnet18. Figures 7-9 illustrates the confusion matrices for the validation and testing phases for 

four classes in the dataset. 
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Figure 7. Confusion matrices of Alexnet for 4 classes (a) validation accuracy, and (b) testing accuracy. 
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Figure 9. Confusion matrices of Resnet18 for 4 classes (a) validation accuracy, and (b) testing accuracy. 

Table 5 summarizes the validation and the testing accuracy for the different deep transfer models 

for four classes. The table illustrates according to validation accuracy, the Resnet18 achieved the 

highest accuracy with 99.6%, this is due to the large number of parameters in the Resnetl8 architecture 

which contains 11.7 million parameters which are not larger than Alexnet but the Alexnet only include 

8 layers while the Resnet18 includes 18 layers. According to testing accuracy, the Googlenet achieved 

the highest accuracy with 80.6%, this is due to a large number of layers if it is compared to other models 

as it contains about 22 layers. 

Table 5. Validation and testing ac=acy for 4 classes according to 3 deep transfer learning models. 

Model/Validation-Testing Accuracy ALexnet Google net Resnet18 

Validation Accuracy 98.5% 98.9% 99.6% 

Testing Accuracy 66.7% 80.6% 66.7% 

The second scenario to be tested in this research when the dataset only contains three classes. 

Figures 10-12 illustrate the confusion matrices for the validation and testing phases for three classes in 

the dataset including the Covid class. 
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Figure 11. Confusion matrices of Googlenet for 3 classes (a) validation accuracy, and (b) testing accuracy. 
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Figure 12. Confusion matrices of Resnetl8 for 3 classes (a) validation accuracy, and (b) testing accuracy. 

Table 6 summarizes the validation and the testing accuracy for the different deep transfer models 

for 3 classes. The table illustrates according to validation accuracy, the Resnet18 achieved the highest 
accuracy with 99.6%. According to testing accuracy, the Alexnet achieved the highest accuracy with 

85.2%, this is maybe due to the large number of parameters in the Alexnet architecture which include 

61 million parameters and also due to the elimination of the fourth class which include the pneumonia 
virus which has similar features if it is compared to COVID-19 which is also considered a type of 

pneumonia virus. The elimination of the pneumonia virus helps in achieving better testing accuracy for 
the all deep transfer model than when it is trained over four classes as mentioned before as COVID-19 

is a special type of pneumonia virus. 

Table 6. Validation and testing accuracy for 3 classes according to 3 deep transfer learning models. 

Model/Valida ti on-Testing Accuracy ALexnet Googlenet Resnet18 

Validation Accuracy 97.2% 98.3% 99.6% 

Testing Accuracy 85.2% 81.5% 81.5% 

The third scenario to be tested when the dataset only includes two classes, the covid class, and the 

normal class. Figure 13 illustrates the confusion matrix for the three different transfer models for 

validation accuracy, While the confusion matrix for testing accuracy is presented in Figure 14 which is 
the same for all the deep transfer models selected in this research. 
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Figure 14. Confusion matrix for testing accuracy for Alexnet, Googlenet, and Resnet18. 

Table 7 summarizes the validation and the testing accuracy for the different deep transfer models 

for two classes. The table illustrates according to validation accuracy, the Googlenet achieved the 

highest accuracy with 99.9%. According to testing accuracy, all the pre-trained model Alexnet, 
Goolgenet, and Resnet18 achieved the highest accuracy with 100%, This due to the elimination of 

the third and the fourth class which includes pneumonia bacterial and pneumonia virus w hich has 

similar features if it is compared to COVID-19. This leads to a noteworthy enhancement in the testing 

accuracy which reflects on w hatever the deep transfer model will be used the testing accuracy will 

reach I 00%. The choice of the best model here will be according to validation accuracy which ac hieved 

99.9%. So the Googlenet will be the selected deep transfer model in the third scenario. 

Table 7. Va lidation and testing accuracy for 2 classes according to 3 deep transfer learning models. 

Model/Valida ti on-Testing Accuracy ALexnet Googlenet Resnet18 

Validation Accuracy 99.6% 99.9"/o 99.8% 

Testing Accuracy 1000/o 100% 100% 

To conclude this part, every scenario has it is own deep transfer model. In the first scenario, 
Googlenet was selected, while the second scenario, Alexnet was selected, and finally, in the third 

scenario, Googlenet was selected as a deep transfer model. To draw a full conclusion for the selected 

deep transfer learning that fit the dataset and all scenarios, testing ac curacy for every class is required 

for the different deep transfer model. Table 7 presents the testing accuracy for every class for the 

different three scenarios. Table 8 does not help much to determine the deep transfer model that fits all 
scenarios but for the distinction of COVID-19 class among the other classes, Alexnet and Resentl8 will 

be the selected as deep transfer model as they achieved 100% testing accuracy for COVID-19 class 

whatever the number of classes is 2,3 or 4. 
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Table 8. Testing accuracy for every class for the different 3 scenarios. 

# of Classes Class Name Alexnet Googlenet ResnetlS 

Covid 100% 100% 100% 

4 classes Normal 64.3% 100% 100% 

Pneumonia _bac 44.4% 70% 50% 

Pneumonia _ vir 50% 66.7% 40% 

Covid 100% 81.8% 100% 
3 classes Normal 77.7% 75.0% 100% 

Pneumonia _bac 77.8% 87.5% 64.3% 

2 classes 
Covid 100% 100% 100% 

Normal 100% 100% 100% 

5.2. Performance Evaluation and Discussion 

To estimate the performance of the proposed model, extra performance matrices are required 
to be explored through this study. The most widespread performance measures in the field of deep 
learning are Precision, Sensitivity (recall), Fl Score [65] and they are presented from Equation (9) to 
Equation (11). 

TrueP 
Precision = ------­

(TrueP + FalseP) 

TrueP 
Sensitivity = ------­

(TrueP + FalseN) 

Precision* Sensitivity 
FlScore = 2 * -,----------,--

(Precision+ Sensitivity) 

(9) 

(10) 

(11) 

where TrueP is the count of true positive samples, TrueN is the count of true negative samples, 
FalseP is the count of false positive samples, and FalseN is the count of false negative samples from a 
confusion matrix. 

Table 9 presents the performance metrics for different scenarios and deep transfer models for the 
testing accuracy. The table illustrates that in the first scenario which contains four classes, Googlenet 
achieved the highest percentage for precision, sensitivity and Fl score metrics which strengthen the 
research decision for choosing Googlenet as a deep transfer model. The table also illustrates that in the 
second scenario which contains three classes, Alexnet achieved the highest percentage for precision 
and recall score metrics while Resnet achieved the highest score in Fl with 88.10% but overall the 

Alexnet had the highest testing accuracy which also strengthens the research decision for choosing 
Alexnet as deep transfer model. 

Table 9 also illustrates that in the third scenario, which contains two classes, all deep transfer 

learning models achieved similar the highest percentage for precision, recall and Fl score metrics 
which strengthen the research decision for choosing Googlenet as it achieved the highest validation 
accuracy with 99.9% as illustrated in Table 6. 
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Table 9. Performance measurements for different scenarios. 

# of Classes Class Name Alexnet Googlenet Resnet18 

Precision 64.68% 84.17% 72.50% 

4 classes Recall 66.67% 80.56% 66.67% 

Fl Score 65.66% 82.32% 69.46% 

Testing Accuracy 66.67% 80.56% 69.46% 

Precision 85.19% 81.44% 88.10% 

3 classes Recall 85.19% 81.48% 81.48% 

Fl Score 85.19% 81.46% 84.66% 

Testing Accuracy 85.19% 81.48% 81.48% 

Precision 100% 100% 100% 

2 classes Recall 100% 100% 100% 

Fl Score 100% 100% 100% 

Testing Accuracy 100% 100% 100% 

6. Conclusions and Future Works

The 2019 novel Coronaviruses (COVID-19) are a family of viruses that leads to illnesses ranging

from the common cold to more severe diseases and may lead to death according to World Health 

Organization (WHO), with the advances in computer algorithms and especially artificial intelligence, 

the detection of this type of virus in early stages will help in fast recovery. In this paper, a GAN with 

deep transfer learning for COVID-19 detection in limited chest X-ray images is presented. The lack 

of benchmark datasets for COVID-19 especially in chest X-rays images was the main motivation of 

this research. The main idea is to collect all the possible images for COVID-19 and use the GAN 

network to generate more images to help in the detection of the virus from the available X-ray's images. 

The dataset in this research was collected from different sources. The number of images of the collected 

dataset was 307 images for four types of classes. The classes are the covid, normal, pneumonia bacterial, 

and pneumonia virus. 

Three deep transfer models were selected in this research for investigation. Those models are 

selected for investigation through this research as it contains a small number of layers on their 

architectures, this will result in reducing the complexity and the consumed memory and time for 

the proposed model. A three-case scenario was tested through the paper, the first scenario which 

included the four classes from the dataset, while the second scenario included three classes and the 

third scenario included two classes. All the scenarios included the COVID-19 class as it was the main 

target of this research to be detected. In the first scenario, the Googlenet was selected to be the main 

deep transfer model as it achieved 80.6% in testing accuracy. In the second scenario, the Alexnet was 

selected to be the main deep transfer model as it achieved 85.2% in testing accuracy while in the third 

scenario which included two classes(COVID-19, and normal), Googlenet was selected to be the main 

deep transfer model as it achieved 100% in testing accuracy and 99.9% in the validation accuracy. 

One open door for future works is to apply the deep models with a larger dataset benchmark. 
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Abst ract

This article is an update of our previous article in this SGJ journal, titled: On Gödel's Incompleteness Theorem, 
Artificial Intelligence & Human Mind [7]. We provide some commentary on the latest developments around AI, 
humanoid robotics, and future scenario. Basically, we argue that a more thoughtful approach to the future is "techno-
realism." 

Keyword s: Neutrosophic Logic, Neutrosophic Futurology, artificial intelligence 

1.Int roduct ion

 Indeed among the futurists, there are people who are so optimistic about the future of mankind with its various 

technologies, such as Peter Diamandis with his "Abundance." But there are also skeptics, predicting "dystopia," like 

George Orwell's 1984 etc. [4]  

At my best, our response is: we must develop a view of technology that is not very optimistic but also not 

pessimistic, perhaps the right term is:  "Techno-realism."[3] 

We mean this: with a lot of research on robotics, humanoid etc., then emerged developments in the direction of 

transhumanism and human-perfection. [6] 

There is already a fortune-telling that AI will be established with psychological and spiritual science, so as to bring 

up the AI/robotic consciousness. [7]  

But lest we become forgetting our past, and building the tower of Babylon. 

Victor Christianto, Florentin Smarandache

Victor Christianto, Florentin Smarandache (2020). Remark on Artificial Intelligence, humanoid and 
Terminator scenario: A Neutrosophic way to futurology. International Journal of Neutrosophic Science 
1(1), 8-13; DOI :10.5281/zenodo.3633438

Remark on Artificial Intelligence, humanoid and 
Terminator scenario: A Neutrosophic way to futurology

Florentin Smarandache (author and editor) Collected Papers, XIII

944



For example, last year the world's robotics experts were made yammer because there was a "tactical-robot" report 

developed in one of the labs on campus in South Korea. It means this tactical robot is a robot designed to kill. Then 

Elon Musk and more than 2000 AI researchers raised petitions to the UN to stop all research on the tactical robotic. 

[2]  

Roughly it's a true story that we can recall, although it is not our intention here to give  foretelling that the world 

would be heading for the Terminator movie scenario.... but there's a chance we're heading there. 

A Neutr osophic perspective

As an alternative to the above term of “techno-realism”, our problem of predicting  future technology that is not very 

optimistic but also not pessimistic, is indeed a Neutrosophic problem. 

First, let us discuss a commonly asked question: what is Neutrosophic Logic? Here, we offer a short answer. 

Vern Poythress argues that sometimes we need a modification of the basic philosophy of mathematics, in order 

to re-define and redeem mathematics [8]. In this context, allow us to argue in favor of Neutrosophic logic as a 

starting point, in lieu of the Aristotelian logic that creates so many problems in real world. 

In Neutrosophy, we can connect an idea with its opposite and with its neutral and get common parts, i.e. <A> ∧ 

<non-A> = nonempty set. This constitutes the common part of the uncommon things! It is true/real—paradox. From 

neutrosophy, it all began: neutrosophic logic, neutrosophic set, neutrosophic probability, neutrosophic statistics, 

neutrosophic measures, neutrosophic physics, and neutrosophic algebraic structures [9]. 

It is true in a restricted case, i.e. Hegelian dialectics considers only the dynamics of opposites (<A> and <anti-

A>), but in our everyday life, not only the opposites interact, but the neutrals < neut-A > between them too. For 

example, if you fight with a man (so you both are the opposites to each other), but neutral people around both of you 

(especially the police) interfere to reconcile both of you. Neutrosophy considers the dynamics of opposites and their 

neutrals. 

So, neutrosophy means that: <A>, <anti-A> (the opposite of <A>), and < neut-A > (the neutrals between <A> 

and <anti-A>) interact among themselves. A neutrosophic set is characterized by a truth-membership function (T), 

an indeterminacy-membership function (I), and a falsity-membership function (F), where T, I, F are subsets of the 

unit interval [0, 1]. 

As particular cases we have a single-valued neutrosophic set {when T, I, F are crisp numbers in [0, 1]}, and an 

interval-valued neutrosophic set {when T, I, F are intervals included in [0, 1]}. 

From a different perspective, we can also say that neutrosophic logic is (or "Smarandache logic") a 

generalization of fuzzy logic based on Neutrosophy (http://fs.unm.edu/NeutLog.txt). A proposition is t true, i 

indeterminate, and f false, where t, i, and f are real values from the ranges T, I, F, with no restriction on T, I, F, or 

the sum n = t + i + f. Neutrosophic logic thus generalizes: 

- Intuitionistic logic, which supports incomplete theories (for 0 < n < 100 and i = 0, 0 < = t, i, f < = 100);
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- Fuzzy logic (for n = 100 and i = 0, and 0 < = t, i, f < = 100);

- Boolean logic (for n = 100 and i = 0, with t, f either 0 or 100);

- Multi-valued logic (for 0 < = t, i, f < = 100);

- Paraconsistent logic (for n > 100 and i = 0, with both t, f < 100);

- Dialetheism, which says that some contradictions are true (for t = f = 100 and i = 0; some paradoxes can be

denoted this way).

Compared with all other logics, neutrosophic logic introduces a percentage of "indeterminacy"—due to 

unexpected parameters hidden in some propositions. It also allows each component t, i, f to "boil over" 100 or 

"freeze" under 0. For example, in some tautologies t > 100, called "overtrue.” Neutrosophic Set is a powerful 

structure in expressing indeterminate, vague, incomplete and inconsistent information.  

Therefore, from Neutrosophic Logic perspective, “our problem of predicting  future technology that is not very 

optimistic but also not pessimistic” can be rephrased as follows: 

(Opposite 1) pessimism – pess-optimism –- optimism (Opposite 2) 

While the term pess-optimism may be originated in engineering (perhaps in geotechnical engineering), but it 

has become one term in urban dictionary, see: 

“A philosophy that encourages forward-thinking optimism with an educated acceptance of a basic level of 

pessimism. Opt imism's fault is its naïveté, while pessimism' s fault is its blind jadedness. We live on Earth 

and are human. There is, was and will be good and bad.”[10]. 

That would mean a more balanced view of the future (futurology), something between too optimistic view and 

too pessimistic view.  It is our hope that Neutrosophic perspective may shed more light on this wise term of pess-

optimism, although for us “techno-realism” term may bring more clarity with respective to technology foretelling. 

Alternatively, we can also consider a few new terms, such as: 

a. Less-optimism: somewhat less than optimism, although it is not pessimism.

b. Merging optimism and realism: opti-realism. It can be somewhat better term compared to pess-optimism,

because realism brings a more pragmatic view into the conventional dialogue between pessimism and

optimism.

Then may be we can call this new approach: Neutrosophic Futurology. 

What about AI fever ? 

In line with it, a Canadian mathematics professor wrote the following message a few days ago: 

 "I am appalled by the way how computer science damaged humanity. It has 

Been even worse than nuclear bombs. It destroyed the soul of humanity and 
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I have less than 0% interest in doing anything in this evil field. 

Now something more destructive than data mining is coming up. Yes AI, 

Probabilistic AI. It says we don't know why but somehow it works. So we 

Start ed to have air plane malfunction because of the AI program failure. " 

Of course you can agree or not with the expression of that mathematics professor, but reportedly the employees of 

Google also demanded strict rules for AI to be freed from weaponry purposes, or called “weaponized AI “[1].  

Meanwhile, it is known that the development of science and technology has a positive and negative facet as well as 

the Robotics & AI. Although positive contributions are obvious, but the side effects are spiritual and mental aspects; 

and it needs to be prepared so that people can still take the positives, for example the planner of robotic Intelligence 

must have a code of ethics: Intelligence robotics should not har m or kill humans, rob banks etc. For other ethical 

issues of AI, see for example [5]. 

Are the re practi cal examples of the realis m attit ude in technology? 

If you got free time, read the periodicals around the industry in Japan. There are at least 2 interesting phrases that are 

worth a study: Ikigai and Monozukuri.  

The ikigai may be a bit often we hear, meaning: The reason we wake up early, consisting of a balance between 

passion, work, profession etc.  

Then what is Monozukuri? According to a source: 

"Monozukuri is a Japanese word derived from the word " mono  "means product or item and " Zukuri 

"means the creation, creation or production process. However, this concept has far broader implications 

than its literal meaning, where there is a creative spirit in delivering superior products as well as the 

ability to continuously improve the process...  " 

What is the implementation? Let's look at 2 simple examples: 

A. Sushi: Though simple at a glance, sushi is carefully designed so that the size is a one-stop meal. No more and no

less. That is the advantage of many innovations that are typical of Japanese, because they think carefully from the

usefulness, size, artistic value of the product. And so on.
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B. Shinkansen: The uniqueness of this train is not only about speed, but also on time (punctual). Even reportedly, the

time lag between train sets is less than 5 minutes. And everything is designed by Japanese railway engineers even

before there is a personal computer or AI. Then how did they design such an intricate system? Answer: They use

dynamic control theory ("Dynamic control Theory").

Concluding re mar ks 

Of course this is just a brief comment on a complicated topic that needs to be carefully examined and cautiously 

thought of.  

Let the authors close this article by quoting the sentence of a wise man in the past centuries: 

"Lo, this only have I found, that God hath made man upright; but they have sought out many inventions.” 

Wishing you all a happy a new year 2020. Hopefully next year there will be not a robot to greet you. Yes it is indeed 

a great paradox in the 21st century:  "Robots are increasingly proficient at imitating humans, but many humans live 

like robots."- personal quote.  
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    ŞELARIU (Nume), E. (inițiala tatălui) MIRCEA-EUGEN (prenumele), (n. 27 
febr. 1938, Călan, jud. Hunedoara), ing. în domeniul Tehnologiei Construcţiilor de 
Maşini (TCM) și cercetător științific.  

Date despre familie: tatăl: Emil (n. 1907, Haţeg, jud. Hunedoara -d. 1992, Călan, 
jud. Hunedoara), expert contabil-planificator; mama: Maria (n. 1909, Vaţa, jud. 
Hunedoara – d. 1980, Călan) diriginta oficiului PTTR din Călan; soția: Dorina-Rodica 
Voştinariu profesoară de Istorie-Geografie la Colegiul Naţional Bănăţean din 
Timişoara; copii: Şerban-Mircea, inginer TCM, specializarea Mecatronică, inginer la 
Elba Timişoara.  

Studii: a absolvit Școala Elementara din Călan (1936-1940), oraș în care a făcut 
primele şapte clase (1944 -1951); a urmat Liceul de Băieți din Alba-Iulia (1951-1954) 
și cursurile Facultății de Construcţii a Institutului Politehnic din Timișoara 
(1954-1955). În perioada 1955-1958 a lucrat ca tehnolog principal 1 la Uzina 
„Victoria” din Calan la Atelierul Mecanic şi la cea mai mare turnatorie de fontă şi de 
neferoase din România. (1958-1963) şi-a continuat studiile la Institutul Politehnic 
„Traian Vuia” din Timişoara, cu o bursă de întreprindere, unde a fost reţinut asistent la 
Facultatea de Mecanică, Catedra de TCM. S-a înscris la doctorat la Prof. Dr. Ing. Gh. 
Savii cu tema „Influenţa dispozitivelor asupra dinamicii sistemelor tehnologice 
elastice”. Şi-a susținut cele patru examenele şi toate referatele tezei de doctorat cu note 
maxime (10). După decesul conducătorului de doctorat a fost preluat de Prof. Dr. 
Doc.ing. Aurel Nanu. În prima fază, primele cca. 100 de pagini ale tezei au fost 
dactilografiate pe o singură parte a paginii, aşa cum se proceda atunci. Ordinul de 
scriere pe ambele părţi, justificat de economia de hârtie, a necesitat reluarea scrierii 
tezei pe ambele părţi. Ajunsă la peste 250 de pagini, scrise pe ambele părţi, a venit un 
nou ordin care stipula că numărul maxim de pagini admis este de 120. În aceste condiţii 
s-a propus ca partea originală de supermatematică, care stă la baza studierii şi
soluţionării vibraţiilor neliniare, să facă obiectul unui volum, iar partea de aplicare un al
doilea volum. Soluţia n-a fost acceptată. Ca urmare teza n-a putut fi admisă şi susţinută.
În 1969 a urmat cursurile de limbă germană la Goethe Institut din Iserlohn şi în
1969-1970 a efectuat o specializare cu o bursă DAAD la Universitatea din Stuttgart, la
Catedra şi Institutul de Maşini-Unelte.

Pledoarie pentru excelenţă în cultură: 
despre Mircea Eugen Şelariu

Florentin Smarandache

Florentin Smarandache (2021). Pledoarie pentru excelenţă în cultură: despre Mircea Eugen Şelariu. 
Bogdania 87-88, 29-30
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Cariera profesională și didactică: 1955-1958 -a lucrat ca tehnolog normator 
principal 1 la Uzina „Victoria” din Călan; 1963 -1969 –asistent universitar la 
Universitatea „Politehnica” din Timişoara. Din 1969 și până la pensionare 
(2000) a activat ca şef de lucrări la Universitatea „Politehnica” din Timişoara. 
După pensionare a mai lucrat un an cu cumul 100 % la Universitatea 
„POLITEHNICA” din Timişoara şi trei ani cu plata cu ora pentru predarea 
cursului de Mecatronică la secţia de Educaţie Continuă.

După pensionare a lucrat cu un sfert de normă la Serviciul de Proiectare al 
Întreprinderii Electrotimiş din Timişoara, tot cu un sfert de normă la firma 
privată TCP-System din Timişoara în calitate de proiectant -consultant şi cu o 
jumătate de norma la Institutul Naţional de Cercetare-Dezvoltare pentru 
Electrochimie şi Materie Condensată din Timişoara, ca cercetător principal, 
până în anul 2008. După 1989, a fost numit consilier la Întreprinderea de 
Autoturisme din Timişoara şi la majoritatea Institutelor de Cercetare proiectare 
din oraş ul Timişoara  

Activitatea de cercetare: A proiectat pentru URSS robotul industrial 
ROMAPET (1980), 10 maşini unelte agregate cu deservire automată şi 
automatul de asamblare a microintrerupătoarelor K2 pentru aviaţie prin 
contracte cu URSS (1981). A conceput şi proiectat o întreprindere de fabricare a 
micromaşinilor electrice japoneze în Timişoara cu folosirea deşeurilor de tole 
de la Electromotor Timişoara (1989), pentru care a fost onorat cu premiul unu al 
Judeţului Timiş în domeniul cercetării. A conceput şi proiectat maşini de găurit 
plăci carde şi de presare a acelor în placi carde, pentru Ambalajul Metalic din 
Timişoara, lucrări de asemenea premiate pe judeţul Timiş. A conceput şi 
proiectat automatul de asamblare a tuturor diblurilor fabricate de Întreprinderea 
6 Martie din Timişoara. A conceput şi proiectat dispozitivul de asamblare 
automată a capacelor de siguranţă fabricate de Elba Timişoara (1972). A condus 
cu Prof. Nicolae Gheorghiu proiectarea în colectiv a robotului „REMT-1”, 
fabricat la Electromotor Timişoara, distins cu Premiul „Traian Vuia” al 
Academiei României. A condus proiectarea III şi realizarea primului robot 
didactic (1971) şi a primului robot industrial românesc „Voinicel-1” care şi-a 
pierdut braţul la deservirea unei prese cu fricţiune la Ambalajul Metalic din 
Timişoara (1973).  

Contribuții: inventator, publicist, universitar; personalitate de excepție cu 
realizări notabile cu caracter interdisciplinar în domeniile TCM, Mecanică şi 
(Super)Matematică. A înființat prima Specializare de Mecatronică (1988), 
primul robot didactic (1971) şi primul robot industrial din România (1972), la 
Catedra de TCM de la Facultatea de Mecanică din Timişoara.  

Distincții: 1983 – Premiul Academiei Române (1983) pentru robotul 
industrial REMT-1; 2013 – „Diploma AGIR” pentru lucrarea 
„Supermatematica. Fundamante” Vol.I şi Vol.II, Ed. Politehnica, Timişoara, 
2012; 2009 -„CERTIFICAT DE APRECIERE” acordat de Universitatea din 
New Mexico pentru contribuțiile aduse la dezvoltarea matematicii; 2010 –
Asociaţia Internaţionala Exclusivistă a Paradoxiştilor l-a declarat membru de 
onoare pentru obiectele paradoxale introduse în Matematică precum sfero-cub, 
cono-piramida, cilindro-prisma ş.m.a.; 2015 -A fost ales membru de onoare al 
Asociației Internaționale de Științe Neutrosofice.  
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Recunoaștere pe plan intern și internațional: (1989) -A fost invitatul Universității din 
Budapesta unde a ţinut conferinţa „FUNCŢII CIRCULARE EXCENTRICE ŞI 
APLICAŢIILE LOR TEHNICE”. 1979 a fost solicitat să rămână la Universitatea din 
Stuttgart cu o bursa Humboldt sau ca asistent (1970), iar în anul 1972 decanul 
Tuffentssammer s-a deplasat la Timişoara şi a încheiat o Înțelegere pentru colaborarea cu 
Universitate din Stuttgart şi cu IPA Stuttgart, ne aprobata de Bucureşti. În 1985 a fost solicitat 
să proiecteze pentru URSS, iar în 2003 să cerceteze pentru USA. Este membru al Asociaţiei 
Profesionale a Inginerilor din Germania (VDI), din România (AGIR), membru fondator al 
Asociaţiei Române de Robotică (ARR); vicepreședintele Sindicatului Universității 
Politehnica din Timişoara. Preşedintele Secţie de Arte Marţiale a IPTVT, (1967) 
vicecampioană naţională la Judo (1971).  

Activitate publicistică: a publicat 11 cărți (2 tratate), peste 80 articole științifice în limba 
română, germană și engleză, a susţinut alte 6 lucrări ştiinţifice nepublicate, a condus şi 
colaborat la 35 de contracte de cercetare, deţine 6 brevete de invenții şi 2 de inovaţii, a 
susţinut 20 conferințe (una la Budapesta).  

Lucrări de referință: Manualul Inginerului Mecanic Vol III:TCM, Cap. 18 „Proiectarea 
Dispozitivelor” (1971); 25 % din tratatul de „Proiectarea Dispozitivelor” EDP, Buc.; 
Proiectarea dispozitivelor Capete Multiaxe (1974); Îndrumător de laborator pentru Proiectarea 
Dispozitivelor; Supermatematica.Fundamente Vol I şi Vol.II ediţia 1-a, a 2-a şi a 3-a. Vol III 
este sub tipar la Editura de Vest din Timişoara; „Matematica Atomică” Ed. de Vest, Timişoara 
2017;  

Alte date:-sport de performanță-(1953-1954) Campion absolut de gimnastica al Judeţului 
Hunedoara, al zonei Braşov şi a zonei Timişoara;Profesor de gimnastică şi totodată 
absolvent al Școlii Serale Sportive cu secţia Gimnastică din Alba Iulia; Vicecampion naţional 
de ștafetă 4 X 100 m plat cu ștafeta oraşului Timişoara; Căpitan de echipă al primei 
reprezentative de fotbal tineret a oraşului Timişoara (1955); Fotbalist la Unirea –Alba Iulia 
(1954), la „Victoria Călan (1955-1963) şi la UM Timişoara; Căpitan de echipă a echipei 
cadrelor didactice de la Facultatea de Mecanică.  

Referințe bibliografice: Specializarea de TEHNOLOGIA CONSTRUCŢIILOR DE 
MAŞINI la 60 de ani, Ed. Politehnica, Timişoara, 2018.  

Florentin Smarandache (author and editor) Collected Papers, XIII

952



Five examples on using spreadsheet to solve 
engineering and mathematical problems

1 Abstract

Computer spreadsheet has been commonly used in the past few decades into very
practical mathematical and problem solving tool. Here we discuss 5 exam-ples on
using spreadsheet to solve engineering and mathematical problems. We recall our
story in using Lotus 123 and Excel spreadsheet software since early 90s until
recently. In last example we discuss more specifically on using excel spreadsheet
to optimize the use of wind energy turbine in combination with so-lar
photovoltaic. It is known in literature there are many discussions on linear
programming for various cases; however there is only few discussion to take into
account the uncertainties involved in the power production of PV/Wind system.
In this paper, we consider integer linear programming by considering bi-level
values as suggested by Pramanik and Pratim Dey. The purpose of this study is to
show that it is possible to consider uncertainties in energy production in the
linear programming model.

2 Introduction

Computer spreadsheet has been commonly used in the past few decades; its
use grew from just just a special interest into ubiquitous mathematical and
problem solving tool. Here we discuss 5 examples on using spreadsheet to solve
engineering and mathematical problems. We recall our story in using Lotus
and Excel spreadsheet software since early 90s until recently. Hopefully what
we share here will be found as useful lessons for young engineers.

Victor Christianto, Florentin Smarandache

Victor Christianto, Florentin Smarandache (2021). Five examples on using 
spreadsheet to solve engineering and mathematical problems. Octogon 
Mathematical Magazine 29(1), 362-371 
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3 Examples of using spreadsheet for solving en-
gineering and mathematics problems

4 To find inverse of large scale matrix

Recalling one of us (VC) early years as an engineering student, during 90s he
learnt how to use Lotus 123 spreadsheet in order to find the inverse of large
scale matrix. At a point he solved a 100x100 matrix in order to solve problem
in matrix analysis of structures. At the time, using Lotus and IBM-compatible
PC it would need no less than a few hours.

5 To calculate land filling volume

Around 1995-1996, as one of us (VC) worked in a consulting team, he often
calculated landfilling volume requirement using Excel Spreadsheet. At the time,
the available PC was IBM-compatible with Office 95.

6 To find optimized line of outer planets in the
Solar System

Later on, around 2000-2002 he (VC) began to experimenting with PC in order 
to solve the problem of ordering in inner and outer planets orbits in the Solar 
System. At the time, he began to improve the Titius-Bode rule with quan-
tized orbit ala Bohr’s quantization rules. He succeeded to find the straight line 
solution of outer planets orbits by optimizing least square differences between 
straight line and the actual orbit data. He presented his results in a series 
of papers at Apeiron, 2003-2004 (http://redshift.vif.com) The result has also 
been presented in a paper at Progress in Physics 2006, with Prof. Florentin 
Smarandache. Our result is quite simple, as shown in table below.

7 Solving Fermat’s last theorem in graphical way

More recently, he tried to find a simpler proof of Fermat’s last theorem using 
Excel Spreadsheet. After some days figuring out the problem, finally he found 
out how to solve it graphically. Although an exact proof can be given using dif-
ferential calculus, we choose to use a more intuitive graphical method. Fermat’s 
Last Theorem is one of the most difficult mathematical problems since more 
than 200 years ago. It can be rephrased more simply as follows: “The Pythago-
ras Theorem only works for and only for n=2, and does not work for other 
values of n, where the theorem can be written as : an + bn = cn.” While more 
than hundred solutions of FLT have been proposed by eminent mathematicians, 
including the famous lecture by Andrew Wiles [1][2], but still many people want 
a simpler but intuitive argument for proving the validity of FLT. This paper is
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Figure 1: Evidence of quantized orbits of inner and outer planetary orbit dis-
tances in the Solar System. Source: V. Christianto, Apeiron, vol. 23, July 2004.
url: http://redshift.vif.com
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aiming to offer such an intuitive solution using graphical method. *Outline of
argument: First we can write down the FLT as follows: x̂+bx = cx....(1) Or it
can be rewritten as follows: axb

x)/(cx) = 1...(2) The condition given by FLT is
that equation (2) strictly equals 1, but let say we want to check if this condition
holds for any value of x, then (2) can be written as follows: axb

x)/(cx) = y....(3)
Now, we have a nonlinear equation in x and y. This equation can be solved
at least by two methods, namely: a. Differential calculus method, by solving
dy/dx=0, b. Graphical method. **Numerical result: In this paper we will use a
simpler and intuitive graphical method, starting with an assumption that a=3,
b=4, c=5, and x ranging from -10 to +10. For other values of a,b,c the readers
are invited to verify themselves. Using MS Excel, we got the following result
for equation (3):

And the graphical plot is as follows:
It should be clear that as x has values below 0, then y increases exponentially,

but as x has values greater than 0 then y decreases approaching zero. The
only value where y=1, is where x=2. This is a graphical method to solve FLT
intuitively with equation (3). Concluding, it is possible to find a proof of validity
of Fermat Last Theorem in an intuitive way using a graphical method. Although
an exact proof can be given using differential calculus, we choose to use a more
intuitive graphical method. It is our hope that such a graphical solution can
be useful as teaching tool for high school mathematics teachers. For professors
in mathematics, we are aware that this graphical method for solving FLT may
sound too näıve, but considering the Occam’s razor principle, then the simpler
solution may be closer to the truth.

8 Analysis of PV/Wind systems by integer lin-
ear programming with Neutrosophic numbers
by taking into account intermittency of en-
ergy production

Hybrid renewable energetic systems are systems that integrate more than one 
renewable energy sources. As they are time, environment and site dependant, 
one expects that their judicious and complementary combination may overcome 
some limitations which are inherent to every individual system used alone. Hy-
brid systems may also reduce the need for energy storage which is very costly and 
space consuming.[1] In real cases, sometimes it is of need to consider integrat-
ing renewable energy sources in order to build up economical hybrid energetic 
systems in the case where each type of energy are only available as specific 
units. For instance, we may need to combine photovoltaic panels and wind 
turbines with specific capacities to meet an energetic demand in a specific site 
with a lowest cost. Therefore, determining the optimal energy to be installed 
leads of determining the number of units from each source. This problem is 
formulated as an integer linear programming where the objective function to
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Figure 2: Numerical solution of equation 3
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Figure 3: Numerical solution of equation 3
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Figure 4: Graphical plot of solution of equation 3.

be minimized is the initial capital investment and where the decision variables
are the numbers of units which should be pure integer numbers. While this
problem has been discussed in Zaatri and Allab [1], there is only few discussion
in the literature on how to take into account the uncertainties involved in the
power production of PV/Wind system. As it is known, PV and Wind energy
production involves a certain level of intermittency, which makes the power
production rather uncertain. In a recent paper, we discussed possible use of
quadruple Neutrosophic Numbers in order to expand the definition of statisti-
cal standard deviation in uncertainty modeling of various engineering systems
and elsewhere [8]. It is known, that intermittency, intermittence, irregularity,
unregularity, uncertainty are part of Indeterminacy, which is in between: in-
terruption and non-interruption. Therefore we can express an expanded model
statistical standard deviation to include the notion of intermittency, as follows:

=x’+σ.k = x′ + σ(T + I + F ),
Where T,I,F each represents truth value, indeterminacy, and falsehood. 

That is one of possible interpretations of quadruple Neutrosophic Numbers in 
the sense of expanded standard deviation, see for instance [8-10]. In this paper, 
we consider integer linear programming by considering bi-level values as sug-
gested by Pramanik and Pratim Dey [3]. The purpose of this study is to show 
that it is possible to consider uncertainties in energy production in the linear 
programming model. So the results will be expressed in upper bound and lower 
bound limits. *Basics of Linear Programming* Linear programming deals with
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problems such as maximising profits, minimising costs or ensuring you make the
best use of available resources. From an applications perspective, mathematical
(and therefore, linear) programming is an optimisation tool, which allows the ra-
tionalisation of many managerial and/or technological decisions. An important
factor for the applicability of the mathematical programming methodology in
various contexts, is the computational difficulty of the analytical models. With
the advent of modern computing technology, effective and efficient algorithmic
procedures can provide a systematic and fast solution to these models. A Linear
Programming problem is a special case of a Mathematical Programming prob-
lem. From an analytical perspective, a mathematical program tries to identify
an extreme (i.e., minimum or maximum) point of a function, which furthermore
satisfies a set of constraints. Linear programming is the specialisation of math-
ematical programming to the case where both, function f, called the objective
function, and the problem constraints are linear. Mathematical (and therefore,
linear) programming is an optimisation tool, which allows the rationalisation
of many managerial and/or technological decisions required by contemporary
applications. An important factor for the applicability of the mathematical
programming methodology in various contexts, is the computational tractabil-
ity of the resulting analytical models. * Discussion on the problem in question
* In this paper, we consider the same scenario of estimates of annual power
production by PV and wind systems as discussed by Zaatri and Allab [1]. The
two equations of constraints in integer linear programming can be expressed as
follows [1]:

This problem can be solved using MS Excel (goal seek/solver), and the result
is shown in the following Figure 3.

The result is : it is found that optimal number of PV cells is 6, and 31
wind systems. And the total cost is found to be USD3880. It is known, that
intermittency, intermittence, irregularity, unregularity, uncertainty are part of
Indeterminacy, which is in between: interruption and non-interruption. There-
fore we can express an expanded model statistical standard deviation to include
the notion of intermittency, as follows:

=x’+σ.k = x′ + σ(T + I + F ),
Where T,I,F each represents truth value, indeterminacy, and falsehood.

That is one of possible interpretations of quadruple Neutrosophic Numbers in
the sense of expanded standard deviation, see for instance [8-10]. Now, by
simplifying procedures in Pramanik Pratim Dey [3], we can include uncer-
tainty parameters due to intermittency/indeterminacy of energy production by
PV/wind systems, so we will include an extension: a. Upper bound limit:

66 + 1.64 ∗ 5).N1 + (84 + 1.64 ∗ 7).N2 >= 3000
Which comes from setting X = x’ + σ.kWherewetakeforsimplicity : σ =

1.64, k = 5forP V systems, andk = 7forwindsystems. igure4asfollows :
The result is : it is found that optimal value is 6 PV sets, and 27 wind 

systems. The total cost is found to be: USD3455.74. a. Lower bound limit: 
66 − 1.64 ∗ 5).N1 + (84 − 1.64 ∗ 7).N2 >= 3000he result is as shown in Figure 5.

The result is : it is found that optimal value is 6 PV sets, and 37 wind 
systems. The total cost is found to be: USD4438.58. Therefore we conclude,
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Figure 5: Equations to be solved.

Figure 6: Result of goal seek (MS Excel) for integer linear programming.
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Figure 7: Result of goal seek (MS Excel) for integer linear programming.

Figure 8: Result of goal seek (MS Excel) for integer linear programming.
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by taking into account uncertainties due to intermittency of power production
of PV/Wind systems, we come up with slightly different optimal values. For
other papers discussing MCDM/linear programming in renewable energy con-
siderations, see [2, 4-7].

9 Concluding remark

In this example, we discuss some examples on how we can use computer spread-
sheet to solve engineering and mathematical problems. In the last example, by
simplifying procedures in Pramanik Pratim Dey [3], we can include uncertainty
parameters due to intermittency of energy production by PV/wind systems, we
will include an extension: 66 + 1.64 ∗ 5).N1 + (84 + 1.64 ∗ 7).N2 >= 3000 which
comes from setting = x’ + σ.k Where we take for simplicity: =1.64, k = 5
or PV systems, and k=7 for wind systems. Actual values of k should be de-
termined by observations. Similarly, we can consider the lower bound limit by
setting: 66−1.64∗5).N1+(84−1.64∗7).N2 >= 3000 which comes from setting
= x’ - σ.k Therefore we conclude, by taking into account uncertainties due to
intermittency of power production of PV/Wind systems, we come up with a
slightly different optimal values. Provided we set the PV systems to be 6, we
obtain upper bound number of Wind energy system to be 27, and the lower
bound number is 37. This is where the subject of Neutrosophic Logic can be
considered. Further investigation is recommended.
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Abstract

Discourses on logic have been for a long time predominated by Aristotelian logic, 

especially that is the case in the West. Although since early 20th century there are 

new development towards many-valued logic, for instance by Lukasiewicz etc, 

and also fuzzy logic theory by Lotfi Zadeh; and also in recent years there is 

development by one of us (FS) on Neutrosophic Logic, Plithogenic Logic etc. But 

still the general public usually are only accustomed to Aristotelian way. More 

recently, there are growing interests to consider African, Asian and also Native 

American logic. Nonetheless there is very rare discussion on Javanese logic, 

except perhaps a report by P. Stange. This article will consider some variations of 

logic which may show non-triviality of Javanese logic. Hopefully more readers are 

interested to consider this theme further.

Introduction

Although there are many developments in logic as a field in mathematics,

but still the general public usually are only accustomed to Aristotelian

way.[1][2]

More recently, there are growing interests to consider African, Asian and

also Native American logic.[3] Nonetheless there is very rare discussion on

Javanese logic, except perhaps a report by Paul Stange.[4]

On mythical Dewaruci, Manunggaling kawula-Gusti 
and other nontrivial Javanese logic

Victor Christianto, Florentin Smarandache, Sori Tjandrah Simbolon

Victor Christianto, Florentin Smarandache, Sori Tjandrah Simbolon (2022). On mythical Dewaruci, 
Manunggaling kawula-Gusti and other nontrivial Javanese logic. New Perspective in Theology and 
Religious Studies 3(1), 14-22
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This article belongs to study of interpretation of culture, see Geertz [11]. In

a similar tone, we agree with Kosuke Koyama on how Christian theologians

shall give respect to local cultures, as he wrote:

“Apakah di sana tidak ada kebutuhan untuk penyesuaian atau

sedikitnya untuk mengubah ekspresi-ekspresi dengan cara yang

fundamental? Seharusnya di sana ada katekismus Toraja-berg

sebagai ganti dari katekismus Heidelberg…”[15, p. 46]

In such a spirit of hermeneutics of respect1 towards local cultures, for

instance by appreciating Serat Dewaruci, etc., it does not mean to argue

for syncretism, but instead for cross-fertilization between Christianity and

indigenous cultures especially in Asia, where Christianity were belong in

the ancient time (see Acts chapter 16, how St Paul team was moved from

going to Asia toward Europe, by the so-called Macedonian calling.) In

other words, it is not so exaggerating to say that time has come to receive

Christianity to return home to where she belongs. If that can be achieved,

we believe that it is a first step to the realization of Eckhart Tolle, A new

Earth, where he argues that it is not in the future after 1000 year kingdom

reigns (cf. The book of Revelation chapter 21:1), but a state of

consciousness:

“So the new heaven, the awakened consciousness, is not a future

state to be achieved. A new heaven and a new earth are arising

within you at this moment, and if they are not arising at this

moment, they are no more than a thought in your head and

1 See V. Christianto. Hermeneutika tanpa Hermes. Jakarta: Penerbit Bina Warga, fortcoming.
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therefore not arising at all. What did Jesus tell his disciples? “Heaven

is right here in the midst of you.”[16]

This article will consider some variations of logic which may show non-

triviality of Javanese logic. Hopefully more readers are interested to

consider this theme further.

Paul Stange on “ngelmu” in Javanese thinking

History of ancient civilizations reveals that Pythagoras who found a great

theorem in geometry, actually led his own sect which emphasized

rationality to the utmost.

But there were also other ancient communities which also try to train their

disciples to live in purity, such as Essene sect near Qumran, or John the

Baptist’s community, and also early Christian churches.

One interesting character of Jesus’s way to teach His disciples is that He

apparently did not use the “formal teaching” like ancient Greek

philosophers, but more informal and experiential style of teaching and

discipleship.[6]

In one or another way, Javanese ancient concept of learning is not exactly

for pursuit of knowledge as we know in the Pythagorean sense. But more

like discipleship in ancient East, as we can learn in Jesus’s method of

discipleship.

Stange wrote on the meaning of ngelmu and rasa in Javanese spiritual

practice:[4]
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“In the Javanese traditional context, and among those now

still experiencing a continuity with it, "knowledge” in its

significant form is "ngelmu." Though in Indonesia "ilmu" now

closely approximates Western senses of "knowledge," the

Javanese term clearly refers to gnosis, to a mystical or

spiritual form of knowledge which is not just intellectual but

also intuitive. Another way of clarifying what is meant by

"ngelmu" is that, in the end, it is the whole body, and all

organs within it, rather than just the mind that "knows." This

sense of knowledge underlies Javanese mystical theory not

only of consciousness, but also of its rela tion sh ip , which is

essentially reflexive, to social and political power. "Rasa," my

focus in this paper, is among other things the cognitive

faculty which, as Javanese mystics understand it, we use to

"know" the intuitive aspects of reality.

“The Javanese high road to insight in reality is the trained

and sensitive rasa (intuitive inner feeling). In mysticism, the

essence of reality is grasped by the rasa and revealed in the

quiet batin (heart).... It is only by training the rasa that man

can bridge the distance to "God."*

As part of rasa in Javanese logic, we can also consider why aesthetical

elements such as harmony etc are essential in Javanese gamelan. An

example is this writer’s favorite Javanese gamelan song by Ki Narto Sabdo

(a then-famous Javanese dalang; dalang means storyteller of Javanese

wayang.). The following is lyric of the Prau Layar:
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Prau Layar2

by Ki Narto Sabdo

Yo konco ning nggisik gembiro

Alerap lerap banyune segoro

Angliyak numpak prau layar

Ing dino minggu keh pariwisoto

Alon praune wis nengah

Byak byuk byak banyu binelah

Ora jemu jemu karo mesem ngguyu

Ngilangake roso lungkrah lesu

Adik njawil mas, jebul wis sore

Witing klopo katon ngawe awe

Prayogane becik balik wae

Dene sesuk esuk

Tumandang nyambut gawe

English version:

Sailboat

by: Ki Narto Sabdo

2 Source: http://lirikcampursarinan.blogspot.com/2014/01/lirik-lagu-campursari-prau-layar.html. Note: Referring
back to this writer’s days in Surakarta, each Tuesday evening, he and four other friends at work, went to central
town at Surakarta, where we practice gamelan music. Prau layar was one of his favorite song by Ki Narto Sabdo.
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Yo behind the rubbing of joy

the morning water

On weekdays a lot of tourism

Slowly the boat had calmed down

Don’t get tired of smiling and laughing

Eliminate the feeling of lethargy

My younger brother smiled, apparently it was evening

It's a good idea to go back

As for tomorrow morning

We will continue working

Moreover, in the past few years, these writers have published three papers 

discussing the role of intuition in “real” epistemology; in fact we can say 

that several major discoveries have displayed intuition as guiding role, 

before the left-brain thinking come into play to verify and develop them 

further. We called that method as “intuilytics.” In our scheme, intuilytics can 

be thought as Neutrosophic Logic contribution in the philosophy of 

discovery, which is a bit different from Popperian or Kuhnian scheme. (See 

our recent paper submitted to this journal, IJNS).
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As an example, a common practice for Javanese spiritual students is to

teach the story of mythical Dewaruci.

As the story goes (based on Indian legend, Mahabharata, but it has been

modified by Javanese teachers): One day, Bimasena was sent to seek the

living water (Tirta Perwitasari) deep into the sea. After he fought and won

over the sea dragon, he went into the bottom of the sea, where he met

with Dewaruci, who actually is his “microcosmic consciousness” version of

Bimasena himself. After giving lecture to Bimasena, Dewaruci invites

Bimasena to come into Dewaruci, to be One with the Divine. But later on,

Bimasena felt he did not want to go outside from the innerside of

Dewaruci. But Dewaruci told him, that there are still things that Bimasena

should accomplish in his life, therefore Bimasena should go down again in

real world. Then Bimasena stepped out from inner side of Dewaruci.

Thereafter, Dewaruci came into Bimasena and be in unity with him. “

That is the summary of the story of how Bimasena became one with

Dewaruci, that is God within himself.

While at first glance, we can say that the mythical basis of this Javanese

teaching may not have parallelism with Christianity or other formal

religious tradition, nonetheless there are indeed some elements that can

find homage to Christian’s concept of unio mystica, for instance: tirta

Mythical Dewaruci story: meaning of Manunggaling Kawula Gusti
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perwitasari (or sometimes called “Tirta Amrita”) can be compared to the

dialog on living water between Jesus and the Samaritan woman (John

chapter 4). And also Jesus often claimed that “I and Father are One.” That

indicates perfect unio mystica, which is known in other mytical tradition as

“enlightenment” (Buddhist), or makrifat (Moslem).

Nonetheless, in the context of study of logic, how can we understand that

process of unification between human as creature and God, the Creator?

Certainly. Aristotelian logic which differentiates [A] and [B} without any

possible merging cannot offer much help.

How to consider Unio mystica from non-Diophantine perspective

As far as we can consider, there are 2 possible explanations to consider the

aforementioned spiritual union, i.e. Rupert Sheldrake’s morphic resonance,

and also non-Diophantine arithmetics.

Sheldrake introduced morphic resonance to represent memories which can

include both the element as well as the larger entities. In other word, that

concept of morphic resonance can also be thought of as a solution to

Russell’s paradox, i.e. the largest set that comprises all other subsets, is

also a set (at least that is what we can understand on meaning of morphic

resonance.)

Now we will explain the second argument, as follows.
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In other papers, we argued that it seems like insurmountable task if we

want to reach God in His richness, with simple binary logic (Aristotelian

way), because the binary logic cannot capture the complex nature of

human mind. [10][11][12].

Therefore we argue that the eastern philosophical systems, such as

Manunggaling Kawula Gusti in classic Javanese belief, suggest neither nor

logic, which is often called “ngono yo ngono ning ojo ngono.” (you can do

that, but don’t do like that.) That neitherness or bothness position can be

considered paradoxical in terms of classical Aristotelian logic but not in

sentential logic.

In other words, we can hypothesize that any system of logic which can

convey neitherness or bothness situations can be considered better in

order to explain the Divinity Realm.

After discussing such a logical proposition, let us consider again Iain

McGilchrist.[9] As a psychiatrist, his argument on left and right function of

human brain can be captured in essence as follows: the left hemisphere

which usually processes in detailed manner any problem (logically) should

not predominate the right brain, which capture holistic and spiritual

process.
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In the words of Blaise Pascal:

”The heart has its own logic, which reason cannot understand.”

In that sense, both heart as spiritual brain function should not be governed

by the left brain function. In other words, in spirituality realm especially in

worshiping God, we should not let the emissary (Logical thinking process)

to lead the master (holistic/spiritual thinking process). It should be the

other way around.

This problem of choosing between Logic or going beyond Logic, or from

rationality to go beyond rational thinking can be traced back even to

classical history of mathematics. It is known that Pythagoreans pupils

worshiped rationality and Logic in mathematics, up to the point when they

were shocked when one of their disciples found an irrational number,

those Pythagoreans left that disciple to drowning in the sea.

So we know that what McGilchrist described is a real issue, and not just a

joke.

Similarly, several inventions in mathematics were not easily accepted at

first, such as transcendental numbers, complex numbers, transfinite set,

Cantor sets, or non-Diophantine arithmetics.
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Let us give some examples of non-Diophantine arithmetics. From primary

school, all of us learn that 1+1=2, 2+2=4 and so on. But if we put a cat

into a room (1), then we put a tiger into the same room, then we learn

that in that case, 1+1=1. That is a good example of non-Diophantine

arithmetics.

And also the arithmetics of giving follows non-standard Logic. For instance,

basic arithmetics says that if you have 2 in your pocket then you give 1 to

the poor, then you got 2-1=1. But God do not sleep, so He Will bless you

more, therefore from experience we learn that 2-1=2 or may be 2-1=3.

That is another case of non-Diophantine arithmetics.

Another example is from management studies, we learn that good team

work needs synergy, where 1+1=3. That is the value of synergy is much

more just addition of the members.

Finally, we can also point out that Trinitarian Logic cannot be reconciled

with Aristotelian Logic or Diophantine arithmetic, as we learn that Trinity

means that 1+1+1=1.

That is also a case of non-Diophantine Logic in Theology. That non-

standard Logic in understanding Trinity can be compared with the notion

of uncountable noun in English grammar.
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It is known that countable nouns mean 1+1=2 and so on, like addition of

two applea, two oranges, two potatoes etc.

But that arithmetic operation does not follow for uncountable nouns, for

example we cannot call water + water = 2 water. Because water is

uncountable noun.

But we shall call it "a glass of water" or *a cup of coffee."

That is another metaphor for better understanding of Trinity from non-

Diophantine arithmetics.

If we follow that reasoning, we can understand Unio mystica

(Manunggaling Kawula Gusti in Javanese belief) in terms of similar non-

Diophantine arithmetics, that is: adding one person to the Trinity Will still

be One:

(1+1+1)+1=1

That is what mystical person refers to uniting with God.

And even Church Fathers refer to Church members are unity with God. Let

say a church members having 1000 persons as members, we can write:
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(1+1+1)+1000=1

They are still United in One through Christ. That is why St. Paul refer to

this case as unity "in Christ." In our opinion, such an interpretation could

be the best way to understand Jesus’s prayer in John chapter 17, see

especially John 17:22.

Concluding remark

In this short review article, we discuss several notions in Javanese tradition,

like ngelmu, rasa, and Manunggaling Kawula Gusti, which hardly can be

explained from Aristotelian perspective.

As with integrating intuition and logical faculty of human thinking process,

from Neutrosophic Logic viewpoint, we come up with a new term:

“intuilytics.” (see a recent paper we submit to this journal).

And for describing unio mystica, there are two possible ways to explain:

Sheldrake’s morphic resonance and also non-Diophantine arithmetics.

This paper is an early discussion on this non-trivial Javanese logic.

In such a spirit of hermeneutics of respect towards local cultures, for

instance by appreciating Serat Dewaruci, etc., it does not mean to argue

for syncretism, but instead for cross-fertilization between Christianity and

indigenous cultures especially in Asia, where Christianity were belong in

the ancient time (see Acts chapter 16, how St Paul team was moved from
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going to Asia toward Europe, by the so-called Macedonian calling.) In 

other words, it is not so exaggerating to say that time has come to receive

Christianity to return home to where she belongs. If that can be achieved, 

we believe that it is a first step to the realization of Eckhart Tolle, A new

Earth , where he argues that it is not in the future after 1000 year kingdom 

reigns (cf. The book of Revelation chapter 21:1), but a state of

consciousness.
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Beyond Post-Empiricism Doctrine: 
A New Philosophy of Discovery

Abstract

Despite majority of theoretical physicists begin to accept the post-empiricism doctrine, still few 
physicists and mathematicians alike do not agree with such a “doctrine,” partly because it is 
against Popper’s criterion of falsifiability for any theory in physics and other sciences. And 
partly because criteria like beauty or elegance seem rather subjective for a new theory to be 
accepted as “physics’. Some physicists have written books on this topics [10-11]. In this article, 
we will not repeat those arguments; instead we only argue in favor of principle of parsimony that 
Nature seems to prefer least action, or least energy either in modeling complexity, assumptions 
and free parameters involved; thus, it is likely that minimizing computational entropy is required 
before getting any meaningful results. Therefore, we arrive at conclusion that one shall find a 
balance among some criteria, of which we may call this point “Ockham optimality point.”  

Keywords: Principle of parsimony, Popperian epistemology, post-empiricism doctrine, Ockham 
optimality point, theoretical physics, mathematical physics. 

I consider it quite possible that physics cannot be based on the field concept, i.e., 

on continuous structures. In that case nothing remains of my entire castle in the air 
gravitation theory included, and of the rest of modern physics. - Albert Einstein 

1. Introduction

The present status of theoretical physics seems to face a dark cloud in the sky, because the highly 
acclaimed theories such as loop quantum gravity, superstring, M-theories and also 
supersymmetry theories cannot be verified by experiments, at least not within the present limit of 
measurement devices. Therefore, some theoreticians like Dawid began to argue in favor of 
releasing the verifiability criterion for any theory to be accepted as working physics theories [12]. 
That kind of post-empiricism doctrine, as it is called, is supposed to supersede the conventional 
Popperian epistemology, which include falsifiability for any theory before it can be accepted.  

*Correspondence: Victor Christianto, Ekklesia Advanced School of Theology (EAST), Jakarta, Indonesia. 

Email: victorchristianto@gmail.com 
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However, some prominent cosmologists and theoreticians disagree with that doctrine. Attempts 
to exempt speculative theories of the Universe from experimental verification undermine science, 
argue George Ellis and Joe Silk [7][8]. They also wrote: 

Faced with difficulties in applying fundamental theories to the observed Universe, some 
researchers called for a change in how theoretical physics is done. They began to argue 
— explicitly — that if a theory is sufficiently elegant and explanatory, it need not be 
tested experimentally, breaking with centuries of philosophical tradition of defining 
scientific knowledge as empirical. We disagree. 

But, despite some physicists have emphasized on the virtue of empirical test and conceptual 
simplicity, such criteria appear not so clear to be applied at research practice on daily basis. 
Therefore, there is a need to apply such criteria on simplicity or principle of parsimony in a more 
operational way. 

2. Intuition and Neutrosophic way of doing science

In a recent article, we argue on the role of intuition in doing science [2][3], apart of the so-called 
Dirac’s dictum that to find new physics, we shall find new mathematics. In our proposed 
“Neutrosophic way”, it is intuition (or in German, einfuhlung) that should be given more 
emphasis. Any effort to depict or map life or reality as an abstract substance needs to use real life 
or concrete experience to arrive at such an understanding. To choose actual experiences and to 
connect it with the abstract domain, one needs intuition. 

As this work emphasizes [3]: 

More “right brain” activity, based on direct experiences, leads to direct experiences of 
the Divine. Your “inner vision” (the “mind’s  eye”) can help readers in this, and in 
many other ways. The inner vision is also the seat of many of the intuitive faculties, 
which are experiencable facts, not imaginings. That means the information obtained by 
the intuitive faculty is verifiable and reproducibly observable. 

In order to do that, the Balanced Brain is the most efficacious way to function, as well 
as the most efficient, and the most comfortable. 

To obtain the Balanced Brain, the person usually needs to spend a great deal of their 
spare time being receptive, being the “receiver”,  being accepting and exploring, and not 
using the analytical intellect, but instead, spending time in the Now and in the Senses 
and Sensitivities. This is best enjoyed in Natural settings. 
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Therefore, to reply to the question concerning rectifying the problem of overemphasizing 
rationality in mathematics, McGilchrist's concept and Conceptual Linguistics theory can shed 
light [2, 4].  

From Neutrosophic Logic viewpoint, this article recommends that a combination: 

Diagram 1. The role of intuition, analytical thinking, and empirical facts 

In the above diagram, we emphasize both the intuitive aspect of the right hemisphere and the 
analytical or logical thinking processes of the human’s left brain, that they will be more adequate 
in creating a holistic approach. The article proposes a term: “intuilytics” to capture the essence 
of the Balanced Brain [3].  

With regards to scientific discovery processes, the proposed scheme as outlined above hint 
toward a slightly different approach compared to Popperian method or Kuhnian concept of 
paradigm change. Therefore, in addition to the role of intuition and analytics/rational thinking, 
we need empirical facts as the basis of model building. To emphasize those triplet, see Diagram 
1 above. 

To illustrate the aforementioned point, and regarding our personal experience, the first author 
shares a little about his dream long time ago of being an inventor. In the past, he was educated at 
one of the engineering faculties at a state campus in East Java, Indonesia. But about halfway 
through his engineering study, he found passion in more humanities books: such as, E.F. 
Schumacher etc. And also how to think more creatively. When he read textbooks such as 

physical 

model

analytical 

thinking

empirical 

facts 

(observables)

intuition/ 

insight
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foundation engineering, such as la terre armee (earth reinforcement), what comes to mind is not 
just how to calculate and so on. But it was more about the process of making the discovery: How 
did Henri Vidal find la terre armee?1 - then how did people find the prestressing method? Or 
how Dr. Sedijatmo found the chicken-raft foundation? (cf. It is one of Indonesia’s engineering 
invention)2. 

Only recently, around two years ago, after discussions with several senior physicists, notably 
RNB, there was a suggestion that the discovery process generally begins through intuition, or to 
be precise the right brain thinking process. Although there is also an analytical process, it is 
usually an analytical process will not yield any significant new findings. From there then began 
to develop the term: "intuilytics." For physicists, some readers are more familiar with the 
German phrase: "enfuhlung."  

Then he found the work of a psychiatrist: Iain McGilchrist which actually reinforces this belief, 
meaning that the centuries-old tendency to put pressure on the left brain function is not good and 
tends to destruct the entire Western civilization [4]; and if humanity wants to grow its 
consciousness, it must prioritize right brain functions first, including the functions of holistic, 
spiritual, and intuitive thinking.3 New analytic function is only to verify what the right-brain 
process registers. That's why he doesn't agree with the idea of transhumanism, ala Homo Deus, 
as suggested by Yuval Noval Harari, a historian from Hebrew University. It is more likely, the 
future of humanity is heading toward "homo spiritus," in Sir David R. Hawkins' term [24]. He 
does not see a good future if we continue the process of integrating humans and data, then as a 
whole we will be tapped and consumed by big data and supercomputers. And this is precisely 
what the IoB/Rand Report’s plan seems to be designed for (IoB: internet of bodies). Praise God, 
our article on the relationship of integrative thinking/McGilchrist and reinterpreting Pancasila, 
our nation's philosophy of life, has been published recently in the NPTRS Journal [25]. 

Some readers may ask at this point, the Diagram 1 above looks too simplifying for a method, 
doesn’t it? Yes, it is true, but let us consider that even for well-known mathematicians such as G. 
Polya, something more than mathematics methods; something deeper like curiosity etc. are 

1
 Url: https://www.terre-armee.com/about/ 

2
 Origin of discovery: “The chicken claw foundation was discovered by Professor Sedijatmo in 1961. At that time, Sedijatmo 

accidentally saw a palm tree trunk swaying in the wind. The palm tree remained firmly standing even though the soil structure 

was unstable. From here, Sedijatmo created a "stringy" foundation of concrete pipes that support large buildings, known as the 

chicken claw foundation. This chicken claw foundation adopts the shape of the palm tree adaptation …” source: 

https://brainly.co.id/tugas/26826541 
3
 Postscript note: Interestingly, John Perkins, a best-seller author of popular economics books, also argues in favor of Life 

Economy, in contrast to common practice of Death Economy. Life Economy can be argued as more appreciative to human and 

Nature’s life, much more than short term utility maximisation. The difference here is that in Perkins’s thought, Death Econony 

began around 1970-1980s, while according to Dr. Iain McGilchrist, it went back to at least 16 centuries back to early Church 

Fathers. Nonetheless, in his book, Perkins argue a set of practical ways to do more towards realization of Life Economy. See: 

John Perkins, Touching the Jaguar. Oakland: Berrett-Koehler Publishers, Inc., 2020. 
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needed to solve a real-world problem. As he wrote in his book: “How to solve it,” as follows: 
“Behind the desire to solve this or that problem that confers no material advantage, there may be 
a deeper curiosity, a desire to understand the ways and means, the motives and procedures, of 
solution.” Other mathematicians like Jacques Hadamard also wrote on psychology of invention 
in the mathematical field4. 

So what would such a discussion bring to us? May be if we rely and follow through our heart and 
our guts, we may someday will come up with a set of original approaches to mechanics or 
gravitation theory, see for example: Neo-Newtonian Mechanics by a senior mathematician fellow, 
Dennis P. Allen, Jr., et al. [22-23].   

3. On Principle of Parsimony & Ockham Optimality

As we argued in a recent paper [5-6], this deep problem in philosophy of science can be viewed 
as another case that calls for implementation of Neutrosophic Logic: i.e. whenever there are two 
opposite sides, there is always a choice to find a neutral side, in order to reconcile those two 
opposite sides. We can also think of them starting from the principle of contradiction, proposed 
by Kolmogorov [9]. To summarize, he argues that there is fundamental problem in developing 
complex arguments, they always lead to contradiction. This was proven later by Gödel. See [6]. 

What can we conclude from Kolmogorov’s principle of contradiction? It is quite simple, i.e., 
developing a complicated theory from a number of postulates will very likely lead to messy 
contradictions, which are often called “paradoxes, ” just like the twin paradox in general 
relativity, or cat paradox in quantum wave function. To put this problem succinctly, we can 
paraphrase Arthur C. Clarke’s famous saying: “Any sufficiently advanced technology is 
indistinguishable from magic,” (Arthur C. Clarke, "Profiles of The Future", 19615) to become 
“Any sufficiently complicated theory will result in a number of contradictions and paradoxes.”[6] 

Such a logical analysis derived from Kolmogorov’s principle of contradiction eventually remind 
us of the following:[6]  

(a) To keep humble mind before Nature (God's creation), and perhaps we should not rely
too much on our logic system and mathematical prowess;

(b) In developing a theory one should keep complications and abstractions to a minimum; &

4
 Special thanks to Dennis P. Allen, Jr., for reference to G. Polya, J. Hadamard and also his on-going works on Neo-Newtonian 

Mechanics and Gutschian Mechanics. 
5
 Clarke's third law. url: http://www.quotationspage.com/quote/776.html 
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(c) To build theory in the nearest correspondence to the facts; it is the best if each parameter
can be mapped to a measurable quantity.

We hope the above three criteria can be a useful set of practical guidelines for building 
mathematical models in theoretical physics, cosmology etc. 

           

-----> better theory 

Diagram 2. How to find Ockham optimality point 

To emphasize the aforementioned argument, from Neutrosophic Logic perspective, the old 
tensions between mathematicians (opposite 1) and experimenters (opposite 2), can be reconciled 
if we can consider a third approach. Those the available approaches would be somewhere in the 
following spectrum: 

Mathematics (opposite 1) – evidence-based mathematics – experiments (opposite 2) 

Therefore, the middle way that we submit as a plausible resolution to the present stagnation of 
modern physics, is to come up with “evidence-based mathematics.” At this point, some readers 
may ask: But how can we apply such a  principle of parsimony into practice? 

To put the above three criteria into more practical guidelines, allow us to distinguish such a 
Principle of Parsimony (or in more popular term: Ockham razor) into several possible 
approaches: 

Number of 

empirical data 

Min(assumptions), 

MIn(parameters), 

Min(calc. Entropy) 

Ockham 

Optimality point 
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1. To minimize assumptions involved (conceptual simplicity)

2. To minimize number of parameters (model simplicity)

3. To minimize calculation procedures (calculational simplicity)

4. To minimize computational/algorithm entropy (computational simplicity)

5. To maximize coverage of empirical facts to be explained (“evidence based physics”). To
make these criteria a bit more comprehensible, we can draw a diagram as follows:

Three examples 

We have presented a more operational definition of Principle of Parsimony, allow us to give a 
few examples as illustrations, that sometimes: even the standard spacetime notion may be 
excluded to arrive at a good explanation of a set of observed phenomena. 

Example 1 [14] 

There are various models of electron which have been suggested, for instance see Chekh et al. 
But we seek a more realistic electron model which is able to describe to experiments conducted 
by Winston Bostick et al. [17]. In our attempt to explain such experiments of electron creation in 
plasma, allow us to come up with a new model of electron, based on Helmholtz’s electron vortex 
theory. In turn, we will discuss a plausible model of electron capture event inside Earth (matter 
creation), which can serve a basis to explain Le Sage/Laplace’s push gravity. We discussed its 
implications along with receding planets effect from central Sun in a paper.6 

The Helmholtz vortex model of the electron as illustrated in the photo of a Helmholtz vortex (Fig. 
1), is a toroid made of nested concentric toroidal flows of smaller particles, perhaps the inertons 
of Krasnoholovets, or aggregate particles made from Bhutatmas. (The "Bhutatma" infinitesimal 
particle of Vedic lore is the ultimate building block of everything, being the smallest unit of 
matter, and at the same time, the smallest unit of Consciousness.) 

6
 Postscript note: see Christianto, Boyd, Smarandache, 5th Conference of Plasma Physics, held in Stockholm, 2018. 
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Figure 1. Helmholtz vortex model of electron (as verified by Bostick et al. [17]) 

Example 2 [15] 

The golden ratio effectively enables multiple oscillators within a complex system to co-exist 
without blowing up the system. But it also leaves the oscillators within the system free to interact 
globally (by resonance), as observed in the coherence potentials that turn up frequently when the 
brain is processing information. Obviously, this can be tied in to the creation of subatomic 
particles such as electrons and positrons. At a certain scale of smallness, the media in the local 
volume becomes isotropic, while larger volumes exhibit occupation by ever-larger turbulence 
formations and exhibit extremes of anisotropy in the media. 

The Kolmogorov Limit is 10e-58 m, which is the smallest vortex that can exist in the aether media. 
Entities smaller than this, down to the SubQuantum infinitesimals (Bhutatmas) (vortex lines) are 
the primary cause of gravitation (cf. R.N. Boyd). Shadow gravity is valid in the situation of 
gravitational interaction between two discrete masses that divert the ambient gravitational flux-
density away from each other. This happens due to absorption (rare), scattering (more common), 
and refraction (most of the time) of gravitational infinitesimals. 

Gravitational flux density is a variable depending on stellar, interstellar, and intergalactic events. 
A simplified model of vorticity fields in large scale structures of the Universe is depicted below: 
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Figure 2. Vorticity fields in cosmology (after Siavash Sohrab [18]) 

The above diagram seems to be able to capture the turbulence phenomena from Planckian scale 
to cosmos. What is more interesting here, is that it can be shown that there is correspondence 
between Golden section and in coupled oscillators and KAM Theorem, but also between Golden 
section and Burgers equation.  

Now one of questions is: how to write down Navier-Stokes equations on Cantor Sets? Now we 
can extend further the Navier-Stokes equations to Cantor Sets, by keeping in mind their possible 
applications in cosmology. By defining some operators as follows: 

In Cantor coordinates : 

31 2

1 2 3

,uu u
u div u
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  
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2. In Cantor-type cylindrical coordinates:
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Then Yang, Baleanu and Machado are able to obtain a general form of the Navier-Stokes 
equations on Cantor Sets as follows : 
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The next task is how to find observational cosmology and astrophysical implications. 

Example 3: 

Many physicists and philosophers alike have debated a long standing puzzle: whether the space 
is continuous or discrete. It has been known for long time that most of the existing cosmology 
models rely on pseudo-Riemannian metric as the cornerstone of Einsteinian universe. But the 
metric itself is based on continuum model. It is known that such models have led us to too many 
(monster) problems, including dark matter and dark energy etc. Now what if the universe is 
discrete? Then perhaps we can solve these problems naturally.  

Philosophically speaking, the notion of discrete space can be regarded as basic question in 
definition of differential calculus and limit. If it is supposed that space is continuous then we can 
use standard differential calculus, but if we assume it is finite and discrete, then we should use 
difference equation or finite difference theories. This problem is particularly acute when we want 
to compute our mathematical models in computers, because all computers are based on discrete 
mathematics. Then we can ask: is it possible that the discrete mathematics can inspire cosmology 
theorizing too? 

Despite majority of cosmologists rely on such a Standard Model which is called Lambda CDM 
theory, we will explore here the redshift theory based on a few of lattice-cellular models, 
including Lindquist-Wheeler theory and beyond it.  

We will discuss here some peculiar models such as Voronoi tesellattice and also Conrad 
Ranzan’s cellular model.  It is our hope that the new proposed method can be verified with 
observation data.: 

a. Lindquist-Wheeler’s theory:
In this model, the matter content is assumed to be discrete; identical spherically symmetric
islands uniformly distributed in a regular lattice. This attempt was first introduced in 1957 by
Lindquist and Wheeler (LW) in a seminal paper. While LW suggested that their global dynamics
is similar to Friedmann universe for closed dust dominated universe, Shalaby has shown that
LW-model can be extended to yield a redshift equation, as follows [16-16a]:

 )1()1ln(1ln11 FRWFRW

e

r zz
a

a
z 








 (5)
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It can be shown, that the value of  approximates geometrically to be 2/3, however, 

numerically its value was estimated to be 7/10. Liu also analyzed LW model, and he concludes 
that the LW redshifts can differ from their FLRW counterparts by as much as 30%, even though 
they increase linearly with FLRW redshifts, and they exhibit a non-zero integrated Sachs-Wolfe 
effect, something which would not be possible in matter-dominated FLRW universes without 
cosmological constant [16a]. 

b. Voronoi Tessellation model:
Rien van de Weygaert describes a novel model based on Voronoi tessellation. The spatial
cosmic matter distribution on scales of a few up to more than a hundred Megaparsec displays a
salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible
mathematical model for such weblike spatial patterns. Cellular patterns may be the source of an
intrinsic geometrically biased clustering. However, so far we do not find a redshift equation
from this model [26].

c. Nonexpanding cellular universe:
Conrad Ranzan suggests a DSSU cellular cosmology (dynamics steady state universe), which he
claims to be problem-free. The cosmic redshift is shown to be a velocity-differential effect
caused by a flow differential of the space medium. He obtains the cosmic redshift equation in its
basic form[27]:

1)1(  N

GCzz  (6) 

There are of course other cellular cosmology models, some of them have been reviewed by 
Marmet, but this paper is not intended for such an exhaustive list of redshift models.7 

4. On Self-Organized Criticality as a Model of the Scientific Development

In the aforementioned sections, we argue in favour of more balanced-brain approach to scientific 
discovery process, which we submit with a new term “intuilytics”. In this section, allow us to put 
forth an alternative perspective other than “revolutionary” model of scientific development (cf. 
Thomas Kuhn.) If we are willing to learn from history, “revolution” word often leads to fascism. 
And in that case, there is wise phrase to warn us: “You can build a throne out of bayonets, but 
you can't sit on them long.”8 

7
 Postscript note: Elsewhere, in a paper at Prespacetime Journal, we discussed Zeldovich’s approach which is often called as 

“cosmic web” theory, which seems to capable to discrete cellular large-scale pattern of the Universe. Interestingly, several 

researchers argue in favor to linking the cosmic web theory with galactic grids, and even some authors argue that advanced 

interstellar travelling methods can be devised through those galactic grids; also known as cosmic filaments. 
8
 http://marvin.cs.uidaho.edu/About/quotes.html 
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In our proposed perspective, in its simplest form and according to a conventional belief held by 
most science communities, sciences can advance by at least four ways: (a) Incremental approach 
by virtue of scientific methods; (b) Paradigm shift; (c) Christensen’s disruptive change; (d) Self-
organized criticality, but they are rarely employed for describing scientific progress.  

Paradigm shift has been advocated by a notorious science historian, Thomas Kuhn. According to 
his proponents, one of the most interesting features of Thomas Kuhn’s work in “The Structure of

Scientific Revolutions” is its naturalism. But naturalism is just another philosophical strand 
which may or may not agree with empirical data itself. Despite its widespread acceptance, the 
fact is that such a term of paradigm shift is not often tested empirically. There are other ways to 
describe innovation changes, namely, alternative (c) and (d) above. 

Therefore, we will review a recent work which uses citation analysis of journal-journal for the 
past recent years. This analysis reveals that scientific progress seems to follow self-organized 
criticality. 

A review of 4 methods of human knowledge progress 

There are some papers in literature which indicate those 4 methods, as we will review briefly as 
follows: 

a. Incremental approach: by virtue of scientific methods, science advances by small steps.
Until the 1950s, the hegemony of logical empiricism reached to its highest level- by the
representatives of the logistic approach such as R. B. Braithwaite, Rudolf Carnap,
Herbert Feigl, Carl G. Hempel, and Hans Reichenbach. Prior to Kuhn’s SSR, historians
and philosophers of science considered the scientific enterprise to be a rational endeavor
in which progress and knowledge are achieved through the steady, daily, rigorous
accumulation of experimental data accredited facts and new discoveries [30][31].

b. Paradigm shift:
Thomas Kuhn's Structure of Scientific Revolutions (SSR) is accepted to be one of the
main books in the twentieth century. The book considered an entire industry of editorial,
translation, and interpretation. The development of another scholarly discipline - the
social science of science-appeared around a common worldview following Kuhn's
accentuation on the significance of networks of researchers. After the book was
distributed analysts started to look at logical teaches much as sociologists concentrated on
friendly/social gatherings, and in which science was viewed not as the most regarded,
unapproachable result of the Enlightenment yet as simply one more subculture. However,
as Kuhn guaranteed "the way of thinking and humanism of science can't be drilled freely

of one another." However, Kuhn saw the networks (not people) as the essential

Florentin Smarandache (author and editor) Collected Papers, XIII

991



specialists of science and he imagined that networks should be described by the particular 
mental qualities to which they are committed. 

After the 1960s and 70s, following Kuhn's historiography, and savants, for example, Paul 
Feyerabend, Imre Lakatos, Larry Laudan and Michael Polanyi have enormously added to 
the making of an enemy of positivistic way of thinking of science as another custom. 
History of science after Kuhn has every now and again taken an all the more intentionally 
externalist line, in looking external science for the reasons for the substance of science 
[30][31]. 

c. Disruptive change:
In his article in Harvard Business Review, Clayton Christensen, differentiates between:
Sustaining innovations and disruptive innovations.[33] This seems to follow
Schumpeterian view of creative destruction. But this paper will not focus on disruptive
innovation. See also his more recent article in HBR 2015.

d. Self-Organized Criticality:
Self-organized criticality is a rich phenomenon as it combines self-organization and
criticality to describe complexity. This concept was first introduced by P. Bak and the
collaborators in the seminal paper in 1987, and also in his book [32]. This notion is meant
to be a property of dynamical systems to organize its microscopic behavior to be spatial
(and/or temporal) scale independent. That resembles of the critical behavior of the critical
point of phase transitions.
Now, allow us to discuss shortly a comparison between citation analysis of journal-
journal as a way of knowledge creation process, and our computational simulation
approach of creation process of the Universe, based on Ermakov nonlinear equation, as
follows:

Results of citation analysis 

Bolijka Tadic et al. have reported self-organized criticality pattern in online social behavior 
especially in knowledge creation process [30]. But the first convincing citation analysis to prove 
this pattern has been made by Loet Leydesdorff, Caroline S. Wagner, and Lutz Bornman [20]. 
As we know, journals play a crucial and institutionalized role in the validation of knowledge 
claims and in the incorporation of new knowledge into the archive of science. Given their role in 
the codification of knowledge, journals can be considered as an organizing layer of the scientific 
literature. Not incidentally, the Science Citation Index (SCI) and its derivates (the Social

Sciences Citation Index (SSCI) and the Arts & Humanities Citation Index (AHCI)) were defined 
in terms of specific journal selections (Garfield, 1972; 1979b), as is Scopus, the main competitor 
of the SCI since 2004 [29][30]. 
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Diagram 3: Source: Leydesdorff et al. [29] 

Comparison with our model of abrupt origin of the Universe 

Now we will compare this citation analysis result with our proposed model of the origin of the 
Universe. It has been known for long time that most of the existing cosmology models have 
singularity problem. Cosmological singularity has been a consequence of excessive symmetry of 
flow, such as “Hubble’s law”. More realistic one is suggested, based on Newtonian cosmology 
model but here we include the vortical-rotational effect of the whole Universe.  

In other paper, we obtained an Ermakov-type equation following Nurgaliev [35]. Then we solve 
it numerically using Mathematica 11. An interesting result from that simple computational 
simulation is shown in the following diagram [36][37]: 

Diagram 4. Plot of Ermakov-type solution for A=1, B=-10 (after [36-37]) 
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From the above computational simulation, we conclude that the evolution of the Universe 
depends on the constants involved, especially on the rotational-vortex structure of the Universe. 
This needs to be investigated in more detailed for sure. One conclusion that we may derive 
especially from Diagram 4, is that our computational simulation suggests that it is possible to 
consider that the Universe has existed for long time in prolonged stagnation period, then 
suddenly it burst out from empty and formless (Gen. 1:2), to take its current shape with observed 
“accelerated expansion.”  Comparing our model of abrupt origin of the Universe with the above 
citation analysis, it seems both reveal similarities. But whether such an abrupt creation/origin of 
the Universe also indicates Per Bak’s model feature, remains open for further study. 

5. Conclusions

Despite majority of theoretical physicists begin to accept the post-empiricism doctrine, still few 
physicists and mathematicians alike don’t agree with such a doctrine, partly because it is against 
Popper’s criterion of falsifiability for any theory in physics and other sciences as well. And partly 
because criteria like beauty or elegance seem rather subjective for a theory to be accepted as 
“physics’.  

In this article we have discussed several more operational criteria to apply the Principle of 
Parsimony into day to day model building processes. We also discuss Ockham optimality and 
also a number of examples. Further, despite its enormous popularity in the past 5-6 decades, 
paradigm shift view of scientific progress has not been tested quite often. Therefore, in this paper 
we review a recent work which uses citation analysis of journal-journal for the past recent years. 
This analysis reveals that scientific progress seems to follow Self-Organized Criticality pattern. 
Comparing our model of abrupt origin of the Universe with the above citation analysis, it seems 
both reveal similarities. But whether such abrupt origin of the Universe also indicates SOC 
feature, remains open for further study.  
It can be expected that the above discussions will shed some lights on such an old problem 
especially in the context of modelling scientific progress based on empirical data (evidence 
based). This is reserved for further investigations. 

Postscript 

In a recent draft paper with S. Ershkov, S. Alhowaity & E.I. Abouelmagd, 9 we argue that there is 
analytical solution of Ermakov-Pinney equation, which is usually considered difficult to solve 
analytically. By mentioning previous works by Tsekov (Physica Scripta, etc.), and also Lidsey on BEC 
cosmology, even if we don’t have a complete arguments yet at hand, we are convinced that if there is a 

9
 Sergey Ershkov, Victor Christianto, Sawsan Alhowaity, & Elbaz I. Abouelmagd. Revisiting solving procedure for Ermakov–Pinney 

equation with applications in the field of cosmology. In preparation, to be submitted to a physics journal, May 2022. 
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(nonlinear dynamics) equation which can describe both microcosm realm (QM) as well as macrocosm 
dynamics (cosmology), that is Ermakov-Pinney equations. More interestingly, EP equations can be 
transformed into Riccati equations. Maybe, just maybe, this is a little step toward finding a low-

temperature physics approach of everything (LTPE), as we already know from discussion  above that 
superstring/M theory and its multiverse implications is hopeless (cf. P. Woit, also S. Hossenfelder, [10-
11]). Nonetheless, we admit that there is still long road to go on this approach of low temperature 
cosmology. 
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